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Abstract

NOvA is a two-detector long-baseline neutrino oscillation experiment. It consists of a

Near and Far Detector, which sit 1 km and 810 km, respectively, from the source of the

NuMI neutrino beam. Both detectors sit 14 mrad off-axis, resulting in a beam of neutrinos

with energy narrowly peaked around 2 GeV.

This thesis describes a cross-section analysis done at the Near Detector. A cross-

section measurement was made for νµ charged-current interactions with a single charged

pion in the final state. This measurement, the first of its kind in the NOvA Near Detector,

is flux integrated and reported in bins of pion angle. The measurement was made using

13.8×1020 protons on target of neutrino beam, collected between 2014 and 2020. This

measurement is sensitive to the transition region between the quasi-elastic and deep

inelastic scattering regimes of neutrino-nucleus interactions.
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Chapter 1

The neutrino

The neutrino is the most abundant matter particle in the universe. The earth is constantly

bombarded with neutrinos from the sun. An outstretched human hand would expect about

10 trillion solar neutrinos to pass through it every second. However, they interact so rarely

that only approximately one of these solar neutrinos interact inside the human body per

day 1. This small interaction probability means they remain among the most challenging

standard model particles to study.

In this chapter, I will give a brief overview of the Standard Model, followed by an

outline of the neutrino’s theoretical and experimental history. I will also describe neutrino

oscillation physics and neutrino-nucleus interactions.

1.1 The Standard Model
The Standard Model is one of the most successful theories in all of science. It is a quantum

field theory which describes particles and their interactions, and has symmetries given by

the gauge group SU(3) ×SU(2) ×U(1). The Standard Model contains 12 matter particles

(fermions), 4 force carriers (gauge bosons), and a Higgs boson, as shown in Figure 1.1.

Fermions have half-integer spin. They can be further split into quarks and leptons.

Quarks have electromagnetic charge and weak isospin. As a result, they feel both the

electromagnetic and weak forces. Quarks also have colour charge, so they are subject to

the strong force. In nature, quarks are always found in colourless combinations. Quarks

1Very roughly, (1011ν/cm2/s solar flux) ×(10−44cm2 cross-section) ×(1028 nucleons in the body)
×(105 s in a day) = 1 interaction per day
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Figure 1.1: The 17 elementary particles in the Standard Model. Figure from [1].

are divided into three generations - up and down, charm and strange, and top and bottom.

Atomic matter is mainly comprised of up and down quarks. Leptons have weak isospin but

no colour charge. Three leptons have an electromagnetic charge, the electron, muon, and

tau. The remaining three leptons are the neutrinos, which come in electron, muon, and tau

flavours, and are electrically neutral.

The gauge bosons are the force carriers of the Standard Model. The photon carries

the electromagnetic force, the W and Z bosons carry the weak force, and the gluon carries

the strong nuclear force. All gauge bosons have spin 1.

The Higgs boson is the only scalar boson (spin 0) in the Standard Model. It is an

excitation of the Higgs field, which gives mass to the fundamental particles.

Neutrinos were predicted in the Standard Model to be massless. Experimental

evidence of neutrino oscillation shows that the neutrino mass must be non-zero. Neutrino

oscillation is the most significant discrepancy from Standard Model prediction observed to

date. Hence neutrino physics is an area of intense research today.

1.2 History
This section will outline the theoretical and experimental history of the neutrino - from

first its proposal to the early days of neutrino detection and later the study of its properties.
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1.2.1 Genesis

In the early 20th century, β -decay was believed to be a two-body decay, i.e.

N → N′+ e− (1.1)

As such, it was expected that the emitted electrons would be mono-energetic. We can

see this if we consider the four-momenta of the initial state P = (M,~0), and the final state

particles p1 and p2, where P = p1 + p2. Let us call p2 the four-momentum of the electron.

We have

p2
1 = (P− p2)

2

m2
1 = M2 −2ME2 +m2

2

E2 =
M2 +m2

2 −m2
1

2M

Assuming fixed masses, the outgoing electron energy E2 is fixed. In 1914 James

Chadwick observed a continuous energy spectrum from β -decay [24]. Given the assump-

tions of the time, this implied a violation of the law of conservation of energy 2. Figure 1.2

shows an example of this continuous energy spectrum.

At a 1930 meeting in Gauverein, a letter written by Wolfgang Pauli, who could not

make it in person to the meeting, was read to the attendees [25]. In this letter, he proposed

a “desperate remedy” to the β -decay problem. He hypothesised that an electrically neutral,

spin 1/2 particle existed inside the nucleus, which he named the neutron. This new particle

could therefore carry away the “missing energy” observed in β -decay experiments.

Just a few years later, in 1934, Enrico Fermi published his theory of four-fermion

β -decay [26], in which he posited that the new mystery particle, which he named the

neutrino3, was created during the decay, rather than residing inside the nucleus. This gave

a theoretical framework to explain the energy spectrum of β -decay. However, Bethe and

Peierls were quick to point out that the neutrino would have a penetrating power of 1016

2The decay also indicated non-conservation of angular momentum, but vanishing energy is already
troubling enough.

3The name neutron had since been taken by the nucleon we know and love today.
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Figure 1.2: Continuous β -decay spectrum observed by Ellis and Wooster [2]. A single peak at the
right-most edge of the graph is expected for a two-body decay.

km in solid matter [27]. Hence they concluded that there was “no practically possible way

of observing the neutrino”.

1.2.2 Observing the neutrino

Luis Alvarez was among the first to propose that neutrinos could be detected 4 [29]. The

proposal was to bombard a tank containing chlorine with an intense neutrino beam (perhaps

from a nuclear reactor). Chlorine atoms could be transmuted by converting neutrons to

protons

ν + 37Cl → 37Ar+ e− (1.2)

After irradiation, the 37Ar would be separated, and one could count the number of

argon atoms and therefore infer the number of neutrino interactions.

Fred Reines and Clyde Cowan were the first to conclusively observe the neutrino in

1956 [30]. Their experiment, located underground near the Savannah River Plant reactor,

relied on observing the coincidence of photon emission from prompt positron annihilation

4Alvarez’s work was based on an earlier lecture by Pontecorvo which the US government quickly
classified [28].
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Figure 1.3: Design of the Reines and Cowan experiment, used for the first-ever detection of
neutrinos. Figure from [3].

followed by delayed neutron capture in cadmium-doped water, produced via the reaction

ν̄ + p → n+ e+ (1.3)

The experiment consisted of a multi-layered “sandwich” of water detectors doped

with cadmium (to capture neutrons) between liquid scintillator tanks viewed by photomul-

tiplier tubes, as shown in Figure 1.3. The entire detector was encased in lead to reduce

backgrounds and employed veto detectors outside the shielding. For this work, Reines was

awarded the 1995 Nobel Prize in Physics 5.

A 1962 experiment by Danby et al. at the AGS in Brookhaven was the first to show

that there was more than one type of neutrino [31]. This experiment also pioneered the

accelerator neutrino beam method still used today (see Section 2.1). Using a high-energy

proton beam incident on a target, pions and kaons were produced, which decayed into

muons and neutrinos. These particles impinged on a 13.5 m iron shield, which absorbed

the muons, leaving a beam of neutrinos. It was observed that when these beam neutrinos

later interacted, they only ever produced muons in the detector. They concluded that the

neutrinos they were producing were muon-flavoured.

Following the 1975 discovery of the tau lepton [32], it was anticipated that there

would be a tau-flavoured neutrino. The DONUT experiment at Fermilab first observed this

5Cowan had died in 1974.
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Figure 1.4: Average cross-section of the process e+e− → hadrons, as measured at LEP. Also
overlaid is the theoretical prediction for two, three, and four generations of light
neutrino. Figure from [4].

third neutrino flavour in 2001 [33]. Measurements of the e+e− → hadrons cross-section

by the OPAL, ALEPH, L3, and DELPHI experiments at LEP put a combined limit on the

number of light neutrinos (mν < mZ/2) at 2.9840 ± 0.0082 [4] (see Figure 1.4).

1.2.3 Oscillations

Ray Davis designed an experiment in the Homestake mine in Lead, South Dakota to

measure the flux of solar neutrinos (neutrinos produced in the nuclear reactions occurring

in the sun) [34]. The experiment was based on the Pontercorvo/Alvarez design described

in Section 1.2.2, where the chlorine in a tank of C2Cl4 was transmuted to argon via

neutrino capture (see Equation 1.2). John Bahcall had previously performed theoretical

calculations which predicted a significantly larger flux than was observed [35], an anomaly

which persisted for the decades-long run of Davis’ experiment. Pontecorvo noted that this

anomaly could be explained by neutrino flavour oscillation6 [36], an idea he had developed

along with Maki, Nakagawa, and Sakata in 1967. The suggestion was that the number

6Pontecorvo and Gribov proposed a two flavour oscillation framework, as neither the τ lepton nor ντ

had yet been discovered.
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of νe emitted from the sun matched Bahcall’s prediction, but during the 1.5× 108 km

journey from the sun to the earth many of these νe oscillate into νµ and ντ which were

undetectable with the experimental methods used 7. In the decades following Davis’ initial

observation, other experiments also observed a solar neutrino deficit, including SAGE [37],

KamiokaNDE-II [38], and GALLEX [39]. Davis and Masatoshi Koshiba were awarded

the 2002 Nobel Prize in Physics for their work on measuring solar neutrinos.

Figure 1.5: Zenith angle distributions observed in Super-Kamiokande for: (a) sub-GeV e-like, (b)
sub-GeV µ-like, (c) multi-GeV e-like and (d) multi-GeV µ-like events. The value
cosΘ =1 means downward-going particles. The histograms with shaded error bars
show the MC prediction with their statistical errors for the no neutrino oscillation case.
The dotted histograms show the Monte Carlo prediction for νµ ↔ ντ oscillation with a
certain choice of oscillation parameters. Figure from [5].

In 1998 Super-Kamiokande observed a deficit in atmospheric neutrinos 8 (neutrinos

produced when cosmic rays interact in the upper atmosphere), which increased with

zenith angle [5]. The deficit was only observed for νµ . They observed very little deficit of

downward-going νµ (coming from straight above) and a significant deficit of upward-going

7The energy of the solar neutrino flux is too low for µ± or τ± to be created in a Charged-current
interaction in the detector.

8Other experiments such as Soudan 2 had also observed an atmospheric neutrino deficit [40].
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νµ (coming up through the earth), as shown in Figure 1.5. This demonstrated that the

νµ disappearance depended on the distance travelled from the point of production. This

observation could be explained by neutrino oscillation.

In 2002 the solar neutrino problem was solved by SNO, which measured both the νe

and total solar neutrino flux [41]. The νe flux agreed with previous measurements, and

the total neutrino flux matched the theoretical prediction. This conclusively showed that

solar νe were disappearing, i.e. neutrinos oscillate. For their work in discovering neutrino

oscillations Takaaki Kajita and Arthur McDonald were awarded the 2015 Nobel Prize in

Physics.

1.3 Oscillation physics
One of the most intense areas of neutrino research today is the study of oscillations. A

better understanding of neutrino oscillations may lead to an explanation of the observed

matter-antimatter asymmetry in the universe or point to new physics. In this section, I will

give an outline of neutrino oscillation physics.

1.3.1 Oscillations in a vacuum

The three neutrino generations can be described by either of two valid bases - a flavour

basis (states of fixed lepton flavour) or a mass basis (states of fixed mass). These bases

are orthonormal and related to each other via a rotation matrix. Neutrinos are created and

observed as flavour states but propagate through space as mass states. The mass states are

eigenstates of the free Hamiltonian Ĥ. This can be expressed in the Dirac bra-ket notation

as

Ĥ |νi〉= Ei |νi〉 (1.4)

We can express a flavour state as a superposition of mass states

|να〉= ∑U∗
αi |νi〉 (1.5)

where να is one of the flavour states (νe,νµ ,ντ), νi is one of the mass states (ν1,ν2,ν3),

and U is a rotation matrix between bases. Consider a neutrino created with a fixed flavour
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α at time t0. Time evolution is given by the operator e−iĤ(t−t0). Hence the state at some

time t is given by

|να(t)〉= e−iĤ(t−t0) |να(t0)〉= ∑U∗
αie

−iEi(t−t0) |νi〉 (1.6)

Remembering the orthogonality relation 〈νi|ν j〉= δi j, we can therefore express the

probability that a neutrino produced with flavour α will be observed with flavour β at

some time t

P(να → νβ )(t) = | 〈νβ |να(t)〉 |2 =

∣∣∣∣∣∑i
Uβ iU

∗
αie

−iEi(t−t0)

∣∣∣∣∣
2

(1.7)

Neutrinos are relativistic (E � m); hence we make the following approximation using

a Taylor series expansion

Ei =
√

p2 +m2
k ' |p|+

m2
k

2|p|
(1.8)

We can also assume that L ' (t − t0) in natural units, where L is the distance travelled.

We therefore have

P(να → νβ ) = ∑
i, j

U∗
αiUβ iUα jU∗

β je
−i

∆m2
i jL

2|p| (1.9)

where ∆m2
i j ≡ m2

i −m2
j . Using the unitarity of U , and making the approximation |p| ' E

we may write

P(να → νβ ) = δab−4 ∑
i> j

Re
[
U∗

αiUβ iUα jU∗
β j

]
sin2

(
∆m2

i j
L

4E

)
+2 ∑

i> j
Im
[
U∗

αiUβ iUα jU∗
β j

]
sin
(

∆m2
i j

L
2E

) (1.10)

If we had derived this equation for antineutrinos instead of neutrinos, we would have

arrived at the same expression except for the exchange U →U∗. Hence we can see that the
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first two terms on the RHS of Equation 1.10 are CP conserving 9, as they are the same for

neutrinos and antineutrinos. The final term on the RHS of Equation 1.10 is CP violating,

as it changes sign when we exchange neutrinos for antineutrinos.

So we see that neutrinos created with a particular flavour can be expressed as a

superposition of mass states. The neutrino propagates via the mass basis, with each mass

state travelling at a different speed due to its unique mass. This causes each mass state

to acquire a different phase during propagation. Suppose the neutrino is later detected

(interacts). In that case, the superposition of mass states will be different from when it was

created, and hence there is some probability for the neutrino to be detected in a different

flavour state from the one it was created in. This phenomenon is known as neutrino

oscillation.

The matrix U , which rotates us from the mass basis to the flavour basis, is known as

the PMNS matrix, named for Pontecorvo, Maki, Nakagawa, and Sakata. It is typically

expressed as follows

UPMNS =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1


(1.11)

where ci j = cosθi j and si j = sinθi j. The PMNS matrix is characterized by three mixing

angles (θ12,θ13,θ23) and one Dirac CP-violating phase δCP. Equation 1.11 is factorised

such that each matrix term describes a distinct sector of neutrinos physics. That is to

say - each neutrino oscillation experiment tends to be most sensitive to the parameters

in just one of the three matrices. From left to right these matrix factors represent the

atmospheric, reactor, and solar sectors, respectively. These names refer to the different

9CP is the combination of a charge conjugation and parity transformation. If a process is CP conserving,
it is unchanged under the effect of these two transformations. This implies that the process is the same for
matter and antimatter.
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sources of neutrinos used to study oscillations.

1.3.2 Oscillations in matter

W

e−

νe

νe

e−

Z

e−

νe

e−

νe

Figure 1.6: Coherent forward scattering can occur for νe in matter via a Charged-current (left) and
Neutral-current (right) interaction.

The oscillation probabilities derived thus far assume propagation through a vacuum.

When travelling through matter, neutrinos can scatter elastically off electrons and nucleons,

preserving their momentum and spin. This process, known as coherent forward scattering,

alters the neutrino’s effective mass. This is known as the MSW effect, after Mikheyev,

Smirnov, and Wolfenstein, who were the first to calculate it [42] [43]. Furthermore,

because matter is rich in electrons, νe can scatter coherently via Charged-current and

Neutral-current interactions, as shown in Figure 1.6 (see Section 1.4 for further explanation

of these terms). Other flavours of neutrino can only scatter coherently via Neutral-current

interactions. This can be understood with reference to Figure 1.6. If the incoming νe is

swapped with another flavour of neutrino, for example νµ , diagram on the right of Figure

1.6 still represents elastic scattering, as the same particles are in the initial and final state.

The same is not true of the diagram on the left, hence only νe are able to scatter elastically

via Charged-current interactions in an electron-rich environment. The MSW effect also

causes νe and ν̄e to oscillate differently, due to the high density of electrons as opposed to

positrons in matter. This can cause differences in neutrino and antineutrino oscillation for

expected reasons, which must be disambiguated from CP violation coming from δCP.

Matter effects make oscillation sensitive to the mass ordering of neutrino states, that

is to say - which neutrino mass states are the heaviest/lightest. It is unknown whether ν3 is

the heaviest or lightest mass state. This is known as the mass hierarchy problem, illustrated
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Figure 1.7: Representation of the two possible neutrino mass orderings. On the left, we have the
normal ordering (∆m2

atm > 0). Shown on the right is the inverted ordering (∆m2
atm < 0).

The colours represent the contribution of νe (red), νµ (blue), and ντ (green) in a given
a mass state. Here the labels ∆m2

atm and ∆m2
sol refer to ∆m2

32 and ∆m2
21, respectively.

Figure from [6].

in Figure 1.7.
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Figure 1.8: Charged-current (left) and Neutral-current (right) neutrino-nucleus interactions on a
down quark.

1.4 Neutrino interactions
Neutrinos carry neither electric nor colour charge and hence do not feel the electromagnetic

and strong forces. Therefore, when we observe neutrino interactions on Earth, it is due to

their weak interactions with matter. The weak force is mediated by two gauge bosons, the

W and Z bosons. As a result, there are two types of neutrino interactions we can observe,

Charged-current (CC) and Neutral-current (NC), which are shown in Figure 1.8.

Charged-current interactions involve changing electrical charge by one unit and can

induce flavour changes in the quark sector. There is an outgoing charged lepton of the

same flavour as the incoming neutrino, which is easily detected in modern detectors. Note

that for a CC interaction to occur, the energy of the incoming neutrino must be greater

than the mass of the corresponding charged lepton plus the change in nuclear mass. This

leads to strong suppression of ντCC interactions from most artificial neutrino sources.

Many of the experiments discussed in Sections 1.2.2 and 1.2.3 relied on CC interactions.

Neutrino flavour identification is possible in the CC channel by determining the flavour of

the outgoing charged lepton.

NC interactions were first discovered by the Gargamelle experiment at CERN [44]

when they observed hadronic activity caused by the interaction of a neutral particle inside

their detector, with no observed charged lepton in the final state. NC interactions involve no

change of quark flavour or electric charge. They are only detectable through the momentum

they impart to the hadronic system. Neutrino energy reconstruction is very difficult for NC

events, as the outgoing neutrino carries a considerable fraction of energy away invisibly.
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No flavour identification is possible using NC events. However, it is possible to observe

NC events from all three neutrino flavours in artificial (and indeed solar) neutrino beams.

The SNO experiment determined the total solar neutrino flux using NC events, as discussed

in Section 1.2.3.

Most neutrino experiments rely on observing neutrino interactions with nuclei in

detectors. It is helpful to describe neutrino-nucleus interactions in terms of interaction

modes, which correspond to different energy regimes and final state topologies. Recall

the de Broglie relation λ = h/p , where λ is the wavelength of a quantum particle, h is

Planck’s constant, and p is the momentum of the particle. It follows that different energy

(momentum) scales correspond to different length scales. At low neutrino energies (large

λ ), the neutrino “sees” the nucleus as a whole or a collection of nucleons. At high neutrino

energy (small λ ), the neutrino can resolve (interact with) individual quarks within the

nucleons.

1.4.1 Interaction modes

Much of this section’s information on different models was sourced from the GENIE

physics and user manual [45].

1.4.1.1 Quasi-elastic scattering

Quasi-elastic scattering (QE) is the dominant CC interaction mode at sub-GeV neutrino

energy, as seen in Figure 1.9. QE events are interactions with a neutrino and a nucleon in the

initial state and an outgoing lepton and nucleon in the final state, as shown in Figure 1.10.

If an NC interaction occurs via this mode it is truly elastic. However, for a CC interaction,

there is a change in nucleon mass and isospin (n → p) as well as lepton mass, so we

describe the process as quasi-elastic. QE interaction models include Llewellyn-Smith [46],

Smith-Moniz [47], and Valencia models† [48].

1.4.1.2 Resonant interactions

When a sufficiently energetic probe (e.g. γ,e−,ν) interacts with a nucleus, the nucleus can

be excited into a resonant state. There are many such resonances, which can decay into

one or multiple pions or kaons. However, of most interest is the lowest energy resonance

†Model used in NOvA simulation.
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Figure 1.9: Neutrino-nucleus interaction cross-section divided by neutrino energy. Shown is the
total cross-section as well as the cross-section broken down by modes - quasi-elastic
(QE), resonant (RES), and deep inelastic scattering (DIS). This figure is over ten years
old at the time of writing, so the latest model predictions may differ somewhat. Also,
some rarer interaction modes are not shown. Nonetheless, this figure gives a sense of
the relevant energy scales. Figure from [7].

W

n

νl

p

l−

Figure 1.10: Diagram of a QE neutrino interaction. For the antineutrino mode, we instead have
p → n.

∆(1232) 10, which typically decays into a single pion, as seen for example in Figure 1.11.

Resonant single pion production can occur in νlCC interactions via the following channels:

νl + p ∆++

−−→ l−+ p+π
+ (1.12)

10The name ∆(1232) collectively describes the ∆−, ∆0, ∆+, and ∆++ baryon resonances.



1. THE NEUTRINO 43

∆++

W

p

νµ

p

π+

µ−

Figure 1.11: Diagram of resonant single pion production in a Charged-current interaction on a
proton.

νl +n ∆+

−→ l−+ p+π
0 (1.13)

νl +n ∆+

−→ l−+n+π
+ (1.14)

Commonly used models of resonant neutrino-nucleus interactions include the Rein-

Sehgal [49] and Berger-Sehgal† [50] models.

1.4.1.3 Meson exchange current

π
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h′

h
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p

l−

π

W

h′

h

νl

p′

p

l−

Figure 1.12: Diagram of a meson exchange current event, which knocks out two particles (nucle-
ons) and leaves behind two holes. The contact current (left) and pion-in-flight current
(right) are shown.

If a neutrino interacts with a correlated pair of nucleons, it can knock both nucleons

out of the nucleus leaving behind two “holes” where the nucleons used to be, as shown in

Figure 1.12. These are known as “two particle two hole” (2p2h) events. The nucleons are

correlated by exchanging a meson (usually a pion), leading to the alternate name meson
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Figure 1.13: Flux-unfolded MiniBooNE νµ CCQE cross-section per neutron as a function of
neutrino energy, along with results from the LSND and NOMAD experiments. Also
shown are predictions from the NUANCE [8] simulation for an RFG model with
two different parameter variations and for scattering from free nucleons with the
world-average MA value. Figure adapted from [9]. A portion of the original figure,
which is not relevant to the current discussion, has been cropped out.

exchange current (MEC).

The history of MEC in neutrino physics is interesting. The MiniBooNE experiment

observed a significant excess of QE-like events [9], which they could not explain by varying

parameters of their QE model, as shown in Figure 1.13. It turns out that an additional

non-QE mode was contributing to their sample. This led to the re-discovery of MEC in

neutrino physics, even though electron scattering researchers had long been aware of this

process [51].

Common models of MEC interactions include Valencia† [52], SuSa [53], and Em-

pirical GENIE [54] models. Note that the kinematics and rate of MEC interactions in

neutrino-nucleus interactions are not strongly constrained by measurements at the time

of writing. As a result, NOvA tunes MEC interactions to adjust the shape and normali-

sation of the simulation. The tuning is done by reweighting MEC events in energy and

three-momentum transfer space (see Section 3.1.4 for more details).

1.4.1.4 Coherent pion production

Sometimes a neutrino can interact with an entire nucleus coherently, leaving the nucleus

intact and producing a pion in the final state as shown in Figure 1.14. These interactions

are characterised by a very forward-going pion and small four-momentum transfer to

the nucleus (i.e. small value of the Mandelstam variable t). The Rein-Sehgal [49] and



1. THE NEUTRINO 45

W

N

νl

N

π+

l−

Figure 1.14: Diagram of coherent pion production.

Berger-Sehgal† [50] models are often used to simulate coherent interactions.

1.4.1.5 Deep inelastic scattering

W

q

N

νl

X

q′

l−

Figure 1.15: Diagram of a CC Deep Inelastic Scattering interaction

In deep inelastic scattering (DIS) interactions, the neutrino has sufficiently high energy

to interact with individual quarks in a nucleon, as shown in Figure 1.15. The interaction

breaks apart the nucleus, producing many hadrons in the final state. At high neutrino

energies (and therefore high momentum transfer to the nucleus), DIS is the dominant

interaction mode. The Bodek-Yang model† [55] is often used to simulate DIS interactions.

1.4.2 Nuclear effects

Modern neutrino experiments do not typically involve interactions on free nucleons (i.e.

hydrogen detectors). Heavier elements such as carbon, oxygen, iron, and argon are found

in modern neutrino detectors. Ab-initio calculations of interaction cross-sections are

impossible due to the poorly understood nuclear effects introduced by interactions in heavy

nuclei. In this section, I will outline some of these nuclear effects. Other works partially

inspired this section [56] [57].
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1.4.2.1 Fermi motion

Figure 1.16: Nuclear potential well for protons and neutrons. Also marked are the neutron and
proton Fermi energies En

F and E p
F , respectively. EB is the nuclear binding energy.

Note the proton potential well is different from the neutron potential well, as protons
are subject to electromagnetic forces. Figure from [10].

Protons and neutrons are fermions (they have half-integer spin) and so must obey the

Pauli exclusion principle. As a result, the energy of nucleons in a nucleus is determined

by Fermi-Dirac statistics. This means nucleons fill up energy levels sequentially, starting

with the lowest up to the Fermi energy, as shown in Figure 1.16. So even at absolute

zero, nucleons are not at rest; they have Fermi motion due to their finite energy. Neutrino

interactions receive a boost in the lab frame from the Fermi motion of the struck nucleon.

This boost depends on the speed and direction of the struck nucleon and will differ for

every interaction.

The motion of nucleons is modelled by Fermi gas models. In a Fermi gas, nucleons

are free to move within the nuclear volume under a binding potential. Due to the Pauli

exclusion principle, an interaction can not occur if the struck nucleon is promoted to

an energy level that is already filled. If a nucleon receives enough energy to promote it

above the Fermi and binding energy, it will be ejected from the nucleus. Otherwise, the

interaction is suppressed. As a result, the kinematics of neutrino interactions are impacted.

This phenomenon is called Pauli blocking.

Some models assume that there is a constant nuclear potential that all nucleons feel

throughout the nucleus and that the potential drops to zero at the boundary of the nucleus.
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Figure 1.17: Comparison of the Fermi momentum for global and local Fermi gas in the case of
carbon. Carbon is not chosen for any particular reason, rather this figure serves to
generically highlight the difference between global and local Fermi gases. Figure
from [10].

This is known as a Global Fermi Gas model. Other models take a more nuanced approach,

assuming the nuclear potential is strongest at the centre and weakens as we travel radially

outward. These are known as Local Fermi Gas models. We can see a comparison of these

in Figure 1.17.

1.4.2.2 Random phase approximation

The random phase approximation (RPA) goes beyond the treatment of nucleons as non-

interacting particles in a mean-field as described in Section 1.4.2.1. RPA is introduced to

account for nucleon-nucleon interactions. The RPA framework assumes that collective

excitations of the nucleus can be described by a linear combination of one-particle-one-

hole (1p-1h) excitations. The collective excitation states are treated as orthogonal, and the

phases are assumed to be random.

RPA can cause a modification of the electroweak coupling strength for a many-

nucleon system. The complex nuclear correlations considered by RPA introduce a residual

inter-nucleon interaction which causes a suppression of interactions at low Q2, as shown

in Figure 1.18. There is a slight enhancement at higher Q2. RPA has almost no effect at

high Q2. At higher energy scales, nucleons can be treated as approximately free, and the

effect of the nuclear medium is less important.
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Figure 1.18: Ratio of GENIE simulations with and without RPA corrections included. The blue
curve was made using a weighting just in Q2, whereas the black curve was made
using weights in energy and three-momentum transfer space. Figure from [11].

1.4.2.3 Final state interactions

𝜋+

𝝼μ μ-

p

n
Pion 
absorption

Figure 1.19: Example of FSI manifesting through pion absorption.

When a neutrino interacts with a nucleus, the struck nucleon may be ejected from the

nucleus. Additional final state particles such as photons and hadrons (e.g. pions) may be

produced. These particles must traverse and exit the nucleus before being detected. Inter-

actions between the particles and the nuclear medium are known as final state interactions

(FSI), and they can change the experimental observables. FSI can

1. Alter kinematics (energy and angle)
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2. Change particle type e.g. π+ → π0 (charge exchange)

3. Cause final state particles to be absorbed inside the nucleus

4. Cause the emission of additional particles, not coming from the primary neutrino

interaction

FSI makes the precise determination of interaction modes very difficult. Consider

the example shown in Figure 1.19, where a pion is produced (perhaps through a resonant

interaction) but is absorbed before it exits the nucleus. In an experiment, we might only

observe the outgoing muon and assume that this is a quasi-elastic interaction, even though

it is not. So we see that there is confusion between the QE and RES interaction modes. As

a result, experimentalists try to define interactions in terms of final state observables, e.g.

“one proton in the final state”, “zero pions in the final state”, etc.

1.5 Why measure cross-sections?
The main physics goal of neutrino oscillation experiments, including NOvA, is to measure

neutrino oscillation. This raises the question - why do we measure neutrino-nucleus

interaction cross-sections? It turns out that precise knowledge of cross-sections is necessary

to extract the oscillation parameters, as will be explained in this section. A publication by

Benhar et. al [58] was a helpful reference in writing this section.

1.5.1 Cross-section definition

The cross-section σ is a measure of the probability of a particle-particle interaction. The

term originates in reference to classical scattering of hard spheres. For example, consider

firing small projectiles at a target. Some projectiles will miss the target, and others will

collide. If the target were bigger, we would expect a larger fraction of the projectiles to

collide with it. We see that the probability of interacting depends on the cross-sectional

area of the target.

This analogy is retained for interactions at a distance, such as those seen in the

Standard Model. The cross-section still has units of area, but it no longer represents the

size of the target. Rather it represents the probability of interaction. For a beam of particles
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incident on a collection of targets, the cross-section is defined as

σ =
Number of scatters

Flux of beam particles×Number of target particles
(1.15)

1.5.2 Inclusive measurements

When the signal definition of a cross-section measurement does not specify the final state

particles, the measurement is described as “inclusive”. For example, a νµCC inclusive

measurement tells us how often we expect a νµ to interact in the detector, producing a

muon and zero or more other particles.

The inclusive interaction cross-section is a key ingredient in oscillation measurements.

In oscillation experiments, we create a beam of flavour α and measure the number of

interactions of flavour β during some exposure11. Exposure is measured in protons on

target (POT) - the number of protons fired at a target to create the neutrino beam used.

The number of POT is proportional to the number of neutrinos produced. The number of

observed interactions of flavour β depends on several factors

Nνβ
∝ Φα(E)×σβ (E)× εβ (E)×P(να → νβ ) (1.16)

where Φα is the flux, σβ is the interaction cross-section, εβ is the detection efficiency,

and P(να → νβ ) is the oscillation probability. Long-baseline oscillation experiments have

a Near Detector (ND) and Far Detector (FD), where nominally, the ND measures the

unoscillated beam and the FD measures the oscillated beam. Oscillation experiments

benefit from the partial cancellation of systematic uncertainties when taking a ratio of

event rates at the ND and FD. We assume that there is no oscillation at the ND

PND(να → νβ ) = δαβ (1.17)

The ND is usually a larger angular target than the FD. As a result, the flux Φ is

different at the ND and FD12. The FD typically will be much larger than the ND, leading

to differing acceptances and detection efficiencies ε .

11It is possible to have α = β , for example in the case of νµ surivival.
12There is also a 1/L2 attenuation of the flux, but that is not particularly important for this discussion.



1. THE NEUTRINO 51

Even still, it might seem that the cross-section term would cancel when, e.g. trying to

calculate the νµ survival probability using NFD
νµ

/NND
νµ

. However, the number of interactions

is always calculated as an integral over some bin width in neutrino energy, so the cross-

section terms are now inextricable from the other terms, and cancellation is no longer

possible

NFD
νµ

(E1 < E < E2)

NND
νµ

(E1 < E < E2)
=

∫ E2
E1

dE ΦFD
µ (E)σµ(E)εFD

µ (E)P(νµ → νµ)∫ E2
E1

dE ΦND
µ (E)σµ(E)εND

µ (E)
(1.18)

Therefore it is necessary to know σµ (σe) to calculate the muon survival (electron

appearance) probability. As we will see in Section 1.5.3, however, the dominant impact of

cross-sections on oscillation measurements is in migration matrices.

1.5.3 Non-inclusive measurements

Often neutrino experiments report measurements of cross-sections where the final state

topology is restricted, e.g. “zero pions in the final state” or “only one proton in the final

state”. These non-inclusive measurements13 are a probe of the interaction modes described

in Section 1.4.1. For example, a measurement of interactions with many hadrons in the

final state is a probe of DIS. Understanding the breakdown of the inclusive cross-section

by interaction modes is critical for accurate energy estimation. To see this, we will focus

on a specific example.

Neutrino energy reconstruction is most straightforward for QE events. As there are

only two particles in the final state (muon and nucleon), the kinematics are sufficiently

constrained such that there is a simple equation for the incoming neutrino energy [58]

EQE
ν =

2(Mn −Eb)El − (E2
b −2MnEb +∆M2)

2(Mn −Eb −El + pl cosθl)
(1.19)

where Mn is the free neutron mass, Eb is the nuclear binding energy, ∆M2 = M2
n −M2

p, and

El , pl , θl are the outgoing lepton’s energy, momentum, and angle respectively. Energy

reconstruction is more difficult for other modes, and here we rely more heavily on the

13There are a variety of subgroupings in this category, e.g. exclusive, semi-inclusive. We will call them
all collectively “non-inclusive”.



1. THE NEUTRINO 52

Figure 1.20: Impact on the results if a different generator is used to compute the true and fitted
rates in the analysis. The shaded areas show the confidence regions at 1, 2, and
3σ that would be obtained in the θ23 −∆m2

31 plane if the true and fitted rates are
generated using the same set of migration matrices (obtained from GiBUU, with
oxygen as the target nucleus). The coloured lines show the same confidence regions
if the true rates are generated using matrices produced with GiBUU, but the fitted
rates are computed using matrices produced with GENIE. Both sets of matrices are
generated using oxygen as the target nucleus. The red dot indicates the true input
value, while the black triangle shows the location of the best fit point. The value of
the χ2 at the best fit is also shown, together with the number of degrees of freedom.
Figure adapted from [12]. A portion of the original figure, which is not relevant to
the current discussion, has been cropped out.

migration matrices obtained from simulation. Imagine some QE-like selection. There will

undoubtedly be some non-QE backgrounds, and so the predicted number of events from

simulation in some bin i of reconstructed energy is given by the following equation [12]

NQE-like
i = ∑

j
MQE

i j NQE
j + ∑

non-QE
∑

j
Mnon-QE

i j Nnon-QE
j (1.20)

where Mi j is a migration matrix describing the probability of an event with true energy

in bin j being reconstructed in bin i. Thus the predicted energy spectrum depends on the

number of QE, RES, etc. events (which is a function of the cross-sections) and also the
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migration matrices. If the model used during simulation is significantly different from

the true underlying physics, then the translation from reconstructed energy to true energy

outlined in Equation 1.20 will be imperfect. This poor estimation of true neutrino energy

caused by imperfect modelling leads to poor estimation of neutrino oscillation parameters.

This is highlighted in Figure 1.20, where we see that the oscillation results obtained depend

strongly on which models are used during simulation. The discrepancy between the true

and extracted values in Figure 1.20 is mostly due to model dependence, as, to make this

figure, no smearing due to finite detector resolution is done for signal14 events. Refer to

the paper for more details [12].

Measurement of non-inclusive cross-sections gives feedback to the model-building

and event generator community, which leads to better simulation and, therefore, more

accurate and precise measurements of the oscillation parameters.

1.6 Summary
This chapter gives an overview of the history of the neutrino, from its proposal by Pauli

to the cutting-edge research of today. Neutrino research has changed our understanding

of the universe, yet many open questions remain. Answering these questions requires

state-of-the-art detectors and intense neutrino beams. The next chapter will explore these

topics.

14Here signal is defined as νµ CC interactions. A small background of NC events are also considered
with a gaussian energy smearing of width 85 MeV.



Chapter 2

The NOvA experiment

This chapter will give details of the detector design and neutrino source for the NOvA

experiment.

The Neutrinos at the Main Injector (NuMI) beam is the most intense artificial neutrino

beam in the world, achieving a record power of 900 kW [59]. The NuMI Off-axis νe

Appearance experiment (NOvA) is a long-baseline neutrino oscillation experiment. It

consists of a Near and Far Detector, which are functionally identical tracking calorimeters.

See Section 2.2 for further details on the detector technology. NOvA is designed to look for

the disappearance of muon (anti)neutrinos and the appearance of electron (anti)neutrinos

in the NuMI beam. The Near Detector sees a mostly unoscillated muon (anti)neutrino

beam. The Far Detector sees an oscillated beam of muon (anti)neutrinos and electron

(anti)neutrinos1. The Near and Far Detectors are ∼ 1 km and 810 km from the neutrino

source, respectively.

2.1 The NuMI beam
This section was written with reference to a NuMI design and operations paper [13]. The

NuMI beam has historically been used for several neutrino experiments, though NOvA is

the primary user at the time of writing. The neutrino beam is created by impinging 120

GeV protons from the Main Injector on a graphite target, as shown in Figure 2.1. The

protons come in bunches known as spills. Each spill lasts about 10 µs, contains 4.9×1013

1There are also many tau (anti)neutrinos in the oscillated beam. However, the neutrinos are below the
CC interaction threshold, so NOvA can not identify them
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Figure 2.1: An illustration of the various components of the NuMI beamline. Figure from [13].

protons, and occurs approximately every 1.1 - 1.3 s.

This section will explain the various stages used to create the beam and briefly

characterise the beam energy and composition.

2.1.1 Fermilab accelerator complex

Many of the details in this section are sourced from a technical report [60]. The Fermilab

accelerator complex, shown in Figure 2.2, provides beam to many experiments, including

NOvA. The beam is first created by accelerating H− ions to 750 keV before being sent

to the Linear accelerator (Linac), where they are further accelerated to 400 MeV. A

carbon foil then tranforms the H− ions to H+ ions (protons). The protons pass to the

rapid-cycling-synchrotron Booster, where the protons are accelerated to 8 GeV. From

here, some protons are sent to create the low-energy Booster Neutrino Beam, while others

are sent to the Recycler. The Recycler is big enough to accommodate six batches of 84

Booster bunches each; however, using a procedure known as “slip-stacking” six more

batches can be injected for a total of 12 batches. Some of this stacked proton beam is

sent to the Fermilab Test Beam Facility at this stage. The remainder of the beam is then

sent for final acceleration at the Main Injector, where the proton energy reaches 120 GeV.

These high-energy protons are then used to create muons and neutrinos for Fermilab’s

high-energy experiments.

2.1.2 Target and horns

The NuMI target is comprised of 47 graphite fins stacked together for a total target length

of 95.38 cm. When the 120 GeV protons from the Main Injector impinge on the target,

a spray of hadrons is produced - primarily pions, kaons, and protons. These hadrons are
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Figure 2.2: A diagram of the Fermilab accelerator program, showing the various beams provided
to the end-user experiments. Figure from [14].

focused by the magnetic horns, as shown in Figure 2.3. The horns are made of an outer

and inner conductor, which produce strong magnetic fields when pulsed with a current.

The horns act as a hadron lens, where the lens’s focal length is proportional to the hadron’s

momentum. A second horn is placed 10 m downstream of the first horn to correct for

over/under-focusing. Including a second horn improves the efficiency of the focusing

system by ∼ 50 %.

When operating in FHC mode, the horns focus π+ and K+ and defocus (deflect) π−

and K− 2. By reversing the polarity, the horns can operate in RHC mode, whereby negative

hadrons are focused, and positive hadrons are defocused.

2There is still some contamination of π− and K− travelling directly along the beam axis, which are
undeflected.
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Figure 2.3: A diagram of the magnetic focusing horns, with possible hadron trajectories drawn.
Figure from [13].

2.1.3 Decay pipe and absorber

The focused hadron beam travels through a decay pipe. The decay pipe is filled with

helium, which provides structural integrity for the pipe while having a long interaction

length, to allow the hadrons time to decay. The hadrons decay primarily as follows

π
+ → µ

++νµ (2.1)

K+ → µ
++νµ (2.2)

and a CP flipped version producing ν̄µ in RHC mode. Following the decay pipe, the muons

and remaining hadrons are absorbed in either the absorber or 240 m of dolomite rock. The

absorber is a structure made of aluminium, concrete, and steel, which measures 5.5 m wide

× 5.6 m tall × 8.5 m long. It is designed to absorb any remaining hadrons in the beam.

2.1.4 Off-axis design

For NOvA’s fixed baseline of 810 km, the oscillation probability is maximal for neutrinos

of energy ∼ 1.6 GeV. To this end, both detectors are placed 14 mrad off the beam axis.

Due to the kinematics of relativistic two-body decay, it is possible to express the energy of
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Figure 2.4: Neutrino energy as a function of parent pion energy for various off-axis angles

the neutrino as a function of the emission angle θ with respect to the pion momentum
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µ
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π

)
Eπ

1+ γ2θ 2 (2.3)

where γ = Eπ/mπ is the Lorentz factor. Figure 2.4 shows Eν as a function of Eπ for various

off-axis angles. By placing the detectors off-axis, we see that the neutrino energy is more

closely peaked near the energy of maximum oscillation.

2.1.5 Beam characteristics
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Figure 2.5: NuMI flux at 14 mrad off-axis for (left) FHC and (right) RHC.

The NuMI off-axis beam has a peak at ∼ 2 GeV coming from pion decay and a
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smaller peak at ∼ 13 GeV from kaon decay, as shown in Figure 2.5. The FHC (RHC) beam

has a ν̄µ (νµ ) “wrong-sign” contamination, due to imperfect defocussing of wrong-sign

hadrons. There is also νe contamination from the following decay chain

π
+ →µ

++νµ (2.4)

µ
+ → ν̄µ + e++νe (2.5)

as well as the CP flipped and kaon decay versions of the above. There is also νe contami-

nation from, for example

K0
L → π

−+ e++νe (2.6)

K+ → π
0 + e++νe (2.7)

2.2 The NOvA detectors

Figure 2.6: Drawing of the Near and Far Detectors next to each other for size comparison. Figure
from [15].

The Near and Far Detectors are functionally identical tracking calorimeters. Here

“functionally identical” means that the same detector materials are used for both detectors.

However, the FD is approximately four times bigger than the ND in each dimension (∼ 64
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Figure 2.7: Schematic of the interior of NOvA cell, with the path of an ionising particle through
the scintillator overlaid. Scintillation light, marked in purple, is collected by the
wavelength-shifting fibres in green. Figure from [15].

times the ND volume). The detector design consists of long PVC cells filled with liquid

scintillator. Figure 2.7 shows a schematic of the interior of a NOvA cell. This section will

give a brief overview of detector elements and was written with reference to the NOvA

Technical Design Report [16].

2.2.1 Scintillator

Component Purpose Mass fraction
Mineral oil solvent 95.8%
Pseudocumene scintillant 4.1%
PPO waveshifter 0.091%
bis-MSB waveshifter 0.0013%
Stadis-425 antistatic agent 0.0003%
tocopherol (Vit.E) antioxidant 0.0003%

Table 2.1: Composition of the NOvA scintillator.

The NOvA detectors are approximately 69% liquid scintillator by mass. See Table 2.1

for the composition of the liquid scintillator. The mineral oil acts as a solvent for scintillant

and waveshifters. NOvA uses 1,2,4-Trimethlybenzene (also known as pseudocumene) as

the scintillant. Pseudocumene produces scintillation light of wavelength 360-390 nm when

a charged particle passes. This light is shifted to 400-450 by other doping elements in the

mineral oil, leading to better absorption in the fibres. Charged particles travelling faster

than the speed of light in the medium also emit some Cherenkov light, which increases the

light yield by a few percent.
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2.2.2 PVC cells

The long rectangular cell boundaries are made from rigid polyvinyl chloride (PVC), loaded

with titanium dioxide to increase reflectivity. Increased reflectivity increases the chances

for scintillation light to be collected by the fibres. The PVC walls are 2-4.5 mm thick. The

interior dimensions of the cell are 5.9 cm along the beam direction and 3.8 cm transverse

to the beam direction. The cells are 15.5 cm long at the FD and 3.6 cm long at the ND.

The cell is filled with liquid scintillator, and a wavelength-shifting fibre is looped through

with both ends going to a single avalanche photodiode (APD) pixel detector, as shown in

Figure 2.7.

2.2.3 Wavelength-shifting fibre

The fibres are 0.7 mm in diameter. The fibre core consists of polystyrene doped with a

300 ppm concentration of R27 dye. The 400-450 nm scintillation light is absorbed by the

dye and re-emitted in the 490-550 nm range. Photons at this shifted wavelength are less

attenuated in the fibres during the journey to the photodiode readout. The fibre core is

clad in two layers of acrylic with lower refractive indices than the polystyrene core. This

facilitates total internal reflection in the fibres, which improves transmission.

2.2.4 Avalanche photodiode

The scintillation light collected by the fibres is detected by an APD. The APD consists of a

reverse-biased p-n junction. Incident photons create an electron-hole pair which causes

a current to flow. The APDs, which are manufactured by Hamamatsu, have a quantum

efficiency of 85% for photons in the range 520-550 nm. The number of photoelectrons

produced by a incident light is magnified by a factor of 150 by applying a voltage of 425 V.

To reduce thermal noise the APDs are cooled to -15 °C using a thermoelectric cooler. The

cooling, however, increases the risk of condensation forming on the APDs. To mitigate

this, a stream of dry air is blown on them. APDs are arranged in 32 pixel arrays, one to

read out each of 32 cells.
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2.2.5 Detector geometry

Figure 2.8: Schematic of a module consisting of two 16 cell extrusions glued together. The module
is sealed on one end with an end plate and on the other with a manifold cover. Figure
from [16].

PVC cells are created in 16 cell extrusions. Two extrusions are glued together to form

a module, as shown in Figure 2.8. The end plate seals one end of the module. The other

end is sealed by a manifold cover, which directs 64 fibre ends to the APD (two fibre ends

per cell). A plane at the Far Detector is made by glueing together 12 modules. At the Near

Detector, a plane is made by glueing 3 modules together. Planes are stacked along the

beam direction in an alternating horizontal and vertical configuration, as shown in Figure

2.9. The y- and z-position of a charged particle can be determined when it passes through a

horizontal plane. Similarly, the x- and z-position can be determined when passing through

a vertical plane. By combining this information, a full 3D reconstruction of the interaction

can be done.



2. THE NOVA EXPERIMENT 63

Figure 2.9: Schematic of a NOvA detector showing alternating horizontal and vertical planes. The
vertical planes give a view of the event as viewed from above, and the horizontal planes
give a view of the event as viewed from the side. Figure from [17].

2.2.6 Near Detector

The 290 ton Near Detector sits 105 m below the surface and 1.05 km from the NuMI

target. The overburden3 significantly reduces cosmogenic backgrounds in the detector.

The detector sits 14 mrad off-axis in a high-intensity beam. There are several neutrino

interactions per spill, though most are uncontained. In order to aid containment, the ND

has a muon catcher at the end. The muon catcher consists of layers of steel between 10

scintillator planes. Its purpose is to range out muons in a high-density material before they

exit the detector. The muon catcher is shorter than the rest of the detector, as shown in

Figure 2.6.

2.2.7 Far Detector

The 14 kton Far Detector sits on the surface, 810 km from the NuMI target. Just like the

ND, it is placed 14 mrad off-axis. The FD sits in a purpose-built facility in Ash River,

northern Minnesota. There is a 122 cm concrete enclosure, with an additional 15 cm

barite overburden. The FD sees a high rate of background interactions from cosmic rays.

3Overburden is the name for any shielding above a detector. In this case it is 105 m of rock.
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Backgrounds are mitigated by using the beam spill timing. The beam is much less intense

at the FD than the ND; hence a bigger detector is required.

2.3 Data acquisition system

Figure 2.10: A set of four consecutive ADC readings marked with black circles. A fit is perfomed
to these readings, marked in red.

The data acquisition system (DAQ) saves interesting data from the NOvA detectors.

The signals from 32 APDs are read out by a single front end board (FEB). Each FEB

performs shaping of the signal. It also digitises the APD signal using an analogue-to-digital

convertor (ADC).

After digitisation, the signals are sent to a field-programmable gate array (FPGA) to

look for hits above threshold. NOvA uses dual correlated sampling (DCS) to determine

whether a signal should be kept. The ADC outputs a series of readings αi in real time.

If αi −αi−3 is above some preset threshold, then αi and the three preceding samples are

recorded, as shown in Figure 2.10. A fit to these samples allows precise timing. At the FD

the timing resolution is ∼ 10 ns, and at the ND it is ∼ 7 ns. Each cell has its own DCS

threshold, which is implemented using the FPGA.

The data from up to 64 FEBs is sent to a data concentrator module (DCM). The DCM

collates data into 5 ms “millislices”, which are sent to a buffer farm. Data sit on the buffer
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for up to 20 minutes until we either receive a trigger and save it or, alternatively, discard it.

A circular buffer is used, with a first-in-first-out policy. If the buffer is full when new data

arrives, the oldest data in the buffer is overwritten.

2.3.1 Triggering

Data is saved only if a trigger is received. There are three types of triggers used in

NOvA. Only one trigger is required to record data. The first type of trigger is a beam

spill trigger, used to record beam neutrino interactions. A beam spill time stamp is sent

from the accelerator and compared to the data timestamps in the buffer farm. Even though

a spill lasts only 10 µs, if the data is within a 500 µs window around the beam spill,

the data is saved. This provides robustness against timing drift and allows for the use of

out-of-spill backgrounds to constrain in-spill backgrounds. For beam triggers, the neutrino

time-of-flight is taken into account (∼ 3 ms at the FD).

The second type of trigger writes out 500 µs of data at a regular 10 Hz frequency.

The purpose of this trigger is to save cosmic ray interactions for calibration.

The third type of trigger is the data-driven trigger (DDT), which decides to save

collections of hits with specific interesting properties. The purpose of the DDT is to save

data for exotic/new physics analyses. These include searches for magnetic monopoles,

dark matter, and supernova neutrinos.

2.4 Summary
This chapter describes the beam and detector technologies which enable scientists in the

NOvA collaboration to study the properties of the neutrino. The accelerator neutrino

beam method, first employed by Danby et al. [31], has revolutionised the field of neutrino

physics. Advances in accelerator technologies have led to more intense neutrino beams,

albeit still operating under the same principle. Detector technologies have continually

advanced, leading to the collection of ever more precise neutrino interaction data. However,

making full use of this data requires an advanced suite of offline software. Chapter 3 will

describe the offline software used by NOvA.



Chapter 3

NOvA offline software

Modern particle physics experiments rely not only on advanced detector hardware but also

on advanced software. Simulation and reconstruction are two software-based processes

which are vital to interpreting data collected by a detector. This chapter will outline the

various Monte Carlo simulations used by NOvA. Then a description of the reconstruction

methods will be given, which are applied to both data and simulation. Finally, a brief

description of the calibration procedure will be given.

3.1 Simulation

MC uses randomness to simulate complex phenomena. In the context of particle physics,

this allows us to generate predictions for interactions with many degrees of freedom by

relying on repeated random sampling of probability distributions. Simulation provides a

way of testing analyses using truth information. For example, the validity of an analysis

framework can be tested by performing an in-out test, where we use analysis machinery

to try recover the same physics parameters as used in the simulation. MC can be used to

develop a blind analysis, whereby data is not looked at until the analysis is very mature

to avoid unconscious bias. MC also allows us to quantify systematic uncertainties by

changing some simulation parameters within errors and re-simulating, or reweighting

events to reproduce a change in simulation parameters. This section will outline the stages

of the NOvA simulation chain.
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3.1.1 Flux

The NuMI flux is simulated using G4NuMI, a custom simulation based on Geant4 [61].

G4NuMI simulates protons hitting the graphite target, followed by hadron production. It

also simulates hadron focusing in the magnetic horns and hadron decay in the decay pipe.

The output of G4NuMI is a prediction of the NuMI neutrino flux and some information

on the neutrino parent. Parent information is used for later reweighting by the Package to

Predict the Flux (PPFX) [62]. PPFX is a software package developed by the MINERvA

collaboration. It aims to reweight the NuMI flux prediction to incorporate constraints on

hadron production obtained from external experiments. PPFX provides a central value

weight which adjusts the flux prediction. In addition, PPFX is used to obtain a systematic

error band on the flux prediction due to uncertainties in hadron production.

3.1.2 Event generation

Neutrino interactions in NOvA are simulated using the GENIE event generator [54]. The

simulation used in this thesis was generated using GENIE v3.0.6.

GENIE takes the simulated flux and geometry as input. GENIE uses its internal

models (see Section 1.4.1) to create neutrino interactions on nuclei in the detector and

surroundings. FSI is simulated using the hN-intranuke model1. The output of GENIE is

the kinematics of all particles exiting the nucleus, as well as a truth label for the interaction,

e.g. DIS.

Interactions are simulated in the surrounding rock, as well as the detector. Simulation

is time-consuming, so rock events are re-used multiple times in simulation files to reproduce

the expected rate of rock interactions. At the Far Detector, measured cosmic ray data

is overlayed on simulated interactions, as shown in Figure 3.1. This not only provides

realistic backgrounds in simulation but also saves computing time. The overlayed cosmic

ray data is taken from the 10 Hz trigger described in Section 2.3.1.

GENIE provides physics parameters which can be changed to alter the interaction

models within some uncertainty. These parameters can introduce both shape and normali-

sation changes. NOvA uses the NOvARwgt framework [63] to reweight events using the

1hN-intranuke is an internal model in GENIE. It simulates the interaction of hadrons (h) with nucleons
(N).
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Figure 3.1: Simulated neutrino interaction at the Far Detector with cosmic ray data overlaid. The
simulated particles have truth vectors drawn. Figure from [18].

GENIE parameters to estimate a cross-section modelling systematic uncertainty.

3.1.3 Detector simulation

The final state particles simulated by GENIE are handed to Geant4. Geant4 tracks the

particles through the detector and surroundings. A description of the dimensions and

atomic composition of the detector and detector hall components is provided to Geant4.

Geant4 simulates particle propagation, production of scintillation light, as well as hard and

soft scatters. The output of Geant4 is the path and energy deposition of particles traversing

the detector.

Geant4 uses different models depending on energy scales. Users can choose which

models (known as “physics lists”) they want to run. NOvA uses the QGSP BERT HP physics

list:

• QGSP: The Quark-Gluon String Precompound model simulates the development of

high-energy hadronic showers.

• BERT: The Bertini cascade is used to model intranuclear cascades of particles with

energy less than ∼9.5 GeV.

• HP: High precision set of cross-sections for neutrons with energy less than 20 MeV.
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NOvA then uses a simulation-derived template to calculate the photon collection rate

as a function of distance along the fibre. The simulation assumes that half of the collected

photons go in each direction along the fibre. The simulated light is attenuated as it travels

along the fibre, according to results obtained from a test stand.

The final outputs are simulated detector readouts in the same format as data but with

the addition of truth information.

3.1.4 GENIE tuning

NOvA applies a custom tune to GENIE simulation to incorporate constraints from internal

and external data [64]. The tune consists of two components - the FSI tune and the MEC

tune.

NOvA tunes the hN FSI model to match external pion scattering data. The four

parameters adjusted are the pion mean free path, and the fraction of pions which undergo

absorption, charge exchange, and quasi-elastic scattering. Weights are generated using a

boosted decision tree to reproduce the effect of resimulating with altered FSI physics.

Figure 3.2: Weights applied to MEC events during tuning, as a function of energy and momentum
transfer. Figure from [19].
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Figure 3.3: Distribution of MEC events in simulation (left) before tuning and (right) after tuning.
Figures from [19].

The MEC tune is used to account for the remaining discrepancy with ND data. Here

we adjust the normalisation and shape of MEC interactions in simulation using weights.

The reweighting is done in energy and three-momentum transfer space (q0/|~q|). The

functional form of the weights is given by the sum of two 2D Gaussian distributions. A

fit is performed to find the parameters which make the tuned MC look most like the ND

data. For each Gaussian, the fit parameters are the mean and standard deviation in both

q0 and |~q|, the normalisation, and the correlation between q0 and |~q|. This yields a total

of 12 fit parameters. Figure 3.2 shows the weighting function used. Figure 3.3 shows the

distribution of MEC events pre- and post-tuning.

3.2 Reconstruction
Reconstruction is the process of translating low-level information (e.g., cell hits) into

high-level information (e.g., particle energy, angle, tracks). Reconstruction is done offline,

and so NOvA can constantly develop new and improved reconstruction techniques. Re-

construction is critical to all NOvA physics analyses, from oscillation measurements to

cross-section measurements to searches for exotic particles. Some reconstruction methods

are tuned specifically for certain types of analyses or, in fact, even certain particle species.

Particles leave characteristic energy depositions in the NOvA, as shown in Figure 3.4.

Muons tend to produce long, relatively straight tracks. Protons have a high dE/dx and

produce short tracks in the NOvA detectors. Charged pions have a similar dE/dx as
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Figure 3.4: Event displays with true particle labels overlaid. We see the characteristic energy
depositions of different particles in the NOvA detectors.

muons but are prone to hard scatters off nuclei and hence rarely travel as far as muons. As

electrons pass through the detector, they emit photons via bremsstrahlung. These photons

travel ∼ 40 cm before converting to an e+e− pair, which both radiate further photons. As a

result, electrons produce showers in the detector. Neutral pions travel some distance before

decaying into two photons. Hence they are identified by a pair of electromagnetic showers

displaced from the interaction vertex.

Reconstruction algorithms are applied identically to data and MC. This enables the

use of MC in place of data for analysis studies. In addition, reconstruction algorithms can

be tuned and validated using truth information from MC. This section will describe aspects

of the NOvA reconstruction chain, starting with the most low-level and working towards

high-level reconstruction.
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3.2.1 Hit clustering

The first step in reconstruction is clustering together spatially and temporally correlated

hits. In NOvA this is known as “slicing”, where a slice is a group of hits that belong

together (e.g. all the hits from a neutrino interaction). The algorithm used is called Time

Density Slicer (TDSlicer) [65]. There are three steps in the algorithm:

1. Find centroids in the detector x and y views independently.

2. Build clusters around the centroids by grouping nearby hits.

3. Merge clusters from the x and y views to form a 3D cluster.

Figure 3.5: (Left) A scatter plot of data to be clustered. Numbers correspond to the density ordering.
(Right) A plot of density vs isolation. We see that hits 1 and 10 have a high density
and isolation, and hence are identified as centroids. Figure from [20].

Centroids are found in xzt and yzt space independently, using a method described by

Rodriguez and Laio [20]. For each hit, the density of surrounding hits is given by

ρi = ∑
j

exp
(
−d2

i j
)

(3.1)

where di j gives the Euclidean distance between a pair of hits i and j in xzt (yzt) space,

defined as follows

di j =
||∆t|− r/c|

τ
(3.2)
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Here r is the spatial separation, ∆t is the time difference, and τ is a configurable scale

parameter which is set to 16 (80) ns at the ND (FD). The scale parameter is different for

the two detectors because the clock tick for sampling from the DAQ is faster at the ND2.

In addition to a density score, each hit is assigned an isolation score. The isolation score δi

for some hit i is the distance to the closest hit with a higher density than hit i

δi = min
j:ρ j>ρi

(
di j
)

(3.3)

Cluster centroids are found by looking for hits with high density and isolation. See

Figure 3.5 for an example.

Once centroids have been identified, any hit i is added to a cluster centred on hit j if

di j < 10. The value 10 was chosen by trying different values and studying how resilient

the slicer was to pile-up when the beam intensity was increased. Clusters are further built

up using Prim’s algorithm [66] by successively adding the hit outside the cluster closest to

some hit inside the cluster.

After forming clusters in the x and y views, a simple view-merging step is run.

Clusters from the x and y detector views are merged by comparing average zt values for

all pairs of clusters from opposite views. The output of TDSlicer is a 3D slice. Any slices

not successfully matched with a slice in the other view are treated as noise.

Completeness and purity are two standard metrics in reconstruction. In the context of

slicing, they are defined as follows

completeness =
Energy deposition from neutrino interaction contained in slice

Total energy deposition from neutrino interaction
(3.4)

purity =
Energy deposition from neutrino interaction contained in slice

Total energy deposition in slice
(3.5)

For νµCC GENIE interactions passing containment at the FD, both the average

2In the documentation the authors say that the value of the scale parameter is linked to the timing
resolution, but the methodology of how the scale parameter values were chosen is not discussed.
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completeness and purity are greater than 0.96.

3.2.2 Vertexing

A central assumption when reconstructing neutrino interactions is that the interaction prod-

ucts (leptons and hadrons) radiate outward from the point of neutrino-nucleus interaction.

The purpose of vertexing is to estimate the point of interaction by looking at the paths of

particles through the detector. Vertexing is done using the elastic arms algorithm [67] [68].

Elastic arms is seeded with the output of a Hough transform [69].

Figure 3.6: (Left) Collection of hits with straight lines overlaid indicating the output of the Hough
transform. (Right) Hough parameter space plot with two hotspots visible, showing the
location and orientation of the prominent lines in the event. Figure from [21].

The Hough transform is done in the x and y views separately. Lines are drawn

between all pairs of hits in the slice and plotted in ρ and θ , where ρ is the perpendicular

distance from the line to the origin, and θ is the angle between the line and the z-axis

(parallel to the beam). Straight-line features are identified as hotspots in the parameter

space plot, as shown in Figure 3.6.

The global interaction vertex is then found using the elastic arms algorithm. We

assume that the event is well-described by a single vertex at (x0,y0,z0) with N arms

radiating out, each parameterised by a polar and azimuthal angle θi and φi. Any point a

distance s along arm i is given by



3. NOVA OFFLINE SOFTWARE 75

xi(s) = x0 + ssinθi cosφi (3.6)

yi(s) = y0 + ssinθi sinφi (3.7)

zi(s) = z0 + scosθi (3.8)

The algorithm works to find the parameters (x0,y0,z0,~θ ,~φ) that best describe the

event. The best fit parameters are found by minimising an “energy function”. This energy

function requires proper seeding, which is provided by the output of the Hough transform.

The Hough transform sets the number of arms and an initial guess for the vertex position

and arm angles.

For νµCC interactions, elastic arms yields a vertex estimate with a resolution of

∼ 4 cm in x and y, and ∼ 8 cm in z. For comparison, the cell width and depth are 3.8 cm

and 5.9 cm respectively.

3.2.3 Prong formation

Particles in the NOvA detectors are described by reconstructed objects called prongs. A

prong is a collection of hits emanating from the reconstructed vertex in one direction. The

goal is for a prong to contain all the hits a single particle creates as it traverses the detector.

Prong formation is done using a modified version of the fuzzy k-means algorithm [70] [22].

Here “fuzzy” describes the membership of hits to a prong. Hits can belong to multiple

prongs; hence they have fuzzy membership. In this context, the k in k-means is the number

of prongs formed.

We first form 2D prongs in the x and y views separately. The central assumption of

prong formation is that hits emanate radially from the vertex. Each hit i in the slice is

converted into an angle θi with respect to the detector z-axis by drawing a straight line

between the hit and the vertex. The prong angles, which are yet to be determined, are given

by ω j. An angle of zero is parallel to the z-axis (approximately parallel to the beam axis).

The upper half of the plane is described by angles from zero to π , and the lower half is

described by angles from 0 to −π . Each hit is assigned an angular uncertainty σ based on
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the distance s from the hit to the vertex

σi =
1.745

s
+0.0204+0.000173s (3.9)

The coefficients were determined through studies of simulated 1-2 GeV muons. The

aim of prong formation is to minimise the angular distance from n hits to k prong centres.

The angular distance between hit i and prong j is given by

di j =

(
θi −ω j

σi

)2

(3.10)

The membership of hit i to prong j is given by

µi j = exp

(
−

mdi j
√

k
β

)
(3.11)

where k is the number of prongs and m is a fuzziness factor set to 2 in NOvA simulation.

For larger m, the prong associations become fuzzier. The parameter β is a normalisation

factor representing the expected spread of hits around a prong centre (we use β = 4).

Next, the prong centres are updated as follows

ω
′
i = ωi +

∑
n
j=1

µm
i j

σ2
j
(θ j −ωi)

∑
n
j=1

µm
i j

σ2
j

(3.12)

This iterative process is repeated until the difference between the old and new prong

centres is less than 1×10−7 radians. This step is followed by a clean-up step to determine

if any prongs should be merged together.



3. NOVA OFFLINE SOFTWARE 77

Figure 3.7: A simulated νe CC quasielastic interaction in the Far Detector with completed 3D
prong reconstruction from the fuzzy k-means algorithm. The prong outlined in red
in each view is the reconstructed electron, and outlined in green is the reconstructed
proton. The corresponding energy profile histograms used to compute the suitable 3D
prong matches is shown in Figure 3.8. Figure and caption from [22].
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Figure 3.8: Cumulative energy profile as a function of path length along a prong for prospective
3D match candidates shown in Figure 3.7. The red curves are for prongs in the XZ
(vertical planes) view, and the blue is for the YZ (horizontal planes) view. The upper-
left and lower-right panels show the preferred matches with similar energy profiles that
result in the green and red tracks, respectively. The off-diagonal elements illustrate
the difference in energy profile shape for the wrong combinations. Figure and caption
from [22].

Once 2D prongs have been formed in the x and y views, the next step is to combine

prongs from each view to form 3D prongs. This procedure is known as view-matching.

For a prong Xi from the x view and a prong Yj from the y view, we can perform a Kuiper

test [71], defined as

Ki j = D+
i j +D−

i j (3.13)

D+ = max
[
EXi(s)−EY j(s)

]
(3.14)

D− = max
[
EY j(s)−EXi(s)

]
(3.15)

where EXi(s) and EY j(s) are the fractional energy depositions in the respective detector

views as a function of the distance s along the prong. See Figures 3.7 and 3.8 for an event
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display and fractional energy depositions. Here a lower value of Ki j is better. The pair

of prongs which yield the lowest score are merged into a single 3D prong and removed

from further consideration. Then the next best pair of prongs are merged. This process

is repeated until all 2D prongs have been merged into 3D prongs. If there is an unequal

number of prongs formed in the x and y views, then some 2D prongs will be orphaned3 at

the end of this process.

Reconstructed prongs for simulated 1 GeV muons have an average completeness and

purity greater than 0.9.

3.2.4 Particle identification

NOvA employs machine learning methods in its oscillation measurements. A convolution

neural network is used to identify event topologies based on pixel maps, which are

collections of all hits in an event arranged as an image [72]. Within NOvA, the name

Convolutional Visual Network (CVN) is given to trained models of convolutional neural

networks.

The versions of CVN used in oscillation measurements are trained on entire simulated

GENIE neutrino interactions. As a result, the network outputs may be biased towards the

underlying MC model. This makes the network unsuitable for use in measurements which

are explicitly trying to constrain these models, for example, cross-section measurements.

For this reason, a single particle trained version of CVN was created [73]. This network

performs particle identification on a prong-by-prong basis. No context information from

the rest of the event is used to compute network outputs. To avoid generator bias, the

network was trained on simulated single particles passing through the detector. The

particles were simulated with uniform kinematics to avoid assumptions about the link

between kinematics and particle type. The network was trained on electrons, muons,

protons, photons, and charged pions 4. The network output is five scores, one for each

particle species the network was trained on. For each prong, the sum of all five scores

equals 1.0. The higher the score is for a given particle category, the more confident CVN

is that the prong in question belongs to that category.

3An orphaned prong is not matched with a prong in the other view and hence remains as a 2D prong.
4There was a 50/50 split between π+ and π−
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3.3 Calibration
The NOvA detectors must be calibrated such that a detector reading can be consistently

translated into an amount of energy in GeV. The calibration procedure is split into relative

and absolute parts. The relative calibration corrects ADC readings to ensure that a fixed

energy deposition looks the same in every part of the detector. The absolute calibration

translates detector readings into GeV.

3.3.1 Relative calibration

For a fixed energy deposition within a given cell, the number of photoelectrons (PE)

produced at the APD decreases as the distance from the readout increases. This is due to

the attenuation of the signal as it travels along the fibre. The relative calibration aims to

correct for this effect so that a consistent reading is obtained no matter where energy is

deposited in the cell. This relative calibration is done on a cell-by-cell basis to account for

natural variations in electronics, scintillator, and PVC reflectivity.

Energy deposition of cosmic ray muons is well-described by the Bethe-Bloch equation,

and so they can be used as standard candles. Only through-going muons are used for the

relative calibration to avoid the sharp rise in energy deposition at the end of the muon track.

We call the distance along the length of the cell W , where W = 0 is the centre of the cell,

and large W are closer to the readout. The purpose of the relative calibration is to describe

the attenuation of the signal as a function of W .

Calibration is done using so-called tri-cell hits. A tri-cell hit is a hit where the two

adjacent cells in the same plane also have a hit, as shown in Figure 3.9. Tri-cell hits are

used because it simplifies the calculation of the particle path length through the cell. In

a tri-cell hit, we know the particle must have travelled through two opposite cell walls.

Hence, given the angle of the particle track, we can determine the path length through the

cell. This allows us to convert PE to PE/cm 5. With reference to Figure 3.9, the path length

l is given by

l =
d

cosθ
(3.16)

5The energy deposition in a given cell increases approximately linearly with path length through the cell,
and we need to account for this.



3. NOVA OFFLINE SOFTWARE 81

θd 𝑙

Figure 3.9: Schematic of a tri-cell hit, with the cell width d marked. A particle trajectory is
overlaid, with the path length through the cell l marked.

For each cell, a plot of PE/cm vs W is made, as shown in Figure 3.10. We see the

number of photoelectrons per centimetre increases with W . A fit of the form

y =C+A
(

e
W
X + e−

L+W
X

)
(3.17)

is done, where y is PE/cm, L is the cell length, and A, C, and X are fit parameters. The

second exponential term accounts for the path of photons which travel down the fibre away

from the readout before looping back to the readout. This fit is done for values of W more

than 50 cm from the end of a cell. The remaining range of W is known as the “roll-off”

region, and locally weighted scatterplot smoothing (LOWESS) [74] is used to capture the

behaviour in this region. The results of both of these fits can be seen in Figure 3.10.
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Figure 3.10: PE/cm vs W for a single cell at the Near Detector. A fitted function of the form in
Equation 3.17 is shown in red. An additional fit, shown in blue, is done to account for
the “roll-off” near the edges.

3.3.2 Absolute calibration

The absolute calibration takes the corrected PE/cm from the relative calibration and

determines a scale factor to convert it into GeV. The absolute calibration also uses tri-cells

and cosmic ray muons. However, the absolute calibration relies on stopping muons. Muons

are in the minimum ionising particle (MIP) region between 100-200 cm from the end

of the track. By only using stopping muons, we can ensure we only calibrate using the

well-understood MIP portions of the muon track. By comparing energy depositions from

data and MC (in corrected PE/cm and GeV respectively), a conversion from photoelectrons

to energy is determined.

3.4 Summary

This chapter gives an overview of NOvA’s offline software, which is critical for interpreting

collected data. The calibration and reconstruction techniques described enable high-level

analysis of neutrino interactions. Monte Carlo simulation, among other things, allows

direct comparison of measurements to model predictions. Additions I have made to

NOvA’s software suite are described in Chapters 4 and 5. The offline software is integral
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to the cross-section analysis described in Chapter 6.



Chapter 4

OPALProng: An improved prong

view-matching algorithm

This chapter describes an extension to the prong reconstruction algorithm described in

Section 3.2.3. This reconstruction algorithm was developed concurrently with the cross-

section analysis described in Chapter 6. The reconstruction algorithm described in this

chapter is not yet available in the full NOvA data and simulation sample. As a result, this

work is not used in the cross-section analysis and is independent of the central focus of

this thesis.

4.1 Motivation
As described in Section 3.2.3, the fuzzy k-means algorithm forms 2D prongs around a

reconstructed vertex. This is done in the x and y detector views independently. To then

form 3D prongs, a process known as view-matching is performed, whereby 2D prongs in

the x view are matched with 2D prongs in the y view.

The view-matching algorithm has two notable issues. Firstly, it is a greedy algorithm1,

meaning that it makes the best decision it can at each step without regard for the best global

solution. In this context, this means that, in making the best prong match in an event early

on, we may be forced to make some bad prong matches later.

The second issue with the current view-matching algorithm is that it performs a 1-to-1

matching of prongs. This can lead to poor reconstruction in cases where two particle

1Greedy is an established technical term in this context, rather than a descriptor.
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Figure 4.1: Left: An event display where two particle tracks are visible in the x view, but the
tracks overlap in the y view. Centre: Example reconstruction under the standard
view-matching algorithm. One prong is formed (orange), but we are forced to orphan
one 2D prong. Right: Reconstruction possible with OPALProng. Both particles are
reconstructed. Hits in the y view are shared between the orange and blue prongs.

tracks2 are distinct in one detector view but overlap in the other. This can be seen in the

centre of Figure 4.1, where some hits in the x view do not form a 3D prong. We say that

the 2D prong composed of these hits is “orphaned”.

Overlapping PArticLe (OPAL) reconstruction was created to address the two issues

highlighted above. The first issue is addressed by evaluating the quality of view-matching

on a global (whole event) level. The second issue is addressed by allowing a 2D prong in

one view to be matched to two 2D prongs in the other view. A more in-depth explanation

can be found in Section 4.2.

4.2 Methods

4.2.1 Evaluating prong match quality

Just as in the standard view-matching algorithm, a Kuiper test [71] is used to evaluate

prong match quality. However, in the OPALProng framework, it is performed slightly

differently. For each 2D prong, the cumulative energy fraction as a function of z is

calculated (previously, this was calculated as a function of distance s along the prong). For

a given pair of 2D prongs Xi and Yj the cumulative energy fractions EXi(Z) is shifted such

that it begins at the same value of z as EY j(Z)
3.

2I am using the word “track” here to generically describe the path of a particle.
3This is to account for the fact that the z-components of the start point of x and y prongs will differ by at

least one plane width.
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Figure 4.2: Left: Cumulative energy fraction of a pair of x and y prongs. The Kuiper score is low,
so this is a good match Right: Cumulative energy fraction of a different pair of x and
y prongs. The Kuiper score is high, so this is a bad match.

This shift can be described as follows

EXi(Z)→ E
′
Xi
(Z) = EXi(Z +∆Z)

∆Z = Z0
Y j
−Z0

Xi

(4.1)

where Z0 gives the z coordinate at the beginning of a prong. A score K is obtained by

performing a Kuiper test on E
′
Xi
(Z) and EY j(Z)

Ki j = D+
i j +D−

i j

D+
i j = max(E

′
Xi
(Z)−EY j(Z))

D−
i j = max(EY j(Z)−E

′
Xi
(Z))

(4.2)

The smaller the value of Ki j, the better the match is, as shown in Figure 4.2.

A Kuiper test is also performed for pairs of prongs in one view with a single prong in

the other view, e.g. (Xi,X j) and Yk. The procedure is the same, but the cumulative energy

fraction of the sum of the two prongs is used when performing the Kuiper test. In this way,

it is possible to evaluate if the best solution involves, for example, matching one y prong to

two different x prongs.
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y1 NULL
x1 0.967 1.00
x2 0.143 1.00
(x1,x2) 0.148
NULL 1.00

Table 4.1: Kuiper score table for an example with two prongs in the x view and one prong in the y
view. For every combination of prongs in one view paired with prongs in the other view,
a Kuiper score is calculated. Some (nonsensical) combinations are never considered
and hence are greyed out. The NULL row and column are included to allow prongs to
be orphaned.

4.2.2 Finding a global solution

To find the best global solution, an aggregate metric is calculated for every possible way

of matching all the prongs in the x view with all the prongs in the y view (let us call an

allowed way of matching all prongs in an event a “solution”). First, a table of Kuiper

scores is constructed for every match of one prong with another prong or pairs of prongs

with another prong. An example is shown in Table 4.1. A row and column labelled NULL

are included to allow the algorithm to leave some prongs orphaned. The NULL row/column

is filled with a default score of 1.0. This corresponds to a bad Kuiper score to disincentivise

orphaning prongs.

y1 NULL
x1
x2
(x1,x2)
NULL

y1 NULL
x1
x2
(x1,x2)
NULL

y1 NULL
x1
x2
(x1,x2)
NULL

y1 NULL
x1
x2
(x1,x2)
NULL

Figure 4.3: The four possible solutions when matching two x prongs with one y prong. Each table
is one solution; boxes in green represent matches made

It is important to keep track of every possible allowed solution. Some solutions are

nonsensical; for example, it is not possible to match a pair of x prongs with a pair of y

prongs, nor is it possible to match Xi with Y j and also match Xi with NULL (orphaning
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Xi). So-called “match tables” are used to keep track of allowed solutions, as shown in

Figure 4.3. A set of match tables is generated ahead of time and then referenced during

reconstruction.

Each solution in the match tables is given a score equal to the mean of the Kuiper

scores in the green boxes. The best global solution is the one which has the lowest mean

Kuiper score. This is the solution we accept. For example, if we take Table 4.1 and test

each of the match tables shown in Figure 4.3 starting with the top left and going clockwise,

we find that the global metric is 0.572, 0.148, 1.00, and 0.984. The top right match table

yields the lowest score, so we determine that prong y1 should be matched with both x1 and

x2.

The match tables become extremely large for large numbers of x and y prongs. The

number of rows (columns) N in a match table is given by

N =
n(n−1)

2
+n+1 (4.3)

where n is the number of x prongs (y prongs) in the event. The first term is the binomial

coefficient
(n

2

)
, i.e. one row (column) for each way of making a pair of prongs from the

same view. The second term yields one row (column) for each prong by itself. The final

term adds one extra row (column) for the NULL match. Due to the difficulty of generating

match tables for large n, the preexisting view-matching algorithm is used for an event if

the number of prongs in either view is greater than five.

It is also worth noting that we only attempt an overlapping match if a prong has three

hits or more. This is because it is difficult to assess whether, for example, a match is better

with a 1 hit overlap than without it.

4.2.3 Determining number of hits to overlap

If a short track overlaps with a long track, as seen in Figure 4.4, it is necessary to determine

how many hits from the overlapping view are included in the resulting short 3D prong. We

assert that the track will most likely be roughly as long in the y view as it is in the x view,

hence if the prong ends at plane Pn in the x view, it should end at either plane Pn−1 or Pn+1

in the y view. To decide which plane to end at in the y view, we form one 3D prong ending
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Figure 4.4: An event display of an interaction which will be reconstructed with overlapping prongs.
It is necessary to determine how many hits in the y view will be included when making
a 3D prong with the short 2D prong marked X1

at Pn−1 and another ending at Pn+1. A Kuiper score is calculated for each of these prongs.

The prong with the smaller Kuiper score is saved, and the other prong is discarded.

4.2.4 Sharing hits

Now that overlapping prongs can be formed, it is necessary to share hits between prongs,

i.e. for a given hit Hi, X% of the hit belongs to prong A, and (100-X)% of the hit belongs

to prong B. This is done by weighting the hits within a prong.

To demonstrate how weights are calculated, consider an example. A 2D prong Yi is

matched with both prong X j and Xk to form two 3D prongs, α and β respectively. The

weight of the hit(s) in Yi in the n-th plane Yi,n is given as follows

wn,α =
Ecal

(
X j,n−1

)
+Ecal

(
X j,n+1

)
Ecal

(
X j,n−1

)
+Ecal

(
X j,n+1

)
+Ecal

(
Xk,n−1

)
+Ecal

(
Xk,n+1

)
wn,β =

Ecal
(
Xk,n−1

)
+Ecal

(
Xk,n+1

)
Ecal

(
X j,n−1

)
+Ecal

(
X j,n+1

)
+Ecal

(
Xk,n−1

)
+Ecal

(
Xk,n+1

) (4.4)

where Ecal gives the calorimetric energy deposited by a prong in a given plane. In other
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Figure 4.5: Toy example showing a hit in the y view (circled in red), which must be shared between
two 3D prongs α and β . The upper prong in the x view deposits 50 MeV of calorimetric
energy in both planes on either side of the hit to be weighted. The lower prong deposits
100 MeV in both of these planes. With reference to Equation 4.4 and Equation 4.6 we
see that this hit will be shared with weights wn,α = 0.33 and wn,β = 0.67.

words, the weight for prong α is given by the fraction of energy deposited by X j in the

two neighbouring planes. The philosophy here is that whichever prong deposits more

calorimetric energy in the non-overlapping view (in this case, the x view) takes a larger

fraction of the hit(s) Yi,n when forming a 3D prong. Note that Equation 4.4 satisfies the

requirement

wn,α +wn,β = 1.0 (4.5)

The procedure outlined in Equation 4.4 can be further elucidated with a toy example

as shown in Figure 4.5. Using the values from this example, we find
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wn,α =
50+50

50+50+100+100
=

100
300

= 0.33

wn,β =
100+100

50+50+100+100
=

200
300

= 0.67

(4.6)

The weights as calculated in Equation 4.4 must be included when calculating prong

completeness and purity. These quantities are calculated with reference to the “leading

particle” (LP), which can be understood as the true particle that the prong “belongs” to (i.e.

the one which deposits the most energy in the prong). In the case of overlapping prongs,

the LP is defined as the particle which deposits the most energy in the non-overlapping

view. Completeness and purity are calculated as follows

comp =
ELP in prong

Total ELP in detector
=

∑prong hits min [(ETotal ∗w),ELP]

∑all hits ELP

pur =
ELP in prong

Total E in prong
=

∑prong hits min [(ETotal ∗w),ELP]

∑prong hits ETotal ∗w

(4.7)

where ETotal is the total deposited true energy in a given hit and ELP is the true energy

deposited by the LP in a given hit. This has the desired property that under-weighting

gives high purity but low completeness, and over-weighting gives low purity but high

completeness. Note that Equation 4.7 reduces to the preexisting way of calculating

completeness and purity when all weights are equal to 1.0. Also note that if the “min []”

terms in Equation 4.7 were not included, it would be possible to have purity/completeness

greater than 1.0, which is nonsensical.
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4.3 Evaluation

4.3.1 Results

Species NOPAL/NRegular
muon 1.031
proton 1.097
piplus 1.116
piminus 1.093
photon 1.040
electron 1.036

Table 4.2: With reference to Figures 4.6-4.11, ratio of the number of prongs formed under the
OPAL and regular view-matching algorithms

Shown in Figures 4.6-4.11 are an assortment of variables reconstructed under the “regular”

(preexisting) and OPAL algorithms. All plots show only simulated events. Containment

and fiducial cuts were used to make these plots. Note that Figure 4.7 is presented with a

logarithmic y-axis scale. The containment and fiducial limits can be found in Equations

6.7 and 6.6, respectively, and were optimised for the cross-section analysis described in

Chapter 64. These figures show an increased number of prongs formed under the OPAL

algorithm for all particle species.

Figures 4.8 and 4.9 show that the most improvement is seen at low energies and short

prong lengths. These represent particles which previously may have partially overlapped

with a more energetic particle in the event. Figure 4.10 shows that an improvement is

seen for forward-going particles. The muon is frequently quite forward-going, so in the

preexisting reconstruction paradigm other forward-going particles would often overlap.

In Figure 4.8 it can be seen that for large calorimetric energies the bin content is

sometimes lower in the OPAL histogram than the “regular” histogram. Consider, for

example, the muon plot in 4.8. It is incorrect to assume that some high energy muons are

reconstructed under the preexisting algorithm but not under the OPAL algorithm. Rather,

a change in the way calorimetric energy is calculated under the OPAL reconstruction

causes a migration of prongs to lower calorimetric energy. Figure 4.12 shows that often the

calorimetric energy is reduced under the OPAL reconstruction. The reason calorimetric
4To make these plots any reasonable fiducial and containment limits are acceptable. The fact that they

were optimised for the cross-section analysis is not important.
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energy is reduced can be elucidated with an example. Consider an event with a muon and a

proton. The muon forms a long prong, and the proton overlaps with the muon in one of the

detector views. Under the preexisting reconstruction, the proton is unreconstructed, and the

muon prong contains additional calorimetric energy in the overlapping view coming from

the proton. Under the OPAL reconstruction, both a muon and proton prong are formed, and

the muon prong does not contain additional calorimetric energy as hits in the overlapping

view are shared between the muon and proton prongs using hit weights as described in

Section 4.2.4. As a result, the calorimetric energy of the muon prong is reduced to more

accurately reflect the energy deposition of the muon.

Table 4.2 summarises the change in the number of prongs. The largest improvements

are seen for protons and charged pion because OPAL does better than the regular algorithm

for short prongs. Protons and charged pions tend to create shorter prong than other species,

hence they see the largest improvements in reconstruction. Studies have shown that if a

comparison is made of only the number of prongs shorter than 100 cm, then there is a

comparable improvement in the number of prongs for most particle species.

4.3.2 Event Displays

Shown in Figures 4.13-4.15 are some comparisons of the OPALProng reconstruction

and the preexisting reconstruction. An additional 3D prong is formed in each case when

OPALProng is used. Note that there is currently no way of visually representing overlaps

in the event display.

4.4 Summary
This chapter describes an improved algorithm for reconstructing prongs in NOvA. This

algorithm makes prong matches based on the best global solution. Additionally, this

algorithm allows a prong in one detector view to be matched with two prongs in the

opposite view, thus allowing the reconstruction of overlapping particles. As a result, more

particles of every type are reconstructed. This may allow for more events to be analysed,

leading to smaller statistical uncertainties for many analyses. In addition, this algorithm

improves NOvA’s sensitivity to certain regions of phase space, for example forward-going

pions.
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Figure 4.6: Prong purity in simulated events, reconstructed using the “regular” (preexisting) and
OPAL reconstruction algorithms.
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Figure 4.7: Prong completeness in simulated events, reconstructed using the “regular” (preexisting)
and OPAL reconstruction algorithms.
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Figure 4.8: Prong calorimetric energy in simulated events, reconstructed using the “regular” (pre-
existing) and OPAL reconstruction algorithms.
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Figure 4.9: Prong length in simulated events, reconstructed using the “regular” (preexisting) and
OPAL reconstruction algorithms.
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Figure 4.10: Cosine of reconstructed prong angle w.r.t. the beam in simulated events, reconstructed
using the “regular” (preexisting) and OPAL reconstruction algorithms.
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Figure 4.11: Number of hits in prong in simulated events, reconstructed using the “regular” (pre-
existing) and OPAL reconstruction algorithms.
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Figure 4.12: The difference between calorimetric energy calculated under the preexisting and
OPAL reconstructions plotted vs true energy for a sample of muon prongs.
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Figure 4.13: Event display showing 3D prongs made using regular reconstruction (top) and OPAL
reconstruction (bottom). In the y view of the OPAL-reconstructed event an extra 3D
prong can be seen, marked in blue. This prong is not visible in the x view as it is
drawn behind the prong marked in pink.



4. OPALPRONG: AN IMPROVED PRONG VIEW-MATCHING ALGORITHM 102

NOvA - FNAL E929

Run:   11348 / 10
Event: 424 / --

UTC Sun Dec 27, 2015
02:32:44.200000000

0 100 200 300 400 500
sec)µt (

1
10

210hi
ts

10 210 310
q (ADC)

1
10hi

ts

200 400 600 800 1000 1200 1400

100−

0

100

x 
(c

m
)

200 400 600 800 1000 1200 1400
z (cm)

100−

0

100

y 
(c

m
)

NOvA - FNAL E929

Run:   11348 / 10
Event: 424 / --

UTC Sun Dec 27, 2015
02:32:44.200000000

0 100 200 300 400 500
sec)µt (

1
10

210hi
ts

10 210 310
q (ADC)

1
10hi

ts

200 400 600 800 1000 1200 1400

100−

0

100

x 
(c

m
)

200 400 600 800 1000 1200 1400
z (cm)

100−

0

100

y 
(c

m
)

Figure 4.14: Event display showing 3D prongs made using regular reconstruction (top) and OPAL
reconstruction (bottom). In the x view of the OPAL-reconstructed event an extra 3D
prong can be seen, marked in blue. This prong is not visible in the y view as it is
drawn behind the prong marked in pink.
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Figure 4.15: Event display showing 3D prongs made using regular reconstruction (top) and OPAL
reconstruction (bottom). In the x view of the OPAL-reconstructed event an extra 3D
prong can be seen, marked in blue. This prong is not visible in the y view as it is
drawn behind the prong marked in pink.



Chapter 5

A systematic uncertainty on hadron

scattering

Concurrently with developing the cross-section analysis outlined in Chapter 6, a new

systematic uncertainty was implemented in the NOvA software framework. This systematic

uncertainty is incorporated into the cross-section analysis, which is the central focus of

this thesis.

Geant4Reweight [75] [76] is an externally developed software package which calcu-

lates event weights in order to replicate the effect of resimulating with altered scattering

cross-sections for hadrons traversing the detector. This allows hadron scattering cross-

section normalisations to be varied within an uncertainty determined from a fit to external

data. The effects of varying the Geant4 physics can then be propagated to physics analyses

done in NOvA.

Section 5.1 will briefly explain how Geant4Reweight works. The rest of this chapter

will focus on NOvA-specific implementation and evaluation of results.

5.1 Geant4Reweight
In order to reproduce the effect of changing the scattering cross-section of a hadron,

Geant4Reweight quantifies how much more or less probable a given particle’s trajectory

is under the modified cross-section compared to the nominal. For example, consider

modifying the inclusive scattering cross-section of charged pions. A given pion travels a

series of steps of size Li with a scattering cross-section σi and finally scatters inelastically
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(interacts). The probability of traversing a given step without interacting is

Pi,survive = e−σiLi (5.1)

The probability of the entire trajectory is therefore given by

Ptraj = σN

N

∏
i=1

Pi,survive = σNe−∑
N
i=1 σiLi (5.2)

where the factor σN is because the pion interacts at the very end of the final step1. If the

cross-section is modified, σ → σ ′, the weight this pion receives is given by

w =
P′

traj

Ptraj
=

σ ′
N

σN

(
e−∑

N−1
i=1 σ

′
i Li

e−∑
N−1
i=1 σiLi

)
(5.3)

Now consider instead that the scattering cross-section for some exclusive channel is

modified, e.g. pion charge exchange, π++N → π0+N′. The modification σcex →ασcex is

made. Pions receive a weight according to Equation 5.3, where the inclusive cross-section

σ is now modified due to the modification of the exclusive component σcex. In addition,

the weight for pions which truly undergo charge exchange receives an additional factor α ,

where α is the scaling factor applied to the charge exchange cross-section, as mentioned

above.

The interested reader may refer to the Geant4Reweight paper [75] for a more in-depth

explanation of Geant4Reweight. Note, however, that some equations written incorrectly in

the paper have since been corrected [77].

5.2 Implementation in NOvA
This section gives a general explanation of how the systematic uncertainty is implemented

in NOvA.
1This can be understood as the probability of not surviving (i.e. interacting) during step N, PN,interact =

1−PN,survive, in the limit that LN tends to zero.
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Name Shorthand Process
Pion absorption abs π±+N → N′+X
Quasi-elastic inel π±+N → π±+N′+X
Charge exchange cex π±+N → π0 +N′+X
Double charge exchange dcex π±+N → π∓+N′+X
Pion production prod π±+N → nπ +N′+X

Table 5.1: Table of exclusive inelastic scattering channels for pions in Geant4Reweight. Here X
represents any number of additional non-pion particles present in the final state

5.2.1 Generating weights

Geant4Reweight is used in NOvA to modify the scattering cross-sections for π+, π−, and

protons. Geant4Reweight also supports reweighting neutrons, however the weights gener-

ated for NOvA did not conserve the number of neutrino interactions2. This problem could

not be diagnosed in time, so neutron reweighting is disabled within NOvA. Nonetheless, a

fit was done for the neutron cross-section, as described in Section 5.2.2.

For π+ and π−, weights are generated by varying the normalisation of each of

the 5 exclusive inelastic scattering cross-sections independently3. The normalisation is

controlled by a parameter which can be increased or decreased. A parameter setting of 1.0

represents an unchanged cross-section, and a parameter setting of 1.5 represents increasing

the normalisation of the cross-section by 50%. A description of each of the exclusive

parameters can be found in Table 5.1. There is only a single parameter for protons and

neutrons, which controls the inclusive inelastic scattering cross-section.

For each event, a weight is calculated by varying one parameter while holding all the

others at 1.0. For a given parameter, 6 weights are calculated, corresponding to parameter

settings of 0.80, 0.90, 0.95, 1.05, 1.10, and 1.20. With 5 parameter for π+, this means

5×6 = 30 weights are calculated per event. There are a further 30 weights per event for

π−. Since protons only have one parameter, there are a further 6 weights per event. The

weight for a user-requested parameter setting can be calculated at runtime by performing

linear interpolation between the weights stored in simulation files.

2Geant4 is downstream of neutrino event generation (GENIE). Changes to Geant4 physics should not be
able to change the number of simulated neutrino interactions.

3Note there is a sixth parameter which controls the normalisation of the inclusive scattering cross-section.
This parameter is redundant since its effect can be reproduced by turning all 5 parameters controlling the
exclusive cross-sections by the same amount.
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Species χ2/d.o.f.
π+ 118.9 / 48
π− 55.8 / 25
n 9.9 / 5

Table 5.2: χ2 per degree of freedom determined from fits to scattering data.

For an event containing multiple e.g. π+ , the weight stored in the simulation files

is the product of all the weights for each π+ in the event, including those produced from

secondary interactions, but excluding those from intranuclear scattering.

5.2.2 Fitting

A fit was performed to external scattering data to provide best fit values and uncertainties

for each of the parameters. Since, at the time of writing, there is no scattering data for

hadrons in the NOvA detector, scattering data in carbon 4 was used instead. Fitting was

done for each particle species independently. For charged pions, a fit was performed for the

5 exclusive parameter values. Note that inclusive scattering data additionally constrained

this fit. Any parameters without data available were allowed to float during the fit with a

20% penalty term. For neutrons a fit was done for the inclusive parameter. For protons, no

fit data was found at the time of writing.

Once the fit was completed, the fit value covariance matrix (and hence also the fit value

uncertainties) was scaled by a factor χ2/NDOF, where NDOF is the number of degrees

of freedom in the fit. This was done to conservatively inflate the parameter uncertainties

when confronted with a tension between data and prediction. See Table 5.2 for the χ2 per

degree of freedom.

Shown in Figures 5.1-5.3 are the Geant4 cross-sections and fit data for scattering in

carbon. Note that interpreting fit quality by eye is difficult as the exlcusive channels are all

additionally constrained by the inclusive data, and hence are correlated. The sources of fit

data can be found in the references [79–95]. These fit results, shown in Figures 5.4-5.6,

are used to modify cross-sections in a homogeneous NOvA ND by varying parameter

values randomly at runtime in a way that respects the correlations between parameters

(see Section 5.3.1). The homogeneous NOvA ND is a fictional material with the same

4The NOvA near detector is 66% carbon by mass [78]
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elemental composition as the NOvA ND, but with uniform composition. This allows us

to aggregate the cross-sections of the many elements in the NOvA detector into a single

cross-section which is modified during the reweighting. Since no data was found for proton

scattering, the fit value is set to 1.00±0.05 5.

5.3 Usage

5.3.1 Multiverse systematic

As mentioned in Section 5.2.2, parameter values can be randomly varied in a correlated

way. This is done using the covariance matrices determined during the fit. A “universe” is

a collection of parameters which have all been shifted from the nominal parameter setting

in this way. To create uncertainty bands on histograms, many universes are created, each

with their own unique parameter shifts. An ensemble of universes is known as a multiverse.

Using the event weights, a histogram can be made for each universe in the multiverse.

Taking the RMS of the histograms allows an uncertainty band to be calculated. At runtime,

the fit covariance matrix can be used to create the requested number of universes by doing

correlated shifts of the parameters. See Figure 5.7 for an example. We see that proton and

pion prong length are sensitive to this systematic, but calorimetric energy is not.

5.3.2 Varying parameters manually

Though the multiverse approach in Section 5.3.1 is the preferred method of using the

weights, it is possible to vary the parameters manually. Figure 5.8 shows a sample of plots

made in this way. We see that pion prong length is sensitive to the pion cross-section

normalisation parameter, and proton prong length is sensitive to the proton cross-section

normalisation parameter.

5.4 Summary
This chapter describes the implementation of a new systematic uncertainty in the NOvA

offline software framework. Using the external package Geant4Reweight, weights are

generated and stored in Monte Carlo simulation files. These weights reproduce the

effect of re-running Geant4 with modified scattering cross-sections for charged pions and

5The uncertainty is an estimate, informed by the neutron fit value 0.975±0.028.
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Figure 5.1: Inclusive and exclusive cross-sections for π+ inelastic scattering in carbon. Pre- and
post-fit predictions are shown, with fit data overlaid. No data was found for double
charge exchange or pion production at the time of writing.
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Figure 5.2: Inclusive and exclusive cross-sections for π− inelastic scattering in carbon. Pre- and
post-fit predictions are shown with fit data overlaid. At the time of writing, no data
was found for double charge exchange, pion production, or pion absorption.
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Figure 5.3: Inclusive cross-section for neutron inelastic scattering in carbon. Shown in blue is the
pre-fit cross-section, and the post-fit cross-section with the error band is shown in red.
Fit data is overlaid.

Figure 5.4: Results of fit for π+ parameters. The best fit values and uncertainties are shown on the
left, and the fit covariance matrix is shown on the right.
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Figure 5.5: Results of fit for π− parameters. The best fit values and uncertainties are shown on the
left, and the fit covariance matrix is shown on the right.

Figure 5.6: Result of fit for the neutron parameter. The best fit parameter value and uncertainty is
shown.

Figure 5.7: Simulated events with a multiverse error band drawn. The only cut applied here is that
the true neutrino interaction vertex is inside the active detector limits
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Proton total inelastic cross-section normalisation parameter

Positive pion quasi-elastic cross-section normalisation parameter

Figure 5.8: Simulated prong length histograms with shifts applied to proton and piplus parameters
separately.

protons. A fit to external scattering data yields uncertainties and covariances for the cross-

section parameters. This allows us to determine how much to vary parameters to generate

uncertainty bands. By creating many universes, the correlation between parameters can

be captured in the resulting uncertainty. This uncertainty is largest when looking at

reconstructed pion and proton lengths, and smaller for other variables. This uncertainty is

used throughout the cross-section analysis described in Chapter 6.



Chapter 6

Measurement of the νµCC 1π±

cross-section

This chapter describes an analysis to measure the cross-section of νµ +N → µ−+π±+X ,

where X represents any other particles in the final state other than π±. The cross-section is

measured in bins of charged pion angle, using 13.8×1020 POT of FHC data.

6.1 Background and motivation

∆++

W

p

νµ

p

π+

µ−

Figure 6.1: Diagram of resonant single pion production in a CC interaction on a proton.

As outlined in Section 1.5, knowledge of neutrino interaction cross-sections is a

key ingredient in measuring neutrino oscillation parameters. In NOvA, neutrino energy

estimation depends on the interaction topology. The energy estimation, in turn, impacts the

measured values of neutrino oscillation parameters. Measuring cross-sections for different

final state topologies reduces the uncertainty in oscillation measurements from cross-

section modelling systematic uncertainties. This analysis measures a single-differential
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Figure 6.2: Charged-current neutrino interaction cross section as a function of energy. Figure
from [7].

cross-section for single charged pion production in νµCC interactions in the NOvA Near

Detector.

This channel is sensitive to resonant pion production events (see to Section 1.4.1.2 for

further details on resonant interactions). Figure 6.1 shows a Feynman diagram of a resonant

interaction. Resonant interactions are the leading process at the peak energy of NOvA

(∼ 2 GeV), as seen in Figure 6.2. In addition, this measurement is a probe of final state

interactions (FSI) in the nucleus, whereby events which initially do not contain a single

charged pion become a 1π± event through pion1 absorption/production/charge-exchange

in the nuclear medium.

6.1.1 Similar measurements

Other experiments have made measurements of the νµCC 1π± cross-section. These

measurements were made in neutrinos beams of varying energies and on a range of nuclear

targets. Table 6.1 shows a selection of νµCC 1π± measurements. Figure 6.3 shows a

measurement of the νµCC 1π± cross-section made by MINERvA, which is reported in

1Throughout this chapter “pion” will refer to π+ or π− unless stated otherwise.
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Experiment Year Target Citation
MiniBooNE 2011 CH2 [96]
MINERvA 2015 CH [23]
T2K 2017 H2O [97]
T2K 2020 CH [98]
MINERvA 2022 CH, C, H2O, Fe, Pb [99]

Table 6.1: Existing νµCC 1π± cross-section measurements.

Figure 6.3: MINERvA measurement of CC 1π± dσ/dθπ compared to the GENIE, ACS, NEUT,
and NuWro models. The inner (outer) error bars correspond to the statistical (total)
uncertainties. Figure adapted from [23]. A portion of the original figure, which is not
relevant to the current discussion, has been cropped out.

bins of pion angle, similar to the measurement made in this thesis. However, it should be

noted that the average neutrino energy for the MINERvA measurement differs from the

average neutrino energy at NOvA.

6.1.2 Analysis deliverable

This analysis reports a single-differential cross-section measurement in bins of pion angle

with respect to the average neutrino beam direction. Pion kinematics are a probe of nuclear

physics due to the final state interactions pions undergo as they traverse the nucleus.

Previous attempts to measure pion energy have shown significant bias, making it

unsuitable as an analysis variable. Figure 6.4 shows a simple example of this, where



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 117

Figure 6.4: (Left) Plot of (reconstructed - true) pion energy vs true pion energy. Here calorimetric
energy in the pion prong is used to estimate pion energy. (Right) Bias of pion energy
estimation.

calorimetric energy is used as an energy estimator. For further details on how bias is

calculated, see Section 6.4. Figure 6.4 shows a large bias, making unfolding in pion

energy unreliable. Other more advanced pion energy estimators have been developed using

machine learning methods. These estimators use several inputs to attempt to estimate

pion energy yet still yield a large bias. Understanding the underlying reason for poor pion

energy estimation is an area of ongoing active development in the NOvA collaboration.

Potential issues include reconstruction failures causing pion prongs to miss some hits, as

well as pion prongs including hits not created by the pion.

6.1.3 How to measure a cross-section

To measure the differential cross-section, the following equation is used

(
dσ

dθπ

)
α

=
∑ j U jαNsel

j Pj

εαΦT (∆θπ)α

(6.1)

The elements of Equation 6.1 are

α Bin index in true θπ

j Bin index in reconstructed θπ

U Unfolding matrix, which maps reconstructed θπ to true θπ . It is determined using

methods described in Section 6.7

Nsel Number of events from data passing the selection outlined in Section 6.3
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P Purity correction, determined from a template fit to data as described in Section

6.6. This term corrects for any background contamination

ε Efficiency correction, determined using Monte Carlo simulation

Φ The integrated muon neutrino flux, see Section 6.9

T Number of targets (nucleons) inside the fiducial volume, see Section 6.8

(∆θπ)α
Width of α-th θπ bin

Efficiency and purity are defined as follows

ε =
Number of selected signal events

Number of signal events
(6.2)

P =
Number of selected signal events

Number of selected events
(6.3)

6.2 Analysis signal definition
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Figure 6.5: The number of signal events in simulation, broken down by interaction mode. (Left)
A νµCC inclusive signal definition, containing 1.1×107 events, of which 39 % are
resonant interactions. (Right) A νµCC 1π± signal definition, containing 1.1× 106

events, of which 46 % are resonant interactions.

This analysis targets events with a single charged pion in the final state. Some further

kinematic constraints are applied to limit the analysis to regions of phase space that NOvA

is sensitive to. Events which meet all the criteria are known as signal events. The signal

for this analysis is defined as a neutrino interaction with



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 119

Figure 6.6: The number of pions in the final state in a sample of νµCC quasi-elastic interactions.
Shown in black is the sample of all νµCC quasi-elastic interactions in the fiducial
volume outlined in Section 6.3.3. For the histogram in red we further require that
the muon and pions be within the kinematic thresholds outlined in Sections 6.2.2 and
6.2.1.

• Exactly one pion within the kinematic thresholds (see Section 6.2.1)

• Exactly one muon within the kinematic phase space (see Section 6.2.2)

• The true interaction vertex inside the fiducial volume (see Section 6.3.3)

Figure 6.5 shows that this signal definition is more sensitive to resonant pion pro-

duction than an inclusive measurement. Note that the signal definition contains very few

quasi-elastic interactions. From Figure 6.6 it can be calculated that 2.8% of all νµCC

quasi-elastic interactions have a single pion in the final state. Furthermore, of the νµCC

quasi-elastic interactions with a muon within the signal phase space (see Sections 6.2.2),

only 0.2% have a single pion within the kinematic thresholds (see Section 6.2.1). Hence

very few quasi-elastic events are found in the signal sample. Figure 6.7 shows an event

display of a signal event.

6.2.1 Pion kinematic thresholds

It is difficult to reconstruct low-energy pions in the NOvA Near Detector as they may

create hits in only one cell. In addition, prong reconstruction is difficult at angles close to

90° as the particle may only traverse one plane. A threshold on pion kinematics is added

to the signal definition to ensure a result is only reported in regions of phase space that
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Figure 6.7: Event display of a simulated signal event.
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Figure 6.8: The fraction of pions which form a prong as a function of pion kinetic energy (left) and
angle (right). The signal thresholds are shown with a dashed line. To make these plots,
a simple νµCC1π± signal definition is used, with no kinematic thresholds. Fiducial,
containment, and quality selection cuts are applied.

the NOvA detector is sensitive to. The threshold on minimum pion energy and angle was

determined by looking at the fraction of pions that form a prong as a function of energy

and angle, as shown in Figure 6.8. The cut value is chosen based on two criteria. Firstly,

the above threshold sample should have a high reconstruction efficiency. Secondly, the cut

value should be some finite distance away from the region in which the efficiency changes

rapidly. This is to avoid large changes in efficiency as bins migrate during unfolding2. Cut

2Note that currently the measurement is not reported in bins of pion energy, and so no unfolding is done
in pion energy. However it is hoped that an updated analysis may report a differential measurement in pion
energy.
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values which match these criteria were chosen by eye. As a result, this analysis requires

that signal events contain exactly one pion with true kinetic energy greater than 250 MeV,

and this pion should have a true angle w.r.t the beam direction less than 60°. The signal

definition allows for multiple additional pions with energy less than 250 MeV, as there is

no reliable way to reject these events.

6.2.2 Muon kinematic phase space
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Figure 6.9: Fractional uncertainty on the cross-section in bins of muon kinematics. The muon
phase space cut is indicated with a solid black border. The full signal and selection
cuts are used to make this plot, excluding the muon phase space cut.

Muons with high energy or large angle are frequently uncontained, leading to large

efficiency corrections. These efficiency corrections have large systematic uncertainties. To

mitigate this, a muon phase space cut is added to the signal definition. A matching selection

cut is also made using reconstructed energy and angle. The cut boundary was decided by
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looking at the fractional uncertainty in the cross-section measurement, approximated as

dσ

σ
≈

√√√√ 1
Nsel

+∑
syst

(
dεsyst

ε

)2

+

(
dPsyst

P

)2

(6.4)

which can be seen in Figure 6.9. The uncertainty on the efficiency and purity is comprised

of a statistical and systematic component. The cut is defined as

0.56 < cosθµ < 0.62 and 0.5 < Tµ < 0.8

0.62 < cosθµ < 0.68 and 0.5 < Tµ < 0.9

0.68 < cosθµ < 0.74 and 0.5 < Tµ < 1.0

0.74 < cosθµ < 0.80 and 0.5 < Tµ < 1.1

0.80 < cosθµ < 0.88 and 0.5 < Tµ < 1.3 (6.5)

0.88 < cosθµ < 0.91 and 0.5 < Tµ < 1.5

0.91 < cosθµ < 0.94 and 0.5 < Tµ < 2.0

0.94 < cosθµ < 0.96 and 0.5 < Tµ < 2.1

0.96 < cosθµ < 0.98 and 0.5 < Tµ < 2.3

0.98 < cosθµ < 1.00 and 0.5 < Tµ < 2.5

Note that the binning used here is the same as in the NOvA νµCC inclusive analysis

[100] so that the two analyses can be compared. See Section 6.4.2 for a study showing that

this binning scheme is appropriate. The phase space determined here is a subset of νµCC

inclusive phase space.

6.3 Event selection
The event selection for this analysis is as follows

• Preselection

– Quality cuts (more than 20 hits and 4 contiguous planes in the slice)

– At least 2 large prongs in slice (see Section 6.3.2)
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– A reconstructed vertex inside the fiducial volume (see Section 6.3.3)

– All prongs contained (see Section 6.3.4)

• Particle identification cuts (see Section 6.3.5)

• Reconstructed muon kinematic phase space cut (see Section 6.2.2)

Cut Purity Efficiency Rel Eff
Preselection 0.089 0.16 0.16
Muon ID 0.25 0.059 0.36
Pion ID 0.44 0.038 0.65
Pion Rejection 0.47 0.026 0.67
Muon/Pion phase space 0.64 0.024 0.93

Table 6.2: Cutflow table showing purity, efficiency, and relative efficiency at each stage in the
selection.

Cut Signal Outside
µ/π±

phase
space

Nπ = 0 Non
νµCC

Non-
fiducial

Nπ > 1

Preselec-
tion

1.9e+05
(0.089)

7.6e+05
(0.36)

2.3e+05
(0.11)

8.2e+05
(0.39)

8.9e+04
(0.042)

5e+04
(0.024)

Muon ID 6.8e+04
(0.25)

1e+05
(0.38)

8.4e+04
(0.31)

9.4e+03
(0.035)

5.5e+03
(0.02)

2.5e+03
(0.0093)

Pion ID 4.4e+04
(0.44)

3.1e+04
(0.31)

1.6e+04
(0.16)

4.2e+03
(0.042)

2.7e+03
(0.027)

1.8e+03
(0.018)

Pion Re-
jection

3e+04
(0.47)

2e+04
(0.31)

9e+03
(0.14)

2.4e+03
(0.039)

1.9e+03
(0.031)

4.4e+02
(0.0069)

Muon/Pion
phase
space

2.8e+04
(0.64)

9e+03
(0.21)

4.8e+03
(0.11)

1.2e+03
(0.027)

5.2e+02
(0.012)

3.6e+02
(0.0082)

Table 6.3: The number of events from simulation at each step in the selection, broken down by
signal and multiple background samples. Also shown is the fraction of the total number
of events in each sample at each step in the selection.

The effect of the selection can be seen in Tables 6.2 and 6.3.
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6.3.1 Background categories

The signal/background categories in Table 6.3 are defined as follows:

• Signal: An event matching all the signal definition criteria outlined in Section 6.2

• Outside µ/π± phase space: Either the true muon kinematics are outside the phase

space outlined in Section 6.2.2, or more likely there is no pion in the event with true

energy greater than 250 MeV and true angle less than 60°

• Nπ = 0 : No π± in the event

• Non νµCC: Not a νµCC interactions. Includes NC, ν̄µCC, and νe interactions

• Non-fiducial: The true neutrino interaction vertex is outside the fiducial volume

• Nπ > 1: More than one π± with Tπ > 250 MeV

The largest background category is “Outside µ/π± phase space” (events outside

kinematic thresholds). This raises the question of whether the kinematic constraints should

be relaxed. Doing so leads to a boost in purity but a drop in efficiency3. For example,

suppose there was no pion energy threshold in the signal definition. In that case, the

overall selection efficiency and purity are 2.1% and 70%, compared with the nominal

efficiency and purity of 2.4% and 64%. The product of efficiency and purity is higher

when a pion energy threshold is included, so this kinematic constraint is retained in the

signal definition. It is also worth pointing out that identifying low-energy pions is difficult.

In 40% of “Outside µ/π± phase space” events, the prong identified as the pion was some

other non-pion species (most often a proton). See Figure 6.19 for an example event display

showing this.

6.3.2 Number of prongs

When performing particle identification to identify the muon and pion prongs, only prongs

with at least 10 hits are considered. This is to ensure there are enough hits to reliably

3If thresholds in the signal definition were relaxed, there would be some selected events which were
previously backgrounds as they were below threshold, but now are signal events. Hence purity is boosted.
Conversely, many of the low energy pions would be unreconstructed, and so the signal selection efficiency
would be reduced.
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Figure 6.10: The number of hits in true pion prongs which are below (red) and above (blue) the
pion energy threshold in the signal definition. To make these plots, a simple νµCC1π±

signal definition is used, with no kinematic thresholds. Fiducial, containment, and
quality selection cuts are applied.

be able to perform particle identification, as well as reconstruction of kinematics. The

threshold number of hits was determined by looking at the nHit distribution for pion prongs

within the pion kinematic thresholds, as shown in Figure 6.10. No quantitative figure of

merit was used to select a cut value. Rather the cut value was chosen by eye, as it excludes

most of the below threshold pions while still retaining most of the above threshold pions.

Since both a muon and a pion must be identified, we require at least two prongs in the

event with more than 10 hits each.
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6.3.3 Fiducial volume
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Figure 6.11: Fractional uncertainty on the integrated cross-section as a function of vertex x, y,
and z components. To make this plot, a simple νµCC1π± signal definition is used,
with no kinematic thresholds and with true interaction vertex inside the detector.
The selection cuts applied are an unoptimised muon identification cut, reconstructed
vertex inside the detector, containment, and quality cuts.

A subset of the Near Detector volume is defined as the fiducial volume for this

analysis. This is to guard against backgrounds from neutrino interactions occuring in the

surrounding rock, which could be misidentified as neutrinos interacting inside the detector

near an edge. The fiducial volume was determined by calculating the fractional uncertainty

on the integrated cross-section as a function of vertex position in the x/y/z coordinates,

as shown in Figure 6.11. Note that the origin of the coordinate system is approximately

in the centre of the front face of the detector. The spike seen at z ' 450 cm is due to an

understood bug in the simulation files used to make this plot. This bug is not present in the

files used elsewhere in this thesis. The cut values were chosen to be the loosest cuts (i.e.

closest to the detector extremities) in the region of minimum fractional uncertainty. Note

that there are fluctuations in Figure 6.11 due to limited MC statistics. As a result, choosing

the bin with the absolute minimum fractional uncertainty is not a good strategy. Rather,
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there is some tolerance, and a round number is chosen as a cut value. The fiducial limits

determined are

−150.0 <Vertex x (cm) < 150.0

−140.0 <Vertex y (cm) < 150.0

150.0 <Vertex z (cm) < 1050.0

(6.6)

Only events with a reconstructed interaction vertex inside this volume are selected.

Furthermore, signal events must contain a true interaction vertex inside this volume.

6.3.4 Containment
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Figure 6.12: Muon energy resolution as a function of distance from the detector edge. The
containment limits are marked with a red dashed line. These plots were made with
fiducial, quality, and unoptimised muon ID cuts applied. When optimising, e.g.
prong x containment limits, unoptimised containment cuts are applied in the y and z
coordinates.

To ensure proper energy reconstruction is possible, prongs are required to be fully

contained within the Near Detector. We require that prongs stop several centimetres before
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reaching a detector wall to guard against exiting prongs where the hits nearest the detector

edge are missed.

The containment limits were determined by studying how muon energy resolution

degrades the closer the start/end point of the prong is to a detector edge. When the prong

is near a detector edge, it was observed that there is a significant underestimation of muon

energy. Hence we determine cuts by looking at the (reconstructed - true)/true energy plot

as a function of distance from the detector edge in the x/y/z direction.

This study was done for muon prongs, shown in Figure 6.12. For the z-coordinate, the

maximum and minimum cuts were determined independently, but for the x (y) coordinate,

the maximum distance from the left and right (top and bottom) edges were determined

simultaneously. Figure 6.12 shows that energy resolution is degraded when the prong

is closer than 20 cm from the detector extremities in x and y, and also for prongs with

z > 1565 cm or z < 20 cm. These cut values are marked with a red dashed line in the

figure. Given the detector limits are at approximately ±200 cm in x and y, this translates

into containment limits of ±180 cm. Similar studies for non-muon prongs yield the same

limits; however, we additionally require that prongs stop before reaching the muon catcher,

which starts at z = 1275 cm. Hence the containment limits are defined as follows

−180.0 cm < Min(prong start x, prong end x)

180.0 cm > Max(prong start x, prong end x)

−180.0 cm < Min(prong start y, prong end y)

180.0 cm > Max(prong start y, prong end y)

20.0 cm < Min(prong start z, prong end z)

Muon: 1565.0 cm > Max(prong start z, prong end z)

non-Muon: 1275.0 cm > Max(prong start z, prong end z)

(6.7)

6.3.5 Particle identification

Particle identification is done using the single particle trained prong CVN (see Section

3.2.4). Prong CVN is used to identify a muon and pion prong, and also to reject any
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Figure 6.13: Fractional uncertainty on the integrated cross-section as a function of cut values. For
muon and pion ID, we determine a minimum CVN score. For pion rejection, we
determine a maximum CVN score. The cut values are marked with a dashed line. To
make these plots, preselection cuts are applied. Here, the signal is νµCC1π±, with
simple muon kinematic thresholds.

additional pions once the primary pion prong is found (to ensure 1π±). As mentioned

in Section 6.3.2, prongs must have at least 10 hits before muon/pion identification is

attempted. For pion rejection, we require at least 4 hits in the prong. Cut values were

determined by looking at the fractional uncertainty on the integrated cross-section as a

function of cut value.

Some interplay between these cuts is expected, e.g. the pion ID cut affects the location

of the muon ID cut and vice-versa. Hence these cuts were optimised iteratively. First, the

muon ID cut was optimised. Then with the muon ID cut applied, the pion ID cut was

optimised. With both of these cuts applied, the pion rejection cut was optimised. Each

of the cuts was then re-optimised by applying all the cuts from the previous round of

optimisation, except for the one currently being optimised. This was done until all the cut

values stabilised, which took 3 iterations of optimisation. The final fractional uncertainty



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 130

plots can be seen in Figure 6.13. Note that, similarly to in Section 6.3.3, there are statistical

fluctuations in Figure 6.13, and hence we are free to choose a round number cut value

which is loose while still in the region of minumum fractional uncertainty. Note that the

prong identified as the muon is excluded when performing pion identification. Similarly,

for pion rejection, the prongs identified as the muon and pion are excluded.

The cut values for muon ID, pion ID, and pion rejection are 0.2, 0.75, and 0.4,

respectively.

6.4 Resolution and binning
Bin width is determined by looking at the bias and resolution of reconstructed quantities.

We require that the bin width wi satisfies the condition

wi & ri + |bi| (6.8)

where ri and bi are the resolution and bias respectively in bin i. This is done to mitigate

bin-to-bin migrations during unfolding.

For both pions and muons, the reconstructed angle is given by the angle with respect

to the beam of the prong selected as the pion or muon. Muon energy is estimated using

the track length in the active and muon catcher regions of the detector. This is done using

preexisting spline-based energy estimators, which are used in the oscillation and νµCC

inclusive analyses.

To calculate the bias and resolution of some quantity X , a 2D histogram is made of

(Xreco −Xtrue) vs Xtrue. A Gaussian distribution is fit in each slice of Xtrue. The mean and

standard deviation of the fitted distribution gives the bias and resolution, respectively, at

that value of Xtrue.

The muon kinematic binning scheme is less important than the pion binning scheme,

since no unfolding is done in muon kinematics. Nonetheless, the muon kinematic resolution

and bias are shown here for completeness.

Note that this thesis reports a result in bins of θπ rather than cosθπ . The reason for

this is that measurements in cosθπ tend to put most of the events in a handful of bins near

cosθπ = 1, whereas reporting θπ spreads the events out over several bins. In addition, θπ



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 131

is more intuitive. Finally, it is trivial to convert from θπ to cosθπ . Note, however, that for

muon kinematics the bins are defined in cosθµ space. This is done to match the binning

scheme of the preexisting νµCC inclusive analysis.

6.4.1 Pion angle
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Figure 6.14: Resolution (left) and bias (right) of reconstructed pion angle, as a function of true
pion angle.

With reference to Figure 6.14, the pion angle bin edges in degrees are defined as

[0,6,12,18,24,30,36,42,48,54,60] (6.9)

6.4.2 Muon kinematics
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Figure 6.15: Resolution (left) and bias (right) of cosθµ , as a function of true cosθµ .

For muon kinematics the same binning as the νµCC inclusive analysis is chosen,

defined as follows:
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Figure 6.16: Resolution (left) and bias (right) of reconstructed muon kinetic energy, as a function
of true muon kinetic energy.

• cosθµ - 13 variable-sized bins: 5 bins between 0.5-0.8, 1 bin between 0.8-0.85, 3

bins between 0.85-0.94, 2 bins between 0.94-0.98, and 2 bins between 0.98-1.0

• Tµ - 20 equally size bins between 0.5 and 2.5 GeV

Figures 6.15 and 6.16 show that this binning scheme is sufficient.
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6.5 Systematic uncertainties

Name Type
GENIE reweight
PPFX reweight
Beam transport reweight
Geant4 reweight
Calibration shape file-based
Calibration up/down file-based
Light level up/down file-based
Cherenkov up/down file-based
Detector ageing file-based

Table 6.4: All systematic uncertainties used in this analysis. Also listed is whether each is a
reweight or file-based uncertainty.

Systematic uncertainties are quantified in one of two ways. The first approach involves

re-running the NOvA simulation with adjusted detector properties. These are the so-called

file-based systematics. The second approach involves applying weights to events in the

nominal simulation to reproduce the effect of making some systematic shift. These are

reweight systematics.

This section will give a brief description of each source of systematic uncertainty.

6.5.1 Cross-section modelling (GENIE)

The GENIE event generator [54] provides parameters which can be adjusted to change

the simulation physics. NOvA uses the NOvARwgt framework [63] to apply weights to

reproduce the effect of re-simulating with varied GENIE parameters. Many universes are

created, where a universe is created by adjusting each of a set of parameters randomly

within their respective uncertainties. This is the same as the process described in Section

5.3.1, but in this case all the parameters are treated as uncorrelated. By creating many

universes, the interplay between different GENIE parameters can be fully captured. The

uncertainty band is determined by taking the RMS of the universes.

6.5.2 Hadron production uncertainty (PPFX)

As described in Section 2.1, the NuMI neutrino beam is created by impinging a 120 GeV

proton beam with a graphite target, producing hadrons [13]. These hadrons decay to muons

and, more importantly, neutrinos. The Package to Predict the Flux (PPFX) [62] was created
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to characterise the effect of uncertainty in hadron production at the target on the predicted

neutrino flux. Weights are stored in the NOvA simulation files, which, when applied to

an ensemble of events, replicate the effect of changing hadron production parameters.

Similarly to the GENIE systematic, we create many universes and take uncertainty as the

RMS.

6.5.3 Beam transport

In addition to the PPFX uncertainty, a collection of systematic beam transport uncertainties

also affect the flux prediction. These arise due to uncertainties in the positioning and

performance of the elements of the NuMI beamline. The uncertainties are

• ± 2 kA shift in the horn current used to focus hadrons

• ± 2 mm shift in the beam spot size

• ± 1 mm shift in the beam x and y position on the target

• ± 3 mm shift in the x and y position of horn 1 and horn 2

• ± 7 mm shift in the target z position

• Addition of a magnetic field in the decay pipe

• ± 1 mm shift in the thickness of the water layer cooling horn 1

These uncertainties are applied by reweighting events to the ±1σ shifts and then

conservatively taking the larger shift as the uncertainty.

6.5.4 Hadron reinteraction (Geant4)

As described in Chapter 5, the hadron reinteraction systematic (also known as the Geant4

reweighting systematic) uses event weights to replicate the effect of resimulating events

with changed Geant4 physics for particles traversing the detector. Specifically, the weights

reproduce the effect of making charged pion and proton inelastic scattering more or less

likely. Similarly to the GENIE and PPFX uncertainties, this is implemented as a multiverse

systematic (see Section 5.3.1 for an explanation of the term multiverse).



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 135

6.5.5 Calibration up/down

The calibration systematic characterises the uncertainty on the absolute detector calibration

(see Section 3.3.2). Samples of Monte Carlo are created with a ±5% shift in the absolute

detector calibration [101]. These samples define a ±1σ error band on histograms.

6.5.6 Calibration shape

The detector calibration is different at the ends of cells compared to the middle of a cell

(see Section 3.3.1). The relative calibration procedure does not fully capture this effect, so

a calibration shape uncertainty is created, where Monte Carlo is resimulated with altered

relative calibration to cover this uncertainty [101]. Only a +1σ sample is created, which is

then reflected across the nominal simulation to create a −1σ shift on histograms.

6.5.7 Light level up/down

The light level systematic is a two-sided uncertainty where events are resimulated with

with a ±5% change in the amount of scintillation light produced [101].

6.5.8 Cherenkov up/down

The Cherenkov systematic is a two-sided uncertainty where events are resimulated with a

±6.2% change in the amount of Cherenkov light produced [101].

6.5.9 Detector ageing

To model the effect of detector degradation over time, a sample of Monte Carlo is made

where the light model parametrisation decreases by 4.5% annually [102].

6.6 Data-driven purity estimation
This analysis uses a global template fitting method to estimate signal purity, as described

in Section 6.6.2. However, to introduce the reader to the basic concepts, a more straightfor-

ward method will first be described in Section 6.6.1.

6.6.1 Template fit

The goal of template fitting is to obtain a data-driven estimate of purity. Signal and back-

ground templates are created from Monte Carlo simulation, in some variable4 that displays

4In this case, it is the output of a boosted decision tree. More details can be found in Section 6.6.3.1
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Figure 6.17: Example templates with fake data overlaid. (Left) pre-fit templates. (Right) post-fit
templates

a shape difference between the templates, as shown in Figure 6.17. A χ2 minimisation is

performed to determine fit parameters θ0 and θ1 (which we can describe collectively as

~θ ), which control the normalisation of the signal and background 5 templates respectively.

The χ2 is formulated as follows

χ
2 = (~x−~µ(~θ))T ·V (~θ)−1 · (~x−~µ(~θ)) (6.10)

where~x is the observed data, ~µ is the total Monte Carlo simulation after modification by ~θ ,

and V is a covariance matrix describing uncertainties. The modified Monte Carlo is given

by

µi = θ0 ·Nsig
i +θ1 ·Nbkg

i (6.11)

where Nsig
i and Nbkg

i are the number of events in template bin i of the signal and background

templates, respectively, as predicted by the nominal simulation.

The covariance matrix can be expressed as the sum of a statistical and systematic

component

V =V stat(~θ)+V syst(~θ) (6.12)

5It is possible to define several background templates, e.g. “CC background”, “NC background”.
However, one “Total background” template is used in this analysis. Hence that is how the fit process will be
described
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The statistical covariance is given by

V stat
i j = δi jµi (6.13)

As we fit for template normalisations, systematic samples are normalised to the

integral of the nominal simulation. These are so-called “shape only” uncertainties. For a

one-sided systematic shift ~µ ′(~θ) the covariance matrix is given by

V syst
i j =

(
λ µ

′
i −µi

)(
λ µ

′
j −µ j

)
(6.14)

where λ is a normalisation factor

λ =
∑i µi

∑i µ ′
i

(6.15)

For a two sided systemtic shift where µ+(~θ) and µ−(~θ) represent +1σ and −1σ

shifts respectively, the covariance is given by

V syst
i j =

1
2
(
λ
+

µ
+
i −µi

)(
λ
+

µ
+
j −µ j

)
+

1
2
(
λ
−

µ
−
i −µi

)(
λ
−

µ
−
j −µ j

)
(6.16)

For a multiverse systematic with N universes, the covariance is given by6

V syst
i j =

1
N

N

∑
m=1

(λ m
µ

m
i −µi)

(
λ

m
µ

m
j −µ j

)
(6.17)

The total systematic covariance matrix is given by the sum of the covariance matrices

for each source of systematic uncertainty.

By minimising the χ2 in Equation 6.10, the best fit parameters ~̂θ are determined,

from which an estimate of purity is determined

P̂ =
∑i θ̂0 ·Nsig

i

∑i

(
θ̂0 ·Nsig

i + θ̂1 ·Nbkg
i

) (6.18)

6Note that the central value µ is known a priori, rather than being calculated as the mean of the universes.
Hence Bessel’s correction is not needed here.
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6.6.2 Global template fit
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Figure 6.18: Concatenated fake data and pre-fit Monte Carlo as used in the global template fit. The
x-labels “Bin 1” etc., are analysis bin labels (in this case, they are pion angle bins).
i.e. Bin 1: (0 < θπ < 6), Bin 2: (6 < θπ < 12), etc. The fake data was made from
MC by artificially increasing (decreasing) the amount of signal (background). Hence
there is an excess (deficit) of events in the signal (background) rich regions.

The method outlined in Section 6.6.1 could be used to obtain an independent estimate

of purity P̂j in each of the analysis bins j 7. However, this assumes that the purity in

each analysis bin is independent of the purity in other analysis bins. This is not true, as

systematic uncertainties can cause migrations between analysis bins. To account for these

migrations, a global template fit is performed.

In a global template fit, we minimise

χ
2 = (~xg −~µg(~θ))

T ·V (~θ)−1 · (~xg −~µg(~θ)) (6.19)

where~xg is the concatenation of the observed data in each analysis bin

~xg = (~x0,~x1, . . . ,~x j) (6.20)

Similarly, ~µg(~θ) is the concatenation of the Monte Carlo simulation under the effect

of the template normalisation parameters ~θ

~µg(~θ) = (~µ0,~µ1, . . . ,~µ j) (6.21)

7Analysis bin: bin we intend to report a cross-section measurement in.



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 139

where

~µ j = θ2 j ·~Nsig, j +θ2 j+1 ·~Nbkg, j (6.22)

Figure 6.18 shows concatenated fake data and Monte Carlo. The covariance matrix V

is constructed in the same way as in Section 6.6.1, but the concatenated Monte Carlo is

used instead.

The fit determines an estimate of purity in each analysis bin simultaneously. Once the

best-fit parameters ~̂θ have been determined, the estimate of purity is given by

P̂j =
∑i θ̂2 j ·Nsig, j

i

∑i

(
θ̂2 j ·Nsig, j

i + θ̂2 j+1 ·Nbkg, j
i

) (6.23)

The post-fit uncertainty on the purity is obtained by creating 1000 universes from the

fit parameter covariance matrix and then taking the RMS of the ensemble.

6.6.3 Implementation

6.6.3.1 Template variable
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Figure 6.19: Selected background event (pion is below kinetic energy threshold in signal definition).
We see that the prong identified by prong CVN as the pion prong is, in fact, a proton.

The νµCC 1π± analysis requires identifying a charged pion in the event. It was

observed that a significant fraction (∼ 58% ) of simulated background events passing

selection were events in which the prong identified as the pion (using prong CVN) was, in
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fact, some other non-pion species. Figure 6.19 shows an event display showing one such

simulated event. A boosted decision tree (BDT) was trained to mitigate these backgrounds.
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Figure 6.20: Training sample input variables to BDT.

As inputs, the BDT was given variables from the prong selected as the pion (using

prong CVN). A pion-muon dE/dx log-likelihood ratio was derived by subtracting two

existing electron log-likelihood ratios in the simulation files

log
Lπ

Lµ

= log
Le

Lµ

− log
Le

Lπ

(6.24)

Similar log-likelihood ratios were derived for protons and neutral pions. The BDT

input variables are shown in Figure 6.20. Note that the pion-muon log-likelihood is centred

near zero, as pions and muons have similar dE/dx profiles due to their similar masses.

Note also that the signal and background histograms have a similar shape for the pion-

muon log-likelihood for the same reason. Nonetheless the BDT output has better shape

discrimination between signal and background when the pion-muon log-likelihood is used,

hence it is retained as an input.

The BDT hyperparameters were optimised to maximise the integral of the ROC
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Figure 6.21: Output of BDT evaluated on the testing sample.

curve 8, while avoiding overtraining. An 80:20 train-test split was used on a sample of

∼ 3% of the nominal Monte Carlo simulation, which was retired from further use. The

BDT output evaluated on the testing sample is shown in Figure 6.21;

8The integral of the receiver operating characteristic curve is a standard figure of merit for binary
classifiers
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6.6.4 Fake data studies
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Figure 6.22: Total covariance (left) and correlation matrix (right).

In this section, the template fit is evaluated on shifted fake data. In Section 6.6.4.1,

the robustness of the template fitting procedure is tested against artificial normalisation

shifts applied to the fake data templates. In Section 6.6.4.2, the fitting procedure is tested

on fake data made from an ensemble of systematically shifted GENIE universes. Figures

6.22-6.24 show the total covariance and correlation matrices, as well as them split into their

systematic components. These Figures show which systematic uncertainties contribute the

most to the overall template uncertainty. They also show the correlations introduced by

systematic uncertainties. The covariance matrix calculation is outlined in Section 6.6.1.

For a given covariance matrix M the correlation matrix C is defined as

Ci j =
Mi j√
MiiM j j

(6.25)
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Figure 6.23: Each systematic component of the covariance matrix.
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Figure 6.24: Each systematic component of the correlation matrix.
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6.6.4.1 Template normalization shift

Here fake data is made by applying scale factors of 1.2 and 0.8 to the signal and background

templates, respectively, and then applying random Poisson fluctuations. The pre- and post-

fit templates from a single fake data universe can be seen in Figures 6.25 and 6.26. In this

fake data universe, the χ2 is reduced during the fit from 216.9 to 56.6, with 79 degrees of

freedom. Figure 6.27 shows the pre- and post-fit purity estimates from this same fake data

universe, with the true (fake data) purity overlaid. A χ2 comparing true and pre-fit purity

is 39.8, whereas, for true and post-fit purity, the χ2 is 3.7, with 10 degrees of freedom.

Hence we see that the post-fit estimate of purity is markedly better.

The fit is also evaluated on an ensemble of fake data universes. Each fake data

universe is created by providing a different seed to the random number generator used to

apply Poisson fluctuations. The results are shown in Figure 6.28, showing that the fit yields

an unbiased purity estimate when a scale factor manually scales templates. Furthermore,

the fit reduces the fractional uncertainty on the purity.
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Figure 6.25: From a single fake data universe, pre-fit (left) and post-fit (right) templates with fake
data overlaid. Shown here are the first five analysis bins.



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 146

1− 0.5− 0 0.5 1

PionID BDT score

0

500

1000

1500
E

ve
nt

s
Sig
Bkg
FakeData

 < 36.0πθ30.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

500

1000

1500

E
ve

nt
s

Sig
Bkg
FakeData

 < 36.0πθ30.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

500

1000

1500

E
ve

nt
s

Sig
Bkg
FakeData

 < 42.0πθ36.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

500

1000

1500

E
ve

nt
s

Sig
Bkg
FakeData

 < 42.0πθ36.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

200

400

600

800

1000

1200

1400

E
ve

nt
s

Sig
Bkg
FakeData

 < 48.0πθ42.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

200

400

600

800

1000

1200

1400

E
ve

nt
s

Sig
Bkg
FakeData

 < 48.0πθ42.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

200

400

600

800

1000

E
ve

nt
s

Sig
Bkg
FakeData

 < 54.0πθ48.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

200

400

600

800

1000

E
ve

nt
s

Sig
Bkg
FakeData

 < 54.0πθ48.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

200

400

600

800

E
ve

nt
s

Sig
Bkg
FakeData

 < 60.0πθ54.0 < Reco 

N
O

vA
 S

im
ulation

1− 0.5− 0 0.5 1

PionID BDT score

0

200

400

600

800

E
ve

nt
s

Sig
Bkg
FakeData

 < 60.0πθ54.0 < Reco 

N
O

vA
 S

im
ulation

Figure 6.26: From a single fake data universe, pre-fit (left) and post-fit (right) templates with fake
data overlaid. Shown here are the last five analysis bins.
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Figure 6.27: Pre- and post-fit purity estimates from a single fake data universe. The calculated χ2

comparing true and pre-fit purity is 39.8, whereas, for true and post-fit purity, the χ2

is 3.7, with 10 degrees of freedom.
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Figure 6.28: Comparison of pre-fit (left) and post-fit (right) purity estimates on an ensemble of 200
fake data universes, with scale factors of 1.2 and 0.8 applied to signal and background
templates, respectively. (Top) Mean and RMS of data-MC purity ratio from each
universe. (Bottom) Mean and RMS of fractional uncertainty on purity from each
universe.
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6.6.4.2 GENIE systematic shift
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Figure 6.29: Comparison of pre-fit (left) and post-fit (right) purity estimates on an ensemble of
200 fake data universes, each made from a different systematically shifted GENIE
universe. (Top) Mean and RMS of data-MC purity ratio from each universe. (Bottom)
Mean and RMS of fractional uncertainty on purity from each universe.

To evaluate the robustness of the procedure under systematic shifts, the fit was

performed on an ensemble of 200 systematically shifted fake data universes. The fake data

in each universe is made from a different shifted GENIE universe, with random Poisson

fluctuations applied. The results are shown in Figure 6.29. We find that the fit is robust

against GENIE systematic shifts.

6.7 Unfolding
Experiments measure reconstructed quantities (e.g. reconstructed θπ ). However, to

compare measurements made by different experiments, it is desirable to report cross-

section measurements in bins of some true quantity (e.g. true θπ ). Detectors have finite

resolution, so there is a smearing of truth quantities. We may write this as follows 9

A~y =~x (6.26)

where ~x is the observed event count in reconstructed space bins, ~y is the event count in

truth space bins, and A is a smearing matrix characterising the detector’s finite resolution.

The goal of unfolding is to, in essence, attempt to invert the smearing matrix to obtain the

9In some sources, you may see~x−~b on the RHS of Equation 6.26, where~b is the number of background
events. Accounting for backgrounds is done via a purity correction as described in Section 6.6, but here we
will assume this is already folded into~x.
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Figure 6.30: Pion angle smearing matrix. Note that the overflow is included, which appears as a
large bin in the top right of the figure.

event count in truth space

~y = A−1~x (6.27)

In the presence of statistical fluctuations and imperfect modelling in our simulation,

this matrix inversion is an ill-posed problem.

Many unfolding techniques exist; however, they usually have parameters which must

be tuned. D’Agostini iterative unfolding is used in this analysis [103]. For this unfolding

method, the parameter which must be tuned is the number of unfolding iterations. The

Mean Squared Error (MSE) figure of merit is used to optimise the number of unfolding

iterations [104]. MSE is defined as follows

MSE =
1
M

M

∑
i=1

V [ŷi]+b2(ŷi,yi)

ŷi
(6.28)

where V and b are the variance and bias respectively, and M is the number of bins. This

figure of merit is optimised when it is minimised. To optimise the number of unfolding

iterations, a sample of simulation independent from that used to create the smearing matrix

is made by applying statistical fluctuations to the event counts in true space. This fluctuated



6. MEASUREMENT OF THE νµCC 1π± CROSS-SECTION 150

0 2 4 6 8 10
Unfolding Iterations

0

1

2

3

4

S
co

re
Average MSE

Average Bias

Average Variance

NOvA Simulation

Figure 6.31: Average MSE as a function of the number of unfolding iterations.
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Figure 6.32: An ensemble of unfolded universes after zero iterations of unfolding (left) and two
iterations of unfolding (right).

simulation is then smeared to reconstructed space

xi = ∑
j

Ai j

∑i Ai j
y j (6.29)

Finally we unfold ~x to yield ~̂y and calculate the MSE for Niter = 1,2,3, ... . This

process is done for many statistically independent universes, and the MSE is averaged

MSEavg =
1

Nuniv

Nuniv

∑
i=1

MSEi (6.30)

where Nuniv is the number of poisson universes (Nuniv = 1000 here). Note that it is
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important to include overflow bins during unfolding to allow for migration in/out of the

sample. The smearing matrix can be seen in Figure 6.30. The MSE figure of merit is

shown in Figure 6.31, from which we determine two iterations to be optimal. Figure 6.32

shows an ensemble of unfolded histograms for zero and two unfolding iterations.
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Figure 6.33: Average MSE as a function of the number of unfolding iterations. Here fake data is
made by applying random shifts to the GENIE cross-section modelling parameters,
but the matrix used for unfolding is made from the nominal simulation.

In order to test how the unfolding responds to systematic variations, the MSE study

was repeated, but this time using fake data made by applying random shifts to the GENIE

parameters. The optimal number of iterations was still found to be two, as shown in Figure

6.33.

As a check, the Monte Carlo simulation was unfolded without any Poisson fluctuations

applied. This is known as a closure test and is shown in Figure 6.34. The unfolded and

true distributions exactly coincide, as expected.
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Figure 6.34: Closure test of unfolding.

6.8 Target counting
To enable comparisons of measurements made in different detector materials, cross-section

measurements are usually reported per nucleon. To count the number of nucleons in the

fiducial volume, first the fiducial mass is calculated. In simulation an ensemble of N points

(N = 106 here) are placed randomly inside the fiducial volume Vfid. At each point, the

material at that point is retrieved from the geometry simulation. Assuming a uniform

density ρ in a small volume around this point, the mass is calculated for this small volume

and added to the total. This can be expressed as follows

Mfid =
N

∑
i=1

Vfid

N
ρ (mat(xi,yi,zi)) (6.31)

where mat(x,y,z) returns the material type at a point in the detector. The composition of

the fiducial volume by material and element can be seen in Tables 6.5 and 6.6, respectively.

The uncertainties arise due to uncertainties on the detector composition determined during

a survey.

Once the fiducial mass is calculated, the number of nucleons is given by

Nnuc = MfidNA (6.32)
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Material Density
[g/cm3]

Mass [kg] Fraction of
Total

Uncertainty
[kg]

Air 1.19e-3 2.59 3.33e-5 <0.01
Glue 0.98 639.19 8.22e-3 31.96
PVC 1.49 28973 0.37 463.57
Scintillator 0.86 48102 0.62 288.61

Table 6.5: Composition of the fiducial volume, broken down by material.

Element Z Mass [kg] Fraction of To-
tal

Uncertainty
[kg]

H 1 8289 0.107 64.97
C 6 51490 0.663 426.0
N 7 19.69 2.534e-4 0.145
O 8 2387 0.031 43.38
Na 11 2.060 2.651e-05 0.033
S 16 76.36 9.825e-4 1.291
Cl 17 12780 0.164 205.5
Ca 20 20.87 2.686e-4 0.334
Ti 22 2560 0.033 40.95
Sn 50 94.57 1.217e-3 1.513

Table 6.6: Composition of the fiducial volume, broken down by element.

where NA is Avogadro’s number. Using this method, the fiducial mass was found to be

77712±481 kg, corresponding to 4.678±0.032×1031 nucleons.
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6.9 Flux estimation
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Figure 6.35: Predicted νµ flux with associated systematic error bars.

The Near Detector is an angular target of a finite size for the NuMI beam. As a result,

the shape of the neutrino flux varies significantly across the face of the detector. The flux

is therefore dependent on the fiducial volume. This flux is predicted using Monte Carlo

methods. Consider the number of true neutrino interactions in the fiducial volume

N(Eν) = Φ(Eν)σ(Eν)Nnuc (6.33)

Rearranging Equation 6.33, we find an expression for the flux

Φ(Eν) =
N(Eν)

σ(Eν)Nnuc
(6.34)

Hence, a prediction of the flux can be obtained by reweighting true interactions by the

inverse of the cross-section and dividing by the number of nucleons. To avoid the need to

average over different nuclei and interaction modes, only νµ Neutral-current quasi-elastic

interactions on carbon are used for this procedure.

Figures 6.35 and 6.36 show the estimated flux and fractional uncertainty, respectively.

Note that the measurement reported in this analysis is flux-integrated. Using the method
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Figure 6.36: Fractional uncertainty on flux, broken down by source of systematic uncertainty

outlined above, the predicted integrated νµ flux is 1.59±0.18 ×1017/m2/GeV/13.6×

1020POT.

6.10 Validation of analysis framework
Combining all the elements of the analysis and using Equation 6.1, a cross-section mea-

surement can be done using fake data to test the analysis framework.

In addition to a cross-section measurement, a covariance matrix is also calculated.

For a given source of systematic uncertainty, the covariance matrix of the cross-section

σ is determined by calculating a shifted cross-section σ ′ using a systematically shifted

response matrix for unfolding and a systematically shifted efficiency correction. For the

beam transport and PPFX uncertainties, a systematically shifted value of the flux Φ is also

used to calculate σ ′. The covariance matrix from each systematic source is then calculated

in the same way as in Equations 6.14 - 6.17.

Uncertainty from the purity correction is accounted for by varying the template fit

parameters in a correlated way using the parameter covariance matrix determined during

the fit. Similarly to in Section 5.3.1, many universes are created (1000 universes are

used here), each with a different calculated purity. The cross-section is calculated in each
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universe, and the ensemble of calculated cross-sections is used to determine a cross-section

covariance matrix.

6.10.1 In-out test
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Figure 6.37: Cross-section calculated using Asimov fake data and full uncertainty calculation.
Overlaid is the predicted true cross-section from the simulation.

Figure 6.37 shows a cross-section calculated using fake data identical to the nominal

simulation used for unfolding, efficiency correction, etc. As expected, the calculated

cross-section exactly matches the prediction from the NOvA simulation.

6.10.2 Poisson fluctuated fake data

Figure 6.38 shows a cross-section measurement made using Poisson fluctuated fake data.

We see that the cross-section calculation is robust against statistical fluctuations. Figure

6.39 shows a breakdown of the sources of uncertainty. Note that the “Template fit” term

encapsulates:

• All sources of systematic uncertainty on purity

• Statistical uncertainty on the number of selected signal events

• Uncertainties coming from unfolding
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Figure 6.38: Cross-section calculation using fake data with Poisson fluctuations applied. Error
bars include all statistical and systematic uncertainties. Overlaid is the predicted true
cross-section from the simulation.

The “MC statistical” uncertainty in Figure 6.39 is the statistical uncertainty on the

efficiency due to the finite size of the Monte Carlo sample.

Figure 6.40 shows the total covariance and correlation matrices. The various compo-

nents of the covariance matrix are shown in Figure 6.41.
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Figure 6.39: Fractional uncertainty on the cross-section measurement, broken down by sources of
uncertainty.
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Figure 6.40: Total covariance (left) and correlation (right) matrices for the fake data cross-section
measurement.
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Figure 6.41: Covariance matrix for each source of uncertainty.
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6.10.3 Untuned GENIE fake data
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Figure 6.42: Cross-section calculation using fake data made from untuned GENIE simulation.
Error bars include all statistical and systematic uncertainties. Overlaid is the predicted
true cross-section from tuned and untuned simulation.

Figure 6.42 shows a cross-section calculation using fake data made from GENIE

simulation without the NOvA MEC and FSI tunes applied. The calculated cross-section is

consistent with the untuned true cross-section rather than being biased towards our nominal

(tuned) simulation.

6.11 Summary
This chapter describes an analysis to measure the cross-section of νµ Charged-current

interactions in the NOvA Near Detector with a single charged pion in the final state. This

analysis is designed to target regions of phase space that NOvA is sensitive to. Selection

cuts are chosen to minimize uncertainty on the cross-section measurement. A data-driven

method of purity estimation is used to provide a better-motivated way of accounting

for background contamination. The analysis framework has been tested to ensure it is

not biased towards NOvA’s base simulation model. The results of the template fit and

cross-section measurement on Near Detector data are shown in Chapter 7.



Chapter 7

Results and conclusions

This chapter describes the results of the cross-section analysis described in Chapter 6. This

analysis is the first to report a cross-section measurement in the NOvA Near Detector for

νµ charged-current interactions with a single charged pion in the final state. The analysis

was done using 13.8×1020 POT of data collected between 2014 and 2020.

7.1 Template fit
This section shows the results of the template fit method described in Section 6.6. The pre

and post-fit templates are shown in Figures 7.1 - 7.2. The purpose of the template fit is to

obtain a data-driven estimate of purity, which is shown in Figure 7.3. During the fit, the χ2

was reduced from 217.25 to 144.38 for 79 degrees of freedom. Note that, to make the MC

and data coincide, some shape changes to the templates are likely required. However the

template fit is unable to change the template shapes. This may explain why the χ2 is large.
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Figure 7.1: Pre-fit (left) and post-fit (right) templates with data overlaid. Error bars represent
statistical uncertainty. Shown here are the first five analysis bins.
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Figure 7.2: Pre-fit (left) and post-fit (right) templates with data overlaid. Error bars represent
statistical uncertainty. Shown here are the last five analysis bins.
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Figure 7.3: Pre and post-fit estimates of purity. Error bars include both statistical and systematic
contributions.

7.2 Differential cross-section measurement
Using Equation 6.1, a differential cross-section measurement was made, as shown in

Figure 7.4. A χ2 test statistic comparing the measured and predicted cross-sections was

calculated, yielding 51.82 for 10 degrees of freedom. Note that the error bars in Figure

7.4 are all positively correlated, and so estimating the χ2 by eye is not possible. The total

covariance and correlation matrix of the measurement can be seen in Figure 7.5.
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Figure 7.4: Differential cross-section measurement with the NOvA GENIE prediction overlaid.
Error bars represent uncertainty from unfolding, statistical, and systematic sources.
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Figure 7.5: Total covariance (left) and correlation (right) matrices for the cross-section measure-
ment.

7.3 Conclusions

The measurement of the differential cross-section dσ/dθπ shown in Figure 7.4 shows that

charged pions produced in νµCC1π± neutrino-nucleus interactions are more forward-going

(lower θπ ) than predicted in GENIE simulation.

The analysis outlined in this thesis uses many cutting-edge analysis techniques,

from machine learning to template fitting. Further work might focus on developing

selections with smaller systematic uncertainties, to reduce the systematic uncertainty

on the measurement. The analysis presented here may serve as the basis for another
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measurement of the νµCC1π± interaction cross-section, reported for different observables.

Possibilities include muon kinematics or the angle between the pion and muon. Such

measurements would provide even more detailed information about where the predictions

of current models are in tension with observations.

This cross-section measurement will aid the event generator community in creating

the next generation of neutrino-nucleus interaction models. This, in turn, will allow the

current and next generation of neutrino oscillation experiments to make more precise

measurements of the properties of the neutrino by reducing the size of their cross-section

modelling uncertainties.



Bibliography

[1] U. of Zurich, “Overview of the Standard Model,” https://www.physik.uzh.ch/en/

researcharea/lhcb/outreach/StandardModel.html, accessed: 2023-06-22.

[2] C. D. Ellis and W. A. Wooster, “The average energy of disintegration of radium

E,” Proceedings of the Royal Society of London. Series A, Containing Papers of a

Mathematical and Physical Character, vol. 117, no. 776, pp. 109–123, 1927.

[3] J. Link, P. Huber, and A. Haghighat, “The curious history of neutrinos and nuclear

reactors,” Nuclear News, p. 5867, Dec 2020.

[4] T. S. Electroweak, H. F. Groups, A. Collaboration, D. Collaboration, L. Collab-

oration, O. Collaboration, S. Collaboration, L. E. W. Group et al., “Precision

electroweak measurements on the Z resonance,” Physics Reports, vol. 427, no. 5-6,

pp. 257–454, 2006.

[5] T. Kajita et al., “Atmospheric neutrino results from Super-Kamiokande and

Kamiokande: Evidence for νµ oscillations,” Nuclear Physics B-Proceedings Sup-

plements, vol. 77, no. 1-3, pp. 123–132, 1999.

[6] “Mass hierarchy figure,” 2017. [Online]. Available: http://www.staff.uni-mainz.de/

wurmm/juno.html

[7] J. A. Formaggio and G. P. Zeller, “From eV to EeV: Neutrino cross sections across

energy scales,” Rev. Mod. Phys., vol. 84, pp. 1307–1341, Sep 2012. [Online].

Available: https://link.aps.org/doi/10.1103/RevModPhys.84.1307

[8] D. Casper, “The nuance neutrino physics simulation, and the future,” Nuclear

Physics B-Proceedings Supplements, vol. 112, no. 1-3, pp. 161–170, 2002.

https://www.physik.uzh.ch/en/researcharea/lhcb/outreach/StandardModel.html
https://www.physik.uzh.ch/en/researcharea/lhcb/outreach/StandardModel.html
http://www.staff.uni-mainz.de/wurmm/juno.html
http://www.staff.uni-mainz.de/wurmm/juno.html
https://link.aps.org/doi/10.1103/RevModPhys.84.1307


BIBLIOGRAPHY 168

[9] A. Aguilar-Arevalo, C. Anderson, A. Bazarko, S. Brice, B. Brown, L. Bugel, J. Cao,

L. Coney, J. Conrad, D. Cox et al., “First measurement of the muon neutrino charged

current quasielastic double differential cross section,” Physical Review D, vol. 81,

no. 9, p. 092005, 2010.

[10] T. Golan, J. T. Sobczyk, and K. M. Graczyk, “Modeling nuclear effects in NuWro

Monte Carlo neutrino event generator,” Ph.D. dissertation, PhD thesis, University of

Wroclaw, 2014.

[11] R. Gran, “Model uncertainties for Valencia RPA effect for MINERvA,” 2017.

[12] P. Coloma, P. Huber, C.-M. Jen, and C. Mariani, “Neutrino-nucleus interaction

models and their impact on oscillation analyses,” Physical Review D, vol. 89, no. 7,

p. 073015, 2014.

[13] P. Adamson, K. Anderson, M. Andrews, R. Andrews, I. Anghel, D. Augustine,

A. Aurisano, S. Avvakumov, D. Ayres, B. Baller et al., “The NuMI neutrino beam,”

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 806, pp. 279–306, 2016.

[14] “FCS still photos,” https://mod.fnal.gov/mod/stillphotos/2014/0000/14-0007-01D.

hr.jpg, accessed: 2023-05-02.

[15] A. Sutton, “Domain generalization with machine learning in the NOvA experiment,”

Ph.D. dissertation, PhD thesis, University of Virginia, 2016.

[16] D. Ayres, G. Drake, M. Goodman, J. Grudzinski, V. Guarino, R. Talaga, A. Zhao,

P. Stamoulis, E. Stiliaris, G. Tzanakos et al., “The NOvA technical design report,”

2007.

[17] “FCS still photos,” https://mod.fnal.gov/mod/stillphotos/2014/0000/14-0091-02D.

hr.jpg, accessed: 2023-06-03.

[18] G. Davies and J. Vasel, “A technical note on cosmic overlays for NOvA analyses,”

NOvA internal note 23378, Tech. Rep., 2017.

https://mod.fnal.gov/mod/stillphotos/2014/0000/14-0007-01D.hr.jpg
https://mod.fnal.gov/mod/stillphotos/2014/0000/14-0007-01D.hr.jpg
https://mod.fnal.gov/mod/stillphotos/2014/0000/14-0091-02D.hr.jpg
https://mod.fnal.gov/mod/stillphotos/2014/0000/14-0091-02D.hr.jpg


BIBLIOGRAPHY 169

[19] J. Wolcott, “Cross section models and uncertainties in NOvA,” NOvA internal note

58591, Tech. Rep., 2022.

[20] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,”

science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[21] M. Baird, “Global vertex reconstruction beginning with a modified hough transform,”

NOvA internal note 8241, Tech. Rep., 2012.

[22] E. Niner, “Observation of electron neutrino appearance in the NuMI beam with the

NOvA experiment,” Ph.D. dissertation, PhD thesis, Indiana University, 2015.

[23] B. Eberly, L. Aliaga, O. Altinok, M. B. Sazo, L. Bellantoni, M. Betancourt,

A. Bodek, A. Bravar, H. Budd, M. Bustamante et al., “Charged pion production in

νµ interactions on hydrocarbon at < Eν >= 4.0 GeV,” Physical Review D, vol. 92,

no. 9, p. 092008, 2015.
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