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Abstract. Multivariate discrimination or classification is one of the best-studied prob-
lem in machine learning, with a plethora of well-tested and well-performing algorithms.
There are also several good general textbooks [1–9] on the subject written to an average
engineering, computer science, or statistics graduate student; most of them are also ac-
cessible for an average physics student with some background on computer science and
statistics. Hence, instead of writing a generic introduction, we concentrate here on relat-
ing the subject to a practitioner experimental physicist. After a short introduction on the
basic setup (Section 1) we delve into the practical issues of complexity regularization,
model selection, and hyperparameter optimization (Section 2), since it is this step that
makes high-complexity non-parametric fitting so different from low-dimensional para-
metric fitting. To emphasize that this issue is not restricted to classification, we illustrate
the concept on a low-dimensional but non-parametric regression example (Section 2.1).
Section 3 describes the common algorithmic-statistical formal framework that unifies the
main families of multivariate classification algorithms. We explain here the large-margin
principle that partly explains why these algorithms work. Section 4 is devoted to the
description of the three main (families of) classification algorithms, neural networks, the
support vector machine, and AdaBoost. We do not go into the algorithmic details; the
goal is to give an overview on the form of the functions these methods learn and on the

objective functions they optimize. Besides their technical description, we also make an
attempt to put these algorithm into a socio-historical context. We then briefly de-
scribe some rather heterogeneous applications to illustrate the pattern recognition

pipeline and to show how widespread the use of these methods is (Section 5). We
conclude the chapter with three essentially open research problems that are either

relevant to or even motivated by certain unorthodox applications of multivariate dis-
crimination in experimental physics.

1 The supervised learning setup

The goal of supervised learning is to infer a function g : X → C from a data set

D = {
(x1, y1), . . . , (xn, yn)

} ∈ (X × C)n

comprised of pairs of observations x i and labels yi. The components x( j) of the d-dimensional feature
or observation vector x are either real numbers or they come from an unordered set of cardinality
M( j). In this latter case, without loss of generality, we will assume that x ( j) ∈ I( j) = {1, . . . ,M( j)}.

When the label space C is real-valued (for example, the label represents the mass of a particle),
the problem is known as regression, whereas when the labels come from a finite set of classes (for
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example, C = {signal, background}), we are talking about classification. The quality of g on an
arbitrary pair (x, y) ∈ X × C is measured by an error or loss function L

(
g, (x, y)

)
that depends on the

type of problem. In regression, the goal is to get g(x) as close to y as possible, so the loss grows with
the difference between g(x) and y. The most widely used loss function in this case is the quadratic or
squared loss

L2
(
g, (x, y)

)
=

(
g(x) − y)2

.

In classification, typically there is no distance or similarity defined between the classes, so all we can
measure is whether or not g predicts correctly the class y. The usual loss in this case is the one-loss
or zero-one loss

LI
(
g, (x, y)

)
= I {g(x) � y}, (1)

where the indicator function I {A} is 1 if its argument A is true and 0 otherwise.
The goal of learning algorithms is not to memorize D, rather to generalize from it. Indeed, it is

rather trivial to construct a function g that has zero loss on every sample point (x i, yi) by explicitly
setting g(xi) � yi on all sample points from D, and, say, g(x i) � 0 everywhere else. We obviously
have not learned anything fromD, we have simply memorized it. It is also clear that this function has
very little chance to perform well on points not in the setD (unless 0 is a good prediction everywhere
in which case the problem itself is trivial). To formalize this intuitive notion of generalization, it is
usually assumed that all sample points (including those in D) are independent samples from a fixed
but unknown distributionD, and the goal is to minimize the expected loss (a.k.a., risk or error)

R(g) = E(x,y)∼D
{
L
(
g, (x, y)

)}
,

where E(x,y)∼D {L} denotes the expectation of L with respect to the random variable (x, y) drawn from
the distribution D. When we know D, the optimal function is the one that minimizes the risk, that is,

g∗ = arg min
g

R(g).

With this notation, since the expectation of the indicator of an event is the probability of the event,
the misclassification probability P {g(x) � y} is the risk generated by the one-loss

RI(g) = E(x,y)∼D
{
LI

(
g, (x, y)

)}
= P {g(x) � y}, 1 (2)

and so it can be shown that the optimal classifier (the so-called Bayes classifier) is

g∗
I
(x) = arg max

y
P {y | x}.

In regression, the risk is the expectation of the squared error

R2(g) = E(x,y)∼D
{
(g(x) − y)2

}
,

and it can be shown easily that the optimal regressor is the conditional expectation of y given x, that
is,

g∗2(x) = E {y | x}.
1For denoting the risk generated by a particular loss, we will use the same index: the risk generated by the loss L• will be

denoted by R•.
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In practice, of course, the data distribution D is unknown, and the goal is to get close to the
performance of g∗ by only using the sampleD. As our imaginary example demonstrates it, finding a
function g that minimizes the empirical risk (or training error)

R̂(g) =
1
n

n∑
i=1

L
(
g, (xi, yi)

)
(3)

is not necessarily a good idea. Nevertheless, it turns out that the estimator

ĝ∗ = arg min
g∈G

R̂(g) (4)

can have good properties both in theory and in practice if the function class G is not too “rich” so the
functions in G are not too complex. In fact, the real error R(̂g ∗) of the empirically best classifier ĝ∗ is
usually underestimated by the training error R̂(̂g∗), but the bias can be controlled, and the minimization
(4) can lead to a good solution if the complexity of the function class G is “small” compared to the
number of data points n.

How to control the complexity of G and how to find an optimal function in G computationally
efficiently are the two main subjects of the design of supervised learning algorithms. Finding ĝ ∗ in G
is the subject of algorithmic design. The process is called training or learning, and the data set D on
which R̂(̂g) is minimized is the training set. Of course, onceD is used for finding ĝ ∗, it is tainted from
a statistical point of view: R̂(̂g∗) is no longer an unbiased estimator of R(̂g ∗). Overfitting is the term
that describes the situation when the risk R(̂g∗) is significantly larger than the training error R̂(̂g∗). To
detect and to assess overfitting, ĝ∗ has to be evaluated on a test set D′, independent ofD.

1.1 Parametric fitting and the maximum likelihood method

The main subject of the chapter is non-parametric (model-less) multi-variate classification, and the
setup of Section 1 is designed to formalize the theoretical framework for this approach. Nevertheless,
it is worthy to note that “classical” low-dimensional fitting, be it maximum likelihood or least-square,
also fits into this framework. These methods are treated in other chapters, so here we only sketch them
to illuminate their relationship to the setup of Section 1.

When we know a generative probabilistic model, one of the possibilities of fitting a model is to
maximize the likelihood p(z). This can also be cast into the framework of this section with the usual
loss function

LP(z) = − log p(z),

and with the risk that LP implies
RP(z) = Ez∼D

{− log p(z)
}
.

For example, when the data points z i are triplets (xi, yi, σi) with the generative model of y i ∼
N(
g(xi), σi

)
,2 maximum likelihood reduces to weighted least square (“chi square”), that is,

arg min
g∈G

n∑
i=1

− log p(xi, yi, σi) = arg min
g∈G

n∑
i=1

(
g(xi) − yi)2

σ2
i

.

Although the least-square method is mostly used in parametric fitting when G is a low-complexity
function class parametrized with a few parameters, neural networks and other model-less approaches
can be used also with a (weighted) quadratic loss, and in this case all considerations about overfitting,
complexity regularization, and hyperparameter optimization, usually associated with non-parametric
classification, are also valid.

2N(μ,σ) denotes the normal distribution with mean μ and standard deviation σ.
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2 Complexity regularization (model selection) and hyperparameter
optimization

The simplest way to control the complexity of the function class G is to fix it either explicitly (for
example, by taking the set of all linear functions) or implicitly (for example, by taking the set of all
functions that a neural network with N neurons and one hidden layer can represent). In parametric
fitting, G is a set of functions parametrized with a low number of parameters, and the dimensionality
d of the input space is usually low. Most importantly, the number of parameters is fixed independently
of the size n of the training data set, so the overfitting issue only shows up in goodness-of-fit tests (for
example, in setting the degrees of freedom of the chi-square distribution).

The situation is different in non-parametric fitting. Contrary to what its name suggests, non-
parametric fitting means that we have a lot of parameters. This approach is used when we have little
knowledge about the model that generated the observations, so we want to avoid the bias caused by
fitting a misspecified rigid model. More importantly, we do not want to decide the complexity or the
smoothness of the solution beforehand; we prefer that the data speak for itself.

Formally, we can define a (possibly infinite) set of function classes G θ, parametrized by a vector θ
of the so-called hyperparameters. Hyperparameters can take diverse forms. Most of them are related
to the complexity of the class; the number of neurons in a neural network, the depth of decision
trees, or the number of boosting iterations are typical examples. Other hyperparameters are penalty
coefficients in a framework called complexity regularization [4] or structured risk minimization [9]. In
this setup, instead of finding the empirical minimizer inG, we penalize the complexity of the functions
g ∈ G by an appropriate penalty C(g), and find

ĝ∗β = arg min
g∈G

R̂(g) + βC(g), (5)

where β is a penalty coefficient (a hyperparameter) which has to be tuned. The classical practices of
weight decay or early stopping in neural networks fall in the category of structured risk minimization.
Another typical example is the penalty coefficient (usually denoted by C) in support vector machines.
A third family of hyperparameters are simple “technical” parameters, such as the learning rate in
neural networks, or the number of features x ( j) tested at each cut in a decision tree.

There is a vast literature on how to tune hyperparameters on the training set D itself. This so-
called model selection problem has both Bayesian and frequentist solutions, but most of the time, at
least in model-less non-parametric fitting, optimality results are only valid asymptotically (as training
sample size n → ∞), and so they only provide some ballpark hints in practice. The solution adopted
in practice is called validation. In the simplest setup, we choose ĝ ∗θ by minimizing the training error
in each set Gθ

ĝ∗θ = arg min
g∈Gθ

R̂(g;D), (6)

then we choose the overall best predictor ĝ∗ by minimizing the error on a held-out validation setD′′

ĝ∗ = arg min
ĝ∗θ

R̂(̂g∗θ;D′′),

where we explicitly added D and D′′ as an argument of the error to emphasize that the two mini-
mizations use two different sets. Indeed, D′′ has to be independent of both the training set D and
the eventual test setD′ (used for estimating the performance of the final classifier). This procedure is
known as hyperparameter optimization or hyperparameter tuning in machine learning.

The particularity of hyperparameter optimization is that the evaluation of the function f (θ) =
R̂(̂g∗θ;D′′) is computationally expensive. Indeed, the evaluation of f (θ) requires the optimization of
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ĝθ ∈ Gθ, that is, training ĝθ on D and testing it on D′′, which can take hours or days, depending
on the particular learning algorithm, the data size n, and the data dimensionality d. This feature
relates hyperparameter optimization to experimental design where, say, we want to optimize a handful
parameters of a detector by evaluating its performance using expensive simulations. When the number
of hyperparameters is small (say, not more than 3), the usual procedure is simple grid search: we
discretize the components of θ, and evaluate f (θ) for all members of the discrete set. For example, we
train AdaBoost for T ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10 000} iterations using decision
trees with a number of leaves of N ∈ {2, 3, 5, 10, 20, 50, 100}, and then select the best (T,N) pair out of
the 70 trained functions. When the number of hyperparameters exceeds three, this procedure rapidly
becomes infeasible because the number of grid points blows up exponentially. Simple heuristics, such
as Latin hypercube search, simple random search [10], or gradient search [11] can be applied, but
the principled solution is surrogate optimization: we replace f by a, usually non-parametric, smooth
function which we train iteratively on a sequence of evaluation points

(
θt, f (θt)

)
. In each iteration t, a

surrogate function f̂t(θ) is regressed over the set
{
θt′ , f (θt′ )

}t
t′=1, then a new evaluation point is selected

based on f̂t(θ). Gaussian process regression [12] is one of the most popular concrete choices for the
regression method since it provides not only a regressor but also a conditional distribution p

(
f (θ) | θ),

and so it can be used with probabilistic criteria to select the next evaluation point θ t. The best-known
such criterion is expected improvement. The recent success of deep neural networks [13–15], with
often tens of hyperparameters, generated a surge of papers on the subject [10, 16–19], showing that
the jury is still out on what the best strategy is.

2.1 An example in low-dimensional fitting

To illustrate that overfitting and model selection do not only concern multi-variate classification, we
start by a simple example using Gaussian process (GP) regression [12] on a one-dimensional fitting
problem. The main ingredient of a GP is the kernel function K(x, x ′) that defines the smoothness of
the regressor functions ĝ(x). In this example we use the squared exponential kernel

K(x, x′) = a exp

(
− (x − x′)2

w2

)
,

where a and w are hyperparameters to be tuned. Without going into the details, the GP regression
function is given in the form of

ĝ(x) =
n∑

i=1

αiK(x, xi).

The coefficient vector α = (α1, . . . , αn) is given by

α = (K + Σ)−1y,

where K = [K(xi, x j)]n
i, j=1 is the Gram matrix and y = (y1, . . . , yn) is the label vector. The diagonal

matrix Σ contains either the squared uncertainties σ2
i in the diagonal in case they are known, or a

constant σ2 which becomes a third hyperparameter that has to be tuned along with a and w.
There are both Bayesian and frequentist techniques to find the optimal hyperparameters a, w, and

σ using a single training set D. These methods work well in practice, so validation is not a common
technique in GP regression. Nevertheless, for the sake of illustrating the general technique, we show
on an example how validation works in this case. We generate 50 training and 50 validation points
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(xi, yi) by first drawing xi uniformly from the interval [3, 100], and then drawing y i ∼ N(
g(xi), 0.4

)
,

where
g(x) = sin

(√
x
)

is our target regression function. Figure 1 depicts g(x) in blue, and the training set D in red (the
validation set D′′ is not shown). For the sake of simplicity, we fix a = 10 and σ = 0.4 and only
tune the kernel width w. The role of w is to set the smoothness of the regressor function. We plot
three cases in Figure 1. When w = 10, the estimated regressor ĝ(x) clearly overfits the data: it
follows the training data too closely, achieving a root mean square error (RMSE)

√
R2(g) = 0.33

on the training set. At the same time, on the validation set its RMSE is 0.47, giving a qualitative
indication of overfitting. When w = 80, we are underfitting (oversmoothing) the data. The training
and validation RMSEs are close (0.47 and 0.48, respectively), but they are both suboptimal. At the
optimum w = 40, selected by the validation procedure, we can achieve a 0.39 training RMSE and
a 0.38 validation RMSE. The validation RMSE slightly underestimates the expected RMSE since w
was selected based on this sample, but this “hyper-overfitting” is negligible. In fact it is comparable
to overfitting a single-parameter function in a parametric setup.

Figure 1. Over- and underfitting in non-parametric GP regression. The blue curve is the target regression function
g(x) = sin

(√
x
)
. The red dots are the training set: xi is drawn uniformly from [3, 100], and yi ∼ N(

g(xi), 0.4
)
.

Two of the GP hyperparameters are fixed to a = 10 and σ = 0.4, and the third hyperparamater w is tuned on a
validation set, yielding an optimal value of w = 40.
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3 Convex losses in binary classification

Finding the empirical minimizer ĝ∗ (4), ĝ∗θ (6), or ĝ∗β (5) can be algorithmically challenging even in
relatively “simple” function sets G. For example, finding the linear binary classifier that minimizes
the training error R̂I(g) is NP hard [20].3 One way to make the learning problem tractable is to relax
the minimization of R̂I(g) by defining convex losses that upper bound the one-loss L I

(
g, (x, y)

)
(1).

To formalize this, we need to introduce some notions used in binary classification. Most of the
learning algorithms do not directly output a {±1}-valued classifier g, rather, they learn a real-valued
discriminant function f , and obtain g by thresholding the output of f (x) at 0, that is,

g(x) =

⎧⎪⎪⎨⎪⎪⎩+1 if f (x) > 0,

−1 if f (x) ≤ 0.

Using the real-valued output of the discriminant function, the classifier can be evaluated on a finer
scale by defining the (functional) margin

ρ = ρ
(
f , (x, y)

)
= f (x)y.

With this notation, the misclassification indicator (one-loss) of a discriminant function f on a sample
point (x, y) can be re-defined as a function of the margin ρ by

LI
(
f , (x, y)

)
= LI

(
ρ
(
f , (x, y)

))
= LI(ρ) = I {ρ < 0}.

Besides the sign of ρ that represents the classification error, the magnitude of ρ is also important: it
indicates the confidence or the robustness of the classification. Indeed, the combination of a large ρ
with a Lipschitz-type (slope) penalty on f means that the geometric margin ρ (g) is also large, that is,
x is far from the decision border (defined by the set of points for which f (x) = 0, see Figure 2).

The idea behind large margin classification is to design loss functions that “push” the decision
border away from the training points. The goal is not just to minimize the training zero-one error
RI(g) (2) but also to increase the margin of the correctly classified points. The common feature of
these loss functions is that 1) they penalize larger errors (negative margins) more than smaller ones,
and 2) they keep penalizing even correctly classified points especially if they are close to the decision
border (their margin is close to zero). Formally, one can define smooth convex upper bounds of the
margin-based one-loss LI(ρ), and minimize the corresponding empirical risks instead of the training
error R̂I. The most common losses, depicted in Figure 3, are the exponential loss

Lexp(ρ) = exp(−ρ), (7)

the hinge loss
L1+(ρ) = max(0, 1 − ρ), (8)

and the logistic loss
Llog(ρ) = log2

(
exp(−ρ) + 1

)
. (9)

Given the margin-based loss L•(ρ), the corresponding margin-based empirical risk can be defined as

R̂•( f ) =
1
n

n∑
i=1

L•( f (xi)yi) (10)

3http://en.wikipedia.org/wiki/NP_(complexity)
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Figure 2. Geometric and functional margins. The labels of the red and blue points are y = +1 and y = −1,
respectively. (a) An upper bound ω on the slope w and a functional margin ρ implies a geometric margin (distance
from the point x : f (x) = 0) of ρ(g) > ρ/ω. (b) The discriminant function f (x) and the induced classifier g(x). The
blue point (with label y = −1) is misclassified and the two red points (with label y = +1) are correctly classified,
but the second red point has a larger margin f (x)y indicating that its classification is more robust.

Minimizing the margin-based empirical risks R̂exp( f ), R̂1+( f ) , or R̂log( f ) have both algorithmic
and statistical advantages. First, combining the minimization of these risks with Lipschitz-type penal-
ties4 often leads to convex optimization problems that can be solved with standard algorithms (e.g.,
linear, quadratic, or convex programming). Second, it can also be shown within the complexity reg-
ularization framework that the minimization of these penalized convex risks leads to large margin
classifiers with good generalization properties, confirming the intuitive explanation of the previous
paragraph.

4 Binary classification algorithms

The three most popular binary classification algorithms are the multi-layer perceptron or neural net-
work (NN) [1, 21], the support vector machine (SVM) [9, 22, 23], and AdaBoost [24]. They have
very different origins, and the algorithmic details also make them stand apart, nevertheless, they share
some important concepts, and their practical success is explained, at least qualitatively, by the same
theory on large margin classification.

An important pragmatic similarity is that they all learn generalized linear discriminant functions
of the form

f (x) =
T∑

t=1

α(t)h(t)(x). (11)

In neural networks h(t)(x) is a perceptron, that is, a linear combination of the input features followed
by a sigmoidal nonlinearity σ (such as arctan)

h(t)(x) = σ

⎛⎜⎜⎜⎜⎜⎜⎝w(t)
0 +

d∑
j=1

w(t)
j x( j)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
4often of the form of L1 or L2 penalties on the coefficient vector of a generalized linear model; see Section 4
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Figure 3. Convex margin losses used in binary classification.

where x( j) is the jth component of the d-dimensional input vector x. The output weight vector α =(
α(1), . . . , α(T )) and the T × (d + 1)-dimensional input weight matrix

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
w(1)

0 . . . w(1)
d

...
. . .

...

w(T )
0 . . . w(T )

d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
are learned using gradient descent optimization (called back-propagation in the NN literature). In
the case of binary classification the neural network is usually trained to minimize the logistic loss
(9). One of the advantages of NNs is their versatility: as long as the loss function is differentiable,
it can be plugged into the algorithm. The differentiability condition imposed by the gradient descent
optimization, on the other hand, constrains the loss function and the nonlinearities used in the hidden
units: one could not use, say, a Heaviside-type nonlinearity or the one-loss.

The invention of the multilayer perceptron in 1986 [21] was a technological breakthrough: com-
plex pattern recognition problems (e.g., handwritten character recognition) could suddenly be solved
efficiently using neural networks. At the same time, the theory of machine learning at these early
days was not yet developed to the point of being able to explain the principles behind algorithmic
design. Most of the engineering techniques (such as weight decay or early stopping) were devel-
oped using a trial-and-error approach, and they were theoretically justified only much later within the
complexity regularization and large margin framework [25]. Partly because of the “empirical” nature
of neural network design, a common belief developed about the “user-unfriendliness” of neural net-
works. Added to this reputation was the uneasiness of having a non-convex optimization problem:
back-propagation cannot be guaranteed to converge to a global minimum of the empirical risk. This
is basically a no-issue in practice (especially on today’s large problems), still, it is a common criti-
cism from people who usually have never experimented with neural networks on real problems. As a
consequence, neural networks were slightly over-shadowed in the 90s with the appearance of the sup-
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port vector machine and AdaBoost. Today neural networks are, again, becoming more popular partly
because of user-friendly program packages (e.g., [26]), partly due to the computational efficiency of
the training algorithm (especially its stochastic version), and partly because of the recent success of
unsupervised feature-learning techniques that use deep neural architectures to solve hard computer
vision and language processing problems [13–15].

Support vector machines also learn generalized linear discriminant functions of the form (11) with

h(t)(x) = ytK(xt, x),

where K(x, x′) is a positive semidefinite kernel function that expresses the similarity between two
observations x and x′. K(x, x′) is usually monotonically decreasing with the distance between x and
x′. As in Gaussian process regression (Section 2.1), the most common choice for K is the squared
exponential (a.k.a. Gaussian) kernel. The index t ranges over t = 1, . . . , n which means that each
training point (xt, yt) ∈ D contributes to f a kernel function centered at x t with a sign equal to the
label yt, so the final discriminant function can be interpreted as a weighted nearest neighbor classifier
where the weight comprises of the “similarity term” K(x t, x) and the “importance term” α (t).

The objective of training the SVM is to find the weight vector α =
(
α(1), . . . , α(T )) that minimizes

the hinge loss (8) with a complexity penalty (the L2 loss on the weights of features in the Hilbert
space induced by K(x, x′)). The objective function was explicitly designed based on the theory of
large margin classification to ensure good generalization properties. A great advantage of the setup is
that the objective is a quadratic function of α with linear constraints 0 ≤ α (t) ≤ C (the so-called box
constraints), so the global optimum can be found using quadratic programming. The result is sparse:
only a subset of the training points inD have nonzero coefficients α (t). These points are called support
vectors, giving the name of the method.

The biggest disadvantage of the technique is its training time: naïve quadratic programming
solvers run in super-quadratic time, and even with the most sophisticated tricks it is hard to beat
the O(n2) barrier. The second disadvantage of the method is that in high-dimensional problems the
number of support vectors is comparable to the size of the training set 5, so, when evaluating f at
the test phase is a bottleneck (see Section 6.1), SVMs can be prohibitively slow. Third, unlike neu-
ral networks, SVMs are designed for binary classification, and the generic extensions for multi-class
classification and regression do not reproduce the performance of binary SVM. Despite these disad-
vantages, the appearance of the support vector machine in the middle of the 90s revolutionized the
technology of pattern recognition. Besides its remarkable generalization performance, the small num-
ber of hyperparameters6 and the appearance of turn-key software packages 7 made SVMs the method
of choice for a wide range of applications involving small-to-moderate size training sets. With the
appearance of extra-large training sets in the last decade, training time and optimization became more
important issues than generalization [27], so SVMs lost somewhat their dominant role.

AdaBoost learns a generalized linear discriminant function of the form (11) in an iterative fashion.
It can be considered as constructing a neural network by adding one neuron at a time, but since back-
propagation is no longer applied, there is no differentiability restriction on the base classifiers h (t).
This opens the door to using domain-dependent features, making AdaBoost easy to adapt to a wide
range of applications. The basic binary classification algorithm (Figure 4) consists of elementary steps
that can be implemented by a first year computer science student in an hour. The only tricky step is

5This loss of sparsity is one of the manifestations of the phenomenon known as the curse of dimensionality.
6C in the bound of the αs and a length scale parameter of the kernel function K(x, x′)
7http://svmlight.joachims.org, http://www.csie.ntu.edu.tw/~cjlin/libsvm, http://www.torch.ch, http://www.loria.fr/~lauer/

MSVMpack
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the implementation of the base learner (line 3) whose goal is to return h (t) with a small weighted error

R̂I(h,w) =
1
n

n∑
i=1

wiI {h(xi) � yi},

but most of the simple learning algorithms (e.g., decision trees, linear classifiers) can be easily adapted
to this modified risk. The weights w = (w1, . . . , wn) over the training points are initialized uniformly
(line 1), and then updated in each iteration by a simple and intuitive rule (lines 7-10): if h (t) misclas-
sifies (xi, yi), the weight wi increases (line 8), whereas if h(t) correctly classifies (xi, yi), the weight
wi decreases (line 10). In this way subsequent base classifiers will concentrate on points that were
“missed” by previous base classifiers. The coefficients α(t) are also set analytically to the formula in
line 5 which is monotonically decreasing with respect to the weighted error.

AdaBoost
(D,Base(·, ·), T )

1 w(1) ← (1/n, . . . , 1/n) � initial weights

2 for t← 1 to T

3 h(t) ← Base
(D,w(t)) � base classifier

4 ε(t) ←
n∑

i=1

w(t)
i I

{
h(t)(xi) � yi

}
� weighted error of the base classifier

5 α(t) ← 1
2

ln

(
1 − ε(t)
ε(t)

)
� coefficient of the base classifier

6 for i← 1 to n � re-weighting the training points

7 if h(t)(xi) � yi then � error

8 w(t+1)
i ← w(t)

i

2ε(t) � weight increases

9 else � correct classification

10 w(t+1)
i ← w(t)

i

2(1−ε(t)) � weight decreases

11 return f (T )(·) =
T∑

t=1

α(t)h(t)(·) � weighted “vote” of base classifiers

Figure 4. The pseudocode of binary AdaBoost. D = {
(x1, y1), . . . , (xn, yn)

}
is the training set, Base(·, ·) is the

base learner, and T is the number of iterations.

This simple algorithm has several beautiful mathematical properties. First it can be shown [24]
that if each base classifier h(t) is slightly better than a random guess (that is, every weighted error
ε(t) ≤ 1

2 − δ with δ > 0), then the (unweighted) training error R̂I of the final discriminant function f (T )

becomes zero after at most

T =

⌈
log n
2δ2

⌉
+ 1

steps. The logarithmic dependence of T on the data size n implies that the technique is formally a
boosting algorithm from which the second part of its name derives. 8 Second, it can be shown that

8The algorithm is also Adaptive because the coefficients α(t) depend on the errors ε(t) of the base classifiers h(t).
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the algorithm minimizes the exponential risk R̂exp( f ) (7) using a greedy functional gradient approach
[28, 29]. In this alternative but equivalent formulation, in each iteration h (t) is selected to maximize
the decrease (derivative) of R̂exp

(
f (t−1) + αh(t)) at α = 0, and then α(t) is set to

α(t) = arg min
α

R̂exp
(
f (t−1) + αh(t)).

Furthermore, for inseparable data sets (for which no linear combination of base classifiers achieves
0 training error), the exponential risk R̂exp( f (T )) goes to the minimum achievable exponential risk as
T → ∞ [30]. It can also be proven [31] that for the normalized discriminant function

f̃ (x) =

∑T
t=1 α

(t)h(t)(x)∑T
t=1 α

(t)
,

the margin-based training error

R̂(θ)
I

( f̃ ) =
1
n

n∑
i=1

I

{
f̃ (xi)yi < θ

}

also goes to zero exponentially fast for all θ < ρ̃∗/2, where

ρ̃∗ = max
α̃:

∑T
t=1 |α̃t |=1

min
i

T∑
t=1

α̃(t)h(t)(xi)yi

is the maximum achievable (normalized) minimum margin. This results shows that AdaBoost, sim-
ilarly to the support vector machine, leads to a large margin classifier. It also explains the surprising
experimental observation that the generalization error R I( f ) (estimated on a test set) often decreases
even after the training error R̂I( f ) reaches 0.

AdaBoost arrived to the pattern recognition scene in the late 90s when support vector machines
were in full bloom. AdaBoost has a lot of advantages over its main rival: it is fast (its time complexity
is linear in n and T ), it is an any-time algorithm9, it has few hyperparameters, it is resistant to over-
fitting, and it can be directly extended to multi-class classification [32]. Due to these advantages, it
rapidly became the method of choice of machine learning experts in certain types of problems where
the natural setup is to define a large set of plausible features of which the final solution f (T ) uses only a
few (a so called sparse classifier). Arguably the most famous application is the first face detector run-
ning real-time on 30 frame-per-second video [33]. At the same time, AdaBoost is much less known
among users with no computer science background than the support vector machine. The reason is
paradoxically the simplicity of AdaBoost: since it is so easy to implement with a little background
in programming, no machine learning expert took the effort to provide a turn-key software package
easily usable for non-experts.10 In fact it is not surprising that the only large non-computer-scientist
community in which AdaBoost is much more popular than SVM is experimental physics: physicists,
especially in high energy physics, are heavy computer-users with considerable programming skills. In
the last five years AdaBoost (and other similar ensemble methods) seem to have been taking over the
field of large-scale applications. In recent large-scale challenges [34, 35] the top entries are dominated
by ensemble-based solutions, and SVM is almost non-existent in the most efficient approaches.

Although binary AdaBoost (Figure 4) is indeed simple to implement, multi-class AdaBoost has
some nontrivial tricks. There are several multi-class extensions of the original binary algorithm, and

9It outputs a classifier even if it is stopped before convergence.
10We are attempting to improve the situation with our free multi-class program package available at http://multiboost.org.
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it is not well-known, even among machine learning experts, that the original AdaBoost.M1 and Ad-
aBoost.M2 algorithms [24] are largely suboptimal compared to AdaBoost.MH published a couple of
years later [32].11 On the other hand, the AdaBoost.MH paper [32] did not specify the implementation
details of multi-class base learning, making the implementation non-trivial. For more information on
multi-class AdaBoost.MH we refer the reader to the documentation of MultiBoost, available from
the http://multiboost.org website.

5 Applications

In this section we illustrate the versatility of the abstract supervised learning model described in this
chapter through presenting some of the machine learning applications we have worked on. It turns out
that real-world applications are never so simple as just taking a turn-key implementation out of the
box and running it. To make a system work, one needs both domain expertise and machine learning
expertise, and so it often requires an interdisciplinary approach and considerable communication effort
from experts of different backgrounds. Nevertheless, once the problem is reduced to the abstract setup
described in Section 1, machine learning algorithms can be very efficient.

As the examples will show, classification or regression is only one step in the pattern recognition
pipeline (Figure 5). Data collection is arguably the most costly step in most of the applications. In
particular, harvesting the labels y i usually involves human interaction. How to do this in a cost-
effective way by, for example, using CAPTCHAs to obtain character labels [36] or making people
label images by playing a game [37, 38], is itself a challenging research subject. On the other hand,
in experimental physics simulators can be used to sample from the distribution p(x | y), so in these
applications data collection is usually not an issue.

Preprocessing

Data collection

Postprocessing

Training (learning)

g(x)

D =
{
(x1, �1), . . . , (xn, �n)

}

Figure 5. The pattern recognition pipeline.

The second step of the pipeline is preprocessing the data. There is a wide range of techniques
that can be applied here, usually with the objective of simplifying the supervised learning task. First,
if the observations are not already in a format of a real vector x ∈ R d, features (column vectors
(x( j)

1 , . . . , x
( j)
n ) of the data matrix) should be extracted from the raw data. The goal here is to find

features that are plausibly correlated with the label y, so domain knowledge is almost always necessary

11The commonly used WEKA package (http://www.cs.waikato.ac.nz/ml/weka), for example, only contains a badly written
implementation of AdaBoost.M1, effectively harming the reputation of boosting as a whole.

02001-p.13



EPJ Web of Conferences

to carry out this step. Since learning algorithms usually deteriorate as the dimension of the input x
increases (because of the so called curse of dimensionality), dimensionality reduction is often part of
data preprocessing. Principal component analysis is the basic tool that is usually applied, but nonlinear
manifold algorithms [39, 40] may also be useful if the training set is not too large. The output space
C can also be transformed to massage the original problem into a setup that can be solved by standard
machine learning tools. This can be done in an ad hoc way, but there exist also principled reduction
techniques between machine learning problems (binary/multi-class classification, regression, even
reinforcement learning) [41].

After training, postprocessing the results can also be an important step. If, for example, the origi-
nal complex problem was reduced to an easy-to-solve setup, re-transforming the obtained labels and
even re-calibrating the solution is often a good idea. In well-documented challenges of the last five
years [34, 35, 42] we have also learned that the most competitive results are obtained when divers
models trained using different algorithms are combined, so model aggregation techniques are also
becoming part of the generic machine learning toolbox.

Sometimes it happens that an application poses a specific problem that can not be solved with
existing tools. Solving such a problem and generalizing the solution to make it applicable for similar
problems is one of the motivational engines behind the development of the machine learning domain.

5.1 Music classification, web page ranking, muon counting

In [43] we use AdaBoost for telling apart speech from music. The system starts by constructing the
spectrogram on a set of recorded audio signals which constitute the observation vectors x in this case.
AdaBoost is then run in a feature space inspired by image classification on the spectrogram “images”.
The output y of the system is binary, that is, y ∈ C = {music, speech}. In [44] we stay within the music
classification domain but we tackle a more difficult problem: finding the performing artist and the
genre of a song based on the audio signal of the first [30]s of the song. The first module of the classifier
pipeline is an elaborate signal processor that collects a vector of features for each [2]s segment and
then aggregates them to constitute an observation vector x with about 800 components per song. We
train two systems, one for finding the artist performing the song and another for predicting its genre.
This application also stretches the limits of the classical multi-class (single-label) setup. It is plausible
that a song belongs to several genres leading to a so-called multi-label classification. It may also be
useful to train a unique system for predicting both the artist and the genre at the same time. This
problem is known as multi-task learning.

The multi-variate regression problem can be illustrated by our recent work [45] in which we aim
to predict the number of muons in a signal recorded in a water Cherenkov detector of the Pierre Auger
experiment [46]. The pipeline, again, starts by extracting features that are plausibly correlated with
the muon content of the signal. The 172 features are quite correlated, so first we apply principal
component analysis to reduce the size of the observation vector x to 19. Then we train a neural
network [1, 26] and convert its output into a point estimate and a pointwise error bar (uncertainty) of
the number of muons.

In [47, 48] we use AdaBoost.MH for web page ranking. The input x of the classifier g is a set of
features representing a search query and a document, and the label y represents the relevance of the
document to the query. The goal is to rank the documents in order of their relevance. Of course, if the
relevance of the document is correctly predicted, the implied ranking will also be good. Nevertheless,
it is hard to formally derive a meaningful loss for each (document, query, relevance) triplet from the
particular loss defined on rankings. The solution to this problem is a post-processing technique called
calibration: instead of directly using the output of the classifier g, we send it through another regressor
or ranker which is now trained to minimize the desired risk. Our concrete system also contains another
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postprocessing module called model aggregation: instead of training one classifier g, we train a large
number of classifiers by varying data preprocessing and algorithmic hyperparameters, and combine
the results using a simple weighted voting scheme.

6 Three open research problems

In this section we briefly describe three open research problems that are either relevant to or even
motivated by certain unorthodox applications of multivariate discrimination in experimental physics.

6.1 Trigger design: classification with test-time constraints

One of the recent applications of multivariate discriminants in high-energy physics is trigger design
[49]. The goal of a trigger is to separate signals generated by a phenomenon to be detected or mea-
sured from background, which is an observed event that just happen to look like real signal because
of random fluctuations or due to some uninteresting phenomena. The final goal of the analysis is to
collect a large statistics of observations that, with high probability, were generated by the targeted
phenomenon. Since the background is often several orders of magnitudes more frequent than the
signal, part of the background/signal separation cannot be done offline. Due to either limited disk
capacity or limited bandwidth, most of the raw signal has to be discarded by online triggers.

In the machine learning paradigm, a trigger is just a binary classifier with

C = {signal, background}.
There are several attributes that make the trigger a special binary classifier. First, it is extremely
unbalanced: the probability of background is practically 1 in a lot of cases. This makes the classical
setup of minimizing the error probability R I(g) (2) inadequate: it is very hard to beat the trivial constant
classifier g(x) ≡ background which has an error of R I(g) = P(y = signal). Indeed, the natural gain in
trigger design is the true positive or hit indicator

Gtp
(
g, (x, y)

)
= I {g(x) = signal | y = signal}.

Taking the complement of the true positive indicator

Ltp
(
g, (x, y)

)
= 1 − I {g(x) = signal | y = signal} = I {g(x) = background | y = signal}

as the loss, the implied risk is

Rtp(g) = E(x,y)∼D
{
Ltp

(
g, (x, y)

)}
= P {g(x) = background | y = signal}.

Again, minimizing Rtp(g) is trivial by setting g(x) ≡ signal this time, so the goal is to minimize Rtp (g)
with a constraint that the false positive rate

Rfp(g) = P
(
g(x) = signal | y = background)

is kept below a fixed level pfp. As we mentioned above, in triggers we have P(y = signal) 
 P(y =
background), so the false positive rate Rfp(g) is approximately equal to the unconditional positive rate
P(g(x) = signal). In experimental physics terminology this means that a constraint is imposed on the
trigger rate.

The second attribute that makes trigger design special is that we have strict computational con-
straints imposed on the evaluation of the classifier g on test samples x. Typically, observations x arrive
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at a given rate and g(x) has to be run online. The designer can have some flexibility on the parallel
handling of the incoming events, but computational resources are often limited. In certain cases 12 the
electric consumption may also be limited and harsh conditions may require the use of robust hardware
with low clock-rate.

Trigger design shares these two attributes (unbalanced classes and test-time constraints) with ob-
ject detection in computer vision where machine learning has been applied widely. For example, when
the goal is to detect faces in images, the probability of the signal class (face) is much lower then the
probability of background (everything else). We have also computational constraints at test time if
the goal is to detect faces online in video recordings with given frame rate and the detector hardware
must fit into a compact camera. What makes trigger design slightly more challenging is the sometimes
extremely low signal probability and the fact that the computational cost of each feature (components
of x) can vary in a large range. For example, the LHCb trigger [49, 51] can use “cheap” observables
that can be evaluated fast to rapidly obtain a rough classifier. One can also almost reconstruct the
collision event which can take up a large portion of the allotted time, but the resulting feature can be
used reliably to discard background events.

This example shows why a natural answer to these challenges is to design cascade classifiers both
in experimental physics and in object detection [33, 52–56]. A cascade classifier g(x) is composed of
a list of simpler binary classifiers h1(x), . . . , hN(x) evaluated sequentially. For j < N, if h j(x) classifies
the observation x negatively, the final classification of g(x) is background, and if the output of h j(x) is
positive, the observation is sent to the next ( j+ 1)th stage (or level in the terminology of experimental
physics). The classifier hN(x) at the last stage is the only one that can classify x as a signal. In com-
puter vision, the stage classifiers h j(x) are usually learned using classification algorithms (most often
AdaBoost). Some of the newest detection algorithms also attempt to learn the cascade structure auto-
matically, nevertheless, manual experimentation is usually required to set hyperparameters (stagewise
false positive/false negative rates, computational complexity of stage classifiers h j(x)). In [57], we
present a principled approach that can be used to automatically design test-time constrained classi-
fiers. The automatic design also allows us to go beyond the cascade structure which is, although quite
intuitive, an artificial constraint to keep the classifier structure simple and to accommodate manual
tuning.

6.2 Learning to discover

The main application of multivariate discrimination in high-energy particle physics is, interestingly,
not classification. The goal in these applications is to increase the sensitivity of counting-based sta-
tistical tests [58, 59]. Intuitively, the goal is to find regions of the feature space where the signal is
present or where it is amplified with respect to its average abundance. Once the subregion is found,
we claim the discovery of a novel phenomenon (particle) when the number of events in the region is
significantly higher than that predicted by the pure background hypothesis. The simplest formal goal,
motivated by a Poisson test, is to maximize

G( f ) =
s√
b

(12)

12For example, in JEM EUSO [50], where the detector will be installed on the International Space Station.
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where

s =

n∑
i=1

I { f (xi) = signal ∧ yi = signal}

b =

n∑
i=1

I { f (xi) = signal ∧ yi = background}.

Although G( f ) has the right “flavor”, it does not take into consideration the statistical fluctuations of
the test when s and/or b are small, so other, more sophisticated, approximate criteria have also been
derived [60]. Whereas all these criteria (including (12)) are clearly related to the classical classifica-
tion error RI( f ), the two are not equivalent. A notable difference is that the expectation of G depends
on the sample size n, whereas increasing sample size only decreases the variance of R I. Nevertheless,
the standard practice is to learn a discriminant function f : Rd → R onD using standard classification
methods that minimize the classification error R, and then use G only to optimize a threshold θ which
defines the function gθ by

gθ(x) =

⎧⎪⎪⎨⎪⎪⎩signal if f (x) > θ

background otherwise.

This way of using multivariate discriminants raises several interesting research questions. First, given
a concrete test, what should the training criteria G be? Second, what is the relationship between G
and RI( f )? Finally, how to adapt classical classification algorithms to the given criteria?

6.3 Deep learning for automatic feature construction

Finally let us raise a completely open research question. The current technology of multivariate
discrimination allows us to classify objects that are represented by vectors x =

(
x(1), . . . , x(d)) of

fixed length d. The representation has to be “semantically aligned”, that is, x ( j)
1 must be comparable

to x( j)
2 in two objects x1 and x2. At the same time, raw observation, be it pixels of an image or

electronic channels in a detector event, seldom comes in this form. Today, the process of translating
the raw observation into a semantically aligned vector of features is in the hands of the domain expert.
One of the most important movements of the last decade in machine learning is the development
of a family of techniques for building deep unsupervised neural architectures [13]. The goal is to
construct representations in a mostly non-supervised way that can capture deep invariances in the raw
data. Although the field is rather young, it already had a major impact on natural language processing
[14] and computer vision [15]. Interesting and natural questions are whether these techniques can be
adapted to scientific data, whether the invariances in, say, raw detector data are sufficient to construct
representations that could be useful in the ultimate analysis, and whether automatic or semi-automatic
feature extraction can improve on the manually constructed representations.
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