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Abstract
The Markov chain Monte Carlo (MCMC) method is used to evaluate the
imaginary-time path integral of a quantum oscillator with a potential that
includes a quadratic term and a quartic term whose coupling is varied by several
orders of magnitude. This path integral is discretized on a time lattice on which
calculations for the energy and probability density of the ground state and ener-
gies of the first few excited states are carried out on lattices with decreasing
spacing to estimate these quantities in the continuum limit. The variation of the
quartic coupling constant produces corresponding variations in the optimum
simulation parameters for the MCMC method and in the statistical uncertainty
for a fixed number of paths used for measurement. The energies and probability
densities are in excellent agreement with those obtained from numerical solu-
tions of Schrödinger’s equation. The theoretical and computational framework
presented here introduces undergraduates to the path integral formulations of
quantum mechanics in real time and the partition function in statistical mechan-
ics in imaginary time. The example of the anharmonic oscillator helps to build
an intuition about the MCMC method of evaluating the partition function, which
can then be used to solve other problems in physics and beyond.
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1. Introduction

The harmonic oscillator, one of the few exactly solvable quantum mechanical systems, is
a mainstay of the undergraduate physics curriculum. Solutions for the energy eigenvalues
and wave functions are obtained either by the analytic solution of the time-independent
Schrödinger equation in terms of Hermite polynomials, or through a more abstract algebraic
procedure based on raising and lowering operators [1]. An altogether different approach uses
Heisenberg’s matrix formulation of quantum mechanics [2, 3]. Although not a standard part of
undergraduate quantum physics courses, Heisenberg’s method, with suitable supplementary
material [4], has pedagogical merit.

The operator method makes a direct connection to the statistics of bosons, a conceptual
building block of modern physics. The bosonic character of the quantum harmonic oscillator
is used in the quantization of small-amplitude vibrations in molecules and solids, the latter
leading to phonons [5], the quantum theory of radiation [6–8], quantum field theory [9], and
as an illustration of the correspondence principle [10]. Such diverse applications attest to the
pivotal role of the harmonic oscillator in the conceptual and computational development of
quantum physics.

Sufficiently small fluctuations in any system around a stable equilibrium point may be
described in terms of decoupled harmonic oscillators (normal modes), regardless of the shape
of the confining potential. However, there are regimes where the harmonic oscillator paradigm
breaks down. For example, during the thermal expansion of solids, the transformations between
solid phases, and chemical reactions, the displacements of atoms from their equilibrium posi-
tions cannot be regarded as small. As harmonic interactions are derived by truncating the
Taylor series expansion of the interatomic potential at second order [5], we look to higher-order
terms to augment the interaction potential. A basic one-dimensional model that incorporates
the leading (quartic) correction to the harmonic potential has the Schrödinger equation,

Ĥψ =

(
− �

2

2 m
d2

dx2
+

mω2x2

2
+ λx4

)
ψ = Eψ, (1)

in which m is the mass of the particle, ω = (k/m)1/2 is the natural frequency of the harmonic
oscillator, where k is the stiffness of the potential, and λ is the coupling constant for the quartic
term of the potential.

In the absence of an elementary analytic method for obtaining solutions of equation (1),
attention turned to various approximate calculations. In Rayleigh–Schrödinger perturbation
theory, the ground-state energy E0(λ) of equation (1) has the formal expansion

E0(λ) =
1
2

�ω + �ω

∞∑
n=1

An

(
λ�

mω2

)n

, (2)

where the expansion coefficients An must be determined. Bender and Wu calculated [11]
these coefficients to 75th order and found a rapid increase in |An|, which suggests that (2)
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diverges. In fact, they showed that this series diverges for any λ > 0 because of the singu-
larity at λ = 0 that separates the regions where (1) has an infinite sequence of bound states
(λ > 0) from the region where there are only metastable states that can escape to infinity
(λ < 0) [11–13]. This explanation is a particular case of an argument first advanced by Dyson
[14] for perturbation expansions in quantum electrodynamics. The divergence of the expan-
sion (2) has provided the impetus for alternative perturbation expansions [15], resummation
methods [16], and other computational schemes [17–19] for quantum anharmonic oscillators.
Among these, the Wentzel–Kramers–Brillouin (WKB) method [1], which can be derived as
a semi-classical approximation to the Feynman path integral [20–22], is particularly effec-
tive at producing accurate estimates for the eigenvalues of the quartic oscillator and other
potentials [18].

In this paper, we adopt a somewhat different approach to solving equation (1) by evaluating
the imaginary-time path integral for this system using the Markov chain Monte Carlo (MCMC)
method [24]. Calculations are carried out on lattices with decreasing spacing to estimate the
energy and probability density of the ground state and energies of low-lying excited states
in the continuum limit. Comparisons with numerical integrations of Schrödinger’s equation
demonstrate the accuracy of our approach. These calculations are also pedagogical: the wide
range of λ-values in equation (1) used in this study help to develop an intuition about how
the potential affects parameters and convergence. Although we are studying a specific case,
the MCMC method can be applied to a quantum mechanical particle in any of the standard one-
dimensional potentials [23–25] with minimal change to the basic procedure described here. In
fact, the method can be generalized to systems with more degrees of freedom by adding more
variables to the simulation [24, 26]. Imaginary-time time path integrals can also be formu-
lated for classical statistical dynamics [27–30], as well as providing a bridge to quantum field
theory [31].

Our evaluation of the path integral for the quantum anharmonic oscillator has been devel-
oped with undergraduates in mind. We have provided a concise derivation of the Feynman path
integral for quantum mechanics and its imaginary-time counterpart as the partition function of
statistical mechanics. The numerical evaluation of the imaginary-time path integral for the
anharmonic oscillator illustrates how the strength of the anharmonic coupling constant affects
the convergence of the MCMC method to the continuum limit. These calculations have been
carried out to establish an intuitive understanding of how the MCMC method is applied to a
particular system, with a view to applications to other systems. The discussion in section 5 pro-
vides several avenues for further applications that can be used as basis for projects, independent
study, or even research.

The organization of this paper is as follows. We briefly outline the derivation of real-time
and imaginary-time path integrals in section 2, referring to our earlier work [32]5 for a more
comprehensive discussion. The MCMC method is summarized in section 3, and in section 4 we
discuss how varying the coupling constant of the quartic term in the potential energy affects the
parameters in this method. Section 5 presents the correlation functions that can be calculated
from the imaginary-time formalism to obtain the energy eigenvalues of (1). We have calculated
the energy and probability density of the ground state and the energies of the first two excited
states. We summarize our results and discuss other applications of imaginary-time path inte-
grals in section 5. Derivations, background material, and computer programs are provided in
are provided in the supplementary information.

5 Supplementary material (https://stacks.iop.org/EJP/41/055401/mmedia) for reference [32] at https://doi.org/10.1119/
1.5024926.
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2. Real-time and imaginary-time path integrals

2.1. Feynman path integral

The time-dependent Schrödinger equation,

i�
∂ψ

∂t
= Ĥψ, (3)

for a Hamiltonian operator

Ĥ =
p̂2

2m
+ V(x̂), (4)

has the formal solution

ψ(x, t) = e−iĤt/�ψ(x, 0), (5)

where the exponential factor is the evolution operator. The connection to Feynman’s path inte-
gral is made through the matrix elements of the evolution operator between any two initial and
final position eigenstates, which is known as the ‘propagator’. In Dirac’s bra–ket notation5,

〈xf, tf|xi, ti〉 = 〈xf|e−iĤ(tf−ti)/�|xi〉

=

∫
[Dx(t)] exp

[
− i

�

∫ tf

ti

L(x(t)) dt

]
, (6)

in which L is the classical Lagrangian corresponding to the Hamiltonian operator (4):

L(x(t)) =
m
2

(
dx
dt

)2

− V(x(t)). (7)

The notation [Dx(t)] in equation (6) means that the integral includes all space–time paths (x, t)
between (xi, ti) and (xf , tf). The left-hand side of (6) is known as the ‘propagator’, which repre-
sents the probability amplitude of a point particle at spacetime point (xi, ti) reaching the space-
time point (xf , tf). The right-hand side expresses this amplitude as the integration of all paths
connecting the two points with a weight determined by the classical action S=

∫ tf
ti

L(x(t)) dt for

each path [33, 34].6 Hence, the name ‘path integral’. Equation (6), which establishes the path
integral representation of the propagator, is the celebrated Feynman–Kac formula [33, 34, 37].

2.2. Imaginary-time path integrals

An alternative formulation of path integrals uses imaginary time, where t is replaced by −iτ
[35]. The imaginary-time path integral analogous to equation (6) is

〈xf, τf|xi, τi〉 = 〈xf|e−Ĥ(τf−τi)/�|xi〉

=

∫
[Dx(τ )] exp

[
− 1

�

∫ τf

τi

LE(x(τ )) dτ

]
, (8)

6 Although often called the third way to quantum mechanics, after the Schrödinger and Heisenberg formulations,
Feynman’s path integral in fact has a largely forgotten antecedent. In 1924, which predates the fundamental papers
of Schrödinger and Heisenberg, Gregor Wenzel [35] published a paper in which the formulas and interpretations of a
path integral approach to quantum optics were presented in a manner similar to those adopted by Feynman. Thus, the
third way to quantum mechanics could indeed be regarded as the first! [36].
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in which the classical Euclidean7 ‘Lagrangian’ is

LE(x(τ )) =
m
2

(
dx
dτ

)2

+ V(x(τ )). (9)

Just as for real times, the path integral in equation (8) is over all paths between the initial point
xi at time τ i and the final point xf at time τ f . Equation (8) is the imaginary time analogue of
the Feynman–Kac formula (6).

The connection to quantum statistical mechanics is obtained by setting xf = xi, τ i = 0 and
τ f = �β, where β = 1/(kBT ), kB is Boltzmann’s constant, and T is the absolute temperature.
The integral over x(τ ) yields the trace of e−βĤ, which is the canonical partition function:

Z =

∫
〈x|e−βĤ|x〉 dx = Tr

(
e−βĤ

)

=

∫
[Dx(τ )] exp

[
− 1

�

∮
�β

0
LE(x(τ )) dτ

]
. (10)

The completeness relation,

∞∑
n=1

|n〉〈n| = 1, (11)

for the orthonormal eigenkets Ĥ|n〉 = En|n〉, when used in the trace in equation (10), yields the
canonical partition function of quantum statistical mechanics5:

Z =

∞∑
n=0

e−βEn . (12)

2.3. Correlation functions and propagators

The energies of the ground state and excited states of the quantum anharmonic oscillator
are encoded in correlation functions that are expectation values of products of the position
operator:

〈x̂(τ1)x̂(τ2) · · · x̂(τn)〉 = 1
Z

Tr
[
e−βĤ x̂(τ1)x̂(τ2) · · · x̂(τn)

]
. (13)

The energy E0 of the ground state can be obtained from the expectation of the Hamilto-
nian (1) which, in conjunction with the virial theorem [1], is expressed in terms of correlation
functions of x as [24]

E0 = mω2〈x̂2〉+ 3λ〈x̂4〉. (14)

7 Imaginary time versions of quantum field theories in d spatial dimensions are called Euclidean because the
imaginary time plays the same role as a spatial coordinate, so the theory is invariant under rotations in d + 1-
dimensional Euclidean space. For a historical review of Euclidean field theories, see Guerra 2005 Euclidean field
theory arXiv:math-ph/0510087v1.
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An alternative expression for the ground-state energy, more closely related to those for excited
states derived below, is

−d log Z
dβ

= E0. (15)

The correlation functions 〈x̂n〉 for n = 2 and 4 are, from equation (13),

〈xn(τ )〉 = 1
Z

Tr
[
e−βĤ x̂n(τ )

]
. (16)

By writing

x̂(τ ) = eĤτ/� x̂(0)e−Ĥτ/�, (17)

which is the imaginary time counterpart of the Heisenberg picture for the time-dependence of
operators, again using (11), and taking the limit β →∞, we obtain

〈xn(τ )〉 = 〈0|x̂n(0)|0〉. (18)

which is the expectation value of x̂n in the ground state.
The two-point correlation function for calculating the first excited state is

〈x̂(τ )x̂(0)〉c = 〈x̂(τ )x̂(0)〉 − 〈x̂(τ )〉〈x̂(0)〉, (19)

where the subscript ‘c’ denotes cumulant, which in diagrammatic analysis correspond to a
connected diagram. Again using equations (11) and (17), yields

G2(τ ) ≡ lim
β→∞

〈x̂(τ )x̂(0)〉c =

∞∑
n=1

e−(En−E0)τ/�|〈0|x̂|n〉|2. (20)

Hence, the energy of the first excited state is obtained as

−� lim
τ→∞

[
d log G2(τ )

dτ

]
= E1 − E0. (21)

The second excited state is obtained from the four-point connected correlation function

〈x̂(τ )2 x̂(0)2〉c = 〈x̂(τ )2 x̂(0)2〉 − 〈x̂(τ )2〉〈x̂(0)2〉. (22)

By proceeding as above, we obtain

G4(τ ) ≡ lim
β→∞

〈x̂(τ )2 x̂(0)2〉c =

∞∑
n=2

e−(En−E0)τ/�|〈0|x̂|n〉|2. (23)

The second excited state is, therefore, determined from

−� lim
β→∞

[
d log G4(τ )

dτ

]
= E2 − E0. (24)

The probability density of the ground-state wave function is obtained by following the devel-
opment of Creutz and Freedman [24]. The probability P(x) of a particle being found between
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Figure 1. A discrete imaginary-time path between (0, 0) and (0, 5). The histogram
indicates the number of times the particle crosses the corresponding spatial region.

positions x − 1
2Δx and x + 1

2Δx at any time t′ in a real-time interval [0, t] is given by the
time-average

P(x) =
1
t

∫ t

0
dt′

∫ x+ 1
2Δx

x− 1
2Δx

dx′
〈xf, t|x′, t′〉〈x′, t′|xi, 0〉

〈xf, t|xi, 0〉 , (25)

The numerator in the integrand counts the paths that begin at (xi, 0), end at (xf , t), and pass
through (x′, t′) for 0 � t′ � t. The propagator in the denominator counts all paths between
(xi, 0) and (xf , t).

If Δx is assumed to be small enough so that the integral over x can be evaluated by keeping
terms only to first order in Δx, we obtain

P(x) =
Δx

t〈xf, t|xi, 0〉

∫ t

0
dt′〈xf, t|x, t′〉〈x, t′|xi, 0〉. (26)

The propagators are now written in terms of the eigenfunctions of Ĥ by using the completeness
relation (11):

〈x′, t′|x, t〉 = 〈x′|e−iĤ(t′−t)/�|x〉 =
∞∑

n=0

e−iEn(t′−t)/�ψ∗
n(x′)ψn(x). (27)

By using this expression for each propagator in equation (26) and continuing to imaginary
time τ = �β, the long-imaginary-time/low-temperature limit yields the probability density of
the ground state:

P(x) = |ψ0(x)|2Δx. (28)

Figure 1 provides a schematic illustration of how the wave function is calculated by assigning
a path along a time lattice to spatial bins with width Δx.
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3. Markov chain Monte Carlo method

Monte Carlo simulations are carried out on a time lattice with Nτ time increments δτ with
lattice points xn = nδτ for n = 0, 1, 2, . . . , Nτ . The nth time increment is xn+1 − xn. Periodic
boundary conditions are imposed on the lattice, whereby increment Nτ + 1 equals increment
1. The imaginary-time path integral in equations (8) and (9) is the continuum limit of the
discretized expression

〈xf|e−Ĥ(τf−τi)/�|xi〉 = lim
Nτ→∞

∫ Nτ∏
k=1

dxk

( m
2π� δτ

)
e−S({xk})/�, (29)

where {xk} ≡ x1, x2, . . . , xNτ , and

S
(
{xk}

)
= δτ

Nτ∑
i=1

[
m
2

(
xi+1 − xi

δτ

)2

+ V(xi)

]
. (30)

We work with a dimensionless action. With each variable expressed in terms of a suit-
able power of the lattice spacing δτ , we work in units where � = 1 = c, and introduce the
dimensionless variables

m̃ = mδτ , ω̃ = ωδτ , x̃i =
xi

δτ
. (31)

By combining equations (1), (30), and (31), the action for the anharmonic oscillator becomes

S
(
{xk}

)
=

Nτ∑
i=1

[
m̃
2

(x̃i+1 − x̃i)2 +
m̃ω̃2 x̃2

i

2
+ λ̃m̃2ω̃3 x̃4

i

]
, (32)

in which λ̃ is also dimensionless.
The MCMC method is based on determining the statistics of observables from paths

(x1, . . . , xNτ ) that are representative of the distribution in equations (29) and (30). This requires
generating reliable sequences of (pseudo) random numbers. We have used the Mersenne twister
[41].

We begin with an initial path P(0), which may be an array of random numbers (‘hot’ start) or
zeros (‘cold’ start). This path is updated by applying the Metropolis–Hastings algorithm [39,
40] to each element xi of the path in random order, called a ‘sweep’. There are two steps in the
updating process:

(a) Generate a random number u from a uniform distribution in the interval [−h, h], where
h, called the hit size, must be chosen judiciously. If h is too large, few changes will
be accepted; too small and the exploration of phase space will be slow. For the sets of
simulations here, hit sizes were chosen to obtain an acceptance rate of 50%–60%.

(b) Propose the new value, xi
′ = xi + u, of the path element and calculate the resulting change

ΔS in the action. New values that lower the action are always accepted, while those that
would increase the action are accepted with probability e−ΔS.

One sweep produces the next path, e.g. P(1) from P(0). Each path is determined only by
the immediately preceding path, so the complete sequence of paths forms a Markov chain,
but the paths are correlated. The accuracy of the MCMC method relies on sampling from the
distribution in equations (29) and (30) which, in turn, relies on the paths being stationary and
independent. The initial path ‘thermalizes’, that is, attains equilibrium after Ntherm sweeps. To
counteract the inherent autocorrelation in a Markov chain, a number Nsep of paths between

8
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Figure 2. The potential v(x; λ) = 1
2 x̃2 + λ̃x̃4 for λ̃ = 0, which is the potential for the

harmonic oscillator (blue shading), and λ̃ = 103, which corresponds to the strong quartic
limit (blue shading). The quartic potential localizes the wave functions of the oscillators,
which causes the corresponding energy eigenvalues to increase.

Figure 3. Acceptance rate versus the hit size h for the quantum anharmonic oscillator
with quartic coupling constant (a) λ̃ = 1 and (b) λ̃ = 1000 for the indicated discretiza-
tions. The target of 50%–60% acceptance rate is indicated by shading. The curves are
spline fits to the data.

successive paths used for measurements (i.e. representative of the equilibrium distribution)
must be discarded. A detailed description of this process is provided in reference [32].

4. Parameters for MCMC simulations

For all calculations reported here, m̃ = ω̃ = δτ and Nτ δτ = 250 in equation (32). Calculations
have been performed for λ̃ = 0, 1, 50 and 103, which range from the harmonic oscillator to
the strong quartic limit (figure 2). Such a large variation of λ̃ affects not just the quantum
mechanical behavior of the oscillator, but also several parameters used in the MCMC method:
the hit size h needed to achieve an acceptance rate of 50%–60%, and the number Nsep of paths
that must be discarded between successive paths used for calculations. The coupling constant
also affects the convergence to the continuum limit of the probability density of the ground
state and the energy levels.

9
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Figure 4. Equilibration of 〈x̃2〉 over the first 100 sweeps from the initial configuration
for (a) λ̃ = 1 and δτ = 0.2, (b) λ̃ = 1 and δτ = 1, (c) λ̃ = 103 and δτ = 0.2, and (d)
λ̃ = 103 and δτ = 1, with Nτ δτ = 250 for all simulations. Note the differences in the
scales along the vertical axes.

Figure 3 compares the acceptance rate versus hit size for the anharmonic oscillator with
weak (λ̃ = 1) and strong (λ̃ = 103) quartic coupling constants for several discretizations. These
data were obtained as follows: (i) begin with a cold start and h = 0.2, (ii) ignore several initial
sweeps, (iii) calculate the acceptance rate, as given in the pseudocode in reference [32], (iv)
calculate the arithmetic mean of the acceptance rate for every 100 sweeps. The hit size is then
increased by 0.2 and steps (i)–(iv) are repeated.

Most apparent in figure 3 is that, for each discretization, the target hit size is much smaller for
the larger quartic coupling constant, which leads to larger changes in the action with increasing
coupling and, thus, suppresses the acceptance rate. In other words, the exploration of phase
space is slower, which is a natural consequence of the more localized potential associated with
a stronger coupling constant (figure 2).

A key element of the MCMC method is the selection of paths used for calculations. These
paths must be representative of the equilibrium distribution, as defined by the partition func-
tion, so the paths must first equilibrate from some initial configuration. The number Ntherm

of sweeps required to attain equilibrium is determined when the measured quantity fluctuates
about a steady state, which depends on the observable, but generally increases as either δτ or
λ̃ decreases. Typically, the equilibration of several observables is plotted and the maximum
number of sweeps to equilibrium is used for all simulations.

Figure 4 shows the equilibration for 〈x̃2〉 for the anharmonic oscillator with coupling con-
stants λ̃ = 1 (a), (b) and λ̃ = 103 (c), (d) for lattice spacings δτ = 0.2 (a), (c) and δτ = 1 (b),
(d). Note the differences in scales of 〈x̃2〉 in each panel, which shows that the equilibrium value
is much smaller for the system with the larger coupling constant. Also immediately apparent is

10
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Table 1. The initial Ntherm Metropolis–Hastings sweeps that are neglected and the hit size
h, presented as (Ntherm, h), for the indicated discretizations δτ and coupling constants λ̃.
For these simulations, Ntherm and Nsep were of similar order of magnitude. No simulations
were performed for values of λ̃ and δτ whose entry is indicated by a dash (-).

δτ λ̃ = 0 λ̃ = 1 λ̃ = 50 λ̃ = 1000

0.01 — — — 200, 16
0.02 — — 300, 11 100, 14
0.05 — 500, 9 100, 9 100, 8
0.10 500, 5 200, 5 100, 5 100, 6
0.20 100, 4 100, 4 100, 3 100, 2
0.25 100. 3.5 100, 3.5 100, 2.5 100, 1.5
0.40 100, 2.5 100, 3.5 100, 1.6 100, 0.9
0.50 100, 2.5 100, 2 100, 1.3 100, 0.7
1.00 100, 1.5 100, 1.2 100, 0.5 100, 0.3

how many fewer sweeps from the initial path are required to attain equilibrium with increasing
coupling constant.

The trends in figures 3 and 4 can be explained by the sharpening of the potential energy
profile with increasing λ̃ (figure 2). All of our simulations began with cold starts. Thus, with
increasing λ̃, the accessible configuration space decreases, so the attainment of equilibrium
is correspondingly quicker. Similarly, the acceptance rate for a fixed hit size h is lower for
larger λ̃ because of the increasing confinement near the origin at the expense of the classically
forbidden region. This also explains why, for an observable such as 〈x̃2〉 (figure 4), sweeps over
Markov chains show smaller fluctuations around their mean for larger λ̃. Finally, the increasing
equilibrium value of 〈x̃2〉 with λ̃ is a direct result of the increasingly localized probability
density of the ground-state wave function (section 5.1) caused by the sharpening potential
energy profile (figure 2).

The number Nsep of sweeps discarded between successive measurements, and the hit size
h for the discretizations δτ used for the calculations described in the following section are
compiled in table 1. These entries were obtained from the data in figures 3 and 4 for each
discretization and quartic coupling constant. The variations of simulation parameters in this
table extends to other calculations using the MCMC method, such as the autocorrelation times
and the application of the jackknife analysis for analyzing the statistics of correlated samples.
All of our simulations began with cold starts, and we used 200 paths (every 100th sample out
of a chain of 20 000) for all measurements. We used the method and code of reference [42] for
estimating autocorrelation times and error analysis.

5. The quantum anharmonic oscillator

5.1. Probability density of the ground state

The properties of our Markov chains enable an indirect evaluation of the long-imaginary-time
limit (32) of the expression (29) for the probability density of the ground state. In particu-
lar, the Markov chains in section 3, which are aperiodic, irreducible, and positively recurrent,
guarantee not only that any initial chain approaches equilibrium, as the discussion accompa-
nying figure 4 demonstrates, but that long-time limits may be replaced by ensemble averages
(ergodicity) [25, 43].6
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Figure 5. The probability densities |ψ0(x)|2 of the ground-state wave functions for the
harmonic oscillator (a), (b) and the strong quartic limit (c), (d) in the Schrödinger
equation with Hamiltonian (32) for δτ = 1 (b), (d) and δτ = 0.1 (a), (c). The his-
tograms were obtained according to the procedure shown in figure 1, with 200 paths
(every 100th from a chain of 20 000) used for determining the probability density. The
red curves superimposed on these histograms are numerical solutions to Schrödinger’s
equations with the corresponding Hamiltonians (32) obtained by using the bvp4c solver
of MATLAB (reference [44, 45]).4

Figure 5 shows the (normalized) probability densities |ψ0(x)|2 of the wave functions for the
ground state of the Hamiltonian (32) with λ̃ = 0, which is the harmonic oscillator, and with
λ̃ = 103, in which the quartic term dominates. The numerical integration of the correspond-
ing Schrödinger equations4 is shown for comparison. Perhaps the most striking aspect of this
figure is the enhanced localization of the wave function for λ̃ = 103 compared with that for
the harmonic oscillator (λ̃ = 0). This is to be expected from the narrowing of the potential
with increasing λ̃ (figure 1). Moreover, the rate of convergence to the continuum limit is con-
siderably slower for the large quartic term. The errors for δτ = 1 are small for the harmonic
oscillator, but are substantial for the large quartic potential, with small discrepancies remaining
in the tail of the distribution even for δτ = 0.1.

5.2. Ground-state energy

The energies of anharmonic oscillators were expressed as correlation functions in section 2.3.
The MCMC method necessitates evaluating discrete approximations to these quantities, which
are then used to estimate the energies at decreasing lattice spacing δτ . The results with the
simulation parameters in table 1 are shown in figure 6 for λ̃ = 0, 1, 50, and 103. Also shown
are the exact results [24, 30] for the harmonic oscillator (figure 6(a)) and spline fits4 to the data
points for the anharmonic systems (figures 6(b)–(d)). The spline fits were used to estimate the
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Figure 6. Calculation of the ground-state energy of the anharmonic oscillator with quar-
tic couplings (a) λ̃ = 0, (b) λ̃ = 1, (c) λ̃ = 50, and (d) λ̃ = 103. The filled circles repre-
sent values calculated from the MCMC method. In (a), the solid line is the exact result
calculated in reference [24, 30], while in (b)–(d), the broken curve is a (not-a-knot) cubic
spline fit carried out on linear axes. The logarithmic axis for δτ is for presentation pur-
poses only. Where error bars are not indicated, the errors are of the same size or smaller
than the symbol.

Table 2. Ground-state energy of the anharmonic oscillator for the indicated values of λ̃.
The column labelled MCMC is the data point in figure 6 with the finest discretization,
spline is the value obtained by extrapolating the spline curve, SE is the energy obtained
by the numerical integration of Schrödinger’s equation, and the last column contains the
energies calculated by the method in [17] for λ̃ > 0.

λ̃ MCMC Spline SE Ref. [17]

0 0.496 0.501 1
2 —

1 0.795 0.801 0.8038 0.8038
50 2.488 2.511 2.4998 2.4997
103 6.634 6.702 6.6941 6.6942

ground-state energies in the continuum limit on linear axes; the logarithmic axis for δτ is used
in figure 6 for presentation purposes only.

The ground-state energies for the systems shown in figure 6 have been calculated by several
methods, with the results compiled in table 2. The energies in the column labelled MCMC
are obtained from the finest discretization in figure 6, while the column spline labels the ener-
gies extrapolated from the spline fits to the calculated data points. These two columns are the
results obtained from the path integral method, either directly (MCMC) or inferred (spline).
The remaining two columns contain essentially exact numerical results, obtained by the numer-
ical integration of Schrödinger’s equation4, and from the method of Hioe and Montroll [17],
who used the Bargmann representation to develop rapidly converging algorithms for the energy
levels of oscillators as a function of the anharmonic coupling constant.

The ground-state energy obtained from the extrapolation of the spline are within a few tenths
of a per cent of the exact results. In contrast, the energies obtained from the path integral with

13



Eur. J. Phys. 41 (2020) 055401 S Mittal et al

Figure 7. The asymptotic form of two-point correlation function in (34) for the indicated
values of λ̃ for a lattice spacing of δτ = 0.2. The slope for small values of n determine
the difference E1 − E0 between the ground state and the first excited state.

the finest discretization show discrepancies by as much as 9%. This highlights the dual role
of the spline fit: (i) as an estimate of the energy by extrapolation, and (ii) an indication of the
improvement expected by reducing the time lattice spacing.

5.3. First excited state

The first excited of the anharmonic oscillator is obtained by evaluating the logarithmic deriva-
tive of the long-time limit of G(τ ) in (20), which is the zero-temperature limit of the correlation
function in (19). Equation (21) then establishes the difference E1 − E0 between the ground state
and first excited state as the negative of the slope of G(τ ) in the long-τ limit. On a time lattice,
equation (21) is approximated as

− (E1 − E0)
�

≈ lim
τ→∞

{
log[G2(τ +Δτ )] − log[G2(τ )]

Δτ

}

= lim
τ→∞

{
1
Δτ

log

[
G2(τ +Δτ )

G2(τ )

]}
. (33)

The approximate solution of this equation,

G2,∞(Δτ ) = G2,∞(0)e−(E1−E0)Δτ/�, (34)

is independent of τ . As Δτ = nδτ for some non-negative integer n, we can determine E1 − E0

by plotting log[G2,∞(n)] versus n. An example is shown in figure 7 for λ̃ = 0, 1, 50, and 103

with δτ = 0.2. The linear behavior, evident for small n, enables estimates to be made for E1,
given the values of E0 in table 2.

The calculation of the energy differences E1 − E0 are shown in figure 8 and the resulting
energies of the first excited states are shown in table 3. The differences between estimates
based on the extrapolation of the cubic spline and the exact values are of the order of 1%
or less. However, the error bars for these calculations, particularly for λ̃ = 0 and λ̃ = 1, are
much larger than the corresponding calculations of the ground-state energies (figure 6). Note,
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Figure 8. Calculation of the energy difference E1 − E0 of the anharmonic oscillator
with quartic couplings (a) λ̃ = 0, (b) λ̃ = 1, (c) λ̃ = 50, and (d) λ̃ = 103. The filled
circles represent values calculated from the MCMC method. The broken curves are a
(not-a-knot) cubic spline fits carried out on linear axes. The logarithmic axis for δτ is
for presentation purposes only. Where error bars are not indicated, the errors are smaller
than the symbol size.

Table 3. Energy of the first excited state E1 of anharmonic oscillators for the indi-
cated values of λ̃. The first shows the energy differences E1 − E0 obtained from the
extrapolation of the spline fits in figure 8. The column spline is E1 obtained from extrap-
olating spline curves in figures 6 and 8, SE is E1 obtained by the numerical integration
of Schrödinger’s equation, and the last column contains the energies calculated by the
method in [17] for λ̃ > 0.

λ̃ E1 − E0 Spline (E1) SE (E1) Ref. [17] (E1)

0 1.010 1.511 3
2 —

1 1.969 2.770 2.7379 2.7379
50 6.523 9.034 8.9155 8.9151
103 17.368 24.069 23.9731 23.9722

in particular, that despite these large error bars, the mean of each calculation for the harmonic
oscillator (λ̃ = 0) is close to the exact value of 1.

5.4. Second excited state

The determination of the second excited state from (24) proceeds in a manner similar to that
in the preceding section. The approximate solution analogous to equation (34) is

G4,∞(Δτ ) = G4,∞(0)e−(E2−E0)Δτ/�, (35)

where G4,∞ is the approximate solution of

− (E2 − E0)
�

≈ lim
τ→∞

{
1
Δτ

log

[
G2(τ +Δτ )

G2(τ )

]}
. (36)
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Figure 9. Calculation of the energy difference E2 − E0 of the anharmonic oscillator
with quartic couplings (a) λ̃ = 0, (b) λ̃ = 1, (c) λ̃ = 50, and (d) λ̃ = 103. The filled
circles represent values calculated from the MCMC method. The broken curves are a
(not-a-knot) cubic spline fits carried out on linear axes. The logarithmic axis for δτ is
for presentation purposes only. Where error bars are not indicated, the errors are smaller
than the symbol size.

Table 4. Energy of the second excited state E2 of anharmonic oscillators for the indi-
cated values of λ̃. The first shows the energy differences E2 − E0 obtained from the
extrapolation of the spline fits in figure 9. The column spline is E2 obtained from extrap-
olating spline curves in figures 6 and 9, SE is E2 obtained by the numerical integration
of Schrödinger’s equation, and the last column contains the energies calculated by the
method in [17] for λ̃ > 0.

λ̃ E2 − E0 Spline (E2) SE (E2) Ref. [17] (E2)

0 2.014 2.515 5
2 —

1 4.551 5.352 5.1794 5.1793
50 15.400 17.911 17.4379 17.4370
103 40.904 47.606 47.0202 47.0173

and is again independent of τ . The energy difference E2 − E0 is obtained by plotting
log[G4,∞(n)] versus n.

The results of such an analysis are shown in figure 9. The larger error bars for all of the
oscillators are clearly evident, as is the more limited range of discretizations that are practical.
Nevertheless, when estimates for E2 − E0 obtained from the extrapolation of the spline fits in
figure 9 are combined with the corresponding values of E0 in figure 6 are compared with exact
calculations, our estimates are found to agree to within a few per cent (table 4).

6. Summary and extensions

We have applied the MCMC method to the evaluation of the imaginary-time path integral for
the anharmonic oscillator with coupling strengths ranging from the harmonic limit to strongly
quartic. Quantities calculated include the probability density of the ground state and the ener-
gies of the ground state and the first two excited states. The ground-state probability density
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Figure 10. The profiles of potentials V in (1), written as V(x) = rx2 + λx4, with (a)
r > 0 and λ > 0, (b) r < 0, λ > 0, and (c) r > 0 and λ < 0.

becomes more localized as the potential becomes more localized due to the increase in the
quartic coupling constant, and the energy levels increase accordingly, as expected from elemen-
tary quantum mechanics. Information about higher lying excited states becomes increasingly
difficult to extract because they are exponentially suppressed in the imaginary-time path inte-
gral. Indeed, a comparison of figures 6, 8 and 9 illustrates how the statistical fluctuations
become more pronounced away from the ground state for the same number of paths used for
measurements.

The imaginary-time path integral formulation of many attractive features which suggest
applications in condensed matter and other fields physics. The method we have used here,
which is described in detail in references [23, 24, 32], can be applied to a single particle in
a wide variety of potentials. Even the basic form (1) admits several qualitatively different
types of potential (figure 10). With the potential written as V(x) = rx2 + λx4, the potential
in figure 10(a), which corresponds to r > 0 and λ > 0 is the type of potential used in this
paper. As we have explained in the introduction, there are several methods available for the
determining the ground and excited sates of this potential, so our focus on this example is
mainly the illustration of the path-integral Monte Carlo method. The potential in figure 10(b),
with r < 0 and λ > 0, which is used as a model for tunnelling and bond formation in diatomic
molecules, has been studied by Creutz and Freedman [24]. Finally, the potential in figure 10(c),
which corresponds to r > 0 and λ < 0, has no bound states. The transition from (a) and (b), for
which λ > 0, to (c), for which λ < 0, was used in the introduction to explain the divergence
in the perturbation expansion in (2) because λ = 0 is a singular point that separates poten-
tials with bound states from those with no bound states. The potentials in figures 10(b) and (c)
are particularly interesting because quantum tunnelling can be problematic for semi-classical
methods (such as WKB), in which case the numerical evaluation of the path integral becomes
indispensable for establishing benchmarks.

An altogether different type of application of the path-integral Monte Carlo method is
to quantum particles in confined systems. The interplay between interactions and particle
exchange leads to many intriguing effects in systems of Bose and Fermi particles. Even
one-dimensional or quasi-one-dimensional systems are of interest, including the behavior of
electrons in quantum wires and carbon nanotubes, where electronic motion is allowed in one
dimension, but strongly restricted in the two lateral dimensions. The harmonic potential can
be used as a model of electrons (and holes) in semiconductor quantum dots and confined cold
atoms. Extensions to multi-particle systems have also been considered, including superfluidity
and Bose condensation in 4He [46], and properties of interacting electrons in solids [47].

Moving away from physics, the path integral formalism has been applied to study the value
of financial instruments known as options [48–50]. Path integrals admit several levels of solu-
tion, such as mean-field theory and steepest descent. The MCMC method provides the standard
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against which the accuracy of these approximations is determined, as well as investigating the
effect of lifting some of the basic assumptions of pricing models.

Finally, a word about projects. The present paper is based on the (postgraduate) MSc thesis
of the principal author. But there have also been several undergraduate projects that have uti-
lized the MCMC method guided by the presentation in [32]. Two final-year MSci (two-term)
projects studied quantum particles confined to a two-dimensional square well based on their
statistics, but without any interactions. Three final-year BSc (one-term) projects studied var-
ious financial instruments within the Black–Scholes framework and proceeded to investigate
lifting some of the fundamental assumptions of the Black–Scholes model.
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