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I. INTRODUCTION

Iodine nuclei (Z = 53) lie in a transitional
region between the vibrator of Te (Z = 52)
and the deformed rotator of Xe (Z = 54). For
light mass iodine isotopes, the proton Fermi
surface lies in the lower part of the h11/2 or-
bital while the neutron Fermi surface lies in the
h11/2 midshell. A strong driving force exert on
the γ-soft core by these high-j valence parti-
cles: protons in the lower part of the h11/2 sub-
shell favor a collectively rotating prolate shape
(γ ≥ 0◦) while neutrons in the middle part of
the h11/2 subshell favor a collectively rotating
triaxial shape (γ ≈ 30◦). The low lying states
of iodine isotopes (116,118,120)I are well studied
in the Ref. [1–3]. An excited state isomeric
state based on the coupling of the proton g9/2
orbital to the neutron h11/2 orbital with Iπ =

7− had also been identified in these isotopes.
Several low-lying excited states with small γ-
ray energies between the positive parity band
based πh11/2νh11/2 configuration and ground
states band are reported in these nuclei. Iso-
meric states at low energy level were observed
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in the 120I nuclei. In the present work, the half-
life time of the (3−) state at level energy 57
keV was measured with the electronic timing of
high-purity germanium (HPGe) detectors.

II. EXPERIMENTAL DETAILS

The excited states of 118I were populated
through 109Ag(13C, 4nγ)118I reaction at a beam
energy of 54 MeV. The 13C beam, provided by
the 14UD pelletron accelerator (TIFR) was inci-
dent on a 109Ag target of thickness 1.05 mg/cm2

backed with 10 mg/cm2 of Au. The emitted
γ rays were detected in the Indian National
Gamma Array (INGA), which consisted of 18
Compton-suppressed clover HPGe detectors. A
total of 1.66 × 109 γγ coincidence events were
collected into a two-dimensional matrix format
by using RADWARE software [4]. After the en-
ergy calibration of all the HPGe detectors, the
time-stamped coincidence data were sorted us-
ing the Multi pARameter timestamped based
COincidence Search (MARCOS) code, devel-
oped at TIFR, Mumbai [5].

III. RESULTS AND DISCUSSION

The γ-ray energy spectrum gate on 392 keV
transition shown in Fig. 1 depicts the transi-
tions feeding and decaying from (3−) state of
118I. The half-life of the isomeric state is ex-
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tracted by using the time difference spectrum
between two transitions Eγ = 129.6 and 57.4
keV respectively.
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FIG. 1: γ − γ coincidence spectrum is obtained us-
ing gate on 392-keV (118I) transition. The gamma
transitions shown in red are decay and feeding tran-
sitions at level (3−). The gamma transitions shown
in the black colour are observed at the low energy
level of 118I [2].

The time-stamped data were used to create
four conditional time spectra: Tp1,p2, Tp1,bg2,
Tbg1,p2, and Tbg1,bg2. Here Tp1,p2 represents
the time difference spectrum obtained with en-
ergy gate around the Eγ1 and Eγ2 peaks, while
Tp1,bg2 represents the same for energy gate
around the Eγ1 peak and background near Eγ2.
Similarly, it is self-explanatory for Tbg1,p2, and
Tbg1,bg2. The half-lives of the states were ex-
tracted by fitting the time-difference spectra
with a convoluted Gaussian and an exponen-
tial function considering the detector response
function. A detailed description of this method
is given in ref. [6]. The half-life of the (3−) state
have been found to be T1/2 = 56.5(20) ns. The
reduced transition probability was extracted us-
ing the formula in Ref. [7]. The measured value
of B(M 1) is 8.7× 10−4 µ2

N , which is suppressed
by 100 times compared to the normal B(M 1)
rate. The value of reduced transition probabil-
ity calculated by using the Weisskopf estimate
is 3.3×10−4 µ2

N . The observed value is close to
the Weisskopf estimates, which shows the single
particle excitation at this isomeric level. Fur-
ther, this isomeric state will be discussed in the

framework of a relevant model during the con-
ference.
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FIG. 2: Time difference spectrum is generated us-
ing the 129.6- and 57.4-keV transitions feeding and
decaying from the (3−) isomeric level, respectively.
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