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Abstract. In 1632, Galilei was aware of relativity of velocity and that this implies relativity of spaces-
of-locations. During centuries the relativity of spaces-of-locations was ignored. Professor Harald Keres
considered the space-of-locations as a congruence of world-lines, and there is no universal absolute three-
dimensional space-of-locations. In applications, velocities relative to centre-of-mass are important. But
the concept of centre-of-mass is impossible within relativity theory postulating that each pair of reference
systems is related by the Lorentz isometry group transformation. We show that centre-of-mass of many-
body interacting (bound) system for the case of finite light-speed is a well defined concept within the
group-free approach using algebra epimorphisms as splits. We consider the Keres space-of-locations as the
Grassmann factor-algebra of differential forms where a material body with a positive mass is interpreted as
idempotent algebra epimorphism of the Grassmann algebra of spacetime onto the Grassmann factor-algebra
of corresponding space-of-locations of that material body. A material body as a reference system is a group-
free split, and this allows us to express all motions, velocities, accelerations and rotations, as relative with
respect to the choice of variable reference system.
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Dedicated im memoriam of Professor Harald Keres (1912-2010)
who insisted on relativity of all kinds of motion
and initiated investigations of Einstein’s gravity in Estonia

1. Harald Keres (1912-2010)

I am familiar with Professor Harald Keres publications since 40 years. I was immediately strongly
convinced by the Keres crystal clear concept of relativity of spaces of locations, relativity of
diachronic, relativity of ‘simul-localidad’ (relativity to be in the same location). I like his group-
free definition of arbitrary (not necessarily constant) relative velocity (for infinite light-speed) of
the Keres z-space relative to y-space [8, §2.6 p 68 formula (34)]. Moreover, during all these years
I was permanently impressed by the Keres insistence that every motion must be relative motion,
that relativity theory must not end with relativity of arbitrary velocity, but must include also
relativity of acceleration and relativity of rotation (general relativity) [9]. The Keres group-
free approach strongly motivated my research on group-free relativity for finite light-speed,
i.ethe Lorentz-isometry-group-free relativity theory [15, Oziewicz Z arXiv:math-ph/0608062],
and [16, 17, 18, 19, 20, 21].

The Keres lecture in 1970 at Kiev’s Symposium on Philosophical Questions of Relativistic
Physics and Cosmology [9] is of fundamental importance. In this lecture Keres states that
the concept of inertial reference system is a convention, because every reference system can
be considered as being inertial. Keres stresses that every motion, including acceleration and
rotation must be considered to be relative, to be dependent on the free choice of the variable
reference system, identified with a material body of a positive mass.
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There does not exist a universal (unique) absolute three-dimensional space (of locations), common
for all phenomena, and therefore there does not exist universal absolute acceleration and rotation.

E tion is relative.
very motion is relative Harald Keres [9] p 142

The above opinion is contrasted with the long standing in history of physics opinion by
Langevin in 1911 [11, 12] that acceleration and rotation must have an absolute meaning,
reference-system-free, independent of the choice of the three-dimensional space-of-locations.

There is no absolute space (of locations), and we only conceive of relative motion; and yet in most
cases mechanical facts are enunciated as if there is an absolute space (of locations) to which they can
be referred.

Henri Poincaré (1854-1912), Science and Hypothesis
Chapter 6: Classical Mechanics 1902

Galileo Galilei (1564-1642) was the first who observed in 1632 relativity of velocity [7]. This
implies immediately relativity of location: are we changing the location or do we stay in the
same place? — this is relative. There does not exist a concept of location in Nature. Location
is a mathematical convention and not a physical concept. In reality what counts are events
(space-time of events) and the location of an event in some space-of-locations is an irrelevant
convention [19, 20].

Einstein [4, 5] defined acceleration as the Christoffel derivative applied to one-body system,
acceleration =V x X is a geodesic vector field (see also [25] §14, [2, 3]). No reference body is
involved, so it is acceleration with respect to what? According to Keres one must specify another
material body, another the Keres z-space, with respect to which relative velocity of one-body y-
space are to be defined (velocity as a change of location, but location of what reference body?),
and then relative acceleration is expected to be given by a derivative of relative velocity for
two-body system. All this is beautifully explained in the Keres publications ([8] §2.8, [9, 10]).

Unfortunately, instead of generalizing relativity of velocity (supposed to be done by special
relativity in terms of an isometry group), by including the relativity of acceleration, the
Christoffel derivative applied to one-body system was like throwing the baby out with the
bathwater: it made acceleration as defined by Einstein, Weyl, and later on by Ehlers, not relative
but an absolute concept, neither the second reference material body nor the centre-of-mass were
involved.

Keres considered the Galilean relativity of three-dimensional spaces-of-locations. Galilean
relativity is due to the relative velocity among two material bodies with positive masses. A
material body is identified with a congruence of time-like curves as ‘the Lagrangian description’
of the motion of a fluid material particle in terms of a congruence of curves, in fact, due to
Euler and not to Lagrange. Such congruence is called by Keres to be z-space, and for a pair
of such congruences, for z-space and y-space, Keres defined arbitrary relative velocity between
them (for infinite light-speed). In the Keres notation = denotes the conserved zero-grade scalar
fields [8, 10].

We present the Keres group-free concept of arbitrary relative velocity as Eulerian in terms
of derivations of commutative algebra F of ‘scalar fields’. An algebra derivation corresponds
to a geometric vector field, but we avoid geometric interpretation considering an algebra as a
primordial concept within manifold-free approach. The idea to represent material bodies in
terms of a Lie algebra of derivations goes back to Leonhard Euler in 1757 (for velocity of a fluid)
[6], and in the case of the finite light-speed to Hermann Minkowski in 1908.

Relativity of velocity needs at least two-body system, and each such system possesses a mass-
centre, therefore the genuine relativity of velocity should include the concept of velocity relative
to mass-centre rather than between bodies. Section 7 is devoted to the problem of a mass-centre
for the finite light-speed.
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2. Universal property of the differential and other notations

In what follows F denotes an (unital, associative, commutative) algebra of zero-grade scalar
fields. We need two Grassmann algebras, the Grassmann algebra of differential multiforms F”,
and the Grassmann algebra (der )" of ‘multivector fields’,

FN=(der AN =F, (der F)YM =der F = der(F, F) (2.1)
For X and Y € (der )" we use the left Grassmann multiplication
AxY =XAY, (Ax)o(Ay)=Axny, (Ax)?>=0 for grade X = odd (2.2)

2.1 Definition (evaluation). The left evaluation, denoted by ev, is defined as an involutive
pull-back of the left Grassmann wedge product

evy = (Ax)*, (Ax) o (/\y) = AxAy < (eVy) o (evX) = eVXAY (2.3&)
grade X =odd = (evx)*=0 (2.3b)

2.2 Exercise. Let for X € der F and S € F!, (evy)S = 1. Then
(evx)oAgo(evy) =evx and Ago(evx)oAg=Ag (2.4)

2.3 Clarification (universal property of the differential). The differential d € der(F,F"\!)
(extended to graded differential d € der(F", F) with d2 = d o d = 0), possesses a universal
property: each derivation of an algebra F, X € der(F,F), is a composition of a differential
with evaluation. Thanks to the Grassmann condition (2.3b) and because the evaluation by a
derivation-vector evx diminish grade by one, we can write for grade X =1,

(evx)|[F=0, X =(evx)od+do(evy)=(d+evx)? &der(F,F) (2.5)

2.4 Definition (Christoffel 1869). Elwin Bruno Christoffel (1829-1900) introduced a zero-grade
derivation of all tensor fields, for X € der F and f € F, by two conditions [1]

Vxod#doVx, Viyx=fVy and evoVx=Vxoev (2.6)

2.5 Definition (Slebodzinski 1931). Wiadystaw Slebodziniski (1884-1972) introduced in his
PhD . Thesis [23] a zero-grade derivation of all tensor fields by two conditions, for f € F and
X € der F,

Lxod=doLlyx, Lix# fLx and evoLlxy=Lxoev (2.7)

In 1932, Van Dantzig called the Slebodziriski derivation (2.7) the Lie derivation and
introduced a notation L, however, Sophus Lie passed away in 1899 and has nothing to do
with this concept of derivation of a tensor field. We keep the name the Slebodziriski derivation
(or the Slebodzinski-Lie derivation). From definition (2.7) one can prove the following

Lx = (d+evy)? €der(F"), and VY €derF, SyY =[X,Y] (2.8)

The Slebodziniski conditions (2.7) determine the unique derivation L. The Christoffel
conditions (2.6) left a lot of freedom, and an extra condition put on by Christoffel, Vg = 0,
for g being the metric tensor, do not determine the Christoffel derivatation V uniquely as was
observed by Cartan in 1922.



3Quantum: Algebra Geometry Information (QQQ Conference 2012) IOP Publishing
Journal of Physics: Conference Series 532 (2014) 012021 doi:10.1088/1742-6596/532/1/012021

2.6 Theorem (Cartan 1922). Elie Cartan (1869-1951) observed in 1922 that a derivation
X € der F, extends to a graded derivation of the Grassmann algebra of differential multiforms,
evx € der(F"). For any differential multiforms o and 3 we have the Cartan graded derivation
with the following Cartan theorem,

(evx)(aAB) = (evx a) AB+ (=) A (evx ), evx € der(F") (2.9)

Cartan denoted the above derivation by ix, and called inner product or inner derivation,
however the name evaluation is more appropriate.

2.7 Notation (algebra map versus derivation of an algebra). In the sequel we use the following
notation for grade X =0,

X calg(FY) <= X (aAp) =(Xa)A(XB) (2.10)

XP eder(F") <+ XP(aAB)=(XPa)AB+aA(XPB) ‘
2.8 Definition (split). The Grassmann algebra map X as a (1, 1)-tensor field in terms a vector
field X and a differential one-form Sx such that (evx)Sx = 1, given as follows, is said to be a
X-split

X = (evy)o(Agy) € alg(F") and X? = (Agy)o (evy) € der(F")
* A " A (211)
X" = (evgy) o (Ax) €alg((der F)") and XP* = (Ax)o(evs,) € der((derF)")
The Grassmann algebra derivation X? is an involute permutation of an algebra map X.
2.9 Exercise (split is idempotent). For X-split and X*-split the following holds
XoX =X, XPoXP=XP XPoX=0=XoX? (2.12a)
XP 4+ X = (evyx +Asy)? = idza (2.12b)
(XP + X)* = X" + X* = (evg, +Ax)* = id(ger 7)n (2.12¢)

3. From the Keres space-of-locations to algebra derivation

Keres introduced three-dimensional space-of-locations as a congruence of time-like world-curves
in four-dimensional space-time manifold [8, §2.1], [10, §3]. Each congruence corresponds to a
material particle-body with a positive mass. Having explicitly a pair of two congruences, two
spaces-of-locations, called z-space and y-space, Keres defined conceptually an arbitrary velocity
of one space relative to another space, i.ean arbitrary velocity explicitly as relative velocity,
without invoking the group theory concept, i.e group-free relative velocity. This definition allows
us to define also acceleration and rotation of the Keres y-space relative to x-space, i.e acceleration
and rotation explicitly as relative acceleration and relative rotation ([8] §2.8).

One can equivalently understand each congruence of world-lines in FEulerian way as integral
curves of the corresponding vector field or synonymously as the integral curves of an ordinary
differential equation. This allows us to replace congruence by an algebra derivation, and thus
a material particle is the same as a derivation of an algebra F, where {z!, 22, 23} describe the
corresponding conserved scalar ‘integrals of motion’ of a particle. With analogous conserved
scalar ‘integrals of motion’ of the second particle in ‘adopted coordinate system’ we have the
following two-body free-system as a pair of derivations of an algebra F,

R e e T T Ve < (3.1a)

X = (6) and Y = <6> € der F (3.1b)
ot ol 22 73 ot yly243
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(evx)(dt) = Xt=1= (evy)dt, (evyx)(dz')=0, (evy)(dy')=0 (3.1c)

Every material body in (3.1b) is basis-free because derivation of an algebra F is an example of
a basis-free tensor field.
In the present section for the Keres two-body system (3.1b), we set the Galilean simultaneity

SX:Sy:dt — XYy =X (32)
| future of X
Syn‘cflronjc i X (%) \\‘\\
- -
U 3\\\\,(),,@ Sx =dt + fdx + ...
=g I \\\&@05
g 1 TN 0F
< ‘ N
S
aS)

Figure 1. The reference system X is a material body (with a positive mass) as a permanent
diachronic process-derivation X € der F from past to near future. Process X is going alongside
of the crests of a wave of X-locations {dz}, (evx)(dx) = X z = 0. Synchronic X-simultaneity
of a reference system X is a differential one-form Sx = dt + fdx + ..., such that (evx)Sx = 1.

3.1 Definition (relative-velocity, [8] §2.6 formula (34)). An arbitrary (not necessarily constant)
velocity vxy of a material body Y (the Keres y-space) relative to a reference system X (relative
to the Keres observer z-space) is defined as an X*-split of Y,

vxy = X'Y, Y:(X*p—i-X*)Y:X—{—ny, vxy =Y — X, (dt)vxyzo (33)

Above definition is valid only for absolute simultaneity dt (3.1c), and only in this particular
case the relative velocity is reciprocal, vxy = —vyx. The above concept of relative velocity is a
group-free concept.

3.2 Corollary. The scalar components, vxy x* and vxy vy, are exactly the Keres expressions
for the velocity of y-space relative to z-space, and vice versa, see [8, §2.6] and [10, p 351 before
formula (10)],

’ , ox’ . . ol
vaxl—Yx’—< :c> and ’nyy’——Xy’——< y) (3.4)
ot yhy2y8 ot 1,22 23

4. (zalileo Galilei 1632 and Leonhard Euler 1757

The Keres definition of relative split-velocity [8, §2.6 formula (34)], Definition 3.1, expressed
the observation made by Galileo Galilei in 1632 about the relativity of velocity. Note that the
same material body Y possesses infinite many velocities with respect to many different reference
systems, possesses many distinct splits

Y=X+4+vxy=Z4uvzy=... (4.1)

If vxy2z = v = const, then 2’ = x — vt does the job, however the definition (3.3) is not restricted
to constant velocities.
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4.1 Comment. A velocity (relative or not) seen as a vector field must be an algebra derivation
v € der F. An acceleration is a derivation of a velocity vector field, a derivation of a derivation.
However before invention by Christoffel in 1869, the concept of a derivation of a vector field
was not known, and therefore Newton in 1687, and Euler in 1757, defined acceleration not as a
derivation of a vector field, but as a second derivation of an algebra of scalar fields. Newtonian
definition of acceleration is still in University Physics textbooks as a composition of two algebra
derivations. Let Y € der F and ¢* € alg(F”,...) be an algebra epimorphism to algebra on
integral curve of Y. Then acceleration is commonly defined as a composition of derivations,

(ioi) oc*=c"o(YoY) ¢&derF (4.2)

A derivation of an algebra of scalar fields is a basis-free vector field, but composition of
derivations is not. Thus Newton’s and Euler’s acceleration is not a tensor field. Einstein
replaced the composition of derivations by the Christoffel derivation. The Christoffel derivation
of a vector is a vector, and Albert Einstein [4, 5] defined acceleration as the Christoffel derivative
of a velocity vector (giving the geodesic vector field).

The Keres relative velocity (3.3)-(4.1) is the same as the Euler definition in 1757 of a fluid,
and fluid’s relative velocity. The Euler derivative as a sum of vector fields, (4.3) below, is known
as substantial or material, or barycentric, or hydrodynamic derivative. In the fluid context a
material body is a vector field on space-time € der F. The Euler derivative is interpreted in
Fluid Mechanics textbooks in the following way: ”the total rate of change is a sum of the local
rate of change plus the convective rate of change”

o (0
Y = +ZU a 7 —X+’UXY7 a = (at>x1’x2’x3 (43)

In fact, the Euler derivative should be interpreted as a definition of a velocity v of a fluid Y
relative to a reference system X in adopted coordinates X = (9;),. Given vector fields X and v,
then a fundamental theorem of ordinary differential equations assure that for a sum ¥ = X +wv
there exist local adopted coordinates that Y takes a form as in (3.1b).

For an observer X being the reference system, X x = 0, if z is in the Keres x-space, cf (3.1b),
vxx = Ox. Therefore, the velocity of Y relative to X is

vxyr=Y -X)z=Yu (4.4)

Euler defined acceleration of a fluid following Newton as the second derivative of scalar fields,
i.enot as a basis-free tensor,

aNewton|lz =Y oY, apyge =Y o (Y —X) = (X +v)ow ¢ der F (4.5a)

aputerlyi = {(X +0) 0v} = (X +0)v' = -+ v 0

ay (4.5b)

5. Simultaneity differential form

The Riemannian metric tensor g can be considered as an algebra morphism from the Grassmann
algebra of multivector fields to the Grassmann algebra of differential multiforms, and his inverse
g~ 1, if it exists, as an algebra morphism from the Grassmann algebra of differential forms to
multivector fields. Metric tensor must not be interpreted as a distance between events. Distance
between points of a manifold is an integral over curve.
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5.1 Notation. We found convenient to use the following notation for the Grassmann algebra
map with volume dependent scalar field det S. The ‘reciprocity’ symmetry (5.1b) is postulated

S = deltgg € alg((der F)*, "), (det S)(det g)3 =1, with det g= —c? (5.1a)

Sxny =Sx NSy, vxy = Sxey = (evy)Sx = (evx)Sy = Syex = 1vx (5.1b)

5.2 Axiom (absence of privileged reference material body). The relativity postulate of the
absence of a privileged reference body is expressed in the following way. Each time-like material
body X (with a positive mass) as a traveller-process-derivation to his near future, possesses its
own simultaneity differential Pfaff form, gx or Sx, that is ambient-dependent, i.e metric-tensor
g-dependent, such that for all time-like material bodies X the following axiom holds (i.edet g
is the reference-body-free),

X —2— gx, (gx)X =detg, (evx)Sx=SxX =Sxgx=1 (5.2)
6. Arbitrary relative split-velocity for the finite light-speed

In this section we drop the Galilean condition of absolute simultaneity and we will consider the
case when dt’ A dt # 0.

0 0

X = () and Y = </> € der F = der(F,F) (6.1)
Ot/ g1 42,43 O ] 1 g2

6.1 Example. In adopted coordinates in (6.1) we have

Sx = dt + fida:i, Sy = dt' + gidyi (6.2)

The adopted dual bases of vector fields associative to simultaneity differential forms are as
follows

0 0 A A
Xi - — — | X, X; =0, HX; = &
B <5X 8xl> Sx 0, (dz*) J;

) ) (6.3)
Y, = — — — vy, Y, =0, (dy))Y; = ot

ayz <Syayz> SY 0 ( y) J i
d=X®Sx+X;,®de' =Y @Sy +Y; @ dy’ (6.4)

Each material body as in (6.1) is coordinate-free and basis-free because derivation of an
algebra F is an example of a coordinate-free tensor field.
One can express the derivation X in a basis adopted for Y with Sy and vice versa,

X =(SyX){Y + (Xy)Yi}l, Y =(SxY){X + (Y a')X;}. (6.5)

The scalar components, X y* (and Y 2'), are exactly the Keres expressions for the velocity of
x-space relative to y-space ([10] p 351 before formula (10))

Xyt = <8y ) and Ya'= <8x/> (6.6)
ot ol 22 23 ot yl 2,48
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6.2 Definition (basis-free split-velocity for finite-light-speed). The above expressions (6.5)-(6.6)
lead to the following basis-free definition of the velocity of the x-space relative to the observer y-
space in the case of the finite light-speed. This definition explicitly depends on the simultaneity
map S that can be identified with an environment,

1
Velocity of X relativeto Y ® Sy is vyx=-X-Y, Syvyx =0
Y

(6.7)
1
Velocity of Y relative to X ® Sx is vxy =-Y — X, Sxvxy =0
Y
6.3 Proposition. Speed of relative velocities is the same, (vyx)? = (vxy )2
Proof. We have
(vyx)?/det g = Spv= (v 'Sx—Sy)v=7"Sxv=7""5x (v_1X-Y) (6.8)
= — (1-1/7°) = (vxy)*/det g O

If simultaneity forms are not parallel, Sx A Sy # 0, then the relative velocities cannot be
reciprocal,

D=

7:(1+v2/det 9) 2, Uy)(/\’l)xy:—(l—l/’yQ) XAY (6.9a)
(Sx ASy)(X AY) = (SyY)(SxX) — (SyX)(SxY) = —(+* — 1) (6.9b)

7. Centre-of-mass

Relativity of velocity is not complete without of the concept of centre-of-mass. A material body
possesses many different velocities relative to choices of different reference bodies, and this fact
is crystal clear in the Keres publications. But many-body interacting system possesses a centre-
of-mass and more important are velocities relative to the centre-of-mass. Therefore a genuine
special relativity would be complete only with the centre-of-mass concept. We consider that all
phenomena considered in physics, the Doppler shift, stellar aberration discovered by Bradley,
absorptions, scatterings, etc., should be analyzed in terms of velocities relative to centres-of-mass
only. This means that the only important boost should be the boost from the centre-of-mass.
In our opinion the concept of the centre-of-mass with its own simultaneity is of vital importance
for special relativity theory.

However it is well known, see e.g [22, 13, 14] and any textbook on special or general relativity
[Landau and Lifshitz The Classical Theory of Fields], that within the Lorentz isometry group
approach, the concept of intrinsic centre-of-mass does not exist for finite light-speed, and
whenever centre-of-mass is used in practice of cosmology the Newtonian limit is accepted. We are
showing in the present section that the group-free concept of relative split-velocity, in the spirit
of the Keres approach, extended to finite light-speed allows the perfect concept of centre-of-mass
and split-velocities relative to centre-of-mass.

It is stressed in many publications that the real problem facing any attempt to construct a
relativistic many-particle theory (theory for the finite light-speed) is the lack of a clear notion of
simultaneity. Here, within the group-free approach, split-velocities (7.1) offer perfect solution of
this problem: one must forget Lorentz isometry group, in the spirit of the group-free approach
by Keres.

For a given a priori two-body system as the Keres z-space and y-space, a mass-centre is
in another the Keres z-space with a total mass M = ) m; — binding energy, with nontrivial
mass-dependence and variable velocity dependence in case of the finite light-speed. One-body
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problem will stay always as one-body, however two-body problem is in fact always three-body,
because it must involve a set of three the Keres spaces: z-, y- and mass-centre z-space.

We consider a mass-centre with a total mass M, as a time-like derivation (a vector field)
Z with its own simultaneity differential one-form Sy, for a free two-body system {X,Y} with
corresponding masses {m,, my}. A mass-centre Z is a bound system and in order to be ionized
— decoupled into free-system there must be an external massless gravity field G (or a massless
electromagnetic field), in terms of energy-momenta. To write down the mathematical expression,
we need the Minkowski scalar factors in terms of simultaneity differential forms. For a two-
body time-like system, X with a positive mass m,, and Y with a positive mass m,, following
Minkowski [1908] we set for a group-free relative split-velocity vxy,

’yxyESXY:SyX:’yYX :1/ 1—(ny)2/c2 (71)

The energy of the massless radiation G (the gravity or electromagnetic radiation with S¢G = 0)
relative to time-like material body X with a positive mass, Sx X = 1, was defined by Schrédinger
in 1956 as the following evaluation

EXG = SGX = SXG (72)

With these definitions we define mass-centre Z with its own simultaneity differential one-form
Sz, SzZ = 1, by the following energy-momenta conservation law, rotations and spins are
disregarded not only for simplicity, but more for pedagogical reasons.

7.1 Definition (mass-centre). Many-body interacting material system, as a set of time-like
vectors-derivations {X;}, possesses a time-like mass-centre Z € der F with a total mass M
according to the following definition (equivalent to the law of conservation of energy-momenta).
On the right there is the free decoupled many-body system, whereas on the left, Z is a mass-
centre describing the bound system, if radiation is not absent G # 0,

G+MZ=Y mX, SZ:%(ZmiSXi - 5q) (7.3)

The above definition gives immediately two expressions for the total mass for finite light-
speed, the first expression in terms of split-velocities and radiation energy relative to the mass-
centre, whereas the second expresses the same total mass in terms of split-velocities between
constitutive particles of the given many-body system.

We denote by v; = 7; z the Minkowski factor relative to mass-centre Z.

Because: SZ miX; Z m;X; = Zmz m;v;; and Sz Z m;X; = Z m;y; then: (7.4a)

M:Zmi’)/i_EZG; M2:(MSZ)(MZ):ZmZmJ'yZ] _2ZmiEiG (74b)

7.2 Lemma (gravity ionization energy). The gravity (or alias electromagnetic) ionization energy
Ezq in terms of Minkowski factors is

Ezq = \/Z mimy (Vivj — Vij) (7.5a)
Proof. We have
MEZG:SGZmiXi:ZmiSiG:ZmiSi(ijXj_MZ) (7.6&)

and

Zmi m;j v = M (Z miy; + EZG> = (Z mjy; — EZG) (Z m;yi + EZG) O (7.7)
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In the Newtonian limit of the infinite light-speed we have

2
Ym0 mi, Y mimiyy (Z m) s
Ezc €™ 0, M 7> m;

Lemma 7.2 with expression (7.5a) contains also mutual relative velocities between bodies of the
system, 7;;, and it would be better to express it in terms of the velocities relative to mass-centre
;- This will not reduce the number of independent variables, because v;; will be expressed in
terms of ; and cosines of angles vz; - vz;. The following identity we derived in [15] that holds for
non-reciprocal split-velocities and is analogous (but not identical) to the Sommerfeld identity
[24] for scalar speed of composed isometric-velocities (reciprocal) within the Lorentz isometry

group,

i =% (1= (vzi-vz;)/P) = (Bzc)* =) mim; \/(%2 = 1)(7f = 1) cos(ij) (7.9)

In the Sommerfeld identity in the last factor in (7.9) there is plus sign, because isometric
velocity is reciprocal, vz; = —wv;z, but this is not possible within the group-free approach,
where by definition, Sz vz x = 0 and Sx vy z = 0, and simultaneity is relative, Sz A Sx # 0
[15, Oziewicz Z arXiv:math-ph/0608062], and [16, 17, 18, 19, 20, 21].

For two-body system {m,,m,} with mass-centre {m,.m,, M} we have the following system
of scalar equations for total mass M,

G+MZ=m,X +m,Y, MEzq = m.Exg +myEyag (7.10a)
Ezg+ M =myyzx +myvzy, Exa+ Myzx =mem+myyxy (7.10b)
Eyq+ Myzy = mayxy + my (7.10c)

The total mass of this bound system for finite light-speed is given in terms of three Minkowski
factors (three Minkowski factors for two-body system), because we are obliged to consider in
fact three-body system {mg, m,, M} in space-time.

We will end this section with a comment on maximal binding energy within the above group-
free theory. The binding energy is

Ej := Binding energy = Zmz — M =Ezqg — Zmz(% -1) (7.11)

Assuming cos(ij) =1 in (7.9), we get the the maximal binding energy,

Egng:me/’yf—l = Maximal Eb:Zmi (wfyf—l— (’)@—1)) <m;  (7.12a)
where 0 < /72 —-1—-(y—1) < 1L

8. Universe as a bunch of Grassmann factor-algebras of relative spaces-of-locations
The Cartan theorem (2.9) implies that the kernel of an algebra derivation, ker(evy), is a
Grassmann factor-algebra, or quotient-algebra, that we baptize as the Grassmann X-factor-
algebra of relative X-space, shortly ‘X-space’ is a F-algebra,

a € ker(evy) and [ €ker(fevy) = aAf €ker(evy) (8.1)
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An algebra map (morphism from one algebra to another algebra) possesses a kernel, and this
kernel is two-sided ideal. Therefore each factor-algebra can be presented as an image of some
algebra map (instead of as a kernel of a derivation as we started above), so moreover we have

G lgeb
Grassmann X-factor-algebra-of-locations = rz‘lssmann ‘a g(? @ (8.2)
X-simultaneity ideal

For each material body X of a positive mass, i.e of a positive internal energy,
dimz(Grassmann algebra) = 2* =16 and dimz(X-factor-algebra) = 2% =8 (8.3)

8.1 Example. One can list some members of the Grassmann X-factor-algebra of X-space-of-
locations for the Keres congruence in terms of a derivation X given in (6.1).

If dz is in ker(evy), then 0= (evx)dr = {(evx)odlz =Xz

and z is conserved scalar ‘integral” of X. (8.4)
Let f € F denotes any scalar of a zero-grade, then

{F, f.t.t' 2t 2% 23y, fda?, ..., fdz' Ndz? Ndx3} € ker(evy) = X-factor-algebra  (8.5a)
X-simultaneity ideal > {fdt, fdt Adz',...} ¢ ker(evy) (8.5b)

In particular, the Grassmann X-factor-algebra contains all X-electric and X-magnetic relative
fields.

8.2 Warning. We must stress very important peculiarities. Each material body X is owner of
the Grassmann X-factor-algebra of his own X-factor-space-of-locations. It is good even simply
identify each material body with such Grassmann X-factor-algebra of his space-of-locations.
And when we say in what follows, X-factor-algebra(-of-locations), this means the Grassmann
X-factor-algebra of the Grassmann F-algebra (of a space-time). Now, for each material body X
(‘descendant’ of the Keres congruence as in (6.1)) being the Grassmann X-factor-algebra, the
following two warnings hold.

e Every X-factor-algebra-of-locations is over the same entire algebra F of zero-grade scalars,
i.eit is a different F-algebra for each body X, but always over the same algebra F of scalars.

e Not each two-sided simultaneity-ideal Ix (two-sided ideal in the Grassmann algebra
generated by a simultaneity Pfaffian differential form assigned to a material body X)
possesses a factor-derivation d/Ix that we will denote by dx, and thus a factor-differential
(dx)? = 0. The necessary and sufficient condition for the existence of dx is dIx C Ix, and
then an ideal is said to be closed. This fact is important for the concept of an inertial or non-
inertial material bodies. If factor-differential does exist, then and only then the Grassmann
X-factor-algebra-of-locations is invariant (stable) with respect to the factor-differential

(dx){Grassmann X-factor-algebra} C {Grassmann X-factor-algebra} (8.6)

An ideal X-simultaneity-ideal in the Grassmann F-algebra of the differential multiforms is also
known as an exterior differential system in the terminology of Elie Cartan.

So how we can see the Universe? The Universe is ‘matter in relative motion’, and in absolute
motion from past to future. We can consider the Universe as a collection of material bodies ‘in
relative motions’ and each material body as a Grassmann factor-algebra of differential forms,
always over the same entire algebra JF of scalar fields. Universe is a bunch of the Grassmann
factor-algebras.



3Quantum: Algebra Geometry Information (QQQ Conference 2012) IOP Publishing
Journal of Physics: Conference Series 532 (2014) 012021 doi:10.1088/1742-6596/532/1/012021

8.1. Recapitulation

We formulated the Keres concept of an z-space-of-locations as a congruence of world-lines in a
space-time manifold [10] in terms of a basis-free and a manifold-free Grassmann X -factor-algebra
over an algebra F. We stress that each the Keres space-of-locations must include entire algebra
F of zero-grade scalars. In this realm space-of-locations can be considered as the Grassmann
factor-algebra of the Grassmann F-algebra — no change of algebra of scalars! The Keres z-space
include all coordinates, also t € {z-space}, however simultaneity one-form, Sx = dt, is not in
the Keres z-space,

(dx)f =df — (X f)Sx € {z-space} = ker(evx) (8.7)

Moreover we warn that the existence of a factor-differential dx is not granted a priori.
I learn from Professor the Keres publications [8, 9, 10] two important lessons.

e Three-dimensional space-of-locations is not a certain instant of time as majority of present-
day textbooks claim. This wrong claim of what it is ‘the physical space’ dominate in all
present-day scientific journals and in scientific conferences on gravity and cosmology. Three-
dimensional space-of-locations is not a submanifold of a space-time manifold. Keres defined
a space-of-locations as a congruence of world-lines. Therefore the Keres space-of-locations
is the quotient manifold: entire world-line is just only one single location. No definite
instant of time has a ‘conscience’ of a location, instead instance tells us about relative
simultaneity. An event, as an element of a cross-section of a space-time for a given instant
of time, can belong to infinite many different congruences of world-lines, and, as Professor
Keres was clearly aware, there is no way to assign to such single event some location in
a ‘real physical space-of-locations’. I explained on several illustrative examples in another
publication [19], that the space-of-locations must be defined as a quotient-manifold and
never as a sub-manifold, and of course Professor Keres was clearly aware of this fact,

Grassmann F-algebra

Space-of-locations is a Grassmann factor-algebra = (8.8)

Simultaneity ideal

e Keres is explaining that there does not exist just one ‘physical space-of-locations’ (as a
factor-manifold; in the present paper re-interpreted as a Grassmann factor-algebra). His
original enunciation is in terms of different congruences. the Keres clear idea of many
distinct ‘physical’ spaces-of-locations can be traced and attributed also to observations by
Galileo Galilei and by Minkowski, but this idea of relativity of ‘simul-localidad’ was never
elucidated so explicitly as in the Keres publications.

9. Relativity vs gravity

It is good, at least in the beginning for clear pedagogical reasons, distinguish conceptually the
theory of gravitational interaction from the theory of relativity. This is because relativity theory
(relativity of locations, relativity of velocities, etc.) is fundamental for all kinds of interactions
including electromagnetic interactions, weak and nuclear interactions. For historical reasons,
relativity theory is divided into two parts, relativity of the concept of location and of velocity,
and the second part deals with relativity of acceleration and with relativity of rotation.

To be relative means to be dependent on the irrelevant choice of the reference system.
There are still different non-equivalent understandings of the mathematical description of the
physical reference system, when the reference system is defined as a material body with a
positive mass. Thus within relativity theory, the velocity, acceleration, and rotation of one
material body depend on the free choice of another reference body. Often ‘general relativity’ is
understood as the theory of gravity only (excluding electromagnetic field), however I think it is
more adequate not to mix ‘relativity’ with ‘gravity’, and interpret ‘general relativity’ rather as
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relativity of all motions, i.erelativity of location, relativity of velocity, relativity of acceleration
and relativity of rotations, without selecting any specific kind of interaction. Thus consideration
of the gravitational interaction would be under the name ‘gravitation’, avoiding the double
terminology in some journals ‘general relativity and gravitation’.

10. Reference system as a monad within manifold-free and group-free approach
The idea to define a material body as a time-like vector field is due to Hermann Minkowski
in 1908. Einstein in 1905 adopted alternative and not equivalent definition of a material body
as a coordinate system alias a coordinate basis, and this is not used in the present paper; we
follow an approach by Minkowski, and the Keres ideas of congruence. There are two advantages
to define a material body, and in this way every reference system, as a time-like vector field
or as the Keres congruence of world-lines, instead of Einstein’s coordinate system. Theory of
reference systems in terms of algebra derivations is known as the monad theory.

(i) Each derivation in (6.1) is an example of a tensor field, thus it is coordinate-free and basis-
free, and in this way we can forget irrelevant coordinates and bases.

(ii) The second advantage to define a material body as a derivation is that this description is
manifold-free in the spirit of the non-commutative point-free geometry. The commutative
geometry deals with the commutative algebra of scalar fields and for historical reasons the
name ‘geometry’ dominate over more adequate ‘algebra’. The recent birth (at the end of XX
century) of non-commutative ‘geometry’ opens the way to manifold-free algebraic approach.
The term ‘geometry’ we are able to exchange for ‘algebra’, and for this ideological exchange
non-commutativity or commutativity of the primary algebra of ‘scalars’ is not so important:
one can develop manifold-free approach also for commutative differential algebra as it was
developed in the recent decades in the realm of manifold-free non-commutative ‘geometry’.

What advantage we see in abandoning, or never using, the space-time manifold of events,
the world of events, so popular in the present-day textbooks on relativity, on gravity, and on
cosmology?

(i) Each manifold of higher than one dimension must possesses by definition one-dimensional
sub-manifolds, and in particular must possess closed curves. Closed curve is natural in the
three-dimensional space-of-locations, however it is hard to imagine a real closed curve in a
manifold of events.

(ii) In the present paper a ‘space-time algebra’ is the Grassmann algebra of differential
multiforms and the Grassmann algebra of ‘multiderivations’ (alias multivector fields). Such
‘space-time’ algebra with the Grassmann functor, F +— F”, allows us to avoid to think about
universe as a four-dimensional manifold of events that has existed since eternity, exists now
in this very moment, and implies that the future exists now. In the manifold-free approach
universe is a collection of material bodies (and massless radiation) 4 la Kant and each
material body is a process-derivation of a commutative algebra as in (6.1) — reinstating the
Keres idea of congruences in terms of algebra derivations.

The manifold-free algebraic approach assumes the commutative algebra F as the primary
concept, and the ‘coordinates’ in (6.1) are elements of a commutative algebra without of necessity
to use the concept of an event, i.e this is event-free and point-free approach to relativity theory.
We avoid the name ‘vector field’ and replace it by adequate ‘derivation of algebra of scalars’
that we use as a synonym of a material body, as it is clear in expressions (6.1),

der F 22X — evyxy &der(F") (10.1)

Within the Riemannian geometry, with non-singular or with singular metric tensor g, it is
important to consider also the Clifford algebra of differential forms and tensor algebra together
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with the Grassmann algebra, however for simplicity we restricted ourselves in the present paper
to consider the Grassmann algebra alone.

11. Singular metric

During 1957-1964 Professor Harald Keres published four papers in the Transactions of the
Institute of Physics and Astronomy of the Estonian Academy of Sciences on the concept of
inertial reference system within the Einsteinian gravity. In 1965 he demonstrated that the
infinite light-speed limit, ¢ — oo, of the Einstein gravity contains rotational non-Newtonian
fields.

In 1976 Keres reformulated the Newtonian gravity with rotation within singular metric [8, 10].
The way in which Keres introduced singular metric, det g = 0, deserves attention. We ask: what
vector-derivation should be chosen to be in the kernel v € (ker g) 7 Still there is not crystal clear,
at least for me, what in good mathematics means the Newtonian limit.

The Galilean-Newtonian limit is considered to be the infinite light-speed limit, ¢ — oo,
however how exactly? Maybe mathematically more precise must be the limit of a concept
of simultaneity in terms of the Minkowski factor, v — 17 But the limit v — 1 could have
also another interpretation as a limit from bound to a free-system, i.edisconnection of an
interaction. Maybe it would be convenient to consider det g as a free variable parameter with
a limit det g — 0, but what kernel of a metric tensor, g € alg((der F)", ") defined to be an
algebra map, would be the best choice for such Galilean limit?

If a simultaneity algebra map .S is an algebra isomorphism then

XANY #0 <= Sxay=SxASy #0 (11.1)

One can expect that the Galilean-Newtonian limit would mean that for a two-body system
as in (6.1), simultaneities of these bodies coincide in this limit with simultaneity of mass-centre

Newtonian limit

Sx, Sy > Sz (11.2)

The expected kernel of a singular metric could be the Keres relative velocity, Y — X € ker g.
An algebra map to be a singular algebra map do not mean to be algebra isomorphism possessing
nontrivial kernel as two-sided ideal in the Grassmann algebra. Kernel of an algebra map,
g € alg((der F)N, F"), is an ideal, and is a factor-space = algebra/sub-algebra.

It is not complicated to define such singular metric, and develop, following the Keres idea, an
analogy of Einstein’s gravity theory for the singular metric, calculate the Christoffel derivative
for the singular metric, Vg = 0. However the choice of the singular metric tensor made by
professor Keres for two-body system (6.1) was different from our proposal, the Keres choice was,
X =Y +wvxy €kerg, [10, §3 p 351 formula (10)].

With the singular metric tensor Keres was able to develop the complete analogy of the
Einstein gravity theory for the Newtonian limit in terms of the Christoffel derivative [10].

12. The Keres publications are rich in many more fundamental ideas

In the present paper we reminded only the concept of relativity of spaces of locations, the main
introductory but of fundamental importance the Keres idea of z-space as different from y-space.
This allows Professor Keres to define a general (not constant) relative velocity in a group-free
way. We pointed that this group-free way can be extended to the case of finite light-speed that
is the source of relativity of simultaneities. We also left for another publication the problem of
the reduced mass for finite light-speed.

Keres developed in full clarity the concepts of relative acceleration, and relative rotation (of
x-space relative to y-space) [8, 10], and very deep insight into gravity theory that is outside
of the scope of the present paper. I am sure many other fundamental concepts developed by
Professor Keres deserve separate papers.
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I am convinced that it would be most desirable to edit the (selected) Collected Works
of Professor Harald Keres, with translating them from Russian into English to allow these
important publications be available to wideer number of students and researches. All known
to me publications of Professor Keres are in Russian, they were published during the Estonia
Soviet period after 1945.
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