
UNIVERSITY OF BAHRAIN

College of Information

Technology

Department of

Computer Science

Performance Auto-tuning Framework
for GPU Applications

A Thesis Submitted in Partial Fulfilment of the Requirements for the

Doctor of Philosophy Degree in Computing and Information Sciences

Submitted By
Abdulla Ebrahim Ali Subah

20103079

Supervised By
Dr. Wael Elmedany

(Associate Professor)

Co-Superviser
Dr. Hesham Al-Ammal

(Assistant Professor)

University of Bahrain

October 2024

C
ER

N
-T

H
ES

IS
-2

02
4-

34
4

09
/1

2/
20

24

APPROVAL

 10 Approved at the University Council 6th meeting, 2013

In accordance with Decision No. 736/2013 dated 14/3/2013

Modified by University Council Decision No. 2043/2013 dated 20/11/2013.

 جامعة البحرين
 عمادة الدراسات العليا والبحث العلمي

University of Bahrain
Deanship of Graduate Studies
And scientific Research

Dissertation Deposit Form

Author Name: Abdulla Ebrahim Ali Subah

Email: asubah@uob.edu.bh Contact No: 36334258

College: Information Technology

Department: Computer Science

Thesis Title: Performance Auto-tuning Framework for GPU Applications

Year: 2024

Author's Declaration: I agree to the following conditions:

The above thesis will be available (in the University of Bahrain library and externally) and

reproduced as necessary at the discretion of the University of Bahrain. It may also be digitized

by the University of Bahrain and made available via the university’s repository or via other

parties on the Internet.

This condition shall apply to ALL copies including electronic copies.

The above thesis has been provided on the understanding that it is copyright protected

material and that no quotation from this thesis may be published without proper

acknowledgement.

Signature of the Author: Date: 05-Oct-24

A

DECLARATION

DECLARATION

I declare that this work is the result of my own investigation and
that it has not already been accepted in substance for any degree,
nor is it currently submitted for any degree.

Signed: --------------------- Date: 9/12/2024
 Abdulla Ebrahim Ali Subah (Candidate)

The Thesis defense committee considers the thesis titled:

 Performance Auto-tuning Framework for GPU Applications

Submitted by Abdulla Ebrahim Ali Subah to the College of Information
Technology is satisfactory and acceptable for the Doctor of
Philosophy in Computation and Information Sciences.

The Defense Committee:

Dr.Wael Elmedany Department of Computer Science
(Supervisor) University of Bahrain

Dr. Hesham Alamal Department of Computer Science
(co-supervisor) University of Bahrain

Prof. Nikolas Bessis Edge Hill University
(Member) UK

Dr. Riadh Ksantini Department of Computer Science
(Member) University of Bahrain

B

ABSTRACT

Optimizing GPU applications for performance and portability across diverse architec-

tures is challenging due to the complexity of GPU programming and hardware diversity.

This thesis presents a performance auto-tuning framework for GPU applications to address

these challenges.

Efficient search techniques were developed to reduce the search space and computa-

tional overhead in auto-tuning GPU kernels. OpenTuner was extended to support GPU ker-

nel autotuning, incorporating advanced search algorithms like basin hopping and Bayesian

optimization. A machine learning-based search space reduction method using boosted trees

predicted promising kernel parameter configurations. Multi-fidelity optimization balanced

exploration and exploitation by evaluating configurations at different fidelity levels.

An autotuning interface was developed and loosely integrated with the CMS Software

(CMSSW) used in high-energy physics experiments. This loose coupling allows the au-

totuner to work with other software packages and enables other autotuners to optimize

CMSSW, enhancing flexibility and portability. The framework was evaluated using real-

world GPU kernels from CMSSW across different GPU architectures. A benchmarking

methodology proposed by other researchers was applied to compare different search tech-

niques, providing practical insights into autotuner benchmarking methodologies. The op-

timized kernels outperformed default configurations, improving execution speed and re-

source utilization. The framework effectively reduced the search space and computational

overhead, meeting the objectives of enhancing performance and portability.

Limitations include limited hardware diversity, focus on specific machine learning mod-

els, and emphasis on single-objective tuning without considering other factors like power

efficiency. Future work involves expanding to other hardware architectures, experiment-

ing with advanced machine learning and reinforcement learning techniques, applying the

autotuner to different software packages, developing dynamic tuning mechanisms, and en-

hancing user interfaces.

C

Contents

APPROVAL A

DECLARATION B

ABSTRACT C

TABLE OF CONTENTS D

LIST OF FIGURES H

LIST OF TABLES L

ACKNOWLEDGMENTS N

DEDICATION O

PUBLICATIONS P

LIST OF ABBREVIATIONS Q

1 Introduction 1
1.1 Background and Motivation 2

1.2 Problem Statement . 3

1.3 Research Objectives . 5

1.4 Thesis Contributions . 6

D

1.5 Thesis Structure . 7

2 Background 9
2.1 GPU Computing . 9

2.1.1 GPU Architecture 10

2.1.2 GPU Programming Platforms 13

2.2 Performance Optimization for GPUs 17

2.2.1 GPUs Common Optimization Techniques 17

2.2.2 Performance Portability 21

2.3 Autotuning . 23

2.3.1 Concept and Importance 24

2.3.2 Autotuning for GPUs 26

3 Literature Review 30
3.1 Autotuning Frameworks 30

3.2 Autotuning Benchmarking Methodologies 34

3.3 Optimization Techniques Used in Autotuning 37

3.4 Summary and Research Gaps 41

4 Methodology 42
4.1 Overview of Methodology Components 42

4.2 Research Design . 43

4.3 CMSSW Framework . 44

4.3.1 Overview of CMSSW 45

4.3.2 Relevance to GPU Kernel Autotuning 46

4.3.3 Integration of Autotuning in CMSSW 47

4.4 Data Collection . 48

4.4.1 GPU Kernels . 48

4.4.2 Parameter Space 49

4.4.3 Performance Metrics 50

E

4.4.4 Data Collection Methodology 51

4.5 Evaluation Criteria for Autotuners 52

4.6 The Proposed Framework 54

4.6.1 Introduction to the Autotuning Framework 54

4.6.2 Framework Architecture 55

4.6.3 Parameter Space Definition 57

4.6.4 Search Techniques 60

4.7 Experimental Setup . 62

4.7.1 Hardware . 62

4.7.2 Software . 64

5 Results and Discussion 65
5.1 Baseline Performance Analysis 66

5.1.1 Maximum Throughput 66

5.1.2 Distribution of Configurations 68

5.1.3 Autotuning Convergence 73

5.1.4 Configurations Validity 77

5.2 Seed Configurations . 80

5.2.1 Maximum Throughput 81

5.2.2 Distribution of Configurations 82

5.2.3 Autotuning Convergence 84

5.2.4 Configurations Validity 85

5.3 Reducing Search Space using Boosted Trees 87

5.3.1 XGBoost for Feature Selection 89

5.3.2 Maximum Throughput 96

5.3.3 Distribution of Configurations 97

5.3.4 Autotuning Convergence 98

5.3.5 Configurations Validity 98

5.4 Multi-fidelity Autotuning 103

5.4.1 Events Count Reduction 104

F

5.4.2 Pixeltrack Standalone Framework 104

5.4.3 Integration with Full Framework Autotuning 106

5.5 Performance Portability . 106

5.5.1 Performance Portability Analysis 106

6 Conclusion and Future Work 109
6.1 Achieving the Research Objectives 109

6.2 Implications of the Research 112

6.3 Limitations . 114

6.4 Future Work . 115

6.5 Concluding Remarks . 116

References 117

Abstract (in Arabic)

G

List of Figures

2.1 A comparison between the architectures of a GPU and a CPU. 11

2.2 GPU memory hierarchy. 12

2.3 An illustration of how the memory is accessed in the threads

using cache lines and memory banks. 18

2.4 An illustration of the difference between interleaved and co-

alesced memory access patterns. 18

2.5 Diverged code flow chart vs execution flow chart. 19

2.6 Timeline comparison between data copy and kernel execution 20

4.1 A diagram of the autotuning framework used in this study. . 55

5.1 Distribution of configuration throughputs for different au-

totuning techniques across GPU architectures. The x-axis

represent the frequency and y-axis is the throughput. The

vertical black dashed line indicate the baseline performance

for that GPU. The red dashed line is the distribution mean. . 69

5.2 Convergence patterns of different autotuning techniques across

GPU architectures. The x-axis represent the throughput and

y-axis is the time. The horizontal dashed line indicate the

baseline performance for that GPU. 74

5.3 Percentage of valid and invalid configurations generated by

different search techniques for the T4 GPU. 78

H

5.4 Percentage of valid and invalid configurations generated by

different search techniques for the A10 GPU. 79

5.5 Percentage of valid and invalid configurations generated by

different search techniques for the L4 GPU. 79

5.6 Percentage of valid and invalid configurations generated by

different search techniques for the L40S GPU. 80

5.7 Distribution of throughput values achieved by different search

techniques across GPU architectures when seeded with the

T4-optimized baseline configuration. The black dashed line

indicates the baseline performance, while the red dashed

line shows the mean throughput for each distribution. 83

5.8 Convergence behaviour of different search techniques across

GPU architectures when initialized with a seed configura-

tion. Each plot shows the evolution of throughput over it-

erations, with the black dashed line indicating the baseline

performance. 86

5.9 Percentage of valid and invalid configurations generated by

different search techniques on T4 when initialized with a

seed onfiguration. 87

5.10 Percentage of valid and invalid configurations generated by

different search techniques on A10 when initialized with a

seed configuration. 88

5.11 Percentage of valid and invalid configurations generated by

different search techniques on L4 when initialized with a

seed configuration. 88

5.12 Percentage of valid and invalid configurations generated by

different search techniques on L40S when initialized with a

seed configuration. 89

I

5.13 Feature importance ranking for T4 GPU based on XGBoost

weight metric. 92

5.14 Feature importance ranking for A10 GPU based on XG-

Boost weight metric. 93

5.15 Feature importance ranking for L4 GPU based on XGBoost

weight metric. 94

5.16 Feature importance ranking for L40S GPU based on XG-

Boost weight metric. 95

5.17 Distribution of throughput values achieved by different search

techniques using XGBoost-guided search across GPU ar-

chitectures. The black dashed line indicates the baseline

performance, while the red dashed line shows the mean through-

put for each distribution. 99

5.18 Convergence plots of different search techniques using XGBoost-

guided search across GPU architectures. Each plot shows

the evolution of throughput over iterations, with the black

dashed line indicating the baseline performance. 100

5.19 Valid and invalid configuration percentages for different search

techniques using XGBoost-guided parameter reduction on

T4 GPU. 101

5.20 Valid and invalid configuration percentages for different search

techniques using XGBoost-guided parameter reduction on

A10 GPU. 102

5.21 Valid and invalid configuration percentages for different search

techniques using XGBoost-guided parameter reduction on

L4 GPU. 102

5.22 Valid and invalid configuration percentages for different search

techniques using XGBoost-guided parameter reduction on

L40S GPU. 103

J

5.23 Configuration evaluation rates across different GPUs using

original CMSSW (10,000 events), reduced events (1,000),

and pixeltrack standalone framework approaches. 105

5.24 Performance portability matrix showing application efficiency

when running different GPUs (rows) using configurations

optimized for specific architectures (columns). Diagonal

values represent the maximum achievable performance for

each GPU using its respective optimized configuration. . . . 107

K

List of Tables

2.1 Summary of Background Topics 29

3.1 Comparison of Autotuning Frameworks and Their Features . 33

3.2 Comparison of Heterogeneous Computing Benchmark Suites 37

3.3 Summary of Autotuning Search Techniques 40

4.1 CPU Specifications . 63

4.2 GPU Specifications . 63

4.3 Software Environment . 64

5.1 Maximum throughput (events/second) achieved by different

auto-tuning techniques across GPU models 67

5.2 Maximum throughput (events/second) achieved by differ-

ent search techniques with seeded initialization across GPU

architectures. The seeded configuration was manually opti-

mized for T4. Bold values indicate the best performance for

each GPU. 81

5.3 XGBoost Model Configuration and Dataset Details 96

5.4 Maximum throughput (events/second) achieved by different

search techniques with reduced parameter space using XG-

Boost across GPU architectures. Bold values indicate the

best performance for each GPU. 97

5.5 Maximum throughput (events/second) achieved using dif-

ferent fidelity levels . 104

L

6.1 Mapping of Research Objectives to Thesis Contributions . . 111

M

ACKNOWLEDGMENTS

To my thesis supervisors Dr. Hesham Al-Ammal Assistant Professor

and Dr. Wael Elmedany Associate Professor at University of Bahrain, I

would like to express my gratitude for their guidance, support, and patience.

I would also like to express my gratitude to my internship supervisor at

CERN / CMS Dr. Andrea Bocci, the Applied Physicist at CERN for his

guidance, support, and patience.

This work was partially sponsored by Shaikh Ebrahim bin Mohammed

Al Khalifa Center for Culture and Research (SEARCH), my deepest grati-

tude to Shaikh Mai bint Mohammed Al Khalifa the president of the board

of trustees for her usual generous support.

Thanks to all the staff of the Department of Computer Science and the

Information Technology College in the University of Bahrain.

Thanks to all the Patatrack research group members, and CMS collabo-

ration members for their support.

The experiments presented in this paper were carried out using the fa-

cilities of the Benefit Advanced AI and Computing Lab at the University of

Bahrain — see https://ailab.uob.edu.bh with support from Benefit Bahrain

Company — see https://benefit.bh.

Abdulla Ebrahim Subah

N

DEDICATION

To my family, for their unconditional love and support.

To my teachers, for every piece of knowledge they taught me.

O

PUBLICATIONS

Ebrahim, Abdulla, Bocci, Andrea, Elmedany, Wael, & Al-Ammal, Hes-

ham. (2024). Optimising the configuration of the CMS GPU reconstruction.

EPJ Web of Conf., 295, 11015. doi: 10.1051/epjconf/202429511015

P

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AUC Area Under Curve

BAT Benchmark suite for AutoTuners

BO Bayesian optimization

CLTune OpenCL kernel autotuning tool

CMS Compact Muon Solenoid

CMSSW CMS Software

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FPGA Field-Programmable Gate Array

GA Genetic Algorithms

GDDR Graphics Double Data Rate

GPU Graphics Processing Unit

GPTune Autotuning tool incorporating transfer learning

HBM High Bandwidth Memory

HLT High Level Trigger

HPC High-Performance Computing

I/O Input/Output

Q

LHC Large Hadron Collider

ML Machine Learning

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PSO Particle Swarm Optimization

ROCm Radeon Open Compute

SHOC Scalable Heterogeneous Computing benchmark suite

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

SMAC3 Sequential Model-based Algorithm Configuration, version 3

SYCL Single-source Heterogeneous Programming for OpenCL

TDP Thermal Design Power

R

Chapter 1

Introduction

In today’s world, a huge amount of data is being generated, and prob-

lems are becoming more complex. This has increased the need for power-

ful computing solutions. Graphics Processing Units (GPUs), which were

originally created to handle graphics tasks, have become important in high-

performance computing. They are used in areas like scientific research,

machine learning, and data analysis because many calculations can be pro-

cessed in parallel.

However, getting the best performance from GPUs is not easy. Various

settings like memory use and task division need to be adjusted by develop-

ers. The diversity of GPUs and frequent updates add to the challenge. Issues

like managing threads, optimizing memory access, and balancing workloads

across the GPU are often faced by developers.

Performance auto-tuning can help with these problems. Different set-

tings are automatically tried by auto-tuning tools, and the best ones are cho-

sen based on a defined performance criteria. This allows developers to focus

more on improving their algorithms instead of spending time on low-level

optimizations.

This thesis aims to make the optimization process for GPU applications

simpler and better. Development time can be saved, performance can be im-

proved, and applications can work well on different GPUs with an effective

1

auto-tuning framework.

1.1 Background and Motivation

The Compact Muon Solenoid Software (CMSSW) framework is a large,

modular software system developed for the CMS experiment at the Large

Hadron Collider (LHC) (CMS Collaboration, 2024). It has been ported to

use GPUs to take advantage of their parallel processing capabilities and to

meet the increasing computational demands of high-energy physics research

(CMS Collaboration, 2021).

A unique aspect of CMSSW is that it runs multiple GPU kernels in mul-

tiple processes simultaneously. This means that several kernels may be ex-

ecuting at the same time on the same GPU, originating from different parts

of the application or even different workflows. This concurrent execution

introduces additional complexity to the performance optimization process.

Resource contention and interference between kernels can significantly im-

pact overall performance. Optimizing each kernel in isolation may not lead

to optimal performance when they are run together.

Moreover, CMSSW operates on different high-performance computing

(HPC) sites with various hardware configurations. These sites may have

different types of GPUs from different vendors or generations, which adds

complexity to performance optimization. The framework’s modular nature

allows many developers to contribute independently to different parts of

the system. Each module may have its own set of GPU kernels, further

increasing the diversity of workloads running concurrently.

Manual optimization of GPU code in such a modular and concurrent en-

vironment requires significant effort and expertise (van Werkhoven, 2019).

Developers need to adjust various parameters, such as thread block sizes

and memory usage patterns, to suit specific hardware and to account for

the effects of multiple kernels running at the same time. This process is

2

time-consuming and may not be feasible for all modules or developers.

Having a common auto-tuning interface and auto-tuner within CMSSW

would help address these challenges. An auto-tuning framework can auto-

matically explore different optimization parameters and select the best con-

figurations for each GPU kernel, considering the concurrent execution and

resource sharing on the available hardware. This would:

• Improve Performance: By finding optimal settings for each kernel

in the context of concurrent execution, better overall performance can

be achieved without manual tuning.

• Enhance Performance Portability: Applications can run efficiently

on different GPUs at various HPC sites, adapting automatically to the

hardware and the multiprocess environment.

• Reduce Development Effort: Developers can focus on the function-

ality of their modules, relying on the auto-tuner to handle performance

optimization in a complex, multi-kernel environment.

The motivation for this thesis stems from the need to simplify and en-

hance the performance optimization process for GPU-accelerated applica-

tions within CMSSW, especially given its unique characteristics of running

multiple kernels in multiple processes at the same time. By integrating an

effective auto-tuning framework into CMSSW, the overall efficiency of the

software can be improved, supporting the goals of high-energy physics re-

search.

1.2 Problem Statement

Despite advances in GPU technologies and programming models, optimiz-

ing GPU applications for top performance remains difficult (Ryoo et al.,

2008). Challenges include:

3

• Complex Optimization Spaces: A large and multidimensional pa-

rameter space for GPU optimization exists, including factors like thread

block sizes, grid dimensions, memory access patterns, and algorithm-

specific parameters (van Werkhoven, 2019).

• Architectural Diversity: Varying architectural features are found in

GPUs from different vendors or even different generations from the

same vendor, requiring specific optimizations for each platform (Reyes

& de Sande, 2012).

• Manual Effort and Expertise: A lot of manual effort and deep ex-

pertise in GPU architectures are demanded by traditional optimization

techniques, which may not be feasible for all developers or scalable

for all applications (Ashouri, Killian, Cavazos, Palermo, & Silvano,

2018).

• Lack of Integration with Existing Frameworks: Many auto-tuning

solutions are standalone tools that are not easily integrated into exist-

ing application frameworks, limiting practical use (Ansel et al., 2014).

The problem addressed in this thesis is the development of a perfor-

mance auto-tuning framework specifically designed for GPU applications

that can:

1. Efficiently Explore the Optimization Space: Strategies to navigate

the large parameter space effectively without exhaustive search are

implemented.

2. Adapt to Different GPU Architectures: Performance portability is

provided by automatically tuning applications for different hardware

configurations.

4

3. Integrate with Existing Software Frameworks: Auto-tuning capa-

bilities are seamlessly incorporated into existing application frame-

works, such as the CMSSW framework used in high-energy physics.

1.3 Research Objectives

The main goal of this research is to design and implement a performance

auto-tuning framework that tackles the challenges mentioned. Specific ob-

jectives include:

• Develop Efficient Search Techniques: Search algorithms are im-

plemented to reduce the search space and computational overhead of

auto-tuning.

• Integrate the Auto-tuning Framework with CMSSW: The prac-

tical use of the framework is demonstrated by integrating it into the

CMSSW framework, optimizing real-world GPU kernels used in high-

energy physics experiments.

• Evaluate the Framework: The effectiveness of the auto-tuning frame-

work in improving performance and ensuring portability across differ-

ent GPU architectures is assessed.

• Provide Insights into Auto-tuners Benchmarking Methodologies:

Insights are contributed to the broader knowledge by analysing the

results and identifying best practices and potential areas for future

research.

5

1.4 Thesis Contributions

This thesis presents five primary contributions to the field of GPU kernel

optimization:

1. Multi-Process GPU Kernel Autotuning Framework: To the au-

thors’ knowledge, the optimization of multiple GPU kernels running

concurrently across multiple processes has not been previously ad-

dressed. OpenTuner was extended to support this capability, address-

ing a gap in GPU optimization research and enabling practical opti-

mization in real-world scenarios like CMSSW where multiple kernels

are executed simultaneously.

2. Enhanced Search Space Optimization Techniques: Multiple opti-

mization strategies were implemented and integrated into OpenTuner

including:

• Machine learning approach using boosted trees for configuration

prediction

• Multi-fidelity optimization technique for balanced resource us-

age

• Basin Hopping and Bayesian Optimization for improved global

optima detection

These additions improve the efficiency and effectiveness of the auto-

tuning process across different scenarios.

3. CMSSW GPU Optimization Framework: An autotuning frame-

work was designed and implemented within CMSSW to optimize

GPU kernels across different architectures. This integration provides

a practical solution for automated GPU kernel optimization in high-

energy physics applications.

6

4. Reproducible Benchmarking Implementation: Established bench-

marking methodologies from literature were implemented to evaluate

autotuning performance. The implementation includes multiple mea-

surement repetitions, controlled testing environments, and detailed

documentation of experimental conditions to ensure data accuracy

and reproducible results.

5. Cross-Architecture Performance Analysis: The autotuning frame-

work’s performance was analysed and evaluated across multiple GPU

architectures, providing insights into achieving performance portabil-

ity in heterogeneous computing environments.

These contributions address the challenges of optimizing GPU applica-

tions within a complex, modular, and concurrent environment like CMSSW.

By extending existing tools and integrating new techniques, the thesis pro-

vides practical solutions that can benefit the high-energy physics community

and other fields that rely on GPU-accelerated applications.

1.5 Thesis Structure

The thesis is organized as follows:

• Chapter 2: Background

Foundational knowledge on GPU computing is provided, including

GPU architectures and programming platforms. Common performance

optimization techniques for GPUs are discussed, and the concept and

importance of auto-tuning, particularly for GPUs, are introduced.

• Chapter 3: Literature Review

A review of existing auto-tuning frameworks and methodologies is

presented. Various optimization techniques used in auto-tuning are

7

examined, and gaps in current research that this thesis aims to address

are identified.

• Chapter 4: Methodology

The research design and methodology adopted in the thesis are out-

lined. An overview of the CMSSW framework is provided, data col-

lection methods are discussed, evaluation criteria for auto-tuners are

defined, and the proposed auto-tuning framework’s architecture and

search techniques are introduced.

• Chapter 5: Results and Discussion

Results of applying the auto-tuning framework are presented, includ-

ing baseline performance analysis and the effects of seeded configura-

tions. The impact of reducing the search space using machine learning

techniques is explored, multi-fidelity auto-tuning is discussed, perfor-

mance portability is evaluated, and limitations and future work are

considered.

• Chapter 6: Conclusion and Future Work

The thesis concludes with a summary of the contributions made, a dis-

cussion of the study’s limitations, and potential directions for future

research are outlined.

• References

A list of all the scholarly works cited throughout the thesis.

Through this structure, a comprehensive examination of performance

auto-tuning for GPU applications is provided, contributing valuable insights

and practical solutions to the high-performance computing community.

8

Chapter 2

Background

This background chapter aims to provide the foundational knowledge

necessary to understand GPU computing, the need for performance opti-

mization, and the potential of auto-tuning in addressing these challenges.

By exploring these topics, the chapter sets the stage for the development of

an auto-tuning framework that can effectively optimize GPU applications,

particularly in the context of HPC.

2.1 GPU Computing

GPU computing leverages the highly parallel architecture of graphics pro-

cessors to accelerate a wide range of computationally intensive tasks. Orig-

inally designed to handle the simultaneous calculations required for ren-

dering complex graphics, GPUs have found applications far beyond their

original purpose (Luebke et al., 2004). Their ability to perform many cal-

culations in parallel makes them particularly well-suited for problems that

can be broken down into independent, concurrent operations (Buck et al.,

9

2004).

GPUs are used in diverse domains such as machine learning, scientific

simulations, cryptography, and big data analytics. In machine learning,

GPUs accelerate the training of deep neural networks (Steinkraus, Buck,

& Simard, 2005), enabling breakthroughs in areas like computer vision

(Fung & Mann, 2005). Scientific simulations, from molecular dynamics

(Anderson, Lorenz, & Travesset, 2008) to climate modelling (Demeshko,

Maruyama, Tomita, & Matsuoka, 2013), benefit from the increased com-

putational power of GPUs. In the field of high energy physics, GPUs are

increasingly used to process the vast amounts of data generated by parti-

cle accelerators and detectors (Bocci, Innocente, Kortelainen, Pantaleo, &

Rovere, 2020).

However, harnessing the full potential of GPU computing presents unique

challenges (Ryoo et al., 2008). Effective utilization of GPU resources re-

quires careful consideration of hardware architecture, memory management,

and parallelization strategies. These factors significantly influence applica-

tion performance and efficiency. As such, optimizing GPU applications of-

ten involves complex tuning processes, which can be time-consuming and

require specialized expertise.

2.1.1 GPU Architecture

GPUs architectures are significantly different from CPUs architecture. CPUs

are designed for general-purpose computing with a focus on low-latency op-

erations and complex control flow, whereas GPUs are optimized for parallel

processing and high throughput. This fundamental difference is reflected

in their respective architectures (see Figure 2.1), with CPUs consisting of a

few complex cores and GPUs containing numerous simpler cores designed

for concurrent execution of similar tasks.

The parallel nature of GPU architecture is closely tied to the concepts of

10

Figure 2.1: A comparison between the architectures of a GPU and a CPU (NVIDIA Cor-

poration, 2024a).

Single Instruction, Multiple Data (SIMD) and Single Instruction, Multiple

Thread (SIMT). SIMD, a paradigm originally developed for vector proces-

sors, allows a single instruction to operate on multiple data points simulta-

neously. GPUs extend this concept with SIMT, which enables the execution

of a single instruction across multiple independent threads. This approach is

particularly well-suited to graphics rendering and other highly parallelizable

computations, where the same operation is often performed on large sets of

data.

The fundamental building blocks for parallel computation in modern

GPUs architectures are Streaming Multiprocessors (SMs). Each SM con-

tains multiple CUDA cores (in NVIDIA GPUs) (NVIDIA Corporation, 2024a)

or compute units (in AMD GPUs) (AMD, Inc., 2024), as well as special

function units, load/store units, and register files. SMs are designed to exe-

cute groups of threads, known as warps or wavefronts, in a SIMT fashion.

This design allows for efficient scheduling and execution of parallel work-

loads, as multiple warps can be active simultaneously within an SM, en-

11

abling latency hiding through fine-grained multithreading. The number and

configuration of SMs vary across different GPU models and generations,

directly impacting the overall parallel processing capability of the GPU.

Memory hierarchy in GPUs is structured to support their parallel pro-

cessing capabilities (refer to Figure 2.2). Unlike CPUs, which rely heavily

on large, multi-level caches to reduce memory access latency, GPUs employ

a more specialized memory hierarchy. At the highest level, GPUs utilize

high-bandwidth memory, such as GDDR or HBM, to feed data to their nu-

merous processing cores. Within the GPU, a shared memory or L1 cache is

typically accessible by a group of threads, allowing for efficient data sharing

and reducing the need for costly global memory accesses.

Figure 2.2: GPU memory hierarchy (AMD, Inc., 2024).

Memory hierarchy in GPUs is structured to support their parallel pro-

cessing capabilities (refer to Figure 2.2). Unlike CPUs, which rely heavily

on large, multi-level caches to reduce memory access latency, GPUs employ

a more specialized memory hierarchy. At the highest level, GPUs utilize

high-bandwidth memory, such as GDDR or HBM, to feed data to their nu-

merous processing cores. Within the GPU, a shared memory or L1 cache is

12

typically accessible by a group of threads, allowing for efficient data sharing

and reducing the need for costly global memory accesses.

The performance characteristics of GPUs are not uniform across all

types of computations. GPUs excel in scenarios with high arithmetic inten-

sity, where the ratio of computational operations to memory operations is

high. Conversely, algorithms with complex control flow, frequent synchro-

nization requirements, or irregular memory access patterns may not fully

leverage the GPU’s parallel architecture, potentially leading to suboptimal

performance.

An effective utilization of GPU performance often requires careful op-

timization and tuning (Tillmann, Karcher, Dachsbacher, & Tichy, 2013).

This process involves considerations such as thread block size selection,

memory access patterns, load balancing, and minimizing data transfers be-

tween the CPU and GPU. Tools such as profilers and performance analysis

frameworks play a crucial role in identifying bottlenecks and guiding opti-

mization efforts.

The combination between algorithmic innovations and hardware advance-

ments will likely drive further improvements in GPU performance char-

acteristics, potentially unlocking new frontiers in computational capabili-

ties and enabling more complex simulations, larger-scale data analysis, and

more sophisticated artificial intelligence models.

2.1.2 GPU Programming Platforms

GPU programming platforms have evolved significantly over the past two

decades, offering developers diverse approaches to harness the parallel pro-

cessing capabilities of graphics processing units for general-purpose com-

puting tasks. These platforms provide abstractions and frameworks that

facilitate the development of high-performance applications across various

hardware architectures. Among the popular GPU programming platforms,

13

CUDA, ROCm, OpenCL, and SYCL have emerged as key players in the

field of heterogeneous computing.

CUDA (Compute Unified Device Architecture), introduced by NVIDIA

in 2007 (NVIDIA Corporation, 2024a), has established itself as a widely

adopted GPU programming model. It provides a proprietary platform and

application programming interface (API) that enables developers to utilize

NVIDIA GPUs for parallel computing tasks. CUDA extends the C program-

ming language (see listing (2.1.1)), allowing programmers to define kernel

functions that are executed concurrently across multiple threads on the GPU.

The model incorporates a hierarchical memory structure, including global,

shared, and local memory, which can be leveraged to optimize data access

patterns and improve performance. CUDA’s ecosystem encompasses a com-

prehensive set of libraries, tools, and development environments, facilitating

the creation of efficient GPU-accelerated applications in various domains,

such as scientific computing, machine learning, and computer vision.

While CUDA has gained significant traction, AMD’s ROCm (Radeon

Open Compute) has emerged as an open-source alternative for GPU pro-

gramming. ROCm provides a platform for developing and deploying GPU-

accelerated applications on AMD hardware. It offers a set of tools, libraries,

and compilers that enable developers to write portable code across different

GPU architectures. ROCm supports multiple programming models, includ-

ing HIP (Heterogeneous-Computing Interface for Portability), which allows

for the conversion of CUDA code to run on AMD GPUs with minimal mod-

ifications (see listing (2.1.1)). This approach aims to enhance code portabil-

ity and reduce vendor lock-in, enabling developers to target a broader range

of hardware platforms.

14

1 // Kernel definition

2 __global__ void VecAdd(float* A, float* B, float* C)

3 {

4 int i = threadIdx.x;

5 C[i] = A[i] + B[i];

6 }

7

8 int main()

9 {

10 ...

11 // Kernel invocation with N threads

12 VecAdd <<<1, N>>>(A, B, C);

13 ...

14 }

Listing (2.1.1): CUDA / HIP code example.

OpenCL (Open Computing Language) represents a standardized, cross-

platform framework for parallel programming on heterogeneous systems.

Developed by the Khronos Group, OpenCL provides a unified programming

model that can target CPUs, GPUs, FPGAs, and other accelerators from

various vendors. The OpenCL architecture consists of a host program that

coordinates the execution of kernels on one or more compute devices (see

listing (2.1.2)). It employs a hierarchical memory model similar to CUDA,

with global, local, and private memory spaces. OpenCL’s platform-agnostic

nature allows developers to write portable code that can run on diverse hard-

ware configurations, making it an attractive option for applications requiring

broad compatibility.

1 __kernel void VecAdd(__global float* A,

2 __global float* B,

3 __global float* C)

4 {

5 int i = get_global_id (0);

6 C[i] = A[i] + B[i];

7 }

Listing (2.1.2): OpenCL example.

15

SYCL (pronounced ”sickle”) is an open standard for heterogeneous com-

puting developed by the Khronos Group (Khronos, 2020). It provides a

higher-level programming model that builds upon the concepts of OpenCL

while offering a more modern, C++ based approach. SYCL aims to simplify

GPU programming by providing a single-source, cross-platform abstraction

layer. The standard allows developers to write code that can be executed on

CPUs, GPUs, and other accelerators using standard C++ syntax and seman-

tics. SYCL employs a host-device execution model, where a single source

file contains both host and device code (see listing (2.1.3)). The model

leverages C++ templates and lambda functions to define kernels, reducing

the complexity of managing separate host and device code bases.

1 int main() {

2 ...

3 // Create a queue to work on default device

4 queue q;

5

6 // Submit a command group to the queue

7 q.submit ([&](handler& h) {

8 // Accessors for the buffers assuming they are created and

initialized

9 auto accA = bufA.get_access <access ::mode::read >(h);

10 auto accB = bufB.get_access <access ::mode::read >(h);

11 auto accC = bufC.get_access <access ::mode::write >(h);

12

13 // Define and dispatch the kernel

14 h.parallel_for(range <1>(N), [=](id <1> i) {

15 accC[i] = accA[i] + accB[i];

16 });

17 });

18 ...

19 }

Listing (2.1.3): SYCL example using the DPC++ implementation.

16

2.2 Performance Optimization for GPUs

While the performance benefits of GPUs are substantial, it is crucial to ac-

knowledge that effectively leveraging GPU capabilities presents its own set

of challenges (Ryoo et al., 2008; Reyes & de Sande, 2012). The develop-

ment of GPU-accelerated applications often requires specialized program-

ming models and languages, such as CUDA or OpenCL, which introduce

additional complexity to the software development process. Moreover, the

optimization of algorithms for GPU execution frequently necessitates a fun-

damental rethinking of computational approaches to maximize parallelism

and minimize data transfer overheads.

2.2.1 GPUs Common Optimization Techniques

Coalesced memory access patterns in GPU computing are crucial for opti-

mizing performance. In NVIDIA GPUs, data is transferred between Stream-

ing Multiprocessors (SMs) and memory in cache lines (see figure 2.3), typ-

ically 128 bytes (NVIDIA Corporation, 2024a). GPUs execute threads in

warps, usually 32 threads, and when these threads access adjacent memory

locations, it’s called coalesced access (see figure 2.4). This pattern is effi-

cient because it reduces the number of memory fetches required (Schmidt,

Gonzalez-Dominguez, Hundt, & Schlarb, 2018), as a single cache line can

serve multiple threads within a warp. Additionally, coalesced access min-

imizes bank conflicts in shared memory, where multiple threads accessing

the same memory bank can cause serialization (Li, Wei, Sun, Annavaram, &

Kim, 2019). By contrast, interleaved access patterns, where threads access

non-adjacent memory locations, are less efficient. Implementing coalesced

memory access can significantly improve GPU performance by reducing

memory bandwidth usage and minimizing bank conflicts, making it a key

optimization technique in GPU programming.

17

Bank 0 Bank 1 Bank 2 Bank 31

Figure 2.3: An illustration of how the memory is accessed in the threads using cache lines

and memory banks. (Mohamed, 2020).

Thread Thread Thread Thread Thread Thread

...

0 1 2 3 4 ... 31

Interleaved

Thread Thread Thread Thread Thread Thread

...

0 1 2 3 4 ... 31

Coalesced

Figure 2.4: An illustration of the difference between interleaved and coalesced memory

access patterns. (Mohamed, 2020).

18

Thread divergence (see figure 2.5), a situation where different threads

within a warp take divergent execution paths, can severely impact GPU

performance (Lin & Wang, 2020). Techniques to mitigate this issue in-

clude branch prediction, warp-level programming, and algorithm redesign

to promote more uniform execution across threads. Additionally, the care-

ful selection of thread block sizes and grid configurations can significantly

influence the efficiency of GPU kernels.

Thread 0
Logic

Thread 1
Logic

Branch

Common
Logic

Code Flow Chart

Branch

Thread 0
Logic

Thread 1
Logic

Thread 1
is idle

Thread 0
is idle

Common
Logic

Execution Flow Chart

Common
Logic

Execution Flow Chart

Figure 2.5: Diverged code flow chart vs execution flow chart. (Mohamed, 2020).

Optimizing data transfer between the host CPU and the GPU device is

another crucial aspect of GPU application optimization (Gelado & Garland,

2019). This can be achieved through techniques such as asynchronous data

transfer (see figure 2.6), pinned memory allocation, and the use of unified

memory in supported architectures. Furthermore, the implementation of

stream processing and concurrent kernel execution can help to maximize

19

GPU utilization by overlapping computation and data transfer operations.

Figure 2.6: Timeline comparison between data copy and kernel execution (NVIDIA Cor-

poration, 2024a).

Algorithmic optimizations tailored specifically for GPU architectures

play a vital role in enhancing application performance (Rovere, Chen, Di Pi-

lato, Pantaleo, & Seez, 2020). These may include techniques such as loop

unrolling, instruction-level parallelism, and the use of intrinsic functions

to leverage hardware-specific features. Moreover, the adoption of GPU-

friendly data structures and algorithms, such as those that promote coalesced

memory access and reduce thread divergence, can lead to substantial perfor-

mance gains.

Profiling and performance analysis tools are indispensable in the opti-

mization process (Ebrahim, Hammad, Zeki, & Alqaddoumi, 2021; Zhou et

al., 2021). These tools provide insights into kernel execution times, memory

access patterns, and potential bottlenecks, enabling developers to identify

and address performance issues systematically. Through iterative profil-

ing and optimization, significant improvements in GPU application perfor-

mance can be realized.

With time, new optimization techniques emerge, and existing ones are

refined (Reyes & de Sande, 2012). The field of GPU optimization remains

dynamic, with ongoing research exploring novel approaches to harness the

full potential of these powerful computing resources.

20

2.2.2 Performance Portability

Performance portability has become an increasingly critical concern in the

field of high-performance computing (Neely, 2016). As computational ar-

chitectures continue to diversify, the challenge of writing code that can effi-

ciently execute across multiple platforms has grown more complex (Sedova,

Eblen, Budiardja, Tharrington, & Smith, 2018; McIntosh-Smith, Boulton,

Curran, & Price, 2014). To address this issue, various performance porta-

bility libraries and standards have been developed, each offering unique ap-

proaches to achieving portable performance (Ben-Nun, Gamblin, Hollman,

Krishnan, & Newburn, 2020).

Higher-level performance portability libraries, such as RAJA (Beckingsale

et al., 2019) and Kokkos (Trott et al., 2022), provide abstraction layers that

allow programmers to write code once and run it efficiently on different ar-

chitectures. RAJA, for instance, employs a series of loop transformations

that are mapped to the underlying hardware, enabling parallelization with-

out requiring extensive knowledge of the target architecture. Kokkos, on the

other hand, offers a parallel_for construct and algorithms based on parallel

_for, which can be customized using policies to map to various levels of

parallelism (refer to listing (2.2.4)). These libraries aim to simplify the pro-

cess of writing portable code by handling many of the low-level details of

parallelization and optimization.

1 struct Functor {

2 DataType _data;

3 Functor (DataType data) : _data (data) {}

4 void operator () (...) const {...}

5 }

6 ...

7 Functor functor(data);

8 Kokkos :: parallel_for(numberOfDataPoints , functor);

9 ...

Listing (2.2.4): Kokkos example.

21

In contrast, lower-level performance portability libraries like alpaka (Zenker

et al., 2016) provide a different approach. Alpaka gives programmers the

tools to write portable kernels, but it is the programmer’s responsibility to

implement the details of the parallel algorithm (refer to listing (2.2.5). This

approach offers greater flexibility and control over the implementation, but

it also requires a deeper understanding of parallel programming concepts

and the target architectures.

1 struct Kernel

2 {

3 // A template for the device type , CPU , GPU , FPGA , etc.

4 template <typename TAcc >

5 ALPAKA_FN_ACC auto operator ()(TAcc const& acc) const -> void

6 { /* Kernel Logic */}

7 };

8 ...

9 // Launching the kernel , assuming everything needed is predefined.

10 alpaka ::exec <Acc >(

11 queue ,

12 workDiv ,

13 helloWorldKernel);

Listing (2.2.5): Alpaka example.

Standards such as OpenCL and SYCL have been developed to address

performance portability at a broader level. These standards define a set of

specifications that must be implemented by hardware vendors, ensuring a

consistent programming interface across different platforms. OpenCL, for

example, provides a framework for writing programs that execute across

heterogeneous platforms, including CPUs, GPUs, and other processors. SYCL,

building upon OpenCL, offers a higher-level abstraction that allows for single-

source C++ programming for heterogeneous systems (see listing (2.1.3)

from the previous section).

Another approach to performance portability is exemplified by OpenMP,

which uses compiler directives to specify parallelism in the code (listing

22

(2.2.6)). These directives allow programmers to annotate their code with

parallelization instructions, which are then interpreted by the compiler to

generate appropriate parallel code for the target architecture. This approach

can be particularly useful for incrementally parallelizing existing codebases.

1 #pragma omp parallel for reduction (+:sum)

2 for (int i = 0; i < N; i++) {

3 sum += i;

4 }

Listing (2.2.6): OpenMP example.

It is important to note that while these libraries and standards facilitate

the development of portable code, achieving optimal performance across

different architectures often requires additional tuning (Matthes et al., 2017).

This tuning process may be performed manually by the programmer or auto-

matically by the compiler or autotuners, depending on the specific library or

standard being used. The goal of this tuning is to ensure maximum utiliza-

tion of the available hardware resources on each target architecture, which

is crucial for achieving true performance portability.

2.3 Autotuning

Autotuning became a necessity as soon as the complexity of hardware ar-

chitectures and software systems began to outpace the ability of human

experts to manually optimize code for diverse platforms (Whaley & Don-

garra, 1998). As computational systems grew increasingly heterogeneous

and complicated, the need for automated optimization techniques became

paramount. Autotuning addresses this challenge by systematically explor-

ing the vast configuration space of software parameters, employing various

search algorithms and machine learning techniques to identify optimal or

near-optimal configurations.

23

2.3.1 Concept and Importance

Autotuning, a critical process in software optimization, involves the auto-

mated adjustment of program parameters to enhance performance (Balaprakash

et al., 2018). The search space, which encompasses all possible combina-

tions of parameter values, is a fundamental concept in autotuning. It is often

characterized by its dimensionality and the range of values each parameter

can assume. As the search space grows larger, the complexity of finding op-

timal configurations increases exponentially, making efficient exploration

strategies necessary.

The tuning interface serves as the bridge between the autotuner and the

target application. It is typically implemented as a communication interface

that allows the autotuner to modify parameters and measure the resulting

performance (Balaprakash et al., 2018). This interface must be designed

with care to ensure minimal overhead and accurate performance measure-

ments. Tunable code, the portion of the application that can be modified by

the autotuner, is prepared by developers to expose key parameters that sig-

nificantly impact performance. These parameters may include algorithmic

choices, data structure configurations, or hardware-specific settings.

Search algorithms form the core of autotuning systems, guiding the ex-

ploration of the search space to identify high-performing configurations.

Various approaches have been developed, ranging from simple techniques

like random search and grid search to more sophisticated methods such as

genetic algorithms, simulated annealing, and Bayesian optimization (Seymour,

You, & Dongarra, 2008a). The choice of search algorithm often depends on

the characteristics of the search space and the available computational re-

sources for tuning.

Different types of autotuners have emerged to address specific optimiza-

tion challenges (Balaprakash et al., 2018). Offline autotuners perform the

tuning process before the application is deployed, generating optimized con-

24

figurations for various scenarios. Online autotuners, in contrast, adapt the

application during runtime, responding to changes in input data or execu-

tion environment. Hybrid approaches combine elements of both offline and

online tuning to balance the benefits of pre-computed optimizations with

runtime adaptability.

Performance metrics and objective functions play a crucial role in guid-

ing the autotuning process. These metrics serve as quantitative measures of

a configuration’s effectiveness and are used to compare different parameter

sets. Common performance metrics include execution time, throughput, en-

ergy consumption, and resource utilization. The choice of metric depends

on the specific optimization goals and can significantly influence the tuning

outcomes. Objective functions, which may combine multiple metrics, are

formulated to provide a single value representing the overall quality of a

configuration. These functions can be designed to balance conflicting ob-

jectives, such as maximizing performance while minimizing resource usage.

The definition of appropriate objective functions is a challenging task that

often requires domain expertise and careful consideration of the target ap-

plication’s requirements. Multi-objective optimization techniques are some-

times employed when multiple, potentially conflicting, performance goals

must be addressed simultaneously (Balaprakash, Tiwari, & Wild, 2014).

Despite its potential benefits, autotuning faces several challenges and

limitations that require consideration. One significant issue is the curse

of dimensionality, where the search space grows exponentially with the

number of tunable parameters, making exhaustive exploration infeasible for

complex systems (Ashouri et al., 2018). Additionally, the cost of evaluating

configurations can be prohibitively high, especially for large-scale applica-

tions or when real-world workloads are required for accurate performance

assessment (Ashouri et al., 2018). Autotuners may also struggle with non-

deterministic behaviour in target applications, where performance variations

25

due to factors such as system noise or data-dependent execution paths can

obscure the true impact of parameter changes (Willemsen et al., 2024). The

portability of tuned configurations across different hardware platforms or

input datasets remains a challenge, as optimal settings for one environment

may not translate well to another (Tørring et al., 2023). Furthermore, the

interpretability of autotuning results can be limited, making it difficult for

developers to gain insights into the underlying performance characteristics

of their applications (Willemsen et al., 2024). Addressing these challenges

requires ongoing research in areas such as dimensionality reduction tech-

niques, adaptive sampling strategies, robust performance modelling, and

explainable autotuning approaches.

The effectiveness of autotuning is influenced by factors such as the qual-

ity of performance models, the selection of representative workloads, and

the ability to generalize findings across different execution environments.

As autotuning techniques continue to evolve, researchers are exploring ways

to handle increasingly complex search spaces, improve the scalability of

tuning processes, and integrate machine learning approaches to enhance the

efficiency and effectiveness of parameter optimization in software systems.

2.3.2 Autotuning for GPUs

The process of autotuning a GPU application involves the systematic adjust-

ment of various tunable parameters to achieve optimal execution efficiency.

These parameters may encompass a wide range of factors, including but not

limited to thread block dimensions, cache usage, memory access patterns,

and algorithmic choices (van Werkhoven, 2019). The complexity of mod-

ern GPU architectures necessitates a thorough exploration of the parameter

space to identify configurations that yield the best performance for a given

application.

Kernel tuning, a fundamental aspect of GPU application optimization,

26

focuses on refining individual computational kernels. This process often in-

volves the manipulation of low-level parameters such as thread hierarchy,

shared memory utilization, and register allocation. By fine-tuning these ele-

ments, developers can significantly enhance the efficiency of core computa-

tional units within their applications. The optimization of kernels can lead to

substantial improvements in overall application performance, as these units

typically constitute the most computationally intensive portions of GPU pro-

grams (van Werkhoven, 2019).

Full application tuning extends beyond individual kernels to encompass

the entire GPU application (Guerreiro, Ilic, Roma, & Tomás, 2015). This

holistic approach considers the interplay between different components of

the software, including data transfer operations, synchronization points, and

the orchestration of multiple kernels. The process may involve restructuring

the application architecture, optimizing memory hierarchies, and balancing

workloads across available resources. Full application tuning often requires

a deep understanding of both the underlying hardware capabilities and the

specific requirements of the application domain.

In scenarios involving multiprocess GPU applications, the complexity of

autotuning increases significantly. The optimization process must account

for the interactions between multiple concurrent processes, each competing

for GPU resources. Considerations such as inter-process communication,

resource contention, and load balancing become important. Effective mul-

tiprocess tuning strategies may involve dynamic workload distribution, co-

operative scheduling algorithms, and intelligent resource allocation mech-

anisms to maximize overall system throughput whilst minimizing conflicts

between competing processes (Guerreiro et al., 2015).

As GPU manufacturers introduce new features such as ray tracing cores,

tensor cores for AI acceleration, and improved memory hierarchies, au-

totuning strategies must adapt to exploit these advancements effectively.

27

(Markidis, Chien, Laure, Peng, & Vetter, 2018) The increasing complexity

of GPU architectures, including multi-GPU systems and GPUs with het-

erogeneous compute units, necessitates more sophisticated autotuning ap-

proaches. For instance, optimizing workloads for mixed-precision arith-

metic operations, now common in AI and scientific computing, requires au-

totuners to consider precision-performance trade-offs (Gu & Becchi, 2020).

Additional aspects of GPU application autotuning may include the op-

timization of data layouts, the exploration of alternative algorithmic imple-

mentations, and the exploitation of hardware-specific features. The devel-

opment of robust autotuning frameworks and tools has greatly facilitated

this process, enabling automated exploration of vast parameter spaces and

the discovery of non-intuitive optimizations.

This chapter has provided a comprehensive overview of GPU comput-

ing fundamentals, performance optimization techniques, and autotuning ap-

proaches. The discussion covered the essential aspects of GPU architecture,

including its parallel processing capabilities and memory hierarchy, as well

as various programming platforms available for GPU development. Per-

formance optimization techniques, from memory access patterns to cross-

platform portability solutions, were examined. The chapter also explored

autotuning concepts and their application to GPU optimization, highlight-

ing both kernel-level and full-application approaches. Table 2.1 summarizes

the key topics and concepts discussed.

28

Table 2.1: Summary of Background Topics
Topic Key Points
GPU

Computing

• Parallel architecture optimized for throughput

• SIMT execution model with SMs as building blocks

• Specialized memory hierarchy

• Programming platforms: CUDA, ROCm, OpenCL, SYCL

Performance

Optimization

• Coalesced memory access patterns

• Thread divergence mitigation

• Data transfer optimization

• Profiling and analysis tools

• Performance portability approaches

Autotuning • Search space exploration techniques

• Tuning interface design

• Multiple optimization objectives

• Online vs offline tuning

• GPU-specific kernel and application tuning

29

Chapter 3

Literature Review

An extensive review of the current state-of-the-art in performance auto-

tuning for GPU applications is presented in this chapter. The scope of this

review covers several key areas that are fundamental to the development

of an effective auto-tuning framework. These areas include existing auto-

tuning frameworks, the application of machine learning techniques in per-

formance optimization, multi-fidelity optimization strategies, multiprocess

performance autotuning, and benchmarking methodologies.

Throughout this review, the current gaps in the field are identified, and

the foundation for the proposed performance auto-tuning framework is es-

tablished.

3.1 Autotuning Frameworks

The literature on autotuning presents a rich and diverse landscape of tools

and frameworks, each designed to address specific challenges in optimizing

performance across various domains. Autotuning, the automated process

30

of optimizing parameters or configurations to enhance the performance of

software or hardware systems, is crucial in a world where computational

efficiency is of utmost importance, especially in HPC in general, and GPU-

accelerated applications in particular.

One of the most widely used autotuning frameworks is OpenTuner (Ansel

et al., 2014), which emphasizes the creation of domain-specific, multi-objective

autotuners. OpenTuner is particularly notable for its flexibility, allowing

users to define custom optimization problems tailored to the specific require-

ments of their applications. This framework supports a wide range of search

techniques, including evolutionary algorithms, hill climbing, and simulated

annealing, among others. The ability to integrate multiple search techniques

makes OpenTuner a powerful tool for complex optimization tasks where the

objective functions may be multifaceted, involving trade-offs between per-

formance metrics such as execution time, memory usage, and energy con-

sumption.

Another significant contribution to the autotuning ecosystem is Kernel

Tuner (van Werkhoven, 2019), which, along with Kernel Tuner Toolkit

(Petrovič et al., 2020), is specifically designed for tuning computational

kernels. Computational kernels are the core components of many high-

performance applications, particularly those leveraging the capabilities of

GPUs. The efficiency of these kernels is critical, as they often represent the

most computationally intensive parts of the code. Kernel Tuner allows de-

velopers to experiment with different configurations, such as thread block

sizes and loop unrolling factors, to identify the optimal settings that maxi-

mize performance on a given hardware platform. The Kernel Tuner Toolkit

extends this functionality by providing additional tools and utilities that fa-

cilitate the development and tuning of these kernels, making it easier for

developers to achieve peak performance in HPC and GPU-accelerated envi-

ronments.

31

CLTune (Nugteren & Codreanu, 2015) is another specialized autotun-

ing tool that focuses on the optimization of OpenCL kernels. OpenCL is

a framework for writing programs that execute across heterogeneous plat-

forms, including CPUs, GPUs, and other processors. CLTune provides a

user-friendly interface for exploring the vast search space of possible kernel

configurations, enabling developers to quickly find the most efficient imple-

mentations. Its design emphasizes ease of use and integration with existing

OpenCL projects, making it an attractive option for developers working in

heterogeneous computing environments.

GPTune (Liu et al., 2021) takes a more advanced approach by incor-

porating transfer learning into the autotuning process. Transfer learning

(Torrey & Shavlik, 2010), a technique commonly used in machine learning,

involves applying knowledge gained from one problem to improve perfor-

mance on a related problem. GPTune leverages this concept to accelerate the

tuning process, particularly in scenarios where prior tuning data is available.

By reusing information from previous tuning efforts, GPTune can reduce

the number of evaluations needed to find optimal configurations, making it

a highly efficient tool for applications where tuning time is a critical factor.

Optuna (Akiba, Sano, Yanase, Ohta, & Koyama, 2019) adds another

dimension to the autotuning landscape by focusing on hyperparameter tun-

ing in machine learning models. Hyperparameter tuning is a crucial step in

the development of machine learning algorithms (Yang & Shami, 2020), as

the choice of hyperparameters can significantly impact model performance.

Optuna employs Bayesian optimization (BO), a probabilistic model-based

approach that balances exploration and exploitation to efficiently search

the hyperparameter space. This makes Optuna particularly well-suited for

machine learning applications, where the tuning process can be both time-

consuming and computationally expensive.

These autotuning frameworks illustrate the wide applicability and im-

32

portance of autotuning across different domains (see Table 3.1). From op-

timizing computational kernels in HPC and GPU-accelerated applications

to fine-tuning hyperparameters in machine learning models, autotuning re-

mains a critical tool for developers seeking to maximize performance. The

diversity of approaches, ranging from domain-specific frameworks like Open-

Tuner and Kernel Tuner to advanced techniques like those employed by

GPTune and Optuna, emphasizes the ongoing efforts in this field and the

continued need for specialized tools capable of addressing the unique chal-

lenges of different applications.

Table 3.1: Comparison of Autotuning Frameworks and Their Features
Framework Primary Fo-

cus
Key Features Search Methods

OpenTuner
(Ansel et al.,

2014)

General-

purpose

autotuning

• Multi-objective optimiza-

tion

• Custom search space def-

inition

• Extensible architecture

• Evolutionary algorithms

• Hill climbing

• Simulated annealing

• AUCBandit

Kernel Tuner
(van

Werkhoven,

2019)

GPU kernel

optimization

• CUDA/OpenCL support

• Thread block optimiza-

tion

• Loop unrolling tuning

• Random search

• Bayesian optimization

• Evolutionary algorithms

• Basin Hopping

CLTune
(Nugteren &

Codreanu,

2015)

OpenCL ker-

nel tuning

• OpenCL-specific opti-

mizations

• Easy integration

• Cross-platform support

• Random search

• Simulated annealing

GPTune
(Liu et al.,

2021)

Transfer

learning-

based tuning

• Knowledge transfer

• Reduced evaluation count

• Historical data utilization

• Bayesian optimization

• Transfer learning

Optuna
(Akiba et al.,

2019)

Hyperparameter

optimization

• ML-focused design

• Distributed optimization

• Pruning mechanisms

• Bayesian optimization

• Tree-structured Parzen

• Random search

33

3.2 Autotuning Benchmarking Methodologies

In the field of heterogeneous computing, benchmark suites play a crucial

role in evaluating and comparing the performance of different systems and

programming models. Over the years, several benchmark suites have been

developed to address various aspects of heterogeneous computing, each with

its own focus and strengths.

One of the earliest and most influential benchmark suites in this domain

is Rodinia (Che et al., 2009). Developed to cover a wide range of paral-

lel patterns and synchronization techniques, Rodinia has been a standard in

the field for many years. Despite being somewhat outdated now, it con-

tinues to be a valuable resource for researchers and developers. Rodinia’s

strength lies in its comprehensive coverage of different computational pat-

terns and its implementation support for multiple programming models, in-

cluding CUDA, OpenCL, and OpenMP. This versatility has made it a go-to

benchmark suite for comparing the performance of different heterogeneous

computing platforms and programming approaches.

Building upon the foundation laid by Rodinia, newer benchmark suites

have emerged to address the evolving needs of the heterogeneous comput-

ing landscape. One such suite is HeCBench (Jin & Vetter, 2023), which

aims to improve the performance portability of the SYCL programming

model. HeCBench extends the Rodinia suite and combines it with other

benchmarks, providing a more comprehensive set of tests that reflect mod-

ern heterogeneous computing challenges. This suite is particularly useful

for developers working with SYCL and those interested in performance

portability across different hardware architectures.

As the field of heterogeneous computing continues to advance, partic-

ularly with the rise of deep learning and neural networks, new benchmark

suites have been developed to address these emerging areas. Mirovia (Hu

& Rossbach, 2019) is a prime example of this trend. This modern bench-

34

mark suite includes applications from previous suites while also incorporat-

ing new benchmarks focused on deep neural networks. By combining tra-

ditional heterogeneous computing tasks with cutting-edge deep learning ap-

plications, Mirovia provides a more holistic view of the performance char-

acteristics of modern heterogeneous systems.

While some benchmark suites focus on specific programming models

or application domains, others take a broader approach to assessing hetero-

geneous computing systems. The SHOC benchmark suite (Danalis et al.,

2010), for instance, is designed to evaluate both the performance and stabil-

ity of scalable heterogeneous computing systems that incorporate GPUs and

multicore processors. This comprehensive approach makes SHOC particu-

larly valuable for researchers and developers working on large-scale hetero-

geneous systems where stability is as critical as raw performance.

As energy efficiency becomes an increasingly important consideration

in computing, benchmark suites that address power consumption have also

emerged. EPPMiner is one such suite (Q. Wang, Xu, Zhang, & Chu, 2017),

designed to evaluate not just performance but also power consumption and

energy efficiency of heterogeneous systems. This multi-objective approach

reflects the growing importance of energy considerations in modern comput-

ing environments, particularly in data centers and high-performance com-

puting facilities.

Some benchmark suites focus on very specific aspects of heterogeneous

computing. HeteroSync,(Sinclair, Alsop, & Adve, 2017) for example, is a

specialized suite that measures fine-grained synchronization on tightly cou-

pled CPU-GPU systems. While narrow in focus, such specialized suites

provide invaluable insights into specific performance characteristics that can

be critical for certain applications or system designs.

The challenge of objectively comparing autotuners and tuning algorithms

has become increasingly important in the field of heterogeneous comput-

35

ing. As systems grow more complex, manual optimization becomes in-

creasingly difficult, leading to a greater reliance on automatic performance

tuning. However, evaluating the effectiveness of different autotuners and

tuning algorithms presents its own set of challenges (van Werkhoven, 2019).

Recognizing this need, researchers like Werkhoven et al. have focused

on developing methodologies and tools specifically designed for this pur-

pose (Tørring et al., n.d.). Their work addresses the fundamental problem of

how to fairly and accurately assess the performance of different autotuning

approaches across a wide range of scenarios.

The development of “BAT: A Benchmark suite for AutoTuners” (Sund,

Kirkhorn, Tørring, & Elster, n.d.) represents a significant step forward in

this area. This suite provides a standardized set of problems and metrics

specifically designed to test autotuners, allowing for more direct and mean-

ingful comparisons between different approaches. By offering a common

ground for evaluation, BAT helps researchers and developers to identify the

strengths and weaknesses of various autotuning strategies more objectively.

However, the challenge extends beyond just having a suitable bench-

mark suite. The methodology for using such suites is equally crucial. Willemsen

et al. (2024) work on a rigorous benchmarking methodology addresses this

aspect, providing guidelines on how to conduct fair and reproducible com-

parisons of autotuners. This methodology takes into account factors such

as the stochastic nature of many tuning algorithms, the impact of different

hardware configurations, and the variability in problem characteristics.

By combining a specialized benchmark suite with a well-defined method-

ology, this approach aims to bring more objectivity and reliability to the

evaluation of autotuners and tuning algorithms. This is particularly impor-

tant in heterogeneous computing environments, where the interaction be-

tween different hardware components and the wide variety of potential opti-

mizations make it difficult to predict which tuning approaches will be most

36

effective in any given scenario. Table 3.2 lists a summary of the benchmarks

discussed in this section.

Table 3.2: Comparison of Heterogeneous Computing Benchmark Suites

Suite Focus Key Features

Rodinia General parallel • Multiple programming models

(Che et al., 2009) computing • Pattern coverage

• Platform comparison

HeCBench SYCL performance • Extended Rodinia suite

(Jin & Vetter, 2023) portability • Modern heterogeneous computing

• Cross-platform evaluation

Mirovia Modern GPU • Deep neural networks

(Hu & Rossbach, 2019) workloads • Mixed benchmark types

• Contemporary applications

SHOC Scalable • System stability testing

(Danalis et al., 2010) systems • Multi-GPU performance

• Multicore integration

EPPMiner Energy • Power consumption metrics

(Q. Wang et al., 2017) efficiency • Performance-power trade-offs

• Efficiency evaluation

HeteroSync Fine-grained • CPU-GPU synchronization

(Sinclair et al., 2017) sync • Timing analysis

• Specialized measurements

BAT Autotuner • Standardized test problems

(Sund et al., n.d.) evaluation • Comparison metrics

• Reproducible benchmarks

3.3 Optimization Techniques Used in Autotun-
ing

Different autotuners employ a variety of search and optimization strategies

to enhance performance, each with its own strengths and limitations. This

37

diversity in approaches reflects the complexity of the autotuning problem

and the need to adapt to various scenarios.

Some autotuners use brute force algorithms, especially when dealing

with smaller search spaces. For example, Kernel Tuner (van Werkhoven,

2019), as mentioned in the original text, employs this approach. Brute force

methods systematically explore all possible combinations of parameter val-

ues within the defined search space. While this approach guarantees finding

the optimal solution, it becomes impractical for larger search spaces due to

the exponential growth in the number of combinations to evaluate.

For larger search spaces, more sophisticated algorithms are necessary.

OpenTuner, for instance, uses a variety of techniques, including random

search. Despite its simplicity, random search has proven to be very effec-

tive and often serves as a tough baseline for other methods to beat. This

effectiveness has been noted in several studies, highlighting that sometimes

simpler approaches can yield competitive results (Seymour, You, & Don-

garra, 2008b; Tørring & Elster, 2022).

Bayesian optimization has gained significant traction in recent years due

to its effectiveness in constructing surrogate models that guide the search

process (Willemsen, van Nieuwpoort, & van Werkhoven, 2021; Victoria &

Maragatham, 2021; Menon, Bhatele, & Gamblin, 2020). This approach

uses probabilistic models to predict the performance of different parameter

configurations, allowing it to make more informed decisions about which

configurations to evaluate next. Bayesian optimization is particularly useful

when evaluations are expensive or time-consuming, as it aims to minimize

the number of evaluations needed to find a good solution.

Multi-fidelity autotuning is an advanced approach that optimizes the use

of computational resources by integrating various levels of fidelity. Tools

like SMAC3 (Lindauer et al., 2022) and GPTuneBand (Zhu, Liu, Ghy-

sels, Bindel, & Li, 2022) fall into this category. The basic idea behind

38

multi-fidelity tuning is to use cheaper, lower-fidelity evaluations to guide

the search in the early stages, and then progressively increase the fidelity as

the search narrows down to promising regions of the parameter space. This

approach can significantly reduce the overall computational cost of tuning,

especially for problems where high-fidelity evaluations are very expensive.

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) offer

alternative approaches to autotuning. These are nature-inspired algorithms

that mimic biological evolution and social behavior, respectively. GAs work

by evolving a population of candidate solutions over multiple generations,

using operations like selection, crossover, and mutation. PSO, on the other

hand, simulates a swarm of particles moving through the search space, with

each particle’s movement influenced by its own best known position and the

swarm’s best known position. While these methods can be very effective for

certain types of problems, they often come with higher computational costs

compared to some other methods (van Werkhoven, 2019).

The choice of which autotuning strategy to use depends on various fac-

tors, including the size and nature of the search space (Tørring & Elster,

2022), the cost of evaluating each configuration (Lindauer et al., 2022; Zhu

et al., 2022), the available computational resources, and the specific charac-

teristics of the problem at hand. For instance, if evaluations are quick and

the search space is small, a brute force approach might be feasible and guar-

antee finding the global optimum. For larger spaces with expensive eval-

uations, Bayesian optimization or multi-fidelity approaches might be more

appropriate.

In practice (see Table 3.3), many modern autotuning systems use a com-

bination of these strategies, often allowing users to choose or even combine

different search algorithms. This flexibility allows autotuners to be applied

to a wide range of problems and to adapt to the specific needs and constraints

of different software systems and computing environments.

39

Table 3.3: Summary of Autotuning Search Techniques

Technique Strengths Best Use Cases

Brute Force • Guaranteed optimal solution • Small search spaces

• Simple implementation • Quick evaluations

• Complete coverage • Verification needs

Random • Simple yet effective • Large search spaces

Search • Good baseline performance • Unknown landscapes

• Easy to implement • Initial exploration

Bayesian • Efficient sampling • Expensive evaluations

Optimization • Model-based guidance • Complex landscapes

• Fewer evaluations needed

Multi-fidelity • Resource efficient • Limited compute budget

• Progressive refinement • Scalable applications

• Balanced exploration

Genetic • Handles complex spaces • Discrete parameters

Algorithms • Good for mixed types • Large populations

• Parallel evaluation • Non-smooth objectives

Particle • Dynamic adaptation • Continuous spaces

Swarm • Good local search • Social learning problems

• Natural parallelism • Dynamic environments

40

3.4 Summary and Research Gaps

This literature review has examined three key areas of GPU application

autotuning: frameworks, benchmarking methodologies, and optimization

techniques. Autotuning frameworks for GPU applications were found to

range from specific to general, each with its own advantages and trade-

offs, reflecting the complexity of GPU architectures and diverse applica-

tion needs. In benchmarking methodologies, new approaches have been

proposed to improve evaluation techniques, though many remain theoreti-

cal and need practical implementation. For optimization techniques, a wide

range of strategies was observed, each with a unique set of benefits and

tradeoffs, but no definitive solution for the problem.

A significant gap identified in current autotuning approaches is the lack

of consideration for overall system throughput. Existing autotuners typi-

cally focus on optimizing individual process performance without account-

ing for the impact on concurrent processes. This oversight can lead to

sub-optimal system-wide performance, particularly in GPU-intensive work-

loads where resource contention is a critical factor (Aguilera, Morrow, &

Kim, 2014; Chaudhary, Ramjee, Sivathanu, Kwatra, & Viswanatha, 2020;

Z. Wang et al., 2016). The discrepancy between favorable individual pro-

cess metrics and potentially degraded overall system throughput highlights

a crucial area for improvement in autotuning research.

Future research directions should address this gap by developing auto-

tuning strategies that consider system-wide performance metrics. This in-

cludes extending the current autotuners to work with multiple processes, im-

plementing and validating new benchmarking methodologies that account

for multiprocess scenarios, and exploring optimization techniques that can

balance individual process performance with overall system throughput.

41

Chapter 4

Methodology

This chapter outlines the methodological approach employed in this

study on performance auto-tuning for GPU applications. The research de-

sign, data collection methods, and analysis techniques are described to pro-

vide a comprehensive understanding of how the study was conducted.

4.1 Overview of Methodology Components

This chapter presents several interconnected components that form a com-

prehensive methodology for GPU kernel autotuning in CMSSW. Here’s how

these components relate to each other:

1. Research Design: Establishes the foundational approach, combining

comparative analysis and case study methods to evaluate autotuning

techniques in CMSSW.

2. CMSSW Framework: Serves as the case study platform, providing

the real-world context where the autotuning techniques are applied

42

and evaluated.

3. Data Collection: Details how performance data is gathered from both

individual GPU kernels and the overall system, feeding directly into

the evaluation process.

4. Evaluation Criteria: Defines how the collected data is analysed to

assess the effectiveness of different autotuning approaches across mul-

tiple dimensions.

5. Proposed Framework: Presents the practical implementation that

brings together all previous components, showing how autotuning is

actually performed within CMSSW.

6. Experimental Setup: Describes the hardware and software environ-

ment where all the above components are deployed and tested.

These components form a logical progression from theoretical founda-

tion to practical implementation and evaluation. The research design guides

the overall approach, while CMSSW provides the application context. Data

collection methods feed into the evaluation criteria, which are then applied

to assess the proposed framework’s performance across different experi-

mental setups.

4.2 Research Design

This study employed a hybrid research design, combining comparative and

case-study approaches to investigate performance autotuning techniques.

The research focused specifically on offline GPU kernel configurations au-

totuning for performance optimization.

The comparative aspect of the design allowed for a systematic evalu-

ation of different autotuning techniques and their relative effectiveness in

43

optimizing GPU kernel performance. This approach facilitated the identifi-

cation of the most promising autotuning strategies and the conditions under

which they excel.

The case study component centred on the CMSSW (Compact Muon

Solenoid Software) framework (CMS Collaboration, 2024), a complex soft-

ware system used in high-energy physics experiments. By applying auto-

tuning techniques to the GPU kernels within CMSSW, the study aimed to

provide in-depth insights into the practical challenges and benefits of auto-

tuning in a real-world, computationally intensive scientific application.

The offline nature of the autotuning process allowed for extensive ex-

ploration of the parameter space without the constraints of real-time perfor-

mance requirements. This approach enabled the research to focus on finding

optimal or near-optimal configurations that could be applied in subsequent

runs of the software.

By combining these research design elements, the study sought to con-

tribute both generalizable knowledge about GPU kernel autotuning tech-

niques and specific, actionable insights for improving the performance of

the CMSSW framework. This dual approach aimed to bridge the gap be-

tween theoretical advancements in autotuning and their practical application

in complex scientific software systems.

4.3 CMSSW Framework

The Compact Muon Solenoid Software (CMSSW) framework forms the

core of this study’s case analysis in GPU kernel autotuning. CMSSW is a

complex, event-processing software developed and maintained by the CMS

Collaboration for use in high-energy physics experiments at the Large Hadron

Collider (LHC) at CERN (CMS Collaboration, 2006, 2021). This frame-

work plays a crucial role in processing and analysing the vast amounts of

44

data generated by particle collisions in the CMS detector. As the compu-

tational demands of particle physics research continue to grow (Fernandez

Perez Tomei, 2022), there is an increasing need to optimize CMSSW’s per-

formance, particularly through GPU acceleration and efficient kernel con-

figurations (Bocci et al., 2019).

4.3.1 Overview of CMSSW

The Compact Muon Solenoid Software (CMSSW) is an event-processing

framework developed for the CMS experiment at the Large Hadron Collider

(LHC). It plays a crucial role in both real-time data acquisition and offline

analysis of particle collision data.

In the data acquisition chain, CMSSW forms a key component of the

High-Level Trigger (HLT) system. The HLT receives input from the Low-

Level Trigger, which deals with the raw signals directly from the CMS de-

tector. CMSSW within the HLT performs rapid event reconstruction and ini-

tial physics analysis, making critical decisions about which events to record

for further study.

Beyond its real-time applications, CMSSW is extensively used offline

on various computing resources, from individual workstations to large-scale

distributed grids. In this capacity, it processes recorded data, performing

more detailed event reconstruction and enabling in-depth physics analyses.

The framework’s primary functions span from initial data processing

and event reconstruction to complex physics analysis and particle interac-

tion simulation. Its modular, open-source architecture facilitates continuous

improvement and adaptation to evolving research needs.

CMSSW’s dual role in both online triggering and offline processing,

combined with its flexibility and community-driven development, makes it

an ideal candidate for performance optimization studies. This is particularly

relevant in the context of GPU acceleration and autotuning, which have the

45

potential to enhance both real-time data handling and offline analysis capa-

bilities.

4.3.2 Relevance to GPU Kernel Autotuning

CMSSW is highly suitable for GPU acceleration due to its parallel nature

(Ramı́rez, Yzquierdo, & Hernández, 2016), processing numerous indepen-

dent events simultaneously. This aligns well with GPU architecture, es-

pecially crucial for the High-Level Trigger’s 200ms decision window per

event (Fernandez Perez Tomei, 2022). GPU acceleration offers the poten-

tial to significantly reduce processing times while providing a cost-effective

method to enhance computing power compared to CPU-only scaling (Evans

et al., 2021; Bocci, 2023).

The CMS collaboration has made substantial progress in GPU integra-

tion (Bocci et al., 2019). CMSSW has been operational on NVIDIA GPUs

using CUDA since LHC Run 3 (Bocci, 2023). Current efforts focus on

porting CMSSW to Alpaka, a platform-independent programming model,

to support GPUs from various vendors including AMD and Intel (Bocci,

Czirkos, et al., 2023).

Performance improvements through GPU acceleration and autotuning

can profoundly impact CMSSW’s capabilities (Bocci, Jones, & Kortelainen,

2023). Enhanced processing power enables more sophisticated physics anal-

yses, potentially leading to new discoveries or more precise measurements

(Bocci, Kortelainen, Innocente, Pantaleo, & Rovere, 2020). Moreover, in-

creased performance can lower power consumption, contributing to more

sustainable scientific computing practices. These advancements in speed

and efficiency make GPU acceleration and autotuning of CMSSW a promis-

ing avenue for advancing high-energy physics research while optimizing

resource utilization.

46

4.3.3 Integration of Autotuning in CMSSW

The autotuning approach integrates seamlessly with the CMSSW frame-

work by leveraging its existing configuration system. CMSSW uses con-

figuration files written in a Python-like language to specify which modules

to execute, input datasets, expected outputs, and other runtime parameters.

This configuration mechanism was extended to include GPU kernel con-

figurations, allowing them to be passed to CMSSW during runtime. This

approach eliminates the need for recompiling the core framework each time

parameters are adjusted, significantly reducing the overhead of the autotun-

ing process.

The autotuner itself operates as a standalone script that modifies these

configuration files and executes CMSSW. This design allows for efficient

exploration of different kernel configurations without altering the core code-

base.

To facilitate autotuning within CMSSW, an autotuning interface was im-

plemented in C++, which is CMSSW’s primary development language. This

interface, implemented as a header file, serves two main functions. It parses

the kernel configurations from the modified configuration files and stores

these configurations in a data structure accessible to kernel developers. This

data structure enables kernel developers to easily supply the autotuned con-

figurations to the code responsible for launching the kernels.

By abstracting the autotuning mechanism behind this interface, the im-

plementation minimizes changes to existing CMSSW code while providing

a flexible framework for incorporating autotuned parameters. This integra-

tion strategy ensures that autotuning can be applied to CMSSW with min-

imal disruption to its existing architecture, while still allowing for compre-

hensive exploration of kernel performance optimizations.

47

4.4 Data Collection

The process of gathering performance data for GPU-accelerated CMSSW

modules under various kernel configurations is outlined in this section. A

data collection strategy was designed to capture key performance metrics

across a wide range of settings, providing a comprehensive basis for the

autotuning process.

The collected data serves two primary purposes: it is used as input for

the autotuning algorithms to explore and optimize kernel configurations, and

it is analysed to measure the performance of CMSSW modules under dif-

ferent GPU kernel settings. Through this approach, a thorough exploration

of the parameter space is enabled, facilitating the identification of optimal

configurations for each GPU kernel within CMSSW.

In the following subsections, the specific methods, tools, and procedures

employed in the data collection process are detailed.

4.4.1 GPU Kernels

The study targeted all reconstruction GPU kernels within CMSSW that have

been successfully ported to GPU architecture. These modules were selected

because they represent the current state of GPU acceleration in CMSSW,

implementing various essential algorithms for event reconstruction in high-

energy physics data analysis, such as line fitting, energy clustering, and his-

togram generation.

The choice of these modules was primarily driven by their existing GPU

implementations. While these kernels are already functional on GPUs, they

require autotuning to ensure optimal performance on current and future

hardware. This approach allows for the optimization of already-accelerated

modules, potentially unlocking further performance gains and ensuring adapt-

ability to evolving GPU architectures.

48

By focusing on these successfully ported modules, the study aims to

enhance the efficiency of CMSSW’s GPU-accelerated components, maxi-

mizing the benefits of GPU computation across different hardware configu-

rations.

4.4.2 Parameter Space

The study explored a range of GPU kernel configurations, focusing on sev-

eral key parameters. The primary parameters adjusted were the number of

threads and the number of blocks. These are fundamental to GPU perfor-

mance optimization, as they directly influence work distribution across the

GPU’s computational units.

When possible, the block size was configured to find the optimal balance

between parallelism and resource utilization. The number of blocks was

adjusted to determine the most effective work distribution across the GPU’s

streaming multiprocessors.

In some kernels, an additional parameter, the number of strides, was also

configurable. This parameter sets the number of elements processed by each

GPU thread, affecting the workload distribution and potentially impacting

overall kernel efficiency.

Beyond the GPU-specific parameters, the study also considered the broader

context of CMSSW’s multiprocess execution environment. To this end, the

number of CPU threads, the number of streams, and the number of processes

were included in the parameter space. These parameters play a crucial role

in determining how effectively the CPU and GPU resources are utilized, and

how well the overall system scales across different hardware configurations.

By exploring this comprehensive parameter space, the study aimed to

identify configurations that optimize individual GPU kernel performance

while enhancing the overall efficiency of CMSSW in its multiprocess envi-

ronment.

49

4.4.3 Performance Metrics

Two primary performance metrics were collected and analysed in this study:

single kernel throughput and system throughput.

Single Kernel Throughput: This metric measures the performance of

individual GPU kernels. It represents the rate at which a specific kernel

processes data, typically expressed in events per second or a similar unit.

The throughput for each kernel was computed from its recorded execution

time, providing a direct measure of the kernel’s processing efficiency under

various configurations.

System Throughput: This metric captures the overall performance of

CMSSW running on a single compute node. It records the aggregate through-

put of all CMSSW processes executing simultaneously on the node. System

throughput provides an overall view of performance, accounting for the in-

terplay between multiple processes, CPU threads, and GPU kernels. Like

the single kernel metric, system throughput was derived from recorded exe-

cution times.

Both metrics were calculated using the following formula:

T hroughput =
Number o f Events Processed

Total Execution Time

These performance metrics were chosen for their ability to provide com-

prehensive insights into both fine-grained (individual kernel) and coarse-

grained (whole system) performance characteristics. By analysing these

metrics across different parameter configurations, the study aimed to iden-

tify optimal settings that maximize the system-level efficiency in CMSSW’s

GPU-accelerated modules.

50

4.4.4 Data Collection Methodology

The data collection process was designed to ensure accurate and significant

measurements of both individual GPU kernel performance and overall sys-

tem throughput. Two distinct approaches were used:

1. Individual Kernel Studies: Nvidia Nsight profiling tools were em-

ployed to collect detailed performance data on individual GPU ker-

nel executions (NVIDIA Corporation, 2024b). These tools provided

insights into the behaviour and efficiency of specific kernels under

various configurations.

2. System Throughput Measurement: A custom script was developed

to measure and analyse the overall system throughput (Ebrahim, 2024a).

This script automated the following processes:

(a) I/O Throughput Check: The script measured I/O throughput to

ensure it was insignificant compared to the system throughput,

verifying that I/O was not a bottleneck affecting the results.

(b) Cache Preheating: Before each measurement, a dummy load

was run to preheat the caches, minimizing the impact of cold-

start effects on the performance measurements.

(c) Repeated Measurements: For configurations identified as po-

tentially optimal, the measurement process was repeated 10 times

after cache preheating. The average of these runs was then re-

ported as the final result, reducing the impact of run-to-run vari-

ations.

(d) Throughput Calculation: The script calculated system through-

put based on the total execution time and the number of events

processed across all CMSSW processes running on the compute

node.

51

For each test, CMSSW was configured by the autotuner with the specific

parameter settings under investigation, including GPU kernel configurations

and process-level parameters. The custom script then managed the execu-

tion of CMSSW and the collection of performance data.

This approach allowed for a comprehensive analysis of both fine-grained

kernel performance and overall system efficiency under various configura-

tions.

4.5 Evaluation Criteria for Autotuners

The evaluation criteria described in this section are derived from the work

presented in the paper ”Towards a Benchmarking Suite for Kernel Tuners”

by Tørring et al. (n.d.). Five key evaluation criteria are employed to as-

sess and compare the performance of different autotuning techniques in this

study:

• Distribution of Configurations: The spread of performance across

different configurations in the search space is analysed. Histograms

or cumulative distribution functions of performance for all tested con-

figurations are examined. The overall landscape of possible solutions,

the frequency of high-performing configurations, and the potential

risks of poor configurations can be understood through this criterion.

• Convergence Rate: The speed at which high-quality solutions are

identified by an autotuner is measured by this metric. The best config-

uration found over time is tracked, allowing comparisons to be made

on how quickly optimal or near-optimal solutions are approached by

different autotuners. This is crucial for understanding the efficiency of

various optimization algorithms, especially in time-constrained sce-

narios.

52

• Optimal Speed-up: The maximum performance improvement achieved

by the autotuner is evaluated by this criterion. The execution time of

the best configuration found by the autotuner is compared against a

baseline configuration (typically default or naive settings). The poten-

tial impact of autotuning on application performance is demonstrated

by this metric.

• Feature Importance: This technique is employed to identify which

tuning parameters have the most significant impact on performance.

This analysis is conducted across different GPU architectures to un-

derstand how the importance of various parameters may be changed

with hardware. Tuning efforts can be prioritized and the search space

for future optimizations can potentially be reduced through feature

importance analysis.

• Performance Portability: How well the optimal configurations found

for one GPU architecture perform when transferred to different GPU

architectures is assessed by this criterion. The relative performance of

configurations across different GPUs is calculated to quantify the de-

gree of performance portability and highlight the need for architecture-

specific tuning.

These five criteria enable a detailed evaluation of autotuning techniques,

assessing not only final performance but also search efficiency, parameter

importance, cross-architecture applicability, and performance distribution.

This multifaceted approach provides valuable insights into the strengths and

weaknesses of different autotuning methods for both users and developers.

53

4.6 The Proposed Framework

In the following sections, the architecture and technical details of the pro-

posed framework will be presented, with its key components and their inter-

actions being explored. Through this section, a comprehensive understand-

ing of the framework’s design, implementation, and practical application in

the context of CMSSW GPU kernel optimization is aimed to be provided.

4.6.1 Introduction to the Autotuning Framework

The proposed autotuning framework is built as an extension of OpenTuner

(Ansel et al., 2014). OpenTuner was chosen because it is widely used, flex-

ible, and can be easily extended. These qualities were considered impor-

tant for dealing with the specific challenges of optimizing GPU kernels in

CMSSW.

Several key additions have been made to OpenTuner to make it better

suited for GPU kernel autotuning in CMSSW. First, a new interface for

GPU kernels was created. This allows the framework to work with different

types of GPU applications. It helps the autotuner adjust kernel settings and

measure performance across various problems types.

Second, a special interface with CMSSW was added. This helps the au-

totuner integrate with CMSSW without major changes to its original code-

base. In addition, it allows reduces the overhead of autotuning by eliminat-

ing the need to recompile the code every time the code changes.

New search techniques were introduced to build on those already avail-

able in OpenTuner. These new techniques are specifically designed to han-

dle the complex search space that arises from CMSSW’s multiprocess and

multi-kernel nature. The framework needs to optimize across multiple GPU

kernels that may be running simultaneously or in sequence, making the op-

timization problem particularly challenging.

54

Autotunign Script

Configuration
Manipulator

Results
Database

Runner

Optimiser

Results
Manager

CMSSW
Configuration

File

CMSSWBenchmarking
Script

 Generate

Execute

Store / Read

Execute / Throughput

Read

CMSSW

Figure 4.1: A diagram of the autotuning framework used in this study.

Lastly, some small improvements were made to make the framework

easier to use. These changes help developers use the autotuner more easily

when working with CMSSW.

By building on OpenTuner and adding these new features, the proposed

framework is designed to handle the challenges of GPU kernel optimization

in CMSSW. The rest of this chapter will explain these new features in more

detail and show how well they work through a series of initial tests.

4.6.2 Framework Architecture

The autotuning framework consists of four primary components: the con-

figuration manipulator, runner, optimizer, and results manager. A diagram-

matic representation of this architecture is provided in Figure 4.1.

• Configuration Manipulator: The responsibility of generating CMSSW

configuration files with varied parameters from the search space is as-

signed to the configuration manipulator. Parameters such as number

55

of threads, blocks, strides, etc. are systematically altered based on

guidance provided by the search algorithm.

• Runner: The execution of CMSSW using the generated configura-

tions is performed by the runner module, which also measures the re-

sulting performance. To ensure accurate and significant measurment,

a wrapper script (discussed in a previous chapter in section 4.4.4)

around CMSSW is utilized to conduct multiple benchmark repetitions

for each configuration. The initial few repetitions are discarded to ac-

count for caching effects, after which the average throughput across

the remaining repetitions is reported.

• Optimizer: The complex search space is navigated by the optimizer

with the aim of maximizing CMSSW throughput, utilizing the perfor-

mance data collected by the runner. Different optimization algorithms

are used, such as random search, Bayesian optimization, evolutionary

algorithms, and others.

• Results Manager: All benchmarking data is stored and retrieved by

the results’ manager in a database, which is used to inform the opti-

mizer. The tuning progress is also tracked to support analysis of the

optimization trajectories taken by the autotuner.

The efficient autotuning of CMSSW reconstruction pipelines is enabled

by the modular design and integration of these components. This archi-

tecture allows for flexible adaptation to the multiprocess and multi-kernel

nature of CMSSW, addressing the complexities inherent in optimizing such

a system.

56

4.6.3 Parameter Space Definition

The parameter space for the autotuning process is defined through a system-

atic approach that allows the developers to control the range of configura-

tions to be explored. This methodology is implemented by the developers,

who specify the parameter boundaries in terms of block and grid dimen-

sions through the autotuning interface in CMSSW. A static method in C++

is employed to generate a list of parameters with constraints (refer to listing

(4.6.1) for an example).

1 cms:: KernelConfigurations :: fillKernelDescriptions(desc ,

2 {

3 // kernel_name , threads , blocks , minThreads , maxThreads ,

minBlocks , maxBlocks

4 {"RawToDigi_kernel", {512} , {0}, {32}, {1024} , {0}, {0}},

5 {"CalibDigis", {256} , {0}, {32}, {1024} , {0}, {0}},

6 {"CountModules", {256} , {0}, {32}, {1024} , {0}, {0}},

7 {"FindClus", {384} , {0}, {32}, {1024} , {0}, {0}},

8 {"ClusterChargeCut", {256} , {0}, {32}, {1024} , {0}, {0}}

9 });

Listing (4.6.1): Kerenl description example.

The list of parameters generated by this method is subsequently parsed

by the autotuner and utilized to guide the search process. Listing (4.6.2)

shows an example of how the kernel description is dumped by CMSSW.

The autotuner interprets this list, creating an internal representation of the

parameter space (refer to listing (4.6.3)).

57

1 Section 1.1.1.1 LoadTracks VPSet description:

2 All elements will be validated using the PSet description in

Section 1.1.1.1.1.

3 The default VPSet has 1 element.

4 [0]: see Section 1.1.1.1.2

5 Section 1.1.1.1.1 description of PSet used to validate elements of

VPSet:

6 device string ’’

7 threads vuint32 (vector size = 1)

8 [0]: 128

9 blocks vuint32 (vector size = 1)

10 [0]: 0

11 minThredas vuint32 (vector size = 1)

12 [0]: 32

13 maxThreads vuint32 (vector size = 1)

14 [0]: 1024

15 minBlocks vuint32 (vector size = 1)

16 [0]: 0

17 maxBlocks vuint32 (vector size = 1)

18 [0]: 0

Listing (4.6.2): Kerenl description dump example.

1 manipulator.add_parameter(IntegerParameter("number_of_jobs", 1, 4))

2 manipulator.add_parameter(IntegerParameter("number_of_cpu_threads",

2, 16))

3 manipulator.add_parameter(IntegerParameter("number_of_streams", 2,

12))

4 manipulator.add_parameter(IntegerParameter("RawToDigi_kernel", 1,

16))

5 manipulator.add_parameter(IntegerParameter("CalibDigis", 1, 16))

6 manipulator.add_parameter(IntegerParameter("CountModules", 1, 16))

7 manipulator.add_parameter(IntegerParameter("FindClus", 1, 16))

Listing (4.6.3): Configuration manipulator example.

The configuration generated by the autotuner is structured to accom-

modate multiple GPU configurations within the CMSSW framework. This

approach allows for device-specific optimizations, with the appropriate pa-

rameters selected at runtime. The configuration is represented using the

58

CMSSW-specific Python syntax, which is then parsed and utilized by the

framework.

In the configuration in listing (4.6.4), two kernels are defined: ’ker-

nel connect’ and ’fishbone’. Each kernel is associated with a VPSet (Vector

of Parameter Sets) that can contain multiple device-specific configurations.

In the provided example, configurations for an NVIDIA T4 GPU are speci-

fied.

1 kernels = cms.PSet(

2 kernel_connect = cms.VPSet(

3 cms.PSet(

4 device = cms.string(’cuda/sm_75/T4’),

5 threads = cms.vuint32(${kernel_connect_threads * 32}, ${

kernel_connect_stride * 2}),

6 blocks = cms.vuint32 (0),

7),

8),

9 fishbone = cms.VPSet(

10 cms.PSet(

11 device = cms.string(’cuda/sm_75/T4’),

12 threads = cms.vuint32(${fishbone_threads * 32}, ${

fishbone_stride * 2}),

13 blocks = cms.vuint32 (0),

14),

15)

16)

Listing (4.6.4): CMSSW paramterized configuration file.

For each kernel, the device is identified using a string that includes

the architecture and model information (’cuda/sm_75/T4’). The thread con-

figuration is specified using a vuint32 (vector of unsigned 32-bit integers)

with two elements. These elements are defined using placeholder vari-

ables (${...}) that the autotuner populates with specific values during the

optimization process. For instance, ’${kernel connect threads * 32}’ and

’${kernel connect stride * 2}’ are used to set the thread dimensions for the

’kernel connect’ kernel.

59

The ’blocks’ parameter is set to 0, which indicates that the block size

will be determined automatically by the CMSSW framework based on the

input data size and the thread configuration.

This flexibility enables the optimization process to account for the char-

acteristics of different GPU architectures, potentially leading to better over-

all performance across a range of hardware configurations.

4.6.4 Search Techniques

In this thesis, a diverse array of search techniques are employed to navi-

gate the complex parameter space of GPU kernel optimization in CMSSW.

The selected techniques represent a combination of established methods and

state-of-the-art approaches in the field of autotuning. The following search

techniques are utilized:

• Random Search: This is a basic method that tries random settings.

It’s simple but often works well (Seymour et al., 2008b), especially

when we don’t know how settings affect performance. It’s useful for

searching large spaces where we can’t try every option. OpenTuner

already includes this method.

• Greedy: This straightforward approach iteratively selects the best im-

mediate option available. While simple and fast, it can get stuck in

local optima since it only considers one parameter at a time (Curtis,

2003). This method is included in OpenTuner and is particularly use-

ful for quick initial optimization or when parameters are relatively

independent.

• Genetic Algorithms: These methods copy how evolution works in

nature. They create new solutions by mixing and changing existing

60

ones. Genetic Algorithms can handle many types of settings (Immanuel

& Chakraborty, 2019) and are included in OpenTuner.

• Particle Swarm Optimization (PSO): This method mimics how birds

flock or fish swim in groups. It uses multiple ”particles” that move

around, looking for the best solution. PSO is good for exploring com-

plex settings(Kameyama, 2009) and is part of OpenTuner.

• Differential Evolution: This method tries to improve solutions over

time. It works well with continuous settings and doesn’t need the

problem to be smooth, but it can be adapted to work with discrete val-

ues (Price, Storn, & Lampinen, 2014). OpenTuner has this technique

built-in.

• AUCBandit: This method, first described in the OpenTuner paper (Ansel

et al., 2014), chooses between different search techniques. It picks the

ones that work best as it goes along. AUCBandit is the default method

in OpenTuner because it works well in many situations.

• Basin Hopping: This method combines local searches with big jumps (Wales

& Doye, 1997). It’s good for problems with many local best points. It

works by doing a series of local searches, each starting from a slightly

changed version of the last best point found. This helps it explore

many areas and potentially find the overall best solution. It’s often

used in chemistry and materials science, but isn’t part of the Open-

Tuner package.

• Bayesian Optimization: A sophisticated method that constructs a

probabilistic surrogate model (Gaussian Process) of how configura-

tion parameters affect performance (van Werkhoven, 2019). The search

space is progressively limited through the combination of performance

61

predictions and uncertainty estimates (Willemsen et al., 2021). An ac-

quisition function balances exploration of uncertain regions with ex-

ploitation of promising areas (Victoria & Maragatham, 2021). Poor-

performing regions are automatically excluded, while parameter cor-

relations are identified to reduce dimensionality. This targeted ap-

proach is particularly valuable for GPU kernel optimization, where

each configuration evaluation is computationally expensive. The method

was implemented as an extension to OpenTuner specifically for this

study.

The inclusion of these diverse search techniques allows for a compre-

hensive evaluation of different approaches to GPU kernel optimization in

CMSSW. By comparing a wide range of methods, from the simple yet effec-

tive Random Search to sophisticated techniques like SMAC3 and Bayesian

Optimization, this study aims to identify the most effective strategies for

navigating the complex parameter space of CMSSW GPU kernels.

4.7 Experimental Setup

Our experiments were conducted on three distinct nodes with varying hard-

ware configurations and a consistent software environment. This setup al-

lows for a thorough evaluation of autotuning techniques across different ar-

chitectures.

4.7.1 Hardware

Tables 4.1 and 4.2 detail the CPU and GPU specifications for each node,

respectively.

62

Table 4.1: CPU Specifications

Node CPU Model Architecture Specs

1 2x Intel Xeon Gold 6130 Skylake 32 cores total,

2.10 GHz base, 3.70 GHz turbo

2 AMD EPYC 7502P Zen 2 32 cores,

2.5 GHz base, 3.35 GHz boost

3 2x AMD EPYC 9754 Zen 4 256 cores total,

2.25 GHz base, 3.1 3.1 GHz

4 2x AMD EPYC 9454 Zen 4 96 cores total,

2.75 GHz base, 3.7 GHz boost

Table 4.2: GPU Specifications

Node 1 2 3 4

GPU Model NVIDIA Tesla T4 NVIDIA A10 NVIDIA L4 NVIDIA L40S

Architecture Turing Ampere Ada Lovelace Ada Lovelace

Cores 2560 CUDA 9216 CUDA 7168 CUDA 18176 CUDA

SM Count 40 72 60 142

Memory 16 GB GDDR6 24 GB GDDR6 24 GB GDDR6 48 GB GDDR6

Bus Width 256 bit 384 bit 192 bit 384 bit

L1 Cache (per SM) 64 KB 128 KB 128 KB 128 KB

L2 Cache 4 MB 6 MB 48 MB 48 MB

TDP 70 W 150 W 72 W 300 W

63

4.7.2 Software

The software environment was consistent across all nodes, with minor vari-

ations in the operating system version. Table 4.3 presents the software spec-

ifications.

Table 4.3: Software Environment

Component Node 1 Node 2 Node 3

Operating System Red Hat 8.10 Red Hat 8.7 Red Hat 8.9

CMSSW 14.0.14 14.0.14 14.0.14

NVIDIA Driver 550.54.15 550.54.15 550.54.15

CUDA Version 12.4 12.4 12.4

This setup provides a balanced mix of hardware configurations while

maintaining a consistent software environment. It enables evaluation of au-

totuning techniques across different CPU and GPU architectures, allowing

for insights into performance variations and optimization strategies across

diverse computing platforms. The consistent NVIDIA driver and CUDA

versions across all nodes with NVIDIA GPUs ensure comparability.

64

Chapter 5

Results and Discussion

In this chapter, the results of the experiments on the performance auto-

tuning framework for GPU applications are presented and discussed. The

experiments were designed to test different aspects of the auto-tuning pro-

cess and to evaluate the effectiveness of the proposed methods.

The chapter begins with an examination of the baseline performance.

This is done to understand how the chosen benchmark applications per-

form before any optimization is applied. Following this, the effects of using

seeded configurations are analysed. These configurations, based on expert

knowledge, are tested to determine if they can accelerate the tuning process.

Several experimental approaches are then explored. The application of

boosted trees to reduce the search space is investigated to see how effec-

tively it can narrow down the optimization parameters. The implementa-

tion of multi-fidelity autotuning techniques is studied to find a balance be-

tween tuning speed and optimization quality. Additionally, the evaluation

of performance portability across different GPU architectures is conducted

65

to assess how well the optimized configurations transfer to various GPU

hardware.

For each experiment, the results are presented, and their implications are

discussed. The strengths and limitations of each method are analysed, and

their effectiveness is compared. The significance of these results for GPU

application optimization and auto-tuning in general is also considered.

This chapter consolidates all the research work, demonstrating the ef-

fectiveness of the auto-tuning framework and contributing to the ongoing

research in optimizing GPU application performance.

5.1 Baseline Performance Analysis

In this section, the baseline performance of the autotuning framework ap-

plied to CMSSW (CMS Software) using OpenTuner is presented. The fo-

cus is placed exclusively on throughput as the primary performance metric.

Various predefined search techniques available in OpenTuner, along with

several newly implemented search techniques, are compared. The base-

line experiments are designed to establish a performance benchmark for

CMSSW autotuning using OpenTuner, compare the effectiveness of differ-

ent search techniques in optimizing CMSSW throughput, and identify the

most promising search strategies for further improvement. The search tech-

niques are evaluated based on maximum throughput achieved, time taken to

reach the best results, and the distribution of search configurations explored.

Through this analysis, insights into the behaviour of various search strate-

gies when applied to CMSSW are gained, providing a foundation for the

improvements introduced in subsequent sections.

5.1.1 Maximum Throughput

The initial analysis compares the performance of different autotuning tech-

niques across several GPUs. In Table 5.1, the maximum throughput achieved

66

by each technique, measured in events per second, is listed alongside the

baseline performance for each GPU.

Table 5.1: Maximum throughput (events/second) achieved by different auto-tuning tech-

niques across GPU models

Technique T4 A10 L4 L40S

Baseline 241.74 430.03 526.10 903.05

Random Search 246.33 452.28 523.34 915.84

Greedy Search 245.65 460.60 535.65 922.34

Genetic Algorithm 239.85 461.62 537.03 920.22

Particle Swarm Optimization 246.14 455.13 530.22 918.36

Differential Evolution 245.23 457.52 523.62 919.71

AUC Bandit 247.16 459.45 535.76 922.42
Basin Hopping 241.68 451.79 528.49 916.51

Bayesian Optimization 243.19 450.25 521.27 919.54

On the T4 GPU, only modest improvements are yielded by the auto-

tuning techniques, with a maximum throughput gain of 2.2% achieved by

the AUCBandit technique (247.16 events/second compared to the baseline

of 241.74 events/second). This limited improvement suggests that the T4’s

baseline configuration, which was manually optimized within CMSSW, is

already near-optimal for this architecture. Therefore, there is less room for

auto-tuning to enhance performance further.

Despite being a newer generation GPU, similar behaviour to the T4 is

exhibited by the L4, with modest improvements from auto-tuning. A maxi-

mum throughput gain of 2.1% is achieved by the Genetic Algorithm (537.03

events/second compared to the baseline of 526.10 events/second). The sim-

ilarity in results between the L4 and T4 GPUs can be attributed to their

shared architectural characteristics. Both GPUs are designed as low-profile,

inference-focused processors with similar power constraints (70W for T4

and 72W for L4). As a result, configurations optimized for the T4 are trans-

ferable and perform well on the L4, leaving less opportunity for autotuning

67

to find significant improvements.

In contrast, substantially larger gains from auto-tuning are demonstrated

by the A10 GPU. A maximum throughput of 461.62 events/second is achieved

by the Genetic Algorithm, representing a 7.3% improvement over the base-

line of 430.03 events/second. This significant increase indicates that the T4-

optimized baseline configuration is less suitable for the A10’s architecture,

providing more room for autotuning to identify better-performing configu-

rations.

Similarly, meaningful improvements are shown by the L40S GPU, with

the AUCBandit technique increasing throughput by 2.1% (from 903.05 to

922.42 events/second). Although the percentage gain is similar to that of

the L4, the absolute increase in events per second is more substantial due to

the higher baseline performance.

These larger improvements on the A10 and L40S GPUs highlight the

effectiveness of auto-tuning when the baseline configurations are not fully

optimized for a given architecture. The T4-optimized configurations do not

fully exploit the capabilities of these GPUs, allowing auto-tuning techniques

to discover configurations that better align with their architectural features.

5.1.2 Distribution of Configurations

The distribution patterns in Figure 5.1 can be analysed from both the per-

spective of search techniques and GPU architectures. Each GPU’s unique

characteristics and configuration space influence how different search tech-

niques perform.

The T4 GPU, being the target architecture for CMSSW’s manual op-

timization, shows interesting distribution patterns across all search tech-

niques. Most notably, all techniques produce relatively narrow distributions,

clustered around the 230-245 events/second range. The baseline perfor-

mance of 241.74 events/second often lies at the upper end of these distri-

68

210 220 230 240
Mean: 230.52

0

10

20

30

40

50

60

Ra
nd

om

T4 (Baseline: 241.74)

380 400 420 440
Mean: 419.13

0

10

20

30

40

50
A10 (Baseline: 430.03)

460 480 500 520
Mean: 490.55

0

10

20

30

40

50

60

L4 (Baseline: 526.10)

870 880 890 900 910
Mean: 895.32

0

20

40

60

80

100
L40S (Baseline: 903.05)

230 235 240 245
Mean: 237.98

0

20

40

60

80

G
re

ed
y

400 410 420 430 440 450 460
Mean: 451.82

0

50

100

150

200

480 490 500 510 520 530
Mean: 525.75

0

50

100

150

200

890 900 910 920
Mean: 914.36

0

50

100

150

200

100 125 150 175 200 225
Mean: 231.50

0

50

100

150

200

250

G
en

et
ic

 A
lg

or
it

hm

410 420 430 440 450 460
Mean: 453.05

0

25

50

75

100

125

150

175

490 500 510 520 530
Mean: 526.20

0

20

40

60

80

100

120

890 900 910 920
Mean: 910.75

0

25

50

75

100

125

150

175

220 225 230 235 240 245
Mean: 234.02

0

20

40

60

80

Pa
rt

ic
le

 S
w

ar
m

380 400 420 440
Mean: 434.54

0

20

40

60

80

480 500 520
Mean: 508.95

0

20

40

60

80

100

880 890 900 910 920
Mean: 902.67

0

20

40

60

80

100

120

140

210 220 230 240
Mean: 234.15

0

20

40

60

80

D
iff

er
en

ti
al

 E
vo

lu
ti

on

380 400 420 440 460
Mean: 437.02

0

20

40

60

80

100

480 490 500 510 520
Mean: 504.52

0

20

40

60

80

880 890 900 910 920
Mean: 908.51

0

25

50

75

100

125

150

220 225 230 235 240 245
Mean: 238.15

0

20

40

60

80

100

AU
C

Ba
nd

it

300 325 350 375 400 425 450
Mean: 437.47

0

50

100

150

200

480 500 520
Mean: 523.22

0

50

100

150

200

250

880 890 900 910 920
Mean: 910.27

0

25

50

75

100

125

150

175

210 220 230 240
Mean: 231.55

0

10

20

30

40

50

Ba
si

n
H

op
pi

ng

380 400 420 440
Mean: 425.99

0

10

20

30

40

50

460 480 500 520
Mean: 493.21

0

10

20

30

40

50

870 880 890 900 910
Mean: 896.91

0

20

40

60

80

100

210 220 230 240
Mean: 232.85

0

20

40

60

80

Ba
ye

si
an

 O
pt

im
iz

at
io

n

390 400 410 420 430 440 450
Mean: 429.78

0

10

20

30

40

50

60

470 480 490 500 510 520
Mean: 503.32

0

20

40

60

80

880 890 900 910 920
Mean: 902.19

0

20

40

60

80

100

Figure 5.1: Distribution of configuration throughputs for different autotuning techniques

across GPU architectures. The x-axis represent the frequency and y-axis is the throughput.

The vertical black dashed line indicate the baseline performance for that GPU. The red

dashed line is the distribution mean.

69

butions, indicating that search techniques struggle to surpass the manually

optimized configuration when starting from random points. This suggests

that the T4’s configuration space may have a relatively well-defined opti-

mal region, which aligns with its design as a low-profile, inference-focused

GPU with a 70W power cap that inherently constrains the viable configura-

tion space.

The L4 distributions shows patterns similar to the T4, which is expected

given their architectural similarities and similar power constraints (72W for

L4). However, the L4 shows slightly broader distributions. The baseline of

526.10 events/second, despite being optimized for T4, performs well rela-

tive to the tested configurations. This suggests that optimal configuration

parameters may transfer well between architecturally similar GPUs, even

when power-constrained.

The A10 GPU demonstrates different distribution patterns compared to

the T4 and L4. All search techniques show wider distributions with clear

right-skew, and consistently find configurations that outperform the baseline

of 430.03 events/second. This wider spread suggests the A10’s configura-

tion space offers more opportunities for optimization, likely due to its higher

power limit and different architectural characteristics. The right-skewed dis-

tributions indicate that while many random configurations perform poorly,

there are opportunities for performance improvements through parameter

tuning.

The L40S, despite having the highest absolute performance, shows dis-

tribution patterns that reveal the complexity of its configuration space. While

all techniques achieve improvements over the baseline of 903.05 events/sec-

ond, the distributions are wider and more varied across different search tech-

niques. This suggests that the L40S’s higher computational capabilities and

power budget create a more complex optimization landscape. The variation

in distribution shapes across different search techniques, particularly evident

70

in the contrast between AUCBandit’s right-skewed distribution and Basin

Hopping’s more symmetric spread, indicates that different search strategies

may be exploring distinct regions of the L40S’s larger configuration space.

The L40S distributions, while showing the highest absolute throughput,

reveal interesting patterns in how search techniques explore its configura-

tion space. Starting from random configurations, the techniques manage to

find solutions that outperform the baseline of 903.05 events/second. The

AUCBandit technique shows the best distribution, with a mean of 910.27

events/second and a higher concentration of configurations in the upper per-

formance range. This indicates that despite the T4-optimized baseline’s rea-

sonable performance on the L40S, the search techniques can effectively dis-

cover better configurations suited to the L40S’s architecture.

These distribution patterns highlight how different search techniques ex-

plore and exploit the configuration space when starting from random con-

figurations. The fact that many techniques independently discover config-

urations near or exceeding the manually optimized baseline demonstrates

the effectiveness of autotuning in finding good configurations, particularly

when the target architecture differs from the one for which manual opti-

mizations were developed.

Random search establishes a baseline for comparison, producing ap-

proximately normal distributions across all architectures. These distribu-

tions reveal the natural landscape of the configuration space, with means

typically below the manually optimized baseline but occasionally discov-

ering high-performing configurations. The spread of these distributions is

particularly informative, showing wider variance on the A10, L4, and L40S

compared to T4, suggesting these architectures have more diverse perfor-

mance characteristics across their configuration spaces.

The Greedy algorithm shows strongly right-skewed distributions, clearly

showing in the A10 and L4 results. This skew reflects the algorithm’s fun-

71

damental characteristic of immediately pursuing any improvement found,

leading to clusters of configurations in higher-performing regions. However,

the little spread in the distributions can be attributed to some parameters that

affect the performance significantly more than the others.

The Genetic Algorithm produces notably different distributions across

architectures. For the T4, it shows an unusually concentrated distribution

near the baseline performance, while maintaining broader distributions on

other architectures. This varying behaviour might suggest differences in the

fitness landscape across architectures, though further investigation would

be needed to definitively attribute this to issues of population diversity or

other factors (Leung, Gao, & Xu, 1997). The broader distributions seen on

A10 and L40S indicate more extensive exploration of these architectures’

configuration spaces.

Particle Swarm Optimization demonstrates relatively consistent distri-

bution patterns across different architectures, characterized by moderate

spread and slight right-skew. This behaviour reflects PSO’s social learn-

ing mechanism (Cheng & Jin, 2015), where particles explore individually

while being influenced by the swarm’s collective knowledge. The distribu-

tions suggest PSO maintains a balanced approach between exploring new

configurations and exploiting known good regions.

Differential Evolution shows similar characteristics to PSO, but with

tighter distributions, more noticeable in the L4 and L40S results. This pat-

tern suggests DE’s population-based search narrows in on promising regions

of the configuration space while maintaining enough exploration to avoid

convergence to local optima.

AUCBandit produces consistently right-skewed distributions across all

architectures, most notably on the A10 and L4. This pattern shows the ef-

fectiveness of its adaptive technique selection strategy, allowing it to com-

bine exploratory and exploitative approaches based on their observed per-

72

formance. The algorithm shows particular success in identifying and focus-

ing on high-performing regions while maintaining sufficient exploration to

discover new promising configurations.

Basin Hopping exhibits more symmetric distributions compared to other

techniques, indicating its characteristic pattern of local optimization com-

bined with periodic jumps to escape local optima. The distributions show

consistent spread across all architectures, suggesting BH maintains reliable

exploration throughout the search process regardless of the underlying hard-

ware characteristics.

Bayesian Optimization shows interesting variations in its distribution

shapes across architectures. The distributions tend to be more concentrated

on T4 and L4, while showing more exploration on A10 and L40S. This

pattern suggests the algorithm’s surrogate model adapts its uncertainty es-

timates based on the observed performance landscape, leading to different

exploration-exploitation trade-offs across different architectures.

These distributions show how each technique’s search strategies func-

tion in practice when exploring GPU configuration spaces. The variations

across architectures indicate that the effectiveness of each approach depends

not only on the algorithm’s characteristics but also on the underlying hard-

ware architecture and its associated configuration space.

5.1.3 Autotuning Convergence

The convergence behaviour of different search techniques across GPU ar-

chitectures provides insights into their efficiency and effectiveness. Fig-

ure 5.2 presents a grid of scatter plots showing the throughput of tested

configurations over time, with horizontal lines indicating the baseline per-

formance for each GPU.

The T4 GPU presents a challenging optimization scenario, with a base-

line of 241.74 events/second that proves difficult to surpass. This reflects the

73

0 50 100 150 200
210

215

220

225

230

235

240

245

Ra
nd

om

T4 (Baseline: 241.74)

0 50 100 150 200 250

380

390

400

410

420

430

440

450

A10 (Baseline: 430.03)

0 100 200 300

460

470

480

490

500

510

520

L4 (Baseline: 526.10)

0 100 200 300 400 500
870

880

890

900

910

L40S (Baseline: 903.05)

0 50 100 150 200 250 300

227.5

230.0

232.5

235.0

237.5

240.0

242.5

245.0

G
re

ed
y

0 100 200 300

400

410

420

430

440

450

460

0 100 200 300 400

480

490

500

510

520

530

0 100 200 300 400 500
885

890

895

900

905

910

915

920

0 50 100 150 200 250 300

100

120

140

160

180

200

220

240

G
en

et
ic

 A
lg

or
it

hm

0 100 200 300
410

420

430

440

450

460

0 100 200 300 400

490

500

510

520

530

0 100 200 300 400 500
885

890

895

900

905

910

915

920

0 50 100 150 200 250 300

220

225

230

235

240

245

Pa
rt

ic
le

 S
w

ar
m

0 50 100 150 200 250 300
380

390

400

410

420

430

440

450

0 100 200 300

470

480

490

500

510

520

530

0 100 200 300 400 500

880

890

900

910

920

0 50 100 150 200 250
210

215

220

225

230

235

240

245

D
iff

er
en

ti
al

 E
vo

lu
ti

on

0 50 100 150 200 250 300
380

390

400

410

420

430

440

450

460

0 100 200 300

480

490

500

510

520

0 100 200 300 400 500

880

890

900

910

920

0 50 100 150 200 250 300

220

225

230

235

240

245

AU
C

Ba
nd

it

0 50 100 150 200 250 300
300
320
340
360
380
400
420
440
460

0 100 200 300 400

470

480

490

500

510

520

530

0 100 200 300 400 500
880

890

900

910

920

0 50 100 150 200

210

215

220

225

230

235

240

Ba
si

n
H

op
pi

ng

0 50 100 150 200 250 300

380

390

400

410

420

430

440

450

0 100 200 300
460

470

480

490

500

510

520

530

0 100 200 300 400 500

870

880

890

900

910

0 50 100 150 200 250
210

215

220

225

230

235

240

Ba
ye

si
an

 O
pt

im
iz

at
io

n

0 50 100 150 200 250 300

390

400

410

420

430

440

450

0 100 200 300

470

480

490

500

510

520

0 100 200 300 400 500
880

885

890

895

900

905

910

915

920

Figure 5.2: Convergence patterns of different autotuning techniques across GPU architec-

tures. The x-axis represent the throughput and y-axis is the time. The horizontal dashed

line indicate the baseline performance for that GPU.

74

effectiveness of CMSSW’s manual optimization for this architecture. Most

search techniques struggle to consistently exceed this baseline, though some

might discover configurations with slightly better performance. AUCBan-

dit and Greedy algorithms show the most promising convergence patterns,

reaching near-baseline performance relatively quickly and occasionally find-

ing superior configurations.

The L4 GPU shows similar patterns to the T4, with its baseline of 526.10

events/second being difficult to exceed consistently. This similarity in con-

vergence behaviour confirms the architectural relationship between these

GPUs. However, the L4 shows slightly more variance in configuration per-

formance over time, suggesting a somewhat broader viable configuration

space despite similar power constraints.

The A10 GPU demonstrates different convergence characteristics. With

a baseline of 430.03 events/second, all search techniques successfully dis-

cover superior configurations. The Genetic Algorithm and AUCBandit show

effective convergence patterns, quickly identifying configurations that out-

perform the baseline and maintaining this improved performance level through-

out the search process.

The L40S presents noticeable improvements over baseline (903.05 events/sec-

ond). Search techniques consistently discover better configurations, with

most achieving significant improvements within the first 100-150 iterations.

This rapid convergence to better configurations suggests that the T4-optimized

baseline is substantially suboptimal for the L40S’s architecture.

Random search shows no clear convergence pattern, as expected, but

provides valuable information about the configuration space by revealing

the range of achievable performance. Its scattered pattern across all archi-

tectures serves as a useful baseline for evaluating other techniques’ conver-

gence behaviour.

Greedy search demonstrates rapid initial convergence, particularly evi-

75

dent in its A10 and L40S results. This quick improvement aligns with the

algorithm’s nature of immediately exploiting better configurations. How-

ever, the technique sometimes shows performance plateaus, suggesting it

may become trapped in local optima.

The Genetic Algorithm demonstrates distinct convergence behaviours

across architectures. On the T4, it quickly finds and converges to a config-

uration with performance close to baseline, showing limited exploration af-

terward. In contrast, for the A10, it maintains broader exploration through-

out the search process, consistently finding configurations that exceed the

baseline. The L4 results show wider exploration but struggle to surpass the

challenging baseline, while the L40S case demonstrates steady improve-

ment with gradually reducing variation in performance over time.

Particle Swarm Optimization shows steady convergence characteristics

across all architectures, with gradual improvement over time. Its conver-

gence pattern suggests a balanced exploration-exploitation approach, though

it sometimes takes longer to reach peak performance compared to more ag-

gressive techniques.

Differential Evolution demonstrates relatively consistent convergence

behaviour, showing steady improvement over time rather than dramatic early

gains. This pattern suggests effective exploration of the configuration space,

though perhaps at the cost of slower initial convergence.

AUCBandit shows among the most reliable convergence patterns across

all architectures. It consistently achieves good performance early in the

search process and maintains steady improvement. This behaviour validates

its adaptive approach of selecting between different search strategies.

Basin Hopping’s convergence pattern shows characteristic jumps in per-

formance, reflecting its design of combining local optimization with peri-

odic perturbations. While this leads to effective exploration, it sometimes

results in less stable convergence compared to other techniques.

76

Bayesian Optimization exhibits distinct convergence behaviour charac-

terized by initial exploration followed by more focused search phases. The

technique shows concentrated sampling in regions it predicts as promising,

visible in the L40S results where configurations cluster within specific per-

formance bands. The technique appears particularly sensitive to its initial

random sampling phase, which is evident in the L4 results where early poor-

performing configurations may have influenced the surrogate model’s pre-

dictions, leading to exploration of suboptimal regions and failure to exceed

the baseline.

These convergence patterns reveal how different search strategies bal-

ance exploration and exploitation across varying architectural contexts. The

results particularly highlight the challenge of optimizing for power-constrained

architectures like T4 and L4, while demonstrating the potential for signifi-

cant improvements on GPUs like A10 and L40S.

5.1.4 Configurations Validity

The percentage of valid versus invalid configurations generated by each

search technique provides crucial insights into how well the algorithms learn

and adapt to hardware constraints.

The T4 GPU (Figure 5.3) shows the highest proportion of invalid con-

figurations across all techniques, reflecting its strict hardware constraints.

With limited power budget (70W) and computational resources, many con-

figurations fail due to excessive thread counts or resource requirements ex-

ceeding hardware capabilities. Random search performs particularly poorly

on T4, generating the highest percentage of invalid configurations, as it has

no mechanism to learn from or adapt to these hardware limitations.

The A10 (Figure 5.4) demonstrates the second-highest proportion of in-

valid configurations, despite its higher computational capabilities than the

L4. This can be attributed to the significantly smaller L2 cache (6 MB)

77

Ra
nd

om
Gree

dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge

T4 (baseline)
Valid
Invalid

Figure 5.3: Percentage of valid and invalid configurations generated by different search

techniques for the T4 GPU.

compared to the L4 (48 MB).

The L4 (Figure 5.5), despite sharing similar power constraints with T4

(72W), demonstrates a lower percentage of invalid configurations. This

improved validity rate can be attributed to its larger register memory re-

sources, allowing more configurations to execute successfully even with

higher thread counts.

The L40S (Figure 5.6) show better validity rates across most techniques,

reflecting its more hardware resources and power budgets. This GPU can ac-

commodate a broader range of configurations, though Random search still

generates the highest proportion of invalid configurations among all tech-

niques.

Random search produces the highest percentage of invalid configura-

tions across all architectures, showing the importance of intelligent search

strategies in autotuning. Its blind sampling approach provides no mecha-

nism to learn from previous failures or adapt to hardware constraints, result-

ing in repeated exploration of invalid configuration regions.

78

Ra
nd

om
Gree

dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge
A10 (baseline)

Valid
Invalid

Figure 5.4: Percentage of valid and invalid configurations generated by different search

techniques for the A10 GPU.

Ra
nd

om
Gree

dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge

L4 (baseline)
Valid
Invalid

Figure 5.5: Percentage of valid and invalid configurations generated by different search

techniques for the L4 GPU.

79

Ra
nd

om
Gree

dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100
Pe

rc
en

ta
ge

L40S (baseline)
Valid
Invalid

Figure 5.6: Percentage of valid and invalid configurations generated by different search

techniques for the L40S GPU.

Basin Hopping also generates a high percentage of invalid configura-

tions, second only to Random search. Its strategy of making periodic jumps

in the configuration space often leads to exploring resource-intensive con-

figurations that exceed hardware limitations.

AUCBandit and Genetic Algorithm demonstrate better adaptation to hard-

ware constraints, maintaining higher validity rates, especially after initial

exploration phases. This suggests these techniques effectively learn the

bounds of acceptable configurations.

These validity patterns highlight both the challenges of constrained hard-

ware environments and the importance of search strategies that can learn and

adapt to these constraints.

5.2 Seed Configurations

The second experiment evaluates the effect of seeding search algorithms

with expert knowledge, specifically using the manually-tuned T4 baseline

80

configuration as a seed configuration. This approach aims to leverage ex-

isting expertise while allowing algorithms to further optimize for each ar-

chitecture. Table 5.2 presents the maximum throughput achieved by each

technique across different GPUs.

5.2.1 Maximum Throughput

Table 5.2: Maximum throughput (events/second) achieved by different search techniques

with seeded initialization across GPU architectures. The seeded configuration was manu-

ally optimized for T4. Bold values indicate the best performance for each GPU.

Technique T4 A10 L4 L40S

Baseline 241.740 430.030 526.100 903.050

Exp. 1 Best 247.160 461.620 537.030 922.420

Greedy 246.652 460.872 532.255 923.702

Genetic Algorithm 245.881 459.791 532.113 921.404

Particle Swarm 242.078 455.394 525.956 916.254

Differential Evolution 241.809 459.876 528.877 920.302

AUC Bandit 245.555 461.021 553.986 924.129
Basin Hopping 240.975 451.651 524.990 913.910

Bayesian Optimization 241.470 457.834 525.845 915.919

Random initialization from the first experiment achieved the highest per-

formance for both T4 (247.160 events/second) and A10 (461.620 events/sec-

ond), surpassing the seeded search results. This suggests that for these ar-

chitectures, the seed may have constrained the search space exploration,

possibly trapping the algorithms in a local optimum near the baseline con-

figuration.

However, the seeded approach shows its strength with the L4 and L40S

architectures. On the L4, AUC Bandit achieved 553.986 events/second, sig-

nificantly outperforming both the baseline (526.100 events/second) and the

best random initialization result (537.030 events/second). This represents a

81

5.3% improvement over the baseline and a 3.2% improvement over random

initialization’s best performance.

Similarly, for the L40S, AUC Bandit reached 924.129 events/second,

showing improvements over both the baseline (903.050 events/second, +2.3%)

and the random initialization best result (922.420 events/second, +0.2%).

While the margin of improvement is smaller for the L40S, the consistency

of results across search techniques suggests that the seeded approach leads

to more stable optimization outcomes.

AUC Bandit demonstrates better performance with seed configurations,

particularly on L4 and L40S architectures, while Greedy search maintains

strong, consistent performance across all platforms. The performance vari-

ation between techniques is notably reduced compared to random initializa-

tion. Basin Hopping and Particle Swarm techniques show relatively lower

performance when initialized with seed configurations, suggesting their ex-

ploration strategies may be less suitable for refining pre-optimized starting

points.

5.2.2 Distribution of Configurations

Figure 5.7 presents the distribution of throughput values achieved across

different search techniques and GPU architectures when initialized with the

T4-optimized seed configuration. Compared to random initialization, the

distributions show distinct characteristics that reveal how seed configura-

tions influences the search behaviour of different algorithms.

The seeded experiment produces notably narrower distributions across

all techniques, indicating more concentrated exploration around the seed

configuration. However, this concentration does not necessarily translate to

improved performance, as mean throughput values often fall below those

achieved with random initialization. Greedy search maintains the strongest

mean performance across architectures (T4: 240.83, A10: 452.48, L4: 524.16,

82

225 230 235 240 245
Mean: 240.83

0

20

40

60

80

100

G
re

ed
y

T4 (Baseline: 241.74)

400 410 420 430 440 450 460
Mean: 452.48

0

50

100

150

200
A10 (Baseline: 430.03)

500 510 520 530
Mean: 524.16

0

20

40

60

80

100

120

L4 (Baseline: 526.10)

890 900 910 920
Mean: 915.32

0

50

100

150

200

L40S (Baseline: 903.05)

225 230 235 240 245
Mean: 239.94

0

20

40

60

80

100

G
en

et
ic

 A
lg

or
it

hm

420 430 440 450 460
Mean: 451.90

0

50

100

150

200

500 505 510 515 520 525 530
Mean: 523.78

0

20

40

60

80

100

120

890 895 900 905 910 915 920
Mean: 913.53

0

50

100

150

200

215 220 225 230 235 240
Mean: 232.85

0
10
20
30
40
50
60
70

Pa
rt

ic
le

 S
w

ar
m

400 420 440
Mean: 432.41

0

10

20

30

40

50

60

480 490 500 510 520
Mean: 509.57

0

20

40

60

80

880 890 900 910
Mean: 901.71

0

20

40

60

80

100

220 225 230 235 240
Mean: 234.48

0

10

20

30

40

50

60

70

D
iff

er
en

ti
al

 E
vo

lu
ti

on

380 400 420 440 460
Mean: 435.03

0

10

20

30

40

50

60

470 480 490 500 510 520 530
Mean: 511.12

0

20

40

60

80

880 890 900 910 920
Mean: 905.12

0

25

50

75

100

125

150

175

215 220 225 230 235 240 245
Mean: 236.64

0

20

40

60

80

100

AU
C

Ba
nd

it

400 420 440 460
Mean: 450.14

0

50

100

150

200

250

425 450 475 500 525 550
Mean: 519.99

0

25

50

75

100

125

150

175

880 890 900 910 920
Mean: 910.46

0

50

100

150

200

210 215 220 225 230 235 240
Mean: 230.89

0

10

20

30

40

50

Ba
si

n
H

op
pi

ng

380 400 420 440
Mean: 423.45

0

10

20

30

40

50

470 480 490 500 510 520
Mean: 497.99

0

10

20

30

40

50

60

880 890 900 910
Mean: 895.93

0

20

40

60

80

215 220 225 230 235 240
Mean: 231.66

0
10
20
30
40
50
60
70

Ba
ye

si
an

 O
pt

im
iz

at
io

n

380 400 420 440 460
Mean: 429.78

0

20

40

60

80

470 480 490 500 510 520
Mean: 501.86

0

20

40

60

80

880 890 900 910
Mean: 899.25

0

20

40

60

80

100

120

140

Figure 5.7: Distribution of throughput values achieved by different search techniques across

GPU architectures when seeded with the T4-optimized baseline configuration. The black

dashed line indicates the baseline performance, while the red dashed line shows the mean

throughput for each distribution.

83

L40S: 915.32), effectively leveraging the seed configuration. The Genetic

Algorithm shows increased exploitation behaviour on the T4, evidenced by

a tighter distribution around the baseline configuration, suggesting strong

influence from the seed configuration on its search pattern.

Particle Swarm Optimization and Differential Evolution maintain mean

performances comparable to their random initialization results, but with

slightly narrower distributions concentrated around the seeded configura-

tion. AUC Bandit shows particularly interesting behaviour, while it suc-

cessfully identified and exploited the optimal region on the A10, its mean

performance on T4, L4, and L40S falls below the random initialization re-

sults. Basin Hopping and Bayesian Optimization consistently show lower

mean performance compared to random initialization, likely due to their

search patterns. These techniques initially focus on exploiting the region

around the seed configuration before transitioning to exploration phases, for

instance, Basin Hopping’s exploitation period is constrained by its temper-

ature parameter, after which it defaults to random search. This behaviour

suggests that the seed configuration may actually restrict their ability to ef-

fectively explore the full configuration space.

5.2.3 Autotuning Convergence

The convergence patterns in Figure 5.8 show how different algorithms uti-

lize the seed configuration across GPU architectures. Exploitation-focused

techniques (Greedy, Genetic Algorithm, Differential Evolution, and AUC

Bandit) exhibit similar behavioural patterns that vary by architecture. On

T4 and L4, where the seed configuration is already near-optimal, these algo-

rithms show limited exploitation without the gradual performance improve-

ments seen in the baseline experiment. This suggests that the seed config-

uration effectively narrowed their search space. The A10 results show that

these algorithms find the seed configuration suboptimal and quickly jump

84

to a better performance region before fine-tuning. This shows that the T4-

optimized baseline configuration is less suitable for A10. On L40S, they

demonstrate gradual improvement but with faster convergence compared to

random initialization, indicating that the seed configuration provided a bet-

ter starting point for optimization.

Particle Swarm Optimization shows different behaviour, appearing to

perform random exploration in the close to the baseline configuration with-

out clear convergence patterns. Basin Hopping and Bayesian Optimization

show a two-phase pattern: initial exploitation around the seed configuration,

followed by broader exploration. This transition is evident in their conver-

gence curves, which show early clustering around the baseline performance

before diverging into wider search patterns. This behaviour reflects their

algorithmic design, where exploitation duration is controlled by parameters

like temperature in Basin Hopping, after which they transition to more ex-

ploratory search strategies.

5.2.4 Configurations Validity

The seeded configuration experiment shows a general reduction in invalid

configurations compared to random initialization across most search tech-

niques (Figures 5.9, 5.10, 5.11, and 5.12). This improvement can be at-

tributed to starting from an expert-provided valid configuration, which helps

guide the search within reasonable regions of the configuration space. Exploitation-

focused techniques like Greedy and Genetic Algorithm demonstrate partic-

ularly high validity rates, as they tend to make incremental modifications to

the seed configuration.

However, techniques with stronger exploration drive show more vari-

able validity rates. Basin Hopping, in particular, exhibits fluctuating valid-

ity percentages across different GPUs, reflecting its transition between ex-

ploitation and exploration phases. When in exploration mode, it generates

85

0 50 100 150 200 250 300

225

230

235

240

245

G
re

ed
y

T4 (Baseline: 241.74)

0 100 200 300
400

410

420

430

440

450

460
A10 (Baseline: 430.03)

0 100 200 300 400

500

505

510

515

520

525

530

L4 (Baseline: 526.10)

0 100 200 300 400 500

885
890
895
900
905
910
915
920
925

L40S (Baseline: 903.05)

0 50 100 150 200 250 300

225

230

235

240

245

G
en

et
ic

 A
lg

or
it

hm

0 100 200 300

420

430

440

450

460

0 100 200 300 400
500

505

510

515

520

525

530

0 100 200 300 400 500
890

895

900

905

910

915

920

0 50 100 150 200 250
215

220

225

230

235

240

Pa
rt

ic
le

 S
w

ar
m

0 50 100 150 200 250 300
390

400

410

420

430

440

450

0 100 200 300

480

490

500

510

520

0 100 200 300 400 500

880

890

900

910

0 50 100 150 200 250

220

225

230

235

240

D
iff

er
en

ti
al

 E
vo

lu
ti

on

0 50 100 150 200 250
380

390

400

410

420

430

440

450

460

0 100 200 300
470

480

490

500

510

520

530

0 100 200 300 400 500

880

890

900

910

920

0 50 100 150 200 250

215

220

225

230

235

240

245

AU
C

Ba
nd

it

0 100 200 300
390

400

410

420

430

440

450

460

0 100 200 300
420

440

460

480

500

520

540

560

0 100 200 300 400 500
880

890

900

910

920

0 50 100 150 200 250
210

215

220

225

230

235

240

Ba
si

n
H

op
pi

ng

0 50 100 150 200 250 300

380

390

400

410

420

430

440

450

0 100 200 300
470

480

490

500

510

520

0 100 200 300 400

875
880
885
890
895
900
905
910
915

0 50 100 150 200 250

215

220

225

230

235

240

Ba
ye

si
an

 O
pt

im
iz

at
io

n

0 50 100 150 200 250 300

380

400

420

440

460

0 100 200 300

470

480

490

500

510

520

0 100 200 300 400

880

890

900

910

Figure 5.8: Convergence behaviour of different search techniques across GPU architectures

when initialized with a seed configuration. Each plot shows the evolution of throughput

over iterations, with the black dashed line indicating the baseline performance.

86

more invalid configurations as it moves away from the seed configuration’s

region. This pattern illustrates the inherent trade-off between maintaining

high validity rates through exploitation of the seed configuration and poten-

tially discovering better configurations through broader exploration of the

search space.

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge

T4 (seeded)
Valid
Invalid

Figure 5.9: Percentage of valid and invalid configurations generated by different search

techniques on T4 when initialized with a seed onfiguration.

5.3 Reducing Search Space using Boosted Trees

The application of boosted trees as a method to reduce the search space in

the autotuning framework is investigated in this section. The implemen-

tation of the boosted trees algorithm is described, and its effectiveness in

identifying the most influential optimization parameters for CMSSW is pre-

sented. The results demonstrate how this approach affects the speed and

quality of the autotuning process compared to the baseline search methods.

The potential of boosted trees to guide the search process towards more

promising regions of the configuration space is analysed, and the implica-

87

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge
A10 (seeded)

Valid
Invalid

Figure 5.10: Percentage of valid and invalid configurations generated by different search

techniques on A10 when initialized with a seed configuration.

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge

L4 (seeded)
Valid
Invalid

Figure 5.11: Percentage of valid and invalid configurations generated by different search

techniques on L4 when initialized with a seed configuration.

88

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100
Pe

rc
en

ta
ge

L40S (seeded)
Valid
Invalid

Figure 5.12: Percentage of valid and invalid configurations generated by different search

techniques on L40S when initialized with a seed configuration.

tions for improving autotuning efficiency are discussed.

5.3.1 XGBoost for Feature Selection

XGBoost (Chen & Guestrin, 2016), a gradient boosting framework, is em-

ployed to learn the relationship between configuration parameters and per-

formance outcomes from the previous experiments. This choice is supported

by successful applications of XGBoost in similar optimization problems

across the literature (H. Wang, Liang, Hancock, & Khoshgoftaar, 2024),

where it has been effectively used for performance prediction and search

space reduction in system configuration tasks. Through XGBoost’s feature

importance analysis, the number of tuning parameters is reduced from 29 to

the 10 most influential parameters, significantly decreasing the dimension-

ality of the search space.

XGBoost was selected for parameter importance analysis based on its

established advantages over alternative methods (Chen & Guestrin, 2016;

H. Wang et al., 2024; Wu, Chen, Zhou, Wang, & Fan, 2020):

89

Advantages over Decision Trees

• High variance and overfitting issues in single decision trees are ad-

dressed by XGBoost’s gradient boosting approach.

• Complex interactions between GPU configuration parameters are bet-

ter captured through sequential tree building, where errors from pre-

vious trees are corrected.

Advantages over Random Forests

• Better prediction accuracy is achieved with fewer trees, which is cru-

cial when performance measurements are computationally expensive.

• Imbalanced performance data, where optimal configurations are rare,

is handled more effectively through gradient boosting.

• Overfitting is controlled more precisely through built-in regularization

parameters.

Key Benefits

• Training speed and memory usage are optimized for large perfor-

mance datasets.

• Multiple parameter importance metrics (feature importance and SHAP

values) are provided.

• Strong empirical performance in heterogeneous computing systems is

documented in the literature.

While Random Forests and Decision Trees were considered, XGBoost

was determined to be the most suitable choice for GPU kernel autotuning

due to its superior accuracy, efficiency, and robustness to noisy data.

90

The seed configuration is maintained as a starting point, but the search is

now conducted over a reduced parameter space identified by the XGBoost

model. This combination of machine learning-guided dimension reduction

and expert knowledge aims to focus the search algorithms on the most im-

pactful parameters while starting from known-good configurations, poten-

tially leading to more efficient exploration of the configuration space.

For reproducibility purposes, the XGBoost model’s configuration and

dataset characteristics are detailed in Table 5.3. A moderate learning rate

of 0.1 and max depth of 5 were chosen to prevent overfitting while main-

taining model accuracy. The number of estimators was set to 100, provid-

ing sufficient model complexity while keeping computational requirements

reasonable. Feature importance was calculated using the ’weight’ metric,

which measures the frequency of feature appearances in the decision trees,

providing a straightforward measure of each parameter’s influence on the

model’s decisions.

The datasets contain both valid and invalid configurations from previ-

ous experiments, with sizes reflecting each GPU’s computational capacity

within the fixed tuning time budget. The L40S, being the most powerful

GPU, could evaluate the most configurations (7,821), while the T4 evalu-

ated the fewest (4,133).

The feature importance analysis shows distinct patterns of influential pa-

rameters across different GPU architectures (Figures 5.13, 5.14, 5.15, and

5.16). This difference in important features suggests that optimal configu-

ration strategies should be tailored to specific GPU architectures.

Some parameters demonstrate consistent importance across all archi-

tectures. Most notably, FindClus, which handles clustering hits based on

energy deposits, appears as a critical parameter across all GPUs. This con-

sistency aligns with the kernel’s high computational demands.

However, the relative importance of other parameters varies significantly

91

0 50 100 150 200 250 300 350
Frequency

CAFishbone
CountModules
Kernel_BLFit_3

Kernel_fillNLayers
ClusterChargeCut

Kernel_connect
Kernel_find_ntuplets

GetHits
GetDoubletsFromHisto

FindClus

Ke
re

nl
s

Feature Importance (T4)

Figure 5.13: Feature importance ranking for T4 GPU based on XGBoost weight metric.

92

0 50 100 150 200 250 300
Frequency

CAFishbone
Kernel_fillMultiplicity
Kernel_classifyTracks

Kernel_BLFit_4
ClusterChargeCut

Kernel_find_ntuplets
FindClus

Kernel_connect
GetHits

GetDoubletsFromHisto

Ke
re

nl
s

Feature Importance (A10)

Figure 5.14: Feature importance ranking for A10 GPU based on XGBoost weight metric.

93

0 50 100 150 200 250 300
Frequency

Kernel_BLFastFit_4
CAFishbone

Kernel_BLFit_3
ClusterChargeCut

GetDoubletsFromHisto
Kernel_BLFit_4

Kernel_find_ntuplets
Kernel_connect

GetHits
FindClus

Ke
re

nl
s

Feature Importance (L4)

Figure 5.15: Feature importance ranking for L4 GPU based on XGBoost weight metric.

94

0 100 200 300 400
Frequency

Kernel_connect
Kernel_fastDuplicateRemover

Kernel_BLFit_3
Kernel_BLFastFit_4

Kernel_find_ntuplets
ClusterChargeCut

Kernel_BLFit_4
GetDoubletsFromHisto

GetHits
FindClus

Ke
re

nl
s

Feature Importance (L40S)

Figure 5.16: Feature importance ranking for L40S GPU based on XGBoost weight metric.

95

Table 5.3: XGBoost Model Configuration and Dataset Details

Model Parameters
XGBoost Version 2.1.2

Random State 42

Number of Estimators 100

Learning Rate 0.1

Max Depth 5

Importance Type weight

Max Number of Features 10

Dataset Details
T4 Records 4,133

A10 Records 4,562

L4 Records 5,471

L40S Records 7,821

Training Split 90%

Test Split 10%

by architecture. For instance, Kernelconnect appears as a top feature for

A10 and L4 but is less significant for L40S. These variations likely reflect

the different hardware characteristics and computational capabilities of each

GPU architecture, suggesting that the impact of configuration parameters is

heavily influenced by the underlying hardware.

5.3.2 Maximum Throughput

Table 5.4 presents the results of XGBoost-guided search compared to pre-

vious experiments. The XGBoost-guided approach with reduced parame-

ter space shows mixed results across different GPU architectures. While it

achieves the best performance on the A10 (463.478 events/second with Ge-

netic Algorithm), it falls slightly short of the previous best results on other

architectures.

Additionally, on the L4 and L40S, the seeded search from Experiment

96

Table 5.4: Maximum throughput (events/second) achieved by different search techniques

with reduced parameter space using XGBoost across GPU architectures. Bold values indi-

cate the best performance for each GPU.

Technique T4 A10 L4 L40S

Baseline 241.740 430.030 526.100 903.050

Exp. 1 Best 247.160 461.620 537.030 922.420

Exp. 2 Best 246.652 461.021 553.986 924.129
Greedy 245.351 462.942 535.189 919.287

Genetic Algorithm 245.622 463.478 535.103 923.617

Particle Swarm 242.542 455.394 532.992 916.674

Differential Evolution 242.878 455.955 533.305 918.189

AUC Bandit 245.519 459.897 536.279 923.617

Basin Hopping 243.760 459.474 531.491 916.842

Bayesian Optimization 241.092 458.779 531.604 915.416

2 remains most effective (553.986 and 924.129 events/second respectively),

while the random initialization from Experiment 1 maintains the best per-

formance on T4 (247.160 events/second). Despite operating in a reduced

parameter space (10 parameters instead of 29), the XGBoost-guided ap-

proach maintains competitive performance, with most algorithms achieving

within 1-2% of the best known results. This suggests that the parameter

reduction effectively preserved the most influential tuning parameters while

simplifying the search process.

5.3.3 Distribution of Configurations

The distribution of throughput values (Figure 5.17) shows interesting pat-

terns about the effectiveness of different search techniques under XGBoost-

guided parameter reduction. Basin Hopping and Bayesian Optimization

show improved mean performance compared to their seeded configuration

results, suggesting that the reduced parameter space helps these algorithms

97

find better configurations more consistently.

A10 and L4 GPUs demonstrate slightly better mean throughput values

across most search techniques, indicating that the XGBoost-guided param-

eter selection maybe effective for these architectures. Other search tech-

niques maintain similar mean performance to their seeded configuration re-

sults, suggesting that the parameter reduction preserved the most important

tuning factors.

5.3.4 Autotuning Convergence

The convergence behaviour of different search techniques under XGBoost-

guided parameter reduction (Figure 5.18) reveals slight changes in exploration-

exploitation patterns. Exploitative techniques such as Greedy and Genetic

Algorithm now display broader exploration, suggesting that the reduced pa-

rameter space enables them to explore more configurations while maintain-

ing their performance levels.

Basin Hopping notably demonstrates increased exploitation bands com-

pared to previous experiments, which explains its improved mean perfor-

mance. The tighter bands indicate more consistent discovery of good con-

figurations within the reduced search space, suggesting that the XGBoost-

guided parameter selection has helped focus the algorithm’s search in promis-

ing regions.

5.3.5 Configurations Validity

The reduction in parameter space through XGBoost-guided selection has

led to notably improved validity rates across all search techniques and GPU

architectures (Figures 5.19, 5.20, 5.21, and 5.22). This improvement is par-

ticularly evident when compared to previous experiments, suggesting that

the XGBoost model effectively identified parameters that contribute to con-

98

225 230 235 240 245
Mean: 239.84

0

20

40

60

80

100

120
G

re
ed

y
T4 (Baseline: 241.74)

410 420 430 440 450 460
Mean: 452.29

0

20

40

60

80

100

120

A10 (Baseline: 430.03)

490 500 510 520 530
Mean: 525.18

0

20

40

60

80

100

120

140
L4 (Baseline: 526.10)

890 895 900 905 910 915 920
Mean: 909.37

0

25

50

75

100

125

150

175
L40S (Baseline: 903.05)

225 230 235 240 245
Mean: 239.94

0

20

40

60

80

100

G
en

et
ic

 A
lg

or
it

hm

420 430 440 450 460
Mean: 452.91

0

20

40

60

80

100

500 510 520 530
Mean: 524.53

0

20

40

60

80

100

120

895 900 905 910 915 920 925
Mean: 913.86

0

25

50

75

100

125

150

210 220 230 240
Mean: 234.60

0

20

40

60

80

Pa
rt

ic
le

 S
w

ar
m

400 410 420 430 440 450
Mean: 434.96

0

10

20

30

40

50

480 490 500 510 520 530
Mean: 512.69

0

20

40

60

80

880 890 900 910
Mean: 902.75

0

20

40

60

80

100

120

215 220 225 230 235 240
Mean: 233.94

0

20

40

60

80

D
iff

er
en

ti
al

 E
vo

lu
ti

on

380 400 420 440
Mean: 435.00

0

20

40

60

80

470 480 490 500 510 520 530
Mean: 514.82

0

20

40

60

80

880 890 900 910 920
Mean: 904.29

0

20

40

60

80

100

120

140

220 230 240
Mean: 237.42

0

20

40

60

80

100

120

AU
C

Ba
nd

it

400 420 440 460
Mean: 448.30

0

20

40

60

80

100

120

480 500 520
Mean: 520.17

0

25

50

75

100

125

150

880 890 900 910 920
Mean: 908.40

0

25

50

75

100

125

150

210 220 230 240
Mean: 232.85

0

10

20

30

40

50

60

Ba
si

n
H

op
pi

ng

380 400 420 440 460
Mean: 430.35

0

10

20

30

40

50

480 500 520
Mean: 498.64

0

10

20

30

40

50

60

880 890 900 910
Mean: 897.09

0

20

40

60

80

210 220 230 240
Mean: 232.04

0

20

40

60

80

100

Ba
ye

si
an

 O
pt

im
iz

at
io

n

380 400 420 440 460
Mean: 435.13

0

10

20

30

40

50

60

480 490 500 510 520 530
Mean: 519.85

0

25

50

75

100

125

150

880 890 900 910
Mean: 895.70

0

20

40

60

80

100

120

140

Figure 5.17: Distribution of throughput values achieved by different search techniques

using XGBoost-guided search across GPU architectures. The black dashed line indicates

the baseline performance, while the red dashed line shows the mean throughput for each

distribution.

99

0 50 100 150 200 250 300

225

230

235

240

245
G

re
ed

y
T4 (Baseline: 241.74)

0 50 100 150 200 250

410

420

430

440

450

460

A10 (Baseline: 430.03)

0 100 200 300 400
490

500

510

520

530

L4 (Baseline: 526.10)

0 100 200 300 400 500

890

895

900

905

910

915

920
L40S (Baseline: 903.05)

0 50 100 150 200 250 300
225.0
227.5
230.0
232.5
235.0
237.5
240.0
242.5
245.0

G
en

et
ic

 A
lg

or
it

hm

0 50 100 150 200 250 300
420

430

440

450

460

0 100 200 300 400
495

500

505

510

515

520

525

530

535

0 100 200 300 400 500
895

900

905

910

915

920

925

0 50 100 150 200 250

210

215

220

225

230

235

240

Pa
rt

ic
le

 S
w

ar
m

0 50 100 150 200 250

400

410

420

430

440

450

0 100 200 300

480

490

500

510

520

530

0 100 200 300 400 500

880

890

900

910

0 50 100 150 200 250

215

220

225

230

235

240

D
iff

er
en

ti
al

 E
vo

lu
ti

on

0 50 100 150 200 250
380

390

400

410

420

430

440

450

0 100 200 300
470

480

490

500

510

520

530

0 100 200 300 400 500

880

890

900

910

920

0 50 100 150 200 250 300

215

220

225

230

235

240

245

AU
C

Ba
nd

it

0 50 100 150 200 250
390

400

410

420

430

440

450

460

0 100 200 300

470

480

490

500

510

520

530

0 100 200 300 400 500
880
885
890
895
900
905
910
915
920

0 50 100 150 200 250
210

215

220

225

230

235

240

245

Ba
si

n
H

op
pi

ng

0 50 100 150 200 250
380
390
400
410
420
430
440
450
460

0 100 200 300

470

480

490

500

510

520

530

0 100 200 300 400 500

880

890

900

910

0 50 100 150 200 250

210

215

220

225

230

235

240

Ba
ye

si
an

 O
pt

im
iz

at
io

n

0 50 100 150 200 250
380

390

400

410

420

430

440

450

460

0 100 200 300

480

490

500

510

520

530

0 100 200 300 400 500
875
880
885
890
895
900
905
910
915

Figure 5.18: Convergence plots of different search techniques using XGBoost-guided

search across GPU architectures. Each plot shows the evolution of throughput over iter-

ations, with the black dashed line indicating the baseline performance.

100

figuration validity.

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge

T4 (xgboost)
Valid
Invalid

Figure 5.19: Valid and invalid configuration percentages for different search techniques

using XGBoost-guided parameter reduction on T4 GPU.

The validity rates are consistence across different search techniques within

each GPU architecture. Greedy and Genetic Algorithm maintain high valid-

ity rates across all GPUs, while even typically more exploratory algorithms

like Particle Swarm and Basin Hopping demonstrate increased validity rates.

This consistency suggests that the reduced parameter space limits the search

to more viable regions of the configuration space.

The improved validity rates also explain the enhanced mean perfor-

mance observed in the distribution analysis, particularly for Basin Hop-

ping and Bayesian Optimization. By spending less time evaluating invalid

configurations, these algorithms can focus their search effort on optimizing

within valid regions of the parameter space. This efficiency gain is particu-

larly valuable given the computational cost of evaluating invalid configura-

tions during the tuning process.

101

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge
A10 (xgboost)

Valid
Invalid

Figure 5.20: Valid and invalid configuration percentages for different search techniques

using XGBoost-guided parameter reduction on A10 GPU.

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100

Pe
rc

en
ta

ge

L4 (xgboost)
Valid
Invalid

Figure 5.21: Valid and invalid configuration percentages for different search techniques

using XGBoost-guided parameter reduction on L4 GPU.

102

Gree
dy

Gen
eti

c A
lgo

rith
m

Par
tic

le
Sw

arm

Diffe
ren

tia
l E

vo
lut

ion

AUC Ban
dit

Basi
n H

op
pin

g

Bay
esi

an
 Opti

miza
tio

n

Search Technique

0

20

40

60

80

100
Pe

rc
en

ta
ge

L40S (xgboost)
Valid
Invalid

Figure 5.22: Valid and invalid configuration percentages for different search techniques

using XGBoost-guided parameter reduction on L40S GPU.

5.4 Multi-fidelity Autotuning

The implementation and results of multi-fidelity autotuning techniques are

examined in this section. The approach to balancing tuning speed and opti-

mization quality by using lower-fidelity approximations in the early stages

of tuning is presented. A comparison of different fidelity levels and their

impact on the final optimization results is included, as well as an analysis of

the trade-offs between tuning time and performance gains. The potential of

multi-fidelity techniques to accelerate the autotuning process for CMSSW

without significantly compromising the quality of the final solution is eval-

uated.

Two complementary multi-fidelity approaches have been implemented

to maximize exploration efficiency during the autotuning process: reduced

events count and simplified framework execution.

103

5.4.1 Events Count Reduction

In standard CMSSW benchmarking, performance measurements are pro-

cessed using 10,000 events to ensure accurate significant measurements. As

shown in Figure 5.23, when the events count is reduced to 1,000 during

the exploration phase, the configuration evaluation rate is increased by 2-3x

across all GPU architectures. The throughput measurements obtained with

reduced events show moderate correlation with full-event evaluations, with

performance differences ranging from 0.2% to 3.5% across different GPU

architectures (Table 5.5).

Table 5.5: Maximum throughput (events/second) achieved using different fidelity levels

GPU Original 1K Events Pixeltrack
T4 247.160 245.2 241.8

A10 461.620 460.6 459.6

L4 553.986 534.4 528.6

L40S 924.129 919.5 915.6

5.4.2 Pixeltrack Standalone Framework

The second approach is implemented through a minimal CMSSW frame-

work called pixeltrack standalone (Ebrahim, 2024b), where non-essential

components have been stripped away while preserving core elements re-

quired for pixel tracking GPU kernel execution. Through this simplified

framework, configuration evaluation rates are increased by 5-8x compared

to the original framework, enabling broader exploration of the parameter

space. As demonstrated in Table 5.5, the performance measurements ob-

tained through the pixeltrack standalone framework show consistent trends

with the full framework, though with slightly lower absolute throughput val-

ues, particularly notable on the L4 GPU where the difference reaches 4.6%.

104

Original 1K Events Pxiel-Track
Standalone

0

1

2

3

4

5

Co
nf

ig
ur

at
io

ns

T4

Original 1K Events Pxiel-Track
Standalone

0

1

2

3

4

5

6

7

8

A10

Original 1K Events Pxiel-Track
Standalone

Method

0

1

2

3

4

5

6

7

Co
nf

ig
ur

at
io

ns

L4

Original 1K Events Pxiel-Track
Standalone

Method

0

1

2

3

4

5

6

7

8

L40S

Figure 5.23: Configuration evaluation rates across different GPUs using original CMSSW

(10,000 events), reduced events (1,000), and pixeltrack standalone framework approaches.

105

5.4.3 Integration with Full Framework Autotuning

The configurations discovered through these low-fidelity approaches can be

leveraged in two ways for full framework optimization. Similar to Exper-

iment 2, high-performing configurations from the low-fidelity evaluations

can be used as seeds for full framework autotuning, providing better starting

points for the search process. Alternatively, as demonstrated in Experiment

3, these configurations can be used to train an XGBoost model to identify

important parameters and reduce the search space size. Both approaches

benefit from the increased exploration capacity of low-fidelity evaluation

while maintaining the accuracy of full framework tuning.

5.5 Performance Portability

In this final section, the performance portability of the autotuned config-

urations across different GPU architectures is evaluated. The results of

applying optimized configurations from one GPU to others are presented,

and the degree of performance maintained is analysed. The implications

of these findings for developing more generalized optimization strategies

that can work effectively across various hardware platforms are discussed.

The challenges and opportunities in creating portable autotuning solutions

for CMSSW are explored, with a focus on balancing architecture-specific

optimizations with broader applicability.

5.5.1 Performance Portability Analysis

The performance portability of autotuned configurations across different

GPU architectures has been evaluated using the metric proposed by Pen-

nycook et al. (Pennycook, Sewall, & Lee, 2016). This application efficiency

metric measures achieved performance as a fraction of the best observed

106

performance for each platform.

As shown in Figure 5.24, several key patterns emerge in the cross-architecture

performance:

T4 A10 L4 L40S

Ported Configurations

T4
A1

0
L4

L4
0S

GP
Us

1.000 0.990 0.985 0.969

0.987 1.000 0.966 0.958

0.954 1.009 1.000 0.969

0.984 0.983 0.978 1.000
0.96

0.97

0.98

0.99

1.00

Figure 5.24: Performance portability matrix showing application efficiency when running

different GPUs (rows) using configurations optimized for specific architectures (columns).

Diagonal values represent the maximum achievable performance for each GPU using its

respective optimized configuration.

On the T4 GPU (first row), near-optimal performance is achieved with

A10-optimized settings (99%). However, reduced efficiency is observed

with configurations optimized for newer architectures - 98.5% for L4-optimized

and 96.9% for L40S-optimized configurations.

For the A10 (second row), decreased efficiency is seen when configura-

tions optimized for newer architectures are used. Performance is reduced to

107

96.6% with L4-optimized settings and 95.8% with L40S-optimized config-

urations, which can be attributed to its smaller L2 cache (6MB) compared

to these newer GPUs.

In the L4 results (third row), configurations optimized for the A10 are

found to outperform the L4’s own optimized configuration by 0.9% (100.9%

efficiency). However, reduced efficiency (95.4%) is observed when T4-

optimized configurations are used. This is particularly notable as good per-

formance was achieved with the baseline manually-tuned T4 configuration,

but not with the autotuning-optimized T4 configuration. Lower performance

(96.9%) is also seen with L40S-optimized configurations.

The most consistent cross-architecture performance is demonstrated by

the L40S (fourth row), where efficiency between 97.8% and 98.4% is main-

tained when configurations optimized for other architectures are used. This

consistency can be attributed to the L40S’s advanced architecture and larger

resources.

A10-optimized configurations are found to be the most portable across

all platforms, with high performance being maintained even on newer ar-

chitectures. Conversely, the poorest portability is observed with L40S-

optimized configurations, likely due to its advanced architecture and larger

resource that does not exist in older or smaller GPUs.

These results highlight the challenges that are encountered in developing

portable optimizations, especially when hardware characteristics vary sig-

nificantly across architectures. While good cross-architecture performance

can be achieved with some configurations, architecture-specific tuning is

often required for optimal performance.

108

Chapter 6

Conclusion and Future Work

The advancement of heterogeneous computing architectures, particu-

larly GPUs, has increased the need for efficient and portable optimization

techniques for GPU kernels. This thesis aimed to enhance the performance

and portability of GPU kernels within the CMS Software (CMSSW) frame-

work by addressing four main research objectives. Several contributions

were made to the field of auto-tuning and performance optimization.

6.1 Achieving the Research Objectives

The research objectives outlined in Chapter 1 have been successfully ad-

dressed through the contributions of this thesis:

Objective 1: Develop Efficient Search Techniques This objective was

achieved through the implementation of multiple optimization strategies.

The search space was effectively reduced through machine learning ap-

proaches using boosted trees, while computational overhead was minimized

using multi-fidelity optimization techniques. The integration of Basin Hop-

109

ping and Bayesian Optimization further enhanced the framework’s ability

to find optimal configurations efficiently.

Objective 2: Integrate the Autotuning Framework with CMSSW
This objective was fulfilled through the successful development and integra-

tion of an autotuning system within CMSSW. The framework was designed

to handle the unique challenges of CMSSW, particularly the concurrent ex-

ecution of multiple GPU kernels across different processes. This integration

demonstrates the practical applicability of the developed solutions in a real-

world high-energy physics environment.

Objective 3: Evaluate the Framework The framework’s effective-

ness was thoroughly evaluated through cross-architecture performance anal-

ysis. Performance improvements were demonstrated across multiple GPU

architectures, validating the framework’s capability to achieve performance

portability in heterogeneous computing environments. The evaluation was

particularly focused on scenarios where multiple kernels are executed si-

multaneously, reflecting real-world usage patterns in CMSSW.

Objective 4: Provide Insights into Autotuners Benchmarking Method-
ologies This objective was addressed through the implementation of es-

tablished benchmarking methodologies from literature. The research con-

tributed to the field by demonstrating how to ensure reproducible results

through controlled testing environments, multiple measurement repetitions,

and detailed documentation of experimental conditions. These practices

provide a foundation for future research in GPU kernel autotuning.

The contributions of this thesis not only met but exceeded the initial

research objectives by addressing previously unexplored areas, particularly

in the context of multiprocess GPU kernel optimization. The developed

framework provides a comprehensive solution for the high-energy physics

community while establishing methodologies that can be applied in broader

contexts. Table 6.1.

110

Table 6.1: Mapping of Research Objectives to Thesis Contributions
Research Objectives Related Contributions
Objective 1

• Enhanced Search Space Optimization Techniques:

– Machine learning with boosted trees

– Multi-fidelity optimization

– Basin Hopping and Bayesian Optimization

• Multi-Process GPU Kernel Autotuning Framework

Objective 2

• CMSSW GPU Optimization Framework

• Multi-Process GPU Kernel Autotuning Framework

Objective 3

• Cross-Architecture Performance Analysis

• Reproducible Benchmarking Implementation

Objective 4

• Reproducible Benchmarking Implementation

• Cross-Architecture Performance Analysis

111

6.2 Implications of the Research

The contributions made in this thesis have significant practical implications

across multiple domains and stakeholder groups:

High-Energy Physics Community

• Immediate Performance Benefits: The optimization of CMSSW

GPU kernels directly impacts data processing capabilities at the LHC,

potentially enabling more efficient particle detection and analysis.

• Resource Utilization: Enhanced GPU performance through autotun-

ing helps maximize the return on investment in computing infrastruc-

ture, particularly important given the significant costs associated with

high-energy physics facilities.

• Future Scalability: The framework provides a foundation for han-

dling increasing data volumes expected in future LHC runs, helping

ensure computational resources can keep pace with experimental ca-

pabilities.

HPC and Scientific Computing

• Framework Adaptability: The enhanced OpenTuner framework can

be applied to other complex scientific applications beyond CMSSW,

offering a template for GPU optimization in other domains.

• Cost Efficiency: Improved GPU utilization through autotuning can

reduce the need for hardware upgrades, leading to significant cost sav-

ings in large-scale computing facilities.

• Energy Efficiency: Optimized GPU kernels typically result in better

energy efficiency, contributing to more sustainable scientific comput-

ing practices.

112

Software Development Community

• Development Practices: The integration methodology demonstrated

with CMSSW provides a model for incorporating autotuning into large,

complex software systems without major architectural changes.

• Performance Portability: The framework’s ability to optimize across

different GPU architectures helps developers maintain performance as

hardware evolves.

• Optimization Workflows: The automated nature of the framework

reduces the manual effort required for performance optimization, al-

lowing developers to focus on algorithmic improvements.

Research and Innovation

• Machine Learning Integration: The successful application of ma-

chine learning techniques in autotuning opens new avenues for AI-

driven performance optimization.

• Methodology Advancement: The benchmarking and evaluation ap-

proaches developed provide a foundation for future research in auto-

tuning and performance optimization.

• Cross-Domain Applications: The principles and techniques devel-

oped could be adapted for other domains requiring high-performance

computing, such as climate modeling, computational biology, or fi-

nancial modeling.

These implications extend beyond theoretical contributions, offering prac-

tical benefits that can be realized in current and future high-performance

computing applications. The framework’s successful integration with CMSSW

demonstrates its viability in production environments, while its design prin-

ciples provide a blueprint for similar implementations in other domains.

113

6.3 Limitations

While the research achieved its objectives, certain limitations were identi-

fied:

• Limited Hardware Diversity: The evaluations were conducted on a

specific set of GPU architectures. The results may not generalize to all

possible hardware platforms, and performance on other architectures

remains to be validated.

• Specific Machine Learning Models: The search space reduction uti-

lized boosted trees algorithms. Other machine learning models, such

as deep learning or reinforcement learning techniques, were not ex-

plored and might offer different benefits.

• Benchmarking Methodology Scope: The benchmarking methodol-

ogy employed was based on approaches proposed by other researchers.

Alternative benchmarking methods were not investigated, which could

provide additional insights.

• Software Package Focus: The autotuner was primarily used with

CMSSW. Its effectiveness with other software packages was not tested,

so its general applicability to different systems is not fully established.

• Static Tuning Approach: The tuning process was performed offline,

and dynamic tuning mechanisms that adapt to changing workloads or

system conditions were not implemented.

• Single-Objective Tuning Focus: The auto-tuning process focused

primarily on optimizing for performance metrics such as execution

time and throughput. Other objectives, such as power efficiency and

energy consumption, were not explicitly considered. Multi-objective

tuning, which involves balancing multiple objectives like performance

114

and power efficiency, was not explored. This limitation reduces the

applicability of the framework in contexts where factors like power

consumption are critical.

These limitations highlight areas where the research could be extended

to enhance the applicability and robustness of the auto-tuning framework.

6.4 Future Work

Several areas remain for further exploration:

1. Expansion to Other Hardware Architectures: Extending the auto-

tuning framework to support additional types of accelerators, such as

Field-Programmable Gate Arrays (FPGAs) or emerging GPU archi-

tectures, could enhance its applicability.

2. Experiment with Advanced Machine Learning and Reinforcement
Learning Techniques: Investigating other machine learning models,

such as deep neural networks or reinforcement learning, might im-

prove the predictive capabilities of search space reduction and opti-

mization.

3. Use of the Autotuner on Different Software Packages: Applying

the autotuner to other software systems would test its versatility and

provide insights into its generalizability across different applications.

4. Dynamic Tuning: Developing dynamic tuning mechanisms that can

adapt to changing workloads or system conditions in real-time could

increase the framework’s utility in dynamic computing environments.

5. Real-Time Feature Selection: The current batch XGBoost model

could be replaced with streaming variants that enable continuous model

115

updates based on runtime performance data without requiring full re-

training (Montiel et al., 2020).

6. User-friendly Interfaces and Visualization Tools: Enhancing the

user interface and providing visualization tools for the tuning process

could make the framework more accessible to users.

6.5 Concluding Remarks

This thesis addressed the key objectives of developing efficient search tech-

niques, integrating an auto-tuning framework with CMSSW in a loosely

coupled manner, evaluating its effectiveness, and providing insights into au-

totuner benchmarking methodologies. The contributions advance the under-

standing and practice of GPU kernel optimization, offering practical solu-

tions to challenges in high-performance computing.

By bridging the gap between theoretical optimization techniques and

practical implementation within a complex framework like CMSSW, this

work demonstrates the benefits of auto-tuning in enhancing performance

and portability. The insights and tools developed lay a foundation for fu-

ture research and development, contributing to ongoing efforts to improve

computational efficiency in high-energy physics and related fields.

As computational demands continue to grow and hardware architectures

evolve, the importance of efficient and adaptable optimization techniques

increases. This research represents a step toward meeting these challenges,

providing advancements and practical tools that will benefit the scientific

community and contribute to future innovations in the field.

116

References

Aguilera, P., Morrow, K., & Kim, N. S. (2014). Fair share: Allocation of

gpu resources for both performance and fairness. In 2014 ieee 32nd

international conference on computer design (iccd) (pp. 440–447).

doi: 10.1109/ICCD.2014.6974717

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Op-

tuna: A next-generation hyperparameter optimization framework.

In Proceedings of the 25th acm sigkdd international conference on

knowledge discovery & data mining (p. 2623–2631). New York,

NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/3292500.3330701 doi: 10.1145/

3292500.3330701

AMD, Inc. (2024). HIP programming model. Online. Re-

trieved from https://rocm.docs.amd.com/projects/HIP/en/

docs-6.2.0/understand/programming model.html (HIP

6.2.41133 Documentation)

Anderson, J. A., Lorenz, C. D., & Travesset, A. (2008). General pur-

pose molecular dynamics simulations fully implemented on graph-

ics processing units. Journal of Computational Physics, 227(10),

5342–5359. Retrieved from https://www.sciencedirect.com/

science/article/pii/S0021999108000818 doi: https://doi.org/

10.1016/j.jcp.2008.01.047

Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J.,

117

O’Reilly, U.-M., & Amarasinghe, S. (2014). Opentuner: an ex-

tensible framework for program autotuning. In Proceedings of the

23rd international conference on parallel architectures and compi-

lation (p. 303–316). New York, NY, USA: Association for Com-

puting Machinery. Retrieved from https://doi.org/10.1145/

2628071.2628092 doi: 10.1145/2628071.2628092

Ashouri, A. H., Killian, W., Cavazos, J., Palermo, G., & Silvano, C. (2018,

sep). A survey on compiler autotuning using machine learning. ACM

Comput. Surv., 51(5). Retrieved from https://doi.org/10.1145/

3197978 doi: 10.1145/3197978

Balaprakash, P., Dongarra, J., Gamblin, T., Hall, M., Hollingsworth, J. K.,

Norris, B., & Vuduc, R. (2018). Autotuning in high-performance

computing applications. Proceedings of the IEEE, 106(11), 2068–

2083. doi: 10.1109/JPROC.2018.2841200

Balaprakash, P., Tiwari, A., & Wild, S. M. (2014). Multi objective op-

timization of hpc kernels for performance, power, and energy. In

S. A. Jarvis, S. A. Wright, & S. D. Hammond (Eds.), High perfor-

mance computing systems. performance modeling, benchmarking and

simulation (pp. 239–260). Cham: Springer International Publishing.

Beckingsale, D. A., Burmark, J., Hornung, R., Jones, H., Killian, W.,

Kunen, A. J., . . . Scogland, T. R. (2019). Raja: Portable performance

for large-scale scientific applications. In 2019 ieee/acm international

workshop on performance, portability and productivity in hpc (p3hpc)

(pp. 71–81). doi: 10.1109/P3HPC49587.2019.00012

Ben-Nun, T., Gamblin, T., Hollman, D. S., Krishnan, H., & Newburn, C. J.

(2020). Workflows are the new applications: Challenges in perfor-

mance, portability, and productivity. In 2020 ieee/acm international

workshop on performance, portability and productivity in hpc (p3hpc)

(pp. 57–69). doi: 10.1109/P3HPC51967.2020.00011

118

Bocci, A. (2023). Cms high level trigger performance comparison

on cpus and gpus. Journal of Physics: Conference Series, 2438.

Retrieved from https://api.semanticscholar.org/CorpusID:

256897623

Bocci, A., Czirkos, A., Pilato, A. D., Pantaleo, F., Hugo, G., Kortelainen,

M. J., & Redjeb, W. (2023). Performance portability for the cms

reconstruction with alpaka. Journal of Physics: Conference Se-

ries, 2438. Retrieved from https://api.semanticscholar.org/

CorpusID:256897589

Bocci, A., Dagenhart, D., Innocente, V., Jones, C., Kortelainen, M. J.,

Pantaleo, F., & Rovere, M. (2019). Bringing heterogeneity to the

cms software framework. EPJ Web of Conferences. Retrieved from

https://api.semanticscholar.org/CorpusID:215548458

Bocci, A., Innocente, V., Kortelainen, M., Pantaleo, F., & Rovere,

M. (2020). Heterogeneous reconstruction of tracks and pri-

mary vertices with the cms pixel tracker. Frontiers in Big Data,

3. Retrieved from https://www.frontiersin.org/journals/

big-data/articles/10.3389/fdata.2020.601728 doi: 10

.3389/fdata.2020.601728

Bocci, A., Jones, C., & Kortelainen, M. J. (2023). Performance of hetero-

geneous algorithm scheduling in cmssw. Performance of Heteroge-

neous Algorithm Scheduling in CMSSW. Retrieved from https://

api.semanticscholar.org/CorpusID:258793923

Bocci, A., Kortelainen, M. J., Innocente, V., Pantaleo, F., & Rovere, M.

(2020). Heterogeneous reconstruction of tracks and primary vertices

with the cms pixel tracker. Frontiers in Big Data, 3. Retrieved from

https://api.semanticscholar.org/CorpusID:221377257

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M.,

& Hanrahan, P. (2004). Brook for gpus: stream computing on

119

graphics hardware. In Acm siggraph 2004 papers (p. 777–786).

New York, NY, USA: Association for Computing Machinery. Re-

trieved from https://doi.org/10.1145/1186562.1015800 doi:

10.1145/1186562.1015800

Chaudhary, S., Ramjee, R., Sivathanu, M., Kwatra, N., & Viswanatha,

S. (2020). Balancing efficiency and fairness in heterogeneous gpu

clusters for deep learning. In Proceedings of the fifteenth european

conference on computer systems. New York, NY, USA: Associa-

tion for Computing Machinery. Retrieved from https://doi.org/

10.1145/3342195.3387555 doi: 10.1145/3342195.3387555

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., &

Skadron, K. (2009). Rodinia: A benchmark suite for heteroge-

neous computing. 2009 IEEE International Symposium on Work-

load Characterization (IISWC), 44–54. Retrieved from https://

api.semanticscholar.org/CorpusID:206915521

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boost-

ing system. In Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining (p. 785–794).

New York, NY, USA: Association for Computing Machinery. Re-

trieved from https://doi.org/10.1145/2939672.2939785 doi:

10.1145/2939672.2939785

Cheng, R., & Jin, Y. (2015). A social learning particle swarm optimization

algorithm for scalable optimization. Information Sciences, 291, 43–

60. Retrieved from https://www.sciencedirect.com/science/

article/pii/S0020025514008366 doi: https://doi.org/10.1016/

j.ins.2014.08.039

CMS Collaboration. (2006). CMS Physics: Technical Design Report Vol-

ume 1: Detector Performance and Software. Geneva: CERN. Re-

trieved from https://cds.cern.ch/record/922757 (There is an

120

error on cover due to a technical problem for some items)

CMS Collaboration. (2021). The Phase-2 Upgrade of the CMS Data Ac-

quisition and High Level Trigger (Tech. Rep.). Geneva: CERN. Re-

trieved from https://cds.cern.ch/record/2759072 (This is the

final version of the document, approved by the LHCC)

CMS Collaboration. (2024). Cms offline software. https://cms-sw

.github.io/. CERN. Retrieved from https://cms-sw.github

.io/ (Documentation for CMS Software (CMSSW))

Curtis, S. A. (2003). The classification of greedy algorithms. Sci.

Comput. Program., 49, 125–157. Retrieved from https://api

.semanticscholar.org/CorpusID:41336427

Danalis, A., Marin, G., McCurdy, C., Meredith, J. S., Roth, P. C., Spaf-

ford, K., . . . Vetter, J. S. (2010). The scalable heterogeneous com-

puting (shoc) benchmark suite. In Proceedings of the 3rd work-

shop on general-purpose computation on graphics processing units

(p. 63–74). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/1735688

.1735702 doi: 10.1145/1735688.1735702

Demeshko, I., Maruyama, N., Tomita, H., & Matsuoka, S. (2013). Multi-

gpu implementation of the nicam atmospheric model. In I. Caragian-

nis et al. (Eds.), Euro-par 2012: Parallel processing workshops (pp.

175–184). Berlin, Heidelberg: Springer Berlin Heidelberg.

Ebrahim, A. (2024a). patatrack-scripts: Scripts for benchmarking cmsrun-

based patatrack jobs. GitHub. Retrieved from https://github

.com/asubah/patatrack-scripts (Accessed: [02-09-2024])

Ebrahim, A. (2024b). pixeltrack-standalone. https://github.com/

asubah/pixeltrack-standalone/tree/autotuning.

GitHub. Retrieved from https://github.com/asubah/

pixeltrack-standalone (Fork of cms-patatrack/pixeltrack-

121

standalone, branch: autotuning)

Ebrahim, A., Hammad, M., Zeki, A., & Alqaddoumi, A. (2021). City-

based approach for gpu kernel execution trace visualisation. In 4th

smart cities symposium (scs 2021) (Vol. 2021, pp. 301–306). doi:

10.1049/icp.2022.0360

Evans, R. T., Cawood, M., Harrell, S. L., Huang, L., Liu, S., Lu, C.-Y.,

. . . Zhang, Z. (2021). Optimizing gpu-enhanced hpc system and

cloud procurements for scientific workloads. In Information security

conference. Retrieved from https://api.semanticscholar.org/

CorpusID:235466296

Fernandez Perez Tomei, T. R. (2022). The High-Level Trigger for the CMS

Phase-2 Upgrade (Tech. Rep.). CMS. Retrieved from https://

cds.cern.ch/record/2847440 doi: 10.22323/1.414.0209

Fung, J., & Mann, S. (2005). Openvidia: parallel gpu computer vi-

sion. In Proceedings of the 13th annual acm international confer-

ence on multimedia (p. 849–852). New York, NY, USA: Associa-

tion for Computing Machinery. Retrieved from https://doi.org/

10.1145/1101149.1101334 doi: 10.1145/1101149.1101334

Gelado, I., & Garland, M. (2019). Throughput-oriented gpu memory alloca-

tion. In Proceedings of the 24th symposium on principles and practice

of parallel programming (p. 27–37). New York, NY, USA: Associa-

tion for Computing Machinery. Retrieved from https://doi.org/

10.1145/3293883.3295727 doi: 10.1145/3293883.3295727

Gu, R., & Becchi, M. (2020). Gpu-fptuner: Mixed-precision auto-tuning

for floating-point applications on gpu. In 2020 ieee 27th interna-

tional conference on high performance computing, data, and analyt-

ics (hipc) (pp. 294–304). doi: 10.1109/HiPC50609.2020.00043

Guerreiro, J., Ilic, A., Roma, N., & Tomás, P. (2015). Multi-kernel

auto-tuning on gpus: Performance and energy-aware optimization.

122

In 2015 23rd euromicro international conference on parallel, dis-

tributed, and network-based processing (pp. 438–445). doi: 10.1109/

PDP.2015.44

Hu, B., & Rossbach, C. J. (2019). Mirovia: A benchmarking suite

for modern heterogeneous computing. ArXiv, abs/1906.10347.

Retrieved from https://api.semanticscholar.org/CorpusID:

13710490

Immanuel, S. D., & Chakraborty, U. K. (2019). Genetic algorithm:

An approach on optimization. In 2019 international conference on

communication and electronics systems (icces) (pp. 701–708). doi:

10.1109/ICCES45898.2019.9002372

Jin, Z., & Vetter, J. S. (2023). A benchmark suite for improving performance

portability of the sycl programming model. 2023 IEEE International

Symposium on Performance Analysis of Systems and Software (IS-

PASS), 325–327. Retrieved from https://api.semanticscholar

.org/CorpusID:259236283

Kameyama, K. (2009). Particle swarm optimization - a survey. IEICE

Trans. Inf. Syst., 92-D, 1354–1361. Retrieved from https://api

.semanticscholar.org/CorpusID:39332633

Khronos, S. W. G. (2020). SYCL 2020 Specification (Specification).

Khronos Group. Retrieved from https://www.khronos.org/

registry/SYCL/specs/sycl-2020/html/sycl-2020.html (Re-

vision 9)

Leung, Y., Gao, Y., & Xu, Z.-B. (1997). Degree of population diversity -

a perspective on premature convergence in genetic algorithms and its

markov chain analysis. IEEE Transactions on Neural Networks, 8(5),

1165–1176. doi: 10.1109/72.623217

Li, B., Wei, J., Sun, J., Annavaram, M., & Kim, N. S. (2019, jun). An

efficient gpu cache architecture for applications with irregular mem-

123

ory access patterns. ACM Trans. Archit. Code Optim., 16(3). Re-

trieved from https://doi.org/10.1145/3322127 doi: 10.1145/

3322127

Lin, H., & Wang, C.-L. (2020). On-gpu thread-data remapping for nested

branch divergence. Journal of Parallel and Distributed Computing,

139, 75–86. Retrieved from https://www.sciencedirect.com/

science/article/pii/S0743731518308967 doi: https://doi.org/

10.1016/j.jpdc.2020.02.003

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D.,

Benjamins, C., . . . Hutter, F. (2022, jan). Smac3: a versatile bayesian

optimization package for hyperparameter optimization. J. Mach.

Learn. Res., 23(1).

Liu, Y., Sid-Lakhdar, W. M., Marques, O., Zhu, X., Meng, C., Dem-

mel, J. W., & Li, X. S. (2021). Gptune: multitask learning for

autotuning exascale applications. In Proceedings of the 26th acm

sigplan symposium on principles and practice of parallel program-

ming (p. 234–246). New York, NY, USA: Association for Com-

puting Machinery. Retrieved from https://doi.org/10.1145/

3437801.3441621 doi: 10.1145/3437801.3441621

Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I.,

. . . Lefohn, A. (2004). Gpgpu: general purpose computation on

graphics hardware. In Acm siggraph 2004 course notes (p. 33–es).

New York, NY, USA: Association for Computing Machinery. Re-

trieved from https://doi.org/10.1145/1103900.1103933 doi:

10.1145/1103900.1103933

Markidis, S., Chien, S. W. D., Laure, E., Peng, I. B., & Vetter, J. S.

(2018). NVIDIA Tensor Core Programmability, Performance & Pre-

cision. In 2018 ieee international parallel and distributed process-

ing symposium workshops (ipdpsw) (pp. 522–531). doi: 10.1109/

124

IPDPSW.2018.00091

Matthes, A., Widera, R., Zenker, E., Worpitz, B., Huebl, A., & Bussmann,

M. (2017). Tuning and optimization for a variety of many-core archi-

tectures without changing a single line of implementation code using

the alpaka library. In J. M. Kunkel, R. Yokota, M. Taufer, & J. Shalf

(Eds.), High performance computing (pp. 496–514). Cham: Springer

International Publishing.

McIntosh-Smith, S., Boulton, M., Curran, D., & Price, J. (2014). On the per-

formance portability of structured grid codes on many-core computer

architectures. In J. M. Kunkel, T. Ludwig, & H. W. Meuer (Eds.), Su-

percomputing (pp. 53–75). Cham: Springer International Publishing.

Menon, H., Bhatele, A., & Gamblin, T. (2020). Auto-tuning parameter

choices in hpc applications using bayesian optimization. In 2020 ieee

international parallel and distributed processing symposium (ipdps)

(pp. 831–840). doi: 10.1109/IPDPS47924.2020.00090

Mohamed, A. (2020). Enhancing cms daq systems performance using

performance profiling of parallel programs on gpgpus (Unpublished

master’s thesis). University of Bahrain.

Montiel, J., Mitchell, R., Frank, E., Pfahringer, B., Abdessalem, T., & Bifet,

A. (2020). Adaptive xgboost for evolving data streams. In 2020

international joint conference on neural networks (ijcnn) (pp. 1–8).

doi: 10.1109/IJCNN48605.2020.9207555

Neely, J. R. (2016, 4). Doe centers of excellence performance portabil-

ity meeting (Tech. Rep.). Retrieved from https://www.osti.gov/

biblio/1332474 doi: 10.2172/1332474

Nugteren, C., & Codreanu, V. (2015). Cltune: A generic auto-tuner for

opencl kernels. In 2015 ieee 9th international symposium on em-

bedded multicore/many-core systems-on-chip (pp. 195–202). doi:

10.1109/MCSoC.2015.10

125

NVIDIA Corporation. (2024a). CUDA C++ Programming Guide [Com-

puter software manual]. Retrieved from https://docs.nvidia

.com/cuda/cuda-c-programming-guide/index.html (Ac-

cessed: [31-08-2024])

NVIDIA Corporation. (2024b). User guide — nsight-systems

2024.5 documentation [Computer software manual]. Retrieved

from https://docs.nvidia.com/nsight-systems/UserGuide/

index.html (Accessed: [02-09-2024])

Pennycook, S. J., Sewall, J. D., & Lee, V. W. (2016). A metric for perfor-

mance portability. arXiv preprint arXiv:1611.07409.

Petrovič, F., Střelák, D., Hozzová, J., Ol’ha, J., Trembecký, R., Benkner,

S., & Filipovič, J. (2020). A benchmark set of highly-efficient

cuda and opencl kernels and its dynamic autotuning with ker-

nel tuning toolkit. Future Generation Computer Systems, 108,

161–177. Retrieved from https://www.sciencedirect.com/

science/article/pii/S0167739X19327360 doi: https://doi.org/

10.1016/j.future.2020.02.069

Price, K. V., Storn, R., & Lampinen, J. (2014). Differential evolution: A

practical approach to global optimization.. Retrieved from https://

api.semanticscholar.org/CorpusID:118963641

Ramı́rez, J. E., Yzquierdo, A. P.-C., & Hernández, J. M. (2016). Ex-

ploiting multicore compute resources in the cms experiment. Jour-

nal of Physics: Conference Series, 762. Retrieved from https://

api.semanticscholar.org/CorpusID:63840434

Reyes, R., & de Sande, F. (2012). Optimization strategies in different cuda

architectures using llcomp. Microprocess. Microsystems, 36, 78-87.

Rovere, M., Chen, Z., Di Pilato, A., Pantaleo, F., & Seez, C. (2020). Clue: a

fast parallel clustering algorithm for high granularity calorimeters in

high-energy physics. Frontiers in big Data, 3, 591315.

126

Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., &

Hwu, W.-m. W. (2008). Optimization principles and application per-

formance evaluation of a multithreaded gpu using cuda. In Proceed-

ings of the 13th acm sigplan symposium on principles and practice

of parallel programming (p. 73–82). New York, NY, USA: Associa-

tion for Computing Machinery. Retrieved from https://doi.org/

10.1145/1345206.1345220 doi: 10.1145/1345206.1345220

Schmidt, B., Gonzalez-Dominguez, J., Hundt, C., & Schlarb, M. (2018).

Chap-ter 8-advanced cuda programming. In Parallel programming

(pp. 287–313). Morgan Kaufmann.

Sedova, A., Eblen, J. D., Budiardja, R., Tharrington, A., & Smith, J. C.

(2018). High-performance molecular dynamics simulation for bio-

logical and materials sciences: Challenges of performance portabil-

ity. In 2018 ieee/acm international workshop on performance, porta-

bility and productivity in hpc (p3hpc) (pp. 1–13). doi: 10.1109/

P3HPC.2018.00004

Seymour, K., You, H., & Dongarra, J. (2008a). A comparison of search

heuristics for empirical code optimization. In 2008 ieee interna-

tional conference on cluster computing (pp. 421–429). doi: 10.1109/

CLUSTR.2008.4663803

Seymour, K., You, H., & Dongarra, J. (2008b). A comparison of search

heuristics for empirical code optimization. In 2008 ieee interna-

tional conference on cluster computing (pp. 421–429). doi: 10.1109/

CLUSTR.2008.4663803

Sinclair, M. D., Alsop, J., & Adve, S. V. (2017). Heterosync: A bench-

mark suite for fine-grained synchronization on tightly coupled gpus.

In 2017 ieee international symposium on workload characterization

(iiswc) (pp. 239–249). doi: 10.1109/IISWC.2017.8167781

Steinkraus, D., Buck, I., & Simard, P. (2005). Using gpus for machine

127

learning algorithms. In Eighth international conference on document

analysis and recognition (icdar’05) (pp. 1115–1120 Vol. 2). doi: 10

.1109/ICDAR.2005.251

Sund, I., Kirkhorn, K. A., Tørring, J. O., & Elster, A. C. (n.d.). BAT:

A benchmark suite for AutoTuners. (1), 44–57. Retrieved 2021-

12-10, from https://ojs.bibsys.no/index.php/NIK/article/

view/915 (Number: 1)

Tillmann, M., Karcher, T., Dachsbacher, C., & Tichy, W. F. (2013).

Application-independent autotuning for gpus. In International con-

ference on parallel computing.

Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of research

on machine learning applications and trends: algorithms, methods,

and techniques (pp. 242–264). IGI global.

Tørring, J. O., & Elster, A. C. (2022). Analyzing search techniques for

autotuning image-based gpu kernels: The impact of sample sizes.

2022 IEEE International Parallel and Distributed Processing Sym-

posium Workshops (IPDPSW), 972–981. Retrieved from https://

api.semanticscholar.org/CorpusID:247748759

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Elling-

wood, N., . . . Wilke, J. (2022). Kokkos 3: Programming model

extensions for the exascale era. IEEE Transactions on Parallel

and Distributed Systems, 33(4), 805–817. doi: 10.1109/TPDS.2021

.3097283

Tørring, J. O., van Werkhoven, B., Petrovč, F., Willemsen, F.-J., Fil-

ipovič, J., & Elster, A. C. (n.d.). Towards a benchmark-

ing suite for kernel tuners. In 2023 IEEE international par-

allel and distributed processing symposium workshops (IPDPSW)

(pp. 724–733). Retrieved 2024-01-24, from https://ieeexplore

.ieee.org/abstract/document/10196663 doi: 10.1109/

128

IPDPSW59300.2023.00124

Tørring, J. O., van Werkhoven, B., Petrovč, F., Willemsen, F.-J., Filipovič,

J., & Elster, A. C. (2023). Towards a benchmarking suite for kernel

tuners. In 2023 ieee international parallel and distributed process-

ing symposium workshops (ipdpsw) (pp. 724–733). doi: 10.1109/

IPDPSW59300.2023.00124

van Werkhoven, B. (2019). Kernel tuner: A search-optimizing

gpu code auto-tuner. Future Generation Computer Systems, 90,

347–358. Retrieved from https://www.sciencedirect.com/

science/article/pii/S0167739X18313359 doi: https://doi.org/

10.1016/j.future.2018.08.004

Victoria, A. H., & Maragatham, G. (2021). Automatic tuning of hyper-

parameters using bayesian optimization. Evolving Systems, 12, 217–

223.

Wales, D. J., & Doye, J. P. K. (1997). Global optimization by basin-hopping

and the lowest energy structures of lennard-jones clusters containing

up to 110 atoms. Journal of Physical Chemistry A, 101, 5111–5116.

Retrieved from https://api.semanticscholar.org/CorpusID:

28539701

Wang, H., Liang, Q., Hancock, J. T., & Khoshgoftaar, T. M. (2024). Fea-

ture selection strategies: a comparative analysis of shap-value and

importance-based methods. Journal of Big Data, 11(1), 44.

Wang, Q., Xu, P., Zhang, Y., & Chu, X. (2017). Eppminer: An ex-

tended benchmark suite for energy, power and performance char-

acterization of heterogeneous architecture. In Proceedings of the

eighth international conference on future energy systems (p. 23–33).

New York, NY, USA: Association for Computing Machinery. Re-

trieved from https://doi.org/10.1145/3077839.3077858 doi:

10.1145/3077839.3077858

129

Wang, Z., Yang, J., Melhem, R., Childers, B., Zhang, Y., & Guo, M.

(2016). Simultaneous multikernel: Fine-grained sharing of gpus.

IEEE Computer Architecture Letters, 15(2), 113–116. doi: 10.1109/

LCA.2015.2477405

Whaley, R., & Dongarra, J. (1998). Automatically tuned linear algebra

software. In Sc ’98: Proceedings of the 1998 acm/ieee conference on

supercomputing (pp. 38–38). doi: 10.1109/SC.1998.10004

Willemsen, F.-J., Schoonhoven, R., Filipovič, J., Tørring, J. O., van

Nieuwpoort, R., & van Werkhoven, B. (2024). A method-

ology for comparing optimization algorithms for auto-tuning.

Future Generation Computer Systems, 159, 489–504. Re-

trieved from https://www.sciencedirect.com/science/

article/pii/S0167739X24002498 doi: https://doi.org/10.1016/

j.future.2024.05.021

Willemsen, F.-J., van Nieuwpoort, R., & van Werkhoven, B. (2021).

Bayesian optimization for auto-tuning gpu kernels. In 2021 interna-

tional workshop on performance modeling, benchmarking and simu-

lation of high performance computer systems (pmbs) (pp. 106–117).

doi: 10.1109/PMBS54543.2021.00017

Wu, J., Chen, S., Zhou, W., Wang, N., & Fan, Z. (2020). Evaluation of

feature selection methods using bagging and boosting ensemble tech-

niques on high throughput biological data. In Proceedings of the 2020

10th international conference on biomedical engineering and tech-

nology (p. 170–175). New York, NY, USA: Association for Com-

puting Machinery. Retrieved from https://doi.org/10.1145/

3397391.3397403 doi: 10.1145/3397391.3397403

Yang, L., & Shami, A. (2020). On hyperparameter optimization of ma-

chine learning algorithms: Theory and practice. Neurocomputing,

415, 295–316. Retrieved from https://www.sciencedirect.com/

130

science/article/pii/S0925231220311693 doi: https://doi.org/

10.1016/j.neucom.2020.07.061

Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knüpfer,

A., . . . Bussmann, M. (2016). Alpaka – an abstraction library for

parallel kernel acceleration. In 2016 ieee international parallel and

distributed processing symposium workshops (ipdpsw) (pp. 631–640).

doi: 10.1109/IPDPSW.2016.50

Zhou, K., Adhianto, L., Anderson, J., Cherian, A., Grubisic, D., Krentel,

M., . . . Mellor-Crummey, J. (2021, dec). Measurement and anal-

ysis of gpu-accelerated applications with hpctoolkit. Parallel Com-

put., 108(C). Retrieved from https://doi.org/10.1016/j.parco

.2021.102837 doi: 10.1016/j.parco.2021.102837

Zhu, X., Liu, Y., Ghysels, P., Bindel, D., & Li, X. S. (2022). Gp-

tuneband: Multi-task and multi-fidelity autotuning for large-scale

high performance computing applications. In Proceedings of the 2022

siam conference on parallel processing for scientific computing (pp)

(pp. 1–13). Retrieved from https://epubs.siam.org/doi/abs/

10.1137/1.9781611977141.1 doi: 10.1137/1.9781611977141.1

131

�
é�@PYË@ �

	
jÊÓ

ه ي هذ يف ف وع الكث ن وم، هي الت سُ ات الرُّ دم معالج ات التي تستخ ي رمج ه مطوري الب من أهم الصعاب التي تواج
ة الأداء رامج عالي ب من مهم.ة تط.وير ب ، يص.عّ ات ات المعالج ي معماري م ف ن التط.ور ال.دائ . حيث إ ات المعالج
دم ق ه الأطروحة ن ي ه..ذ ، ف لك . ل..ذ ات ه المعالج درات هذ ل لق دام الأمث لى الاستخ دي إ ا يؤ قً ي طا دق ب وطة ض ب مض
ه داء ه..ذ ن أ لى تحس..ي ا يه..دف إ طا آلي ب وم ض سُ ات الرُّ دم معالج ات ال..تي تس..تخ ي رمج ط الب ب ط..ار عم..ل لض إ

وم. سُ ات الرُّ نواع معالج لف أ ت يات على مخ رمج الب

ات ي رمج آلي لب ط ال ب ة الض ة لعملي ي ة الحس..اب كلف ض الت ف رض خ غ ات بحث ب ي ن ق ، ط..ورت ت ه الأطروحة ي ه..ذ ف
آلي المع..روف ب ط ال ب رامج الض لى أحد ب ات إ ي ن ق ه الت ت هذ ف ي وم. أض سُ ات الرُّ . كم..ا ط..ورOpenTunerمعالج

امج رن لىOpenTunerالب ت إ ف ي حث ال...تي أض ات الب ي ن ق وم. ت سُ ات الرُّ ات معالج ي رمج ق م...ع ب تواف لي
OpenTuner ة مي وارز ه الأطروحة هي خ ي ه.....ذ Basin ف Hopping ة مي وارز Bayesian و خ

Optimizationحث اء الب ض م ف ليص حج ق ها ت آلة هدف علم ال دام ت ة على استخ ي ن رى مب ة أخ ي ن ق ت ت ف ي . كما أض
. لك آلي كذ ط ال ب ة الض ط، لتسريع عملي ب ة الض ويات دق مة على تعدد مست ائ ة ق ي ن ق . كما طورت ت آلي ط ال ب ي الض ف

ون ف المي ات كاش ي رمج ة لب من ي المتض وم ف سُ ات الرُّ ي رمج ط ب ب ة لض ات المس..تحدث ي ن ق ه الت دمت ه..ذ استخ
اتCMSSW)العملاق ي رمج ن ب ي ط ب هة رب تطوير واج لك ب ، وذ ة ة العالي ياء الطاق ز ي ارب ف ي تج دمة ف (المستخ
CMSي وم ف سُ ات الرُّ ي رمج ترح على ب ط..ار العم..ل المق ر إ ب ت . اخ ه الأطروحة ي ه..ذ دم ف ط..ار العم..ل المق وإ

CMSSWة ارن رض مق غ لك ب ال، وذ ا المج ي هذ ن ف ي احث ل الب ب ترحة من ق داء مق ياس أ يات ق هج اع من ب ات لك ب ، وذ
ن ، أ ارات ب ت ارب والاخ ه التج تج من هذ . ون ي الوسط العلمي ة ف رى المعروف ات الأخ ي ن ق ترحة مع الت ات المق ي ن ق الت
ات ي رمج اد سرعة الب ، مم..ا ز دوي ط الي ب وقت على الض ف ترح، ت ا بواسطة الإطار المق وطة آلي ب يات المض رمج الب

هلاكها للموارد. ة است لل كلف وق

، ع.دم ارب ي التج دامها ف وم الممكن استخ سُ ات الرُّ ر من معالج ك.ب ر ع.دد أ وف ، ع.دم ت ارب ه التج د ه.ذ ي مما ق
ف ي ف ادة الأداء، كتخ ي ر ز ي رى غ ات لأهداف أخ ي رمج ط الب ب ، عدم ض آلة علم ال ال ت ر من مج كث ات أ ي ن ق دام ت استخ

، كم..ا يمكن ة لف ت ات المعماريات المخ ات ذ ر من المعالج كب دام عدد أ ل يمكن استخ ب ق ي المست . ف ة دام الطاق استخ
آلي ط ال ب طار الض دام إ ، كما يمكن استخ ز علم المعز دمة كالتعلم العميق والت ق آلة المت علم ال ات ت ي ن ق ة بعض ت رب تج

دم. هة المستخ ن واج عال وتحسي ط الف ب دام الض ، كما يمكن استخ ة لف ت ات مخ ي رمج مع ب

	áK
QjJ. Ë @
�
éªÓAg.

�
HAÓñÊªÖÏ @

�
éJ

	
J
�
®
�
K
�
éJ
Ê¿

ú

Í
�
B@ ¡J.

	
�ÊË ÉÔ« PA£@

Ðñ�
��QË@

�
HAm.

Ì'AªÓ
�
HAJ
m.

×QK. Z @X

B

úÎ« Èñ�mÌ'@
�
HAJ. Ê¢

�
JÓ 	áÓ Z 	Qm.

» �
éÓY

�
®Ó

�
ékðQ£

@

�
HAÓñÊªÖÏ @ð

�
éJ.�ñm

Ì'@ ÐñÊ« ú

	
¯ è @Pñ

�
J»YË@

�
ék. PX

X@Y«@

hAJ.� ú

Î« Õæ

ë@QK. @

é<Ë @ YJ.«

20103079

	
¬@Qå

�
� @

ú

	
GYÖÏ @ YÒm× É

K@ð . X

(¼PA
�
�Ó

	
XA
�
J�

@)

ÈAÒªË@ ÐA
�
�ë . X

(Y«A�Ó
	
XA
�
J�

@)

	áK
QjJ. Ë @
�
éªÓAg.

	áK
QjJ. Ë @
�
éºÊÜØ

2024 QK. ñ
�
J»

@

