* universe m\py

Review
Soft Anomalous Dimensions and Resummation
in QCD

Nikolaos Kidonakis
Department of Physics, Kennesaw State University, Kennesaw, GA 30144, USA; nkidonak@kennesaw.edu

check for
Received: 23 August 2020; Accepted: 29 September 2020; Published: 1 October 2020 updates

Abstract: I discuss and review soft anomalous dimensions in QCD that describe soft-gluon threshold
resummation for a wide range of hard-scattering processes. The factorization properties of the cross
section in moment space and renormalization-group evolution are implemented to derive a general
form for differential resummed cross sections. Detailed expressions are given for the soft anomalous
dimensions at one, two, and three loops, including some new results, for a large number of partonic
processes involving top quarks, electroweak bosons, Higgs bosons, and other particles in the standard
model and beyond.
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1. Introduction

This review discusses soft anomalous dimensions that control soft-gluon threshold resummation
in QCD. Resummation follows from factorization properties of the cross section [1-11] and it provides
a formalism for calculating contributions to higher-order corrections that are theoretically important
and numerically significant. These soft-gluon contributions take the form of logarithms of a variable
that is a measure of the available energy for additional radiation in a process.

Beyond leading logarithms, resummation is crucially dependent on the color exchange
in the hard scattering. One-loop calculations of soft anomalous dimensions are necessary to
achieve next-to-leading-logarithm (NLL) accuracy, while two-loop calculations are needed for
next-to-next-to-leading-logarithm (NNLL) accuracy. The current state of the art are three-loop
calculations which are needed for next-to-next-to-next-to-leading-logarithm (N3LL) accuracy.

Soft-gluon resummation is particularly relevant near the partonic threshold and it has been used
for a large number of hard-scattering processes. In fact, soft-gluon resummation is often relevant
even far from the threshold for many standard model (SM) and beyond the standard model (BSM)
processes. There are a vast number of results in the literature that have been provided using various
approaches, schemes, gauges, and definitions. Therefore, in addition to reviewing past results, it is
useful to provide a comprehensive and unified treatment using a common formalism and notation for
all these results. In this review all results are shown using the standard moment-space resummation
formalism in QCD for, in general, differential cross sections in the MS scheme and in Feynman
gauge. The expressions for the resummed cross section are shown in single-particle-inclusive (1PI)
kinematics, but the soft anomalous dimensions are the same in other kinematics choices, such as
pair-invariant-mass (PIM) kinematics.

This paper is meant as a focused review of theoretical work on resummation and as a compendium
of results on soft anomalous dimensions and other quantities in the resummed expressions. It is not a
review of phenomenological papers with applications of resummations; there are many hundreds of
such papers, and a recent review for many processes involving top quarks can be found in reference [12].
Furthermore, this is a review on standard moment-space QCD resummation; it is not a review of related
work using alternative approaches such as soft-collinear effective theory (SCET) or non-relativistic
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QCD (NRQCD). A comparative review of resummation approaches in QCD and SCET was given in
reference [13]. A main goal of this paper is to provide common terminology and notation for the large
number of results in the literature for a large variety of SM and BSM processes, in the hope that it will
be useful in comparing past results and in future applications.

In Section 2 we provide the formalism for soft-gluon resummation based on factorization and
renormalization-group evolution. Section 3 presents fixed-order expansions of resummed cross sections
at next-to-leading order (NLO), next-to-next-to-leading order (NNLO), and next-to-next-to-next-to-
leading order (N®LO). Section 4 has results for one, two, and three loops for the cusp anomalous
dimension for the separate cases of two massive lines, or two massless lines, or one massive and one
massless lines. The soft anomalous dimensions for many processes with trivial color structures are
discussed in Section 5, for high-pt electroweak-boson production and related processes in Section 6,
for single-top production and related processes in Section 7, for top-antitop production and related
processes in Section 8, for jet production and related processes in Section 9, and for several 2 — 3
processes in Section 10. A concluding summary is given in Section 11.

2. Soft-Gluon Resummation

In this section we briefly review the moment-space QCD soft-gluon resummation formalism.
We discuss the factorization and refactorization of the cross section, the renormalization-group
evolution (RGE), the eikonal approximation, soft anomalous dimensions, and the resummed cross
section. For simplicity we discuss 2 — 2 processes but also explain how this generalizes to
2 — n processes [11]. For specificity we choose 1PI kinematics but also discuss modifications for
PIM kinematics.

2.1. Factorization, RGE, and Resummation

The factorized form of the—in general—differential cross section do4p_,1, in hadronic collisions
for the process AB — 12 is

doag12 =), /dxa dxy Paya(Xa, WF) PosB(Xp, HF) A0ap—12(HE, HR) , 1)
ab

where yr is the factorization scale, yp is the renormalization scale, ¢,, 4 (¢p,5) are parton distribution
functions (pdf) for parton a (b) in hadron A (B), and d&,;_,1, is the differential hard-scattering partonic
cross section.

We consider partonic processes ab — 12 with 4-momenta p; + p, — p1 + p2, and define the usual
kinematical variables s = (p, + pp)%, t = (pa — p1)%, and u = (p, — p1)?. In 1PI kinematics we choose,
without loss of generality, particle 1 as the observed particle. We also define the threshold variable
s4 = s+t + u — m? — m3 where the masses 17 and m; can be zero or finite. As we approach partonic
threshold, with vanishing energy for additional radiation, we have s4 — 0. If an additional gluon
with momentum p, is emitted in the final state, then we can equivalently write s4 = (p2 + pg)z —m3,
s0 as pg goes to 0 (i.e., we have a soft gluon), we again see that s4 describes the extra energy in the soft
emission and that s; — 0. We note that we can extend our formulas to the general case of multi-particle
final states, i.e., 2 — n processes [11], by replacing m3 with (p + - - - + pn)? in the expressions.

With the incoming partons a and b arising from hadrons (e.g., protons/antiprotons) A and
B, we define the hadron-level variables S = (pa + pp)%, T = (pa—p1)> U = (pp — p1)%
and Sy = S+ T+ U —m? —m3. By writing p, = x,pa and p, = x,pp, where x, and x, are the
fractions of the momenta carried by, respectively, partons 2 and b in hadrons A and B, we have the
relations s = x,x;S, t = x,T + (1 — x,)m3, and u = x,U + (1 — x,)m?. Using the above relations,
we find that

(t—m3 mt — m3)

S _ s u—mj T R R et SYeY

(u —m3)
g—;—(l—xa)f—(l—xb)
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The last term in the above equation can be ignored near threshold, in the limit x, — 1and x;, — 1,
since it involves the product (1 — x,)(1 — xp).

We next discuss the factorization of the cross section in integral transform space [3,5,8].
We define Laplace transforms (shown with a tilde) of the partonic cross section as
doap—12(N) = fos(d54 /s) e N4/sdg, 15(s4), with transform variable N, and we also define the
transforms of the pdf as $(N) = [, e N(1=%)p(x) dx. We note that under transforms the logarithms of
s4 in the perturbative series produce logarithms of N, and we will show that the latter exponentiate.

We then consider the parton—parton cross section do,;_,1,, which has the same form as Equation (1)
but with incoming partons instead of hadrons [3-8]:

dUab—>12(S4) = /dxu dxy ¢a/u(xa) ¢b/b(xb) d0up—12 (54) ’ 3)

noting that the leading power as s4 — 0 comes entirely from flavor-diagonal distributions ¢,,, and
¢p/p [5,6], and we define its transform as

B 'S dS, _
doap—12(N) :/0 ?46’ NS4/ 4oy 12(Sa) - 4)

Using Equation (2) (without the last term, which vanishes near threshold), we can rewrite the
transform of the parton—parton cross section as

. 1 B B 1 B B s ds B R
dogp12(N) = /0 dxgeNol X“)%/a(xa)/o dxye N1 xb>4>b/b(xb)/0 743 NS /36, 419(54)

= Pasa(Na) Po/p(Np) dGap12(N), ®)

where N, = N(m3 — u)/s and N, = N(m5 —t)/s in 1PI kinematics (while N, = N, = N in the
corresponding formula in PIM kinematics).

Next, we introduce a refactorization of the cross section in terms of new functions H,j_.12, Sap—s12,
Ya/a, Yu/6, J1, and Jo [3-8]. The process-dependent hard function H,j_,1; is purely short-distance,
nonradiative, and infrared safe, and it comprises contributions from the amplitude and its complex
conjugate. The soft function S,;_,1» describes the emission of noncollinear soft gluons and is also
process-dependent. The coupling of soft gluons to the partons in the hard scattering processes is
described by eikonal (Wilson) lines as ordered exponentials of the gauge field. The hard and soft
functions are in general Hermitian matrices in color-exchange space, and the refactorized cross section
involves the trace of their product. The functions ¢, ,, and ¢, differ from the pdf ¢,,, and ¢y, /4,
and they describe the dynamics of collinear emission from the incoming partons [1,3-8]. The functions
J1 and ], describe collinear emission from any final-state massless colored particles, and are absent
otherwise. The refactorized form of the cross section [3,5,6,8] is then

Aoy = /dwa dwy, dwy dwy dws Yo /4 (wa) Yy (wp) J1(w1) J2(w2)

we/s S u—m3 t—m3
Xtr [Hubalz (as(#r)) Sap—s12 ( Z;fﬂ 0 <S4 —l—wa( - 2) +wb( . 2) —ws —wy —w2> (6)

where the ws are dimensionless weights, with w, and wy, for ¢, ,, and 1, /, respectively, w; and w, for
J1 and ], respectively, and wg for S,,_,1>. The argument in the delta function of Equation (6) arises
from the recasting of Equation (2) in terms of the new weights, as

u—m3 —-m3) s
% = _(1_%)(572)_(1_3%)@572)_’_?4
(1 — m3) (t —m3)

= —w, 5 —wy . +wg + w1 +ws. 7)
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xz and wy, # 1 — xp because they refer to different functions

We note that w, # 1 —
After taking a transform of Equation (6), we have

1 1 1
/dwe Netay o (wa /OdwaN”wbllJb/b(wb)/o dwie N1 (w, /0 dwye N2 [, (wy)

W)l

doap—12(N)

1
xtr {Huhau (’Xs(?/‘R))/O dwse™ NS 10 (

Fosa(Na) Foyo(Ny) s (NN tr [HMZ (s (1)) am( Vs )} . (®)

Nup

All N-dependence has now been absorbed into the functions S, ¢, and |
By comparing Equations (5) and (8), we find an expression for the hard-scattering partonic cross

section in transform space:
5 Fa(No) B (Ny) 1 (N) o (N) [ i <\/5 )]
ac, N) = = = tr |H, « S . 9
ab—12(N) Faya(Na) o/ (Np) ab—12 (s (HR)) Sap—12 Nour )
We resum the N-dependence of the soft matrix 5?12 via renormalization-group evolution [3,5]
(10)

b + ~
Sab—12 = Zap—12 Sab—12 Zab—12
, is the bare quantity and Z,,_,1, is a (in general, matrix of) renormalization constant(s)

where 5P b1
Thus, we have the renormalization group equation for S,;_,1,

) Sav—12 = Ty 12 Saps12 — Savs12 Toap 12 (11)

dSap12 ( d d
P et - + ,e -
d,uR ;uRa‘uR ﬁ(gs )ags
€) = —gs€/2+ B(gs) in

where I5 5, .15 is the soft anomalous dimension (matrix), g5 = 47, and B(gs, €)
— € dimensions where B(gs) = pr dgs/dug is the QCD beta function. We can also define the beta

4
function in an alternative form in terms of &, as
(12)

) = s =~ L b (35)"

with g = (11C4 — an) /3[14,15], where C4 = N, with N, the number of colors, and 7« is the number
of light quark flavors, By = 34C% /3 — 2Cpny —10Cans/3 [16-18], where Cr = (NZ —1)/(2N;), and

2857 5 205 1415
po=—; = Cat (CP ~ g CFCa — & CA) ng+ ( Cr+ 54CA> ng (13)
see [19,20]. Additionally, B3 [21] is
150, 653 39,143 68 > 7073 328
Ps = A( 186 53) Ca f< 7**@) CaCrny (M‘? 3>
2102 176 3965 338 176
>+23Can+CA f<ﬁ+ §3) F f(ﬁ*7g3)

JFCACF f (*7 + 7?3
RS

dﬂbcdd';{’cd< 80 , 704 )
9

4288 112
+CaCpn f<243 753) 243Cf‘”f+243CF”fJr Na
dabedgabed /512 1664 dgped gabed 704 512
s (5 - e) e (T Fe) 9
= 1.202056903---, N4 = N2 -1, d%44%d/N, = N2(N? + 36)/24,
= (N* — 6N?2 + 18)/(96N?). The result for B4

where (3 =
dsbedqibed /Ny = N.(N? +6)/48, and dgre?dsbed /N,
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is given by a long expression in reference [22], and for QCD with N, = 3 it has the approximate
numerical value By ~ 537,148 — 186,162 1 + 17567.8 n; — 23128 n} — 1.8425n.

2.2. Eikonal Approximation and Soft Anomalous Dimensions

From Equation (11) we see that the evolution of the soft function is controlled by the soft
anomalous dimension, Ig,,_,12, which is also in general a matrix. In calculating I5,;_,12, we use
the eikonal approximation, where the Feynman rules for diagrams with soft gluon emission simplify.
For example in the emission of a soft gluon with four-momentum k¥ from a quark with final
four-momentum p#, we have the simplification

iy +m)  p

C
p-l-k)z—mz—i-ie%u(p)gsrr,y 2p -k +ie (15)

) .0
= #(p) &T v-k+ie

w(p) (=igsT) 7"
where i is a Dirac spinor, T¢ are the generators of SU(3), and p# = (/s/2)v#, with v* a four-velocity.
Thus, a typical one-loop diagram involving eikonal lines 7 and j is of the form
(=g Y

2/ d"k ol
& | Gn)t (v k+ie) K (v-k+ie)’

(16)

]
is the cusp angle that we will discuss further in Section 4. For massless eikonal lines this expression for
the UV pole simplifies to —(1/¢)(as/ ) In(20; - v;/ , /vajz).
The calculation of I5,;;_.1, requires determining the coefficients of the ultraviolet poles of relevant
eikonal diagrams [3,5,7,23]. The counterterms for S,;_, 1, are the ultraviolet divergent coefficients times
the basis color tensors. If there are m color tensors, then the counterterms are

which contributes a UV pole —(1/¢€)(a;s/7) 6 coth @ where 6 = In[(v; - v; + \/(vl- -0j)% — v'l?-v?-)/ \/Uf-v}z]

m

=1
for the corrections to the color tensor c’ib_’lz, where Z?Ilj_m- denotes the IL matrix element of the
renormalization matrix in Equation (10).
Then iz 5
_ ab—12\ -1 _ Zap512 -1
IﬂSabﬁlZ - (lih’l]i]z) Zﬂbﬁu - ,B(gs/ G)Tgszabﬁuz (18)

is the soft anomalous dimension matrix that controls the evolution of the soft function S,;_,1, via
Equation (11). In dimensional regularization Z,;_,1, has 1/€ poles. When expanding Z,;_,1, in powers
of the strong coupling, its IL matrix element is

22 1
ZiLap—12 = 011 + ;SZ&L;HU +0(ad), (19)

(1)

1
ab—12
we find that I's ;5,15 is given at one loop simply by the negative of the residue of Z;,_,15.

and since Z has a 1/¢€ pole while (g, €) includes a —gse/2 term in dimensional regularization,
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2.3. Resummed cross Section

The resummed differential cross section in transform space is derived from the

renormalization-group evolution of the N-dependent functions in Equation (9), i.e., {/$, ], and of
course S,;_,10. We find [3,5,8,12]

i=a,b

v -
do i (N) = exp { Y. Ei(Ny) } exp {Z 2/}{ an Yisi (Nir‘XS(P‘)):| exp { Y. E(N)
=a, j

_ Vs
xtr {Hubﬁ12 (“s(\/g)) Pexp [/ﬁ N d:rSabelz (o (V))}

~ Vs
xSz (1) ) Pexp [ L mw»] } : 20)

where the symbols P (P) denote path-ordering in the same (reverse) sense as the integration variable y,
and N = Ne"t with 7 the Euler constant.

The first exponential in Equation (20) resums soft and collinear contributions from the incoming
partons [1,2]. We have

/ dz - [./1‘(12)2 d%Ai (as(As)) + D; (ucs((l - z)zs))] , 1)

with A; = Y07 (as /n)”AE"). Here Agl) = C; which is Cr for a quark or antiquark and C4 for a gluon,

AP = CiK/2 where K = C4 (67/18 — {2) — 5n/9 [24] with {o = 72/6, AL is given by [25]
A — ¢ {cz (29465 %g 2453 + 54) + Ceny ( =+ g23>
+Cany (53 + g2~ 1560 - 17?8] @)
where ¢4 = 7#/90, and Al(4) is given by [26,27]
A0 = o[ (B e B Sl e Sl - 320)

143 17,033 11
—i—C%nf (576+ —{3— €5)+CFCAnf (—m *€2+ CS C *€2§3+ Cs)

24,137 361 299 0
2 et Dt el o s
+Cany ( 20,736 648€2 108% " 1 44 1 M?’ + 144§5) +Cen (2592 gts ™ )
923 19 1 ¢
2 7 o9 e 3(__+ . 53
+Cang (20, 736 682t 108§3 54) try ( 648 108)}

dthddabcd dabcddﬂhcd 5
+ﬁ( %+%+12§**C§**C) T (C*é**@) (23)

i

where {5 = 1.036927755 - - -, {g = 7°/945, and where d?bc‘i is A4 for a quark or antiquark and d‘j‘bc‘i
for a gluon, while Ny, is Np = N for a quark or antiquark and N4y = N2 — 1 for a gluon.

Additionally, D; = Y7 (as/ n)”Dl.("), with Dfl) =0, Dl.(z) given by [4]

D =i |ca (~ 55 + gt 30a) +mr (55— 2], @4)
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and Dl@ given by [28]

® [ ( 297,029 6139, 2509 187, 11,
b7 =G {CA< 16,656 648 2 T 216 0 T ag bt T b6 ~ 36

31,313 1837, 155, 23 1711 3 19, 4
+Cany (23 328 648 2 2€3+24€4> +Crny <1728 4 36 4

+n}< 72299+ 02+ 63)}- (25)

We note that our expression for the resummed cross section is for hadron-hadron scattering but
can be easily adapted for hadron-lepton scattering (the sums over 4, b in the first two exponentials
reduce to one term) and lepton-lepton scattering (the sums vanish).

In the second exponential in Equation (20), involving the factorization scale, 7;/; is the
moment-space anomalous dimension of the MS density ¢;/; [29-33], 7;/; = —A;InN; + 7; with

parton anomalous dimensions ; = Y, 4 (as/n)”'yl.(n), where fy,sl) =3Cr/4, ’yél) = Bo/4,

3 3 3 17
W=t (g 36) raea (g e a) o (5 +2) . @9

2 3 C C
W =G (5+30)-m (F+2). @)

Additionally, v, () jg given by [25]

and

29 15 3 29
7573) = (7128 +350 + 53 + C4 Czéa - *C5) +Cpry (_674 Tl §3 + —§4)
17 151 205 211 247
+CFnJ2r ( %‘Fﬁgz_%) +C C (ﬁ_iéé 7@3_754"" €2€3+ €5>
2 [ 1657 281 5 5 167 "
+CrCy ( 7304 ﬁgz @3 64€4 + @5) + CpCany ( 7216€2 *@ ) (28)

The third exponential in Equation (20) describes soft and collinear radiation from the final-state
(f.s.) particles [1,2,6,8]. The exponent vanishes for colorless particles and for massive particles,
ie, E'; = 0in those cases. In the case of hadron production, where a quark or gluon hadronizes into the
observed hadron, then this exponent is the same as the initial-state exponent [10], i.e., E'y(N) = E;(N)
plus the same term in the exponent for the scale dependence. For heavy jets there is a different
expression [6]. For all other cases with final-state massless quarks or gluons—the majority of the cases
studied—the exponent has the expression

N = [LaE 2 [ e 09) 4By (1= 2 + 0y (a1 -2%9) | 9

where B; = Y7 4 (vcs/n)”B](") with Bp(ll) = —3Cr/4 and B( = —Bo/4. Additionally, for B [4] and
2) (cf. [34]), we have

@ _ o 3 57 11, 3 5 0
Bl] _CF (—32+ €2_ €3>+CFCA <—32—12€2+4§3 +CF1/lf E—FZ , (30)

and
BY = (105 3 e "5 e
=Ch < 132 a%%) T aggCans T Crg T g G
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while Bég) and B §3) are given by (cf. [34])
() _ (B _ 2, 17, 9, &b 15 2, (77 17, T G
By = CF( 8 22 B Tty TS ) T (g Tttty
455 199 29 5 5 5599 2831 5 211 5
+ CrCany (ﬁ + Bgz + %(:3 - EQ) +CrCy (74864' ~ 864 O+ §§3 + QQ - §§5>
so (LB B T Lk 15 (L1271 G
+CrCa ( 3T 67@2 ﬂ@ 8 Ca n 8 05 | + Crmy 864 2162 9 (32)
and
299,341 1307, 523 275. (»lz 5
B(3) — 3 ([ _ Iy S et
8 A\ 731004 Tz 2 T e T 9Ty T8
41,453 39 59 25 191 11 ng
Coing | == — =00+ =03+ — CaC — ) - L
Cany (10,368 32T 5% T 48§4) +CaCrny (128 1253) F o4
557 11 7 47 7, %50
2(_ 220 4. 7 2(_* 63 3 =2 62
+CA”f( 1152 " 48%2 36€3> +CF”f< 92" 6) T (1944 7). ©d
For the hard and soft functions we use the expansions Hy_,10 = Yoo o(adt"/7") HLSZLH,
where d is the power of ws in the leading-order cross section and it depends on the process,
and Sy 12 = Ygpeolas/m)" SE;Z)—nz' At lowest order, the soft matrix is given in terms of the
color tensor basis by the expression S(LOI)ab Lp = tr (cf“b_’uc‘}b_’u), while the hard matrix is real
: (0) () (0)« 1 7,(0) — (g0 -1 b—12 3 1(0)
a?)‘)i Symmetrlcf(ol)iuabalz = }éé)abﬁlzhlabalz Wlth(él)Labﬁlz = (SiKap—12) tr(cK 5" My ,y,) and
* _ . .
B ops1n = tr(Mﬂlezc?(b_)u)(SKI”leZ) ! where M,;’ ., is the lowest-order amplitude.
For the soft anomalous dimension we use the expansion Is., .10 = Yoo q(as/ n)”l”s(sg 1o

In the past, through the year 2008, most expressions for soft anomalous dimensions in the literature
were given at one loop in axial gauge, while since 2009 most were given in Feynman gauge. The relation

between the two s EU8 — P+ (1/2)(0) 1 A0+ 1, D] Ofcourse,the overall

result for the resummed cross section is gauge-independent, and this is easily seen at one-loop from
the fact that in axial gauge D i(l) axial
gauge in the soft anomalous dimension.

We also note that in general we can disregard imaginary iz terms in the soft anomalous
dimensions since such terms generally do not contribute. Of course, in cases with simple color
flow when we only have functions—not matrices—it is clear from Equation (20) that any imaginary

terms in I5,;_,1o cancel out against imaginary terms in its Hermitian adjoint in the resummed cross

—Afl), which precisely cancels the extra terms from change of

section. Such terms also routinely cancel and do not contribute in fixed-order expansions even when
we have processes that require matrices. Therefore, in the results in Sections 5 through 10 we will drop
any i7r terms for simplicity.

In addition, we note that one can perform resummation in other schemes such as the DIS scheme
(see, e.g., references [3,5,35] for the relation between the resummed expressions for the cross section in
MS and DIS schemes). The expressions for the soft anomalous dimensions, however, remain the same.

When all external eikonal lines in the scattering process are massless, then the two-loop soft
anomalous dimension matrix is proportional to the one-loop result [9]. Furthermore, three-parton
correlations with massless eikonal lines do not contribute to the soft anomalous dimension at any
order due to scaling symmetry constraints [36,37]. However, at three loops for the soft anomalous
dimension in massless multi-leg scattering there are contributions from four-parton correlations [38].

When there are massive eikonal lines then the soft anomalous dimension at two or more loops is
no longer proportional to the one-loop result [23]. Also, when two of the eikonal lines in the scattering
process are massive, then the three-parton correlations no longer vanish; however, three-parton
correlations still vanish when only one of the eikonal lines is massive.
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3. NLO, NNLO, and N3LO Expansions of the Resummed Cross Section

In this section we expand the resummed cross section to NLO, NNLO, and N3LO,
using Equations (20), (21), and (29) (see also [35,39]). Our expansions can be used for a variety
of processes, but with the restrictions noted for the use of Equation (29) in the previous section.

The corrections take the form of plus distributions

Dy (s4) = [lnk(&l/s)] , (34)
+

54

defined by

S4max k S4max k

[ s s [h‘fj/s)] -k sy ) (o) - £0)) + b (B2) 0), @9)
where f is a smooth function, such as a pdf. Of course the above distributions, involving logarithms of
s4/s, can readily be reexpressed in terms of logarithms of s4/ M? for any hard scale M relevant to the
process considered [35,39].

We note that the expressions can be simplified [35] for the cases of simple color structure where
the soft anomalous dimensions are not matrices, as we will discuss in more detail below. We also note
that we can extend the formulas for the fixed-order expansions to the general case of multi-particle
final states, i.e., 2 — 1 processes [11], by replacing m3 by (p2 + - - - + pu)? in the formulas.

3.1. NLO Soft-Gluon Corrections

The NLO soft-gluon corrections are

A o
dUa%LlZ = Filn @ [c3 D1(s4) + c2 Do(s4) + c10(s4)]
pd+1
+ % [Aab—-12 Do(s4) + Tap—126(s4)] , (36)
LO  _ ,d 0) (0 . -
where F;~ ., = agtr (H," .S, . 1, ) denotes the leading-order (LO) coefficient,
a=24"+al) - ¥ Al (37)
j=fs.q,8

and c; is given by c; = cg + T, with
1 1 HE
= —(AM + AY)n e (38)
denoting the terms involving logarithms of the scale, and

2 _ 2 _
T,= 24" In (mZS ”) —24W In (mzs t) +oi+o’+ ¥ (B +DM) @9
j=ts.q.8

denoting the scale-independent terms. Additionally,

— ©) pMt 0 0 g0 p)
Agp—12 = tr (Hah—>12 Is 12 Sap—s12 + Haps12 Saps12 I ah—>12) : (40)
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For the cases with simple color structure where the soft anomalous dimension is not a

matrix, we have a9A,_,1, = ZReI"S(;Z _}121:‘%%12, and thus this term can be added to the term cy,

thus simplifying the expressions at NLO and higher orders [35].
The 6(s4) terms involve a term ¢; that is proportional to the Born cross section, and a term T, .15
that, in general, is not. We write ¢c; = cﬁl + T1, with

2 2 2 2
(1) my; —u (1) my —t NOBINC P Bo, [ Hr
Al 1n< - )+Ab ln< . > 'yb] <S>+d4ln<s> (41)

denoting the terms involving logarithms of the scale. Additionally,

2 _ 2 _ 2 _ 2 _
Ti= AV 2 (P20} 402 (P28 pmg (M2 H) g (MRTE) (g
s b s s b s

and

c, =

_ (0) 1) 1) (0)
Topsy =tr (H b-12 2ab12 T Hapls1o Sabalz) : (43)

We note that T,;,_,1, can also be determined via a comparison to a complete NLO calculation.

3.2. NNLO Soft-Gluon Corrections

The NNLO soft-gluon corrections are

2 1 3
a0y 1y = FunglzaszZR) 5B Da(sa) + | 5302 = @63+ ﬁo Y A Dy(s4)
] fs.q.8
+ e+ E—d - ﬁOTeri In <”R> +24% + 4P+ ¥ ( AP + ﬁo ) ) D1 (s4)
j=ts.q8
> Bo. | Bo R @), (m5—u @, (m5—t
+ |coc1 — Coczer + €3C3 T1 + C2 In e —2A;, In —5 | ZAb In v
2 2
+D + D 50( 4+ Ay In? <”SF> (AP + AP)In (”:)
@ , p®@
+ 4 Do(s4)
L (57+07)
d+2 3
+ H(VR) {EC3Aub~>12 Dy (sq) + {(262 - %) Agps12 +3Tap10 + FabalZ} D1 (s4)
Bo @
+ —Gacs+ - In | = Agp—s12 +2Tap12 + Gap12 | Dolsa) ¢ s (44)
where
_ (0) Mt )2 ¢ HO O M )2
Faps12 = tr [Habelz (IﬂSahelZ) Sab—12 T Hap 512 Sap12 (IﬁSabelZ)
(0) (1)t (0) (1)
+2 Hah—>12 1-|Szzh—>12 Sab—>12 rSab—)lZ} (45)
and

_ 1) Mt (0 1) (0) 1)
Gaps12 = tr [Habalz L5 ab—12 Saps12 T Haps1o Saps12 I ap 1o

(0) (1)t (1) (0) 1 (1)
+ Hab—>12 rSab—>12 Sub—>12 + Hab—>12 Sah—>12 I-|Szzb—>12

LHO @t O 0 0 @)

ab—12 “Sab—12 “ab—12 ab—12 “ab—12 Sah%lz} . (46)
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3.3. N3LO Soft-Gluon Corrections

The N3LO soft-gluon corrections are

5 5
gf»%cz 03/30+4863/30 Y A ' Da(sa)

3
(3) 0 %(pR) 1 3
doy’ v = Bl Sna §0395(S4)+
j= fsqg

Jr

1 2 2
636% + EC%(Zl §2C3 + 'fgq, — 7,3063C2 + ﬁO 2 (ZR) 'BO (A JrA( >) In (,usp)

+25 (4P +4)+ ¥ < BO A _ ;a2 ﬁo 6A! +cﬁ° ) Ds(s4)

. 1677 J 4
j=fs.q.g

3 1 5 3
+ |:§ 3001+ EC% —30 C% Ccy + §€3 Cg — %C:;Cl + Z,B()Czt?% — % (3C2 — ﬁo) T

2
+ %CCJ, (6c2 — Bo) In <'uSR) + (3¢c2 — Bo) ( -I—A( )) <A1<11 ) :Bl

3. | Bo ), (M2 @ (M2t

2 2
~ D) - D — B (44 )i (ﬂ) + (A% + 49) 1n (ﬂ)]

(2)
3 @ _ @, Bo, 4 AT Bo L)
- 3% Y (fBj — D7+ 0A ) 43 Y - +%5
j=fs.q,8 j=fs.q,8
2 2
OB, (F) L 3B ,@ _ 36550 ﬁo
+.72 (Aj 16ln< S >+ 1 Aj 163 32 ] Vg, + D (s4)
j=ts.q8
+ O (D1(s4))}
D(d+3 5
+ SH# {g 3 Agp—s12 Da(s4)
1,
+ 53Tz + | 20302 = 8 Bo c3 + — Z A Agp—12 + 3 Fp1z | Da(s4)
J fs. 'ag

3 3 3 1

+ [(2 c3cp — Fo 70 + = Z A ) ab—12F 5 €2 Fips12+ 5 53 Gaps12 + 5 > Kap—12

J fs.q8
3 3 3
+<2C361+2C%3§2C%4ﬁ (C2+T2)+ ﬁ0C3ln<S > ﬁO
3
+3aP 4347 4> ¥ (—A§2>+TB}1>)) Agpsz | Dalsa)
j=ts.q.g
+ O (D1(s4))} (47)
where
_ (0) (Dt (0) (0) (0) (1) 3
Kaps12 = tr [Hab—>12 (Gaps12)° Sapsiz + Haploto Savsi T aps12)

1)t 0 1 1)t 0 1
+3 ngb)ﬁu (qu(al))HlZ)z SibLlZ FS(al)J%H +3H ébLlZ 1?9(11;%12 SEbLlZ (FS(al)J%lZ)z} ’ (48)

and where we have omitted terms of order D and Dy (see also reference [39]).
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4. Cusp Anomalous Dimension

The cusp anomalous dimension [23,40-45], involving two eikonal lines, is the simplest
soft anomalous dimension, and it is an essential ingredient for all calculations of soft
anomalous dimensions.

The cusp angle 6 was introduced in Section 2.2, and it is given by

pi-pj++/(pi-p)* — PP} v; - 0j+ /(0 0))? — 070}
6—In [ — T o [ COr T (49)
Neda v of

or equivalently § = cosh™(p; - p;/ pip;) = cosh™!(v; - v;/, [v20?), where p!' = (,/s/2)0! and
p]P-l = (\/s/ Z)U? , where vf‘ and vjp.l are four-velocities.
The perturbative series for the cusp anomalous dimension in QCD is written as

1—‘cusp = ,; (IXT_;)” rgﬁgp (50)

where a; is the strong coupling.
The cusp anomalous dimension at one loop [40] is given by

Ty = Cr(Bcothd —1) . (1)

The cusp anomalous dimension at two loops [23,43] is given by

Tk = Ko Ty +C@ (52)
where C(2) = CFCACI(Z), with [23]
3
@ 2 67 1 2, 0 Y
C 2+2+2 2coth9{§29+9 +3+L12<1 e )
[ 6 (20 (20
+ 5 coth® 6 {—§3+§26+3+9L12 (e )+L13 (e ) ) (53)
and where 7 ¢ 5
_ 20 %2y _ 2.
Ko =Ca (36 2 ) 18" (54)

ie, Ky =K/2=AP/c;.
The cusp anomalous dimension at three loops [44,45] is given by

Tiikp = Ka Thidp + 2Kz Ty — Ko Tk ) + € = Ko TRl +2K¢CP €0, (55)

2
245 209 5 7 n
k=G (G0 - St bt gh) +Conp (5 + S) rcuny (i + - 02) 1y )

ie, K3 = Az@/ C;, and C® has a long expression which can be found in Equation (2.13) of
reference [45].
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4.1. Case with Two Massive Eikonal Lines

We now give explicit expressions for the cusp anomalous dimension at one, two, and three loops,
when both eikonal lines represent massive quarks that have the same mass m (at the end of this
subsection we will also consider two different masses). This is clearly applicable to the production
of a heavy quark-antiquark pair. Here v; - v; =1+ p? and v? = ZJJZ =1— B, where B = V1 —4m?/s
is the speed of the massive quarks, and the cusp angle has the explicit form 6 = In[(1+ )/ (1 — B)];
also, we have p = tanh(6/2).

We note that coth @ = (1 + p2)/(28), and we define

_(1+p), (1-8
Lg = % ln(1+ﬂ>. (57)

The cusp anomalous dimension at one loop is given by

T8 = —Cp (Ly+1) (58)

where we have added a superscript B to indicate that the cusp anomalous dimension is here given in
terms of B, with both eikonal lines having mass .
The cusp anomalous dimension at two loops is given by

88 — K T8 + P @ (59)

where CP(2) = CFCAC,(Z), with [23]

p

c? = E+%+§1n2 (5)
(1 I/F) JIn ( )
- Z/g)z { el (

: (1) (1) 0]
— _ _ 2
+ﬁ) 3 <1+£>_ln(1+g>m<8+/ﬁ3;2>
()

The cusp anomalous dimension at three loops is given by

+

e = KaThiy +2K; (TAE) — Ko TE)) +CPO) = Ko TEG + 2K, P @ - CPB), - 61)
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where CF(3) = CpC2 c'(3) with

cy = %*%**QJr 1(1+§)7}11n2(%)+%1n(
-B
+p

og) - (i5)

3 () () ) (1580) 1 (35
P T (£ u() (w5
(35 1) 2o o
1

( 2
(2 (580) - ) - (120
() () - 3 () Sn(520))
A Y de Go Fe)n () (5 o) (1)
s2aw (158) -t (158) + o (155)

p
o (e [@ﬁéﬂn(i%ﬁ) -€21n2<11ﬁ)

1
His ((1 iﬁﬁﬁ)
(1 _ R)2 _ _a2\2
v5) (g v (T ) s (i2p ) v ()
_pB)2 _n\2
arpe) () -2 ()|

) — B(0)} (62)

_ { ) -
3w (1) () e (55
i )2 4ﬁ 1

(
o ()} ©3
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where A(0) = 2 and explicit expressions for the harmonic polylogarithms [46] Hj 1001 and Hj 01,01
can be found in the Appendix of reference [45], and

B(B) = a ;ﬁﬁz) {—2€2C3 +2¢3In? (1;@) + FQ — %1114 (% } ln(
<[ (155) - ot (155 [ (557) 420 e (555 + 1 (+75)
-5 (1) [oe (1) v (55|~ () 1o (15) -1 (557)
) (158 o () e (2

+4 [H1,0,1,0,0 (%) +H 101,00 (%) — Hi0,-1,00 (%) —H 10,100 (%)} }, (64)

where B(0) = 3(3/2 and explicit expressions for the harmonic polylogarithms, Hy 10,0, H-1,0,1,0,0,
Hip —1,0,0,and H_19 100 can be found in the Appendix of reference [45].

The limit of the n-loop cusp anomalous dimension as f3 goes to 1, or equivalently as m? /s — 0,
can be written as

2
8 B2 Ko Cr ln< - ) + Ry (65)

where we define K, = Af") /Ci (and thus K; = 1), and the terms R;, at one, two, and three loops are
given, respectively, by Ry = —K1Cp, R, = —KyCr + (1/2)CrCxs(1 — {3), and

1 3 9
Rz = —K3Cr + KoCpCa(1 — g3) + CrCh (- + 5 - é nEh 855) . (66)
Finally, we consider the case when the two lines have different masses, 17 and 5. In that case,
e define (1+Fifa) (1= P11 o)
+ B1B2 ( —B1)(1— B2 >
L = In , 67
P8 = 2B+ ) " \ (T B1) 1+ Ba) 7
1/2 1/2
where 1 = (1 — __dmjs and fp = (1— _dmps and the cusp anomalous dimension
1 (s+m%—m%)2 2 (s+m§—m§)2 ’ P
at one loop is then given by
Cﬁlllf}% W= —Cr (Lﬁlﬁz + 1) : (68)

4.2. Case with One Massless and One Massive Eikonal Line

We take the eikonal line i to represent a massive quark of mass m;, and the eikonal line j to
represent a massless quark. To find the expressions for this case, we take the limit of the massive
expression as the mass of eikonal line j goes to zero, taking into account the self energies. We note that

in this limit 6 = In[2p; - p;/ (m; \/;7]2 )]. At one loop, the heavy quark self-energy is -Cr /2, so removing
it adds Cg/2, and then we add the massless contribution Cr In \/m The overall change in the
self-energy contributions relative to the fully massive case is thus Cr/2 + Crln \/%, which equals
—R1/2+Crln \/%, where R; was defined in the previous subsection. Thus, we find at one loop
) — [m <M> _ 1] , (69)
mi\/s 2

where we have added a superscript m; to indicate that only eikonal line i has a mass.
At two loops, the heavy-quark self-energy is —(K/2)Cr + CpCa(l — 02)/4,
so again we remove it and then add the contribution for the massless eikonal line,
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which is CrKjIn, /p}z/ s — CpCa(lo — 3)/4. The total additional contribution is thus
(K2/2)Cp — CpCa(1 —3)/4+ CpKzIn | /p]z/s, which equals —Ry/2 + CpKj In | /pjz-/s, where R, was
defined in the previous subsection. Thus, we find the two-loop result

. ; 1
[y = Ko Telsp) + 7CeCa(1—3). (70)

We note that this can be rewritten as Fﬁ{s(g) = KCpIn(2p; - pj/ (mi/5)) + Ra /2.
At three loops, again removing the heavy-quark self-energy and adding the massless contribution,
we find a total additional contribution of —R3/2 4+ C¢K31n ,/ pjz/ s, where R3 was defined in the

previous subsection in Equation (66). Thus, we find the three-loop result

. , 1 1 3 3 9
[eiy) = KaTelap) + 5KaCrCa(l—83) + CrCh (—4 +35-8 Snn g 1655) N4

We note that this can be rewritten as 1"2'35(;) = K3CpIn(2p; - pj/ (mi\/5)) + R3/2.
We also note that in general the #n-loop result can be written as

Tl — K, CrIn(2p; - pj/ (miy/5)) + Ra /2.

4.3. Case with Two Massless Eikonal Lines

In the case where both eikonal lines are massless, 6 = In(2p; - p;/ p? pjz-), and again removing the
heavy-quark self-energies and adding the massless contributions, we find the lightlike cusp anomalous
dimension as )
pi- P N
Tiip ™ = Cr In (ZS ’) > (%) K (72)

n=1 T

5. I5 for Some Processes with Trivial Color Structure

The soft anomalous dimension vanishes to all orders for many processes with trivial color
structure, with no colored particles in the final state. Some well-known processes of this type are
the Drell-Yan processes q§ — 7*, q§ — Z; W-boson production via g4 — W=*; Higgs production
via bb — H and ¢¢ — H; production of electroweak boson pairs q§ — 77y, 9] — ZZ,q§ — WTW—,
97 — vZ; g — W*+; g7’ — W*Z; and charged Higgs production via bb — H-W™*,bb — HYH~,
¢¢— H™H™.

The soft anomalous dimension for deep-inelastic-scattering (DIS) Ig — Iq with underlying process
gv* — qis given at one, two, and three loops by

1 2 3
Ly = Celn(=t/s), T2 . =KCrln(~t/s), T, . =KCrln(~t/s),  (73)
respectively.

6. I5 for Large-pr W Production and Related Processes

We next consider processes with a W-boson or a Z-boson or a Higgs boson produced at large-pr,
as well as direct-photon production and related processes. For these processes there is only a single
color tensor, coupling the two quarks (or quark and antiquark) to the gluon in an octet state. Thus the
soft anomalous dimension is a simple function, not a matrix.
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The soft anomalous dimensions for the processes g¢ — W*gq’ and q¢ — Zq and q¢ — vq and
bg — Hb, are all identical. Using W production at large p as the specific process, the soft anomalous
dimension is given at one loop by [8,35,47]

S “HY L Can (!t
g =crn(5) + 510 (). o
at two-loops by [47]
(2) — (1)
qug%Wq’ =Kz qugHWq’ ’ (75)
and at three loops by
(3) — (1)
Iﬂng—>Wq’ =K I;qg—>Wq’ : (76)

For q§ — W*g or qj — Zg or g7 — g or bb — Hg, the corresponding results are

r®  _Cap (fu> @ _gr® NE)

_ k.
Sqi =Wg — 2 52 Sqf —-Wg Sqi —-Wg’ Sqi -Wg — 3

Sqi —-Wg " (77)
We also note that the soft anomalous dimensions for the reverse processes yq — qg and vg — 44
are the same as for the corresponding processes above.

7. Is for Single-Top Production and Related Processes

We continue with various single-top production processes. They include s-channel, t-channel,
and tW~ production, and various related FCNC single-top processes.

7.1. s-Channel Single-Top Production

Soft anomalous dimensions for s-channel single-top production were calculated at one loop in
references [12,48,49], at two loops in [49,50], and at three loops in [50].

The partonic processes are g7’ — tb. In this channel we have 2 — 2 processes at lowest order that
involve a final-state top quark and a final-state massless quark. Thus, we have four colored particles
involved in the scattering, one of which is massive.

The color structure of the hard scattering in s-channel single-top production is more complicated
and thus the soft anomalous dimension is a 2 X 2 matrix in color space. We choose a singlet-octet
s-channel color basis, c‘lqutb = 6,012 and ng’atb =T, Tt

The four matrix elements of the s-channel soft anomalous dimension matrix, Ig p
one loop by

7' —tbs are given at

2 2
1) s—mi\ 1| 1) _ Cr t(t —mi)
I qq7'—tb Cr [ln ( me/s ) 2} ’ 112417’%“_’7 2N, In (u(u —m?)
1)

Ca s —m? 1 t(t — m?)
L), .= (Ck—-2L)|1 L) -2 42In| ——EL
2247 —tb ( ) > {n<mt\/§> 2+ n(u(u—m%)

where m; is the top-quark mass.
At two loops, we have

(2) _ (1) 1 (2) _ (1)
I_il qq —th Kz 111 qq' —tb T ZCFCA(l —Ga), 1121717’—)1‘5 =K Iiqu/—ﬂl_J ’
(2) _ (1) (2) _ e 1
I121 g7 —tb Kk, Iﬂ21 qq —tb’ FZZ qq —tb Kz IﬂZqu’%tl} + ECPCA(l —G3)- (79)
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At three loops, only the first element of the soft anomalous dimension matrix is needed to calculate
the N®LO soft-gluon corrections, because only the first element of the leading-order hard matrix is
nonzero. We have

(3) _ 1) 1 > 1 3 (3 3 9
Lgr—m = K Ly gy T 5K2CrCa(l = 3) + CpCy (—4 tgle— g —ghlstels) .  (80)
Furthermore, up to unknown contributions from four-parton correlations, I (%) - should have

22 g’ —tb
the same form as Equation (80) (just replace the 11 subscripts by 22), and the two off-diagonal elements

at three loops should have a similar form to Equation (79) (replace K; by K3).

7.2. t-Channel Single-Top Production

Soft anomalous dimensions for t-channel single-top production were calculated at one loop in
references [12,48,51], at two loops in [50,51], and at three loops in [50].

The partonic processes are bg — tq'. The color structure of the hard scattering in t-channel
single-top production is again complicated, and the soft anomalous dimension is a 2 x 2 matrix in
color space. We choose a singlet-octet t-channel color basis, clqu s a19p2 and ¢, b=t =11, T3,

The four matrix elements of the t-channel soft anomalous dimension matrix I’S bg—stq’ are given at
one loop by

) B t(t —m?) 1 Cr u(u—m?) ) _ u(u —m?)
Iil bg—tq" Cr |: ( 53/2 ’ 12 bq%tq 2N, In S(S _ m2) ’ r21 bg—tq' ™ In S(S _ m%) ’
t

t

1) B ~Ca (t—m)\ 1 u(u —m?) Ca u(u —m?) 1
labq_)tq/ = (CF > ) {l (mt53/2 2Jr21 75(5_711%) + > In e 5|

(81)
At two loops, our calculation gives
@) _ (1) 1 @  _ W
111 bg—tq T K 111 bg—tq’ + ZCFCA(l - €3) ’ r12 bg—tq Ky 112 bg—tq"’
(2) _ 1) (2) _ (1)
L bg—ty T KL bg—tq' r2hq—>tq’ =KL, bg—tq' + ZCPCA(l —03). (82)

At three loops, only the first element of the soft anomalous dimension matrix is needed to calculate
the N®LO soft-gluon corrections, as for the s-channel. We find

®  _r.r® 1 2 (1 3, G
D bgotg = K Dypgory T 5K2CrCa(l = C3) + CpCy <—4 tgle—35 -

3 9

- — . 83

gbals + 16@5) (83)
Furthermore, up to unknown contributions from four-parton correlations, 1’2(23217 ot should have

the same form as Equation (83) (just replace the 11 subscripts by 22), and the two off-diagonal elements

at three loops should be of similar form to Equation (82) (replace K; by K3).

7.3. bg — tW~ and Related Processes

We next present the soft anomalous dimension for the associated production of a top quark with
a W-boson via bg — tW~ which is known at one-loop [35,48], two loops [52], and three loops [50].
The soft anomalous dimension for tW production is identical to that for other related processes in
models of new physics, such as the associated production of a top quark with a charged Higgs boson
via bg — tH™ in two-Higgs-doublet models, and flavor-changing-neutral-current (FCNC) processes
that proceed via anomalous top-quark couplings, such qg — tZ (or tZ') and qg — t7y (see [12] for a
review). In all these cases we have 2 — 2 processes at lowest order that involve a final-state top quark
and a final-state boson.
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The soft anomalous dimension at one-loop for bg — tW~ (and all other processes in this set) is

given by
2 2
(1) B my —t B 1 Ca U — my
rébg—)tW o CF |:1n ( mt\/§ ) 2 + 2 In t— m% ’ (84)

The two-loop result is given by

2 1 1
rs(b;—nw =K rs(h;—nw - ZCFCA(l —3)- (85)
The three-loop result is
3 1 1 1 3 {z 3 9
FS(bL)gatW = K3 rs(bzﬁtw + 5 KCrCa(1 = G3) + CrCs <—4 +tgla— g ~ghlt 1655) . (86)

7.4. FCNC ue — te

For the FCNC process ue — te, which proceeds via anomalous t-g-y and t-g-Z couplings,

we have [35,53,54]
2
1) _ ms —t 1
IﬂSu(z%te - CF |:11’1 ( mi\ﬁ) - 2] . (87)

The two-loop result is given by

2 1 1
rS(u)e—>te =Kz rS(u)e—>te + ZCFCA(l —{3) (88)
and the three-loop result by
3 1 1 1 3 iz 3 9
2 L =Kr) 4 5KaCrCa(1 = 0a) + CrCj (—4 b5 —ghbt 1665) )

7.5. FCNC tg Production

We next consider tg production via an anomalous t-g-g coupling [55]. For the partonic process
gu — tg we choose the color basis cfu_"g = 0p10a2, c§u_)tg = d"TS,, cgu_”g = if2°T¢,. Then the

one-loop soft anomalous dimension is

(1) (1)
) Iilgu%tg ( )O l—i(?a u—tg
1 1 1
1ﬂSguat‘g = 0 r22 u—tg r23 u—tg (90)
1"(1) 1"(1 1—~(1§
3lgu—tg “32gu—tg  22gu—tg
where [55]
(1) m? —u 1 —u
Iilgu—)tg = Cr|In — 5 Cyqln <)
Mg (M=) o _ (N2-4) (t(t—m})
re:lgu—ﬂg = In (s(s _ m%) ’ IE’:Zgblﬂtg ~ 4N, In s(s — m%) ’
2 2 2 2
(1) _ mi—u\ 1 Ca tu=(s — mg) (t — my)
r22gu—>tg = Cr |:11’1( s ) 2] + 1 ln( (0 s ,

o CAln<f<f—m§>)), £ 11n(“’*"”2;). o1)
t

s(s—m 13gu—>tg: 2
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For the two-loop soft anomalous dimension matrix, as for s-channel and f-channel single-top
production in the previous subsections, the two-loop matrix elements are given by K, times the
corresponding one-loop elements, with an additional term CrC4 (1 — {3)/4 in the diagonal elements.

8. I for tf Production and Related Processes

In this section we discuss the soft anomalous dimension matrices for top-antitop pair production,
which of course are the same for bottom quark or charm quark production, and related processes such
as DIS heavy-quark production, FCNC ¢t production, and squark and gluino production.

8.1. tf Production in Hadronic Collisions

The top-antitop pair production partonic processes at lowest order are g7 — tf and gg — tf.
Next, we present the one-loop and two-loop results for the soft anomalous matrices for these partonic
processes [3,5,23,56-58] and a form for the three-loop results.

8.1.1. q7 — tF

The soft anomalous dimension matrix [5 .5, for the process g7 — tfis a 2 x 2 matrix. We use a

color tensor basis of s-channel singlet and octet exchange, c‘{q_)tt = 012, ng—m =T;, i,
The four matrix elements of I, , are given at one loop [3,5,58] by

2 2
(1) _ _ (1) Cr t—mj (1) t—mj
Flquati = =-Cr (Lﬁ+1> ’ r12 ST Ncl (um%) ’ Equatt_Zh’l(uth ’
2 2\2
(1) _ Ca t—m; Ca (t—mg)

where Lg is given by Equation (57). We note that the first element of the matrix is
equal to l"cﬁu(slg, Equation (58).
At two loops we have [23,56-58]

@) _ 1@ ) _ ARNO) ) _ 1)
Iil q—tf T rcusp 4 rqu t (Kz - CAN ) 12 qg—tt’ 1—‘21 qg—tE <K2 + CANZ) 1—‘21 qa—tt’
C ' c3
r2<22;q'—>tf = K r2<2;q—>tt +Ca (CF - TA) C;3(2> + TA(l —03), (93)
where Ffu(szp) is given by Equation (59), C,ﬁ(z) is given by Equation (60), and Nzﬁ is given by
po_ 1,01 ﬁ) (1+/52){ 2(1 ﬁ) , ( 4p )]
N, = -In + —In Ly [ —— )| - 94
2 1 <1+/3 g |2 ™ \17p) M2 \arppe &)

At three loops, we expect a similar structure up to four-parton correlations; i.e., the first three
matrix elements should have the same form as in Equation (93) (replace two-loop quantities by
three-loop ones), while

3 C 3 K2
rz(z‘;q—nf = K 1"2( ;q—nf"'cA (CF - 2) (C Cﬁ( )+2K Cﬁ( )) + 7034(1 —3)
1 3 3
+Ch (—4 tgle- é ghals+ @5) + %quﬁtt’ (95)

where C;a( ) is given by Equation (62), and }%(23 4ﬁ ;7 denotes the unknown three-loop contributions

from four-parton correlations.
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8.1.2. g9 —tt
The soft anomalous dimension matrix Ig g, . for the process gg — tf in a color tensor basis
S8 gab gy, (S8 — gabe e ST _ jpabe e i given by
Iy gg—tt 0 Iﬂ13gg—>tf
I_‘Sgg%tf = 0 L gg—tE s gg—tt | - (96)
I3; 99—t F32gg%tf r22ggatf

At one loop we have [5,58]

2 2
(1) _ M g (o (1) t — mj
Ligesn = —Cr (Lg+1), L3 ggor =10 (u _ m%) 31ggt — 210 <u _ m%)
2 2
(1) _ CCaN Cy (t —mi)(u—mg)
i) . = (cP 2)( Ls—1)+ [1 ( T 1],
2 2 2
(1) _ Cay (tomy m _(Ne—4), (t—m
Daggntr = 2 In (u - m%) ¢ Doggain = 2N, In u—m?) 7)
At two loops we find [23,57,58]
2 B (2) () _ (1) (2) _ (1)
Iil gg—tE T rcusp 4 113 gg—t <K2 - CANZ) 113 gg—Ht’ r31 gg—tf <K2 + CANZ) 1‘31 gg—tt’
@  _ e Ca\ @
EZgg—n‘f Kz r22gg—>tf +Ca (CF o 7) Cﬁ + T(l - gg) !
@) _ 1) ) _ 1)
IﬂZSgg%tf = K FZSggﬂtf’ r32gg%tf =K F32gg%tf : (98)

At three loops, we expect a similar structure but with additional four-parton correlations, as

discussed in the previous subsection; i.e., replace two-loop quantities by three-loop ones, and 1"2(23;g L

of the same general form as Equation (95).

8.2. DIS Heavy-Quark Production

For heavy-quark production in DIS (also known as electroproduction of heavy quarks), ep — eQQ,
the underlying process is ¢v* — QQ. As for direct photon production there is only a single color
tensor, coupling the produced pair to the gluon in an octet state. The soft anomalous dimension is

given at one loop [35,59] by
t—m2) (u— m?
Lﬁ+1n<( Q)z( Q)ﬂ ) (99)
me s

(1) _ Cy
K00 = ~Crils+ 1)+ 51

where Lg is given by Equation (57).

83.eTe = tf

The soft anomalous dimension for eTe™ — tf is simply the cusp anomalous dimension for the
case of both eikonal lines of mass m; [23,45] that was presented in Section 4.1.

8.4. FCNC qq — tt

For the process uu — tt [54], which proceeds via anomalous t-g-y and t-g-Z couplings, we choose
a color basis consisting of singlet exchange in the t and u channels, ¢c; = ;16 and c2 = Jp20p1.
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Then I5 454 is a 2 X 2 soft anomalous dimension matrix, and its matrix elements at one loop [54] are

given by
2 2
(1) _ myp — ¢t B B Ca m; —u
rlqu_m - {Zln < mt\/g) 1} " <CF 2 ) [Zln( me/s ) +Lﬁ] '
2 2
O] _ mi—t\ 1 1 (mif—u 1
rl2qq%tt = In ( mi\/g) + EL,B’ Iﬁqu—)tt =In ( ";t\/g ) + ELﬁf
2 2
(1) _ my —u Ca my — t
Ben = e (57) (o5 pe () +0] o

where Lg is given by Equation (57). We, of course, note that this process is similar to tf production via
the g4 channel, but a different choice of color basis here leads to a different form for the results.

8.5. Squark and Gluino Production

For squark production via the process g7 — §J, the soft anomalous dimension is of the same
form as for the top-production process g7 — tf in Section 8.1.1 (just replace the top-quark mass by the
squark mass [35]), with a similar result for the channel gq — 4§ (see also [60,61]).

For squark production via the process gg¢ — 44, the soft anomalous dimension is of the same form
as for the top-production process gg — tf in Section 8.1.2 (again, just replace the top-quark mass by
the squark mass [35]). A modified form of this matrix describes gluino production via the process
q9 — §¢, now using the gluino mass [60]. An analogous result describes squark and gluino production
via the process q¢ — 4§ [61].

For gluino production via the process gg — ¢, the color structure is more complicated (the same
as for gg — gg in Section 9.5), and the soft anomalous dimension matrix is given in [60].

9. I5 for Jet Production and Related Processes

In this section we present the soft anomalous dimension matrices for partonic processes involved
in jet production [7]; these soft anomalous dimensions are also relevant to related processes such as
hadron production.

9.1. q7 — q9

We begin with the quark-antiquark annihilation processes, 4§ — q4. There are three different
types of quark-antiquark processes here, depending on the quark flavors: q;3; — q;4;, 9;7; — qxdx,
and q;qx = 4jfk-

In the t-channel singlet-octet color basis ¢
anomalous dimension matrix is [7]

Lllqﬁqq = 0510, ng’%qq‘ = Tj,T;,, the one-loop soft
) 2CrIn(—t/s) —$EIn(—u/s)
S

) = (101)
i —2In(—u/s) —Nicln(—ts/uz)

2 1
At two loops, Iﬂs(q%ﬁqq = h2 rs(qr)ﬁrw"
9.2. q9 — qq and GG — 44

Next, we discuss quark—quark scattering processes, g9 — qq. There are two different types of
quark—quark processes here, depending on the quark flavors: g;9; — q;9; and g;qx — g;q-
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In the t-channel octet-singlet color basis Ccllq%qq = Tlcﬂ Tzcb, ng%qq = 0,10y, the one-loop soft

anomalous dimension matrix is [7]

—N% In(tu/s?) +2CpIn(—u/s) 2In(—u/s)

(1)
T _ . (102)
Sqq—aq % In(—u/s) 2CfpIn(—t/s)
@  _ (1)
At two loops, L5 00—00 = K2 Is 000

The same soft anomalous dimension matrix describes the process with antiquarks, §§ — 44.

9.3. 94 — ggand gg — q4

Next, we discuss the processes g — gg and gg — 47.

For the process g9 — gg, in the s-channel color basis ¢ 90788 — gl2eTe

9988 _
1 88 - 5ﬂb512/ C2 ba’

ng—>gg = if12°T¢ , the one-loop soft anomalous dimension matrix is [7]
0 0 In(u/t)

rs(;;_ﬁgg: 0 Sin(tu/s?)  Sin(u/t) |, (103)

2In(u/t) Nnu/t) Gin(tu/s)

(2) — (1)
At two loops, quq—>gg =Ky quq_>gg.

This soft anomalous dimension matrix also describes the time-reversed process gg — 44.
9.4.qg — qg and §g — 43
Here we discuss quark-gluon scattering, qg — gg. In the t-channel color basis c

9898 _ gb2cc 898 _ : cb2cc
Ccy =d" Ty, c3 = if"Ty

a’

48—48 __
1g § = 501‘5172/

the one-loop soft anomalous dimension matrix is [7]

(CE+Ca)In(—t/s) 0 In(—u/s)
rsggwg = 0 Crn(—t/s) + G In(—u/s) Sin(—u/s) . (104)

2In(—u/s) N In(—u/s) Crin(—t/s) + S In(—u/s)

(2) — (1)
At two loops, I5oe—qe = Kals oo soer

This soft anomalous dimension matrix also describes the process g — 4g.

9.5. 99 — 88

Finally, we consider gluon-gluon scattering, gg¢ — gg. The color decomposition for this process is
by far the most complicated among 2 — 2 processes. A complete color basis for the process gg — gg is
given by the eight color structures [7]

88—88 _ _i abc 712¢ _ gabe ¢12¢ 88—88 :i abc 712¢ abc £12¢
AT = = g (e ) S = g (e o)
] 1
C§8—>83 _ _ 1t ( folegzc | gale szc) ) Cig—>gg = Py(a,b;1,2) = ——0mdpa,
4 NZ—1
N, 1
C§5—>88 — PSS (ﬂ, b; 1, 2) _ 2 i4dulcdb2c , C§8—>88 _ PSA (LZ, b; 1,2) _ ﬁfﬂltfmc ,
c c
1 1
G578 = Pg(ab;1,2) = §(5ab512 —0a20p1) — ﬁcfalcfhzc ,
1 N,
3888 _ . _ c 1c 4b2
cg = Pr(a,b;1,2) = 5 (0udiz + 6a20p) — m%(sbz N 24d™, (105)
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where we used the t-channel projectors P in the product 8 ® 8 = 1+ 85 + 84 + 10 + 10 + 27 describing
the color content of a set of two gluons.
The one-loop soft anomalous dimension matrix is [7]

(1)
(1) _ | Byz Osxs ‘|
I = , (106)
58888 l 053 Fs%
with
NeIn(—t/s) 0 0
gl = 0 N.In(—u/s) 0 (107)
0 0 N¢In(tu/s%)
and
2N In() 0 —2N,In(=) 0 0
0 Nem(=)  —Nen(%) ~NIn(=%) 0
- —u —u —ut? —u
=i —¥in(5Y)  Fin=E) 0 — D) 1n () (108)
0 — 2 In(=2) 0 Neln(=2) — S n(2)
0 0 —ZIn(7)  NADEEND =) (N4 1) In(4) ~21n( )
(2) _ (1)
while at two loops we have L VA e

10. I for Some 2 — 3 Processes

In this section we consider several processes that involve a three-particle final state at leading order.

10.1. tqH, tqZ, tqvy, tqW Production

We begin with processes with three-particle final states each involving a top quark produced in
association with a Higgs boson, a photon, or a W or Z-boson [11].

We begin with the s-channel processes q(p,) + ' (py) — t(p1) + b(p2) + H(p3) and g4’ — tbZ,
qq — tby, g7 — tbW—, g’ — t7"W™. We define s = (p, + pp)% t = (pa — p1)?, and u = (pp — p1)?,
as before, and further define s’ = (p1 + p2)%, t' = (pp — p2)?, and &’ = (p, — p2)?. The soft anomalous
dimension matrix is identical for all these processes. We choose g7’ — tbH as the specific process, and
we use the color basis C‘Zq/—HbH = J,5912 and ng’—ﬁbH = T;,Tj,. Then, the four elements of the soft
anomalous dimension matrix, I ,»_, 5, are given at one loop by [11]

2
(1) B s’ —mj 1
rlqu’—>tEH = Cr {1n< miy/s > Y

I(4 _ 3,2 I 40,2
p® o Crg (PUmm) Ny (E(Emm)
1293’ —tbH 2N, u’(u _ m%) 21q4'—tbH u’(u _ m%)

5
s’ —m? 1 t—m N, t(t — m?

rz(zlq)q,,%tEH — Cr [m ( mt\/gt ) - 2] I ( E f)) ) + o In (M) . (109)

We note that this is very similar to s-channel single-top production. since in both cases we have

two colored particles in the final state, the difference being an extra colorless boson in the case here.

Thus, the soft anomalous dimension matrices are almost the same, the difference arising from the more

complicated kinematics in tgH production—essentially, by replacing s with s’, t with t, and u with v’
in selected places.

We continue with the t-channel processes b(pa) + q(py) — t(p1) +q'(p2) + H(p3) and bg — tq'Z,

bg — tq'y, bg — tqW~, q9 — tq¢'W™, which have the same soft anomalous dimension matrix.

We define the kinematical variables as above. We choose bg — tq'H as the specific process, and we use
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/ /
the color basis cl{q_}tq H_ 6410y and ng—nq H_ T, T5,- Then, the four elements of the soft anomalous

dimension matrix, I5p, y, are given at one loop by [11]

m(FE=mD ) 1
mys3/2 2

O] _ S u'(u — mg) (1) _ u'(u—m?)
1q12bq—>tq’H - ZNCI ( s(s! t) 1ﬂ21bq—>tq’H =1In W ’

t

t'(t —m?) 1 1 w'(u—m?) u'(u—m?)
1“( mtss/zt ) B 2} B Ncln<s(s/_m§t) ) * 71 ( H(t— %t) ) - (19

We note that this is very similar to t-channel single-top production, and the soft anomalous
dimension matrices are almost the same, essentially differing by replacing s with s’, t with #/, and u
with 1/ in selected places.

At two loops, the soft anomalous dimension matrices for each of these s-channel or t-channel
processes can be written compactly in terms of the corresponding one-loop results [11], in a

way entirely analogous to the s-channel and t-channel single-top results in Section 7, i.e., as in
Equations (79) and (82).

(1
0

) —
1bg—tgH Cr

= Cr

D bgtgr

10.2. ttH, ttZ, ttry, ttW Production

We next consider the processes q(pa) + 4(pp) — t(p1) + E(p2) + H(p3) and g4 — ttZ, q7 — ttvy,

qq" — tEW*, which have the same soft anomalous dimension matrix. We choose q§ — tfH as the
qq—ttH

specific process and use a color tensor basis of s-channel singlet and octet exchange, c; = 0012,
ZqﬁttH = Ty, Ti,. The four matrix elements of I5 ;5 7y are closely related to those for g7 — t£[3,5,58]
that we presented in Section 8.1.1, and are given at one loop [62,63] by
1) _ 1 _ Cr 1 (t —m2) (¥ — m?)
r1(1q.HzH =—Cr <Lﬁ’ + 1) , rl(Z:;qatfH = TNCrm;Hmf rz(l,;.ﬁtm In (W
(1) _ Ca\ [ ;. _ (t—m})(t' —mf) \], Ca (t—m )(’ m)\ _
Do gt = (CF 2 ) Ly =1+2In ((u —m?)(u —m?) 3 In s m? !
(111)

where Lg is of the form of Equation (57) but with f replaced by ' = v/1 — 4m?/s’.

The processes gg — ttH, gg — ttZ, gg — ttvy, have the same soft anomalous dimension which
is a 3 x 3 matrix of the form of Equation (96). The matrix elements are closely related to those for
gg — tt[5,58] that we presented in Section 8.1.2. We choose gg¢ — #tH as the specific process and use

the color basis c‘%gﬁttH = 5% 6y, cggﬁttH dabe Ty, 5 S8 if“bc Tj,. At one loop we have [62,63]

() _ 0 1 (= mp)( —mp)
T .. = —CplLg+1), L = =1 ,
11 gg—HH F( gt ) 13gg—tH — 5 1! ((u m2) (! — m?)
(1) _ Ca Ca |1, [ (t—m})(t' —mf)(u—m})(u' —mz)
5mwm—(@*?)@wf0*7§m g !
(1) Y (1) _Ca (1) _(NZ=4)
1:;) 1gg—tftH — 21—i3gg—>ttH’ 23gg—ttH — 9 I_i3gg—>tfH’ 1—éZgg—HfH - ENC l—iS gg—HH (112)

10.3. qqg, QQg, and ggg Final States

Soft anomalous dimension matrices at one loop for processes with three colored particles in the
final state have appeared in references [64,65].

The soft anomalous dimension for the process q§ — g4g is a 4 x 4 matrix, for the process
88 — ggg itisan 11 x 11 matrix, and for the process gg — ggg itis a 22 x 22 matrix, with details given
in reference [64].
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Results for related processes involving heavy quarks were given in reference [65]. The soft
anomalous dimension for the process g7 — QQg is again a 4 x 4 matrix, and for the process ¢¢ — QQg
itis again an 11 x 11 matrix, with details given in reference [65].

11. Summary and Conclusions

Soft-gluon resummation provides a powerful method to calculate large and often dominant
higher-order corrections in perturbative cross sections (see reference [12] for numerical results for
many processes). Soft anomalous dimensions are essential in performing resummation beyond
leading-logarithm accuracy, and in general, they are matrices in the space of color exchanges.

One-loop results for soft anomalous dimensions are available for virtually all 2 — 2 processes
and many 2 — 3 processes. Two-loop results and even three-loop results are also known for many
2 — 2 processes and some 2 — 3 ones. We have reviewed these results using a consistent approach
and consistent terminology in all cases. We have provided comprehensive and detailed expressions for
a large number of 2 — 2 processes involving single-top and top-pair production, electroweak-boson
and Higgs production, jet production, and other SM and BSM processes.

We have also provided results for soft anomalous dimensions for a number of 2 — 3 processes
involving the production of single top quarks or top-antitop pairs in association with electroweak or
Higgs bosons, and discussed processes with three final-state colored particles.

These results can be used and have been used for performing resummation and for calculating
soft-gluon corrections at higher orders for a very large number of processes.
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