

## Observation of isomeric state at $I^\pi = (3^-)$ in $^{118}\text{I}$

Mamta Prajapati,<sup>1,\*</sup> Nidhi Goel,<sup>1</sup> Aalakh Kumar,<sup>1</sup> Somnath Nag,<sup>1</sup> R. Palit,<sup>2</sup> Vishal Malik,<sup>2</sup> P. Dey,<sup>2</sup> Biswajit Das,<sup>2</sup> A. Kundu,<sup>2</sup> A. Sindhu,<sup>2</sup> Gaurchand Manna,<sup>3</sup> S. Rajbanshi,<sup>3</sup> A. K. Singh,<sup>4</sup> H. Pai,<sup>5</sup> S. Bhattacharya,<sup>6</sup> A. Mukherjee,<sup>7</sup> T. Trivedi,<sup>8</sup> Deepika Choudhury,<sup>9</sup> Sahab Singh,<sup>9</sup> Abraham T Vazhappilly,<sup>2</sup> S. Jadhav,<sup>2</sup> B. S. Naidu,<sup>2</sup> and Raghava Varma<sup>1,10</sup>

<sup>1</sup>Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India

<sup>2</sup>Department of Nuclear and Atomic Physics,

Tata Institute of Fundamental Research, Mumbai 400005, India

<sup>3</sup>Department of Physics, Presidency University, Kolkata 700073, India

<sup>4</sup>Department of Physics, Indian Institute of Technology Kharagpur, West Bengal 721302, India

<sup>5</sup>Gamma Driven Experiments Department, ELI-NP, Magurele 077125, Romania

<sup>6</sup>Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem-91904, Israel

<sup>7</sup>Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon-34126, Republic of Korea

<sup>8</sup>Department of Physics, University of Allahabad, Prayagraj-211002

<sup>9</sup>Department of Physics, Indian Institute of Technology, Ropar, Punjab 140001, India

<sup>10</sup>Department of Physics, Indian Institute of Technology, Mumbai 400076, India

### I. INTRODUCTION

Iodine nuclei ( $Z = 53$ ) lie in a transitional region between the vibrator of Te ( $Z = 52$ ) and the deformed rotator of Xe ( $Z = 54$ ). For light mass iodine isotopes, the proton Fermi surface lies in the lower part of the  $h_{11/2}$  orbital while the neutron Fermi surface lies in the  $h_{11/2}$  midshell. A strong driving force exert on the  $\gamma$ -soft core by these high- $j$  valence particles: protons in the lower part of the  $h_{11/2}$  subshell favor a collectively rotating prolate shape ( $\gamma \geq 0^\circ$ ) while neutrons in the middle part of the  $h_{11/2}$  subshell favor a collectively rotating triaxial shape ( $\gamma \approx 30^\circ$ ). The low lying states of iodine isotopes ( $^{116,118,120}\text{I}$ ) are well studied in the Ref. [1–3]. An excited state isomeric state based on the coupling of the proton  $g_{9/2}$  orbital to the neutron  $h_{11/2}$  orbital with  $I^\pi = 7^-$  had also been identified in these isotopes. Several low-lying excited states with small  $\gamma$ -ray energies between the positive parity band based  $\pi h_{11/2}\nu h_{11/2}$  configuration and ground states band are reported in these nuclei. Isomeric states at low energy level were observed

in the  $^{120}\text{I}$  nuclei. In the present work, the half-life time of the  $(3^-)$  state at level energy 57 keV was measured with the electronic timing of high-purity germanium (HPGe) detectors.

### II. EXPERIMENTAL DETAILS

The excited states of  $^{118}\text{I}$  were populated through  $^{109}\text{Ag}(^{13}\text{C}, 4n\gamma)^{118}\text{I}$  reaction at a beam energy of 54 MeV. The  $^{13}\text{C}$  beam, provided by the 14UD pelletron accelerator (TIFR) was incident on a  $^{109}\text{Ag}$  target of thickness 1.05 mg/cm<sup>2</sup> backed with 10 mg/cm<sup>2</sup> of Au. The emitted  $\gamma$  rays were detected in the Indian National Gamma Array (INGA), which consisted of 18 Compton-suppressed clover HPGe detectors. A total of  $1.66 \times 10^9 \gamma\gamma$  coincidence events were collected into a two-dimensional matrix format by using RADWARE software [4]. After the energy calibration of all the HPGe detectors, the time-stamped coincidence data were sorted using the Multi pARameter timestamped based COincidence Search (MARCOS) code, developed at TIFR, Mumbai [5].

### III. RESULTS AND DISCUSSION

The  $\gamma$ -ray energy spectrum gate on 392 keV transition shown in Fig. 1 depicts the transitions feeding and decaying from  $(3^-)$  state of  $^{118}\text{I}$ . The half-life of the isomeric state is ex-

\*Electronic address: [mamtaprajapati.rs.phy19@itbhu.ac.in](mailto:mamtaprajapati.rs.phy19@itbhu.ac.in)

tracted by using the time difference spectrum between two transitions  $E_\gamma = 129.6$  and  $57.4$  keV respectively.

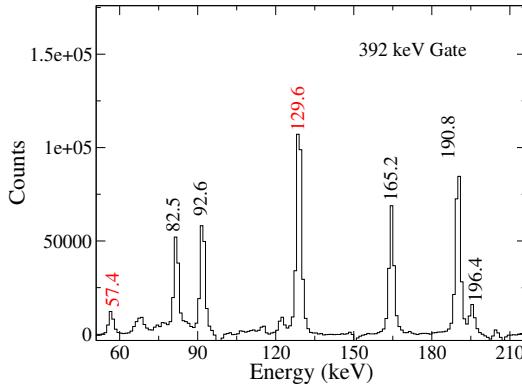



FIG. 1:  $\gamma - \gamma$  coincidence spectrum is obtained using gate on 392-keV ( $^{118}\text{I}$ ) transition. The gamma transitions shown in red are decay and feeding transitions at level ( $3^-$ ). The gamma transitions shown in the black colour are observed at the low energy level of  $^{118}\text{I}$  [2].

The time-stamped data were used to create four conditional time spectra:  $T_{p1,p2}$ ,  $T_{p1,bg2}$ ,  $T_{bg1,p2}$ , and  $T_{bg1,bg2}$ . Here  $T_{p1,p2}$  represents the time difference spectrum obtained with energy gate around the  $E_{\gamma 1}$  and  $E_{\gamma 2}$  peaks, while  $T_{p1,bg2}$  represents the same for energy gate around the  $E_{\gamma 1}$  peak and background near  $E_{\gamma 2}$ . Similarly, it is self-explanatory for  $T_{bg1,p2}$ , and  $T_{bg1,bg2}$ . The half-lives of the states were extracted by fitting the time-difference spectra with a convoluted Gaussian and an exponential function considering the detector response function. A detailed description of this method is given in ref. [6]. The half-life of the ( $3^-$ ) state have been found to be  $T_{1/2} = 56.5(20)$  ns. The reduced transition probability was extracted using the formula in Ref. [7]. The measured value of  $B(M1)$  is  $8.7 \times 10^{-4} \mu_N^2$ , which is suppressed by 100 times compared to the normal  $B(M1)$  rate. The value of reduced transition probability calculated by using the Weisskopf estimate is  $3.3 \times 10^{-4} \mu_N^2$ . The observed value is close to the Weisskopf estimates, which shows the single particle excitation at this isomeric level. Further, this isomeric state will be discussed in the

framework of a relevant model during the conference.

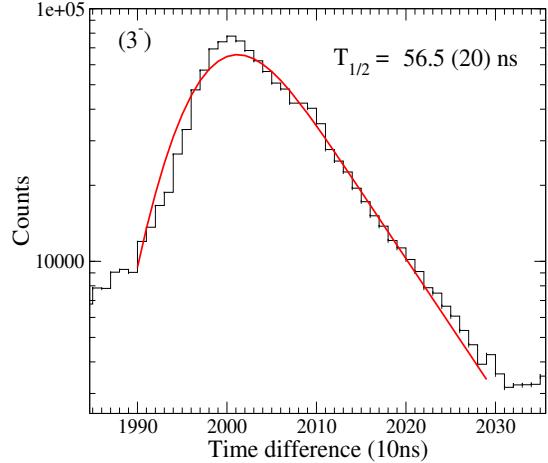



FIG. 2: Time difference spectrum is generated using the 129.6- and 57.4-keV transitions feeding and decaying from the ( $3^-$ ) isomeric level, respectively.

### Acknowledgements

The authors would like to acknowledge all the members of the TIFR-INGA collaboration for their support. M. Prajapati acknowledges the fellowship support from the Department of Science and Technology (No.:DST/INSPIRE fellowship/2019/IF190275). S. Nag acknowledges the financial support from the SERB-DST India under CRG (File No.: CRG/2021/006671).

### References

- [1] C.-B. Moon *et al.*, Nuclear Physics A **730**(2004) 3–22.
- [2] C.-B. Moon *et al.*, Nuclear Physics A **728** (2003) 350–364. Vol. 30, No. 5 (2021) 2150030.
- [3] H. Kaur *et al.*, Phys. Rev. C **55**, 512 (1997).
- [4] D. C. Radford, Nucl. Instrum. Methods A **361**, 297 (1995).
- [5] R. Palit *et al.*, Nucl. Instrum. Methods Phys. Res. A **680**, 90 (2012).
- [6] Md. S. R. Laskar *et al.*, Phys. Rev. C **104**, L011301 (2021).
- [7] F.G. Kondev *et al.*, Atomic Data and Nuclear Data Tablel 103-104 (2015) 50-105.