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Abstract: This paper is devoted to computing the weak deflection angle for the Kalb–Ramond

traversable wormhole solution in plasma and dark matter mediums by using the method of Gibbons

and Werner. To acquire our results, we evaluate Gaussian optical curvature by utilizing the Gauss–

Bonnet theorem in the weak field limits. We also investigate the graphical influence of the deflection

angle α̃ with respect to the impact parameter σ and the minimal radius r0 in the plasma medium.

Moreover, we derive the deflection angle by using a different method known as the Keeton and

Petters method. We also examine that if we remove the effects of plasma and dark matter, the results

become identical to that of the non-plasma case.

Keywords: general relativity; gravitational lensing; Gauss–Bonnet theorem; plasma medium; dark

matter; Kalb–Ramond traversable wormhole; Keeton and Petters method

PACS: 95.30.Sf; 98.62.Sb; 97.60.Lf

1. Introduction

A visual illustration of a black hole (BH) shows that it dissipates energy through
radiation, then compresses, and sooner or later dissolves [1]. Albert Einstein first estimated
the presence of BHs by his theory of general relativity [2]. A BH is considered as an area
of space having too strong a gravitational pull such that the fastest-moving objects and
even light cannot escape it. Four types of BHs that exist are intermediate BHs, stellar BHs,
miniature BHs, and supermassive BHs. Black holes are certainly very simple as they have
two primary parts, the event horizon and the singularity. The event horizon is the boundary
that indicates the limit of a BH. At the event horizon, the escape velocity becomes equal to
the velocity of light. The singularity is a point in space where the existing mass has infinite
density. According to GR, spacetime singularities lead to various issues, both scientifically
and physically [3].

Just like BHs, wormholes (WHs) appear as effective solutions to the Einstein field
equations. The simplest solution to the Einstein field equations is the Schwarzschild so-
lution. The idea of a WH was first given by Flamm in 1916, soon after the invention of
Schwarzschild’s BH solution. In general, a WH is the link between two separate regions of
space that are far away from each other via a tunnel [4]. In 1935, Einstein and Rosen [2]
additionally investigated the theory of inter-universe connections. These spacetime con-
nections were known to be “Einstein–Rosen Bridges”. However, the idea of “WHs” was
formulated by Wheeler in 1957 [5,6]. After that, he illustrated that WHs would be unsteady
and non-traversable for even a photon.

Later on, the term traversable WH was developed by Morris and Thorne in 1988 [7].
They established flat traversable WHs with exotic matter that do not satisfy the null energy
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conditions [8]. Exotic matter creates problems for making stable WHs. Morris, Thorne,
and Yurtsever also showed that traversable WHs can be made stable and flat by applying
the Casimir effect. Another type of traversable WH, a thin-shell WH, was introduced by
Matt Visser in 1989 [9], in which a path through the WH may be made in such a way that
the traversing path does not cross the region of exotic matter. Furthermore, the metric of
the Ellis WH was considered firstly in [10], and the analysis of the Ellis WH returned in
the standard work of Morris and Thorne, where they introduced traversable WHs. The
deflection of light was initially suggested by Chetouani and Clement in the Ellis WH [11].
Nakajima and Asada also studied gravitational lensing by the Ellis WH [12].

It is a known fact that weak and strong gravitational lensing (GL) is a very productive
area to find not only dark and heavy objects, but also BHs and WHs. To identify a WH, a
possible way is the implementation of GL. The GL by WHs has been reviewed on a large
scale in the literature of theoretical physics, as well as astrophysics [3,13–57].

Gravitational lensing was suggested by Soldner for the first time in the background of
Newtonian theory. The basic theory of GL was formed by Liebes, Refsdal, and many other
scientists [58–60]. When light released by distant galaxies passes through heavy objects
in the universe, the gravitational attraction by those heavy objects can cause the light to
deviate from its pathway. This process is known as GL. Gravitational lensing is a very
applicable method to understand dark matter, galaxies, and the universe. Three types of
GL listed in the literature are: (i) strong GL, (ii) weak GL, and (iii) micro-GL. Strong GL
indicates the approximate magnification, location, and time delay of the images with the aid
of BHs. Strong GL is also helpful to see various objects such as boson stars, fermion stars,
and monopoles [61]. Weak GL is used to discover the mass of astronomical objects without
demanding their changing nature. Weak lensing also differentiates dark energy from
modified gravity and investigates how the universe is expanding rapidly. Gravitational
lensing has been calculated for many spacetimes by applying various methods [51–84].
In the past few years, we have examined many research works that relate GL to the
Gauss–Bonnet theorem (GBT).

Using the GBT, Gibbons and Werner [84] revealed that it is possible to compute the
deflection angle in weak field limits using the Gauss–Bonnet theorem. After that, Werner
expanded this technique to Kerr BHs [85] by using Nazim’s method for the Randers–
Finsler metric. Then, Ono et al. enlarged the study of weak GL in stationary axisymmetric
spacetimes using the finite distance method [86–89]. The theory of GL comprises three
physical processes named (i) geometric optics, (ii) the thin lens approximation, and (iii) the
perturbation theory of GL [90–92].

For a distant observer from a source, the bending angle of light can be determined
by using the GBT in the weak field limits [84]. By considering an oriented surface, let
us describe a domain DR surrounded by the beam of light with a circular boundary CR

having the Euler characteristic element X and metric g at the focus area where the light
rays coincide with the source and the viewer. Therefore, when the GBT is applied within
the optical metric, it provides us the bending angle of light stated as [84]:

∫ ∫

DR

KdS +
∮

∂DR

kdt + ∑
n

θn = 2πX (DR),

where DR is the region that comprises the source of the light waves, the observer, and the
focal point of the lens, K shows the Gaussian optical curvature, dS is the surface element,
k is known as geodesic curvature, and ∂DR shows that this portion is surrounded by the
outermost light rays. The asymptotic bending angle of light can be computed as [84]:

α̃ = −
∫ ∫

D∞

KdS,

where α̃ represents the bending angle and D∞ indicates the infinite domain bounded by
the rays of photons, apart from the lens. Moreover, by utilizing the GBT, the bending angle
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for static and axisymmetric rotating Teo WHs was investigated by Jusufi and Övgün [93].
Recently, Övgün studied the deflection angle by Damour–Solodukhin WHs [94].

An approximate form of GL by the help of spherically symmetric lenses up to the post-
post-Newtonian (PPN) was newly originated by Keeton and Petters [90,91]. Sereno and de
Luca [92] expanded the PPN approximation to Kerr BHs. The Keeton and Petters method
allows the calculations of those observable quantities that can be basically independent of
coordinates and, therefore, physically applicable.

Dark matter comprises those particles that do not absorb, reflect, or emit light, so that
they cannot be detected by observing electromagnetic radiation. Dark matter is a substance
that cannot be directly visualized. Dark matter produces up to 27% of the overall mass–
energy of the universe, and the remaining part consists of dark energy. Dark matter can
only be noticed by its gravitational interaction. However, it has a weak non-gravitational
interaction and is a non-relativistic nature [95]. Some of the dark matter exists as: weakly
interacting massive particles (WIMPs), axions, sterile neutrinos, super WIMPs, etc. Dark
matter particles are formed by non-baryonic particles. The neutrino is the only familiar
non-baryonic particle, and it is taken as the first dark matter candidate. The refractive
index used in dark matter maintains the propagation speed. According to the literature
of the 20th Century, we have seen many times that matter mostly consists of protons and
neutrons. However, the matter that we see is not a suitable form of matter. In this universe,
there are some other types of matter whose masses are five-times greater than regular
matter. Such unknown matter is called “dark matter”. We have not been able to detect its
existence in the laboratory until now. For the proper understanding of dark matter, we have
to understand and then use various branches of astronomy and physics such as particle
physics to describe the relation between dark matter and standard matter. Cosmology,
general relativity, and astrophysics are applicable for the wide-ranging study of dark matter
in the literature [96,97]. For the inspection of the bending angle through dark matter, we
take the refractive index as [96,97]:

n(ω) = 1 + βA0 + A2ω2,

where ω is the frequency of a photon. It is noticed here that β = ρ0
4m2ω2 represents the mass

density of the scattered dark matter particles, A0 = −2e2ǫ2 and A2 j ≥ 0. The higher-order
terms such as O(ω2) and onward are linked with the polarizability of the dark matter
candidate. The term O(ω2) stands for the neutral dark matter candidates, while O(ω−2)
denotes the charged dark matter candidates.

The main goal of this paper is to examine the deflection of light for the Kalb–Ramond
traversable WH solution by using various methods.

This paper is organized as follows. In Section 2, we analyze the Kalb–Ramond
traversable WH solution in detail. In Section 3, we compute the deflection angle for
the Kalb–Ramond traversable WH solution in the plasma medium. Section 4 is related
to the graphical inspection of the deflection angle of the Kalb–Ramond traversable WH
solution in the framework of the plasma medium. In Section 5, we investigate the bend-
ing angle of the Kalb–Ramond traversable WH solution by using the Keeton and Petters
method. In Section 6, we enlarge our observations and derive the value of the deflection
angle in the dark matter medium. In Section 7, we conclude all the results.

2. Kalb–Ramond Traversable Wormhole Solution

This section is devoted to describing some properties of a traversable WH solution.
The metric is spherically symmetric and independent of time for the sake of simplification.
A wormhole is like a tunnel connecting two regions of space, having no horizon because
the presence of a horizon does not allow two-sided traveling. The time taken by the traveler
to pass through the WH should be limited and fairly short. The gravitational force that the
traveler inside the WH experiences should be slightly small.

Local Lorentz violation effects also result in modified gravitational dynamics. How-
ever, the Lorentz symmetry may be violated close to the Planck scale. When one or more
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of the tensor fields gain nonzero vacuum expectation values (VEVs), Lorentz symmetry
breaks spontaneously. The Kalb–Ramond (KR) field, an antisymmetric tensor field Bµν that
appears in string theories, is another cause for spontaneous Lorentz symmetry breaking
(LSB). A non-vanishing VEV breaks the gauge and the Lorentz symmetry by allowing a self-
interaction potential. The tensor antisymmetric VEV can be split into two vectors, called
pseudo-electric and pseudo-magnetic vectors, in the same way that the electromagnetic
field strength can. A background KR field recently altered about a static and spherically
symmetric WH. The parameter-dependent power-law correction to the Schwarzschild
solution results from a non-minimal interaction between the KR VEV and the Ricci tensor.
The effects of this LSB solution on the WH temperature and the shadows have also been in-
vestigated [98]. The static spherically symmetric spacetime of a Morris–Thorne traversable
WH is expressed by the metric [7]:

ds2 = −e2φ(r)dt2 +
dr2

1 − Ω(r)
r

+ r2dθ2 + r2 sin2 θdφ2, (1)

where the value of Ω(r) is defined as [98]:

Ω(r) = r(
r

r0
)

2
1−2λ .

Here, λ is the Lorentz violating parameter λ = |b|2ξ2, b and ξ2 are constants [98],
φ(r) is the redshift function, and Ω(r) is the shape function of the WH. Both of these
functions are adjustable. The redshift function is finite everywhere. The shape function
Ω(r) calculates the shape of the WH or describes the WH physically. The radial variable r
has a minimum value of r0 and a maximum value of infinity, or r0 ≤ r < ∞. r0 is a positive
constant as it decreases from positive infinity to a least value and, after that, starts moving
towards positive infinity.

After putting the value of the shape function, the spacetime metric becomes:

ds2 = −dt2 +
dr2

1 − ( r
r0
)

2
1−2λ

+ r2(dθ2 + sin2 θdφ2). (2)

Now, for the Kalb–Ramond traversable WH solution, we can write our metric in
general form as:

ds2 = −gttdt2 + grrdr2 + r2dθ2 + r2 sin2 θdφ2, (3)

where,gtt = 1 and grr =
1

1−( r
r0
)

2
1−2λ

. For the calculation of the deflection angle by the Kalb–

Ramond traversable WH solution, the optical path can be obtained by the null geodesic
condition ds2 = 0. Furthermore, we assume that the photon is moveable in the equatorial
plane (θ = π

2 ). In order to calculate the deflection angle, one can obtain the optical path
metric in explicit form given as follows [98]:

dt2 =
dr2

1 − ( r
r0
)

2
1−2λ

+ r2dφ2. (4)

The above metric will be used to calculate the deflection angle of light by the Kalb–
Ramond traversable WH solution, which is described.
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3. Deflection Angle in the Plasma Medium

In this section, we evaluate the impact of the plasma medium on weak GL for the
Kalb–Ramond traversable WH solution (4). The value of the refractive index n(r) for the
given WH solution is defined as [99]:

n(r) =

√

1 − ω2
e (r)

ω2
∞(r)

Ω(r). (5)

In the refractive index n(r), ωe indicates the plasma frequency of an electron, while ω∞

denotes the frequency of a photon, which is noticed by the observer at infinity. Therefore,
the optical metric can be written as:

dt2 = g
opt
lm dxldxm = n2(r)

[

dr2

f (r)
+ r2dφ2

]

, (6)

where f (r) is defined as

f (r) =
1

1 − ( r
r0
)

2
1−2λ

. (7)

Now, the relative Gaussian optical curvature can be determined by the expression
present in [100,101]:

K =
R

2
, (8)

where R is the Ricci scalar. We calculate the Gaussian optical curvature for the Kalb–
Ramond traversable WH solution as:

K ≃ − r0

2r3 +
5
4

r2
0

r4

w2
e

w2
∞

− r0

r3
w2

e

w2
∞

+O(r3
0). (9)

The Gaussian curvature depends on minimal radius r0 and radial parameter r. For the
sake of simplicity, we consider the optical curvature up to order two, as well as to match
our results given in the non-plasma medium case.

The infinitesimal surface element for the Kalb–Ramond traversable WH solution can
be computed as:

dS =
√

gdrdφ =

(

r − rw2
e

w2
∞

)

drdφ +O(r3
0).

To find the deflection angle in the plasma medium, we utilize the GBT. As the beam of
light approaches from infinity up to a large distance and remembering that we are present
in weak field limitations, here, the beam of light becomes almost straight. Hence, we utilize
the straight line approximation r = σ

sin φ , where σ expresses the impact parameter, and the
GBT is stated as [84]:

α̃ = −
∫ π

0

∫ ∞

σ
sin φ

KdS. (10)

The resulting expression can be expressed for λ = 3
2 . The Lorentz violating parameter

must be restricted to the range λ > 1/2 to achieve an asymptotically flat spacetime. If we
take λ ≃ 0, the geometry of the metric will not be asymptotically flat. For this value of λ,
deflection angle α̃ for the Kalb–Ramond traversable WH can be obtained as:

α̃ ≃ r0

σ
+ π

( r0

4σ

)2
+

w2
e

w2
∞

r0

σ
+

r2
0π

8σ2
w2

e

w2
∞

+O(r3
0). (11)

The above result shows that the light rays are moving in the plasma medium. If
we remove the plasma effects, this angle will convert into the non-plasma medium. The
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deflection angle α̃ depends on the minimal radius r0 and the impact parameter σ, where
the bending angle is directly proportional to r0 and inversely proportional to σ.

4. Graphical Behavior of the Deflection Angle

This section is based on the explanation of the graphical analysis of the deflection angle
for the Kalb–Ramond traversable WH solution in the plasma medium. For this purpose,
we analyze the deflection angle with respect to the impact parameter σ and the minimal
radius r0.

4.1. α̃ versus σ

Figure 1 shows the behavior of α̃ with respect to the impact parameter σ for plasma
impact ωe

ω∞
= 10−1. For r0 ≤ 3, we observe that, in the first graph, as σ increases, α̃

decreases exponentially and shows a convergent behavior, which converges to zero. On the
other hand, we evaluated that, with the increase of r0, the deflection angle also increases.
Similarly, for r0 ≥ 3 in the second plot, the angle shows a decreasing behavior when the
value of the impact parameter increases.

r0=0.5

r0=1.0

r0=1.5

r0=2

r0=2.5

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

✁

α˜

r0=3.5

r0=4.0

r0=4.5

r0=5.0

r0=5.5

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

✁

α˜

Figure 1. Figure 1 shows the behavior of α̃ with respect to the impact parameter σ for plasma impact
ωe
ω∞

= 10−1.

Figure 2 shows that, for r0 ≤ 3, r0 > 3 by assuming plasma impact ωe
ω∞

= 10−2, one

can analyze a similar behavior to that of ωe
ω∞

= 10−1. We also investigated that, for small
values of r0, as σ increases, α̃ exponentially decreases. Moreover, it is to be observed that,
as the value of σ increases, α̃ decreases. This shows that the deflection angle has an inverse
relation with σ and a direct relation with r0.

r0=0.5

r0=1

r0=1.5

r0=2.0

r0=2.5

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20
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0.30

0.35

✁

α˜

r0=3

r0=3.5

r0=4.0

r0=4.5

r0=5.0
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0.0
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0.4

0.5

0.6

✁

α˜

Figure 2. Figure 2 shows the behavior of α̃ with respect to the impact parameter σ for plasma impact
ωe
ω∞

= 10−2.
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4.2. α̃ versus r0

Figure 3 shows the behavior of the deflection angle α̃ of the light with respect to r0
for the impact parameter 0 < σ < 50 and plasma impact ωe

ω∞
= 10−1. We examine that for

0 < σ < 50, the left graph indicates that as the linear behavior as r0 increases, the bending
angle α̃ also increases, and as σ increases, the deflection angle decreases. For larger σ, the
angle approaches zero. A similar case is given in the right plot for σ > 50: angle increases
with increasing values of r0, and vice versa.

Figure 4 shows that, for σ > 50 and 0 < σ ≤ 50 having plasma impact value
ωe
ω∞

= 10−2, we can analyze similar behavior as for the case ωe
ω∞

= 10−1. We evaluated that
as the values of r0 increases, the deflection angle also increases, and as σ increases, the
bending angle decreases, which shows the divergent behavior of the graphs. Furthermore,
we investigated that bending angle α̃ has a direct relation with impact parameter r0 and an
inverse relation with σ.

σ❂10

σ❂20

σ❂30

σ❂40

σ❂50

0 2 4 6 8 10

0.0

0.2

0.4
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r0

α˜
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Figure 3. α̃ versus r0 for ωe
ω∞

= 10−1.
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r0

α˜

Figure 4. α̃ versus r0 for ωe
ω∞

= 10−2.

5. Deflection Angle Using the Keeton and Petters Method

Keeton and Petters established a completely beneficial framework for computing
corrections in a standard asymptotically flat metric theory of gravity [90,91]. The central
focus is to illustrate a way to manage lensing in computing gravity theories using PPN
corrections up to third-order.

The non-linear spherically symmetric and asymptotically Minkowski spacetime is
defined by:

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dΩ2. (12)
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Due to the spherical symmetry, the geodesics of Equation (12) lie in the equatorial
plane, while dΩ2 = dθ2 + sin2 θdφ2 represents the standard unit metric. The above equation
becomes:

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dθ2. (13)

For A(r) → 1, B(r) → 1, and C(r) → r2, the spacetime metric is flat in the absence
of the lens, and we suppose that A, B, and C are all +ve in the outside region of the lens
from where the required light rays pass. The Kalb–Ramond traversable WH solution can
be presented as:

ds2 = −dt2 +
dr2

1 − ( r
r0
)

2
1−2λ

+ r2dθ2, (14)

where the metric functions are:
A(r) = 1, (15)

and

B(r) =
1

1 − ( r
r0
)

2
1−2λ

. (16)

To find the PPN coefficients, we compare the coefficients of the extended form of
metric function with the coefficients of the standard form of the general metric in a PPN
series to third-order. The general form of the PPN series for Eq.(5.1) given as [90]:

A(r) = 1 + 2a1

(

φ

c2

)

+ 2a2

(

φ

c2

)2

+ 2a3

(

φ

c2

)3

... (17)

B(r) = 1 − 2b1

(

φ

c2

)

+ 4b2

(

φ

c2

)2

− 8b3

(

φ

c2

)3

... (18)

Here, φ denotes the three-dimensional Newtonian prospective. In our paper, we consider

(

φ

c2

)

=
r0

r
. (19)

We obtain the values of the coefficients of PPN metric as

a1 = 0, a2 = 0, a3 = 0, b1 =
1
2

, b2 =
1
4

, b3 =
1
8

.

After finding the PPN coefficients, we then determine the coefficients in the extended
form of the bending angle. The extended form of the light deflection angle can be written
as follows

α(b) = A1

(m

b

)

+ A2

(m

b

)2
+ A3

(m

b

)3
+ O

(m

b

)4
. (20)

We take r0 = m and σ = b. To compute the coefficients of the bending angle, we utilize
the following equation:

A1 = 2(a1 + b1),

A2 =

(

2a2
1 − a2 + a1b1 + b2 −

b2
1

4

)

π,

A3 =
2
3
[35a3

1 + 15a2
1b1 − 3a1

(

10a2 + b2
1 − 4b2

)

+ 6a3 + b3
1 − 6a2b1 − 4b1b2 + 8b3]. (21)

Using the Equation (21), we can determine the values of the coefficients presented as
follows

A1 = 1, A2 =
3π

16
, A3 =

5
12

.
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After substituting the values of the coefficients in Equation (20), we obtain the resulting
bending angle of the Kalb–Ramond traversable WH as:

α̃(σ) =
( r0

σ

)

+
3π

16

( r0

σ

)2
+

5
12

( r0

σ

)3
+ O

( r0

σ

)4
. (22)

This expression shows the deflection angle by using the Keeton and Petters method,
which is dependent on r0 and σ. The bending angle is directly proportional to r0 and
inversely proportional to σ.

6. Deflection Angle of a Photon in the Dark Matter Medium

Here, in this section, we examine how dark matter influences the weak deflection
angle. For this purpose, we take the refractive index for the dark matter medium [42,96,97]:

n(ω) = 1 + βA0 + A2ω2. (23)

The two-dimensional optical geometry for the Kalb–Ramond traversable WH solu-
tion is:

dt2 = n2





dr2

1 − ( r
r0
)

2
1−2λ

+ r2dφ2



, (24)

with the condition:
dt

dφ
|CR

= n
(

r2
) 1

2
. (25)

Applying this condition to a non-singular domain CR outside of the light ray will yield
the deflection angle. Hence, with the help of the GBT, we can calculate the weak deflection
angle for the Kalb–Ramond traversable WH solution in the dark matter medium.

lim
R→∞

∫ π+α

0

[

Kg
dt

dφ

]

|CR
dφ = π − lim

R→∞

∫ ∫

DR

KdS. (26)

We compute the Gaussian optical curvature as follows:

K =
r0

2r3(1 + βA0 + A2ω2)
. (27)

After this, we determine:

lim
R→∞

Kg
dt

dφ
|CR

= 1. (28)

Now, when we apply the limit R → ∞, then we can evaluate the deflection angle for
the Kalb–Ramond traversable WH solution by using the GBT as below:

α̃ = −
∫ π

0

∫ ∞

σ
sin φ

KdS. (29)

We obtain the weak deflection angle of the Kalb–Ramond traversable WH solution in
the dark matter medium after putting the value of K and dS:

α̃ ≃ r0

σ(1 + βA0 + A2ω2)
6 +

r2
0β6 A12

0 π

16σ2(1 + βA0 + A2ω2)
6 |+O(r3

0). (30)

This result shows that, when the effect of dark matter vanishes, the bending angle
reduces to the deflection angle in the non-plasma medium. The effect of dark matter shows
a larger deflection than in the general case. The deflection angle α̃ depends on σ and r0. We
can see that dark matter gives a larger deflection angle than in the general case.
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7. Conclusions

This paper was concerned with calculating the bending angle α̃ for the Kalb–Ramond
traversable WH solution in plasma and dark matter mediums. We evaluated the metric
and explained its mathematical interpretation. For the calculation of the bending angle, we
obtained the Gaussian optical curvature. After that, we applied the GBT and derived the
value of the deflection angle for the Kalb–Ramond traversable WH solution in the plasma
medium, Equation (11) for λ = 3

2 .
If we neglect or have the value of the plasma effect ωe

ω∞
approach zero, then the effect

of the plasma vanishes, and the resulting expression of the bending angle for the plasma
medium reduces to the non-plasma case.

The graphical behavior of the deflection angle in the plasma medium was also calculated.
α̃ with respect to impact parameter σ:

For r0 ≤ 3 and r0 > 3 having the effect of the plasma ωe
ω∞

= 10−1, the deflection angle
α̃ gradually approaches zero as σ increases, in both graphs. We have also observed that
α̃ exponentially decreases and indicates a convergent behavior for large values of σ. We
examined that for r0 ≤ 3 and r0 > 3 having the plasma effect ωe

ω∞
= 10−2 as r0 approaches

infinity, α̃ → ∞ at smaller σ. We also investigated that α̃ has an inverse relation with σ and
a direct relation with r0.

α̃ with respect to the minimal radius r0:

We= analyzed that, for 0 < σ ≤ 50 and σ > 50, supposing ωe
ω∞

= 10−1, the deflection
angle α̃ increases as the value of r0 increases. The linear behavior of both graphs was
examined. We also investigated that, as σ increases, the angle decreases, and vice versa.
We reviewed that, for 0 < σ ≤ 50 and σ > 50 at ωe

ω∞
= 10−2, deflection angle α̃ exhibited

similar behavior as that for ωe
ω∞

= 10−1. We also examined that α̃ increases for larger r0
and α̃ decreases as σ increases. We investigated a divergent behavior in both cases. We
evaluated that α̃ has a direct relationship with r0 and an inverse relation with σ.

Furthermore, we also derived the deflection angle by using the Keeton and Petters,
method which is the approximate form of GL, and used a spherically symmetric spacetime
metric. For this purpose, we found the coefficients of the PPN metric by comparing
the expanded metric function with the standard PPN metric. Later, we determined the
coefficients of the bending angle and, again, by comparing them with the general form of
Schwarzschild metric to obtain the final results given in Equation (22).

Lastly, we calculated the value of deflection angle α̃ for the Kalb–Ramond traversable
WH solution in the dark matter medium. Dark matter contains particles that cannot absorb,
emit, or reflect light rays. For this purpose, we calculated Gaussian optical curvature
Equation (27) and determined the deflection angle (30).

In the plasma, the Keeton and Petters method, and the dark matter medium case, the
results reduced to the non-plasma case. The resulting equations depend on the minimal
radius r0 and impact parameter σ, showing that the deflection angle is directly proportional
to r0 and inversely to σ. The plots between the angle and minimal radius or impact
parameter demonstrates that, when r0 increases, the bending angle also move towards
infinity. Furthermore, we observed the convergent and divergent behavior with respect to
σ and r0, respectively. When we removed the effect of plasma and dark matter, the resultant
expression became similar to that of the Bumblebee traversable wormhole solution. In
the case of the Keeton and Petters method, only the first term became similar to the
general case.

Author Contributions: Conceptualization, W.J. and A.Ö.; methodology, R.C.P. and A.Ö.; software,
H.I.; validation, W.J., R.C.P. and A.Ö.; formal analysis, H.I.; investigation, H.I.; resources, W.J. and
A.Ö.; writing—original draft preparation, H.I.; writing—review and editing, W.J., H.I., R.C.P. and
A.Ö.; visualization, H.I. and R.C.P.; supervision,W.J. and A.Ö. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.



Universe 2022, 8, 599 11 of 13

Acknowledgments: A.Ö. and R.C.P. would like to acknowledge networking support by the COST
Action CA18108-Quantum gravity phenomenology in the multi-messenger approach (QG-MM).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Javed, W.; Abbas, G.; Ali, R. Charged vector particle tunneling from a pair of accelerating and rotating and 5D gauged super-
gravity black holes. Eur. Phys. J. C 2017, 77, 296. [CrossRef]

2. Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [CrossRef]
3. Javed, W.; Khadim, M.B.; Övgün, A.; Abbas, J. Weak gravitational lensing by stringy black holes. Eur. Phys. J. Plus 2020, 135, 314.

[CrossRef]
4. Visser, M. Lorentzian Wormholes: From Einstein to Hawking; American Institute of Physics: New York, NY, USA, 1996.
5. Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536. [CrossRef]
6. Fuller, R.W.; Wheeler, J.A. Causality and Multiply Connected Space-Time. Phys. Rev. 1962, 128, 919–929. [CrossRef]
7. Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am.

J. Phys. 1988, 56, 395–412. [CrossRef]
8. Hochberg, D.; Visser, M. The Null energy condition in dynamic wormholes. Phys. Rev. Lett. 1998, 81, 746–749. [CrossRef]
9. Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182–3184. [CrossRef] [PubMed]
10. Ellis, H.G. Ether flow through a drainhole - a particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [CrossRef]
11. Chetouani, L.; Clement, L.G. Geometrical optics in the Ellis geometry. Gen. Relat. Gravit. 1984, 16, 111–119. [CrossRef]
12. Nakajima, K.; Asada, H. Deflection angle of light in an Ellis wormhole geometry. Phys. Rev. D 2012, 85, 107501. [CrossRef]
13. Kuhfittig, P.K.F. Gravitational lensing of wormholes in the galactic halo region. Eur. Phys. J. C 2014, 74, 2818. [CrossRef]
14. Tsukamoto, N.; Gong, Y. Extended source effect on microlensing light curves by an Ellis wormhole. Phys. Rev. D 2018, 97, 084051.

[CrossRef]
15. Tsukamoto, N.; Harada, T. Light curves of light rays passing through a wormhole. Phys. Rev. D 2017, 95, 024030. [CrossRef]
16. Tsukamoto, N. Strong deflection limit analysis and gravitational lensing of an Ellis wormhole. Phys. Rev. D 2016, 94, 124001.

[CrossRef]
17. Tsukamoto, N.; Gong, Y.; Retrolensing by a charged black hole. Phys. Rev. D 2017, 95, 064034. [CrossRef]
18. Tsukamoto, N. Deflection angle in the strong deflection limit in a general asymptotically flat, static, spherically symmetric

spacetime. Phys. Rev. D 2017, 95, 064035. [CrossRef]
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24. Övgün, A.; Sakallı, İ. Testing generalized Einstein–Cartan–Kibble–Sciama gravity using weak deflection angle and shadow cast.

Class. Quant. Grav. 2020, 37, 225003. [CrossRef]
25. Jusufi, K.; Werner, M.C.; Banerjee, A.; Övgün, A. Light Deflection by a Rotating Global Monopole Spacetime. Phys. Rev. D 2017,

95, 104012. [CrossRef]
26. Jusufi, K.; Övgün, A.; Saavedra, J.; Vásquez, Y.; González, P.A. Deflection of light by rotating regular black holes using the

Gauss–Bonnet theorem. Phys. Rev. D 2018, 97, 124024. [CrossRef]
27. Javed, W.; Babar, R.; Övgün, A. The effect of the Brane-Dicke coupling parameter on weak gravitational lensing by wormholes

and naked singularities. Phys. Rev. D 2019, 99, 084012. [CrossRef]
28. Övgün, A. Weak field deflection angle by regular black holes with cosmic strings using the Gauss–Bonnet theorem. Phys. Rev. D

2019, 99, 104075. [CrossRef]
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