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Preface

This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented
here was conducted at the Institute of Theoretical Astrophysics (ITA), at the
University of Oslo, under the supervision of professor David F. Mota and associate
professor Hans A. Winther. This thesis represents an effort to contribute to the
development of the scientific knowledge related to the history of the Universe.
The introductory chapters serve the purpose of placing the work I have done
during the last four years in a broader context, in order to make my research
better understandable and to set the academic publications accompanying this
thesis in a broader perspective.

In Chapter [I} T will introduce the recent advances in the field of modern
cosmology, which contributed to the development of the standard model of
cosmology, the ACDM model. T will briefly describe the history of the Universe
and I will point to the problems and the open questions within the currently
accepted theory describing the evolution of the Universe. I will introduce the
theory of general relativity and I will describe how tiny perturbations from a
smooth, homogeneous and isotropic Universe have evolved into the cosmic web
and into the wide collection of structures we can observe today in the sky.

In Chapter [2] T will focus on one of the most puzzling mysteries concerning
the Universe as known today: the dark matter. I will describe in detail the
cosmological and astrophysical probes used to study the effects of dark matter on
the visible component of the Universe, and I will explain the evidences pointing
to the existence of such an elusive form of matter. I will explain why the ACDM
model does not provide an accurate description of the Universe at small scales, I
will introduce the small-scale challenges that the standard model of cosmology
is facing today, and I will discuss possible solutions within the dark sector and
the baryonic physics.

In Chapter [3] T will introduce the numerical tools needed to model the
structure formation process and, in general, I will describe the common techniques
employed in cosmological N-body simulations. I will also explain how the baryonic
physics is modelled in hydrodynamic simulations and how relevant astrophysical
phenomena are implemented in sub-grid models.

In Chapter [4 I will summarise the main investigation points of my research
and I will briefly discuss the opportunities that current and future experiments
will provide to promote our understanding of the mysterious nature of dark
matter and, in general, of the Universe.
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Chapter 1
Introduction

Throughout this thesis, I work in natural units, where, c = h = kg = 1. In
addition, I use a “mostly positive” metric signature (—, +, +, +).

1.1 Introduction

Astronomy is, in its broadest sense, the study of any object and physical
phenomena originating outside the Earth. From the motion of small celestial
bodies, such as comets, planets and stars, to the formation of bigger objects far
away from our own planet, such as galaxies and cluster of galaxies, from exotic
objects, like black holes and neutron stars, to gravitational waves: these are only
some of the research topics included in modern astronomy. Nowadays, astronomy
is mostly associated to observations, driving the theoretical understanding in two
related research fields: cosmology and astrophysics. Cosmology studies the origin
and the evolution of the Universe as a whole, from the Big Bang to the present
day, together with the formation and the dynamics of large-scale structures
we can observe today in the sky. Astrophysics, instead, aims to develop the
theoretical understanding of the formation of medium and small structures. It
applies the laws of physics to describe the birth, life and eventually death of
planets, stars, black holes and galaxies.

Astronomy is perhaps one of the most exciting research fields. With the
passion and the desire to discover and explore the unknown, astronomy has a
long and glorious history, dating back to ancient societies, such as the mayans,
the babylonians, the greeks, and the astronomers of the renaissance. We believe
that we understand how the Universe was born and how it has evolved into what
it is today, but the Universe is a mysterious place and we are only starting now
to unveil its darkest secrets. As for many astronomers, the beautiful sky at night
offered me motivation and inspiration for my studies.

1.2 Modern cosmology

Modern cosmology gets its theoretical foundations from the theory of general
relativity (GR), published by A. Einstein (Einstein, . Until the beginning
of the 20" century, gravity was a force and the corresponding gravitational
interaction was universally described by Newton law of gravitation, so far
successful when describing the motion of planets around the Sun. With the
advent of GR, gravity was no longer considered a force, but rather the result
of the space-time curvature induced by the presence of a distribution of mass
and energy. The dynamics of space-time is described by Einstein field equations
in terms of its energy and mass content, and its curvature results in what we
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perceive as a gravitational force. A stable solution of the Einstein field equations
was derived by Einstein, introducing a cosmological constant A in order to
describe a static Universe. Later on, A. Friedman showed that stable solutions
to the Einstein field equations also exist in the case of an expanding model of
the Universe (Friedmann, Friedmann, [1924)).

Modern cosmology relies on a set of empirical facts resulting from fundamental
discoveries made across the 20" century. The cosmological principle states that,
when observed on large scales, the Universe is homogeneous and isotropic.
According to the Copernican principle, which asserts that our location is not
special, if we observe a nearly isotropic Universe, then the Universe must look
isotropic from any location point and, thus, it is necessarily homogeneous.

In 1929, E. Hubble found that all observed galaxies are receding from the
Milky Way. He showed that the radial velocity of galaxies surrounding the Milky
Way is proportional to their distance from us, thus discovering that the Universe
is expanding. In Hubble , he formulated the Hubble law:

’U:I{0><d7 (11)

relating the recessional velocity v of a galaxy and its distance d from the Milky
Way to the Hubble constant Hy, which corresponds to the present day expansion
rate of the Universe. Reversing the cosmic expansion back in time leads to a
moment in the past where the Universe was in a much denser state, than it
is today. Assuming the Universe had enough time, its distant past would be
considered as a physical singularity, later called Big Bang. The time needed to
evolve from a singularity into a Universe with the present day expansion rate of
Hjy can be estimated by inverting the Hubble law:

d
to=Hy ' = ~~13.7 Gy, (1.2)

providing in this way a first approximation of the age of the Universe.

In the 1930s, J. Oort found that the motion of stars in the Milky Way
suggested the presence of a conspicuous excess of mass in the galaxy compared
to previous estimates (Oort, . Roughly at the same time, while studying
velocity dispersions of galaxies within the COMA cluster, F. Zwicky discovered
that also galaxy clusters contain more matter than it can be seen (Zwicky, [1937),
and he postulated the existence of a new form of non-baryonic matter, known
today as dark matter, which does not interact via electromagnetic interaction,
but only by means of gravity. Later studies of galaxy rotation curves (Rubin
and Ford, and velocity dispersions of galaxies within clusters (Faber and
Jackson, confirmed that the missing matter cannot be of baryonic nature.

In the 1940s and 1950s, many astronomers speculated that the hot and dense
primordial plasma should be observable in the form of a smooth background
radiation with a black-body spectrum. The cosmic microwave background (CMB)
was discovered by accident in 1965, when the radio astronomers A. Penzias and
R. Wilson found a mysterious and persistent background noise in their signal,
while testing new antennas (Penzias and Wilson, . This was the first major
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History of the Universe

discovery that had been theoretically predicted in advance, and it provided
further evidence in favour of the Big Bang model.

The Cosmic Background Explorer (COBE) satellite (Bennett et al.,
Mather et al., Smoot et al., revealed the presence of tiny anisotropies
in the CMB, a direct signature of primordial fluctuations that grew into the
structures we observe today in the Universe. In particular, Bennett et al.
established the existence of a nearly scale-invariant spectrum of primordial
fluctuations. With the results of the Wilkinson Microwave Anisotropy Probe
(WMAP) satellite (Bennett et al., Hinshaw et al., Jarosik et al.,
Jarosik et al., , previous findings have been confirmed and constrained to
greater accuracy.

In 1997, studies of supernovae (SNe) revealed that the Universe is not only
expanding, but expanding at an accelerated rate (Perlmutter et al., Riess
et al., . Since gravity is attractive, it would be natural to expect that the
expansion is slowing down, rather than accelerating. Therefore, a new form of
unknown energy was included in the description of the Universe and, today, it is
called dark energy (Copeland, Sami, and Tsujikawa, [2006)).

The era of precision cosmology officially started with the last major CMB
experiment in 2009, when the Planck satellite was launched. Results from the
Planck mission constrained current cosmological models to an unpercentage
accuracy (Planck Collaboration et al., Planck Collaboration et al.,
Planck Collaboration et al., .

In 2016, the gravitational waves predicted by GR were observed for the first
time (Abbott et al.,|[2016a} Abbott et al., 2016b)), providing new ways to test

the fundamental knowledge about the Universe.

Nowadays, the ACDM model is the currently accepted model to describe the
physics governing the evolution of the Universe. It is a phenomenological model
and, as a consequence, the history of the Universe is described by a series of
events which have, in the majority of cases, direct observational consequences. In
its minimal form, the ACDM model parametrises the evolution of the Universe
in terms of six independent parameters only: physical baryon and dark matter
densities, the age of the Universe, scalar spectral index, curvature fluctuation
amplitude and reionisation optical depth (Tab. .

1.3 History of the Universe

The ACDM model works by extrapolating the current state of the Universe back
in time, tuned with observations. By reversing the current expansion history, we
can infer that the Universe was in a hot and dense state earlier in time, where
matter and radiation were tightly interacting, and matter was in the form of a
primordial plasma. However, this approach is limited by the poor number of
early times probes and by the current understanding of fundamental physics: as
we travel further back in time, we reach large energies that cannot be probed
by particle accelerators and where the laws of physics break down. The earliest

3
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Description Symbol | Value

Physical baryon density Qp,h? 0.02230 4+ 0.00014

Physical dark matter density Qamh? | 0.1188 4+ 0.0010

Age of the Universe to (13.799 £ 0.021) x 10° years
Scalar spectral index Ng 0.9667 4 0.0040

Curvature fluctuation amplitude A% 2.4411'8:8,33 x 107°
Reionisation optical depth T 0.066 + 0.012

Table 1.1: List of the six independent parameters parametrising the ACDM
model (Planck Collaboration et al., |2016)).

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern  Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

-

’ [ O\ 1
0 A e s M ~ e Al
B A s i A % R Y a

Inflation xﬂ ggﬁgﬂg’g
o

1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years

Figure 1.1: Timeline of the history of the Universe, from the Big Bang to the
present. Credit: NASA/WMAP Science Team (Timeline of the Universe).

moment in time we can extrapolate is called Big Bang and it represents the
starting point of a journey in the cosmological history of the Universe.

Early Universe From our understanding of fundamental physics, it is possible
to assume that initially the Universe was in a state called quark-gluon plasma.
When the Universe reaches temperatures of ~ 200 MeV, the quark-gluon plasma
transition takes place: quark and gluons become confined in baryons and mesons,
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Open questions

marking the starting point when the evolution of the Universe is understood
in great detail. At this point, the primordial plasma consists of many particle
species held in thermal equilibrium. Once the interaction rate of a given particle
species exceeds the expansion rate of the Universe, the corresponding species
decouples from the primordial plasma, a process known as “freeze out”, evolving
on its own from this moment on. When the Universe is ~ 1 second old, its
temperature reaches a value of ~ 0.5 MeV and only electrons, protons and
neutrons are left in the primordial plasma, while all other species have already
decoupled.

Nucleosynthesis Between 3 and 5 minutes after the Big Bang, the Universe
reaches a temperature of ~ 0.05 MeV and nuclear reactions become unbalanced,
leading to the formation of the first nuclei. At this point, protons and neutrons
bind together, forming the first nuclei of hydrogen and helium at the beginning,
and heavier nuclei later on.

Matter-radiation equality Initially, the Universe is in its radiation dominated
epoch, when the expansion of the Universe is dominated by all the species which
are in a relativistic regime, such as photons and neutrinos. At roughy ~ 60,000
years after the Big Bang, the energy density of matter and radiation contribute
in the same way to the expansion and, at this point, the Universe enters the
matter dominated epoch.

Recombination Roughly 380,000 years after the Universe was born, electrons
and protons bind together, forming neutral atoms. The Universe becomes
transparent and the remaining photons are now free to travel across the space-
time almost without any interaction. This process is also known as photon
decoupling, corresponding to the moment when the CMB radiation is released.

Structure formation The Universe enters the phase of structure formation.
Tiny fluctuations in the density field grow until the present day, collapsing under
the effect of gravity and forming the structures we can observe today in the sky.

The different phases of the Universe are not completely separated, but blend
together in a complex way, forming what we call today the standard model of
cosmology, or ACDM model.

1.4 Open questions

Even if it seems we know a lot about the Universe, in reality we know very little.
What we can directly observe today consists of baryonic matter and photons,
which are only a tiny fraction of the entire matter-energy budget of the Universe.
In fact, from the last parameter estimation provided by the Planck mission,
ordinary matter makes only ~ 5% of the entire matter-energy budget of the

5
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Universe, while ~ 25% is in a mysterious form of matter known as dark matter
and ~ 70% is in an even more mysterious form of energy known as dark energy.

The fine-tuning problem The cosmological constant was introduced to explain
the late-time accelerated expansion of the Universe, as an attempt to model the
dark energy contribution to the Universe. The cosmological constant A has a
very specific value, measured by the Planck mission as A = 1.1056 x 107°2 m~2.
The presence of such a constant is not forbidden in Einstein field equations, but
there is no fundamental reason for such a low value. Initially, the cosmological
constant was attributed to the vacuum energy. In particle physics, the expected
vacuum energy depends upon the chosen energy scale cutoff, but in any case it
would be orders of magnitude off the measured value of the cosmological constant.
Without a fine-tuning of the known laws of physics, there exists nowadays no
good explanation for the value of the cosmological constant.

Initial conditions The question of how tiny deviations from homogeneity have
originated relies on what happened prior to the Big Bang. One of the common
suggestions is that the Universe went through an inflationary phase, quickly
expanding by a factor of at least 10%°, and resulting in almost perfectly smooth
Universe with small perturbations generated by a magnification of quantum
fluctuations of a hypothetical inflaton field, responsible for the inflationary phase.

The matter and anti-matter asymmetry Apparently, there is no fundamental
reason why the Universe, at the present day, contains mostly matter rather
than anti-matter. The standard model of particle physics allows creation
of particles and anti-particles pairs from vacuum fluctuations. A primordial
asymmetry between the matter and anti-matter field needs to be invoked in
order to evolve into the present day observed asymmetry. However, no known
physical mechanism can lead to such a difference, and the matter and anti-matter
asymmetry still has to be explained.

The Hubble tension After the Hubble constant was inferred by the CMB
radiation measurements, it was also inferred by mapping velocities of objects
with known distances from the Earth, such as Type Ia SNe. Even if this technique
is limited by the low redshift of these objects, the inferred Hubble constant is
significantly higher than the value inferred by the best fit to CMB data. This
difference can be due to systematic errors when measuring either the CMB or
the SNe, but if the tension is confirmed later on, this will strongly point in the
direction of new physics.

The dark sector The origin of dark matter and dark energy is still one of
the most puzzling mysteries related to the Universe. On one hand, it is an
established fact that the standard model of particle physics is incomplete, and
the nature of dark matter and dark energy could be discovered by extending the
known fundamental physics. Nowadays, a lot of effort is spent in looking for
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new physics in experiments with particle accelerators, trying to produce and/or
detect dark matter particles. In particular, several hypothetical dark matter
candidates have been suggested over the past few decades, each leaving its own
signature on the observed Universe. On the other hand, on cosmological scales,
gravity could behave in a different way than expected. The GR theory is well
tested only at some spatial scales and several alternative theories of gravity have
been proposed to explain dark matter and/or dark energy contributions to the
evolution of the Universe. Nowadays, many models describing a wide range of
observations are available, however the true nature of these dark components
remains unknown, and one of the important roles of astronomical observations
is to constrain alternative dark matter models and theories of gravity.

1.5 General Relativity

In general, the dynamics of a system can be mathematically described in terms
of an action. Two physical states of the same system are connected by the
path which minimises the action. By means of the principle of least action the
governing equations, describing the behaviour of the system, can be derived. In
GR, the whole Universe can be described by the Einstein—Hilbert action:

1
= [ d'zy/—g|——=(R—2A 1.
Sen / T/ —g LGWG(R )+ Lum| (1.3)
which includes all the matter fields within £, and the cosmological constant A.
The variation of the action with respect to the metric tensor g, leads to the
Einstein field equations:

1
R, — QQW,R + Agy = 81GT,, . (1.4)

The Ricci tensor R, provides a measure of the curvature of a Riemann manifold.
It is defined by the contraction of two indices of the Riemann tensor, which
reads:

NN
_ Mo O pupn _pupn (1.5)

vpo 8.13/) axa np- vo no-vp

R
The Christoffel symbols Fgﬁ are defined as:

. 1 998p | 99ap  09gap
/ _ P P
Tas = Qg#p (33:0‘ T T owr ) (16)

and they determine the free fall motion of bodies through the geodesic equation:
d%aH p dz® dz?

+
dr? B dr dr

The infinitesimal interval of proper time is given by:

~0. (1.7)

dr? = —g,,dotdx” . (1.8)
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Finally, the Ricci tensor is given by:
R =R, (1.9)

The Ricci scalar, instead, is defined as the contraction of the two indices of the
Ricci tensor:

R=R",. (1.10)

On the right hand side of Eq. , T,,, is the stress-energy tensor and it describes
the flux of matter and energy through space-time, generalising the stress-energy
tensor of Newtonian mechanics. For a perfect fluid in the comoving coordinate
system, the stress-energy tensor is given by:

Ty = (p+ puu” —pg"” (1.11)

where the density p; and the pressure p; of a generic fluid component are linked
by the equation of state p; = w;p;, and u* = dx* /dr is the four-velocity of the
fluid.

The Einstein field equations, Eq. , are a set of ten independent, coupled
and non-linear equations for the metric tensor g,,,,, describing how the space-time
curves depending upon its matter and energy content.

1.6 Background evolution

The ACDM model is based on the fundamental assumption that, when observed
on large scales, the Universe appears homogeneous and isotropic. This leads to
another fundamental assumption: there is a particular frame in which the matter
and energy content of the Universe can be approximated, on large scales, by a
perfect fluid. In this comoving reference frame, the geometry of the Universe
can be described by the Friedmann-Robertson-Walker (FRW) metric tensor,
characterised by the following line element expressed in polar coordinates:

ds? = —dt® + a? + 7% (d6” + sin® 0dg*) | . (1.12)

"
1 — kr2

The Hubble rate of expansion is related to the scale factor a by means of
H =dlna/da:

dlna
H:
dt

The term k in Eq. (1.12]) accounts for the curvature of the Universe:

(1.13)

—1, open Universe
k= 0, flat Universe (1.14)
+1, close Universe
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Thus, neglecting tiny fluctuations in the primordial plasma, the Einstein field
equations can be simplified in a system of two equations, known as the Friedmann
equations, describing the expansion history of the Universe. The Friedmann
equations can be analytically solved to compute the expansion rate, as well as
the relative abundances of different constituents of the Universe. In a spatially
flat Universe (k = 0), the Friedmann equations are given by:

H? = ?p, (1.15)
1d%a 4G

Ld7a  AnG , 1.1
L 5 (p+3p) (1.16)

The matter and energy content of the Universe is expressed in terms of:

e photons and any relativistic particle species, described by an equation of
state with w, = 1/3;

o non-relativistic matter, including baryons and dark matter, with w,, = 0;
e cosmological constant, with wy = —1.

Different contributions to the matter and energy content of the Universe dominate
the expansion of the Universe at different times. Their energy density can also
be normalised by the critical density of the Universe and expressed, for a generic
component, as:

Pi
Q== 1.17
" ope (L17)
where p, is defined as:
3H?
.= _ 1.18
pe= g = (1.18)

1.7 The perturbed Universe

Prior to the structure formation phase, the Universe was almost perfectly
homogeneous, with the exceptions of tiny deviations from the mean cosmic
density. During the structure formation phase, these small density fluctuations
evolved until they formed the vast amount of structures we can observe today:
an intricate network of filaments, sheets and voids, called cosmic web.

In principle, the evolution of density perturbations is fully described by
the perturbed Einstein equations. However, in order to gain an insight on
how density perturbations evolve, it is possible to focus on matter fluctuations
only, on scales well within the horizon, and in epochs where the Universe is
in its matter dominated phase. In this case, the Newtonian approximation is
well justified, and the evolution of tiny perturbations in a perfect fluid can be
described by means of a set of hydrodynamic equations.
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Small density perturbations reflect in tiny deviations from the FRW metric,
used to describe the background cosmology and the expansion history of the
Universe. Thus, in order to account for tiny inhomogeneities, the metric tensor
can be written as:

Gpv = Guv + G (1.19)

where g, denotes the background metric tensor. In the Newtonian gauge, the
perturbed FRW metric is described by the line element:

ds® = — (14 2V) dt* + a* (1 — 2®) da'dx’ | (1.20)

where, in the absence of anisotropic stress, ® and ¥ are the same and they
represent the Newtonian gravitational potential. The system of hydrodynamic
equations for an ideal, non-relativistic and self-gravitating fluid, in a comoving
reference frame, is given by:

% +3Hp+a V- (pv) =0, (1.21)
% +Hv+a ' (v-V)v=—a"" (V<I> + Vp) : (1.22)
P

Perturbations in the density field are often quantified in terms of density contrast:

s=L"2 (1.23)

— )

hs

where p denotes the background density. In addition, only small perturbations
of density, pressure, and velocity around their mean values are considered:

p=p+dp, (1.24)
p=p+0p, (1.25)
vV=v+ov. (1.26)

First, the background value of velocity perturbations corresponds to the Hubble
flow, while the perturbation dv = u corresponds to the peculiar velocity. Second,
perturbations in pressure are related to those in density by dp = c2dp, where ¢
denotes the sound speed. Taking these considerations into account, the above
system of equations can be linearised and expressed as:

0 o

a"‘a V'U—O, (127)
du -1 2

Fr Hu=a"'(V®+c2V0) . (1.28)

These equations are in comoving units and they can be combined with the
Poisson equation:

V2® = 47Gpa’s | (1.29)
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into a single second-order differential equation, known as the Jeans equation,
describing the gravitational collapse of density perturbations. When in the linear
regime, different Fourier modes in the perturbed density field decouple, and the
linear equations can be analytically solved. Thus, expanding the density field in
Fourier modes:

S(x,t) =Y br(t)e ™, (1.30)
k
the Jeans equation in Fourier space is given by:
% 4 2H% i {ci’f - 47er] 5 =0 . (1.31)
The Jeans wavenumber is defined as:
ky= (4772:;25>1/2 . (1.32)

Only perturbations below the Jeans scale, corresponding to A; = 2w /k;, can
effectively grow, while for perturbations above the Jeans scale Eq. describes
a stationary wave which, in turn, does not grow. Considering the special case of
a density perturbation collapsing during the matter dominated epoch, Eq.
has two solutions: a growing mode evolving as J; « a, and a decaying mode
evolving as 0, oc a=2/3. The Jeans equation describes perturbations of a generic
fluid. In the specific case of dark matter density perturbations, the sound speed
is zero, and all perturbations within the horizon grow into denser and denser
structures.

1.8 Non-linear regime

The linear theory provides a good approximation as long as perturbations are
small compared with the corresponding background values. For example, modes
entering the horizon at matter-radiation equality have a density contrast of
§ ~ 107°, and the linear theory accurately describes the first stages of the
collapse. However, as the Universe evolves, density fluctuations grow in time and,
when § < 1, the linear theory is no longer a good approximation, as modes enter
in the non-linear regime, coupling with each other. The non-linear evolution
of the density field is extremely complex and it cannot be studied analytically.
Thus, large numerical simulations are needed in order to describe the intricate
cosmic web, with dark matter sheets and filaments, together with galaxies, stars
and black holes. Numerical cosmology has become today a compelling field of
research within astronomy, as it provides the only means to fully describe the
process of structure formation and evolution in the non-linear regime.
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Chapter 2

Dark Matter, baryons and the
Universe at small-scales

2.1 Introduction

Figure 2.1: Composite image of the bullet cluster, in which the dark matter
and the gas components have been wrenched apart due to the collision of
two large clusters of galaxies. The pink overlay represents the X-ray emission
recorded by the Chandra Telescope of the two colliding clusters, while the blue
overlay represents the mass distribution of the clusters calculated by using
gravitational lensing techniques. Credit: NASA, CXC, and M. Weiss (Chandra
X-ray Observatory)).

The nature of dark matter represents one of the most exciting open questions
in physics. At the present day, one of the most convincing arguments in favour of
dark matter comes from direct measurement of galactic rotation curves (Rubin,
Ford, and Thonnard, [1978; Rubin, Ford, and Thonnard, [1980; Rubin et al.,
1985). In Newtonian dynamics, for spherically symmetric objects, the circular
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2. Dark Matter, baryons and the Universe at small-scales

velocity v, is given by:

ve(r) = LMTC(T) : (2.1)

where Mg, is the total mass enclosed within a radial distance r from the center.
Therefore, as observed for planets in the Solar System, the circular velocity should
drop as v. o 1/4/r at large radii. However, the observed rotation curves typically
exhibit a nearly constant trend at large distances, implying the existence of an
invisible halo with Mgy, o< r, or equivalently an outer density profile dropping
as pocr2.

Furthermore, the mass of galaxy clusters can also be estimated with X-ray
observations of the intracluster medium (ICM), corresponding to their dominant
baryonic component. The ICM consists of a hot gaseous halo with temperatures
of T ~ 107 — 10® K, which emits X-ray radiation by thermal bremsstrahlung and
line emission. From the temperature distribution of the ICM, it is possible to
measure the gravitational potential of the galaxy cluster and, thus, to infer its
total mass. Since the earliest X-ray observations (Forman et al., Gursky
et al., Kellogg et al., 7 it has been concluded that galaxy clusters do
not have enough gas to account for their total mass. Recent measurements of
the distribution of dark matter in galaxy clusters, coming from the Chandra
X-Ray Observatory, strongly suggest that clusters are primarily held together by
the gravitational potential of dark matter (Vikhlinin et al., .

Another strong evidence in favour of dark matter comes from gravitational
lensing observations, where the light passing near a galaxy cluster is bent by the
presence of a mass distribution, as predicted by GR. The light is bent depending
on the mass of the cluster, and this offers an alternative method to estimate the
mass of the galaxy cluster (Tyson, Valdes, and Wenk, , without relying on
observations of its dynamics. Later on, gravitational lensing observations were
also used as an alternative way to study dark matter density profiles and mass
fractions (Koopmans and Treu, 2003).

At the same time, cosmological observations of CMB anisotropies, combined
with measurements of the local Hubble rate calibrated with Cepheid variables
(Riess et al., , measurements of light curves of Type Ia SNe (Kessler et
al., and measurements of Baryonic Acoustic Oscillations from large-scale
galaxy surveys (Percival et al., 7 can be used to constraint the present day
dark matter density of the Universe.

Even if the rich evidence provided by astronomical observations strongly
supports the existence of dark matter, its nature is still unknown. Many
extensions of the standard model of particle physics predict the existence of
new particles which can naturally be potential dark matter candidates. Sterile
neutrinos, supersymmetric neutralinos and gravitinos, axions, and Kaluza-Klein
excitations in theories with extra dimensions are only some of the commonly
studied dark matter candidates (see e.g. Bergstrom, Bertone, Hooper, and
Silk, Steffen, .

From the theoretical point of view, there are several criteria related to the
fundamental properties of a viable potential dark matter candidate, that must be
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fulfilled in order to account for this mysterious form of matter (Taoso, Bertone,
and Masiero, . First, new physical theories concerning the origin of dark
matter should become relevant at higher energy scales than those probed today
by particle colliders. These energy scales may have been accessed in early
moments of the evolution of the Universe. Dark matter particles could have
been produced then by thermal production, or as a non-thermal relic, but either
way it must have been produced in similar quantities to the observed dark
matter abundance. A potential dark matter candidate must be effectively dark.
Electromagnetic interactions with photons must be weaker than those of any
other charged particle. In addition, dark matter must not couple with neutral
baryonic matter. Strong constraints on such interaction strengths are obtained
by requiring that dark matter does not couple with photons or baryons during
the recombination epoch, otherwise the CMB acoustic peaks would be washed
away. A significant coupling with baryons would allow dark matter to radiate
away its energy, thus affecting the structure formation process. Furthermore,
dark matter particles must be of non-baryonic nature. This is required by Big
Bang nucleosynthesis (BBN) predictions, which are extremely sensitive to the
baryon-to-photon ratio. Moreover, when it has decoupled from the primordial
plasma and the Universe has entered its matter dominated epoch, dark matter
gravitationally collapses into small-scale structures. For this reason, dark matter
particles are required to have small and non-relativistic velocities, already at
the time of decoupling. Otherwise, the dark matter temperature would be too
high, and small-scale perturbations would be washed away because of the high
dark matter free-streaming length. These considerations depend upon the dark
matter phenomenology driving the decoupling process, and the mass of dark
matter particles. Finally, dark matter particles must be stable over cosmological
time scales.

Many extensions of the standard model of particle physics predict the
existence of new weakly interactive massive particles (WIMPs), coupled with
the weak gauge boson. Nowadays, WIMPs are still one of the most likely
dark matter candidates, as they naturally satisfy most of cosmological and
astrophysical requirements, and they offer the possibility of being detected in
particle experiments. WIMPs are often assumed to be thermally produced in the
early Universe, with typical weak-scale masses of the order of mwp ~ 100 Gev.
Such particles were held in thermal and chemical equilibrium with the primordial
plasma by annihilation processes to standard model particles and antiparticles.
Considering the generic species y as a WIMP candidate, with a generic mass
m,, the species is in equilibrium in the early Universe, at temperatures 7' > m,,.
Assuming that also standard model particles are, at that time, in equilibrium
with the primordial plasma, the evolution of the WIMP number density 7,
follows the Boltzmann equation:

dny
dt

where 7, is the WIMP equilibrium number density, and (ov) corresponds
to its thermally averaged annihilation cross section. At sufficiently high

+3Hny = —(ov) [n2 — 0] | (2.2)
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temperatures, the interaction rate I'y, = n, (ov) exceeds the Hubble rate and
WIMP annihilation processes are totally balanced by the WIMP creation inverse
processes. Thus, WIMP particles are held in equilibrium with the primordial
plasma and, as the right-hand side of Eq. is effectively zero, n, closely
tracks the equilibrium solution. While the Universe is expanding, the WIMP
number density drops as the temperature decreases, and the interaction rate
I falls below the Hubble rate. Annihilation and creation processes of WIMP
particles are no longer able to maintain chemical equilibrium, and the WIMP
species decouples.The freeze-out temperature is approximately determined by the
condition I'y ~ H, and as long as the species decouples at temperatures 7' < m,,
the hypothetical WIMP candidate freezes-out when already non-relativistic.
Thus, at the decoupling temperature Tyec, the number density n, is Boltzmann
suppressed:

nX(Tdec) ~ (mdeec)3/2 eimX/Tdec R (23)

and the WIMP velocity v ~ (Tdec/mx)l/2 is small. Assuming that the WIMP
freeze-out takes place in the radiation dominated epoch, the further evolution of
the number density of the species y simply follows the expansion of the Universe,
and the corresponding WIMP relic density can be estimated as:

3x 10726 cm?/s
{ov)

A simple order of magnitude estimate shows that a weak-scale annihilation cross
section naturally provides a WIMP relic abundance that reproduces the observed
dark matter one. This striking coincidence is often referred to as the “WIMP
miracle”, and it explains the reason why WIMPs have gained a lot of popularity
as dark matter candidates.

Q,h% ~ 0.1 < (2.4)

2.2 Cosmological small-scale probes

Nowadays, the ACDM model is constantly under revision, as technological
development promotes more and more sophisticated astronomical observations.
In general, numerical simulations are very powerful tools. Due to the non-linear
nature of gravity, structure formation and evolution can be fully studied only by
means of cosmological and hydrodynamic simulations. The results of numerical
simulations give access to a vast amount of information that can be translated
into observables, and directly compared with astronomical data.

Power spectrum Within the context of cosmological structure formation, the
most important statistics is the two-point correlation function of the density
field, which provides general information about how matter clusters at different
scales, and it is defined as:

§(6,x) = (0(x)0 (X)) , (2.5)
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where (...) denotes the ensemble average or expectation value. Under the
assumption of homogeneity and isotropy, the two-point correlation function can
be expressed as an average over all directions, without losing any information.
In this case, the two-point correlation function can only depend on r = |x — x|
and &(r) = £ (x,x). Then, given a matter clump in a random location of the
Universe, the two-point correlation function describes the probability of finding
another clump at a given distance. In Fourier space, the two-point correlation
function can be expressed as:

(8 (k) 5" (k') = (2m)*0p (k — K') P(k) , (2.6)

where 0p(x) denotes the 3D Dirac delta function and P(k) denotes the matter
power spectrum. Thus, the matter power spectrum P(k) corresponds to the
Fourier transform of the two-point correlation function:

P(k) = /d3 z€(x)e kx| (2.7)
or in its dimensionless form:
k3P(k)
2 _
A (k) = = (2.8)

Above galactic scales, the predicted ACDM matter power spectrum is well
constrained by cosmological observations. Up to galactic scales, any alternative
dark matter model must predict a power spectrum within the given constraints,
while deviations are allowed below galactic scales.

Structural properties Since the end of inflation, small initial over-densities in
the primordial plasma have grown forming stars, galaxies, and cluster of galaxies
we can observe today in the sky. To define what a structure is, cosmologists often
use the virial theorem, which relates the total kinetic energy of a self-gravitating
object to its gravitational potential energy:

Epot + 2B = 0 . (2.9)

When the gravitational potential energy Fp,o¢ balances the total kinetic energy
Fyin according to Eq. , the collapsed structure has reached a quasi-
equilibrium configuration and it is said to be in virial equilibrium.

The virial theorem is often used to link observable properties of galaxies
to other fundamental, but non observable properties. For example, the mean
velocity of stars can be directly measured, as well as the half-light radius, which
provides a crude estimate of the size of a galaxy. Thus, the mass of a galaxy can
be approximated as:

<’02> Rgal

Mgal = G )

(2.10)
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where (v2) is the mean velocity of its stellar component, considering both rotation
and velocity dispersion, Rga is the effective radius, corresponding to the size of
the galaxy, and G is the Newton gravitational constant.

For dark matter halos, though, the virial mass is often defined as the spherical
region where the mean density is approximately Ay; ~ 200 times the critical
density of the Universe at a given redshift. Thus, the virial mass M,;, of a dark
matter halo can be computed according to:

4T R3S,
3 Avirpc 9 (211)

where the critical density of the Universe is given by p. = 3H?/(87G). It is
common practice to define the virial velocity as the circular velocity of the halo
at the virial radius:

Mvir =

G My;
Vi =—"0 2.12
v R (212)
Thus, it is possible to relate the evolution of virial mass and radius of a given
dark matter halo in terms of its virial velocity:

V3
My = —¥2 2.13
HGV Avir ( )
Ry — 200 (2.14)

HVAue
These two expressions are at the foundation of the hierarchical model of structure
formation: small dark matter halos form first, and eventually merge later into
bigger halos, whereas late-forming dark matter halos are larger and more massive.
In general, the structures observed today in the Universe span a wide range of
masses and dimensions: from the largest observed structures like galaxy clusters
with My, ~ 10*® M), to galaxies similar to the Milky Way with M, ~ 1012 M,
to the smallest dwarf galaxies found in the local volume with M;, ~ 10 M.

Since the advent of the first cosmological simulations, the collapse of cold
dark matter (CDM) halos has been intensively studied. As numerical techniques
and computational capabilities have significantly improved over the last decades,
theoretical studies of structure formation have provided a series of robust
predictions for the ACDM model. The existence of a large number of low-
mass halos and the presence of a universal dark matter density profile are among
the most important ones, and they are at the origin of the small-scale challenges
the standard model of cosmology is currently facing.

Dark matter only cosmological simulations show that the internal structure
of CDM halos follows a nearly universal density profile, characterised by cuspy
r~! inner profile, transitioning to a steep r—3 outer profile. Thus, each dark
matter density profile can be characterised by the Navarro-Frenk—White (NFW)

functional form:
57 —1
r r
1+ =
R ( * RS>

pnEw (1) = po ; (2.15)
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where pg corresponds to the central density of the dark halo. The characteristic
scale Ry, instead, describes the cross-over between the 7! behaviour at small
radii and the r—3 behaviour at larger radii, and it is related to the virial radius
by the concentration parameter expw = Ryir/Rs In the hierarchical picture of
structure formation, low-mass structures collapsed when the average density
of the Universe was higher than at the present day, and therefore have higher
concentrations than more massive halos formed later.

Rotation curves As early observations of stellar kinematics in galaxies
provided the first evidence of dark matter, rotation curves are a powerful probe of
the dynamics of dark matter on small scales. In the ACDM model, the structure
of the halo is universally described by the NFW profile. Thus, from Eq. (2.1)),
it is possible to compute the circular velocity profile of a given halo assuming
a density profile described by Eq. . The corresponding rotation curves
exhibit a peak in circular velocity at radial distances which depends upon the
virial radius of the halo and its concentration:

«
Riyax = —Ryir (2.16)
CNFW
with o ~ 2.16. In addition, for CDM halos the ratio between the maximum
circular velocity Vi.x and the virial velocity decreases as the concentration
increases, and increases as the virial mass of the halo decreases.

Halo mass function In theoretical studies of structure formation, the
clustering of dark matter is often quantified by counting the number of dark
matter halos that form in cosmological simulations. The number density of dark
matter halos falling in a given mass range, at a given redshift, is encoded in
the so-called halo mass function (HMF). Empirically, for the case of the ACDM
model, the HMF is:

dn(M, z)

g <M (2.17)

where o ~ —1.9 for masses below M;, < 10'°. Thus, in terms of abundance
of dark matter structures, the ACDM model predicts the formation of a large
number of low-mass halos, which are observed to form in numerical simulations,
even within other virialised structures. The minimum predicted halo mass
strongly depends on the underlying physics of the dark matter model considered
as CDM candidate. For example, assuming the standard WIMP paradigm, the
suppression mass scale is set by first collisional damping at kinetic decoupling,
and then by free-streaming (e.g. Bertschinger, Hofmann, Schwarz, and
Stocker, [2001)). In case of typical WIMP candidates with masses around ~ 100
GeV, the growth of cosmological perturbation is erased below M ~ 10~¢ Mg,
corresponding to the Earth mass (Green, Hofmann, and Schwarz, . For this
reason, in dark matter only cosmological simulations, CDM is found to clump at
all resolved mass scales.
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2.3 Small-scale challenges of CDM

Numerical simulations of structure formation have shown how the large-scale
structure of the Universe is quite well captured by the ACDM model. However,
when performing pure dark matter simulations, the evolution of structure
on galactic scales is in tension with current astronomical observations. As
a consequence, a series of discrepancies have emerged between the ACDM model
and the observed Universe, thus challenging our understanding of the small-scale
cosmology.

The core-cusp discrepancy In ACDM simulations (Dubinski and Carlberg,
Navarro, Frenk, and White, , dark halos follow a p o< r=7, with a
typical log-slope of v ~ 0.8-1.4 in the innermost region. The dynamics of low
surface brightness (LSB) galaxies and late-forming dwarf galaxies is expected
to be heavily dominated by their host dark matter halo, thus providing a good
laboratory to study dark halo structures in detail. Indeed, by measuring rotation
curves, it is possible to infer the dark matter mass distribution within the
halo with great accuracy. Many independent measurements of rotation curves
suggested a preferred isothermal profile, characterised by a nearly flat core in
the center, with typical log-slope of v ~ 0-0.5. Measurements of dwarf galaxies
in the local volume from the THINGS (Walter et al., and the LITTLE
THINGS (Hunter et al., galaxy surveys found similar results, where the
inner log-slope was v = 0.29 & 0.07, rather than the typical v = —1 of ACDM
halos.

Often the baryonic content of the Universe is not included in cosmological
simulations and the core-cusp problem can have its origin in the dark matter only
character of early numerical simulations. However, the properties of galaxies
are strongly affected by baryonic physics and modern hydrodynamic simulations
include the baryonic content of the Universe in the form of gas, together with
a variety of astrophysical processes relevant in the structure formation context.
Several independent studies have shown how baryonic feedback can significantly
alter the properties of dark matter halos, generating feedback-induced cores in
the innermost region of dark matter density profiles (Adams et al., M Agnello
and Evans, Amorisco and Evans, 2011} Battaglia et al., [2008; Flores and

Primack, [1994; Moore, [1994; Oh et al., :2015|; Walker and Penarrubia, 2011]).

Missing satellites Numerical simulations of dark halos of similar size to the
one hosting the Milky Way have shown how dark matter halos form at all
resolved masses, thus producing a large number of substructures and leading to
a diverging halo mass function towards the low-mass end. Furthermore, many
simulated subhalos of such dark matter halos are, in principle, large enough to
support molecular cooling and host a visible galaxy. At the present day, the
number of observed Milky Way satellites is ~ 50, at least one or two orders
of magnitude less than expected from cosmological simulations. Even if future
observations are expected to discover new ultra-faint dwarf galaxies, it is unlikely
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that the count will match theoretical ACDM predictions. The halo mass function
predicted by the ACDM model counts one order of magnitude more subhalos
than observed in the Mikly Way.

Another possibility is that low-mass dark matter halos are just extremely poor
in baryon content and so they are impossible to detect. Modern hydrodynamic
simulations have also shown that galaxy formation is heavily quenched in systems
below M, ~ 10° M, where photoionizing heating induced by the cosmic ultra-
violet (UV) background suppresses accretion of gas, thus solving the mismatch
in the count of visible satellites of halos similar to the one of the Milky Way
(Garrison-Kimmel et al., Griffen et al., Kuhlen, Madau, and Silk,

2009} Springel et al., 2008; Stadel et al., [2009).

Too-big-to-fail While attempting to solve the missing satellite problem by
introducing a mass threshold below which halos are just dark, matching the
biggest simulated halos with the most massive Milky Way satellites causes
another problem (Boylan-Kolchin, Bullock, and Kaplinghat, Boylan-
Kolchin, Bullock, and Kaplinghat, . In this way, the biggest simulated
halos are simply too massive to host observed satellite galaxies, while the ones
that could potentially host observed satellite galaxies are not the most massive
ones. On the other hand, if simulated subhalos are matched by observed galaxies,
bigger simulated halos are too big to have failed at forming stars.

Such a discrepancy was originally introduced for Milky Way satellites, but
also the Andromeda galaxy was subsequently found to suffer from the too big
to fail problem, together with field galaxies in the Local Group. In general, the
observed galaxies in the low redshift Universe, with stellar mass in the range
10° < M, < 108 Mg, have inferred central masses that are roughly half of what
expected from ACDM simulations.

Scaling relations Even if we can observe today a wide diversity of galaxies, a
series of scaling relations tightly connect the dynamical and baryonic properties
of galaxies, even in dark matter dominated systems. These scaling relations hold
for many different types of galaxies and one of the most famous scaling relations
is the baryonic Tully-Fisher relation (BTFR), which links the total baryonic
mass M, of a galaxy with its asymptotic circular velocity V,sym as:

Va4sym = aOGMb 5 (218)
where aq is the critical acceleration, measured by astronomical observations.
Eq. , is an extension of the well known Tully—Fisher relation, where Vigym
is related to the luminosity, which in turn traces the total stellar mass of a
galaxy. However, cosmological simulations of the ACDM model are not able to
reproduce the observed BTFR, but they predict a stym x My, scaling instead.
When modelling baryonic physics in hydrodynamic simulations, several studies
have been able to qualitatively reproduce the BTFR, but the scatter is still
larger than expected.
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In addition, the search for dark matter in collider and laboratory experiments
have been so far unsuccessful. Thus, alternative dark matter models have been
specifically developed in order to solve, or at least alleviate, the small-scale crisis
the ACDM is currently facing. As baryonic physics has been suggested as a
tentative solution to small-scale problems, the need of cosmologically motivated
alternative dark matter models is still under debate. However, the data on the
satellites of the Milky Way can pose strong constraints on new dark matter
candidates, in particular those predicting a small-scale cutoff in the primordial
power spectrum. If the predicted cutoff is too sharp, then the number of low-mass
halos forming would be too small to account for the observed number of Milky
Way satellites.

2.4 Ultra-light Dark Matter

Ultra-light dark matter (ULDM) denotes a class of models where dark matter
is composed of ultra-light bosons, forming a Bose-Einstein condensate (BEC)
on astronomically relevant scales. Models of ULDM were introduced as an
alternative to the classical CDM paradigm to address the small-scale challenges
affecting the ACDM model. The general idea is that ULDM behaves in a very
similar way to CDM on large scales, recovering the remarkable success of the
standard model of cosmology when describing the large-scale properties of the
observed Universe, while on galactic scales ULDM forms a BEC manifesting the
quantum nature of particles, affecting the properties of dark matter structures.

Today, ultra-light axions (Abbott and Sikivie, Dine and Fischler,
Preskill, Wise, and Wilczek, , fuzzy dark matter (Hu, Barkana, and
Gruzinov, and superfluid dark matter (Berezhiani and Khoury, are
just few examples of the wide variety of models encompassed by the ULDM class

of models (see e.g. Ferreira, 2020; Hui et al., [2017; Marsh, 2016} for detailed

reviews).

2.4.1 Condensation

In the 1920s, S. N. Bose and A. Einstein introduced the idea of the Bose—Einstein
condensation, a phenomenon that occurs in particular physical conditions. A
Bose-Einstein condensate (BEC) is defined as a system where a large fraction of
bosons occupies the minimum energy state, or ground state, and it is typically
achieved at extremely low temperatures. When the Bose-Einstein condensation
occurs, the high occupation number of the ground state leads to a macroscopic
manifestation of quantum mechanics, where the system of particles collectively
behaves as a macroscopic fluid. The collection of bosons forming a BEC follows
the Bose—Einstein statistics:

i = g (e(q—uvT _ 1) ’ (2.19)

which provides the occupancy number 7; of a given energy state ¢; depending
on the degeneracy of the energy level g;, the chemical potential y and the
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temperature T' of the fluid. The critical temperature, expressed as:

() i)

defines the temperature below which most of the particles occupy the lowest
energy state and, as a consequence, condensation occurs. In Eq. (2.20), n
represents the number density of particles, mpg denotes the mass of the boson, and
€(3/2) ~ 2.612 is the Riemann zeta function. The Bose-Einstein condensation
is a consequence of the wave-like nature of particles at low temperatures, where
the de Broglie wavelength of multiple bosons overlaps, as it exceeds the mean
inter-particle separation. The de Broglie wavelength associated to a massive
particle is defined as:

1
mpv

AdB = (2.21)

and it determines the coherence length of the fluid.

2.4.2 Field description

Several different theoretical models have been introduced to describe systems
of many identical bosons, where a large fraction occupies the minimum energy
state. Often it is useful to associate the Bose-Einstein condensation with the
phenomenon of spontaneous breaking of a continuous symmetry, rather than
with a phase transition occurring when a large occupation number of the ground
level is achieved. In general, the system of bosons is described by a many-
particle wave-function. The free choice of the global phase of the many-particle
wave-function leads to a global U(1) symmetry, which is responsible for the
conservation of the total number of particles in the system.

When describing this type of systems, where the phenomenon of spontaneous
symmetry breaking is present, the field theory description provides an extremely
useful tool, where the many-body wave-function is effectively represented by
a classical field. In this case, spontaneous symmetry breaking occurs when
a stable state of the system, i.e. the condensate, is not symmetric under a
global U(1) symmetry transformation. The Goldstone theorem establishes the
existence of spin-zero massless particles emerging when the global U(1) symmetry
is spontaneously broken. These particles are called Goldstone bosons and they
eventually acquire a small mass in the presence of non-perturbative physical
effects. Ultra-light dark matter models consider a generic Goldstone boson as a
potential dark matter candidate. In this case, a hypothetical U(1) symmetry
is spontaneously broken relatively early in the history of the Universe, and the
emerging ultra-light scalar boson accounts for the cosmic dark matter budget.

23



2. Dark Matter, baryons and the Universe at small-scales

— my=102ev . my =102 ev

— mg =10"2ev — mg =10"2lev

— my =102 eV S~ N — mp=10"2ev

)

— mp =10~ ev — mg =107 ev
— mg=10"2ev — mg=10"2ev

— mg =102 ev — mg =102 ev

Wy=pe/Pp
T =3H/2wp
-
5
L

—0.25 1

—0.50 q

—0.75

-1.00 1

Figure 2.2: Toy model for the background evolution of a light scalar field in a
cosmological context. The values reported for different physical quantities have
no connection with a physically motivated ULDM model. The different panels
represent the evolution as a function of the scale factor of the field normalised
to its initial value, its energy density and its equation of state, and the damping
ratio.

2.4.3 A scalar field in cosmology

In General Relativity, the action of a minimally coupled real scalar field is given
by:

S0 [ty [—%g*‘"amam V()] | (2.22)

valid only once symmetry is broken and non-perturbative physics becomes
relevant. The equation of motion of the scalar field can be obtained by varying
the action with respect to the scalar field and, for the case of ULDM, it is in the
form of a Klein—-Gordon equation:

1 » oV
\/_ . [V=g 9" 8, ] ~ % =0. (2.23)
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The energy-momentum tensor, instead, can be obtained by varying the action
with respect to the metric tensor:

T", = gM*d,, ¢d, ¢ — ‘% (%70, 00,0 + 2V ()] . (2.24)

By expanding the potential in Taylor series and considering only the leading
term, i.e. the mass term, the dynamics of the field can be studied in a model
independent way. Assuming a homogeneous and isotropic Universe, it is possible
to study the background evolution of the field. In particular, by considering the
non-zero element of the FRW metric tensor, the equation of motion reduces to:

d*¢ d¢

—— +3H—- +mip=0, 2.25
which corresponds to a harmonic oscillator with a time dependent friction term
provided by the Hubble rate. The natural frequency wg of the system corresponds
to the mass of the scalar field, and its damping ratio is given by:

= St . (2.26)
2W¢
The background evolution of the dark matter density field is characterised by two
distinct regimes. Initially, the Hubble friction dominates over the mass term and,
as ¢ > 1, the system is described by an over-dumped harmonic oscillator where
the field does not evolve. As a consequence, the equation of state is characterised
by wg = —1 and the field behaves as a dark energy contribution. The condition
¢ = 1 marks a cross-over between the over-dumped and the under-dumped
regime. As the ¢ starts to displace from its initial value, the field oscillates with
a natural frequency wy and the density evolves as a~2, following the behaviour
of any non-relativistic component. When the Universe is radiation or matter
dominated, the scale factor evolves as a x tP and the exact solution of the

equation of motion, Eq. (2.25)), is given by:
(b = a_3/2(t/ti)1/2 [ClJn(th) + CQYn<th)] ) (2'27)

where n = (3p—1)/2, t; corresponds to the initial time, and .J,, and Y,, are Bessel
functions of first and second kind, respectively. As long as the oscillation phase
starts prior to the matter-radiation equality, the scalar field can be effectively
used to describe the dark matter component of the Universe.

2.4.4 Linear theory

Small density perturbations in the dark matter fluid grow until they form the
structure we can observe in the sky today. The linear perturbation theory
provides a good approximation when describing the evolution of small over-
densities in the dark matter fluid, but typical galaxies correspond to present day
over-densities of § > O(10°). Except in extreme conditions, the gravitational
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2. Dark Matter, baryons and the Universe at small-scales

potential is very small and it is possible to consider the Newtonian limit. In
addition, the focus is on the formation and evolution of structures and, as the de
Broglie wavelength of the scalar field is much smaller than the particle horizon
at matter-radiation equality, the non-relativistic limit is fully justified. Rapid
temporal oscillations of the scalar field do not contribute significantly to the
evolution of the gravitational potential while the field collapses. Thus, it is
possible to consider the Wentzel-Kramers—Brillouin (WKB) approximation in
the form:

-1 ) )
¢ = (mB\/i) (we_lth + w*elth) . (2.28)
By expressing ¢ in terms of a complex scalar field, high oscillation frequencies of

the order of the natural frequency wy = mp are explicitly filtered out. Thus, the
equation of motion of the field reduces to:

[0y 3 1 2 _
i <at + 2H¢) - (ngaQV +mB<I>> Y=0, (2:29)

which corresponds to a non-linear Schrédinger equation, generalised for the case
of an expanding Universe. The expression of the complex scalar field ¢ in polar

coordinates:
)=, ]-Le? (2.30)
mg

gives the opportunity of describing the dynamics of the field in terms of
macroscopic quantities:

p=mgly] (2.31)
1
v=—V6. (2.32)
ms

The non-linear Schréodinger equation can be recast into a system of
hydrodynamics-like equations, known as the Madelung formulation of quantum
mechanics:

% +3Hp+a 'V-(pv) =0, (2.33)
ov 1 1
aJrHVJra (V~V)v7amBV(‘I>+Q) . (2.34)

While the first equation takes the same form of the classical continuity equation,
the second equation recalls the CDM momentum equation, with the addition of
a potential term (), known as the quantum potential:

B S VY
Q——sza2 7 (2.35)
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The corresponding quantum pressure V(@ is a direct manifestation of the quantum
nature of the scalar field and it reflects a certain stiffness exerted by the scalar
field, resisting compression during gravitational collapse.

The Madelung equations are the starting point for the linear theory. In the
presence of small perturbations, Eq. and Eq. can be linearised and,
neglecting higher order contributions, they can be expressed in terms of the
over-density J as:

00

5 +3Hp+a 'V-(pv) =0, (2.36)
ov . B
E+Hv+a (V'V)V7am3v(q)+Q) . (2.37)

These two equations can be combined into the Jeans equation, describing the
evolution of a single mode perturbation in Fourier space:

+2H—E 4

d?6;, ddy E*
dt? dt

As in the case of CDM, the solution of Jeans equation includes a growing mode
evolving as 0  a, and a decaying mode evolving as 6, o a~3/2. The presence
of an effective speed of sound, however, limits the growth of perturbations
to the modes below the corresponding Jeans wavenumber. Above the Jeans
wavenumber, the ULDM evolution differs from the CDM one, as the quantum
pressure prevents the collapse of modes with k& > kj. Eq. also applies in
this case, but the effective sound speed is now given by:

K2

Cs

e 2.39
4m%a? ’ ( )

for modes well within the horizon. Thus, the Jeans scale evolves in time as
well, as indicated by the dependence of the sound speed on the scale factor.
Specifically, when considering the matter dominated solution of the Friedmann
equations, Eq. has the following solution:

O = ClDJr(k,a) + CQD,(]C,G) . (240)

The growing and the decaying modes are respectively given by:

D.(k,a) = 3}225 sin (\’2) + [i‘i - 1] cos <526) , (2.41)

D)= |3 ~1] sn (’“) 348 s (’“) S e

Va Va
where k = k/v/mpHy.
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2. Dark Matter, baryons and the Universe at small-scales

2.5 Baryonic effects on dark matter

At early times, when still in the linear regime, the gravitational impact of baryons
in the dark matter distribution produces the Baryonic Acoustic Oscillations
observed in the matter power spectrum. In the non-linear regime, instead,
baryons can affect the clustering of dark matter by means of a complex interplay
between gravity and many physical processes.

Condensation of baryons into halos: adiabatic gas cooling and mergers
In the classical picture of galaxy formation, perturbations in the baryonic density
field grow following the collapse of dark matter into halos. While dark matter
collapses forming a virialised structure, the associated gas flows towards the
central region of the halo, where galaxies are expected to form. Contrary to
the dark matter case, as gas collapses under the effect of gravity, it produces
accretion shocks, which heat up the gas to the virial temperature of the halo:

M; 2/3 1+z2
T ~ 4 x 10* ( i ) vir K, 9.43
) s, 10 (243)

where p is the mean molecular weight of the gas and M,;, corresponds to the
virial mass. Before condensing in the very central region of the dark halo and
forming stars, the gas needs to cool. If radiative cooling is highly inefficient, the
gas forms a hot quasi-hydrostatic halo, which gradually cools and condenses
towards the center of the dark halo, in the so-called “hot mode” of accretion.
On the other hand, if the cooling time is shorter than the free-fall time, the gas
radiatively cools and it accretes directly in the center of the dark halo, in the
so-called “cold mode” of accretion.

In general, depending on its temperature, density and metallicity, gas can
cool via different mechanisms, such as Bremsstrahlung (free-free emission,
Tyir > 10° K), metal-line cooling (Tyi; ~ 10° — 10 K), atomic cooling (H
and He, Ty, ~ 10* — 10° K), fine-structure lines (Cy; and Ot), molecular, and
dust cooling (Tyir ~< 10* K). At the same time, heating processes compete in
Compton heating, photoionization and photoelectric heating (from black hole
accretion, stellar sources, and the metagalactic ionizing background), cosmic ray
heating, and shocks (e.g., SN ejecta, outflows, accretion shocks). Typically, in
halos with masses below M,;, ~ 108 Mg, corresponding to virial temperatures of
Tyir ~ 10* K, the atomic cooling limit makes cooling quite inefficient. At higher
masses, above M, ~ 10'3 Mg, cooling is also suppressed due to the fact that
the cooling time exceeds the free-fall time, thus limiting the condensation of gas
in the central region of the dark halo. Furthermore, additional gas input can be
due to merging processes between galaxies. Nevertheless, the assembly of the
central galaxy enhances the gravitational potential in the innermost region of
the halo. The dark matter distribution dynamically responds to the new gas
configuration, contracting further and increasing its concentration, resulting in a
steep cuspy profile in the central region.
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Energy injection into halos: UV background photoheating During recom-
bination, electrons and nucleons bind together forming neutral hydrogen. How-
ever, the first generation of stars produces a strong UV background radiation,
which in turn reionises the gas and heats it up. Thus, photoionisation and
photoelectric heating suppress the cooling of gas in galaxies and subsequent
star formation, especially in low-mass halos. In general, heating mechanisms
are extremely important, as they shift the minimum galaxy formation scale
from the atomic cooling limit to present day halo masses of Mya1o ~ 10° Mg.
Photoionisation and photoelectric heating are not the only heating mechanisms
affecting the clustering of gas in dark halos. In general, shocks produced by SNe
explosions and galactic outflows have a severe impact on the dynamical state of
gas around galaxies.

The complex interplay between heating and cooling processes results in
a complex multi-phase structure of the interstellar medium (ISM) and the
circumgalactic medium (CGM), where cold clumps of molecular gas live in
a diffuse halo composed of hot ionised gas and warm neutral gas. Together
with galactic winds generated by various feedback mechanisms at high redshifts,
heating processes contribute to reduce the overall present-day baryonic content
found in low-mass halos.

Energy injection into halos: supernova and AGN feedback The dynamics
of gas is strongly affected by a series of processes generally called feedback
mechanisms. These processes are of fundamental importance, as they regulate
star formation within galaxies and they are responsible for the chemical
enrichment of both the ISM and the CGM, injecting heavy elements previously
synthetised by stars and promoting new cooling channels such as metal-line
cooling. Most of the a-elements and Fe are produced by Type IT SNe, while C,N
and O are primarily injected by AGB stars and their stellar winds.

During its lifetime, each individual star processes and ejects material in the
form of stellar winds, injecting momentum into the surrounding medium, driving
turbulences in the ISM, and promoting the formation of gas outflows. In the
final stage of their evolution, massive stars explode as SNe, ejecting a mass
of Mgj ~ 1 —20 Mg, with kinetic energy of 105! ergs. The ejected material
travels into the surrounding medium, shock-heating the ISM to temperatures of
T > 10% K. The SN remnant is not able to cool efficiently at first, promoting
the formation of an adiabatically expanding hot bubble of gas, boosting the
momentum of the ejecta. The combined effect of multiple SN explosions, together
with stellar winds, sweeps up a vast amount of ambient gas into hot expanding
gas bubbles, known as superbubbles.

Stellar feedback affects the evolution of galaxies at all masses, but it is
particularly relevant in low-mass halos, where the sudden depletion of gas in
the central region of halos strongly perturbs the shallow gravitational potential
wells of low-mass halos. Strong galactic outflows can heavily suppress galaxy
formation in low-mass halos and they can affect both the inner structure and
the abundance of low-mass galaxies.

29



2. Dark Matter, baryons and the Universe at small-scales

In addition, in low-mass systems, stellar feedback can also affect the dynamics
of dark matter halos. Astronomical observations have shown that dwarf galaxies
have bursty star formation histories, characterised by short-lived, violent and
repeated bursts of star formation. When gas collapses in the central region
of a dark halo, it establishes its dominant contribution to the gravitational
potential. Then, suddenly, strong galactic outflows deplete the central region
from gas and energy can be transferred to the dark matter component, causing
the innermost region of the dark halo to expand. As the system quickly finds a
new equilibrium configuration, dark matter particles settle on new orbits at larger
radii, thus lowering the central density of the dark halo. When repeated over
time, this mechanism leads to large fluctuations of the gravitational potential in
the proximity of the center of the dark halo, which efficiently transfers energy to
dark matter, heating the central region of the dark halo and transforming the
central NFW cusp into a core.

On mass scales larger than dwarf galaxies, similar feedback mechanisms from
Active Galactic Nuclei (AGN) are often invoked to explain the relatively low
star formation efficiencies. It is commonly thought that every galaxy hosts a
supermassive black hole (SMBH) at the center, with masses above M > 106 M,
which can influence the dynamics of gas and the evolution of galaxies by means
of their own feedback mechanisms. In quasar-mode AGN feedback, the radiation
emitted by the SMBH and fast winds launched from the accretion disk can drive
strong outflows. At low accretion rates, in the radio-mode, highly relativistic jets
heat the surrounding gas and they contribute to the star formation quenching in
more massive galaxies.

Energy injection into subhalos: tidal effects from baryonic structures
The dynamics of subhalos can be affected by tidal effects induced by the host halo.
The presence of a central galaxy can enhance the tidal effects in both subhalos
and satellite galaxies. Tidal forces can easily result in the total disruption of
subhalos in the proximity of the central galaxy, causing a reduction in the total
number of subhalos.

Other physical mechanisms can have an important influence on the evolution
of galaxies. For example, magnetic fields and cosmic rays have gained a lot of
attention in the field and they have started to be extensively studied along with
other physical phenomena. However, to the present knowledge, they do not
strongly affect the dark matter distribution, or at least they provide a negligible
contribution.
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Chapter 3

Numerical simulations of structure
formation

3.1 Introduction

Figure 3.1: Projection of the simulation volume of the Illustris hydrodynamic
simulation, showing the dark matter density overlaid with the gas velocity field
of the most massive simulated galaxy cluster. Credit: Illustris collaboration
(Ilustris projects). Licence: |Creative Commons Attribution-Share Alike 4.0

Internationall
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3. Numerical simulations of structure formation

Tiny density perturbations in the primordial plasma have grown today into
highly over-dense structures. When modelling a ACDM Universe, the linear
perturbation theory can successfully predict the observed CMB power spectrum
and the very large-scale structures of the Universe. However, since gravity is
a non-linear phenomenon, the complex dynamics of structures formed in our
Universe cannot be fully described by the linear theory. Numerical simulations
are required to properly model the evolution of the Universe and, thus, to make
clear and trustworthy predictions over a wider range of scales.

One of the very first attempts to model a set of self-gravitating bodies
dates back to 1941, when E. Holmberg was studying the dynamics of elliptical
galaxies with movable light-bulbs, estimating the gravitational force by measuring
the luminosity of each bulb. With the advent of computers, it has become
possible to model the dynamics of larger collections of particles and thus, to
simulate small portions of the Universe. By discretising time, space and mass
in cosmological and hydrodynamical N-body simulations, the gravitational field
of a given configuration of particles can be computed and used to evolve the
system. Nowadays, with supercomputers, it is possible to evolve samples as
large as 10'2 particles. Initially, pure cosmological N-body simulations were
employed to model a collection of particles only interacting by means of gravity,
in order to study the large-scale distribution of dark matter particles on the
Universe. Later on, gas physics was included in numerical studies, together with
sub-grid models describing small-scale astrophysical phenomena, evolving into
hydrodynamical simulations and providing significant insights on the relevant
physical processes in galaxy formation. Over the past decades, the numerical
techniques employed in simulations have significantly improved, together with
computational capabilities, yielding an extraordinary progress in the ability to
simulate the formation and evolution of structures in a cosmological context. In
general, numerical simulations have been extensively used to study the clustering
of dark matter and baryons into dark halos and galaxies, and today they represent
a fundamental playground to test alternative models of dark matter.

3.2 Cosmological N-body simulations

In cosmological N-body simulations, the phase-space of a given density-velocity
field is discretised by a set of particles, interacting only by means of gravity. Each
particle represents a clump of millions, or even billions, of solar masses, thus
reducing a dark matter halo to a collection of few particles. In order to evolve a
system of particles describing the dark matter component of the Universe, first
it is necessary to compute the gravitational force field for a given configuration
of particles. In general, N-body codes can implement different strategies to
compute the force field:

o Particle mesh (PM): the mass of each particle is interpolated on a fixed
resolution grid by using a suitable interpolating function, such as Nearest
Grid Point (NGP), Cloud-In-Cell (CIC) or Triangular Shape Cloud (TSC).
Once the density field is evaluated on the grid, the gravitational potential
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® is computed by solving the Poisson equation:
V20 = 41Ga’poy, , (3.1)

where d,, corresponds to the matter over-density and p denotes the mean
matter density of the Universe. The Poisson equation can be solved in
Fourier space by using a spectral method, or in real space with standard
numerical schemes for elliptic differential equations. Then, the force field
Fn = —V® is interpolated back at particle positions.

o Particle-particle particle mesh (P3M): this scheme adds a correction term
to account for pairs of particles with separation of the order of the grid
resolution, or even smaller, improving the force resolution of PM algorithm
in the case of highly clustered particles.

e Tree: a hierarchical particle tree is constructed, where each level of the
tree specifies the position of the center of mass and the total mass of a
region within the simulation box. Force acting on a single particle is then
approximated for particles in distant regions by the center of mass estimate
of the force.

Modern N-body codes often implement different generalisations of the aforemen-
tioned strategies.

Once the force field is computed, particles are moved along the geodesics by
means of the corresponding N-body equation:

¥+ 2H%x = —a %V , (3.2)

where the Hubble rate takes into account the expansion of the Universe and it
acts as a viscous force, slowing down the growth of density perturbations. In
principle, this is enough to reproduce the complex dynamics of the cosmic web in
cosmological N-body simulations. Theoretical predictions of the ACDM model
are in good agreement with the observed statistical properties of the Universe
on large scales, but stars and galaxies are made of baryonic matter and thus, it
is necessary to include baryonic physics and astrophysical processes in order to
model properly the process of structure formation at small scales.

3.3 Hydrodynamic simulations

In hydrodynamic simulations, the evolution of the Universe is described not only
in terms of its dark matter content, but also including the baryonic content in the
form of gas, thus adding a fundamental piece to the puzzle of structure formation.
The gas dynamics is described by using a system of standard hydrodynamic
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equations:
dp B
E—kV-(pv)fO, (3.3)
ov VP
8t+(v-V)v——<p+V<I>> , (3.4)

B 1, 1, P B
815{'0(21) +5)]+V- {p(2v +€+p)v] —pv-VO=H-C, (3.5)

which are coupled to the dark matter N-body equations by means of the Poisson
equation.

Over the years, many different numerical algorithms have been developed in
order to solve the system of hydrodynamic equations, which can be generalised
into two main families.

The family called Smoothed Particle Hydrodynamics (SPH) is conceptually
similar to classical N-body codes. In SPH algorithms, a Lagrangian fluid element
carries macroscopic thermodynamic variables and it is tracked along with other
fluid parcels. While in the case of collisionles dynamics particles interact only by
means of gravity, in SPH codes the Lagrangian fluid element exchanges energy
and momentum with nearby particles and its motion is also affected by pressure
gradients. Macroscopic variables, such as mass and momentum densities, are
linked to the discrete mass and velocity of each particle by using a smoothing
kernel and the hydrodynamic equations are reformulated in terms of the kernel
function.

The other family, instead, follows a Eulerian approach and thermodynamic
variables are discretised on a fixed or adaptive grid. Thus, numerical schemes
for systems of hyperbolic equations are used to solve Egs. (B.3)~(3.5). Modern
flux conserving algorithms are able to integrate the hydrodynamic equations
in an accurate and efficient way, thus ensuring that no energy is numerically
dissipated as the system evolves.

Over the year, a wide range of astrophysical phenomena was found to have a
great impact on the formation and evolution of structures and without modelling
them together with the gas physics, it is not possible to reproduce realistic
galaxies. However, processes such as gas cooling and heating, star formation, and
SN explosions take place on physical scales which are too small to be resolved in
a cosmological context. Therefore, small-scale astrophysical processes must be
incorporated within sub-grid models, which are implemented today in any code
developed for hydrodynamical simulations of structure formation.

Gas cooling and heating When an over-dense region collapses under the
effect of gravity, strong accretion shocks form and heat the surrounding gas,
which in turn forms a hot and rarefied gaseous halo. The subsequent evolution
of the gas component depends upon how efficiently the gas can cool and radiate
away its thermal energy. Thus, radiative cooling and photoionization heating are
implemented in the majority of modern codes used in astrophysics and cosmology.
In general, cooling and heating processes are included as source terms on the
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right hand side of Eq. , C and H respectively. Many cooling and heating
mechanisms can be encoded in a single net cooling function, which determines
the cooling efficiency depending on temperature, density and metallicity of the
gas. For example, the GRACKLE chemistry and cooling library (Smith et al.,
has been explicitly developed for numerical simulations in cosmology
and astrophysics. With GRACKLE, it is possible to solve the non-equilibrium
chemistry of an extended network of primordial species, to solve the radiative
cooling and to compute cooling times, taking into account different cooling
channels. It also models multiple UV background sources, as well as supporting
radiation transfer and arbitrary heating sources.

While it is also possible to employ tabulated cooling rates assuming collisional
ionisation equilibrium, modern codes can track the metal enrichment of gas
due to stellar feedback. Metal abundances are extremely important for cooling
calculations, but the high uncertainties on metal yields in SNe and stellar wind
models lower the predictive power of such models.

Star formation Modern hydrodynamic simulations implement roughly the
same sub-grid model proposed in the pioneering work of Katz ((1992)). Following
the Schmidt law (Schmidt, [1959):

dpstar — ¢ pgas
dt star tff )

(3.6)

a local star formation rate (SFR) is assigned to cold gas, depending on its density
and its dynamical state. An alternative prescription was suggested by Dalla
Vecchia and Schaye , where the Schmidt law was recast as a function of
pressure, rather than density, assuming a self-gravitating disk. Typically, the star
formation efficiency e, is calibrated to match the amplitude of the observed
Kennicutt relation (Kennicutt, between the gas surface density and the
star formation rate. Furthermore, stars are observed to form in regions where
the ISM is in its cold and dense molecular phase. Since the ISM is observed to
become Hy; dominated at densities of ~ 1 — 100 atoms/ cm?, stars in simulations
are usually allowed to form only in regions where the local gas density exceeds a
given threshold.

In hydrodynamic simulations of structure formation, an entire stellar
population is represented by a single star particle, with its own age, metallicity
and initial mass function (IMF). Each stellar population evolves on its own and
injecting energy, mass and metals into the ISM according to stellar feedback
sub-grid recipes.

Stellar feedback In the first attempts to model stellar feedback in hydrody-
namic simulations, a given fraction of the energy released by stars was directly
deposited in the surrounding gas in the form of thermal energy. However, due to
small cooling times, the energy injected into the ISM was quickly radiated away
and this strategy was shown to have almost no effects, leading to an overcooling
problem.
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In modern hydrodynamic simulations, different approaches of sub-grid models
have been proposed, ranging from kinetic feedback models where wind mass
loading and velocities are predetermined (Dalla Vecchia and Schaye,
Oppenheimer and Davé, Springel and Hernquist, , to explicit models
where radiative cooling is temporary switched off (Agertz, Teyssier, and Moore,
Stinson et al., Teyssier et al., , to mechanical feedback where
the momentum boost during the unresolved adiabatic phase is calibrated through
small-scale ISM simulations and injected into the ISM (Hopkins et al.,
Kimm and Cen, Smith, Sijacki, and Shen, .

Among several sub-grid models, the blastwave model, recently suggested
by Stinson et al. , injects thermal energy into the surrounding gas and
cooling is switched off for a time comparable with the lifetime of a SN-driven
blastwave. Adding an “early stellar feedback” to mimic the energy input of
young stellar populations, the blastwave model was shown to reproduce realistic
galaxy populations. Even if very successful, the blastwave model depends on a
number of free parameters which can affect the dynamics of galaxies, especially
in the case of a limited resolution.

A novel approach to stellar feedback is the superbubble model, introduced by
Keller et al. , where thermal conduction and stochastic evaporation of cold
gas are explicitly modelled, together with sub-resolution multi-phase particles to
mimic the complex structure of the ISM. While the explicit separation of hot and
cold phases automatically solves the overcooling problem, thermal conduction
describes the mass flow from the cold shell into the hot gas, determining how
much gas is heated by feedback, and the bubble temperature and mass are
controlled by the evaporation process, leading to a stellar feedback prescription
without addition of free parameters. In this way, the energy input provided by
stellar feedback is accurately converted into thermal and kinetic energy, in the
hot and cold phases respectively (Keller, Wadsley, and Couchman, Keller,
Wadsley, and Couchman, .
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Chapter 4
Summary

Today, the ACDM model describes the evolution of the Universe in terms of its
matter and energy content. The Universe is now believed to consist mostly of dark
matter and dark energy, the true nature of which are still mysterious, and only a
subdominant contribution is in the form of standard baryonic matter. From tiny
initial perturbations in the density field, dark matter and baryons have collapsed
by the effect of gravity, forming the vast distribution of structures we can observe
today. Theoretical studies about the structure formation process strongly rely on
numerical simulations, as gravity is a highly non-linear phenomenon. Over the
past decades, numerical simulations have significantly improved, and today they
provide a set of robust predictions for the standard model of cosmology. The
observed large-scale properties of the Universe are accurately captured within
the ACDM model, but small scales remain a great source of uncertainty. Current
and future experiments, such as DES (Dark Energy Survey Collaboration et al.,
2016)), DESI (Levi et al., [2019), Euclid (Amendola et al., [2018), LSST (LSST
Science Collaboration et al., , and SKA (Maartens et al., , will provide
accurate measurements of the distribution of matter within the Universe and
its clustering over a wide range of physical scales. Therefore, robust theoretical
predictions are needed to provide an interpretation of new data and to further
promote our understanding of the dark sector. This thesis represents an effort
to contribute to the development of the scientific knowledge related to poorly
understood aspects of our own Universe.

The aim of this work is to study the structure formation process from a
small-scale perspective, analysing the origin of the small-scale tensions between
current available observations and the ACDM model, and possible solutions with
both alternative models of dark matter and baryonic physics.

During my Ph.D. studies, I first implemented the numerical algorithms
required to simulate the dynamics of ULDM models in the new SCALAR
(Simulation Code for ultrA Light Axions in RAMSES) code. Based on the
hydrodynamic and N-body RAMSES code, SCALAR is designed to solve the non-
linear Schrodinger equation coupled with an arbitrary potential, within an
adaptive mesh refinement (AMR) framework. Its purpose is to simulate the
non-linear gravitational clustering of new models of dark matter involving light
scalar fields.

Subsequently, I employed SCALAR to study the phenomenology of fuzzy dark
matter (FDM) in a cosmological context. The FDM model was first suggested
by Hu, Barkana, and Gruzinov to solve the small-scale problems of the
ACDM model, and it corresponds to a particular case of ULDM, where the scalar
field describing the dark matter component has no self-interactions. Based on
the results of the simulation, the FDM model is shown to have clear and distinct
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signatures on the structure formation process, which can be directly used to test
the model against observations. The capability of the FDM model to suppress
the formation of structures below the dwarf mass scale is remarkable, and it
can represent a simple solution to the missing satellite and the too-big-to-fail
problems. However, the FDM model can potentially be in conflict with the
standard hierarchical clustering paradigm if the formation mechanism of dark
matter cores is exclusively attributed to the dynamics of such a light scalar field.

In order to study the impact of the baryonic component on the structure
formation process, I also analysed the results of a high-resolution hydrodynamic
simulation of the ACDM model, performed with the GASOLINE2 code, where the
stellar feedback is described by the novel superbubble feedback, which includes
a sub-resolution treatment of multi-phase gas particles, thermal conduction
between cold and hot phases, and a model for stochastic evaporation of cold
clouds. The superbubble feedback is shown to better describe the physics behind
the stellar feedback process and it is capable to reproduce realistic galaxies.
Furthermore, the superbubble feedback is found to promote the formation of
large dark matter cores at the center of the simulated halos, potentially solving
the cusp-core problem.

The work I have done during my Ph.D. studies can be improved in several
ways. First, the SCALAR code can be further developed by implementing even
more accurate schemes to solve the non-linear Schrodinger equation within an
AMR framework. New refinement strategies can also be included to ensure
that the resolution required to probe the innermost structure of dark halos is
automatically achieved at all redshifts, without tuning the density thresholds
of the currently employed refinement scheme. In terms of computational speed,
SCALAR can be further optimised to reduce the amount of memory needed in
cosmological applications. A major improvement would also be to port on GPUs
the various solvers employed by SCALAR, in order to significantly reduce the
computation time required for cosmological simulations. In addition, several
numerical strategies have been recently developed to simulate the non-linear
structure formation process with different ULDM models. In order to verify
the robustness of the various predictions from this kind of simulations, a full
benchmark study of the different existing codes should be carried out, especially
because a quantitative agreement between different numerical investigations has
not been achieved yet.

The natural follow up of the work I am presenting in this thesis would be to
simulate the evolution of a FDM Universe including the baryonic content and the
relevant small-scale astrophysical phenomena. As for the case of hydrodynamic
simulations of the ACDM model, baryonic processes can significantly alter the
predictions of dark matter only simulations. Moreover, for both numerical
simulations with alternative dark matter models and hydrodynamic simulations
of the ACDM model, larger simulations are required to study larger samples
of virialised structures, covering a wider mass range, and to provide a more
robust and complete set of predictions, which can be in turn tested against future
observations.

In the end, a brief summary of the academic publications accompanying this
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thesis is provided.

4.1 The numerics behind ultra-light dark matter models

In order to study the process of structure formation within a Universe where
dark matter is in a different form than CDM, the underlying model has to be
numerically implemented in modern codes for cosmological and hydrodynamical
N-body simulations. The new code SCALAR was developed to solve the dynamics
of a generic Bose-Einstein condensate, with the specific purpose of simulating a
Universe with ULDM models.

In we present the numerical strategy implemented in SCALAR,
together with a test suite designed to show the performances of the code, in terms
of accuracy and computational speed. The SCALAR code solves the governing
equations within an AMR framework, in order to focus computational resources
only on regions where the solution exhibits more demanding features. The
solution of the non-linear Schrodinger equation is computed by means of a second-
order Taylor method. In general, SCALAR can solve the governing equations with
high accuracy, conserving both the energy and the mass of the scalar field. A
higher level of accuracy is guaranteed when the associated continuity equation is
solved on top of the non-linear Schrodinger equation. In some cases, the long
term stability of the solution of the non-linear Schrédinger equation can only
be achieved by including an artificial viscosity term, which numerically dumps
the spurious high-frequency oscillations due to the propagation of numerical
errors. Furthermore, we present a small cosmological simulation where the dark
matter component is described by a light scalar field, to show that SCALAR can
be employed for cosmological simulations. In this case as well, the mass and
the energy of the scalar field are conserved with a high level of accuracy. By
computing the matter power-spectrum, we show that the code can capture the
relevant dynamics of ULDM models.

4.2 Structure formation with ultra-light dark matter

A full cosmological simulation was performed with SCALAR, in order to investigate
in detail the structure formation process in a Universe where the entire cosmic
dark matter budget is described by one among several ULDM models, namely
the FDM model. For this purpose, the dark matter component is modelled
by means of a classic scalar field, describing the collective behaviour of a large
collection of bosons with a mass of mg = 2.5 x 10722 eV.

In we present the results of the simulation and we analyse the
formation and the evolution of FDM halos. First, we track the collapse of a
single halo within the simulated FDM Universe. Then we study the properties of
a representative sample of dark matter structures formed within the simulation,
as well as the merging process between two FDM halos. We analyse the different
behaviours of CDM and FDM on small scales, by comparing the structural
properties of CDM and FDM halos. We show that the structure of each FDM
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4. Summary

halo exhibits a central solitonic core, with nearly constant density. The solitonic
core is found to leave its imprint on the rotation curves of dark halos, by
generating an additional velocity peak at small radii. We also find that the
formation of structures is heavily suppressed below the FDM Jeans wavelength,
as opposed to the case of CDM, where dark matter clumps are expected at
all resolved scales. Furthermore, we characterise each FDM halo by a single
scale-free invariant. The solitonic core is found to be tightly linked to its core
and to the total mass of the halo by a series of scaling relations resulting from
the internal symmetries of the Schrodinger-Poisson system. We also compute
the core surface density of the FDM halos and we show that the simulated halos
follow a completely different scaling with the core radius compared to real dark
matter halos hosting observed LSB galaxies.

4.3 Superbubbles at work

Small-scale challenges of the ACDM model can potentially find a solution within
the baryonic physics. In order to study the impact of a gas component and small-
scale astrophysical phenomena, a full hydrodynamic simulation was performed
with GASOLINE2, where the superbubble model was implemented to describe
the stellar feedback.

In we present the results of the simulation. The formation process
of a set of isolated dwarf galaxies is studied in detail. We compare the results of
the simulation with those of a similar numerical study, previously carried out
with the same code, but with the blastwave feedback model instead. In addition,
the properties of the simulated dwarfs are compared with current available
observations and with previous numerical studies. The dwarf galaxies simulated
with the superbubble model are found to follow remarkably well the empirical
scaling relations derived for observed galaxies. The superbubble feedback is able
to reproduce the stellar mass and cold gas content, bursty star formation histories,
stellar kinematics, and the metallicities of dwarf galaxies observed in the Local
Volume. The superbubble feedback is also able to drive galactic outflows, which
are believed today to be highly responsible for the metal enrichment of the CGM.
These large-scale outflows affect the central gravitational potential of the galaxy.
Strong oscillations of the gravitational potential field can also “heat” the dark
matter component, which relaxes into shallower central densities forming central
dark matter cores.

4.4 Future prospects

The study of ULDM models has mainly focused on the small-scale side of
structure formation, simulating the dynamics of new forms of dark matter to
better understand their behaviour. Numerical simulations are an essential tool
to uncover new signatures of ULDM on the structure formation process, which
can be used to test the models against observations.
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Future prospects

The abundance of dark matter structures and substructures is generally a
good probe for the nature of dark matter, as different dark matter models predict
significantly different amounts of subhalos, and even a minimum halo mass in the
case of ULDM. Thus, the observables probing substructures represent one of the
most important tests for dark matter on small scales. Future experiments such
as LSST and Euclid will conduct a more comprehensive search for ultra-faint
galaxies and will allow to put strong constraints on any dark matter model
predicting the suppression of structures below certain scales. Another way to
directly probe the formation of substructures, even if they are not luminous, is
gravitational lensing. The presence of substructures alters the lensed images
of quasar, changing its morphology and flux ratios. Many observations of this
kind are needed to map out the distribution of dark matter halos and subhalos
and to provide strong constraints on ULDM models, which generally suppress
the formation of substructures of a certain mass and size. In addition, known
cosmological probes, such as CMB and large-scale structure experiments, cluster
abundance, and Ly-« forest, can only marginally test the small-scale suppression
of dark matter structures predicted by ULDM models. The new hydrogen 21-cm
line technique has the potential to probe much smaller scales than before, tracing
the underlying matter and dark matter distribution.

However, predictions that are a direct consequence of the wave nature of
ULDM represent a real smocking gun in favour of these models. The formation
of vortices and of interference patterns are unique and distinct signatures of
this class of models on galactic scales, and their detection would be a clean and
direct evidence in favour of ULDM. Many ULDM models predict the formation
of vortices due to the self-interactions of the field describing the dark matter
component. Depending on the parameters of the model, these vortices can result
in oscillations in the rotation curve of galaxies. Macroscopic interference fringes
are generally expected when the BEC forming due to the small mass of ULDM
is described by a coherent wave-function. Even mergers between solitonic cores
can result in the formation of interference patterns. If these interference fringes
could be observed, it would be another strong evidence in favour of dark matter.

The study of ULDM models is today a very active research area and much
work has still to be done. However, we are entering a new exciting era, where the
future will allow us a wide range of experiment to test the theoretical predictions
of alternative models of dark matter, and to better probe the nature of such a
mysterious form of matter.
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1. Introduction

p-ph] 25 Jun 2020

The true nature of dark matter is not known. Weakly interacting
massive particles (WIMP) are still considered one of the most
E likely candidates for cold dark matter (CDM), and several ex-
O periments are ongoing to try to detect such particles. These are,
’ however, closing in on the neutrino floor where any signal would
(/) be drowned in the solar neutrino background (Monroe & Fisher
O 2007).
A promising alternative to WIMPs are ultra-light axions,
>\fuzzy dark matter (Marsh 2016; Hui et al. 2017; Turner 1983;
Press et al. 1990; Goodman 2000; Peebles 2000; Calabrese &
—Spergel 2016; Guzméan & Urefia-Lépez 2003; Kim & Marsh
2016; Amendola & Barbieri 2006; Hu et al. 2000), and super-
O\l fluid dark matter (Berezhiani & Khoury 2015; Khoury 2016,
=> 2015; Sharma et al. 2019). These models have distinct and ob-
Q servable signatures on the small scales of structure formation,
© they are also are able to solve some of the discrepancies ob-
served in CDM simulations, such as the missing satellites prob-
lem (Moore et al. 1999; Klypin et al. 1999), the cusp-core prob-
= lem (de Blok 2010; Bar et al. 2018, 2019) and the too-big-to-fail
problem (Boylan-Kolchin et al. 2011). These disparities could,
8 however, have a solution within baryonic processes, which are
usually not included in standard CDM simulations as shown
. » in Maccio et al. (2012), Brooks et al. (2013), Governato et al.
> (2010), Madau et al. (2014), Teyssier et al. (2013), Governato
'>_< et al. (2012), Pontzen & Governato (2012), Sawala et al. (2016),
and Brooks et al. (2017). To understand this better, one should
a ideally perform simulations including both of these components.

In order to quantify the effects of axion-like dark matter
models, one needs to either solve a Schrodinger-Poisson sys-
tem or use the Mandelung formulation. The latter consists of
a set of traditional hydrodynamics equations, with an additional
pressure term which can be solved by using methods such as
smoothed particle hydrodynamics (SPH), as proposed by Marsh
(2015). However, it is known that numerical methods based on
the Madelung formulation of quantum mechanics are trouble-
some in regions around voids. This formulation, indeed, breaks

ABSTRACT

We present a new code, SCALAR, based on the high-resolution hydrodynamics and N-body code RAMSES, to solve the Schrodinger
equation on adaptive refined meshes. The code is intended to be used to simulate axion or fuzzy dark matter models where the
evolution of the dark matter component is determined by a coupled Schrodinger-Poisson equation, but it can also be used as a stand-
alone solver for both linear and non-linear Schrédinger equations with any given external potential. This paper describes the numerical
implementation of our solver and presents tests to demonstrate how accurately it operates.
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down where the density approaches zero and at interference
nodes, as the quantum pressure term can easily become singu-
lar (Marsh 2015; Li et al. 2019).

The Schrodinger-Poisson system has several applications in
cosmology. For instance, the six dimensional Vlasov equation
describing collisionless self-gravitating matter is approximated
by a Schrodinger-Poisson system for a complex wave-function
in three dimensions. This was proposed as an alternative way for
simulating CDM in Widrow & Kaiser (1993). It was later shown,
by solving the Schrodinger-Poisson system and comparing it to
the Vlasov solver Co1DICE (Sousbie & Colombi 2016) in two
dimensions, that one has excellent qualitative and quantitative
agreement in the solution (Kopp et al. 2017). A similar study is
given in Mocz et al. (2018), where the system was solved using
a spectral method, demonstrating that one recovers the classical
behaviour in the limit where 7z — 0.

Unfortunately, the methods employed in the above men-
tioned papers, despite being very accurate, are too expensive to
perform high-resolution simulations in three dimensions. The
first cosmological, high-resolution, simulation of fuzzy dark
matter in three dimensions was performed in Schive et al. (2014)
using the code GAMER (Schive et al. 2010, 2018). There, an ex-
plicit method, similar to the one we present in this paper, was
used. In Veltmaat et al. (2018), they used the classical wave-
function to perform zoom-in simulations to study the formation
and evolution of ultralight bosonic dark matter halos from real-
istic cosmological initial conditions and in Mocz et al. (2017)
they studied galaxy formation with Bose-Einstein condensate
dark matter using a pseudo spectral method (see also Edwards
et al. (2018)). There have also been a handful of papers that have
performed simulations more in line with the hydrodynamical for-
mulation. In Zhang et al. (2018), a new technique to discretise
the quantum pressure is proposed and shown to reproduce the
expected density profile of dark matter halos. In Nori & Baldi
(2018), a module AX-GADGET for cosmological simulations us-
ing SPH inside the P-~-GADGET 3 code is presented. These meth-
ods do not solve for the wave-function, but they have the ad-
vantage of being much less expensive to run than a full wave-
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function solver like ours. There have also been simulations per-
formed by using other numerical techniques in either two (Kopp
et al. 2017) or three spatial dimensions (Woo & Chiueh 2009).

In this paper we present SCALAR (Simulation Code for ultrA
Light Axions in RAMSES): a general adaptive mesh refinement
(AMR) code to solve the Schrodinger-Poisson system. Our im-
plementation is in the hydrodynamics and N-body code RAMSES
(Teyssier 2002). The structure of the paper is as follows: in Sec-
tion 2 we present the equations we are to solve, in Section 3 we
present the numerical implementation, in Section 4 we present
tests of the code and in Section 5 we discuss possible cosmolog-
ical applications before concluding in Section 6.

2. Theoretical model

A Bose-Einstein condensate (BEC) is a system of identical
bosons, where a large fraction of particles occupies the lowest
quantum energy state, or the ground state. This phenomenon typ-
ically takes place in gases, at very low temperatures or very high
densities and it was observed for the first time in Anderson et al.
(1995) and Davis et al. (1995). In the condensate regime, these
quantum systems behave as a macroscopic fluid and their pecu-
liar features are a macroscopic manifestation of quantum effects.

In general, when Bose-Einstein condensation occurs, ther-
mal de-Broglie wavelengths of particles start to overlap, as they
become grater than the mean inter-particle distance. At this
point, a coherent state develops and the system behaves as a
macroscopic fluid, where only binary collisions are relevant. The
dynamics of BECs is complicated, due to the difficulty in mod-
elling particle self-interactions.

However, in the Hartree mean-field theory and in the limit of
T — 0, binary collisions are modelled via an effective potential
and the whole quantum system can be described by a single-
particle wave-function (X, ) obeying the non-linear Schodinger
equation:

ot 2m M
where m is the mass of the boson and g is the self-interaction
coupling constant. Often, the trapping potential Vex(X, f) is in-
troduced by hand in order to model the presence of a trap, which
is responsible for keeping particles confined.

The single-particle wave-function is normalised such that:

\fMV¥X=M

where N is the total number of particles present in the system.
As a consequence, the quantity |y(x, N represents the number
density of particles.

An alternative description of the macroscopic fluid is pro-
vided by the so-called Madelung formulation of the Schrodinger
equation. In this case, by expressing the single-particle wave-
function in polar coordinates:

e (59
L -6,
e d
the dynamics of the system is described in terms of mass density
and velocity, which are macroscopic physical quantities and they
are respectively defined as:

p(x,1) = miy(x, D,

0 "
lh_w = [__Vz + g|¢|2 + mVext v,

(@)

¥ = 3)

“

v(x,1) = %V@(X, f). )
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Thus, the Schrédinger equation can be cast into the following
system of equations:

Z—I;+V-(pv):0, (6)
ov _ g
E-{-(V-V)V— —V(Vex‘+m—2p+Q), @)

which are known as the Madelung or quantum Euler equations.

We recognise Eq. (6) as a continuity equation which expresses

conservation of mass. Although the second Madelung equation,

Eq. (7), expresses conservation of momentum, it is not the same

as the classical momentum equation, as it contains an additional
term Q, which is called quantum pressure and it is defined as:

n V:y\p

2m* \p

The quantum pressure is a macroscopic manifestation of quan-

tum effects and it is characteristic of Bose-Einstein condensates.

In this formulation, by defining the velocity as in Eq. (5), we
are intrinsically assuming that the fluid is irrotational, since:

Vxv=VxV0=0. ©)

However, during the evolution of the wave-function, the phase
can develop discontinuities of multiples of 277 and its gradient
can subsequently generate vorticity in the field, as shown in Uh-
lemann et al. (2014, 2019).

In cosmology, these kinds of systems can be used to model
the dark matter contribution to the energy budget of the Universe.
In particular, in the last few decades, models where dark matter
is a light boson, such as ultra-light axions or fuzzy dark matter,
have received a lot of attention. Due to the small mass of these
bosons, macroscopic quantum effects manifest at astronomically
relevant scales. In these alternative dark matter models, new sig-
natures are expected within the structure formation process at
highly non-linear scales and, therefore, numerical simulations
are required in order to explore these scenarios.

Here, the dynamics of dark matter is also described by a
system of identical bosons gravitationally bounded. Therefore,
the governing equation is a non-linear Schrodinger equation,
Eq. (1), where the external potential is replaced by the gravi-
tational potential. In this class of alternative dark matter models,
self-interactions between bosons are often neglected, as the cou-
pling constant g is usually parametrically small. The resulting
system of equations describing the dynamics of the dark matter
fluid is called Schrodinger-Poisson system and, for an expanding
Universe, it reads:

®

(O 3N [ B,
’h(E + EHw) = (—2ma2V + ma<D) v, (10)
V20 = 4nGa? (ju* - w(@)), ()

where a is the scale-factor of the Universe, H = dlog(a)/dt
is the Hubble rate of expansion, and ® is the gravitational po-
tential. With a change of variables ¢ — a2y, the non-linear
Schrodinger equation above takes on the form of Eq. (1).

3. Numerical methods

In this section we provide a brief overview of the code RAMSES
and the AMR technique. Then, we discuss in details the numeri-
cal aspects of the algorithm we implemented in order to solve the
non-linear Schrédinger equation. Throughout this section, the di-
mensionality of the problem is denoted by dim and it can be 1, 2
or 3.
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3.1. Overview of RAMSES

The RAMSES code was originally designed for cosmological
simulations of structure formation and subsequently extended to
astrophysical applications. It consists of an N-body particle mesh
(PM) code, which solves the gravitational dynamics of a set of
macroparticles, sampling the phase space distribution of the dark
matter component in the Universe. Through PM algorithms, the
mass of each macroparticle is interpolated on a grid and the Pois-
son equation is solved in order to compute the gravitational po-
tential. Thus, the gravitational force acting on each element of
the system and the new phase space position of each macroparti-
cle are computed by solving the corresponding N-body equation
with a leapfrog scheme. In addition, RAMSES can solve the dy-
namics of the baryonic component present in the Universe. In
this case, the grid is also used to sample gas parcels and the evo-
lution of the system is described by the equations of hydrody-
namics, which are solved by means of a Godunov scheme. For
this purpose, Riemann solvers can be used for computing fluxes
of conserved physical quantities among cells.

The RAMSES code implements an AMR strategy, where a
hierarchy of nested grids is created in order to increase the local
resolution according to a set of refinement criteria. In this way,
RAMSES can solve accurately gas dynamics and gravitational
potential only where more precision is actually needed. This ap-
proach reduces consistently the amount of memory needed in
cosmological and hydrodynamical simulations, compared to the
case where a uniform high-resolution grid is used.

In SCALAR, we rely on the efficient AMR implementation
of RAMSES. In order to solve the dynamics of our theoretical
model, the single-particle wave-function is sampled by using the
original grid allocated by RAMSES for the Poisson and hydrody-
namics equations. Also in this case, the AMR approach provides
the opportunity to solve the Schrodinger equation with higher
resolution only where features of the wave-function are more
demanding.

3.2. Adaptive mesh refinement

The basic unit of the AMR hierarchy is an oct, which consists of
a set of 24i™ cells. At each level in the AMR hierarchy, a grid is
a collection of octs with the same resolution. The grid with the
coarsest resolution is called domain grid and it covers the whole
computational domain. During the evolution of the physical sys-
tem, when the solution starts to develop features and its tracking
requires higher resolution, any cell at a given level can be split
into a child oct, with double the resolution of the parent cell.

At each time-step, the AMR structure is modified according
to a set of refinement criteria. First, for a generic level of refine-
ment £, a refinement map is created by marking all those cells
satisfying at least one refinement criterion. Also cells violating
the strict refinement rule are marked for refinement, in order to
guarantee that each child oct at level £ + 1 is surrounded by, at
least, 39™ — [ neighbours at the coarser level. However, if a given
cell at level £ does not satisfy any refinement criteria anymore, it
is marked for de-refinement and subsequently its child octs are
destroyed. Then, a new child oct is created at level € + 1 for each
marked cell and all the relevant physical quantities are interpo-
lated from level ¢. Coarse-fine data interpolation, in an AMR
context, is often called prolongation and it can be done by us-
ing any of the interpolation schemes which are described in the
section below.

When computing the refinement map, physical quantities can
fluctuate around the refinement threshold in subsequent time-

steps. This means that, some cells at the boundary of a fine res-
olution region can be refined and de-refined many subsequent
times. In this case, the refinement map tends to be quite noisy,
since each interpolation operation where the solution is charac-
terised by strong gradients introduces numerical noise in the so-
lution of the non-linear Schrodinger equation. For this reason,
once the refinement map is computed according to a given set
of refinement criteria, a mesh smoothing operator is applied. For
this purpose, a cubic buffer of 7expana cells around the computed
map is additionally marked for refinement. In this way, even if
cells octs are created and destroyed at coarse-fine boundaries, the
interpolation procedure is applied in a regions where the wave-
function is smoother and, thus, it introduces a lower level of nu-
merical noise.

3.3. The Schrédinger equation

The SCALAR code evolves the solution of the non-linear
Schrodinger equation by using a Taylor’s method, similar to the
one designed in GAMER. Given the wave-function (X, 7)), the
formal solution of the non-linear Schrodinger equation, Eq. (1),
at time # = 1y + At reads:

wx,0) = U, t0)p(x, to), 12

where U(y, 1) is the time evolution operator and it maps the
solution of the Schrodinger equation at two different times. In
the general case, the time evolution operator is defined as:

U(tl,to)=exp(—%f11:1(x,;’>d;’)’ (13)

where A(x, 1) denotes the Hamiltonian of the system. The oper-
ator U(ty, tp) has the main following properties:

- Uen=1,

- Ult,0) Uta, 13) = U(t1, 13),

- U, 1) = U, 11) = U7 (12, 10).

In the limit of At < 1, then the following approximation holds:

ul
f A(x,r)dr ~ H(x, 1) At, 14
)
and, therefore, Eq. (13) can be approximated as:
Ot1, 10) ~ exp (—’%I:I(x, tO)At). (15)

In the general case, the Hamiltonian H(x, ) contains different
contributions to the total energy of the system. In particular, we
can express H(x, 1) as a sum of contributions describing kinetic
and potential energies. Here, we denote these two operators re-
spectively as K(x, 1) and W(x, 1), and they are defined as:

" n”_,
Kx, 1= —ﬁv , (16)

W, 1) = m(V(x, 0+ %Iz//(x, t)|2). a7

By means of the Lie-Trotter formula (Trotter 1959), the time
evolution operator can be split as well:

Ut 1) ~ exp (—%W(x, to)At) exp (—%i{(x, to)At) . (18)
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As a consequence, the formal solution of the Schrodinger equa-
tion can be written as:

(%, 11) = exp (—%W(x, to)At) exp (—%k(x, to)At) wx, ). (19)

In SCALAR, the two contributions to the time evolution operator
are applied separately. First, the 'drift' due to the kinetic part of
the Hamiltonian is approximated via Taylor expansion (here for
dim = 3):

- i R
9153 = exp (-5 R )

[i % (—%f((x, tO)At)N

N=0

ihAr )\ 1 (ikAr_,\
= = ==V +.. v,

n
Vi

(20)

where, for a generic operator O, the notation OV denotes N
consecutive applications of the same operator. In the SCALAR
code, the Taylor expansion is performed up to O(A#?), which is
the minimum required by the stability analysis of the numerical
scheme. Furthermore, the laplacian operator is discretised by a
standard second-order finite difference formula:

n n _ n
Wi jx TV jk 2¢i,j,/<+

2 _
v wlnjk - Ax2
sk YV~ 2k
Ax? *
U e TV e — 20
5 . Q1)

Then, the 'kick' due to the potential is computed and the wave-
function at the new time-step reads:

[N -

Wil = exp (—5 W j,kAr) D 22)
Here, the advantage of the Lie-Trotter splitting is clear: while the
kinetic contribution to the time evolution operator needs Taylor
expansion in order to be applied, the potential contribution only
provides a phase rotation of the wave-function and it can be com-
puted exactly.

Once the new wave-function is computed, the new mass den-
sity is computed according to:

n+1

2
piils = mlinl- (23)

3.4. The continuity equation

In quantum mechanics, the time evolution operator is unitary,
as expressed by its properties. This means that the mass density
carried by the wave-function is conserved. This is true also if
we consider separately the two contributions to the Hamiltonian.
However, the Taylor expansion, Eq. (20), breaks the unitarity of
the time evolution operator. Therefore, in order to improve the
conservation properties of our main numerical scheme, we im-
plement a secondary solver for the continuity equation associ-
ated to the non-linear Schrodinger equation.

Eq. (6) can be written in its conservative form:
dp

—+V.j=0,

£ (24)
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where p(x,1) represents the mass density. Here, the quantity

j(x,1) is the associated density current, or flux, and it is defined

as:

L .
=i Vi —yVy). (25)

m
By explicitly considering real and imaginary part of the wave-
function, the density current can also be expresses as:

h
i= (R[Y1V3[y] - SWIVRY]). (26)

In SCALAR, Eq. (24) is discretised by using a first-order Go-
dunov scheme:

il L JH'% _ .n+%
Pijk ~ Pijk . Ji+%,j,k ji—%.j,k
At Ax
n+d n+}
+ ]i,j+§,k ‘Ii,j—%,k
Ax
(‘n+% et} )
J.oo o107 J.
k4L k=1t
I N S - VA ) Q@7
Ax

where the time-centered fluxes are computed at cell interfaces. In
order to compute the time-centered fluxes at cell interfaces, the
wave-function is first computed at half time-step, by advancing
the solution of 0.5A¢. Then, the wave-function at cell interfaces
is estimated in each dimension by linear interpolation:

1 1
n+ts n+s

nty o "bi,j,k l/’i+1,j,k
i+djk 2 ’
n+} n+i
el Viju +¥ijon (28)
ijrik T 2 ’
n+l n+t
nty o "bi, ik ’/’i, i1
wi,j,lw% - 2 .

Its gradient, instead, is computed in each dimension by means of
the first-order finite difference formula and it reads:

n+} n+i
v 2 l//i+14,j,k B ‘//z.j,k
Vietin = Ax ’
n+ n+l
+1 w j+1,k _w’, j.k
vy = (29)
ij+3.k Ax
n+l n+
v n+do wi,j,k+l _‘//i,j,k
wi,j,k-v»% - Ax :

Thus, the time-centered density current at cell interfaces is com-
puted by means of Eq. (26).

However, this solver is not used to explicitly advance in time
the mass density, but only to enforce the conservation of mass.
Indeed, by denoting pf’/','(  and pf’/','( o the new mass densities
computed by the main and the secondary solvers respectively, a
correcting factor is computed as follows:

L
k= w
Pijils

which is used to rescale the wave-function.
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Although by solving the continuity equation on top of the
Schrédinger equation sensibly improves the conservation prop-
erties of the algorithm, this process does not ensure perfect con-
servation of mass. Since we truncate at the third order in time
the Taylor expansion of the kinetic operator, Eq. (20), the ki-
netic solver introduces truncation errors in the solution of the
Schrodinger equation. However, by rescaling the wave-function
with the correct amplitude computed from the continuity equa-
tion, we are able to significantly reduce truncation errors, as
shown by the improvement of several orders of magnitude on
the conservation properties of SCALAR in the tests we present
in Section 4. Unfortunately, the rescaling procedure is subject
to accumulation of round-off errors, leading to an evolution of
the error in the conservation of mass itself. However, the round-
off errors are of the order of machine precision, in contrast to the
much higher amplitude of the truncation errors introduced by the
kinetic solver. This solution was already adopted in the GAMER
code (Schive et al. 2014).

3.5. The solver

SCALAR solves the Schrodinger equation from the coarser to the
finer level in the AMR hierarchy. For a generic refinement level
¢, the optimal time-step is chosen as:

2nh

Cy - ————
mVimaxl |’

3
At = min |Cy - Zih_m(Ax)z, 31)

where |Vi.x| denotes the maximum absolute value of the effec-
tive potential V + %|l//|2. Here, Cx and Cy are Courant factors
which are required to be smaller than one. The first term in
the square brackets is determined by the Von Neumann stabil-
ity analysis of the kinetic part of the solver. The second term,
instead, requires that the phase of the wave-function does not ro-
tate by a bigger angle than 27Cy within a time-step. In general,
the Courant factors Cx and Cy are chosen empirically, depend-
ing on the characteristics of the physical system that one aims
to model. In our case, we set Cx = Cy = 0.2 since it provides
a good accuracy on the solution of the non-linear Schrodinger
equation, without sacrificing too much computation time. In Ap-
pendix A we provide a detailed discussion of the Von Neumann
stability analysis of the numerical scheme.

In the original RAMSES code two different options are avail-
able regarding the choice of the time-step: a single or an adaptive
time-step. While the former consists in using the same time-step
for all refinement levels and it is determined by the finest level in
the AMR hierarchy, the latter allows to use smaller time-steps for
finer refinement levels. However, in case of adaptive time-step,
for each coarse time-step at level ¢ it is possible to perform only
two fine time-steps at level ¢ + 1. In SCALAR, an additional op-
tion is available: a flexible time-step, where for each coarse time-
step at level ¢, the number of fine steps at level £+1 is flexible and
it is determined by a level dependent Courant-Friedrichs-Lewy
(CFL) condition. From Eq. (31), when the optimal time-step is
chosen by the kinetic CFL condition, the time-step scales with
the grid size as At o« Ax2, which represents a stricter condition
than the usual case of hydrodynamics equations. Therefore, a
flexible time-step can reduce significantly the total amount of
coarse time-step in a simulation.

Within a generic level of refinement £, SCALAR solves the
non-linear Schrodinger equation for each oct separately. Thus,
in order to advance the solution over a time-step, the solver pro-
ceeds as follows:

0ld solution ¥, p, = |¥,[?

Compute half-step solution Compute half-step flux

‘I’n,+1/2 = K(%)qln

|

Compute full-step solution

]2,4—1/2 = %Im[q/*vql]n+1/2

V1 = W(At)K(%)‘I’nH/z

|

Compute new density
pat1 = [Ynpaf?

Evolve continuity equation
/JSH = pn — AV 'ZLH/Z)

.

Correct new solution

s
)
Uni1 = 4\ Ynta

Fig. 1. Flowchart of the numerical algorithm implemented to solve the
Schrédinger-Poisson system. The kinetic solver is shown in blue (left)
and the continuity solver is shown in red (right).

1. For a given oct, a cubic buffer of neighbours cells is col-
lected. The equations are actually solved only for the central
oct, while the buffer cells are used to compute laplacians at
each order of the Taylor expansion. If the central oct lies next
to the coarse-fine boundary, the wave-function is interpolated
into ghost cells from level £ — 1.

2. The kinetic solver evolves the wave-function at the new time-
step by means of Eq. (20). First, by advancing the solution
by 0.5A¢, the half time-step solution lp"“/ 2 is estimated from
v I and it is used later in order to compute the mass density

currents. Then, the full-step solution w”* and the new mass

n+1

density Pixlg are computed.

3. The wave- functlon at half time-step w”“/ 2 is interpolated at

cell interfaces by using Eqgs. (28)-(29) and the time-centered
density currents are computed by means of Eq. (26).

4. The continuity equation is solved and the new mass density
pf’;'}{ ¢ is computed via Eq. (27).

5. The rescaling factor given by Eq. (30) is computed and ¢/
is rescaled in order to preserve mass conservation.

6. If the given oct lies next to the coarse-fine boundary, the es-
timated flux is stored for the subsequent reflux operation.

7. Finally, the phase rotation due to the potential is computed
by applying Eq. (22) to w"“, and 1//”* is evaluated.

n+1
ijik

All steps, except the first and the last ones, are performed sepa-
rately for each physical dimension. This procedure is called di-
mensional splitting and it reduces a N-dimensional problem into
a system of N one dimensional problems. It has the advantage of
relaxing the CFL condition of the solver and, therefore, it allows
bigger time-steps. A flowchart of our solver is shown in Fig. (1).
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3.6. Refinement strategy

In SCALAR, we implement the same 'quasi-Lagrangian' ap-
proach as RAMSES uses for hydrodynamics: when the total mass
of a given cell exceeds a given threshold, the cell is marked for
refinement. The level dependent density threshold is defined as:

M.

= G 42

pe
where M, corresponds to the maximum mass allowed per cell.

In addition, following Schive et al. (2014) and the FLASH
code (Fryxell et al. 2000), we implement support for the invariant
version of the Lohner error estimator. It is based on the second
derivative of a given physical quantity, normalised by the first
derivative. Considering a generic physical quantity f, the error
estimator E; reads:

s (LY v
i ax,»ax/
. L (or] L \os id T .
ij
Zij |:2ij ( Bx,- i+1 * 6)6,' i*]) +§Axiij]

where the indices i,/ run over each physical dimensions. Small
fluctuations of the physical quantity f are filtered out due to the
presence of the second term at denominator. The quantity |f; | is
an average of f over dimensions 7,j and ¢ is a small constant.
This error estimator is dimensionless and therefore it can be ap-
plied to any physical quantity. Furthermore, in Eq. (33), E is
bounded in the interval [0, 1]. In SCALAR, we apply the Loh-
ner error estimator separately to R[y] and J[y]. Then, the final
estimation of the error on the wave-function is given by:

2 2
Ep=+/(E}) +(E}). (34
and if it exceeds a user-defined threshold, the cell is marked for
refinement. This threshold can be chosen empirically, depending
on the features one needs to resolve in the solution of the govern-
ing equations. Although it is currently implemented in SCALAR,
we did not employed the Lohner error estimator in the test we
present here, in Section 4. In general, while testing separately
the implementation of the Lohner error estimator, we find that
a value of E; = 0.7 provides a good balance between com-
putational cost and accuracy for the solution of the non-linear
Schrodinger equation.

3.7. Spatial and temporal interpolation.

In SCALAR, interpolation is required when a generic level ¢ in
the AMR hierarchy is refined and new child octs are created at
level £+ 1, or when, during the solving process, boundary condi-
tions need to be specified for a fine-grid patch and ghost cells are
created. In both cases, the wave-function at the coarse level ¢ is
interpolated down to level £+ 1. In order to solve the equations of
motion, when the laplacian operator is applied, any discontinuity
in the second derivative of the wave-function introduces an error,
which propagates into the solution of the non-linear Schrodinger
equation and it can destroy the wave-function. Therefore, high-
order interpolation schemes are implemented in order to keep
the wave-function as smooth as possible.

In particular, in SCALAR, we implement two high-order in-
terpolation schemes. In both cases, the interpolating function is a
fourth-order polynomial, but the coefficients of the polynomials
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are chosen in different ways. In one case, Lagrange basis poly-
nomials are computed in order to set the coefficients, resulting
in a fourth-order Lagrange interpolation scheme. In the second
case, fourth-order conservative interpolation is performed and
the coefficients of the interpolation are set by requiring that cell
averages of the interpolated quantities are preserved. In case of
adaptive time integration, linear temporal interpolation can also
be applied when computing boundary conditions for a fine level
patch, since coarse-grid and fine-grid wave-functions can be dis-
cretised at different times.

Furthermore, the interpolation can be performed on two dif-
ferent sets of variables: the original set of variables R[] and
I[y], or derived variables mly|* and Arg[y], corresponding to
mass density and phase of the wave-function. The interpolation
schemes and the set of variables used for the interpolation pro-
cess can be specified by the user in the parameter file.

Further details on the interpolation schemes can be found in
Appendix B.

3.8. Atrtificial viscosity

In the tests shown in the upcoming sections, when they were
done at the domain level only, the solution of the non-linear
Schrodinger equation remains stable for as long as we could run
SCALAR. However, when refinements were included, the solver
had the tendency to develop spurious high-frequency waves at
coarse-fine boundary, even after improving the order of accu-
racy of interpolation schemes. In order to artificially dump spuri-
ous oscillations, we introduced an empirical viscosity term in the
non-linear Schrédinger equation. Thus, incorporating the viscos-
ity term, the non-linear Schrédinger equation, Eq. (1), is replaced
by:

op(x,1)

T
: ot

—% (1 - ie) V2 + gly(x, D + mVex(x, z)] W(x, ),
(35)

where the constant € > 0 quantifies the strength of the damping
term. For example, if we consider a single plane-wave:

(36)

the viscosity term acts in a similar way as a Gaussian filter, by
dumping the wave-function by a factor of:

( kzet)
exp|-—]|.

Y o« exp(iwt — ikx),

2m @7
This means that, including the artificial viscosity, the wave-
function is simply replaced by:

( kzet)
Y —expl-5—],
2m

In this way, the filter leaves untouched physical low frequency
modes in the wave-function, while smoothing the spurious nu-
merical oscillations. In general, an artificial viscosity term would
affect mass conservation. However, by solving the continuity
equation on top of the non-linear Schrédinger equation, mass
conservation is enforced and the artificial viscosity simply acts
as a viscous force. Indeed, if we consider the Madelung formu-
lation of quantum mechanics instead, Eq. (6) and Eq. (7), the
artificial viscosity term would be placed, together with the quan-
tum force, in the momentum equation. Thus, Eq. (7) would read:

(3%)

ov g
E+(v~V)v:—V V+m—2p+Q——

(39)
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The new viscous force term:

£ (Ze)

Fuiscous =

2m P

helps preventing high-frequency waves to build up in time. With
the addition of such a viscosity term, we are able to evolve with-
out any issues the wave-function over hundreds of oscillation pe-
riods in our tests and, at the same time, preserving mass, energy
and agreement with analytical solutions. There is no unique pre-
scription for solving these issues we encountered and, in general,
it is possible to design more elaborate artificial viscosity terms.

In an AMR context, when choosing the value of the dumping
constant €, one should keep in mind that spurious high-frequency
oscillations appear on scales of the local grid resolution, which
is not fixed, but it changes according to designed refinement cri-
teria. Thus, the strength of the dumping term should be decided
such that it does not over-suppress the wave-function in high-
resolution regions, but rather slightly under-suppress spurious
oscillations in low-resolution regions. Such a limitation of the
artificial viscosity term we implemented motivates further inves-
tigations to develop a more accurate scheme for dumping high-
frequency spurious oscillations. Empirically, we find that a value
in the range 0.2 < € < 1 ensures stability over a long time in all
the test cases we present (except the soliton test case, were we
set € = 0 and we do not use any artificial viscosity), by pre-
venting the growth of spurious oscillations in the solution of the
non-linear Schodinger equation.

3.9. Code units

We adopt the set of 'super-comoving coordinates' introduced in
Martel & Shapiro (1998), and already used in RAMSES. Thus,
the following change of variables is performed:

N s Hydt s v
X = E, T = 7, = =

AL S ¥ "
(HoL)? n Hoh'™'

where Hp is the Hubble constant, L is the box size, and @ is
chosen to ensure that flgbl2 diimg = 1. As a consequence, the
resulting non-linear Schrédinger equation reads:

(41

This set of coordinates was specifically designed for cosmologi-
cal applications. However, it can be used for any application by
setting the scale factor @ to unity and replacing Hy by a general
inverse time scale 7~'. In the remainder of the paper, all equa-
tions are in these code units.

For the particular case of axion dark matter in a cosmological
setting (see Eq. (10)) we have g = 0, ¥ o a3, and the potential
is determined via the Poisson equation:

. 3
V2V=§a

+ Qbaryons(ﬁbaryons - 1) + ... ] .

Quxions(F12 = 1) + Qcpm(Pepm — D

42)

where ; is the fraction of the energy budget of our Universe
that is in matter component i (axions, baryons, CDM, etc.) and
the mean value of p; over the box is set to unity.

4. Tests of the code

In this section we present the numerical experiments we per-
formed in order to test the main features of SCALAR. When
testing the accuracy of our numerical schemes, we rely on three
main tests: conservation of mass, energy, and reproduction of
analytical solutions. Given the total mass M () in the simula-
tion box and the total energy E (z), the corresponding errors are
respectively defined as:

E()—-E(0)

_'M(z)—M(O)
- E (0)

M 0) and  €energy = |

€mass

Instead, by denoting the analytical solution as ¥, (x,f) and the
numerical solution as ¥, (x,f), at a given time, the error with
respect to the analytical solution is computed according to the
following formula:

(W (e =y (6 0?),
(w2 (xv,0) '

Esolution =

x

where ( ), denotes the mean over the box. For the tests we
present here, we always assume that each cell in the AMR grid
has the same size in all dimensions: Ax = Ay = Az. Furthermore,
in all the tests, we only employ the refinement criterion based on
density, as we found no need to use the Lohner error estimator
in order to achieve an accurate and stable solution over time.

Accuracy and performances. While running the tests we
discuss in this section, we measured the overall accuracy
and performances of the numerical algorithms implemented in
SCALAR.

The accuracy of a numerical method is often measured by
comparing the analytical solution with the numerical solution.
For this purpose, we compute the error with respect to the ana-
lytical solution as given above. The overall accuracy of SCALAR
is obtained by measuring how the global error, computed at a
given time, scales with the grid spacing. In Fig. 2, we show the
sample of errors we obtained for one of the numerical experi-
ments we performed, the soliton test. The data points are fitted
by the formula:

log, () = alog, (x) + 8,

where x and y represents the grid size and the error with respect
to the analytical solution, respectively. The parameters of the fit
a and B are determined by means of the Linear Least Square
(LLS) method and, in this case, we obtain @ ~ 1.8 and 8 ~ 6.7.
While § is not relevant when measuring the convergence of a
numerical scheme, the parameter « represents the slope of the
fitting polynomial and it corresponds to the global accuracy of
the solver. Thus, for SCALAR, we achieve an overall second-
order accuracy.

We measured general performances of SCALAR on a small
cluster. Every node of the cluster is equipped with two Intel
E5-2670 processors, with 8 cores each, a clock frequency of
fepu = 2.6 GHz and a total memory of 128 GB. Nodes within the
cluster are interconnected through a Mellanox 56 Gb FDR Inifni-
band. In application with gravity enabled, SCALAR can evolve
the solution of the non-linear Schrodinger equation by updating
a single cell in the AMR hierarchy in ~ 11 us. This means that,
our code is able to reach a value of ~ 10° cell updated per sec-
ond.
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Fig. 2. Overall accuracy of the numerical scheme implemented to solve
the Schrodinger-Poisson system. Blue points represent errors with re-
spect to the analytical solution for the soliton test, computed at a given
time for Ax = 278, 277, 276, The orange dashed line corresponds to the
polynomial fit.

Conservation of mass. The non-linear Schrddinger equation
has the conserved quantity:

M= f Wi o,

which in the Mandelung formulation is just the total mass of the
fluid. Mass and energy are not manifestly conserved by the main
solver, therefore monitoring them is a useful test.

In simulations with no refinements and without enforcing
mass conservation, we typically find the error on the conserva-
tion of mass of the order of (the prefactor is here for Ax = 27%):

% ~10°° (i)’
M T

where T is the oscillation period. When we allow for refine-
ments, the situation is typically worse and it is not good enough
for cosmological simulations. However, by solving the continu-
ity equation on top of the Schrodinger equation, we observe an
improvement on the conservation of mass up to:

% ~ 10783 (i)
M T

This does not change when we allow refinements and, even
though the error grows linearly in time, it is good enough in order
to perform cosmological simulations. This is shown in Fig. (3),
where we perform the sine wave test on the domain grid only,
with a resolution of Ny = 2° cells, corresponding to £ = 6 and
Ax = 27°, in one dimension. Details regarding the sine wave test
are described in Section 4.1.

Please, refer to Section 3 for an explanation of the temporal
evolution of the error in the conservation of mass.

Conservation of energy. Since we enforce mass conservation
by solving the continuity equation, energy conservation is a bet-
ter accuracy test for our code. By defining kinetic and potential
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energy as:
1 )

K= 77 f V> dimy, (43)
1 i

W= f Vegrlyl® d™x, (44)

the temporal change in the total energy of the system is ex-
pressed by:

1 Ve
2 ot

As we can see, in the case where the effective potential has no
explicit time-derivatives, the energy E = K + W is conserved
under the evolution.

In a cosmological setting, the potential V depends on time
via the scale-factor and this leads to a Lazyer-Irvine equation
(Kopp et al. 2017):

2k w) - W s, 45)

d

d—t(K +W)-HW =0, (46)
which can be monitored by integrating it up while performing
the simulation.

Comparison to analytical solutions. The most stringent test
we can perform is to directly compare the numerical solution
with an analytical solution. However, the discretised version of
the governing equations is a different problem than the theo-
retical continuous limit and, thus, it admits a different solution.
Usually, the main difference between the solutions of the contin-
uous and the discretised non-linear Schrodinger equations leads
to the wave-function evolving with slightly different temporal
phases. For this reason, we estimate the phase difference be-
tween the two solutions and, starting from the analytical solu-
tion of the continuous non-linear Schrodinger equation, we com-
pute the theoretical solution of the discretised equation. Then,
we compare the numerical solution with the proper solution
of the discretised non-linear Schrodinger equation. This repre-
sents a way of comparing the numerical solution with the one
of the physical problem we are actually modelling. In the limit
of Ax — 0, the solutions of the continuous and the discretised
non-linear Schrodinger equations converge to the same solution.
In this way, we show that the numerical solution is in excellent
agreement with the theoretical solution of the discretised prob-
lem, even in the case when the resolution is not extremely high,
where computation time would significantly increase.

In the plots below we show, for different choices of initial con-
ditions and potential, the error on the conservation of mass, the
error on the conservation of energy, and the error with respect to
the analytical solution.

4.1. Sine wave

The sine wave test evolves a static one dimensional density pro-
file, where the initial wave-function is set as:

Y¥(x,0) = sin(2nnx). 47)
It evolves in a constant potential, which is defined as:
2 2.2
v=1-"1, 48)
m
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Fig. 3. Errors in conservation of mass and energy when solving
the Schrodinger equation only (K) and when solving together the
Schrodinger and the continuity equations (K+C). Solving the continuity
equation together with the Schrodinger equation improves the conser-
vation properties of the algorithm by ~ 6 orders of magnitude.

where m is the mass carried by the wave-function and the period
of oscillation is given by:

T==". (49
m

The full analytical solution reads:

W(x, 1) = e F sin(2nx). (50)

This numerical experiment is designed to test the creation of
ghost cells when computing fine levels boundary conditions.
Here we only refine according to the mass criterion, Eq. (32)
and, since the density profile does not evolve in time, there is no
dynamical creation or destruction of grids: once the refinement
map is computed at the beginning, it does not change. We evolve
the solution of the Schrodinger equation over 100 periods of os-
cillation. It is possible to show that the solution of the discretised
equation - the one we are solving - is the same as Eq. (50), up
to second order in space, but with a slightly different period of
oscillation. Therefore, to factor out the dependence of the pe-
riod with resolution (which we test seperately), we correct the
analytical solution by replacing 7 with Tgiscrete, Where:

Tiscrete _ 1
T - 2 1—cos(2mnAx) _ 1
1+ T2n? ( (2nnAx)? 2)
1
N—_—— 1)

27252 *
1—%Ax2

This test was performed for dim = 1. The non-linear
Schrodinger equation is solved together with the continuity
equation, in order to enforce conservation of mass. The do-
main grid resolution is N = 64, corresponding to £ = 6 and
Ax = 2% and the maximum refinement level is set to {max = 8.
When boundary conditions for fine levels are needed, phase
and density are interpolated in ghost cells by means of fourth-
order conservative interpolation. We used artificial viscosity with
€ = 0.2. The results from this test are shown in Fig. (4).

10-2 4
107
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uT

Fig. 4. Evolution of the three errors as a function of time for the cosine
wave test. While the error on the conservation of mass (orange) evolves
accordingly to AM/M ~ 107'3(¢/T), the error on the conservation of
energy (blue) stays constant. Furthermore, the error with respect to the
analytical solution (green) does not evolve over time.

We have also performed a similar test using a quadratic po-
tential leading to a Gaussian profile:

2
I

o
with very similar results.

4.2. Travelling wave

This test simulates a one dimensional wave-packet travelling
through a periodic box. Here, we test dynamical creation and de-
struction of grids, since the AMR hierarchy follows the density
profile moving towards the direction of the wave. In this case,
we have no potential and the initial conditions are defined as:

1 7. )
Y(x,0) = — [eh7 + e, (52)

o]
where k| = 2nny, k, = 2an, with ny # n, € N. The oscillation
frequency of a single mode is:

k2
k)= —,
w(k) o

and the analytical solution of the Schrodinger equation reads:

1, .
U(x, 1) = — [t 4 gitex-okn] (53)
L |
As a consequence, the density is given by:
5 2nt
[(x, OF = 1 + cos [ 2mx(ny — ny) + - | (54)
where the oscillation period is defined as:
m
T=———. 55
n(n% - n%) (>3)

The wave-function is evolved in time over 100 oscillation peri-
ods. The non-linear Schrodinger equation is solved together with
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Fig. 5. Evolution of the three errors as a function of time for the trav-
elling wave test. While the error on the conservation of mass (orange)
evolves accordingly to AM/M ~ 107'3(¢/T), the error on the conserva-
tion of energy (blue) stays roughly constant. Furthermore, the error with
respect to the analytical solution (green) does not evolve over time.

the continuity equation, in order to enforce conservation of mass.
Also in this case, the coarse-fine data interpolation is performed
by means of fourth-order conservative interpolation. However,
while density and phase are interpolated in ghost cells, new re-
finements are made by interpolating real and imaginary parts of
the wave-function. The domain grid has the same resolution as
in the previous test and refinements are allowed up to £yax = 8.
We used artificial viscosity with € = 0.2. The results from this
test are shown in Fig. (5).

4.3. Soliton

In a cosmological context, SCALAR can be used to simulate the
structure formation process with fuzzy dark matter. In this case,
the density profiles of the dark matter halos differs from the case
of the standard CDM. We can find a stationary solution which
can be tested by taking:

Y1) = e F x(x),

and solving the resulting ODE for y(x). A numerical fit to the
density profile of a soliton in three dimensions was first sug-
gested in Schive et al. (2014) and then in Marsh & Pop (2015).
Despite it is an approximated solution, it is useful when coupling
the Poisson equation to the non-linear Schrodinger equation. In
this works, the density profile of the soliton was found to be on
the form:

1
P s lreanePF

where reore can be chosen as a free parameter, see Appendix C
for more details.

We set this density profile analytically and evolve the system.
The density profile remains approximately stationary while the
wave-function oscillates as:

(56)

+ 21
U(x, 1) o eI T,

This test was performed for dim = 3 and the non-linear
Schrodinger equation is solved together with the continuity
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Fig. 6. Evolution of the three errors as a function of time, for a self-
gravitating soliton. While the error on the conservation of mass (orange)
evolves accordingly to AM/M ~ 107'3(¢/T), the error on the conserva-
tion of energy (blue) stays constant. Furthermore, the error with respect
to the analytical solution (green) does not evolve over time.
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Fig. 7. Evolution of the dimensionless power spectrum A%(k) with red-
shift.

equation. The domain grid contains Ny = 643 cells, corre-
sponding to £ = 6 and Ax = 27°, and the maximum refine-
ment level allowed is £ = 8. In this case, both refinement
and ghost cells are made by fourth-order conservative interpo-
lation on density and phase. The artificial viscosity term is set to
€ = 0. We found that self-gravity is able to stabilise the wave-
function against spurious numerical oscillations. We tested the
same physical case with different values of artificial viscosity,
but we did not find any improvement in terms of accuracy. In
the other tests, where we set € = 0.2, the artificial viscosity term
was introduced just in order to ensure stability and accuracy of
the solution to the non-linear Schrodinger equation over a very
large number of oscillation periods. The results for this test are
shown in Fig. (6).

5. Cosmological applications

The SCALAR code was originally developed in order to per-
form numerical simulations of structure formation with fuzzy
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Fig. 8. Evolution of the errors on conservation of mass (orange) and
energy (blue), as a function of redshift.

dark matter. To demonstrate the capabilities of our code, in this
section we present a test involving a full 3D cosmological setup.

The simulation box models a By = 1 Mpc/h portion of the
Universe expanding over time, according to the Einstein-de Sit-
ter model. We take Q, = 0.7 and Qy = 0.3, and the Hubble
constant is set to Hy = 100 4 km s™! Mpc’l, where 1 = 0.67.
The base resolution, which defines the domain level, is set to
Neent = 256° and up to one level of refinement is allowed. This
means that, in this test, we achieve a maximum resolution of
Ax ~ 4 h™'kpc. The mass of the boson is set to m = 107! eV
and conservation of mass is enforced by solving the continuity
equation on top of the non-linear Schrodinger equation. In order
to better appreciate the differences between CDM and fuzzy dark
matter, the initial conditions are computed for the case of CDM.
The initial density and velocity fields are computed by using the
Zel’dovich approximation. Then, following Kopp et al. (2017),
we convert them into an initial wave-function.

The evolution starts at redshift z = 1000 and we run the sim-
ulation as long as we are able to resolve the quantum force with
at least two cells, meaning until redshift z = 30. We did not run
this simple test further because, due to lack of resolution, we
cannot resolve the inner part of collapsed objects. This will be
the subject of an upcoming paper.

In Fig. 9, Fig. 10 and Fig. 11 we show the dark matter density
field, the real and the imaginary parts of the wave-function for a
selection of redshifts, z = 200, 100, 50, 30. As the field clusters
under the effect of gravity, the wave-function develops the wave
patterns which are characteristic of this class of models.

By taking the density contrast ¢ (x) inside the simulation box,
we expand it in Fourier modes as follows:

6(X):fd3k6(k)exp(—ik~x). (57)

The matter power spectrum is defined by means of the autocor-
relation function, which can be expressed as:

N dk ks (b))

(6(x)5(x) = fo T (58)
(T dkiPP (k)
B 0 7 27{2 ’ (59)

In Fig. 7, we plot the dimensionless power spectrum, defined as:

IBP (k)
212

for z = 200, 100, 50, 30. The results here show the same quan-
titative behaviour as seen in Woo & Chiueh (2009, see Fig. 2),
that performed the same kind of simulation as we do here. As
the field gravitationally collapses, the quantum pressure leaves
immediately its imprints on A (k) by producing the characteristic
suppression of power at small scales, above k ~ 300 4A~'Mpc.
Given the mass of the boson, the suppression scale is expected
to be around the redshift dependent Jeans wave-number, which
can be defined as:

1/4
ky = (167era mz)
z

A (k) = (60)

1+

1/4
=66.5(i) ( m

0.12h% 102 eV ©D

1/2 h
1+2)7 4 —
) (1+2) Mpc

where Q, is the dimensionless density parameter of axions and &
is the dimensionless Hubble constant. Between k = 10 h~'Mpc
and k = 100 A~'Mpc, the power spectrum describes modes in
the density field still in the linear regime and, therefore, A? (k)
evolves with redshift according to linear theory:

A’ (1+2)72,

in a similar way to the CDM case.

In Fig. 8, the evolution of errors in conservation of mass and
energy are plotted against redshift. The error in the conserva-
tion of mass slowly evolves in time, as described in Section 4.
Furthermore, we track the evolution of the error in the conserva-
tion of energy, by integrating the Lazyer-Irvine equation along
the simulation and checking at which level of accuracy Eq. (46)
is satisfied. As shown in the same figure, in the conservation of
energy does not grow significantly, thus ensuring that no energy
is numerically dissipated by the solver or the artificial viscosity
term.

6. Conclusions

In SCALAR, we implemented a set of numerical algorithms de-
veloped in order to solve the non-linear Schrodinger equation
in an AMR framework. Eq. (1) can be used to describe the
dynamics of a Bose-Einstein condensate, a system of identical
bosons in the ground energy state, by means of a single-particle
wave-function in a mean field approach. Here, the non-linearity
arises from an effective potential, which can contain both a self-
interaction term and a generic external potential. Bose-Einstein
condensates find their application in several fields. As an exam-
ple, alternative dark matter models involving Bose-Einstein con-
densates have been recently developed, such as ultra-light axion
dark matter, fuzzy dark matter and superfluid dark matter. The
Schrodinger equation is solved with a Taylor method, similar
to the algorithm developed in GAMER. In order to improve the
conservation properties of the numerical scheme, the continuity
equation is solved on top of the non-linear Schrodinger equation
and mass conservation is enforced by construction. Empirically,
by running several tests, we found that our numerical method is
second-order accurate.

In order to test the main components of SCALAR, a test suite
was designed. In particular, we tested the performances of the
solver with and without solving the continuity equation on top
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Fig. 9. Projection along the z axes of the dark matter density field, normalised by the critical density of the Universe. The box is 1 Mpc/h in

comoving units and it represents the entire simulation box.

of the non-linear Schrodinger equation, the creation of ghost
cells when boundary conditions need to be specified for levels
with fine resolution and the dynamical creation and destruction
of grids during the process of mesh refinement. For this purpose,
we tracked mass and energy conservation properties of our nu-
merical schemes during the evolution of the system. The result
is that both mass and energy are well conserved. While the latter
remains roughly constant in all the different cases, the former
evolves in time. Indeed, the error on the conservation of mass
grows according to:

AM t
-l
M 0 T
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for all our test-cases as we advance the solution in time. How-
ever, by solving the continuity equation on top of the non-linear
Schrédinger equation, the error on the conservation of mass im-
proves of several orders of magnitude, growing as:

AM ~ 10713 (i)

M T)
and it remains significantly small even for cosmological simula-
tions. Furthermore, we compared the numerical solutions found
by SCALAR with the analytical solutions of all the test cases.
‘We show that the numerical solution tracks very well the analyt-
ical one over a long evolution time. In this case also, the error
with respect to the analytical solution remains roughly constant
over time. We showed that high-frequency spurious oscillations
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Fig. 10. Projection along the z axes of the real part of the dark matter field. The box is 1 Mpc/h in comoving units and it represents the entire

simulation box.

created at coarse-fine boundaries by interpolation schemes are
efficiently dumped by an artificial viscosity term. However, the
long term evolution of the single-particle wave-function still rep-
resents a challenge in case the artificial viscosity term is not in-
cluded. We also run a small cosmological simulation where we
show that SCALAR is able to capture the relevant features of
models like fuzzy dark matter on cosmological scales.

Future work will aim at developing new high-order interpo-
lation schemes which will not require the inclusion of an artifi-
cial viscosity term. Furthermore, we plan to compare the perfor-
mance and accuracy of SCALAR with similar codes. In a follow-
ing paper, we plan to exploit SCALAR to explore the non-linear
regime of the structure formation with alternative dark matter
models. In particular, we want to run a set of high-resolution

cosmological simulation in order to verify and provide further
predictions of fuzzy dark matter.

The code will be soon publicly available through our GitHub
repository'.
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Appendix A: Stability analysis

The stability condition of a generic PDE solver can be easily
found by means of the Von Neumann stability analysis (Charney
et al. 1950). For this purpose, the numerical error is decomposed
in Fourier modes and a condition on time-step is computed in
order to propagate each mode accurately.

We start by considering a generic mode in the Fourier de-
composition of the numerical error:

€ = eatetk,,,x'

(A.D
As mentioned in the previous sections, in SCALAR we use a
second-order finite difference formula in order to approximate
the laplacian of the wave-function. Thus, for a generic quantity,
in one physical dimension we have:

_ i+ f =2

V2
s Ax?

(A2)

As a consequence, the second derivative of the error can be writ-
ten as:

4 kAx
2. _ i 2
Ve sin (T)e, (A3)
and the amplification factor can be computed as:
e(t + Ar)
=— A4
4 0 (A4
2 N
] O S - ay U2 ] (A5)
2! n!
where S corresponds to:
2nAt -, (kAx
=————s —. A.6
a2 " ( 2 ) (A-6)

In order to avoid exponential growth, we require that |¢] < 1.
Therefore, the stability condition reads:

| = cos2(B) + sin2(8) < 1, (A7)

where cos,, and sin, denote to 2" order Taylor polynomials of
cos(x) and sin(x), respectively. Furthermore, n corresponds to
the order of the Taylor expansion of the kinetic contribution to
the time evolution operator, Eq.(20).

In particular, we find that for n < 3 the numerical scheme is
unconditionally unstable. For n = 3, instead, the stability condi-
tion is satisfied as long as:

Bl< V3 = Ar< cKzism(Ax)z. (A.8)

The generalisation to D can be done by replacing (Ax)> —
(Ax)?/D in the formula above.

We also require that the phase angle does not rotate more
than 27Cy within a time-step. Thus, for the kinetic term we re-
quire that:

A 2
At < Cg- @ (A9)
while for the potential term:
2nh
At< Cy - —2 (A.10)
| Vinax|

Combining the three conditions above, the optimal time-step is
chosen as:

2nh

mlvmaxl ’

At < min CK~2—\/h§m(Ax)2, Cy - (A.11)

where we require the safety factors to be Cy, Cx < 1.

Appendix B: Prolongation operators

The details related to the interpolation schemes we implement in
SCALAR are given for the one dimensional case. In case of mul-
tidimensional interpolation, the same formulas derived in this
section are applied sequentially in each direction.

For simplicity, in order to derive the interpolation formulas
we use in SCALAR, we assume that there is an odd number 2N +1
of coarse data points {x;,y;} with —N < i < N and the interpola-
tion is always done for children of the central cell, as shown in
Fig. (B.1).

In this way, we can construct an interpolating polynomial of
order 2N starting from its general definition:

N

P(x) = Z a,x".

n=—N

(B.1)

In order to find an explicit expression for P(x), the coefficients
{a,} have to be computed and, depending on the constraints im-
posed on the interpolating polynomial, different schemes can be
implemented.
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Fig. B.1. Coarse-fine grid interpolation.

Lagrange polynomial interpolation

For this interpolation scheme, instead of explicitly computing
the coefficients a,, the interpolating polynomial is expressed as
a linear combination of Lagrange basis functions /;(x), with j =
-N,-N+1,...,N - 1,N, which are defined as:

N
L= 1]

m=-N
m#j

X = Xm
X B.2
Xj— Xm ( )

Thus, coarse data points y; weight the Lagrange basis functions
and the interpolating polynomial is constructed as follows:

N
P = ) v la(®).

n=-N

(B.3)

In this way, the interpolating polynomial is forced to pass
through the data points in the sample. In order to find an explicit
formula for a fourth-order Lagrange interpolating polynomial,
we directly compute the Lagrange basis functions by means of
Eq. (B.2). Here, we express the differences between cell posi-
tions in Eq. (B.2) as a function of Ax. Then, the interpolating
polynomial is computed at children cell positions, leading to the
following interpolation formulas:

45y, + 420y + 1890 yo — 252 y,1 + 35 yio

Ym = 2048 s (B.4)
+35y.,—252y_1+1890y9 +420 y,; —45 y4»
yp = 2048 . (B.5)

Conservative polynomial interpolation

In this case, constraints on the coefficients of the interpolating
polynomial are set by imposing that the mean of the interpolated
data on fine cells is equal to the data stored in the coarse cell.

By using Eq. (B.3), the coarse data points are redefined by
means of their cell average:

2i+1 -
s

1

= — P(x) dx,
& sy, 7O

Vi (B.6)
and the corresponding linear system is solved in order to derive
an explicit expression for the coefficients {a,,} of the interpolating
polynomial. Thus, assuming that the parent cell is split into two
children cells, the fine data is obtained by solving the following
integrals:

- 1
= 1 f RS

Ax
3

:Eco

B.7)

Yy P(x) dx, (B.8)
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where §,, and ¥, denote the left and right childern cells respec-
tively.

For a fourth-order polynomial, the solution of the linear sys-
tem reads:

I [52-451+6F0-451+ Fo
= B.
ERRTNST [ 24 : (B-9)
1 _57—2+25’—1_25’+I+5’+2
=— B.1
(Ax)? [ 12 ’ (B-10)
1[92+ 1250 —2250+ 125, = Ju
= R B.11
T a2 [ 16 (B.11)
1 |552-3451+345,1 -5¥
d=—— , B.12
(Ax) [ 48 ( )
95},2 - 11657,1 + 2134}0 - 116)~l+1 + 9_;42
= . B.1
¢ 1920 ®B-139
Thus, the corresponding interpolation formulas are:
390-2251+225,,-3%
Y = Fo - y-2 y-1t 2241 y+2’ (B.14)
128
392-2251+225,,-3%
Yp = o+ y-2 Y. 11;8 V+1 Y+2. (B.15)

It is trivial to check the arithmetic average of y over the children
cells corresponds exactly to the value stored in the parent cell.

Appendix C: Soliton solutions

Self-gravitating bosonic fields can support stable and localised
field configurations, where the density profile is static. Such con-
figurations, called solitons, are ubiquitous in models of axion
dark matter and exist for dim > 1. Starting with the Schrodinger-
Poisson system (in code units):

a1

= o2 1
i i o Y +mV, (C.1)
V2V = klyl, (€2
we take the spherically symmetric ansatz:

Y0 = x(Ne >t (€3)

The ODE describing the static configuration of the field can be
derived by replacing Eq. (C.3) into the Schrodinger-Poisson sys-
tem:

VZ
V2 [TX] = 2am*, (C.4)

where the laplacian is now expressed in polar coordinates:
& 2d

2
— + —_——
dr?  rdr’
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and k represents a free parameter (in our code units k equals
%Qma for a cosmological simulation with axion-like dark mat-
ter). Thus, the system can be solved by considering the initial
conditions:

x©0) =1,
X'(0)=0
X" (0) =

where y”’(0) is a free parameter, which is set by requiring asymp-
totic vanishing solution y(+co) = 0. The oscillation period T can
then be computed from the resulting solution, for more details
see Schive et al. (2014) and Marsh & Pop (2015).

The soliton profile, normalised such that the total mass is
unity, is given by:

2 1

X =—= : (©5)

V33 [1 4 (/e

where r is the distance from the center of the box and:

/ 33 33}10re °
s C.6
FeoreK @2 16)/2 (€6

with @ = 0.230 and y = —0.692. In our tests, even if this deriva-
tion assumes an infinite box, we use either fixed or periodic
boundary conditions. As long as the core radius of the soliton
is small enough compared to the simulation box, this solution
represents a good approximation.
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