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Résumé : Les théories de Toda forment une
famille de théories quantiques des champs en
dimension deux introduites dans la littérature
physique en tant que modéles possédant, au-
dela de la symétrie conforme, une symétrie
étendue qui est codée par des W-algebres.

L'objet de cette thése est de proposer un
cadre mathématique dédié & |'étude de ces
théories. En nous appuyant sur des objets
probabilistes fondamentaux — le champ libre
gaussien et le chaos multiplicatif gaussien —
nous pourrons ainsi implémenter de maniére
rigoureuse des méthodes issues de la physique
et par la méme calculer certaines quantités cru-
ciales dans la compréhension de ces théories :
les fonctions de corrélation.

Pour ce faire nous exploiterons dans un
premier temps les symétries de ces modéles

: Une approche probabiliste des théories conformes des champs de Toda
Théorie conforme des champs, Théories de Toda, Champ libre gaussien, Chaos

en montrant que les fonctions de corrélation
définies de maniére probabiliste sont soumises
a des contraintes appelées identités de Ward.
L'existence de telles contraintes nous perme-
ttra de donner une expression explicite pour
une famille de fonctions de corrélation fonda-
mentales — les constantes de structure — et de
décrire une procédure récursive — le bootstrap
conforme — permettant de calculer d'autres
fonctions de corrélation a partir de celles-ci.
Au cours de cette démarche nous mettrons
en évidence certains liens inattendus entre des
concepts issus de la théorie des probabilités et
d'autres provenant de la théorie conforme des
champs, notamment en décrivant une décom-
position de chemin brownien qui nous perme-
ttra le calcul de coefficients de réflection des
théories de Toda en termes probabilistes.

Title: A probabilistic approach to Toda conformal field theories
Keywords: Conformal field theory, Toda theories, Gaussian free field, Gaussian multiplicative

chaos, W-algebras.

Abstract: This thesis is dedicated to the study
of a family of two-dimensional quantum field
theories called Toda conformal field theories.
Initially introduced in the physics literature, we
propose here a mathematical definition of such
models based on two key probabilistic objects:
Gaussian free fields and Gaussian multiplicative
chaos.

Within this probabilistic framework we re-
cover properties expected in the physics and
related to the enhanced symmetries enjoyed by
Toda conformal field theories, which in turn
leads to the computation of a family of corre-
lation functions —one of the main quantities
of interest.

The computation of these correlation func-
tions is based on the exploitation of the sym-

metries —encoded by W-algebras— of these
models in that they provide constraints on the
correlation functions. These constraints are
the Ward identities, whose existence will be the
starting point to the derivation of a family of
structure constants, that represent fundamen-
tal correlation functions. A recursive procedure
known as conformal bootstrap then allows to
compute other correlation functions based on
the expression of these structure constants.

Along the implementation of this program
we will shed light on some unexpected inter-
plays between probability theory and conformal
field theory. One instance of such connections
is the probabilistic description of Toda reflec-
tion coefficients, based on a generalized Brow-
nian path decomposition.
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1 - Introduction - Francais

Les théories conformes des champs de Toda forment une famille de théories quan-
tiques des champs en dimension deux, famille indexée par les algébres de Lie semi-simples
et complexes. La théorie de Liouville, dont I'étude a contribué a des progrés majeurs dans
la compréhension de la géométrie aléatoire en dimension deux — et ce aussi bien dans le
cadre de la physique que dans une perspective mathématique —, en est un des exemples
fondamentaux. Toutefois au-deld de la symétrie conforme portée par la théorie de Liou-
ville, les théories de Toda possédent un niveau additionnel de symétrie : la W -symétrie
ou symétrie de spin supérieur.

Ce degré de symétrie supplémentaire rend |'étude des théories de Toda plus complexe
que celle de la théorie de Liouville, et malgré de nombreux progrés effectués dans cette
direction en physique, le calcul de certains objets fondamentaux de la théorie — les
fonctions de corrélation d'opérateurs vertex — reste une question ouverte.

Cette these est dédiée a |'étude mathématique des théories conformes des champs de
Toda. Pour ce faire nous décrivons un cadre probabiliste au sein duquel leurs fonctions
de corrélation sont définies en tant qu'objets mathématiques rigoureux. Cet environ-
nement probabiliste s'appuie notamment sur deux objets fondamentaux : les champs
libres gaussiens et le chaos multiplicatif gaussien.

Au cours de ce chapitre introductif nous nous attachons a expliquer de maniére plus
approfondie quelles sont ces théories de Toda et de quelle maniére il est possible de les
définir de maniére rigoureuse. Ce faisant, nous décrivons comment le cadre probabiliste
proposé permet de donner un sens mathématique a certaines considérations issues de la
physique. Une attention particuliére sera accordée au calcul d'une famille de fonctions
de corrélation pour la théorie de Toda associée a I'algébre de Lie g = sl3.

Sommaire

1.1 Les théories conformes de champs de Toda . ... .. .. 11
1.1.1 La théorie conforme des champs de Liouville. . . . . . . . 11
1.1.2 La théorie conforme des champs en dimension deux . . . . 15
1.1.3 De la théorie de Liouville vers les théories de Toda . . . . 17
1.1.4 Organisation de la thése . . . . . . .. ... ... ... .. 20
1.2 Une approche probabiliste des théories de Toda . . . . . 20
1.2.1 Interprétation probabiliste de I'intégrale de chemin . . . . 21

1.2.2  Quelques propriétés supplémentaires des fonctions de cor-
rélation probabilistes . . . . . ... ..o oL 25
1.3 Etude des symétries des théories de Toda . . . . ... .. 26
1.3.1 Symétrie W et identités de Ward . . . . . . . . . ... .. 26
1.3.2 Symétrie W et un principe de réflection . . . . . . .. .. 31

1.4 Calcul d’une famille de fonctions de corrélation dans la
théorie de Toda associée a sls . . ... ... ........ 36
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1.1 . Les théories conformes de champs de Toda

Que sont les théories conformes des champs de Toda 7 Avant de nous plonger dans
I'étude de cette famille de modéles il convient de répondre a cette question élémentaire
mais non moins fondamentale. C'est I'objet de cette section introductive au cours de
laquelle nous présenterons ces théories et les enjeux qui leur sont attachés. Dans cette
perspective nous nous appuierons en premier lieu sur |'étude de la théorie de Liouville,
qui est I'exemple de théorie de Toda le mieux compris a I'heure actuelle. Dans un
second temps nous décrirons le cadre plus général de la théorie conforme des champs
en dimension deux et expliquerons comment les théories de Toda s'inscrivent dans cet
environnement.

1.1.1 . La théorie conforme des champs de Liouville

Dans un article fondateur [111], le physicien russe Alexander Polyakov pose en 1981
les fondements d'un champ de recherche qui va dés lors devenir particuliérement fertile,
I'étude de la gravité quantique en dimension deux, en décrivant une maniére naturelle de
définir une notion de surface aléatoire. Dans ce travail majeur est introduite la théorie
conforme des champs de Liouville, qui est alors envisagée comme un modéle proposant
une maniére canonique de tirer au hasard une géométrie sur une surface de Riemann
dont la topologie serait fixée [123]. Au-dela d'é&tre un objet d'études fondamental en soi,
la théorie de Liouville est désormais considérée comme étant une composante essentielle
dans la compréhension de certaines théories des cordes mais également de la géométrie
aléatoire en dimension deux, et en partie pour cette raison a été étudiée trés minutieuse-
ment que ce soit au sein de la communauté physique ou mathématique. Ces liens sont
par exemple mis en avant dans [79] ou les relations entre la théorie de Liouville et Ia
théorie des cordes sont décrites plus en détail, tandis que des détails supplémentaires sur
la notion de gravité quantique en dimension deux peuvent &tre trouvés dans [44].

En outre la théorie de Liouville est intrinséquement reliée a une famille de modéles
possédant le méme niveau de symétrie : les théories conformes des champs. Un exemple
de tels liens est la relation Knizhnik-Polyakov-Zamolodchikov [80], fondamentale dans
I'étude de modeles de physique statistique a criticalité dans un environnement aléatoire.
Mais au-dela de ses liens avec cette famille de modéles, la théorie de Liouville trouve
également de nombreuses applications en dehors de ce cadre, que ce soit dans |'étude de
modéles de matrices aléatoires [142, 137, 24] ou dans celle de fractales aléatoires [80,
50, 117]. Notre propos ici n'est pas de passer en revue toutes les applications possibles
et envisageables de la théorie de Liouville ; le lecteur curieux pourra en avoir un apercu
en consultant par exemple [103] ou sont également discutées certaines extensions de la
théorie de Liouville. Nous redirigeons également vers I'article [131] ou les différentes
perspectives communément adoptées en physique pour traiter de la théorie de Liouville
sont mises en évidence.

1.1.1.1 La théorie de Liouville par l'intégrale de chemin

Il existe plusieurs approches différentes menant a la définition de la théorie de Liouville,
dont un postulat en physique stipule qu’elles sont équivalentes. Dans ce manuscrit nous
utiliserons la définition de la théorie de Liouville par intégrale de chemin, une méthode
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communément employée en physique pour définir une théorie quantique des champs
en partant d'une théorie déterministe. Elle peut étre pensée comme une maniére de
quantifier le principe de moindre action.

[llustrons cette méthode dans le cas de la théorie de Liouville sur la sphére de dimen-
sion deux S%. La théorie classique considére des solutions du probléme d'uniformisation,
c'est-a-dire la question de trouver une métrique riemannienne sur la sphére qui lui don-
nerait une courbure constante. Ce probléme peut se formuler de maniére quantitative
en utilisant les régles de transformation sous changement conforme de la métrique de
I'opérateur de Laplace-Beltrami A, et de la courbure scalaire de Ricci R, : si g est une
métrique riemannienne sur S? et que ¢’ = e2?g est une autre métrique conformément
équivalente a g, alors les quantités Ay, R, et Ay, Ry sont reliées par

Ay =e 2N, et Ry=e2(-20,0+R,). (1.1.1)

Précisons que ces relations ne sont valables que dans le cadre de la dimension deux.
Une conséquence de I'équation (1.1.1) est la propriété que pour la métrique conforme
g’ = e2®g avoir courbure scalaire constante égale 3 —2A revient a satisfaire la relation

—2A,® + Ry + 2Ae*® = 0. (1.1.2)

Ce qui n'est rien d'autre que |'équation de Liouville.

Le probléme d'uniformisation admet une reformulation faible comme suit : si ® est
une solution de |'équation de Liouville il s'agit donc d'un point critique de |'action de
Liouville

1
 Ar

82(¢a g): /82 <<89¢<$>» 0gp(2))g + Ryp(x) + Ae%(x)) vy(dz). (1.1.3)

Remarquons que dans le cas de la sphére, si nous supposons que A est positif (autrement
dit que la courbure est négative) le théoréme de Gauss-Bonnet fournit une obstruction
topologique a I'existence d'une telle solution. Afin de pallier cette limitation il est néces-
saire de supposer le champ irrégulier, et une maniére standard de le faire est de lui
imposer des singularités coniques, c'est-a-dire de demander que le champ se comporte
comme ®(z) ~ —ayIn|z — z;| avec ay < 2 autour de certains points (zx)1 <k <N
de S%. Sous I'hypothése que chvzl ar > 4 (ce qui demande en particulier d'avoir au
moins N = 3 singularités) le probléme d'uniformisation admet une solution a courbure
constante négative que nous notons ®* comme il est montré par exemple dans [134].
En suivant cette approche le champ classique est purement déterministe. Ce n'est
plus le cas dans la théorie quantique des champs qui lui est associée, dans laquelle cette
fonction sur la sphére est désormais aléatoire et fluctue autour du champ classique. Ce
degré d'aléa est mesuré par l'intermédiaire de la constante de couplage v > 0 (qui joue
en quelque sorte le réle de la constante de Planck #) : dans la limite semi-classique ot y
tend vers 0 ce champ aléatoire devrait redevenir déterministe et égal au champ classique
®* — ce qui a été rigoureusement prouvé dans [86]. En utilisant cette constante de
couplage nous pouvons introduire une version quantifiée de I'action de Liouville (1.1.3) :

SL(¢7 g) = ﬁ /82 (<8g¢(x)v 8g¢(m)>g + QRng(x) + AeW)(x)) Vg(dx) (1.1.4)
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on Q = 3 + % est appelée la charge de fond. Le champ aléatoire de la théorie de
Liouville est alors tiré selon une mesure sur un espace fonctionnel 7 C L*(S? — R)
dont la définition prend formellement la forme

(F@),= 5 [ P9 (115)

pour toute observable du champ F', c'est-a-dire toute fonctionnelle F' : 7 — R. Dans
cette expression la mesure apparaissant a droite correspondrait a la “mesure uniforme’'sur
F, qui ne fait pas vraiment sens d'un point de vue mathématique. Le fonction de
partition Z correspond a la masse totale Z = [ e 399 D¢, rendant ainsi la mesure
définie par |'intermédiaire de I'équation (1.1.5) une mesure de probabilité. Ceci correspond
a la définition de la théorie de Liouville par I'intégrale de chemin. Cette approche est
évidemment purement heuristique et n'est pas vraiment rigoureuse mathématiquement
parlant. Toutefois il est possible de donner un sens a cette intégrale de chemin en
interprétant celle-ci dans un cadre probabiliste comme expliqué dans [40].

Un exemple classique d'une telle traduction d'intégrale de chemin dans un langage
probabiliste est donné par la mesure de Wiener W (dw), vue ici comme une mesure de
probabilité sur I'espace C(R™, R) des fonctions w continues de R™ dans R et vérifiant
w(0) = 0. Cette mesure peut formellement é&tre définie par

1 1
W(dw) = —=e*®dw, ou S(w):= —/ w'(t)?dt.
Z 2 Jar
En écrivant S(w) = 3 [, w”(t)w(t)dt on a donc par analogie avec une mesure gaussi-

enne, pour f, g convenables

/ . ([ rrowa) ([ sowoa)wae = ([ o),

En prenant f(u) = u A's et g(u) = u At on retrouve bien la propriété usuelle du
mouvement brownien :

/ w(s)w(t)dtW (dw) = s A t.
CY(R* R)

Le formalisme de I'intégrale de chemin est également similaire a celui des mesures de
Gibbs utilisé notamment en physique statistique, dans lequel I'action jouerait le réle de
I'Hamiltonien, et ou l'intégrale portant sur un espace fonctionnel serait remplacée par
une somme sur |'ensemble des configurations possibles.

Cette approche est naturelle 3 bien des égards ; notons simplement qu'une de ses
propriétés est que la mesure ainsi définie tend a favoriser des champs ¢ pour lesquels
I'action est petite, et cela est d'autant plus vrai que la constante de couplage 7 est
petite. La limite semi-classique v — 0 correspond alors a |'analogue infini-dimensionnel
de la méthode de Laplace pour une fonction d'une variable réelle. Sur I'exemple du
mouvement brownien cette limite semi-classique consiste a considérer la limite v — 0
d'expressions de la forme
1 F(w)e_v%s(w)dw,

Zy Joow+ k)
ces derniéres définissant la loi d'un mouvement brownien de variance . Le champ
classique est donc la fonction constante w = 0, qui est bien le minimum de I'action S.
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1.1.1.2 Approches mathématiques de la théorie de Liouville

Tout d'abord étudiée dans la littérature physique, la communauté mathématique s'est
par la suite emparée de la théorie de Liouville et différentes approches ont été proposées
pour en décrire un cadre mathématique, en témoigne la diversité des méthodes employées
pour définir une notion de “surface aléatoire canonique”’, amenant ainsi & de nombreux
développements dans la compréhension de la géométrie aléatoire en dimension deux.

De la méme maniére que le mouvement brownien peut se construire en tant que lim-
ite d'échelle de marches aléatoires, une surface aléatoire peut en analogie étre construite
en considérant une limite d'échelle de surfaces discrétes “naturelles”. La sphére browni-
enne introduite dans [93] est définie dans cette perspective, correspondant a une limite
d'échelle de modéles de cartes planaires aléatoires [88, 96]. Des travaux ultérieurs [18, 19]
ont permis d'étendre cette construction a d'autres surfaces que la sphére.

Il est possible également de définir une surface aléatoire directement dans le continu
en s'appuyant sur les propriétés qu'un tel objet se doit de satisfaire. Une notion de
“surface quantiquefut ainsi introduite dans [49], intrinséquement reliée a d'autres notions
fondamentales liees a la géométrie aléatoire en dimension deux : les champs libres
gaussiens, les évolutions de Schramm-Loewner [121] et les arbres aléatoires continus. Ces
surfaces quantiques, définies initialement en tant que surfaces de Riemann équipées d'une
forme volume, furent ultérieurement dotées d'une structure d'espace métrique grace a
la construction de la métrique de la gravité quantique de Liouville [42, 47, 70]. Plus
de détails sur cette approche de la géométrie aléatoire peuvent étre trouvées dans [69]
ou [43], ainsi que dans les références s'y trouvant.

Parallélement a ces développements David-Guillarmou-Kupiainen-Rhodes-Vargas ini-
tiérent dans une série d'articles [40, 68] une étude de la théorie de Liouville plus proche
de la définition originelle de Polyakov, et qui est I'approche se rapportant le plus au
cadre que nous développerons dans cette thése. En construisant les fonctions de cor-
rélation de la théorie de Liouville de maniére probabiliste, bon nombre de prédictions
faites dans la littérature physiques furent rigoureusement établies, établissant ainsi une
connection entre les communautés physiques et mathématiques. Entre autres accom-
plissements se trouve une preuve rigoureuse de la célébre formule DOZZ [84], prédite en
physique [45, 141, 131] il y a prés de trente ans, mais également une implémentation
rigoureuse de la procédure du bootstrap conforme [66], une des composantes les plus
importantes dans |'étude de la théorie conforme des champs en dimensions deux du point
de vue de la littérature physique.

Ces différentes approches ont conduit & établir diverses notions de “surface aléatoire
canonique’. Et comme bien souvent en mathématiques, ces définitions a priori distinctes
correspondent en fait & des point de vue différents sur un seul et méme objet. Les
liens entre cartes planaires aléatoires et théorie de Liouville ne sont plus a prouver, en
témoigne le fait que la sphére brownienne ne soit en fait qu'un cas particulier de surface
quantique. Ces connections sont explicitées par exemple dans [97, 98, 99, 71]. Ces
surfaces quantiques sont également étroitement liées aux objets considérés dans [40]
puisqu'elles coincident en effet dans certains cas : les articles [7, 28] montrent que
ces notions alternatives de surface aléatoire sont en fait équivalentes sur deux exemples
de telles surfaces. Ces liens ont permis d'effectuer des progrés fondamentaux dans la
compréhension de la géométrie aléatoire en dimension deux, voir e.g. [126, 128, 100, 5].
Ces différentes notions de surface aléatoire sont passées en revue dans [127].
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1.1.2 . La théorie conforme des champs en dimension

deux

L'étude de la théorie de Liouville comme proposée par David-Guillarmou-Kupiainen-
Rhodes-Vargas s'appuie sur le fait que le modéle ainsi défini entre dans le cadre de la
théorie conforme des champs en dimension deux. Nous proposons dans un premier temps
de décrire dans les grandes lignes cette notion.

1.1.2.1 Sur la théorie conforme des champs

Suite a |'article fondateur de Polyakov [111], Belavin, Polyakov et Zamolodchikov (BPZ)
présentérent dans un travail pionnier en 1984 [12] une procédure systématique pour cal-
culer les fonctions de corrélation de modéles qui comme la théorie de Liouville posse-
dent certaines symétries conformes. Ces modéles sont appelés des théories conformes
des champs en dimension deux. La méthode employée par BPZ pour résoudre ces
modéles s'appuie sur |'exploitation des contraintes posées par la symétrie conforme par
I'intermédiaire de I'étude de I'algébre de ses générateurs : I'algébre de Virasoro, un postu-
lat stipulant que la théorie des représentations de |'algébre de Virasoro peut se traduire en
contraintes concrétes sur le modéle. Grace a cette approche les fonctions de corrélation
de la théorie peuvent étre déterminées en utilisant une procédure récursive universelle en
ce qu'elle ne dépend de la théorie qu'a partir de certaines données — sa charge centrale,
ses constantes de structure et son spectre. Cette méthode est le bootstrap conforme.

Ces postulats fournissent une méthode de résolution des théories conformes des
champs en dimension deux. Toutefois définir cette notion en elle-méme n'est pas for-
cément chose aisée, et différentes perspectives ont été développées a cet effet selon le
point de vue que I'on cherche a adopter. Ainsi la théorie conforme des champs peut
étre considérée de maniére purement algébrique par la notion d'algébres vertex [22, 59]
ou dans une perspective plus géométrique au travers de |'étude de fibrés en ligne sur
des espaces de modules de courbes complexes [61]. Dans cette méme perspective men-
tionnons que le programme de Langlands géométrique posséde également des liens avec
la théorie conforme des champs [58]. Une approche axiomatique de cette notion est
cependant privilégiée en physique. Citons par exemple |'axiomatique de Segal [122] liée
au recollement de surfaces, ou les axiomes de Gawedski [62] selons lesquels une théorie
conforme correspond a un modéle covariant sous |'action de transformations conformes.
L'article [132] propose une approche concise mais néanmoins détaillée de ces différentes
notions de théorie conforme des champs, tandis le lecteur qui s'en ressent le courage
pourra consulter le livre de référence [56] pour sa part fort peu concis.

1.1.2.2 Symétrie conforme et théorie de Liouville

La théorie de Liouville est supposée dans la littérature physique étre une théorie conforme
des champs : la méthode du bootstrap conforme permet donc en théorie de calculer les
fonctions de corrélation qui lui sont associées. Nous expliquons ici quelle forme cette
procédure prend dans le cas de la théorie de Liouville sur la sphére de Riemann CU {co}.

Il est communément admis en physique que comprendre la théorie de Liouville revient
a calculer toutes ses fonctions de corrélation d'opérateurs vertex. Ces derniers sont des
fonctionnelles du champ de Liouville ®, dépendant d'un point z € C ainsi que d'un
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poids o € C et prenant formellement la forme de V,,(2)[®] = ¢*®®). Les fonctions de
corrélation d'opérateurs vertex sont de cette maniére définies en utilisant |'intégrale de

chemin via
N . N
<H Vak(zk»’y,u = z / H eak¢(zk)€_SL(¢)D¢
k=1

k=1

ol N est un entier supérieur ou égal & 3. La connaissance des fonctions de corrélation
permet de déterminer la loi du champ de Liouville ® en cela qu'elle permet le calcul de
toutes les quantités

(e” Js2 f(ﬂﬁ)‘b(fv)Vg(dI)%W fe 12 (82) 7

celles-ci formant, d'un point de vue probabiliste, I'analogue de la transformée de Laplace
d'une variable aléatoire réelle X, ou le paramétre A\ dans E [e‘AX} serait remplacé par
une fonction f : S? — R.

Afin de calculer ces fonctions de corrélation, la premiére étape dans la procédure du
bootstrap conforme est de déterminer les constantes de structure de la théorie, qui sont
ici les fonctions de corrélation avec N = 3 opérateurs vertex. Leur calcul est rendu
possible par I'existence de contraintes liées a la symétrie conforme. Celles-ci peuvent
se manifester par certaines identités — les identités de Ward — exprimant la covariance
conforme des fonctions de corrélation, mais également de maniére plus élaborée en
étudiant la théorie des représentations de I'algébre de Virasoro, donnant ainsi lieu a des
identités supplémentaires. Cette approche est au coeur de la méthode de preuve proposée
par Teschner du calcul des structures de constantes de Liouville [131], implémentée dans
un cadre mathématique rigoureux dans [84], retrouvant ainsi la formule DOZZ [45, 141]
prédite en physique.

L'étape suivante dans le calcul des fonctions de corrélation est désormais de com-
prendre comment mettre en place une procédure récursive pour les déterminer a partir
des constantes de structure. La méthode du bootstrap conforme s'appuie sur la connais-
sance de certains objets appelés blocs conformes Fp — qui sont universels dans le sens
ol ils dépendent uniquement de la théorie par sa charge centrale et poids conformes A,
— et la donnée du spectre de la théorie de Liouville, la demi-droite (Q +iR™. La formule
du bootstrap conforme stipule alors que le calcul de fonctions de corrélation 3 N = 4
points se raméne a celui pour N = 3 via

(Ve (0)Va, (Z>Va3(1)va4<oo>>%u =
CDO% (a1, 09, Q — iP)CEOPH(Q + 1P, g, ) | 2[R0~ Bea=8e0) | Fp () 2 AP
(1.1.6)

1

87T R+

ot CPO% (o, arp, a3) fait référence a la formule DOZZ décrivant les constantes de
structure de la théorie de Liouville. Prouver rigoureusement un tel résultat est assez
exigeant mais cela a néanmoins été effectué dans I'article [66]. Le calcul de fonctions de
corrélation avec N > 5 s'effectue de la méme maniére en ramenant le calcul a celui de
fonctions de corrélation avec un nombre inférieur d'insertions, ce qui permet d'exprimer
une fonction de corrélation générale en terme de la formule DOZZ et blocs conformes
comme démontré dans ['article [67].
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1.1.3 . De la théorie de Liouville vers les théories de Toda

Suite a I'article de BPZ de 1984 [12] et la mise en place du bootstrap conforme, une
question se pose alors naturellement : que se passe-t-il lorsque |'algébre de symétrie con-
tient strictement |'algébre de Virasoro 7 En d'autres termes, est-ce que les mémes tech-
niques restent valides lorsque la symétrie du modéle est étendue au-dela de la symétrie
conforme ? Zamolodchikov propose en 1985 [143] un cadre destiné a étendre cette
procédure a des modéles possédant une symétrie supérieure, la W-symétrie ou symétrie
de spin supérieur. Ces symétries sont codées par des W -algébres, des algébres vertex
contenant |'algébre de Virasoro en tant que sous-algébre. Ces objets sont particuliére-
ment étudiées de point de vue de la théorie des représentations des algébres vertex [6].

Les théories de Toda, une famille de théories conformes des champs indexée par les
algebres de Lie semi-simples et complexes g, fournissent des extensions naturelles de la
théorie de Liouville dans ce cadre. En effet la théorie de Liouville est en fait I'exemple
le plus simple de théorie de Toda, dans le sens ou elle correspond au choix d'algébre
de Lie g = sly, et dans ce cas |'algébre de symétrie est simplement |'algébre de Vi-
rasoro. Toutefois pour g générique ces algebres de symétrie contiennent strictement
I'algébre de Virasoro, et pour cette raison les théories de Toda sont loin d'étre com-
plétement comprises, en dépit d'avoir initié une quantité considérable de travaux dans
la littérature physique. Ces théories sont de fait intéressantes dans la perspective de la
W -symétrie [26], mais également pour leurs liens avec d'autres théories quantiques des
champs (et notamment celles avec symétrie de Kac-Moody, voir [9, 8] pour leurs liens
avec les modéles de Wess-Zumino-Witten), certains modéles de physique statistique (en
particulier le modele d'lsing [1] dont un traitement journalistique est donné dans [23]),
ou encore au sein de la correspondance AGT [4, 39, 104]. Dans cette sous-section
nous nous attacherons a expliquer comment ces théories sont définies dans la littérature
physique.

1.1.3.1 Les théories de Toda et I'intégrale de chemin

De la méme maniére que les théories de Liouville, les théories de Toda se définissent
par l'intermédiaire d'une intégrale de chemin. Plus précisément les théories de Toda
définissent une fonction aléatoire, le champ de Toda ® prenant ses valeurs sur une
surface riemannienne (X, g) et a valeur dans un espace euclidien a ~ R” (r = 1 dans
le cas de Liouville). Cet espace euclidien est équipé d'un produit scalaire (-, ) et d'une
base spéciale, composée de racines simples (eq,- - , e,.), tous deux hérités de la structure
d'algeébre de Lie sous-jacente. Cette base est représentée en 1.1 ci-dessous dans le cas
de g = sl3, pour lequel a ~ R? est équipée d'une base (eq, e5) vérifiant (e;, e;) = 2 pour
i = j tandis que (e;, e;) = —1 dés que 7 # j.
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Figure 1.1: Les racines simples associées a g = sl;

Etant donnée une métrique riemannienne ¢ sur ¥, 'intégrale de chemin définissant
le champ de Toda prend alors la forme de’ :

(F(®))r,y = % /f F(¢)eme®9) D¢ (1.1.7)

ot D¢ correspond comme précédemment 3 une “mesure uniforme’sur un espace F de
fonctions définies sur X et a valeurs dans a, et ou Sy 4 est I'action de Toda

ST,Q(¢7 g) = i /E <<8g¢(33), ag¢(x)>g + Rg<Q> ¢(x)) + 4 Z Mie’y<6i7¢(x)>> Vg(dx)'

41

(1.1.8)
Dans cette expression la métrique riemannienne g a courbure scalaire R, gradient J, et
forme volume v, tandis que (-, -), est le produit scalaire sur |'espace tangent associé aux
fonctions différentiables > — a. La constante de couplage +y est a valeurs dans (0, 1/2)?
tandis que la charge de fond @) est a valeurs dans a. Les constantes cosmologiques fi;,
1 < i < r sont a valeurs dans R. Afin de s'assurer que le modéle est bien covariant
conforme, la charge de fond et la constante de couplage doivent étre liées par la relation

2
Q=p+ ;pv (1.1.9)

ol p et p¥ sont deux vecteurs spéciaux dans a, que nous définirons au cours du Chapitre 3
(voir I'illustration 1.1 pour g = sl3). La théorie classique associée aux théories de Toda

"Nous n’'incluons pas la dépendance en v dans les notations introduites ici afin de les
garder concises.

2| a constante de couplage différe de celle de Liouville par un facteur multiplicatif de v/2
(dG au fait que les racines simples “longues”ont norme +/2), expliquant pourquoi elle prend
ces valeurs dans (0, v/2) et non plus dans (0, 2).
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est également d’origine géométrique et prend son fondement dans |'étude des surfaces
minimales [21] et de la WW-géométrie [90, 63].

En analogie avec la théorie de Liouville, les opérateurs vertex sont des fonctionnelles
du champ de Toda dépendant d'un point z € 3, mais le poids « est désormais un
élément de |'espace euclidien a (ou plutét de sa complexification h = a @ ia). Elles sont
définies par I'expression V,(2)[®] = e/®®#) si bien que leurs fonctions de corrélation
prennent la forme de

N

H e (22)) / He :?(2)) e =51.0(9:9) D, (1.1.10)
F

k=1 k=1

Tout comme pour la théorie de Liouville, calculer ces fonctions de corrélation est un des
buts principaux de I'étude des théories de Toda.

1.1.3.2 Le bootstrap conforme pour les théories de Toda

Les théories de Toda possédent plus de symétries que la théorie de Liouville, mais du fait
que le champ de Toda est a valeurs dans un espace euclidien et non plus simplement a
valeurs réelles leur étude est en fait plus compliquée et comprendre comment implémenter
la procédure du bootstrap conforme n'est pas un probléme résolu a I'heure actuelle, et
ce méme du point de vue de la physique. Certaines fonctions de corrélation en ont été
calculées [52, 55], mais fournir une expression pour toutes les structures de constante
reste pour |'heure actuelle une question ouverte. Nous pouvons néanmoins citer les
articles [101, 74] ou de telles formules sont exprimées — sans toutefois étre explicitement
calculées — en termes de quantités apparaissant dans le cadre de la correspondance
AGT, ainsi que I'article [38] ot la méthode récursive au ceeur du bootstrap conforme est
esquissée.

Au cours de cette thése une attention particulére sera consacrée a la théorie de Toda
associée a l'algebre de Lie g = sl3, qui est le cas le plus simple pour lequel I'algébre
de symétrie contient strictement |'algébre de Virasoro. Pour cette théorie de Toda la
méthode du bootstrap ressemble a celle développée pour la théorie de Liouville mais
est un peu plus exigeante. Une premiére conséquence des contraintes posées par les
symétries du modéle est le calcul d'une famille de fonctions de corrélation a trois points
(Vay (0)Vay (1) Vo, (00)). Une différence majeure avec la théorie de Liouville est que la
méthode du bootstrap conforme ne permet pour l'instant de calculer de telles fonctions
de corrélation que sous les hypothéses que I'un des opérateurs vertex est un champ
semi-dégénéré, ce qui signifie que le poids correspondant appartient & un sous-ensemble
de a. Sous cette hypothése ces fonctions de corrélation a trois points sont décrites par
la formule de Fateev-Litvinov [52], notée ici CF"(ax, a3, a3)?, qui généralise la formule
DOZZ.

A partir de I'expression de cette famille de fonctions de corrélation a trois points, la
question se pose alors de la forme que prendrait la procédure récursive centrale dans le
bootstrap conforme, et si une formule similaire a celle pour la théorie de Liouville existe.
Un travail en cours mené conjointement avec Colin Guillarmou [32] tend a prouver que
c'est effectivement le cas en proposant une formule similaire a I'équation (1.1.6). A notre

3Le signe “«"indique que I'opérateur vertex correspondant est semi-dégénéré.
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connaissance il s'agit de la premiére implémentation de cette procédure pour la théorie
de Toda considérée.

1.1.4 . Organisation de la these

Un des résultats principaux présentés dans ce manuscrit est le calcul rigoureux d'une
famille fonctions de corrélation a trois points dans la théorie de Toda associée a sls,
retrouvant ainsi la formule de Fateev-Litvinov [52]. Pour ce faire nous proposons une
définition probabiliste des fonctions de corrélation associées aux théories de Toda et nous
appuyons sur les propriétés des objets probabilistes ainsi définis possédent, en relation
avec celles attendues en physique.

Dans un premier temps nous établirons le cadre général dans lequel I'interprétation
mathématique des théories de Toda se placent, cadre comprenant notamment des notions
de base sur les algebres de Lie simples et complexes, de géométrie conforme ainsi que les
objets probabilistes que nous considérerons dans la suite. C'est le contenu du chapitre 3.

Le chapitre suivant, Chapitre 4, sera dédié a la définition mathématique des fonctions
de corrélation des théories de Toda basée sur l'interprétation probabiliste de I'intégrale
de chemin (1.1.5). Certaines propriétés basiques mais néanmoins cruciales des objets
ainsi construits seront présentées également au cours de ce chapitre, dont le contenu
sera détaillé en amont dans la section 1.2.

A partir du chapitre 5 nous commencerons a nous focaliser sur I'étude de la théorie de
Toda associée a g = sl3, et dans un premier temps de ses symétries. Pour ce faire nous
prouverons que certaines identités encodant ces symétries sont vérifiées sur le modéle
probabiliste construit précédemment. Au cours du chapitre 6 nous proposerons un détour
hors du cadre de la théorie des champs et détaillerons certaines implications somme toute
assez inattendues de la symétrie W sur des objets purement probabilistes. Pour ce faire
nous établirons un lien entre le principe de réflection en théorie des probabilités et la
notion de réflection en théorie conforme des champs (de Toda). Le contenu de ces deux
chapitres est esquissé en section 1.3.

En s'appuyant sur les résultats établis au cours des chapitres précédents, nous prou-
verons dans le chapitre 7 qu'une famille de fonctions de corrélation a trois points pour
la théorie de Toda associée a sl3 et définies par des expressions probabilistes sont bien
décrites par la formule de Fateev-Litvinov. Pour ce faire nous traduirons dans un lan-
gage mathématiquement rigoureux un certain nombre de techniques utilisées en physique,
comme nous |'expliciterons dans la section 1.4. Enfin nous présenterons dans le chapitre 8
un travail en cours avec Guillarmou ou est explicitée la maniére de conduire la procédure
récursive du bootstrap conforme pour la théorie de Toda associée a sl3. Nous décrirons
notamment comment |'étude de |'"Hamiltonien de Toda permet de mettre en place le
bootstrap conforme dans le cadre probabiliste.

1.2 . Une approche probabiliste des théories de
Toda

Ayant présenté les théories de Toda dans la forme sous laquelle elles sont étudiées
dans la littérature physique, nous pouvons désormais apporter un regard mathématique
sur cette famille de modéles et en premier lieu décrire comment les fonctions de corréla-
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tion qui leur sont associées peuvent étre rigoureusement définies. Nous nous concen-
trerons dans ce manuscrit sur la théorie de Toda sur la sphére de dimension deux S2,
identifiée a la sphére de Riemann CU{oc}. Cette section fournit un résumé du chapitre 4
en se basant sur les notions introduites dans le chapitre 3. Les résultats présentés sont
issus de I'article [34] rédigé conjointement avec Rhodes et Vargas.

1.2.1 . Interprétation probabiliste de I'intégrale de chemin

L'intégrale de chemin (1.1.5) définissant de maniére formelle les théories de Toda ne
fait pas vraiment sens mathématiquement parlant. |l convient donc dans un premier
temps de donner un sens rigoureux a cette écriture et définir les fonctions de corrélation
d'opérateurs vertex en tant qu'objets mathématiques bien définis. Pour ce faire nous
nous appuierons sur un cadre probabiliste lui-méme basé sur des champs libres gaussiens
et la théorie du chaos multiplicatif gaussien, que nous définissons Section 3.2.

1.2.1.1 Définition des fonctions de corrélation

Nous expliquerons au cours de la section 4.1 qu'il est en effet possible d'interpréter le
terme quadratique apparaissant dans |'action de Toda (1.1.8) par analogie avec un vecteur
Gaussien. De fait une fois inséré dans |'intégrale de chemin (1.1.5) le terme quadratique

e—%(@(%)@ml)gﬁ avec (f,h)r> = /(f(x),h(x))vg(dx) pour f.h:Y —a

3

est réminiscent de la densité
1 _
((2m)™ det(A)) 2 e 2 @A gy Ly

d'un vecteur gaussien X = (X, -+, X)) de matrice de covariance A. Il est donc naturel
de penser au champ de Toda en terme d'un “vecteur gaussien infini-dimensionnel’- et
plus précisément une fonction aléatoire gaussienne sur C a valeurs dans a — décrit par
une matrice de covariance de la forme :

E [(u, X9(x)) (v, X9 (y))] = (u, 0)Gq(z,y)

ou Gy est la fonction de Green de I'opérateur de Laplace-Beltrami A, sur (3, g), cor-
respondant formellement a l'inverse de cet opérateur. Toutefois comme la fonction de
Green diverge le long de la diagonale x = y ce champ n’est pas une véritable fonc-
tion mais plutét une distribution aléatoire : il s'agit d'un champ libre gaussien. Dans
I'étude de cette fonction généralisée il est alors standard de considérer dans un premier
temps une version régularisée (X?)__, du champ XY — par exemple par convolution
X9 := X9 p., voir Section 3.2. Les champs ainsi définis sont des fonctions lisses, ce qui
permet de donner un sens & nombre d'expressions (notamment |'exponentielle du champ
libre comme nous I'étudierons dans ce manuscrit), tout I'enjeu étant de comprendre
comment peut s'effectuer le passage a la limite quand ¢ — 0. Cette procédure est au
ceeur de la définition du chaos multiplicatif gaussien. Avant de poursuivre soulignons que
le champ libre gaussien a acquis une place prépondérante dans de nombreux domaines
des probabilités et notamment la géométrie aléatoire en dimension deux, en cela qu'il
joue un réle similaire — de par entre autres par son universalité — & celui du mouvement
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brownien ou la variable de temps serait remplacée par une variable deux-dimensionnelle.
Nous renvoyons par exemple aux articles [125, 112] ot des propriétés et applications
de cet objet fondamental sont décrites. Il est important a ce stade de souligner que le
considéré dans [40] pour définir le champ de Liouville.

En se basant sur cette interprétation du terme quadratique de l'action de Toda
I'intégrale de chemin peut désormais se définir en termes mathématiques, en identifiant
pour toutes fonctions F' convenables et métriques riemanniennes g:

(F(®))y, = zig /GE[F <X9 + %lng + c)>
(1.2.1)

1 - "
exp _E/ <R9<Q, X9+ c) +4m Yy et X +%lng+c>> dv, ] de,
c i=1

ou Z, est défini comme un déterminant régularisé, et ot le terme supplémentaire %lng
apparaissant dans la définition du champ de Toda est déja présent dans la théorie de
Liouville et est nécessaire afin d'obtenir un modéle invariant conforme. Il est impor-
tant de souligner que rendre compte dans le terme d'action de |'exponentielle du champ
libre gaussien n'est pas forcément chose aisée puisque X7 est une distribution et non
une véritable fonction. Afin de donner un sens a cette expression il est nécessaire dans
un premier temps de considérer la version régularisée (X?).~o du champ : ['expression
e(1eX2(®) est alors bien définie ponctuellement mais diverge quand ¢ — 0. Pour pal-
lier ce probléme il convient de renormaliser cette variable aléatoire par son espérance :

elvei XL (@)

sous |'hypothése que (ve;, ve;) < 4, la limite lim 7dvy(z) définit une mesure

250 E[ewi,xg (2)
aléatoire sur C. Elle est appelée mesure de chaos multiplicatif gaussien. Nous renvoyons
a la Section 3.2 pour plus de détails sur la construction de cet objet. Initialement in-
troduite par Kahane en 1985 [76], la théorie du chaos multiplicatif gaussien a connu
récemment un renouveau d'intérét en partie du fait de ses nombreuses applications, que
ce soit dans le domaine de la finance [48], pour son réle dans la modélisation de la turbu-
lence [81, 105, 92] ou encore en lien avec des modéles de matrices aléatoires [15, 36] mais
aussi certaines propriétés de la fonction ¢ de Riemann [120]. La richesse de cette théorie
la rend intéressante également en elle-méme, et a initié de nombreux champs d'étude
— analyse multrifractale [16], définition du chaos multiplicatif imaginaire [85, 75], inté-
grabilité... Nous renvoyons vers [115] et les références s'y trouvant pour une description
plus compléte de cette théorie et ses applications.

Les fonctions de corrélation d’opérateurs vertex sont alors définies en prenant formelle-
ment comme fonctionnelle F(®) = []r_, e{*®() Toutefois comme précédemment
du fait de I'absence de régularité du champ il convient de régulariser et renormaliser cette
expression afin d'obtenir un objet bien défini. Plus précisément, la définition probabiliste
des fonctions de corrélation (pourvu qu'elle fasse sens) prend la forme de la limite

N

N g Q
1 6<Oékvxs (2k)+%5 Ing(zk)+c)
<||Va (Zk)>7 :hm—/E“l P
k=1 ' Ve Zg Ja k=1 Q(Zk)< ké‘“E [€<ak,X§(Zk)>]

1 - g
exp —E/ (R9<Q7 X9+c)+ 47TZ,LM€W<6“X‘ +%lnﬁ@) dv, ] dc.
¢ i=1

(1.2.2)
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Cette expression peut se reformuler d'une maniére plus exploitable en utilisant le théoréme
de Girsanov (ou Cameron-Martin). En effectuant cette procédure le résultat fondamen-
tal suivant montre que les fonctions de corrélation peuvent étre ainsi définies en tant
qu’'objets mathématiques rigoureux :

Théoréme 1.2.1. Soit g une algebre de Lie simple, complexe et de dimension finie.
Sous I'hypothése que la constante de couplage satisfait v € (0,+/2), l'existence et
la non-trivialité des fonctions de corrélation (V,,(z1) - - - Vay (2n))4.q NE dépend pas

de la métrique g au sein de la classe conforme de g. De plus :

1. (Bornes de Seiberg) Les fonctions de corrélation (Va,(z1) - -+ Vay (28)) g0
existent et sont non triviales si et seulement si les deux hypothéses suivantes
sont vérifiées :

Pourtout1 <i<r, s >0 et (ap—Q,e;) <0 pourtoutl <k<N

a0

ou s; .=
~

(1.2.3)

2. (Représentation probabiliste) Dans le cas particulier ou g = g les fonctions
de corrélation prennent la forme de

<Va1 (Zl) T VaN (ZN)>97§

r

F SZ ;Si — (L, - €; —S;
(RS2 ) T s m | [[ 2 © 7 | (2
=1

i=1 v 1<E<IKN

ou les variables aléatoires appraissant dans l'espérance correspondent a des
mesures de chaos multiplicatif gaussien, formellement définies par
() 10en il o)

- < >e<wei,xg<x)+%lng<m>>dx,
Ly [ = 27"

Z(ffa) (dx)

—*— |d*2] que nous avons considérée dans cet

1+|z|
énoncé vient de l'identification de I(a sphére S? (équipée de sa métrique usuelle) avec
la sphére de Riemann (équipée avec §) par projection stéréographique. Les vecteurs
(w')1 < i< forment la base de a duale a celle des racines simples : (e;,w/) = &; ;. Plus
de détails concernant cet énoncé sont donnés Section 4.1 (voir aussi Figure 1.1).

Grace a ce résultat nous pouvons construire les fonctions de corrélation des théories
de Toda pourvu que les bornes de Seiberg (1.2.3) soient satisfaites. L'existence de telles

bornes sur les poids est déja présente dans I'étude de la théorie de Liouville [123, 40].

La métrique particuliere ¢ =

1.2.1.2 Covariance conforme des fonctions de corrélation

Avant d’étudier des propriétés plus élaborées de ces fonctions de corrélation probabilistes,
il convient d'abord de s'assurer qu'elles vérifient les hypothéses de base de la covariance
conforme. Pour cela nous démontrons que |'expression probabiliste des fonctions de
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corrélation proposée dans le Théoréeme 1.2.1 satisfait des propriétés de base liés a la
symétrie conforme : la covariance conforme des fonctions de corrélation et |'existence
d'une anomalie de Weyl sous changement conforme de la métrique g sur CU {oo}. Ces
hypothéses correspondent & une partie de |'axiomatique proposée par Gawedski [62] pour
la théorie conforme des champs.

La premiére de ces deux propriétés correspond au comportement des fonctions de
corrélation sous des transformations préservant la structure conforme de CU{oo}. Plus
précisément si I'on agit sur les insertions z1, - - - , zy entrant dans la définition des fonc-
tions de corrélation par I'intermédiaire de transformations de Mébius, les fonctions de cor-
rélation devraient étre perturbées d'une maniére explicite, décrite dans |'équation (1.2.5)
plus bas. L'anomalie de Weyl montre quant a elle que la dépendance en la métrique
riemannienne g équippant la sphére de Riemann est explicite au sein d'une méme classe
conforme. Plus précisément, |'équation (1.2.6) montre que si ¢’ et g sont deux métriques
riemanniennnes sur la sphére de Riemann toutes deux conformément équivalentes a ¢
alors les fonctions de corrélation qui leur sont associées différent par un facteur multi-
plicatif explicite dépendant uniquement de la charge centrale de la théorie et non des
fonctions de corrélation considérées.

Le résultat suivant montre que les fonctions de corrélation probabilistes satisfont a
cette axiomatique dans le sens ou :

Théoréme 1.2.2. Sous les hypothéses du Théoréme 1.2.1:

1. (Covariance conforme) Soit ) une transformation de Mébius du plan. Alors

(Vo (¥(21)) Ve (0 (2n))ag = [ [ 19/ (2722 (Vi (21) -+ Vi (28))ag

k=1

(1.2.5)
ol les poids conformes sont donnés par A, = (3,Q — ).

2. (Anomalie de Weyl) Pour une classe de fonctions ¢ : C — R (précisément
¢ € C*(C), voir Section 4.2) on a

(Vi (21) - Van (28 ))guemg = 92 2@V (21) - Vi (2n))gg (126)

ou Sy, est la fonctionnelle de Liouville (avec A = 0)

Sul.0) = [ (0yels + 2Ryp) dv;
C
et la charge centrale cr est donnée par cr = r + 6(Q, Q).
Ces propriétés sont en fait des conséquences de celles du champ libre gaussien,
soulignant les liens importants entre cet objet probabiliste et la géométrie conforme.

Elle seront prouvées Section 4.2. Nous notons que ces caractéristiques sont également
présentes dans la formulation probabiliste de la théorie de Liouville [40].
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1.2.2 . Quelques propriétés supplémentaires des fonctions

de corrélation probabilistes

Les fonctions de corrélation étant désormais des objets mathématiques bien défi-
nis et vérifiant certaines hypothéses d'invariance conforme, nous pouvons donc étudier
quelques-unes de leurs propriétés plus analytiques. Nous nous appuierons ici sur les
articles [30] et [33], le second rédigé en collaboration avec Huang.

1.2.2.1 Un premier prolongement analytique des fonctions de corréla-
tion

Une hypothése supplémentaire faite en physique est que les fonctions de corrélation
dépendent de maniére analytique en leurs poids aq,--- ,an. Cet axiome est en fait
assez puissant et fondamental dans |'implémentation du bootstrap conforme envisagée
par BPZ [12]. Nous nous attacherons donc a vérifier que les fonctions de corrélation
probabilistes vérifient cette hypothése en montrant que I'expression (1.2.4) dépend ana-
lytiquement en les poids ()1 <k < N-

En outre nous avons vu précédemment dans le théoréme 1.2.1 que la construction
probabiliste des fonctions de corrélation placait deux restrictions sur les poids qu'il était
possible de considérer pour définir les fonctions de corrélation. La premiére contrainte
que (g — @Q,e;) < 0 (autrement dit que oy — ) appartienne a la chambre de Weyl
C_) est nécessaire pour que la représentation probabiliste fasse sens, mais la deuxiéme
qui requiert que <Z£f:1 ar — 2Q,w;”y > 0 peut en fait étre dépassée. En effet dans
I'équation (1.2.4) les premiéres singularités apparaissant lorsque (Zgzl ar—2Q,w’) <0
viennent des poles sur —N de la fonction Gamma I, tandis que |'espérance est en fait
bien définie sous des hypothéses plus générales.

En se basant sur cette observation, nous prouvons que les fonctions de corrélation
probabilistes dépendent de maniére analytique en les poids (a)1 <k < v et qu'elles ad-
mettent également un prolongement analytique au-dela des bornes de Seiberg (1.2.3)
toujours défini de maniére probabiliste :

Théoréme 1.2.3. Soient z,, - - -,z € C distincts et considérons le sous ensemble
de (Q + C_)N défini par

By ={(a1, - ,an) € (Q+C)N

1
tels que — s; < A min —{(Q — ag,e’) pour tout 1 < i < r} .

m k=1,..,N 7y

(1.2.7)
L'application considérée Equation (1.2.4) :
r F(S) —s; N T
am ([ ) I e —al ™ E|[[25,@© ] (.28
i=1 v 1<k<I<N =1

est méromorphe dans un voisinage complexe de By C (C")", avec péles dans

Py ={a € By, s;=0 pouruncertain 1<i<r}.
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La preuve de ce résultat se base sur certaines propriétés du chaos multiplicatif
gaussien et plus précisément sur les conditions sous lesquelles ses moments existent.
L'ensemble By en en fait |'ensemble optimal pour lequel I'espérance fait sens.

Nous expliquerons plus tard que nous pouvons dépasser en outre cette représentation
en étudiant plus en détail la queue de distribution des mesures de chaos multiplicatif
gaussien considérées.

1.2.2.2 Quelques propriétés analytiques des fonctions de corrélation

Dans la perspective d'étudier les symétries des théories de Toda nous devrons calculer
les dérivées de ses fonctions de corrélation. Afin de s'assurer que cela est effectivement
possible nous décrirons certaines caractéristiques de celles-ci dans I'optique de démontrer
le résultat de régularité suivant :

Proposition 1.2.1. Soient zy, - - - , zy € C distincts. Sous I'hypothése que les poids
(g, -+, ) appartiennent a By 1, la fonction zy — (Hffzo Vi, (z1)) est de classe
C?surC\ {z1, -+ ,2n}.

La section 4.4 sera consacrée a ces aspects plus techniques des fonctions de corréla-
tion probabilistes. Nous étudierons en particulier certaines estimées de fusion ainsi que
I'implémentation de |'intégration par partie gaussienne dans ce cadre.

1.3 . Etude des symétries des théories de Toda

La construction des fonctions de corrélation probabilistes et les propriétés qu'elles sat-
isfont représentent le point de départ d'une étude mathématique rigoureuse des symétries
se trouvant au cceur des théories de Toda. Une des manifestations de ces symétries est
I'existence d'identités de Ward satisfaites par les fonctions de corrélation, que nous prou-
vons rigoureusement pour la théorie de Toda associée a |'algebre de Lie g = sl et sur
la sphére de Riemann C U {co}. Nous nous baserons sur I'article sus-mentionné [33].
Nous expliquerons également comment différents principes de réflection (dans le cadre
des probabilités ou de la théorie des champs) peuvent &tre mis en perspective et avoir
des conséquences inattendues, notamment par la description d'une décomposition de
chemins browniens ainsi que de la queue de distribution de mesures de chaos multipli-
catif gaussiens corrélés. Ces résultats sont issus de [31].

1.3.1 . Symétrie W et identités de Ward

En théorie conforme des champs, la symétrie des modéles se manifeste notamment
par |'existence d'une certaine observable du champ appelée tenseur énergie-impulsion.
Les identités de Ward du modeéle, encodant les symétries locales de celui-ci, montrent
qu'insérer ce tenseur dans une fonction de corrélation peut &tre décrit de maniére to-
talement explicite en termes de dérivées de cette fonction de corrélation.

Un raisonnement similaire peut étre appliqué de la méme maniére pour des modéles
possédant un degré plus élevé de symétrie. Associés a ces symétries supplémentaires
seront des tenseurs de spin supérieur, dont l'insertion dans des fonctions de corrélation
conduit & des identités supplémentaires mais plus complexes a exploiter.
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Nous détaillons ici ces identités de Ward et expliquons comment elles peuvent se
vérifier sur notre modéle probabiliste.

1.3.1.1 Symétrie conforme et tenseur énergie-impulsion

Une conséquence cruciale de la méthode développée par BPZ [12] est de réduire I'étude
des symétries du modele a celle de I'algebre de Virasoro, |'algébre de symétrie des théories
conformes des champs en dimension deux. Au cours de cette étude la considération d'un
courant holomorphe de spin 2, le tenseur énergie-impulsion dénoté T, émerge de maniére
naturelle. En effet ce tenseur admet formellement une expansion en séries de Laurent
qui prend la forme

T(z) =) Lale) (1.3.1)

% Gom

autour d'un point z € C, et ol les modes L,, correspondent aux générateurs de |'algébre
de Virasoro, dont les relations de commutation sont décrites par

Loy, L] = (7 — m)Losn + 1—02(71 ~ Dn(n+ Ddnimold, (1.3.2)
avec ¢ la charge centrale de la théorie conforme des champs considérée.

Dans la théorie de Liouville ce tenseur peut s'obtenir (formellement toujours) en
faisant varier le fonctions de corrélation par rapport a la métrique g (non plus dans une
méme classe conforme) et admet ainsi une expression alternative en tant que fonction-
nelle du champ de Liouville ®. Plus précisément le tenseur énergie-impulsion T peut
étre défini par |'expression

N 5 N
<T(2’0) H Ve, (Zk:)>g = 47T(59T(20) <kl:[1 Vak(zk)>g (1.3.3)

k=1

ou la structure métrique varie autour du point 2z € C. Une conséquence de cette
définition est que le tenseur énergie-impulsion admet une expression explicite en tant
que fonctionnelle du champ de Liouville :

T(2)[®] = Q2P(2) — (9.9(2))". (1.3.4)

Une justification mathématique de cette heuristique se trouve dans les articles [82, 107].
Une des propriétés fondamentales de ce tenseur est son développement de produit
d’opérateurs avec les opérateurs vertex, qui est formellement décrite par I'asymptotique

A)Va(z) | 0.Va(2)

(z0 — 2)? 20— 2

T (20)Va(z) = + termes holomorphes (1.3.5)

quand zp — z. Cela implique en particulier que les fonctions de corrélation d'opérateur
vertex sont solutions de |'identité de Ward :

e [[vate =3 (24 =2 D). 0:36)
k=1 k=1

=1
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La dimension conforme de |'opérateur vertex V, est son poids conforme A, qui est donné
par A, == % (Q — %). Dans cette expression la dérivée est une dérivée complexe — et ce
sera le cas dans le reste du manuscrit — c'est-a-dire que 9. f (2, y) = 5 (0, — i9,) f(x,y)
tandis que 0; est définie de la méme maniere par 9 f(z,y) = 1 (9, + i9,) f(z,y). Dans
le cadre de la théorie de Liouville cette identité de Ward a été rigoureusement prouvée
dans [83] en se basant sur la définition probabiliste de ces objets présentée dans [40].

Combinée avec I'holomorphicité a I'infini de ce tenseur, ce qui signifie que T'(2) ~ z%
pour z — 0o et qui est un fait en général axiomatique, I'identité de Ward implique que
les fonctions de corrélation satisfont trois identités de Ward globales

N N
> (200 + 12 Ag) (] Ve (20)) = 0
k=1

=1

pour 0 < n < 2, traduisant le fait que les fonctions de corrélation sont covariantes
conformes dans le sens ot pour n'importe quelle transformation de Mobius ¢ du plan,

(T Vau(wz)) = TTI G2 (T T Ve G-

1.3.1.2 Symétrie 11/ et courants de spin supérieur

Pour des modéles possédant une symétrie supérieure comme c'est le cas pour les théories
de Toda, I'algebre de symétrie contient strictement |'algébre de Virasoro. Ces extensions
furent introduites peu de temps aprés l'article fondateur de BPZ [12] par Zamolod-
chikov [143] avant que des modéles possédant ces symétries ne soient mis au jour [54, 53].
Le méme raisonnement basé sur des développements de produit d'opérateurs entre
des courants holomorphes et des opérateurs vertex reste valide dans ce cadre, une spé-
cificité étant que ce niveau supérieur de symétrie s'accompagne également de courants
holomorphes supplémentaires : les courants de spin supérieur W (pour 3 < i < r+1).
Dans cette thése nous étudions plus spécifiquement la théorie de Toda associée a
g = sls, auquel cas il y a un unique courant de spin 3 W := W® en plus du tenseur
énergie-impulsion. Ce courant admet une expansion en série de Laurent de la forme

Wi(z) =) Walz) (1.3.7)

~ (ZO _ Z)n+3

L'algebre W est alors I'algébre vertex engendrée par la famille des (L,,, W, ) mez dont
les relations de commutation sont données par

[Lm7 Wn] = (2m - n)wm—i-'m (138)

tandis que celle entre les modes 1/ est plus compliquée et en fait bilinéaire en les (Ly,,),,.,
(voir [25, Equation (2.1)]). En particulier I'algébre T3 n’est pas une algébre de Lie. Nous
ne nous appuierons pas ici sur cette expansion du courant mais le définirons comme une
fonctionnelle du champ, dépendant d'un point z € C et définie de maniére analogue au
tenseur énergie-impulsion. Toutefois et contrairement a celui-ci, il n'est pas compris a
I'heure actuelle s'il est possible de décrire ce courant de spin supérieur d'une maniére
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analogue a I'équation (1.3.3) et ce probléme est pour |'heure une question importante
liée a I'interprétation géométrique de la WW-symétrie (voir par exemple [135, Subsection
8.2] ou [57, Chapter 18.2]).

Le développement de produit d'opérateurs WV émerge lorsqu’'un courant de spin
supérieur est inséré dans une fonction de corrélation. Axiomatique en physique, ce
développement est décrit par

w(a)Vy(2) N W_1V,(2) N W _,V,(2)

(20 — 2)? (20 — 2)?

W (z0)Va(z) = + termes holomorphes (1.3.9)

20 — %

ol w(a) € C est le nombre quantique attaché a W, tandis que les W_;V,,(z) sont les
champs descendants. Ces champs sont supposés locaux dans le sens ou ils ne devraient
dépendre que du poids « ainsi que du champ de Toda et de ses dérivées au point z.
L'équation (1.3.9) peut se reformuler au sein d'une fonction de corrélation sous la forme
de I'égalité

N

N N 0 0) N
(W (o) [V () = 3 (“’( )y Wea o Wea ) Ty ),
=1 _

Py -z (0—2)? 20—z

ol nous avons introduit la notation

WO Ve (20)) pour (W iV, (20) T ] Ve (20))

k=1 k£l

Cette égalité est /'identité de Ward locale de spin trois et est propre a la symétrie W
du modéle. Il est important de remarquer a ce stade qu'a la différence des identités de
Ward associées au tenseur énergie-impulsion, les quantitiés correspondant aux champs
descendants dans I'équation (1.3.10) ne sont pas des dérivées des fonctions de corrélation
a proprement parler, ce qui ajoute un niveau de compIeX|te |mportant a I'étude des
théories de Toda. Par exemple en général I'expression W) (Hk 1 Va, (21)) ne s’exprime

pas en terme de dérivées de la fonction de corrélation (J],_, Vi, (1)) mais est donnée
par

ak Zk

N
(l) H ag Zk Ua”aq) Zz

||E2

ol u,, est un vecteur de a.

Des identités de Ward globales de spin trois peuvent étre déduites de cette identité
en utilisant I'asymptotique formelle du tenseur quand z, diverge vers oo, donnée par
W (z) =~ % Elles sont données par les cinqg égalités

N n(n—1) a
S (W W M) ) [TV =0 .3
k=1

pour 0 < n < 4. Soulignons que contrairement aux identités de Ward globales associées
au tenseur énergie-impulsion, il n'est pas déterminé a |'heure actuelle si les identités de
Ward globales peuvent étre obtenues directement en exploitant une certaine forme de
covariance des fonctions de corrélation, ce qui les rend d'autant plus centrales dans la
compréhension des symétries du modéle.
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1.3.1.3 ldentités de Ward pour les fonctions de corrélation probabilistes

Au cours du chapitre 5 nous utiliserons le cadre probabiliste construit précédemment
pour donner un sens aux quantités introduites plus haut dans le cas ou g = sl3. Plus
précisément nous exploiterons le fait que le tenseur de spin supérieur peut étre représenté,
de la m&me maniére que l'est le tenseur énergie-impulsion, comme une fonctionnelle du
champ de Toda via

W (2)[®] :=¢*(ws — w1, PP(2))
+2q ({e1, P P(2)) (w1, 0D(2)) — (€2, 0*P(2)) (w2, 0P(2))) (1.3.12)
+ 8(w1, 0P (2)) (we — wy, 0P(2)) (w3, OP(2))

ou q = v+ —. Comme précédemment le manque de régularité du champ de Toda
nécessite de considérer une procédure de régularisation pour donner un sens a cet objet.

En nous appuyant sur la définition du champ de Toda proposée équation (1.2.1) en
prenant la fonctionnelle F'(®) égale 8 W(z)[®], nous montrerons que la limite suivante

N

(W (o) [T Ve (20)) = lim(W

vak’

’:12

est bien définie, ou les quantités dénotées avec un indice ¢ sont des régularisations
des fonctionnelles correspondantes et ol le membre de droite est défini de maniére
probabiliste. De la méme maniére une procédure de régularisation permet de définir les
quantites W )(Hk 1 Va (21)) en termes probabilistes. Ces objets définis nous prouvons
que les identités de Ward sont valides dans |'environnement probabiliste en montrant
I'énoncé suivant :

Théoréme 1.3.1. Supposons que g = sl3. Sous les hypothéses du théoréme 2.2.3
l'identité de Ward de spin trois est valide :

N N ® ® N
) Wi W,
I:I o (7)) lz:; ( (20 — 21)? (Zo —2)? " 20 T A <]£[1 Va(ab))
(1.3.13)

ou le nombre quantique w(«) est explicite. Un résultat similaire s‘applique au
tenseur énergie-impulsion.

Nous prouvons également que les identités de Ward globales sont valides :

Théoréme 1.3.2. Sous les hypothéses du Théoreme 1.3.1, pour 0 < n < 4:

N

N
> ( "W 4z w4 %zf—%(al)) (I Var(zr)) =0.  (1.34)
=1 k=1

Cela est une confirmation supplémentaire que les fonctions de corrélation probabilistes
fournissent la bonne maniére de donner un sens aux objets considérés en physique. Ces
identités sont cruciales dans la compréhension des symétries des théories conformes des
champs de Toda et seront au coeur de la preuve de la formule de Fateev-Litvinov.

30



La preuve de I'identité de Ward décrite par I'équation 1.3.13 s'appuie trés fortement
sur la structure gaussienne sous-jacente dans la définition probabiliste des théories de
Toda. En effet un des outils principaux permettant d'établir la validité du Theoréme 1.3.1
est |'intégration par parties gaussiennes, correspondant en quelque sorte au calcul de
Malliavin pour le champ de Toda et qui est en fait formellement vérifiable sur I'intégrale
de chemin.

1.3.2 . Symétrie IV et un principe de réflection

Une condition nécessaire pour que les fonctions de corrélation probabilistes soient
bien définies est de supposer que les poids appartiennent au sous-ensemble ) + C_ de
a défini par la condition que (o — @, e;) < 0 pour tout 1 < ¢ < 7. Afin de pallier cette
limitation il est supposé en physique qu'il existe une famille de transformations s de a
envoyant C_ sur a tout entier ainsi que des scalaires R,(«) tels que les opérateurs vertex
Vi et Vois(a—q) soient reliés entre eux par la relation

Va = RS (CY)VQ+S(&_Q) .

Ces coefficients sont appelés coefficients de réflection de Toda, tandis que |'ensemble
de telles transformations forme en fait un groupe de réflection appelé le groupe de Weyl
de g. Cette hypothése est axiomatique en physique et vient du fait que les poids et
nombres quantiques A, et w(«) sont laissés inchangés par de telles transformations. Ces
transformations sont illustrées plus-bas en 1.2 ol est également représentée la chambre
de Weyl C_ dans le cas ou g = sl3.

Figure 1.2: Le groupe de Weyl associé a g = sl3

Dans le cas de la théorie de Liouville, ce groupe de réflection est constitué uniquement
de deux éléments Id and —Id, si bien que la relation de réflection prend la forme V,, =
R(a)Vag_q ol R(«v) est le coefficient de réflection de Liouville.

Inspirés par I'existence d'une telle relation nous explorerons ici certaines connections
entre ce phénomeéne de réflection et le principe de réflection en probabilité. Nous mon-
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trerons en particulier que les coefficients de réflection apparaissent dans la queue de
distribution de variables aléatoires liées a des mesures de chaos multiplicatif gaussien.
Le chapitre 6 détaillera ces résultats, établis dans [31]. Nous ne justifierons pas dans
ce chapitre la relation de réflection V,, = R,(a)Vg5a—@) mais le feront dans le cas ou
g = sl3 pour une famille de fonctions de corrélation a trois points au cours du chapitre 7.

1.3.2.1 Principe de réflection et une décomposition de chemin brown-
ien

Dans un célebre article [138], Williams en 1974 décrit une décomposition de chemin pour
le mouvement brownien et plus généralement pour toute une classe de diffusions uni-
dimensionnelles. Dans sa formulation la plus élémentaire, le processus considéré est un
mouvement brownien avec coefficient de dérive positif v (nous notons (BY); >0 = (B, +
vt); > o un tel processus), cette décomposition peut se formuler de la maniére suivante :
conditionnellement en la valeur du minimum global M := tir>1f0 BY du processus, la loi de

B" (sachant M) n'est plus un processus de Markov mais peut &tre réalisée en mettant
bout a bout deux processus de Markov. Plus spécifiquement, le premier processus a la
loi de B~ jusqu'a atteindre M, puis le second a la loi du processus de diffusion B” qui
est celle de B” partant de M et conditionné 3 rester au-dessus de M.

Suite a sa découverte par Williams, cette décomposition de chemin a été I'objet d'une
étude approfondie au sein de la communauté probabiliste et a été a |'origine de nombreux
résultats fondamentaux, tels le théoréme de Pitman [110]. Etendre cette décomposition
pour différentes classes de processus a conduit également au développement d'un champ
de recherche [17, 35, 78, 27]. Nous renvoyons vers [87] pour plus d'informations en ce
sens. Toutefois il ne semblerait pas exister de formulation de ce résultat pour des
diffusions en n'importe quelle dimension.

En utilisant une généralisation du principe de réflection, nous prouverons que la
notion de groupe de réflection permet d'étendre cette décomposition de chemin a toute
une classe de diffusions en dimension quelconque. En utilisant les notations introduites
dans le cadre des théories de Toda, les variables aléatoires M; = tir>1fO<B;’, e;) jouent ici

le réle de minimums du mouvement brownien avec coefficient de dérive v € C BY, et
peuvent s'interpréter simplement en notant que le point M := Y7, M;w,’ correspond
au sommet de la plus petite chambre de Weyl contenant |'ensemble de la trajectoire du
processus B”. Dans ce cadre général la décomposition contiendra r + 1 composantes
en lieu et place de 2 dans la décomposition de chemin de Williams et prendra la forme
sulvante :

Théoréme 1.3.3. Soit B un mouvement brownien avec coefficient de dérive v €
C évoluant dans une espace euclidien sur lequel agit un groupe de réflection de
rang r. Alors existent r + 1 processus de diffusion X', --- X" pour lesquels :

1. Tirons les M; selon leur loi marginale et définissons un processus X comme
la jonction des processus suivants :

2.« Toutdabord un processus de diffusion X" indépendant des (M,), < ; < ,,
lancé depuis l'origine et jusqu’a atteindre M + OC, par exemple en z, €
M + 0C;.
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« Un deuxiéme processus indépendant X? partant de z, jusqu’a toucher
M + oC.

« Définir ainsi une famille (X', --- ,X") de processus. Lorsque X" touche
le bord M + 9C, lancer un processus final X",

3. Alors le processus X a la loi de B".

Considérer une telle notion de minimum est tout a fait naturel du point de vue
de I'étude probabiliste des théories de Toda. Cette notion de minimum est égale-
ment adoptée par exemple dans I'étude du mouvement brownien dans un céne comme
c’est le cas dans Iarticle [89], ou le processus (BY — M), . , est considéré avec M; =
Yo wy Sir<1ft(Bs”,ei> en lieu et place de (By — M), ., dans la décomposition que

nous proposons. Nous tenions & souligner que nous trouvons tout a fait remarquable
que des considérations a priori liées a I'étude de la théorie conforme des champs aient
en fait des implications purement probabilistes.

Les notations apparaissant dans ce théoréme seront établies dans la section 3.1, mais
la preuve et I'énoncé de ce résultat seront établies section 6.1. Dans le cas ou le groupe
de réflection considéré correspond & A, (ou sl3) nous reproduisons ici une illustration de
cette décomposition de chemin.

(&5) /

Figure 1.3: Mouvement brownien Figure 1.4: Décomposition de
planaire de coefficient de dérive v chemin associé a A,

Au cours de la section suivante, section 6.2, nous étudierons certaines propriétés
du processus défini par le théoréme 1.3.3. Plus précisément nous étudierons la loi de
ce processus lorsque son point d'entrée diverge , ce qui correspond a conditionner le
processus N” a avoir un minimum M tel que (M, ¢e;) — —oo pour tout 1 < i < 7.
Nous verrons que dans cette asymptotique le processus conditionné ressemblera vraiment
a la jonction de 7 + 1 mouvemements browniens avec terme de dérive et conditionnés a
rester dans un sous-domaine de a.
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1.3.2.2 Coefficients de réflection et queue de distribution de mesures
de chaos multiplicatif gaussien

Grace a la décomposition de chemin décrite dans la section 6.1, nous décrirons au cours
des sections 6.3 et 6.4 quelques-unes de ses conséquences sur le chaos multiplicatif
gaussien ainsi que pour les fonctions de corrélation de Toda. Plus précisément nous
montrerons que conditionner des mesures de chaos multiplicatifs gaussiens corrélés a
étre larges revient a conditionner un mouvement brownien sur a avec terme de dérive
a ce que son minimum M satisfasse (M, e;) — —oo pour tout 1 < @ < 7, si bien
que nous pourrons utiliser la déecomposition de chemin de 1.3.3. Ce qui nous permettra
par conséquent de décrire la queue de distribution de ces mesures mais également de
quantifier certaines asymptotiques des fonctions de corrélation de Toda.

Pour ce faire nous utiliserons le fait que si X est un champ libre gaussien sur le
disque D dont le noyau de covariance est donné par

1

E [{u, X(2)) (v, X(y))] = (u, v) e P—

alors le processus (X;);~o défini en moyennant le champ libre sur des cercles de rayons
-t
e

1 2w )
X; = —/ X (e dp
21 Jo

est un mouvement brownien sur a. Ce qui implique que les r mesures de chaos multipli-
catifs gaussiens corrélés formellement définies par

Li(a) = / || @ e X@) (@) for i =1,--- 7
D
admettent une autre expression sous la forme de

+oo
Li{a) = / e XiH@a-Q)) 7t
0

ol Z!dt est une mesure aléatoire sur R" indépendante de (X;); >, provenant de la
partie angulaire du champ libre. Plus de détails sont donnés en section 3.3.
Nous montrerons dans la Section 6.3 que la probabilité que les intégrales I;(«) soient

grandes est gouverné par la probabilité que le minimum du processus (—Xt — =@y

v t>0
(qui n'est rien d'autre qu'un mouvement brownien avec coefficient de dérive % eC)
soit faible. Ce faisant nous pouvons nous ramener a |'étude des objets considérés dans

le Théoréme 1.3.3 et obtenir le résultat suivant :

Théoréme 1.3.4. Pour o € Q + C_ suffisamment proche de Q, il existe un réel
Rs(«) tel que

E H (exp (—e”<c’eik>_fik(oz)) —1)| ~ elle-QHQ-aap () (1.3.15)
k=1
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lorsque (c,e;) — —oo pour tous 1 < i < r selon une certaine asymptotique décrite
en section 6.3. R,(«) est un coefficient de réflection de Toda et est égal a

Ry(a) = €( )Afliga:g)), ou
Aa) = H (uml (” <j’€i>)> = 1;[ r(1-2Jae)r (1 - e ev>>

Dans cette équation ®t = {e, eq, p} est 'ensemble des racines positives tandis
que ¢(s) est la signature de la permutation associée a s (voir Section 3.1).

L'expression de ces coefficients de réflection est en accord avec celle proposée en
physique pour les coefficients de réflection associés aux théories de Toda [3, 2, 51],
soulignant encore un peu plus les liens profonds entre le principe de réflection en théories
des probabilités et le phénoméne de réflection en théorie conforme des champs. Dans
le case spécifique ou 7 = 1 nous retrouvons le résultat [11, Proposition 4.1], ol cette
asymptotique permet de décrire la matrice de scattering associée a I'Hamiltonien de
Liouville.

1.3.2.3 Queue de distribution du chaos multiplicatif gaussien et pro-
longement analytique des fonctions de corrélation

Puisque les fonctions de corrélation probabilistes sont définies en termes de mesures de
chaos multiplicatif gaussien corrélés, |I'énoncé précédent permet de décrire les propriétés
de I'espérance apparaissant dans |'équation (1.2.1) dans |'asymptotique ot (¢, ;) — —o0.
Cette asymptotique sera décrite en Proposition 6.4.2 sous une forme similaire a celle
apparaissant dans I'énoncé du Théoréme 1.3.4 en terme de coefficients de réflection.

En se basant sur cette asymptotique nous proposerons au cours de la section 6.4 un
prolongement analytique des fonctions de corrélation au-deld des conditions imposées
par le théoreme 1.2.1. Dans cette perspective nous montrerons que :

Théoréme 1.3.5. Pour g = sl3, considérons z, - - - , zy € Cdistincts et définissons
un sous-ensemble de (Q + C_)N par

N
Ay = {(al,--- ay) € (Q+C)N tel que pouri =1,2, <Zak —2Q,w;) > —
k=1

et pourtoutl < k < N, @}g(ak —Q,e;) < —7}.
(1.3.17)

Alors les fonctions de corrélation admettent une représentation probabiliste pour
a € Ay que nous notons toujours par ([, Va, (zx)). Cette extension est telle que

l'application o — ([]n-, Vi, (2:)) €st méromorphe dans un voisinage complexe de
An.
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La condition imposée sur les poids correspond a I'hypothése sous laquelle il est pos-
sible de décrire les asymptotiques dans la proposition 6.4.2. Les poles et résidus de cette
fonction méromorphe sur Ay sont aisément calculables. En se basant sur le raisonnement
développé pour prouver ce résultat il est possible de représenter probabilistiquement la
formule DOZZ pour un ensemble de valeurs des poids plus étendu comparé aux résul-
tats de [84]. Nous renvoyons a [30, Corollary 1.3] pour plus de détails concernant cette
extension du domaine de représentation probabiliste de la formule DOZZ.

1.4 . Calcul d’une famille de fonctions de corréla-
tion dans la théorie de Toda associée 3 sl;

Dans la derniére partie de ce manuscrit nous rassemblerons les éléments établis au
cours des chapitres précédents dans la perspective de prouver un des résultats les plus
importants de cette thése : une preuve rigoureuse de la formule de Fateev-Litvinov pour
une famille de fonctions de corrélation a trois points de la théorie de Toda associée a
sl3.

Implémenter la procédure du bootstrap dans ce cadre permet en effet de calculer
des fonctions de corrélation a trois-points sous |'hypothése que I'un des trois opérateurs
vertex considérés est un champ semi-dégénéré, ce qui signifie que le poids correspondant
o est de la forme o* = kw; ot k € R et pour i = 1 ou i = 2. Si une telle hypothése
n'est plus valide les fonctions de corrélation a trois-points ne sont pas encore connues
(il existe cependant une proposition [101, 74] basée sur la correspondance AGT mais
toujours non explicite).

En combinant des méthodes inspirées de la physique avec d'autres plus probabilistes
nous prouverons Chapitre 7 que la formule de Fateev-Litvinov est vérifiée pour ces fonc-
tions de corrélation a trois points définies de maniére probabiliste:

Théoréme 1.4.1. Supposons que la constante de couplage satisfait v € [1,/2) et
que V,; est un champ semi-dégénéré. Alors des que (o, a;, as) appartient a As

C,(ay, 05, a3) = C’ﬂ(ozl,og,ag) (1.4.1)

ou le terme de gauche est une fonction de corrélation probabiliste.
Ce résultat est prouvé dans I'article [30]. La formule de Fateev-Litvinov [52] décrivant

ces fonctions de corrélation a trois-points est définie en termes de fonctions spéciales,
T and [ :

<2Q—a1—a§—a3,p)

CPt(ar, a5, a3) = (Wl <%2> (%)2_72> |

T'(0°Y (k) J] TUQ — e1,€)T(Q — as,€)) (1.4.2)

ecdt

e s (5 + (01— Quhy)) + (as = Q1))

ol ay = Kws. Plus de détails seront apportés Section 7.3. Cette formule est réminiscente
de la formule de DOZZ qui peut en fait étre retrouvée a partir de |'équation (1.4.2).
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Nous nous attacherons également a expliquer quelle forme prend le bootstrap con-
forme dans ce cadre. En particulier nous verrons comment le calcul d'une famille de
fonctions de corrélation & quatre points peut se réduire a celui des fonctions de corréla-
tion a trois points décrites plus haut, fournissant ainsi |'ingrédient finale de la procédure
du bootstrap conforme pour la théorie de Toda associée a sls.

1.4.1 . Fonctions de corrélation a trois points et la formule

de Fateev-Litvinov

Afin de prouver notre résultat principal, Théoréme 1.4.1, nous devrons en fait étudier
certaines fonctions de corrélation & quatre-points. La compréhension de ces fonctions
a quatre points est rendue possible en ce qu'elles contiennent beaucoup d'informations
en lien avec les symétries du modeéle. Leur étude permettra en retour de retrouver les
fonctions de corrélation a trois points du Théoréme 1.4.1 en étudiant certaines de leurs
asymptotiques, ce qui dans le langage de la physique revient a calculer des développe-
ments de produits d’opérateurs.

1.4.1.1 Une équation différentielle hypergéometrique

Les fonctions de corrélation & quatre points que nous considérerons correspondent aux
fonctions a trois points de I'énoncé du Théoréme 1.4.1, auxquelles sera ajouté un opéra-
teur vertex supplémentaire V,,. Cet opérateur vertex supplémentaire est un champ com-
plétement dégénéré, ce qui signifie que le poids a est de la forme o = —yw; avec
X € {7,%}. La raison conduisant a faire une telle hypothése sur le poids a provient
du fait que la présence de ce champ au sein de fonctions de corrélation révéle des con-
traintes supplémentaires sur celles-ci. Au cours de la section 7.1 nous montrerons qu'en
combinant ces contraintes supplémentaires avec celles provenant de I'hypothese que Vi
est semi-dégénéré mais également avec les identités de Ward globales (1.3.11) nous pou-
vons calculer ces fonctions de corrélation de maniére complétement explicite a un facteur
multiplicatif pres :

Théoréme 1.4.2. Considérons un champ complétement dégénéré V,, ainsi qu'un
champ semi-dégénéré V... Considérons également des poids o, et as tels que
(a, aq, a3, a3) appartienne a A4 Sous ces hypothéses

(Vi (2)Var (0) Vg (1) Vaay (00)) = [0 2 = 1|72 94(2), 0w
2
H(z) = Cylar + a, 05, 03) | [Ho(2)* + D AV (0, on, 03, as) [Hi(2)]

i=1

(1.4.3)

Les constantes Agi)(a, ag, a3, a3), 1 = 1,2, sont explicites et données par un pro-
duit de fonctions T, tandis que les blocs (H;), ., ., sont des fonctions hyper-
géometriques 3 F,. La seule indéterminée dans cette expression est la fonction de
corrélation a trois points C, (o + o, a3, ag).

La preuve de ce résultat est basée sur le fait que de telles fonctions de corrélation a
quatre points sont solutions d'une équation hypergéometrique du troisiéme ordre dans
la variable 2z, communément appelées équation différentielle du type BPZ, et dont les
solutions sont connues. Le fait que les coefficients AS)(a,al,a;,ag), i = 1,2, soient
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connus vient du fait que les solutions de cette équation admettent plusieurs expansions
(pour z autour de 0, 1 ou 00) qui doivent étre cohérentes entre elles, correspondant &
I'hypothése de la symétrie de croisement faite en physique. Prouver cet énoncé s'appuie
trés fortement sur les symétries du modéle — en particulier les identités de Ward globales
— mais également sur la théorie des représentations des /-algebres de par |'existence de
ces champs dégénérés.

1.4.1.2 Desfonctions de corrélation a quatre points a celles a trois points

La représentation probabiliste des fonctions de corrélation nous permet de donner une ex-
pression alternative des ces fonctions de corrélation a quatre points. En effet en étudiant
le comportement des fonctions de corrélation lorsque z — 0 (ce qui revient en physique a
considérer le développement de produit d'opérateurs V,,(z)V,, (0)) nous pouvons décrire
d'une maniére différente les coefficients apparaissant dans I|'expansion (1.4.3). Pour
décrire cette asymptotique nous nous appuyons notamment sur certaines propriétés du
chaos multiplicatif gaussien, en particulier sa queue de distribution décrite précedem-
ment, et repose presque intégralement sur des considérations liées a celle-ci.

En combinant I'approche probabiliste pour ces fonctions de corrélation avec la forme
a priori de celles-ci données par le théoréme 1.4.2 nous montrerons Section 7.2 que :

Théoréme 1.4.3. Sous les hypothéses du théoréme 1.4.2,

(1.4.4)

Les coefficients B\ (a1, x) admettent une expression explicite en termes de la fonc-
tionT, tandis que les fonctions de corrélation a trois points qui y apparaissent sont
étendues lorsque oy — xh;,1 est hors de Q + C_ par la relation

Cy(ar, az,a3) = Ry(a1)Cy(Q + s(an — Q), s, a3)
. (1.4.5)
ou s est telle que s(a; — Q) € C_.

Une conséquence de cet énoncé est une justification de la relation de réflection V,, =
Ry(0)Vois(a—q) lorsque celle-ci est insérée dans les fonctions de corrélation considérées
Equation (1.4.5).

Par contraste avec la preuve du théoréme 1.4.2 qui s'appuie sur les contraintes
imposées par la symétrie, la preuve de ce résultat est bien plus probabiliste en cela
qu'elle s'appuie principalement sur |'étude de chaos muultiplicatif gaussien corrélés —
bien qu'elle nécessite de connaitre |la forme a priori de ces fonctions de corrélation.

1.4.1.3 Conclusion de la preuve du théoréme 1.4.1

Nous pouvons désormais comparer les deux expansions obtenues a partir des deux
théorémes 1.4.2 et 1.4.3. Les coefficients qui apparaissent en face des fonctions hy-
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pergéometriques dans ces expansions sont donnés par

Cy(ar — Xu}l,Oé;,Oég)A,(yi)(—le,Oél,Oé;,Oég) pour le Théoréme 1.4.2 ou
C, (Oq — X (wl — ZGJ) ,az,ag,) B%(ay,x) pour le Théoréme 1.4.3.
j=1

Les deux expressions proposées devant étre égales nous pouvons en déduire que les
fonctions de corrélation a trois points sont solutions des deux équations suivantes,

Cy <a1 - X (Wl - Zé‘:l ej) 70437043) _ Agi)(—xwl,al,az,ozg) (1.4.6)

Cy(ar — xwi, a3, a3) B (ay, x)
valides pour i = 1,2 ety € {7, %} et dés que la fonction de corrélation

(Voxw: (2)Va, (0)Vay (1) Vo, (00))
fait sens. Cette hypothése dans le cas ot xy = % impose la borne v > 1 et correspond
au fait que I'équation (1.4.1) n'est prouvée que lorsque v € [1,4/2). Nous verrons

Section 7.3 que cette paire d'équations caractérise, a une constante multiplicative prés,
I'expression proposée dans [52] pour les fonctions de corrélation a trois points de Toda.
Ce facteur multiplicatif peut &tre évalué, ce qui montre ainsi que le théoréme 1.4.1 est

valide.

1.4.2 . Perspectives : fonctions de corrélation a quatre

points et bootstrap conforme

Le calcul d'une famille de fonctions de corrélation a trois points représente le point
de départ dans I'implémentation du bootstrap conforme et représente en quelque sorte
I'étape d'initialisation dans la procédure récursive liée au bootstrap conforme. Dans un
travail en cours avec Guillarmou [32] nous avons pour objectif de montrer que celle-
ci permet de donner une expression pour les fonctions de corrélation contenant plus
d'insertions. Pour ce faire nous souhaitons montrer un résultat qui prendrait la forme
suivante :

Théoreme 1.4.4 (En préparation). Supposons que les opérateurs vertex V,; et
Vay sont tous deux des champs semi-dégénérés. Sous I'hypothese supplémentaire
que pour i =1,2:

(o, — Q,e;) <0 pourtoutl < k<4, avec

(a1 +as—Q,uw;) >0 et {az+ay—Q,uw) >0, (1.4.7)
ona:
(Vi (0)Viaig (2) Vi (1) Vi, (00))
- 2417r2 /RQCW(% 3, Q — iP)CL(Q + P, a}, ay) |2 Berraa=8e) | FL )| g p

(1.4.8)

ou les blocs conformes FL ne dépendent que de la charge centrale de la théorie
ainsi que des quantités A, et w(ay) pour 1 < k < 4.
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Il convient de noter que tandis que le spectre dans la théorie de Liouville est donné
par la demi-droite ) + iR, celui-ci est compris dans @ + iR? pour la théorie de Toda
associée a sl3. Nous devrions montrer également un tel résultat en ne supposant plus
que deux des champs sont semi-dégénérés. Dans ce cas plus général les fonctions de
corrélation a trois points apparaissant plus haut sont définies par prolongement analytique
de |'expression probabiliste données pour elles, tandis que les blocs conformes possédent
une structure bien plus complexe dans ce cas-la.

Les blocs conformes F% qui apparaissent dans la formule du bootstrap possédent un
contenu trés riche en cela qu'ils interviennent dans de nombreux cadres. Tout d'abord
dans le cadre de la théorie des représentations puisque leur expression (au moins au
niveau formel) fait intervenir des quantités fondamentales comme le déterminant de
Shapovalov. Ces blocs sont également présents dans la formulation génerale de la con-
jecture AGT [4, 140], ou ils sont reliés a la fonction de partition de Nekrasov, une quantité
fondamentale dans I'étude de certaines théories de jauge en dimension 4. De maniére
plus géometrique ces blocs conformes ont des liens avec la quantification d'espace de
modules de connexions plates [38].

La preuve d'un tel résultat repose sur la considération de |'Hamiltonien de Toda, un
opérateur auto-adjoint agissant sur un espace L? de fonctions, comme c'est également
le cas pour la formule du bootstrap (1.1.6) pour Liouville [66]. Son étude fait appel
a de nombreuses notions, de la théorie des représentations des 1V/-algébres a celle du
scattering dans des espaces symétriques. Nous ne fournirons pas la preuve intégrale de
ce résultat dans ce manuscrit, d’une part par souci de concision et d'autre part afin de ne
pas faire appel a des notions trop disparates, mais également car il s'agit pour certaines
parties d'un travail en cours ; nous nous attacherons a décrire le cadre probabiliste au sein
duquel une telle formule peut étre montrée en donnant les étapes les plus importantes
de sa preuve. Nous expliquerons notamment comment il est possible de construire une
représentation de la 1¥/-algébre associée a sl3 — |la représentation de Segal-Sugawara — en
nous basant dans un premier temps sur la théorie du champ libre sous-jacente a la théorie
de Toda. La théorie du champ libre est cruciale en cela qu'elle contient bon nombre
de méthodes qui seront réemployées par la suite dans I'étude de la théorie avec terme
d'interaction. Nous expliquerons également comment donner un sens au développement
formel du tenseur W introduit précédemment

W)=Y
( 0) Z (ZO — Z)n+3
nez
et proposerons une approche dynamique de I'Hamiltonien de Toda qui permettrait, com-
binée avec une étude fine du scattering induit par cet opérateur, d'accéder a sa résolution

spectrale. C'est le contenu du chapitre 8.
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2 - Introduction - Anglais

Toda conformal field theories form a family of two-dimensional quantum field theories
indexed by semisimple and complex Lie algebras. One of their remarkable features is
that they enjoy, in addition to conformal invariance, an enhanced level of symmetry
referred to as W — or higher-spin symmetry. The simplest instance of a Toda theory is
Liouville conformal field theory, whose study has initiated major breakthroughs in the
understanding of two-dimensional random geometry, both from the mathematics and
physics perspectives.

Despite being thoroughly studied in the physics literature, Toda theories are far from
being fully understood and computing their correlation functions of Vertex Operators
—one of the main quantitities of interest— remains an open question at the time being.

This thesis is dedicated to providing a mathematical study of Toda conformal field
theories. To do so we propose to make sense of them in the realm of probability theory
by constructing a probabilistic framework allowing to define their correlation functions
of Vertex Operators. This definition of the probabilistic correlation functions is based on
two key probabilistic objects: Gaussian free fields and Gaussian multiplicative chaos.

In this preliminary chapter we introduce Toda conformal field theories and describe
the way we propose to understand them in a mathematical perspective. We will shed
light on the most significant results of the present manuscript and in particular show that
we can rigorously compute a certain family of correlation functions of the Toda theory
associated to the g = sl3 Lie algebra.
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2.1 . Toda conformal field theories

Before actually diving into the study of Toda conformal field theories, we first need to
answer a very basic question: what are Toda conformal field theories? This introductory
section is dedicated to providing a proper introduction of this family of two-dimensional
conformal field theories. But before actually explaining what are Toda conformal field
theories we will focus on a special case of Toda theory which has drawn a lot of attention
in both the physics and mathematics community over the past few decades: Liouville
theory.

2.1.1 . Liouville conformal field theory

Providing a definition to the notion of random surface in the context of two-dimensional
quantum gravity has been a seminal topic since the pioneering work of Polyakov [111] in
1981. In this groundbreaking article were laid the foundations of the Liouville conformal
field theory (Liouville theory in the sequel), which may be understood as a canonical
way of picking at random a geometry on a Riemann surface X with fixed topology [123].
Liouville theory is now considered to be an essential feature in the understanding of non-
critical string theory and two-dimensional quantum gravity, and has been thoroughly
studied both in the physics and mathematics community. For more details on two-
dimensional string theory and its interplays with Liouville theory we refer for instance
to [79], while [44] highlights some of its connections with quantum gravity.

Liouville theory has besides many interplays with other models which enjoy the same
level of symmetry, should it be with models of statistical physics at criticality in a random
environment via the Knizhnik-Polyakov-Zamolodchikov [80] relation, matrix theory [142,
137, 24] or random fractals [80, 50, 117]. We will not review here all the possible
applications of Liouville theory since this is absolutely not the purpose of this manuscript,
but we can refer to the review [103] where some applications as well as extensions of
Liouville theory are being detailed. A general overview of the different perspectives that
coincide in the physics literature to make sense of Liouville theory can be found as well
in [131].

2.1.1.1 Liouville theory and the path integral

The approach we will rely on in this manuscript to make sense of Liouville theory is its
definition via a path integral. This method provides a natural (but often non-rigorous)
way of defining a quantum field theory starting from a classical field theory, by in some
sense providing a way of quantizing the principle of least action.

To be more specific, let us consider the case of Liouville theory on the two-dimensional
sphere S%2. The classical theory is concerned with the uniformization problem, or put
differently the question of finding a conformal metric with constant (negative) curvature.
In order to formulate this problem in a quantitative way let us recall the transformation
rules under conformal changes of the metric for the two-dimensional Laplace-Beltrami
operator A, and Ricci scalar curvature R,: if g is any Riemannian metric on S* and
g = €**gis a metric conformally equivalent to g, then the quantities Ay, R, and Ay, Ry
are related by

Ay = e’QSDAg and Rg/e2‘P = 20,0+ R,. (2.1.1)
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In particular saying that the conformal metric ¢’ = ¢?®¢ has constant scalar curvature
—2A is tantamount to having the relation

—2A,® + R, + 2Ae*® = 0. (2.1.2)

This is the so-called Liouville equation. The weak formulation of the above problem then
amounts to saying that ® is a critical point of the Liouville action

$3(0.9) = 1 [ (000,000, + Byo(a) + 44 vy (da). @)

T 4w

Note that in the case of the sphere if we assume A to be positive then Gauss-Bonnet
theorem provides a topological obstruction preventing such a classical field to exist. To
remedy this issue one needs to assume the field to be non-smooth, and a standard way to
do so is to assume that it has conical singularities: for some (21.); < x < n in S?, ®(2) ~
—ayIn |z — 2| around z, with a; < 2. Under the assumption that ij:l o > 4
(which in particular implies that NV > 3) it is shown for instance in [134] that the above
problem does admit a solution.

In the quantum field theory the field is no longer deterministic but rather fluctuates
around this critical point. In order to make this quantitative one first introduces a
coupling constant v > 0 which somehow characterizes the level of randomness of the
model and consider a quantized version of the Liouville action (2.1.3):

1

51(0.9) = 3= [ ((000(2). 0,002, + QRy0(@) + A7) vy (dr)  (2:0a)

where Q) = 3 + 2 is the so-called background charge. The quantum field of Liouville
theory is then sampled according to a measure defined on a functional space F C

L*(S? — R) by formally setting for suitable ' : 7 — R

(F(®))yp = % /f F(¢)e 59 Do, (2.1.5)

The measure element that appears on the right-hand side refers to the putative “uniform
measure’on F, which is actually not well-defined from a mathematical viewpoint. The
partition function Z corresponds to the quantity Z = ff e 5L(®9) D¢ so that Equa-
tion (2.1.5) formally defines the law of a random function. Of course this is purely
heuristic and does not really make sense from a mathematical perspective. However we
will explain in this manuscript how such expressions can be interpreted using a proba-
bilistic framework.

A standard instance of the translation of a path integral in a probabilistic language
is given by the Wiener measure W (dw), viewed here as a probability measure on the
space C§(R™",R) of continuous functions w from R* to R with w(0) = 0. The path
integral that formally defines this measure takes the form of

1 1

W(dw) = Ee_s(w)dw, where  S(w) = 5/ w'(t)?dt.
R+

By writing S(w) = 1 [, w”(¢)w(t)dt we can make an analogy with a Gaussian measure
that would satisfy, for suitable f, g,

/ . ([ o) ([ soun)wan=([ rodoa).
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By taking f(u) = uA's and g(u) = u At we recover the well-know property of the
Brownian motion:

/ w(s)w(t)dtW (dw) = s A t.
Gy (RTR)

The path integral formalism is also similar to that of Gibbs measures that appears for
instance in statistical physics, in which the action functional would play the role of the
Hamiltonian while the integral over a functional space would be replaced by a sum over
all possible configurations.

The path integral approach is natural in many ways in the prospect of defining models
in quantum field theory. One motivation for this definition is that it provides a standard
manner of quantizing a classical theory in that the measure on functions thus defined
tends to concentrate on fields for which the action is small. This becomes all the more
true as the coupling constant gets small: in the limit v — 0 the measures formally
concentrates on the classical fields of the theory, that is the minimums of the action.
This can be thought of as the counterpart of Laplace's method for a function of one
real variable where instead of a one-dimensional variable we consider a functional over
an infinite-dimensional space. Coming back to the example of the Brownian motion the
semi-classical limit corresponds to taking v — 0 in expressions of the form

1 F(w)e_v%s(w)d
Zy Joow+ )

The latter defining the law of a Brownian motion with variance -~y it is easily seen that
the classical field is the constant function w = 0, which does indeed correspond to the
minimum over C(R*,R) of the action S.

The classical field of the theory should be recovered from the quantum field theory
in the semi-classical limit, that is when the level of randomness is taken to zero. This
corresponds here to looking at the v — 0 limit of the path integral. It was proved in [36]
that it was indeed the case based on a probabilistic representation of the path integral.

2.1.1.2 Liouville theory in the mathematics literature

Following these developments, providing a rigorous framework for Liouville theory has
been a challenge for mathematicians and led to major important breakthroughs in the
understanding of two-dimensional random geometry, as exemplified by the diversity of
methods employed to make sense of the notion of “canonical random surface ".

In analogy with the construction of the Brownian motion as the scaling limit of
random walks, a natural way of defining such a random surface would be to consider
its discrete counterpart and then study its scaling limit in an appropriate sense. The
Brownian sphere introduced in [93] provides the first proposal for such an object, and
was later shown [88, 96] to agree with the scaling limit of certain random planar maps.
This construction was later generalized to other surfaces, see [18, 19].

On a similar perspective but distinct in its motivations and means, another frame-
work for two-dimensional random geometry has been designed in [49], where a notion of
so-called quantum surface has been proposed directly in the continuum. One of the key
properties of the random surface thus defined is its relationships with three key objects:
Gaussian free fields, Schramm-Loewner evolutions [121] and continuum random trees.
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First defined as a Riemann surface equipped with a volume form, it was later shown to
admit a well-defined metric structure thanks to the construction of the so-called Liou-
ville Quantum Gravity metric [42, 47, 70]. For more background on this mathematical
approach of Liouville theory we refer to [69] as well as [43] and the references therein.

The program developed by David-Guillarmou-Kupiainen-Rhodes-Vargas and initiated
in 2014 [40, 68] is the closest to the framework we will develop in this thesis. Building
on a probabilistic definition of the correlation functions of Liouville theory, they built a
bridge between the physics and mathematics community by recovering several predictions
made by physicists, for instance by proving that Ward identities, that encode certain
symmetry assumptions related to conformal covariance made in the physics literature,
were indeed valid [83]. One of their main achievements is a mathematical proof of the
celebrated DOZZ formula [84], predicted by physicists [45, 141] in the 90's, as well as
a rigorous derivation of the conformal bootstrap procedure [66], one of the key inputs
in the study of two-dimensional conformal field theory in the physics literature. On a
similar perspective was provided [67] a rigorous derivation of Segal’s axioms —a functorial
definition proposed in 1987 by Segal for two-dimensional conformal field theory— within
the framework of Liouville theory.

These different proposals being all aimed at defining what a “canonical random sur-
face’looks like, it should not come as a surprise that there are strong connections between
these objects. Interplays between Liouville theory and random planar maps led to numer-
ous breakthroughs, all the more since its was shown that the Brownian sphere actually
corresponds to a specific quantum surface —see for instance [97, 98, 99, 71] for such
a connection. These links allowed to derive many properties, among them the descrip-
tion of the scaling limit (in some sense) of a certain class of random planar maps in
terms of Liouville Quantum Gravity decorated by conformal loop ensembles. The notion
of random surface as presented in [49] and the one introduced in [40] also coincide
on specific instances as proved in [7, 28] where two such notions were proved to be
equivalent. Building on this intrinsic connection between Liouville and conformal loop
ensembles [126, 128, 100], the imaginary DOZZ formula was shown by Ang and Sun [5]
to describe certain conformal loop ensembles observables. We redirect the curious reader
to [127] for an informal review of these different notions of random surface.

2.1.2 . Two-dimensional conformal field theories

In the definition of Liouville theory by David-Guillarmou-Kupiainen-Rhodes-Vargas, a
key input is the fact that the model thus defined is actually a two-dimensional conformal
field theory. Before going any further we need to provide some background on this notion
and why it such an property.

2.1.2.1 What is conformal field theory ?

Shortly after the pioneering article of Polyakov [111], Belavin, Polyakov and Zamolod-
chikov (BPZ) presented in their 1984 seminal work [12] a systematic procedure to solve
models which like Liouville theory possess certain conformal symmetries, now referred
to as two-dimensional conformal field theories. The main input of their method was to
exploit the constraints imposed by conformal symmetry through the study of the alge-
bra of its generators, the Virasoro algebra. To do so one translates properties inherited
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from representation theory of the Virasoro algebra into actual constraints imposed on
the model. These constraints in turn completely determine (up to the so-called struc-
ture constants and spectrum) the main quantities of interest, namely the correlation
functions of certain special operators, thanks to a recursive procedure dubbed conformal
bootstrap. We will explain below this procedure in the case of Liouville theory, and
implement (part of) it in this manuscript.

There are still different ways of defining a conformal field theory depending on the
viewpoint one wants to adopt. For instance an algebraic approach to conformal field
theory was developed shortly after the BPZ paper by means of the notion of Vertex
Operator Algebra [22, 59], while the study of line bundles over moduli spaces of complex
curves initiated in [61] can be thought of as its geometric counterpart. See also [58] for
a review of the interplays between conformal field theory and the geometric Langlands
program. Closer to our language are the gluing axioms of Segal [122] as well as the
axiomatic developed by Gawedski's [62] which views a conformal field theory as a model
covariant under conformal transformations. For a detailed but concise account on the
notion of two-dimensional conformal field theory one might want to have a look at the
review [132], while for a less concise reference the brave reader may consult the “Yellow
Book™ [56].

2.1.2.2 Some implications of the conformal symmetry for Liouville the-
ory

Liouville theory is assumed in the physics literature to be a conformal field theory, so
that the conformal bootstrap method should allow to compute the correlation functions
of the theory. Let us explain in detail how it goes for Liouville theory on the Riemann
sphere C U {o0}.

In order to understand the theory one needs to compute all correlation functions
of Vertex Operators. Vertex Operators are functionals of the Liouville field ® formally
defined by taking V,(2)[®] = e*®®*) where a € C is a weight and z € C a point on the
sphere. The correlation functions of Vertex Operators are then defined using the path
integral by setting

N

N
1
T Ver (2 = / [ #5000 g
k=1

k=1

for some integer N > 3. From a probabilistic viewpoint, the correlation functions are
reminiscent of the Laplace transform of a real-valued random variable X, where functions
f :S* — R would play a similar role as the parameter X in the expression E [e*’\x}.
Namely the knowledge of all the correlation functions allows to compute quantities of

the form

<6_ Js2 f(I)‘I’(CC)Vg(dl)>7M7 f c L2 (82) :

which in turn would characterize the law of the random field .

In order to compute such correlation functions, the first step is to determine the
structure constants of the theory —these correspond to taking N = 3 in the above
expression. To do so one exploits the fact that conformal invariance imposes constraints
on the correlation functions: these are conformally covariant in the sense that so-called
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Ward identities (which we explain below) hold true. Additional constraints arise thanks
to assumptions related to representation theory of the Virasoro algebra. This approach
is at the heart of the derivation of these structure constants in [131], later rigorously
implemented in [84], which are described by the DOZZ formula [45, 141].

Having determined the structure constants of the theory, one then needs to implement
a recursive procedure to compute all correlation functions from these basic ones. The
conformal bootstrap relies on the knowledge of universal quantities known as conformal
blocks Fp —universal in that they only depend on the conformal field theory considered
via its central charge and conformal weights A,— and the spectrum of Liouville theory
Q@ + iR*. The recursive procedure at the heart of the conformal bootstrap in particular
implies that the computation of four-point correlation functions can be reduced to that
of the structure constants via

<V061 (O)VOCQ(Z>V043<1)Va4(oo)>%u
1 ' » o
T /RFE,SZZ(% an, Q — iP)CPOP(Q + iP, g, g |80~ A= 8) | B () 2 P

where CP9%%(ay, oz, ar3) stands for the DOZZ formula describing the structure con-
stants. Proving rigorously such a statement is highly involved but has nonetheless been
achieved in [66]. Computations of correlation functions with a higher number of inser-
tions can be done in the same fashion, which allows to express correlation functions with
an arbitrary number of insertions in terms of the DOZZ formula and conformal blocks
as shown in [67].

2.1.3 . From Liouville to Toda theories

A natural question which appeared shortly after the 1984 article of BPZ [12] was:
what happens when the algebra of symmetry stricly contains the Virasoro algebra? In
other words, do the same techniques apply when Virasoro symmetry is extended to fea-
ture an additional level of symmetry? Inspired by the BPZ seminal work, Zamolodchikov
proposed in 1985 [143] a framework designed to extend this machinery to models that
enjoy, in addition to conformal invariance, an enhanced level of symmetry. These ad-
ditional symmetries, called higher-spin or W-symmetries, are encoded by W-algebras,
which are vertex algebras that contain the Virasoro algebra as a subalgebra.

Toda theories, a family of two-dimensional conformal field theories indexed by semisim
ple and complex Lie algebras g, provide natural extensions of Liouville theory within this
setting. Indeed Liouville theory is actually the simplest case of a Toda theory, in that it
actually corresponds to the choice of g = sl, for the underlying Lie algebra. However
for generic g the algebras of symmetry of these two-dimensional conformal field theories
are no longer given by the Virasoro algebra but rather by W-algebras, which makes
their study particularly interesting from the point of view of representation theory of
WW-algebras (more on this topic can be found e.g. in [6]), but also from the perspective
of W-symmetry (in this respect we refer to the review [26] and the references therein)
and for their links with two-dimensional Quantum Field Theories with Kac-Moody sym-
metry (see for instance [9, 8] for their interplays with Wess-Zumino-Witten models).
However and unlike Liouville theory, Toda theories are still far from being completely
understood, despite having initiated a huge amount of work in the physics literature,
all the more thanks to their numerous links with other models. Such connections arise
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for instance with certain four-dimensional gauge theories —since they are the general
setting for the AGT correspondence [4] (see also [39, 104] for a mathematical take on
this correspondence)— and models of statistical physics (for instance the reference [23]
provides a journalistic survey on the connection, first unveiled by Zamolodchikov [1],
between the Ising Model in a Magnetic Field at criticality and a certain Toda theory
associated to the exceptional Lie algebra Eg). We will explain in this subsection how
these theories are defined and studied in the physics literature.

2.1.3.1 Toda theories and the path integral

Like Liouville theory, one specificity of this family of conformal field theories is that they
can be defined using a path integral approach, thanks to which they admit a probabilistic
representation that allows their mathematical study. Namely Toda theories provide a way
of picking at random a function from a Riemannian surface (¥, g) to an Euclidean space
a ~ R", the Toda field ®. This Euclidean space comes equipped with a scalar product
(-,-) as well as a special basis of so-called simple roots (ey,--- ,e,), both inherited from
the underlying Lie algebra structure. We have depicted in Figure 2.1 below the basis
associated to g = sl3, in which case a ~ R? equipped with a basis (ey, es) such that
(€i,ej) =2 if i = j while (e;,¢e;) = —1if i # j.

Figure 2.1: The simple roots associated to g = sl;

For a given Riemannian metric g over ¥, the path integral defines heuristically the
law of the Toda field via

(F@)r, =5 [ P90 216)

where D¢ should stand for a “uniform measure’over a subspace F of the space of square
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integrable a-valued maps defined on X and Sy is the Toda action given by

ST,Q(¢7 g) = i /2 <<ag¢(x)v ag¢(x>>g + Rg(Qa P(x)) + 4 Z Miew%qj(x») Vg(d$)'

47 —
(2.1.7)

The Riemannian metric ¢ has associated scalar curvature R, gradient 0, and volume
form v,, while (-,-), denotes the scalar product associated to the tangent space of
a-valued functions defined on ¥. The notation v € (0,1/2)" stands for the coupling
constant and () € a is the background charge; the constants y;, 1 < i < r, are positive
and referred to as the cosmological constants. In order to ensure conformal symmetry,
the background charge is related to the coupling constant via the relation Q := yp+ 2 p
where p and p¥ are special vectors in a. We will provide additional details on the objects
involved in Chapter 3 below. Let us emphasize that one recovers Liouville theory when
g is the Lie algebra sl (of 2 x 2 complex matrices with vanishing trace, in which case
r = 1). Like Liouville theory, the classical field theory associated to Toda theories come
from a geometric background and emerge for instance in the study of 11/-geometry [63]
where the Toda equations (for g = sl,,) are associated to the question of finding certain
holomorphic embeddings from CP! to CP™ as noticed in [90], and describe minimal
surfaces [21].

Within this framework, Vertex Operators are functionals of the Toda field that depend
on an insertion point z € ¥ as well as a weight o € a, and are formally defined by setting
Vo(2)[®] = el®®() | The correlation functions then take the form?

N

H o (20)) /H (on:0(2)) o =51.0(0:9) D g, (2.1.8)
.F

k=1 k=1

In the same fashion as in the study of Liouville theory, understanding Toda theories boils
down to the computation of the correlation functions.

2.1.3.2 The conformal bootstrap method for Toda theories

As already mentioned, Toda theories are conformal field theories but they enjoy in addi-
tion an higher level of symmetry. However due to the fact that the Toda field is no longer
real-valued but has rather values in a Euclidean space, this does not mean that Toda the-
ories are more constrained than Liouville theory. It is actually the contrary: implementing
the conformal bootstrap procedure is far from being completely understood, even in the
physics literature. Certain correlation functions of the theories can be computed [52, 55],
but providing a general process to do so for any correlation functions remains an open
question up to now despite the diversity of approaches having been proposed to remedy
this issue. For instance in [101, 74] the three-point correlation functions are expressed in
terms of quantities that arise in the AGT correspondence —but still remain non explicit,

The range of values (0,+/2) for the coupling constant ~ only differs from the one com-
monly encountered in Liouville theory by a conventional matter. Namely the coupling con-
stant from Liouville and the one of Toda are related by v < v/2v. This convention accounts
for the fact that some elements of the basis have squared norm 2.

2In order to keep the notations concise we do not inlcude the parameter v in the coming
definitions.
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while in [38] a general conformal bootstrap procedure is sketched in relation with the
quantization of moduli spaces of flat connections.

Indeed W-symmetry together with the constraints it implies still allow to understand
certain properties of the model being studied. To settle the ideas, let us explain how to
implement the conformal bootstrap procedure in the case of the Toda theory associated
to the Lie algebra g = sl3 and for a special class of correlation functions. The picture
is quite similar to that of Liouville but slightly more involved: the first step is to exploit
the symmetries of the model to compute a family of three-point correlation functions
(Vo (0) V4, (1) Vi, (00)). However unlike in Liouville theory, this does not allow to find an
explicit expression for any three-point correlation function but only under the assumption
that one of the Vertex Operator is a semi-degenerate field, by which we mean that
the corresponding weight belongs to some subset of a. Under this assumption such
correlation functions are described by the Fateev-Litvinov formula [52], which we denote
by Cf(ay, o, a3) and that generalizes the DOZZ formula for Liouville. With the sign
“x"we indicate that the corresponding Vertex Operator is semi-degenerate.

Having computed this family of three-point correlation functions one then wonders
how to compute correlation functions with a higher number of points, and whether a
formula similar to the one for Liouville holds true. To the best of our knowledge such
a procedure has not been written down in the literature, however work in progress in
collaboration with Guillarmou [32] tends to suggest that a conformal bootstrap formula
would hold true for certain four-point correlation functions.

2.1.4 . Overview of the thesis

In this manuscript one of our main achievements is a rigorous derivation of the Fateev-
Litvinov formula for the sl3 Toda theory based on a mathematical construction of the
correlation functions of Vertex Operators. Proving such a statement relies on several
steps, combining inspiration from the method implemented in the physics literature with
probabilistic reasonings.

We will start by introducing the basic notions necessary to make sense of Toda
conformal field theories in Chapter 3, where we will provide some reminders on semisimple
and complex Lie algebras as well as conformal geometry, but also present the probabilistic
tools we will work with in the rest of the document.

The following chapter, Chapter 4, will be dedicated to proposing a probabilistic
definition for the Toda correlation functions by making sense of the path integral (2.1.5).
We will shed light on some of their basic properties that will prove to be key in the
subsequent chapters. The main results of this chapter are explained in Section 2.2
below.

Starting from Chapter 5 we will focus on the case of the g = sl3 Toda theory. At
first we will be concerned with understanding certain aspects of the symmetry enjoyed
by this model, and for this purpose will prove that Ward identities, which in some sense
encode this symmetry, hold true on our probabilistic model. In Chapter 6 we will also
make a small detour and study some unexpected implications of WW-symmetry on purely
probabilistic objects by making a connection between the reflection principle in probability
theory and the notion of reflection in (Toda) conformal field theory. The plan of these
two chapters will be sketched in Section 2.3.

Relying on all the notions introduced in the aforementioned chapters, we will finally
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provide in Chapter 7 a rigorous proof of the Fateev-Litvinov formula for a family of
three-point correlation functions associated to the sl3 Toda theory. To do so we will
translate into a mathematical language several of the techniques used in the physics
literature such as operator product expansions, a use of the reflection coefficients or
existence of BPZ-type differential equations. Section 2.4 will provide a high-level picture
of these methods and explain the main steps leading to our main result. To conclude
we will present some work in progress concerning the conformal bootstrap procedure for
the sl3 Toda theory in Chapter 8. We will explain how the study of the so-called Toda
Hamiltonian allows to carry the conformal bootstrap procedure within our probabilistic
setting.

2.2 . A probabilistic take on Toda conformal field
theories

Now that Toda conformal field theories have been properly introduced, let us explain
the contribution of the present manuscript to the mathematical understanding of these
models. To start with we would like to sketch briefly how we can mathematically make
sense of the correlation functions of Vertex Operators of the Toda conformal field theories
on the two-dimensional sphere S?, which we identify with the Riemann sphere C U
{oo}. This summarizes the content of Chapter 4, building on basic notions presented in
Chapter 3. This chapter is based on an article written in collaboration with Rhodes and
Vargas [34].

2.2.1 . A probabilistic interpretation of the path integral

The path integral (2.1.5) that formally defines Toda theories does not make sense per
se. Out first task is therefore to give a rigorous meaning to this equation and construct
the correlation functions of Vertex Operators as well-defined mathematical objects. To do
so we will consider a probabilistic framework that involves the consideration of Gaussian
free fields and the theory of Gaussian multiplicative chaos introduced in Section 3.2.

2.2.1.1 Definition of Toda correlation functions

As we will explain in Section 4.1, we can indeed interpret in the path integral (2.1.5) the
part stemming from the quadratic term that appears in the Toda field action (2.1.7) in
terms of the probability measure with respect to a Gaussian free field X9 over C and
with values in a, that is X9 : C — a. Indeed the quadratic term

e

=

<¢7($)¢>L2D¢ with  (f,h)p2 = /(f(x),h(a:)}vg(dx) for fih:¥ —a

%

is reminiscent of the density function
_1 1 -1
((2m)™ det(A)) 2 e 2 @A day

of a Gaussian vector X = (X3, -+, Xy) with covariance matrix A so that one can
interpret the Toda field in terms of a “infinite-dimensional Gaussian vector'described by
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its covariance kernel:

E [(u, X2 (2)) (v, X (y))] = (u,v)Gy(2,y)

where G, is the Green function of the Laplace-Beltrami operator A, on (X, g), and
formally corresponds to the inverse of this operator. Because the Green function di-
verges over the diagonal = = y this field is not a proper function but rather a random
distribution. When studying this random generalised function it is standard to regularize
it in order to work with a smooth function. For this purpose one considers a family of
approximations (X?)__, of the field X9, for instance defined by convolution based on
a smooth mollifier p. via X? := X7 % p. (more details are provided Section 3.2). This
allows to make sense of several expressions involving the Gaussian free field, such as its
exponential —that will play a key role in this manuscript, provided that one understands
how such expressions behave in the limit where ¢ — 0. This is the procedure at the
heart of the construction of Gaussian multiplicative chaos measures. Before moving on
let us highlight that Gaussian free fields have become a key object in a wide range of
topics and especially in two-dimensional random geometry in that it plays a role silmilar
to that of a Brownian motion where the two-dimensional space variable replaces the
time variable. We redirect for instance to the reviews [125, 112] for additional details on
these objects. The probabilistic definition of Liouville theory initiated in [40] is based on
a similar interpretation and differs from the present one in that the underlying field has
now values in an Euclidean space a (of dimension greater than two for g # sl,) rather
than R.

Interpreting the quadratic term in such a way we can translate the path integral
into mathematical terms. Namely we make sense of the path integral that defines Toda
conformal field theories in a probabilistic way by making the identification for any suitable
maps F' and metrics g:

(F(D))g, = Zig /GE[F<X5’ + %lng + c)>

1 - g
exp <_E/ (Rg<Q,X9 +e)Hary e +%lng+c>> dvg) } de,
c i=1

(2.2.1)

where Z, is defined as a regularized determinant. In order to make sense of the exponen-
tial of the Gaussian free field one needs to rely on a regularization procedure and define
them as random measure called Gaussian multiplicative chaos measures. The presence
of the term %lng in the definition of the Toda field is reminiscent of its counterpart in
Liouville conformal field theory, and accounts for the conformal invariance of the theory.
It is important to shed light on the fact that making sense of the exponential of the
free field present in the action functions is far from straightforward due to the fact that
the field X7 is not a well-defined function but rather lives in a distributional space. To
address this issue we first have to come back to the regularized version (X?).( of the
field so that the quantity e%X2(*) does indeed make sense, the problem being that as
e — 0 the expression will diverge. To remedy this issue we renormalize the exponential
by its expectation: the result is then that under the assumption that (vye;, ve;) < 4, the

o (ves XL ()
limit lim & -

————7——=dv,(x) defines a random Radon measure over C. Such a measure
=50 ]E[e('veqz,xs(w))]
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is called a Gaussian Multiplicative Chaos measure. In Section 3.2 we provide more details
on the construction of such an object. Initially introduced by Kahane in 1985 [76], there
has been renewed interest over the past decade in the study of the theory of Gaussian
Multiplicative Chaos. Indeed it was shown to have many applications, should they con-
cern financial models [48] or for its role in the modelling of turbulence [81, 105, 92],
but also thanks to its links with some random matrix theories [15, 36] as well as with
certain properties of Riemann ( function [120]. The theory is also of special interest per
se and has been studied from a wide range of perspective —multrifractal analysis [16],
definition of imaginary Gaussian multiplicative chaos measures [85, 75], integrability...
The reader may consult the review [115] and the references therein for a more complete
description of this theory and its applications.

The correlation functions of Vertex Operators are then defined by making sense of
the above expression when one takes F(®) = []_, e{®®) . However and in the
same fashion as with the the definition of the Gaussian Multiplicative Chaos measures,
making sense of such expressions requires to work first with a regularized version and then
investigate how the limit can be understood. More precisely, the probabilistic definition
of the Toda correlation functions takes the form of the limit, provided it makes sense

N N g Q
1 €<o¢k,X5(zk)+7 In g(2x)+c)
< « (Zk>> ) = 11 /E|: [ AN Y
H Vo B S0 2, . klll g(zk)7< kk) o [efon X2 (1) ]

k=1 9
1 - g
exp (—E/C (Rg<Q, X9+ ¢)+ 47rizl,ui67<e“x‘ +%lng+c>) dvg> ] de.
(2.2.2)

Using Girsanov (or Cameron-Martin) theorem we can reformulate this expression in a
more tractable way. Following this approach we are able to show that we can provide a
rigorous definition of Toda correlation functions:

Theorem 2.2.1. Let g be any simple and complex finite-dimensional Lie algebra
and assume that the coupling constant satisfies v € (0,+/2). Then existence and
non-triviality of the correlation function (V,,(z1) - - - Vay (2x5))4,4 do not depend on
the background metric g in the conformal class of the spherical metric §. Further-
more:

1. (Seiberg bounds) The correlation functions (V,,(z1) - - - Vay(2n))g,g €Xist and
are non trivial if and only if the two following conditions hold:
Forall1<i<r, s >0 and (o —Q,e;) <0 foranyl<k<N

(S0 05— 2Q.))
Y

where s; =

(2.2.3)

2. (Probabilistic representation) /In the particular case where g = § is the
spherical metric, one gets the following explicit expression for the correla-
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tion function

(Vai (21) - aN(ZN)>
(H > H |2k _ zl|*<ak,oél> E

1<E<IKN

YEiq
Z )

=1

(C)~ (2.2.4)

where the random variables that appear inside the expectation correspond
to Gaussian multiplicative chaos measures, formally defined by

g(x)—iwei,z,?:l ag)
HiVZI |:)3 _ Zk|<06kﬁ€i>

|d?z| that appears in this statement stems from

275 ) = I S i) g,

The spherical metric § := G | B

the identification via stereographic projection of the sphere S? (equipped with its standard
metric) with the Riemann sphere CU{oo} equipped with the Riemannian metric §. The
vectors denoted by (w,"); <; <, form the basis of a dual to the basis of simple roots:
(ei,wf) = 6ij. Addltlonal details on this statement are provided in Section 4.1 (see also
Figure 2.1).

Thanks to this result we are able to construct the correlation functions for Toda
theories on the sphere as soon as the weights satisfy the Seiberg bounds (2.2.3). The
existence of such bounds on the weights already appears in Liouville theory [123, 40].

2.2.1.2 Probabilistic correlation functions and conformal invariance

Having defined Toda correlation functions and before going any further it is natural to
check whether they are indeed good candidates for the correlation functions considered
in the physics literature. To do so we check that the probabilistic expression proposed in
Theorem 2.2.1 satisfy two basic properties related to conformal symmetry of the model:
conformal covariance of the correlation functions and existence of a Weyl anomaly under
variation of the metric g on C U {oc}.

The first of these two properties is concerned with the behaviour of the correla-
tion functions under transformations preserving the conformal structure of the Riemann
sphere C U {oo}. Namely this assumption corresponds to the fact that when insertions
are moved according to a diffeomorphism of the Riemann sphere —a Mébius transform
of the plane— the correlation functions are perturbed in a completely explicit way, in the
sense of Equation (2.2.5) below. The Weyl anomaly, also referred to as local scale co-
variance, shows that the dependence in the Riemannian metric g with which the sphere
is equipped is completely determined within a given conformal class. Put differently,
we show in Equation (2.2.6) below that if ¢’ and ¢ are two Riemannian metrics over
the Riemann sphere that both belong to the conformal class of the spherical metric §
then the associated correlation functions only differ by an explicit multiplicative factor
independent of the correlation function considered. Actually this factor only depends on
the theory via its central charge. These correspond to basic assumptions required in the
physics literature to develop an axiomatic approach towards conformal field theory, see
e.g. Gawedski's axioms [62].

In this perspective, the following theorem is an additional indication that the proba-
bilistic correlation functions are consistent with properties expected in the physics:
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Theorem 2.2.2. Under the assumptions of Theorem 2.2.1, the following holds true:

1. (Conformal covariance) Let i) be a Mébius transform of the plane. Then

(Vi (8(21)) -+ Vo (0 (2n)ag = [T 18/(20) 722 (Ve (21) -+ Vi (21)) g

k=1
(2.2.5)
where the conformal weights are given by A, = (3, Q — ).

2. (Weyl anomaly) For suitable o (namely o € C*(C), see notations in Section 4.2)
we have the following relation

(Vi (21) - Va (28 ))guemg = €572 EN (Vi (21) -+ Vi (20))gg (226

where Sy is the Liouville functional (with A = 0)

Si(p.9) = / (105012 + 2Ry0) dv.

and the central charge cr is given by cr = r + 6(Q, Q).

These properties are inherited from those of Gaussian free fields, highlighting the
strong connections between this probabilistic object and conformal geometry in dimension
two. They will be proved in Section 4.2. We note that such features are already present
in the probabilistic formulation of Liouville theory [40].

2.2.2 . Some additional properties of the probabilistic cor-

relation functions

The correlations are now well-defined mathematical objects, and we have shown that
they satisfy basic assumptions related to conformal invariance. Before actually trying to
compute them we will need to understand some of their analytic properties, related to
their continuation or their regularity. We will build on the two articles [30] and [33], the
second one having been written together with Huang.

2.2.2.1 A first analytic continuation of the correlation functions

An additional assumption usually made in the physics literature is that the correlation
functions depend analytically on their weights a4, - -+, ax. This assumption is actually
rather strong and is key in the implementation of the conformal procedure as envisioned
by BPZ [12]. In order to provide a rigorous derivation of this method one first needs
to ensure that this requirement is met within our probabilistic framework and show that
the expression (2.2.4) depends analytically in the weights ()1 <k < N

Besides, in the construction of the correlation functions proposed there the state-
ment of Theorem 2.2.1 places two restrictions on the range of values for which they
can be probabilistically represented. The first assumption that (ax — Q,e;) < 0 (or
put differently that oy, — @ belongs to the Weyl chamber C_) is really necessary for
the probabilistic representation to make sense, but the second one, that demands that
(Y ap — 2Q,wY) > 0 can actually be relaxed. Indeed in Equation (2.2.4) we see
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that when (31, a — 2Q,wY) < 0 the singularity comes from the poles at —N of
the Gamma function T', but the expectation term still makes sense under more general
assumptions.

Based on this observation, we show that the probabilistic correlation functions de-
pend analytically in its weights (ax)1 < x < v and that in addition they admit an analytic
continuation beyond the Seiberg bounds (2.2.3):

Theorem 2.2.3. Let z;,--- ,zy € C be distinct and define a subset of (Q + C_)V
by setting

By ={(a1, - ,an) € (Q+C)N

4 .1 .
such that —s; < e A k:nlnnN§<Q —ayg,e)) forall 1 <i < 7’} .

(2.2.7)
Then the map defined by Equation (2.2.4):
L T(si)p ™ N r
o — (H i) Hi ) H |Zk o er(ak,az) E H Z(’Yzeja)(c)—si (2.2.8)
i=1 " 1<k<I<N i=1

is meromorphic in a complex neighbourhood of By C (C")Y, with poles given by
Py ={acBy, s;=0 forsome 1<i<r}.

To prove this statement we will study properties of Gaussian multiplicative chaos
measures and more precisely derive conditions ensuring existence of their moments. As
we will see the set By is the optimal one in which the expectation term makes sense.

We will explain later that we can actually go beyond this representation by providing
the exact tail expansion of such Gaussian multiplicative chaos measures.

2.2.2.2 Some analytic properties of the correlation functions

In order to study the symmetry enjoyed by Toda theories we will need to compute deriva-
tives of the correlation functions. In order to ensure differentiability of the correlation
functions several of their properties will have to be disclosed. Namely we will provide
some estimates (including fusion estimates) ensuring that they can be integrated, and
then explain how derivatives can be computed using Gaussian integration by parts which
in turn will allow to reduce existence of the derivatives to these estimates. Our main
result in this perspective is the fact that correlation functions are twice differentiable:

Proposition 2.2.4. Take z,,--- ,zy € C distinct and assume that the weights
(ag,- - ,an) belong to By.1. Then zy +— ([Th_o Vay(2x)) is C? on the set C \
{21, 2

Along Section 4.4 we will review all these technical aspects.
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2.3 . A mathematical study of the symmetries of
Toda theories

The construction of the correlation functions together with their properties high-
lighted represent the starting point for a mathematically rigorous study of the symmetries
enjoyed by Toda theories. As we will explain below, this symmetry will manifest itself via
the existence of Ward identities on the correlation functions. We rigorously prove this
statement for the g = sl3 Toda theory following the aforementioned article [33], and like
before for the theory defined on the sphere S? that we identify with the Riemann sphere
C U {oo}. We will also explain how the reflection principle in probability theory can be
related to the reflection phenomenon which occurs in the study of Toda theories, which
will allow us to describe a Brownian path decomposition as well as a tail expansion of
Gaussian multiplicative chaos measures. These results have been proved in [31].

2.3.1 . W-symmetry and Ward identities

In conformal field theory, the symmetry enjoyed by the models can be seen via the
existence of a certain observable of the field called stress-energy tensor. The effect
of inserting this tensor within correlation function is explicit and described in terms of
so-called Ward identities, which in some sense encode the local symmetries of the theory.

The same picture remains true when the model considered also enjoys an enhanced
level of symmetry. Namely the existence of additional symmetries will manifest itself via
the existence of additional identities obtained via the insertion of other tensors within
correlation functions.

We present here in more details on these Ward identities and explain how they can
be rigorously derived within our probabilistic framework.

2.3.1.1 Conformal symmetry and the stress-energy tensor

The method developed by Belavin, Polyakov and Zamolodchikov in [12] for solving
two-dimensional conformal field theories is based on a systematic exploitation of the
conformal symmetry enjoyed by the underlying model. This is done through the study of
the Virasoro algebra, the symmetry algebra of two-dimensional conformal field theories.
As a feature of this machinery, the conformal symmetry of the model yields the existence
of a holomorphic current of spin 2, the stress-energy tensor usually denoted by T. This
tensor admits a (formal) expansion in Laurent series which takes the form

T(z) =) _La®) (2.3.1)

nez (ZO o Z)TH_Q

around some point z € C, where the modes L, are the generators of the Virasoro
algebra, with the commutation relations given by

Ly, Lo = (1 — m)Lpsrn + 1—62(71 — Dn(n + 1)6pmold, (2.3.2)

with ¢ the central charge of the conformal field theory being considered.
In Liouville theory this tensor can (formally) be defined via the variation of the cor-
relation functions with respect to the metric g and thus admits an alternative expression
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in terms of the Liouville field ®. To be more specific one can define the stress-energy
tensor by means of:

<T(zo) H Vak(Zk)> = 47r5g 0 ) <H Vak(zk)> (2.3.3)
k=1 p k=1 p

where in the above we vary the metric around the point 2, € C. It follows from this

definition that the stress-energy tensor admits an explicit expression as an observable of
the Toda field via

T (2)[®] = QI2P(2) — (0:9(2))° . (2.3.4)

See for instance [82, 107] for additional details on the mathematical justification of the
above.

One of the key properties of this tensor is its operator product expansion with Vertex
Operators, which (again formally) takes the form:

Aa)Vy(2) N 0,Va(2)

T(ZO)VO(Z) = (Zo . 2)2 20 — 2

+ holomorphic terms (2.3.5)

as zp — z. This in particular implies that the correlation functions of Vertex Operators
solve the so-called Ward identity:

N N A N
T( Vo (21)) = = 2.3.6
o [ [V o) §(<z0—z,> _) JIEE 2.36)
Here we have introduced the conformal dimension A, = %(Q— %) of the Vertex

Operator V,,. The derivative should be understood as a complex (i.e. Wirtinger) deriva-
tive3, that is 8 . f(x,y) = 2 (9, —10y) f(z,y); O is defined analogously by means of
O:f(z,y) = (8, + 140 )f( ,y). When combined with the holomorphicity at infinity
of this tensor, by which is meant that T(z) ~ % as z — oo and which is usually
axiomatic in two-dimensional conformal field theories, the above identity implies that
Liouville correlation functions satisfy three global Ward identities:

N

(Zlnazz + nAOéz) <H Vak(zk’)> =0

=1 k=1

M =

for 0 < n < 2, which actually means that they enjoy a property of conformal covariance
in the sense that for any Mébius transform ) of the complex plane,

(T Ve (0

The above Ward identity has been rigorously proved in the setting of Liouville theory
in [83] based on the probabilistic framework introduced in [40].

—2A
Zl i ™ HVak Zk

k=1

||mz

3Unless explicitly stated, holomorphic derivatives will be considered throughout the rest
of the document.
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2.3.1.2 W-symmetry and higher-spin currents

For models with enhanced symmetry such as Toda conformal field theories, the algebra
of symmetry is no longer by the Virasoro algebra but rather contains it. These extensions
appeared shortly after [12] in a work by Zamolodchikov [143] where the author introduced
the notion of W — (or higher-spin) symmetry, based on extensions of the Virasoro algebra
called W-algebras. Instances of models with this additional level of symmetry emerged in
subsequent works, first in [54] and then in general in [53]. A similar reasoning involving
operator product expansions with respect to holomorphic currents should remain valid
when the model being studied enjoys higher-spin symmetry in addition to the conformal
symmetry. This additional level of symmetry also comes with additional holomorphic
currents that contain information related to this higher-spin symmetry: the so-called
higher-spin currents W (for 3 <i < r + 1).

In this manuscript, we focus on the study of the g = sl3 Toda theory, in which case
there will be one additional holomorphic current of spin three W :== W), which admits
the Laurent series expansion

Wi(z) =) (WA (2.3.7)

20 — 2 n+3
nez 0 )

The W5 algebra is then a vertex algebra generated by the (L,, W,,)n.mez and with
commutation rules given by

L, W] = (2m — n)Win. (2.3.8)

The commutation rules for the (W,,),,c7 is rather complicated and bilinear in the (L,,), .,
(see [25, Equation (2.1)]). In particular the 13 algebra is not a Lie algebra. In the present
document we will not use this modes representation but rather define the tensor as an
observable of the field that depends on a position z € C and which can be defined by
an expression similar (but more complicated) to the stress-energy tensor. However in
contrast with the derivation of the stress-energy tensor as explained in Equation (2.3.3)
it is not known at the time being whether it would be possible to describe the higher-spin
current in a similar fashion, even if it should take the form of “derivatives in an extra
direction”(cf. [135, Subsection 8.2]). This is related to the geometrical interpretation of
W-symmetry, which is not really well understood for the time being —as stressed in [57,
Chapter 18.2], “it would be interesting to identify the deformation problems related to
... W-algebras".

The so-called WV operator product expansion, axiomatic in the physics literature, is
key in the understanding of the higher-spin symmetry and takes the form:

w(a)Va(z)  W_1V,(2) N W_.V,(2)

(20 — 2)3 (20 — 2)? 20— 2

W(z)Va(2) = + holomorphic terms (2.3.9)

where w(a) € C is the quantum number associated to W, and the W_;V,(z) are
the descendent fields. These fields are said to be local, in the sense that they should
only depend on the weight o and derivatives of the Toda field at the point z. However
unlike the descendent fields associated to the stress-energy tensor, they are not actually
obtained by differentiating the Vertex Operators. We will explain how they can be defined
within our probabilistic framework.
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Equation (2.3.9) formally holds in the sense of operators, but can be rephrased in
terms of correlation functions as

N N ) 0
(W [V} = 3 (o + o + o
k=1 (20 — 21) (20 — 21) 2o — 2

=1

<H Vak (Zk)>7

k=1
(2.3.10)

where
N

WO Var (21))  stands for (W Vi, (21) [ ] Ve (21)-
k=1 k£l

This equality is usually referred to as the local spin-three Ward identity and is an instance
of the higher-spin symmetry enjoyed by the model. We would like to stress here that
unlike the Ward identities associated to the stress-energy tensor, the quantities that
we have denoted W(_IZ(Hi\;l Vi, (21)) are not derivatives of the correlation functions
properly speaking, but rather correspond to inserting observables within them. For
instance generally speaking the expression W(_l)l(H,]yzl Vi, (21)) cannot be expressed as

a derivative of the correlation function (Hszl Vi, (2)) but is rather given by

WO T Var (20)) = (e, 08 (z0)) T Vi ()

k=1 k=1

for some vector u,, € a. This key difference makes the study of Toda theories much
more difficult to understand than Liouville theory.

In a similar fashion as for the stress-energy tensor, the asymptotics of this tensor
when z; — oo allow to write that correlation functions are subject to certain constraints,
known as global spin-three Ward identities. Namely the assumption that W(z;) ~ %

allows to infer the following set of equalities, valid for 0 < n < 4:

N N
—1
5 (sz(_’; + w4+ %z{“%u(aﬂ) (I Ver(z)) = 0. (2.3.1)
=1 k=1

We stress that unlike the global Ward identities associated to the stress-energy tensor,
it is not known at the time being whether the global spin-three Ward identities can be
derived in a similar fashion by exploiting properties of the correlation functions related
to some covariance. This makes them all the more key in the understanding of the
symmetry of the theory. Likewise due to the fact that the quantities that appear in the
global Ward identities are not stricto sensu derivatives of the correlation functions make
these five identities necessary in the prospect of implementing the conformal bootstrap
procedure.

2.3.1.3 Ward identities for the probabilistic correlation functions

In Chapter 5 and building on our probabilistic definition of the correlation functions, we
will provide a rigorous meaning to the quantities that appear above under the assump-
tion that g = sl3. Namely thanks to our probabilistic framework and under suitable
assumptions we can make sense of the quantity (W (z) []r, Va, (2)). Namely we use
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the fact that in analogy with the stress-energy tensor T, W(z) can be represented as a
functional of the Toda in that it formally takes the form:

W (2)[®] =¢*(wz — w1, 0°D(2))
+2q ({e1,0°®(2)) (w1, 0D(2)) — (2, *P(2)) (w2, 0P(2)))  (2.3.12)
+ 8(wy, 0P (2))(wy — wy, 0P (2)){ws, OP(2))

where we have set ¢ := v + % However as before due to the lack of regularity of the
Toda field the latter must be appropriately regularized to be meaningful.

Relying on the definition of the Toda field proposed in Equation (2.2.1) with the map
F(®) being taken as W (z)[®], we can show that the limit of these regularized quantities
is well-defined in the sense that the limit

(W (z0) [T Vi (26)) = i (W (20) T ] Ve c(20))

k=1 k=1

does exist, where the right-hand side admits a probabilistic representation based on
Equation (2.2.1). We can define analogously the expression V\i(_l)z(]_[kN:1 Vi, (21)) based
on a limiting procedure. We then prove that the Ward identities do indeed hold within
our probabilistic framework in the sense that the following statement holds true:

Theorem 2.3.1. Assume that g = sl;. Under the assumptions of Theorem 2.2.3
the spin-three Ward identity holds true:

N N ) Q) N
<w<zo>Hvak<Zk>>=Z( we W W—2><Hvak<zk>>

=1 (20— 2)*  (20—2)* 20—
(2.3.13)

with the quantum number w(«) explicit. A similar statement holds for the stress-
energy tensor.

On the same perspective we prove that:
Theorem 2.3.2. Under the assumptions of Theorem 2.3.1, the global Ward iden-
tities hold for 0 < n < 4:
N
Z (zl”W(_l)z + nzl"_IW(_l)l +

=1

N
wzlndw(al)) (H Vo (21)) = 0. (2.3.14)
k=1

These are additional arguments advocating towards the fact that the probabilistic
correlation functions are indeed good mathematical objects to consider in order to provide
a rigorous meaning to correlation functions from the physics literature. The derivation
of these identities is a major step forward in the mathematical understanding of the sl3
Toda theory and more specifically of its symmetries. These identities will prove to be
crucial in the computation of a family of correlation functions.

The proof of the Ward identity described by Equation 2.3.13 strongly relies on the
Gaussian structure at the heart of the probabilistic definition of Toda theories. Indeed
one of the key ingredients in the proof of Theorem 2.3.1 is Gaussian integration by parts,
which in a probabilistic language corresponds to the Malliavin calculus for the Toda field.
This property can be seen (at the formal level) from the path integral.
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2.3.2 . W-symmetry and a reflection principle

We have seen above that in order for the correlation functions to be well-defined
one needs the weights to belong to a subset ) + C_ of a defined by the condition that
(v — Q,e;) < 0forall 1 <i<r. Inorder to make sense of the correlation functions
when this assumption is no longer satisfied it is assumed in the physics literature that
there exist transformations s mapping C_ to the whole a as well as scalar numbers R,(«)
such that the Vertex Operators V,, and Vi sa—¢) are related one to the other by the
equality

Va = Rs (Q)VQ+S(Q,Q) .

These coefficients are called Toda reflection coefficients, while the group of such transfor-
mations is a reflection group called the Weyl group of g. This assumption is axiomatic in
the physics literature and stems from the fact that the conformal and quantum weights
A, and w(«) are invariant under such transformations. In Figure 2.2 below we pro-
vide a representation of this so-called Weyl chamber C_ together with the associated
transformations in the case of g = sls.

Figure 2.2: The Weyl group associated to g = sl3

We stress that in the case of Liouville theory, this reflection group is made of only
two elements Id and —Id. The reflection relation then reads V,, = R(«a)Vag_o where
R(«) is Liouville reflection coefficient.

Inspired by the existence of such a relation we will explore some interplays between
this reflection phenomenon and the reflection principle in probability and explain how
these reflection coefficients arise in the tail expansion of certain random variables asso-
ciated to Gaussian multiplicative chaos measures. Chapter 6, that details these results,
will mostly follow the article [31]. We will not actually provide a rigorous meaning to the
reflection relation V,, = Ry ()Vo1sa—q) Yet, but will do so in the case where g = sl;
and for a family of three-point correlation functions in Chapter 7.
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2.3.2.1 Reflection principle and a Brownian path decomposition

In a celebrated article [138], Williams in 1974 described a remarkable path decomposition
for Brownian paths and more generally one-dimensional diffusions. In its simplest form
where the underlying process is a Brownian motion with positive drift v (which we denote
B"), this decomposition can be formulated by saying that, conditionally on the value of
the global minimum of the process M = tiI>1fO By, the law of BY (knowing M) is no

longer a Markov process but it can be realized by joining together two Markov processes.
Namely, the first process has the law of B~ until reaching M, and the second one has
the law of the diffusion process 3¥ whose law is that of B” conditioned on staying above
M.

Following its discovery by Williams, this path decomposition has been thoroughly
investigated in the probability community and has inspired numerous fundamental state-
ments such as Pitman's celebrated theorem [110]. Extending this decomposition for
different classes of processes has been a very active field of research [17, 35, 78, 27]
since Williams' 1974 article. See the account (in French) by Le Gall [87] on this topic.
However to the best of our knowledge, there is no general formulation of Williams path
decomposition for diffusions in any dimensions.

Based on a generalized reflection principle, we will prove that the notion of reflection
group allows to extend this path decomposition to any suitable diffusion on a Euclidean
space. In the context of Toda theories described above, the random variables M; =
tir>1f0(Bt”, e;) will play the role of the minimum of the process and the decomposition will

=

feature r + 1 components instead of 2 in the path decomposition by Williams. To be
more specific we will prove that:

Theorem 2.3.3. Assume that B is a Brownian motion with drift v € C that evolves
on a Euclidean space on which acts a rank r reflection group. Then there exist r+1
diffusion processes X', --- | X" such that the following holds true:

1. Pick the M; according to their marginal laws and define a process X to be
the joining of the following processes:

2.« Start by sampling a diffusion process X' started from the origin and
independent from M = >"'_, M;w,. Run it until it hits M + 9C, say at
Z21 € M + 001

« Then run an independent process X? started from z, upon hitting M +
aC.

« Thus define a family of processes (X',--- ,X"). When X" reaches the
boundary of M + dC, sample X"t

3. Then X has the law of B*, a Brownian motion with drift v € C.

We would like to mention to that the consideration of such a notion of minimum is
very natural from the perspective of the probabilistic study of Toda conformal theories
as we will see in the description of the tail expansion of Gaussian multiplicative chaos
measures below. This notion of minimum is actually quite common and is used e.g. in
the study of Brownian motion in a cone. For instance in the article [89] the process
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(By — My),~ o, where M, = 70 | w/ igft(Bg,ei> is studied, the difference with our

setting being that we rather consider the minimum of the whole path, which corresponds
with these notations to the process (B} — M), - ,- We find it remarkable that such
notions inherited from the study of symmetries of models of two-dimensional conformal
field theory actually have purely probabilistic implications.

All the notations that appear in the above theorem will be made precise in Section 3.1,
while the proof and precise statements of this theorem can be found in Section 6.1. For
the sake of concreteness we reproduce here an illustration of the corresponding decom-
position of a planar Brownian motion in the case where the reflection group considered
corresponds to As (or to g = sl3).

Figure 2.3: Planar Brownian mo- Figure 2.4: Decomposition of the
tion with drift v path associated with A,

In the subsequent section, Section 6.2, we will study some of the properties of the
diffusion processes that appear in Theorem 2.3.3. To be more specific we will study
the law of this process when its entrance point is taken close to infinity. Put differently
we will study the limit where the drifted Brownian motion is conditioned on having a
minimum M such that (M,e;) — —oo for all 1 < i < r. We will see that in these
asymptotics the conditioned process will really look like the joining of » + 1 Brownian
motions with drift and conditioned on staying in a subdomain of a.

2.3.2.2 Reflection coefficients and tail expansion of Gaussian multiplica-
tive chaos measures

Based on the path decomposition unveiled in Section 6.1 we will describe in Sections 6.3
and 6.4 some of its implications on Gaussian multiplicative chaos as well as Toda correla-
tion functions. To be more specific the path decomposition from 2.3.3 will be the starting
point for the description of the tail expansion of Gaussian multiplicative chaos measures,
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which in turn allows to provide a probabilistic representation of Toda reflection coeffi-
cients. Indeed we will show that conditioning correlated Gaussian multiplicative chaos
measures on being large amounts to conditioning a certain drifted Brownian motion a
on having its minimum M with (M, e;) — —oo for all 1 <i < r.

To make this connection precise let us recall that if X is a Gaussian free field on the
disk D with covariance given by

1
|z =y
then the process (X;)¢~o defined by considering its averages on circles centered at the
origin and with radii e™*

E [(u, X(2)) (v, X(y))] = (u,v) In

1 2

X, =— X(e ) dp

or
is a Brownian motion over a. Therefore the r correlated Gaussian multiplicative chaos
measures formally defined by considering

Ii(a) = / |ac|_7<°“"3i> e<76“x(‘”)>(d2x) fori=1,---,r
D
can be rewritten under the form of

+oo
[l(a) = / 6<’Y€i7xt+(a—Q)t> szt
0

for some random measures Z/dt independent of (X;); ¢ stemming from the angular
part of the free field. Additional details will be provided in Section 3.3.
We will show along Section 6.3 that the probability for the integrals I;(«) to be large

is governed by the probability that the minimum of the process (—Xt — %t) is
t>0

small. The letter being a Brownian motion with drift % € C) we can use the path
decomposition described before and work within this setting. Based on this connection
between Gaussian multiplicative chaos measures and drifted Brownian motions over a
we are able to prove the following:

Theorem 2.3.4. for a € QQ + C_ close enough to Q, there exists a non-zero real
number R,(«) such that

T

H (exp (—67<c’eik>]ik(oz)) — 1)] ~ e<8(°‘_Q)+Q_°"C>RS(a) (2.3.15)

k=1
as (c,e;) — —oo for all 1 < i < r following a certain asymptotic which we explain
in Section 6.3. R(«) is a Toda reflection coefficient, and is equal to

A(s(r—Q))

E

Ry(a) = e(s)m, where
Ala) = le (;mrl (M)) o el;L r (1 — %(oz,e)) r (1 - %(a,ev)) :

(2.3.16)

Here &t := {eq,eq, p} is the set of positive roots while ¢(s) is the signature of the
permutation associated to s (see Section 3.1).
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The expression of the reflection coefficients that arise in these asymptotics agree
with that of Toda reflection coefficients considered in the physics literature [3, 2, 51],
further highlighting the connection between the reflection principle in probability and the
reflection phenomenon in conformal field theory. In the special case where r = 1 we
recover the statement of [11, Proposition 4.1], where this asymptotic expansion allows
to describe the scattering matrix associated to the Liouville Hamiltonian.

2.3.2.3 Asymptotics of correlation functions and a further analytic con-
tinuation

Because probabilistic correlation functions are defined using correlated Gaussian multi-
plicative chaos measures, the above statement has implications on the asymptotics of
Toda correlation functions, and more precisely one the asymptotic of the expectation
term in Equation (2.2.1) as (¢, e;) — —oo. We will describe them in Proposition 6.4.2,
and can be written down in the same fashion as in Theorem 2.3.4 in terms of reflection
coefficients—but are slightly more involved.

This asymptotic expansion is at the heart of the analytic continuation of the corre-
lation functions. Indeed one can substract this asymptotic in the expectation term in
Equation (2.2.1) to control the behaviour in the ¢ variable of the integral over a. Thanks
to this reasoning we are able to extend the range of definition of the correlation functions
as stated below:

Theorem 2.3.5. Assume that g = sl3 and let =1, --- , zy € C be distinct. Define a
subset of (Q + C_)V by setting

N
AN = {(al"” ,OéN) S (Q+C—)N S't'fori = ]"2’ <;O(k _2Q’wz> > =

and forany 1 < k < N, I{l}g@ék —Q,e;) < —7}.
(2.3.17)

Then the correlation functions admit a probabilistic representation for o € Ay still
denoted by (T, Vi, (21)). This extension is such thatthe map o+ ([n_, Vi, (2))
is meromorphic in a complex neighbourhood of Ay.

The condition imposed on the weights correspond to the assumption that the asymp-
totic expansion of the correlation functions can be described thanks to Proposition 6.4.2.
We stress that we can describe explicitly the poles and residues of the above meromor-
phic function over Ay. We also highlight that as a corollary the reasoning developed
to prove this statement allows to extend the range of validity over which a probabilistic
representation of the DOZZ formula [84] can be defined. We refer to [30, Corollary 1.3]
for additional details on this extension of the range of values for which the probabilistic
representation of the DOZZ formula makes sense. We will prove Theorem 2.3.5 in Sec-
tion 6.4.
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2.4 . Computation of a family of correlation func-
tions for the sl; Toda theory

In this final part of the manuscript we will gather all the ingredients disclosed in the
previous chapters and combine them to prove one of the main results of this thesis: a
rigorous derivation of the Fateev-Litvinov formula for a family of three-point correlation
functions associated to the sl3 Toda theory.

Implementing the bootstrap machinery allows to derive three-point correlation func-
tions under the assumption that one of of the three Vertex Operators being involved is
a semi-degenerate field, by which is meant that its weight o* is of the form o* = kw;
with x € R, and with 7 = 1,2. Without such an assumption proposing a formula for
general three-point correlation functions remains an open question at the time being,
even in the physics literature —see nonetheless the proposal in [101, 74] based on the
AGT correspondence but still not fully explicit.

By combining methods inspired from the physics with more probabilistic ones we will
prove in Chapter 7 that we are able to recover within our probabilistic framework the
Fateev-Litvinov formula by showing that the following holds true:

Theorem 2.4.1. Let the coupling constant satisfy v € [1,+/2) and assume that V.,
is a semi-degenerate field. Then as soon as (a1, o, a3) belongs to Aj;

C,(ay, 05, a3) = CgL(al, as, a3) (2.4.1)
where the left-hand side is a probabilistic three-point correlation function.

This statement is proved in the article [30]. The Fateev-Litvinov formula [52] that
describes such three-point correlation functions is defined in terms of the special functions
Y and [ and takes the form

(2Q—aj —aj—ag,p)

CrHan, 05, a3) = <7ml (7;) (%)2_72> |

0727 [[ TUQ — ar, ) T(Q —ase)) 42

ecdt

[licjres® (g + (o1 — Q. hy)) + (a3 — Q, hk))

where o = kw,. We refer to Section 7.3 for more background. This formula is
reminiscent of the DOZZ formula for Liouville three-point correlation functions (and can
actually be recovered from Equation (2.4.2)).

We will also explain what the conformal bootstrap procedure looks like in this context.
Namely we will see how the computation of a family of four-point correlation functions
can be reduced to that of the three-point correlation functions considered above, thus
providing the final ingredient in the conformal bootstrap procedure for the sl3 Toda
theory.

67



2.4.1 . Three-point correlation functions and the Fateev-

Litvinov formula

Let us review here the different steps leading to the proof of Theorem 2.4.1. As
we will see, in order to compute the values of the three-point correlation functions
considered there we will actually need to study certain four-point correlation functions.
Indeed such four-point correlations contain a lot of information related to the symmetries
of the model and as we will see, when investigating some of their asymptotics we will
be able to recover the expression of the three-point correlation functions proposed in
Theorem 2.4.1. The study of these asymptotics represent the mathematical counterpart
of the Operator Product Expansions that are used in the physics literature.

2.4.1.1 A differential equation for certain four-point correlation func-
tions

The four-point correlation functions we will consider corresponds to the three-point
correlation functions studied in Theorem 2.4.1 to which we add another Vertex Operator
V.. This Vertex Operator is a fully degenerate field, which means that the weight «
is of the form a = —yw; with x € {fy,%}. The reason for choosing such a field
stems from the fact that the presence of this field within correlation functions provides
additional constraints on it. In Section 7.1 we will see that by combining these additional
constraints with the ones coming from the assumption that V,; is semi-degenerate as well
as the global Ward identities (2.3.14) we are able to compute explicitly these four-point
correlation functions up to a global multiplicative factor:

Theorem 2.4.2. AssumethatV, is a fully degenerate field while V,; is semi-degenerate.
Further assume that («, a1, o, a3) belongs to A,. Then

(Vi(2) Vi (0) Vs (1) Vg (00)) = [2] 79 |2 = 1|72 24(2),  where

) = ) (24.3)
H(z) = Cyon + o, a5, a3) | [Ho(2)|” + ZAS’)(Q, ag, s, a3) [Hi(2)]7 ] -

=1

The constants Agi)(a, ag,ab,a3), i = 1,2, are explicit and given by a product of
I functions, while the blocks (H;), ., . , are 3F, hypergeometric functions. The
only unknown quantity in this expression is the three-point correlation function
Cy (a1 + a, a3, ).

The proof of this statement is based on the fact that such four-point correlation
functions are solutions of a hypergeometric differential equation in the z variable of the
third order, which we refer to as a BPZ-type differential equation. The condition imposed
on the form of the solution # is a consequence of the so-called crossing symmetry
assumption made in the physics literature and that corresponds that different possible
expansions of the solutions (around z = 0 and z = oo0) must be consistent with the
probabilistic definition of the correlation functions. This statement strongly relies on the
existence of an enhanced level of symmetry within the sl3 Toda theory in that it is based
on the global Ward identities as well as the existence of degenerate fields, which are
inputs coming from a representation theoretical consideration of W-algebras.
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2.4.1.2 From four-point to three-point correlation functions: Operator
Product Expansions and shift equations

On the other hand, a consequence of the probabilistic representation of the correlation
functions is that we can provide an alternative expansion of these four-point correlation
functions. Indeed it is assumed in the physics literature that the operator product
expansion V,,(2)V,, (0) provides another way of obtaining the expression (2.4.3). Within
our probabilistic framework recovering these operator product expansions boils down to
the study of the asymptotics of the correlation functions as z — 0, which in turn involves
a careful treatment of the Gaussian multiplicative chaos measures considered.

By studying these asymptotics and with the a priori knowledge of the form of the
correlation functions from Theorem 2.4.2 we prove in Section 7.2 that:

Theorem 2.4.3. Under the same assumptions as in Theorem 2.4.2,

(Vi (2) Vi (0) Vs (1) Vg (00)) = [2] 79 [z — 1|72 2 (2),  where

S : . , (244
H(z) = 237 (a1, X)Cy | o1 — x | w1 — Zej Loy, as | [Hi(2)]”-
i=0 j=1
The coefficients B\ (a1, x) admit an explicit expression in terms of the T function,

while the three-point correlation functions that appear are extended for a; — xh;.1
outside of Q + C_ via the relation

Cy(a, g, a3) = Ry(on)Cy(Q+s(an—Q), o, au3) Where s is such that s(a;—Q) € C_.
(2.4.5)

From this statement we can infer the reflection relation V,, = R.(a)Vgsa—q) pre-
sented above, as soon as this relation is inserted within the three-point correlation func-
tions considered in Equation (2.4.5).

In contrast with the proof of Theorem 2.4.2 which is based on the constraints imposed
by the symmetries of the theory, the proof of this statement strongly relies on certain
asymptotic properties of Gaussian multiplicative chaos measures and is therefore much
more probabilistic.

2.4.1.3 Conclusion of the proof of Theorem 2.4.1

We can now compare the two expansions from Theorems 2.4.2 and 2.4.3. The coeffi-
cients appearing in front of the hypergeometric functions in these expansions are given
by either

C,(ay — le,a;,&g)AEj)(—le,Oél,CK;,CV;;) for Theorem 2.4.2 or

c, <a1 —-X (u)l — Zej) ,ag,ag,) BY(ay,x) for Theorem 2.4.3.

j=1

Because the two expressions proposed for the four-point correlation functions must co-
incide and using linear independence of the hypergeometric functions considered, we can
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infer the following pair of shift equations for the three-point correlation functions:

Cy (O‘l —X (‘“’1 — X ej) )0 0‘3) _ AD(—xwi, a1, 05, a3) (2.4.6)
C’y<051 - leaa;&S) B(’L)<0517X)

which are valid for i = 1,2 and x € {7, %} and as soon as the four-point correlation
functions

<V—Xw1 (Z>VC¥1 (O)Va§ (1)va3 (OO)>

make sense. The assumption that such correlation functions are probabilistically well-

defined when x = % stems from the fact that Equation (2.4.1) holds true only under

the assumption that v € [1,1/2). We will see in Section 7.3 that this set of shift equa-
tions characterizes, up to a multiplicative constant, the expression proposed in [52] for
Toda three-point correlation functions. One can evaluate the value of this multiplicative
constant and thus conclude for the proof of Theorem 2.4.1.

2.4.2 . Four-point correlation functions and the conformal

bootstrap

Having computed the value of a family of three-point correlation functions in the
sl3 Toda theory, the next step in the conformal field theory textbook would be to carry
out the recursive procedure at the heart of the conformal bootstrap machinery. So
as to explain how such a method can be carried out we need to understand how the
computation of a family of four-point correlation functions can be reduced to that of
the three-point correlation functions considered above. In a work in progress together
with Guillarmou [32] we aim to prove that this method takes the following form:

Theorem 2.4.4 (In preparation). Assume that the Vertex Operators V,; and V.,
are semi-degenerate fields. Further assume that the weights « satisfy the assump-
tion that fori =1,2:

(g — Q,e;) <0 foralll1 <k<4, with

(o + a2 —Q,w) >0 and (as+ay — Q,w;) > 0. (2.4.7)
Then
(Vo (0) Va3 (2) Ve (1) Ve (00))
B 2417T2 /chv(%aé,Q —iP)Cy(Q + iP, ), ) |2 BB =) | FT () g p

(2.4.8)

where the conformal blocks F}, only depend one the central charge of the theory
as well as the conformal and W-quantum weights A,, and w(ay) for 1 < k < 4.

It is worth pointing out that while the spectrum in Liouville is given by the half-line
Q+iR. in the sl3 Toda theory this spectrum would be contained in ) +iR?. Besides we
would like to stress that a similar statement should hold true when we no longer assume
two of the Vertex Operators to be semi-degenerate fields. In this general case the three-
point correlation functions that appear in the integral over R? are defined by analytic

70



continuation of their probabilistic representation, which is rather involved. Likewise the
conformal blocks have a much more complicated structure in this general case.

The conformal blocks F7 that appear in the conformal bootstrap formula have a
very valuable content in that they interact with a wide range of topics. Along the proof
of Theorem 2.4.4 we will describe them in terms of fundamental quantities such as
Shapovalov determinants, thus highlighting their importance in the setting of represen-
tation theory. Likewise these conformal blocks arise in the general formulation of the
AGT correspondence [4, 140], where they are related to a key object in the study of
certain four-dimensional gauge theories: Nekrasov instanton partitition function. On a
more geometrical perspective these conformal blocks naturally arise in the study of the
quantization of the moduli space of flat connections [38].

Like in the derivation of the conformal bootstrap formula for Liouville theory [66],
such a formula is shown to correspond to the Plancherel formula of a certain self-adjoint
operator called the Toda Hamiltonian. This operator acts over a L? functional space
called the Hilbert space of of the sl3 Toda theory. The understanding of this Hamiltonian
requires a wide range of tools, from representation theory of 1/-algebra to scattering
theory. In this manuscript we will only sketch the proof of this statement in order to
keep the document concise and mainly based on probability theory, and since certain
proofs are still in preparation. Additional details will be provided in the future work [32].

We will mostly describe the probabilistic setting in which such a formula can be
proved and highlight the main steps leading to Theorem 2.4.4. Nonetheless we will
explain how to construct a representation of the 1/-algebra associated to the sl; Toda
theory based on the free-field theory underlying in the study of the Toda theories: this
corresponds to the Segal-Sugawara representation. Understanding the free field theory is
fundamental since many of the tools employed to study it can actually be reimplemented
in the case of the interacting theory. We will also explain how to give a meaning to the
power series expansion of the higher-spin tensor W

W (z) = —
( O) Z (ZO _ Z)n+3
ne”L
and propose a dynamical study of the Toda Hamiltonian which would allow to describe
its spectral resolution based on tools from scattering theory. This is the content of

Chapter 8.
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Une approche probabiliste des
théories conformes des champs
de Toda
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3 - Premiéres définitions et établissement du cadre

Les théories de Toda telles que définies dans la littérature physique s'appuient sur
une définition formelle —par intégrale de chemin— d'une fonction aléatoire. Afin de
définir de maniére mathématiquement rigoureuse une telle fonction, nous aurons recours
a de nombreux outils, qu'ils proviennent de la théorie des algébres de Lie, de la géométrie
conforme ou des probabilités.

Ce chapitre introductif s'attache & mettre en place le cadre nécessaire a une définition
mathématique rigoureuse des théories de Toda. Pour ce faire les outils mathématiques
fondamentaux entrant dans la formulation de ces théories seront présentés au cours de ce
chapitre et fourniront la matiére de base de |'étude mathématique des théories de Toda.
Dans un premier temps nous exposerons ces notions cruciales puis établirons quelques
propriétés basiques liées a celles-ci. Cette premiére approche devrait permettre de se
familiariser avec des notions diverses, entre algébres de Lie simples et complexes et objets
probabilistes avancés tels les champs libres gaussiens, le chaos multiplicatif gaussien ou
les processus de diffusion, en passant par des éléments basiques de géométrie conforme.
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3.1 . Some reminders on simple and complex Lie
algebras

This section is dedicated to provide the necessary background on Lie algebras needed
to make sense of Toda CFTs and their definition via the path integral. We will be very
synthetic and provide only notions that will be used in the rest of the manuscript: in the
textbook [72] the interested reader may find additional details on the objects exposed
here.

3.1.1 . Finite-dimensional simple and complex Lie alge-
bras

A simple Lie algebra g is a (non-Abelian) Lie algebra that does not admit any proper,
nonzero ideal. When the Lie algebra being considered is finite-dimensional and complex,
this assumption is actually rather restrictive in that such Lie algebras are completely clas-
sified up to isomorphism. Namely a finite-dimensional, simple and complex Lie algebra
is either isomorphic to a classical Lie algebra, that is one of the Lie algebras (A,,),>1
(corresponding to sl,,11), (Bn)n =2 (for 00,11), (Cr)n=3 (sp,) and (Dy)n >4 (02,), oF
an exceptional Lie algebra, that is either Fg, F-, Eg, F, or Gs.

To any finite-dimensional simple and complex Lie algebra g is naturally attached an
Euclidean space (a, (-, -)). This finite-dimensional real vector space is such that the dual
b* of the Cartan subalgebra h of g can be written under the form h* = a®ia, and comes
equipped with a (positive definite) scalar product (-, -). This scalar product is inherited
from the Killing form of g in that both are proportional one to the other: the choice of
a normalization will be fixed in the next paragraph. This Euclidean space is unique up
to isomorphism and can be thought of as R" endowed with its standard scalar product,
where 7 is the rank of g. We will denote by (v;); <; <, any orthonormal basis of a.

However this Euclidean space also comes with a special basis (¢;); <; <, made of
so-called simple roots. This basis satisfies the property that

<ei7€j>
’ (i, €:)

A;; forall 1<i,j<r (3.1.1)

where A is the Cartan matrix of g. This matrix is explicit when g is any of the afore-
mentioned Lie algebras: for instance the A,, Cartan matrix is tridiagonal with 2 on the
diagonal and —1 on the entries (7,j) with |i — j| = 1. In general the entries of this
matrix are integral, equal to 2 on the diagonal and non-positive elsewhere; the matrix
is invertible. However the matrix is not always symmetric: when this is the case (for g
being one of the A,, B,, or E,) the Lie algebra is said to be simply-laced.

As usually assumed in the physics literature, we choose to normalize the scalar prod-
uct (-,-) so that the longest roots have squared norm 2, which we will do in the sequel.
The renormalization constant used is given by 24", where h" is the so-called dual Coxeter
number, an explicit positive integer that depends on the underlying Lie algebra.

It is very natural to introduce the basis of the fundamental weights (w;)1 < ; <, which
is the basis of a* (which we identify with a in the sequel) dual to that of the simple
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roots. Namely it is defined by setting

T

wi =Y (A e (3.1.2)

=1
They are defined so that (¢;; is the Kronecker symbol)

T

(e ,wi) = 0ij,  {wi,wy) = Z (A A (A ey = (A7) (3.1.3)

LU=1

€

where ¢} = 2<e_ P
vectors o, f € a

is the coroot associated to e;. Whence by construction for any two

T

(0, 8) = {a,wi)(B,e)). (3.1.4)

=1

The Weyl vector is a key element of a which is defined by

pi= w (3.1.5)
=1

It naturally enjoys the property that (p,e’) =1 for all 1 <i < r. We will also consider
the Weyl vector associated to the coroots by considering the vector p¥ = >""_, w;” where
the (w;)1 < < are defined in such a way that (w;,e;) =9, forall 1 <i,5 < r. The
squared norm of the Weyl vector can be expressed explicitly in terms of the Lie algebra
under consideration via the Freudenthal-de Vries strange formula for simple Lie algebras
[60, Equation (47.11)]"

hY dim g
2
= 1.6
ol D (3.1.6)
Using the explicit values of 1Y and dim g this quantity is seen to given by

n(n + 11)2(n +2) for A, n(2n — 11)2(2n +1) for B..

(3.1.7)
n(n + 11);271 +1) for C.. (n — 1)716(271 -1) for D,

and 78, %, 620, 39, % for the exceptional Lie algebras Eg, FE;, Es, Fy and Gs.
More generally we can explicitly compute the values of [p¥|* and (p, p¥) in all the cases
considered (these quantities arise in the computation of the central charge of the Toda
CFTs, see Table (4.2.7) below).

In this manuscript a specific attention will be given to the Toda CFT associated to
the Lie algebra g = sl3 (or As). In that case there are two simple roots e; and e
satisfying

(e1,e1) = (eg,€9) =2 and (ey,e9) = —1. (3.1.8)

"This equation differs from the one in [60] by a multiplicative factor 2h". This is due to our
normalization convention for the scalar product (-, ) on a*.
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They can be thought of as vectors in R? whose coordinates in its canonical basis are

given by e <\/§, _\/Li) and e, (0; \/5) The dual basis and the Weyl vector then take

261 + é9 e+ 262
=—— and wpy=——">
3 3
The fundamental weights in the first fundamental representation m; of sl3 with the
highest weight w; are defined by setting

the form

w1 and p=-e; +eo. (3.1.9)

2e1 + e —e1+ e e1 + 2eg
= — h = —— h, _=-——
3 3 2 3 ) 3 3

These quantities are represented in Figure 3.1 below.

hy (3.1.10)

3.1.2 . Simple Lie algebras and reflection groups

Reflection groups are naturally associated to simple Lie algebras in that their Weyl
group is actually a reflection group. This notion will prove to be crucial in the study
of Toda CFTs and will naturally manifest itself via the existence of certain fundamental
quantities called the reflection coefficients. Before making the connection between re-
flection groups and simple Lie algebras let us provide some reminders on this notion. We
refer the reader to another textbook by Humphreys [73] for a more exhaustive insight
on reflection groups.

The general framework is an Euclidean space V equipped with a scalar product (-, -)
and associated norm |z|* = (z,z). On this Euclidean space we consider a finite
reflection group W (i.e. the realisation of a Coxeter group), that is a finite subgroup of
the general linear group of V that is generated by finitely many reflections

(z, @)
(@, a)

SqiXxr—>x—2 (3.1.11)
for « € V* ~ V, which are reflections across the hyperplanes {z € V, (x, o) = 0}.

Associated to it is a root system of the reflection group (W, V), defined as a finite
subset ® of V' \ {0} such that

(i) the elements of ® span V|,
(i) DN Ra = {a,—a} forall a € ®, (3.1.12)
(iii) s,@ =P forall « € ®.

Its elements are called the roots and are such that W is generated by the (s,)ace. Of
particular significance are the simple roots (e;)1 <; <, (with 7 = dim V) of W, which
are linearly independent roots with the additional property that any element of the root
system can be written as a linear combination, with coefficients of the same sign, of
simple roots3. We further introduce the subset ®* of ® made of positive roots, that is
roots of the form

at = Z e, with \; > 0.
i=1

2Reflection groups will be implicitly taken finite in what follows.
3Different choices of simple roots are of course possible, but will be related by conjugation
under W. Such a simple system always exists [73, Section 1.3]
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The hyperplanes orthogonal to the roots divide the space into finitely many connected

components, called Weyl chambers, on which T acts freely and transitively. We denote
by

C={zeV,(z,e) >0 forall 1 <i<r} (3.1.13)
the fundamental Weyl chamber and set C_ := —C (which is also a Weyl chamber). The
boundary OC of this chamber is made of  components (9C;), _,; ., which are defined

by
0C; ={x €V, (x,e;) =0} NIC (3.1.14)

and which we refer to as walls. We have represented in Figure 3.1 the six Weyl chambers
and elements of the reflection group in the case where this reflection group is associated
to the Lie algebra g) = sls.

Any element s of the reflection group can be written as a composition of reflections
orthogonal to the simple roots: s = s;, ---s;,. It admits a reduced expression, that is a
product of the above form with a minimal number of simple reflections. This number is
the length of s, I(s), such that det(s) = (—1)'®). In the sequel we will denote by ¢(s)
the above quantity —by analogy with the signature of a group of permutations.

Let us now explain the connection between reflection group and simple Lie algebras.
Consider g as in the previous subsection and the Euclidean space a associated to it
together with its basis of simple roots (¢;); <i <. Then the group generated by the
reflections orthogonal to the simple roots is a reflection group: it is called the Wey/
group of g. The notion of coroot and of fundamental weights remains valid in the
general setting of reflection groups and we will use the same notation in this context
too. In passing we note that the Weyl vector p can alternatively be defined as the
half-sum of the positive roots:

Figure 3.1: The root system and the reflection group associated to g = sl;
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3.2 . The probabilistic framework: Gaussian free
fields, Gaussian multiplicative chaos and con-
ditioned Brownian motions

With basic notions on simple and complex Lie algebras at hand, we are now in
position to properly make sense of the action functional that enters the path integral
formally defining the Toda CFTs. However making sense of the path integral in itself
will be more involved and will require the introduction of a probabilistic framework that
involves two key probabilistic objects: Gaussian free fields and Gaussian multiplicative
chaos. Therefore and before actually providing a mathematically rigorous definition of
the Toda CFTs we will present these two notions in the coming section. We will also
discuss the notion of conditioned Brownian motion, which will naturally arise in the study
of the reflection coefficients associated to Toda CFTs as disclosed in Chapter 6.

3.2.1 . Conformal geometry on the Riemann sphere

The interplays between Gaussian Free Fields (GFFs hereafter) and conformal geome-
try have proved to be particularly thriving in that GFFs naturally arise in a wide range of
topics related to conformal geometry. For instance the quantization of the uniformiza-
tion problem in even dimensions — related to finding a conformal metric with constant
Q-curvature within the conformal class of an even-dimensional Riemannian manifold
(M, g)— can be formulated based on a GFF (see e.g. [29, 41] for more on this topic).
However in this document we are only concerned with manifolds conformally equivalent
to the two-dimensional sphere so we will not enter into much details related to such
issues and focus only on the notions relevant for our purpose.

3.2.1.1 Metrics on the Riemann sphere

Indeed throughout this manuscript we will focus on Toda CFTs described by a field
¢ taking values on the two-dimensional sphere S?, viewed as a Riemannian manifold
(S?, gs) with gg the standard metric on the sphere. The stereographic projection allows
to conformally map (S?, gs) to the (compactified) plane (i.e. the Riemann sphere) which
we view both as R? U {co} and C U {oo} equipped with the "round’metric §:

4
§ = ———|dz|*. 2.1
I 32
We will also consider differentiable conformal metrics of the form g = e?g with ¢ €
C*(R?) where, for k > 0, C*(R?) stands for the space of functions ¢ : R*? — R for
which both ¢ and = — ¢(1/x) are k-times differentiable with continuous derivatives.
Of special interest will be the metric

g+ (2) = |Z|_T_4 |dz|? (3.2.2)

with |z|, = max(|z|,1). As we will see in the study of the conformal bootstrap proce-
dure in Chapter 8 this metric is particularly relevant from the perspective of reflection
positivity (also referred to as Osterwalder-Schrader positivity).
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We will work in what follows with such metrics g on the plane, for which we will denote
by 0, the gradient, A, the Laplace-Beltrami operator, R, = —/\;In+/det g the Ricci
scalar curvature and v, the volume form. We identify R? and its tangent space, so that
if f,h are maps R? — a, we can make sense of the inner products (f, ), or (9,f,dyh),,
defined with respect to the metric g, by setting (0, f(2), 9,h(2)), == ((0yf(2),041(2))),
(| - |, will stand for the associated norm). The associated L? scalar product is defined
by considering

(g = [ (e la)ydvy(a)

for f, h smooth and compactly supported. When no index is given, this means that the
object has to be understood in terms of the usual Euclidean metric on the plane (i.e. 0,
A, R, v and (+,)). Since the stereographic projection is an isometry, we already know
that the spherical metric g is such that R; = 2 (its Gaussian curvature is 1) with total
mass v;(R?) = 4.

Two metrics g and ¢’ will be said to be conformally equivalent when

for some ¢ € C'(R?). It is readily seen that as soon as ¢’ is in the conformal
class of the spherical metric —that is when ¢’ = ¢?§ with ¢ € C'(R?)— one has
Jzz (1905012 + 2Ry ¢) dvy < oo. Furthermore, for ¢ € C?(R?), the curvatures of two
such metrics are related by the relation

Ry =e?(Ry — Ayo). (3.2.3)

In the sequel and for given metrics g and h € C''(IR?), we will denote by m,(h) the
mean value of h in the metric g, that is the quantity

= ; Z)V z
mo(h) = s [ vl (3:2.4)

and work in the Sobolev space H'(R?, g), which is the closure of C2°(R?) with respect
to the Hilbert-norm

/R h{@)* vy(da) + /R [0h(@)]} vy (da). (3.2.5)

The continuous dual of H'(R? g) will be denoted H™'(R?, ¢g). At this stage it may
be worth noticing that the Dirichlet energy is a conformal invariant, that is to say is
independent of the metric within a given conformal class:

|8g/h(:v)|§,vg/(dx):/ |89h(x)|§vg(dx). (3.2.6)
R2 R2

3.2.1.2 Conformal transformations of the Riemann sphere

Among smooth transformations of the Riemann sphere, there is a family that plays a key
role in the framework of conformal geometry: the group of conformal transformations.
These are smooth maps ¢ : (CU{oc}, ) — (CU{oo}, g) such that the pullback of the
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metric § by 1 is conformally equivalent to §. Put differently if g,(2) = [¢'(2)|° g(1(2)),
then the two Riemannian metrics § and g, are conformally equivalent. These transfor-
mations are completely classified and form the Mobius group. Its elements are the maps

Y : C — C of the form
az+b

where the complex numbers a, b, ¢, d satisfy ad — be # 0.
Among others, Mobius transformations satisfy the following remarkable properties:

* The cross-ratio of four distinct complex points 21, 29, 23, 24

(21 — 23)(22 — 1)
(21 — 24) (22 — 23)

is invariant under Mobius transformations.

* Given f a meromorphic function over C, its Schwarzian derivative is defined by
VKON <f”(2))2
fz) 2\ f(2)
Then Sf =0 if and only if f is a M&bius transformation.

Sf(z)

3.2.1.3 Green kernels

Given a metric g on the Riemann sphere that is conformally equivalent to the spherical
metric g, we denote by GG, the Green function of the problem

Agu=—21(f —my(f)) on R?, /RQU(:L')VQ(CI:C):O

where f belongs to the space L?(R?, g) and w is in H!(R?, g). Put differently the solution
u can be expressed as

u = /R2 Gy(-,z) f(x)vy(de) =1 G, f (3.2.7)

with my(Gy(z,-)) = 0 for all 2 € R%. The kernel G, actually has an explicit expression
given by (see [40, Equation (2.9)])

1 1 1
Gyr,y)=In———m, | In—— | —m, (In —— | + 40 (3.2.8)
e =t () = ()
where

1 1
0 ::—/ / In ——v,(dx)v,(dy).
PTG o Jeo Ty W)

For future reference we shed light on the expression of this Green function for the metrics
g and g

1 1 1
Gylr,p) =Tn —— — L(ing(@) + ng(y) + m2 - 1
lz—yl 4 2
1 (3.2.9)
Gy, (z,y) =In Pe— —|—1n|az:|Jr +Inlyl, .
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These Green functions naturally arise in the study of conformal geometry on the
sphere since they satisfy a remarkable property of covariance under conformal transfor-
mations, that is the following fact:

Lemma 3.2.1 (Conformal covariance of Green functions). Let ¢ be a Mébius
transform of the Riemann sphere and g be a Riemannian metric conformally equiv-
alent to the spherical one. Then

Gy, (2, y) = Gy(¢(2),9(y)). (3.2.10)

See [40, Proposition 2.2] for instance for a justification of this equality. In particular
this implies that for the spherical metric:

Go(¥(2), (v)) = Gy, ) — 3(6(2) + 6(»)) 321)

where ¢ is such that e? = ‘%’”.

3.2.2 . Gaussian free fields
3.2.2.1 GFFs on the Riemann sphere

The quantum field that allows to describe Toda CFTs can be seen as a random (general-
ized) function over the Riemann sphere (C, g) with values in a Euclidean space (a, (, -, -)).
This random function can be properly defined based on a vectorial GFF X9, which is
a Gaussian random distribution whose covariance kernel is given by the Green kernel
(/4. Namely, this random distribution formally satisfies the property that for any pair of
vectors u,v € a and x # y in C:

E [(u, X9 (2)) (v, X9 (y))] = (u, 0)Gy(, y). (3.2.12)

Due to the singularity of the Green kernel on the diagonal = = y, the latter is not a
proper function but rather belongs to a distributional space H(C, g) (see [46, 125]
for more details on properties and construction of GFFs). However the GFF XY is
characterized by the property that there exists a probability space such that for any pair
f,h of compactly supported smooth functions C — a the random variables (f,X?),
and (h,XY), are Gaussian variables over this probability space and their covariance is
given by
E[{f, X7)g(h, X)g] = (Gyf, h)g- (3.213)

Hereafter we will denote by X the GFF associated to the metric g .

The lack of regularity of the GFFs X prevents them from being pointwise defined.
A convenient way to overcome this issue it to work instead with a regularization of the
field. More specifically let us define a smooth approximation of X by setting

X9 :=X9%n. = / X9(- — 2)n.(2)d*z (3.2.14)
C

with 7. = E%n(g) a smooth and compactly supported mollifier. For the GFF X we will
also consider its circle-averages as a regularization of the field, that is set

1 2m
— % ;
for t > 0. They correspond to averaging the GFF X on the boundary of By(z) = {z €
C,lx —z| <e '}

X, (2) : X(z + e ) do (3.2.15)
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3.2.2.2 GFFs on the unit disk and its boundary

We will also consider GFFs taking values on the unit disk D as well as over its boundary
OD (which we will also denote by S* or T). The first one, Xp, is chosen to have boundary
conditions, by which we mean that its covariance kernel is given by

E [(u, Xp(z))(v, Xp(y))] = (u,v)Gp(z,y), Gplz,y) = ln% (3.2.16)

for any w,v in a and z,y € D, while X is taken to be 0 outside of the disk. Its

counterpart on C\ D has the law of Xpe (law) Xp o6, where 6(z) == 1.

A GFF ¢ on the circle S! admits the expansion )

Y= Z Z Pn,i€ni (3.2.17)

nezZ* i=1

where f,, ;(e"?) == ¢™v;. For positive n the modes ¢,,;, i = 1,2, are centered, complex,
independent Gaussian variables with variance ﬁ while for negative n we have ¢,,; =
©@_n,i. For future reference note that the harmonic extension of ¢ takes the form

2
Po(z) =3 (pniz" + @niZ") Fr (3.2.18)

n>11i=1

3.2.2.3 Connection between these GFFs

We can actually relate the different GFFs considered up to now via the following decom-
position:

(

X ) py 4 Xy + Xy (3.2.19)

where Py denotes the harmonic extension to C of the GFF ¢ : S' — a, while Xy and
Xpe are two independent (vectorial) GFFs as introduced above. Hereafter we will assume
that such GFFs live in a probability space denoted (€2, %, P). The above decompositions
translate as 2 = Qr x Qp x Qpe with similar decompositions for X and P.

3.2.3 . Gaussian multiplicative chaos

In order to provide a rigorous meaning to the path integral defining Toda CFTs
we need to make sense of the exponential of the Toda field ®. As we will explain
in Section 4.1 ® will exhibit the same lack of regularity as the GFFs XY and hence
has to be thought of as a random distribution. The theory of Gaussian multiplicative
chaos [76, 115] allows to address this issue by giving a rigorous meaning of the quantity
e!®7¢) where v is a real parameter which we will choose in (0, v/2).

For this purpose we first consider the regularized GFF XY: the latter being smooth
the quantity eX2()7¢) is a well-defined random variable, whose expectation is given by

e2B(X=9¢0%]  Because the variance that appears in this exponential is asymptotically

equivalent to % In £, it is therefore natural to consider the sequence of appropriately
renormalized random measures over C

2(ejreq)
MJ%(dz) = e X+ F In 9607 dy () (3.2.20)
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where recall that Q = vp + %pv. The reason for incorporating the extra term %lng
in the definition of the GMC measures will be made clear in the interpretation of Toda
path integral, see Section 4.1. It may be worth noting that since, in agreement with [40,
Proposition 2.5],

E [(X9(z), e:)*] = (e, e:) (— Ine — %ln g(z)+ 6, + 0(1))

as ¢ goes to 0 and with 6, := [, [.n(z)n(y) In ——=v(dz)v(dy) + In2 — 3, the GMC

lz—yl
measure defined above for ¢ = ¢ and the limiting measure defined by

lim eveXE @ 50ne) —gE[(XEE) e gy (1)
e—0 g

actually define the same random measure.

Then a crucial statement is that the limit as ¢ — 0 of this random measure does exist
and defines a random measure referred to as a Gaussian Multiplicative Chaos measure
(GMC hereafter). More precisely under the assumption that 0 < v < /2% and for
1 <i<r, the limit

M (dz) = li_{%M;?(dz) (3.2.21)

holds in probability within the space of Radon measures equipped with the weak topology
and defines a non-trivial random measure [14, 124].

3.2.4 . Conditioned Brownian motion

We will explain in Subsection 3.3.2.3 below that GFFs and Brownian motions are
naturally connected one to the other. A consequence of this link is that Brownian
motions with values in a arise in the mathematical study of Toda CFTs, and as we
will see in Chapter 6 the strong symmetries related to the reflection group associated
to a will have strong implications on these Brownian motions. To make explicit these
consequences we provide here the necessary notions on conditioning of diffusion processes
needed for our purpose. We will restrict our attention here to the special case where
the diffusion process being considered is derived from a Brownian motion in a, though
the reasoning remains valid for general diffusion processes. The interested reader may
find a more detailed discussion in the article [31] where a more general framework is
considered. For more details on the definitions and properties of the objects involved we
also refer to the textbooks [118, 119] and [130] where the general theory of diffusions is
described in great details.

Throughout this manuscript we will consider a (continuous) diffusion process B with
state space (V, (-, -)) some Euclidean space, and infinitesimal generator A of the form

Af(@) = SAF(@) + bx) - Vf(2) (3:2.22)

with b bounded and Lipschitz. We denote by p,(z,y) the transition semigroup of B.
For v € C the fundamental Weyl chamber from Equation (3.1.13) we also introduce the

4Note that the assumption that v < /2 differs from the usual one that v < 2. This comes
from the fact that the longest roots have length /2 rather than 1.
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notation

2
po(t;x,y) = p(x,y) exp ((u,y —z)— %t) (3.2.23)

2
with p, = exp (—%) the transition probabilities of a standard Brownian mo-

2mt) 2
tion, and w(hiciw represent the transition probabilities of a Brownian motion with constant
drift v € C.

Conditioning of such processes can be done via Doob's conditioning, based on so-
called h-transforms and defined as follows (see e.g. [37, Chapter 11] for additional details
and justifications). Let h be a C? function that is .A-harmonic on V, and let us intro-
duce the notations V;, == {x € V, 0 < h(z) < oo} and pl(x,y) for the transition
probabilities of the process B killed upon exiting V. Then the Doob h-transform of B
is the continuous Markov process B with transition probabilities given by
pe(z, dy) ::%pﬁ(x,dy) for = inside V,, (3.2.24)

=0 otherwise.

It is a diffusion process with generator
A=A+ Vlogh- V. (3.2.25)

It follows from [37, Remark 11.4] that such a process B started inside V, will, almost
surely, never hit the boundary of Vj,. In the special case where h is given by the
probability that the process B, started from x, never exits a domain of the form M +C
for some M € V, the process Y has the law of X conditioned to stay inside M + C at
all times.

Some properties of h-transforms include the fact that the process h(B;) is a (local)
positive martingale, while the process B is such that

h(B)

dPs|r, = md]P’B!ft

where (F;), . is the standard filtration of the processes.

3.3 . Basic properties of the probabilistic tools

Having properly introduced the probabilistic tools we will work with in the sequel,
in this section we highlight some of their features that will prove to be crucial in the
rest of the document. To be more specific we will detail here some additional properties
enjoyed by the GFFs and GMC measures considered in this manuscript in the realm of
Toda CFTs.

3.3.1 . A toolbox on Gaussian fields

To start with, let us first present some general statements inherited from the Gaussian
structure of the objects considered up to now. These are now classical results for which
we will not provide proofs but redirect the reader to references where they are carried
out.
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3.3.1.1 Girsanov theorem and Gaussian integration by parts

The first statement we are interested in —and that we will repeatedly use in the present
manuscript— is the celebrated Girsanov theorem (or Cameron-Martin) theorem, see e.g.
Chapter VIl in [114]:

Theorem A (Girsanov theorem). Let D be a subdomain of C on which is defined
a family of smooth centered Gaussian fields

(X(x))$€D = (Xl(x)v to 7Xn—1(x))a:€D-

Assume that Z is a Gaussian variable belonging to the L? closure of the subspace
spanned by (X (z)).ep. Then, for any bounded functional F over the space of
continuous functions one has that

]E[Z2]

E ¥ 7 F(X(2))en| = E[F (X (2) + E[ZX (x)])

$ED:| :

We will apply this statement to the non-regular GFF X by considering first its regu-
larization and then consider a limiting procedure.

Another property that will be key in our study is Gaussian integration by parts and
can actually be thought of as a specific instance of Malliavin calculus. For this purpose
recall the standard formulation of Gaussian integration by parts for a centered Gaussian

vector (Z,Y1,...,Yn) and f a smooth function on RY with bounded derivatives:
N
E(Zf(Y1,....Y8)| =Y _E[ZVE[dy, f(Y1,...,Yn)]. (3.3.1)
k=1

From this statement and after regularization and a proper limiting procedure, one can
infer the following equality for the GFF X

E [(U,X(z»e(X’fm] = / G(z,z)(u, f(x))E [e<x’f>D] dx (3.3.2)

D

for f e C5° (D — a), z€ D and u € a, as well as its counterpart statement for Xp:

E, [<U7XD<2)>6<X’f>D] = /DGD(Z,I’)W, fla)E [e<X’f>D] dz, (3.3.3)
where we have set
(f;h)p = /D(f(z),h(z)>dz.

We note that these statements are easily recovered thanks to the Girsanov A

3.3.1.2 Comparison lemmas

We now provide some comparison lemmas, that allow to turn a comparison of the
covariance kernel of two Gaussian fields into a comparison of certain functionals of these
Gaussian fields:
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Lemma 3.3.1. Let F' be some smooth function defined on (R™)" such that F as
well as its derivatives up to order 2 have at most polynomial growth at infinity.
Also assume that F is such that for (z',--- | 2") € (R")" (where z* = (x%,--- ,z%))
the following inequalities hold:

O*F
— 20
ozt Oy,

foralli # jand kK

Under these assumptions, if X = (X',---, X ") and X = (X',---,X") are
two centered Gaussian vectors in (R")" such that for all i, X* as the same law as
X? while as soon as i # j o o

E[X.X;] < E[X.X]]
for any kK, then the following inequality holds:
E[F(X', - X" <E[F(X',- , X")].

Proof. Fort € [0,1], we set X; = vtX + /1 — tX, where X and X are chosen to be
independent, and denote
G(t) = E[F(X})].

By using Gaussian integration by parts, we can write that

d n
G(t) = %Z E [gi;(xt)(;%x,g _ \/fixk)]
] 1

>3 E @% O] B vixg + ImIRD (o xit - %D

d
S>3 B[S (0] (BLXEx) - ERE X))

Therefore G(1) < G(0), which proves our claim. O
A straightforward consequence of this statement is the following:

Corollary 3.3.2. Let H be some smooth function defined on (R™)" such that H
as well as its derivatives up to order 2 have at most polynomial growth at infin-
ity, and consider any partition Py, ..., P, of the set {1,...,r}. Assume that for
(x1,---,2,) € R, the following inequality holds for all s,s'" € {1,...,m} with
s#s,allie P;andall j € Py,

0*H
= 0.
6%8%

Further assume that X!, --- | X" is a family of continuous centered Gaussian fields
respectively defined over domains D; C R™ (for i = 1,...,r) such that for all
s,s €{l,....,m}withs+#¢,alli e P;andall j € Py:

Va € D;,Va' € D;, E[X'(z)X7(2)] 0.
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let X = (X!,---,X") be another family of continuous centered Gaussian fields
such that:

1)foralls=1,....m, (X7)ie p, has same distribution as (X*)icp, .
2) the families (X%)icp,, - .., (X")icp,, are independent.
Eventually, let f1, ..., f, be a family of positive functions each of which respec-

tively defined on D,. Fori=1,...,r, we set
M= / N @OEX@ () de  and M= / eii(x)_%E[Xi(m)Q]fi(I) dx.
Di Di

Then the following inequality holds
E[H(M',-- ,M")] <E[H(M",---,M")].

Proof. Up to a discretization of the fields, it suffices to apply Lemma 3.3.1 with
F(Xl X?") — H (Zpl];- eVX%I_éE[(X,%IP] . Zp}; e’yX’zr’Y;E[(‘X};ﬂ)ﬂ)
g ooy 1 ) 9 r
k1 kr

for some nonnegative numbers p}'ﬂ obtained by discretizing f; over D;,. O

3.3.2 . Elementary properties of Gaussian free fields

We now would like to shed light on some properties of GFFs and their interplays with
other notions, such as conformal geometry and Brownian motions.

3.3.2.1 GFFs and metrics on the sphere

The GFFs introduced in Section 3.2 depend on a choice of underlying metric g on the
Riemann sphere. The choice of this metric can be thought of as a requirement that
the field XY has almost-surely zero average with respect to the metric g, which is a
consequence of the fact that m,(G,(z,-)) = 0 for any x € R?. This feature actually
carries most of the dependence of the GFF in the metric g in the sense that the following
holds true:

Lemma 3.3.3 (Metric-dependence of the GFFs). Assume that g and ¢’ are two
Riemannian metrics over R? conformally equivalent to g. Then
' (law)

X9 X9 — mg (X9). (3.3.4)

Proof. Explicit computations show that the Gaussian field on the right-hand side has
covariance kernel given by G, which is nothing but the covariance kernel of the Gaus-
sian field X¢'. The knowledge of the covariance kernel characterizing the underlying
Gaussian field the equality in law (3.3.4) follows. d

3.3.2.2 GFFs and Mobius transforms

Since GFFs are defined based on Green functions enjoying remarkable properties under
the action of the Mobius group as explained in Lemma 3.2.1, GFFs should in turn behave
nicely under conformal transformations. The following statement can be understood as
a rigorous formulation of this connection:
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Lemma 3.3.4 (Conformal covariance of GFFs). Let v be a Mdbius transform of
the Riemann sphere and g be a Riemannian metric conformally equivalent to the
spherical one. Then

X9 0qp "% X0, (3.3.5)
Proof. It suffices to note that thanks to Lemma 3.2.1 the two Gaussian fields have
same covariance kernel. d

3.3.2.3 GFFs and Brownian motions

Interestingly, Brownian motions naturally arise in the study of the GFFs considered here.
The GFFs introduced in Subsection 3.2.2 have strong interplays with Brownian motions,
since the latters naturally arise when writing GFFs in polar coordinates. Namely, recall
that a regularization of the GFF X can be defined by means of circle-averages and yield
processes (B;),.g = (X¢(2)),cp for any z € C. Then we can decompose the GFF X by
means of
X(z+e ) = B, +Y(t,0) (3.3.6)

where Y (t,0) == X (2 + e71) — B,.

One can then check using the covariance kernel of X that the process (B;): > o thus
defined is a Brownian motion in a started from the origin, while Y is a Gaussian field
with covariance kernel given by

_ !
e tve

E[(u,Y (t,0)) (v, Y (t,0))] = (u,v)In P (3.3.7)

for any u,v € a. Moreover B and Y are seen to be independent.

3.3.3 . Basic features of GMC measures

We are then interested in the description of some properties of the GMC measures
defined above.

3.3.3.1  GMC and Brownian motions

GFFs and Brownian motions being related on to the other there is naturally a counterpart
of this connection for GMC measures. Indeed thanks to Equation (3.3.6) above the GMC
defined from the GFF X admits the alternative representation

M (dz) = e BrmQbed M (dt, df), (3.3.8)

where My is the GMC measure defined from Y (this random measure is well-defined
too via the same arguments used to make sense of the GMC measure associated to X).
Put differently, for any bounded map F' and O a measurable subset of C

E [F ( /O M”f@i(d@)] =E [F ( /R eV (Be=Qten) /0 " ]le—z+ieeoMQei(dt,d0))} :

For future purpose we introduce the random measure on R defined by

2w
Z'(dt) ::/O M (dt, do). (3.3.9)

By a slight abuse of notation we will often denote it by Z/dt. Note that it is stationary,
by which we mean that for any positive h Z; and Z,, have same law.
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3.3.3.2 Moments of GMC measures

We now turn our attention to the moments of the GMC measures introduced above,
and more precisely on the conditions ensuring their existence. Their properties are now
rather well understood and we refer to [115] for an overview as well as a justification of
the following statements.

To start with let us consider a one-dimensional GFF X9 with values in R and co-
variance kernel given by G,. Then the GMC measure formally defined by e\/iVngvg is
well-defined as long as v € [0,1/2), and under this assumption its moments satisfy the
following bounds:

Lemma 3.3.5. For any bounded and non-trivial interval I,
p
E [(Mﬁ(])) ] <0 (3.3.10)

ifand only if —co <p < 3.

More generally one may wonder what type of singularities can be integrated with
respect to the GMC measure Mf”. The following statement addresses this issue:

Lemma 3.3.6. for any complex x and positive r, set B(z,r) = {z € C, |z — z| <
r}. Then the random variable

/ |2 — 2] MY (dz)
B(z,r)

is almost surely finite if and only if « < Q = ~v + % Under this assumption

P
E [(/ |z — x| Mf”(dz)) 1 < 0 (3.3.11)
B(z,r)

ifand only if —co < p < 7% A %. On the contrary if o > Q then for any p < 0

p
: Y A V2y —
ll_I}éE{(/B(m)(a—f—]z £])77 M) (dz))} 0

3.3.4 . Conditioned Brownian motions and reflection groups

To conclude for this chapter dedicated to outlining the framework we will work within
in this manuscript, we study some interplays between Brownian motions evolving over
V, Doob's conditioning and reflection groups. In this subsection we assume that the
diffusion process B as defined above evolves in 'V to which is associated a reflection
group (W, V).

3.3.4.1 Brownian motions conditioned to stay positive

In the study of Toda reflection coefficients conducted in Chapter 6, we will need to
consider a certain diffusion process defined thanks to the one-dimensional path decom-
position by Williams [138]. Namely for positive v/, we introduce the process B” started
from z > 0 to be the junction of:
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* a one-dimensional Brownian motion with negative drift —v, upon hitting 0;

* an independent one-dimensional Brownian motion with positive drift v/, conditioned
to stay positive. This process is a diffusion with generator

ld—2 + veoth(v )i
2 dx? . dx

Toda reflection coefficients will be defined using the random variable .J,(—v), where for
positive v

400
Jy(—v) = /0 e B Z,dt. (3.3.12)

In the above equation the process B is (formally) started from +oo, while Z; is defined
in the same fashion as in Equation (3.3.9) in the case where r = 1, by

ﬂﬁy:/%Myﬁ@m

from the field Y with covariance

—t —t
E[Y (£, 0)Y (£, 0)] = In —*°

T |etHi0 — e—tHi0|

A proper way to make sense of the random variable thus defined is via a limiting procedure
by setting for any positive, bounded and continuous map F' : Rt — R™*

E[F (J,(-v))] = lim E {F (/;OO eVBtDtht)] :

T—r+00

Alternatively one can use that .J,(—v) has same law as

+o0 ~
/ e_VBt tht

[e.e]

where (BY):> o and (B%,); > ¢ are two independent Brownian motions with positive drift
v and conditioned to stay positive (this follows from the time-reversal property of such a
process [138, Theorem 2.5], see for instance [84, Section 3] for more details). We recall
the statement of [84, Lemma 3.3] which provides an analog result of Lemma 3.3.5.

Lemma 3.3.7. Forany v (—%, 0) and —co < p < %
E[J,(v)P] < 0. (3.3.13)

3.3.4.2 Exit from a Weyl chamber

Further assume that B has almost surely a minimum in the direction of the simple roots,
by which we mean that almost surely, for any 1 < ¢ < r the quantities

Mi = ting<Bt’ €i> (3'3'14)
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are finite. Note that this is the case if B has the law of B”, a Brownian motion with
constant drift v inside the Weyl chamber C.

The law of this minimum can be computed by noticing that having M;(B) > m;
for all 1 < i < r means that B stays inside the shifted Weyl chamber m + 9C with
m =Y., mw,;. Asa consequence

P, (V1<i<r, Mi(B)>m;) =h"(z), (3.3.15)

where h™ is a solution to the Dirichlet problem

AR™ =0 inm+C
{ nm (3.3.16)

hm™ =0 onm+0C

with the asymptotic h"™(z) — 1 as x — oo along a ray inside the Weyl chamber. In the
case where B = BY, this h-function can be explicitly computed using the symmetries
prescribed by the reflection group:

Proposition 3.3.8. Let us define a map h : C — [0, 1] by setting
h(z) = Z e(s)e“”””x). (3.3.17)

seWw

Then the law of the minimums of the drifted Brownian motion B in the direction
of the simple roots is described by

P(MZ(BV) 2 m; V1 g 7 < ’I") = h(—m)]l,mec. (3.3.18)
This statement is proved for instance in [20, Section 5]. It implies that for for the
process BY h™(x) = h(x — m) with h as in Equation (3.3.17).
3.3.4.3 The killed process

In this context it is very natural to introduce the process whose law is that of B killed
when exiting the Weyl chamber M + C. For this purpose we define

PV (zy) = > e(s)pilsz,y) (3.3.19)

sewM

which vanishes on the boundary of M +C. Here we have considered the reflection group
WM generated by the reflections centered at M, that is

si(z) =z — (x — M, e )e;. (3.3.20)

For the diffusion processes considered, the reflection principle takes the following form,
which generalizes the well-known property of the one-dimensional Brownian motion.

Proposition 3.3.9. Let M € V and assume that the drift function b is invariant
under the action of the reflection group centered at M:

VseWM bhos=. (3.3.21)

Then the transition probabilities of the process X killed when exiting the Weyl
chamber M + C are given by pM(z,y).
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Proof. For the sake of completeness, we reproduce the argument of [64, Theorem
1] and [65, Theorem 5]. Let us consider all paths from sz to y where s ranges over
WM, Then to any path which hits the boundary of a Weyl chamber, we can associate
another path obtained by reflecting, across the boundary component being hit, the
initial path before having reached the boundary of the Weyl chamber. The assump-
tion made on the process shows that both have same probability to occur, so these
probabilities cancel out in the alternating sum (3.3.19). The only remaining term is
given by the probability that a path never crosses the boundary of a Weyl chamber,
or put differently that the process goes from z to y without exiting the Weyl cham-
ber. O

This formula can also be found e.g. in [20, Equation (5.1)] in the case where the
underlying process is a Brownian motion. The assumption made on the process implies
that it is reflectable in the sense of [65]. Note that we can actually define b only inside
M + C and extend it by bo s = b over V to apply the above statement.

3.3.4.4 Some further conditioned processes

Combining all of the above, the process B whose law is that of B conditioned to stay
inside the Weyl chamber M + C can be defined to be a diffusion with generator A""
where A"M has been described above. Put differently its semigroup is defined by

hM
p(z,y) = hMEi;p?d(x, y). (3.3.22)

for any z,y inside M + C. Here hM is defined by Equation (3.3.15).

In the sequel we will further assume that the process B is such that for any m € C_,
such maps h™ are of C" regularity over m + C. In particular, for any 1 < k& < r and
i1, i distinct in {1,--- 7}, the quantities defined by

Oig iy h™ = (=1) Oy, -+ O 2T (3.3.23)

are well-defined in m + C. These maps satisfy

3.2
611771khm =0 on m+8C\(8CZl UU@C%) (33 4)

{A@il,...7ikhm =0 inm+C
They are also non-negative inside m + C: indeed note that 0; ... ;h™ is given by

. 1
lim
€1, ,6r—0F €10+ - E

P, (V1<i<k, m <M(Y)<m;+ee;
(3.3.25)
M;(Y) = m; for k+1<i<r).

We also stress that ;... ,h™ represents the probability density function of the random
variable M. When the process being considered is given by B” these maps are completely
explicit and can be seen to be positive inside m + C but vanish on its boundary.

As we will see, the diffusion processes with generators given by

- - " 0,0, i
A = APkt = g 3 (a@-j T ) Os, (3.3:26)




and killed upon hitting the boundary of M + C will naturally arise in the study of the
interplays between Brownian motions and reflection groups. We have already highlighted
above that for any z € M +C, these processes will almost surely never reach M+ 9dC on
IC\ (0C;; U---UAC;,). A consequence of our main result below is that such a process
will almost surely reach M + 9C at 9C;, U - -- U 9C;, (and will be killed upon hitting).
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4 - Définition probabiliste des fonctions de corréla-
tion

Ayant introduit et étant désormais familiarisés avec les objets de base permettant de
comprendre d'un point de vue mathématique les théories de Toda, nous sommes désor-
mais en mesure de définir de maniére rigoureuse ces théories en interprétant I'intégrale
de chemin en termes probabilistes. Cette formulation des théories de Toda forme le point
de départ de notre quéte de compréhension de ces modéles.

Pour ce faire nous nous attacherons dans un premier temps a donner un sens a
I'intégrale de chemin en nous basant sur les notions présentées lors du chapitre précédent,
et plus précisément a décrire les fonctions de corrélation des théories de Toda dans un
langage probabiliste. Certaines propriétés de ces fonctions de corrélation seront ensuite
étudiées dans la perspective de nous armer en vue de comprendre les théories de Toda.

Ce chapitre se base sur I'article [34], fruit du travail conduit en collaboration avec
Rémi Rhodes et Vincent Vargas. Nous évoquerons également certains résultats issus de
I"article [33] écrit conjointement avec Yichao Huang ainsi que certains éléments de [30]
concernant certaines propriétés plus analytiques des fonctions de corrélation.
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4.1 . A probabilistic take on the path integral

The goal of this section is to make sense of the path integral definition of Toda
theories in the realm of probability theory. In order to achieve this translation from the
physics language to a probabilistic one, we will need to interpret the formal measure that
features the Toda field action St 4, which takes the form of

= % /]R? ((aggb(l’)? ag¢(x)>g + R9<Q, gf)(aj)> + 47 Zﬂiev(ei,¢(z))> Vg(da,‘)

(4.1.1)
for ¢ : R*> — a and with g a metric on R? conformally equivalent to §. Recall that Q is

the a-valued background charge defined from the coupling constant v > 0 by

ST,B(¢7 g)

2
Q="+ ;pv, (4.1.2)

while the scalar p := (1 > 0,- -+, . > 0) are the cosmological constants.
With these notations at hand we wish here to make sense of the formal path integral
over fields ¢ : R? — a:

(F(D))S,, = / F(¢)e5ra9 Dg 41.3)
L2(R%2—a)

for any F' bounded over L?(R? — a).

4.1.1 . Probabilistic interpretation of the path integral

The Toda field action can be decomposed as a sum of two terms. Namely we can
write it under the form

AN
Stg(¢,9) = % <¢7 ( 2;) ¢> +V(0,9) (4.1.4)
g

where we have set

V(o.0) = 1= /R (Ry(@.0(0)) + 47 3 e ) v, ().
=1

We will treat separately these two components and start with the first one.

4.1.1.1 Gaussian measure interpretation of the squared gradient term

The first component of the Toda action functional is the quadratic term

1 —A,
20 (52)9)
g
which hints towards the fact that Ge<1us(sian>random variables will be involved. Indeed
—3(b(5:2)®

the measure formally written as e 9 D¢ is remininiscent of the density law
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-1
. . . A
of a Gaussian vector, whose covariance kernel would be given by < 27r9> . To be more

specific, when restricted to the space
Yi={pc HYR?* - q, g);/ o(z) vy(dx) = 0}
R2

(where H™1(R? — a, g) is the set of a-valued generalized functions with each component
in H1(R?, g)), the formal measure

det (_—Ag) 259, py
o ’

can be understood as the density law of a Gaussian field X? who would satisfy

A A A
A e e = P I C=) W
for f,h € H'(R? — a,g). This is achieved in particular if X9 has the law of the GFF
introduced in Equation (3.2.12).

However in general we should not restrict our attention to fields with vanishing mean
in the metric g. To remedy this issue we need to add an independent constant ¢ to the
GFF X9 —note that this preserves the validity of Equation (4.1.5). And it turns out
that this constant has to be sampled uniformly with respect to the Lebesgue measure
in order to define a model that satisfies the expectations from the physics literature.
Put differently, the quantity m,(®) should be sampled in a according to the measure
dv = dw; - - - dv, where recall that the basis (v;), ;. is orthonormal.

In brief, the proper way to make sense of this formal measure is to make the following
identification:

/[,2(R2 )F(¢)e_§<¢v(2ig)¢>gD¢ = Z(g) /]E [F(XQ + C)] de (4.1.6)

a

where the renormalization constant Z(g) is given by the regularized determinant:

det (;ﬁg) B

vol, (R2)"

[ I

Z(g) =

To be more specific, the Laplacian —2_?; acting over H'(R? — R, g) has positive (apart
from the zero eigenvalue) and discrete spectrum (\;); > o, thanks to which one can define
its spectral Zeta function ((s) := > .., A;° for Re(s) > 1. The associated regularized

7=z177
determinant is then given by

dot (S22 ) = exp (-0

A remarkable property of the partition function Z(g) is its variation under a conformal
change of metric. Indeed in the » = 1 case it is proved in [108, Equation (1.13)] that

det(—Ay) det(—A\,) 1 )
loc — —97 g d R 4
o8 vol,/ (R2)" 08 vol, (R2)" + 961 /R2 (‘ 80\9 + gga) Vg
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with ¢ = e®g. For r > 1 since A acts independently on the r components of a map
R* — R” we see that det(—A,) = det(—A})" where A! denote the Laplace operator
acting on H'(R? — R, g). Therefore

det(—=Ag) | det(=A,) r

1 =
©8 vol/(R2)" ©8 vol, (R2)" i 96

/ <|dgp]§ + 2Rg¢> dv,. (4.1.7)
]R2

As a consequence, up to a global factor, one has
Z(e9§) = evor Juz (190l5+2Rap)dvs (4.1.8)

within the conformal class of the spherical metric §.
Eventually we make sense of the formal Gaussian measure by interpreting in the
following way:

a

L ;Ag T 2
/ Fo)e WG90, Dy o ent o (0 +2mge)av, / E[F(X + o)) de
L2(R2—sa)

(4.1.9)
for each continuous and bounded functional £ on H71(R? — a, g) with g = ¢#§ in the

conformal class of the spherical metric g.

4.1.1.2 Gaussian Multiplicative Chaos and the potential term

Thanks to the interpretation of the first term that appears in the Toda action functional,
we see that the path integral should be interpreted by means of

/LQ(RQ )F(¢)65T,g(¢vg)D¢ — ooer Jr2(ldel3+2Rs0)dvg /E [F(Xg + c)er(X‘“rc,y)} de.
—a

a

The issue here is that if the field being considered is the GFF X7, the exponential term
that is part of the expression of V(X + ¢, g) is not well-defined. However we have seen
in Section 3.2 that it was possible to make sense of this quantity thanks to the theory
of GMC. Put differently we interpret the corresponding term as

E [F(Xg + C)Giv(x’q+0,g)] =K [F(Xg + C)€7ﬁ<QRgng+c>g*Z::1 F‘ie(C’%i)J‘J;ei(Rz)]

4.1.1.3 Conclusion

We have now interpreted all the terms that enter the path integral defining Toda
CFTs. Hover defined as such the theory does not satisfy a key property enjoyed by
two-dimensional CFTs: Weyl covariance, which is concerned by the behaviour of the
theory under a conformal change of metric g. To remedy this issue we need to consider
the Toda field as the random distribution

<I>:X9—|—%lng+c.

By doing so the model thus defined satisfies the basic properties expected in the physics
literature as shown in Theorem 4.2.2 below. To summarize, we interpret the path integral
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of Toda CFTs in a probabilistic way by making the identification for any F' € H™'(R? —
a,9):

/ F(¢)6_ST,Q(¢79)D¢
L2(R2—a)

— o967 Jaz (1405 +2Rg0 ) dv / E[F <X9+ang+c))e;<QRQ,X9+c>gZlee“”ﬁﬁMg”e"(RQ) de
2 )

a

(4.1.10)

as soon as it makes sense, and where g = €% is in the conformal class of the spherical
metric.

4.1.2 . Probabilistic correlation functions of Vertex Oper-
ators

There is a class of functionals F' which play a key role in the study of Toda theories.
Usually referred to as Vertex Operators, computing their correlation functions is often
one of the main issue in the study of two-dimensional CFTs. In this subsection we aim
to provide a probabilistic definition of these objects, definition which will be the starting
point of a mathematically rigorous study of Toda CFTs.

4.1.2.1 Vertex Operators

In Toda CFTs these Vertex Operators formally correspond to taking F(®) = e{®®())
for - € C and a € a. However such functionals are not defined over H™}(R?* —
a,g) and for the very same reasons that led us to introduce GMC measures we cannot
straightforwardly define these quantities since ® has the same regularity as the GFF XY,
To overcome this issue we still proceed in the same way and rely on a regularization
procedure in order to define their correlations. Namely for z € C and « € a let us define
the regularized Vertex Operator V7_(2) by setting

@ 2 af
VI_(2) = 'S (@ X+ G Ingre-31) (4.1.11)

where X?(z) is the field regularized as before. Similarly to the GMC measure, when g = §
this regularized Vertex Operator has same limit when ¢ — 0 as the Wick exponential

(. X2 (2) +¢)~ AE[(0 X (2))?]

e G(x) 293, (4.1.12)

4.1.2.2 Correlation functions of Vertex Operators

Taking the average of a product of such Vertex Operators with respect to the measure de-
fined via the path integral defines their correlation functions, denoted by (JTr—, Va, (2&))q.-
Combining Equation (4.1.10) with the above shows that as soon as it makes sense, the
correlation functions of Vertex Operators are thus seen to be defined as the limits,
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provided that it makes sense, of

Vo (28)) g9 =

1=

N
. _r_ g _ (e,ve;) 'Ye'L 2
lg%egﬁﬂ fR2(|d90| +2R;p dVg/ [l | Vak, Zk e 4W(QR97X€+C)9 S mie Mg & (R?) ]dc
© a k=1

(4.1.13)

for iy, - -+, ay elements of a and z1, - - - , 2y distinct points in C. The forthcoming sec-
tions are dedicated to providing conditions ensuring their existence as well as elementary
properties they enjoy.

4.2 . Existence and basic properties of the corre-
lation functions

Having provided the framework in which we aim to study Toda CFTs from a prob-
abilistic perspective, we now focus on the correlation functions of Vertex Operators
defined in such a way and to start with investigate the assumptions necessary to ensure
their existence. We then proceed to the study of some of their basic properties, which
are strong indications that the objects thus defined does indeed agree with expectations
from the physics literature.

4.2.1 . Existence of the correlation functions

It is expected in the physics literature that in order to be well-defined, correlation
functions must be subject to certain conditions called Seiberg bounds [123]. Our goal
here is to recover these bounds within our probabilistic setting.

To start with, the form of the correlation functions (4.1.13) is not really convenient
when it comes to investigating its convergence as ¢ — 0. The introduction of the
random measures

g(l‘)_%hei’xé\;l O‘k>

Zr (dx) = M (dx) (4.2.1)
(z,) HJkV:1 ’.%’ . zk|(ak,7€i> 9
associated to @ = (g, -+ ,ay) and z = (z1,--- ,2x) allows to write them in a more

tractable fashion. Indeed expressing the Vertex operators V,, -(zi) as Wick exponentials
as done in Equation (4.1.12) allows to interpret them as Girsanov weights that have the
effect of shifting the law of the GFF by an additive term. More precisely, it follows from
Theorem A that for suitable F’

N

E|][VE () F(XE)

O,

F (Xg + Z oszgf(', Zk)>]

(4.2.2)
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where G; ., the covariance kernel of X7, is a mollified version of G;. The conformal
weight A, is defined by

A, = <%, Q- %>- (4.2.3)

This reformulation is essential to prove Theorem 4.2.1 below.
The existence of the correlation functions is then ensured by certain conditions on
the each weight separately and on the quantity

N N
S a; -2 > oo —2Q,w)
s = M as well as, forall i, s; = < j=1% Qi) (4.2.4)
Y Y

as the following statement discloses:

Theorem 4.2.1. Existence and non triviality of the correlation function (V,,,(z1) - - - Vay (28)) a9
do not depend on the background metric g in the conformal class of the spherical
metric g. Furthermore:

1. (Seiberg bounds) The correlation functions (V,,,(z1) - - - Vay (2n)) 4.4 defined by
Equation (4.1.13) exist and are non trivial if and only if the two following con-
ditions hold:

Forall1<i<r, s >0 and {(arx—Q,e;) <0 foranyl <k< N.
(4.2.5)

2. (GMC representation) /nthe particular case where g = g is the round metric,
one gets the following explicit expression for the correlation function

<Va1 (Zl) T VaN (ZN>>97Q

r —s; N
= (H M) H |26 — Zl’_<ak,01l> E

i=1 v 1<k<I<N

Z’YE'L

(z,2)

(€)== (4.2.6)

i=1

The condition that the weights must satisfy the assumption that for all 1 < i < r,
(o, — @, e;) < 0 corresponds to the requirement that « belongs to the shifted Weyl
chamber @ + C, see Figure 3.1.

Proof. The proof follows closely that developed in [40] for the case where g = sly,
that is when the CFT being studied is Liouville CFT. The main difference lies in the
fact that many of the quantities involved are no longer scalar but rather vectors of
the Euclidean space a. Likewise several GMC measures, stemming from the form r
different exponential potential that appear in the Toda field action (4.1.1), need to be
taken into account.

To prove our statement we rely on Lemma 4.3.3 from Section 4.3 below, which
provides sufficient conditions ensuring that the expression (4.2.6) does make sense
probabilistically speaking. Also anticipating on the conformal anomaly formula from
Theorem 4.2.2 below, let us assume that we work with the spherical metric g; the
general case where g belongs to the conformal class of g is a straightforward conse-
guence of the Weyl anomaly stated there. First note that the metric g is such that

4i (QRy(x), X9 + ¢)vy(dz) = 2(Q, ¢)
T Je
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since R; is constant and X9 has zero mean value in the metric g. With the help of
Equation (4.2.2) we can rewrite the regularized correlation functions as

N
H §(zp) Bk eXon<i{on0n) Gy e (221) e iz VsG] | o i1 Hi€™C 2, E(C)] dey...de,
. R"
where E(fa) (dx) == &7 Zioa(enenGo(@:2) M7% (dz). Now, if one of the s; is non-positive,
), 9,€
then the whole integral can be lower-bounded by

iy vsici g Tioy mie "M go ge (Vl <i<r, Z(Le’a) (C) < M) = 400
RT

(z,0),e
possible note that G; .(z, -) is bounded over C and apply Lemma 4.3.3 with all the «
taken equal to zero). Therefore the e-regularized partition function is infinite if one
of the s; is non-positive. Conversely if these s; are all positive and using Lemma 4.3.3
we can make the change of variable y; = uie’YCiZ?;;)?E(C) for 1 < i < rintheintegral

so that we are left with

where M > 0 is taken so that P (v1 <ig<nrZl5 (€) < M) > 0 (to see why this is

N "/67, s

1iZ (©)
H g(zk)Aakezk<l<ak7az>Gg,s(Zk,Zz)/ E H < (2,0)¢ ) y;i_le—yi dyy...dy,.
k=1 (O,00)" |21 v

Using Fubini-Tonelli's theorem the latter can be evaluated and is found to be equal
to

N r ig’yei C o r
[ 9(ze)2er ezncrlonenGacGrp | TT <M el )) / [y e dyr...dy,
(0,00)7 51

k=1 i=1 v

T —s; N

i=1 1<Ek<I<N

H Ziyzela) € 7Si

by using the explicit expression (3.2.9) of G; together with the factthat >~ s;(ay, ve;) =
(o, Zfil a; — 2Q). To conclude it remains to show that:

s Ifforalll<i<r,and1<j <N, (o,¢e) < (Q,e;), then
lim E HZV;ZO‘)E 5 =E HZ(”;ZQ) > 0.
« Ifforsomel <i<randl <k <N, (axe) = (Q,e;), then
lim E HZW )~ = 0.
For this let us firstassume thatforall 1 <i < r,and 1 < k < N, (ag, e;) < (@, e;). Then

we know from Lemma 4.3.3 that thefamlly of random variables (Hl 1 Z”e’ ), E((C)*“)‘Z’)g .

104



have (uniformly bounded in ) positive moments of all orders. Thus we can write that

761 H Z’Yez ’2’761 (€)™ - 761 —s1 H Z'Yez
o 112?:;),4@‘ 7@ | 2y
<E |7 © 7 - 2@ ] HZ”“
_ ., P % .
€4 —87; € —S; e —qs q
+E HZL w7 =TI 25 © | | B2, @]
L =2

where we have used Holder inequality with some p = q%l > 1. We can thus proceed

by induction on r so that the only pointto check is lir%E {
e—

2761 )76((‘:)*81 _ Z“/el )(C)fm

(z, (z,
This fact has already been proved by the authors in [40, Lemma 3.3]. For the second
bullet point, let us introduce the set P:={i=1,...,r|31 <k < N,{ax — Q,¢e;) = 0}
and assume that it is non-empty. Then we can write that, for positive p%' and % sum-
ming to one,

H Z’Yez

Then we have already seen that the second expectation in the right-hand-side had a
finite limit as e — 0 thanks to the results of Lemma 4.3.3. Conversely the statement of
1

1
q
< [1B[2]0).© pzsl}plE{Hzgf;)a qsl]‘

i€EP iZP

Lemma 3.3.6 implies that for any i € P, hn%E {Z(Vja) E(C)*pisi] Pi = . This concludes
e— X
for the proof of Theorem 4.2.1. O

4.2.2 . Correlation functions and conformal field theory

Toda CFTs enjoy a level of symmetry that includes conformal invariance. For such
CFTs it is usually assumed in the physics literature that the correlation functions of
Vertex Operators must satisfty a certain set of axioms such as conformal covariance
under Mobius transforms as well as the existence of a Weyl anomaly under change of
background metric g. See for instance the review by Gawedski [62] where such axioms
are being exposed.

The following statement shows that the objects defined using our probabilistic frame-
work satsify these assumptions, thus confirming that they provide a good translation of
their counterparts from the physics literature:

Theorem 4.2.2. Under the assumptions of Theorem 4.2.1, the following holds true:

1. (Conformal covariance) Let i) be a Mébius transform of the plane. Then

(Vi (0(21)) -+ Vi (0 le )78 (Vay (21) -+ Vi (23) Vg

where the conformal weights are given by A, = (3, Q — ).
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2. (Weyl anomaly) If ¢ € C'(R?) then we have the following relation
<Va1 (Zl> e VaN (ZN»g,eWQ = G%SL(%Q)G/OM <Z1> T VQN (ZN)>97§
where Sy is the Liouville functional
Su(0.9) = | (03l + 2Rgs) v,

and the central charge cr is given by cr = r + 6|Q|>.

This statement shows that the theory thus defined is a CFT in the sense of Gawedski's
axioms, with central charge cr given by:

g CTg g CT,g
A, n o MO (o 2)2 Es|  6+468(y + 2)?
B, n—l—’wa%—%L(n—l— D(n—1) B  7+1197(y+ 2)?
+n(n +1)(2n +1) Eg|  8+3720(y + 2)? (4.2.7)
|+ 22 EED 4 9 (n +1)(4n — 1) Fy|4+ 23492 + 330 + 468 %
+5n(2n —1)(2n + 1) Ga| 2+ 28y° + 192 + 844
D, (n—n(2n — 1)(y + 2)?

Proof. Let us start with the second item and consider g = ¢¥§ in the conformal class
of g. Then by making the change of variable in the zero mode ¢ given by ¢ +» ¢ —
my(X9), we can in fact rewrite Equation (4.1.13) by replacing the field X9 + ¢ by X9 —
mg(X9) + c. Using the fact that X9 —m;(X9) and X9 have same law in agreement with
Lemma 3.3.3, we can therefore assume that the underlying GFF has the law of X9.
Since g = e¢¥g, we have that

N
(xk Q)
<V04176(21) VozN € ZN U (k) X il_l)lll)
K 2@ g
/e'y s,c) H 6 47r Jo Rg(Q,X1 >(x)vg(d:p)—2::1 pieY [ e Ve, e (x)vg (da) de

where this time regularization is done with respect to the round metric, and V is the
Vertex Operator without constant mode, that is

o~ 2 g 4
VI (2) = 5 el@X(E)+3 ng=51),

We will consider the term e~ 7 Jo Bo(@XE)(#)vs(d2) 35 3 Girsanov transform. Namely we
can use the fact that Ry(y)vy(dy) = (—Ag(y) + 2)vy(dy) (at least in the weak sense
since ¢ € C'(R?)) and the definition of the Green function G, to see thatforany a € a:

B (5 [ BWQ X)) ) (0.X0) @] = (@5 () - ms(e).
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The variance of this expression is given by

(s Rg<x><@,xé><x>vg<dm>)2]

— 1oz [ R0 Ry(0)ELQ, X))@ XE) 1))y
- #\QP L Rl By Gl gy )
~ 15210 [ 2o@) ([ Ba(Gatennpng(an)) o)
erP [ Rol@) (ota) = my(0)) vy (o)

510 [ (2@ +2) (pla) = myl) )

E— 2 ~ 2 ~
- SWIQI [ 1osePug(an).

E

As a consequence we obtain thanks to Theorem A that
E [e—ﬁ Je Rg<Q,x9>(:c>vg<dw>F(Xg)} ot |QF [ 195120, (da) g [F <Xg n % (o) — mf’(@))ﬂ '

Using like before the change of variable ¢ +» ¢ + %mg(go) and recollecting terms we
end up with

<VOé1 (Zl) ce VOCN (ZN)>9 = Z( )e% f(c |a§<f"2”g %

: s,c) % |, ev(x)(WZT‘el‘ ‘QMQ e"”>)~ e, (@)vg (dz)
hH(l) e“/ H o, a 21 Hie C Vy 9 de.
E—

Since Q is such that (@, e;) = 2l +2forall1 <i < r, weknowthat hel’ _2@ed g,

by the change of variable ¢ <+ ¢ — gmg( ) we get that

(Var (21) -+ - Vay (28))g =
N

H i 1/‘1f(c ve; Ax)w(dm)] ClC,

Z(Q)ell%‘w Je |89‘P‘2”9+| Jeevs » lim
e—0

whence the result, by using the expression (4.1.8) for the regularized determinant

Z(9g)-

For the first item, we see that according to the proof of Theorem 4.2.1 and more
precisely Equation (4.2.2), the quantity (F(®) ]"[]k\’:1 Vo, (1)) for F bounded continuous
over H-}(R? — q, §) is actually given by

N
9) H ﬁ(zk)A“k ek<i{ar,a)Gy(2k,21)

k=1
/ S
a

N

g _5r ov(c,e;) 7VC

! <Xg - %hﬂ@ +te+) ang(~,Zk)> e~ 2=t kN 20 0 O e,
k=1
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Because 1 is a conformal map we know that the Riemannian metric *g (that we
have denoted g, before) lies within the conformal class of g; as a consequence us-
ing Lemma 3.3.3 the GFFs X% — m,(X%) and X9 have same law. Moreover from
Lemma 3.3.4 we know that X9 has same law as X9 o ¢. In a nutshell,

(Iaw
)

Xf’oip—mg(Xgozp X9,

Besides we saw in Equation (3.2.11) that G4 (-, ¢ (2x)) ot + 1 (¢ + d(2x)) = G4(-, z,) Where
e? = %. Combining these two assertions yields that the laws of

N N N
X9+ axGyl-2) and (X@ - Zakegc,w(zk))) w3 (¢ () my(Xov)
k=1 k=1 k=1

are actually the same. Since g,, = [/ § o ¢ the latter further implies that

IaW

2z 2 V% 0y 4 QIn |w|——<z>+ Zamw%))—mg(ﬂow

where ®Z is a shorthand for X9+ ¢ In g+ 11, ax Gy (-, 2) and ¢z == (¢(z1), -+, (2n)).
Therefore (F(®) [[2_; Va, (2)) can be put under the form

a

N
Hg 2, ) Sk e Xon<i{r-00) Gy (21,21) /e'v(s,d de

N
1 5 _ T ov(e.e;) 7%
I (@gﬂz oY+ Qln [y + ?qﬁ +c+ ZE apd(zr) — myg(X9 o w)) e~ iz #ie” Z(zm(@] .
k=1

This motivates the shift in the zero mode ¢ «» ¢+my(X9) — 1 S apd(zk) — 18mg().
After this change of variable we are left with

N
Z(9) H g(zk)A"k e2k<i{or,0)Gg(2k,21) o= (8,0k) /ev(s,c) de
k=1 a

E [e’Y<s,mg(X9)> mg(¢) 1= 2(a.9) <(I);f12 o+ Qln ‘w/‘ + is(gﬁ . mg(d)))) e i Mie”<°’5i>Z?;,ia)(C):| )

Collecting up terms using (3.2.11) yields:

N
Z(g) H 0 () S e Xt @000 G (1) 0 () / 159 ge

a
E [6’7<s ;mg(X9))—my (<i5)7 2 (q) o+ Q|| + S (¢ — mg(@)) o =t #z‘eﬂc’ei)Z?:fa)(C)} ‘

* mg(p)(s,s)
The proof is completed by interpreting the exponential term e(* m@(xw N-—"7— as

a Girsanov transform, whose effect is to shift the law of ®;0¢ by —1s(¢p—m;(¢)). O

In the proof of the conformal covariance property we have actually shown a slightly
more general result. Indeed we have proved that under the Seiberg bounds and for any
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Mobius transform of the plane, the following was true for any continuous and bounded
map F on H}(R? — a, §):

(F (@0t + QM |¢/|) [T Vau(w(z0))g = [T 10 zi)l 722 (F(@) [ ] Vi (20))s-

k=1 k=1
(4.2.8)
This statement is usually referred to as the conformal covariance of the Toda field.

4.3 . Correlation functions beyond the Seiberg bounds

The goal of this section is to use the probabilistic definition of the correlation func-
tions given by Equation (4.2.6) to extend the range of values for which they can be
defined and thus overcome the obstruction of the Seiberg bounds. We will provide in
this manuscript two alternative extensions that will naturally arise in different contexts
but we will present the second extension in Section 6.4 since it relies on the tail expan-
sion of GMC measures and is much more involved. These extensions will satisfy the key
property that they depend analytically on the weights o viewed as elements of C". To
be more specific, we will say hereafter that a map F': a € C" — C is analytic when its
dependence in {(«, u) is analytic for any u € C".

In order to provide a first analytic continuation of the correlation functions, note
that the explicit expression (4.2.6) allows us to isolate the constraints s; > 0 in the
product of I' functions. This term can obviously be analytically removed. The question
is then to determine whether the expectation in (4.2.6) makes sense beyond the range
of parameters permitted by the Seiberg bounds, and if this extension is indeed analytic.
Our goal in this section is to prove that the following theorem does indeed hold:

Theorem 4.3.1. Let zy,--- , zy € C be distinct and define a subset of (Q + C_)N
by setting

By ={(o1, - ,ay) € (Q+C)Y

4 1
suchthat —s; < ——— A min_ —{(Q — ay,,¢;) forall 1 <i<rp.
VH(ei €i)  h=lN Yy

(4.3.1)
Then the map defined by Equation (4.2.6):
SEACITRANEE T
o (H —> [T -z e[z © ™ (@432
=1 v 1<E<IEN =1

is meromorphic in a complex neighbourhood of By, with poles given by
Py ={a € By, s;=0forsomel<i<r}.

To prove this statement we will rely on two probabilistic facts. The first one is that
the GMC measures considered depend analytically in the weights for « in a complex
neighbourhood of (Q + C_)" as we explain in Lemma 4.3.2. The second point is that
moments of GMC measures are finite as soon as the weights a belong to By. Combining
these two properties will allow to derive Theorem 4.3.1.
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4.3.1 . Analycity of Gaussian multiplicative chaos mea-

sures

To start with we wish to prove that the dependence on the weights of the GMC
measures being considered in Equation (4.1.13) is actually analytic. Namely our goal is
to show the following statement:

Lemma 4.3.2. For any fixed c € a, the map

N
a— E [ H Vozk (Zk;)e_ ST paeY$eei) Mved (C)] (433)

k=1
is holomorphic in a complex neighbourhood of (Q + C_)".

To prove this statement we will consider, without loss of generality, as background
metric ¢ = g, and for positive t the circle average regularization (X;(z));>o of the GFF
X as defined in Equation (3.2.15). As explained along the proof of Theorem 4.2.1, the
expectation term can be written as

. 4N\
lim | | |2+ (a; c),
t—r+00
N [ 2] (4'3'4)
(ap, X¢(z))
with E Oé C |: | | e (g, Xt (2z)+e)— %6_ >, Me'”c’ei”\/f'*ei((ct) ’

-1
and where C; := C\ (Up_, Bi(z1)).

Proof. From its expression it is readily seen that for any positive t, « — Fi(a;c) is
holomorphic over (C?)V. Moreover, we will show that as ¢t — oo for any compact set
Kof (Q+cC )Y anda € K,

|Fip1(e+1iB;¢) — Fi(a+iB;c)| < Ce™™ (4.3.5)

for some positive C and 5 uniform over K, as soon as 3 € (R?)" is taken sufficiently
close to 0. Therefore assuming that Equation (4.3.5) holds true, we can conclude
that for any such K one can find an open complex neighbourhood of K inside (C?)V
over which (Fi(a;c)), converges uniformly (in ) as ¢ — oo. Since the Fi(;c) are
holomorphic for any ¢ > 0 this shows that the limit is also holomorphic. In brief
proving Equation (4.3.3) boils down to proving that Equation (4.3.5) does indeed hold.
To show that this is the case we rely on the fact that the increments X, ; — X, are
independent of the sigma-algebra generated by the (X(z)).cc,, so that
lj_V[ elow+iBe, Xy (2k))— [WHZ‘BM?HI(%))Q] e~ 2i=1 pie{eed) prve ((Ct)] .
k=1

Fy(a+1iB;c)

Interpreting the first term as a Girsanov transform we see that the latter is given by
H SBIX e (2r) 0 ) (X (20),00)] o
j<k

N

H 1Bk, Xe+1(2k))

LB )
2

—iB[(au, X1 (20)) (e, X1 (20))] o = 205y Ni67<c’6i>[ti+1(@t)]
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with I} (d?z;) = []o, e (ke EX (@) Xen (z))] pprei (d2x;). Therefore

|Fip1(a+1iB;¢) — Fi(a+iB; c)|

B 2 T c,e; 7 T c,e K3
< Cezgﬂ | él tE He* i Meﬂ ’ 1>It+1((cr) — e i1 Mzey( Z>It+1((ct+1)

The expectation term can then be rewritten as

E [e— iy miet (@) I (C) (1 _ e Ty et eﬁfzﬂacm\ct))}
T ) (ere) 1
— ZE [6* Sy e el Ii L (Cy) (1 _ ek c’e]>ff+1(ct+1\(ct))}

+ l.o.t.

where with the notation “l.o.t."we refer to lower order terms. Now the set C;; \ C; is
the disjoint union of annuli A;(t) centered at z;, and with radii (e~ (‘+1) =), so that

I 1 (C \Cy) = Z I (At

This means that we can further decompose the above expectation to reduce the
problem to that of showing that

E |~ Zimy mie¥ (@ I, (Cr) (1 - e—ﬂle“c’el)fhl(Ak(t)))} < Ce

for positive C' and 7/, uniformly on 1 < k£ < N. Put differently using Holder inequality
as well as the inequality 1 — e* < z for positive = we only need to bound I}, (Ax(t)),
which has been done along the proof of [84, Theorem 6.1]:

P(Ip1(Ak(1)) > €) < eTE [Ij, (Ak(t)"] < Ce~Met0m

Om
for any m > 0 and with 6% = my(Q — ay, e1) — v>m?2. Therefore choosing e = ¢~ 71+m'

1 __Om .
with 0, = sup 6% we havethat P(I} (Ax(t)) > e)1 <e nemt s collecting terms
1<k<N
we end up with the bound

|Ft+1(a +i8) — Fi(a+1iB)] <Ce™™

where n = p1+m Zk 1
B and m are chosen smaII enough O

4.3.1.1 Moments of correlated Gaussian multiplicative chaos measures

Since the GMC measures considered have been proved to depend analytically in the
weights a in a complex neighbourhood of (Q +C_)" it remains to consider under which
assumptions does Equation (4.2.6) make sense. We show in this direction that:

Lemma 4.3.3 (Extended Seiberg bounds). The bound

r

H(Z?;L)(RQ))_Si

i=1

E < oo (4.3.6)
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holds if and only if for alli = 1,--- ,r one has

min 1(@ — ag,e)) (4.3.7)

° v2e;, ;) k=1..N
Proof. To begin with we assume that condition (4.3.7) holds and consider the families
of indices

P={i=1,...,r|s;, 20} and N :={i=1,...,r|s; <0}

: o4 o 1o _ v
We also choose p > 1 such that for all i € N, —ps; < ey N kznlaf.r.l,zv ,y(Q ag,e;)

and fix the conjugate exponent ¢ > 1 such that 1 + ; = 1. By Hélder inequality we
can write that

1/q
E

r

11z, (Rg))‘si] <E

=1

1/p
E 1, <R2>>-p8i] .

ieN

[1(7 @)

1€P

The product running over i € P is finite because GMC admits negative moments
of all order via Lemma 3.3.6. For the product running over i € AN, note that the
relation (3.2.12) shows that the GFFs (vye;, X9) and (vye;, X9), for i # j, are negatively
correlated since (ve;, ve;) < 0 (indeed all off-diagonal elements of A are nonpositive).
Hence thanks to Corollary 3.3.2 we can infer that

E

JJ (CTANE ] < [T B[ @) ™. 439
ieN ieN

Now the GMC measure which appears in the expression of Z(Vzeja) is defined from
the GFF (e;, X9). This GFF has the law of |e;| X§ where we have denoted by X the
real-valued field considered in Lemma 3.3.6. This amounts to replacing the coupling
constant v/2vy by v; == 7|e;| and the weight of the insertion by o} = (ay, o > in the
statement of [40, Lemma A.1]. This entails that the corresponding expectation term is
finite provided that —ps; < ,;% Aming_; y %(% + 73 —at). The latter can be rewritten

under the form

< 4 A . 1 ( n 4 < 2e; >)
—ps; min — — (g, —) | -
v(ei, )  k=1,..N 7y 7 v({ei, ei) (€i,€;)

We conclude thanks to the expression of @ that each expectation in the product
above is finite thanks to our assumptions on the exponents ps;, 1 < i <r

Conversely, assume that the expectation (4.3.6) is finite. Then by Corollary 3.3.2
applied to the function

H(zy,...,2,) = — H z; " Hxi_si,

ieEN ieP

with the partition (P, N) of {1,--- ,r} and to the GFFs ({ve;, X9));=1 ..., we deduce that

77777

r

H(Z&(RQ))SZ'] >E

i=1

E E

[Tz, @)

i€P

11 (Z(v;a)(sz] .

ieN

12



Since the GMC admits negative moments of all order the first expectation in the right-
hand side above is a finite constant C' > 0. This implies that the second expectation
is finite too. From now on, we fixig € N'and j € {1,..., N}. Without loss of generality
and for the sake of simplicity, we may assume that z; = 0. Then we can choose 6 > 0
such that minjr; [2] > 10 x 6 and we can choose non empty balls (B;)ixi, ien all of
them at distance at least 10 x 6 > 0 from each other and all of them at distance at
least 10 x 6 from all the z;'s. Set B;, .= B(0, ¢). Obviously we have

E ([T ®)| =B | Tz, B)
ieN ieN
Consider the mean value of the field Y = ;- o|=26 X9(z)4. A simple check of co-

variances shows that the law of the field X9 — Y is the independent sum of the field
X¢—which coincides with X9 — Y outside of B(0, 24) and corresponds inside B(0, 24)
to the harmonic extension (component by component) of the field X9 — Y restricted
to the boundary 9B(0, 20)—plus the Dirichlet field X p, defined by its covariance kernel

E[{u, X3 () (v, X5, ()] = (u, )G (2, y)

and Gp(z,y) stands for the Dirichlet Green function inside B(0, 26). From now on we
will write ZéZZ’f”(d%) instead of Z?;;)(dzm) to indicate in the notations the depen-
dence on the underlying Gaussian field. This means that, generally speaking, we will
write Z <7i;’f(> for

(z

Z<7€i’x>(d2.’1}) — lim 625'\,:1<04j»76i>G§($:zj)6

lve; |2
2
(z,0) e—0

where X, stands for the e-regularization of the field X in the metric g. So we can write

—F |e ZieN si(yei,Y) H (Z<'Yez'7ngy> (Bl))—sl

(vei,X9) —s;
E H(Z(Z,a) (Bl)) (z,0)
ieN

ieN

We can remove the factor e~ 2iex #(7¢:Y) by viewing it as a Girsanov transform. Namely,
denote by o the variance of the centered Gaussian random variable 3,/ si(ve;, V).
Then by Girsanov theorem A we can write that weighting the law of X9 by

2
e Dien si{vei,Y)—%

amounts to shifting X9 by — 3.\, SjY€j 7s ﬁx\:a Gy(-, )%, The values of the variance
o2 and of the covariance of Y with X9 — Y are actually irrelevant to conclude. Indeed
we only need to know that the variance o2 is bounded, and that the covariance of Y
with X9(z) — Y is uniformly bounded for x inside B; and for all i € N. This is readily
seen from their definition. This entails the existence of some positive constant C' > 0
such that

E [e” ZiEJ\/' si{vei,Y) H(Z<7€i’ngy> (BZ))fs, > CE

(z,0)
ieN

Bi,ngy —S;
[Tie " B)

ieN



Using the decomposition of the law of X9 — Y = Xp + X{ and independence of Xp
and X7, we get

ei,Xg—Y —8;
E| [Tz " B

ieN

(vein,Xp) —5; mingep, €, X (x e;, X9-Y —s;
> E (2007 (Bi) ™ | E { = (X T (209 7 (By)
i#i0 €N

Thisimplies that both expectations in the right-hand side are finite (they are obviously
nonzero). Finiteness of the first expectation above entails, like before by adapting [40,

Lemma A.1], that —s;, < ﬁ A %<Q — ay,€). Since the argument is valid for all

ip e Nand all j € {1,---, N}, this yields the result. O
4.3.2 . Correlation functions beyond the Seiberg bounds

and moments of Gaussian multiplicative chaos

We are now in position to conclude for the proof of Theorem 4.3.1. We will also
describe how to compute functionals of the Toda field under this generalized assumptions.

4.3.2.1 Proof of Theorem 4.3.1

Let us pick ag € A} and consider an open neighbourhood of aig: O C K a compact
subset of AL;. Then thanks to Lemma 4.3.3 we know that there exists a positive 1 such
that for any a € O we have that

T

I1 (Zg;; )(RZ))_S#"] < .

i=1

E

Then we can reproduce the reasoning developed in order to prove Lemma 4.3.2 to infer
that this assumption allows to derive that the map

aE [T (75 )(R2)>_Si]
=1

is holomorphic in a complex neighbourhood of O, concluding for the proof of Theo-
rem 4.3.1.

4.3.2.2 Functionals of the Toda field under the assumptions of Theo-
rem 4.3.1

In order to provide an analytic continuation of these correlation functions we have implic-
itly relied on the following technique based on the analytic continuation of the Gamma
function, which assesses that one can extend its integral representation by setting when

5 <0 Noi .
[(s) = /ResC (exp(—ec) - <_l:!) ) dc

k=0

14



This extension is seen to be analytic via the following reasoning. Let us introduce
for R(s) > —1, the function

F(s) = /Resc (exp(—€°) — 1) de + %

Then it is easily seen that the integral is absolutely convergent and hence analytic in
the s variable: F' is a meromorphic function over the half-plane R(s) > —1 with a
single pole at s = 0. However under the assumption that R(s) > 0 then we see that
F(s fRe exp(—e)dc is the standard Gamma function while for (s) € (0, —1) we
have F(s) = [, e* (exp(—e) — 1) dc. By uniqueness of the analytic continuation this
shows that this extension is the unique analytic extension of the Gamma function for
R(s) € (0,—1). More generally we have to consider

Nl (e N-1,
F(s) = / e’ <exp — 1.0 Z o > de +
R k=0

S
k=0

This extension can be generalized within the framework of simple and complex Lie
algebras we work with via the equality

T

r N;—1 (_6<C7€i>)k
HF(si) = /e<s’°> H exp(—el®e) — Z T de
i=1 a )

i=1 k=0

for R(s;) € (—N;,1—N;) forall 1 <i <7, where s =37 | s;e;. This shows that if we
were to compute functionals of the Toda field under the assumptions of Theorem 4.3.1,
we would be led to computing the following quantities:

(F(D)V) = / e 2R

a

Q N
F(X+ Elng-l— +C)EVak(zk)X

" Ni— cve; e k
(RO S i
€ - de.
k!
=1 k=0
(4.3.9)
Using Equation (4.2.2) we can rewrite the above in a more condensed way:
r s N
I'(s; i s oo
<F(®)V>:<H&> H |2 — 2] {ansea) o
i=1 " 1<k<I<N
Q €i —S;
s <X+_lng++zakGQ+ oK)+ HZ&Q (€)™
i=1
(4.3.10)

Such a reasoning based on the analytic continuation of the Gamma function will
be key in the extension of the probabilistic definition of the correlation functions. The
additional input will be to incorporate the precise tail expansion of GMC measures to
add more terms in the integral over c.
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4.4 . Some analytic properties of the correlation
functions

Having provided a mathematical representation of the correlation functions of Vertex
Operators of Toda CFTs and studied some of their properties in the realm of conformal
field theory, we now provide some analytic features enjoyed by these objects. We will
focus here on the case where the correlation functions satisfy the assumptions of Theorem
and to start with we consider the issue of differentiability of correlation functions. Our
goal is to show the following statement:

Theorem 4.4.1. Let g be any metric within the conformal class of g, and assume
that the weights a = (v, a1, - - - , ) are such that bounds of Theorem 4.3.1 hold.
Then, for z,--- ,zx € C all distinct, the map z, — (J]n_, Ve, (2))qq is C* 0on the
set C\ {z2, - ,2n}

In order to prove such a statement we will rely on Gaussian integration by parts
as explained above. However to make sense of it we first need to provide some fusion
estimates on the correlation functions which we present now.

To simplify the notations we introduce the shorthands

ol = ([ [ Gl st mmeaa ) and
cJcC

2|, = exp </ / In|z — 2+ 2| ng(z)ng(z’)dQZdQZ') .
cJc

Before moving on let us stress that under the assumptions of Theorem 4.3.1 the regu-
larized correlation functions are given by

O RN
W= (IE2E) I e

r

[[2%0.©

i=1 1<k<i<N i=1
4.1
E PIPMERCIE) (4.4.1)
with  Z 7, (dz) = e M2 (dzx).

: HiV:l |Zk - I|z<0‘ka€i) €

4.4.1 . Fusion estimates for Toda correlation functions

Fusion estimates correspond to the study of the behaviour of correlation functions
when two insertion points collide. As we will see the correlation functions become
singular but we are still able to control their rate of divergence as the following statement
discloses:

Lemma 4.4.2. Assume that the z == (z1,--- , zx) are distinct and take o € Ay.
Consider a family of complex vectors (x;), ., ., = (:):El), S sz(mi))

1<i<r

1. For any positive ¢ there exists a positive constant C. such that

<ﬁ ﬁ Viere (xﬁ”) V). < C. H H (1 + )_4 .
i=1 =1

i=1 [=1

20
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2. Forany p > 0, ifthe x; and z stay in the domain U, .= S w, p < Ir;éln |w; — wj|},
i#]

then the above bound remains true for e = 0 uniformly in (x;),
with a constant C that depends only on p.

overU,

<i<r

3. Assume that all pairs of points in z are separated by some distance p > 0
except for one pair (z1, z2), and that all the =’s stay in a compact subset of
C. Further assume that (o + as — Q,e;) < 0 for all 2 < i < r. Then, for any
positive n, there exists a positive constant K = K(p) such that, uniformly on
&

—(aha2%+<§E3F(a1+a2—41602—ﬂ)ﬂ«a1+a27Qﬁ1ﬁx

(V): < K(p) |21 — 2 (4.4.2)

4. In the previous estimate, if a; = ~ve; for some 1 < i < r, then there exists
some ¢ > 0 such that

(V)e SK(p) |z — 2| "

5. For some p > 1 that depends on v and («y, e1), the map

) sup HHV%“ <Z> V).

e€(0,1) i=1 I=1
is in LP(C).

T my
Proof. We first note that in the expression of (] [] Vye, e (xE”) V)., due to the e-
i=11=1
regularization no singularities come from the prefactor. Moreover, viewed as a func-
—y{ei,ak)

tion Ofxz(»l) and for fixed € > 0, the quantity ’xgl) — 2k can be bounded by some
3

. - < i > . .
constant times ‘1 + mgl) T As a consequence this prefactor together with the

constant part can be bounded by

I+ 11

i=11=1 (4,0)#(,m)

(4.4.3)

For item (1), we need to study the expectation part for large values of the x;. Inside
Ze ) (C) we identify singularities of the form:

(z,a
e 1T 2 -

Jj=11=1

v{ej eq)

We can factorize out these deterministic factors on «; “at infinity” from the expecta-
tion by writing

)

"Y(ej 782>
r Mmj

T fe - Sl 111

j=li=1 j=1i=1 Lr — ‘ j=1li=1
+,e

‘ ~v{ej.€:)

17



Because the first factor above goes to 1 as 2() — o it follows that, for some positive
constant C the expectation term in Equation (4.2.6) can be bounded by

—8;

r r m;j e s roomy €S ap— T maives
CTT\TIIT I+ ") = CTTIT e e,
i=1 \j=1i=1 i=1[=1

Combining with the bound (4.4.3) for the prefactor yields:

TTI 0] T 1), ren =1 myve; —2Q) W (m)|~ z (€ixes)
(e (e <ot 1 oo
==t i=11=1 (i.)#(j:m)
2

1 0 4 2 ) 4 ‘1 + xil) ‘1 4 l'gm)‘ %(31',6]')
=Tl T g™ 1 O _ _m

=1 ¢ m=1 € GiD2(im x,) —x

( ’ )75(]7 ) (2 7 c

The last term on the right-hand side being bounded this finishes the proof of item (1).

For item (2), the same reasoning remains valid and therefore the same bounds
are still true when looking at the behaviour near infinity of the correlation functions
when we take the ¢ — 0 limit of the correlation functions.

For item (3), we investigate the behaviour when ¢ goes to zero of the fusion of
two insertions, that is when |z; — 22| — 0 but with all other insertions staying at fixed
positive distance at least p. Suppose that for bothi =1, -+ |7, (a1 + a2 — Q,e;) < 0.1n
this case, the expectation term remains bounded when z; and z, merge (since in that
case the expectation remains well-defined according to Lemma 3.3.6)) and therefore
the behaviour of the correlation functions is governed by the prefactor, of which the
singularity is of order |z, — zy|~(@122),

The analysis is a bit more subtle when («; + a2 — Q, e1) > 0 but (g + a3 —Q,e;) <0
forall 2 < i < r. However we can adapt the result in the Liouville case by using similar
arguments as in the proof of Lemma 3.3.5. Indeed, by combining Holder's inequality
with the fact that the GFFs considered are negatively correlated we can write in the
same fashion as before that

r / \x]:j S {ak.eq) —5;
7 £ )
H : M2 (dx;)
N i £ 1
i \Je TIS, [a — a0
1
T | .’—WZ;IX:Mock,ei) —Ppisi p;
< HE / Ty +,e Mge“g(dxz)
i | \Je Ty o — a2

for some p; > 1 such that the expectations are still well-defined. Now for2 < i < r
the expectations remain bounded when z; and 2, merge, while the behaviour of the
expectation with index ¢ = 1 is reduced to the Liouville case (the so-called freezing
estimate, see [83, Lemma 6.5]): for any n > 0,

N —p18
- Zk:1<akvel> prsy (a1+a27Q,61>2 —n
5 o2
+.€ Mvel’g(dx) < C. |Zl _ 22| 2]e;] .

£
/c TIa, |2k — |y (ewer

|z

Therefore we see that if (a; + a2 — @, e1) > 0 then the two-point fusion estimate is
governed by

/4 (a1 t+ag—Q.eq)?

Qay,02 2|ei|2

|21 — 29| 7t102) 5y — | (4.4.4)
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Item (4) is a direct consequence of the previous bound.

For item (5): the bound of item (3) ensures local mtegrablllty near z; of (Ve (z)V)
in LP(C)for1 < p< 4772 if we have 2 S—7< (g, e1) < 2 > 2 1y fori<p< T if we
assume that 0 < (ag,e1) < 2 —~, and in L>®(C) if (ag, e1) < 0. O

Based on this statement we now provide a generalized fusion estimate for which we
consider the situation where finitely many points merge within a correlation functions. In
our applications, we only need the special case where the weights of the merging Vertex
Operators are of the form ~e;, for i = 1,--- ,r, and where points merge pairwise. This
will be the setup that we investigate in this subsection. We assume that z are distinct
and that a € Ay. Without loss of generality we assume that p = X minN|zk| is

A

positive. We are interested in estimating the following correlation functions with 2p
extra points:

p
H Vwa(l) W@T(l) (yl)V>
=1

where (1), 7(l) € {1,--- ,r} so the extra weights are of the form ~e; for 1 <i <.

To get a reasonable estimate, we need to first reorder the points (x, y) in such a way
that the collision can only happen pairwise, i.e. between each pair z; and y;. In short, we
restrict the locations on the points: we assume that x;, y; belong to sets A;, B; in such
a way that any two of these sets are disjoint, except for A; and B; with the same indices.
More precisely, we introduce domains A := A; x --- x A, and B := B; X - -- X B, such
that:

* Forany 1 <[ < p, A; and B; are either annuli or balls, and are contained in
B(0,%). This is to avoid collisions between (x,y) and the given z;

* There exists some positive distance d > 0, for which the (A;); <, <, are at distance
at least d one to the other (and similarly for the (B;)1 < <,);

* For any 1 < I,m < p, the distance between A; and B,, is zero if and only if
[=m

Then we have the following:

Lemma 4.4.3. There exist two positive constants C and { such that, for any (x,y) €
A x B:

(Voo @ Vi eV CHvaz | (4.4.5)

=1

uniformly in e. In particular the integral

1 T
—_— Ve, () Voe, (y;) V) d*xd? 4.6
[ e Ve a@Videty— @a
is absolutely convergent.
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Proof. The proof of this claim parallels the one in the Liouville case [106, Lemma 3.1].
The study is slightly more involved in the present case because of the presence of
additional GFFs in the construction of the correlation functions, but the basic idea
remains the same.

Like before we can separate the prefactor and the expectation term: since the
domains are disjoint except for 4; and B,,, with I = m, the prefactor part is bounded

by

p
o | R
=1
where C'is some positive constant.

For the expectation term the analysis is slightly more subtle, but one can simplify
the problem by noticing that when o (1) # 7(l), there is no singularity in the integral
(since the sign in the power is the opposite one). As a consequence, and without loss
of generality, we may assume o(l) = 7(l) =iforl € E; .= {ki+1,...,ki+1}. Therefore
the integrand can be bounded by some constant times

—S;

- Fi(ws)
E]] / T ——— M (dPw;)
' szZ e

i1 \/C [liep, 120 — will il gy, —

where the F; are smooth in a neighbourhood of the x;, y;. We are now to distinguish
between two cases:

+ If v < /==, then when z; and y; merge the singularity remains integrable

dl il
since in that case 2e;|*12 < 7(Q, e;) so the expectatlon still makes sense ac-

cording to [34, Lemma 4.1]. Therefore if v < 3 |2’ the fusion estimate is gov-

erned by the prefactor, which scales like [z — g |14 with —2 |e;|? > —4 > —2.

< If /-5t~ < v < V2, we claim that, for any positive ¢, it is bounded by

37\ il
2
<37|51|_ 2 )
e ¢

H |1 — il

37‘61"_ 2
2 '\/e-l

2
For v < ﬁ one checks that —2 |e;|? + (2> > —2, allowing to conclude
since v < v2 < |62‘

We now prove the last claim following [106, Lemma 3.1]. Like before, we can either
use that the exponents s; are positive or that the GFFs considered are negatively cor-
related to see that we can separate the different expectations involved. This shows
that we only have to bound quantities such as

E Mgei (dei)
il

i B |z — w1 |y — w

-3

We can suppose that the GFFs in different balls B(z;, ¢) are independent: this is a
classical manipulation of Kahane’s convexity inequality, since the covariance of dif-
ferent GFFs in different balls is uniformly bounded from below and above by a global
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constant (see the proof of [34, Lemma 4.1]). Now, if 5; > 0 we use the elementary
inequality, for positive a's and s > 0,

(; al) Ha—sﬂ"

to reduce the problem to the following estimate: for s > 0 and any ¢ > 0 there exists
a positive constant C such that

E M2 (dPw) B
d 272 272
B(va) ‘.Z'—’LU‘E ‘y_w‘s

This corresponds to the freezing estimate [83, Lemma 6.5], which yields the bound
(27e;=Q,e;)”
#_C . . _
lz—y| el for any ¢ > 0, that is exactly as claimed. If -1 < 5; < 0 we can use
concavity of the map z — z~% while for s; < —1 Young's inequality does the job.
For the second item of Lemma 4.4.3 we use the first estimate to see that all one
needs to prove is that for positive ¢ the quantity

1
d*xd’y
/A /B 1y o — ™

is finite. Since the domains are disjoint we see that it is enough to check that the

two-fold integral
/ / d2xd2y
A08.5) o = yl

’()’3

converges. This can be easily seen by using polar coordinates. O

These fusion estimates will be key in providing regularity properties for Toda correla-
tion functions. As a first application of these technical results we provide a rather useful
identity. This identity is derived from the u-dependence of the correlation functions,
usually referred to as a “KPZ-relation” [80].

Lemma 4.4.4 (KPZ identity). Under the assumptions of Theorem 4.3.1, for any
non-negative ¢ the following equality holds in a:

(Z a, — 262) =7 Z mez/ e () Veo)ad?a. (4.4.7)
Proof. It suffices to check that for all i = 1,--- ,r one has that
N
(S0 =2Qu)Ve) = iy [ (Ve c)Ve)iPa,
k=1

To start with we already know from Equation (4.2.6) that the p;-dependence of the
correlation functions is explicit:

’,:]z

Hv% 20 = 15 ] Vape (21))1-

k=1
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Differentiating with respect to u;, we end up with the equality

N N
) I o ar —2Q,wY)
R ‘/a z = — — G

N
(IT Vore (1))
k=1

We can also directly differentiate the regularized correlation functions before per-
forming the change of variable in the zero-mode leading to Equation (4.2.6). Put dif-
ferently we can use the fact that correlation functions under the assumptions of Theo-
rem 4.3.1are given by Equation (4.3.9) with F' = 1 and differentiate there with respect
to u;. We find that

N
o e
) .<V€>u = —/e 2R /V’Yeié(x)HVOékyE(zk)x
Hi a C Ee1
T ) Nj_l _ . .(eve; ei k
H e hiel74 MI%(C) _ Z ( e ]j;l]\/LE ((C)) ded?x
j=1 k=0 )

where we have used the fact that e M2 (dz) = V., . (x)d?z and set N; = Nj — 6.
Because (s + ve;,w)) = s; + vd;; we see that the remainder term is expanded to
the good order with respect to the asymptotics of the integrand as ¢ diverges. We
can therefore use Fubini-Lebesgue to exchange the integrals and integrate over the
zero-mode to get

0
Opu;

N
<V8>M = - /(j(v'yei,a(m) H Vak,g(Zk)>d2x.
k=1

We recover the desired result for positive ¢, while the ¢ — 0 limit is taken care of
thanks to the last item of Lemma 4.4.2. d

4.4.2 . Gaussian integration by parts

When computing derivatives of the correlation functions we will need to make sense
of terms that take the form

for some positive integer m and p; and for some elements oy € a. We explain in
this subsection how Gaussian integration by parts as disclosed in Equation 3.3.2 can be
implemented to make sense of such expressions. For this problem we will also need a
regularization of the complex-valued map x — = for a positive integer p defined by

setting
1 .- (—1)]3 ; pfl = Z/ 22 22/
(@) (p—l)!/(c/(c o () d

The connection with the map = — mip is made clear by the following statement.

s

(0, 0" po(21)) V)

=1

Lemma 4.4.5. Let ¢ > 0 and p be a positive integer, and recall R from the regu-
larization (3.2.14). Then for any |x| > 4Re it holds that

=66
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where F is continuous over C and depends only on the mollifier n of the e-regularization.
In particular, the family of functions (ﬁ)wo converges uniformly to = on every

compact set of C \ {0}. Similarly, the quantity
P

()2

sup
0<|z| < 4Re

remains bounded uniformly on .

Proof of Lemma 4.4.5. Firstassume thatweare given0 < e < %. If | + (21 — 22)| < |£2\
then necessarily either |z1| > R or |z2| > R, and this implies that n(z1)n(z2) vanishes
since n is compactly supported in the domain B(0, R). Therefore we can apply inte-

gration by parts and the change of variables z; <+ ¢z; to get

1 / 1 2. 2
= 1(z1)n(z2)d*z1d" 25.
(:L')IE) |x+€(21722)‘>% (l’ + 8(Zl - 22))p ( ) ( )

As a consequence

l“p_l_/ aP — (x4 e(z1 — 22))?P
($)§ \x+s(z1fzz)|>% (35 + 5(21 - ZQ))I)

n(z1)n(z2)d*z1d° 2.

lz|
4R’

< 1 on the domain where 7(z1)n(z2) does not vanish. As a consequence we

We also know that, since we have assumed that 0 < ¢ < we have the bound

E(Zl 77;2)

xT

can expand the integrand as a power series in the variable @ Since n is com-
pactly supported, the integral of this power series is absolutely convergent. There-
fore, we conclude by noticing that the first two terms in the expansion vanish in the
limit (the first one is identically zero; for the second order term we use the z; < 29
symmetry), so that we can factorize by (%)2
Now if we assume that |z| < 4Re then
xP _ / (%)P
(x)g ‘:E+€(21—Z2)‘>L§‘ (% + (Zl - Z2))p

Since |z| < 4Re, the integrand can be bounded by the quantity 377, uniformly on
e > 0. This allows to conclude our proof of Lemma 4.4.5. O

n(z1)n(z2)d*z1d 2.

4.4.2.1 A first take on Gaussian integration by parts

We first consider the case where m = 1 so that there is only one derivative of the field
inserted. The following statement explains how to apply Gaussian integration by parts
in our context in order to treat such a term:

Lemma 4.4.6. Let p be a positive integer and take u € a. Then for any positive ¢
and o € By:

<(a, PP (29)) Ve

T

GG GRS RGN o IR
o <Z ey ORI R AR CIEL )

k=1 =1
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Proof. According to Equation (4.3.10) we can write that

: F(Si>:u‘_5i al —{ag,oq)
((a, 0P®-(20)) Ve) = Hfz H |z — 21|

i=1 1<E<IKN

Q e )
[(OJ oP (X +*lng+e+za’kG9+, ) ZO Hzgza '

since when computing derivatives of the Toda field we no longer take into account
the zero mode ¢. Now in agreement with Equation (3.3.2) we can write that

E | {a, 0"X(20) HZWZ (G
i=1

— E si{a, ve; / (20, ) 22
7 (2 g_‘_7 bl
H

k=1 ]a: — 2|

Z k= 1 <O‘k77ei>

- <ak 7'Yei>

E [Mgel (d2 )Z’YEZ —s;—1 H Z’Ye]
J#i

Since s;I'(s;) = ['(s; + 1) while (s +ye;, w)) = s; + d; ;, recollecting terms we can write
that

N
<<Oéa 8p¢’s(20)>ve> = <Z<a7 ak>6§0Gg+,s(ZOa Zk) + <047 %850 1Hg+’5>(2’0)> <V€>

k=1

- Z BiY o, e / Gy, c(20,7) (Vye, o (x) V2)d2a.
Now from the explicit expression of the Green function G, from (3.2.9) we get

((, "0 (20)) V)
_CPeoDH (NS e g ae) s
N 2 <Z ( p Z'U’Z/C (ZO — x)g <V’Y€i75< )V6>d )

zZ0 — R
=1 0 k)e i—1

+ 817 Ing (20 < (Z Qp — 2@) Zﬂz'yez/ Vieie(x )Vs>d2$> .

Like before the above integrals are indeed well-defined thanks to item (5) of Lemma 4.4.2.
Now we can use the KPZ identity (4.4.4) to see that the metric-dependent term —the
last line— equals zero. O

4.4.2.2 The general form of Gaussian integration by parts

In the sequel we will need to extend the previous statement to products of derivatives of
the field, that is to say make sense of expressions of the form ([[;", (u;, "' ®.(z)) V)
for some u; € a. However we see that as soon as m > 1, there will be diverging
terms as ¢ — 0 in the above expression due to the divergence of the Green function on
the diagonal. To remedy this issue we need to interpret the product as Wick products
L2, (w, 0P ®. (%)) :. These are usually defined recursively via the assumptions that

0
0X,;

Xan = Xl"'Xz'—lXi—l—l"'Xn: and E[ Xl"'XN 5] :0
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For instance we have here that
XY = XY-E[X]E[Y] and :XYZ:=XYZ-XE[YZ]-YE[XZ]-ZE[XY].
Our goal is then to understand expressions of the form ([,", (u;, "' ®.(z)) V)

For this purpose we can apply recursively the reasoning of the proof Proposition 4.4.6
above, which yields the following formula:

’,:]3

2
(—=1)Pn (pm — 1)! < (ur, 0" @ (20)) ng>

~

1
-1

pm 51 ) apl . VE>

=1

r—1
moy 6
i [ TL 6070 Vi) Vo
=1

um7 ak

[
Mz

(z0 — 2k)e

k=1

Z—.ZU

(2

(4.4.8)
valid for py,--- , p, positive integers.

4.4.3 . Derivatives of the correlation functions

To conclude for this chapter on basic properties of the probabilistic correlation func-
tions, we provide a study of the regularity of Toda correlation functions. Our goal is to
show that, viewed as functions of their insertion points z, they are C?:

Proposition 4.4.7. Take z,,--- ,zy € C distinct and assume that the weights
a = (ag, - ,ay) belong to By, Then zy — ([Tie, Va,(2x)) is C? on the set
C\{z1, - ,2n}

Proof. In the following, we only consider the 2 derivative; the calculation for the 2
derivative is exactly the same. To start with note that (V. g, <(20) V) is differentiable
with respect to zy, with derivative given by ((ag, 0®(2)) szo Va, (z1)) so that we can
apply the results of Lemma 4.4.6.

First of all, from the results of Lemma 4.4.2 and following the proof of Lemma 4.4.6,
we know that (V4 -(z0) V) is differentiable with respect to z,, with derivative

N
1 (ap, {ag, €;)
-5 B () +Z [V, @)V o) Vo),

Z —Z
=1 \*0 k:

From the asymptotics at infinity in Lemma 4.4.2, the only issue when taking the ¢ — 0
limit comes from the behaviour of the integral term near the singularity Zo%x.To ad-
dress this issue, we fix p > 0 small enough (so that |z, — z9| > pforany 1 < k£ < N)and
we split the integral between the domains B(z, p) and its complementary B(zg, p)¢,
over which the integral does indeed converge for ¢ = 0. For the integral over B =
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B(z0, p) we proceed by integration by parts’. Indeed we can use the fact that

; N A, €4
az<V'yei,s(x)Va0,s(ZO)Vs> = < ’7<a0’€l> +Z 7< ik > ) <V’ye¢,€(x)Va0,E(zo)V5>

1
r 2

Y <e'7€i>
_ZUJ'/ 2( ,J a<Vve¢,8(SU)V“/evz,a(x)vao,s(ZO)VEMQx/

=1 7C

to rewrite the integral over B under the form

Zﬂz

2e;, e5)
- Z /%,U/]/ / =T1 — I vel, (931)V'yej,a(xQ)Va0,6(20>ve>d2x1d2x2~

—x
i,j=1 2

7{ ’yel,e(f)vao, (ZO) \/7d£ Z 'Y ak,ez 'yez,s(x)vao,s(zo)vs>d2m

Bk:l

The first two terms remain bounded in the ¢ — 0 limit, while by symmetry between
the x; and z, variables, we can rewrite the last term as

2 €;, €5
Z NZIUJJ/ / 33‘< j V’yei,s(ftl)V'yej,s($2)Va0,6(20)ve>d2x1d2x2

— X
ij=1 1 2

,7 2 2
+ FY i i Ve e Ve, Vo Vod*zid*zs.
/32 2(z1 — x2)e *]zzlﬂ pileis i) (Vaere(21)Vae; e (€2)Vao e (20) Ve) d 1 d

Now the last line is identically zero by symmetry between the x;, x5 variables, so that
for the C*! regularity it remains to show that when ¢ — 0, the quantity

v (ei, e
Nzﬂj// 2 .CC j>) <V’Y€i,6(ml)V"/ej76(x2>Va0,6(ZO)VE>d2xld2x2
ij=1 zo,r C €

converges. The only singular terms that may occur in the integrand correspond to the
case where |x; — 25| tends to zero. This in turn implies that |21 — 29|, |z2 — 20| tend to
r, and therefore that both z; and x4 are close to 9B(zp,r). From Lemma 4.4.3 we
know that the integral is uniformly convergent in £ and thus the e — 0 limit is well
defined. This shows that the correlation functions are C*.

To prove that the correlation functions are C?, we can proceed in the same way.
Having proved that the correlation functions were C!, the only terms that can po-
tentially diverge when differentiating the expression just obtained correspond to the
integrals over the domains B and B x C. The derivative of the first of these integrals
is given by

- X {onve) (s (oo, @) (o, vei)
A Ak, V€ @0, & @0, 7€ T z 2
S [ 3o (3 e 0020 ) ot (V.

20 — 2k)e

Oék,%’z 040,’Y€j> 2 2
— E ; E Ve Ve, V, V. z1d zo.
= 1:“ Hj / Bxc 202 — 71)s 2(70 — $2)8< ese(T1)V ],5(302) 0.c(20)Ve)dw1d xy

'That is, we apply Stokes’ formula ¢, , f(£)g(¢) \/‘:1‘15 =[5 0o f(2)9(2) + Op9(2) f (x)d?x.
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This quantity is uniformly bounded in . To see why, we can again use integration by
parts to see that we need to control the terms

Zm 3 etV Y

z— 2
oB = 2(zk

N N '
- ZMZ/ 2 j:’vel )e (Z 2(<a0’al> + 2<(C;l7—72§5 + 2(x _1 zk)s> <nyei’£(m)Vaovf(Z'O)Va>d2x

20 — %
B =1 0 k)s
N
=S [ [ 3 i
1]
Py BJpe f=1 2(zk — 71):

< lao, vej) - _{veivej)

2(2’0 —352)5 ( —xg)

) (Vyer (1) Vi, o (@2)Vag c (20) Vo) Parr

S 3G

3,j=1

(@0,7e5) (vei, vej) 2 . 2
v@' e; Va V d d .
<2(Zo e + 3 — 1) (Vaese(@1)Vye; e (22) Vag e (20) Ve )d w1 d o

All integrals except for the last one remain bounded as £ — 0 thanks to Lemmas 4.4.2
and 4.4.3. To treat it we use again integration by parts to get, up to regular terms,

(o, yeq) g, Ve
- Z :UZ/LJ/ Z b < s J> <Vwe¢,€(*731)nyej,z—:($2)Va0,s(20)vs>d2xld2$2

ij=1 k=1 2(zk — 21)e 2(2k — 2)e

Oékﬂez ’Y€j>7€z>
+ Z ,UJzMJMZ/ /Z ~Hes 1)

—x
1,5,0=1 “k 1

<nyei,€ (xl)V76j7g (:,UQ)VP}/el7E (xg)vamg(Zo)V€>d2.’L‘1d2:C2d2x3.

Using the symmetries in the x5, z3 variables, the last integral vanishes on A43. This
means that this term remains bounded when ¢ — 0 by using Lemma 4.4.3.

To finish up with the proof that the correlation functions are C? it remains to take
care of the derivative of the term

ez,e
- E Ml:u'j// -%'1—1'2 <nyei,5(wl)V«/ej75(Z'Q)Vao,g(Zo)V5>d2$1d21’2.
i,j=1 ‘

We proceed in the same way by using integration by parts to get rid of the terms
containing singularities of the form ﬁ We may follow the same lines as in the
previous computation, apart from the fact that the new integration domains we will
consider either contain or don't the previous integration variables. We won't write
down the details here since they are quite lengthy and not informative, nonetheless
we see that in the end it is enough to show that the integrals (here n is some positive
number)
3

Ly, - x2\>n H 2. 2 59
Ve g Va £ VE d d d
/32/c (21 — x3) (22 —x3)<k:1 rene (T8 Voo e(20) Vel rd e s

an

]l|ac1 x2\>n]l\:c3 $4|>n ! 2 2 2 2
| | z)V 20)Vea)d*x1d“xod z3d”x
/Bz/ )2 (1 — x3) (e — x4) Vyew e (@) Vo e (20)Ve) dard wod wd s
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are absolutely convergent, which follows from Lemma 4.4.3. Therefore the 88—; deriva-
0

tive of the correlation functions are well-defined. Treating the mixed derivatives
2 . . o

8237 leads to the same conclusion. Hence existence of both the 8—22 and =22 deriva-
0020 820 02z00Zo

tives: this implies that the correlation functions are C2. O
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Part Il

Etude des symétries des théories
conformes des champs de Toda
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5 - Symétrie W et identités de Ward

Les théories de Toda, de par leur définition basée sur une structure d'algébre de
Lie, possédent certaines symétries qui imposent ainsi des contraintes au modéle qu'elles
définissent. Ces symétries sont couramment appelées symétries W ou symétries de spin
supérieur, et sont en quelque sorte codées par des objets algébriques nommés W-algéebres.
L'existence de ces symétries montre une certaine forme de rigidité des théories de Toda
et nous permet de ce fait de comprendre les propriétés de cette famille de modéles.

En effet il est admis dans la littérature physique que ces symétries ont pour con-
séquence premiére |'existence de certaines contraintes portant sur les fonctions de cor-
rélation des théories de Toda : ce sont les identités de Ward. L'objet de ce chapitre est
de démontrer que ces identités sont valables pour la théorie de Toda associée a g = sl3
dans le cadre du modéle rigoureusement défini au long de la partie |. Prouver que ces
identités restent valides pour le modéle probabiliste est une indication supplémentaire
que |'objet probabiliste considéré fournit en effet une définition rigoureuse des objets
étudiés dans la physique.

Ce chapitre se base en majeure partie sur 'article [33] rédigé en collaboration avec
Yichao Huang.
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5.1 . Local Ward identities in the sl; Toda theory

Now that the correlation functions have been properly introduced and that we know
some of their basic properties we can study some of their more advanced features in
relation with the symmetries enjoyed by Toda theories. We derive in this section the
local Ward identities associated to the sl3 Toda theory:

N N wla (z)1 (z) N
W) [T Vau (o) = ( o) 4 T ) ) (LT Ve
k=1 =1

—\(0—2) (20— 2)?

which as explained in the introduction contain a lot of information related to the WW/-
symmetry enjoyed by this model. We will first describe within our probabilistic setting
how the different terms that appear in the Ward identities can be rigorously defined and
then prove the statement stated as such.

5.1.1 . W-descendants and the local Ward identities

As an introductory subsection we describe here how to make sense of the quantities
involved in the local Ward identities based on our probabilistic framework.

5.1.1.1 Definition of the holomorphic currents

As explained in the introduction Toda theories contain in addition to the stress-energy
tensor T a family of higher-spin currents (W(i)> In the cases where g = sl,,
3<i<rtl

for some n > 2, these currents are usually defined via the Miura transformation’

r+1

11( O+ ( hl,(?(I)) ZW(’" ’)( ) (5.1.1)

1=

where the (h;)1 < <41 are the fundamental weights in the first fundamental represen-
tation m of g, ¢ .= v+ % and like before 0 is a holomorphic derivative.

In the sequel, we focus on the study of the g = sl; Toda theory. There will be
one additional holomorphic current of spin three W := W®) a priori defined via Equa-
tion (5.1.1):

2
qzml, a3c1>>+g ((ha, 02®) (hy + hy, OB) + (hy, D) (hy, D))+ (hy, D) (hs, OD) (s, OD).

As suggested in the physics literature [25, 54, 52], in order to recover the standard com-
mutation relations of the W3-algebra and obtain an elegant expression for the quantum
number associated to the spin-three tensor w(a)), we may choose to shift this current by
an additional factor —Z0T and rescale it. Explicitly, we redefine the spin-three current
by setting

W (2)[®] =¢*(hy, 9*®(2)) — 2q ((ha — hy, 02D (2)) (hy, 0D(2)) + (h — hy, 0?D(2)) (hs, OD(2)))
— 8(h1,09(2))(ha2, 0D(2))(hs, 0D(2))
(5.1.2)

"The interested reader may find details on the role of this transformation in the construc-
tion of two-dimensional CFTs having higher-spin symmetry for instance in [53], where the
Miura transformation is used to construct representations of W-algebras.

132



with the h; being defined in Equation (3.1.10). Similarly the stress-energy tensor will be
defined via the expression

T(2)[®] = (Q, 0"®(2)) — (00(2), 0%(2)). (5.1.3)

Like before a regularization procedure is needed to make sense of the above since the
Toda field ® is not regular. Moreover and as explain below the statement of Lemma 4.4.6,
products of the field must be understood as Wick products to ensure that a limit of the
regularized quantities exist. This motivates the introduction of the following regulariza-
tion of the holomorphic currents T and W:

T.(2)[®] = (Q, 0*P.(2))— : (0D.(2),0P.(2)) : (5.1.4)
where like before : XY := XY — E[XY], while

W (2)[®] = ¢*(h2, 0*®.(2))
—2q (: (hy — hy, 0°®.)(2) (b1, 0P(2)) : + : (hg — ho, O*®.(2))(h3, 0D.(2)) :)
— 8 : (hy,0P.(2))(hg, 0D.(2))(h3, 0P.(2)) :
(5.1.5)

with : XYZ .= XYZ - XE[YZ] - YE[X Z] — ZE[XY].

In addition to this regularization of the currents we will regularize the integral over
C in order to avoid the singularities that will arise at z;. To do so we introduce the
notation C; := C\ B.-¢(z0) and consider the regularization of the correlation functions
defined by setting

<F<(I)s> H Vak,€<zk)>t = (H M) H |Zk _ Zl‘;@kﬂl)

, Y
k=1 i=1 1<k<I<N
0 N ) (5.1.6)
E|F (X + g+ ;_1 ang+,s(-,zk)> -I_! 2 (C)7

Then one easily checks that the statement of Lemma 4.4.6 remains true by replacing C
with C;, and therefore the reasoning leading to the proof of Proposition 4.4.7 too.

We will see that we can make sense of the right-hand side in the local Ward identities
by showing that:

Lemma 5.1.1. As soon as o € By the following limits exist and are well-defined:

—1=

<T(ZO)HVak<Zk)> = lim lim(T.(2o)

t——+o00 e—0
1 k

Vore(2))e

i

(5.1.7)

=
=B

(W (20) | | Vap(21)) = lim lm(W_(z)

t——+o00 e—0

Vone(20))1

B
Il

1

B
Il

1

where the regularized quantities are defined using Equation (4.3.10).
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5.1.1.2 Definition of the 1-descendants

We now turn to the right-hand side of the local Ward identities and define the W-
descendants associated to Toda Vertex Operators. To the best of our knowledge, explicit
expressions for W _;V,(z) remain unknown in the physics literature and should look like
“derivatives in an extra direction” of the Vertex operator (cf. [135, Subsection 8.2]),
Nevertheless, these can be considered as the building blocks for solving the sl; Toda
theories since the T and W descendent states are assumed to span the space of states
of Toda theories viewed as meromorphic CFTs (see e.g. [26, Subsection 3.1]) so providing
an explicit expression for them is key in this direction.
For this purpose let us introduce the notations

B(U, U) = <h2 — hl, 'LL> <h1, U> + <h3 — hg,U) <h3, U> and (518)

O, 0, 0) = (P, ) (i v g, ) + (o, 0) (i ) (g, ) + (o, ) ) (i ),
(5.1.9)
We then define T/-descendants of the Vertex Operators by setting for j = 1,2

W_iVa(2)[®] = W_;(z,0)Va(2)[®]  with

W_i(z,a)[®] = —¢B(a,09(z)) — 2C(a, o, 0D (

W_z(z,0)[®] := ¢ (B(0°®(2), @) — B(a, 0*®(2))
—20(a, @, *®(2)) + 4C (ar, 0B(2), 0P(2)).

Z))) (5.1.10)

Their regularized counterparts are defined via

W_1.(z,a)[®] = —¢B(a,00.(2)) — 2C (v, v, 0D (2)),

(
W _s.(2,a)[®] = ( (0°®.(2), a) — B(a,0?®.(2))) (5.1.11)
—2C(a, 0, ?®.(2)) + 4 : O, 0D.(2), 0P.(2)) : .

The quantum number associated to the higher spin current, formally corresponding to
WV, is defined by:

w(a) = (a—Q,h){a— Q,ha){a— Q, hs). (5.1.12)

The right-hand side in the local Ward identities is then defined via the following
statement:

Lemma 5.1.2. As soon as a € By the following limit exists and is well-defined for
j=1,2andany1 <1< N:
N

W(—I)J<H Vak (Zk)> - hm<W—J svaz e\%l H Vak € Zk (5.1.13)

e—0
k=1 k#l

where the regularized quantities are defined using Equation (4.3.10).

Note that we can also incorporate the regularization in ¢ in the above without causing
any issue since the regularization is made around z; which does not appear in the
expressions considered.

134



5.1.1.3 Statement of the local Ward identities

Having defined the quantities that appear in the local Ward identities we are now in
position to state them:

Theorem 5.1.3. Assume that g = sl3. Under the assumptions of Theorem 4.3.1
the spin-three Ward identity holds true:

a N @) ) N
() WI w,
gVak Zk’ ; ( ZO _ zl (ZO — ZZ)Q + P > <H Vak(Zk)>
(5.1.14)
The quantities that appear in Equation (5.1.14) have been defined in Lemmas 5.1.1

and 5.1.2 above. A similar statement holds for the stress-energy tensor under the
form

(o) [ Vou () = 3 <( Aq, — z,> H Vo (20)) (5.1.15)
k=1

= \(z0— =)

5.1.2 . Computation of the Ward identity for the stress-
energy tensor and strategy of proof

To start with note that since the dependence in the cosmological constant is explicit
we can assume that p1 = ps = 1. Then in order to prove these identities, we work with
the regularized version of the correlation functions. Then:

* We can use integration by parts from Lemma 4.4.6 to rewrite explicitly the left-
hand side (W_.(z9)V.) in terms of multiple integrals in the x variable containing
singularities of the form z +— W We proceed in the same way with the right-
hand side in the Ward identity, which will also yield multiple integrals containing

singularities of the form z m

* We transform the right-hand side so that the only singularities appearing within in-

1 . . - 1 o 1 1
tegrals are of the form e Using identities such as ( =

1

z0—zk)(x—2k) 20—z \ T—2
(that we ca|| “symmetrization”identities) we rewrite terms containing expressions of
the form ﬁ as derivatives of the correlation functions. We then use integration
by parts to transform them into the desired form.

* We take the ¢ — 0 limit of the expression obtained. Since singularities are present
only for x = z, thanks to our regularization in ¢ of the integrals this limit does
not cause any real problem.

* We then take the ¢t — +o0 limit of the remaining terms. As we will see the limit
is given by zero, showing that the difference between the left and right-hand side
in Equations (5.1.15) and (5.1.14) vanishes.
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5.1.2.1 Computation of the spin-two Ward identity

As a warm-up, let us discuss in detail the proof of the Ward identity for the stress-energy
tensor T. We can rewrite the regularized expression for T' from Equation (5.1.4) under
the form

2

(Te(20) Vo) = ((Q, 0°@c(20)) Vo) = D (: (e 0% (20)) (W), 092 (20)) = Ve

i=1

We can then apply Lemma 4.4.6 on the first term and Equation (4.4.8) for the second
one to rewrite the right-hand side under the form

% - (Sf_a;z Z/C 2(zp — )2 Vieie(2)V Vo2
_ N 2 <6i, ng)(w Oéz>
1;1 22—1: 4(z0 — 2z1)e(20 — 21) V.)
2 N (o, ves) (vei, vei) ) )
+ ; /(;t (k— 2(20 — 2k)<(20 — @)e + 4(z0 — x)c (20 — SU)E) (Ve e (2)Ve)ed

7€Z7’Y€J> 2. 72
B Z /(Cz 4(20 — 1)e(20 — :cz)e<VW’E(ml)mej’g(zz)vghd e

3,7=1

Using the fact that in the last double integral the variables z; and x5 are symmetric we
can rewrite the last line under the form

(e, vej)
_ Z /(C2 1), xz e (Viere(21) Vae, e (@2) Ve )y dP a1 s + RL, where

i,7=1

€, YE;
Z/ 7 /y J we, (xl)vfyej,a(x2)Vs>td2x1d2x2
(c2

i,j=1

<(Zo - Il)el(iffl — 7). (20— 1’2)51(171 — 7). (20— $1)al(2’0 - $2)a) .

We now turn to the other side of the expression. Along the same lines as in the proof
of Proposition 4.4.7 we end up with

3 Bo Oa, — - By 1 (o, a)
= ((ZO UM Z'f>) Yo (g o P 28 o zoa) e
- . (o, veq) 9
! ’LZI /(Ct ; 2<ZO - zk)(zk - l’)s <Vvei7€(x)vs>td r

Here the symmetrization step is rather straightforward. For the terms that do not involve

136



integrals:

e in e ()

Zk —Zz)s 20 — 2k 20 — 21

kAl oy
! Ok, 1 a, (g 2k — 2
i SV EEAL 2T St (E )
We then transform the terms that contain one integral as
- al (o, ves)
Z /(Ct ; 2(zo — z;; z; — ). (Vieye(@)Vehid'a
2 N ozk7 76 ) {aug, e .
_Z/ct ; <2 (20 — 2) (21 — @) + 2(z0 — ) (20 — Zk)) (Vyese(2) Vo) dPx

2

* Z/ iv: . ((Zk — - 1) (Vo c(2) V) dx.

Ctk12z0—$ (20 — zr) \ (2 — @)

Hence combining our expressions yields

<T€(z0)va>t_2(( Bay + Oa, ))(V€>t:

p—1 \\%0 ) (20— 2

Iy ! (@ (223 1) - St (B2 1) v

—1 (20 — 21)? (20 — 21)2 20 — 2k)e(20 — 21)e
1 (o, ) (z0 — 2zx) (20 — 21) m—a
4 4= (20 = 2)(20 — 21) \ (20 — 2)(20 — 21)e A 1) Vel

(20 — )e(20 — @)

N i/ct ZOV_:,; 2 (g} & éoxz<j:)’ . ( S 1)) (Viewe(@)Ve)d’a

(2 — ).

_ Z/Ct ( 04167/7€> _ 1 > <V76i75<x)ve>td2x

2(z0 —x)(zk —x)e (20 — )2

_ Z /2 /yeza’76]> <V'yei,5('Tl)vfyej,s(xQ)V5>td2x1d2x2 _i_%i
C

Z—fL' I—[E
i,j=1 0 1 1 2)5

Now for = & {zp, - , 2N}, Op(Vie, () V) is given by

_% Z <04k7 ’Y€i> <v’yei,€<x)vf>t + Z/ M<V'yei7€(x)v’yej7€<x2)vs>td2x2.

Ct 2(1] - x?)s



This shows that

where the remainder term is given by

3 s [ (22 1) - Lawa (22 1) v

—1 (20 — 2 (20 — 21)2 2o — 2k)e(20 — 2k)e

—iz< (o, ) ((ZO—Zk)(Zo—Zz)_1+M_1)<Vs>t

ol 0T z1) (20 — 1) \ (20 — 2r)e(20 — 21)e (zk — 21)e

—iéA;QQ—x <1_Lm(%_$y )(%%A@Vaﬂ%

—)e(20 = @)e

‘Z/c oo P (i RFE e (s ‘l>> Ve Velid'o

1

R, =

N —

2

N
Oék,7€i> 20— ) .
B == Viee(x)Ve)id R_.
Z/(C 220_37 Zk‘_x)s( (Zo—$)5)<’y“ ((13) >t T +h,

t k=1

The ¢ — 0 limit of this remainder term is equal to zero via Lemma 4.4.5. Using Green's
formula allows to infer that

N

(ﬂ%W%—E:Q%%2V+@ﬁ%k) t_§:£3dm2wﬂ#m¢@vmm

k=1

By continuity of the correlation functions as © — 2, we see that the latter integral is
asymptotically equivalent to

2

S (Vi (20)V) f L o

i1 9B, _¢(20) (20 — )

Therefore we can conclude that

tgl-;-nooll—r% <<Ts<z0)vs>t - Z ((ZOA_aZk>2 + (Zoaikzk>> <V€>t> = 0.

k=1

Since the correlation functions are differentiable in 2z, and all zk, according to Proposi-

tion 4.4.7, we already know that the t — 400, — 0 limit of Z ( Doy (zazk ) (Ve

(20— Zk) 0—2k)

exists. This entails the existence of thin hn%(T (z0)Ve)r, thus proving Lemma 5.1.1
—4o00e—

for the stress-energy tensor. This also shows that the spin-two Ward identity as stated
in Theorem 5.1.3 holds true.
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5.1.3 . Computation of the spin-three Ward identity

We proceed in a similar way for the spin-three Ward identity, the main difference
being that the algebraic computations need to be done are a bit more involved. We start
by considering the regularized version of the probabilistic objects

<W5<Zo)vg>t = q2<<h2, 83<I>€(z0))V5>t — 2q< <h2 — hl, a2q)5(20)> <h1, (9@5(20)} : V5>t
—2q(: (hy—ha, PD.(20)) (ha, 0. (20)) : V.)i—8(: (ha, 0D (20) (ha, 0D (2)) (hs, dD.(20)) : Vo).

Applying Lemma 4.4.6 and more generally Equation (4.4.8) we see that this quantity is
given by

(W) Vo) = ¢?Li + JL + L,
where the (I;);=1 2,3 correspond to the (rather lengthy) expressions:

N

h (ha, ve;
L =— {hzcn) t+2/ Aha yes) Vie, o (2) Vo) id?z,

k1(20_zk (20 — )2

N

I = Z ( e (Vo)

= (20— 2)2(20 — 21)e

_ N B(ay, ve;) B(ves, o) B(yes, ve:) ) .
Z/C (Z (20 — 2k)%(20 — ). + S — + (oo — 22020 — 7). ) (Vie, e () Vo) ed

+ Z / /}/6“'}/6]) <V'yei,s(Il)v“/ejza('T2)V€>td2xld2x2 and

Zo —951 Zo —$2)

13: Z ( <h17ak><h2>al><h37ap> <V5>t

20 — Zk)z—:(ZO - Zl)s<20 - Zp)s

k,l,p=1

N Clag, aq, ve;) N &k Yei, Ye;)

) ) 7 ) (%) V@- V d2
Z( 20— T)e +kz:: (20 — 2k)e >(7178(x) Sl

B ; /Ct (kl (20 — 2k)e(20 — 21)e( - 20— )e(20 — 7)<

N
Oé, €, Y€ C €i, V€i, YE;
+Z/ Z kY 7]) + (ves, ’YJ)
i1 c2 - ZO_Zk Zo—$1)5(20—$2)e (20—$1)5(20—$1)5(20—$2)a

<‘/’Y€z (xl)V'yej,s<x2)vg>td2l’1d2$2

’Yew vej,ver) 2, 2. 72
— E Vie, e Vie. e Vie, e Vo) dox d xqod xs.
ot 1/03 3(20 — z1)e(20 — 22)c(20 —9:3)5< e (T1)Vaey e (2)Vaey el@a) Ve)od s d

We proceed in the same way with the right-hand side in (5.1.14). Then we can write
that W (V.), = J*) where this notation stands for

qB(ag, ap) + 2C (o, o,
£1): Z NN (o, o l)<Vs>t

l;ék (Zk - Zz)e

_b gB( O"wﬁyez + 2C (g, ag, vei)
Z/ (2 — 2)e (Vieoe(2) Ve)idPa.
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Likewise we can write that W(fQ) (Vo) = J(fg with

q (B(ay, o) — B(ag, aq)) + 2C (o, a — g, o)
Z (Z — 2 )2 <V€>t
l;élc k— 21)Z
Clou, ag, ay)
T (Ve)
k,l,p;stinct (Zk - Zl)g(zk - ZP)5 '
2
_ Z/ q (B(vei, ar) — Blag,ve;)) + 2C (ag, vei — ag, vei) (Voo (2)V. )il
1 Cy 2<Zk — I)g B
CU Oélmala’yei) 2
- Ve (2)Vo)dx
> [ (2 e Yo ev,
almf}/eza’ye]) 2 2
i€ €;.E Vg d d
- Z / Zk; — ZE1 Zk — $2)5<Vve“ (Il)VV vE <x2) >t 14 T2

i,j=1

and C7(ag, oy, €;) = Cay, oy, ;) + Cla, i, ).

5.1.3.1 First step: symmetrizing

We now turn to the first step of the proof which consists in using symmetrization
identities so that in the expression of the terms J(_]‘Cl)’2 the only singularities that will
occur will do so around the distinguished point zy. To illustrate this, let us consider the
first term J(_kl) Using the “symmetrization identity”

1 1 1 1

C—Pw-2) G-9G-2) G-pe-2¢ (G-2y—1)

. J%)
we can write that 1k)2 is given by

Z qB(ag, aq) + QC(ak,&k,aZ) Z qB(ag, oq) + 2C(ag, ax, o) V)
= 2(z0 — 21)2(20 — 21) o 2(z0 — 2z1) (2 — 21) (2K — 21)e =/t
B Z qB g, al) =+ QC(Oék, A, Oél) <V€>t

1k (ZO - Zl)(zk‘ - Zl)(zk — Zl)

2

_ / (qB(Oékﬁei) + 2C (o, ak, vei) | qB(ow, vei) + 20 (u, akﬁei)) (
Cy

2(z0 — 2k)2(20 — 7) 2(z0 — 21) (20 — x)? v

Vei,s(z)V€>td2$

qB(ag, ve;) + 2C(ag, ag, ve;) 2
- Voo () V. )ydPn + 97
Z/C pre) 2 20 a0y Ve 9

with

1'_ZqBOzk, 2 QC(ak,ak,al)<< 11 )<Vs>t

14k - Zk)2 2k — Zl)s 2L — 21

2
Z/ qB Oék,’Yez) + 2C (g, vk, ve4) ( 1 i 1 ) ((’Z’“ -r 1) (Ve c(2) Vo) dPa.
=1

2(z0 — 2k) (20 — 7) 20— T 20— 2k 2 — X)e
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Let us now turn to J(fQ): its study is more involved but nonetheless the very same
method still works.

In order to keep things simple we explain how to treat the term
involving a two-fold integral. The symmetrization method yields

akaelaej) 2 2
V€'6 Ve-g VE d d =
20— 2k ; Z /(Ct (25 — 21): ( vei, (z1) vej, (22)V )1 d z1d" 25

(2K — 22)e

Clo, €, €5) s
VB'E Ve~g VE d d
Z /c (20 — 2x) (20 — T1)e(20 — xz)s< e (@0)Vae e (22) Vo) mrd s

1]1

(l/k;,el,e )+O(O[k7€ 762) €
+ Z / o / D (Vi o (21) Vi, o (0) Vo) pd2a  dPg + 9,

i1 - $1 xl - !152)5(27@ - $1)s

where 3¢, is defined by

akaezae]> (I1—I2 ) 2 2
— 1| (Ve (1) Ve, c(x0)V )i d°x1d”
Hzlfc (20 — 2)(20 — 1) (20 — x2) \ (1 — X2)- Vrese(@1)Vaeje(22) Vepdard'a,
ak,ez,ej 1
_|_
Z/ (20 — 21) ((Zk—$1)

ij=1 s(Zk _-T2>5

(2 —1x2) ((zk _1x1) e —1$2)5>) (Viewe (@1)Vae, e (w2) Vo) dPw1dy

aiﬁez,ej) + C(ag, e;, €;) L
Ve-a Ve-a Va d d )
+ ijl/ ZO - Zk ZO — [1;‘1>($1 — x2)5< vei, (371) vej, (ZL‘Q) >t r1d° 2

Similarly it will be convenient in the sequel to note that, using the symmetries between
the integration variables and since the quantities C'(e;, e;, ) are explicit for i, 7, f €
{1,2}, elementary but lengthy algebraic computations allow to write

Clei €5, ¢f) 2 2, 12
rszf:l/(C % — 1) (% —Jiz)(zo —3) <Vyei,€(xl)Vyej,e(aj2>V’yeJc,€(x3)V€>td T1d”wad w3

h?; 62> e
o Z/(C (z0 — 21) (21 — 22) (1 — 23)e Vrewe (@00)Vaere (22) Vaeye (@) Vehid ord’aad’s + R,

where R° 5 is similar to R%,. Collecting all the terms and using the identity based on

the explicit expression for B and C'

1
0 (Blres an) = Blaw, 160) 42w, 160-ax,76) = s, chan-i(on) (14 o060
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(where w;3_;(ay) is a shorthand for (ws_;, a)) we can write that

N (3)(Oé ) J(k) J(k)
DIEE A A Y = —2 | _
@+ Gl + 1 > ( R T

20 — % 20 — %
o 0= k) 0~ %k

2

+Z/ M<V7€i,6(x>vg>td2m

i=1 YC (ZO - x)g

2
B €, X +2C Ak, YEi, VE;
+Z/ Zq ’Y k) ( ks V€is Y )<Vyei,a(z)va>td2w

C 2(z0 — x)?(2 — 2)-

(ha, €;) wg (o) [ 1+ 3{ag, ve;) oy, ve;) )
2 Z/ Z Zo - &3 Zk - x) ( (Zk - x)e - Z (Zl - x)s ) <V7€i75(2)vs>td v

Ct =1

B(vye;, ve;) + 2C(vei, vein €,
+Z/ q (7 7]) (’Y VCisy ]><Vyei,a(xl)v'yej,a(xQ)V€>td2x1d2x2

Cy2 2(20 - $1)2($1 - 1172)5

<h‘2776i> ) )
-9 » . ]
Z/ 2 (Zo — xl)(xl - 1’2)2 <V’V€“ (xl)VW s ($2)V >td r1d° Ty

Oo(aka YEi, 7€j>
1 (20 — 1) (21 — @2)e (21 — 21)c

<V'yei,8 (xl)‘/”/ej,s (xQ)Vs>td2x1d2x2

3
7> (ha, €;) 2. 2. 72
€, €\ €, Vs d d d
o /t (ZO _ $1)($1 — x?)g(xQ _ x?))e <V’7 i (I1>V’Y is ('TQ)V’Y 51 (ZE3) >t T16 T2 T3

+ R°

where 2R° is a combination of the k%, 1 < i < 3. At first we are concerned with the
e — 0 limit of this remainder. There are two terms for which it is not obvious that they
converge to zero (here F' is some bounded function):

/ct (:vF—(Z)E ((; - ZZ:)E - 1) (Viee(@)Ve)ed®z,  and

(o, €5, €5)
Z/ : ] <V’Y€i,€(xl)V'yej,s<x2)vs>td2x1d2x2
C2 Zo - Zk

3,0=1

((Z’k - ﬂfl)sl(zk — T2)e - (1 —1372)5 ((Zk —156’1)5 - (2k —1372)s>> .

However making the change of variables x <+ 4 Rex (where recall R from the regulariza-
tion scheme (3.2.14)) and using the same reasoning as in the proof of Lemma 4.4.5 we

see that actually such quantities will vanish in the ¢ — 0 limit. Therefore liII(l) R =0
e—

so we may no longer consider it in subsequent computations.

5.1.3.2 Second step: integrating by parts

We are now in position to address the second step of our proof, that is to use integration
by parts in order to remove the singular terms that occur away from z,. Indeed we can
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notice that

1 B 1+ %<Ozk,’y€i> %<Oél:7€i> N
8;» ((Zx — x)a <VY6i7E(x)VE>t) = ( (Zk; ——ZL‘)2 + Z (Zk — x)a(zl — LL‘)E> <‘/7€i,8( )V5>t

14k

’yez, V€ >
’ Z/ Zk - SL’ xj_ x2)€ <V’yei’€(z)v’yej’s(x2>vs>td2$2.

This implies, using integration by parts (thanks to Lemma 4.4.2 this is indeed possible),
that

(ho, ei)ws—i(aw) 1+ 5{an, ves) o, ver) ,
22/ Z Zo — $)(2k — :C) < + Z ) <V:Y6¢,€($)Va>td x

Ct k=1 (Zk - x)s 12k (Zl — .Z’)E
h2> €i>w37i(&k>

”Zﬁ[ 2 o - ) o
o 22/ Z z()hieqj - ;_Oél;)) <V’Y€i:€($)vs>td2x

Ctk1

N

<V’Y€i78 ()Ve)edz

(ha, ;) {(vei, ve ) ws_i(a
S [ ety )V o) Vo
C?

ij=1"Ct" k=1 O_xl (zk_xl)s(xl_x2)g

Since B(e;, ag) + 2C (g, €, €;) = 2(ha, e;)wi(ay) + (ha, €;)ws—i(ar) = (ha, €;){e;, ag),
we can use again integration by parts to get that

B 2
> 2q o) + 20016y s
C

2(z0 — x)%(2 — T)e

t k=1
(ha, €3) w3 i) 1+%<04k,7€z‘> %(%76@'} 2
i / - N Veiz-: x)Vo)dx
Z ¢, = (20 — ) (2k — )e (z — 2)- #Zk(zl_l')s (Viewe(@)Ve)e

is actually equal to

h €; q N 2<Oé W, >
E 2% kyW3—i B
—|— _ 7 - 7 ‘/ o & R d
/;3 (20) ZO — X (zo—gj Z (Zk _'T)s > < Yei, (l’)\/ >t X

k=1

2q(ha, €;)
N Z/c (20 —21: Viewe(@)Veid'

N
h2761 761776]> O[k,u}3 z 2 2
- Ve, Vohdox d zs.
Z /@ 20 — 21)(T1 — 22). \ 2(20 — 21) + Z Viewe(#1)Vye; (@) Vehid“mad s

-
,j=1 k:1 2k 1

As a consequence we see that when taking the ¢ — limit of the expression

q w' (o v \
q211+512+13—§ <( (’“)3+ —— + ——2

k=1 <0 — Zk) (ZO - Zk) 20 — Zk
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the only remaining terms are the 1-fold integral given by

h27€z 20%,&)3 i B
B + VeiE:UVE dz
Z/(;B (20) 20 — T (Zo—aj' Z k_x > ’Y7<) >t

as well as, using the definitions of B and C, the limit of the following 2 and 3-fold
integrals:

h27761>
e g/ ZO - $1 1’1 — ;Uz) <‘/’Y€iv€(xl)V’Yej,a(xQ)V5>td2x1d2x2
— 92 Z/ <h27 7€z> <Vwei,€(x1)‘/’)’e' 5($2)V5>td2I1d2ﬁL‘2
ij C2 (ZO - xl)(l'l — QjQ)g Gy
+ Z/ <h27’7€i> i Oék7/767,> <‘/Wez (xl)vye ($2)V5>td2l’1d2[[‘2
i/ C (20 — z1) (21 — 22); — (21 — 21)- .
Y <h2a ei> , , ,

€;,E e € e: e VE d d d .

+ ;/(Ct:s (ZO — 171)(1‘1 — x2)€(x1 _ $3)€ <V’Y i (171)‘/7 i (ZEQ)V:Y " (1-3) >t 11 d*zod?as

To treat this remainder term we can use integration by parts in the same way as we have

proceeded for the 1-fold integrals. For this we notice that the above quantity is nothing
but

hv €;
28:51 << < 2 > <V:yei,s(m1)Vwej,e(x2)ve>t) d2$1d2$2

z20 — !E1)(I1 - $2)a

h‘7 €; -~
=2 Z/ < 2] > <‘/’Y€i7€(x1)v'yej,a<$2)Va>tdx1d2$2~

ij=1 /OB —1(20)xCy (Zo - 1‘1)(1’1 - 372)5

5.1.3.3 Last step: taking the limit
Combining all the terms we see that

a X wfa O WO P
lim <<W€(z0) I VereCa))e = > <<ZO (_ 2)3 LW W ) (JT Vere () )
k=1

—1 (20— 21)* 20— 2

E 2761 kyW3—i _
\/BB (20) Zo—:L' (ZO—;L' Z ) <Lyel(I)-\/>t X

= (- 2)

—2 Z / hone) (21)Vye, (22) V)ydTy &z

i1 (z0)xCe (20 — 1) (21 — 2)e

In order to show that the remaining term vanishes as ¢t — +oo we will use regularity of
the correlation functions, as stated in Proposition 4.4.7.

Indeed, let us start by considering the first one-fold integral, and consider the most
problematic term:
1
———Fy(x)dx
/azart(zo) (20 — 2)?
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with Fi(z) == (V,e, () V). Since the correlation function that appears in the integral is
C* for x € OB,-¢(2) for t large enough, we can write its Taylor expansion Fj(e*% +
20) = Fy(z0) + €7 (€70, Fy(20) + e 05 F(20)) + o(t). This implies that the integral is

governed by
2w
et/ (Ft(zo) +et (ew@th(zo) + e_ieath(zo))) e29d0 = 0.
0

As a consequence this term does vanish in the ¢ — 400 limit. The double integral
is seen to vanish using the same reasoning, one subtlety here being that we have to
consider what happens when x; and x5 get close one to the other. However the same
reasoning as the one we have described above combined with the one used in the proof
of Proposition 4.4.7 allows to conclude in the same way. This shows that the following
Is true:

lim lim
t——4o00 e—0
N
Z w(oy) W_ie(z,00) W, e(zz,&l)>
Ws Vs - + : + ’ Vg = 0.
<< Ve =1 ((20 — ) (20 — 21)? 20 = 2 Vel

(5.1.16)

To finish up with the proof of our main result, it remains to show that the limiting

quantities
W V) = lim lim WYV,
t—+o00e—0
do exist for ¢ = 1,2 and any 1 < k < N. Convergence of W(f1)<VE>t follows from
the very same argument that allows to prove the differentiability of the correlation func-
tions. Namely we can use integration by parts in the exact same fashion to deduce that
quantities of the form X
2
Am(vvei,s(x)va>d Z
that arise in Gaussian integration by parts do admit a limit when ¢ — 0. As for
W _s(z1,00)(Ve)i, we recall that

1

q (B(ve;, a) — B(a,ve;)) + 2C (ar, ve; — av,ve;) = 4(ha, e;)ws_i(@) <1 + §<a,fyei>> :

As a consequence symmetrization identities allow to rewrite the integrals in W(,kg) (Ve)
as

3 i/cz (( C7(ap, au,vei) (h27€i>w3i(ak)<04lﬁ€i>) (Vor () V) P

I£k 2z, — 21)e(2K — T)e (z1 — x)e(2k — @)
<7€17ak> <’7€2,0¢k> 9 )
+ _I_ V€1 g X VEQ IS5 T Vg d Xz d Z9.
7/((:2 (Zk - .1'1)5($1 - x?)s (Zk - $2)g(x1 — $2)€< ven ( 1) V€2 ( 2) > 1 2

We can thus proceed in the same way as in the proof that the correlation functions are
C? to show that the limit does exist. Therefore the statement of Lemma 5.1.2 does
indeed hold.

Combining this fact with Equation (5.1.16) we can infer that Lemma 5.1.1 is true as
well, and we can therefore conclude for the proof of the local Ward identities as stated
in Theorem 5.1.3.
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5.2 . Global Ward identities

The local Ward identity (5.1.14) that we have just proved shows that the probabilistic
model thus defined is indeed consistent with the expectations of the physics literature
and may be understood as a manifestation of the higher-spin symmetry enjoyed by the
sl3 Toda theory. In addition to this identity there is a second building block which is
fundamental in the study of Toda theories: the existence of global Ward identities. They
take the following form:

Theorem 5.2.1. Assume that g = sl3. Under the assumptions of Theorem 4.3.1
the global Ward identities hold for 0 < n < 4:

N N
—1
N (zl”w(_’; + oz w4 %4%@)) JIVerz) =0 (5.2)

=1 k=1

where the quantities that appear in Equation (5.1.14) have been defined in Lem-
mas 5.1.1 and 5.1.2 above. Likewise for the stress-energy

N

N
> (210 + 12 D) (] Van (21)) = 0. (5.2.2)

=1 k=1

The global Ward identities for the stress-energy tensor are direct consequences of
the conformal covariance of the correlation functions as explained in Theorem 4.2.2.
However the derivation of the global Ward identities for the higher-spin tensor is not
as straighforward and is actually one of the main difference between Liouville and Toda

CFTs.

5.2.1 . Covariance of the higher-spin current

In order to prove that the Equations (5.2.1) hold we will prove that the higher-spin
current is “holomorphic at infinity”, a fact which is axiomatic in the physics literature

and by which is meant that
1
4

W (zp) ~

as zg — o0o. To do so we rely on the fact that W behaves like a covariant tensor of
order three in the following sense.

Proposition 5.2.2. Under the assumptions of Theorem 4.3.1 and for any Mébius
transform ) of the plane we have

N N

(W (z0) [T Ve (zi)) = 0/ (20)* [T 10/ GOPt (W (whz20)) [ [ Ve (9(20)))- (5.2.3)

k=1 k=1

Proof of Proposition 5.2.2. As usual we first need to consider the regularized version of
the quantities involved and then take a limit. The expression of (W (z0) [Tr_; Vay.c(21))
is defined thanks to the mollified field . = Xﬁ% In g4 .+c. Since the latter is smooth,
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its derivatives and the ones of ®. o ¢) are well-defined. They are given by
9 (Pc01p) =¢'0P- 09

0 (®: 0 ¢) =¢"0%: o) + (1) 07D 0 )

0% (De 01p) = " 0D, 0 ) + 3" 0D 0 p + ()20 0 4.
We can proceed in the same way for the map In |¢’| and yields

o i) = o and 0% in]uf)) = L0 = (O

We can now apply the tensor W to the field ®. o ¢ + Q In |¢’| instead of @, yielding
W (D 01+ QIn [¢']) = ¢*(ha, (V) 0°0c + 30"/ 07D + 1" 0Pc) 0 1)
-2 (w’<h2 = h1, 900 + ()20 @) (1, 0Pc) + ¢/ (hg = ha, Y0P + (1)*0°@c) (hs, OPe)

w// " 1D o w///,lp/ _ (w/l)Z
2¢’ 55 (3h2, 9" 0P + ()07 ®c) + qQ—W

— 8(¢)?(h1,09.) (ha, 0®.)(h3, 0D.) 0 1 — 4qy'y)" (ha, 0P, ) (hg — h1,0®.) o Y + 8¢°

(ha, aq>5>) o

(¢//)2
4a)!

<h2, 8<I>5> 9} w
We can simplify the above and get
W(0. 09+ Qln |¢f]) = )2 (ha, O°®c) 0 ¢

= 2q(¢/)* ((hs = b, %® g><hlja<1>£> + (g = o, 020.) (3, 09.) ) 0

— 8(¢")3(h1,0®.) (ha, 0.) (h3, 0D.) o ).
Therefore we end up with the equality

W(®: 0y +QIn[y]) = (V) W(P:) 0 ¢

On the other hand we know from Equation (4.2.8) that, provided that the limit exists,

N N N
lim (F(@2) [ Vaye(21)) = T [/ (202 lim( B (@2 04+ Q1 [o9]) T ] Vg (¥(20)))
k=1 k=1

e—0
k=1
(5.2.4)

for any continuous map F on H~}(C — a,¢,). As a consequence with F = W, in the
e — 0 limit we will be left with

N N N
W (20) [ Veu (1)) = 9/ (20)® TT |/ (20) "2 (W (16(20)) T Ve ((20)))-
k=1 k=1 k=1
This is the result we were looking for. O

5.2.2 . Proof of Theorem 5.2.1

We have thus proved that the higher-spin current really behaves like a tensor. We
can now apply the statement of Proposition 5.2.2 with the M&bius transform given by
Yz % This yields

N 1 N 1 N
—4A, 1
(W (20) E Vorl2)) = =5 H (W E Vo ())- (5.2.5)



As a consequence the asymptotic behaviour of W (z) as zg — oo is given by

W%ﬂjnmm~—%nyn%wwwfhmi» (5.2.6)

This provides a rigorous formulation of the axiom that W (zy) ~ - as zy — .
0

We can now combine this asymptotic with the expression of the local Ward iden-
tities to infer that, when zy — oo, the left-hand side in the Ward identity (5.1.14) is
therefore asymptotic to ziﬁ On the other hand the leading term in the right-hand side

of Equation (5.1.14) is givoen by

ED IR | LINENTE

=1

Therefore in order for these two asymptotics to be consistent we need to assume that
that the n = 0 global Ward identity (5.2.1) holds:

S WO Ve (21)) =

We may proceed in the same way for the other terms that appear in the asymptotic
of the right-hand side of Equation (5.2.1). To do so let us write the right-hand side of
Equation (5.2.1) as

N @ ) N
1 w(y) 1 WY 1 w4,
Z(Z_S(l—j—g)3+z_g(1—§_é)2+z_01_a (I Vaw(a1))

=1

and expand in powers of - - the terms of the form @ p = 1,2,3. Then the

asymptotic as zg — oo can be expanded as negative powers of zy, and corresponding
coefficients in this expansion are given by

— Z (Zz 2(z, 1) + (p— V2P *W_i (2, ) + wz{‘_Qw(al)) (JT Vaw (2))

2P 2
0 =1

Therefore to be consistent with the asymptotic prescribed by Equation (5.2.6) we need
to have, as soon as 0 < n < 4,

Z (zl"W_z(zl, ) +nz W _q (2, 00) + wzl’“?’w(m)) <H Vo (21)) =

In other words the global Ward identities (5.2.1) must hold.

Remark 5.2.3. With a little bit of extra work it is possible to show that the right-
hand side in the asymptotic of Equation (5.2.6) is given by

N

1

~3 Z W _a (21, 1) + 525 W_1(21, op) + 10270 w( H EM)
=1 k=1

so we may not learn anything new from the exact value of the leading term in the
asymptotic of the higher-spin current.
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6 - Quelques implications probabilistes inattendues
de la symétrie W

L'existence d'identités de Ward pour les fonctions de corrélation définies lors de la Par-
tie | montre que la symétrie W est intrinséquement présente dans le modéle probabiliste
proposé pour définir de maniére rigoureuse les théories de Toda. En effet I'utilisation
des propriétés fondamentales des objets probabilistes impliqués nous a permis au cours
du chapitre précédent d'obtenir |'existence de telles identités.

Nous continuons dans ce chapitre a explorer les interactions entre probabilités et
symétries W. Plus spécifiquement nous faisons le chemin inverse de celui parcouru
précédemment et utilisons les symétries des théories de Toda pour en induire certaines
propriétés des objets probabilistes entrant dans la définition mathématique des théories
de Toda.

En particulier nous étudierons dans quelle mesure le principe de réflection en prob-
abilités et I'existence de coefficients de réflection au sein des théories de Toda sont
intrinséquement liés. Pour ce faire nous présenterons une nouvelle décomposition de
chemin pour un mouvement brownien évoluant au sein d'un groupe de réflection, dé-
composition qui nous permettra de décrire de maniére précise les asymptotiques de queue
de chaos multiplicatifs gaussiens corrélés.

Les résultats présentés ici sont issus de I'article [31], ainsi que, dans une moindre
mesure, |'article [30].
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6.1 . Reflection principle and a Brownian path de-
composition

The reflection principle is quite ubiquitous in probability theory —the interested
reader may consult for instance the article [113] for an account on the historical appear-
ance of the reflection principle in probability theory. Its universality can be seen via the
number of statements bearing this name. The one we will focus on hereafter arises in
the context of the Wiener process, and states that if we set 7; = inf{t > 0, B, = 0}
to be the hitting time of 0 by a Brownian motion, then for all positive = and y

P, (B; € dy,t < Tp) =P, (B, € dy) —P_, (B; € dy) . (6.1.1)

As explained in Proposition 3.3.9, this statement generalizes when B is more generally
a drifted Brownian motion that evolves on a reflection group (V, ).

This section is dedicated to the description of our generalized path decomposition for
diffusions in Euclidean spaces, which we state in Theorem 6.1.1 below. In particular we
will shed light on the fact that showing this result relies on this fundamental reflection
principle.

6.1.1 . A Brownian path decomposition

In a landmark article [138], Williams derived in 1984 a celebrated path decomposi-
tion for one-dimensional diffusions. In particular this decomposition allows to provide a
meaning to a process conditioned on its minimal value. To do so is used the welding of
two independent diffusion processes before and after having hit the prescribed minimal
value. Remarkably, the argument used by Williams in the proof of his main statement is
based on the reflection principle (6.1.1) for the one-dimensional Brownian motion. The
main input of our method is that this reflection principle can be generalized for Brownian
motions evolving over a reflection group.

We formulate our path decomposition as follows: assume that B” is a Brownian
motion with constant drift v and values in a reflection group (V, W), and further assume
that v € C. Set

M = Z M,w; with M, = tigf()(Bt”, ei), (6.1.2)

=1

to generalize the minimum of a one-dimensional process. Then the process whose law
is that of B” conditionally on the value of M can be realized by joining r + 1 diffusion
processes, and corresponds to a decomposition of the path of B” between times when
the successive minimums are attained. The diffusion processes involved are defined using
a Doob h-transform. This statement is illustrated by Figures 6.1 and 6.2 below, where
we have represented on the left the path of a drifted planar Brownian motion and on
the right the decomposition corresponding to the A, root system viewed in V = R2,
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Figure 6.1: Planar Brownian motion Figure 6.2: Decomposition of the
with drift v path associated with A,

To be more specific, recall the framework introduced in Subsection 3.3.4, and denote
by M" the law of the random variable M from Proposition 3.3.8. Then our Brownian
path decomposition takes the following form:

Theorem 6.1.1. Pick M according to its marginal law M" and define a process
X to be the joining of the following processes:

« Start by sampling a diffusion process X' started from the origin, with gen-
erator A", and independent from M. Run it until it hits M + 0C, say at
z1 € M+ 9C;.

« Then run an independent process X? started from z, and with generator
A?%T, upon hitting M + 0C.

« Thus define a family of processes (X', --- ,X"). When X" reaches the bound-
ary of M + 9C, sample X" with generator A°.

Then X has the law of B*, a Brownian motion with drift v € C.

In other words, the statement above shows that the law of the process X, condition-
ally on the value of its minimum M, is the joining of r + 1 processes. It should be noted
that the process X" "' has the law of X conditioned to stay in the Weyl chamber M +C.
One easily checks that this statement is indeed consistent with the one-dimensional result
by Williams [138].

In the planar case, Theorem 6.1.1 allows to provide a path decomposition with respect
to cones with angles =, n > 1, that correspond to the Weyl chambers associated to the
dihedral groups D,,, n > 1. This is illustrated by Figure 6.3 below, where we represent
the decomposition, associated to D,, for different values of n, of the path of a Brownian
motion with drift v .
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Figure 6.3: Planar Brownian motion with drift v and its path decompositions
associated to D,,, n = 4,6, 8.

Note that while in the one-dimensional case the two diffusion processes are simply a
Brownian motion with negative drift and a Brownian motion conditioned to stay positive,
in higher dimensions the description of these processes is not as clear. However we will
prove in Section 6.2 below that in the asymptotic where M — oo along a ray inside
C, the process can essentially be realised by joining drifted Brownian motions that will
reflect on the different walls of the Weyl chamber. For instance in the planar case, we
show that asymptotically the process looks like a Brownian motion with drift s; s, (resp.
S281v) until it reaches the boundary of C on 0C; (resp. 9Cs), where it will be reflected
and behaves like a Brownian motion with drift sov (resp. s;v), run until it reaches the
boundary of C on 9Cy (resp. OCy). This process will again be reflected and look like a
Brownian motion with drift v conditioned to stay inside C. The initial drift depends on
the way M — oo inside C. This asymptotic is depicted in Figure 6.4 below.

Before moving on to the proof of Theorem 6.1.1 let us stress that the result proved
in [31] is actually more general than the one presented here, and the proof we present
here remains valid in this more general setting.

6.1.2 . Proof of Theorem 6.1.1
The purpose of this subsection is to establish the validity of Theorem 6.1.1. A simple
observation that we explain below allows to reduce its proof to the following lemma:

Lemma 6.1.2. Forany M = %", Myw; € V with m; > 0 for all 1 < i < r, define
a process X as in Theorem 6.1.1. Then for any 0 < i < r and x,y inside M + C,
ai+17rhM(y)
O1-hM(x)
Of course a similar result also holds when the process has hit different parts of the
boundary.

P, (X, € dy, X has hit 0C at 9C,, - - - ,0C;) = OLipM(z,dy)  (6.1.3)
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Before proving this claim, let us explain to what extent Theorem 6.1.1 boils down to
this statement. Pick any x,y € M + C and some positive time ¢. Then, provided that
Lemma 6.1.2 holds, we can write that

alf (hM(y) I dy Z Z 81 <r\i, (y)ail,"wikp}tv[(xa dy)

k=0 i1,
dlstmct

= 01,hM(2) > Y P (X € dy,X has hit 9C;,,- -+ ,0C;,)

k=0 21, ik
distinct

= 01,.hM(2)P, (X, € dy).
On the other hand, one has the property that
01 [ ()P}, dy)| = 01, 0M ()P, (Y, € dyM), (6.1.4)
where Y is the diffusion process with generator A. Indeed, the event that for all

1 <i<r, Mi(Y) > m; corresponds to the process Y never hitting m + 0C with
m =Y. m;w;. Therefore by Doob's conditioning

P.(Y:edylVl <i<r,M,; >m;) = x)ptm(x,dy),

so Equation (6.1.4) reduces to

O [P ()P, (Y e dyV1 < i <, M; 2 my) | = 01, h™ ()P, (Y edyV1 <i<r,M; =m

This follows from the fact that A™(z) = P, (V1 <i < r,M;(Y) > m;), while m —
01,-h™(x) represents the density of M. Eventually this shows that for any x,y € M+C
and ¢t > 0:

Py (Yy € dyM) =P, (X, € dy). (6.1.5)

More generally the same reasoning shows that for any times ¢1,--- ,tx and y1,- -,y €
v

P, (Y €dy; 1 <I< kM) =P, (Xy, €dy;1 <1< k) (6.1.6)

for k a positive integer. This corresponds to the statement of Theorem 6.1.1.
Therefore to prove our main statement on path decomposition it is enough to prove that
Lemma 6.1.2 does indeed hold. The remaining part of this subsection is dedicated to
proving this statement. Throughout the proof we consider the reflection group centered
at M, WM introduced before. Furthermore in the statement of Lemma 6.1.2 we can
always assume that f; = 1, which we will do in what follows.

6.1.21 Thecasei:=1

We start by treating the case where the process X has hit only one part of the boundary
of the Weyl chamber. This particular case contains all the ideas used for the general
proof.
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First of all, note that since X' is defined via a Doob’s transform from the process Y,
we can write that for any z € 9C,

81 rhM(Z>

]Pa: (TM—H?C (X) € du Xu € dZ) alh—l\/l(l‘)

P, (TM+30(Y) €du,Y, € dZ) .
Whence by independence of the processes appearing in the decomposition of X
t
P, (X; € dy, X has only hit M + 9C;) = / / P, (X € dy, Tmyoc € du, X, € dz)
M+0Cy

d1.rh
/ / ! Z)IF’ (Tamsoc(Y) € du, Y, € d2) P, (X7, € dy).
M+08C; Orrh M(x)

In the above expression in order to make sense of P, (X , € dy) and because the
conditioning is made with respect to the process killed when hitting the boundary, we
may rely on the following fact:

Lemma 6.1.3. Let (z,,).en be a sequence inside the Weyl chamber that converges
to z € M + 9C,. Then

a?,rhM(y)

Zartt \J) M
5y M) oip, (2, dy). (6.1.7)

P. (X} € dy) = lim P, (X} € dy) =

A similar statement holds with = € M + 0C; forany 1 <i < r.

Proof. For any such sequence, we know that

82 r hM (y)

2 S —
P., (X7 € dy) = Do (2]

prlfvl(zm dy).

As z, approaches M + dC; both 9, ,hM(z,) and pM(z,,y) get close to zero. However
we claim that their Taylor expansions near z are given by:
827rhM(zn) = (z — zp, 61>31,rhM(2) + o(|zn — 2]|)
P (2, y) = (2 = 20, 1)1} (2,9) + 0( |20 — 2),
where o |z, — z|) denotes a quantity which is negligible compared to |z, — z| as z, —
z. Of course these expansions imply Equation (6.1.7).
To see why such expansions are valid, let us start by considering the first one and
write z, = miwy + Y ;_o(z, e;)w; With m} = my + &, converging to m; = (z,e;). Then
recalling Equation (3.3.25) we deduce that
P, (M;(Y) = m,forl1 <i<r)=P,, (my <M;(Y)<m] +e,, M(Y)=myfor2<i<r)
=, W™ (2) + o(ey),

and more generally that
O™ (1) = (2 — 2, €)1y Do WM (2) + 0l |20 — 2I)
= (2 — zn,€1) (—O(Mer)) Do h™M(2) + o(|2n — 2|).
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Alternatively we could have argued using the maximum principle for 9, 2™, which
thus admits an extremum on the hyperplane (z,e;) = M; with its gradient normal to
this hyperplane.

As for pM, by the reflection principle from Proposition 3.3.9

P (20 y) = Y, e(s)pi(s2n,y)

SEWM
(pt SZny,Y pt(sslznay))
SEWM
(pt SZn, Y (S( + <zn _276\1/>€1)>y)>
SEWM
1
= (2 — zn, €)) x 3 D e(8)(Vapr, se1)(sz,y) + ol |z — 2]).
sEWM

Now for z € M+ 0C; and M’ close to M we can write, with s’ similar to s but centered
at M’:

P (zy) = Y e pi(s'zy)

s'ewM’
1
=3 > o) [Pz y) — pulsiz)]
s'ewM’
1
=3 Z e(s) [pt(s'z,y) —pi (s'(z+ (M =M, e )er),y) ], hence
s’'ewM’
’ 1 ! /
M (2,9) = 5 (P (210) = M (2 + (M = Mo e, ) ) - (6.1.8)

Therefore taking derivatives with respect to (M, e;) of pM'(z, ) yields that for z € Cj,

% S €(5)(Tapr sen)(52,y) = 2y pM (2 )

2
seWwM

where the prefactor stems from the fact that (M’ — M, e}) = o) (M’ — M, ;). This

shows that pM(z,,y) = (2 — 2, €1)01pM(2,y) + o(|zn — 2|), concluding the proof of
Lemma 6.1.3. O

We can now make use of Lemma 6.1.3 in our computations to see that the case i = 1
in Lemma 6.1.2 follows from the equality, that no longer depends on the conditioning:

Lemma 6.1.4. Forany x,y e M+ Candt > 0,
t
[ BB € du Y, € d2)0p, (1) = 0. (6:19)
M+0Cy
Proof. Note that for s’ # Id and M’ sufficiently close to M,
t
P, (Y; €d(s'y)) = / / Py (Tasoc(Y) € du, Y, € dz) P, (Yi—y € d(s'y)) (6.1.10)
M-+oC
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since to reach s’y the path has to cross M + 9C (this is true only for M’ and M suf-
ficiently close). Moreover the quantity that corresponds to s’ = Id in the expression
of

P (y)= D e pls'z,y)

s'ew™M’

given by the reflection principle 3.3.9 does not depend on M'. As a consequence we
can write that

t
npM(z,y) = / / B, (Thtsoe(Y) € du, Y, € d=) 9pM, (2, y).
0 M+0C

To conclude note that 9,pM(z,) vanishes when z € M + dC \ dC; —this is a conse-
quence of Equation (6.1.8) above. O

6.1.2.2 Thecase: =2

The approach remains essentially the same for i = 2; in the same spirit as above, we
see that

P, (X; € dy, X — M has hit 9C; before 9Cs)

= Bert W) P, (Tarsoc(Y) € dtr, Yy, € dzy)x
O oh™M(2) Jo Ji, Jaroc, JMrocs (Tasoc(Y) b 2
lim PZ}L (TM+8C(Y) - dtQ,Yt2 - dZQ)

zl—2z1 <21 — Z}L, 61>

aQPMtQ (ZQ’ y)

By hM(y) [* _Opty (2),9)
= B, P, (Taroc(Y) € dty, Yy, € dzy) lim —t=timd)
T ) oy, PATrac(Y) € Yo, € ) tim SR
s ... \hM t
= 3—M(y)/ / P, (Tvyoc(Y) € dty, Yy, € d21)31,2pgt1(21,y),
alf"v’rh (:E) 0 M+8C1

where we have used the results from the case i = 1, and relied on the fact that X' will
never come back to M + 0C;. As a consequence the proof boils down to proving the
following analog of Lemma 6.1.4:

t
/ / ]Px(Tac(Y) €dty, Yy, € le)al,sztl(Zhy) = (91,219%\/[(3573!)-
0 M+0C1UICo

6.1.2.3 The general case

The proof in the general case relies on the very same computations as above. In the end
we see that in order to prove that Theorem 6.1.1 all one has to do is to check the validity
of the lemma below, which we then recursively apply to get the desired statement.

Lemma 6.1.5. Forany1 <i: <,

t
/ / P, (Toc(Y) € du, Y, € d2)0r.. ;o™ (2,9) = O1... DM (2, y).
0 0C1U---y0C;
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Proof. To start with, recall from Equation (6.1.8) that if = € M 4 9C; for j > i then

1

M (2,9) = 5 (P (z9) = P (2 + (M = M, €})esm))

and therefore 9, ... ;,pM, (z,y) = 0. As a consequence we only need to prove that

t
/ /a By (Toe(Y) € du, Yo € d2)0r... ;9™ (2, 1) = 01 spM(2,).
0 C

This follows from Equation (6.1.10) along the same lines as in the proof of Lemma 6.1.4.
O

This allows to wrap up the proof of Lemma 6.1.2 and therefore of Theorem 6.1.1.

6.2 . On the process started from infinity.

In this section we focus on the case where the process being considered in the statement
of Theorem 6.1.1 is a drifted Brownian motion over V. To be more specific we study
in this section the behaviour of the drifted Brownian motion B” when conditioned on
having M — oo inside C_. To do so we will provide a detailed analysis of the process
B”, v € C, defined from Theorem 6.1.1, in the asymptotic where its starting point @
will diverge inside the Weyl chamber C . This process is defined by joining:

* A diffusion process X' started from & € C, with generator 1A + Vlogd.... .k
and run until it hits OC, say at z; € 0Cy. Here h is given by Equation (3.3.15).

* Then run an independent process X? started from z; and with generator %A +
Vlogds.... »h, upon hitting OC.

* Thus define a family of processes (X', ---,X"). When X" reaches the boundary
of C, sample X"*! with generator %A + Vlog h.

Our goal is to describe the behaviour of such a process B” when & — oo inside C. We
will see that, in contrast with the uniqueness of the entrance law from oo of the process
studied in [10, Section 6], the process will behave in very different ways according to
the way « diverges inside C. In what follows we will say that & — oo inside C when
(x,e;) - Fooforall 1 <i<r.
Let us describe in details this asymptotic in the case of Ay. For this purpose, let us
introduce for any 0 < 7 < 1 and a process Y starting inside C the events &/ (Y) =
{Vt < Tse, (Y,ez) > (1—n)(Yo,e2)} and analogously £J. We then define a process
Y! by joining:

1. A Brownian motion with drift s;s,, started from x, and conditioned on £7(Y*).

This process is run until hitting 9C (over z; € 9C).

2. A Brownian motion started from z;, with drift s, and conditioned not to hit 9C;
again. By this we mean a diffusion with drift

S26<52V7y> — 51326(5182%@ Sg — 8182€<V7p><y761>

da(y) = =

ols2vy) _ ols1520,9) 1 — ewnlven)

This process will be run upon hitting dC at z, € 9Cs.
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3. A Brownian motion with drift v, started from 25, and conditioned to stay inside

C.

Similarly by exchanging e; and e, we define a process Y2. As we will see, the process
B” will behave like Y' or Y? depending on the variable 2+ = (sy5,0 — 51500, ).

In what follows we consider (Z}, Z?%); > o a pair of bounded, continuous processes in-
dependent from B”, Y' and Y?, as well as stationary (in the sense that the law of
(Zlis, Z2 )t >0 is independent of s > 0). We further demand that the processes
(Z1)i < s and (Z2); > », become independent as h — s — +oo by requiring that for any

bounded continuous functions fi, f3

S +o0 S
lim ]E{ /O A Z)dt 0 f2(t)Zt+hdt} —E{ /0 fl(t)thtlE{

h—s—-+00

+o0
ﬁ(t)Zfdt} = 0.
0

With these notations at hand the following statement can be seen as a reformulation of
the above heuristic:

Proposition 6.2.1. Fori = 1,2, set for Y either B, Y' or Y?
+oo ]
Ji(Y) = / e~ Yred Zidt. (6.2.1)
0

Then for any bounded, continuous function F : R* — R, in the limit where x — oo
inside C

E. [F (J1(B),J2(B"))] ~ E; [F (J1(Y"), Jo(Y"))]  ifa" = —cc. (6.2.2)
Conversely if v+ — +oo then E, [F (J1(B"), Jo(BY))] ~ E, [F (J1(Y?), J2(Y?))] .

As a consequence of the proof of Proposition 6.2.1 we will see that if 2+ — —o0, then
the processes B” and Y! have asymptotically the same behaviour by showing that their
drift functions are asymptotically close in the sense that for any positive 7,

lim P, < sup |Vleogd;oh(B”) — s1s9v| < C'e_"<”’€1><m’62>> =1

r—r 00
oo 0<t<Tye

and likewise for the two other components of the path. On the contrary if (sgs1v —
$189v, &) — —+00 then the process will behave like Y2, In the case where ($1891 —
So81v, @) remains bounded, then the law of the process B” will be essentially realized
by determining which boundary the process hits first and then running one of the two
above processes accordingly. These different behaviours are illustrated in Figure 6.4. We
stress that in the limit where z — oo the events & (Y"') and &(Y?) have probability
asymptotically 1 so the conditioning becomes unnecessary.
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/ [

Figure 6.4: The three different be- Figure 6.5: Components of the path
haviours of the process B” when « — depending on whether (B”,¢;) is close
+o0. to zero or large.

In the general case a similar asymptotic behaviour for the process does hold, but takes
more effort to be properly stated. For this purpose, let us consider (Z1,--- | Z") as above
with the additional property that Z% and Z7 are independent as soon as (e;,e;) = 0.
We also introduce the subset 1 ... . of W defined as the set of the s € IV that admit a
reduced expression containing all the reflections sq,--- , s, and set for i = 1,--- ,r the
notation

“+oo
Ji(p) = / e Bt Zidt (6.2.3)
0

for © € R positive, where B* is the process started from +o0o whose law is realized by
joining a Brownian motion with negative drift —u and variance (e;, e;) upon hitting the
origin and a Brownian motion with positive drift 1 and variance (e;, e;) conditioned to
stay positive after. An alternative way of writing this integral is to use that J;(u) has

same law as
+o0 .
/ e B Ziat

[e.9]

where B* is a two-sided Brownian motion with positive drift 1 and conditioned to stay
positive. For more details see Subsection 3.3.4.1.

Proposition 6.2.2. Set s = s;---s, and assume that x — oo inside C in the
asymptotic where (sv — s'v,x) — +oo forall s # s € Wi... .. Then for F,--- | F,
bounded continuous over R*

[T FmB)

i=1

lim E,
r—r0o0

- ﬁE [Fz (Ji ((Sig1--- 801, €3)) ﬂ : (6.2.4)
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A similar statement does hold when different asymptotics are considered, that is when
s is an element of W, of the form s,; -+ - s, for some permutation ¢ of {1, .- ,r}.
Proposition 6.2.2 provides an alternative formulation of the result described above for
the A, case. Proving these two statements is key in the derivation of the asymptotics
of Toda Vertex Operators and class one Whittaker functions. In order to prove these
statements it will be convenient to start with the A, case to settle the ideas and then
proceed to the general proof and explain how the arguments developed can be adapted
in the general framework. Namely in Subsections 6.2.2 and 6.2.3 we provide a detailed
study of the process when the reflection group being considered is associated to A5 and
prove Proposition 6.2.2 under this assumption. The general proof of Proposition 6.2.2
will be carried in Subsection 6.2.4 below.

For future purpose we introduce for s € W ..., the shorthand

T

As = H<SV —vw’).

i=1

6.2.1 . Location of the first hitting point of 0C

Before actually describing the different components of the path as explained above, we
start by showing that with high probability in the asymptotic considered, we can assume
that the process stays inside a certain subdomain of C. This fact is itself a consequence
of the following Proposition, that describes the location of the first hitting point of the
boundary of C by the process B”:

Proposition 6.2.3. Assume that x € C and take any y € V such that (y,e;) <
(x,e;) forall1 <i < r. Then forall z € y + 0C;

1U(z) (s(x—y),€e]) _ls@wty—z |v2
P, (T, .00 € dt: B € dz) = ——L RSS2 it VA T dtdz,
(Tyvoc € dis By € d) 2U(m)§ve(s> t@r)s :
. (6.2.5)
where recall that e3 = Toss and with
U(z) = Z e(s) Al
seWi ... r

Proof. Since the process B is defined using a Doob transform

81,...7rhM(2) oy W2
md B Py, (Tyvac € dt; By € d2)

Py (Tytoc € dt; B} € dz) =

where B is a Brownian motion over V. Direct computations show that
v,z—x) __

817...7rhM(2’) €< U(Z)
O1,... yhM () - U(x)

while thanks to the reasoning presented in the proof of Proposition 3.3.9, adapted
by considering paths from sx to z for s € W¥ with (s(x — y),e1) > 0 and that do not
cross the hyperplane (- —y,e1) =0,

Py (Tyroc € dt; By €dz) = Y €(8)Pyay)ry (Tiyen) (B, e1)) € dt; By € dz) .

seW
(s(z—y),e1)>0
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Now these probabilities are well-known and given by

(x,e]) _lz—z?
Py (To((B,e1)) € dt; B, € dz) = —e 2t dtdz.
t(2mt)z

Using the fact that for all s € W, e(s15)(s1sx,e1) = €(s)(sx, e1), the latter sum can be
rewritten in a more elegant fashion as

2

> (5)03@ =Y €1) atesppe® )
— 6 I .
2 = t(2mt)2

O

Thanks to this proposition we can deduce that the Brownian trajectory will stay within
a given region, with high probability in the asymptotic where x — oo inside C.

6.2.1.1 The A, case

To start with, given a positive n < 1 one can split C between the domains U4;, U, and
C \ U where for (i,7) € {(1,2),(2,1)},

Uy ={zeCst. (z,e) > (1 —n){xz,e;)} and U :=U Ulhs.

The events &;, i = 1,2 are then the events that the process B” stays inside /; until it
hits the boundary of C.

Proposition 6.2.4. Assume that x — oo inside C. Then
U(-’.U)]P)m (81) _ /\81826(518211,:13) _ O(€<8182U,m>777<w,e2><l/,€1>>' (626)

Proof. First note that the event & simply means that the process B first hits y + dC
over its component y + 9Cy, where y = (1 — n)(x, ea)ws. Therefore thanks to Proposi-
tion 6.2.3 and its proof we can write that

>_ (wu)QTy+ac
2

U(z)Pz (&) = Z e(w) Ay [e<wV’BTy+8C

]lTy+6C:Ty+BC1 ]
weWi 2

8182V,
= )\81826< 1528 > - %3182 + SY{8251 + %818281

where we have used that W, is in that case reduced to the elements s;s2, s2s; and
515251, and where we have set

(s152v)2Ty 1 pc

__ (s1820, By, ) ————5 4=
Rsiso = Asys.Ea [6 vtoc : ]lTy+0c=Ty+ac2 ’

(wu)2T ac
W B o)
Tyvroc=Tytac, |

Ry = e(w)A\yEg

Let us start by considering the first remainder term 2R, 5,. In virtue of Proposition 6.2.3

* 2
Ry, 5y = e<w,81821/> Z 6(8)/ <5($ - y2),62> e(s(ccfy)erfm,z)edetdZ‘
ot RyxdC; 2t
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These integrals are maximal for s € {Id, s2} so it suffices to bound them in this case.
Then the behaviour of the integral is governed by the minimum of the function F :
dC2 x Ry — R, given by

le —y — 2 + 51590t ]
F(z,t) = 5 .

We need to distinguish between two possibilities: first of all if (x — y,w1)(v,e1) >

(x — y, e2)(v,wq), then the minimum of F is attained at ty = % and zp = (x —y +
s182vty, w1)wi, Where F' is found to be equal to (x — y, e2) (v, e1). If (x — y,w1)(v,e1) >
(x —y, e2) (v, w2) then this minimum is reached at ¢y = % and zp = 0, and F(zo,tp) =
|z —y| [v] + (x — y, s1s2v), which in the worst-case scenario where syses1v and y — x
are colinear, can be bounded below by (x — y, e2)(v,e1). In both cases we have the

bound
F(z0,t0) = (& — y,e2) (v, e1).

By Laplace’'s method we can therefore estimate the whole integral and check that

/ Wiy;e;e_}?(zvt)dtdz < Ce_F(ZO’tO)
R,xdC, 27t

where C' is uniformly bounded as * — oo. Therefore the term fR;,,, is indeed a
O (ef@sis2v)=ni@e2)(ven)) which is as desired.

We can now turn to the other remainder terms, and follow the approach just devel-
oped for R;, s,. Namely we need to evaluate the minimum of the map F : 9C; x Ry —
R, defined by setting

lz—y — 2+ wwt]?
F(z,t) = 5

for w = s3s1 and w = s1s9s1. Like before we have F(zy,ty) > (x — y,e1)(v,es) for
w = s381, but it can occur that F(zp,to) = 0 depending on the values of  and v. Nev-
ertheless we can bound the integrals by a O (e*F(ZOvth)) by Laplace’s method, which
yields the upper bound on the remainders

%3251 < Ce<$,818281l/> and %515231 < Ce(:l:,slsgsly)

where we have used that (x, sos1v) — (£ — y, e1) (v, e2) = (x, s15251v). All together we
see that
%5152 + 9%5281 + %515231 = O<e<5152'/@>+n<w7€2><V761>)'

O]

Thanks to this Proposition we see that, with high probability, the process B" will stay
in the domain U; U U,. Put differently, in the asymptotic where & — oo inside C, at
any time at most one component of the process along the simple roots (eq, e5) will not
be very positive.

6.2.1.2 The general case

Up to reordering the simple roots ey, --- , e, we consider s = s --- s, in what follows.
Let us denote by ¢, the first index such that s;, does not commute with all the s; for

162



J < ip (note that s, and s, commute means that (e,, e;) = 0, and also that s,e;, = €;).
For a positive n > 0, let us introduce the subset of C

U ={z€Cst. Vig<j<r, (z¢) > (1-n)(x,e;)},

and the corresponding event &, that the process B” stays inside U, until it hits the
boundary of C. In particular under &, the process will hit C over its boundary component

ac, = U5 ac;.

Proposition 6.2.5. Assume that x — oo inside C in the asymptotic where (sv —
s'v,x) — +oo forall s # s € Wi... .. Then

lim P, (£,) = 1. (6.2.7)

T—r 00

Proof. Like before thanks to Proposition 6.2.3 we can write

U(x)Py (£) = e(s)Ase'™™ + >~ e(w) AR
weWr,...r

where, with y such that (y,e;) = 0 for j <ipand (y,e;) = (1 —n)(x,e;) forio < j <,

—_ * T—Y—2zZ+S8U 2
R, = el ™Y " e(r) / Wm—we“(‘”‘y”y—we—%dtdz,
fourf R, xAC\ACs 2mt
_— * rT—yYy—=z wvr 2
R, = el@wy) Z 6(7)/ weﬁ(m—y)ﬁ-y—m@e—i‘ Y Q:F 2 dtdz w # s,
et Ry xCs 2mt
(6.2.8)

where ¢ denotes the (normalized) simple root normal orthogonal to the boundary
componentwhere z lies. Therefore the proof of Proposition 6.2.5 boils down to study-
ing these integrals.

To start with, we note that for z € 9C we have e{"(@-¥)+v-2.2) < 1 so the asymptotic
is governed by the integrals with = = I;. Then by Laplace’s method the behaviour
of the integrals that appear in R,,, w # s, is governed by the minimum of the map
F:0Cs x Ry — R, given by

e —y — 2z + wt]
F(z,t) = 5 .

This allows to show that the remainders R, for w # s are lower-order terms in the
asymptotic considered, since e{w»—s»®) _ (),

Likewise the term R, is also a lower-order term in the asymptotic considered, and for
this by Laplace’s method it is enough to prove that the map F : 9C x Ry — R, with
w = s attains its minimum at some zo € 9C; and ty > 0 with F(zg,t9) = 0. Now because
sv ¢ C we know that this amounts to saying that the half-line ¢ — x+svt crosses y+a9C
on y+ dCs, which follows from the fact that for j > iy we have (sv, e;) > 0. To see why,
note that (sv,e;) < 0 implies that s;s & W, ... » since otherwise we would have

(sv — sjsv,x) = (sv, e]v'><93, 6}/> <0,

which contradicts our assumptions on the asymptotic of . Moreover explicit com-
putations show that (s;s; - - s,v,w)) > 0 as soon as j > 4. As a consequence having
sjs € Wi.... , implies that j < iy. Therefore having (sv,e;) < 0 impliesthat j <ip. O
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6.2.2 . On the decomposition of the path: the A, case

With Proposition 6.2.4 at hand we are now in position to describe the path of the
process B itself in the asymptotic where the starting point of the process x diverges
inside the Weyl chamber C, and to start with we will focus on the A, case. As explained
above, it is very natural to consider the subsets U; and U of C, and associated events
&1 and &;. Because thanks to Proposition 6.2.4 we know that in the asymptotic where
x — oo we have that P, (&) + Py, (&) = 1 — O (e-*®) for some A € C, we can
look at the process B” conditioned on one of the events &; and retain all the necessary
information. Without loss of generality we will consider the process B” conditioned on
the event &;.

In order to prove Proposition 6.2.1 we will look at each component of the path separately,
according to the moments where the process contribute or not to the integrals J; as
described in Figure 6.5. To be more specific we will introduce stopping times 77,7} and
T, such that:

* the portion in blue in Figure 6.5 corresponds to the path of the process in the time
interval (77, T7);

* the component in red there is associated to the time interval (75, +00);

* the portion in orange corresponds to (0,7%) U (17, T5).

6.2.2.1 The process before 7.
Recall that before hitting OC for the first time, the process B” has a drift given by
)\ e (wr,z) (wi2)
Vlog 01 2h(2 Z w2 T , Uz) = Z e(w) A€\
w€W1 2 wGWLQ

The latter can be rewritten under the form

S981V,2 S818281V,2
)\52816( 251V,2) )\3182516< 152810,%)

$189V + (8981 — S189V + (8189 — §18981V .
192 ( 291 1202 )ZwElee(w)/\we(wu,z) ( 1202 19291 )ZwEWIQE(w))\we<wV’Z>

Under the assumption that the process stays within the domain U4, this drift is equal to
s15ov + Ri(2), with |9y (2)] < Cee2zen)—(men(@es)

where C' only depends on v.
Now for 0 < n < % let us consider T to be the first time where the ¢; component of
the process reaches n{x, es), that is

Ty = tir>1f0<Bt”, e1) < n(xz,ez) (which is finite almost surely),

—~
~—

v, e

(v, e9)

and also set Tj = t1>n; (B}, e1) > (1—2n) (x, e9).

The following lemma explains that as soon as the e; component has reached the level
n(x, ez) (that is for ¢t > T7), it will likely stay small until B” hits the boundary of the
Weyl chamber C:
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Lemma 6.2.6. for n > 0 small enough, as x — oo inside C

lim ]P’w(T@c < To) = 1. (629)

Proof. Between T, and T the e; component of the drift of B” is given by —(v, p) +
(M1(2),e1) with [(R1(2),e1)| < Cle @2 As a consequence the probability that
To < Ty is smaller than the probability that a Brownian motion with drift —(v, p) +

C’e~"®€2) (and variance (e;,e;)) reaches ((1 — 217)?:—2; — n) (x,ey) before reaching
—n(x, es), Which is readily seen to converge to 0 as (x,e3) — +oo provided that n is

chosen small enough. O

Therefore we see that between 7' and Tyc, with high probability (under the event &) the
drift of the process B” will be given by that of Y plus a remainder term 9 uniformly
bounded by Ce="(@e2),

6.2.2.2 The process between 7. and T,

After having hit the boundary of C, the process B” will have a drift given by

e(s)Agels2)

Vlog 9,hM(2) = Z D)

s€eWs

sv, Us(z) = Z e(s)Aget?).

seWs
Like before this drift admits the expression

. (s182v—521,2)
V log 9phM(z) = 222 1527¢ + Ro(2) (6.2.10)

1— €<8182V—52V,Z>

where the remainder term can be bounded as |Ry(2)| < Ce~ ™00 With high
probability this remainder is negligible between Ty and Tsc,. Indeed, we already know
that at time Tyc under the event £ we have (B ey) > (1 — n){(x,e2), and therefore
that |y (BY)| < Ce¥erki@e2) between Tpe and Th, where

Ty = tiI>1f0<B:;762> < n{x, ey). Likewise if T == sup (B}, e1) > n(x,eq)

t < Toc,

then for t between T} and Tye,, |Ra(B”)| < Ce mwen(@e2)  Therefore for such times
the process will behave like Y', and all we need to check is that with probability 1 —o(1)
we have T] < T5:

Lemma 6.2.7. For nn > 0 small enough, as x — oo inside C
lim P, (T} < Tx|&)) = 1. (6.2.11)

Proof. First assume that R, = 0. In that case the e; component of B” has the law of a
Brownian motion with positive drift (v, p) and variance (e, e;) = 2 conditioned to stay
positive, while the e component of the path is an independent Brownian motion with
negative drift lower bounded by — (v, p) and variance (e3, e2) = 2. As a consequence by
the time-reversal property of drifted Brownian motion [138] 7] — Tyc has same law as
T = tir>1f0 V2B + (v, p)t > n{zx, e2) where B has the law of a standard one-dimensional
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Brownian motion started from 0. The law of 7{ is well known [77, Equation (5.12)] and
given by
(v, p) e*<"<m’52>4§<"’p>t>2

P(r] €dt) = ,

(n ) 47t3

which concentrates around n%ep?; as the latter diverges. Likewise we see that with
probability 1 — o(1) we have 1o — Ty > (1 — 37) <‘<’”u’e;>>, so by taking n small enough so

that 5 > 2 we see that Equation (6.2.11) does indeed hold for R, = 0.

Now it is readily seen that for Tye < t < T] A Tp we have [Ry(BY)| < Cenwen)(@ez),
Therefore for any positive ¢ and with n small enough like above, we can assume that
(1—e)T] < 7] < 21 < (2+4¢)T> with asymptotic probability 1, showing Equation (6.2.11)
in the general case. O

Therefore between Ty and Tye, the process will behave like Y', in the sense that B” will
have a drift given by that of Y plus a remainder term $R,, where |Ry| < Ce™Wen/(@e),
6.2.2.3 The process after T,

The third component of the process, i.e. after having hit both components of dC, has
the law of B” conditioned to stay inside OC. This means that its drift is equal to

Vilog hM(z) = Z

s€eWo

e(s)Agels?)

U. — )\S (sv,z)
AR sv, 3(2) Ze(s) e ,

seWs

which coincides with the drift of the process Y.
For future reference and in order to prove Proposition 6.2.2 we stress that

V — S9 pels2r—r:2)

1— e(sgu—u,z)

Vlog hM(z) = + MR3(2), (6.2.12)
where |R3(z)] < Ce~eizen) | ke before we can use the explicit expression of the
drift to show that with probability asymptotically 1 the e; component of the process will
never come back to n(x, ey) after Tye, so that the e; component of B” after Ty, has
the law of a Brownian motion with positive drift (v, es) and variance 2 conditioned to
stay positive.

6.2.3 . Proof of Propositions 6.2.1 and 6.2.2 for A,

We are now in position to prove Propositions 6.2.1 and 6.2.2 under the assumption that
the root system being considered is associated to A,. Let us decompose the integrals
Ji,1=1,2, as

Tl v . +OO v .
J; = / e~ Bie Zidt + / e~ Bie) Ziqy,
0

T

As illustrated in Figure 6.5 the integrals over the subset [0, 7] will become negligible in
the & — oo limit. Indeed, in this region the e; and e; components of the process are
bounded below by (1 — 2n)(x, e3), so that

T1 Tl
/ €*<B'Z7ez‘>ZZdt < e(1=3n)(@;e2) / e*(<3§76¢)*(1*377)<m,62>)Ztidt
0 0
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where the integral on the right-hand side is uniformly bounded in x. As a consequence
for any bounded continuous function F : R? —+ R

+oo “+o0o
E. [F(J1,J)|E1] = By [F (/ e_<Bty’el>Zt1dt,/ e‘<BtV’e2>Zt2dt) |€1] +o(1).
T

1 T

By the Markov property of B”, we know that the process (B}): >, only depends on
(BY)i<r, via the location of B7,. Therefore the latter can be rewritten as

“+o0o +oo
/ P, (B}, € dz)E, [F ( / e~ Belzl . dt, / e~ Bie g2 dt> |51]
u+0Cs 0 0

where u = u(a) is such that (u, es) = (1 — n){(x,es) and (u,e1) = n{x, e;).

Now we have seen that after T} the drift of the process B” and that of Y only differ by
a remainder term 9R(x) which becomes negligible in the * — oo limit. Using continuity
of F' together with a comparison result such as [77, Chapter 5-Proposition 2.18] to
compare the processes B” and Y! we see that the latter is asymptotically equivalent to

+oo +oo
/ P, (B, € dz)E, [F ( / e~ (Yien Z1qt, / e‘<Y%’62>Zt2dt> \51]
u+0Cso 0 0

where we have used stationarity of the process (Z!, Z2). To conclude for the proof of
Proposition 6.2.4 it remains to check that the expectation that appears in the integral
becomes independent of z in the limit where x diverges inside C. More precisely we
prove that

Lemma 6.2.8. As x — oo inside C, for any z € 9C,

+o00 +oo
lim Eues [F ( | ez | e-<Y%762>ZEdt)} —E[FU(r. ). I (v.e2)]
where J and J' are independent and with law described by Equation (6.2.3).
Assuming for now that such a statement does indeed hold, we see recovering terms that

Ex [F(J1, J2)|&] ~ B [F(J((v, p)), J'((v, €2))]

and E; [F(J1,J0)|€1] ~ Eg [F(J1(Y"),J2(Y"))]. As a consequence using Proposi-
tion 6.2.4 we can write that

Eo [F(J1,J2)] = Po(E)E [F(J((v, p)), J'((v, €2)) [+ P (E2)E [F (T ({v, p)), J'({v, €2))]+0(1),

where besides P, (£;) — 1 and P,(&) — 0 in the asymptotic where (s1s5o0 —
S981v, &) — +00. Therefore in this asymptotic we both have that

Eo [F(J1,02)] ~E[F(J((v,)), ] ({v,e2))] and  Eq [F(J1,J2)] ~ E [F(J(Y1), Jo(Y)]

concluding for the proof of Proposition 6.2.1 and 6.2.2 for the A, case.
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Proof of Lemma 6.2.8. Let us split the integrals involved as

T L 400 . Ts L +00 L
[ eienziany [ Ceteizia, [z [ e Moz
0 T/ 0 T

Like before the integrals [;,> e~ (Yben zldt and [* e~ (Yie2) 224t will become negligi-
ble in the 2 — oo limit, whence by the Markov property for Y

“+oo —+00
E. [F < / e~ Yien) zlay / e_<Yt1762>Zt2dt>}
0 0

Ty +o0 -1
_ / P, (Y—%2 c dZ/) E.. |F / 1 e(Y%,m)Ztldt’/ e (Ye ’€2>Zz‘,2+T2dt
v+0C1 0 0

where v = n(x,es)ws and under E, ., the processes Y!, 371 are independent and
started respectively from z and z’. We have seen before that after Ty, the e; com-
ponent of the process Y*! was with high probability very large and therefore that the
e component of the process for t > T, behaves like a one-dimensional Brownian
motion with negative drift —(v, es) and variance 2 upon hitting the origin and posi-
tive drift (v, e2) conditioned to stay positive after having hit 0, and only depends of 2’
through (2/, ea) = n{(x, e2). The same applies for the e; component of the process be-
fore time T7. Moreover we have already seen that 7, — 7] — oo almost surely, whence
the processes (Z}); < 1, and (Z?); > 1, decorrelate as z — oo. As a consequence and
based on [77, Chapter 5-Proposition 2.18] we see that by stationarity of Z

+oo 1 +oo 1
E. [F ( / e~ (Yhen Zlar / (Y1 ’82>Zt2dt)]
0 0
Tll (v,p) +oo B(v.e2)
N/ P, (X[%w2 S dz’) Ev;(m,eg),n(ac,eg) F (/ e~ Bi Ztldt,/ e Bi ZEdt)
v+0C1 0 0

which is independent of z and converges to E [F(J({(v, p)), J'({v,e2))] as desired. [

+o(1)

+o(1)

6.2.4 . The general case

In the general case the main ideas remain unchanged and the arguments are the same.
Therefore in this subsection we mostly shed light on the results that differ from the study
of the A, case. We will consider s = s; - - - s, in the sequel.

6.2.4.1 Decomposition of the path

In the same way as above, we see that the we are able to provide another decomposition
of the path, based on the analogs of times 77,77, T>. The main difference will be that
in the general case we have to split s as

S = (81 .. '8i0—1)<8i0 .. 'Sil—l) PR (Sip71 .. 'ST') = wo .. .wp

where for all 0 < k < p and i;_; < j,1 < — 1, the reflections s; and s; commute (via
the convention iy = 1 and i, = r 4+ 1). In particular we have se; = —w; - - - wye; for
all 7 < ig.
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Namely, we already know from Proposition 6.2.5 that the event &, that the process stays
inside the domain U has probability 1 — o(1). Therefore before reaching 9C the process
has a drift

e(w) Ape )

Vliogd ... .hM(2) = Z U(z)

'lUEWl,-~- T

wy, Ul(z) = Z e(w) Ape ),

’wer,m,r

which can be put under the form sv + R, (z) where |9R;(2)| < Ce™®% for any x € U,
and where u is some vector inside C, up to an event with probability asymptotically 0.
The e; component of this drift is negative and given by —(w; - - - w,v, ;) for j < iy, but
positive equal to (wy - - - wyv, e;) for j > iy. We stress that before Ty the e; components
of the path are bounded below for j > i, but this is not the case for j < iy.

After having hit OC (say over JC;) for the first time, the drift of the process will be given
by Vlogd,... .h™. Denoting by By, . the location of the process when first hitting 9C
it is readily seen that it satisfies (sy---s,v — s'v, By, ) — +oo forall s € W, as
a — oo with probability tending to 1. Indeed let us set r; to be equal to s; if ' € W1 ...
and Id if s € Wi ... ,., so that r;s" € Wi ... .. Then we can write that

’ v / 4
<32"'STV_ SV7BT8C> — <81"'STV_T18 V7BT96>7
since 5,87, . = B, .. We can further write
<82 cee SV — S,y7 Bl%ac> = <SV — TlS/V, :c> + <3V - TIS,V’ Bg—‘ac - iB),

where the first term diverges to +oo since 715" € W ... ., while the second one is positive
(since By, . — @ stays between svty & C/To ™ with probability 1 — o(1)).

Therefore we can proceed in the same way after Thc: up to an event of probability
1 — o(1), before hitting OC for the second time the process will have a drift given by

e — 5y —(s2-srvie1)(z,v)
Vlogdy... ,hM(2) = SRR il S R + MRa(2)

1 — e—<82-s,«1/,61)(z,1/>

with [Rs(z)| < Ce @ close to BY, .. Now for j < iy the e; component of the drift is
negative and given by (ss - - - 5,1, €;) < 0 but is still positive for j > i as soon as iy > 2.
Therefore before hitting JC for the second time and under the assumption that i > 2
we see that the event that (B”,e;) > n(x,e;) for j > iy has probability asymptotically
1.

A similar scheme will be carried out until the process has hit all the boundary components
0C; for j < ip. After this event there will be a time 77 such that after 77 the e,
components of the path will be bounded below by n(zx,e;) for j < iy. In addition the
time T, = tir>1f0 {(B},e;) < nix,e;) for some j > iy} will be such that 7, — 7] — +o0,

and T the drift of the process is given by w; ---w,v. The components of the drift
corresponding to j > iy or j < iy will remain bounded below but that corresponding
to ig < j < i1 will not be necessary bounded below. The process will then hit all
the components of JC of the form JC; for iy < j < 4y, and after having hit all these
parts of OC there will be a time T} such that after T the components associated to
the roots e; for igp < j < 4y are bounded below, and 75 — T, — +o0 with T3 =

til;lf(){(Bf;, e;) < n(zx,e;) for some j > i1}. The same scheme will be repeated until the
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process has hit all the boundary components; after that the process will have drift v
conditioned to stay inside C.

In a nutshell, we see that the path can be divided between times T} < T] < T) < --- <
T, < T, = 400 such that

* Between T}, and T}, the process will contribute only to the integrals J; where
j ranges over {iy_y,---,i; — 1}, since the e; components of the process for
Jj & {ik—1, - ,ix — 1} will be bounded below by some constants of the form
n{x,e;). Between T} and T}y all the e; components of the path are bounded
below by n(z, ;)

* For such j € {iy_1,--- i — 1}, the e; component of the process B" between 7},
and 77 will behave like a Brownian motion with negative drift —(wy1 - - - wyv, €;)
and variance (e;, ;) upon hitting the origin, where it will be reflected and will have
the law of a one-dimensional Brownian motion with positive drift (wy11 - - - wyv, €;)
and conditioned to stay positive. The e; components for j & {ij_1, -+ ,ip — 1}
will have a positive drift.

* With probability tending to 1 as & — oo, all the time increments 7] — T}, and
Ti+1 — T3, will diverge to 4o0.

6.2.4.2 Proof of Proposition 6.2.2

We are now ready to address the proof of Proposition 6.2.2. Based on the above
decomposition for the path, we can split the integrals involved, for 1 < j < r, as:

Ty ‘ o
Jj:/ e_<Bt’ef>Z,fdt+/ e~ Biei) 77 dt

Ty [0,T%)U(T},,+o0)

where k is such that i,y < j < i, — 1. Like in the rank two case the second integral
will vanish in the limit since for ¢ & [T},_;,T}] the e; component of the process can be
bounded below by n(x, ¢;).

Now between time 7} and T}, the e; components of the process B” for iy_; < j <ip—1
can be approximated by a Brownian motion with drift — (w4 - - - w,, e;) and variance
(ej,e;) (joined with its reflection on the origin). Moreover since for such j,! we have
(ej,e;) = 0 we know that these Brownian motions are independent. Likewise, because
Ty41 — T} diverges to +00 with probability asymptotically 1, we can use the Markov
property in the same way as in the A, case to see that the integrals that run over distinct
intervals decorrelate in the limit. With these two decorrelations at hand we see that in
the end for any bounded continuous functions F; : R — R

r r Jo0 o
15 00| ~ITe. |5 ([ ez,
j=1 j=1 0

where z; is some positive number that diverges to 400 as € — oo, and where B’ is
a Brownian motion with variance (e;,e;), and negative drift —(wj41---w,, e;) upon

Ee
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hitting the origin and positive drift (wgi; - --w,, e;) conditioned to stay positive after.
The latter does indeed converge towards

T 400 .
e |5 ([ iz,
j=1 0

concluding the proof of Proposition 6.2.2.

6.3 . Tail expansion of correlated Gaussian multi-
plicative chaos measures and reflection coef-
ficients

In the two previous sections we have studied some consequences of the reflection principle
in the realm of probability theory which led us to the derivation of a Brownian path
decomposition based on a process whose properties have been investigated. Based on
these features, in this section we make explicit the connection between this reflection
principle and the one present in Toda theories, and which manifests itself via the existence
of reflection coefficients. Namely we show that Toda reflection coefficients arise in the
tail expansion of GMC measures as the following statements disclose.

Theorem 6.3.1. Assume that a —Q € C_ satisfies (sa—a,w,’) < vyforall1 <i <r
and s € Wi ... ,. Further assume that s € W, ... . with length r is such that (5o —
fa,c) — +oo forall s # s € Wi ... .. Then there exists a non-zero real number
Rs(«) such that

p

H (exp (—67<c’eik>lik (a)) — 1)] ~ e<§a_a’c>Rs(a). (6.3.1)

k=1

E

R,(«) is a Toda reflection coefficient, and is equal to

Rs(a):e(s)w, where
e =TT (ot (Z0)) ™ L 01 Jtowe) 1 (1- o)

=1

Theorem 6.3.2. Under the same assumptions as in Theorem 6.3.1,
P (/ ’x|—7<a,eik) Mvei(d2$) > e*“/(c,eik)’ k=1,--- 7p> ~ E(a)e(mﬂx,c) (6.3.3)
D

where the unit volume reflection coefficient R,(«) takes the form of
_ r 1 -1
Ry(a) = €(s) HF (1 - ;(éa — oz,wiv>) Ry(a). (6.3.4)
=1
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In the above we have considered the subset W ..., of W defined as the set of the s € W
that admit a reduced expression containing all the reflections sy, --- ,s,, and set

I(a) = / |7 ppres (). (6.3.5)
D

This extends the analog statement of [84, Section 7] which corresponds to the case
r = 1 —see also the works [116, 139] for more general results in the r = 1 case. We
mention that in [31] we prove additional results for class-one Whittaker functions and
show that we can define reflection coefficients for them.

Note that these statements allow to make sense of Toda reflection coefficients when s =
So1 - Sor for o a permutation of {1,--- ,r}. The value of these reflection coefficients
is in agreement with predictions from the physics literature [3, 2, 51]. The feature
that these Toda reflection coefficients arise in asymptotic expansions somewhat appears
in [3, 2]. We stress the remarkable property that Liouville reflection coefficients Ry («)
(see Equation (6.3.8) below) can be recovered from Toda reflection coefficients via the
identification

Ronl0) = Ris <<a,ez~> <€“§”>; =\

<6i7 €;

where with these notations we have stressed the dependence in the coupling constant.
Moreover Toda reflection coefficients can be computed recursively thanks to the notice-
able identity, valid for any s and 7 in W

Ry (o) = Ry(Ta) R (),

which in particular allows to reduce the computation of Toda reflection coefficients to
that of Liouville. Using this relation one checks that in the cases we consider we have
an alternative representation of the Toda reflection coefficients:

Vv

Rya) =e(s) [ ]

=1

4

)

I'(1+2(a - a,w;))T
(6.3.6)

The rest of this Section is dedicated to proving such asymptotic expansions. For future

convenience we set e = <ei .
€i,€4

6.3.1 . A warm-up: Liouville reflection coefficients

Before actually proving Theorems 6.3.1 and 6.3.2 we focus on the rank one case, that is
Liouville reflection coefficients. We will build on some of the ideas implemented in this
case to address the general problem which will involve additional reasonings related to
the more complex behaviour of the path decomposition unveiled in the previous section
and the presence of several correlated GMC measures.
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6.3.1.1 Probabilistic Liouville reflection coefficient

In the sl, Toda CFT, i.e. Liouville theory, the reflection coefficient also arises in the
tail expansion of the GMC measures considered. Indeed it follows from the proof of [84,
Lemma 7.1] (see also [11, Proposition 4.1] where it is proved that such an expansion
allows to compute a scattering coefficient associated to the Liouville Hamiltonian intro-
duced in [66]) that, for (o — @, e) < O sufficiently small,

E [exp (—e*“I(a))] = 1 + e*@7°R; (a) + L.o.t.

in the asymptotic where ¢ — —o0, and with R;, given by the reflection coefficient of
Liouville theory. The reflection coefficient that arises in such an expansion admits a prob-
abilistic expression involving the random variable J, () introduced in Subsection 3.3.4.1.

oy _ _ 2«
Ri(a) = MSW ny *r (04 - Q) E |/, (%) ] (6.3.7)

where the v/2 terms come from the fact that the simple roots are not normalized, and
with g7 Liouville cosmological constant. One of the achievements of the aforemen-
tioned article is the evaluation of this reflection coefficient, which is in agreement with
predictions from the physics literature. Namely [84, Theorem 3.5] shows that

o= (wi(3) He ) w59

fora—Q € (—%, 0), where [ is the special function

l(z) = m

In particular this allows to evaluate the expectation term as

b)) Ty

for v € (—2,0) and 7 € (0,2).

'Y’

6.3.1.2 Tail expansion of a GMC measure

In the Liouville case there is only one GMC measure that is involved in the definition of
the correlation functions. In that case the statement of Theorem 6.3.1 reduces to the
following Proposition:

Proposition 6.3.3. Assume that (a«—Q, e;) € (—v,0). Then for any positiven < 1,

E [exp (—e”<c’ei>1})} =1+ R, (a) elSie—ae) 4 0 (e(l_”)wc’ei)) . (6.3.10)
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Proof. Using the radial-angular decomposition from Equation (3.3.8) we can rewrite
I; as

I = / | ) A (dP) = / eV Bi e Zidt.
D 0

Since only a one-dimensional Brownian motion (BY, e;), with variance (e;, e;) and drift
<<:[Z>> = L(v,eY), is involved in the computation of E [exp (—e?¢*) ;) — 1], we can
readily use the one-dimensional path decomposition by Williams for the process
(B, e;) to rewrite the latter as I; = ¢¥M]J;, with the random variable M defined by

M = sup, -, o(B", e;) and where we have introduced the notation

+o0 5 )
Ji = / eV \Be Zidt,
0

Here (B",¢;) has the law of the process described in Subsection 3.3.4 (up to an ad-
justment of the variance and drift) and is started from — M, with M independent from
(B, e;) and with law given by dP(M) = (v, ¥ e« ™M1 y-4. Using this decomposition
yields

. {exp <_67<Cvei>Ii> - 1} _ /+oo<y’ eV)ee IME_ [1 —exp (_6“/<C+Mw;/,€i>Ji)] dM
0

with B is started from —M . By making the change of variable M «+ M + (c,¢;) we
end up with

E [exp (—e7<c’ei>Ii) - 1] = e*<”’eiv><c’ei>RSi(a; c)
with

“+o0
R, (a;e) = / (v, e;/>e<”’eiv>ME,M+<c7ei> [1—exp (—eVMJi)] dM. (6.3.1)
—(c,e;)
To evaluate this term, let us split the integral in Equation (6.3.11) as
(1-mee) oo y
/ e IVE oy [1 - exp (<73 M
(c€q) ((I=n)cei)

In the first integral above we can bound the expectation term as
B mcen) [1 — &Xp (_€FYMJZ')] < e’YME—M-i-(C,@ﬁ [Ja] -

Note that thanks to Lemma 3.3.7 the expectation on the right-hand side is uniformly
bounded in M. This implies that

((1—77)0781') v VM M
/< (v, e; )e<”’ei ) E_ri(ee) [1 — €Xp (_e7 JZ)] aM

P
C,€,L'>

(1=n)c.e:) y
S / (v, e )eOr e DME e i) dM
<C,€i>

< CelrHimed))((1-n)c.e:)

for some positive constant C.
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Let us now turn to the other integral. It is readily seen that since —M + (¢, e;) will
diverge to —oo, the integral J; will converge to

/O B Zig B (1) o)

where 72 = (e;, e;)2. This allows us to write E_ 4 ¢,y [1 — exp (—e?J;)] under the
form
E_Mtees) [1—exp (—e”MJ,-)] =E [l —exp (—(f’MJ% (v, €7)))] + R(M — (c,e;)).
Using the same estimates as above we see that
400
/ (v, ei>e<”’ei>MIE_M+<cvei> [1 — exp (—eVMJZ-)] dM
((1=n)c,eq)

+o00
:/ (v, eiv>e<”’eiv>MIE [1 — exp (—67MJ%, (v, ef)))] dM

—00

+o0 v
+ / (e e OMR(M — (e, e5))dM + O (e(w% >><<1*n>076i>) .
((1—=n)ec,eq)

The integral that appears in the second line can be evaluated and is found to be equal
to
(v,e}) <<u, eV>> [ _<~ve¥>]
———T S E |, (v, e T
N 5 v (v, €7))

Using Equation (6.3.9) and noting that @ = 2%—” we recover the expression (6.3.2)
given for the reflection coefficient, provided that (v,ef) € (—%,0) (which does hold
via our assumptions) and using the identity 2I'(z) = T'(1 + 2)

B v ; F<L+E;fﬁ)F0+%@w%lq0
Rsi(a)__<7rﬂl <2)> F<1+<Q176¥>)F(1+3<Q—a,ei>>'

~

4
—a,e))

As a consequence we need to focus on the integral of the remainder term. We will rely
on the fact that since M > ((1 — n)c,e;), the quantity z .= —M + (c, e;) (the starting
point of the process B”) will diverge to —oco. Now for any negative z’ > x, we can

rewrite J; under the form
Tx’ S (vie;) .
L:/ +/)a@ Zidt
0 !

where T}/ is the first time when the process B reaches z’. Then by the Markov
property the process (Bﬁ”’e”) has the law of B” started from 2z’ and is indepen-

t>T,
dent of (Bﬁ”"z”) . Therefore E,/ [exp (=™ J;)] — E, [exp (—e?™.J;)] is equal
to

0<t< Ty

o (vie;) . TI’ (vie;) .
exp (e'YM B ZZdt) (1 — exp <6'YM/ B ZZdt))]
T, 0

M T gwed v [T e
< ME, ePr - Zldtexp [ —e7 et Zdt
0 T,

< Ce'y(MJrz’)

Eqy
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where C'is uniformly bounded in M, ' by Lemma 3.3.7. Indeed the term that appears
in the exponential can be bounded by 1 while

Tz/ B(”aei> . / 0 B<V75'L> ;
E, / et Zidt| = e’ Ey / et Zidt
0 —L__

r—x

where L, ./ is the last hitting-time of « — 2’ (this follows from the time-reversal prop-
erty of the process B¢, see [138, Theorem 2.5]). By letting z — —oco, we end up
with

R(M — (c,e:))] < Cerleet)

provided that lim E, [exp (—e""J;)] = E [exp (—eVMJ% <%))] This follows
from the proof of [84, Lemma 7.1]. All together this implies that the integral of this

remainder term can be bounded by

' e(rHA=m)(we)))leei)
Finally we have proved the desired result: for any positive 7,
Ry (ase) = Ry ({a,e)) + O (e(mnltuel)ieed )
]

6.3.2 . Probabilistic Toda reflection coefficients: proof of
Theorem 6.3.1

Building on the reasoning developed above, we now turn to the proof of Theorem 6.3.1 for
the general case where the element of the Weyl group being considered is not necessarily
assumed to be an elementary reflection. Without loss of generality we assume that
s =518 and (Sa—§'a,c) — +oo forall s # s € Wy... .. Recall that we investigate
the asymptotics of

E

TT (exp (~ereeiry - 1>]

=1
in the limit where ¢ — oo inside C.

Our strategy is to rewrite the integrals involved using the radial-angular decomposition
from (3.3.8) as

I = / | 7 MO () = / e Bied Zid
D 0

fori =1,---,r and with v = o — (). The probability for these integrals to be large is
governed by the maximums of the processes ({5, ¢;)), -, so that the path decomposi-
tion of Theorem 6.1.1 naturally applies within this setting. To be more specific we can
rewrite the random variables I; under the form

[ = Me) / 1B iy . 1M
0

where M has its law described by

while the independent diffusion process B” that appears there is defined by joining
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» A diffusion process X" started from —M € C_, with generator A+ Vlogd.... .k
and run until it hits 9C_, say at z; € 0C;.

* Then run an independent process X? started from z; and with generator %A +
Vlogd,... »h, upon hitting 9C_.

* Thus define a family of processes (X', ---,X"). When X" reaches the boundary
of 9C_, sample X" with generator 1A + Vlog h.

In the above h is defined in Equation (3.3.17). By doing so we reformulate our problem
by writing that

T

H (eXp (—67<6+M’ei>Ji) — 1)

i=1

E ﬁ(exp (—erteen ;) —1)] = / dP(M)E_n

i=1 ¢

where dP(M) is the density of the random variable M while with the notation E_p; we
indicate that the process B” that enters the definition of the (J;); < ;< is started from
—M.

6.3.2.1 The case of length 2

As a warm-up we first consider the case where s has length 2, that is to say only two
integrals are involved. Then we can work in V ~ R? in which lie the two roots (e, e3)
(up to reordering the roots we assume that (i,j) = (1,2) to simplify the notations).
Since (e1,e2) = 0 implies that the components e, es of B are independent so the
expectations factorize, this case reduces to the case of length one. Therefore we may
assume that it is not the case. In doing so we can write

E [(exp (—67<c’el>ll) — 1) (exp (—ewc’”)]g) — 1)}

= /Cd]P(M)EM [(exp (—eV<C+M’el>J1) —1) (exp (—eV<C+M’62>J2) -1)].

In the above equation dP(M) is the density of the random variable M, given by
dP(M) = 0y 2h(—M)dM = Z e(s) (s — o, wY) (S — o, wy Ye @5 M gM.
seW

Here the coefficients (Sav — v, wy') (v — v, wy ) vanish when s € {Id, s1, s2}, so the sum
actually ranges over s € W 5. Hence a change in variable M <+ M — c yields

E [(exp (—ewxl)_fl) —1) (exp (—67<c’61>11) -1)] = Z e R (a; c)

seWq 2

where we have introduced

Ry(a;c) = ¢€(s) / (300 — a,w) ) (3o — o, wy Yela—seM)
C+c

Eo_m [(exp (—67<M’61>J1) - 1) (exp (—67<M762>J2) — 1)} dM.
(6.3.12)
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However and unlike the case where only one integral was involved, there is one subtle
issue that needs to be taken care of here. Indeed in the asymptotic where the starting
point of the process B” from Theorem 6.1.1 will diverge, it is far from clear how the
quantities J; will behave. In Section 6.2 we have provided a refined study of the process
B in this regime, and a consequence of Proposition 6.2.5 is in particular that as € — oo
inside C_ with (s182(v — Q) — 5251 (av — Q), &) — +00,

lim B, [F(J)G()2)] = E[F( 1, (s2(a = Q).e1)) ) | B [G (1, (o = Q.e2)) ) |

(6.3.13)
for F, G be bounded continuous over R* (the reasoning conducted in Section 6.2 still
works for Z as considered here). This allows to provide the desired result:

Lemma 6.3.4. Under the assumptions of Theorem 6.3.1 Rs(«; c) converges to a
well-defined limit. When s = ss5 this limit is equal to Ry(«).

Proof. Let us pick some positive n and split the integral between the domains C + (1 —
n)cand C, :=C+c\ (C;+ (1 —n)e).

The integral over the domain C, will be negligible. Indeed for any M € C, there is
some ¢ € {1,2} such that (M, e;) < (1 —n){e,e;) (say i = 1); as a consequence over
this domain the expectation term is of order at most e?(1=m/(eei);

Ee_m [(exp (—67<M’61>J1> — 1) (exp (—67<M’e2>J2) — 1)}

< e =mee) g, o [ J; exp <_ev(1—77)<c,61> J1> (1 _exp <_ev<M,ez> JQ))}
< e mieeng {Jl (1 — exp <—e7<M’e2>J2))} .

This implies that

< e I=niee) /
(e,e1)<(M,e1)<(1—n)(c,e1)
< CerI=nieen)gle.a—sa)

ela=saMIg [Jl (1 — exp (—67<M’62>J2>)] aM

for some positive constant C. Choosing n small enough this term vanishes as (c, e;)
and (¢, e2) go to —oo under the assumptions of Theorem 6.3.1. Therefore the integral
over the whole domain C,, becomes negligible in the limit.

Therefore the integral over the other domain C + (1 —n)c will be the contributing one.
Indeed this set has been defined so that inside C + (1 — n)c, the starting point of the
process will diverge to oo inside C_, so that we are in the setting of Proposition 6.2.1:

Ee_m [(exp (—eWM’el)Jl) — 1) (exp (—eV<M’e2>J2> — 1)] will converge pointwise to
E [exp (—ewM’eﬂJﬂ,1 ((s2(a — @), ef))) — 1] E [exp <—€7<M’62>J72 ({a — Q, e§>)) — 1] .

By dominated convergence this implies that
/c+(1_n)c elo—saM)p [(exp (—67<M’61)J1> — 1) (exp (—eWM’”)Jg) — 1)} dM
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converges to the quantity
/Ve<o‘§ayw1v><M’el>E Kexp (—6'7<M’61>JAY1 ((s2( — Q), e”{>)) - 1)} X
ela—sawy)(Me2) g Kexp (—€7<M’62>J72 ((a — Q, e§))> - 1)} dM.

The latter is nothing but

20 (Sa - sawt) ) E [ (Gsata - Qe =5 x

Y Y

1 (1 Ba—awy)

(Lo sawh) B |1 (- Qg

Y Y
Now if we choose s = s;s9, we can write that <52(";1Q)75T> — <32(0‘;§9)761V> — <°‘_‘;i’“1v> as
well as <a’$’63> _ lo=Qe) _ <“*§2j’°’¥>. As a consequence we can evaluate the above

2y
quantity thanks to Equation (6.3.9):

(§a7a,wi/)

-2 = 1 T (%(a—éa,wf))f‘(l%— Ha - sa,wy))
<7rl <41>> ;F(1+%<§a—a,w}/))F(1+%<<§04—047w¥>)

X

(éafa,wv) N N
<7Tl <7§))721 I‘(%(a—sa,wX))F(l%—%(a—sa,w%@) |
4 71“(1+%<§a—a,w2v>)F(1+%<§a—a,w2v>)

Therefore, collecting up terms, we see that

L= e o () 1) o (-005)

does converge, and for s = s1s, the limit of Rs(«; ¢) will be given by R,(«a). O

This allows to conclude for the proof of Theorem 6.3.1 in the case where p = 2.

6.3.2.2 The general case

Without loss of generality we assume that s = s;--- s, and
(sa — §'a,e) — +oo for all " # s € Wy... .. Then along the same lines as above we
get

E

I (esp (~eresar,) - 1)]

k=1

exp (—eYeeunl, ) — 1
k

T p
=1

— Z €<§/a—a7c>6(sl> / H<§/a —a, W;/>e<a_§/a7M>EC_M
s’ ¢

+e =1 k

where the sum ranges over the elements s’ € W whose reduced expression contain
1, , Sy, that is Wi .. ,. Indeed we can write (§a — a,w)) = (o — Q, s 'w) — w)’)

where s'"'wy —wy = 0 if this is not the case (indeed sjw; = 0 for j # 7). Using the same

1
estimates as before, we see that up to a term which vanishes in the limit, the integral
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can be reduced to an integral over C + (1 —17)c where n > 0 is small enough. Now recall
from Section 6.2 that in the limit where  — oo inside C with (sa — §'a, &) — 400 for
all s #se Wy,

170
=1

for Fy,--- , F, bounded continuous over R*. With Equation (6.3.14) at hand we see
that

converges to ﬁE [FZ <J%. ((Sit1 - sr(a—@Q),€5)) )} (6.3.14)

i=1

T

lim H(é’a — a,w) el
€= Jete T

afé’a,M

p
H oxp (—e /I, ) — 1)]

r 1 N :
= | | I (1 + ;<§/C¥ - Oé,w;/>) E |:J% <<Si+1 e ST(OC _ Q),@:»;(S a—a,w) >] '
=1

Now in the case where s = s, we can use the fact that s;w, = w;’ for all j # ¢ while
siw; = w, — e} to see that the exponent is actually equal to

(sa — a,w)) = —(a — Q, 8, - 51w, — W)

2|~

1 1
= _<a - Qasr o 'Si+1€;/> = /7<Si+1 T 'Sr(a - Q)a6:>

7

This allows to evaluate the result in that case via Equation (6.3.9):

ﬁ(ﬂ(ﬁ))@:F(H Lisa —a,w) ))F(1+%<§o¢—a,wi))'

4 I‘(l—i—;(a—§o¢,w;/>>F(1+%(a—éa,wi))

Moreover under our assumptions we know that the higher order term in the expansion

of

T

Z €<§/a_a,c>6(8/) / H<§/a_a7 wiv>€<a—§/a,M
C

S/EWL..,m tc =1

P
H (exp ( 67<c’eik>lik) —1)

will correspond to s’ = s. The proof of Theorem 6.3.1 is thus complete.

6.3.2.3 Proof of Theorem 6.3.2

The proof of the tail expansion of the GMC measures follows the very same lines as the
reasoning presented above so we will be brief. One only needs to replace the terms of

the form E [Hle (exp (—eWC’eiUi) — 1)} by P ([l- > e o) 1 < < p). By doing so
we will end up with expression of the type

P(I; > e e 1 <i<p)) = / AP(M)P_p (J; > e 7™M 11 < < p)
c

_ Z (8a— acﬁ( )+U

SGWl,.“,p
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with u a lower order term and R,(«; c) defined as
p
e(s)/ H(éa — a,w;/)e<°‘_§a’M>IP’C_M (Ji > e 7Me) 1 g p) dM.
Ct+e ;1

Thanks to Proposition 6.2.2 above we can prove in the same way as before that R(a;c)
converges and its limit is given by R¢(a)) when s is as in the statement of Theorem 6.3.2.
This wraps up the proof of Theorem 6.3.2.

6.4 . Asymptotics and analytic extension of the
correlation functions.

In the previous section we have explained how reflection coefficients associated to Toda
CFTs naturally arise in the tail expansion of correlated GMC measures. We can further
implement this connection to provide an asymptotic expansion of the expectation term
that appears in the probabilistic definition of the correlation functions from (4.1.13). As
a consequence we will see that we will be able to extend the range of values for which
the probabilistic representation of the correlation makes sense. Namely we show that:

Theorem 6.4.1. Assume that g = sl; and let zy,--- , zy € C be distinct. Define a
subset of (Q + C_)N by setting

N
Ay = {(a1,~~~ an) € (Q+C)Y st fori=1,2, <;ak —2Q,w;) > =

and forany 1 < k < N, I{l}%((xk —Q,e;) < —7}.
(6.4.1)

Then the correlation functions admit a probabilistic representation for o € Ay still
denoted by (IT,_, Vi, (21)). This extension is such that the map o — (I]r_; Vi, (21))
is meromorphic in a complex neighbourhood of Ay, with poles given by

2
Py ={a e Ay, (o —Q,e) € —yN*"U —;N* forsomel < k< Nandee &t}

(J{a € Ay, (s(w),w;) =0forsomew: {1,--- N} - Wand1<i<r}.
(6.4.2)
Here we have used the notation for any map w: {1,--- ,N} — W and a € (C*)":

N
s(w) =Y wlk)ax — 2Q.
k=1
The probabilistic correlation functions can be defined under the assumptions of Theo-
rem 6.4.1 by considering expressions of the form

<Va1(21) e VaN(ZN)> — /a€2(Q,c>E

N
H Vak (Zk)ei > pie’NC,ei)M’Yﬁi © R(z,a) (C) de
k=1
(6.4.3)
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where the remainder term R )(c) is defined in Equation (6.4.5) below in terms of
Toda reflection coefficients. This expression coincides with Equation (4.2.6) when «
belongs in addition to the set By.

The assumption that g = sl3 made in the statement of Theorem 6.4.1 is actually
not necessary in that the reasoning developed in this section can be easily adapted
to other choices of underlying Lie algebra based on a straightforward generalization of
Proposition 6.4.2 below. We stick to the case where g = sl3 hereafter so as to keep
the computations understandable and since this the case to which we have dedicated
the most attention via the derivation of the Ward identites and of the Fateev-Litvinov
formula.

6.4.1 . Asymptotics of the correlation functions

In order to provide an analytic extension of the correlation functions beyond the bounds
prescribed by Theorem 4.3.1 we first need to describe the asymptotics of the expectation
term that enters the correlation functions when the zero-mode ¢ diverges. This is the
purpose of the following statement:

Proposition 6.4.2. For any z;,--- ,zy € C distinct there exists a positive £ such
that the map
N 2
6£|c|€—2(Q,c)IE H Vak (zk)e_ S22 pielvene Mrei(C) R(z,a)(c) (644)
k=1

is uniformly bounded in ¢, where the remainder term is defined by setting:

Riza)(€) = RL(c) + R4 (c) + R (c), with

N
— e (c,e1) e
Ri(c) = Z 1 s(w) 1) <0 HRw(k)(ak)Vw(k)ak(Zk)e p1ev{ee1) Mver (C)
w:{1, ,N}—{Id,s2} k=1
N
- > sy <o | | Rt () Viaeyan, (21),
w:{l,- ,N}—{Id,s1,52,5151} k=1
N
R})Z2(C) = Z ]lmaxj-:172(s(w),wj><0 H Rw(k) (ak)vﬁj(k)ak (Zk)
wifl, N} W k=1

(6.4.5)

In the rest of this subsection we prove this statement.

6.4.1.1 Notations and preliminary remarks

We start by introducing some notations to simplify the coming computations. For V' a
subset of the Weyl group W we set

Ry H Vak(zk) — H <Z R5<O‘k’)véak (Zk)>

k=1 k=1 \seV
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and also define Ry, Ry, = Ry,v, Where ViV, = {vjvs, v; € V; for i = 1,2}. We further
introduce for a € (Q +C_)V

Ra(c) = Rl (c) + R%(c) + R (c), with

N
— e <C,E > e
R(lx(c) = Lic.er)<0 (e prev{eer) Myer(c) ]l(c,61)<0RId,sl) Rid.s, H Vo (),
k=1 (6.4.6)
N
REQ(C) = 1}2%’;<Cvei><0RW H Vak (Zk)
’ k=1

To lighten the notations we denote in this subsection I'(C) = Z(Vzefa)(C). Note that

since the random variables I*(C) have negative moments of any order, we know that for
any positive & > 0

ov(e,e;) i
Rleer) He Erme @O g g (c,e1) = +o0.

Of course the same applies in the region where (c,e;) — +oo, while this remains
true for R > 0 small enough for the terms containing reflection coefficients due to
the assumptions made on the parameter s. Therefore we focus on what happens as
(c,e1) — —oo with (¢, es) bounded below, and when both (c,e;) and (c,es) diverge
to —oo. To do so our strategy is to show that in these asymptotics the integrals that
appear in the expectation term concentrate around the singular points © = z,. Put
differently we will see that the behaviour of the expectation term is governed by the

asymptotics of
N )
H e 37 pie (S 11 (B, (Z’“))]

k=1

for some well-chosen 7.

6.4.1.2 The case where (c, ¢,) is bounded below

We first consider the regime where (c, e5) is bounded below. Our goal is to prove that
there exists a positive £ > 0 such that, as (¢, e;) — —oo with (¢, e2) bounded below:

_2<Q70>E

N
e_uQe’Y(C,eQ)M’Y€2 (C) (6_#1ev(c,e1>M761((C) — Ry S1> H Vak (Zk) -0 (e§<c,el>) ]
k=1

(6.4.7)
To start with we choose ¢ > 0 small enough and consider for ¢ € R? the radii 7, = r1.(c)
such that

(1+€) < <<C,€1>_ vV <C, 61>_

Lia—Qery>— <
2, —Q,p) (@ — o, e1) —2y @)= 7)

rr < (1—¢) (e e1)-

<ak - Qa 61)
and assume that (c,e;) is negative enough so that the balls B ( z)) remain disjoint.
Note that the above bounds can be satisfied as soon as (o — @, e1) # —v (which we

assumed to hold) and for ¢ small enough. Then the integral M”el( ) can be decomposed
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as M7 (C) = M7(C,) + SN M (B, () with C, == C\ (UY_, B, (). This
allows to write that for any bounded continuous map F' over H~}(C — R? g)

N
QAR | [T Vay (e =4 © p(X)
k=1
_ H |ZJ _ Zk| (ak,0i5) els:0) [ —p1e? 051>11(C)G(X)} 7
i<k

where G(X) = F (X + N G, -)) and with

N
H —me @I (B (50) G (X))

B e—me““l”l C)G }

N
_'_E (e Mle')/(c el Il ) H 'ule’Y cel>11(BTk(Zk))G<X)

Let us start by considering the first expectation term, which we rewrite under the form

ST BT (e e 1) G(X>]

uc{i,- ,N} keu
where the sum ranges over subsets U/ of {1,---, N}. In the case where (ay,¢e1) < %
then the term
E Il(Brl (Zl)) H <€—u167<cv61>11(3rk(Zk)) o 1) G(X)
k£1leU
is well defined thanks to Lemma 3.3.6, which allows to write that
Z E (e_ulew@:,eﬁ[l(grl(zl)) . 1) H (e—ule“Y(C,el)Il(BTk(zk)) _ 1) G(X) =0 (e’Y<c,e1>) .
uc{i,- ,N} k#leU

When (o, — @, e1) > —~ for some k € U, the analysis is more subtle. Namely one
needs to use the radial-angular decomposition (3.3.6) around each insertion z; to put
the integrals involved under the form

+o0o 27
B ) = [ e [T r o . ds)

Tk 0

—+o00 - 2m
_ Bl e / B / FE(t+ 14, 0) MO (At + 7, dO)
0 0

where BF == X, (z,)+ (. —Q)t and Y*(,0) == X (24 +) —X,(z;) have the law of
¥(eke1)
the pair described in Equation (3.3.6), while FF(¢,0) = [Tz <| = ) :

—t+1i0

‘z;ﬁ»e

zp—z et

In the last equation B* is a one-dimensional Brownian motion with drift v = (g —
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(), e1) and variance 2, started from the origin and independent of the sigma algebra
generated by the (X(2)).¢p,, (-,)- We can apply Williams path decomposition (see
Subsection 3.3.4.1) to this Brownian motion, which allows to write that

+o0 2
£ fa) = e [T TR O+ 1)
0 0
where B* is the one-dimensional process described in Subsection 3.3.4.1, started from
— (M, e1) which is is an exponential variable of parameter —v;, independent of every-
thing. Therefore, with ¢ = |U| and for any G, that only depends on (X,).cc,,

E H (e_mewc,eml(&k(zw) _ 1) G.(X)
keu
p c k e
= / H(_Vk)er<Mk,81>d<Mku e1)E H (6_“1€W< TR B 1) GrX)
(0,400)? ey k=l

400 2
with  Jy(—(My, e1)) = / Bt / FE(t+ry, 0) My (dt + 7y, d)
0 0

and where we use the notation JJ(—(My,e;)) to stress that the process B* is started
from —(M., e1). We can now make a change of variable (M, €1) <+ (M, +c+ B} , 1)

to end up with

E / [T (—vi)ers™seBroena(my, e,)
RY peu

<€,M16'Y(Mk,e1>JI:(<c+Bfk7Mk,81>) . 1) 1

<Mkfchﬁk 761>>OCTY7‘ (X) :

. . _ k .
We can interpret the exponential term ], ;, e vi{Brie1) 35 a Girsanov transform. Namely
recalling that Bf = X, (z), we see that

=Y w{Brae) =D (Q — ar ) (X (zr), 1) — (Q — ag, e1)’ry

kel kel

£ [(Zkeu<Q = o €1) (X, (), €1>)2]

= <Q — O, €1><er (Zk)7 €1> -

keu 2
+ Z (Q — ag,e1)(Q — ay,e1)G (2, z1),  where
k<lcU
1 dw 1 dw
G (21, 2 ::—j{ G, (z,w)— and G, z,-::—j{ Gw,)—-
(21, 21) = 5 o (2 w)— e(2n ) = o S (w,)—

Note that if we take (c, e1) large enough, then G, (2, 21) = G(2k, z1) for k # [. Likewise
explicit computations show that G/ (zx, 2x) = r+21In |z, for r large enough. Therefore
without loss of generality we can assume that both assumptions hold in the sequel.
Now in virtue of Theorem A this exponential term has the effect of shifting the law of
X by °,(Q — ak, e1)G,, (2, - )e1, and in particular shifts the law of B* by

() = (Q — au, en) (e +21n |2 |, Jer + Z(Q — ag, e1)G(zk, z1)er.
Ik
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This shows that the above expectation term is equal to

_ (Q—ap,e1)(Q—ay,e1)G(zk,2) v Vk(cel>/ — ) ev* (My,, €1>d M. e
=] e [T RICH (M, e1)

k£leU keu keu

E

(6_H167<Mk,el)J,Z((M(Tk)—Mk,el)) — 1) ]]-<Mk—/\k-(7“k),€1>>0G7" (X + Z(Q — oy, 61>G(Zk, -)61>]

kel

where on the last line we have used that for z € C,, G,, (2, 2) = G(2,2) for all
1 <k <N, and with

Ae(rp) = ¢+ B,’fk +(Q — ag, e1)(re +21Inz] Jer + Z(Q — ag, e1)G(zk, 21)e1
Ik

Now we have assumed that for some positive £ we have ry; < (1 — 5)< ecn)  for

ap—Q.e1)
all 1 < k < N. As a consequence we see that (\i(r),e;) — —oo almost surely, so
that along the same lines as in the proof of [31, Proposition 4.10] the latter will be

asymptotically equivalent to

H e(@-ape1)(Q-an,e1)G(z,21) H R,, (ak)6<Q_04k751><c 1)
kAU ke

(X—i—z — ag, e1) (zk,-)el>].

kel

More precisely the reasoning developed in the proof of Proposition 6.3.3, based on the
Markov property for the process entering the definition of J; (see also the proof of
Equation (6.4.8) below), allows to write that

E H (6—;1167(0 e1 [1( r(2k)) _ 1> GT(X) —
kel
H (@-arer)(@-are1)Glzr,z) H Rsl ak) (@-awer)lecr) (X + Z - O, 61 ('Zk7 ')61>]
k#leUd kel kel

—f—O( (1-m) cvel))

as soon as |U| > 1
Therefore recollecting terms yields

N

_2<Q’C>E H Vak (Zk)e_mewc,eﬂMwﬁ(BTk (Z’“))FT(X)
k=1
= > T Ve o) T B () Vi (20) o (X) | + O (eloertimmienca))
uc{1,,N} kU kel
N
— ¢ 2QaE| H(Vak(zk) + Ry, () Vi, (20)) Eo(X) | + (’)( +(1- 77)(6761)) )
k=1

Under the assumption that (s,w;) > —v (which we assumed to hold since o € Ay)
the remainder term is as desired, a term with asymptotic bounded by a O (65<c751>) for
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some positive £ as (¢, e;) — —oo with (¢, es) bounded below. By choosing F.(X) =
M7¢2(C,.) we have therefore proved that

6_2<Q7C>E

N
_ (c,e1) e _ (c,eq) e
<6 pre¥(eel) MYe1(C\C,) Rfd,:;l) HVak(zk)e pze{ee2) My Z(Cr)]

k=1

isa O (65<C’el>) in this asymptotic. As a consequence it remains to control the terms

N
e—Z(Q,c)]E H Vak (Zk) <e,ule’v<c,el>]\/['yel (Cr) _ 1) e 212:1 Mie'y(qq)M"/q(c)] and
k=1

N
e QR (67“”%61)”61(@\@” — dem) (6“26”6’6”””52(6\@) - 1> I Ve (z)
k=1

We start with the second term. Along the same lines as above it suffices to show that
E |:<e_ule“/(c,e1>ll(Br1(Zl)) —1= Rs1 (Oél)‘/élal—al('zl)) <6#26’Y(C’e2>12(B7‘1(21)) _ 1>i|

isa QO (6(1*’7)7“’6”). Now like before we see that the law of the planar, drifted Brownian
motion Xy, (21) — X, (21) + (a1 — @)t can be realized by sampling (M, e;) according
to its marginal law and then sampling the process B', whose e; component is the
process B} used above (and described in Subsection 3.3.4.1) while its wy component is
2

an independent Brownian motion B! with drift (o0 — Q,w») and variance |ws|* = 3

This shows that its e component is the independent sum of —%Bl and %El so that
2 X e 1Bl+3B) o 1
(8, () = e Ontoo-@n) [ o445 [T Bl o), do)
0 0

The Girsanov term e{?~21¢1B1 has the effect of changing I? into [% = e{@0-@e)ri 2,
Thanks to our assumption that 71 > (1 —|—5)2< {eer) _\which ensures that (ag—Q, p)r1+

aO_Q7p>,
M — —o0 almost surely for (M, e;) = —(\i(r1), e1), we see that for £ > 0 small
enough

+oo
oS Xev(<X1 (21),e2)+(a0—Q.p)71) /

o 2
o1(~38+15}) / Fy (t4r1, 6) My (di+ry, d6) = 0
0

0

as (¢, e1) — —o0, almost surely. Therefore
E [(e_#le'y(c,eﬁIl(Brl (1)) _ 1— R51 (al)%lal—al (Zl>> (6#267<6,e2>]2(31,1(21)) - 1>i|
is a lower order term compared to

E [<€7#16’Y(c,el>ll(Br1(Zl)) _ 1 _ R81 (al)%lalfoq <21)> 6;1,26’702,62)[2(@\3” (21)):|

which was already shown to be a O (6(1*’7)7“’6”). As a consequence to show that
Equation (6.4.7) does indeed hold it only remains to prove that

N
6_2<Q’C)E H Vak (Zk) <6,u167<°,€1>M’Y€1 (Cr) _ 1) e 212:1 uie’y<°v€i>M’Y€i (©)

k=1

=0 (e“c’el)) )
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For this we can write that

’7<O¢k,61> .
[ S ro] < [ ] ( ) B e S ]
T k=1

|21, — |

|x| ’y<o¢k7€1> 2 (c,e;) Ti
URIES |> B e B i)
C, i} Zp — X
v(ak.er) 27
where I'(z / ke Iyl M (dy).
oy Mz =yl ly — |

When r — 400, the singularities around = = z;, are integrable if (ay,e1) < % so that

in that case the remainder term is a O (e7*?)). On the contrary if (ay, e) > % then

around x = z; (say in an annulus Ag(r) centered at z; and radii e™™ and 2e ") we
can make the change of variable x <+ 2z, + e ™ (x — z;) to see that

]E ]1 (Ak (7’))6_ 2?21 Hieﬁ(c,eﬁli(c)}

al | 2| Vo) 2 (cei) Fi —r
~ erk(2'y(ak,61))/ H (| + |) E |:€_ Doim mie e T (Zk-i‘e k(x_Zk))i| d2213'.
Ap(1) o7 \IFe T T

Now when r, — 400, we can use the fusion asymptotics (4.4.2) to see that for any
positive ¢:

~ or 2
E [6_ >, Mi€7<°’ei>fz(zk+e_rk(x—Zk))] —0 (erk(mkﬂ L D.e1) 6)) )

Therefore we end up with the bound
(o (aptre1-Qie)®
E |:(€,u1e“/(6«€1>[1((cr) - 1) e 212:1 Me’Y(CM)MWi((C)} < Ce’y<c,61>e Tk (2 Ve e1)+ 4 8)

which shows that this term is a lower order term too since the exponent 2 — y{ay, e1) +
<ak+761 Qe1)® _ (ax— Qe1)

is positive.
This concludes for the proof of Equation (6.4.7).

6.4.1.3 The case where c — ~ inside C_

We can proceed in a similar fashion for the asymptotic where both (c,e;) and (c, e5)
diverge to —oco. In that case we aim to prove that

E HVQ z)e zlueﬂceﬁwez(«:)]
k

=E H (Z R(ag)Via, (Zk)) +0 (i 6(1_")7<C’ei>) :

Lk=1 \seW i=1

(6.4.8)

In order to prove Equation (6.4.8) we first pick 7, like before and write

E ﬂe_z:?_wie“c’eﬁfi(@] - Z E
k=1

=1 kel;
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which we can further put under the form
2

Uy U Uz C{1,-+ N} i=1

disjoint
[ (e rontan —a) [ (et 1) |

k;€U; kz€Us

We now distinguish on whether k € Uy, Us or Us. If k belongs to U; fori =1 ori =2
then the only integral surrounding the singular point z = k is given by I'(B,, (z1)).
This term can be processed along the same lines as above by applying Williams path
decomposition to the one-dimensional Brownian motion (X, ,(zx) — X,(2x) + (g —
Q)t,e;). Hence

N
k=1

2
_ev(ee) i ~ —uev(eeq) i
> B |TLe ) T R0 Vi, o, (21) [ (e 0P —1)]
Uy, Ug U3 C{1,--- ,N}

i=1 ki€U; k3€Us
disjoint

2
+0 (Z e(l—n)v<c,ei>> .
i=1

For terms that correspond to k3 € Us, because of our assumptions on the weights we
know that (svy — vy, w;) < —7 for i = 1 or i = 2; without loss of generality we can
assume that (s1S914 — Vg, w1) < —7. The asymptotic of the corresponding term is then
governed by

2
e (e,e;) 1t ~
I (BT‘k (Zkg)) H e ’ THE) H Rs¢ (S’L'Oéki)‘/:@iaki*aki (Zkz)

e E

which is a O (e7 ”1>) via the same analysis as before. Thanks to the fact that for
s & {Id,s1,52}, Viap—a, isa O (ZZ eviee ) this shows that Equation (6.4.8) does
indeed hold.

6.4.1.4 Recollecting terms

Recall that we have defined F,(c) via the expression
Eu(c) = |:H Vi ( 2p)e S22 el Mrei(C) R}I(C) — Ri(C) — RE/(C) ’

where the terms that appear are defined in Equation (6.4.6).
With the notations introduced there, another way of formulating Equation (6.4.7) is to
write that as (¢, e;) — —oo with (¢,2 ) bounded below

N
~2Qp <e—mev<°’el>1vﬁffl(c> ~R, d) e MO TT Y, (2) | = O (efle),
k=1
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while the same reasoning shows that in this regime too e (@K [R,(c)] = O (esleev)).
As a consequence in this asymptotic we can write that

N
Rld,s1,52,5251 H Vak (Zk) _ R‘IX,Z(C)

k=1

EQ(C) = 6_2<Q’c>ﬂ<0762><0E + O (6§<c’el>) .

Now from its explicit expression we readily see that the above expectation term is asymp-
totically equivalent to

Ry, (O‘k)‘/éﬁ%ak (zk) H voéz (Zl)
14k

which scales like max; < j, < y e8751520672:¢)  Ag 3 consequence this remainder term is
integrable as soon as max; < < N (S + 515204, — v, wy1) > 0, which follows from the fact
that (s,w;) > —v while (51520, — ag,w1) > 7 because of our assumptions on « for it
to belong to Ay. This shows that efl¢/E,(c) remains bounded over the domain where
(€, e5) is bounded from below. Of course the same applies for (c, e;) bounded below.
Likewise if ¢ — oo inside C_ the same reasoning shows that

e @R [R}l(c) + Ri(c)} =0 (65(0’61>) + 0 (e£<c’62>) )

Now we have also proved that as soon as (s + ve;, ¢) < — € |c,
N
2 v(e,e; e; —£le
e 2QOR HVak(Zk)e_Zi:l“ie fecal Mei(C) _ R.2(c)| = O (e 4 \) ‘
k=1

This hypothesis follows from the assumption that (s, w;) > —v made in the definition of
An. Therefore we see that for £ > 0 small enough, €¢Il E,(c) remains bounded when
c — oo inside C_. All in all, this shows that as desired,

|En(c)] < 8l

This concludes for the proof of Proposition 6.4.2.

6.4.2 . A furhter analytic continuation of the correlation

functions

Based on the asymptotics of the correlation functions described in Proposition 6.4.2,
we are now in position to address the issue of providing an analytic continuation of the
correlation functions beyond the bounds prescribed by Theorem 4.3.1.

6.4.2.1 Reducing the proof

To settle the ideas, let us first consider the subset A}’ of Ay defined by assuming that
for2< k< Nandi=1,2, (a, — Q,e;) < —v, and that the weight «; is such that
(g — @, e1) > —v while (a; — @, e2) < —7. In that case we have that R, (c) is given
by

N
—poe{ce2) e
Ra(c) = ]l<s,w1><0 H Ve (Zk) (vm(zl) + IL<s7w1><<04k~—Q,e1)R&‘l(Ofl)vﬁcn(zl)) g H2eT S HMIE(C)
k=2
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Now let us introduce

N
Ra(€) = Liceyco [ [ Var (1) (Vi (21) + Ry (01) Vi (21)) e 727 720,
k=2

We aim to prove that the map F': (C?)"Y — R defined by setting

Fla) = [ oo

1 )
- o —(aj,0) —(S,W2>02E [ —,uge”*‘ZIQ((C)} d
RPN /RI L1 == ¢ ‘ “ (6.4.9)

Oll _ yeq 72
& 1 (e [
(84 8101 — aq,wy)

is analytic in a complex neighbourhood of A}\}O, where the quantities denoted with a
A "sign are defined by replacing o with 5;a;.
Indeed it is readily seen that in the case where (s,w;) > 0 for i = 1,2 this map is given

by
/ 6—2(Q R
]RQ

so that F' defines an analytic continuation of the correlation functions over A", Like-
wise, F'is seen to coincide with

[

under the assumptions that <s,w2> > 0 with either 0 > (s,w;) > (a; — Q,e;) or
(g — Q,e1) > (s,w1) > —.

This shows that the map defined by Equation (6.4.3) is indeed analytic over an open com-
plex neighbourhood of A}\}O. Furthermore as soon as every integral term is holomorphic
over A}\}O, we see that the poles of F are given by (s, w;) = 0 and (s+51a1 —ay, w;) = 0.
Therefore this claim allows to conclude for the proof of Theorem 6.4.1 in this very case.
In general, the same reasoning still works. Namely recalling the notations of Equa-
tion (6.4.6) we may consider the map F' defined by

N
E |T] Vau (zp)em Simerennra@) Ra<c>] dc

44

N

H 2 mewce»wet(@] de.

2
Fla) = /R2 Es(c)de + Z /]R E!/(c;)dc; + EX?* where we have set (6.4.10)

E, ( ) Qc |:H ” Zk S mer(ee >M'yei(C)_Ra(C)}’

o (s(w)wa) (e.e)

Eq({e.e1)) = >

w{1,~ N}—{Id,s2} (s(w),ws)

N
—peYi{eer) e
(6 preY{een) prer(c) Ticery<o (1+ Rsl)> H Rw(k)(ak)vw(k)% (Zk)]
k=1

_2<Q70>E
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which indeed depends only on ¢ through (¢, e;), and

—(s(w),c)
Ei’2 = € e*?(Q,C}]E
w:{l,gj\:[}_}W <S(’LU)7 W1> <S(U}), W2>

—(S('Ll)),

_ 6— —Z(Qc
Z Z <S(w) Wz

=1 w:{l, ,N}—{Id,s;}

H Ry (o) Vio (ks (Zk)]

k=1

HRw(k ) Vi ak(zk)]

which is independent of ¢. The reason for introducing such a map F' follows from the
observation that F' is seen to coincide with

L H Vi (1)e™ T e015@) _ Ra(c)] de

as soon as every term makes sense. Therefore proving Theorem 6.4.1 under its most
general assumptions boils down to showing that the following holds true:

Lemma 6.4.3. Let us denote by A%, the subset of Ay defined by the condition that
(o — Q. e) € —yN*U —2N* forall 1 < k < N and e € &*. Then the following map
is holomorphic in a complex neighbourhood of A%;:

Gla) = / [Hvak e TizpieT e >M”ei<C>—Ra(c)]dc. (6.4.11)

Indeed proving that terms of the form [, E% (¢;)dc; are also holomorphic follows from
the very same arguments. This shows that as soon as (ay, — @, e) & —yN* U —%N* for
all 1 <k < N and e € 7, the poles of the map F(«) defined by Equation (6.4.10)
are given by the (s(w),w;) = 0 for some s € W and i € {1,2}. When (o), — Q,¢) €
—yN*U —%N* for some 1 < k < N and e € ®* then the reflection coefficients have a
pole (which may still be removable in some cases) so that F' does too. This shows that
the statement of Theorem 6.4.1 holds true as soon as Lemma 6.4.3 does.

6.4.2.2 Proof of Lemma 6.4.3

Let us consider O an open subset of Ay \ Py contained in K a compact subset of
An \ Pxn. We have seen in Lemma 4.3.2 that the expression E,(c) was holomorphic in
a complex neighbourhood K’ of K for any fixed ¢. Moreover thanks to Proposition 6.4.2
we know that the family of holomorphic functions (Eoz(c)eg":')C is uniformly bounded
in ¢ as soon as a € O. It is also readily seen to depend continuously in ¢. This
implies that in a small complex neighbourhood O C K’ of O the family of maps
(Ea(c)eﬂd)ce]RZ remains bounded uniformly in ¢. In particular we see that for a € O’
the map ¢ — E,(c) is absolutely integrable over R?. As a consequence if we take
a € O’ and T any closed and piecewise C! curve (say a triangle) surrounding (g, e;)
on which (Bw; + (o, eg)ws, ag, -+, ay) stays inside O if B € I we see that

/ (/ E(5w1+<a762>w2,a2,"-,aN)(c)dc> dﬁ

T R2

:/ (/ E(5w1+(a,62>w27a2,---,aN)(C)dB) de
R2 T
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using Fubini-Tonelli theorem.
Now for fixed ¢ the map 8 — Egu,+(aes)ws,as,.an)(€) is holomorphic; therefore the
integral over I" vanishes. This shows that for any such I"

/ </ E(Bw1+<04762)w2,042v",aN)(c>dc> dp = 0.
I R2

By Morera’s theorem this implies that § — fR2 E (B +(a,e9)wz,09, an) (€)de is holomor-
phic in a neighbourhood of (aj,e;). The same reasoning being of course valid if we
replace (o, e1) by any of the (ay, e;) for 1 <k < N and i = 1,2 we see that the map
considered in Lemma 6.4.3 is indeed holomorphic in a complex neighbourhood of Ay .
This wraps up the proof of Lemma 6.4.3 and therefore of Theorem 6.4.1.
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Evaluation d'une famille de
fonctions de corrélations pour la
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7 - Fonctions de corrélation a trois points : la for-
mule de Fateev-Litvinov

Il est communément admis dans la littérature physique que la connaissance des fonctions
de corrélation d'une théorie conforme des champs permet de comprendre —du moins
en grande partie— celle-ci. Pour ce faire il existe une procédure trés puissante basée
sur une procédure récursive : le bootstrap conforme. Cette technique s'appuie sur
la connaissance d'une famille de fonctions de corrélation de base, les constantes de
structure, ainsi que d'autres données permettant d'implémenter le bootstrap conforme.
Dans ce chapitre nous évaluons ces constantes de structure en montrant que I'expression
probabiliste considérée ici pour ces fonctions de corrélation fondamentales coincide avec
celle proposée dans la littérature physique par Fateev-Litvinov [52], généralisant ainsi la
preuve de la formule DOZZ [84].

Les résultats évoqués ici sont issus de I'article [30].
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7.1 . Four-point correlation functions and BPZ-
type differential equations

In Chapter 5 we have shed light on the presence of WW-symmetry within the probabilistic
framework proposed to make sense of Toda CFTs. Based on the constraints unveiled
there, our goal in this section is to prove that these imply that a family of four-point
correlation functions can actually be computed completely explicitly up to an explicit
multiplicative constant, constant given by a three-point correlation function. For this

purpose, let us introduce for & = —xw; with y € {7, %} and o = Kkwo- the notations
X s X
Ai = 5(0[2 + Qy +a— Q7h1> + §<O'/3 - Q) h’t>
(7.1.1)

Bi =1+ §<O[; - Q,hl - hi+1>‘

To these quantities one can associate the 3F5 hypergeometric function

) Ay, Ay, As (A1)n(A2)n(As)y 2"
Ho(2) .:SFQ( B, B, z>:n€ZN BBl

where (a),, denotes the Pochhammer symbol (a), = (a)(a+1)---(a +n —1). Such
a function is well-defined over the unit disc D, and is a solution of an hypergeometric
differential equation of order three:

; (7.1.2)

2(Ay+ 28,) (As + 20.) (Ag + 28,) — (Bi — 1 + 28.) (Ba — 1 + 20,) zaz}’ﬂ —0.
(7.1.3)

Other complex-valued solutions of Equation (7.1.3) are given by
_ 1-Bi1+A,1-B1+A5,1—-B+ A
. 1-B 1 1 1 2, 1 3
Hi(z) == 3F2( 2 - Bi,1- B+ B,

1—-By+ A1,1 —By+ Ay, 1 — By + As
| —By+ B2 — B,

z) and (7.1.4)

Ha(2) = 2172 1 (

Z) (7.1.5)

where we have set a branch cut for the logarithm to be the negative real axis (—oo, 0].
The hypergeometric functions admit an analytic continuation outside of the interval
(1, 00) that we will work with in the sequel and denote in the same way.

With all these objects at hand we are in position to state the main result of the present
section:

Theorem 7.1.1. Assume that o = —xw, with x € {v,2} and that a; = rw, for
k < q. Further assume that oy, as are such that («, oy, o, a3) belongs to A,. Then

(Va(2)Viag (0) Vi (1) Vary (00)) = 222 2 — 12 34 (2), where

2

, (7.1.6)

H(z) = Cy (o + o, ab, ) (mg(z)yz +Y A (o, 01,03, as) |Hi(z)|2> :
=1
The constants A (o, a1, %, a3), i = 1,2, are given by
3
. A H(ANUB: — Aj) 11+ By, + By, — 2B;
Agz)(a, ()41,0[;7013) . Hj_l ( J) ( J)l( + b1+ Do ) (7.1.7)

I(B)I(By) (B~ 1)
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The quantities that appear above are defined using the special function

['(2)
l(z) = m

In order to prove such a statement we will first show that the global Ward identities
as well as the assumptions that the correlation functions considered contain degenerate
fields, together combined, imply that the four-point correlations consireded are solution
of the hypergeoemtric equation (7.1.3). Based on this fact we will exploit the probabilistic
representation and more specifically the fact that the objects considered are real-valued
to infer the form of the solutions prescribed by Equation (7.1.6).

7.1.1 . A BPZ equation for four-point correlation func-

tions
In order to prove that a hypergeometric differential equation holds true for the four-
point correlations considered in Theorem 7.1.1, we will exploit the global Ward identities
from Theorem 5.2.1 but we will also rely on the fact that some of the Vertex Operators
considered are degenerate fields.

7.1.1.1  Afirst application to degenerate fields at level one

To start with let us investigate the existence of (partially) degenerate fields at the level
one. These correspond to Vertex Operators V,, for which the weight « takes a special
value, which allows to write down the quantity W_; in terms of derivatives of the
correlation functions.

As explained in Chapter 5, the first 1¥/-descendent can be expressed in terms of the Toda
field via

WE(V) = lim(W_,.V.)
e—0

where we have set in agreement with the results proved there
W_1.(z,a) = —¢B(a,09.(2)) — 2C (v, v, 0P (2)).

Our goal here is to express YWW_; in terms of derivatives of the field, and to do so we
may introduce the first Virasoro descendent of V,,, by setting

LUN(V) = 0., (V).

The latter can be rewritten based on the reasoning developed in the proof of Proposi-
tion 4.4.7 as

0.,(Ve) = ({an, 90.(20)) V. ).

Hence the Virasoro descendent L(_li (V) can be represented as the limit

lim <<a1,8®5(21)>V€>.

As a consequence we can express the first 1¥/-descendent in terms of the first Virasoro
descendent when W_; (2, ) and (o, 0®.(z)) are proportional. Therefore we will say
that the primary field is degenerate at the level one when there exists a real s for which

W_1.(z,a) = k(a,00.(2)).
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Put differently we need to find « such that for all u € b*,
—qB(a,u) — 2C(a, a,u) = k{a, u).

Taking respectively u = e; and u = e, and setting o = a'w; + a’w, we see that we

must have

202 + ot 20! + o?
3

1

kol = qat — 2at and  ka? = —qa? + 202

which implies that either a'a? = 0 or ¢ = o! + 2.

Proposition 7.1.2. Degenerate fields at level one are given by the V,, with « of the
form xwy or xws for x < q, or Awy + (¢ — X\)ws for some 0 < X\ < q. In that case we
have the relation

WEVa() [ V(1)) = ?’QwT(a)a Vale) [[Veu(e)),  71.8)

k=2 k=2

valid as soon as the z are distinct and the a satisfies the bounds of Theorem 4.3.1.

7.1.1.2 Degenerate fields at the levels two and three

We may proceed in the same way for other descendants at the levels two and three.
Vertex Operators that satisfy similar requirements as above but for descendants at the
second or third level will be called degenerate fields at the second or third level. These
are also sometimes referred to as fully degenerate fields by contrast with degenerate
fields at the first level only. In order to keep notations simple we will omit the Wick
product convention in this subsection: for instance quantities such as (0®(z), 0P (z))
are to be understood as : (0P(z), 0P(z2)) :.

We start by considering the Virasoro descendants of order two. We define them by the
expressions

L_a,1(2 ) = (a,0°®(2)) + (o, 0D(2)), (7.1.9)
L_2(z,0) = (Q + a,0?®(2)) — (0®(2),09(2)). (7.1.10)

By doing so it is immediate to see that
2
(Lo (znan) V) = 02 (V) = (£9) (V).

The effect of the L_5 descendent on the correlation functions is less obvious; however
conformal invariance allows to claim the following statement.

Lemma 7.1.3. Set £(_1%<V> = lm(L_s.(2,a)V,.(2)V.). Then

e—0
LV (2)V) = Z p— + ) (Vo (2)V). (7.1.11)
k=2



Proof. At the regularized level, the right-hand side divided by the non-zero quantity
(Va,e(2)Ve) is given by

ak,oél l (o, @) Ag,
= Z + Z + 5 +1

Py 2(z — zi) (21 — 2k)e 122—zk)(z—zk) (z — 2p)

(g, au) 1 al (ap, @+ o) (ag, ag) .
- Z 4(2[ — Zk) <z > +Z 2(2 2 4(2 _ Zk)2 + 5(1) +I

— Z z — Z — Z
oy k )= k)

:_Z ( <Oék7041> +

k#l Az — zx)(z — 21)

(o, @+a)  (ak, o)
2(z — zk)? Az — zx)?

WE

+0€(1) +1

??‘
2)—‘

Y J —"_
_z e 2 +z @Y o) 41

4z —2zp)(z — 2 2(z — 2p)?
k=1 k) ) - k)

where (V,(z) V).l is equal to:

E;éE: T (Vo) V P

4(z — z1) (2 — )c

Using the same reasoning as in Section 5.1 involving symmetrization and Stokes' for-
mula, the latter is equal (up to terms that vanish in the e — 0 limit) to

2 al A, V€ Qa, Ve, 2
Z/c <Z 4(z —< z];)zz >— r)e <2(Z—>x4)r§ ) Vaese(@)Vac(2)Verd'a

(veisve;) 2, 12
- €5 €; e} V d d .
> [ T e Vi)V, o) Vs () V)P

This expression coincides with the left-hand side in the ¢ — 0 limit by applying Gaus-
sian integration by parts in the same spirit as in Section 5.1, concluding the proof:

N
(L_ge(z,)Vore(2)V Zj_i:;k e Z/ ijgel eie(@)Vae(2)Ve)dPa
a ) (g, cu)
2%4z Stz o Vae(2)Ve)
+§2:/ <N L) B o - h ) )<v @)V (2) Vo)
~ Jc 14 z—zp)e(z —x)e 4z —2)e(z — 2)e e e c
2

O]

Thanks to the expression of the Virasoro descendants at the level two, we can readily
search for degenerate fields at the level two. As before, we think of them as Vertex
Operators for which the T¥-descendent at the level two, W _»(z, a), can be expressed
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as a linear combination of Virasoro descendants at the level two. Put differently, these
are «v such that there exist k1, ko real numbers with

KflL—(l,l) -+ KQL_z = W_z.

The latter implies that o = ajw; + asws is a solution of the following set of equations

K102 — 2Ky = 2—20‘2;‘“

Iilag - 2/{2 = _2_2a13+a2

K1 Qg + Ko = 2%
K101 + @(q + Oél) = —(q + Oél)g(m;—al
Kioo + Ko(q + o) = (g — ap) 2oz,

Explicit computations show the following.

Proposition 7.1.4. Degenerate fields at the level two are given by the Vertex Op-
erators V,, with « of the form —yw; where x is either % or~yandi € {1,2}. In that
case

4 4x
W_z(a)= —;L—(1,1)<'7 a) — ?L 2(+, @), hence
(1) s _ (A ,0) X, .
WOV (o) [T Vo) = = (1 (€9) + 5£83) (Valen) TT Ve (20))-
k=2 k=2

(7.1.12)

A similar reasoning remains true when we turn to descendants at the level three; never-
theless calculations are slightly more involved. Like before, we shall first introduce the
three Virasoro descendants at the third level by setting

L_(1,1,1)(z @) =(a, P ®(2)) 4 3{a, 00(2)) {a, 0*P(2)) + (v, 0D(2))°
L_(1,2)(z, ) =(Q 4 o, 0’®(2)) + (Q + o, 0*®(2)) (e, 0 (2)) (7.1.13)
— 2(0%®(2),0%(2)) — (0D(2), 0 (2))(a, 0D(z))-

These are such that (provided that the objects exist)

(7.1.14)

We also introduce
L_3(z,a) = (Q+ =, 0°0(2)) = 2(0°®(2), 09 (2)) (7.1.15)

which is has been defined in order to satisfy the below equation:

<L_3(21, ()él)V) = Z (( azk + 2Aak )3) <V> (7116)

iy \\FL zp)? (21—

202



To see that we may proceed like in the proof of Lemma 7.1.3 and the very same arguments
still apply. Nonetheless to motivate this claim simply note that

N

(2 o) V)

—\(z—z)?  (z2—2)

N
2A, :
_ Z {an, o) + Z (o, @) + k + integral terms
kL 20 —a) (s —2) - 4 202 -

N
(o, o) 1 1 (g, Q + %> {aug, oug) '
N - — tegral t
Z 4(zl - zk) ((z )2) + Z Z— 2 4+ Integral terms

k£l —z)? (2= = ) 2z = a)
N a
[0} 3 + 5 ) .
_ _ Z O"“’O‘l + Z lon, @+ 5) _ tow o) + integral terms

N

N a
= — Z o o, ) ) + ZM + integral terms

A G )% (2 — 2

— < — 2(20(2), 8@(2))Va(z)V> + <(Q + 2 33<I>(z))Va(z)V>.

We now turn to the W-descendants at the third level. With a reasoning similar to the
one of Lemma 7.1.3 we end up with:

Lemma 7.1.5. Let us set

W_s(z, ) = ¢(hs, 30(2)) + 3(23((93 (2),a) — B(o, °(2))) — C(0°(2), o, )
— 2qB(0*®(2), 0 (2)) + AC(0%®(2), 0D (2), &) + 4C (9D (2), D*D(2), )
— 8(h1,09(2))(h2, 0D(2))(hs, 0D(2)).
(7.1.17)
Then

e—0

N (k) (k)
lHm(W _3 (21, 1) V) :Z < W-s + W + w(ak)>3) (V). (7.1.18)

Proof. Computations parallel the ones made in Section 5.1. The right-hand side
in (7.1.18), when divided by (V,(z)V)., can be expanded as

Z C(ak’al’ap) Ca(aaakaal)

klpdistinct (2= 2r)(an = 2)e(2k = 2p)e 477 (2= ) (26 — 2)e (2 — 21)e

+3 q (B(cu, ax) — Blog, o)) +2C (g, cu — ag,cu) g B(owg, o) + 20 (ag, g, )
k# 2(z — z)(2k — 21)2 2(z — 21)2(z — 21)e

q (B(a,ar) — B(ag, ) + 2C(ag, o — ag, ) ¢B(ag, ) + 2C (ag, o, @) w(ayg)
i Z 2(z — z) (2 — 2)2 e L R P

+ mtegral terms.
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The first quantity can be easily dealt with by recursive application of symmetrization
identities:

Z C(Oék,al,()ép) _ 1 Z C(akaahap)
k,l,p distinct (z N Zk)(zk N Zl)(zk N zp) 3 k,l,p distinct ( %k (z o zl)(z B ZP)
N
= Z o, Pa){eu, ha)(ap, hs) C(ak’aka ) Z (g, ha){ag, ha)(ag, hs)
(z—z)(z — 21)(2 — 2p) kl(z_zk Z—2) — (z—2)° .

k.Lp
Similarly we can write that

Z qB(ag, ap) + 2C(ag, ag,q)  q(B(oy, o) — Blag, ap)) + 2C(ag, ap — oy, o)

k£l 2(’2 - zk’) ( 2k — Zl) 2(2 — Zk)(Zk — Zl)2
qB(ag, ) + 2C(ag, ag, ap)  q(B(oy, o) — Blag, ap)) + 2C(ag, ap — oy, o)
kzﬂ 2(z — zk) (2 — 21) + Az — z)(z — 21) (2 — 21)

_ Z qgB(ag, ;) + 2C (o, g, vp)

o 2(z — z1)%(z — 1)

Z qB(ak, ar) + 2C (ag, ag, 1) i aB(ak, ag) + 20 (o, o, )
2(z — z1)%(z — z1) 2(z — 2p)3

k=1

Therefore the renormalized right-hand side in (7.1.18) is actually equal to

Z <Oék,h1><0q,h2>< h ) Z qB ak,al) —2C° (Oé ak,al)

(z—zk)(z—zl)(z—zp 2(z — zk)%(z — 1)

)+ q(B(a, ar) — 2B(ag, ) + 2C(ag, a, «)

2 E +0-(1) +integral terms.
Z— 2k

(7.1.19)

It remains to treat the integral terms. This is done with a treatment similar to the one
we have used in Section 5.1, the only difference being that there is an extra Vertex
Operator within the correlation function. Nevertheless along the same lines we get
(up to a factor (V, -(2)Vz) and a o-(1) quantity) a sum of the terms

2q €y h2 qB oL, 76Z + QC(akv oL, 762) QB(’YQZ, Ckk) + 20(7617 YEi, Oék)
N Z + Z + 2
(z —x)3 2(z — 2z)%(z — x)- 2(z — z)(z — x)?

+ i Clag, oy, ve;) Vo (@) Vo () VY
oo G m—a)e—a). | e e T

N
+ Z / Z 7627’76]70%) + qB(’yela’ye]) + C(fyei/}/eivfyej)
2 (z — 2zp)(z — 21)e(2 — 22)e 2(z — x1)2(z — x2)-

2,7=1 =1

(Vae, e (@1)Vie, o (22) Vae (2) Ve dP a1 d®ms

Z ’Yez:hl 7€J>h2><7€fvh3> 2. 2. 12
- €;,E €, er,e\AL¢ a,e VE d d d-z:
ig.f= 1/@3 (z —21)e(z — 22)(2 — 23)- W) Vaey e (2)Vaey e 3) Ve 2) Vel ndrad s
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coming from the reasoning developed in Section 5.1, and additional ones given by

2
4 (27Q + (2 — 37y w3_i, ) + 2(ve;, a){ws_;, a)
= Yothore) [(VcleWaclova ( e

=1

_l’_

n i (o, vei)wz—i(ag) + (ar, veipws—i(a) = (a,ve;)ws—i(ar) + (ar, ve;)ws—i(a)

2 (= = 22z — o). (= = 20)(z — 2)2

C?(a,vei, vej) L
— Ve' Ve' Va V d d
Z /(CQ (Z - $1)g(z — $2)€< v Z’E(;El) Y J:E(xQ) ,E(Z) 5>6 T 9

that account for the extra Vertex operator in the correlation function and which are
obtained by recursive integration by parts. Therefore using Gaussian integration by
parts as well as the explicit expression of B and C' we see that the expression (7.1.19)
coincides with (W _g .(z, @)V, (2)V,), up to a term that vanishes in the ¢ — 0 limit.

O

We are now in position to address the question of finding degenerate fields at the level
three.

Proposition 7.1.6. Degenerate fields at the levels two and three are given by the
V,, with « of the form —xw, or —xws With x € {~, %}. In that case both relations

4 4
W_s=—-L_@u,1)— —XL_2 and (7.1.20)
X 3
2 4 8
Wg=—(2+2)Lg+-L_ o+ —L a1, (7.1.21)
3 X X X

are valid as soon as the z are distinct and that « satisfies the bounds of Theo-
rem 4.3.1.

As a consequence correlation functions of the form (V_, ., (z)V) are solutions of
the following BPZ-type identity:

8 4./ 0 A Yy 2\ & 0 2A
— 02+ =0, < e e ) + (— + —) ( =+ = >
[X3 X ; z—zr (22— 2zp)? 3 X Z (z—2k)? (22— z)?

k=1
_i wt) . w) L wlo)
z—z (z—2z1)?  (z—2z)3

k=1

(Voyn (2)V) =0. (7.1.22)

Proof. Equation (7.1.22) simply corresponds to inserting the equality in Equa-
tion (7.1.21) within a correlation function and using Equations (7.1.14), (7.1.16)
and (7.1.18). Proving Equation (7.1.21) follows from calculations very similar to those
we have done for degenerate fields at the levels one and two. O

Note that this in particular implies that the correlation function considered is C? in the
z variable for z € C\ {z, -+ ,2n}.
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7.1.2 . Implications on a four-point correlation function

The expression of the BPZ-type equation (7.1.22) is not always tractable when it comes
to deriving exact expressions for the correlation functions because the 1/-descendants
do not correspond to derivatives of the Vertex Operators. However when considering a
small number of Vertex Operators some cancellations occur thanks to the global Ward
identities from Theorem 5.2.1, allowing to express the differential equation in several
variables (7.1.22) as a differential equation in only one variable.

7.1.2.1 A first differential equation

Indeed let us consider a four-point correlation function with one point at infinity
(Va(2) Vi, (0)V,, (1) V,,(00)), defined by the limit

(Va(2)Var (0)Va, (1)Vas (00)) = lim. |25 (Va(2) Vs (0) Vi (1)Vay (1)) (7.1:23)
This limit is non-zero and admits the following representation:
(Vi (2) Vi (0)Vaay (1) Vi (00)) = [2] ™ [z = 1|72 24 (2)
where H(z) is equal to, with oy = v and (20, 21, 22) = (2,0, 1):

2 s 2 T laned) s
D(si)p; ™ lyil " =+=0 ei (12
(H: . )E:H< e )

2
i=1 i=1 C Hk:o 2k — Vi

Then by using the global Ward identities we can express the different quantities W(_kz)
for k = 1,2,3 and © = 1,2 in terms of W_; associated to V,, i = 1,2, and W(_?
Heuristically this is due to the fact that there are six such quantities linked by five linearly
independent constraints. Inverting this system of equations is a bit tedious so we will
omit the computations in the present document. After algebraic manipulations we find
the following:

W_s(Va(2)V) = [— (2 - ) W_s — (; + L) W_i + W

z  z—1 2(z—1) Glz—1))2
Wa + W3 W Wy 1 1
S 2(z—1)  2B(z—1) + 2(z —1)2 (; + ;)} (Va(2)V).

(7.1.24)

In the special case where the Vertex Operator V, is fully degenerate, we can use Propo-
sitions 7.1.2 and 7.1.6 to rewrite the left-hand side using Virasoro descendants and get
the equality:

2

8 . 4
{Faj F0Ls (% + E) [,_3} (Voron (2)V)

[ ) (e o) - (e g) (30 D)o 2585

e - s e (G o) | e

2 2—1

(7.1.25)
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Now we proceed in the same way for the Virasoro descendants. Using the three global
Ward identities given by conformal covariance of the correlation function of Vertex Op-
erators in Theorem 5.1.3 we end up with

322 —3z+1 A — Ag <1 1 )

£—3<V—xw1('z)v> = [ (z(z —1))2 0: + 2(z—1) P + z—1

o (B ) - o (G ) | eav)

L_5 (Vo (2)V) = LQ(T — i)az + fé :?) - > (ZAL 3 i Z(f_zl)z] (Vyn (2)V).
(7.1.26)

Combining the two last equations, some elementary but lengthy algebraic manipulations
show that we have the equality

we)
Do (2){Voywn (2)Vay (0)Va, (1) Vay (00)) = S :1l<fom(Z)Va1(0>va22(1)vas(oo)>
(7.1.27)
where on the left-hand side we have considered the differential operator
82%(2—1) 5 4 5
— 50+ — 52)07
Dy(z) = N Ny z(3 — 5z2)
2 _
[z 422 5Z+2+2z(A3 A) = 2A, +2A, z )+X12Z 15Z+4]82
X z— 1 z— z—1
2 A Ay Ay )
— | (1—22) + (32 — 2 3z—1
2 S ey G ey
X A Ay AV
+3 ( 102) + (92 —6) o) +(7—92) = 1)2)
_wr
2z—1).
(7.1.28)

7.-1.2.2 Analytic extension of the differential equation

Equation (7.1.27) is valid as soon as the weights satisfy the assumptions of Theo-
rem 4.3.1. Our first task is to extend the range of validity of the latter to the whole
range of values prescribed by Theorem 6.4.1. The reason why we need this extension
is that we will need to consider later on correlation functions defined for weights that
belong to A4 but not to B,.

For this purpose we will consider a weak formulation of the above problem since correla-
tion functions may not be differentiable if the weights no longer belong to B,. However
the last quantity involving a W_; descendent is not directly a differential operator applied
to the correlation functions if the Vertex Operator V,,, is not a semi-degenerate field.
To remedy this issue we will be a bit astute and rely on the fact that we can actually
express the WW_; descendent as a differential operator but acting on a larger space. To
be more specific we note that

Wiz, @) = (¢ = 2{e, w2)) {@, 1) (9 (2), 1) — (¢ = 2(a, wi)) (@, €2)(0D(2), ws)

207



so that we can formally write that

Wi (Va(2)V) = | (¢ = 2{@,02))) 9oy = (¢ = 2(, 1)) Oa | (Vigeryion (1) Viaen)ion (42) V)

evaluated at z; = x5 = z. However due to the fact that correlation functions are
defined based on a regularization procedure this is no longer true and we need to be
more precise. This is done by considering the regularized correlation functions. Namely
at the regularized level we can write that

Wi (Ve (2)Ve) = §(2)5(W_y (2, @) el X @ e m3=[0XI0 )
G202 | (0= 2(0,w2))) Doy = (a = 200, 01))) Bes vz

(e XE(@)+ewn) lovea) (X @2)+ews) o= E[(@XE(2)%]

up to metric-dependent term that vanish thanks to the KPZ identity 4.4.4 in the same
fashion as in the proof of Lemma 4.4.6. Now we note that E [(c, e2)(X?(2), ws)?] is
given by

E | ({a,e0) (XE(2),00))"|+E | ({0, e2) (X2(2), w2)) ]| +2E [(e, ex)ar, e2) (XE(2), wi) (XE(2), w)]

Recollecting terms this shows that

W Vo (2)V2) = Tlarmaas (21 = @2l OOV (00 Vig sy (@2)V))

with 7 = (¢ — 2{a,ws))) O, — (¢ — 2{av,w1))) Os,.
(7.1.29)

Note that the explicit expression (4.2.6) shows that the limit
i oy — a| @ e (7 (1) Vi oy (T2) V) exists and is given by

T1=To2—2

Vaov).

We can now define the weak formulation of the above problem that will allow us to
extend the range of validity of the above differential equation. Namely let us denote

Fa(za 3517332) = |5131 - x2’<a761><a762><w17w2> <V<a,e1)w1(xl)v(a,ez>m (xQ)V>

and consider test functions ¢ : C* — R that are smooth, bounded and compactly
supported, with ¢(z, 1, 22) = 0if |2 — x;| < d or |z| < § for some positive §. Then for
any such function the quantity

Dy(2)9(z, v1, 22) Falz, 71, xg)d22d2x1d2x2
C3

with D (z) the adjoint operator of Dy(z) can analytically continued over the whole Ay.
Likewise we can extend analytically over Ay the quantity

7'¢(Z7 r1, sz)Fa(z7 r1, xz)dZZdinldQIz-
(c3
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If we now consider ¢ = ¢. to be a sequence of such test functions with ¢.(z, x1,22) =0
as soon as |r; — 1| > € or |xg — 1| > &, we see that Equation (7.1.27) shows that as
soon as & € By,

lirré (Di(2) +T) ¢e(2, 21, 1) Fo (2, 21, 0)d* 2d*x 1 d* 2y = 0. (7.1.30)
E— C3

Now the sequence of integral is meromorphic in a € A, since the integral are absolutely
convergent. Moreover the limit is also uniformly convergent in a complex neighbourhood
of A, since we avoid the singularities when points may merge. This shows that for any
a € A, Equation (7.1.30) remains valid too.

7.1.2.3 An hypergeometric differential equation

Let us now further assume that the Vertex Operator V,, (1) is semi-degenerate, i.e. that
Qg = (io* = Kwy for some real k'. In that case the differential operator 7 is made of
only one term:

T = (q - 2<w17 042*>)(9x2.

Using the fact that the correlation functions are conformally invariant, which implies that
(at least in the weak sense) they satisfy the global Ward identities for the stress-energy
tensor from Theorem 5.2.1 we can write that in the weak sense

W(_2)1 <V—xw1 (Z)Val (O)Vaz*(l)vaa (OO>>

= (q — 2{w1, az%)) (z@z + Z Ay — 2A3) (Voo (2)Vay (0) Ve (1) Vs (00))

k=0
This shows that the four-point correlations we consider are weak solutions of the following
differential equation in the z-variable:
D(2)(Voxawr (2)Va, (0)Vayi (1) Vay (00)) = 0 with
20, + 300 A — 243 (7.1.31)

D(2) = Do(2) + (q — 2{wr, a2%)) 1—2

Then some (lengthy) algebraic manipulations show that we can write
(Vorior (2) Vi (0) Vg (D Vi (00)) = |2 2 = 15 H(2)
with H solution of the hypergeometric differential equation of order three

[z (Ay + 28,) (As + 20,) (Ag + 20,) — (B — 1 + 20,) (Bs — 1 + 28,) 20, | H = 0.

(7.1.32)
In the above equation we have set
Aii= S + rwy — xwr = Q. h) + F{ag — Q. hy)
(7.1.33)

B =1+ g(% — @, hy — hit1).

"We stress that in that case for four-point correlation functions to be well-defined we really
need the assumption that « € Aj,.
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The fact that H is a (at least distributional) solution of Equation (7.1.32) allows to claim
that H is actually a real analytic function via a standard elliptic regularity argument.
Indeed, we can apply the differential operator 92 to Equation (7.1.32). By doing so we
see that H, viewed as a function of two real variables, is a solution of a partial differential
equation PH = 0 with analytic coefficients on R? \ {(0,0);(1,0)}, and whose term of
highest degree is given by 23(z — 1)A3 (2 = x + iy) where A is the standard Laplace
operator Af(z,y) = % + 2271;. In particular H is seen to be a solution of PH = 0
where P is an analytic hypoelliptic operator on R?\ {(0,0); (1,0)}. This implies that H
is real analytic on C\ {0, 1}.

7.1.3 . Proof of Theorem 7.1.1

We have seen above that under the assumption that a € Ay, the four-point correlation
functions considered in Theorem 7.1.1 are solutions of an hypergeometric differential
equation of the third order. This completely determines them up to a global constant,
thanks to the following:

Proposition 7.1.7. Assume that for any two distinct elements U,V in the set
{0, By, By, Ay, Ay, A3}, the quantity U — V' is a non-integer real number. Then
real-valued solutions of the hypergeometric differential equation of the third or-
der (7.1.3)in C\ {0, 1} are of the form

M) = HO) ("”0(2)'2 + 3 AP (o a1,05.0) |’Hz-<z>|2> S G439

As a consequence in order to prove that Theorem 7.1.1 does indeed hold we only need to
check that H defined via (V. (2)Via, (0) Vi (1) Vi (00)) = [2[X"1°0) |z — 115 24(2)
is real-valued, satisfies #(0) = C,(oq — xwi, kwa, a3) and that the coefficients A;,
1 <i<3and By, j =1,2 satisfy the assumptions of Proposition 7.1.7.

The first point is straightforward, while the second one follows from the probabilistic
representation of the correlation functions, which allows to evaluate

H(0) = C(aq — xwr, a3, a3).

Therefore the result holds true as soon as the coefficients A and B meet the requirements
of Proposition 7.1.7. Because both H and the right-hand side in Equation (7.1.6) depend
analytically on the weights « via Theorem 6.4.1, the statement extends to the whole
range of values of Theorem 7.1.1.

Before actually proving Proposition 7.1.7, we start with the general description of the
set of real-valued solutions of Equation (7.1.3) on the subset C \ {(—o0,0] U [1,400)}
of C\ {0,1}.

Lemma 7.1.8. Real-valued solutions of Equation (7.1.3) on C\ {(—oo, 0]U[1, +00)}
are linear combinations of

IF(2)]? fori=0,1,2; e (Fi(2)F;(2) for0<i#3j<2 Im(Fi(2)F2) for0<i#j<2.

Proof. The functions proposed in the statement being real-valued solutions of Equa-
tion (7.1.3), it is enough to bound the dimension of the set of such functions by nine.
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Now the statement of [33, Theorem 1.3] also implies that such a function # is actually
real analytic; therefore it suffices to bound this dimension on some open subset of

C\ {0,1}.
To do so we view #H as a function of two real variables z,y with x (resp. y) being
the real (resp. imaginary) part of z. Then, by taking the real and imaginary parts of

Equation (7.1.3), H is a solution of
Orea™ — 305yyH + lower derivatives =0 0yyyH — 30.2yH + lOwer derivatives = 0.

The characteristic equation 72 — 37¢2 = 0 being of the hyperbolic type we see that
‘H, viewed as a function in the variables z,y, is a solution of a pair of hyperbolic
partial differential equations of the third order. As a consequence it is completely
determined in a complex neighbourhood O of —1 by the data of ug(z) = H(z,0),
ur(x) = 0yH(x,0) and ua(z) = 9y, H(z,0). Using the explicit expression of the differ-
ential operator (7.1.3) these real valued functions are solutions of

2 (A1 + 20) (A + ) (A3 +20) = (Br — 1+ 20) (By — 1+ 20) 2] ug
= 32°(z — V)uh + 2* (2(A1 + Ao + A3 + 3) — (B1 + B + 1)) uo,
which corresponds to taking the real part of (7.1.3), and, by taking 0, derivatives of
the previous expression combined with the imaginary part of (7.1.3),
[x (Ay + 20) (As + 20) (A3 + 20) — (By — 1 + 29) (Bs — 1 + 20) xa} uy
= 323 (x — V) + 2% (x(A; + Ay + A3 +3) — (By + By + 1)) us,

[x (A1 + 20) (As + 20) (A3 + 20) — (B1 — 1 + 20) (By — 1 + 20) xa} us
=323 (x — V)l + 2% (x(A; + Ay + A3 + 3) — (B1 + By + 1)) ug,

w(A1+ Ay +A3+3)—(Bi+By+1) ,
x(x—1) “
I [L'(l + Ay + Ay + A3+ A1 Ay + A1 As + A2A3) — BIBZU
22(z — 1)
2(Ay+ Ay +A3+3)—(Bi+ B+ 1)
x(x—1) 2
I .’L'(l + Ay + Ay + A3+ A1 Ay + A1 As + A2A3) — BlBgu
2%(z —1)

with w3 = 3u§2) +2

1,

and wuy = 3u§2) +2

2.

Therefore u; and us both live in a three-dimensional space; similarly ug lives in a three-
dimensional space determined by u,. This implies that # lives in a set of dimension
at most nine as expected. O

We are now in position to address the proof of Proposition 7.1.7.

Proof of Proposition 7.1.7. We rely on the fact that any solution H, along with its deriva-
tives, must be regular when crossing the real axis. This fact will imply that, among the
solutions of Equation (7.1.3) on C \ {(—o0,0] U [1,400)} the only ones that meet this
requirement will be those of the form |F(z)|* fori = 0,1,2. In addition to ensure
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this condition one must further assume that H has the form prescribed by Proposi-
tion 7.1.7.

To see why, let us first consider what happens when a solution crosses the neg-
ative real axis (—o0,0). Because the hypergeometric functions 3F» are continuous
over C\ (1,4o0), the lack of continuity of the solutions across the negative real axis
would come from the fractional power of z. Indeed, let us take r to be some positive
real number for which the hypergeometric functions evaluated at = = —r are non-
zero. Since we have defined the branch cut of the logarithm to be on (—o0,0), we
can write that for zy . = refilm—e), Fo(z4e)F1(24¢) — Fo(z— ) F1(2— ¢) will converge as
e — 0to (ell=BUm _ =i(1=B)m) yp to a non-zero (real) multiplicative constant. Since
we have assumed B; not to be an integer, this means that Jm (Fy(z)F1(z)) will not
be continuous across (—oo,0). Similarly, when considering the partial derivatives of
(x,y) — Fo(x +iy)Fi(x — iy) we see that, expanding around z = 0,

8yF0(Z)F1(2) = ‘1_316y (FO(Z)ZBl_lFl(z))+7:(Bl*1)éFO(Z)F1(2) = i(Blfl)z_BleO(Z_Bl).

Because of the branch cut on the negative real axis we see again that for
Re (Fu(z)F1(z)) to be continuous we must assume Bj to be an integer, which is not.
As a consequence for solutions of Equation (7.1.3) to be continuous along with their
derivatives we must rule out (under the assumptions that By, By, B; — By are not inte-
gers) those of the form Qe (Fi(2)F;(z)) for 0 <i # j < 2or Jm (F;(z)Fj(z)) for 0 <i#
j < 2. Since the three hypergeometric functions are linearly independent a linear
combination of such solutions will not be continuous either.

The remaining solutions |F;(z)|* are continuous along with their derivatives across
the negative real axis; therefore the next step is the investigation of continuity across
(1,00). To make this explicit let us consider an alternative basis of solutions defined
around z = co. These are defined via the expressions for i = 1,2, 3 (and the conven-
tion that Ay = Ai mod 3):

o (Ail+Ai—Bi,1+ 4, - B
N e (AL i> i — D1, PR
Gi(z) = (—2)"3F, (1—|—A¢—Ailal+Ai_Ai+1

z

1) : (7.1.35)

Again the hypergeometric functions can be continued to analytic functions over
C\ [0, 1]. Both basis are related thanks to the remarkable equality (see [133] or [129,
Theorem 1]) valid outside of the real axis:

F(Al)T(Az)F(A3)3F2 (z‘h, Ag, A3 Gi(2).

_ S T(A)T(Aiy — ADT (A1 — Aj)
TR () )=

(B — A)T(Bs — 4;)

(7.1.36)
Whence the general solution H(z) = Ao |[Fo(2)]? + A1 |F1(2)]> + A2 |[Fa(2)]? admits the
expansion

2
H(z) =Y ai|Gi(2)* + B3%Re (Go(2)G1(2)) + BoRe (G1(2)Ga(2)) + BiRe (Ga(2)Go(2))
=0
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F(Ai—Ai,1)F(Ai—AiJrl)F(Ai,l—Ai+1)F(Ai+1—Aifl)l(Bﬂl(BQ)
B1—Ai+1)F(B2—Ai+1)F(AiJrl)F(Bl—Ai,l)F(BQ—Ai,1)F(Aifl)l(Ai)

where the coefficients ; are given by M X

I'(B1)I'(1 — B)I'(B)I'(1 — Ba)

T RN - A)

A T(B1 ~ (2~ BIL(By — BL(1 — By + By) [T5_1 L(A)I(B1 — Aj) (1 — By + By)
T (Bi — A)I(1— By + Ay) 1(B1)I(Bs) (B —1)

3 LBz = DI(2 = By)L(By — By)I (1 - By + By) [T L(A)I(B> = Aj) (1 — By + By)
T [(By — A)T(1— By + A)) 1(B1)l(By) I(By—1)

This can be further reduced (up to a global multiplicative factor) to the form
Aosin(mA;) sinm(By — Ba) — A1 sin m(B1 — A;)sin(rBs) + Az sin m(By — A;) sin(mwBy)

with \; = )\iA(j)(a,al,ag, a3), and where the identity I'(2)I'(1 — z) = (e valid for
z ¢ Z, has been used. Since we have assumed the 4; — A4, not to be integers for j # |
along the same lines as above continuity across the (1, c0) axis of (derivatives of) H
implies that the j; are zero. After a little algebra this implies that either \g = A= o
or the factor in front of the A vanishes, which won't occur since it is assumed that
none of the A; and B; — A; are integers. Whence the desired relations between the
A: this wraps up the proof of Proposition 7.1.7. O

7.2 . Four-point correlation functions and Opera-
tor Product Expansions

We have proved in the previous section that certain four-point correlation functions in
the sl3 Toda theory can be expressed as a sum of hypergeometric functions, and to do
so we relied on the fact that they are solutions of a BPZ-type differential equation. Our
goal here is to provide an alternative way of deriving such an expansion, based on the
probabilistic representation of these correlation functions. More precisely this expansion
will be obtained using Operator Product Expansions (OPEs hereafter), which are based
on an asymptotic expansion of the correlation functions when two insertion points collide
(here z — 0). This alternative expansion will allow to obtain shift equations for three-
point correlation functions, which as we will see in Section 7.3, fully characterize these
correlation functions.

As a byproduct of these OPEs we provide a rigorous meaning to the reflection relation
between Vertex Operators:

Va = Rs(a)Vsa
which we prove to hold for all elements s of the Weyl group W and within certain
three-point correlation functions. To make this statement precise we introduce for fixed
aj, a3 € R? the set U (3, a3) defined via

U(ay, az) = {al € R?, (3o, aj, a3) € Ajs for some s € W} . (7.2.1)

The following statement provides a rigorous meaning to the reflection relation:
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Proposition 7.2.1. Given o}, a3 € R? extend the function C.(ay, a3, a3) over
U(as, a3) by setting

C,(aq, a5, a3) = Rs(ar)C,(Sa1, o, az) where s € W is such that s(a; — Q) € C_.
(7.2.2)
Then the map thus defined is analytic in a complex neighbourhood of U (s, a3).

Thanks to this statement we can define probabilistic three-point correlation functions
when the weights are not longer inside (Q + C_)". We still denote by C., (a1, a3, as)
this extension. As we will see this extension naturally arises in the alternative expansion
proposed for the four-point correlation functions of Theorem 7.1.1:

Theorem 7.2.2. Under the same assumptions as in Theorem 7.1.1,

(Vi(2) Viay (0) Vi (1) Vi (00)) = [z |2 — 1|5 H(2), where

~ ) ) . (7.2.3)
H(Z) = ZB’Y (041, X)C’Y(Oél - Xhi-i-b Qy, a3) ‘%z(z)‘

as soon as oy — xh; € U(as, as) for 1 < i < 3. The coefficients BY (au,x) admit
the explicit expression

X

(i) _ : 7_2)) (X_2)2 [(X(on — Q, hj — hiy1)) '
By (a1, x) H(wl(Q 7 ) 0T 2 S = Oy — ) (7.2.4)

J=1

2

7.2.1 . Method of proof

Let us briefly recall the framework introduced in the proof of Theorem 6.4.1. We have
seen there that the four-point correlation functions we consider could be defined using
Equation (6.4.10) via

(Var (0)V_yn, (2) Vg (1) Vs (00)) = /R2 Eq(c)de + Z/REZ(Q)CZQ + EL?,

where the quantities £, (c) are expectation terms. In order to highlight the dependency
in z of these quantities, let us introduce the notation

2
exp (— > meheml&l,a(@)
i=1

‘ |(L‘ - Z|fﬂ/(a,e¢> o ’l"1<a+a1+a§+a3’ei>
L a(2) = | ——————F;(x)M"¢(d*x) and F(x) := —
C ‘:L."Y<a1’61> _ 1‘7<a2732>

(7.2.5)

Dy, 0(z;c) = ™R , with

|

so that
Eq(c) = ‘Z|X<a1,h1> |z — 1|X<h17a2> ((I)al,a(ZQ c) — mm,a(zS C)) )

where the remainder term is given using Equation (6.4.6) by

%al’a(z; c) — |Z’—x(a17h1> |z - 1|—x<h1,a§> e 2QAR [Ra(c)] )
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Likewise we put E’ (c1) under the form

E! (¢;) = [z[¥lerh) |5 — g xthed) (®L, o(z501) =R, o(21¢1))  where

a,a

[zt sl gl (2 (e e)) =

a1,
Z T alom) o\ 72<Q7C>E V*Xh1 H R x w(x Qg (l’)eiulewc’el)MWl ©
w:{0,1,00}—{Id,s2} <S(w>7w2> 2€{0,1,00}

e_<3(w)7w2><c762>

Finally we set ®}2 (z) = || X)) g mxthees) pl2 - Note that reflection terms

corresponding to the fully degenerate field V_,,, do not show up in the expression of
R (c) since (—xhy — Q,e;) < —v for i = 1,2. With these notations at hand we can
write down the four-point correlation functions considered in Theorems 7.1.1 and 7.2.2
via

H(z) = /]R? (Payalz;€) = Rayalzi€) dc—"Z/ analzGi) %21 o(2; CZ)) dcl—}-@éfcx( ).

Now a consequence of Theorem 7.1.1 is that these four-point correlation functions have
an explicit expansion as z — 0. For instance in the case where 2(1 — B;) < 1 we can
write that H(z) is given around z = 0 by

C(on = X, 03, 5) (1 -+ AP (~x, a1, 05, a5) [ o194

+AD (= xh1, a1, a5, ag) [4O7)

up to lower order terms. The three-point correlation functions that appear in this ex-
pansion are defined analogously to #(z). Namely we will write that

Crlan,aian) = [ (@ufe)=Ru(@)det Y [ (@) =8, () de + D(e)

where the quantities that appear in this expression are defined like above.

In order to prove Theorem 7.2.2 we will study the asymptotic of terms of the form
®.,, o(z;¢) and R, ,(z;¢) around z = 0 and prove that we end up with an expansion
of the correlation functions similar to that from Theorem 7.1.1 but with the coefficients
given by the ones in Equation (7.2.3). Theorem 7.2.2 then follows by identifying these
coefficients with the ones from Equation (7.1.6).

To do so we first show that Equation (7.2.3) holds true under certain different set of
assumptions on the weights « depending on the values of x, (ay,e1) and (aq,es),
and then use the results of the previous Section 7.1 to infer that the extension defined
by Equation (7.2.2) is analytic. We will then recover the whole range of values for «
prescribed by Theorem 7.2.2 using analycity of the correlation functions (Theorem 6.4.1).
Throughout the rest of this Section we assume (up to shifting c by >, 1—“%%) that yu; = 1
fori=1,2.
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7.2.2 . The case where x =7, (a1,€1) < % and (ay,ey) > %

To start with we consider in this subsection the case where the weight « is such that
where (aq,e1) < % and (o, e9) > % with x = . Our goal is then to prove that under
these assumptions the following holds true:

Lemma 7.2.3. Assume that (a1, e1) < 2 and 2 < (a1, e) < q. Then

H(z) = Cy(on — vhy, a5, a3) Ho(2)]* + nyl)(al,fy)Cy(al — yhy, o, a3) | Hy(2)]?
+ BP (1, 7) Ry (a1 — vhs) Cs (82 — vhs), 3, ag) [Ha(2)[”
(7.2.6)
as soon as (ay, —vhy, a3, az) € Ag with (s,ws) > 0.

Proof. In order to prove this statement we will first study the asymptotics of the ex-
pression #(z) when z — 0 under some additional assumptions on the weight «;.
Namely we wish to prove that there exists a positive £ such that if (a1, e;) > % —eand
(a,e2) >q—cthenasz — 0

H(z) = Cy(a1 — vhi, a5, a3) + |2[V(Q—aven) Bgl)(al,fy)Cv(al — vha, a, as)
+ 1219701 B®) () Ry, (a1 — vhs) Oy (32(cr — vhs), o, as) + Lo.t.
if v <1, whileif1 <y < V2
H(z) = Cy(ar — vhi, a5, a3) + 2C + 2C + |z|'y<Q*°‘1’e1> nyl)(al,v)C.Y(al — vha, s, a3)
+ 127971 B (@, ) Ry, (a1 — vhs)Cy(82(ar — vhs), b, as) + Lo.t.

where C'is some complex constant.

7.2.2.1 The first expectation term

So as to prove such an expansion for H we start by providing an expansion of the
term ®,, 4, (2; c) that enters the expression of # and defined via Equation (7.2.5).
For this purpose around z = 0 we can write I} , (z) under the form

o — 2" —|a”

2
C |$”7<011,61> Fl(:f)(d :L')

Iolcl,—’yhl (Z) = Iolq—'yhl,O + 6I(Z)a 5I(Z) =

Note that the integrals ]gl_%l are well-defined since (a1 —vh1 — Q, ;) < (a1 — Q, €;) <

0;alsonote that I3, (2) =12 _, . This allows to write

2
c,e _evie,e;) i
Doy, —h (z:¢) = ¢*E [eeW 1VéI(z) | | e ° [a1—~rh1]
=1

= (I)Oé1—7h1 (C) + 6<870>E

2 .
(exp (—67(0’61>51(2)) - 1) He_eﬂc’eﬁffnvm] )
i=1

We focus on the expectation term. To this end, we rewrite

1
exp (—ewc’e”dl(z)) —-1= —67<c’61>51(2)/ exp (—t67<c’el>5l(z)) dt
0

v [ e =2 =2

1
— 'Y<C7€1 el 12 _ 'y(c,el>
‘ ¢ fa[rlenen Bi(@)M™(d x)/o eXp( te 5I(Z)> dt.
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Moreover by the Girsanov (Cameron-Martin) theorem A we can write that

E

M (d*x) exp< te7 (S5 (2 )H —eresIn, - whll

=E

2
exp (—te”<‘3’el>5J(z,x)) He_eﬂce iy (@ )] d’z,  with

2

(SJ _ ‘y_Z”Y _‘y”y ﬁ M’yel d2 ﬁ — F ’72<€1,€i> d
(z,2) = T 1(y) (d7y), Fily) = F(y) lyl+ , an

, ly — x|_72<617€i> _ )
? — . vei
Jal—’yhl (‘T) - c |y|7<a1*7h17€i> E(y)M (d y)

Therefore ®,, ., (2;¢) — @, —yn, (c) is equal to

o — 2" —|a””

6B (z) = —elstrere) Fi(z)x

1 2
]E [/ eitefy(c,fq)ét](z’x)dtHefe'y c,e;) J(Z’l ,th(w) d2.’13.

0 i=1

C |x|v<a1761>

The case v < 1. If we assume that v < 1, then we under the additional assumption
that v + % < A{ag,e1) < % we can make the change of variable = +» zz in the integral
to end up with

z =17 = |z’

’x|’7<011»61>

6@(2) — _e<3+’Y€1,C> |Z|'7<Q_a1ael> / ‘

1 2
_ (c,e1) —e7 Ce7,> K
E Fl(ZJT)/ et BT g T e e B0 | g2,
0

=1

Therefore, as » — 0 and thus §J(z, zz) — O while J., __, (22) — I, _, . the latter will
be asymptotically equivalent to

2 2
e x|V — |z —1]7
B ) 270 oy ), B n) = [ ’W‘Wﬁ‘ Pr. (72.)

The factor B%l)(oq, ~v) is evaluated in Lemma 7.2.4 below, whose assumptions are sat-
isfied as soon as v + % < (a1,e1) < ¢. Itis found there to be equal to the factor
from Theorem 7.2.2, so that we have obtained the first two terms in the expansion.
However in order to get the third term in the expansion we have to be more precise.
For this purpose, let us decompose ngﬂhl (zx) as

ly — 22| ~
|v(a17€2>

2 2
Jor—hy B, (2T) + 5, _op, o (22),  Where J? a1 —yh1, B, (2T) = /

B, |y
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and B, = B,-(0) with r = —(1 + £) In|zz| for some positive ¢ small enough. Then

§0(2) =BW (ay,7) |29 @, () + 601 (2) + R(z), where

ol
2 2
§BL(2) 1= — elsrere) | 1(Q o) lz— 1" — |2 .
|$|'7<061,61>
E |:(6*e‘/(c e2>J§1 —~h1,B (Zm) . 1) 672? Lerle EZ)IZ _’YhQ} dz:l: o
|z — |72_|$\72 (cre2) 2 e
R(z) = — e<8+’ye1,c)/ Z : > E[e_e”Y 23 hype (@ )e— S eed
C ’$|7 ag,el

1 c,e c,e
<F1(m)/ eieﬂ ’ 1>(tw(z Doy (@ )) dte_€W< 2N IE ) hy e (@) 1) }de,
0

where we have denoted

e e o (2 Plerei
Fi(y)M“(d%y), Fi(y) = Fi(y)[yly "

C |y‘7(a1—7h17€i>

The second remainder term 2i(z) is a lower order term in the asymptotic studied. To
be more specificitisa o (]zW(Q’al””) as soon as (ajq, e9) is close enough to ¢. To see
why, we first show that terms of the form

‘$72|72 — ‘$|72 X 2 el e
~y{a1,e1) £ 5J a1 — ’Yh1 )He a1—vh2 | d°z  and
C || L1

\x — 2 - W 2 e )
| |7 o E [§J(z,x) H e a1=vhe | d°x
:E 9

i=1

areo (\Z\WQ_’“”J)). To this end let us write that

' 2 e y— 2™ — ™" [ —eern ] m
5‘] Q1= ’th )H ¢ e / |y"y a1—vyhi,e1) E H © mo B (y)d y
= i=1
where 73y, = [ I B ) ol arre )
a1 —vha C ‘w|’y a1 — 'yhg,ei> t + ’

Here we need to distinguish between two cases according to the value of (aj,e1). In
the case where ¢ := (a1 — vha + ve1 — Q, e1) is negative, then the integrals 7, oy (0)

do make sense. However if ¢ > 0 then the integral J1 —n, (0) is not well- deﬂned.
Still we can proceed along the same lines as in the proof of the fusion asymptotics in
Lemma 4.4.2 to see that in that case the leading term in the y — 0 asymptotic will be

given by
2 2
E He_eﬂce Z;I ,th(y)] (’y‘i—ﬁ)
=1

for any positive 7. As a consequence we see thatas z — 0,

E

2
—ev(eeq) i A2 & _
0o m (z) [T e al—m] —o<lzx!2 viovleentirle > o ’7).

=1
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Therefore we end up with the bound

|z — zWZ — yaﬁ —ev(een) 5L (x) 2 e |2
ooy E (6 al1—vhy — 1) He ay—vhe | d4x
c x| i=1

_ (o —yhp=Qe1)?
< CMV(Q on,e1)+ 4

This in particular implies that if we take (aq, es) arbitrarily close to ¢ then this term is
ao (|z|V<Q"“’p>) (since (Q — o, p) = (Q — au,e1) + (Q — o, e2)), hence a lower order
term in the asymptotic studied. The same applies for

o = 2" = | ! - )
xr—Zz — |T s _evle.e;) i
Y{a1,e1) E [(/ et V8T (2) gy 1> | | e Ial—‘*h2] d’z,
1,€1
C || 0 paie]

which is also seento be a o (\z|V<Q_°‘1’p>>. Likewise, fusion asymptotics imply that

ey i (ag,e0)-2)°
E|:M762(d2l')6_ Z?:l e VI)I%*WLQ} =0 <’$|w_n) d2x
so that

_52 erleen i 2
2= €70 Io‘l_“/h2:| =o ||z e

apen)—2)°
_T(Q_WLGQHW_n)
E[éng_wthT(zw)e

As a consequence the associated remainder term is at most a

2
(aq,e )—2
Y(Q—ar,e1)+72+(1+¢) <2—7<a1762>+(124v)_77>
o]

This exponent can be rewritten more conveniently as

(fe.e2 - 2)

Y(Q —a1,p) +e(2—(ar,e2)) + (1 +¢) 1

which is strictly larger than v(Q — a1, p) provided that ¢ is chosen small enough. Even-
tually collecting up terms we see that R(z) = o <|z|W<Q’°‘1’p>> as expected.
Let us now turn to §®*(z). We wish to prove that

50! (2) = 2|97 BD (3501, 7) Ray (1) Piyary vy (€) + L0 (7.2.8)
For this we use the radial-angular decomposition to rewrite J§1_7h17Br(z:v) as
,72

—HO T Ry (et ) M (dt + 1, dB)

+o00 2
0 _ v

eV (Xr(0)+ (a1 -3 he Q)“?)/ e'YBt/ 1—|zz|°e
0 0

+ 2 2
_ (X (0)+(a1— T ha—Q)r+Mez) / oy / "o 2l e~ Fy(e=tTH0) MO (dt + 1, dO)
0 0
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using Williams path decomposition, and where v = (a1, e2). As a consequence we can
follow the same lines as in the proof of Proposition 6.4.2 to see that

42 42
5@1(2) _ _€<s+'yel,c) ’Z"Y(Q—ah@l) |x - 1’ - ‘$| d2xx
C ‘x’7<0<1761)
+oo i) [
E / . (_V)e’/(M—)\T-—c—’fﬁgr,w)da\/[’ e2) (6—67(M762>JT _ 1) e i €A*<C’51>Ia1_,yh2
(c+Ar—1727.e2)
72 ,YQ
— _elstrertszai—ane) |z|7<Q—a17p> [z — 1" — || d2ax
C ’x‘v<a1,61>+7(a1—Q762)
+o00 -
E 6_V<)me2> / h (—V)6V<M’62>d<M7 €2> <6_67<M’e2>‘h - 1) e 2?21 ew(c,el>[&17w2
(e+Ar—1727.e2)

where we have set A\, .= X,.(0) + (oy — Q)r and

+o00 . 2w
Jr = / e'YBt /
0 0

with B started from (c + A, — 2227, e5) — (M, e3). The exponential term e™**r<2) is a
Girsanov transform whose effect is to shift the law of X by G,.(-, 0)(Q — a, e2)ea, which
as r — 0 converges towards G(-,0) (821 — 1). Therefore proceeding in the same way

as in the proof of Proposition 6.4.2 we see that

2
—t+i0|7

1—|zz°e Fy(e MM (dE + 1, dB)

¥ 1 72 2 () Ti
5@1(2) — |Z|'Y<Q—Oz1761> / |.’L’|| P(g’j‘xl 81>‘ dszSQ (al)e(er'yel,c)E e S eviee I§2a1_wh2 + Lot
C x ’

which is nothing but Equation (7.2.8), where the integral over C is well-defined at least
for (e — @, e2) close enough to 0 and evaluated using Lemma 7.2.4 below, thanks to

which it is found to be equal to Bgl)(éml,y).
Now from the explicit expressions of the quantities B%) and R,, one can deduce that

B{M (3201,7) R, (1) = BP (a1, 7) R, (01 — vhs).

As a consequence we can infer the following expansion for ®,, _4,(z;¢) as z — 0:

By (25€) =Pay g (€) + 2275 BU (1,7) @y s (€)

) (7.2.9)
+ 12072 B (a1, 9) Ry (a1 — 7hs) @iy 0y —yhe) (€) + Loct.

The case v > 1. We proceed in the same way for v > 1. Our assumptions on the
weight «; are then that v < (ag,e1) < % and ¢ — ¢ < {(aq,e2) < ¢. The only difference
with the above case is that we write 0®(z) as

2

z 4z 1 2 .
T elstrere) / i p)E / RRCHC P | ] P
2 C ‘$|’Y<Oé1—’yh1761> 0 P

8

17 P11
m‘ 1 2 (I—I_E)Fl(Z:L‘)X

_ |Z|W<Qfa1,61> elstyerc) ‘1 —
C |x‘7(alf"vh1:€1>

E

1 2 .
/ efte“c*el)JJ(z,zz)dtH e—eﬂcﬁeﬁJoq_Wh1 (z2) | 42,
0 i=1
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Then we can proceed in the very same fashion as above to see that the term on the
last two lines is equal to

’2‘2(1_B1) B-(yl)(alvp)’)(bal*'ylm( )+ ’Z‘ (1=52) B—(yQ)(O‘h’Y)Rm(O‘l _7h3)q)§2(a1—'yh3)(c)+l'0't'

The only difference lies in the evaluation of the integrals that arise, but they are still
found to be given by B§1>(a1,7) in agreement with Lemma 7.2.4.
This means that all we have to prove is that the term on the first line is of the form

Cz+Cz+o <\z\”<Q_O‘1’p>>. To see why this is indeed the case note that

C = e<s+7e1,c>/ ! h . H O @ | g2
(Cx|x”¥ 1—vh1,e1)

is well-defined since the singularity around « = 0 is integrable thanks to the fact that
(a1,e1) < % <v+ % As a consequence the corresponding term in the expansion of
d®(z) is given by

2
= (0z+C3)

2 _
+ 6<8+"/61,C> % (% + %)
C m,v(m—vhheﬁ

F1 (a:)E

1
/ <67t67<c e1) 0J(z,x) )dtH —ele al 'yhl(x)] d .
0

To conclude it remains to check that
’Yz z z
L (242
/ 2 (x hl’) Fl (l’)E
C |x|7(a17'y 1,€1)

is a lower order term, which can be seen via the same reasoning:

2 .
8J(z,x) H e o (:”)] d’z
i=1

72

8J(z,x) ~ /(C - (i . §> Fy(y)M* (dy)

P g —

with the integral

1 2
/DX]D T |x|“/<a1—7h1761> y |y|’y<a1—7h1,61> |z — y|2’Y

absolutely integrable. This implies that this term is at most of order 22, hence is a
0 (\zﬁ@_‘“’p)) as soon as (g, ez) is close enough to ¢ since 2 < 2. This shows that
under the assumptions that v > 1 with v < (ay,e1) < % and ¢ — e < {(ay,e2) < g then

Doy~ (25€) =Py —yn, (€) + Cz + Cz+ |2 |2(1 Bi) B»(yl)(OCl,'Y)(I)mf'yhz (c)

(1-Ba) n(2) (7.2.10)
+ ’Z‘ B’y (alvfy)RSQ (al - 7h3)q)§2(a17’yh3)(c) + Lot

7.2.2.2 The reflection terms

Having described the asymptotic expansion of @, 4, (z; ¢), we now turn to the other
terms in the expression of H.
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To start with, let us focus on the term E [R2 (c)]. The dependence in z of this term is
completely explicit and we have for some constant C:

‘z’—%hhal) |z — 1’—7<h170¢§) E [Ra(c)] =
—uoe{ee2) pre —ag,e
Loy <oB o2 PN (VL (0) 4+ 2@ Ry (00)Vayag o (0)) R Vg (Vi (00)]

- ]lmaxi<c,ei><0E [( a1 —vhy (O) + RS2 (Oél)VéQOq—an (0)) R1d751,8275281 Va; (1)V043 (OO)}
1 2|7 (Q—aa,e1)

max;(c,e;)<0 ‘

E [(RSI (al)vswq —vh1 (0 + R8281 (al)v§2§1a1 —vh1 (O)) R1d751,82,5281 VO&E (1)‘/&3 (oo)]
+Cz+Cz +lot.

X
)

Now we can use the fact that R, (a1) = Rs, (a1 —~vh1) (which follows from (hq, e2) = 0)
as well as the equality

Ry, (a1) = B\Y(a1,7) Ry, (a1 — vho)

to rewrite the latter as

—loe (e,eq) e
]1(6761)<0E[ (e uae I MTR(C) ]1(0,62)<0R1d,82> Va17'yh1 (O)Rfd,81va§(1)va3 (OO)]
+ 277 B (g, 9)x
—poe{ce2) e
Lie.eny<oB| (€727 MO 1 ) Ry ) Ry (01 = 1h2)Vi, (a1 —yin) 0) R Vg (1) Vg (50) |
+Cz+Cz+l.ot.

Therefore we see that

E [R2< ] =B [R2_, ()] + |29 BO (1, 1B [RE ()] + C2 4 C2 + Lot
ev(e.ea) e

cel <OE|: ( o v(eren) A 2(@) . ]l<c’32><0RId7S2> RSIVal—"/hl (0>Rld,S1Va§(1)Va3 (OO)]

Q—a1,e1) ()(al, 7)1 (ce1)<0X

_poevice2) e
E[ (e ugeYiee2) pfre2 (C) ]1<c,eg><0RId,S2> Voélf,yh2 (0)R1d731 Va;(l)Vag (OO)} .

— |7

We now want to discard the two terms that appear between the second and fourth
lines, and for this purpose we want to show that they are integrable in the variable c.
To see why this is true we use that for any w : {0, 1,00} — {Id, s1, $2, s251} such that
w(0) € {Id, s2}:

(W(0)31(ay —vh1) +W(1)ag + wW(oo)ag — 2Q, w1) = (81(a1 — vh) + a5 + a3 — 2Q,w1),

the latter being given by (s,w1) + (Q — aq,e1). Since (aq,e1) < % and (s,wy) > —y we
see that
(w(0)81 (a1 — vh1) + w(1)as + W(oco)ag — 2Q,wi) > 0.

As a consequence the term in the second line is integrable over R with respect to
(e,e1). The same reasoning shows that the term on the third and fourth lines is in-
tegrable too, since (a1 — yha + o5 + a3 — 2Q,w1) = (s,w1) + . Now by construction
of the analytic continuation of the correlation functions we see that this term will be
compensated by other terms in i)fi}n,_vhl(o; c). More precisely, in a similar fashion as
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above we can expand

c) + |2[1@7re) B (ay, y) B2, (c) + Cz + Cz + Lot.

e < (w)7w1><c7€1>

Eg(c) =

- Z

w:{1l,00}—{Id,s1}

ay—vyhi

]E[ (e*M2€’Y<C,E2>M’YE2 ) _ ]l<c,eg><ORId,82)

(s'(w),wi)

%]

R, (a1 — ’th)v§1(a1—'yh1)(O)Rfd,$1Rw(1)(O‘;)Vﬁ)(l)ag(1)Rw(oo)(a3)vﬁ)(oo)a3(oo)}
(

e <~ w)’wl > <C,€1>

- |z"y<Q_al7el>B’§/1)(a17’7)]1<C,61><0 Z (g(w) w > X
w:{1l,00}—{Id,s1} L

— o€ (e,eq) e
E[ (e uze{ee2) Mre2(C) ]l<c,eg)<0RId,52> Va177h2 (0)R1d7slva’2ﬂ(1)va3(oo)]

where s'(w) = §1 (a1 — vh1) + w(1)ad + w(co)ag — 2Q and s(w) = ay — yhe +w(1)ad +
w(oo)as — 2Q. Explicit computations show that the terms on the last three lines are
given by the integral with respect to (c, e;) of the remainder terms from E [R2 (c)], so
that both terms will actually compensate and vanish in the expansion.

We can proceed in the same way for the other terms. For E [R,(c)] we have

“HQOE [R 14,5, Ridyss Vs (0)Voryhy (2) Vg (1) Vay (00)]

= Lnax; (c.e)<0B [ (Vg —yhy (0) + Ry, (1) Viga, — yhl(o)) Rid,s1,s2,5150 Vais (1) Vg (00)]
 Linas, (esen) <0 2797V E [(Roy (1) Vayn 91y (0)) Rerd sy 8152 Vg (1) Vg (00)]

+ Liax;(c,ei)<0 |2 (@A) [R5 (01) Vi 3001 —vh (0)Ridsi 50,5150 Vauy (1) Vs (00)
+Cz+Cz+l.o.t.

while by the same reasoning as the one developed for @, »(z; ¢), we have the equality

E [RM,SQVQ1 0)V_in, (Z)Va;(1)Va3(oo)e*#w”(“’el)M”el(C)}
= [Val_ﬂyh1 (O)Rld,52 Vag(1)Va3(Oo)e—'u,le’Y(C,el)M’Yel((C)]

+ ’2‘7<Q—a1,e1> Bgl)(a177)IE [Varvhg (O)Rld,SQVa;(1)Va3(oo)e*#w““’el)M%l(C)}

+E [RSQ (1) Vayas—vh (0)R1d s, Vs (1)Va3(oo)e‘”le“c"e”M“l((C)}

#2150 BO) (5301, 7)E [Ry(01)Vigas s (0)R1 Vo (1)Vag (00)e 117 =M1 (€)

+Cz+Cz+o0 (|z|”<Q*“1’P>> .
Since (8201 — Q, e1) = (a1 — Q, p) we infer from the above reasoning that

E [Rfd,szva1—’)/h1 (O)Vas(1)Va3(00)67“167(‘:75”]\/[%1 ©)
21Q71) BO (a1, 7)E [Viay 3y (0) R0 Vg (1) Vg (00) 117 M74€)
#1297 B @1, 1B [Rup(@1 = 7h9) Vg oy ) O RV (Vo ()1 77 )

+Cz4Cz+o0 (|z|7<Q““”’>) .
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Put differently we can write that

E [R4(0)] =E [Ry, _p, ()] + 217972 BV (a1, 9)E [(RE, —ypy ()]

S—
+]2[197 B®) (a4, 9) Ry, (a1 — vha)E [Rg(al_m)(c)} +Cz+Cz+lot.
1 max; (c,e0) <0 E [Rsl,slsg Ve iy (0)Rrd,s; Ve (1) Vag (OO)}
— 2797 B (g, 1)1 g ey <0 X
(E |:€_ﬂle“/(c,e1>M“/el OR e, Var—yhs ()R a5, Vg (1) Vay (oo)}

- ]l<c,e1><0E |:R1d752,5152 Val—'yhz (O)Rld,s1 Vag (1)Va3 (OO):| )
- \Z|7<Q_a1’p>B§2)(041, V) e,e0)<0 X
—pqev{eer) e
(B] (7 MO 1) GR1as, ) Vanhs (VR 10 Vag (1)Vay (00)

- ]lmaxi<c,ei)<0E |:Rld,s1,52 Va1—'yh3 (0)R1d752 Vog (1)Va3 (OO):| ) .

In analogy with E [R¢, (c)] we see that the remainder terms are integrable with respect
to ¢ and will be compensated by another remainder term from R, (z; ¢) and 9352 (z; ¢).
Namely the first remainder term is integrable in (¢, e1) (since ($1 (a1 —vh1) + b + a3 —
2Q,w1) > 0) and in (¢, e2) as soon as (s,wz) > 0 (which we assumed to hold) and will
be compensated by a term in R5%(z;¢). The second remainder term is integrable
with respect to (c, es) and (c,e;) too and will be compensated by terms in R. (z; ¢)
and 935°(z; ¢), while the penultimate one is integrable with respect to {c, e5) and will
correspond to a term in R (z; ¢). Eventually the last term is also integrable over R?
and will be annihilated by a term in 915, (z; ¢).

Finally we can expand E [R3?(c)] in the same way, which yields

B RE0] 8 [R5 0] #1271 B0 2, 0]

1217 B (g, 9) Ry (en = hs)E [RYS, ()| + Oz + C2 4 Lot
+]lmaxi<c,ei)<0E [R81,8182,8281,815281 Va1—"/h1 (O)Rfd,51 Voz; (1>Va3 (OO)}

+ ’z"Y(Q*m,eﬂB’(yl) (aq, ”Y)]lmaxi (c,ei)<0E [Rld,SQ,slsg,slsgsl Va1 —~hs (0)R1d752 Vag (1)Vay (OO)}
(

+ ‘Z|7<Q*a17p>B 2)

y (041, V)Hmaxi (e,es)<0X

RS2 (al - ’7h3)E [R1d782751527515251 V§2(Oc1—’yh:;) (0)R1d781 Va; (1)Voé3 (OO):| :
Putting everything together shows that

g{aha(z; C) = %al—'yhl (C) + ‘Z|V<Qial7el> Bgl)(alv 'Y)fﬁoq—'yhz (C)
+ ‘Z|7<Q—oc1,p> Bg)(al, ) Rsy (a1 — vh3)Rsy (0 —vhy) (€) + Cz + Cz+o (|z’7<Q—a1,p>)
+ R(z; ¢),

where R(z;¢) is not a lower order term but will be compensated by terms appearing
in the expansions of X%, _(z;¢), i = 1,2, and Ry2a(z; ¢).

al,a

224



7.2.2.3 Finishing up the proof of Lemma 7.2.3

All'in all we see that we can write an expansion of H(z) which takes the form

%(Z) :/R2 (@al_'}/hl( ) SROQ »th dC+Z/ ¢a1 ,th _%21*’%1( )) dcz_'—@al ,th

+‘Z|’Y<Q*0¢1»€1> (1)(a1,’y)><

/R2 ((1)01—7@( c) — Ra, - 7h2 ) de + Z/ (I)oq vhz - %31—7@ (Cl)) de; + (I)oq —vha

+ 1297 B (1, 7) Ry (n — vhs) %

) 1,2
/R? ((I)§2(0<1—7h3)(c> - m§2(a1_7h3 dc + Z/ 82(n ’yhs ¢i) = ‘%82(041 ’Yh3)( )> de; + (I)SQ(al —h3)
+Cz4 Cz 4o (|17 7))

as soon as the lower order terms which appear in the expansions of ®,, _,,(z;¢)
and the R,, _+1, (z; c) are integrable in ¢, uniformly in z in a neighbourhood of the
origin.

To see why this is indeed the case, let us for instance consider the remainder term
R(z) arising in the expansion of ®,, _5,(z;¢):

_ v 2
9%( _es—*ﬁel’ /|$ Z| |$| E[eiewcew‘]czn vh1, B, ( )eiz 167<CEZ>P 1—7vh2
Y(e,e1)
||

<F1< ) / ¢ (BT g @) = DO @) 1>}d2x,
0

Then it is readily seen that this term is at most O (e517¢¢) as ¢ — o~ inside C_, and
therefore is integrable in this region thanks to our assumption on s. Now it is also
easily seen to be integrable when (c,e;) — +o00. As a consequence this remainder
term is indeed integrable. We can proceed in the same ways for the other remainder
terms that arise in the expansion of ®,, .4, (z;¢) and of SR}XL_W,M (z;¢) too. As for
Ra,,—~h, (2; €) the dependence in c of the remainder terms is completely explicit and
readily seen to be uniformly integrable too.

From this we infer that the desired asymptotic expansion for H does indeed hold
provided that a is taken so that (ay,e;) > % —eand (a1, es) > g—e, Wwhere e is positive
and small enough. As a consequence we can identify the coefficients that appear in
this expansion with the ones stemming from the statement of Theorem 7.1.1 in this
very case. This shows that we have the equalities

C’Y( —’}/hg,a;,&g) - 07(041 _fyhlaa;a:i) and

A(l)( ’)/hl,Oél,OéQ,Oég) Bgl)(alafy)
R, (82(on — vh3)) Oy (82(cn —vhs), a5, 03)  Cyan — yha, a5, a3)
A(Q)( ’th,Oél,Oéz,Oég) B’(Y2)(O[17/7)

All the quantities that appear in the above expression are analytic in the weight a;
as soon as the probabilistic representation makes sense. Uniqueness of the analytic
continuation allows to extend the validity of this equality to the whole range of values
prescribed by Lemma 7.2.3.
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7.2.2.4 Evaluation of some integrals

To finish up with the proof of Lemma 7.2.3 it only remains to check that the expression

of the coefficients BS’) does coincide with that given by the integrals encountered
above:

Lemma 7.2.4. Leta < 2 and b > —2 be two real numbers and set

b /1 1
ra,b(l') = ‘x|b <]la—b<2 + ]la—b<1§ (x + j)> .

Then as soon asa —b € (0,+00) \ {1,2}:

(7.2.11)

T 2
|z (=$)I(5)

Proof. The integral (7.2.11) is the analytic continuation in the a, b variables of the inte-

gral
_1b
/I‘ a‘ de’
c |zl

from the region Re(a—b) > 2to theregion 2 > Re(a—b) > 1, the above integral being

a—b
given by the expected result WW
W(=3)(3)

b o
[t ), -1+ %)
C

(see [109, p. 504]). To see why, set

2T

F(a,b) == / wd% o
’ . C |$‘a 24+b—a

Then Fis analytic in the domain Re(a, —b) < 2, Re(a—b) > 1, 2+b—a # 0. Furthermore
over the subdomain where Re(a — b) > 2, it is equal to

I(—1 4 a=b
/ |33|“_b\:n—1|bd2:v:ﬂ7( ),
C

As a consequence by uniqueness of the analytic continuation F(a,b) is also equal to

a—b
w% in the subdomain 2 > %Re(a — b) > 1. But in that case F(a,b) is found to be
equazl to

b b
/ w1 —Jaf’
C |z|* .

More generally the same argument shows that

b=
/ ‘.%' ‘ ara,b(a:) dZZL‘
C |z

is the analytic continuation of
_1b
/ ‘LE - ‘ dQCC,
c |zl

which allows to conclude that Equation (7.2.11) does indeed hold. d

With all these different pieces now put together, we can wrap up the proof of
Lemma 7.2.3. O
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7.2.3 . The case where x =, (a1,e1) > % and (aj,ey) < %

The case we consider next arises when (ay,e1) > % and (aq,e9) < % but still with
X = . Based on a similar reasoning as the one developed above we can obtain an
expansion that closely resembles that of Lemma 7.2.3:

Lemma 7.2.5. Under the assumptions that ¢ — ¢ < (ay,e1) < q and % —e <
<Of1, 62) < %

H(2) = Cy(a1 — vhi, o, az) [ Ho(2))?

+ BU (0, 7) Ry (31(ar = 7ha)) Oy (51(n = vhs), 03, a5) [Ha(2)|”

+ B (a1,7)C, (an = vhy, a5, as) [Ha(2) [

(7.2.12)
provided that (ay, —vhy, o, a3) € Ay with (s, wy) > 0.

Proof. The arguments developed to prove this statement are similar to the ones pre-
sented along the proof of Lemma 7.2.3 but are slightly more subtle and require ad-
ditional care. Namely the main difference with the previous case is that the random
variable §I(z) introduced above no longer has a finite L' moment because of the sin-
gularity at x = 0 in the integrand. In order to understand what happens around this
singular point this time we write that

L
51(’2) = 517’(2;) + 5Jr(z)a with 51]7‘(2) = / ’fL‘ Z| ’.’L“

el ( 2
B, |ax[lene oM dn)
where B, = B(0,e") for some r = r(z) such that |z| " — +oo to be fixed later on.
The asymptotic of the expectation term is governed by ¢.J,.(z) rather that 61,(z). To
see why let us write that

3

Doy by (25€) = Pay () + > D'(z;¢)  where
i=1

. _ 212:1 e'y(c,ei>li 9
o' (z;0) = e (exp (—e7<0761>wr<z>) - 1) e ]

*Z?: ev{e.e;) i
®%(2;¢) == e!S9E (exp (—67<C’61>(5L«(2)) — 1) e ' ‘*15’11]

_ Z?=1 evie.e) i

®3(2;¢) == e!S9E (exp (—e”<c’61>5lr(z)> — 1) <exp (—e'y<c’€1>5JT(z)) — 1) e
and study the behaviour of these three terms.

Let us start with ®!. This term can be treated in the same fashion as the last order
term that arises in the asymptotic of Lemma 7.2.3. Namely we can use the radial-
angular decomposition (3.3.6) for the one-dimensional Brownian motion with drift
v= {1 —Q,e1) (Xi1,(0) — X,(0),e1) + vt to write that

§Jp(z) = O tMI g (2o ML),  with

+o00 y 27
Jr(z; —My) = / B /
0 0

) 2
e—t—r+i0 Y e—t—T

-1

72 .
) Fl(e’t’””a)M;}el (dt + r,db).
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Here X, = (X,(0) + (a1 — Q)r + vhiIn|z|,e1) and (BY):>o is independent of
(X(2))|4|>e—- and started from —M;, sampled according to its marginal law. Proceed-

ing along the same lines as above we see that, as soon as £~ — 0 as z — 0 (which we
assumed to hold)

D (z;¢) = |29 Ry (1) Psy0y —my (€) + Loit

Now from their expressions we know that R, (o1) = B§1>(a1, v)Rs, (51(a1 — vhe)) and
that $1a1 — vh1 = $1(a1 — vh2). As a consequence we end up with the asymptotic:

®'(c) = |29 Ry, (31(01 — 7h2))Ds, (0 —ha) (€) + R (2)

where R!(z)is a o (12\7@_“1’6”). We will provide a more precise description of !
below.

Let us now turn to ®2. Since the integral now avoids the singular point z = 0 we can
proceed in the same way as for the first term in the expansion of Lemma 7.2.3 but by
replacing 61(z) by 01,(z):

2:2 v{e,e;) 1t
) €3 ]
i=1 a17%h1¢0}

IE[ <exp (—e'y<c7el>5lr(z)) — 1>ei

72 ¥?
= —e<s+”’el7c>/ w =2 —|a] Fi(x)x
C\B,

‘x|'y<a17€1>

1 2 .

c,e — <C757,'> K

E[/ et oI g [T e J‘”_Whl(x)] d*z.
0 i=1

The next step is to write the expectation term as

1
e _ev{eer) g1 _ev(cea) 12
E [/ et N8 (2,2) g€ N oy g (@) €71 ]a17h2:| d*x
0

1
— R [5J§1—’7h1 (z) / et Vo) (z’x)dte‘e”c’e“"ilvhl(z)e‘”(c’””imh?] d’z + Lo.t.
0
Along the same lines as in the proof of Lemma 7.2.3 we infer that as z — 0, the term

that appears on the second line is such that

. 72 - 72
elstrpe) / [»— 2 2] Fi(z)x
C\B, ’$‘7<a1,61>

1
c,e _ c,e 1 _ c,e 2
e |:5J0211—7h1($)/ efteﬂ , 1>5J(Z’x)dt€ et 1>Jo‘l—Vhl(gc)e e 2>Ia1—’Yh2:| de
0

2 2 2 2
-1 v ol -1 v ol
w1 = e / =1 =l
C

| 2|V Q@—a1,p)
’Z‘ ®a1—7h3(c) /(C\B'r |x"y(<a1,el+eg>—q) ’y|’y<a1,62>

The last integrals are well-defined as » — +oo, and can be evaluated using
Lemma 7.2.4 above, thanks to which we can deduce that this term is asymptotically
equivalent to

27970 B (a1,7) By —ns ()

as soon as r — +oo when z — 0. Therefore we can write that

(21 ¢) = |29 B (01,7)Pa, —yny (€) + Ra(2),
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where the remainder term is given by

2 2
R (Z) — _€<s+'yel,c> |£L‘ — Z|’y - |$|’Y
’ os, [z e

1
E[/ eita(c’eﬁ5J(z’m)dt6767<q€1>Jél—'yhl(w)efeﬂc’eﬁ]il—'vw d’x
0

Fl(a:)x

uptoao <\z\”<Q_"1”’>>.

7.2.3.1 The reflection terms

The reflection terms required to make sense of the four-point correlation functions
can be processed in the very same way as in the proof of Lemma 7.2.3 so we omit
the computations of the asymptotic of these terms. We stress that conducting these
explicit but tedious computations show that the condition for the reflection terms
involved to be integrable is the same as in Lemma 7.2.3, that is (s,ws) > 0.

7.2.3.2 The remainder terms

It remains to consider the remainder term 93(z) = R!(z) + R%(z) + ®3(z) that arise in
the above expansions. We already know thanks to Theorem 7.1.1 that the a priori ex-
pansion of R(z) only features terms which are (infinite) polynomials in z, Z multiplied
by |z|"{@~th=h) for j = 1,2, 3 as soon as H makes sense. Put differently

2 .
R(z) = Y [ 0R D Pz, 7 o) (72.13)
=0

where P;(z, Z; 1) is a power series in z, z, provided that # is well-defined and under
the assumption that (a1, ez) < 2.

Moreover the explicit expression of 2i(z) shows, in agreement with Theorem 6.4.1,
that the dependence in (ay,es) of R(z) is actually analytic in a complex neighbour-
hood of (% —¢,q). For instance let us consider the first remainder term 9R!(z), defined
by

R (2) = 1 (c) — [2[197 BU (a1, 7) Ry, (31(a1 — 7h2)) P, (g ) (€)-

Then the probabilistic representation of ®; (4, _4,) Makes sense for (31(a1 — vha) —
Q,e;) < 0fori = 1,2, and in particular makes sense for a; close to Q. Likewise the
term 5 i

dl(c) = *9R Kexp (—67<c’61>5Jr(z)) - 1) e Zim1 eﬂc’e’wnwhl}

is perfectly well-defined when «; is taken close to . The reasoning developed along
the proof of Theorem 6.4.1 shows that in that case both terms are analytic in (aq, e2).
We can proceed in the same way for the other remainder terms, which are probabilis-
tically speaking perfectly well-defined for «; close to Q. This shows that %R depends
analytically in (a1, e5) in a complex neighbourhood of (%—s, q). In particular this allows
to extend the validity of Equation (7.2.13) for (aq, es) in (% —&,q).

Now we can use the fusion asymptotics (4.4.2) to infer that

2 ¥(Q-a1 e1>+7(<al’81>7%)2 —e.
R(z) =o| |2 ’ 1 . (7.2.14)

229



To see why we can reproduce the argument developed to show that Lemma 7.2.3

holds true. Namely
. 72_ ’Y2
[ el
o\, |zl

1
E |:/ e*teﬂc’el>5J(vaf)dte_e’y<cyel>Jc1>z1—7h1 (x)e_ev<c’82>lc2x1—vh2:| d2x
0

~ ]z|72 e—r(2—v(a1761))/ 2|7V By (e x
C\Bo

1
E |:/ e_te'y(c,el>6J(Z7efrx)dt€_67<c,el>Jél7vh1 (e'rx)e—e"/<0,62>]21,yh2:| dz.’E
0

where we can use Equation (442) to see that the eXpeCtation term is at most a

4

<<<a1,51>3>25>
ole . Since r is chosen so that £~ — 0 as z — 0 we recover Equa-

tion (7.2.14). This shows that R2(z) isa o <\z|V<Q"“’p>) as soon as (aq, e2) is taken close

enough to ¢ and («y, ep) different from % The same applies to the other terms R (z)

and ®3(z; ¢). This is readily seen for ®3 which is a lower order term compared to ®2,
while for ;R! we can write that

B (o () < 1) T ]
+oo c,e;) Tt
= [T e [(exp (—erteen Mg v) <) e E | a,
0

|Z|’Y<Q*a1,€1> e(@—arer)(cer)

E

+oo 2 c,e;) 1t
e=vXr(0)—v?r / (—v)erM (e—e”MlJr(z;<c,el>+A’r—M1> — 1) ¢ D= L | M,
<c7€1>+)‘;”

In the latter note that Iil_ghl does depend on M; and J since it involves the sigma-
Y

algebra generated by the (X(z))|;<.-. However we can control the integral over B,
that enters I in the same fashion as in the proof of Lemma 7.2.3. As a conse-

2
oq—;hl
quence and in order to keep the proof concise we can assume that Igﬂhl is inde-
pendent of M; and J. Now the first exponential term entering the expectation is a
Girsanov transform, thanks to which we end up with

- |z‘7(Q—a17€1> el@—are){cen) o

+00 ~ 2 N i
/ (—I/)eyMl (e—eVMlJr(z;<c,e1>+>\7-—M1) _ 1) e >iet eﬂc’e’”élaryhl dM.
<c,e1>+5\7-

E

where A, = (X,.(0) + (Q — a1)r +vhi In|z|, e1). Therefore we can write that
R (2) = |z|7<Q*a1761> elQ—a1er)(eer) o

(e,e1)+Ar @il I
E [/ 1 (—v)er™M (6*67M1J(700) — 1) e i et z>1§1a1_wh1] dM;

o0

+E

+o00 ~ 2 c,e;) Tt
/ ) (—V)e”Ml (efeleJr(2;<cyel>+)\'r7M1) _ e*eVMlJ(*OO)> e Siq eI dM,
<C,€1>+)\r

230



up to lower order terms, where J(—o0) = lir% J,(z; (c,e1) + A — M1). The first expec-
z—>
tation term is asymptotically equivalent to

<c,61>+5\r 2 (e,e;) 7i
J(—oo)/ peWHNIML o= Ximy €V o oy dM;

e}

E

which is at most a O (|z]72) while the second one can also be seen to be a o(|z[%)

for some positive ¢ that only depends on (as,e;1). Indeed one can use the Markov
property of the process B in the same fashion as in the proof of Proposition 6.3.3 to
see that the second expectation term is governed by a term of same order as

E

. +oo 2 i) It
67(<cyel>+)\7”) / R e(V‘i"Y)Mle—e’YMlJ(_OO)e_ Zi:l 67(676’)[;14117’\/}11 dMl
<C,61>+)\T

which is as desired. In particular for (Q — a1, e2) small enough we see that the corre-
sponding term in the expansion of R is a o (|zW<Q‘°‘1’p>>.
Recollecting terms allows to claim that for (a1, e2) close to g

N(2) = o <|Z|V<Q—a1,p>> ‘

As a consequence we can infer that the polynomials P;(z,z;a;) are such that
P;(0,0;0q) = 0 for i = 1,2,3 under this assumption. Now this coefficient is known
to depend analytically in (a1, e2), so that we can deduce that P;(0,0; ;) = 0 as soon
as ;R makes sense. This allows to discard the remainder term 9R(z) in the identifica-
tion of the coefficients arising in the expansion of # from either Theorem 7.1.1 and
Lemma 7.2.5.
To sum things up, we have proved that ® has the following expansion:
Doy iy (23€) = oy, (€) + Az + AZ

+ o7 @ere B (g, 4) Ry, (81(a1 — ¥h2)) s, oy —hy) (€) (Bz + Bz)

+ |19 B (01, 9)@q, iy (€) + Lot
We can conclude for the proof of Lemma 7.2.5 in the same fashion as we did for

Lemma 7.2.3 by identification with the coefficients arising in the expansion of Theo-
rem 7.1.1. ]

7.2.4 . The case where y = %

Eventually we treat the case where y is equal to 2. Under this assumption the expansion
features two reflection terms, as the following statement discloses:

Lemma 7.2.6. Assume that x = % Then

2
H(z) =C (o1 — ;Vhlaoé;oéz) Ho(2)]”

2 ) 2 . 2 "
+ B (an, ;)351(51@1 - 7@))07(51(@1 - §h2)>a270¢3) [Ha(2)
2 - 2 - 2 N
+ 35/2)(041, ;)R81S2(8132(a1 - ahS))Cv(SﬁZ(al - ;hi’))a a3, as) ’%2(2)‘2
(7.2.15)
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as soon as (o, —%hl, g, as) € Ay

Proof. The terms associated to the reflection coefficients can be dealt with in the

same way as in the proof of Lemma 7.2.3 so that we will omit them in what follows

and focus on the expansion of @, 2, (2;¢). To start with we make the assumption
by

that o is close to @, for a meaning of close that will be made precise during the proof.
We start by picking » = r(z) > 0 such that |z|¢" — 400 as z — 0, to be fixed later on,
and split the integrals involved as

, ) ) A |2 — Z|%<h1’6i>
I (z2) =I'(z) + J(2), with J!(z):= / Z—F,»(:n)M%"(dei)
By

ar,—2h |$Z,|’Y(a1,ei>
where B, = B(0,e"). By doing so we can write that
D, 2, (2;0) =0, 2, (c) + ®l(z;¢) + ®%(2;¢) + ®3(2;¢), where
by v
B (z;¢) == SOR [~ Tiei €01 0) (efe“c’eﬂﬁf%(z) _ 1)]

@2(2; C) ::e<S,C>E _6_ S22, evleei 1i(0) (e—e’ﬂc,eﬂJ?}(z) . 1) (e_e'y<c,e2)Jr2 B 1)}

[ —ev(cer) gl 2) —ev(ee2) 12 ]
(1)3(2; c) :=e<s’c>E " al,f%hl( )6 ap,—2h <1 . e_e’y<c’61>(17}(0)_171‘(z)))}
r _ev{ee2) 12 _
+el°K e*ewc’e”I}(O)e 15 (1 - eeMC’%)JHO))} .

As we will see, the expansion of ®! allows to infer the equality
~ 2 * (1) 2 * 2 *
Rsl(al)c’y S1001 — ;h17a25a3 :Ary _;hlaaho@aai’) C’y a1 — ;h17a25a3
while the expansion of ®? yields
A 2 * (2) 2 * 2 *
Ry s,(a1)Cy | 818201 — ;hhagaai’) = Aj —;hl,ala%,% Cy a1 — ;hhagaai’)
Since the coefficients that appear in these expansions satisfy the properties that

2 2 2 2
R81 (041) - B,(yl)(Oél, ;)Rsl <C¥1 - ’)/h2> ) Rslsg(al) - B,(YQ)(Oél, ;)Rslsz <041 - ’Yh3> )

the statement of Lemma 7.2.6 follows from these equalities along the same lines as

in the proof of Lemma 7.2.3.

7.2.4.1 The leading terms in the expansion

We start by treating the first term in the expansion of &, 2, (z;¢), given by ®'. The
b

very same reasoning as the one conducted along the proof of Lemmas 7.2.3and 7.2.5
still applies and shows that this term is asymptotically equivalent to

20—
|Z’w<Q ag,er) R, (al)q)gloq—%m (c).
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To see why note that the only change to make compared to the proof of Lemma 7.2.5
is to consider A\, + %hl In|z| instead of A, +~vh; In|z| hereafter. With this new notation
at hand we again use the radial-angular decomposition (3.3.6) to write that

2
Fy (e 7m0 ML (dt + 7, df).

—t—r-+1i0
e
-1

z

+00 2
JT}(Z) :ev(AT-Jer)/ 67(3%61)/
0 0

The asymptotic is thus described in the same fashion as in the proof of Lemma 7.2.3,
the only difference being the value of )\, considered there. Moreover and similarly to

the x = v case we can use the remarkable property of the coefficients Bf,l) and Ry,

2 N 2
Ry, (1) = BV (on, ;)Rsl(sl(al - §h2))

to infer the following expansion for ®!:

2(0—a e 2 . 2
@ (z) = 2107 B (an, D Rey (Grlen = Zh2) s ) (€) + R (2):

N
Here M!(z) is a lower order term which can be processed like before using fusion
asymptotics. This reasoning shows that it is a o (|z|%<Q_°“"”>ng where ¢ is positive
and is independent of (aq,es). In particular for (Q — aq,e2) close enough to 0 we see
that %! = o (\zﬁ@—“m).

We now turn our attention to ®2(z;c). Then we can use the two-dimensional path

decomposition for the planar, drifted Brownian motion ¢ — X;;,-(0) —X,.(0)+ (a1 — Q)¢
to write that, using the notations from Subsection 3.3.4.1

B [em Zia TOIRO) (omet @I ) (emer @ )]

2
_ Z )\S/e<a1_§a1’M>E[He_ewc’eiﬁvi'(o) (e_ew<Ar+M,e1>J;j(z;_M) _ 1) }dM,
¢ i=1

seWy 2

where A, = X, (0) + (a1 — Q)r + %hl In|z| 4+ ¢, and with the process from Subsec-
tion 3.3.4.1 that enters the definition of

. +o0 5 27
Ji(—M) = / B ) /
0 0

having drift v = a; — Q and being started from —M.
For fixed s € W) 2, we make the change of variable M < A, + M to end up with

2(h1,e;) .
Fi(e = H O MY (dt + r, d6)

—t—r+1i0

€ 1

z

2
E{e@al—m,m / olo1—sa1,M) He—e“c’eﬁli(o) (e—e“M’e”Ji(Z;Ar—M) — 1) }dM.
C+Ar i=1

As usual the first exponential term is a Girsanov transform whose effect is to shift the
law of (X(2))|z|>e—+ DY (8c1 — a1) G(0,-), and to shift the law of A, to that of

2
Al = c+ X, (0) + (Sa1 — Q)r + ;hl In|z|.
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This allows to rewrite the latter as

2
12\%<§alfa1,h1> e<§a1a1,c>E[/ ola1—3a1,M) He’eﬂc’e”&r(o) (e,evaeﬁJ;(z;AﬁM) _ 1) }dM
C+As 1

where the notation fﬁ}r(o) means that «; is replaced by 3«; in the definition of 1:(0).

Now ne easily checks that sa; — %hl — @ belongs to the Weyl chamber C_ as soon as

(Q—ai,p) < % which we assumed to hold. Moreover if s = s15, we see that

. . o 2 2
<3182Oé1—8281041,8182041—;h1—Q> = <0¢1—Q;€1>2+<061—Q7€2><041—Q7P>+;<Q—041,€2>

so that (§1 8201 — $2811, e+ AS1°2) — 400 almost surely. As a consequence the reason-
ing conducted in the proof of Theorem 6.3.1 shows that in this asymptotic the term
corresponding to s = sys, in the expectation term will be given by

2/0_
| 2| Qo) R, s, (al)q>§1§2a1—xh1 (c) +Lot.

Therefore it remains to consider the terms that correspond to s = sps1 and s = sy sas1.
For s = sgs; theissue is that the limit ligl_l I2,(0) does not make sense, and therefore
r—+oo °’

the asymptotic is governed by the fusion asymptotics (4.4.2). They yield the estimate

R 2 s M.es) i 7T(<a1—Q,52>2777>
E[ / glor=sar M) TT g7 @11, 0) (e—ev< ST (zA—M) 1>}dM:0 e :
C+As

i=1

for any positive n. As a consequence by choosing r large enough compared to — In |z|
2
we see that this expectation termisao (|zH<Q*‘”’62>>. The corresponding term in the

2
expansion of ®2 is thus seen to be a o (\zﬁ@*al’m) as desired.

As for the case where s = s1s9s1, the leading term is |z]%<Q*al’p> while the expectation
term has the same feature in terms of fusion asymptotics. As a consequence it is
easily seen to be a lower order term too.

Eventually this shows that for a; close to @,

2(Q—-aq,e
q)ah—%hl (Z, C) = (C) + ’Z”Y<Q Len) RSl (al)éél(al—%hg)(c)

a1—2h

1 : 1 (7.2.16)

L R (an)® (e) + 9(2)
S189 1 §1§2(a1—%h3)

where R is a lower order term in z.

7.2.4.2 Extending the validity of Equation (7.2.16)

We have just provided an expansion of & ., (z;¢) under the assumption that a;
Ty

is close to Q. Using the a priori form of the expansion given by Theorem 7.1.1 we can
actually extend the range of values for which this expansion is valid.

Indeed we can infer from Theorem 7.1.1 that the remainder term 2i(z) can be put
under the form

2 .
%(z) = Z ‘Z’%(Q_ahZ;:l €;5) Pi(z, % a1) (7.2.17)
=0
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with P;(z, z; a1) a power series in z, z, as soon as H makes sense. We will see below
that # can be defined provided that v > 1 by choosing a; close to qw; + %WQ with
(a1, e2) < % Therefore the expansion (7.2.17) is valid provided that o, satisfies such
assumptions.

Now the left-hand side as well as the three first terms in the right-hand side in Equa-
tion (7.2.16) depend analytically on (ay,es) for the whole range of values for which
(an,e2) < q. As a consequence the power series P;(z, z; aq) are actually analytic in
(a1, e2) (in @ complex neighbourhood of) for (a1, e2) < ¢, which allows to extend the
validity of Equation (7.2.17) for (a1, e2) close to ¢. But in that case we have proved that
MR is such that

R(=) = o |o]7 @),

sothat P;(0,0; 1) = 0for oy close to Q. By analycity this equality extends for (a1, e2) <
% too, which is the framework where H makes sense. Therefore the remainder term
2 does not contribute to the identification of the coefficients coming from the distinct
expansions of H given by Theorem 7.1.1 and Lemma 7.2.6.

All'in all, we can conclude that Lemma 7.2.6 does indeed hold. O

7.2.5 . Conclusion of the proof of Theorem 7.2.2
7.2.5.1 Analycity of the extension: proof of Proposition 7.2.1

To start with let us consider «; as in Lemma 7.2.3 in such a way that the set of weights
a = (aq, —vhy, o, a3) € Ay with o = Kkws is non-empty. Note that this is possible for
all values of 7: indeed if a; = %wl + qus, a3 = %wg + qw; and ab = quw, then we have

(s,w1)+vy = %(%—7) which is positive since v € (0, v/2). Likewise (s, ws) = 2 (% — 7)
is positive too.

Then for such an «;, we have provided (under the assumptions of Lemma 7.2.3) an
expansion of the four-point correlation function (V_,, (2)Va, (0)Vaz (1) Ve, (00)) similar
to that of Theorem 7.1.1. In particular by linear independence of the hypergeometric
functions the coefficients that appear in this expansion can be identified, and therefore

we see that we have the equalities

07(041 —’YhQ,OéE,Oé:«s) 07(041 —’7h1704’2‘7043)

= and
A’(Yl)(_/yhly Qaq, O{;, Ofg) B’sl) (alv 7)
Ry, (82(n — 7hs))C5(S2(ar — yhs), a5, 05)  Cy(an — vy, a5, 03)
A’(‘?)(_’yhla ag, a3, o) Bgz)(ala )

Using analycity of three-point correlation functions as well as analycity of A, and B
we can extend the first equality to the whole range of values of a; such that (o —
~vhi, i, a3) € Ag for i = 1,2 and the second equality for (S2(aq — vhs), s, a3) and
(051 — ’}/hl,a;, ag) in Ag.

We can proceed in a similar way by taking a; as considered in the statements of
Lemma 7.2.5. Like above the set of (ay, —yhy,ad, ) satisfying the assumptions of
Lemma 7.2.5 is non-empty for any value of v € (0,/2), by taking a; close to quw; + %wg,
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while a3 = %wl + quwy and af = qws. This shows that

R, (31(a1 — vhe))C4(31(ar — vhe), a5, a3)  Cy(on — vhy, a3, a)

= and
A(Wl) (_7h17 Qai, O‘S? a?’) Bgl)(oﬂa 7)
07(041 B ’7h3, 0[37 0[3) _ Oﬁ(al - /yhl’ a§7 053)
AP (—yhy, a1, a3, as) B (a1,7)

as soon as «y is such that (§(ay —vh;), b, a3) for i = 2 or i = 3 and (ay — xhy, a3, a3)
belong to Aj;.
Now let us consider the map

A’(Yl) (_’yhla 6 + ’7h27 O(;, O[g)

F: e OB — ver, a3, a3) BO)(3 + vhy) ‘

Then this map is analytic in a complex neighbourhood of the set of § such that (5 —
ey, o, az). Moreover we have seen above that it coincides with C., (3, a3, a3) provided
that /3 is in addition such that (3, a5, a3) belongs to Aj3. Likewise we have proved that
it is equal to Ry, (81(a1 —vh2))C,(51(cq — vha), aj, a3) as soon as (515, a5, as) € As.
This shows that the map defined by setting R,(55)C, (53, a3, as) where s € Q + C_
is actually equal to F', and is therefore analytic over a complex neighbourhood of the
subset of § such that (3, a5, as) or (515, s, az) belongs to As.

The same reasoning applies when s = s5. Namely we have obtained the equality

Asyz)(—Vhl, B+ vhs, of, as)

Ry (58)C,(58, a3, 03) = G(B),  G(B) = Cy(B—p, a3, a3)

B®)(B + ~hs)

for s € {Id, sy} such that (53,a%,a3) € Az, depending on the values of «; around
%wl + qus. Like above this shows that the map R4(55)C(55, i, arg) is analytic in a
complex neighbourhood of the subset of 5 such that (3, a3, as) or (823, a3, a3) belongs
to Ag.

Let us now look at what happens for other elements of the Weyl group W. It is readily
seen that for any fixed s € W, the map

6 = RS(B)C“/(éﬂa O‘; a3>

is analytic in a complex neighbourhood of U, (a3, a3) == {3 € R?, (58, a3, a3) € As}.
Moreover we have proved above that for i = 1,2 the map defined by setting
ﬁ —> RSZ(§5)CV(§Z§B, CY;, 063)
was analytic in a complex neighbourhood of Us(c3, as) U Us,s(c, av3). Because the
reflection coefficients enjoy the property that Ry, (58)Rs(5) = Rs,s(3) we therefore see
that the map from Equation (7.2.2) is actually analytic in a complex neighbourhood of
Us(ad, a3) Uls,s(ab, as). As a consequence this map is seen to be analytic in a complex
neighbourhood of
U Uy (s, a3)
we<s],52>
where < s1,89 > is the group generated by s; and sy. The latter being nothing but
W, we infer that the map is analytic in a complex neighbourhood of (a3, a3). This
shows that as desired, the extension of the three-points correlation functions from Equa-
tion (7.2.2) is analytic in a complex neighbourhood of U(a3, a3), which was the state-
ment of Proposition 7.2.1.
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7.2.5.2 Operator Product Expansions and shift equations

Having proved that the extension a — R (a)C,(5cr, a3, a3) is analytic in a complex
neighbourhood of U(aj, cv3), we can denote by C. (o, o, a3) this extension.
Then as explained above, we know that the equalities

Ow(al - 7h2704§,063) _ 07(041 - 7h1,a§,a3)
ASYI) (_fyhlu Qaq, 067 063) B'(Yl) (Oq? fy)

and (7.2.18)

Cylan —hg, 03, 03)  Cylan —vha, 03, as) (7.2.19)
AE)?)(_’tha aq, 067 Oég) B’(YQ) (ab ’7)
hold true in some open subset of U(ad, a3). By analycity of the left and right-hand
sides this equality extends to the whole range of values for which it makes sense. Put
differently we recover Equation (7.2.3) in the case where y = 7.
When y = % the same reasoning remains valid. Namely thanks to Lemma 7.2.6 we

know that as soon as the set of («, —%hl, as, a3) € Ay with oy as in the statement of
Lemma 7.2.6 is non-empty we have the equalities

C’y(al - %hg,&;,ag) C’y(al - %hlaa;aa?))
Oy = 0 5 and (7.2.20)
Ay (—;hl,al,ai,&g) By (oy, ;)

C,Y(C(l — %hg, Oé;, 063) C,Y(Oél — %hl, Oé;, 063)
Oy = 5 . . (7.2.21)
Ay (=2hi, an, a3, o) By (v, %)

Therefore to conclude for the proof of Theorem 7.2.2 it suffices to check that for any
fixed value of v € (0,+/2), if the set of (a1, —2hy, a3, a3) € Ay is non-empty then we
can find (o, —%hl,ag,ag) that meets the requirements of Lemma 7.2.6. Now one can

check that as soon as (o, —%hb&;,@g) € Ay, we have (s,wi) < —3% (’y + %) so that
for v < 1 (which implies that —34 (7 + %) < —7y) this set is empty. Conversely if v > 1

by choosing oy = a3 = qu; + %wg while o = quw, then (s,w;) = —% (7 + %) > —
so that this set is non-empty, and by choosing the weights close to the above choice the
assumptions of Lemma 7.2.6 are fulfilled. This wraps up the proof of Theorem 7.2.2.

7.3 . Shift equations and computation of the
three-point correlation functions

This concluding section brings together the building blocks unveiled in the previous
sections to provide a proof of one of the main statement of the present document,
the computation of certain structure constants associated to the sl Toda theory. The
reasoning developed throughout the manuscript will allow us in this section to provide
a rigorous derivation of the Fateev-Litvinov formula. But to do so we first give some
background on the special function Y and then bring the proof of this statement to its
end.
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7.3.1 . On the Fateev-Litvinov formula

The Fateev-Litvinov [52] formula proposed for the three-point correlation functions in-
volves the special function Y, which is ubiquitous in Liouville theory and more generally
in Toda CFTs. One of the reasons why it is so is that it enjoys remarkable shift equations.
These shift equations take the form?:

T(z+x) =1 (%z) (%) Ty (), (7.3.1)

valid for z € C and x € {7, %} When 0 < R(z) < ¢ =~ + % this special function
admits the integral representation

B +00 q 2 ot (sinh< 1—z \Lf )
InY(z) _/0 (5 — z) 5 = it ( f) it ( / t) - (7.3:2)

while the shift equations (7.3.1) allow to continue it to an analytic function over C, with
no poles and zeros given by the (—yN — %N) U (g + N+ %N) and which satisfies
T(qg—2)="7T(z).

Based on this special function, the Fateev-Litvinov formula [52] then takes the form

(2Q—ay —aj—ag,p)

(D)

H THQ —a1,e))T((Q — as,€)) (7.3:3)

ecdt

[ cjea (5 + (01— k) + (a5 = Q1))
where recall that I(2) = F(Fl(i)z).
The formula proposed in [52] for sl,, Toda three-point correlation functions closely re-
sembles that of the DOZZ formula [45, 141, 84] for Liouville theory. And actually
the DOZZ formula can be recovered from the expression of the sl; Toda three-point
correlation functions as the following statement discloses:

Lemma 7.3.1. Assume that (s,w,) — 0 while (s,w,) remains positive. Then

1 pozz (a1, €2) (03, €2) (as, €2) )
ﬂ<s,wl>%< ViVE B )

CﬁL(al, g, Q) ~

(7.3.4)

(2Q—a,eg)
2 2
Proof. As (s,w;) — 0, the prefactor converges to <7er <§) (g) g ) " Where

we have used that (s,w;) = 0 and denoted @ = >3_, ay. Likewise by looking at

2Note that the special function considered here differs from the standard expression be-
cause of the convention on the length of the simple roots. One recovers the usual expression

via the correspondence Y(z) = T%(%)
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N

each factor appearing in the product J[, ;<37 (
one can check that

(0 = Q) + (a3 = Q)

W

(2Q—a,eg)

1 2 2\ 27 v
FL * i v
C’Y (041,042,063) <S,(.U1> (T‘-N’l < 9 > ( 9 >

Y'(O)Y(£)Y(Q — a1, e2)) T{Q — @3, €2))

1 (e v (B g e0)) 1 (02— (03.e2)) T (52— fage0))

Using the fact that T((Q — as,e2)) = T({as,e2)), via our convention on the Upsilon
function the latter is nothing but the DOZZ formula, up to the normalization factor

; FL X 11 ~D0zzZ ({a1,e2) (a3.e2) (as.e2)
v/2, which shows that CI-(a1, 03, a3) ~ mﬁcﬁ7 ( %2 , \2/5 , \3/52 ) O

A counterpart statement also holds for the probabilistically defined correlation functions:

Lemma 7.3.2. Assume that oy, a3 € Q + C_ are close enough to Q) so that k =
(2Q — oy — az,3wy) IS such that k < q. Then, as e — 0 with e > (,

Proof. Under the assumptions made on the weights, we see that the three-point cor-
relation functions Cy (a1, (k + €)ws, @) admits the probabilistic representation

C, (o, (k+ &)ws, az) ~ (7.3.5)

(s,w;)

~ (s,wj)

2 F(<Swz>),ul K 11— x| v(az.eq) 5
+as+as,ei) i
H </ Z y{a1,e;) ‘ i‘1<a1 darase M (d2$1)>

i=1 v

where (s,w;) = 5 while (s,ws) converges towards (2Q — a; — as,e1). Therefore as
e — 0 we see that C, (a1, (k + €)ws, a3) is asymptotically equivalent to

_(s,w2)
F<<Sw2>> v —
3 i E( M\x2|1<“1*“5+°‘3’62>Mvea(d%z) W
€ v

_ (s,wo)

To check that the expectation term does indeed coincide with the probabilistic rep-
resentation of the DOZZ formula proved in [84], it remains to ensure that 2(s,ws) =
(o + ab + ag — 2Q, e2) where the factor 2 comes from the fact that the simple root
e has norm /2. Using the fact that 2ws — e2 = w; the above equality boils down to
(oq + ab + a3 — 2Q,w;) = 0, which was our assumption. O

The second statement about the proposed expression for the three-point correlation
function is concerned with shift equations, which take the form:

¢’y<041 - Xhi-i-la a;a 053) _ A’(YZ)(_th aq, Oé;, 043)
€W(Cyl - Xhh CY;, 013) B(i)(al)

2
fori=1,2and x € {v,-}.
Y

(7.3.6)
Equation (7.3.6) follows from the shift equation (7.3.1) of the T function after some
elementary but lengthy computations.
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7.3.2 . From shift equations to three-point correlation

functions
We are now in position to compute the desired formula for three-point correlation func-
tions. Indeed under the assumption that v > 1, we have already seen along the proof of
Theorem 7.2.2 that the set of weights o = (o, a1, o, a3) € Ay such that « = —xhy
with y € {~, %} and a} = kw, for kK < ¢ is non-empty and open in A,.
Now we have seen in Theorem 7.1.1 that for such weights, the associated four-point
correlation functions can be expressed in terms of hypergeometric functions as follows:

XK

(Va(2)Vay (0) Vi (1) Vg (00)) = [z [z — 1|7 H(2),  where

2
, (7.3.7)
H(z) = Cyla+ ay, ab, as) <|Ho(z)]2 +Y A (o, 01,03, as) |’H,~(z)|2> :
i=1

On the other hand we proved in Theorem 7.2.2 that under the same assumptions on
the weights, this function H could be expressed using different coefficients that involve
three-point correlation functions:

(Vi (2)Viay (0) Vg (1) Vi (00)) = [z |2 = 1|5 H(z),  where

Y

H(z) =Y B (ar, X)Cy (a1 — xhi, a3, a5) [Hioa (2)]

where C,(a; — xhi,ab,a3) denotes the extension of C., defined by setting
Cy(a, 05, a3) = Rs(a)C, (5, o, a3) where s € W is such that sa € Q + C_. This
extension is analytic in virtue of Proposition 7.2.1.

Combining these two equalities and because the hypergeometric functions are linearly
independent, we get for i = 1,2 and x € {7, %} the following shift equations:

07(041 - Xhi+170z§7043) . A’(Yi)(_Xhlaaha;aa?))

= . . (7.3.8)
C’Y(al - Xh17 0537 053) B(l) (Oq)

In particular this shift equation allows to extend the map a — C.(a, a3, i3) to an open
complex neighbourhood of R? of the form R? x (—§,d)? on which it is analytic.

Now we have seen before that the expression C’WF'-(ozl, a’, ag) proposed for the three-point
correlation functions satisfies the very same set of shift equations. As a consequence the
map defined by setting

o Crly:L(ala OZ;, Oég)

C,(a, a3, a3)

is analytic over R? x (—4, )% and is periodic with periods ye; for y € {7, %} andi=1,2.

Remark 7.3.3. At this stage it is worth noticing that for the general case where
v € (0,/2) the following shift equations hold true

C’y(ah G, 043) _ O’7<a1 + Ve, G, O[g)
C')IjL(alv Oé;: 063) O!;L (al + e, 067 053)

(7.3.9)
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for every e € ®*. The main obstruction at the time being that prevents one from
deriving the shift equation dual to Equation (7.3.9)

OW(Oél,Oég,Oég) . C’y(al + %6,062,053)

CPi{ar,a,a5) Ot + Ze,af, )

(7.3.10)

stems from the fact that for this we would need to define correlation functions with
X = % and ~ € (0,1), which is technically demanding and out of range for the time
being.

As soon as l; is not a rational number, it is readily seen that the set vZe; + yZey +
%Zel + %Zeg is dense in R?. Therefore under this assumption that % ¢ Q, we get that
Cy (o, a3, a3) = a, (3, as)CF(aq, a3, as) for some constant a, (a3, as) independent
of a;. By symmetry in the weights o we see that this constant is actually independent
of these three variables. It can be evaluated using Lemmas 7.3.1 and 7.3.2, thanks to
which it is found to be equal to 1. Therefore we have proved that C,(ay, a3, a3) =
CFM o, o, aig) for g € (1,4/2) \ Q. Because both quantities are continuous in the
variable 7 this equality extends to all values of v € [1,1/2). We can thus conclude that
the following statement is true:

Theorem 7.3.4. For v € [1,V/2) assume that V,; is a semi-degenerate field and
that (a1, o3, a3) belongs to Ay. Then

Cy (o, a5, a3) = C’WFL(al, as, ag) (7.3.11)

where the left-hand side is a probabilistic three-point correlation function.
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8 - Fonctions de corrélations a quatre points : le
bootstrap conforme

Le chapitre précédent nous a permis de calculer explicitement la valeur d'une famille de
constantes de structure pour la théorie de Toda associée a g = sl3. La derniére étape
dans I'implémentation de la procédure du bootstrap conforme est la description d'une
méthode récursive pour calculer les fonctions de corrélation avec un nombre plus élevé
d'insertions a partir de celles & trois-points.

Dans cette perspective nous nous attacherons ici a expliciter comment calculer des
fonctions de corrélation & quatre points en fonction des constantes de structure de la
théorie — le méme raisonnement restant valide lorsque sont considérées des fonctions
de corrélation contenant plus d'insertions. Pour ce faire nous étudierons les propriétés
spectrales d'un opérateur auto-adjoint : |'Hamiltonien de Toda.

Les éléments présentés ici sont issus d'un travail en cours mené conjointement avec
Colin Guillarmou [32]. Nous n'esquisserons que les grandes lignes de ce travail afin que
le manuscrit garde une taille raisonnable et pour ne pas faire appel a des notions trop
diverses. Plus de détails sur les objets considérés ainsi que sur les preuves des résultats
énoncés seront donnés dans un futur travail [32].
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8.1 . Conformal bootstrap in the sl; Toda theory

The derivation of the Fateev-Litvinov formula for a family of probabilistic three-point
correlation functions represents the first step in the implementation of the conformal
bootstrap method. We can then carry on the recursive procedure by showing that one
can reduce the computation of a family of four-point correlation functions to that of the
three-point computed in the previous chapter. In this perspective we aim to prove in a
future work with Guillarmou [32] that:

Theorem 8.1.1 (In preparation). Assume that the Vertex Operators V,; and V.
are semi-degenerate fields. Further assume that the weights « satisfy the assump-
tion that fori =1,2:

(o, — Q,e;) <0 foralll <k<4, with

(a1 +as —Q,w;) >0 and (as+ oy — Q,w;) > 0. (8.1.1)
Then
(Ve (0) Ve (2) Vi (1) Vs (00))
- 2417r2 /RQC”(%O‘;’Q —iP)C,(Q + P, a3, ay) |o[10errAm = 8e) | FE () P ap

(8.1.2)

where the conformal blocks F% only depend one the central charge of the theory
as well as the conformal and W-quantum weights A,, and w(ay) for 1 < k < 4.

In the general case where it is no longer assumed that two Vertex Operators are semi-
degenerate fields we should be able to prove a similar statement —but in that case the
three-point structure constants as well as the conformal blocks involved are not explicitly
computed.

In the rest of this section we provide details on the proof of Theorem 8.1.1. In particular
we will explain to what extent the formula (8.1.2) corresponds to the Plancherel formula
associated to a self-adjoint operator which we will call the Toda Hamiltonian. We will
provide in the subsequent sections more background on the notions presented, but will
not enter into too much details in order to keep the length of the document reasonable.
Some statements are not proved yet, we will make it clear when this is indeed the case.

8.1.1 . Hilbert space, W35 algebra and the Hamiltonian for

the free-field theory

In Section 8.2 we describe in which setting the Toda Hamiltonian can be defined. To
do so we will carry a detailed study of the non-interacting or free-field theory, which
corresponds to the case where the cosmological constants are taken equal to zero. This
will provide the basic ingredients needed to prove the bootstrap formula (8.1.2). A
particular attention will be paid to the description of the Hilbert space of the free-field
theory as well as some properties of the Hamiltonian of the free-field theory, which will
be at the core of the proof of the bootstrap formula (8.1.2) for the interacting sl; Toda
CFT. Additional details on the framework presented here are provided in Section 8.2.
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8.1.1.1 Hilbert space and the 1V; algebra

The Hilbert space of the sl3 Toda theory can be identified to a space of maps S' = T —
a ~ R2. This Hilbert space Hr = L?(R? x Q) is equipped with a measure dc ® Py
such that a sample of a function with respect to it can be written under the form ¢+ ¢
where ¢ has the law of the GFF on the circle defined in Equation (3.2.17) and with ¢
sampled according to the Lebesgue measure over R?. This Hilbert space thus comes
naturally equipped with a L? scalar product (-|-).

Having defined this Hilbert space we can then introduce a family of operators (A,,)ncz
acting on it. These operators satisfy the commutation relation of the Heisenberg al-
gebra, so that they provide a Fock representation of the Heisenberg algebra within our
probabilistic setting. Based on these operators we can define a Segal-Sugawara repre-
sentation of the W5 algebra, that is to say we construct a family of operators acting over
Hr, (LY, WY ), mez, that satisfy the commutation relations of the W5 algebra. We can
likewise define a copy of these operators

~0 —~0

(Ln7 Wm)n,mGZ

based on an another representation of the Heisenberg algebra, and that commutes with
the first representation considered.

8.1.1.2 Hamiltonian of the free-field theory and its diagonalization

Based on this pair of family of operators we can introduce the Hamiltonian of the free-
field theory by setting

~0

H’ = L) + L,.
This operator acting over Hr is self-adjoint and can be explicitly diagonalized. Namely
let us introduce for any o € C? the map defined by setting

ng(c, 90) = €<Q_Q’C>'

Then these functions are generalized (since they are not elements of L%(R? x Qr))
eigenstates of H" in that they satisfy

HOy), = 2A.1),
with A, = (2,Q — 2).

2
Based on this set of eigenfunctions and thanks to the commutation relations of the W;

algebra we can define additional eigenfunctions of H® by considering their descendants.
This is done by setting

0 . 0 0 0
S=W2 L W_,L_ ¢

a,v,v —

where we have set, for v and v two pairs of Young diagrams

L%, =L, -..L°,  wherel(v) is the last integer k for which v, > 0

_Vl(u) Vi
and likewise (for W, W and i) They satisfy
H o =27, + [v| + |7

a,v,U
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with [v] == 52, 5, v,
These generalized eigenfunctions allow to describe a Plancherel formula for the Hamil-
tonian derived from that associated to the Fourier transform on L?(R? x Q). Namely

we show that the spectral decomposition of H" takes the form:

1 — —_ ~ ~
(uv)y = (2n)? Z /R2<u|¢%+iP,u,17>2<¢%+iP,u’,l7’|v>2FQ—&1—iP(V’ V,)FQ—&l-z‘P(Vvyl)dP

v' v

for any u, v € L?(R? x Q) for some coefficients Fy,},»(v, V).

8.1.2 . From the free-field to the Toda theory

In the interacting theory one needs to take into account the additional terms stemming
from the fact that the cosmological constants are now chosen to be positive. This will
in turn modify the Hamiltonian to be considered but our goal is to prove that a similar
Plancherel formula holds true. We first explain what changes are to be made and then
explain how the spectral analysis of this Hamiltonian can be carried. Using the general
form of the Ward identities this will prove the formula (8.1.2).

8.1.2.1 Definition of the Hamiltonian

The Hamiltonian of the interacting theory can be defined from H by formally setting
2
H=H"+ elreise) / ereiv () 19

where the exponential that appears in the integral is defined as a GMC measure with
respect to the GFF ¢. However this writing may not make sense for the whole range of
values of v € (0,/2) since the GMC measure is not well defined if v > 1. Therefore
in order to make sense of H one needs to provide an alternative definition of the Toda
Hamiltonian. This can be done by defining the Hamiltonian from its quadratic form, but
also by representing its propagator based on the dilation semigroup in connection with
reflection positivity. We present these definitions in Section 8.3.

8.1.2.2 Spectral resolution of the Toda Hamiltonian

Having properly introduced the Toda Hamiltonian one then needs to compute its spec-
trum and understand its spectral properties. We will explain how the eigenfunctions
0 associated to the free Hamiltonian can be transformed into eigenvectors 1, ,, 5 of

a,V,

the Toda Hamiltonian satisfying the relation
Hipo5 = 2A, + V| +|7].
The Plancherel formula of the Toda Hamiltonian then takes the form of
(ulv)s =
1 — — o~ ~
W Z /c2 <u’wQ+iP,u,l7>2<wQ+iP,V’J7"U>2FQJlriP<V7VI>FQJ1riP(V7VI)dP (8.1.3)

v\ v
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for any suitable u, v.

Proving such a decomposition is actually very involved and relies on inputs coming from
the theory of scattering in symmetric spaces, hence we will not enter into the details
of the proof of this formula in this manuscript. An additional subtlety in the above
writing is that for « = ) + iP the eigenfunctions ¢, , 5 are not well-defined objects
probabilistically speaking. In order to overcome this issue one needs to justify that such
expressions can be analytically continued beyond the range of values prescribed by the
probabilistic existence of these quantities, which is also particularly demanding. We will
provide additional explanations on the way such a formula is derived in Section 8.3.

8.1.2.3 Ward identities and the bootstrap formula

Based on the Plancherel formula for the Toda Hamiltonian we are now in position to
provide a justification of the conformal bootstrap formula (8.1.2). Indeed by choosing
the two vectors u and v in Equation (8.1.3) in an appropriate way we can rewrite the L?
scalar products that appear there as follows:

(uv)a = (Va, (0)Vay (2) Vas (1) Vi, (00));
(UYgrirwp)2 = (Vai (0)Va, (2)Varipw,5(00));
(Vo+irw 5 V)2 = (Voripw,5(0)Vay (1)Va,(00)).

The descendent fields V). ;p, 5 are obtained by applying the operators of the W3 algebra
to the primary field V. ;p. Like before some care has to be taken when it comes to
defining such quantities since they do not admit a probabilistic representation but rather
correspond to their analytic continuation. We can thus write the following equality, valid
under suitable assumptions on the weights:

(Ve (0) Ve (2) V(1) Vs (00)) = # Z /c

(Var (0) Vo (2) Vg ip,5(00)) (VigriP05(0) Vaay (1) Ve (00)) Fiyip (v, V') g p (D, /) P,

Now we may distinguish between two cases. First of all under the assumptions of
Theorem 8.1.1 we can prove that the ratio between three-point correlation functions
containing a descendent field and not is actually of the form

(Var (0) Vo (D) Vg ripw 5(00))
(Var (0)Vaz (D) Vi ip(o0))

where the quantity d only depends on the conformal and W — weights A, and w(«).
This is due to the fact that the global Ward identities from Theorem 5.2.1 impose
constraints on the descendent fields and in turn allow to reduce the knowledge of WW-
descendants to that of the weights A, and w(«). The latter implies that we can rewrite
the Plancherel formula under the form

(Vi (O)Va§ (Z)Va§ (1)Va, (00))

= v(ay, az, v)v(a, a5, V)

= —— [ C(a1,05,Q —iP)Cy(Q +iP, o, au) |2 (BQ+ip=fa;~Aay) |.7-"17;(z)‘2 dP
c2
(8.1.4)

247



where the conformal blocks are given by the (formal) power series

Fh(z) = Z Moy, o, V)F (v, vV )u(as, ay, V).

v,/

A consequence of Theorem 8.1.1 is to ensure that this series has radius of convergence
1 for almost every P € C_.
In the general case it is not clear at this stage whether the ratio

(Ve () Vo, DV tipw 5(0))
(Ve (0)Var, (DV 4ip(o0))

only depends on the conformal and quantum weights. To the best of our knowledge this
question is not settled even in the physics literature. However there is some hope that
our probabilistic representation can allow to address this issue.

8.2 . The free-field theory

In this preliminary section we want to explain where the formula (8.1.2) comes from by
carrying a detailed study of the free-field theory. This will provide the basic ingredients
needed to prove the bootstrap formula (8.1.2). In particular we will detail the framework
in which the Toda Hamiltonian can be studied.

8.2.1 . Hilbert spaces and the W5 algebra

We first describe in this subsection the Hilbert space of the sl3 Toda theory and present
a Segal-Sugawara representation of the W3 algebra on this Hilbert space, based on the
Heisenberg algebra which we represent in terms of operators acting on the Hilbert space
of the free-field theory.

8.2.1.1 The Hilbert space of the s(; Toda theory

The Hilbert space of the sl; Toda CFT can be realized starting from the space of maps
S! = T — a ~ R% Namely, let us introduce for n € Z and 1 < j < 2 the map
en () == emv;, where recall that (v;);—; is any orthonormal basis of R?. Then the
mode expansion of an element ¢ of L?(S! — R?)

2
p=c+ Z Z (Oni€ni + Pni€_n;) (8.2.1)

n>0 =1

establishes a correspondence between this L? space and the space R? x Qr, where Qp :=
(]R‘l)N*. The latter comes naturally equipped with a cylinder sigma-algebra X = B®Y
and a probability measure Pr under which the modes ¢, ;, for n > 0 and i = 1,2,
are centered, complex independent Gaussian variables with variance % . By considering
such a measure over )1 we see that a GFF on the circle S! defined in Equation (3.2.17)
corresponds to a sample with respect to this probability measure. In what follows we will
consider the Hilbert space Hr corresponding to the L? space of R? x Qr when equipped
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with the measure dc ® Pr, where dc is the Lebesgue measure on R? (which is not a
probability measure). The associated scalar product is denoted by (-|-)o:

(flg)2 = /RQE [f(c, ©)g(e, ¢)| de (8.2.2)

where E is associated to the probability measure Pr.

8.2.1.2 Heisenberg algebra

We now introduce a family of operators acting on our Hilbert space Hr. For this purpose
we start by introducing the subset S of L?(Q7) defined as the linear span of smooth
maps that depend only on a finite number of coordinates ¢,, ;. On such maps we can
consider operators (0y,;)nez.1 < i < 2, that correspond to the holomorphic derivatives with
respect to the modes ¢, ;:

oF
anzF m,j)|m| < = m,j ) |m| < .
7 ((w ’J)ji(jV) Toms ((90 ,J)|j|i§v>
Using these operators we can form

2
oF
O F = E v; and likewise set ,, == ©, 1V + Y, 2V2 (8.2.3)
= O ’ ’

so that 0, is the gradient with respect to the variable ¢,, € R?. The operators 9, can
be recovered by using that 0, F' = (0, F, vg).
We now present the creation and annihiliation operators that will allow to define a Fock
representation of the Heisenberg algebra. These operators act on the Hilbert space C,,
defined by

Coo = Span {¢(c)F, ¢ € C®(R?) and F € S}. (8.2.4)

To start with we introduce 2 copies of the Heisenberg algebra by setting
A, ;= %8n,j for positive n
Ao, = % (0o +(Q,v;)) forn=0 (8.2.5)
A, ;= % (On,; + 2np_p ;) for negative n,

where 7 = 1,2. These operators are unitary and form 2 independent copies of the

Heisenberg algebra:
n

[Anis Am,j] = 500, -m0i;. (8.2.6)
The adjoint with respect to the L?(R? x Q1) Hermitian scalar product is seen to be
given by

A, =—A_,iforn>0 and A, = Ay —i(Q,v;). (8.2.7)

Like before, of particular interest is the vectorial version of these operators, defined via

2
A, =) A, (8.2.8)
=1
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It is such that for any w and v in R?, [(u, A,), (v, Ap)] = (U, V) %6n .
We can likewise define other Fock representations of the Heisenberg algebra by taking
anti-holomorphic derivatives rather than holomorphic ones:

;‘;w = ;8_7” for positive n
Ao, = ; (Do +Q) forn=0 (8.2.9)
An,j == ! (8_,” + 2n¢p,, ;) for negative n.

Based on these representations of the Heisenberg algebra we are almost in position to
introduce the Hamiltonian operator associated to the sl; Toda CFT. Before that, we
define the self-adjoint and nonnegative operator P acting on S C C

P:=2> (A, A,)+ (A A, (8.2.10)

n>1

where with the above notation is meant that
2

<A—na An> = Z <Ui7 vj>A—n7iAn,j = (A—n,lAn,l + A—n,2An,2) .

ij=1
The eigenfunctions of P are indexed by 4-tuples (k!, k?,1',1?) of elements of
N :={keN"V, k,=0forn large enough}

with eigenvalues of the form |k| + |I| where |k| = Y7 | S _ nki. This allows to
decompose L?({27) as follows:

L2(Q7) = Bpogenz ker (P — [k — [1]). (8.2.11)

The corresponding eigenspaces can be explicitly described. Namely for k', k2 and 1, 12

in A/ let us set
Tk = H I_IA_m Cnils (8.2.12)

n>01i=1
where 1 is simply the constant function. Then the commutation relations (8.2.6) allow to
claim that 7 is an element of S that satisfies Py = (|k| + |I|) k4. The eigenspace
of P in L?(Qr) corresponding to the eigenvalue N € N is spanned by the (k) i 1=
so that the family (7y.1), ;cr» form a basis of L3(Qr).

8.2.1.3 Segal-Sugawara representation of the 17; algebra

Using the above operators and based on its Segal-Sugawara construction, we can intro-
duce a representation of the W3 algebra by means of operators acting on S, which in
particular contains a representation of the Virasoro algebra. For this purpose let us recall
that the normal ordered product for the Heisenberg algebra is defined by the convention
that annihilation operators are on the right, that is we denote for any u, v in R?

. . <U, An><1}, Am> ifm>0
u, Ay (v, Ay = {(U,Am)<u, AN a0
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When both n and m are non-positive the order becomes irrelevant since the operators
then commute.
With this convention at hand we define for any integer n € Z

LY = —i(n+ 1)(Q An) + Y (A, Ay) ¢ (8.2.13)
meZ
Over Cq, this family of operators satisfies the commutation relations of the Virasoro
algebra with central charge ¢ = 2 + 6 |Q/*:
¢/ 3

[L),L)] = (n—m)L),,, + E(n — )0, —m- (8.2.14)

In a similar fashion as above we can define another representation of the Virasoro algebra
that would correspond to the anti-holomorphic derivatives. It takes the form
~0 ) ~ ~ ~
L, =—i(n+1){Q,A,) + Z (A, At
meZ
Thanks to Equation (8.2.7) these two representations enjoy the property that for all
n € N: o 0
(L) =L', and (L))" =L
In the W3 algebra there is yet a second family of operators that we need to introduce.
It is defined by the expression

W =ig*(n+1)(n +2)(ha, A,)
~2¢> (n—m+ 1)( he — oy A Bty A <+ 2 (hy — hay A (h, Ayy) - )

meZ

+8i Y (A (ha, Ay (hs Ayt

ni+nz2+nz=n

(8.2.15)

-n-"

(8.2.16)

It is common to rescale this family of operators by an extra factor in order for the
commutation relations to admit an elegant form. Namely let us introduce the notation

) 48
W =iy / o 5CW2. (8.2.17)

Thanks to Equation (8.2.6) this family of operators enjoys the following commutation
relations with the Virasoro algebra

[L?m W?L] - <2m - n)WO

m—4n

(8.2.18)

while the commutation rule for the (W?),cz is rather complicated (see for in-
stance [25]) but irrelevant here. Altogether the algebra of operators on S generated
by (L2, WY ),..mez forms a representation of the 1W;-algebra. Likewise we can define an-

~0 0
other copy of the W; algebra associated to anti-holomorphic derivatives (L,,, W, ) mez.
These two representations of the W3 algebra enjoy the additional property that, thanks
to Equation (8.2.7),

—~0 —~0
(Wp)" =W, and (W,)" =W_
For future reference we stress that both L) and W are self-adjoint. However and to
simplify the computations we will often work with W, in what follows.

(8.2.19)

n:
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8.2.2 . The Hamiltonian of the free-field theory

Having defined above a representation of the W5 algebra, we now consider a special
operator acting over L?(R? x Q1) that we will refer to as the Hamiltonian of the non-
interacting sl3 Toda CFT. It is defined by setting

~ 1 1
YIS S W RIS 8220

Thanks to Equation (8.2.15) this Hamiltonian is seen to be self-adjoint.

8.2.2.1 Diagonalization of the free Hamiltonian
We start by considering (generalized) eigenfunctions for the Laplace operator. They are

defined for o € C? by

Uo(e, ) =% which are such that — (—A. + Q") ¢ = Ayl  (8.2.21)

| =

with A, = (2,Q — 2) like before. In particular /9 is such that H¢2 = A4, We
have seen before that P admits a set of eigenfunctions 7 where k and I € N, that
are constructed by application of creation operators starting from the constant function
1. We can actually reproduce the same scheme but starting from any ¥° and construct
in such a way eigenfunctions of H. However to preserve the fact that the maps thus
defined are indeed eigenfunctions of H® we shall not use the creation operators A_,
but rather the operators L’ and WY . This leads us to introducing the so-called
descendant states of 1 as follows.

First given a Young diagram’ v, we introduce the shorthand

LY, =LY%, LY, wherel(v)isthe last integer k for which v > 0.

The same notation applies in the same way to W, W and L. The descendant states of
Y0 are then defined by setting

—~—0 ~0
271/’,7 = W07U2L0_V1W7172L7171'¢2 (8222)
for any four-tuple of Young diagrams (v,v) = (v*,7");—1 5.

Using the commutation relations of the 15 algebra (8.2.14) and (8.2.18), straightfor-
ward computations show that by doing so we indeed end up with a set of generalized
eigenfunctions for Hy, for which the associated eigenvalues are given by

20, + v + |V (8.2.23)
with |v| = 327, > nen Vi The reason why these are only generalized eigenfunctions
is that the ¢, , ;; do not belong to L*(R* x r) due to the lack of integrability in the

c variable but rather to a weighted space e/I°/L?(R? x Qr) for 3 > |Re(a — Q).

"Young diagrams are non-increasing and eventually-zero sequences of integers. We de-
note their set by 7.
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8.2.2.2 On the generalized eigenfunctions

From their explicit expression we can infer that these eigenfunctions enjoy the following
properties:

Proposition 8.2.1. There exist polynomials Q. , i depending on finitely many el-
ements of Qr such that

a,u, v = O, N7 uwo (8.2.24)

These polynomials are such that for o € C,
(Qo2g-aw5| Qaw' 5) L2(r) = O, Opl o Fa (v, V) Fo (0, V). (8.2.25)
Moreover forany P € R* and N > 0, the matrix (Fg1ip(v, V) == 1S invertible

and the polynomials (Qo+ipvi) span the eigenspace ker (P — N).

lv+p[=N

Proof. Using the explicit expression of the generators of the Heisenberg algebra A,,
we see that we can write
—~0,a ~0,
0 5=v0 (W(};L(ﬁjlw_;zL_;d)

where in the above expression operators with an exponent a are defined by replacing
Ay by 5. For instance

{ ila—(n+1)Q,An) + 3,200 An-mAn forn #0.

LO,a _
Ao +2) 0,5 0A-nAn forn = 0.

—n

These operators viewed as acting on (a proper subset of) L2(Qr) now satisfy
(L2%)" = L%297% and (W)™ = w2e~2,

Note that the commutation relations of the W3 algebra are still satisfied.

Now using the fact that the set of polynomials of L?(Qr) that depend on finitely many
variables is stable by the action of the Heisenberg algebra we infer Equation (8.2.24).
Moreover we also see that

@ a o o —~0,~ Oa
<Q2Q—O7,V,I~I’QO&,V/,D/>L2(QT <1|L0 W0 WO( % [i( ) W~2 (& )1W( /)21>L2(qu)

To start with and based on the commutation rules together with the fact that for
n > 1L,1 =W,1 =0, we can reproduce the arguments developed along the proof
of [66, Lemma A.1] to deduce that LS’IQWB’;YW??V,)QL(}‘("V,)ll = 0 as soon as |v| > |v/|.
By symmetry in v and v’ this implies that ( aw' 0)12(0:) Nas an expression
of the form F,(v,v’). Since the two copies of the W5 algebra are independent the
formula (8.2.25) follows via the very same reasoning.
Eventually we see that the matrix (FQJrip(I/,V/))'V':‘U,':N
determinant formula from [102] or [136, Equation 5.16]:

2
9 (N—rs)
det (Fa(u, I/,))‘V|:‘V,|:N = KN H H < a,e) +ry+ 57> (8.2.26)

1<r,s<Need
rs < N

is invertible thanks to the

for k independent of « and ¢, and with p?(k) denoting the number of pairs of Young
diagrams v with |v| = k. Since this determinant vanishes only for weights « for which
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(ae) = (1—r)y + (1 — s)% for some e € ® and r, s € N* the claim follows. This im-
plies that the polynomials (QQHR,,,@)‘V':N are linearly independent, while the form
of Equation (8.2.25) allows to show that more generally the (Qqg4ipup),- are in-
dependent, and likewise that (QQHR,,’,;)M%TQ. A specialization of this statement is
that the (QQHPMD)MH;\:N are linearly independent. Because they belong to the
eigenspace ker (P — N), by a dimensional argument (since this space is spanned by
the (mg,1)k11=n) We see that the family of the (QQ+inVag)\u|+|ﬁ\:N is actually a basis
of ker (P — N). O

8.2.2.3 A spectral decomposition for the free Hamiltonian

We are now in position to describe a Plancherel formula for the Hamiltonian derived from
that associated to the Fourier transform on L?(R? x Q7). This spectral decomposition
takes the form:

Proposition 8.2.2. for any u,v € L*(R? x Q) we have the following decomposi-
tion:

(ulv)s =

1 — —_ ~ o~
W Z /}R2 <UW)82+2'P,1/,17>2<w%+ip,u’,17"U>2FQJ,1-1'P<V7 V/>FQ41-1'P(V7 v')dP (8.2.27)

/ /

v .,V

)

with  coefficients Fé}rip(u,u’) being that of the inverse matrix of
(Fo+ip(v, V/))|,,\:\,/|:j-

Proof. To start with assume that u« and v both belong to an eigenspace ker (P — N).
Then over such an eigenspace H’ is simply given by —1A. + 1|QJ* + N, for which
the spectral resolution is given using the Fourier transform on R? (which implies
that H° has absolutely continuous spectrum). In particular over this eigenspace we
can write down the Plancherel formula which takes the form of Equation (8.2.27)
since this eigenspace is spanned, in virtue of Proposition 8.2.1, by the polynomials
(QQ+iP,V,D)‘V|+|,j‘:N-

In general, Equation (8.2.27) follows by recalling that we have the decomposition from
Equation (8.2.11)

L*(Qr) = @, pere ker (P — || — |P]),

so that HY is unitary equivalent to @, 72 (—%Ac + QP2 + v + \17\). O

In passing we stress that the above proof shows that H is diagonalized by the family of
generalized (but not L?) eigenstates (e'("® QQHP,,,’,;)CeRQ D e
8.2.3 . Reflection positivity

Using the GFFs introduced above allows to identify the Hilbert space Hr with a space
of functionals of fields ¢ : D — R2 Namely let us introduce Ap to be the sigma-
algebra on R? x ) generated by maps of the form ¢ — (¢, f)p for f € C5°(D — R?).

254



We then consider Fy the set of C-valued, Ap-measurable functions, equipped with the
sesquilinear form

(F,G)p = (0FG)., o, where (F), = /

e HROR [F (X +c— % In g)} de.
R2

(8.2.28)
In the above, the action of § on Fp, has been defined by 0F (¢) .= F' (¢ o6 —2Q In|-|).
For future reference, we stress that using the decomposition (3.2.19) of the GFF the
above sesquilinear form can actually be rewritten as

(F,G)p = /R e []Ew [F (X1 + Po+ )| E, |G (Xz + Pp+ C)H de (8.2.29)

where X; and X, are two independent GFFs with same law as Xp. The associated
semi-norm will be denoted ||-||, hereafter. For future reference we note that, using
Cauchy-Schwartz inequality, this semi-norm satisfies

1F|ly < (F?)2,. (8.2.30)

Now we would like to identify Fp (or at least a subspace of it) with Hr. For this purpose
let us introduce the map U, defined by

UpF(c,¢) = e ‘Y9, [F(Xp + Py + )], (8.2.31)

where F' € Fyp is such that Uy(|F|) < oo de ® dPr-almost everywhere, together with
the subspace Fp” of JFp of such maps for which in addition ||UF||, < co.

One issue is that the sesquilinear form defined via Equation (8.2.28) is only non-negative
over F°. However if we denote by Ny = {F € 7y, (F,F)p =0} the null set, we
can consider the Hilbert space HY which is the completion with respect to (-, -)p of the
quotient space f$’2//\f0. The connection between the Hilbert space Hp thus defined
and the one, Hr, considered before, can now be properly stated:

Proposition 8.2.3. The sesquilinear form (8.2.28) is non-negative over Fy* and
descends to a unitary map from Hp to Hr.

Non-negativity of the bilinear form is usually referred to as reflection positivity.

Proof. To start with note that thanks to Equation (8.2.29) we can write that over ]—“B’z
we have (F,G)p = (UyF|UyG)2, and in particular the bilinear form (-,-)p is non-
negative and descends to an isometry on HY. As a consequence proving that it is
unitary boils down to the statement that it is onto, and for this it is enough to show
that we can find a subset of L?(R? x Q1) whose linear span is dense in L?(R? x Q)
and that lies in the image of Uy. For this purpose we consider elements of L?(R? x Q)
of the form e=(@€) p(c)el¥ Mt where p € C°(R?) and h € C®(T — R?) has zero mean
over T.

Indeed the linear span of this set is dense in L2(R? x Qr), and besides if

F.(X+¢)=p(X,g:)p + ¢) eXtelfep—g{feCofe) with

ge(2) = e n (1_512) and f. = (Ph)g:
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with 7 a smooth mollifier with support in [1,2], then liH(l)UO(FE)(c,go) =
e—
e (@2 p(c)elhT where the limit is taken in L2(R? x Q). Indeed

UO(FE)(C; QO) — 6_<Q:c>6<P4P+C7fs)DE¢ [P«X]D) + P<,0795>ID) + C) 6<XD1fE>D_%<fE)GDfE)
= 67<Q’C>G<P¢’fE>DEgo [p ((Xp, ge)p + ©)]

where we have used the fact that (¢, f-:)p = (Py,g9:)p = 0 (since both f. and Py
have zero mean on circles), together with independence of the Gaussian random
variables (Xp, g-)p and (Xp, f-)p. Along the same lines as in [66, Proposition 3.1] the
latter converges in L?(R? x Qr) to the desired limit e (@) p(¢)elP T, O

8.2.4 . Hamiltonian: dilation semigroup and quadratic
form

To conclude for this first section we present a few properties of the free Hamiltonian H°
that will be key in the derivation of the bootstrap formula (8.1.2). Namely we provide
two alternative representations of this operator, in terms of the dilation semigroup and
as a quadratic form, and describe a few consequences of it.

8.2.4.1 Dilation semigroup

Given ¢ € D, the dilation map s, allows to define an operator S, over Fj) by setting

SeF'(¢) = F (¢ os,+QInlql) (8.2.32)

where the extra term @ ln|g| stems from the conformal covariance enjoyed by Toda
CFTs, see Equation (4.2.8).

Proposition 8.2.4. Viewed as a family of operators over Hj, (S,),ep is a strongly
continuous contraction semigroup. In particular there exists a positive self-adjoint
operator H? with domain D(H?) C L*(R? x Q) such that

UpSo—t Uyt = eH2, (8.2.33)

Proof. This family being easily seen to be a semigroup, we only need to prove that it
is contracting, and for this we aim to show that for F € Fp, such that (F?), o < co we
have ||S,F|, < ||FH]5’24€ (F%%’H for any positive integer k. This is indeed enough
since the set of such F is dense in Fp (e.g. by considering F,, := F1,p,, Whichis such
that |F — F,|| — 0 as n — oo) so that by letting & — oo we see that [|S,F|l, < [[F|lp
as desired.

Now using the fact that the adjoint of S, is nothing but S; (which follows from the
Mobius covariance of the correlation functions (4.2.8)) we can use Cauchy-Schwartz
inequality to write that

1S0F I3 = (F, S 2o < Il || )2 |

_ 2k
which iterated yields [[S,Fll, < - < [F|'"*"|8,F| . Now thanks to Equa-

tion (8.2.30) the latter can be rewritten as |\S,F|l, < [|F|l5™2 " (F2)2, ", which was
our claim. O
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8.2.4.2 Connection with Subsection 8.2.1

So far we have defined two Hamiltonians acting over L?(R? x ), either using the dila-
tion semigroup as in Equation (8.2.33) or by direct construction based on the Heisenberg
algebra as done in Subsection 8.2.1. The following statement allows to relate both op-
erators using a Feynman-Kac formula:

Proposition 8.2.5. for any f € L*(R? x Qr) and positive t,

Q|2

UoSeiUy ' f = ™' f = e 5B, [f(e + By o), (8.2.34)
where ¢, (e) .= Pp(e %) + Y,(#) from Equation (3.3.6). In particular H? = H°.

Proof. To start with recall that we have the decomposition of the GFF inside D given
by
X(e ) 4 c= B, + Y,(0) + Pole ) + ¢ = ¢,(0) + ¢+ B,.

Therefore with f as above we have
UnSetUg ' f = e QOB | f(c+ By — Qt, py)el@etFeen]

where the exponential term can be interpreted as a Girsanov transform whose effect
is to shift the law of the Brownian motion by Qt. The variance of this term is |Q|* ¢, so

2
that the above can be rewritten as e‘%tﬂi@ [f(c+ By, )] as expected.

92
On the other hand, a standard property of the Brownian motion is that et%cf(c, p) =
E[f(c+ By, )] while the same reasoning as the one conducted in the proof of [66,
Proposition 4.1] shows that e=F f(c, p) = E,, [f(e, ¢1)]. This implies that

2
Q|

o tHY _ )f = e_QTtEw [f(c+ B, ¢1)] -

(&

8.2.4.3 Quadratic form

There is yet a third way to make sense of H", that closely resembles that from Subsec-
tion 8.2.1, based on the quadratic form associated to it. Defining H® in such a way will
appear to be necessary for the model associated to the Toda theory as soon as v > 1.
To this end let us introduce for two elements u, v € C, the subset of C*° whose elements
are compactly supported in the ¢ variable, the quantity:

Q(u,v) = 1/ ((Veu, Ved) + |QF (u, 0) + 2(Pu, 1)) de. (8.2.35)
R2

2
By doing so we define a sesquilinear form but also a quadratic form Q°(u) := Q%(u, u).
This quadratic form provides an alternative way of making sense of the Hamiltonian H°
as the following statement discloses:

Proposition 8.2.6. There exists a unique self-adjoint operator H® (its Friedrichs
extension) such that for any u € D(H®), Hwu is the unique element of L*(R? x Q)
for which

Q’(u,v) = (H'ulv),
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forall v € D(Q°). Here D(QV) is the domain of (the closure of) the quadratic form
Qo, while H® is defined by

DH") ={ueD(Q", 3C>0vYveD(Q") |Q%u,v)] <Cvl,}.
It is readily checked that H® coincides with the one defined in Subsection 8.2.1.

Proof. Letus assume for now that that the quadratic form QU is closable with domain
D(Q%). Then its closure (still denoted) Q° is easily seen to be lower semi-bounded
in the sense that for any u € D(Q°), Q°(u) > @ |ul|3 (which follows from self-
adjointness of P'/2). Under these assumptions the reasoning developed in the proof
of [91, Theorem 8.1] provides a construction of the Friedrichs extension of this closed,
lower-semibounded quadratic form, thus existence of H®. Therefore proving Propo-
sition 8.2.6 boils down to showing that Q° is closable.

Saying that Q° is closable amounts to saying that the map j that associates to any
equivalence class [u] of Cauchy sequences of C (under the relation lim,, u,, ~ lim, v,
when Q%u, — v,) — 0) its limit lim,, u, in L?(R? x Q) is injective and continuous.
Indeed based on lower semi-boundedness of Q° a Cauchy sequence for Q° is also
Cauchy in L?(R? x Q7) so that the above is well-defined. This property also implies
continuity of the map j. For injectivity, let us consider « a Cauchy sequence for Q°
such that u,, — 0in L?(R? x Qr). Then from the expression of Q° we infer that both
vu and P2y are Cauchy in L?(R? x Qr) and thus converge. These limits are seen to
be equal to zero by testing them against functions in C (that forms a dense subset of
L?(R? x Qr)). As a consequence Q°(u) = 0 too, showing injectivity of the map j. O

8.2.5 . Eigenstates of the Hamiltonian and holomorphic

currents

Building on the probabilistic framework introduced in the previous subsection, we provide
here an alternative definition of the generalized eigenstates of the Hamiltonian H. This
definition relies on the holomorphic currents that we considered in Chapter 5. Indeed
we will relate these currents to the representation of the W3 algebra (and thus of the
generalized eigenfunctions of H") introduced above.

8.2.5.1 Mode of the currents and the 17; algebra

Indeed the family of operators (L?L,W?n)mnEZ defining the representation of the W3

algebra studied in this document can be recovered thanks to these holomorphic currents.
Indeed recall that they admit (formal) mode expansions of the form

L, W,
T(Z) - Z Zn+2 and W(Z) - Z Zn+3'

ne” neL

Having such an expansion would imply that the modes (L?L, W?n)nmEZ can be recovered

using contour integrals. Namely let us introduce for positive 0 the contour integrals

2T 27
f(w)dw = / f(6e®)ise®dh and f(w)dw = — / f(6e®)ise=dp
Cs 0 0

Cs
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for f : D — C, and more generally for f = f(u,v) : D¥ x IV — C the nested contour
integrals

f(u,v)dudo = j{ . % 7{ e f(u,v)duy - - - dugdvy - - - dv; (8.2.36)
Cs5 Cs Csy /G5, %,

where d is such that 0 < 0; < --- < § < 1 (and likewise for g) In order to make
rigorous the definition of the modes of the currents, we first to introduce the proper
framework in which this should apply.

For 0 < 6 < 1 let us define a subset Fs of Fp by setting

!
Fs = { (X + ¢, gi)De<X+°’f>;l >0and f,g; € 85} where (8.2.37)
=1

2

Es =1 f(e") = Z fa(t)e™ with f, € C5° ((—1nd,+00) — R*) N >0

In] < N

Using this setting the following statement allows to provide a rigorous meaning to the
mode expansion described above:

Proposition 8.2.7. Assume that F € F; with § < 6; vV 31. Then

WO LI W LI U F
1 o S
= e w2 E T U (W(w) T ()W (v)T(s)F ) dwdtdvds
Rim)HE) J,

(8.2.38)

where the last expression is defined by the limit in e°l°l L2(R? x Q) for 3 > | fo — Q|-
lir% Up <W€(w)T5(t)Ws(v)’fs(s)F>. The contour integral corresponds to that

in Equation (8.2.36) via the identificati ) 202 1y vk
in Equation (8.2.36) via the identification wy ., - -wy "ty et =
27Vl2(u2) 1_p1 . .

uy, ---u; ' and likewise for v and s.

This statement is a consequence of the following lemma, which allows to relate more
generally mode expansion of the free-field and the representation of the Heisenberg
algebra considered:

Lemma 8.2.8. Assume that wy, - - - ,w, are distinct points in the unit disk D. Then
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for F € Fs

1

1 r DPs
I R ey Of : 5 0™ X (wy)) | F ) d
28 @iny fw wr U L T (wy)) w

=1

= Z H nk +1 mk —1<ukraZAnk> :

N1, Np,. €L
_Zk Nk +mk r—lr

Z an+1mk1 1<Uk1,ZAnk>, UyF

ni, - ,Np, €Z
L> 5 e tme,1=h i

(8.2.39)

where the contour of integration is chosen with 0 < 6 < §; < --- < d,, and where
(X)m =x(x+ 1)+ (x+m — 1) is a Pochhammer symbol.

Specializing the above to F(X + ¢) = S.-s¢? allows to recover the (generalized)
eigenfunctions of H® using these contour integrals: for any ¢ > 0 such that e~* < 4,

2tA
e « 2 1 ~2 ~1
0 2—vel—v' Z2—v° z1—v
= 7{ w t v S
a,v,v (2Z7T)l(l/)+l(y) C(s 5

Uy (W(w)T(t)W(v)’f‘(s)Se_sUo(ng)) dwdtdvds.
(8.2.40)

This representation will be crucial in the definition of the quantities that we denoted
v(a, ag, 1) before, a key step in the proof of the bootstrap formula (8.1.2). The analog
of these Ward identities in the setting of the free-field theory corresponds to the study
of expressions of the form

1

2—v2 11
. w t E
@iy Jo,

)| dwdt,

N
W(w) Viao ( H Var (21)
k=1

which amounts to considering, instead of a Vertex Operator V,,,(0), one if its descendants
via the representation (8.2.40). Following the reasoning developed in Chapter 5 the Ward
identities allow to simplify the above expression as the following statement discloses:

Proposition 8.2.9. Assumethat zy, - - - zy belong to D\éD, while 0 < |t;] < |w;]| < ¢
fori <i<rand1<j<s Thenforn>0:

5= P (W)W D)oy (0 [ Ve (2
Y (=1 - 2w n— (l)l (_l)2 N
--y (( 1)(22? 2uwlar) Z;)_‘fv + 12:_2 ) E | W (w)T(£)Vaq (0) [ ] Vi, (2)

(8.2.211)



Likewise for the stress-energy tensor we have

1 N
— $)"E | T(t v, Vo, (

N (l) N
-1) A LY
- — Z n + E H Vak Zk
Zl k=1

This statement shows that one can reduce the computation of “correlation func-
tions"containing one arbitrary descendent field can be reduced to that of correlation
functions that contain only Virasoro descendants at the order 1 and W -descendants at
the order 2.

We will not prove these statements in this manuscript since they are rather long and
not very informative. They rely on algebraic manipulations that generalize the ones
considered along the proof of Theorem 5.1.3. More details are to be found in [32].

dt’

(8.2.42)

8.3 . Towards the conformal bootstrap formula

The previous section was dedicated to the introduction of the background necessary to
make sense of the free-field theory associated to the sl3 Toda CFT. Along this section
and based on the objects defined above we will define a similar framework for the sl3
Toda CFT. We will shed light on the main steps leading to the proof of Theorem 8.1.1
but will not enter the details of the computations to keep the document readable.

8.3.1 . From the free-field theory to Toda
8.3.1.1 The framework

Let us briefly explain how to adapt the setting presented in the previous section to that
of the sl3 Toda CFT. Like before we work with the sigma-algebra Ap as well as 7y, but

this time equipped with the bilinear form
(F,G)p = (0FG)., ., where

c,e; ye; 8. |
R2

with M7¢ the GMC measure defined from the GFF X. Like before, we can use the
decomposition (3.2.19) of the GFF X to put the latter under the form

(F7 G)]D) = / 672<Q’C>E|:]Eip |:F (Xl + PQO + C) 67“212:1 €’Y<C’ei>M;ei(D)i|
K (8.3.2)

E, [G (X5 + Pp+ c)e #Eim e7<Cvﬂi>M;"‘i<D>} }dc

with M is the GMC measure defined from the GFF X, + Py, for k = 1,2. We also
have the inequality derived from Equation (8.2.30):

IFllp < (F2)2,. (8.3.3)
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We likewise introduce the analog of the map Uy by setting
UF(c,¢) = €_<Q’C>E<p F(c+Xp + p(’p)e—uZ?:lev<c,ei>Mwe¢(D)] 7 (8.3.4)

where M7 is the GMC measure associated to the GFF Xp + Py, and for F' € Fy such
that U(|F|) < oo de ® dPr-almost everywhere. The natural set over which U acts is
the subspace F7 of Fpp of such maps that satisfy ||[UF|, < cc.

8.3.1.2 Correlation functions of Vertex Operators

Using this framework we can also define the correlation functions of Vertex Operators

using the L? structure of Fy as follows. To start with let us introduce for z;,--- , zy € D
and ap,---,ay € R? the notation
N
Ua(z) = limU (kH vw(zk)> . (8.3.5)
=1

Then thanks to Girsanov's theorem the above limit makes sense as soon as (a;—Q, ;) <
0 forall 1 < k< N and i = 1,2, and defines an element in the weighted space
P [2(R? x Qr) where B, = (3., ax — @, ¢) for ¢ € C_ and has exponential decay
in the other directions. This allows to write the correlation functions under the form

(JT Ver Gzi) TT Vi (wi)) = (H |wk|‘4%) (Ua(2)|Us(0(w))> (8.3.6)

for z1,--+ , 2y € D and O(wy),- -+ ,0(wy/) € D.

8.3.2 . The Hamiltonian from the dilation semigroup
In a similar fashion as for the free-field theory, we will provide two alternative definitions
(which will later be seen to be equivalent) to the Toda Hamiltonian. The first way to
make sense of it is to proceed like in Subsection 8.2.4.1 by defining it using the dilation
semigroup.

8.3.2.1 Hilbert space and Hamiltonian

Like before, a natural associated Hilbert space can be defined as the Hilbert space
completion Hp (with respect to (-,-)p) of the quotient space F3/N where the null
setis N .= {F € F3, (F,F)p=0}. The correspondence between this Hilbert space
and the one introduced before is made thanks to the following statement, analogous to
Proposition 8.2.3:

Proposition 8.3.1. The bilinear form (8.3.1) can be extended over 72 where it is
non-negative. Moreover the map U descends to a unitary map from Hy, to Hr.

Proof. This follows from Proposition 8.2.3 since UF = U <F6_N2f:1e“/<c,ei)M75i(D)).

The above statement combined with the action of the dilation semigroup on Hp, allows
to define an Hamiltonian as the following discloses:
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Proposition 8.3.2. Viewed as a family of operators over Hrp, (S,)4en iS a strongly
continuous contraction semigroup. In particular there exists a positive self-adjoint
operator H, with domain D(H,) C L*(R? x Qr) such that

US, U = e M, (8.3.7)
Proof. The arguments developed in the Proof of Proposition 8.2.3 still apply in this
context thanks to Equation (8.3.3). O
8.3.2.2 A Feynman-Kac formula

Thanks to this definition of the Toda Hamiltonian we can adapt the reasoning developed
above and provide the following Feynman-Kac formula, analogous to Equation (8.2.34):

Proposition 8.3.3. for any f € L*(R? x Qr) and t > 0:
2 2 v{e,e; 2| TYINVE (d
eftH*f — ef‘QTlt]Eip f(C + Bt; (pt)e_#2¢:1e ( >fA0’t| [~ M7 (d )] (838)

where Ay; = {2z € C, e'<|z|] <1}

Proof. To start with let us note that S.-« (U~ f) only depends on the sigma-algebra
generated by the (X(2)); » |2/ > .- AS @ consequence we can write that

e M f — 6_<Q’C>E¢ |:Se—t (U_lf) E {e‘“zizlewc’ei) Jp M€ (d2) X(2),1 > |z] = e_tH .

Now the conditional expectation can be dealt with using the Markov property of the
GFF, namely the fact that for |z|] < e~ we can write X under the form X(e™t.) =
Xp + P(s.-+X) where Xp has the law of X and is independent of (X(2)); > |+ > e
Therefore the conditional expectation is seen to be given by

— 2 evlee) Ve e e
I T g M [ D 5 [ M) X (2,13 o] ]

where in the integral that appears in the last expectation term we can make the
change of variable =z «+ e~z to rewrite it as

— 2 (e.eq) J¢
p i €O [y Mf(D+P(se—tX)(dZ):| .

Eseitx‘sl [6

The latter is therefore equal to S.-: (¢/?/U1) where 1 is the constant function. Rec-
ollecting terms we end up with

— 2 evee;) €i(dz
e_tH*f = €_<Q7C>Ego |:Set (e<Q7c>f> e e e fAO,t Mrei(d )}
= e (QOE, [€<Q,c+3t—czt> Fle+ B —Qtpe " MM(M] :

The Girsanov transform has the effect of shifting the law of B by Qs for s < t. This
accounts for the additional singularity \z\_“@e” that shows up in the integral, and
yields

_1Qi?

e e p — o9 'E, [f(c—}— Bt7(’pt)e_ﬂ2?—1e"/<qei>fAO’t|z|"/qM’YEi(dz):| '
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8.3.3 . The Hamiltonian from the quadratic form
There is a second way to define the Toda Hamiltonian, more explicit and based on the

reasoning conducted in Subsection 8.3.1. However in order to make sense of it we will
need to define it through its quadratic form, in a similar fashion as in Subsection 8.2.4.3.
The reason for such a definition is that GMC measures that should appear in its expression
may not make sense probabilistically speaking for the whole range of values of ~.
8.3.3.1 Quadratic forms

To overcome this issue we proceed in the same way as in the construction of GMC
measures by considering a sequence of regularized potentials

2
Vi(k) s /€7<¢(k)(9)’ei>WQE[(“’(M(Q)’QF]dQ fork>1andi=1,2.
T

In the above we have defined
2
So(k) = Z Z ((pn,ien,i + San,ie—mi)
1<i<ki=1

based on the mode expansion (8.2.1) of ¢. We then introduce a sequence of quadratic
forms by setting for u,v € C

2
1
QW (uv) = [ (<vcu, Vet + QP (1,7) + 2(Pu, ) + 21> VP (u,5) | de
]RQ

i=1
(8.3.9)
The arguments developed in the proof of Proposition 8.2.6 show that to these quadratic
forms one can associate a self-adjoint operator H* such that for « € D(H®) and
v e D(QW)
QW (u,v) = (H®u|v),.

Our next task is to investigate the limiting behaviour of the above sequence of quadratic
forms. For this purpose we define

Q(u,v) = lim Q™ (u,v). (8.3.10)

k—o0

Our goal is to show the following:

Proposition 8.3.4. The quadratic form Q is closable. Its Friedrichs extension gives
rise to an operator H that satisfies H = H..

8.3.3.2 Proof of Proposition 8.3.4

In order to prove such as statement, we will rely on the following Feynman-Kac formula,
reminiscent of Equation (8.3.8):

Proposition 8.3.5. for any f € L?*(R?* x Qr) and k € N,
R o [f (C+ By, op)et Sim Ji ererpeeo v o )ds (8.3.11)
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Proof. To prove such a statement we will first provide an intermediate Feynman-Kac
formula for the quantity

t g0 t 2 c,e; (B)\T . ope
(e_RH e wh Xz @] ) f, with n positive,

and then deduce the general case using Trotter-Kato’s formula.
Along the same lines as in the proof of Equation (8.2.34) we see that for f € L?(R%?xQr)

c.e: K\ 2 n (c+B, ei) v (k
(efiHoefiuzz?:l evie Z>Vi< )) f _ ei%tEsp |:f (C+ Bt,@t) 6_“2?:1 Zj:l e\ t/no%i v, >(<pjt/n):| .

The sum that appears in the above exponential is nothing but a Riemann sum,
that converges almost surely to f(f e7<C+BS»ei>ViUC)(<ps)ds since the process s —
erle+Bee M) (5 ) is almost surely continuous. This shows that

2 ey O\ Q> 2t ey (k)
lim (e_%HOe_%“Zizl evies, ) f= e_%tEcp [f (c+ By, ¢t) eH iy Jy et Beedy, (Ws)ds}

n—-+o0o

where, using Jensen'’s inequality, the above limit is seen to hold in L?(R? x Qr).
Now we can rely on [91, Theorem S.21] to see that the above limits is actually given by

lim (8_%1_106_%“2?:1 ewc’eﬁvi(k))n f — e—tH(k)f
n—-+4oo

where the limit is understood in L2(R? x Qr). O

Thanks to this Feynman-Kac formula we are able to relate Q to the quadratic form
associated to H.,, which we denote by Q. and which is defined by O, (u,v) = (H.u|v)s.

Lemma 8.3.6. For any v and v in C Q(u,v) = Q. (u,v).
Proof. To start with we note that over C C D(Q.) we have

__tH.
Q. (u,v) = lim<u

t—0 t |U>2

where the right-hand side can be rewritten using the Feynman-Kac formula (8.3.8).
As a consequence we need to check that we can write an expansion of the form

Dy = (u|v)2 — tQ(u,v) + o(t) ast— 0where

2
Dy= e / E [u(e+ By, po)u(e, p)e # Zim VO e, V() = / |21 MO (d).
R2 A

0,t
For this purpose we split D, as follows:

Q1
Dy =D+ D} +D? where D= e_%t/ E [u(ec+ By, p1)v(e, ¢)] de,
R2

2 .
Di =¥t [ Blufeopienp) (T 0 - 1) e,
R2
o lel —p Y2 evieed V(t)
D} == % | E[(ule+ Bi) —ule, 9) vle,g) (e ER 0 1) | de
R2
and treat each term separately. We wish to prove that:

DY = (u,|v)o—tQo(u,v)+o(t), D} =t(Qo(u,v) — Qu,v))+o(t), D?=o(t). (8.3.12)
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This would prove Lemma 8.3.6.
First of all note that DY = (e~*Ho|v), so that since u,v € D (Qp) we already know that
DY = (u, |v)s — tQo(u,v) + o(t). Therefore we can turn to D}, which we rewrite as

2 2
D} = _Mzewqei)e—@t/ E [u(e, p)v(e, p)Vi(t)] de + L.o.t.
i=1 R?

The leading term can be dealt with using Girsanov's theorem A since, by setting for
ZGDQOZ:(Pn‘F%'Yei:

B fufe. o)ole, Vit = [ o7 E fule, ool )] dz
= t/%E [u(c, goew) (c, ¢ ZG)} do
/ /27r evqu _SMG) (c, goe_SHG)} —-E [u(c, goew)v(c, cpew)D dfds.

This shows that D} = ¢ (Qo(u,v) — Q(u,v)) + Ri where the remainder term is defined
by

2
Ri=c 2! / E |u(e, )v(c, ) < Tl Vi) 1+uZ€W )

2 2 . ' .
IQ\ / / / efyqu —e+19) (C, Soe—s-ma)} _E [u(c, Soeze)v(c’ @eme)}) dbdsde.
R2

This remainder term has been controlled along the proof of [66, Lemma 5.4] and was
shown there to be a o(t). Therefore D! has the desired expansion. Likewise it was
proved in [66, Lemma 5.4] that D? = o(t) too, which allows to wrap up the proof. [

de

An immediate consequence of this statement is the fact that the quadratic form Q is
closable. We denote by D(Q) the completion of C with respect to the norm induced by
Q. We are now in position to finish up with the proof of Proposition 8.3.4, which boils
down to the following statement:

Lemma 8.3.7. Denote by R ) (resp. R. ) the resolvent family associated to the
semigroup e~ (resp. e—tH ). Then for A\ > 0 R..\ maps C into D(Q) where it
coincides with Ry = lim R,

k—4o00

By density of C in L*(R* x Q) this statement shows that both resolvent families R,
and R, ) coincide, hence so do the generators of their semigroup, that is H = H,.

Proof. Consider F € C and define the sequence in L?(R? x Qr) uy = R(k) as well as

u = R, € L*(R? x Q). Our goal is to prove that lim u; = u, where the limit is
k—+o00

meant in the semi-norm induced by Q. Indeed this would show that « € D(Q) and
that both resolvent agree on over C.
To start with recall that the resolvent admits the representation for A > 0:

+o0
R = / e Ne T gy,
0
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Thus the Feynman-Kac formula 8.3.8 together with convergence of the GMC mea-
sure term appearing there shows that u;, — u in L2(R? x Q). Moreover we see that
supy, > o Q) (ug) < oo since by definition QW) (uy) = (Flug)z — A ||uk\|§ < |Fly luklly —
A |Jug|3. These two assertions imply that we have weak convergence in L?(R? x Q)
of the sequences (Vcug )k > o and (P%uk> K with weak limit given by V.u and P2u.

=

The convergence is seen to hold in the strong sense by reproducing the computations
in the proof of [66, Proposition 5.5]. Likewise the sequence of (uf ;)i > o strongly con-
verges in e~ 2{e%) [2(T x R? x Q) for i = 1,2, where u ;(on)n = uk(on + \Z/—%fyei)n. In
brief we have seen that

1 1
(uk, Veug, P2ug, uzﬂ) — (u, Veu,P2u, uf)

in (L2(R2 x Q1))” xiz10 e 340 LA(T x R? x Qp). Now the Hilbert space D(Q),
which consists of equivalence class [u] of Cauchy sequences of C (under the re-
lation lim, u, ~ lim,v, when Q(u, — v,) — 0), can be identified with the clo-
sure in (L2(R2 x Qr))” xi—19 e 24 LX(T x R2 x Q) of the set of such quadruples

(u, Veu, P%u, uf). This shows that v € D(Q) as desired. O

8.4 . Proof of the conformal bootstrap formula

In this concluding section we sketch the main steps leading to the proof of Theorem 8.1.1.
The statements that appear here are not proved yet but we expect to establish their
validity in our future work [32] to which we redirect for additional details.

8.4.1 . Spectral resolution of the sl; Toda Hamiltonian

Having properly introduced and studied some basic properties of the Hamiltonian asso-
ciated to the sl; Toda CFT, the next step is to understand the spectral resolution of
this positive, self-adjoint operator over L*(R? x Qr). Namely our main goal is to show
that the following Plancherel formula holds true:

Theorem 8.4.1 (In preparation). There exists a family (¥q+ipw5)perzw ser Of
elements of the weighted space e=%©) L2(R? x Qr) for some 3 : R? — R* such that
for any u,v € ) L2(R? x Qr):

(ulv)2 =
1 — — ~ A~
a2 / (Ulbqripwp)2(Varipw #0)2Fgiip(v, V) Fgiip (@, )P (8.4.1)
v, uET? -
v o' eT?

This Plancherel formula is very close to the bootstrap formula (8.1.2) by choosing appro-
priate u and v. However some extra care is necessary to understand the matrix elements
(u|tpg+ipw )2 that appear in Equation (8.4.1). For this purpose we also provide in this
section a definition of these quantities based on the probabilistic representation of the
generalized eigenfunctions v, , 5 for @ € R%:
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Proposition 8.4.2 (In preparation). For (a — Q, e;) small enough fori = 1,2 set

e Ti t2Aa+|v|+P]) —tH, 0

LDOQ”?” : tlg»noo € € wOL,l/J/' (8'4“2)
Then the limit holds in a weighted space of the form e%(¢) [2(R? x Qr). Moreover
forw as above the quantity (uli, . )2 is holomorphic in o over a connected subset

Wos of {Re((a—Q,e)) <0 forall i=1,2}.

The proof of these two statements is based on the understanding of the spectral proper-
ties of the Toda Hamiltonian thanks to scattering theory. We will conduct the study of
this operator in [32]. The need for such a study of this self-adjoint operator stems from
the specific shape of the potential term that appears in this definition. Indeed recall that
the ¢ dependence of the Hamiltonian is governed by a term of the form

2
1 .
_Z E plreie) /i
2Ac + 2 ;e |4

where V' is positive and defined using a GMC measure on S'. This operator has a wall
of potential in the directions where ¢,e; — +oo for some i = 1,2 while it vanishes
when (c,e;) — —oo for all i@ = 1,2. This is reminiscent of the operators studied
in the scattering theory in symmetric spaces, as considered for instance in [95]. The
understanding of the Toda Hamiltonian thus involves conjugation of ideas developed
there together with techniques developed in [13, 94] for tensor products of self-adjoint
operators. This in turn allows to construct the resolvent of the Toda Hamiltonian
thanks to the Liouville Hamiltonian whose spectral analysis has been carried in [66].
The fact that the potential depends on this two-dimensional ¢ variable is one of the
main difficulties of this model compared to the one studied in Liouville theory. We stress
that proving these two statements is really involved.

8.4.2 . Ward identities and descendent fields

As explained in the previous section, the spectral resolution of the Hamiltonian H involves
the consideration of the descendent (¥4, ), 572 of the primary field v, where o €
Q + iR?. The conformal bootstrap corresponding to a Plancherel formula with respect
to H, correlation functions that contain such descendent fields naturally arise in this
decomposition.

The following statement allows to relate such correlation functions and the structure
constants of the sl; Toda CFT computed in the previous sections:

Proposition 8.4.3 (In preparation). Assume that «} is colinear to w;, and that
aq, aj satisfy fori =1, 2:

(o, —Q,e;) <0fork=1,2; (o145 —Q,w;)>0. Then
(U (Vay (0) Vs (2)) [0 ipw i)z = Cylon, a3, Q — iP) |Z’2(AQ+1P—A(X1—A@;)
x M o(Ag,, wlas)v)o(Aa,, w(a)|D)

with az = Q + 1P, and where the rational functions v only depend on the sl; Toda
CFT via the variables indicated.

(8.4.3)
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In order to prove such a statement we will rely on the probabilistic representation of
such three-point correlation functions when the weight @ + iP is actually real (that is
P € iR?) and then use analycity of these objects to extend the range of values for which
it is valid. Namely in order to prove Proposition 8.4.3 we first provide an expression of
general correlation functions (Uy (2) [ta,u5)2 for a and a such that the probabilistic
representation makes sense. It takes the form

1
VAN :
(Vaw5|Ua ( )2 = (H B k) (2im) 1) H@) % tL”ﬁloo

N
% wQ—VZtl—qu—)2—§2 51—51 <W(w>T(t)W(U)T(S>VOL<O) H Vak (Zk.)>tdwdtd'vd8
ce_té,e_tg k=1

(8.4.4)

where we have introduced the notation

c.e; € et
<F>t — / 6—2(Q,c)E [F(X + c)g—,uzf:leﬂ ,eq) MYEi (C\ D)] dc,
R2

with like before, W(w) =i
0.

Based on this representation we will then derive Ward identities for such correlation
functions. They are given by the equality

22+5cW( w) and where the contour of integration is around

% 6(w’)2_”(W(w’)W(w)T(t)VaO(O) H Vi (21 ))edw’ = Ry + 0:(1)
N (=1 - 2)w(w n— (_l)l @ N
‘Z( 1)( 22?2> (or) _ ( ;{‘1’" +VZ¥_2><W( (0) T Ve (26}

" 8.4.5)

form >0, et > ¢ and € > 0, and where the remainder term R, is such that, uniformly
on w and t in D and for some constant C,

M| < Cmax et (2= v|=(a0,ve:))
i=1,2

However these identities being valid only when the weight o € R? does not belong to the
spectrum, a concluding analycity argument is necessary to extend these identities to the
setting of Proposition 8.4.3. Assuming that such a continuation is possible we see that by
combining the two above equations the quantity (U (V,,(0)V4,(2)) [¢¢+ipv5)2 can be
expressed using only the conformal and W-quantum weights (A,,, w(a;))1 < < 3 as well
as the WW-descendants at the order 1 and 2 of the primary fields V,, and V,,. Now we
can use the global Ward identities of Theorem 5.2.1 to see that we can actually express
all these descendants in terms of the weights w(«;), 1 < ¢ < 3 and the descendent
W_,V,,. We now distinguish between two cases. First of all of V,,, = Vi is semi-
degenerate then the latter can be expressed using Virasoro descendants and therefore
depends only on the weights. This shows that Proposition 8.4.3 holds true. If we do not
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make this assumption then this is no longer true and it is far from clear at this stage that
the ratio considered there does indeed only depend on the weights. We hope that our
probabilistic framework would allow to address this issue. Additional details and proofs
of these statements will be provided in the work in progress [32].

8.4.3 . Conclusion: proof of Theorem 8.1.1

To conclude for this section we gather all the elements of proof disclosed in the previous
paragraphs to derive the bootstrap formula (8.1.2). We will only present the main argu-
ments and some justifications are of course necessary to be fully rigorous, and additional
details on the reasonings developed here will be described in the future article [32].

We start from the fact that four-point correlation functions can be represented using the
sesquilinear form (-|-)2. More precisely we can write that

(Ve (0) Vo, (2) Varg (1) Vary (00)) 5,50 = (U (Vay (0)Vary (2)) [U (Vi (0) Vs (1)))2

where the elements U (V,,,(0)V,,(z2)) appearing in the L? product belong to a weighted
space eﬁ‘”ﬂ((C)LQ(R2 x Qr). Under the assumptions of Theorem 8.1.1 we are in position
to apply Theorem 8.4.1, which states that the spectral resolution of H takes the form

2

(U (Vas (0)Vas (2D 1U (Vay (0)Vaa (1)) )
1

2 <U (voél (O)Va2 <Z>> |¢ +iP,V,17>2
ZE 2 A @

b
v D' eT?

(q+irw U (Vay (0)Vay (1)))2 Forip(v, V) Fgip (0, 7).

Then we can apply Proposition 8.4.3 which explains how to express the scalar products
that appear in this expression. We can therefore deduce that

(Vi (0) Vs (2) Vs (1) Vs (00)) 1.1

1 : . A
7 L Conl1:02.Q =PI (Q+ 1P g ) [P0 A ) |7 (o) ap

where the conformal blocks are defined by the expression

Fp(z)= > 2Mu(Aa, w(o)|v)Folp(v, v o(Aa, w(on)|V). (8.4.6)

v/ eT?

The above is nothing but the desired formula. This wraps up the proof of our main
statement on the conformal bootstrap procedure for the sl3 Toda CFT, Theorem 8.1.1.
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