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Abstract

The neutrons and gamma rays created in nuclear reactions provide a way to measure

conditions in Inertial Confinement Fusion (ICF) experiments. Interpretation of nuclear

measurements requires detailed theoretical models and numerical simulations. This

thesis presents a computational study of the nuclear observables based on radiation

hydrodynamics simulations of ICF experiments. Current measurement techniques are

replicated to highlight their strengths and shortcomings. Novel analyses are developed

to measure conditions in experiments which are currently unmeasured.

Novel features of the scattered and high energy neutron spectrum are investigated.

The neutron backscatter edge spectral shape is shown to be determined by the scattering

rate weighted ion velocity distribution. A spectrum model is developed, tested and

shown to infer currently unmeasured values for fluid velocity and temperature in the

dense DT fuel. For magnetised spherical implosions, secondary DT neutrons exhibit

yield increases and spectral anisotropy. The alpha knock-on component of the tertiary

neutron spectrum shows sensitivity to hotspot transparency.

Images of the DT primary and scattered neutrons are calculated for several radiation

hydrodynamics simulations. The primary neutron image shape analysis is shown to

be robust against differential attenuation effects. The use of multiple energy gates

to measure areal density within different angular ranges is demonstrated. Activation

diagnostics are shown to have finite angular resolution due to the extended nature of

the hotspot.

The time history of fusion gamma rays is found to be correlated to the rate of me-

chanical work performed on the hotspot. The length of peak delays between fusion and

carbon gamma rays indicate the degree of burn truncation. Images of carbon gamma

rays can be used to measure large scale asymmetries in the remaining ablator.

Combining and expanding on nuclear measurements allows a more complete picture

of hydrodynamic conditions. This will aid in understanding and improving ICF exper-

iments.
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1 Introduction

1.1 Nuclear Fusion

Nuclear fusion is the combination of light nuclei to form heavier nuclei, releasing energy

if the products are more stable than the reactants. Stars derive their energy from fusion

reactions, first fusing hydrogen to form helium and then fusing heavier elements up

until iron. The energy released per nuclear reaction, Q, is given by the binding energy

difference between the reactants and products. The binding energy per nucleon peaks

around iron (Z=26). Elements heavier than iron can split to form lighter nuclei while

releasing energy, which is known as nuclear fission.
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Figure 1.1: Contour plot of the binding energy per nucleon as a function of the number
of neutrons and protons as approximated by the semi-empirical mass formula
[149].
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The electrostatic repulsion between nuclei must be overcome in order for fusion to

occur. This introduces a barrier transparency term, T , to the cross section for fusion

reactions, which is often written as [8]:

σ(E) =
S(E)

E
T =

S(E)

E
exp

(
−
√
EG
E

)
, (1.1)

where EG is the Gamow energy and S is the astrophysical S-factor, which depends

on the nuclear physics of the reaction and generally has a weaker energy dependence

than the Gamow factor. Thus, reactants with energies much less than the Gamow

energy have a low probability of reaction. In order to sustain a high rate of fusion

reactions a self-maintaining population of nuclei with sufficient energy is needed. If the

reactants are in thermal equilibrium then large temperatures are needed and therefore

the reactants will be in a plasma state. For example, in p-p fusion EG = 493 keV

which requires temperatures significantly higher than the ionisation energy of 13.6 eV.

If some fraction of the energy created in the fusion reactions can be coupled back to the

reactants, maintaining or raising the temperature, then a self-sustaining thermonuclear

burn can occur. The reaction rate is also increased by raising the number density, n,

of the fusing plasma which raises the collision frequency of nuclei (νcol = nσv where

v is the relative velocity of the reactants). The total volumetric reaction rate, Rab,

for a species a colliding with a species b is given by integrating over the normalised

distribution of relative velocities, f(v):

Rab =
1

1 + δab
na〈νcol,b〉 =

1

1 + δab
nanb

∫ ∞

0
σ(E)vf(v)dv =

nanb
1 + δab

〈σv〉 , (1.2)

where the Kronecker delta, δab, accounts for double counting if the species are identical.

This formula separates the density dependence (∝ n2) from the temperature dependence

which resides inside the reactivity, 〈σv〉.

Performing nuclear fusion on Earth as a source of energy is a great scientific and

engineering task. It has great potential due to the high energy density of fusion fuel

(greater than a million times that of fossil fuels), little to no nuclear waste and no

greenhouse gas emission. Controlled nuclear fusion also presents a unique scientific

challenge in understanding the physics occurring at the extreme conditions reached.

For example kinetic and hydrodynamic instabilities, properties of dense plasma, and

transport phenomena are areas of active research within the nuclear fusion community.

When selecting fusion fuel candidates: a low Gamow energy EG, a high S-factor and

high Q value are desirable. Hydrogen isotopes have the lowest Gamow energy due to

their singular charge. The reaction of deuterium (D) and tritium (T) (EG = 1182 keV)

has a large S due to a broad 5He resonance as well as a large Q = 17.6 MeV due its stable

products, the doubly magic alpha particle and a neutron. Most fusion experiments to

date currently use or aim to use DT as their primary fusion energy source. The DT
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fusion reaction proceeds as follows:

D + T → α (3.5 MeV) + n (14.1 MeV) , (1.3)

where the bracketed terms in the above expression denote the partition ofQ given to each

product in the centre of mass frame in accordance with energy-momentum conservation.

The high energy alpha particle will transfer its energy back to the reactants through

Coloumb collisions with other charged particles; this allows thermonuclear temperatures

to be maintained. The neutron has a much smaller cross section for interaction with

the reactants so leaves the reaction region after no or few interactions, allowing it to be

used as a heat source for the working fluid of the reactor.

The final consideration is how to confine the fusing plasma for sufficient time such

that the energy released exceeds the energy delivered to form the plasma. In stars the

confinement is achieved almost indefinitely by gravitational forces. Terrestrially, there

are two main approaches: magnetic and inertial. In magnetic confinement fusion (MCF)

magnetic fields are employed to restrict the plasma constituents to travelling along field

lines. In inertial confinement fusion (ICF) the plasma is confined by its own inertia.

The ICF approach is the subject of this research.

1.2 Inertial Confinement Fusion

In inertial confinement fusion a dense, hot plasma is assembled by implosion. In order

for the assembled fusing plasma to achieve thermonuclear burn conditions, the fusion

reaction time must be faster than all energy loss timescales in the system. The fusion

time scale, τfus, and power density, Wfus, can be related to the reactivity as defined in

Eq. 1.2:

τfus =
1

n〈σv〉 , Wfus = RDTEα =
1

4
n2〈σv〉Eα , (1.4)

where n is the total ion number density and RDT is the DT reaction rate as defined

in Eq. 1.2. We have used a 50:50 DT mixture and we assume the neutron escapes the

system and only the alpha particle deposits its energy, Eα = 3.5 MeV.

There are three processes which can prevent thermonuclear burn conditions being

met: radiative losses, hydrodynamic disassembly and thermal conduction losses. Each of

these sets a constraint on the physical parameters of the fusing plasma. Measurement of

these parameters is essential in understanding the plasma’s proximity to thermonuclear

burn. The theory and simulation of measurement in ICF experiments is the focus of

this thesis. For context, a brief simplified overview of the fundamental requirements for

thermonuclear conditions in ICF will be given here. More detailed descriptions can be

found in the literature [8, 111].

Firstly we will consider radiative losses by considering bremsstrahlung1 in power

balance with alpha heating. To do this we consider a uniform volume of fusing DT

1Bremsstrahlung or braking radiation is the electromagnetic radiation produced during the deceleration
of one charged particle by another.
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plasma which traps all alpha particles. We will approximate the plasma as optically

thin to obtain the maximal radiative losses:

Wb ≡ Cbn2
√
Tb =

1

4
n2〈σv〉(Tb)Eα ≡Wα , (1.5)

where Cb is the bremsstrahlung constant (Cb = 5.34×10−37 W m3 keV−1/2 for n in m−3

and Tb in keV) and Wb is the total bremsstrahlung power density. Due to the density

squared dependence of both processes, the power matching condition above uniquely

defines a temperature, Tb = 4.3 keV, above which alpha heating dominates. Here we

have also assumed the radiation is produced only by the DT plasma. However, in reality

other higher atomic number elements can become mixed into the hot DT. These more

efficient radiators can increase the losses, increasing the required temperature for alpha

heating to dominate.

Secondly we will consider the hydrodynamic disassembly time. To do this a spherical

volume, V , with radius R, uniform density, ρ, and temperature, T , is considered. This

volume will expand due to a rarefaction wave moving at the isothermal sound speed2,

cs =
√

2kBT/mf where mf is the average ion mass of the fuel [8]. By considering the

burning volume as only the unrarefied region, the confinement time scale is given by

[53]:

τcon =

∫ R/cs

0

(R− cst)3

R3
dt =

R

4cs
. (1.6)

Comparing the fusion and confinement times, we obtain:

τcon

τfus
= 〈σv〉nR

4cs
=
〈σv〉

4mfcs
· ρR . (1.7)

Hence, a large areal density, ρR, is required in order to provide sufficient inertia to

confine the fusing plasma. This time scale ratio can be simply related to the fractional

burn up of DT, Φ. This quantity is defined as the ratio of the number of fusion reactions

occurring in the confinement time and the initial number of DT pairs:

Φ ≡ Nfus

N0
DT

=
1

N0
DT

RDTV τcon =
1

N0
DT

nV

4

τcon

τfus
=

1

2

τcon

τfus
=
〈σv〉

8mfcs
ρR ≡ 1

HB
· ρR . (1.8)

Here we have ignored fuel depletion so the above expression is only true in the low burn

limit, Φ � 1. The temperature which minimises the burn parameter, HB, is found to

be T = 39 keV, which is considerably greater than the bremsstrahlung limit derived in

Eq. 1.5. Evaluating the ρR constraint at this minimum while including an approximate

correction to include the burn depletion effect [53] we find:

ρR =
8mfcs
〈σv〉

Φ

1− Φ
≈ 73

Φ

1− Φ
kg/m2 . (1.9)

2The wave can be approximated as isothermal at burning temperatures due to the high thermal
conductivity smoothing out temperature changes brought about by decompression [8, 53].



24 Chapter 1. Introduction

It is worth considering this condition for the case of solid density DT (ρDT,solid = 225

kg/m3). For a 30% burn up fraction, the mass of DT required and the resultant energy

released in the form of neutrons are found to be 2.5 kg and 20 TJ (equivalent to 50

kilotons of TNT), respectively. It is abundantly clear that a much smaller mass of DT

is required and hence DT must be compressed to very high densities to reach the ρR

constraint. A mass of 1 mg is needed to obtain 100 MJ of fusion energy at 30% burn up

fraction, which requires a compression of ρ/ρDT,solid ≈ 1500 to match the areal density

given in Eq. 1.9. Spherical convergence is preferable for reaching these high compressions

as it minimises the convergence ratio (CR = Rinitial/Rfinal) needed compared to other

geometries and confinement is equal in all directions. A lower convergence ratio allows a

more asymmetric implosion to be tolerated as asymmetries are amplified by convergence.

Up to this point a uniform spherical volume has been considered. However, there

is an issue with using this as an ICF target design. The specific heat capacity of

DT plasma is cDT = 0.11 MJ/keV/mg thus compressing and heating 1 mg of fuel to

sufficient temperatures requires a few MJs of energy. This reduces the maximum possible

energy gain and increases the driver energy required. However, if a small fraction of the

fuel (∼ 2%) is heated and the majority is compressed at low temperatures, the energy

requirement is reduced significantly. The hot fuel reaches thermonuclear burn conditions

and self-heats. The burn is then propagated into the cold, dense fuel surrounding

it. This hotspot ignition scheme reduces the energy requirements, thus increasing the

possible energy gain. It is the central design philosophy behind current ICF experiments.

The ignition and burn propagation processes have yet to be achieved experimentally but

have been the subject of theoretical and computational research [8, 53, 111, 174].

This leads on to our final energy loss mechanism: thermal conduction losses. Once the

central hotspot and surrounding fuel layer have formed, the large temperature gradient

will create an outward heat flux into the cold fuel. This heat flux is balanced by an

inward enthalpy flux in the form of mass ablation. While this mechanism does not

reduce the pressure in the hotspot [14], it does increase the mass of the hotspot and

consequently the temperature is reduced. The consequent reduction in alpha heating

can prevent the hotspot from reaching self-heating conditions. By assuming that cold

and hot fuel are stationary and isobaric, and that there is some heat front sweeping

cold fuel into the hotspot at a velocity uabl, an expression can be found for the hotspot

heating rate including the effects of alpha heating, radiative losses and mass ablation.

Using the following thermodynamic relations for internal energy, E, and pressure, P :

E = McDTT = ρV cDTT, (1.10)

P =
2

3

E

V
=

2

3
ρcDTT, (1.11)
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we obtain the following equations [14, 91]:

−MhscDT Ṫhs = cDTThsṀhs − Ėhs , (1.12)

Ėhs =
3

2
ShsPuabl. + Vhs

ρ2
hs

m2
f

(
1

4
〈σv〉Eα − Cb

√
Ths

)
, (1.13)

Ṁhs = Shsρshuabl = Shs

(
3

2

P

cDTTsh

)
uabl , (1.14)

which can be combined to find the rate of temperature change of the hotspot:

Ṫhs

Ths
= −Shs

Vhs

[
Ths

Tsh
− 1

]
uabl +

ρhs

m2
fcDTThs

(
1

4
〈σv〉Eα − Cb

√
Ths

)
, (1.15)

where V is volume, S surface area, E internal energy and P pressure. Subscripts ‘hs’

and ‘sh’ denote the hotspot and cold fuel shell respectively. Dotted quantities are used

to denote time derivatives. Small surface area to volume ratios are preferable in order

to minimise thermal conductive cooling of the hotspot3. A constraint on the ablation

velocity can be made by ensuring the hotspot does not cool (Ṫhs > 0):

uabl <
Ψ

3

ρRhs

mf

1
4〈σv〉Eα − Cb

√
Ths

mfcDTThs

(
Ths
Tsh
− 1
) , where Ψ ≡ Vhs

Shs
· 3

Rhs
, (1.16)

where Ψ quantifies the symmetry of the hotspot by comparing the surface area to volume

ratio to the spherical case such that Ψ = 1 for a perfectly spherical hotspot and Ψ < 1

for asymmetric hotspots. Here we have again assumed the fuel is optically thin and

all alpha particles stop. The alpha particles can deposit their energy in the hotspot,

thus raising the temperature without increasing the ablation velocity. If, however,

alpha particles deposit their energy in the fuel shell then this can increase the ablation

velocity. The region in which they deposit their energy is dependent on the hotspot

temperature and areal density. Figure 1.2 shows the alpha range at different densities

and temperatures. It is noted that ρRhs ∼ 3 kg/m2 is needed to ensure hotspot self-

heating at low temperatures.

With this considered, the different regimes of hotspot heating and cooling can be seen

through Eq. 1.16. This is shown in Fig. 1.3. At sufficiently low temperatures, radiative

losses dominate and the hotspot is destined to cool. Depending on the ablation velocity,

which is driven by both alpha and thermal energy being deposited in the shell, the

hotspot can self-heat or cool. For the ablation velocity driven by thermal conduction it

can be shown that uabl ∝ T
5
2

hs [14]. This defines a region in which mass ablation cools

the hotspot indefinitely thus preventing ignition. We will refer to this as quenching the

hotspot. At high temperatures, mass ablation can cool the hotspot but not extinguish

it as eventually a stable temperature (Ṫhs = 0) is reached at a lower ablation rate.

In summary, the requirements for hotspot self-heating and confinement are:

3For a detailed computational study of this effect see the thesis of Dr Taylor [171].
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Figure 1.2: The 3.5 MeV alpha range in kg/m2 as calculated from expressions provided
by Fraley et al. [53] for a range of density and temperatures. Black contours
run from 1 to 10 kg/m2 in steps of 1 kg/m2. This calculation includes the
slowing on ions and electrons.

1. The hotspot temperature must be sufficiently high such that alpha heating domi-

nates over radiative cooling. In the case of pure DT optically thin bremsstrahlung

loss, the temperature must exceed 4.3 keV. This can be extended to say that high

atomic number mix into the hot fuel must be prevented as this will increase the

radiative losses.

2. The areal density of the whole capsule must be sufficiently high in order to prevent

hydrodynamic disassembly before substantial thermonuclear burn has occurred.

For 30% burn up the areal density of the whole capsule must be ≈ 30 kg/m2.

3. Dependent on the hotspot temperature, the rate at which cold fuel mass is ablated

into the hotspot must be low enough to prevent uncontrolled cooling. This mass

ablation can be driven by thermal conduction and alpha heating. If the hotspot

has ρR ∼ 3 kg/m2 and T . 10 keV then the majority of alphas deposit their

energy in the hotspot, reducing the ablation velocity. For sufficiently high hotspot

temperatures T & 20 keV then thermal conduction driven mass ablation cannot

reduce the hotspot temperature indefinitely so no longer can cause failure.

With these established end goals, the implosion and drive of ICF capsules will be out-

lined. There are two methods for driving capsules, direct and indirect drive, involving

the direct and indirect irradiation with laser energy. As the name suggests, direct drive
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Ṫhs = 0
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involves firing many beams of a laser directly at the capsule, while indirect drive involves

the laser being used to heat a hohlraum4 surrounding the capsule, creating a thermal

X-ray bath. The irradiation produces pressure on the capsule through ablation, effec-

tively creating a spherically converging rocket. The need to form a central hotspot leads

to capsule designs of the general form seen in Fig. 1.4. The spherical piston formed by

the converging shell compressively heats the central region to ignition conditions. To

maximise gain, ignition should be reached once all kinetic energy has been converted to

internal energy at the stagnation point.

The initial drive phase of an ICF capsule is complex, involving launching multiple

shocks through the ablator and fuel. These shocks can be merged in different locations,

the number of shocks changed or the strength of the shocks altered to control the in-

flight adiabat (entropy). Varying the adiabat controls the balance between stability

and compressibility of the implosion. A higher adiabat is more stable with respect to

hydrodynamic instabilities but less compressible. The main drive ablates mass from

the ablator creating inward pressure through the reaction force. The peak implosion

4In the most general terms, a hohlraum, literally ‘hollow space’ in German, is a cavity in which the
walls are in thermal equilibrium with the radiation field contained within the cavity.



28 Chapter 1. Introduction

Ablator

DT Ice

DT Gas

Hotspot

DT Shell

Initial In Flight Stagnation

Ablation

Burn Propagation

Figure 1.4: General spherical capsule design aiming for central hotspot ignition. The ini-
tial configuration includes an ablator and DT ice spherical shell of inner radius
R0 with the remainder of the capsule full of DT gas. Radiation incident on
the ablator creates ablation pressure which accelerates the capsule inwards to
an implosion velocity, uimp. The kinetic energy is converted to internal energy
until stagnation is reached. The capsule has then reached a convergence ratio,
CR, sufficient to both heat and compress the fuel to ignition conditions.

velocity is reached after sufficient mass has been ablated at the exhaust velocity, uex,

as shown by the Tsiolkovsky rocket equation:

uimp = uex ln

(
m0

mf

)
, (1.17)

where m0 and mf are the initial and final masses respectively and uimp is the implosion

velocity.

Once the shell has reached its peak implosion velocity, the capsule enters the de-

celeration phase. The kinetic energy of the shell is converted into internal energy of

the hotspot therefore slowing the shell. To explore dynamic evolution of the shell and

hotspot during deceleration and stagnation, the isobaric system of Equations 1.12 - 1.15

are modified to include the work done by an imploding incompressible shell moving at

uhs. First, the mechanical work performed by the shell on the hotspot is included:

Ėhs = Wmech +Wabl +Wα +Wrad , (1.18)

Ėhs = −uhsPShs +
3

2
uablPShs +

1

4
n2

hs〈σv〉EαVhs −QradVhs . (1.19)

Second, the motion of the hotspot due to the shell and ablation is included along with

the associated change in hotspot mass due to ablation:

Ṙhs = uhs + uabl , (1.20)

u̇hs =
PShs

Msh
, (1.21)

uabl = k
T

5/2
hs

Rhsρsh
, (1.22)

Ṁhs = Shsρshuabl . (1.23)
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Finally, the temperature change due to the changing mass and internal energy of the

hotspot is found:

Ṫhs =
Ėhs

MhscDT
− Ths

Ṁhs

Mhs
. (1.24)

The ablation velocity Eq. 1.22 is taken from the work of Betti et al., where the expres-

sions for k can be found [14]. The fuel depletion effect is not included in the model. The

radiation loss term, Qrad, has been modified to include the optical depth of the hotspot.

This reduces the energy loss rate from radiation, especially at lower temperatures. In

terms of the black body function, Bν , and free-free opacity, κffν , Qrad is given by:

Qrad =
Shs

Vhs
π

∫ ∞

0
dhν Bν

[
1 +

2

τ2
ν

(
(1 + τν)e−τν − 1

)]
, τν = 2κffν Rhs . (1.25)

This correctly obtains the optically thin and thick limits. For simplicity radiation

reabsorbed by the shell will be neglected in this model.

Given initial conditions the system of ODEs can be integrated numerically. We will

consider the system from the beginning of stagnation where the shell is free-falling. By

varying the initial velocity of the shell (uhs), the response of the system can be explored.

The results are presented in Fig. 1.5, for the following initial conditions:

Mtot = 0.15 mg, Mhs(t = 0) = 0.02Mtot,

Ths(t = 0) = 500 eV, Rhs(t = 0) = 500 µm .

The initial velocity of the shell was varied from 200 to 450 km/s giving shell kinetic

energies, KEsh, between 3 and 15 kJ. For the implosions velocities less than 400 km/s,

radiative losses lead to an inefficient system where the peak internal energy of the

hotspot is less than shell kinetic energy. At 400 km/s, the hotspot begins to appreciably

self-heat thus beginning to overcome radiative losses and thermal conductive cooling.

However it is not sufficient to propagate the burn through the shell with only ∼ 20%

of the DT mass entering the hotspot. A 50 km/s increase in the implosion velocity

drastically alters the behaviour; the temperature rapidly increases (T̈hs > 0) before the

stagnation time, ∼ 90% of the shell mass is ablated into the hotspot, and the internal

energy reaches 16 × the shell kinetic energy. The increased pressure and low remaining

shell inertia leads to a rapid disassembly leading to a shorter burning period.

In summary, in order for the capsule to reach the requirements for successful hotspot

ignition and burn, the drive must accelerate the capsule to high implosion velocities

while maintaining a high density (low adiabat) DT fuel layer. Due to cooling from both

ablation of dense DT fuel and re-expansion, reaching hotspot temperatures of 4.3 keV

is not sufficient for runaway self-heating. Fuel ablation is however required to reduce

the hotspot’s transparency to alphas (by increasing the ρRhs) and also propagate the

burn once the hotspot has ignited.
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Figure 1.5: Evolution of hotspot compressed by an imploding shell with various initial
implosion velocities including the effects of mechanical work, mass ablation,
alpha heating and radiative losses. All plots are plotted with the normalised
time τ ≡ uimp

R0
t as the abscissa; (a) shows the percentage of the DT mass

within the hotspot with an initial value of 2%, (b) shows the hotspot tem-
perature with the optically thin bremsstrahlung limit from Eq. 1.5 shown,
(c) shows the DT neutron production rate, and (d) shows the increase in the
hotspot internal energy over the initial kinetic energy of the shell.

1.2.1 Current Experiments

We will now turn our attention towards current ICF experiments, the shortcomings of

the simplistic analysis presented so far, the physical processes preventing thermonuclear

burn conditions from being achieved, and the diagnostics used to measure the capsule

conditions around stagnation.

1.2.1.1 National Ignition Facility

The National Ignition Facility (NIF) contains the world’s most energetic laser (1.8 MJ)

[79] and uses the indirect drive approach to drive cyrogenic layered DT capsules to

stagnation pressures as high as ∼ 360 Gbar [108], the highest achieved pressure in

a laboratory experiment. The first ICF experiments began at NIF in 2010 with the

National Ignition Campaign. The capsule and laser pulse design have been altered

over time to increase the stability of the implosion, reaching higher experimental fusion
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yields at the price of reducing the maximum obtainable or ‘clean’ yield (as predicted

by spherically symmetric calculations). All designs include a hohlraum made of a high

atomic number material, typically gold (Au) or depleted uranium (DU), to convert the

laser energy to X-rays. X-rays are absorbed by the capsule ablator by atomic processes,

heating it and causing ablation. A diagram of the indirect drive concept and the recent

capsule designs used at NIF are shown in Fig. 1.6. A feature included in the experimental

designs which has not been discussed in the preceding analysis is the presence of a high

atomic number dopant in the ablator. The dopant shields the fuel from high energy

non-Planckian M-band X-rays made in the hohlraum, therefore preventing preheating

of the fuel which would limit the compressibility. The dopant element depends on what

can be successfully entrained within the ablator and is generally included at the few

atomic percent level. The high density carbon (HDC) ablator designs can use a much

shorter laser pulse due to its 3.35× higher density than CH plastic as this reduces the

thickness of ablator and therefore the first shock transit time [105].
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Figure 1.6: (Left) Diagram of the hohlraum-target geometry including the capsule support
tent and fuel fill tube. The 192 NIF laser beams are split between the two
laser entrance holes and between inner and outer beams. (Right) Diagrams of
the capsule and pulse designs modelled in this work, the dimensions are not
given as these can vary between shots. There are differences in ablator (plastic
vs high density carbon (HDC)) and dopant type as well as laser drive shape
[26, 108, 139]. For scale, capsule outer diameters are ∼ 2 mm and hohlraums
are approximately 6 by 10 mm at NIF.

Various degradation mechanisms cause experiments to achieve lower fusion yields

than predicted. Asymmetries in the radiation drive will cause an asymmetric implosion

creating inefficiency in the form of residual kinetic energy (RKE)[188]. As the X-rays

can be absorbed and re-emitted many times inside the hohlraum before striking the

capsule, these radiation asymmetries are generally limited to lower mode numbers. As
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the drive asymmetries are projected onto the spherical surface of the capsule they can be

decomposed into spherical harmonics. The axisymmetric even modes (labelled P2, P4,

etc.) were studied in more detail in earlier experiments due to the cylindrical symmetry

of the hohlraum. However, low odd modes, mostly L = 1, have been identified as

a significant source of RKE in recent analyses of experiment and simulation [60, 75,

116, 152, 162]. The tent used to support the capsule within the hohlraum imparts

a perturbation to the capsule surface as the X-ray drive causes the tent to explode

[161]. This perturbation is amplified by hydrodynamic instabilities and convergence

producing a region of low areal density through which bubbles of hot fuel from the

hotspot can escape [119, 120]. The fill tube used to feed DT into the capsule creates a

perturbation which launches a jet of ablator material across the hotspot at stagnation

[37, 120, 161]. This ablator material contains the high atomic number dopant so is an

effective radiator causing energy loss [48]. Hydrodynamic instabilities seeded by surface

roughness, volumetric defects such as voids and particulates on the capsule surface will

grow, causing fuel-ablator mix and potentially feed-through to the hotspot; this induces

ablator mix and increases radiative losses [37, 141, 142]. Even if these hydrodynamic

instabilities do not entrain ablator into the hotspot, the cold fuel spikes and hot fuel

bubbles created increase thermal conductive cooling and are a source of RKE [34].

Figure 1.7: 3D radiation hydrodynamics simulations of (left) the High-foot shot N130927
which obtained a fuel gain greater than 1 [90] (figure from [38]) and (right) the
HDC shot N161023 (figure from [39]) showing the density and temperature
close to peak neutron production. The deleterious effects of the tent, fill
tube and radiation drive asymmetries can be seen. Figures reproduced from
(left) “Capsule modeling of high foot implosion experiments on the National
Ignition Facility”, D. S. Clark et al., CC-BY license, (2017) [38] and (right)
“Modeling and projecting implosion performance for the National Ignition
Facility”, D. S. Clark et al., © IAEA, (2018) [39].

Detailed 3D radiation hydrodynamics simulations including the current understand-

ing of perturbation sources can be used to assess the relative importance of various

degradation mechanisms, to improve understanding of experimental results and to iden-

tify any possible missing perturbation sources. Examples of high fidelity simulations

performed post-shot at Lawrence Livermore National Laboratory (LLNL) are shown in
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Fig. 1.7. The aim of these simulations is to reproduce experimental observables through

introducing known perturbation sources.

Another approach to improve understanding of degradation mechanisms is through

radiation hydrodynamics simulations with idealised perturbations and asymmetries ap-

plied. The aim is not to reproduce a particular experiment but to investigate the

observable effects and failure mechanisms produced. This knowledge can inform both

experiment and simulation to explain discrepancies between prediction and observation

[34, 42, 120, 174].

1.2.1.2 OMEGA

The OMEGA laser at the Laboratory for Laser Energetics (LLE) uses 60 laser beams

to deliver up to 40 kJ directly to the target [16]. For direct drive experiments, the

configuration of beams aims to uniformally irradiate a spherical capsule with UV light.

b)

Figure 1.8: (Left) Diagram of the laser irradiation directly on the capsule which is held in
place by the stalk. At OMEGA capsule outer diameters are ∼ 1 mm or less.
(Right) a) Skymap of the laser intensity on the surface of the capsule with
uniform equal power in the 60 OMEGA beams. This was calculated using the
view factor software VISRAD [113]. b) Two laser pulse designs, the single
and triple picket, used for ICF experiments at OMEGA, figure reprinted with
permission from Regan et al. , Phys. Rev. Lett., 117, 025001, 2016. © 2020
by the American Physical Society.

As the radiation is in the optical range, a dopant is no longer required to shield the

fuel and the ablator used is typically plastic. As the ablated plasma at sufficient density

can be opaque to optical light, the laser energy is deposited further from the target than

in indirect drive. More precisely, the critical electron number density, nc, at which the
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plasma becomes opaque to a laser of frequency ωl is given by:

nc =
meε0ω

2
l

e2
, (1.26)

where me is the electron mass, e is the electron charge and ε0 is the vacuum permittivity.

Beams at non-normal incidence are refracted away before they can reach the critical

surface. Electrons heated by the laser must then transport the energy to higher densities

to cause ablation. Beyond the driver differences, summarised in Fig. 1.8, the principles

of ICF are the same for direct drive as indirect drive.

Drive asymmetry in direct drive is influenced by the beam geometry so typically

includes higher modes than one would expect from indirect drive [19]. A tent is not

required and instead the capsule is held in place by a stalk which seeds a perturbation

which is the subject of active research [62, 63]. Target offsets from the centre of the

target chamber can induce mode 1 drive asymmetries [116, 146].

1.3 Experimental Nuclear Diagnostics

Evaluating the degradation mechanisms in play within experiments requires a wide

range of measurements. However, ICF experiments present a challenging environment

in which to perform measurements. The short timescales (hundreds of picoseconds),

the small lengthscales (tens of micrometres) and the high background environment re-

quire complex diagnostics to handle these constraints. In this work we will focus on

measurements of products of nuclear reactions and therefore will be observing close to

stagnation when fusion reactions have an appreciable rate. The diagnostics used in cur-

rent ICF experiments and their capabilities will be summarised here as context for the

modelling presented in this work, which aims to simulate the physical phenomena be-

ing measured. Analysis of measured data involves solving an inverse problem, many of

which do not have a unique solution and require an optimization problem to be solved.

High dimensional optimization is difficult and therefore ad-hoc or simplified physical

models are often used in experimental data analysis which belie the true complexity of

the underlying physical system. By both modelling the physical system and the ob-

servable signals we can evaluate the effectiveness of the measurements in capturing the

physical system. Novel measurements and data analysis techniques which could increase

the effectiveness can also be investigated.

1.3.1 Neutron

Neutrons are produced in fusion reactions and can undergo elastic and inelastic nuclear

scattering events within the capsule, altering the neutron’s energy and direction of

travel. Both energy spectra and time-gated images of neutron flux outside the target

are measured.
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1.3.1.1 Spectrometers

There are two methodologies for measurement of neutron energy spectra: time of flight

and magnetic recoil.

Neutron time of flight spectrometers (nToFs) use velocity dispersion to separate the

different neutron energies in time. In other words, the faster neutrons arrive first and

the slower later. Then, the arrival time at the nToF relates to a specific neutron energy.

If the detector has a light transit time, tc, from the target, then the arrival time, t, and

kinetic energy, Kn, of the incident neutron are given by:

t =
tc
βn

, (1.27)

Kn = (γn − 1)mn, γn =
1√

1− β2
n

, (1.28)

where βn and mn are the velocity and mass of the neutron, respectively, defined in a

system of units where the speed of light c = 1. The time of production of a neutron can

also alter the arrival time at a detector. However if the detector is positioned far enough

away then the transit time is much larger than the range of production times and the

neutrons can be assumed to have been made at the same instant. Then a distribution

of neutron flux in arrival time, f(t), can be converted to an energy distribution, f(Kn),

through a Jacobian:

f(Kn) = f(t)

∣∣∣∣
∂t

∂Kn

∣∣∣∣ =
tc

(γnβn)3mn
f(t) . (1.29)

As the Jacobian is increasing with decreasing energy, for constant time resolution the

energy resolution increases with decreasing energy. This is due to the velocity dispersion

increasing at lower energies.

The neutrons are not directly detected but via conversion to light either through

traditional scintillators based on organic molecules [74, 116] or quartz-based Cherenkov

radiators [125]. This introduces neutron energy dependent detector efficiency and a non

Dirac-delta instrument response function. For a perfect delta function IRF the Eq. 1.29

is correct. However the IRF convolves the signal and, as deconvolution is an ill-posed

problem, fitting to experimental data, f(t′), is therefore done through a forward fitting

process [74]. The measured neutron flux as a function of detection time, t′, is given by:

f(t′) =

∫ ∞

tc

f(Kn(t))s(Kn(t))a(Kn(t))
(γnβn)3mn

tc
R(Kn, t

′ − t)dt+B(t′) , (1.30)

where s is the sensitivity of the detector at a given neutron energy, R is the energy

dependent IRF, a is the beam-line attenuation and B is an additional background term.

Here we have introduced the detection time t′ which due to the IRF is not equal to the

neutron arrival time t. By an appropriate non-linear fitting routine the physical model

f(Kn) can be fit to the experimental data f(t′). The additional background term is due

to scattering of neutrons from parts of the experiment not including the capsule e.g.
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the target chamber. Using a well collimated and shielded line of sight can minimise this

background contribution [116].

The Magnetic Recoil Spectrometer (MRS) uses an alternative energy differentiation

mechanism by using incident neutron flux to knock on charged particles and measure the

recoil particle energy distribution [54]. A large separation is included between the recoil

particle source, usually a CH or CD foil placed near the implosion, and the magnetic

spectrometer. This creates a small range of acceptance angles to the spectrometer

and thus only the forward scattered recoil particles are measured. Once inside the

spectrometer, the dispersion of the charged particles travelling through the magnetic

field can be mapped to a charged particle energy. Due to the focussing on forward

scattering, this charged particle energy can then be mapped onto a neutron energy. As

there is no reliance on time dispersion, MRS has the potential to perform a time-resolved

measurement using a single detector, although this has not been accomplished at the

time of writing [57].

The traditional analysis of the DT fusion neutron spectrum is to extract the thermal

temperature of reacting ions from the width of the peak. This standard analysis was

first outlined by Brysk in 1973 [23], although there have been many advances in the

description and analysis of the DT peak [5, 132]. A notable addition is the measurement

of a fluid velocity of reacting ions through a shift in the peak centroid [5, 132], which has

been realised experimentally [75, 116, 118]. This analysis also revealed that the apparent

ion temperature extracted from the DT peak includes a significant contribution from

fluid velocity variance induced Doppler broadening. This was verified by the difference

in measured apparent DT and DD ion temperatures [61]. Separately, the scattered

neutron spectrum is used to measure an areal density, ρR, through a scattered yield

measurement [42, 95].

1.3.1.2 2D Imaging

Similar to the neutron spectrometers, neutrons are not directly imaged but must be

converted to light first. In the case of the Neutron Imaging System (NIS) at NIF [72,

123, 187] this is done by a scintillator after the neutrons have passed through an aperture

array. Both penumbral and pinhole images are created by this array allowing calibration

and subsequent image reconstruction [123]. There are currently three operational lines

of sight (LoS), one polar with (θ-φ) coordinates (5.25-225) and two equatorial at (90-

315) and more recently (90-213) [51]. Currently, only the (90-315) LoS can take two

energy-gated images. The time dispersion effect is used to allow different time gates

on the imaging systems to measure different neutron energies. All three LoSs capture

images of neutrons between 13-17 MeV - this energy range is dominated by the primary

DT fusion neutrons. Primary neutron images map out a set of line integrals of T(D,n)α

reaction5 rate with an attenuation factor due to scattering and other interactions. The

5Here we introduce the compact nuclear reaction notation. A reaction A+b which produces c+D
is denoted A(b,c)D, where the convention is that the highest mass particles are in the upper case
positions.
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primary image, Ip, with orthogonal image plane coordinates, x and y, and attenuation

length, τ , is given by:

Ip(x, y) =

∫ ∞

0
dz RDT (x, y, z)e−τ(x,y,z) , (1.31)

where z is the coordinate normal to the image. The image is processed to extract infor-

mation about the spatial source distribution, RDT , while generally assuming uniform

or zero attenuation factor. Limited LoS (2 or 3 images) tomographic reconstruction

has been developed by Volegov et al. to allow these 2D line-integrated images to be

converted into 3D source distributions [177, 178]. Tomographic reconstruction will be

discussed in more detail in Chapter 4.

The second image on the (90-315) LoS measures downscattered neutrons between

6-12 MeV. While this image does include neutrons from other sources, a significant

proportion of the signal is due to singly scattered neutrons. To reach 6-12 MeV they

must scatter within an angular range ∆Ω, leading to an image function of the form:

Is(x, y) =

∫ ∞

0
dz ni(x, y, z)e

−τ
∫

∆Ω
dΩ

dσ

dΩ

∫ ∞

0
ds RDT (x− sΩx, y− sΩy, z− sΩz)e

−τ ′ .

(1.32)

The rate of scattering is proportional to the neutron flux and areal density therefore

subsequent analysis of this image can find the areal density spatial distribution. Consid-

ering only the images along (90-315), Casey et al. developed the fluence compensation

technique to extract an approximate areal density image [25]. The primary image can be

converted to a map of neutron fluence at the scattering site by using the most probable

scattering angle and the assumption of constant brightness per unit length along the

line of sight. Thus an image of areal density can be extracted from the downscattered

neutron image by dividing out the neutron fluence calculated from the primary image.

By combining the fluence compensation analysis with the 3D source tomography, the

assumptions of a singular scattering angle and constant brightness per unit length can

be removed and a 3D map of density can be reconstructed [180].

Due to the limited number of lines of sight and the spatial resolution of ∼ 14 µm

[72] used to measure the fusing region ∼ 50 µm and the dense fuel layer ∼ 100 µm,

tomographic reconstruction is under-determined and therefore error prone. Shape asym-

metry is also extracted from the 2D images by Legendre polynomial decomposition of

the 17% contour6. Only low modes (L . 4) can be resolved so the shape asymmetry

can be related to low mode drive asymmetry. The 17% contour is chosen to avoid the

effects of noise while enclosing a significant fraction of the emission. This can be seen

by Abel transforming Eq. 1.31 for constant attenuation factor and a source which is

6The coefficients of this decomposition are often labelled PN, where N is the polynomial order. The
N > 0 coefficients are typically given as a fraction or percentage of P0.
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axisymmetric about y and uniform within its volume:

Ip(x, y) = 2e−τ
∫ ∞

|x|

RDT (r′, y)r′√
r′2 − x2

dr′ = 2e−τ
∫ X(y)

|x|

r′√
r′2 − x2

dr′ , (1.33)

Ip(x, y) = 2e−τ
√
X(y)2 − x2 . (1.34)

For a uniform spherical source (X2 = R2 − y2) the 17% contour corresponds to 98.5%

of the total radius [72]. However, a Legendre polynomial decomposition in the source

radius does not simply map to a image plane Legendre polynomial decomposition. For

example, with source radius Legendre polynomial coefficients of R0 = 1 and R2 = ±0.2

the 17% contour has coefficients of R′0 = 1.09, 0.90 and R′2 = 0.199,−0.193 respectively.

It is seen that the sign and amplitude of P2 in the source affects the inferred P0 from the

image, in this case at the 10% level. While contour analysis does not require solution

to a complex inverse problem, equating the inferred shape from a 2D image to the 3D

source (even if axisymmetric) is incorrect.

1.3.1.3 Activation

Activation diagnostics are used to measure the yield of neutrons as well as the anisotropy

of the neutron flux. The total primary DT neutron yield is typically measured by the

activation of the isotope 63Cu through the reaction 63Cu(n,2n)62Cu which has a thresh-

old on the incident neutron kinetic energy of 10.9 MeV [33]. The radioactive product

undergoes β+ decay (which produces two 0.511 MeV γ-rays by positron annihilation)

with a half-life of 9.74 minutes and thus the neutron yield above 10.9 MeV can be

measured through the decay rate [41].

The anisotropy of the neutron flux over 4π solid angle is measured by the flange

neutron activation diagnostics FNADs [15, 190, 191]. These use the 90Zr(n,2n) reaction

(activation energy Ea = 12.0 MeV [33]) to produce 89Zr which undergo β+ decay with

a 3.27 day half-life producing metastable 89mY which de-excites via a 909.0 keV γ-

ray several seconds later. The activation measurement is described by the following

equation:

A(Ω̂) = ke−λt
∫ ∞

Ea

dEfn(E, Ω̂)σa(E) , (1.35)

where k is a constant related to the number of target nuclei and target geometry, λ is

the decay constant, fn(E, Ω̂) is the energy spectrum of incident neutrons in direction Ω̂

and σa(E) is the cross section for the activation process. The constant k is calibrated

using reference shots where the energy spectrum is isotropic. Then in ICF experiments

anisotropy in the activation, A, is due to anisotropy in fn(E, Ω̂). We assume a Gaussian

form for fn(E, Ω̂) [23] and linear form for the activation cross section σ(E) = σa,m(E−
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Ea) [15]. Then at t = 0 the activation is given by:

A(Ω̂) =
kσa,m√

2π∆
Y (Ω̂)

∫ ∞

Ea

(E − Ea)e−
(E−Eµ)2

2∆2 dE , (1.36)

A(Ω̂) =
kσa,m√

2π
Y (Ω̂)

[√
π

2
(Eµ − Ea)

(
1 + erf

(
Eµ − Ea√

2∆

))
+ ∆e−

(Eµ−Ea)2

2∆2

]
. (1.37)

Generally for the DT fusion peak, the mean neutron energy is Eµ ∼ 14 MeV with

standard deviation ∆ ∼ 0.15 MeV. Therefore, to a very good approximation the above

expression simplifies to the fn delta function limit:

A(Ω̂) ≈ kY (Ω̂)σa,m(Eµ − Ea) ≡ kY (Ω̂)α(Ω̂) . (1.38)

We now have two terms which can alter the activation measurement: the intrinsic yield

anisotropy Y (Ω̂) and the centroid shift anisotropy α(Ω̂) = σa,m(Eµ−Ea). The intrinsic

yield anisotropy changes due to kinematic focussing and scattering. The first effect

occurs if the emitting material is moving at a velocity ~vf causing the lab frame flux

to be focussed in the direction of travel. Scattering on the path to the detector lowers

the energy of some neutrons to below the activation energy, the ones that undergo

small angle scattering remain above 12 MeV. The downscatter ratio into 12 - 14 MeV

is approximately ρRDT (kg/m2) × 0.86% for 50/50 DT. These downscattered neutrons

prove difficult to include in simplified analysis as their direction is also altered in the

scattering and their < 2% contribution will be neglected here [15]. The sum of the

kinematic focussing and scattering effects gives an intrinsic yield anisotropy of the form:

Y (Ω̂) ≈
(

1 + 2
~vf · Ω̂
vn

)
exp

[
−σs(Eµ)ρR(Ω̂)

m̄

]
. (1.39)

The centroid shift anisotropy arises due the activation cross section energy dependence.

Higher energy neutrons are more likely to cause activation and therefore anisotropic

shifts in the mean neutron energy will cause activation anisotropy. The centroid of the

DT peak varies due to a Doppler shift if the emitter is in motion. There are higher

order effects which are neglected here [132], these will be discussed in more detail in

Section 2.2.1. We will split the isotropic shifts to the centroid from the anisotropic

shifts, Eµ = E0 + δE(Ω̂), for clarity. We will approximate the centroid shift due to the

Doppler shift classically:

α(Ω̂) ≈ σa,m(E0 − Ea +mnvn~vf · Ω̂) . (1.40)

Around E = 14 MeV, the activation cross section slope σa,m = 0.30 barns/MeV and the

scattering cross section σs = 0.79 barns for 50/50 DT. Therefore we see the FNADs are

sensitive to areal density asymmetries and bulk flows of the fusing plasma. The centroid

shift due to Doppler shift can be measured using neutron spectrometers [75] and the

FNADs ‘velocity-corrected’ such that only the areal density asymmetry contribution
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remains [148].

1.3.2 Gamma Ray

Fusion reactions can create γ-rays, albeit with a low branching ratio, and are also

produced in inelastic nuclear reactions such as neutron scattering. Given here are the

measured reactions produced within the capsule. The associated branching ratio is

given for the DT fusion reaction [81, 101, 125, 135]:

D + T −→ 5He+ γ (16.8− 13.5 MeV) ∼ 4× 10−5 γ/DTn , (1.41)

n+ C → n+ C + γ (4.4 MeV) ∼ 1× 10−3(ρRC) γ/DTn , (1.42)

where ρRC is the carbon areal density in kg/m2. The 4.4 MeV γ-ray is produced via

a transition from the first excited state to the ground state of 12C – this is a very

narrow resonance with width 0.01-0.02 eV [1]. Neutrons also inelastically scatter in

the hohlraum and the thermomechanical package (TMP) which holds the target in the

chamber, producing background γ-rays with energies < 14 MeV. There are two time-

resolved γ-ray detectors at NIF, the gas Cherenkov detector (GCD) [65, 82] and the

gamma ray history (GRH) [81] diagnostics. Both these diagnostics use Cherenkov radi-

ation from electrons which have reached superluminal velocities via Compton scattering

from the incident γ-ray flux. The Cherenkov production medium is a gas cell where

the fill pressure can be altered to change the refractive index, n, and therefore thresh-

old Cherenkov energy (nβe = 1). For illustrative purposes, consider forward Compton

scattering of an electron by a γ-ray of energy Eγ = ζme, the threshold refractive index

for Cherenkov production is:

n =
1

βe
=

(2ζ + 1)2 + 1

(2ζ + 1)2 − 1
. (1.43)

For a 16.8 MeV DT γ-ray (ζ = 32.9), the Cherenkov production medium must have a

refractive index of at least 1.00045. Multiple gas cells with different refractive indices

can be used to create spectral windows to remove background γ-ray signal. The high

energy threshold channel can be used to measure the DT reaction rate as a function

of time, giving measurements of the centroid and width of the reaction history named

the nuclear bang time and burn width respectively. Recent developments to GCD have

introduced a pulse dilation system to increase the time resolution to ∼ 10 ps [65]. By

combining two gas cells with threshold energies either side of the 4.4 MeV C inelastic

scattering γ-ray, inference of ablator areal densities can be made [84]. Time shifts of

the C-γ peak relative to the DT-γ peak are also observed [121].

C-γ rays can be imaged and the (90-213) NIS LoS is developing the capability to

image fusion neutrons, downscattered neutrons, γ-rays and x-rays simultaneously [51].

The ability to image C-γ rays has previously been demonstrated on the other NIS LoS by

moving the time gating earlier to the photon arrival time. Similar to the downscattered
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neutron image, the C-γ image intensity is proportional to the neutron fluence and carbon

areal density. With similar imaging techniques discussed in Section 1.3.1.2 information

about the shape of the remaining ablator during neutron production can be found.

1.4 Research Aims

Bridging the gap between numerical simulation and experimental data analysis is ben-

eficial to both areas of research. The aims of this thesis are to both improve the capa-

bility and accuracy of the numerical simulation of ICF experiments and simulate the

observable signals produced. Therefore, we diagnose the simulated experiment as one

would a real experiment. Weaknesses in current experimental analysis; experimental

observations missing from simulated observations and novel analysis techniques can be

realised. As discussed earlier, this work will focus on nuclear diagnostics. One- and

three-dimensional neutron and fast ion transport codes have been developed in order

to produce synthetic nuclear diagnostics based on hydrodynamic simulations. Current

experimental trends across multiple diagnostics are explored through the application of

various perturbations. Additionally, we investigate possible measurements and analyses

which would expand the range of measurements possible in ICF experiments. While

many current diagnostics measure conditions within the hotspot, we aim to directly

measure the unknown conditions of the dense DT fuel and the remaining ablator during

thermonuclear burn through analysis of nuclear measurements.

In Chapter 2, the background theory relevant to describing inertial confinement fusion

implosions and their experimental observables is given. This includes a discussion of:

radiation hydrodynamics; atomic and statistical physics; and fusion reaction products

and their transport. Additionally, the numerical techniques and code used in modelling

the nuclear observables as well as the implosion itself are discussed within this chapter.

In Chapter 3, results under the umbrella of neutron spectroscopy are given. These

include the neutron backscatter edge, spectroscopic signals of areal density asymmetry

and features of the high energy neutron spectrum. These sections present both novel

analysis techniques which could be used on current experimental diagnostics as well as

future developments to further increase the utility of neutron spectra.

In Chapter 4, various results from neutron imaging are presented. Activation mea-

surements and primary and scattered neutron imaging of 3D radiation hydrodynamics

simulations are investigated to highlight both potential shortcomings and successes of

current analysis.

In Chapter 5, γ-ray measurements are investigated to complete our description of

nuclear observables. These include both imaging and time history measurements of

γ-rays made in both fusion reactions and inelastic neutron scattering.

Finally the conclusions and plans for future work are given.



2 Theory and Numerics

“One has to resort to the indignity of numerical simulations to settle even the simplest

questions about it” – Philip Anderson

Content in this chapter has been reproduced from “Synthetic nuclear diagnostics for

inferring plasma properties of inertial confinement fusion implosions”, Physics of Plas-

mas 25, 122703 (2018), Crilly et al. [42] with the permission of AIP Publishing.

The complex physical behaviour of an ICF experiment is governed by the action of

macroscopic systems of particles and the interaction between these systems. The sys-

tems belong to two classifications; those which are locally in equilibrium i.e. thermal,

and those which are non-thermal. Generally the ions and electrons of the bulk plasma

are close to thermal and hence are well described by the hydrodynamic equations. The

thermodynamic properties of this plasma depends on a detailed description of the mi-

croscopic properties of the plasma’s constituents. In contrast, the products of fusion

reactions are far from equilibrium due to their long mean free paths. They therefore re-

quire an appropriate transport equation to describe their behaviour. Radiation emitted

by the plasma or used to drive the capsule also requires a non-local treatment. Common

to all these systems is the large number of particles allowing a statistical/probabilistic

description through continuous (~r,~v) phase space distributions. The evolution of these

distributions can be described generally by the Boltzmann equation [98]:

∂f

∂t
+ ~v · ∇rf +

~F

m
· ∇vf =

(
∂f

∂t

)

collision

+

(
∂f

∂t

)

source

, (2.1)

where f is the expectation value of finding any of the particles at location ~r with velocity

~v at time t and ~F is any external force felt by the particles in the system. The various

collision operators and source terms will depend on the system considered. Processes

which conserve particle number, e.g. scattering, will be assigned to the collision term.

Non-conservative processes will be assigned to the source term. Systems of different

particle types couple to each other making the modelling of ICF experiments uniquely

challenging – analytic techniques cannot yield results without many simplifications and

therefore numerical analysis is essential.

This chapter will describe the necessary theory needed to model ICF implosions and

the resultant observable nuclear signals. First, a description of radiation hydrodynamics,

which is used to model the plasma conditions in capsule implosions, will be given in Sec-

tion 2.1. This will be accompanied by a description, in Section 2.1.3, of the underlying

42
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microscopic behaviour associated with atomic physics which affects the thermodynamic

and radiative properties of the hydrodynamic elements. Second, the theory describing

the transport of nuclear reaction products through the bulk plasma will be given. This

will be separated into neutron transport in Section 2.2.1 and fast ion transport in Sec-

tion 2.2.2. The numerical methods employed to solve a given physical system will be

given in the relevant section.

2.1 Radiation Hydrodynamics

2.1.1 Hydrodynamics

Hydrodynamics is centrally important to the theory and simulation of ICF. The ma-

terials in ICF targets are generally highly collisional giving conditions that are locally

very close to thermodynamic equilibrium. This can be quantified by the electron and

ion mean free paths (MFPs) [86] at typical ICF conditions at stagnation:

λe = 0.14
1

ln Λ

( ne
1030m−3

)−1
(

Te
1keV

)2

µm , (2.2)

λi = 0.20
1

ln Λ

1

Z4
i

( ni
1030m−3

)−1
(

Ti
1keV

)2

µm , (2.3)

where ln Λ is the Coulomb logarithm, Zi and Ti are the charge and temperature of the ion

species i, and Te is the electron temperature. These short MFPs ensure the majority

of particles are in thermodynamic equilibrium and hence have a Maxwellian velocity

distribution. There are populations in the tails which have longer MFPs and therefore

are responsible for transport phenomena. However, these generally only slightly perturb

the velocity distribution from Maxwellian and can be well described by local transport

theory.

Hydrodynamics describes the behaviour of locally thermal populations of particles.

The velocity dimensions of phase space can be integrated out such that only position

and time dimensions remain. At the heart of this treatment are the three conservation

laws used to form the hydrodynamic equations: conservation of mass, conservation

of momentum and conservation of energy. These laws can be derived from Eq. 2.1 by

taking velocity moments. Here we will simply quote the resulting inviscid hydrodynamic

equations [29]:

[
∂

∂t
+ ~u · ∇

]
ρ+ ρ∇ · ~u = 0 , (2.4)

ρ

[
∂

∂t
+ ~u · ∇

]
~u = −∇P + ~Fext. , (2.5)

[
∂

∂t
+ ~u · ∇

]
ε+ (ε+ P )∇ · ~u = −∇ · ~q +Qext. , (2.6)

defining mass density ρ, fluid velocity ~u, pressure P , internal energy ε, heat flux ~q, exter-
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nal energy source Qext., and external force ~Fext.. The term inside the square brackets,

named the advective derivative, describes the advection of hydrodynamic quantities

with the fluid motion. Terms involving the divergence of the fluid velocity (∇ · ~u) de-

scribe the change in hydrodynamic quantities due to compression/expansion. On the

right hand side of the equations are terms which do not involve the macroscopic fluid

motion (e.g. ∇P ) or are external to the fluid itself.

A useful analytical result which can be found directly from the hydrodynamic equa-

tions are the Rankine-Hugoniot (RH) jump conditions. These relate the fluid states

either side of a shock. A shock wave is a disturbance which moves faster than the local

speed of sound resulting in a discontinuity in hydrodynamic properties either side of

the shock. The conditions are expressions of the conservation of mass, momentum and

energy across the shock in the frame comoving with the shock. The subscripts 1 and 2

will be used to denote upstream and downstream quantities respectively [40]:

ρ1u1 = ρ2u2 , (2.7)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 , (2.8)

γ

γ − 1

P1

ρ1
+

1

2
u2

1 =
γ

γ − 1

P2

ρ2
+

1

2
u2

2 , (2.9)

where γ is the heat capacity ratio. Shocks occur during many phases of ICF implosions

and hence the RH relations are essential in analysing the hydrodynamic conditions. In

the strong shock limit, P2/P1 � 1, one finds that density and velocity jumps across the

shock converge to a constant value:

ρ2

ρ1
=
u1

u2
→ γ + 1

γ − 1

(
= 4 for γ =

5

3

)
. (2.10)

This demonstrates the need for many strong shocks to reach large compressions of the

ablator and/or fuel during the initial drive. Passing many shocks also allows for lower

entropy production than a single powerful shock – in the limit of a very large number

of successive shocks the compression becomes effectively adiabatic [111].

The hydrodynamic equations given in Eqs. 2.4 to 2.6 are solved numerically within

the code Chimera. The numerical schemes used have been detailed in previous work at

Imperial College [34, 119, 134, 171]. In order to solve these equations for density, fluid

velocity and internal energy, expressions are needed for the remaining unknowns. Ther-

modynamic relations between the pressure, temperature, density and internal energy

can be derived from an appropriate equation of state, this will be briefly discussed in

Section 2.1.3. The heat flux is described by Fourier’s law ~q = −κ∇T and the thermal

conductivity, κ, is calculated from local transport theory [163]. Coupling from the radi-

ation field and fast ion species, e.g. DT fusion alphas, can be included via force densities

and energy exchange rates. For detail on the coupling and transport of alphas within

Chimera see the work of Dr Jon Tong [174]. Radiation transport will be discussed in

the following section.
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Here we have only discussed hydrodynamics, however, magnetohydrodynamics (MHD)

and magnetic effects in transport can alter the behaviour of the plasma. The effects

can be significant, especially if a strong magnetic field is externally applied to the tar-

get [140, 183]. For details on extended MHD effects in spherical ICF implosions as

calculated by Gorgon (the MHD version of Chimera) see the work of Dr Chris Walsh

[181–184].

2.1.2 Radiation Transport

Radiation is used in the drive of ICF implosions, but there is also significant self emission

by the hot plasma. It therefore affects the dynamics of implosions by acting as both a

source and sink of energy. Measurements of self emission are an important means for

diagnosing plasma conditions in experiment.

In the absence of a material, radiation will free stream. In the presence of an in-

teracting material, radiation will be absorbed, emitted/re-emitted and scattered. The

mechanism for the materials interaction with the radiation field depends on both the ma-

terial and radiation field properties. Here we will draw the distinction between photons

with frequencies ω � ωp and ω & ωp. Electromagnetic (EM) waves with frequencies be-

low the plasma frequency cannot propagate. Firstly, for the lower frequencies (ω & ωp)

EM waves create collective responses in the plasma and therefore can refract strongly.

These frequencies are relevant to the propagation of lasers through ICF plasmas. The

laser paths are well described by the geometrical optics approximation – a description

of which can be found in the work of Kaiser and references therein [97].

Secondly, for the high frequencies (ω � ωp) photons interact with the medium at a

photon-particle level. This regime is relevant to the transport of X-rays in ICF plasmas,

which will be the focus of this section. The Boltzmann equation (Eq. 2.1) can be used to

describe a population of photons with the simplification that the photons must move at

the speed of light, c. The radiative transfer equation is written in terms of the radiation

intensity, Iν , which is related to f through a constant:

Iν =
dE

dAdtdΩdν
=
h4ν3

c2
f , (2.11)

1

c

∂Iν
∂t

+ Ω̂ · ∇Iν =
1

c

(
∂Iν
∂t

)

col.

+
1

c

(
∂Iν
∂t

)

src.

. (2.12)

The photon direction of travel is denoted Ω̂. The collision and source terms here contain

the interactions of photons with matter through absorption, emission and scattering.

The scattering term can be described through a double differential cross section. This

gives the probability a photon of frequency ν ′ moving in direction Ω̂′ scatters to a

frequency ν in direction Ω̂. The collision operator which conserves photon number has

the form:

1

c

(
∂Iν
∂t

)

col.

= −nsσν,sIν + ns

∫
dΩ̂′

∫
dν ′

d2σν,s
dΩdν

Iν(~r, Ω̂′, ν ′, t) , (2.13)
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where ns is the number density of scatterers, σν,s is the total cross section for scattering

at frequency ν and the double differential cross section appears in the integral term. The

Thomson and Compton scattering of photons from single free electrons has a differential

cross section given by the Klein-Nishina formula [192].

The absorption and emission of radiation are described through the opacity and emis-

sivity. Physically, the opacity, κν , is the inverse of the mean free path of a photon at

a given frequency. The absorption processes which contribute to this opacity include

free-free, bound-free and bound-bound electronic transitions. The (spectral) emissivity,

jν , is due to the inverse of these absorption processes, giving the self emission of the

material. These properties will be described in more detail in the following section. By

definition, the opacity and emissivity introduce terms of the form:

1

c

(
∂Iν
∂t

)

src.

= −κνIν + jν , (2.14)

combining Eqs. 2.12 to 2.14 we arrive at the full radiative transfer equation:

[
1

c

∂

∂t
+ Ω̂ · ∇+ (nsσν,s + κν)

]
Iν = jν + ns

∫
dΩ̂′

∫
dν ′

d2σν,s
dΩdν

Iν(~r, Ω̂′, ν ′, t) . (2.15)

At ICF relevant conditions, the material absorption and emission dominate over scat-

tering for dynamically important photon energies. The small contribution from the

scattering term can be approximated as an averaged absorption cross section. At very

high frequencies such as γ-rays, scattering can dominate over absorption leading to

drastically different behaviour.

There are two scenarios in which modelling of the radiation field is needed; radia-

tive energy transfer influencing the hydrodynamics and exiting radiation measured by

diagnostics. The full radiative transfer equation requires 7 dimensions: 3 spatial, 2

angular, 1 spectral and 1 temporal. Therefore, radiative transfer is extremely computa-

tionally expensive to solve numerically. Based on the requirements of the two modelling

scenarios, simplifications to the transport equation can be made to ensure tractability.

First, we consider the radiative energy transfer influencing hydrodynamics (i.e. radi-

ation hydrodynamics). Localised sources and beams of X-rays are uncommon in ICF

plasmas, so Iν should not rapidly vary with propagation direction Ω̂. Therefore, Eq. 2.15

is simplified by taking the first two angular moments to obtain the energy density, Eν ,

flux, ~Fν , and pressure, Pν :

cEν =

∫
IνdΩ, Fi,ν =

∫
Ω̂iIνdΩ, cPij,ν =

∫
Ω̂iΩ̂jIνdΩ ,

[
∂

∂t
+ κνc

]
Eν = 4πjν −∇ · ~Fν , (2.16)

[
∂

∂t
+ κνc

]
~Fν = −c2∇ ·Pν , (2.17)

dT

dt
=

1

cV

∫
κν

(
cEν − 4π

jν
κν

)
dν . (2.18)
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Also included is the heating equation, Eq. 2.18, of the material with temperature, T , and

heat capacity at constant volume, cV . The two moment equations involve a streaming

operator which includes the absorption due to the opacity, κν . On the RHS, there

are sources due to divergences of fluxes and material emission, jν . Solution to these

equations requires a closure relation for the radiation pressure tensor Pν . Various

closure relations are used throughout work in radiation hydrodynamics, Chimera utilises

a closure and solution scheme known as P1/3 [129] with automatic flux limiting [165].

The closure is obtained by assuming an isotropic radiation field, in which case:

Pij,ν =
1

c

∫
Ω̂iΩ̂jIνdΩ =

Iν
c

∫
Ω̂iΩ̂jdΩ =

1

3
δij

4πIν
c

=
1

3
δijEν . (2.19)

The moment equations are also split into a number of radiation energy groups – this

is known as a multigroup solution. Each group uses jν and κν values which have been

averaged across the range of energies within the group. A detailed description of the

radiation transport methods and their implementation in Chimera can be found in the

PhD theses of Dr Kristopher McGlinchey [119] and Dr Christopher Jennings [94].

X-ray diagnostics can measure spectra or images within certain spectral ranges and

therefore detailed knowledge of the spectrum arriving at the diagnostic is required. The

diagnostics are placed far from the implosion and therefore the incident X-ray flux is

anisotropic. Therefore, the methods employed to solve radiation hydrodynamics are

generally not well suited to this task. By restricting the paths of photons to only those

which intersect the diagnostic, transport is solved only along characteristics of a single

direction, Ω̂det. X-ray diagnostics of the capsule measure high energy X-rays (several

keV) for which the mean free path is long. Additionally, the material properties evolve

slowly compared to the light transit time so a steady state can be assumed. Using

the method of characteristics, the time-independent radiative transfer equation can be

rewritten as:

Iν(~r, Ω̂det) =

∫ ∞

0
exp

[
−
∫ s

0
ds′κν(~r − s′Ω̂det)

]
jν(~r − sΩ̂det, Ω̂det) ds , (2.20)

from this we will introduce a formal definition of optical depth, τν , between position ~r

and a distance s along direction −Ω̂:

τν(s) =

∫ s

0
ds′κν(~r − s′Ω̂) . (2.21)

When evaluating the radiation intensity at a diagnostic based on a hydrodynamic simu-

lation, radiative properties are constant across grid cells. The radiation intensity exiting

a cubic cell of length l and index i is given by:

Iν,i+1/2 =
jν,i
κν,i

(
1− e−τν,i(l)

)
+ Iν,i−1/2e

−τν,i(l) , (2.22)

where Iν,i−1/2 is the radiation intensity entering the cell at the far side. The whole
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hydrodynamic simulation domain can be integrated across in this manner allowing post-

processed synthetic X-ray diagnostics to be produced.

2.1.3 Atomic Physics & Statistical Mechanics

Knowledge of the structure of electronic states is required to understand the radiative

properties of a material. We will first discuss how the structure and occupation of

electronic states are determined through a confluence of atomic physics and statistical

mechanics. A thermodynamic ensemble of quantum mechanical states must be con-

sidered in order to determine macroscopic properties. Marrying a small scale accurate

quantum mechanical description with the many-body and many-species thermodynamic

system is an exceedingly difficult task and a field of active research. There are two over-

arching approaches; the ‘physical’ and ‘chemical’ pictures. In the physical picture, one

works at the level of electrons and nuclei, calculating electronic states self-consistently.

Bound electronic states cause ions, atoms and molecules to emerge. An example of a

solution method in the physical picture is density functional theory (DFT). However,

physical picture models cannot independently describe all of parameter space due to

the approximations made in their construction. The approach that we shall use is in

the chemical picture. In the chemical picture, we define chemical species within the

material; free electrons, bound electrons, ions, molecules, etc. Each of these species

is described through its own free energy and interaction terms. The free energies can

be derived from the partition functions for the grand canonical, Z, and canonical, Q,

ensembles:

Z ≡
∑

n

exp [−β (En − µNn)] , (2.23)

Q ≡
∑

n

exp [−βEn] , (2.24)

where n labels the microscopic states within the system with energy En and occupancy

Nn. The inverse temperature and chemical potential are denoted β = 1/kBT and µ,

respectively. The partitioning of a thermodynamic system between the different species

is determined through chemical equilibrium. A notable example of this is the Saha

equation, where one considers the chemical equilibrium of ionisation between stages i

and i+ 1:

Ai 
 Ai+1 + e− , (2.25)

µi = µi+1 + µe , (2.26)

Na =
1

β

∂

∂µa
logZa , (2.27)

µa = − 1

β

∂

∂Na
logQa , (2.28)
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where subscript a denotes the species a. Using Eqs. 2.27 and 2.28 one can find an

expression for the chemical potential to solve the Saha ionisation equilibrium, Eq. 2.26.

A benefit of the chemical picture is that it is conceptually closer to the macroscopic

quantities we wish to extract. However, there are two issues which arise from this

approach. Firstly, although the equations of chemical equilibrium are simpler than

the many-body equations of the physical picture, one must construct models for the

partition functions based on microscopic properties and interactions. For all but the

simplest terms, these models are approximate in nature. Secondly, we have drawn a

distinction between chemical species such as free and bound electrons where physically

there is no difference in their properties and interactions. Indeed, core bound electrons

and high energy free electrons do behave differently and are well described by different

models. However, in the middle ground it is less clear that the distinction is meaningful.

Interactions between free and bound electrons must be added back into the model after

the separation of terms – a physical picture model has no such issue.

The discussion above is also relevant for the equation of state needed to close the

hydrodynamic equations. Within the chemical picture, a statistical mechanical de-

scription of pressure, internal energy, heat capacity, chemical potential, entropy, etc.

is possible through thermodynamic potentials. Typically, the Helmholtz free energy,

F = −kBT lnQ, is used as it is useful for isothermal and isochoric processes while al-

lowing the pressure to change. The equation of state code FEOS [100, 126], used in

Chimera, is based on a series of additive Helmholtz free energy expressions. Ions and

electrons are given separate free energy terms. Finally, thermodynamic quantities can

be derived from the total free energy, e.g. P = −∂F/∂V .

Returning now to the Saha ionisation equilibrium, we first consider a dilute, single-

species plasma where interaction terms due to free electrons can be ignored, then the

grand partition functions are given by:

Zi =
∑

N

eβµN
QNideal
N !

= exp
[
eβµQintQtrans

]
, (2.29)

Qtrans =
V

λ3
i

, λi =

√
2π~2β

mi
, (2.30)

Qint =
∑

n

gn exp [−βEn] , (2.31)

Ze = 1 + exp [−β(E − µ)] , (2.32)

where Q are the single-particle partition functions, gn and En are the degeneracy and

energy of the discrete energy level n and λi is the thermal de Broglie wavelength for

species i. The bound electrons are described by the ion internal partition function, Qint.
Separately, the free electrons are described as a partially degenerate free electron gas

through Ze. We have considered the ions to behave classically for translational degrees of
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freedom as typically nλ3
i � 1. We can now form the Saha ionisation equation explicitly:

Ni+1Ne

Ni
= Nee

−βµe
(Qint,i+1

Qint,i

)
= Nee

−βµe
(∑

n gn,i+1 exp [−βεn,i+1]∑
n gn,i exp [−βεn,i]

)
e−βIi , (2.33)

where Ii is the ground state ionisation energy and εn,i are the excitation energies. The

ionic translational partition functions cancel almost exactly as the ion masses only differ

by a single electron mass. The chemical potential of the free electrons can be calculated

for a given Ne, in the classical limit this simplifies to:

Nee
−βµe → 2V

λ3
e

. (2.34)

To highlight the power of the Saha equation, we will present the analytical solution

obtained for a classical hydrogen plasma with no bound electronic excitations. The

ionisation fraction, fe = ne/(n0 + n1) = ne/n, is given by:

f2
e

1− fe
=

2

nλ3
e

g0,1

g0,0
exp [−βI] , (2.35)

therefore the ionisation fraction can be found over density-temperature space from a

single algebraic expression, see Fig. 2.1. We see increased temperature drives ionisation
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Figure 2.1: The classical ideal gas solution to the Saha equation, Eq. 2.33, for hydrogen.
Plotted is the ionisation fraction fe = ne/n against hydrogen nucleus density,
n, and temperature, T . On secondary axes are the ionisation potential I/kBT
and the scaled density na30 where a0 is the Bohr radius.

and increased density drives recombination. While the Saha solution is well-behaved
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over the whole space, one must remember that here we have neglected interaction terms.

Therefore, the present Saha result is inaccurate at higher densities.

Given all of the ionisation and excitation energies from an atomic model, one might

hope to solve the non-linear set of Saha equations for any element. Even when neglecting

interaction terms, one will quickly run into difficulties. This is because the internal

partition function diverges if all bound levels of an isolated atom/ion are considered.

This non-physicality is a symptom of the separate treatment of bound and free electrons.

In reality the highest lying bound states will be perturbed by nearby charges and become

delocalised. In a simplified view, the transition between free and bound states has moved

to lower energies, this process is named continuum lowering or ionisation potential

depression (IPD). This rather foreign concept is related to the much more familiar

screening process in plasmas. The potential of a charge is screened by the surrounding

charges reducing its effect at large distances. We will consider the effect of a charged

test particle placed into a plasma. In terms of the dielectric function, ε, in wavenumber-

angular frequency
(
~k, ω

)
space:

φext

(
~k, ω

)
= ε

(
~k, ω

)
φeff

(
~k, ω

)
→ ~D

(
~k, ω

)
= ε

(
~k, ω

)
~E
(
~k, ω

)
, (2.36)

where φ is the electrostatic potential, ~D is the displacement field and ~E is the electric

field. The response of the plasma to applied external potential, φext, from the test

particle results in a screened effective potential, φeff. From the linearised Vlasov equation

including the Coulomb potential, it can be shown that one obtains a statically (ω = 0)

screened Coulomb potential of the form [104]:

φeff(k) =
q

ε0k2

1

ε
(
~k, 0
) =

q

ε0
· 1

k2 + κ2
→ φeff(r) =

q

4πε0
· 1

r
exp(−κr) , (2.37)

κ2(na, T ) =
∑

a

Z2
ae

2

ε0

∂na
∂µa

, κ2
D =

βe2

ε0

∑

a

naZ
2
a , κ

2
TF =

3e2

2ε0

∑

a

naZ
2
a

EFa
, (2.38)

where EFa is the Fermi energy of species a. The response of the plasma is therefore

defined through the inverse screening length, κ. The classical Debye-Hückel, κD, and

highly degenerate Thomas-Fermi, κTF , limits of the inverse screening length are given.

A consequence of the screening by the plasma is a non-zero self-energy associated with

the induced electrostatic potential (φind = φeff−φext). The induced electrostatic poten-

tial is due to the screening cloud and does not include the potential of the test particle

itself. The total electrostatic energy of the plasma is found by summing the potential

energy of all particles i, correcting for double counting:

U =
1

2

∑

i

Zieφ(~ri) =
1

2

∑

i

Zieφind(r = 0) ≡
∑

i

∆i , (2.39)
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from this we can find an expression for the self energy, ∆i, by using Eq. 2.37:

∆i =
1

2
Zieφind(r = 0) =

1

2

Z2
i e

2

4πε0
lim
r→0

[
1

r

(
e−κr − 1

)]
= −1

2

Z2
i e

2κ

4πε0
. (2.40)

Therefore, a free particle in a plasma has an energy of Ei = p2
i /2m + ∆i. Since ∆i is

negative, the free continuum has shifted to lower energies. This is exactly the ionisa-

tion potential depression that was eluded to earlier. The bound states of an isolated

atom which lie above ∆i will no longer be bound if placed within a plasma. Models

for ∆i(n, T ) which extend beyond the linearised result given above will be given in

Section 2.1.3.1.

The dynamic version of the static continuum lowering described above is also impor-

tant in plasmas. It gives rise to Stark broadening, an effect commonly considered in

dense plasma X-ray line spectroscopy [71]. Additionally, this discussion will elucidate

why splitting electrons into bound and free within a plasma is too simplistic. At any

point in space the motion of plasma particles creates a time-varying electric potential,

known as the microfield. Figure 2.2 illustrates the effect of a non-zero electric field on

electron bound states at one instance. For tightly bound states, the resultant Stark

shifts are perturbative and will vary in time – in a time averaged sense this effectively

broadens the states. Weakly bound states may temporarily form molecular orbitals as

ions draw close to each other (e.g. H+
2 in a hydrogen plasma). Single-ion bound states

EE = 0

Unbound

Stark e�ect 
splits levels Saddle pointUnperturbed

bound states

Figure 2.2: Diagram showing the various effects of an electric field on the bound states
of an ion. The core states are unperturbed while higher lying states split
through the Stark effect. The highest lying states, for which the electric
field is strongly perturbing, are destroyed. Also shown is the potential saddle
point above which states are classically unbound and below which states can
quantum-mechanically tunnel out or remain bound.

can therefore be temporarily destroyed and we must include the statistical average of

this effect to our chemical model. To do this we will use the occupation probability

method which simply introduces a multiplicative factor, wn, which reduces the statis-

tical weight of bound states (gn → gnwn where 0 ≤ wn ≤ 1). Following the work of

Hummer and Mihalas, we define a critical field F cn at which the bound state n becomes
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unbound. Then the probability of the survival, wn, can be calculated from the microfield

distribution function P (F ):

wn =

∫ F cn

0
P (F )dF . (2.41)

The microfield distribution function, P (F )dF , gives the probability of the ion experi-

encing an electric field strength in the interval [F, F +dF ]. The microfield is isotropic in

unstructured media and is defined through the statistical average of the summed electric

field from all particles in the plasma. The specifics of the critical field and microfields

distribution models will be given in Section 2.1.3.1.

The combined effects of pressure ionisation can be included in our chemical picture

model by modifying the internal partition function. This is done through the reduced

statistical weights, wn, and shift to the continuum, ∆. An illustration showing the

action of these effects on the density of states is shown in Fig. 2.3. Mathematically

these effects are given by:

Qint →
∑

n

wngn exp [−βEn] , (2.42)

Ii → Ii −∆ . (2.43)

There are more exact treatments of the theory of non-ideal plasmas which are complex

and beyond the scope of this work, the author points the interested reader to the

textbook of Kremp, Schlanges and Kraeft [104].
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Figure 2.3: Diagrams showing the form of the density of states in the cases of an isolated
atom and an ion in plasma. In a plasma the energy of the free electron
continuum is lowered by ∆ causing the destruction of some bound states.
The statistical average of the remaining bound states are broadened by the
electric microfield. A fraction of these states can become semi-bound or free
resulting in a statistical weight of the bound state wngn < gn.

We will now begin our discussion of radiative properties. First, we note that in ther-

modynamic equilibrium all forward and reverse processes must balance. Therefore, the
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emission of photons must balance the absorption of photons by the reverse process. The

photon field is a blackbody field in thermodynamic equilibrium. Therefore, establishing

equilibrium by balancing processes yields Kirchhoff’s law of thermal radiation:

jν = κνBν , (2.44)

where Bν is the blackbody or Planckian function. Therefore, in thermodynamic equi-

librium emissivity can be derived from opacity and vice-versa. While non-equilibrium

conditions can arise in ICF they will not be considered. In these cases, the source

function (defined as the ratio of emissivity to opacity jν/κν) is no longer Planckian and

forward and backward processes must be considered individually. However, the time-

reversibility of microscopic processes can be used to relate the cross sections for forward

and backward processes, even out of equilibrium.

The free-free, bound-free and bound-bound electron transitions produce/absorb pho-

tons. The theory of these processes is well-established and described within the litera-

ture [112, 153, 192]. Only a brief summary of the relevant results is given here.

Electronic transitions between bound states are described through the Einstein co-

efficients which detail the properties of emission and absorption from two levels of a

quantum system. This system can undergo spontaneous emission (defined through the

A coefficient) or interact with the present radiation field to cause photon absorption

and stimulated emission (defined through the B coefficients). These processes alter the

number of electrons in the lower level, j, as they are promoted to or demoted from the

upper level, k. The rate equation for the level j acts to define the Einstein coefficients

A and B: (
dnj
dt

)
= Akjnk + (Bkjnk −Bjknj)

∫
Iν
4π
dΩ . (2.45)

The principle of detailed balance leads to the Einstein relations, of which we will use

gjBjk = gkBkj . From this and the Boltzmann distribution of energy levels, one can

derive the opacity for the line transition between states j and k:

κbb
jk,ν =

hνjk
4π

(njBjk − nkBkj) =
hνjk
4π

njBjk

[
1− gjnk

gknj

]
, (2.46)

gjnk
gknj

= exp

[
−Ek − Ej

kBT

]
= exp

[
−hνjk
kBT

]
, (2.47)

it should be noted that Eq. 2.46 is true even out of thermodynamic equilibrium. The

Einstein coefficients can be translated into the more familiar oscillator strength, fjk,

notation. The oscillator strength quantifies the quantum-mechanical correction to the

classical expression based on the Larmor formula:

Bjk =
πe2

ε0mechνjk
fjkΦ(ν) , (2.48)

fjk =
2

3

me

~2
hνjk |rjk|2 , (2.49)



2.1 Radiation Hydrodynamics 55

where rjk is the dipole matrix element. We have also included the line shape function,

Φ(ν), which takes a Voigt profile1 due to the convolution of Gaussian and Lorentzian

shapes from various physical processes, e.g. Doppler and natural broadening. The

stimulated and spontaneous processes are not restricted to bound-bound transitions.

Therefore, all opacities must account for the effective decrease in absorption caused

by stimulated emission. In thermodynamic equilibrium, this arises as a multiplicative

[1− exp(−hν/kBT )] factor.

The free-free process, named bremsstrahlung, occurs within the free continuum of

states so can produce/absorb photons at any energy. The total opacity of thermal

bremsstrahlung for all ion species i is given by [112]:

κff
ν =

∑

i

niσi,ff

[
1− exp

(
− hν

kBT

)]
gff(ν, T ) , (2.50)

σi,ff =
4h3c4

3
√

3
α5a2

0 · neZ2
i

√
me

2πkBT
· 1

(hν)3
, (2.51)

where α ≈ 1/137 is the fine structure constant, a0 ≈ 52.9 pm is the Bohr radius and

gff is the free-free Gaunt factor. Gaunt factors are introduced to include full quantum-

mechanical corrections to the semi-classical cross section expressions.

An electron transition between a bound and free state can produce photons at any

energy above a threshold. The threshold energy is the energy required to promote the

electron from the bound state to the lowest energy free state. Using the semiclassical

photoionisation cross-section calculated by Kramer, the opacity of thermal bound-free

absorption for state j is given by [153]:

κbf
j,ν = njσ

K
j,bf

[
1− exp

(
− hν

kBT

)]
gbf(j, ν, T ) , (2.52)

σK
j,bf =





64π
3
√

3
αa2

0 ·
Nj
Z∗2j

(χj
hν

)3
, hν ≥ χj ,

0, hν < χj ,
(2.53)

where Nj is the principal quantum number of state j, Z∗j is the effective screened nuclear

charge seen by state j, χj is the energy between the bound and lowest energy free state

and gbf is the bound-free Gaunt factor. This cross-section has been calculated assuming

hydrogenic bound states.

Given these formulae and the distribution of ionic and electronic states one can calculate

the opacity. Similar expressions exist for emissivities, jν .

2.1.3.1 SpK

The initial numerical implementation of the theory described in the previous section was

written by Dr Nicolas Niasse – the code was named SpK [134]. The author has inherited

the code and has performed a number of improvements with the aim to introduce

1More complex line shape profiles can be produced in plasmas, see the textbook by Griem for details
[71].
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physical models for warm dense matter phenomena. In particular introducing pressure

ionisation models to the code.

SpK is an atomic model code which uses the screened hydrogenic model (SHM) with

energy levels taken from the NIST database to perform detailed configuration accounting

(DCA) calculations of the state populations, free electron number density, emissivity

and opacity at given conditions. Multigroup emissivity and opacity tables produced by

SpK are used within the radiation-hydrodynamics code Chimera. SpK can work in local

thermodynamic equilibrium (LTE) or collisional-radiative equilibrium (CRE), however,

only the LTE version shall be discussed here. The Saha equations are solved iteratively

using a Picard step with damping [151]. In fact, in SpK the logarithm of the Saha

equations is solved as this more accurately captures the disparate scales which occur

in ionic and electronic populations. With ionic stage index i and iteration index j, the

Saha iterative loop has the following form [134]:

ne,j = Z̄jntot , (2.54)

θi+1,j = θi,j + ln [Qe,j ] + ln

[ Qint,i+1,j

ne,jQint,i,j

]
− β(Ii −∆i,j) , (2.55)

fi,j = exp [θi,j −maxi(θi,j)] , (2.56)

Z̄∗j =

∑
i Zifi,j∑
i fi,j

, ni,j =
fi,j∑
i fi,j

ntot , (2.57)

Z̄j+1 = λZ̄j + (1− λ)Z̄∗j , (2.58)

where ntot is the total number of nuclei in all ionic stages, the internal and electron

partition functions, Q, take the forms given in Section 2.1.3 and Eq. 2.55 is the logarithm

of the Saha equations. The ionic ‘fractions’, fi,j , are constructed such that they have

a maximal value of 1. This is to ensure stability over a large range of ion densities.

Picard iteration (Eq. 2.58) updates the jth ionisation estimate where the damping, λ,

is typically set at 90%. To initialise the iterative Saha solution, the average ionisation

is estimated using a Thomas-Fermi2 estimate [127, 150], i.e. Z̄0 = Z̄TF . The Saha loop

is exited when Z̄j+1 and Z̄j converge within tolerance.

Various IPD models exist and each uses different approximations to arrive at the shift

in the continuum. A popular model developed by Stewart and Pyatt [164] retrieves

the low coupling (Γ = 1
3κ

2
Dr

2
ws � 1, where rws = (3/4πni)

1/3) Debye limit and high

coupling ion-sphere limit. This is done by ensuring continuity between the small and

large radii limits of the Poisson equation. The Poisson equation solutions include the

self-consistent spatial charge density distributions of ions and free electrons. The value

of induced electrostatic potential at the origin is taken as the continuum shift, ∆. The

2In the Thomas-Fermi (TF) model, both the bound and free electrons are treated as a partially
degenerate electron gas [192]. A self-consistent electron density and potential are calculated from
Poisson’s equation and the normalisation condition (number of electrons must equal ion charge).
Approximate fits to the TF ionisation state have been performed, see More Table IV for details[127].
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resulting Stewart-Pyatt model has a simple functional form:

β∆ =
[3(Z∗ + 1)β∆D + 1]2/3 − 1

2(Z∗ + 1)
, where: Z∗ =

1

ne

∑

i

Z2
i ni , (2.59)

lim
Γ→0

∆ = ∆D =
Ze2

4πε0λD
, lim

Γ→∞
∆ = ∆IS =

3

2

Ze2

4πε0rIS
, (2.60)

where λD ≡ 1/κD is the Debye length and rIS ≡ (3Z/4πne)
1/3 is the ion-sphere radius.

The Stewart-Pyatt IPD model has had some success [83] and some failure [36] in ex-

plaining experimental data. It is commonly used in opacity and atomic models, such as

Prismspect and FLYCHK.

The pressure ionisation (PI) model used to calculate the reduced statistical weights,

wn, is based on the work of Mihalas, Hummer and Däppen [88, 89, 124]. The microfield

distribution used is the Holtsmark distribution which uses the ideal gas approximation.

The Holtsmark distribution is therefore correct in the Γ→ 0 limit – a derivation of the

Holtsmark distribution is given in Appendix A.1.1. The Holtsmark distribution is used

to find the cumulative probability of experiencing a field strength less than a critical

field, F c. This critical field is chosen such the bound state would be classically unbound

i.e. the energy level lies at the saddle point as defined in Fig. 2.2.

wn =

∫ βcn

0
PH(β)dβ, βcn = kn

F cn
F0

, (2.61)

F cn =
πε0E

2
n

Ze3
, F0 =

Z̄e2

4πε0r2
ws

=
e2ne

4πε0ni

(
4πni

3

)2/3

, (2.62)

kn =





1 Nn ≤ 3 ,

16
3

(
Nn
Nn+1

)2 (
Nn + 7

6

)
1

N 2
n+Nn+1/2

Nn > 3 ,
(2.63)

where PH(β) is the Holtsmark microfields distribution function; F cn is the saddle point

field for state n; kn is the Stark ionisation factor which reduces the field required to

ionise high lying states [88]; Nn is the principal quantum number of state n and F0

is the field strength arising from an ion at the mean interionic separation. Numerical

approximations to the Holtsmark cumulative distribution were taken from Poquérusse

[143].

Including Stewart-Pyatt IPD and Holtsmark PI allows SpK to more accurately cal-

culate thermodynamic conditions in dense plasmas. Repeating the calculation for the

ionisation fraction of Hydrogen, free electrons can be obtained as the density is in-

creased, see Fig. 2.4. We can also compare our calculation of opacity to other opacity

codes at X-ray ablation relevant conditions – an example of Carbon at 1 g/cc and 100 eV

is shown in Fig. 2.4. These model improvements have been used to calculate multigroup

opacities to increase the accuracy of radiation hydrodynamics simulations.

While the inclusion of these two models has improved the accuracy of SpK, the models

are derived within separate approximations. A more consistent approach would aim to

calculate wn and ∆ from the same underlying model. This is a goal for future work on
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Figure 2.4: Two examples of improvements to SpK from IPD and PI models. (Left) The
ionisation fraction in a hydrogen plasma as calculated by the Saha equation
with non-ideal effects included. The red dashed line indicates where ideal
Saha (Eq. 2.35) predicts fe = 0.5. (Right) A comparison of the opacity of
Carbon at 1 g/cc and 100 eV calculated by various codes.

developing SpK.

2.2 Nuclear Reaction Products

A multitude of nuclear reactions occur during an ICF implosion, the most notable of

which are the fusion reactions. The products of these fusion reactions have energies

orders of magnitude higher than the thermal energy of the fusing plasma. The products

are either fast ions, neutrons or photons and each of these species undergo a different

set of interactions after their creation. The primary fusion reactions that can occur in

a fusing DT plasma are:

D + T → α (3.5 MeV) + n (14.1 MeV) Γ ∼ 1 , (2.64a)

D + T → 5He + γ (16.8− 13.5 MeV) Γ ∼ 4× 10−5 , (2.64b)

D +D → 3He (0.82 MeV) + n (2.45 MeV) Γ ∼ 0.5 , (2.64c)

D +D → T (1.01 MeV) + p (3.03 MeV) Γ ∼ 0.5 , (2.64d)

T + T → α+ 2n (+11.3 MeV) Γ ∼ 1 , (2.64e)

the branching ratios, Γ, of the reactions are given on the right hand side of the above

equations. The cross sections and thermal reactivities are shown in Fig. 2.5. As alluded

to in the introduction, it is clear that the DT fusion reaction will be dominant with

its reactivity being 2 orders of magnitude greater than the DD reaction. The energy

spectra of neutrons created by these fusion reactions will be discussed in Section 2.2.1.

The fusion neutrons (also known as primary neutrons) can undergo subsequent nu-

clear interactions with nuclei in the background plasma. Listing those with the largest

cross sections: elastic collisions with D,T and ablator materials (C,H,etc.); D(n,2n) and
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Figure 2.5: (Left) The fusion cross sections for selected reactions relevant to DT capsule
fills. Cross sections are given in barns (1 barn = 10−28 m2). Both DD reaction
paths have been combined. The abscissa is the centre of mass energy of the
collision. (Right) The corresponding thermal reactivities for experimentally
relevant temperatures. Cross sections are taken from ENDF [33], Bosch-Hale
reactivities are used for DT and DD [18] and the TT reactivity is calculated
directly from the cross section data.

T(n,2n) reactions3; and inelastic scattering from C. The total cross section for neutrons

interacting with H, D, T and 12C as a function of incident neutron energy is shown in

Fig. 2.6.

The total cross sections for neutrons at 14 MeV are of order 1 barn. Therefore, the

primary DT neutrons have MFPs in 50/50 DT given by:

λn
R

=
1

σniR
=

m̄

σρR
≈ 4.2 ·

(
1 g/cm2

ρR

)
. (2.65)

Thus, for currently obtainable areal densities (ρR . 1 g/cm2) a large fraction of the

primary neutrons can leave the stagnated capsule without collision. For those that

collide, and therefore are lower in energy, subsequent collisions become more likely due

to the increase in cross section at lower energy.

The charged particle products are presented with a Coulomb interaction cross sec-

tion considerably larger than any nuclear interaction cross section. The Rutherford

differential cross section is strongly peaked towards small angles:

dσ

dΩ
=

(
b90

1− µ

)2

, b90 =
Z1Z2

8πε0K
, (2.66)

where Z1 and Z2 are the charges of the colliding species, K is the kinetic energy of the

3No bound excited levels exist in D and T. Therefore, all inelastic interactions involve the break up
of the nucleus with an energy threshold set by the binding energy. For the deuteron the triplet spin
state is bound while the singlet spin state has a small positive energy – this leads to a resonance
responsible for the large nH scattering cross section at low energies [13]
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Figure 2.6: (Left) Total nuclear cross section for H, D, T and 12C as a function of incident
neutron energy. Cross sections values were found in the ENDF and CENDL
data libraries [33, 64]. (Right) Breakdown of cross section for different reaction
channels for neutron interactions with D and T. The lowest cross section
reactions have been excluded from the plot, e.g. D(n, γ) σ ∼ 10−6 barns.

projectile and µ is the scattering cosine.

The effect of Coulomb collisions on fast ions is well approximated by a Fokker-Planck

collision operator, which will be described in detail in Section 2.2.2. However, large an-

gle Coulomb and non-fusion nuclear collisions are still probable and these can produce

additional fast ion populations. Fusion reactions can also occur between fast and back-

ground ions as the raised centre of mass energy drastically increases the cross section,

see Fig. 2.5 and Eq. 1.1. Secondary fusion reactions occur when fast ions produced

in a primary fusion reaction directly undergo an additional fusion reaction. For a DT

plasma, the fast triton produced by the D(D,p)T reaction can undergo a T(D,n)α reac-

tion producing a neutron in the 11.9-17.2 MeV range. Tertiary reactions, as the name

suggests, involve the fusion reactions of fast ions indirectly produced by primary fusion

reactions.

2.2.1 Neutron Transport

The multitude of nuclear reactions described in Section 2.2 create and modify the pop-

ulation of neutrons as they are born and traverse the capsule. The spatial variation,

time evolution and energetic distribution of a population of neutrons within a back-

ground fluid is described by a transport equation derived from the Boltzmann equation

(Eq. 2.1). The neutron transport equation is written in terms of the angular neutron

flux, Ψ, which is related to the distribution, f , through a constant (Ψ = kf , k = v/mn):

1

v

∂Ψ

∂t
+ Ω̂ · ∇Ψ =

1

v

(
∂Ψ

∂t

)

col.

+
1

v

(
∂Ψ

∂t

)

src.

, (2.67)
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where Ω̂ ≡ ~v/v is the neutron direction of travel. The source term is due to fusion

reactions in the background plasma. Primary reactions simply spawn neutrons inde-

pendent of neutron flux. Secondary and tertiary sources are more complex but shall be

placed into this term and expanded on in Section 2.2.2 on fast ion transport. All the

neutron source terms will be combined into a single source term, S, which is a function

of position, energy, direction and time:

1

v

(
∂Ψ

∂t

)

src.

= S(~r,E, Ω̂, t) . (2.68)

The primary DT and DD fusion reactions are vitally important in diagnosing hotspot

conditions in ICF experiments. Since they are highly exothermic 2→ 2 body reactions,

the spectrum of neutrons is peaked close to the centre of mass neutron energy. This

is due to the energy released in the reaction, Q ∼ MeV, being orders of magnitude

larger than the pre-collision centre of mass energy, K ∼ keV. To illustrate the reaction

kinematics from which the spectrum of fusion neutrons arises, we will consider the simple

case of a homogeneous thermal fusing plasma. The velocity distribution of reacting ions

are isothermal Maxwellian distributions. We introduce the reaction notation 1 + 2 →
3 + 4 to label particle properties (mass, energy, momenta). With particle 3 being the

exiting neutron, we introduce the following standard kinematic properties [3]:

~vcm =
m1~v1 +m2~v2

m1 +m2
, ~vr = ~v1 − ~v2, K =

1

2
m12v

2
r ,

1

2
m3u

2
3 =

m4

m3 +m4
(Q+K) ,

then the neutron spectrum is given by the following expression:

dR12 =
n1n2

1 + δ12
f1(v1)f2(v2)vrσ(vr)d

3v1d
3v2 , (2.69)

dR12 =
n1n2

1 + δ12
Ncm exp

[
−(m1 +m2)v2

cm

2T

]
d3vcmNK exp

[
−K
T

]
Kσ(K)dK , (2.70)

R12(v3) =
n1n2

1 + δ12
NK

∫ ∞

0

dPcm
dv3

Kσ(K) exp

[
−K
T

]
dK , (2.71)

〈σv〉 = NK

∫ ∞

0
Kσ(K) exp

[
−K
T

]
dK , (2.72)

dPcm
dv3

=

√
1

π

√
m1 +m2

2T

v3

u3

(
exp

[
−(m1 +m2)

2T
(v3 − u3)2

]
− (2.73)

exp

[
−(m1 +m2)

2T
(v3 + u3)2

])
, where:

∫ ∞

0

dPcm
dv3

dv3 = 1 ,

where Ni are the normalisations for the Maxwellians in i-space (e.g. Ncm =
(
m1+m2

2πT

)3/2
)

and m12 is the reactants’ reduced mass. Equation 2.73 gives the normalised neutron

production spectrum at a given K value – the second exponential function has negligible

effect at physically relevant temperatures as it centred at v3 = −u3. The resultant total

spectrum (Eq. 2.71) is then written as a reaction probability weighted sum over these

production spectra. This is the natural variable separation since the reaction probability
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(∝ nσvr) only depends on K. Indeed the reactivity, as defined in Eq. 1.2, can be found

via an integral over K, see Eq. 2.72. Figure 2.7 shows the resultant neutron production

spectrum for the DT reaction at various K and T values.
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Figure 2.7: (Left) Plot showing the factors within the integrand for reactivity in Eq. 2.72
for the DT reaction. The Maxwellian and total reaction probability are plotted
for two temperatures with 5 and 10 keV in solid and dashed lines respectively.
The overlap of the Maxwellian and cross section creates the Gamow peak
which shifts to higher K as the temperature increases. (Right) Plot showing
the neutron production spectrum at two K values of 10 and 50 keV. The
spectra are normalised and therefore do not take into account the increased
reaction rate at higher K and T .

Here we have used classical mechanics for simplicity, however relativistically correct

calculations have been performed in the literature which increase both the accuracy and

complexity of the expressions [5, 132]. A DT fusion neutron moves at ∼ 0.17c and hence

relativistic corrections are on the order of γ−1 ≈ 1.5%. Many approximate evaluations

of Eq. 2.71 have been performed, most notably the Brysk [23] and Ballabio [11] forms.

These treatments involve taking moments of the neutron energy E3 in terms of K and

vcm with Eq. 2.70. The moments are then used within Gaussian or modified Gaussian

distributions to approximate the form of the neutron production spectrum.

While the above analysis is true for an isothermal stationary plasma, the fusing region

in ICF experiments has a wide variety of hydrodynamic conditions which one must sum

over. The moment approach allows the cumulants4 of the total spectrum to be related to

physical quantities of interest. A comprehensive relativistic analysis has been performed

by Munro [132], the results of which are quoted here (in a unit system in which c = k

4The first 4 cumulants are the mean, variance, skew and kurtosis. These can be simply related to
moments e.g. the variance of random variable X is given by 〈X2〉 − 〈X〉2.
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= 1 and the Einstein summation convention will be used):

w ≡ p− p0

E0
, τ ≡ T

m1 +m2
, κ ≡ K

dwcm
dK

∣∣∣∣
K=0

,

〈w〉 = 〈κ〉+ 〈~u〉iΩ̂i + ... , (2.74)

Var(w) = 〈τ〉+ 〈Var(u)〉i,j Ω̂iΩ̂j + ... , (2.75)

Skew(w) Var(w)3/2 = 3〈Cov(κ, ~u)〉iΩ̂i + 〈Cov(~u, ~u, ~u)〉i,j,kΩ̂iΩ̂jΩ̂k + ... , (2.76)

Kurt(w) Var(w)2 = 3 〈Var(τ)〉+ 6〈Cov(τ, ~u, ~u)〉i,jΩ̂iΩ̂j + ... , (2.77)

where Ω̂ is the neutron emission direction, p is the lab frame neutron momentum mag-

nitude, K is the total kinetic energy of the reactants in the centre of mass frame, and

p0 and E0 are the neutron momentum and energy at K = 0. Higher order terms have

been excluded for brevity. The angle brackets denote a burn average defined as follows:

〈f〉 =

∫
dT
∫
d3u f(T, ~u)N(T, ~u)∫

dT
∫
d3u N(T, ~u)

, (2.78)

where N(T, ~u) is the number of neutrons produced at temperature T and fluid velocity

~u summed over all positions and times.

While the derivation of the cumulants is complex, the results are physically intuitive.

The mean neutron velocity at a detector along Ω̂ depends on the Doppler shift intro-

duced by the fluid velocity and the kinetic energy of the reactants which must be passed

onto the products. The average kinetic energy of reactants is set by the product of the

cross section and the relative velocity distribution which exhibits a ‘Gamow peak’. This

peak arises as the cross section grows with energy, ∝ exp(−
√
Eg/K), but the relative

velocity distribution decays, ∝ exp(−K/T ), see Fig. 2.7. Increasing the reactant kinetic

energy K causes a shift of the neutron spectrum to higher energy. The centroid of the

Gamow peak then sets 〈κ〉, which is named the ‘Gamow shift’. The variance in the

neutron velocity is due to Doppler broadening. Therefore, the variance depends on the

range of centre of mass velocities due to both temperature and fluid velocity variance.

The higher order cumulants depend on covariances between shift or broadening induc-

ing mechanisms. As an illustrative example, if we consider a fusing plasma with two

regions of different temperature then the combination of different width spectra will

create wings therefore increasing the kurtosis. Finally the projection onto the detector

LoS gives rise to LoS variation in neutron spectral cumulants. This is due to fluid veloc-

ity introducing anisotropy in the lab frame neutron spectra. There are various ‘orders’

at which this can occur depending on the power of fluid velocity which appears. At

zeroth order are the isotropic components (e.g. 〈κ〉 and 〈τ〉) which have no anisotropy.

At first order are the vector components (e.g. 〈~u〉) which are proportional to the cosine

between fluid velocity and detector, cos ζ = 〈û〉·Ω̂. At second order are the matrix com-

ponents (e.g. 〈Var(u)〉) which have ellipsoidal angular dependence. The eigenvectors of

the matrix give the 3 principal axes and the eigenvalues give the value of the matrix

component along the principal axes. Finally increasingly higher order components have
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more complex angular dependences.

Experimental primary neutron spectroscopic measurements have concentrated on ex-

tracting burn-averaged quantities from the first two cumulants. For the mean, four

neutron spectrometers are required to constrain the vector and isotropic components

therefore allowing the burn-averaged fluid velocity and Gamow shift to be measured

[75, 116]. Measurements at both NIF and OMEGA show non-zero burn-averaged fluid

velocity, commonly called hotspot velocity, which indicates the presence of a low odd-

mode drive asymmetry. For the variance, six neutron spectrometers are required to

constrain the matrix and isotropic components [188]. The variance is often called the

inferred ion temperature due to early treatments neglecting fluid velocity e.g. Brysk

[23]. However the six spectral measurements do not enable separation of the tempera-

ture and fluid velocity variance effects. The smallest eigenvalue of the variance matrix

is the linear combination of the temperature and isotropic fluid velocity variance. This

is used as an upper bound on the burn-averaged ion temperature, 〈τ〉. The difference

between the largest and smallest eigenvalues gives the maximal inferred ion temperature

asymmetry, often labelled ∆Tion. A large ∆Tion indicates high RKE in anisotropic flows

typically attributed to low mode drive asymmetries [62]. Non-zero skew and kurtosis

have been observed however analysis has been limited due their complex dependencies

on physical parameters [131].

Exact numerical calculations of the relativistically correct version of Eq. 2.71 were

performed by Appelbe by using tabulated data for the cross section [3, 5]. The sum over

all hydrodynamic conditions can then retrieve the true neutron spectrum. This cannot

be extracted from the cumulants alone as they do not constrain the functional form of

the underlying distribution.

Collisions of neutrons with ions of species i, be they elastic or inelastic, are described

by their appropriate double differential cross sections:

(
∂Ψ

∂t

)

col.

=
∑

i

[
−niσiΨ + ni

∫
dΩ̂′

∫
dE′

d2σi
dΩdE

Ψ(~r,E′, Ω̂′, t)
]

(2.79)

For elastic or inelastic scattering which preserve particle number, the double differential

cross section can be reduced to a single differential cross section through conservation

laws. We will consider a general 2 → 2 body interaction for species i + j → k + l

with energy Q is released. The momenta of the products must be equal and opposite in

the centre of mass (CoM) frame. Therefore the energy of the products is independent

of angle in the CoM frame. Any frame transformation introduces a 1-to-1 angular

dependence to the outgoing energy, simply due to the vector addition of velocities. This

allows the double differential cross section (or scattering kernel) to be simplified to [169]:

d2σi
dΩdE

=
1

2π

dσi
dµc

∣∣∣∣
∂µc
∂Ek

∣∣∣∣ δ(µ0 − µ∗0), where: µ0 ≡ Ω̂i · Ω̂k . (2.80)

Here we have used the azimuthal symmetry of the CoM differential cross section to pull
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out a factor of 2π. Subscript c is used to denote CoM quantities. For example, the lab

frame scattering cosine is denoted µ0 while the CoM frame scattering cosine is denoted

µc. We have defined a number of kinematic parameters of interest; the energies of i and

k (Ei and Ek), the scattering cosine between i and k which satisfies conservation laws

(µ∗0), and the Jacobian relating the CoM and lab frames (g = |∂µc/∂Ek|).

We will work initially in the beam target frame, where species i will be the projec-

tile, species j is the stationary target and species k is the exiting species of interest.

Kinematic variables can all be written in terms of two parameters a and b:

a2 ≡ mlkmij

mkmi

(
1 +

Q

E∗

)
, a2 =

Ek,c
Ei

, (2.81)

b2 ≡
m2
ijmk

m2
jmi

, b2 =
1
2mkv

2
cm

Ei
, (2.82)

where: E∗ =
mij

mi
Ei = Ei,c + Ej,c and mij =

mimj

mi +mj
. (2.83)

The right hand expressions give physical interpretations to a and b: a2 gives the ratio

of the CoM outgoing energy and the incoming energy, b2 gives the ratio of the energy

in the CoM motion of species k to the incoming energy. E∗ is the same as K used in

the primary spectrum analysis but we will follow the scattering literature here and use

E∗.

From energy and momentum conservation laws, the kinematic parameters can be

related to a and b as follows (see Appendix A.2.1):

Ek = (a2 + b2 + 2abµc)Ei , (2.84)

µ∗0 =
1

2b

[√
Ek
Ei
− (a2 − b2)

√
Ei
Ek

]
, (2.85)

g(Ei) =
2

((a+ b)2 − (a− b)2)Ei
=

2

Ek,max − Ek,min
. (2.86)

For a uniform differential cross section, an incoming monoenergetic beam will be scat-

tered into a uniform energy distribution between Ek,max and Ek,min. For example, if we

consider elastic neutron scattering from an ion with mass mj = Amn then:

a =
A

A+ 1
, b =

1

A+ 1
, (2.87)

∴ Ek,max = Ei, Ek,min =

(
A− 1

A+ 1

)2

Ei = αEi . (2.88)

The lower kinematic endpoint forms what is known as the backscatter edge, which will

be the subject of Section 3.1. Another example to consider is the beam target DT fusion

reaction (Q = 17.6 MeV) which describes the secondary fusion reaction of the fast triton
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from the primary D(D,p)T reaction:

a2 =
8

25

(
1 +

5

2

Q

Ei

)
, b2 =

3

25
. (2.89)

For Ei = 1.01 MeV→ Ek,max = 17.2 MeV, Ek,min = 11.9 MeV , (2.90)

this process, amongst others, produces a high energy neutron spectrum which will be

the subject of Section 3.3.

To match the scattering kinematics notation with that of the neutron transport lit-

erature [12, 130, 167, 168]: the neutron energies are given no subscript, all masses

are written as multiple of the neutron mass, primes denote pre-collision quantities and

unprimed denote post-collision quantities.

The differential cross section contains the nuclear physics of scattering which is a

complex problem and the complete description is beyond the scope of this work. For

context, the basics of the quantum-mechanical scattering problem is outlined in Ap-

pendix A.3. The cross sections used in this work were taken from the ENDF [33] and

CENDL [64] nuclear databases. In Fig. 2.8 we show the differential cross sections for

the elastic scattering reactions nD and nT at a neutron energy of 14 MeV.
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Figure 2.8: (Left) The differential cross section of elastic scattering of a 14 MeV neutron
from D and T in the CoM frame as a function of scattering cosine. (Right) The
differential cross section in the beam-target frame as a function of normalised
energy, E0 = 14 MeV. Note the backscatter edges at 1/9 and 1/4 of E0 for D
and T respectively.

In ICF the bulk ions off which the neutrons are scattering are not stationary due to

thermal and non-thermal motion. While the velocities of these ions are generally much

smaller than the neutrons, there is a non-negligible effect. We will consider the elastic

scattering of neutrons from ions of mass Amn. The scattering kernel must be modified in

order to account for the ion motion and integrated over the distribution of ion velocities.

The differential cross section can be assumed constant within the integration range due

the large velocity difference between neutron and ion. Within this approximation, the
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beam-target scattering kernel for a Maxwellian distribution of ion velocities is given by

[12, 138]:

d2σ

dΩdE
≈ 1

2π

dσ

dµc

∣∣∣∣
∂µc
∂E

∣∣∣∣D(µ0, E,E
′) , (2.91)

D(µ0, E,E
′) =

2
√
EE′

A

√
1

4πTκ2
exp

[
− 1

4Tκ2

(
ε− κ2

)2
]
, (2.92)

lim
T→0

D(µ0, E,E
′) = δ (µ0 − µ∗0) , (2.93)

ε ≡ E′ − E, κ2 ≡ 1

A

(
E′ + E − 2µ0

√
EE′

)
. (2.94)

The thermal velocity distribution causes the energy-angle relationship to no longer be

1-to-1 as shown by Eq. 2.92 and Fig. 2.9. For the purpose of calculating the differential

cross section the CoM frame scattering cosine, µc, is approximated here as the T = 0

result.
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Figure 2.9: (Left) The scattering cosine energy relation for scattering of 14 MeV neutrons
from thermal D ions at 1 keV. The red dashed line indicates the T = 0 relation,
note the log scale of the plot. The colour scale gives the value of D as given
by Eq. 2.92 for E′ = 14 MeV. (Right) The resultant single scattered spectrum
from an isotropic source around the backscatter edge. At energies E > 2.2
MeV the T = 0 and T = 1 keV results remain the same following the form
shown in Fig. 2.8.

To include the bulk non-thermal motion, i.e. fluid velocity, of the scatterers we must

transform our kinematic parameters from the beam target frame to the lab frame. The

classical and relativistic treatment of this frame transformation are given in Appen-

dices A.2.2 and A.2.3. Differential cross sections of the form given in Eq. 2.80 are

unchanged in form but the lab frame Jacobian and quantities must be used. We will

consider the classical limit first and the elastic scattering of a neutron from cold (T =

0) ions of mass Amn and pre-collision energy E′i. Using results derived in the appendix,
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the scattering kernel is given by:

d2σ

dΩdE
=

1

2π

dσ

dµc

2

1− α

(
1−

√
E′i
AEµ

)

(
E′ − 2

√
E′E′i
A µ′ + E′i

A

)δ(µ0 − µ∗0) , (2.95)

µ∗0 =
1

2

[
(A+ 1)

√
E

E′
− (A− 1)

√
E′

E

]
+

√
AE′i
E

µ′ −
√
AE′i
E′

µ , (2.96)

where µ′ and µ are the cosines between the incoming neutron and the initial ion tra-

jectory, and between the outgoing neutron and the initial ion trajectory respectively.

This transformation introduces kinematic beaming as well as changing the kinematic

end points. Forward scatter, µ0 = 1, still gives equal incoming and outgoing energies,

E = E′. However, backscatter, µ0 = −1, now gives:

E =

(
A− 1

A+ 1
− 2

A+ 1

√
AE′i
E′

µ′
)2

E′ , (2.97)

contrasting with the beam-target results given in Eq. 2.88. The scattering cosine also

now explicitly depends on neutron direction. Therefore in the lab frame the energy-angle

relation is more complex and knowledge of only the neutron properties is insufficient in

determining the scattering angle.

The relativistic corrections to scattering kinematics are small, this will be illustrated

by considering the head-on collision between a neutron and ion for which:

βcm =
γ′mnβ

′ −miβ
′
i

γ′mn +mi
, β =

β′(1 + β2
cm)− 2βcm

1− 2βcmβ′ + β2
cm

, K = (γ − 1)mn . (2.98)

The ion will be part of the bulk thermal plasma and hence β′i = v′i/c� 1. Figure 2.10

shows a comparison of relativistic and classic results for an initial neutron kinetic energy

of 14 MeV. Also shown is how ion velocities alters the arrival time of backscattered

neutrons, which is relevant for the resolution of nToF detectors.

Classical expressions are used in the neutron transport calculations by the codes

Minotaur and AKED, see Sections 2.2.3 and 2.2.4. The relativistic kinematic corrections

are included when constructing models for experimental data in Section 3.1.

There are some nuclear interactions which occur with greater than two products

and thus exhibit more complex energy spectra. This is due to many distinct product

distributions satisfying energy-momentum conservation compared to the single solution

for the 2 → 2 body reactions. The final state is now dependent on the details of the

interaction at a nuclear level which are generally complex. For the TT fusion reaction

there are multiple possible reaction channels which contribute characteristic shapes to
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Figure 2.10: (Left) The energy shift of the backscatter edge relative to the classical beam-
target result. Relativistic corrections introduce an offset of a few tens of keV
without modifying the gradient significantly. (Right) The arrival time shift
as a fraction of the light transit time to the nToF spectrometer. It can be
seen that for a fixed time resolution that the nD edge has the potential to
give a more sensitive measurement of ion velocities.

2 4 6 8 10 12 14

Energy (MeV)

0.00

0.25

0.50

0.75

1.00

1.25

In
te

ns
it

y
(A

.U
.)

T(T,2n)α
T(n,2n)D
D(n,2n)p

Figure 2.11: Examples of neutron spectra from the 3-product reactions present in ICF
experiments. Each has been separately normalised for ease of plotting. The
(n,2n) reactions are evaluated at an incident neutron energy of 14 MeV and
integrated over all outgoing directions. The TT spectrum was evaluated at
a temperature of 5 keV using the method developed by Appelbe [6].
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the total neutron spectrum [22, 27, 96]:

T + T → α+ 2n, Q = 11.3 MeV , (2.99)

T + T → 5He + n, Q = 10.4 MeV , (2.100)

T + T → 5He∗ + n, Q = 9.2 MeV . (2.101)

The (n,2n) reactions pose a similar problem and differential cross sections are depen-

dent on the nuclear physics models used. The three-body D(n,2n) reaction requires an

understanding of the three-nucleon force [52] which is not well characterised. Here we

will simply present the spectral shapes which are the current best estimates in Fig. 2.11.

2.2.2 Fast Ion Transport

In contrast to the bulk ions which exist in thermal equilibrium, fast ions’ long mean

free path requires a non-local transport description. In a similar fashion to photons

and neutrons, the fast ion transport equation is derived from the Boltzmann equation

(Eq. 2.1). However the external force term is non-zero due to the effect of electric and

magnetic fields on the charged ion:

∂f

∂t
+ ~v · ∇f +

Ze

m

(
~E + ~v × ~B

)
· ∇vf =

(
∂f

∂t

)

col.

+

(
∂f

∂t

)

src.

. (2.102)

The source term is due to both fusion reactions and ions knocked on by other fast

species. Bulk ions can also be accelerated by electric fields into the long mean free path

regime. However, this is uncommon in ICF plasmas as they are very collisional. Ion

knock on sources will include a differential cross section term for a collision of species i

which forms our fast ion species of interest j:

(
∂f

∂t

)

src.

= S(~r, v, Ω̂, t) +
∑

i

ni

∫
dΩ̂′

∫
dv′

d2σi→j
dΩdv

v′fi(~r, v′, Ω̂′, t) . (2.103)

The primary source term, S, can be calculated in a similar way as the primary neutron

source term. For a 2→2 body thermonuclear reaction, Eq. 2.71 can be used for the fast

ion product.

The collision term for charged particles is problematic due to the divergence of the

Coulomb potential. Classical descriptions of binary collisions of bare charges must

invoke a cut off – an approach commonly invoked in high energy physics to remove

divergences that exist at scales not well described by the current theory. However the

idea that collisions are binary does not marry well with the concept of screening in plas-

mas. This can be remedied through calculating the potential of mean force which gives

an effective binary potential. For a Debye plasma, the effective potential is the Debye

potential which removes the long range divergence. A quantum mechanical treatment

is required to describe the short scales and remove the short range divergence. These

complex behaviours are hidden away in a function know as the Coulomb logarithm, ln Λ,
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which appeared briefly in Section 2.1. We can now precede with a binary collision treat-

ment with a Coulomb logarithm attached. Inspecting the Rutherford differential cross

section in Eq. 2.66, we note that small angle scattering events are much more likely than

large angle ones. This allows the collision operator to be written in a Fokker-Planck

form – the derivation is complex and only the results will be quoted5. The final sim-

plification is to consider the collisions of fast species a with a Maxwellian population of

species b [80]:

x2
i ≡

miv
2

2Ti
, νab ≡

nbZ
2
aZ

2
b e

4

4πε20m
2
av

3
ln Λ ,

G(x) ≡
erf(x)− 2√

π
xe−x

2

2x2
, H(x) ≡ erf(x)−G(x), erf(x) ≡ 2√

π

∫ x

0
exp

[
−y2

]
dy ,

(
∂f

∂t

)FP

col.,ab

= Ldab(fa) + Lsab(fa) + Lpab(fa) , (2.104)

Ldab(fa) = νdab
1

2

∂

∂µ

(
1− µ2

) ∂fa
∂µ

, (2.105)

Lsab(fa) =
ma

ma +mb
· 1

v2

∂

∂v

[
νsabv

3fa
]
, (2.106)

Lpab(fa) =
1

2
· 1

v2

∂

∂v

[
νpabv

4∂fa
∂v

]
, (2.107)

νdab = νab ·H(xb) , (2.108)

νsab = 2x2
b

(
1 +

ma

mb

)
· νabG(xb) = 2x2

bν
∗
abG(xb) , (2.109)

νpab = 2νab ·G(xb) . (2.110)

This complex set of equations and definitions describe three collisional processes: an-

gular deflection, slowing down and parallel velocity diffusion, with collision frequencies

νdab, ν
s
ab and νpab respectively. Angular deflection acts to bring about isotropy in the

velocity distribution. Slowing down reduces the speed of particles without altering their

direction like a viscous drag. Parallel velocity diffusion acts to increase the variance

of speeds. All these processes are a result of many successive small angle Coulomb

collisions in which momentum and energy are exchanged between species. As we are in-

terested in describing suprathermal ionic species, we must consider the behaviour of the

collision frequencies at high velocities. The relative importance of the different processes

is shown as a function of xb(= v/vTb) in Fig. 2.12. For reference a 1.0 MeV primary

triton initially has a xe = 0.43
√

1 keV/Te and for thermal ions xi ∼ 43xe
√
mi/mp.

Slowing by electrons dominates the initial behaviour of fast ion species due to the

large mass difference causing ν∗ae � νae. Once the fast ions have slowed sufficiently to

increase the collision frequency, the thermal ions can very effectively slow and thermalise

any fast ion species. The slowing therefore sets the range that fast ions can travel –

this was briefly discussed in the introduction with respect to alpha heating within the

5The interested reader should consult Helander and Sigmar [80] – the formulae in this textbook are
even in SI units as an added bonus
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Figure 2.12: (Left) Normalised collisional frequencies as a function of the ratio of fast
ion velocity to thermal velocity. Note the different normalisation for slowing
down which factors out the target mass dependence. At high xb parallel
velocity diffusion can be ignored but both angular deflection and slowing
down are important. However if the beam species is much more massive than
the thermal species (ma � mb) then ν∗ab � νab. In this limit slowing down
dominates. (Right) The effect of slowing on two common fast ion species,
the alphas and tritons made in fusion reactions. A background 50/50 DT
plasma at 3.0 keV and 1031 m−3 is considered. Dashed lines show slowing
if only thermal electrons are considered. The Coulomb logarithm from the
work of Antal and Lee was used [2].

hotspot, see Fig. 1.2. In this work, we are more concerned with the nuclear reactions

which can occur in-flight. If we consider a fast D or T ion, the cross section for the DT

fusion reaction peaks at ∼ 0.1 MeV, as shown in Fig. 2.5. Generally, fast ions are created

at energies of a few MeV and slowing down reduces their energy as they travel. This

acts to increase the reaction cross section and the number of in-flight fusion reactions.

Therefore, accurate modelling of fast ions and their nuclear interactions requires a good

description of Coulomb collisional processes.

A significant difference between neutron and fast ion transport is the effect of electro-

magnetic fields. Large scale electric fields are rare in plasmas as the charges can easily

move to eliminate the field. Magnetic fields are a much more common consideration

and they can have a significant effect on fast ion transport. The Larmor orbits created

by magnetic fields have radius and angular period given by:

rL =
mv⊥
ZeB

(2.111)

τL =
rL
v⊥

=
m

ZeB
, (2.112)

where v⊥ is the ion velocity perpendicular to the magnetic field B. For low B, smaller

spatial and time scales will dominate and the magnetic field will have little effect.

For high B, the fast particles will be confined to small, rapid Larmor orbits and their

behaviour has effectively collapsed down to a single dimension along the field line. How-

ever, all realistic applications of magnetic field effects in ICF will sit in an intermediate

regime. Additionally the hotspot radius, stopping distance and Larmor radius may be
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of similar order causing difficulty for analytic techniques and leading to sensitivity to

many parameters. Simulation of fast ion trajectories including the Lorentz force are

therefore necessary. The trajectories of fast D(D,p)T tritons in various magnetic field

strengths is shown in Fig. 2.13.
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Figure 2.13: The particle trajectories of 1 MeV tritons from a point source with various
magnetic field strengths applied along the z-axis. The spatial scale has been
normalised by the triton stopping distance, λT . The triton behaviour tran-
sitions from free streaming through to confinement to the field lines. If the
reactive volume is smaller than the stopping distance then one can replace
λT with the source radius R.

The fusion reactions which occur in-flight are beam-target and therefore the spectra

differ from the thermonuclear primary spectra discussed in Section 2.2.1. Instead the

differential cross section and kinematic limits must be used (kinematic limits for T(D,n)α

are given in Eqs. 2.89 and 2.90). The spectral shape is dependent on the fast ion flux,

energy and angular distribution as well as the target ion density distribution. Figure 2.14

shows the beam-target DT spectra for various beam energy spectra produced by different

physical processes. Fast tritons can be produced in D(D,p)T, nT scattering and large-

angle Coulomb collisions of fusion alphas. Fast deuterons do not have a fusion source and

are only created in knock-on events. The complex interplay of slowing, Larmor orbits,

finite source volumes and spatial distributions make secondary and tertiary neutron

spectra an interesting simulation challenge.

In this work we are focussed on the nuclear diagnostic signatures so the normally

pivotal role of alpha transport in ICF will take a backstage part. Instead the focus

will be on fast deuterons and tritons and their subsequent nuclear reactions. These

species do not contain enough energy density to affect the hydrodynamics significantly
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Figure 2.14: (Left) Fast ion energy spectra created by fusion reactions and the elastic col-
lisions of neutron and alphas. For the alpha knock-on ions only the Coulomb
cross section was considered (scattering angles less than 26 degrees were ex-
cluded). (Right) The resultant DT beam-target neutron spectrum assuming
isotropic ion flux and differential cross section – the absolute DT reaction
cross section has been included, cf. Fig. 2.5. All spectra have been nor-
malised to have unit area for ease of comparison.

so calculation of their behaviour can be performed as a post-process. Two numerical

codes have been developed to perform fast ion transport in a different number of spatial

dimensions. Minotaur performs 1D spherical transport and therefore does not include

magnetic field effects. AKED works in 3D and therefore will be used when magnetic

fields are present.

2.2.3 Minotaur

Neutron transport including all relevant nuclear processes is an intensive numerical

calculation requiring discretisation of Eq. 2.67 in position and velocity space. Invoking

spherical symmetry allows multiple interaction types to be retained without restrictive

calculation time. Additionally, the plasma fluid velocity is small compared to fusion

neutron velocities (14 MeV neutron moves at 51,000 km/s compared to . 500 km/s fluid

velocities) so the transport can be assumed time independent. This approximation is

on firm ground for the unscattered primary DT neutrons, which leave the capsule in ∼
1 ps. However, this approximation is less valid for slow neutrons which have undergone

multiple scattering. Therefore, a lower bound of 1 MeV on the neutron kinetic energy

is considered. Written in its conservative form, the 1D spherical neutron transport

equation is given by:

[
µ

r2

∂

∂r
r2 +

1

r

∂

∂µ
(1− µ2) + n(r)σ(E)

]
Ψ(r, µ,E) = Sext.(r, µ,E) + Sscat.(r, µ,E) ,

(2.113)

where µ is the direction cosine of the neutron and r is the radius.
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There are many methods for solving this equation including Legendre polynomial

expansion of the angular coordinate (named PN ), discretising the angular coordinate

(named discrete ordinates or SN
6) or stochastic Monte Carlo methods. There are

merits to each method, however the anisotropic differential cross sections relevant to

the problem do not favour the Legendre polynomial expansion [169]. The deterministic

discrete ordinates method was opted for over the stochastic method commonly used for

neutron transport in ICF plasmas [186, 189]. As the code was developed to look at di-

agnostic signatures in the neutron spectrum, the statistical noise introduced in a Monte

Carlo solution is undesirable especially when looking at low probability events. However

deterministic methods do have insidious numerical errors which must be investigated

through convergence studies.

With this considered, the author developed a spherical 1D discrete ordinates multi-

group neutron transport code, Minotaur. This involves discretisation of the neutron

distribution over radius (index i), direction cosine (index n) and energy (index g).

First a choice must be made on how to discretise in the angular domain, −1 ≤ µ ≤ 1.

Legendre-Gaussian quadrature splits the domain into a set of nodes, µn, with weights,

wn, which allow integrals to be approximated as follows:

∫ 1

−1
Ψ(µ)dµ ≈

N∑

n=1

wnΨ(µn), (2.114)

N∑

n=1

wn = 2 . (2.115)

If Ψ(µ) is a polynomial of degree 2N − 1, or less, then N -point Legendre-Gaussian

quadrature returns the exact result of the integral. The half points are then defined

through the weights with the appropriate end points:

µn+1/2 = µn−1/2 + wn, µ1/2 = −1, µN+1/2 = +1 . (2.116)

Generally even N is chosen to avoid solving along µ = 0 where the spatial derivative

in Eq. 2.113 vanishes. Normal finite differencing of the angular differential in Eq. 2.113

requires uniformally spaced µn in order to recover the correct solution for a uniform

isotropic source, Ψ = S/nσ. To allow Legendre-Gaussian discrete ordinates, angular

differencing coefficients αn+1/2 are introduced which are defined as follows [109]:

1

r

∂

∂µ
(1− µ2)Ψ

∣∣∣∣
µ=µn

≈ 2

wnr

[
αn+1/2Ψn+1/2 − αn−1/2Ψn−1/2

]
, (2.117)

αn+1/2 = αn−1/2 − wnµn, α1/2 = 0 . (2.118)

These coefficients ensure that the correct solution is obtained for the uniform isotropic

6The abbreviation, SN , derives from the procedure of splitting the angular domain into N straight
line segments proposed by Carlson [24]. The method is a special case of the more general discrete
ordinates method which has subsequently adopted the SN label [12].
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source case.

The spatial and energy domains are split with more freedom. A comment will be made

here about the multigroup (energy) approximation used in Minotaur as different schemes

exist in the literature [12]. The multigroup equations are found by integrating Eq. 2.113

over a finite energy ranges, the equations are then coupled through the scattering term.

By performing the integration the cross sections must then be replaced by averages, for

example:

σ(E)Ψ(r, µ,E)→ σg(r, µ)Ψg(r, µ), (2.119)

σg(r, µ) ≡
∫
g σ(E)Ψ(r, µ,E)dE
∫
g Ψ(r, µ,E)dE

. (2.120)

However, rather undesirably the total cross section is now dependent on angle, µ. In

Minotaur the flux is assumed to be independent of energy within each group:

Ψ(r, µ,E) ≈ ψg(r, µ)Q(E) =
ψg(r, µ)

∆g
, (2.121)

σg =
1

∆g

∫

g
σ(E)dE (2.122)

where ∆g is the width of the energy group. This approximation removes the angular

dependence in cross sections. Suitably small energy groups must therefore be taken so

that ∂Ψ/∂E < Ψ/∆g. Spatially we need only define radii, areas and volumes of cells –

the half points of radii will be taken as the edges of cells:

r1/2 = 0, Ai+1/2 = 4πr2
i+1/2, Vi =

4π

3

[
r3
i+1/2 − r3

i−1/2

]
. (2.123)

By applying these discretisations to the conservative form of the neutron transport

equation (Eq. 2.113) we ensure the correct conservation laws are maintained.

With the discretisation defined, the diamond differencing scheme is used to relate the

fluxes at the boundaries to the centred value:

Ψi,n,g =
1

2

(
Ψi+1/2,n,g + Ψi−1/2,n,g

)
=

1

2

(
Ψi,n+1/2,g + Ψi,n−1/2,g

)
, (2.124)
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and the following set of discrete transport equations is obtained [12, 109]:

Ψi,n,g =

[
−2µnAi−1/2 +

2

wn

(
Ai+1/2 −Ai−1/2

)
αn+1/2 + Viniσg

]−1

× (2.125)

[
− µn

(
Ai+1/2 +Ai−1/2

)
ψi+1/2,n,g

+
1

wn

(
Ai+1/2 −Ai−1/2

) (
αn+1/2 + αn−1/2

)
ψi,n−1/2,g + ViSi,n,g

]
, µn < 0 ,

Ψi,n,g =

[
2µnAi+1/2 +

2

wn

(
Ai+1/2 −Ai−1/2

)
αn+1/2 + Viniσg

]−1

× (2.126)

[
µn
(
Ai+1/2 +Ai−1/2

)
ψi−1/2,n,g

+
1

wn

(
Ai+1/2 −Ai−1/2

) (
αn+1/2 + αn−1/2

)
ψi,n−1/2,g + ViSi,n,g

]
, µn > 0 ,

Ψi,1/2,g =
2Ψi+1/2,1/2,g + (ri+1/2 − ri−1/2)Si,1/2,g

2 + niσg(ri+1/2 − ri−1/2)
, µ1/2 = −1 , (2.127)

where both the external and scattering source term have been bundled into Si,n,g. Equa-

tion 2.124 gives the two diamond difference equations used to relate fluxes at both spatial

and angular faces to centred values. Equations 2.125 and 2.126 give the inward and out-

ward integration of the transport equation. Finally Eq. 2.127 is the solution for purely

radially inward neutrons which is required to solve the whole system, it is often called

the ‘starter flux’. The solution procedure is as follows:

1. Solve for the starter flux

2. Perform inward radial sweeps, decreasing i, for µn < 0, using the diamond differ-

ence to find Ψi,n−1/2,g for the next n+ 1 sweep

3. Perform outward radial sweeps, increasing i, for µn > 0, using the diamond dif-

ference to find Ψi,n−1/2,g for the next n+ 1 sweep

For all problems considered in this work the outer boundary condition will be taken

as a vacuum condition i.e. no incoming flux:

ΨN+1/2,n,g = 0 for µn < 0 . (2.128)

The flux at the origin is isotropic and in a discrete sense this gives the following condi-

tion:
∂Ψ

∂µ

∣∣∣∣
r→0

= 0 =⇒ Ψ1/2,n−1/2,g = Ψ1/2,n+1/2,g . (2.129)

A consequence of the diamond differencing scheme is a loss of positivity of the stream-

ing operator (left hand side of Eq. 2.113). To remedy this a ‘negative-flux-fixup’ is

employed when instances of negative flux occur [109]. This reduces the accuracy of the

calculation so it preferable to choose sufficient spatial resolution to avoid this. This is

parametrised through h = nσ∆r
2|µn| < 1 where ∆r is the spatial mesh spacing.
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Ignoring scattering for the time being, we can test the transport using a finite, uni-

form, isotropic, monoenergetic, spherical source with constant macroscopic cross section,

Σ = nσ. This involves solving the following form of the neutron transport equation

[
µ
∂

∂r
+

1− µ2

r

∂

∂µ
+ Σ

]
Ψ(r, µ) =

S

2
Θ(R− r) , (2.130)

where Θ is the Heaviside function. The above equation can be solved analytically using

the method of characteristics:

Ψ(r, µ) =
S

2Σ
(1− exp [−Σl(r, µ)]) exp

[
−Σl′(r, µ)

]
, (2.131)

l(r, µ) =





rµ+
√
R2 − r2(1− µ2) r < R ,

2
√
R2 − r2 (1− µ2) r > R and µ >

√
1−

(
R
r

)2
,

0 elsewhere ,

l′(r, µ) =




rµ−

√
R2 − r2(1− µ2) r > R and µ >

√
1−

(
R
r

)2
,

0 elsewhere .

A comparison between numerical and analytic results for the first two angular moments

of Ψ is shown in Fig. 2.15 for ΣR = 1. This shows good agreement for 32 angular groups

used in the numerical calculation.
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Figure 2.15: Comparing numerical and analytic transport solutions to a finite uniform
isotopic spherical source of radius R within a constant macroscopic cross
section ΣR = 1. The red dashed line shows the total neutron flux; the blue
dashed line shows the neutron current and black lines show the equivalent
results as calculated numerically by Minotaur.

Now that the streaming operator and external source term have been tested, we must

now consider how to handle the anisotropic scattering source term. Commonly this is

done by expanding the scattering kernel in terms of Legendre polynomials [12, 109].

However, for highly anisotropic scattering this can lead to unphysical results such as

negative fluxes [169]. Instead we will use the I and I* methods outlined by Takahashi and

Rusch [167–169] which performs no expansion of the scattering kernel. These methods

analytically derive expressions for the ‘angular transition probability’, denoted I, when
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the azimuthal angles are integrated out. If we consider neutron directions pre-collision,

Ω̂′, and post-collision, Ω̂, with a fixed scattering cosine, µ∗, between them then the

angular transition probability, abbreviated to ATP, is given by [169]:

Ω̂′ · Ω̂ = µµ′ +
√

1− µ2
√

1− µ′2 cos(φ− φ′) , (2.132)

I(µ′, µ, µ∗) =

∫
d∆φδ(Ω̂

′ · Ω̂− µ∗), ∆φ ≡ φ− φ′ , (2.133)

=
1

π
√

1− µ2 − µ′2 − µ∗2 + 2µµ′µ∗
=

1

π
√

1− y2
, (2.134)

y ≡ µ− µ′µ∗√
1− µ′2

√
1− µ∗2

, (2.135)

I(µ′, µ, µ∗) is symmetric in its three parameters and obeys conservation of probability

when integrated over any one of the angles. The diagrammatic interpretation and the

plotted functional form are shown in Fig. 2.16. Numerically I must be integrated over

the angular group widths in µ, µ′ and µ∗, one of the three integrals can be performed

analytically thus avoiding the singularities in I at y = ±1 [167, 168].

Figure 2.16: (Left) Diagram showing the geometric arrangement under consideration, the
angles between Ω̂′ and r̂, and Ω̂′ and Ω̂ are fixed but the azimuthal angle
between Ω̂′ and Ω̂ is allowed to vary. This causes the angle between Ω̂ and
r̂ to change between the limits µ1 and µ2. (Right) The angular transition

probability plotted in terms of the reduced variable y, I(y) =
[
π
√

1− y2
]−1

.

The cosines in y can be interchanged due the symmetry properties of I.

Before introducing the differences between the I* and I methods, the discretisation

and treatment of the scattering source in discrete ordinates will be discussed. First

we will only consider downscatter since, for the relevant temperatures, the degree of

upscatter is small, En/T & 103. This also greatly simplifies the transport calculation as

the energy groups can be swept in decreasing energy order (increasing index) a single

time. The s-th scattered source term is calculated using a transport solution for the

s − 1 flux, thus a von Neumann series solution can be converged on through multiple
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iterations. The discretised version of the differential cross section is often named a

transfer cross section with symbol σt as it gives the particles transferred from a given

energy/angle group to another. The scattering source is simply a sum over these transfer

cross sections7:

Sscat.,i,n,g,s =

∫

i

∫

g

∫

g′

∫

m

∫

n
n(r)

d2σ

dΩdE
Ψs−1(r, µ′, E′) (2.136)

= ni
∑

g′≥g
∆g′

∑

m

wmσ
t
g,g′,m,nΨi,m,g′,s−1 ,

where m and g′ are the incoming angular and energy group.

If the lab frame differential cross section is independent of neutron direction, i.e.

the target is stationary, then the I*-method can be used. This involves separating the

calculation of ATP from the differential cross section. In index notation:

∫

g

∫

g′

∫

m

∫

n

d2σ

dΩdE
=
∑

n∗
wn∗σg,g′,n∗In∗,m,n = σtg,g′,m,n . (2.137)

For 2→ 2 body reactions, calculation of the intermediate σg,g′,n∗ with proper treatment

of the delta function angular dependence is detailed in the report by Mori et al. [130].

For other reactions, such as the D(n,2n) reaction, the unit base transform is used to

allow smooth interpolation over non-rectangular double differential cross section data

tables – this method is detailed in the ENDF manual [175].

If the differential cross section depends on neutron direction, i.e. the target is non-

stationary, then the calculation cannot be separated. The ATP and differential cross

section should be calculated at the same time to avoid unnecessary numerical calcu-

lation. This is named the I-method as, rather than treating the scattering cosine as

an independent variable (like in the I*-method), it is directly linked to the kinematic

parameter µ∗0. This means that I is calculated at the same time as the differential cross

section: ∫

g

∫

g′

∫

m

∫

n

d2σ

dΩdE
=
∑

n∗
wn∗σg,g′,m,n,n∗In∗,m,n = σtg,g′,m,n . (2.138)

The transfer cross sections can also be position dependent if fluid velocity and tem-

perature are spatially varying. This adds extra dimensionality to the transfer cross

section calculation which then dominates computing time. Appendix B.2 describes the

calculation of the transfer cross sections in detail.

To test the scattering operator in Minotaur, the constant isotropic elastic scattering

of a unit monoenergetic source, Q0(E) = δ(E−E0), is considered. The energy spectrum

for the sth scattered flux can be calculated analytically by repeated operation of the

scattering kernel, this can be compared to the equivalent discrete form from Minotaur,

7We will introduce notation here to abbreviate the integration over the discretised space. For example,

for energy group g the integral
∫
g

is used to represented
∫ Eg+∆g/2

Eg−∆g/2
dE
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see Fig. 2.17:

Qs(E) =

∫ E/α

E

2σ

(1− α)E′
Qs−1(E′)dE′ , (2.139)

=
2sσs

(1− α)sE0(s− 1)!

s∑

i=0

(
s

i

)
(−1)i+s lns−1

(
E

αiE0

)
Θ

(
E

αi
− E0

)
.

Discrete form:

Sg,s =
∑

n

wn
∑

g′≥g
∆g′

∑

m

wmσ
t
g,g′,m,nSg′,s−1 . (2.140)
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Figure 2.17: Comparison of analytic (dashed lines) and numerical (solid lines) isotropic
scattering source terms as defined in Eqs. 2.139 and 2.140 with α = 0.5 and
σ = 1.

With the neutron transport numerics of Minotaur described, its practical application

to 1D radiation hydrodynamics simulation of ICF experiments will be given. For this we

will use a simulation of N130927 performed with Chimera [34]. Figure 2.18 shows the

hydrodynamic conditions at the time of peak neutron production (known as bang time).

This simulation will serve to show Minotaur can recover known neutron spectroscopic

signals. In Chapter 3, we show how Minotaur has been used to highlight novel neutron

spectral features.

The birth spectra of fusion neutrons for given plasma conditions were accurately cal-

culated by Appelbe [3, 5, 6] and are included in Minotaur. Alternatively the relativistic

Brysk [11, 23] spectrum can be used for the DT and DD reactions. This is less accurate

but provides an analytic form for the spectra and allows more direct comparison with

3D calculations which also use this form for expedience. The Brysk form has a Gaussian
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Figure 2.18: The simulated density and temperature radial profiles at bang time for High-
Foot shot N130927 [34]. A neutron yield of 7.85 × 1015 was obtained without
alpha-heating effects.

functional dependence:

QBrysk(E) =
Y√
2πσ2

b

exp

[
−
(
E − Ēb

)2

2σ2
b

]
, (2.141)

Ballabio gives expressions for the mean, Ēb, and variance, σ2
b , which will be given in Ap-

pendix B.1. Most notably the Brysk model cannot capture the high energy tail present

in the more accurate spectra. As most nuclear cross sections decrease with increasing

energy above 14 MeV, this high energy tail is not expected to have a significant effect

on the spectra at lower energies.

An example of the full 1D neutron spectrum is given calculated from the hydrody-

namic simulation of N130927 in Fig. 2.19. The neutron spectrum shows several features

of interest; the DT and DD peaks occurring at ∼ 14 and 2.5 MeV respectively, the

backscatter edges either side of the DD peak and the spectrum down to 10 MeV which

is dominated by scattering from D and T. These 1D neutron transport calculations

give knowledge of the full detail of the spectrum for an unperturbed implosion. This

calculation was run with 64 angular (Legendre-Gauss) groups and 400 energy groups

which were clustered around spectral features of interest; 25 hydrodynamic time steps

surrounding bang time were summed to obtain the time integrated spectrum. The scat-

tering source term was iterated 4 times (therefore allowing quadruple scattering) before

the result had converged.

Below the DT peak and down to 10 MeV, the major contribution to the spectrum is

from scattering from deuterons and tritons. Scattering from the ablator and D(n,2n)

provide minor additions to this region. Multiple scattering from the fuel becomes in-
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Figure 2.19: Neutron spectrum created by post-processing a 1D Chimera simulation of the
High-Foot shot N130927 using Minotaur. The contributions to full spectrum,
black line, from various nuclear interactions are shown. Multiple scattering
events are considered in this calculation.
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Figure 2.20: Neutron spectra produced from the down scattering of DT fusion neutrons
by deuterons and tritons only. The different contributions from multiple
scattering are separated out. A simple isobaric hotspot model[172, 173] was
used. The spectra are normalised such that the attenuated DT peak value
is unity.
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creasingly important at higher areal densities. Figure 2.20 illustrates the spectral con-

tribution of DT multiple scattering at a fuel ρR of 1 g/cm2. For fuel areal densities

relevant to current indirect drive ICF (≤ 1 g/cm2), the 10–12 MeV spectrum is pre-

dominately from single scattering from DT. This leads to fitted relations between fuel

areal density and down scattered ratio (DSR) [56, 61]. The DSR is defined as the ratio

of neutron yields in spectral ranges [10 MeV, 12 MeV] and [13 MeV, 15 MeV]. This

can be related to the areal density in the single scatter and monoenergetic point source

approximation:

DSR =
Y10−12

Y13−15
≈ ρR

m̄

∫ 12

10
dE

dσ̄

dE

∣∣∣∣
E′=14

=
〈σ̄〉
m̄
ρR , (2.142)

where barred quantities are averaged over the fuel fractions. Negligible remaining ab-

lator contribution has been assumed, due to both the lower ablator areal density and

larger ion average mass. The DSR-ρR relationship can change due to capsule conditions

deviating from the simplifying assumptions. The most erroneous of these is the point

source approximation. An extended source will, on average, reduce the areal density

seen by scattering neutrons. Therefore ρR in Eq. 2.142 should be replaced with the

neutron averaged areal density, 〈ρL〉 < ρR. Based on the capsule model used, DSR-ρR

relations can be inferred from areal density scans in Minotaur. For two example cases, a

point source in a uniform sphere and an isobaric hotspot model [172], linear ρRDT-DSR

coefficients (∼ m̄/〈σ̄〉) of 21.0 and 19.4 were found. These are in agreement with others

in the literature [56, 61]. It is difficult to have a definitive ρRDT-DSR relationship

as it is dependent on hotspot-fuel configuration, remaining ablator percentage and DT

primary spectral shape. However realistic variation of capsule conditions in 1D do not

alter the linear ρRDT-DSR coefficients by more than ∼ 10 %. However, multidimen-

sional effects can be significant. This is to be expected as ρR becomes poorly defined

for large 2D/3D asymmetries.

Minotaur was adapted to perform fast ion transport in tandem with neutron trans-

port. Only unmagnetised problems can be considered due to the restriction of spherical

symmetry employed in Minotaur. Following Morel [128], the Fokker-Planck collision

operator (Eq. 2.104) can be recast in terms of angular flux, Ψ, and energy:

[
µ

r2

∂

∂r
r2 +

1

r

∂

∂µ
(1− µ2) + n(r)σ(E)

]
Ψ(r, µ,E) = LFPΨ + Sext.(r, µ,E) , (2.143)

LFPΨ =
α

2

∂

∂µ

(
1− µ2

) ∂Ψ

∂µ
+

∂

∂E
βΨ +

1

2

∂

∂E

(
γ
∂Ψ

∂E

)
≈ ∂

∂E
βΨ . (2.144)

As discussed in Section 2.2.2, slowing down is generally the dominant term for fast ions

and therefore we shall neglect angular deflection and parallel diffusion (α = γ = 0). A

slight modification to the transport algorithm is required to include the Fokker-Planck

slowing down term. Using a simple upwind scheme, the transport equation of energy
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group g becomes [128]:

[Ω · ∇+ n(r)σg] Ψg = β̄g−1→gΨg−1 − β̄g→g+1Ψg , (2.145)

β̄i→j =
β(Ei)

(Ei − Ej)
, (2.146)

β(E) = 1.303× 10−35 · Z
2
i Z

2
tmi

mtEi
nty(εi) ln Λ , (2.147)

y(εi) =

[
erf(εi)−

2εi√
π
e−ε

2
i

(
1 +

mt

mi

)]
, ε2i =

mtEi
miT

, (2.148)

subscripts i and t refer to the fast ion and target particle respectively, energies and

temperatures are in MeV and number densities in m−3. This forms a matrix equation

with the diagonal and upper diagonal non-zero. The lowest energy ‘sink’ group has a

boundary condition β̄g→g+1 = 0. At every spatial step this matrix equation is solved us-

ing LU decomposition with partial pivoting from Numerical Recipes [144]. This general

method allows easier extension to higher order differencing schemes and the inclusion of

the parallel diffusion term – the simple upwind scheme is positive definite but diffusive.

A test problem of a point (1 µm radius) triton source in a 3 keV 50/50 DT plasma at

a ion number density of 1031 m−3 is considered. The triton energy birth spectrum used

was consistent with the 3 keV ion temperature. Figure 2.21 shows the results of this

test which show good performance of the slowing algorithm, given its simplicity.
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Figure 2.21: (Left) The triton spectrum at various radii showing the slowing and no strong
evidence of numerical diffusion. The peak at ∼ 0 MeV is the sink group
from which the tritons cannot leave and therefore accumulate. (Right) The
averaged stopping power calculated from the mean of the triton spectrum
at a given radius. A Monte Carlo (MC) point source result is shown for
comparison. The Minotaur solution shows an early onset and stronger Bragg
peak. Likely causes for this are the poor energy resolution at Bragg peak
triton energies, the treatment of the sink group and the “ray effects” present
in discrete ordinates solutions of point source problems [107].

Minotaur can perform fast ion transport of alphas, deuterons and tritons with slowing
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down. Including knock-on fast ion source terms from neutrons and alphas was a simple

extension of the scattering source term which exists in the neutron transport. Currently

no scattering term of the same species is implemented (e.g. the effect of large-angle

Coulomb scattering on the fast D and T populations). The neutrons produced by fast

D and T reactions are fed back into the neutron transport8. The results from Minotaur’s

coupled neutron fast ion transport will be given in Section 3.3.

2.2.4 AKED

Numerical solution of neutron and fast ion transport in all of 6D phase space is a

leviathan computational task. In order to efficiently solve these problems, the region

of phase space explored must be restricted. Monte Carlo techniques statistically sam-

ple the space with many computational particles therefore estimating the underlying

distribution. These stochastic methods are inherently noisy and thus low probability

events experience large statistical error. Deterministic methods used in less dimensional

problems (such as discrete ordinates) typically do not scale well to 3D, so new schemes

are needed.

In this section, we present the code AKED9 which uses a novel inverse ray trace

method to perform neutron transport in 3D. This allows both neutron spectra and

images to be calculated at multiple detector locations. Fast ion transport is performed

with a more traditional Monte Carlo method as Larmor orbits cannot be handled by a

ray tracing method.

The inverse ray trace is based on a solution to the transport equation using the method

of characteristics. As only diagnostic signatures are of interest, only the neutrons which

will arrive at the detector are tracked. This greatly reduces the size of the calculation

making it tractable in 3D. The time independent form of the transport equation can be

rewritten in a line integral form [12]:

ψ(~r, Ω̂, E) =

∫ ∞

0
exp

[
−σ(E)

∫ s′

0
ds′′n(~r − s′′Ω̂)

]
S(~r − s′Ω̂, Ω̂, E) ds′ ,

where S represents both the external and nuclear interaction source terms. Solving along

the detector line of sight, (~r, Ω̂) = (~rdet, Ω̂det), now constitutes a single line integral if S

is known. In practice this integral tracks neutron paths from the detector plane back

through the simulation grid. The source and degree of attenuation is calculated for each

grid cell intersected. For a primary source, the source term is simply the reaction rate

in that grid cell. A scattering source is handled via an additional set of traces from

the intersected cell to all emitting cells above an emission power threshold. This is a

8One can imagine a chain of neutron knock-on ions reacting to produce high energy neutrons which
knock-on ions to even higher velocities. This “DT fusion accelerator” has an upper limit when
the energy taken away by the neutron in the knock-on event matches the energy gained in the DT
reaction. This occurs at a final neutron energy given by E = 4Q/5α and therefore 126 and 56 MeV
for D and T respectively.

9AKED is a misnomer as this originally stood for Alpha Kinetic Energy Deposition, a progenitor code
for alpha particle transport. The name however has stuck and I hope it doesn’t change.
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considerably larger calculation than for the primary source. Since each ray from an

emitter to the scattering cell is independent, this calculation can be fully parallelised

(AKED uses the MPICH implementation of MPI). Generally only a limited scattered

energy range is of interest, allowing the calculation size to be reduced by considering

only a subset of rays for which the primary neutrons downscatter into the accepted

range. Figure 2.22 shows a diagram of the inverse ray trace method for primary and

scattered neutrons. The details of and the improvements to the numerical raytracing in

AKED will be given in Appendix B.3.

θs

Primary

Scattered

Detector 
Plane

Emitter 
Cell

2D cross-section

Figure 2.22: Schematic of the inverse ray trace method. In green, primary neutrons are
tracked by straight rays traced back from the detector plane through the
simulation grid. In blue, scattered neutrons are found by a combination of
many traces. Neutrons are traced from the emitter cells to every scattering
cell along the detector line of sight. The range of allowed scattering angles,
θs = cos−1 µ0, is set by the energy gate considered.

The source term for scattering is given by a more complex expression:

Sscat.(Ω̂, E) = ni〈l〉
dσ

dΩlab
δ(Ω̂ · Ω̂′ − µ∗0(E′, E)) · Semit∆Ωin , (2.149)

Sscat.(Ω̂, E) ≈ niV
dσ

dΩlab
δ(Ω̂ · Ω̂′ − µ∗0(E′, E)) · Semit

4πr2
e−s

, (2.150)

where Semit is the neutron emittance of the source cell, ∆Ωin is the solid angle subtended

by the scatterer cell from the emitter cell, 〈l〉 is the mean chord of rays through the
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scatterer cell, V is the volume of the scatterer cell and re−s is the emitter-scatterer

distance. The energy of the outgoing neutron is calculated using the elastic scattering

relation for a scattering cosine, µ0 = Ω̂ · Ω̂′:

E

E′
=

(
µ0 +

√
µ2

0 +A2 − 1
)2

(A+ 1)2 . (2.151)

The monoenergetic approximation for the primary DT peak is poor if resolved neutron

spectra are desired. However, a multigroup method becomes computationally expensive

if fine energy resolution is required. Therefore a number of approximations are made to

improve the efficiency of the calculation while maintaining spectral detail. Motivated

by the success of the Brysk model[11, 23] (Eq. 2.141), we consider each neutron ray

to have a Gaussian energy distribution. By considering Gaussians, only three variables

are required to be transported along the rays: amplitude, mean and variance. The

neutron birth spectrum within each grid cell’s rest frame is indeed close to Gaussian

[132]. However transforming to the lab frame results in a loss of the Gaussian form of

Brysk. Noting that the fluid velocity is significantly lower than the neutron velocity,

the Gaussian form can be recovered via a first order binomial expansion in the ratio of

fluid to neutron velocity. If we consider the lab frame neutron velocity, ~vn, and emitter

fluid velocity, ~vf , with cosine µf between them, then transforming to the rest frame

must give the Brysk neutron energy, Ēb:

Ef ≡
1

2
mnv

2
f , δE = En − Ēb,

δE

Ēb
� 1 ,

Ēb =
1

2
mn (~vn − ~vf )2 = En − 2

√
EnEfµf + Ef , (2.152)

δE = 2
√
ĒbEfµf

√(
1 +

δE

Ēb

)
− Ef ≈ 2

√
ĒbEfµf

(
1 +

1

2

δE

Ēb

)
− Ef , (2.153)

δE =
2µf

√
ĒbEf − Ef

1− µf
√
Ef/Ēb

. (2.154)

A similar simplification can be made for the Jacobian from rest to lab frames. The lab

frame neutron spectrum is then approximated by the following Gaussian form:

Qb(E) =
Y√
2πσ2

b

(
1 +

1

2

δE

Ēb

)
exp

[
−(E − (Ēb + δE))2

2σ2
b

]
. (2.155)

The final primary spectrum constitutes a sum of these approximated Brysk spectra.

Although the individual spectra reaching the synthetic detector possess no higher cu-

mulants than variance, their sum will. Therefore, the moment analysis outlined by

Munro [131, 132] is still possible with some error introduced. Additionally, the Gaus-

sian form can be exploited when handling attenuation. Performing a piecewise linear

fit to the total cross section centred on the spectral mean simplifies the calculation of
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the neutron attenuation to a mean shift [132] and amplitude reduction.

Qa(E) ∝ exp

[
−(E − Ē)2

2σ2
b

− nL(σmE + σc)

]
, (2.156)

Qa(E) ∝ exp

[
−(E − Ē′)2

2σ2
b

]
exp

[
−nL

(
σc + σmĒ −

1

2
nLσ2

mσ
2
b

)]
, (2.157)

Ē′ = Ē − nLσmσ2
b , (2.158)

where nL is the line integrated number density of scatterers. Since σm < 0 at 14 MeV,

the mean shift for primary DT neutrons is to higher energies. For scattering, the energy

dependence of the differential and absolute cross section is assumed constant about the

spectral mean. This allows the scattered spectrum mean and variance on the ray to be

simply related to the source mean and variance via a multiplicative factor, as given by

Eq. 2.151:

β =
E

E′
=

(
µ0 +

√
µ2

0 +A2 − 1
)2

(A+ 1)2 =
A2 + 1 + 2Aµc

(A+ 1)2
, (2.159)

Ēs = βĒ, σ2
s = β2σ2 , (2.160)

where the mean and variance post scattering event are denoted Ēs and σ2
s respectively.

The energy reduction factor β can be modified to include the effect of scatterer fluid

velocity through classical kinematics. At the present time the effect of temperature on

scattering has not been included in AKED. In summary: the birth, attenuation and

scattering of neutrons can be performed by manipulation of the amplitude, mean and

variance of a Gaussian. This efficient treatment of the energy domain along with the

efficiency of the ray trace allows for calculation of primary and singly-scattered neutron

spectra from large (∼ 106 computational cells) 3D radhydro simulations.

Forming images involves summing over energy space and resolving the detector posi-

tion, in the opposite fashion to the spectra. Often images are taken in restricted energy

gates, e.g. 13 - 15 MeV and 6 - 12 MeV. These gates are sufficiently wide that many

of the effects needed to accurately describe the spectra are not required to form these

gated images e.g. the effects of fluid velocity on scattering. Therefore, images can be

calculated in a more computationally efficient manner. It is worth noting here that

since the 3D radhydro simulations are calculated on Cartesian grids at stagnation that

they suffer from grid imprint. This presents itself as distortions along the cardinal di-

rections of the simulation grid. A symptom of this is that images produced from these

simulations can appear “boxy”. Higher spatial resolution can mitigate the grid imprint

but at an increased computational cost.

Currently, only singly-scattered and un-scattered neutrons are included in the inverse

ray trace method. This approximation introduces significant error at lower neutron en-

ergies as the degree of multiple scattering increases. However, features at higher neutron

energies and distinct single scattering phenomena such as the backscatter edges can be
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analysed within this approximation with appropriate background subtraction. Mino-

taur was used to benchmark the more approximate 3D ray trace calculations by ensuring

agreement on a symmetric implosion, see Fig. 2.23. For expedience the multiple and

ablator scattering and break-up reaction backgrounds are omitted in 3D calculations.

To estimate the error in AKED, Minotaur found at 1 g/cm2 the spectrum produced

within the single scatter approximation introduces fractional error < 30% above 10

MeV causing a 20% reduction in calculated DSR. These errors increase for larger areal

densities and decrease for lower.
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Figure 2.23: Comparison of the DT primary and singly scattered neutron spectrum from
AKED and Minotaur. AKED was run in 3D with spherically symmetric
hydrodynamic profiles. The equivalent calculation was performed in 1D in
Minotaur with only scattering from DT considered. Excellent agreement
between the codes is seen in the single scatter case (1S). The effect of double
scattering (2S) on the scattered spectrum is shown by the green line.

The inverse ray trace method can also be used to calculate the γ-ray signal made

by inelastic scattering of neutrons from carbon nuclei. This resembles the scattered

neutron calculation however the trace back to the detector tracks the 4.4 MeV γ-rays

rather than the scattered neutrons.

Fast ion transport in AKED is performed with a Monte Carlo method which uses the

framework outlined by Sherlock [159]. The Lorentz force is included and the equations

of motion are integrated using the standard Boris algorithm commonly used in particle-

in-cell simulations. Each Boris step is followed by the collisional processes, e.g. slowing
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down, and calculation of produced beam-target spectra. Figure 2.13 showed some fast

ion trajectories calculated using this method. With a set of detector positions specified,

the beam-target spectra can be calculated directly from the differential cross section

in the T = 0, vf = 0 limit or interpolated from tables calculated at a range of beam

energies, plasma temperatures and fluid velocities [4].



3 Neutron Spectroscopy

Content in this chapter has been reproduced from “Synthetic nuclear diagnostics for

inferring plasma properties of inertial confinement fusion implosions”, Physics of Plas-

mas 25, 122703 (2018), Crilly et al. [42] and “Neutron backscatter edge: A measure of

the hydrodynamic properties of the dense DT fuel at stagnation in ICF experiments”,

Physics of Plasmas 27, 012701 (2020), Crilly et al. [43], with the permission of AIP

Publishing.

Typically detailed analysis of neutron spectra in ICF experiments is limited to the DT

and DD peaks. In this chapter, we aim to extend spectral analysis to include features

in the scattered and high energy spectrum. This will introduce techniques which could

be utilised to increase our understanding of conditions within ICF experiments.

3.1 Backscatter Edge

As described in Section 2.2.1, DT fusion neutrons that undergo 180◦ elastic scatter from

ions lose the largest fraction of their energy possible for a single scattering event. This

produces a sharp edge in the neutron spectrum. For stationary target ions, the resultant

edge energy is dependent only on the ion mass and incoming neutron energy. However,

if the target ion has significant velocity (due to thermal or non-thermal motion) this

will affect the energy of the backscattering neutron1. Therefore the energy spectrum

of these backscattering neutrons can be related to the hydrodynamic conditions of the

ions from which the scattering occurred.

3.1.1 Backscatter Edge Spectral Shape

The scattering kinematics of neutrons are affected by the velocities of ions with which

they interact. In the general case, this is accounted for by a frame transformation from

the beam-target frame of the neutron and stationary ion to the lab frame in which the

ion is non-stationary. The backscattering geometry simplifies this transform greatly,

using the notation that primed quantities are pre-collision and unprimed post-collision:

1One can draw an analogy with VISAR, an interferometry technique which measures the velocity
of any reflector by reflecting a laser from its surface. In our case, neutrons backscatter from ions
therefore measuring the velocity of the scattering medium opposite the detector.

92
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vn =
Ai − 1

Ai + 1
v′n +

2Ai
Ai + 1

v′i,‖ , (3.1a)

Where v′i,‖ ≡
~v ′i · ~vn
vn

= −~v
′
i · ~v ′n
v′n

,

where subscripts indicate the particle species (n and i for neutron and ion) and Ai is the

mass ratio between the ion and neutron. As the pre-collision neutron and ion velocities

are uncorrelated, the mean and variance of the final neutron velocity are simply given

by:

〈vn〉 =
Ai − 1

Ai + 1
〈v′n〉+

2Ai
Ai + 1

〈v′i,‖〉 , (3.1b)

Var(vn) =

(
Ai − 1

Ai + 1

)2

Var(v′n) +

(
2Ai
Ai + 1

)2

Var(v′i,‖) . (3.1c)

The pre-collision neutron velocity mean and variance are determined by hotspot con-

ditions [3, 5, 132]. The scattering medium conditions determine the pre-collision ion

velocity mean and variance. Any bulk motion will cause a shift in the edge position and

any variation in ion velocity, be it temperature or variance in fluid velocity, will create

a broadening of the edge. Hence an analogy can be drawn between the backscatter

edge moments and the moments of the primary DT fusion neutron peak. While the DT

peak moments are only sensitive to the burn-weighted properties of the hotspot, the

backscatter edge shape is also sensitive to the scattering rate weighted properties of the

scattering medium.

The form of the backscatter edge is found by evaluating the spectrum of singly collided

neutrons. This is given by the product of the uncollided or ’birth’ neutron flux, Ψb, and

the nuclear interaction differential cross section of the background ions integrated over

all space, time, incoming neutron direction, Ω̂′, and energy, E′:

I1s(E, Ω̂) =

∫
dτi

∫
dΩ̂′

∫
dE′

d2σi
dEdΩ

Ψb(~r, Ω̂
′, E′) , (3.2)

where dτi = nidV dt and ni is the number density of ions of species i. By assuming

energy separability, the birth neutron flux can be split into the spatial angular flux, ψb,

and a normalised birth energy spectrum, Qb. The resultant total spectrum of singly

interacting neutrons travelling in direction, Ω̂, with energy, E, is then given by:

I1s(E, Ω̂) =

∫
dτi

∫
dΩ̂′ψb(~r, Ω̂

′)
∫
dE′

d2σi
dEdΩ

Qb(E
′, Ω̂′) . (3.3)

As the densest regions of the capsule are situated outside the fusing plasma, the birth

energy spectra across these regions are well represented by the averaged spectrum,

supporting energy separability. Here we have also assumed no attenuation between

source and scattering site. Since the DT birth spectrum width is small compared to its
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mean, changes in spectral shape due to differential attenuation are small for typical ICF

conditions[132]. Figure 3.1 shows the change in DT primary mean, 〈v′n〉, and standard

deviation,
√

Var(v′n), for density and temperature profiles taken from a LILAC[44]

simulation at bang time. The mean is very close to constant (� 1 % change) and the

standard deviation changes by only a few percent in the dense DT layer. This result

lends credence to the energy separability approximation used in the following analysis.
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Figure 3.1: A plot of the percentage change in DT primary mean and standard deviation
with radius for density and temperature profiles taken from a LILAC[44] sim-
ulation at bang time. Also shown is the density as a function of position. In
the dense DT layer, changes in the primary spectrum cumulants are minimal.

Here we will consider the scattering source term as we did in Section 2.2.1. However,

we will simplify the analysis by only considering backscatter events. For elastic collisions,

energy and momentum conservation requires that the outgoing neutron energy is directly

related to the pre-collision velocities and the scattering cosine, Ω̂′ · Ω̂ = µ0. For a single

ion velocity, the double differential cross section can therefore be written as[169]:

d2σi
dEdΩ

=
1

2π

dσi
dµc

∣∣∣∣
∂µc
∂E

∣∣∣∣ δ(µ0 − µ∗) , (3.4a)

subscript c denote terms in the centre of mass frame, µ∗ is the lab frame scattering cosine

which satisfies the conservation requirements. By only considering the backscatter ge-

ometry, where µ0 = −1, the neutron trajectory reduces to a single dimension and hence

only depends on the parallel component of the ion velocity, as seen in Eq. 3.1a. There-

fore, to include the summed total effect of a Maxwellian distribution of ion velocities,
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M(~r, v′i,‖), one integrates over v′i,‖ with the associated distribution:

d2σi
dEdΩ

=

∫
dv′i,‖M(~r, v′i,‖)

1

2π

dσi
dµc

∣∣∣∣
∂µc
∂E

∣∣∣∣ δ(1 + µ∗) , (3.4b)

d2σi
dEdΩ

=

∫
dv′i,‖M(~r, v′i,‖)

(
dσi
dE

)

bs

. (3.4c)

If the fluid velocity and ion temperature at coordinate ~r are ~vf and Ti respectively, then

the Maxwellian, M(~r, v′i,‖), has mean ~vf · Ω̂ and variance Ti/mi.

Combining Eqs. 3.3 and 3.4c, the complete backscattering spectrum function is ob-

tained:

Ibs(E, Ω̂) =

∫
dv′i,‖

∫
dτi ψb(~r,−Ω̂)M(~r, v′i,‖)

∫
dE′

(
dσi
dE

)

bs

Qb(E
′,−Ω̂) , (3.5a)

note that the initial neutron direction has been set to satisfy the backscattering condi-

tion, i.e. Ω̂′ = −Ω̂. The birth neutron flux at position ~r in direction −Ω̂ can be found

via integration of the neutron production rate along chords. For a detector direction

Ω̂det, Fig. 3.2 shows the geometry of the integral expression in Eq. 3.5a.

Figure 3.2: Diagram showing the geometry of the backscattered neutron source. Within
the volume dV neutrons are backscattering towards the detector along the
line of sight Ω̂det. The flux of birth neutrons, ψb, reaching dV with energy

spectrum Qb are travelling along a chord in the direction −Ω̂det. The ions
in dV are assumed to have a Maxwellian distribution of velocities with fluid
velocity ~vf and temperature Ti.

Noting the separation of terms dependent on position and on neutron birth energy,
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the integral can be expressed as an integral over ion velocity of two collected expressions:

Ibs(E, Ω̂) = C

∫
dv′i,‖P (v′i,‖, Ω̂)Qbs(v

′
i,‖, E, Ω̂) , (3.5b)

Where: C =

∫
dτi ψb(~r,−Ω̂) ≈ 〈ρR/m̄〉Yn , (3.5c)

P (v′i,‖, Ω̂) =
1

C

∫
dτi ψb(~r,−Ω̂)M(~r, v′i,‖) , (3.5d)

Qbs(v
′
i,‖, E, Ω̂) =

∫
dE′

(
dσi
dE

)

bs

Qb(E
′,−Ω̂) , (3.5e)

where Yn is the birth neutron yield and m̄ is the average ion mass in the scattering

medium.

Physically, P (v′i,‖) is the normalised distribution of ion velocities seen by backscat-

tering neutrons. This will change based on the hydrodynamic properties of the hotspot

and fuel shell. Since the probability of scattering is proportional to the ion number

density, P (v′i,‖) will be weighted more strongly towards the densest parts of the capsule.

Hence measurement of the spectral shape of the backscatter edge will allow inference

of the properties of the dense fuel. This distribution is converted to a backscatter edge

shape through the averaged differential cross section, Qbs. This term is determined by

the primary DT birth spectrum and the elastic scattering differential cross section.

In this work we will focus on the nT backscatter edge and hence the distribution of

triton velocities. The theory above is general and applies for elastic scattering from any

ion species. However, experimentally the nT edge is more accessible for current ICF

target designs, as it has the greatest signal to background. Extra value is gained from

the measurement of multiple backscatter edges. For example with both nT and nD edge

measurements, separation of thermal and non-thermal broadening effects is possible due

to the ion mass differences; a similar analysis exists for the DT and DD primary peaks

[61, 133].

The classical expressions given in Eq. 3.1 are approximately correct however relativis-

tic corrections are required in order to accurately find the position of the edge. This

is due to the relativistic velocities of the DT primary neutrons (∼ 0.17c). As shown

in Fig. 2.10, for a 14 MeV neutron backscattering off a stationary triton (Ai = 2.99...)

the classical and relativistic kinematic edges differ in energy by 20 keV, 3.483 MeV and

3.463 MeV respectively. Current nToF detectors have the energy resolution to detect

these differences [116]. In this section we have only considered pure backscatter events,

however scattering angles less than 180◦ must be considered in order to fully model the

scattered neutron spectrum. This will be addressed in Section 3.1.3.1.

3.1.2 Measuring Implosion Dynamics Near Stagnation

As the capsule starts to stagnate it consists of three distinct regions: hotspot, shocked

shell and free-falling shell [14]. The return shock acts as the boundary between the

subsonic shocked material, composed of both the hotspot and shocked shell, and the
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unshocked material, which is rapidly inflowing at the implosion velocity. The boundary

between the hotspot and shocked shell will be taken as the 1 keV ion temperature con-

tour in this work, although other definitions exist. Neutrons scatter within each of these

regions and the scattering kinematics will be influenced by the different hydrodynamic

properties. The relative fraction of areal density in each of these regions will determine

the proportion of scattering occurring. Here we will discuss the properties for implo-

sions with weak alpha-heating; they are still compressing during neutron production as

there is insufficient heating to sustain fusion reactions during re-expansion[174]. The

free-falling shell is cold (∼ 100 eV) and imploding at or close to the implosion velocity

(∼ 300-500 km/s). The shocked shell is at a temperature of a few hundred eV and

moving at several tens of km/s. Conditions within the hotspot change rapidly with

radius; as the temperature drops with radius, the density rises and hence the scattering

neutrons are more sensitive to conditions towards the edge of the hotspot.

Of central importance to the backscatter edge shape is the distribution of ion velocities

seen by backscattering neutrons, P (v′i,‖). In the following analysis we will relate the

properties of this distribution to relevant hydrodynamic quantities. For a 1D spherical

profile, Eq. 3.5d can be evaluated as follows:

P (v′i,‖) ∝
∫
dt

∫
4πr2dr ni(r, t)

∫
dµ ψb(r, µ, t)M(r, µ, t) , (3.6a)

M(r, µ, t) =

√
mi

2πTi(r, t)
exp


−

mi

(
v′i,‖ + vf (r, t)µ

)2

2Ti(r, t)


 , (3.6b)

ψb(r, µ, t) =

∫ ∞

0
ds RDT

(√
r2 − 2srµ+ s2, t

)
, (3.6c)

RDT (r, t) = fDfTn
2
i (r, t)〈σv〉DT (Ti(r, t)) , (3.6d)

where: µ = Ω̂′ · r̂ , φb(r, t) =

∫
dµ ψb(r, µ, t) ,

where fD and fT are the number fraction of D and T, 〈σv〉DT is the DT reactivity[18] and

the total birth flux, φb, has been defined here for later use. Using the above equations,

P (v′i,‖) can be calculated without the need for a neutron transport calculation. This

method also allows for the individual contributions from the hotspot, shocked and free-

falling shell to the shape of the backscatter edge to be examined separately. Within

this section, subscripts HS, SS and FS will denote hotspot, shocked and free-falling shell

respectively, total components will appear without a subscript.

By taking moments of Eq. 3.6a, expressions for the mean and variance, v̄ and ∆2
v, of
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P (v′i,‖) in terms of the appropriate average of hydrodynamic quantities are found:

v̄ = −〈vfµ〉 , (3.7a)

∆2
v =

〈
Ti
mi

〉
+
〈
v2
fµ

2
〉
− v̄2 , (3.7b)

Where: 〈x〉 =

∫
dt
∫

4πr2dr ni
∫
dµ ψb x(r, µ, t)∫

dt
∫
dr 4πr2niφb

, (3.7c)

where Eq. 3.7c defines the scattering rate averaging used in Eqs. 3.7a and 3.7b for the

hydrodynamic quantities.

Thus, from measurements of the backscatter edge, inferred v̄ and ∆v values can be

interpreted in terms of the above scattering rate averaged hydrodynamic quantities. For

a neutron point source, the scattering rate average reduces to:

〈x〉p.s. =

∫
dtdYndt

∫
dr nix(r, µ = 1, t)∫

dtdYndt
∫
dr ni

, (3.8)

i.e. a burn weighted areal density average, hence the quantities in Eqs. 3.7a and 3.7b

can be approximated as such.

An extended neutron source reduces the contribution from the centre of the hotspot

and introduces angular dependence to the neutron flux altering the effects of fluid veloc-

ity to the moments. To illustrate the angular dependence effect, we will use the uniform

spherical source solution given in Eq. 2.131 (neglecting attenuation) to give average

neutron directions (〈µ〉 and 〈µ2〉) as a function of radius. These are shown in Fig. 3.3,

we also show the averages for an isobaric hotspot with a parabolic temperature profile

for comparison. We see that the angular averages monotonically increase the weighting

of fluid velocities at larger radii. Outside the emitting region, 〈µ2〉 tends to 〈µ〉2 as

the spread of neutron directions reduces. Given that 〈µ〉 < 1, average fluid velocities

inferred from v̄ will be underestimates.

A more detailed understanding of the information contained in the backscatter edge

can be found through analysis of radiation hydrodynamics simulations. In this work

we will focus on simulations of the single[154] and triple[69] picket direct drive designs

for OMEGA. These designs have been fielded experimentally and obtain high hotspot

pressures and neutron yields[70]. In particular the triple and single picket shots 87653

and 89224 will be considered. In addition to the pulse shape differences, 89224 is a faster

target (480 km/s compared to 390 km/s of 87653) leading to a higher burn-averaged ion

temperature (4.8 keV compared to 3.8 keV of 87653). The simulations were performed

by the 1D hydrodynamics code LILAC[44].

The triple picket design aims to minimize the shock preheating of the fuel and hence

achieve a low in-flight adiabat [155]. This allows a high peak density to be achieved in

the fuel shell at stagnation. Therefore an increased fraction of the neutrons will scatter

in the shell compared to the hotspot. The bangtime profiles for the LILAC simulation of

shot 87653 are shown in Fig. 3.4. See Fig. 3.5 for the bang time hydrodynamic conditions
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Figure 3.3: Plot showing the mean and mean of the squared neutron direction for the
uniform hotspot (solid line) and isobaric parabolic temperature profile (dashed
line) cases as a function of normalised radius x = r/R. The normalising
radius, R, was set to enclose 90% of the neutron emission in the parabolic
temperature profile case.

for 89224 as calculated by LILAC, this shot will be discussed further in the following

paragraphs. Also shown is the angular integrated scattering rate, i.e. the averaging

used in calculating v̄ and ∆v. It follows the density profile closely outside the hotspot,

showing that an areal density average is a good approximation in this region. Com-

paring the scattering and burn rate it is clear that the primary and scattered neutrons

sample different regions. Nearly all primary neutrons are created in the hotspot and a

considerable fraction (> 50%) of neutrons scatter in the shell regions. Hence the scat-

tered neutron spectrum contains information of the hydrodynamic properties in regions

of the stagnated capsule that are inaccessable via primary neutron measurements.

The dynamics of the return shock is important in determining the conditions in the

shocked shell and hotspot. Figure 3.6 tracks the return shock and hotspot positions

during neutron production. The Rankine-Hugoniot (RH) shock conditions (given in

Eqs. 2.7 to 2.9) can be used to find the post-shock hydrodynamic properties given the

upstream conditions and shock velocity. As discussed earlier, the upstream or free-

falling shell has a fluid velocity close to the implosion velocity and a low temperature.

An approximate set of shock conditions in the lab frame can be obtained by assuming

the upstream pressure is negligible. We will relax this assumption later in this chapter

but here it allows us to find the basic physical relationships brought about by the return

shock:

vf =
γ − 1

γ + 1
vimp +

2

γ + 1
vs , (3.9)

T =
2 (γ − 1)

(γ + 1)2

Ā

Z + 1
·mp (vimp − vs)2 . (3.10)
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Figure 3.4: The bang time hydrodynamic (density ρ, ion temperature Ti and fluid velocity
vf ), burn rate (BR) and scattering rate (SR) profiles for the LILAC simulation
of shot 87653. The vertical dotted lines show the position of the hotspot edge
and return shock. The hotspot edge occurs at a temperature of 1 keV and
the return shock at the maximal velocity gradient.
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Figure 3.5: The bang time hydrodynamic (density ρ, ion temperature Ti and fluid velocity
vf ), burn rate (BR) and scattering rate (SR) profiles for the LILAC simulation
of shot 89224. The vertical dotted lines show the position of the hotspot edge
and return shock. The hotspot edge occurs at a temperature of 1 keV and
the return shock at the maximal velocity gradient. Hydrodynamic quantities
on same scales as in Fig. 3.4.
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The post-shock fluid velocity and temperature are vf and T and the implosion and

shock velocity are vimp and vs. We have used the strong shock limit and a fully ionised

ideal gas equation of state. The neglected degeneracy corrections to the pressure are

< 10% at stagnation from LILAC simulations of the two shots considered. From these

equations we see that the post shock conditions are dependent on only the implosion

and shock velocities. If the conditions are uniform, γ = 5/3, and the shock velocity is

negligible, we can manipulate these equations to find expressions for v̄ and ∆v for the

nT edge:

v̄ = vf =
1

4
vimp , (3.11)

∆2
v =

T

3mp
=
Ā

32
v2
imp . (3.12)

However, the hydrodynamic conditions vary spatially and temporally during neutron

production as can be seen in Figs. 3.4 and 3.6. The shock conditions therefore cannot

fully explain the scattering ion velocity distribution moments.
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Figure 3.6: Plot showing the stagnation phase from the LILAC simulation of shot 87653.
The colour plot shows the density, on a log scale, as a function of radius and
time with the position of the return shock and 1 keV contour overlaid. At the
bottom of the plot, the birth (red) and scattering (green) rates are shown as
a function of time.

Given the capsule conditions throughout neutron production, calculation of P (v′i,‖)

and the resultant backscatter edge shape can be performed, see Fig. 3.7. The individual

contributions to P (v′i,‖) from the hotspot, shocked and free-falling shell as well as the

total mean and variance are given in Table 3.1. The positive v̄ causes an upshift in the
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energy of the backscatter edge. The non-zero ∆v causes an additional broadening of

the edge over the slight broadening due to the variance in the birth neutron energy.

The single picket design uses a pre-pulse designed to increase the adiabat to reduce

hydrodynamic instability growth [68]. A consequence of increased adiabat is reduced

shell compressibility and hence a lower peak density is achieved in the shell at stagnation.

Therefore an increased fraction of the neutrons will scatter in the hotspot compared to

the shell. The calculated P (v′i,‖) and backscatter edge shape for the LILAC simulation

of shot 89224 are shown in Fig. 3.8. The individual contributions to P (v′i,‖) from the

hotspot, shocked and free-falling shell as well as the total mean and variance are given

in Table 3.1.

From analysis of these two LILAC simulations some general remarks can be made

about the various contributions to v̄ and ∆v. Differences in these quantities can then

be attributed to the physical processes which govern the individual behaviour of the

hotspot, shocked and free-falling shell.

Table 3.1: Relative contributions from the three regions of the capsule to the scattering
ion velocity distribution for simulations of the triple and single picket shots
87653 and 89224. Data for ∆2

v have been converted to units of eV via the
triton mass (∆2

v (eV) = mT (∆v (km/s))2) to aid comparison with scattering
rate averaged temperatures, 〈Ti〉.

Hotspot Shocked
Shell

Free-Falling
Shell

Total

87653 - Triple Picket
Scatter fraction 33% 50% 17% -

v̄ / km/s 34 40 255 75
∆2
v / eV 2878 784 555 1644

〈Ti〉 / eV 2770 522 207 1206

89224 - Single Picket
Scatter fraction 45% 45% 10% -

v̄ / km/s 45 52 252 69
∆2
v / eV 3606 1107 1130 2359

〈Ti〉 / eV 3396 544 475 1829

For v̄, it was seen that in both cases the subsonic velocities of the hotspot and shocked

shell are within 10 km/s of each other. The free-falling shell is considerably faster

therefore a return shock which is less far through the fuel at bang time will cause higher

v̄ values. However generally . 20% neutrons scatter in this region so v̄ is closer to the

velocity of the shocked fuel. Using the shocked and unshocked v̄ values2 and Eq. 3.9, a

shock velocity can be calculated as follows:

vs =
1

3
v̄FS −

4

3
v̄SS . (3.13)

This gives 32 and 15 km/s, radially outward, shock velocities for 87653 and 89224

respectively. These are in agreement with the shock velocities in the hydrodynamics

2Remembering that a minus sign is needed when switching between v̄ and fluid velocity.
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Figure 3.7: For shot 87653: the scattering triton velocity distribution as measured by
backscattering neutrons (left) and the resultant single scattered spectral shape
around the nT backscatter edge (right). The contributions from each region
of the capsule are shown individually. (Right) The dashed black line shows
the spectral shape if the velocities of the scattering ions are ignored.
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Figure 3.8: For shot 89224: the scattering triton velocity distribution as measured by
backscattering neutrons (left) and the resultant single scattered spectral shape
around the nT backscatter edge (right). The contributions from each region
of the capsule are shown individually. (Right) The dashed black line shows
the spectral shape if the velocities of the scattering ions are ignored.
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simulations at bang time to within a factor of ∼ 2. As the shell implodes, it performs

mechanical (PdV) work on the hotspot. Loss mechanisms, such as radiative cooling,

must be balanced by compressive and alpha heating. Hence a high rate of mechanical

work at bang time indicates both low alpha heating and high losses. Using measurements

of hotspot pressure[32] and radius, v̄ can be used to calculate the rate of PdV work

through an isobaric hotspot approximation:

Wmech = 4πPHSR
2
HS v̄ . (3.14)

The mechanical power was found to be 4.1 (3.8) and 6.2 (7.1) TW for 87653 and 89224

respectively, where bracketed terms are those calculated directly from the hydrodynam-

ics simulations without approximation. Hence by combining measurements from the

backscatter edge and current hotspot diagnostics, the work being done on the hotspot

by the imploding shell at bang time can be calculated.

For ∆2
v, ion temperature is the dominant source of ion velocity variance in the hotspot,

whereas both temperature and fluid velocity variance are significant for the shell. This

leads to approximately 25% of the total ∆2
v being due to fluid velocity variance. For

comparison, approximately 10% of the apparent ion temperature as measured by the

width of the primary DT peak[5, 11, 23, 132] is due to fluid velocity variance in these

simulations.

The scattering rate averaged temperature, 〈Ti〉, depends on multiple factors within the

stagnating capsule. If the shell density is lower, i.e. higher stagnation adiabat, a larger

fraction of neutrons will scatter within the hotspot, increasing the 〈Ti〉. Comparing the

triple and single picket simulations, we find scatter weighted adiabats of 7.5 and 11.0

respectively within the shocked shell. Similar fractional change is seen in the total ∆2
v

for these simulations. Additionally if the temperature gradient at the edge of hotspot

is higher this will also cause an increase in the 〈Ti〉 of the fuel. While it’s difficult to

predict, with simple models, the temperature profile between hotspot and shocked shell,

the return shock heating of the shell is more easily described. Again, we invoke the RH

conditions using Eqs. 3.10 and 3.13:

T =
Ā

6
mp (v̄FS − v̄SS)2 , (3.15)

from which we obtain shocked shell temperatures of 201 and 174 eV for 87653 and

89224 respectively, a factor of ∼ 3 underestimate. The assumption of negligible pre-

shock pressure is the likely cause for this. Considering an ideal gas with γ = 5/3, we can

obtain a more general expression for the post-shock temperature if we do not invoke a

strong shock limit. To do this we will introduce the Mach number M , defined as follows:

M2 ≡ v2

c2
s

=
ρv2

γP
, (3.16)

where cs is the adiabatic sound speed. The pre-shock Mach number can be used to
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calculate the shock strength and the general RH jump conditions [49, 170, 192]:

ζ ≡ PSS
PFS

=
5M2

FS − 1

4
, (3.17)

vFS
vSS

=
ρSS
ρFS

=
4ζ + 1

ζ + 4
, (3.18)

TSS
TFS

=
ρFS
ρSS

PSS
PFS

=
ζ + 4

4ζ + 1
· ζ . (3.19)

The strong shock limit is given by ζ →∞. Unfortunately we now require the pre-shock

temperature in order to evaluate the post-shock temperature. From simulation, the

pre-shock Mach numbers are approximately 2.2 and 1.5 at bang time for 87653 and

89224 respectively. This predicts post-shock temperatures of 486 and 710 eV by using

the 〈Ti〉 of the pre-shock material (shown in Table 3.1 in the free-falling shell column

and corresponding 〈Ti〉 rows). The values obtained are generally in better agreement

with the 〈Ti〉 of the shocked shell from simulations, as shown in Table 3.1 in the shocked

shell column and corresponding 〈Ti〉 rows. The larger inaccuracy for 89224 is likely due

to the lower percentage of free-falling shell remaining during neutron production giving

a larger averaged pre-shock temperature, see Fig. 3.5.

Shock physics can explain the hydrodynamic conditions either side of the return

shock at any one instant. However, there are many processes occurring which are not

predicted purely through the RH conditions. These include subsonic time evolution;

spatial gradients in conditions pre- and post-shock; thermal conduction and mass abla-

tion. Therefore, deviations from pure shock predictions are expected – although these

predictions do provide good estimates and bounds on stagnation conditions.

The fluid velocity variance can be due to both variation in space and time. Using

the 87653 simulation, we will visualise the effect of fluid velocity variance on P (v′i,‖) by

neglecting the thermal velocity of the ions. Calculating P (v′i,‖) at bang time is used

to quantify the spatial contribution and the time-integrated calculation includes both

spatial and temporal components. The results are shown in Fig. 3.9. Several sources of

fluid velocity variance can be identified in both the time-resolved and time-integrated

results. A large source of spatial velocity variance is due to the fluid velocity jump

across the return shock, this appears as a double peaked P (v′i,‖). A less clear source of

variance is due to the range of scattering neutron directions due to the extended source.

This is especially clear in the hotspot, where 〈µ2〉−〈µ〉2 is the largest, see Fig. 3.3. The

time-integrated result shows much larger variance in scattering ion velocity due to fluid

velocity. This is due to deceleration of the scattering regions, on top of the spatial fluid

velocity variance apparent in the time-resolved case

Estimates of the fluid velocity variance can be found using simple models which de-

scribe the dominant processes affecting the fluid velocity. To first order, the temporal

variation is due to the average deceleration of the shell, 〈a〉, throughout neutron pro-
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Figure 3.9: The scatter weighted triton velocity distribution from LILAC simulation of
shot 87653 where the effect of temperature has been neglected. The solid lines
show the time-integrated result and the components due to free-falling shell,
shocked shell and hotspot. The dashed curves show the time-resolved result
at bang time.

duction, this can be estimated by the following:

Var (vfµ)t ≈ 300

[( 〈a〉
1× 1015m/s2

)(
BW

100ps

)]2

eV , (3.20)

where BW is the nuclear burn width and the velocity variance has been converted to

units of eV via the triton mass.

Spatial variations in fluid velocity in the shell are generally dominated by the differ-

ence in velocities across the return shock. This can be estimated by assuming the return

shock is approximately stationary in the lab frame and satisfies the strong shock con-

ditions. Defining the fraction of shocked areal density, χsh, and the pre-shock velocity,

vimp:

Var (vfµ)s ≈ 300

[
9

16
χsh (1− χsh)

(
vimp

100km/s

)2
]

eV . (3.21)

The fraction of shocked areal density will depend on the position of the return shock

through the fuel and the pre-shock velocity is determined by the implosion velocity at

the beginning of the deceleration phase. The return shock position also affects v̄, which

can be approximated in a similar fashion:

v̄ ≈ 4− 3χsh
4

vimp . (3.22)
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This approximation considers only the deceleration across the shock. Post-shock, the

fuel continues to compress and decelerate, leading to a lower average fluid velocity than

predicted by shock conditions.

A preliminary study using an ensemble of 100 LILAC simulations was made to further

investigate the trends shown for the selected shots 87653 and 89224. These were post-

processed to extract the scattering rate weighted ion velocity distributions. These were

split into contributions from hotspot, shocked and free-falling shell therefore yielding 11

values per simulation (scatter fraction, ion velocity mean and variance for each region

and the totals). It is worth noting that the total v̄ and ∆v are, by definition, related to

the components as follows:

v̄ ≡ χHS v̄HS + χSS v̄SS + χFS v̄FS , (3.23)

∆2
v + v̄2 ≡ χHS

(
∆2
v,HS + v̄2

HS

)
+ χSS

(
∆2
v,SS + v̄2

SS

)
+ χFS

(
∆2
v,FS + v̄2

FS

)
, (3.24)

where the scatter fraction is denoted with χ, the total shocked fraction χsh is equal to

χHS+χSS and the sum of all three scatter fractions is 1. Without further manipulation,

Fig. 3.10 shows the correlation matrix for these different values across all 100 LILAC

simulations. The presence of many strong correlations and anti-correlations between the
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Figure 3.10: The correlation matrix of the scattering rate weighted ion velocity distribu-
tion components from 100 1D LILAC simulations. Strong correlations and
anti-correlations are seen therefore suggesting a more fundamental relation-
ship between the components. The total v̄ stands out as the only component
with poor correlations with all other components.

various components indicates a more fundamental underlying relationship between the

values. There is certainly further analysis that could be performed to better understand
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the physical relations between the scattering ion cumulants. Simplified hydrodynamic

models, such as those described in Betti et al. [14] and Christopherson et al. [35],

could aid in this analysis. These include the hotspot, shocked shell and free-falling shell

components and capture the dynamics of the return shock. Alternatively, one could

extract more information from the LILAC ensemble such as the average shock speed,

shell deceleration and shock strength to relate with the scattering weighted quantities.

Understanding these physical relations will allow a physically motivated fitting model

to be constructed which goes beyond the empirical Gaussian approximation made for

the scattering ion velocity distribution.

3.1.3 Neutron Spectral Shape Model

Since the nD and nT backscatter edges occur at low neutron energies, there are multiple

sources of background. For the nT edge these include; TT primary neutrons, nD single

scattering, the D(n,2n) and T(n,2n) break up reactions and multiple scattering. Thus

a general model is required in order to evaluate the shape of the edge and backgrounds.

Due to the complexity of the backgrounds at lower neutron energies, ad-hoc models have

been opted for to fit the neutron background under the DD peak [74] and in previous

work on the nT edge [42]. However, for fitting backscatter edges, the background is

only constrained at lower energies after the edge, where no single scatter signal for that

ion species exists. Therefore, a more constraining ab-initio model is favoured to ensure

the spectral shape under the edge is physical.

While scattering from remaining carbon-based ablators in indirect drive experiments

can contribute ∼ 1% to the 10-12 MeV neutron spectrum[95], it has a much smaller

contribution at lower energies, see Fig. 2.19. DT fusion neutrons elastically scattering

once from carbon have a lower energy limit of 10 MeV due to carbon’s high mass,

Ai ≈ 12. The highest cross section inelastic scattering, which produces a 4.4 MeV

γ-ray, has a neutron lower energy limit of 6 MeV. Therefore ablator scattering can be

neglected in fitting the nT edge.

3.1.3.1 Integral Model

With knowledge of the differential cross sections of the various nuclear interactions, the

distribution of scattering ion velocities, and the birth neutron energy spectrum, the full

scattered neutron spectrum can be approximated. The same simplifying assumptions

used to obtain an expression for the spectral shape of the backscatter edge, Eq. 3.5a, can

be used for a general scattering angle for elastic scattering interactions. For complex

inelastic processes, such as the (n,2n) reactions, the effect of the ion velocity distribu-

tion has not been included. Since these reactions produce a broadband spectrum of

neutrons for every scattering angle, the relative effect of ion velocities on the spectral

shape is reduced. By assuming isotropy in areal density and birth spectrum, the single
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interaction components to the spectra are given by:

I1s(E) =

∫
dv′i,‖P (v′i,‖)

∫
dE′

dσi
dE

(E′, v′i,‖)Qb(E
′) . (3.25)

Multiple interaction events can be treated in a similar fashion to the single interaction

terms, however the source term is no longer the birth neutrons and is instead replaced

by the scattered neutron source. In addition, the averaged ion velocity distribution seen

by neutrons undergoing multiple scatters will be different to the distribution seen by

singly scattered neutrons. As the scattering rate is ∝ niψ where ψ is the neutron flux

to be scattered, the difference between the spatial and angular distribution of the birth

and singly scattered neutron fluxes will alter the scattering rate weighted ion velocity

distribution. Here the zeroth order approximation of stationary ions will be used:

I2s(E) =

∫
dE′

dσi
dE

(
E′, v′i,‖ = 0

)
I1s(E

′) . (3.26)

The cross sections for the (n,2n) inelastic scattering processes rapidly decrease near

their threshold energies, see Fig. 2.6. Therefore double inelastic scattering events can

be neglected – a numerical analysis performed by Minotaur showed double inelastic

events are ∼ 10−3 of the scattered signal at OMEGA cyro areal densities. The various

components of the single and double scatter models are shown in Fig. 3.11a.

The primary TT neutrons contribute to the spectral background below 9 MeV. Using

the ratio of the DT and TT reactivities, the TT yield is calculated from the DT yield

and the inferred burn averaged ion temperature:

YTT =
1

2

fT fT · 〈σv〉TT (〈T 〉DT )

fDfT · 〈σv〉DT (〈T 〉DT )
YDT . (3.27)

The temperature dependent shape of the TT spectrum has been evaluated by Appelbe

[6] and hence can be included in the model with relative ease. The single scattering of

the TT neutrons is then evaluated in an identical manner to the single scattering of the

DT neutrons. Figure 3.11b shows a comparison of the single scatter model with and

without TT scattering against a Minotaur calculation.

The complete spectral model for the fitting of the backscatter edge includes the fol-

lowing contributions; single interactions (nT, nD, D(n,2n), T(n,2n)) of the DT and TT

neutrons including the effects of scattering ion velocities, double interactions of the DT

neutrons, and the uncollided TT neutrons. The model can be written as the following

fitting function:

Ibs(E) = A1sI1s(E, v̄,∆v) +A2sI2s(E, v̄,∆v) +ATT ITT (E) . (3.28)

The amplitudes will have the following dependencies: A1s ∝ ρR, A2s ∝ (ρR)2 and

ATT ∝ exp (−σρR). Given proper normalisation of I1s to area per unit energy, areal

density can be inferred via ρR = m̄A1s. The scattering terms have been written as
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Figure 3.11: (a) Plot showing the various components of the single and double scatter
model with stationary ions for a Brysk DT birth spectrum. The single scatter
components are scaled such that they integrate up to their respective cross
sections. (b) Plot showing a comparison between the single scatter model
with and without TT scattering against a Minotaur calculation.

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

Energy (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
it

y
(A

.U
.)

Single Scatter
Double Scatter
TT

v̄ = 0 km/s, ∆v = 125 km/s
v̄ = 200 km/s, ∆v = 125 km/s
v̄ = -200 km/s, ∆v = 125 km/s
v̄ = 0 km/s, ∆v = 250 km/s

Figure 3.12: The components of the spectral model given in Eq. 3.28 for various v̄ and
∆v values. The scattering ion velocity distribution was assumed to have a
Gaussian functional form with mean v̄ and standard deviation ∆v.



3.1 Backscatter Edge 111

functions of the cumulants of the scattering ion velocity distribution, P (v′i,‖). In order to

fit experimental data some functional form needs to be assumed for P (v′i,‖). A Gaussian

approximation has been shown to produce reasonable results on synthetic data[42], also

see Figs. 3.7 and 3.8. Figure 3.12 shows the various model components for various v̄ and

∆v values within the single Gaussian model for P (v′i,‖). More complex models, such as

three Gaussians for the hotspot, shocked shell and free-falling shell respectively, could

be used to infer more information about the stagnated capsule but requires many free

parameters to be set.

Experimental measurements of the underlying spectral shapes and differential cross

sections have been made for a number of reactions included in this model: the nD

and nT single scattering at ∼ 14 MeV[55]; the TT primary spectrum [27] and the

D(n,2n) reaction at ∼ 14 MeV [52]. Theoretical models[33, 64] in agreement with these

measurements are then used to cover all neutron energies. For the T(n,2n) reaction,

limited neutronic experimental data are available and hence there is a larger uncertainty

in its spectral shape.

3.1.3.2 Synthetic Data Comparison

Synthetic neutron spectra, which include transport effects excluded from the simplified

spectral model (Eq. 3.28) can be produced based on hydrodynamic profiles. Compar-

isons between synthetic data and the model will serve as the first test towards experi-

mental viability of this model.

For the first case we will consider the LILAC simulation for the shot 87653, see

Figs. 3.4 and 3.7. This has a burn-averaged ρR of 218 mg/cm2 for which the attenuation

of the primary DT spectrum is < 2% and approximately 1% of scattered neutrons

undergo triple scattering. Hence many of the assumptions made are valid at this areal

density. The analysis of the edge was performed in a similar fashion to an experimental

analysis, although in energy rather than time-of-flight space. First, the primary DT

peak was fit in order to estimate the birth spectrum shape. Then non-linear least-

squares fitting of the spectrum is performed using the Levenberg–Marquardt algorithm

on both sides of the nT edge (between 3 and 5 MeV), extending the range previously

used in Crilly et al.[42]. Using the P (v′i,‖) shown in Fig. 3.7, excellent agreement is seen

between the model and synthetic data with at most ∼ 0.5% deviation, the results are

shown in Fig. 3.13. Using the single Gaussian approximation for P (v′i,‖) showed at most

∼ 1% deviation between model and synthetic data. This produced best fit values of v̄

and ∆v of 72 and 214 km/s compared to the theoretical values of 75 and 229 km/s; the

discrepancies can be attributed in part to non-Gaussian components of P (v′i,‖).

The same analysis was followed for shot 89224, which has a burn-averaged ρR = 162

mg/cm2. The deviation between model and synthetic data was again ∼ 1%. The single

Gaussian model found best fit v̄ and ∆v values of 70 and 254 km/s compared to the

theoretical values of 69 and 274 km/s. Therefore the accuracy error introduced in v̄ and

∆v by the approximations made is < 10%. At OMEGA the timing uncertainty in the
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Figure 3.13: (a) A comparison of the synthetic neutron spectra calculated by Minotaur
and the spectral model solution. (b) A plot showing the components of the
spectral model over the fitting range. All individual components are within
10% of their equivalent neutron transport result.

nToFs is ∼ 56 ps [116]. At 3.5 MeV this leads to neutron velocity (energy) uncertainty of

∼ 3.5 km/s (1 keV). Given the results from synthetic data and experimental uncertainty,

analysis of experimental data for similar OMEGA shots can be carried out with the

model presented [117].

Higher areal densities will reduce the signal to background for the backscatter edge

as well as introduce additional backgrounds and non-negligible attenuation. To test the

validity of the assumptions made within the model, neutron spectra were calculated for

a set of scaled isobaric profiles with ρRs of 0.25, 0.5, 0.75 and 1.0 g/cm2. By scaling

self-similar profiles it is ensured that the averaged hydrodynamic properties, e.g. burn-

weighted ion temperature, of the DT fuel are unaltered between different areal densities.

A pressure of 100 Gbar, central temperature of 6 keV with a parabolic spatial profile

and shell temperature of 300 eV were used. Fits to the synthetic spectra are shown in

Fig. 3.14. Good agreement between the total model and the synthetic spectra is found

across the whole fitting range for all areal densities.

Agreement between the individual components of the fit (uncollided primary TT,

single and double scattering) and the equivalent neutron transport component gives

confidence that the underlying physical phenomena are well modelled. For ρR = 0.5

g/cm2, an average deviation of 14% is found between the amplitude of the single scatters

in the model and the equivalent neutron transport result. At higher areal densities,

triple scattering and differential attenuation cause increasing deviation between the

components of the model and synthetic spectra. Therefore interpretation of the various

amplitudes of the backgrounds, A1s, A2s and ATT , in the model as physical parameters

is lost. The complete model however still performs well as an ad-hoc fitting function

and measurement of v̄ and ∆v is possible at higher areal densities.

These results suggest that the model developed in this work could be used to fit

experimental spectra at 0.5 g/cm2 (DSR∼ 2.5%) and potentially up to 0.75 g/cm2 (DSR
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with varying ρR. The inset plot shows more detail around the nT backscatter
edge and the spectral model fits to this region in the dashed black lines.

∼ 3.8%) if requirements on physicality of the underlying components of the background

are relaxed. Inclusion of triple scattering and attenuation effects would allow access to

even higher areal densities with confidence in the physical basis of the ab-initio model.

3.1.4 Multidimensional Effects

Whilst the preceding analysis has focussed on 1D implosions, in reality ICF experiments

are subject to many instabilities and perturbations which preclude a spherical implosion.

The scattered neutron spectrum will still be affected by the velocity distribution of

the ions, however now different lines of sight will sample regions of the capsule with

different hydrodynamic conditions. Asymmetries in the measured v̄ would indicate

asynchronous stagnation of the shell. Variation in ∆v could be due to differences in the

shell deceleration[42] and/or angular variation in fuel temperatures.

A radiation-hydrodynamics simulation performed by the code Chimera[34, 174] will

be used here to illustrate how anisotropy in hydrodynamic conditions manifests within

the scattering ion velocity distribution. The time integrated spectrum from a capsule

implosion with a P1 asymmetry will be considered. The magnitude of the drive asym-

metry, 3% P1/P0, used in the Chimera simulation caused a 60% reduction in neutron

yield compared to the symmetric case and produced a 130 km/s neutron-averaged (see

Eq. 2.78) hotspot velocity. A 2D slice in the x-z plane of the simulation at bang time

is shown in Fig. 3.15. This presents a scenario where, when viewed along the +z axis

(denoted as +z line of sight), the detected primary neutrons are shifted up in energy,
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but the neutrons travelling towards the back of the capsule are down shifted. The

backscattered neutrons will then receive a positive energy shift from the fluid veloc-

ity of the shell. Hence the shifts from the hotspot and from the shell are oppositely

directed. When viewed along the opposite direction (−z line of sight) both the shifts

act to increase the backscattering neutron energy, albeit with a different shell velocity

magnitude. Combining spectra from antipodal lines of sight will allow the calculation

of separate hotspot and shell velocities. The primary spectra measured constrain the

spectrum of neutrons arriving at the backscattering sites. As a result no additional

assumptions need to be made about the birth spectrum used to fit the edges.
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Figure 3.15: P1 simulation at bang time. a) Density cross section showing hotspot and
perturbed dense shell. For a single fluid element, the paths of primary
neutrons (black) and backscatter neutrons (red) are shown. Primaries are
seen parallel to the fluid velocity, and backscattered neutrons are emitted
anti-parallel to the hotspot flow. Thus they will have oppositely directed
Doppler shifts. An additional up shift in energy will be caused by the fluid
velocity of the shell which is parallel to the detector direction. Detector
lines of sight are shown and labelled. b) z-component of fluid velocity
within the x-z plane showing large bulk fluid velocity along -z.

The neutron transport was performed by AKED with the effects of fluid motion

turned on and off to provide a comparison. Ion temperature effects on scattering are

not included in AKED but will be discussed later in this section. Portions of the resulting

spectra are shown in Fig. 3.16. The bulk fluid motion has produced the expected shifts

of both primary and backscatter edge spectra. The Down Scattered Ratios (DSRs)

predict ρR = 0.77 and 0.30 g/cm2 along the +z and -z axes respectively. This areal

density difference is mirrored in the intensity of the backscatter edges showing the mode

1 asymmetry.

Analysis performed in Crilly et al.[42] on these spectra used an earlier iteration of the
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fitting model than the one given in Eq. 3.28. This more primitive model used a Gaussian

distribution of ion velocities, however the differential cross section was assumed isotropic

and an ad-hoc background model was used. The derivation and detail of the model will

be given in an Appendix C.2. The model was able to extract v̄ and ∆v values of 130/50

km/s and 40/90 km/s for the +/− z lines of sight respectively. The ad-hoc background

model was able to handle the areal density asymmetry present – the 1D model (Eq. 3.28)

relies on spherical symmetry so cannot be used in this case.

To link these 3D results with the 1D analysis presented in previous sections, Fig. 3.17

shows the scattering ion velocity distributions as seen by two antipodal detectors along

the axis of the P1 drive asymmetry. From the +z direction, a faster shell is observed as

this side of the capsule has been driven harder by the drive asymmetry. From the −z
direction, a slower shell is observed as well as the presence of a free-falling shell com-

ponent. Averaged shell velocities, v̄, of 160 and 78 km/s from +z and −z respectively.

This agrees with the projected fluid velocity seen by neutrons with scattering angles in

the range 180o±10o calculated within the inverse ray trace of AKED. Asymmetry in

v̄ will create anisotropy in work done causing ineffective conversion to internal energy

within the hotspot. This results in residual kinetic energy which is evident in this case

due to the large hotspot velocities. The lower v̄ values obtained by fitting the spectra

(130 and 40 km/s) can be explained by the simplified nature of the fitting model. Due

to the assumption of isotropic centre of mass frame scattering, the fit becomes invalid at

energies above the edge where the scattering angles are less than 180o. Therefore larger

fluid velocities which create a greater shift in the kinematic edge are not well captured

within this approximation.

Extending beyond previous work by the inclusion of the thermal velocity of the ions,

∆2
v values of 784 and 1591 eV were found from +z and −z respectively. The scatter

weighted temperatures of 552 and 1110 eV reveal that the difference in ∆2
v between

detectors is due to both differences in dense fuel temperatures as well as differential

deceleration of the shell. In summary, large anisotropy in both v̄ and ∆2
v were found

therefore demonstrating the backscatter edge measurement could assist in identifying

3D asymmetries in the dense fuel.

As seen in our P1 example, centre of mass motion of the hotspot occurs in asymmetric

implosions and causes the birth spectrum to be anisotropic[5, 75, 116, 132]. Backscat-

tered neutrons were initially moving in the opposite direction to the detector line of

sight. Hence knowledge of the “reverse” birth spectrum is required in order to analyse

the backscatter edge. In previous work [42], also presented above, this was resolved by

using antipodal detectors. However without this detector arrangement the reverse birth

spectrum can be approximated if the neutron averaged fluid velocity vector is measured.

This measurement is currently performed at the NIF[75] and OMEGA[116, 118] and re-

quires at least four neutron spectrometers. For the detector measuring the backscattered

neutron spectrum, a measurement of the apparent ion temperature is also required. Us-

ing the notation of Munro[132], the centroid and variance of the reverse birth spectrum



3.1 Backscatter Edge 117

−500 0 500
Resolved Ion Velocity (km/s)

0.0

0.1

0.2

0.3

P
(v
i,
‖)

(1
/1

00
km

/s
)

3.00 3.25 3.50 3.75 4.00
Energy (MeV)

0.6

0.8

1.0

I b
s(
E

)
(A

.U
.)

+z
−z

Figure 3.17: (Left) The scattering ion velocity distributions from two antipodal lines of
sight for a hydrodynamics simulation of an indirect drive High Foot implosion
with an imposed P1 X-ray drive asymmetry[42]. Inset is a schematic showing
the regions of the implosions sampled by the different lines of sight. The +z
side, in red, has been driven harder due to the drive asymmetry. (Right)
The resultant single scattered spectral shapes around the nT backscatter
edge for the two lines of sight. Note the different shifts and slopes for the
different lines of sight due to asymmetry in v̄ and ∆2

v values.

can be approximated by:

〈ω〉b = 〈κ̄〉+ 〈~u〉iΩ̂b,i + ... ≈ 〈κ̄〉 − 〈u〉iΩ̂d,i ≈ 〈ω〉d + 2〈u〉iΩ̂d,i , (3.29a)

Var(ω)b = 〈τ〉+ Var(~u)ijΩ̂b,iΩ̂b,j + ... ≈ Var(ω)d , (3.29b)

where: Ω̂b,i = −Ω̂d,i for backscatter.

Figure 3.18 shows the geometric interpretation of these relations. In the above approx-

imations higher order terms and the effect of scattering have been neglected. Absolute

errors in the inferred reverse birth spectrum have a reduced effect due to the mass dif-

ference between neutron and scattering ion, see Eq. 3.1 a-c. For example, errors in the

mean birth energy are reduced by a factor of 4 for the nT edge.

Similar to the measurement of hotspot velocity, mode 1 asymmetry of the fluid velocity

of the shell can be measured by 4 spectrometers if it is assumed to have the following

form:

~vshell = (~vasym · r̂ + viso)r̂ . (3.30)

The purely radial velocity is required so that the average angle between neutron and

fluid velocity is the same in every line of sight. Then 4 measurements of v̄ can be

decomposed into viso and ~vasym. The isotropic component is compressive while the

asymmetric part is purely residual kinetic energy. The optimal detector arrangement

for this measurement is the same as for the hotspot velocity measurement. A brief

discussion of optimal detector arrangements is given in Appendix C.1.

Large areal density asymmetries present an issue for the spectral background model if

a broad energy range of the neutron spectrum is considered. Restricting to ∼ 3-5 MeV
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Figure 3.18: Diagrams showing how the forward and reverse DT (or DD) birth spectrum
mean and variance are related. Neglecting higher order terms and scattering
effect, the variances are equal whereas the means take different components
of the vector component.

reduces the scattering angle range for the elastic processes (nT and nD). The large

aspect ratio of hotspot size to shell thickness also acts to reduce the range of neutron

averaged areal densities seen[42]. For the (n,2n) reactions a single incoming neutron

energy and scattering angle produces a broad band of outgoing neutron energies. Hence

near the nT edge the (n,2n) background has been produced in all 4π of solid angle, thus

has a much weaker dependence on ρR asymmetries. Further development of the detailed

model to include the effect of strong ρR asymmetries is required. 3D measurements of

ρR from neutron spectrometers[95] or FNADs[15, 190, 191] could be used to inform this

analysis.

3.2 Downscattered Spectrum from Areal Density

Asymmetries

The degree of down scatter of DT fusion neutrons is often used as a measure of areal

density. This is done through a DSR measurement which is converted to an areal

density through a fit to 1D neutron spectra [56, 95]. To recap, the DSR is defined

as the ratio of neutron yields in ranges [10 MeV, 12 MeV] and [13 MeV, 15 MeV].

When considering 3D effects, the energy-angle relation for elastic scattering is a vital

reference. For stationary ions, incoming and outgoing neutron energies E′ and E are

related through the scattering cosine, µ0, and ion-neutron mass ratio, Ai:

E

E′
=



µ0 +

√
µ2

0 +A2
i − 1

Ai + 1




2

. (3.31)



3.2 Downscattered Spectrum from Areal Density Asymmetries 119

The areal density traversed by the downscattering neutrons is therefore at an angle to

the line of sight [95]. For a given energy range, this defines a cone of scattering over

which a neutron-averaged areal density is measured, see Fig. 3.19. The line of sight

areal density is only experienced by the un-scattered or low scattering angle neutrons.

This draws a distinction between areal density measurements from primary neutrons,

such as the FNADs, and scattered neutrons, such as the nTOFs. Energy gating and

spectra can use this geometric feature of elastic scattering to measure different spatial

regions of the implosion, this will be explored in Section 4.2.

Detector

Higher Energy
Lower Energy
Cold Fuel
Hotspot

Figure 3.19: Diagram showing two scattering cones for two different energy gates. Scale
of hotspot and cold fuel has been altered to emphasise the scattering cone
geometry. Due to an extended source there is overlap between the available
scattering regions. Higher energy scattered neutrons will sample regions at a
lower angle to the detector line of sight. The reverse is true for lower energy
scattered neutrons. For a 14 MeV neutron the scattering angles from D (T)
down to 10 and 12 MeV are 47.5o (59.5o) and 31.9o (39.5o) respectively.

Variations in plasma conditions may influence the slope of the scattered spectrum.

The shape of down scatter spectrum is set by the differential cross section, the energy

distribution of the scattering neutrons and the areal density of the scattering medium.

As the spectrum down to 10 MeV is dominated by elastic scattering from DT [42],

changes of spectral shape in this region could indicate fuel areal density asymmetry.

Reducing to the simplest case of a monoenergetic, E′ = E0, point source in an arbitrary
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single species density distribution, the singly scattered neutron spectrum is given by:

I1s(E, Ω̂) ∝ Yn〈ρR〉
dσ

dΩ
(µ0(E0, E)) , (3.32)

〈ρR〉 =

∫
dφ

∫
dµ

∫
dr ρ(~r)δ(µ− µ0(E0, E)) , (3.33)

where the 〈ρR〉 integral defines the scattering cone for scattering cosine µ0. Therefore,

with knowledge of the differential cross section, the azimuthally averaged areal density

at varying polar angles can be inferred. Multiple species, birth energy spectra and

spatial source distributions complicate the resulting downscattered spectrum, however

the underlying principle still holds.

To illustrate this effect with realistic source and areal density asymmetries, the neu-

tron spectrum for an implosion with a P2 drive asymmetry will be considered, see

Fig. 3.20. The magnitude of the drive asymmetry, 3% P2/P0, used in the Chimera sim-

ulation was such that the neutron yield was close to experimental values (3.19 × 1015

without alpha-heating). The positive P2 asymmetry created a larger ρR along the waist

compared to the poles. However, due to the hotspot being greatly distorted, the areal

density experienced on average by a neutron leaving the capsule differs significantly

from the ρR taken from the simulation centre point.
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Figure 3.20: The density in the x-z plane at peak neutron production of a P2 hydro-
dynamics simulation. The black contours show the single (solid line) and
double e-folding (dashed line) of the unattenuated primary neutron fluence.
The green line shows the path of an un-scattered neutron to a polar detec-
tor. The path of a singly-scattered neutron is shown by the blue lines. The
probability of scattering is proportional to the areal density along the solid
blue line. The axis of symmetry is on the line connecting the vertical red
ticks.
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Figure 3.21: The neutron spectrum produced along the axis of symmetry by a capsule
implosion with an imposed P2 perturbation, black line. The blue, green and
red lines show the single downscatter spectrum for 3 different areal densities.
The areal densities used in descending order are the line of sight neutron-
averaged areal density, the inferred areal density from the DSR of the P2
simulation and an areal density chosen such that 1D spectrum matches that
P2 spectrum at 10 MeV. Inset is a zoomed in plot over the 10-13 MeV region.
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In order to infer the change in areal density with angle from neutron spectra, it was

assumed that the primary spectrum measured and the birth spectrum of neutrons to

be downscattered were the same. Thus by matching the measured primary spectrum, a

set of calculated 1D neutron spectra would match the downscattered spectrum from the

perturbed implosion when the areal densities were equal. Various 1D isobaric hotspot

simulations were performed where the temperature and velocities were tailored to fit

the Brysk cumulants of the primary spectrum from the P2 simulation. Due to the low

neutron-averaged areal densities, the single scatter approximation used in the neutron

transport is valid. For a detector viewing along the axis of symmetry, the large areal

density surplus at the waist is avoided by neutrons born in the polar jets which scatter

into the detector line of sight, c.f. solid blue line in Fig. 3.20. From the simulation data,

it is seen that, as the scattering angle is increased from 30o to 60o, the neutron-averaged

areal density along scattering paths decreases. Intuitively this will increase the slope

in the 10 - 12 MeV range of the spectrum. Figure 3.21 shows the resultant neutron

spectrum from the P2 simulation with a polar detector.

The P2 spectrum DSR infers a ρR = 0.57 g/cm2; this areal density represents the

weighted sum over all scattering paths exemplified by the solid blue line in Fig. 3.20.

The 〈ρR〉 along the detector direction was found to be 0.62 g/cm2. The 1D spectra with

these areal densities intersect the P2 spectrum at different energies, see Fig. 3.21. A

1D simulation with ρR = 0.525 g/cm2 intersects close to a neutron energy of 10 MeV.

This corresponds to a 15% change in ρR between the line of sight and the angular range

near 10 MeV. Minotaur was used to construct single-scattering ρR-DSR relationships

for the 10–11, 11–12 and 12–13 MeV regions. Applying these to the P2 neutron spec-

trum, ρR10-11 = 0.56 g/cm2, ρR11-12 = 0.58 g/cm2 and ρR12-13 = 0.60 g/cm2 were

calculated. The average angles in these ranges are 49◦, 41◦ and 31◦ respectively. These

were weighted by the differential cross section with the assumption of a 50:50 mixture

of DT.

In this way, spectra can be utilised to calculate the magnitude of neutron-averaged

areal density asymmetry. As each energy range includes integration over the hotspot

volume and scattering cone, the areal density from simulation centre is not accessible. At

bang time the centre point areal densities are 0.4 and 2.2 g/cm2 along the pole and across

the waist respectively. This asymmetry is significantly larger than that inferred from the

neutron spectrum. However, if a relatively spherical hotspot were to be surrounded by

an asymmetric dense fuel distribution, the effect on the downscattered spectrum would

be amplified. In experiments, the drive is often modified until the hotspot appears round

in imaging [157] – the downscatter slope analysis, amongst other techniques, could be

used to test whether the dense DT fuel layer is also round given the modified drive.

3.3 High Energy Neutrons

There are secondary and tertiary DT fusion reactions which can produce neutrons with

energies greater than the primary DT neutrons [10]. These involve the reaction of fast
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ions with the thermal population therefore reaching suprathermal reaction energies.

The order, primary, secondary or tertiary, indicates how many interactions take place

in the fusion reaction chain. Figure 3.22 shows the series of reaction chains relevant for

DT fusion. The energies obtained can be calculated using the kinematic expressions

given in Section 2.2.1.

Primary Secondary Tertiary

Key:
T
D
n
α

p

1 MeV

14 MeV

11.9 - 17.2 MeV

Fusion

Scattering

14 MeV 3.5 MeV

9.3 - 28.1 MeV 10.6 - 20.6 MeV

≤ 10.5 MeV ≤ 12.4 MeV ≤ 3.4 MeV ≤ 3.1 MeV

12.1 - 30.0 MeV 11.9 - 19.7 MeV

Figure 3.22: Diagrams showing the reaction chains for primary, secondary and tertiary
DT fusion. Energies for fast particles in the intermediate steps are given as
well as the range of energies for the final state neutrons. For the tertiaries,
the neutron-mediated branch is on the left and the alpha-mediated on the
right. Particle types are labelled by colour with a key in the bottom left.

3.3.1 Secondary Reactions in Magnetised Spherical Implosions

In Magnetised Linear Inertial Fusion (MagLIF) the spectral shape of secondary DT

neutrons made in a magnetised DD plasma has been shown theoretically [7, 102] and

experimentally [156] to depend on magnetic field strength and topology. Future plans

to magnetise spherical implosions on the NIF require an assessment and measurement

of the magnetic flux compression possible. Measurement of the secondary neutron

spectra presents a possible mechanism for a direct magnetic field strength diagnostic.

However a low areal density ρR . 100 mg/cm2 target is required in order for the

triton stopping distance to be greater than the target size [147]. If this is not satisfied,

nearly all tritons thermalise within the fuel and Larmor orbits will not extend the path

lengths and hence will not increase the reaction probability of the tritons. Gas filled

exploding or compressing pusher capsules are viable choices to remain under this areal

density requirement while still producing large primary yields. The conditions from a

2D hydrodynamic simulation of a magnetised exploding pusher were used to set up a

suitable test problem. The secondary neutron spectra were calculated from the averaged

static hydrodynamic conditions at bang time with various burn widths enforced:

r = 300 µm, ρ = 1000 kg/m3, Te = 5 keV, Ti = 10 keV, B = 2000 T .

The spectra along two of the NIF nToF lines of sight are shown in Fig. 3.23. The

magnetic field is orientated along the z-axis, (θ-φ) coordinates of (0-0), while Spec E and
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Spec NP are along (90-174) and (18-304) respectively. Magnetising the triton orbits is

seen to increase the secondary yield. This is because it extends the pathlength of tritons

within the fuel. This can be quantified by the triton path average areal density. For the

unmagnetised case 〈ρR〉 = 22.0 mg/cm2 and secondary yield ratio of 3.2 × 10−3 were

found – AKED and Minotaur agreed on these values to within a few percent. Magnetised

tritons with burn widths of 100 ps and 200 ps gave 〈ρR〉 = 29.0 and 34.3 mg/cm2, and

yield ratios of 4.7 and 7.0 × 10−3 respectively. It is worth noting that the unmagnetised

triton transit time across the fuel is 40-50 ps. The anisotropy in the spectra is due

to increased path length of tritons emitted perpendicular to the field relative to those

emitted parallel. Therefore, when observing the spectrum perpendicular to the field

there is a larger flux of tritons parallel and anti-parallel to the line of sight. Reaction

kinematics then leads to the observed double peaked spectrum. A similar reasoning can

be applied to the detector parallel to the field.
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Figure 3.23: Secondary neutron spectra calculated for static idealised conditions consis-
tent with a magnetised DD exploding pusher on the NIF. The effect of
magnetising the fast triton orbits is to increase the secondary yield and to
introduce anisotropy to the neutron spectra. Two burn widths of 100 and
200 ps were considered to estimate the effect of time-dependent hydrody-
namic conditions. Also shown is the unmagnetised with a -33% P2 shape
asymmetry applied which mimics the spectral shape of the magnetised cases.

While the results are encouraging, the secondary spectrum can also show anisotropy

if an areal density asymmetry is present. For example, a negative P2 implosion3 will

create a similar spectral anisotropy as a magnetic field applied along the z-axis as shown

in Fig. 3.23. Imaging diagnostics could measure the shape asymmetry and its effect on

spectral anisotropy could be quantified. Finally the time-dependent case with realistic

drive asymmetries and perturbations needs to be considered – this will be the subject

of future work.

3Within the ICF community, the positive and negative P2 shapes are often referred to as ‘sausage’
and ‘pancake’ respectively. Other breakfast foods have yet to be utilised for other Legendre modes.
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3.3.2 Alpha and Neutron Mediated Tertiaries

There is interest in both alpha and neutron mediated tertiaries as they could provide

additional measurements of capsule conditions. The tertiaries are very sensitive to areal

density (Yt ∝ YpρR2) and therefore measurable yields require cryogenic implosions with

DT ice layers. Work on the tertiaries has suggested that they are a possible test of

stopping power models in degenerate plasmas [77, 78] and activation measurements have

been performed at NIF [73]. These measurements used thulium activation diagnostics

which have a threshold energy of ∼ 16 MeV but the cross section rapidly grows up

to 20 MeV. Therefore the signal is dominated by knock-on ions and the high energy

neutron yield was found to ∼ 10−4 of the total yield. In future, this analysis could

proceed beyond a yield measurement to a spectral measurement in order to infer more

details of the reaction in-flight process. Towards this, high energy neutron spectra were

calculated using Minotaur for an OMEGA scale areal density. We will use a simple

isobaric model for hotspot [171] and fuel shell with a fixed total fuel areal density. The

ion and electron temperature have radial profiles given by:

T (r) =




Tc − (Tc − Ts)

(
r
R

)q
r < R ,

Ts R < r < Rfuel .
(3.34)

The exponent q was varied and the effect on the resultant high energy neutron spectrum

was investigated. The resulting spectra for:

Tc = 6keV, Ts = 500eV, ρR = 250mg/cm2, R = 25µm and Rfuel = 30µm ,

with two q values (2 and 10) are shown in Fig. 3.24. It is seen that the flatter temperature

profile (q = 10) leads to a faster population of alphas. This is due to the reduced

stopping power at higher temperatures, see Fig. 2.12, meaning that the hotspot is more

transparent in this case. The deuterons and tritons are then knocked on to higher

energies. However, the cross section for large angle Coloumb scattering is inversely

proportional to the square of the projectile energy, therefore a faster alpha population

produces fewer total knock-on ions. This leads to the alpha-mediated tertiary neutrons

having a larger high energy component but a reduced total yield. The rapid increase

in density at the hotspot edge gives a small volume for slowing and scattering to occur.

The opposite is true in the more opaque (q = 2) case.

The neutron-mediated tertiary neutrons do not have such a sensitivity as the primary

DT neutrons are unaffected by plasma temperature in flight. Additionally, neutron scat-

tering can occur within the shell where alphas have been ranged out. The secondaries

are a ∼ 1 % contribution to the high energy spectra and therefore have negligible effect

to the spectral shape. This test case shows spectral sensitivity to capsule conditions

beyond yield and areal density. A future theoretical and computational investigation of

tertiary neutron spectra could reveal a useful diagnostic tool.
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Figure 3.24: (Top Left) The high energy neutron spectrum for different values of q as
defined in Eq. 3.34. The normalisation ensures that the scattered component
of the spectra will line up between the two cases. A clear difference in the
spectral shape occurs at ∼ 16 MeV. Solid lines will be used for the q = 2
case in all plots, similarly for the dashed line and q = 10. (Top Right) The
average α particle energy as a function of position. The flatter temperature
profile (q = 10) maintains a high average alpha energy to large radii. This
is due to the lower stopping power at higher temperatures. (Bottom Left)
The normalised fusion reaction rate as a function of fast ion energy. Above
the birth alpha energy fast ions are produced by neutron knock on events.
Below the birth alpha energy an increased reaction rate at ∼ 3 MeV is seen
for q = 10. This is due to the higher flux of high energy alpha knock on ions.
(Bottom Right) The neutron spectrum created by the DT fusion reactions
of alpha knock on ions (AKN) and neutron knock on ions (NKN). The AKN
spectra for q = 2 and 10 have distinct differences where as the NKN spectra
are similar.
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Content in this chapter has been reproduced from “Synthetic nuclear diagnostics for in-

ferring plasma properties of inertial confinement fusion implosions”, Physics of Plasmas

25, 122703 (2018), Crilly et al. [42] with the permission of AIP Publishing.

As discussed in the Introduction, purely spherical implosions give the most efficient

conversion of kinetic to internal energy. Neutron imaging gives spatial information of

both the hotspot and dense fuel. It is therefore essential for measuring deleterious

asymmetries in the implosion. In this chapter, we will assess the current analysis meth-

ods used in neutron imaging by using synthetic data from radiation hydrodynamics

simulations.

4.1 Primary Neutron Imaging

In this section, two nuclear diagnostics which measure the spatial distribution of the

primary DT neutrons are discussed. The first is traditional 2D imaging which measures

the spatially resolved distribution of the line-integrated DT fusion rate. The images are

used to measure the convergence and shape asymmetry of the implosion. Multiple 2D

images can be used to tomographically reconstruct the 3D emitting volume. The second

diagnostic considered is a system of activation measurements that create a 2D image

of the yield variation, as discussed in Section 1.3.1.3. While each activation sample

spatially and temporally integrates the incident neutron flux, multiple samples placed

over the sphere can resolve angular variation in the primary DT neutron yield.

4.1.1 2D Imaging

As discussed in Section 1.3.1.2, primary neutron images map out a set of line integrals

of T(D,n)α reaction rate with an attenuation factor due to scattering and other interac-

tions. Scattered neutrons are lower in energy so are gated out for the primary neutron

images. Two important measurements extracted from primary images are the radius

and any distortion to the hotspot, as measured by the Legendre modes [72]. The radius

of the hotspot is used to measure compression through the convergence ratio. Shape

distortion is measured through the 17% contour. One might consider how attenuation

affects this analysis. The dense fuel shell is the densest region and hence causes a large

fraction of the attenuation. Due to the hotspot-shell configuration, the primary neutron

images will be limb darkened by this effect.

127
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Figure 4.1: The primary image attenuation factor as a function of radius for a uniform
spherical DT shell of areal density 1 g/cm2 and thickness ∆ surrounding a
hotspot of radius R

To quantify this we will consider a uniform spherical DT shell of areal density 1 g/cm2

and thickness ∆ surrounding a hotspot of radius R. Figure 4.1 shows the attenuation

factor as a function of image radius for various shell-hotspot aspect ratios, ∆/R. The

thinnest, i.e. the highest density, shells cause the strongest limb darkening. This may

lead to a small underestimate of the hotspot radius when analysing the 17% contour. For

a uniform source the limb darkening causes a shift in inferred hotspot radius from 0.985

R to 0.962 R for an aspect ratio of ∆/R = 0.05. Therefore for symmetric implosions

the 17% contour is robust to attenuation effects.

We will now consider primary neutron images from 3D hydrodynamic simulations.

To do this we will utilise a simulation with many different wavelength perturbations1

performed with Chimera [181] – this simulation type will be referred to as “multimode”.

Figure 4.2 shows a density cross section at bang time and the time integrated primary

neutron image, including attenuation, as calculated by AKED. Experimental images are

also time integrated as the time-of-flight velocity dispersion effect is used to separate

out the neutrons by energy to form gated images.

Neglecting attenuation effects could cause misidentification of darker regions as re-

gions of low neutron production. However, the attenuation effect is likely to be marginal

similar to the symmetric limb darkening analysis. To remove the conflicting effect of

temporal blurring we will consider a time resolved image. This is shown for the multi-

mode simulation in Fig. 4.3. When imaged at 1µm resolution, the level of attenuation

1The perturbations take the form of randomly seeded Rayleigh-Taylor velocity perturbations. These
are placed at the vertices of geodesic spheres in order to uniformly perturb the whole sphere. More
details can be found in thesis of Dr Taylor [171].
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Figure 4.2: a) 2D y-z density slice at neutron bang time through a 3D Chimera simulation
with randomly seeded Rayleigh-Taylor velocity perturbations applied [181].
The magnitude of the perturbations were set such that the neutron yield was
close to experimental values (4.80 × 1015 without alpha-heating). b) A time
integrated primary neutron image down the x-axis, through the density slice
given.
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Figure 4.3: Large areal density differences can create variation in the level of attenuation
for primary neutrons. Using the same simulation as used in Fig. 4.2, a) shows
the attenuated primary neutron image down the z-axis at bang time with 1µm
resolution (equal to the hydro resolution). The white lines map out the 17%
contour which is used to measure hotspot shape [72]. The solid line is the
contour when attenuation is neglected while for the dashed line attenuation
is included. b) shows the spatial variation in the level of attenuation. This is
defined through a line integrated attenuation factor given by one minus the
ratio of the attenuated to the unattenuated flux at the detector.
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is observed to vary by at most 20% within the hotspot. The shape inferred via the

17% contour with attenuation effects on and off is within 2.5µm at all points. At 5µm

resolution, the variation in attenuation is reduced to below 13%. Thus the error induced

by neglecting attenuation in analysis of primary images is tolerable for high mode and

small amplitude low mode perturbations.

While shape analysis using the 17% contour can identify distortion of the hotspot

within a plane, this is not the complete picture. Since realistic capsule implosions

are perturbed in a 3D manner, ideally a 3D surface could be constructed to identify

3D asymmetries. However, due to the limited number of lines of sight, tomographic

reconstruction of the neutron production is challenging. Neglecting attenuation, the

problem is given by the matrix equation:

A · ~x = ~b , (4.1)

where ~x and ~b are the source and images arranged as vectors of length M and N (gen-

erally M > N). The N ×M matrix A gives the relative contribution of a source point

to an image point. There are many tomographic methods for solving for the source,

~x. However, for many techniques poor results are expected if only a few images are

available. To illustrate the difficulty of this problem we will adopt a naive approach

and compute the (Moore-Penrose) pseudo-inverse of A via singular value decomposi-

tion (SVD). We will take 3 orthogonal images of the multimode simulation (neglecting

attenuation) and aim to reconstruct the 3D source. Figure 4.4 shows the results of the

SVD reconstruction.

Many artefacts exist in the reconstruction, most notably the cross pattern along the

detector directions. The total neutron yield has also been increased in the reconstruction

by 8%. In order to obtain more accurate and efficient results a different method must

be utilised. Sophisticated tomographic techniques for a small number lines of sight have

been developed by Volegov et al. to form a 3D reconstruction of the neutron reaction rate

[177–179]. These tomographic techniques employ an iterative Generalized Expectation-

Maximization (or GEM) algorithm. These aim to maximise the log-likelihood with an

additional potential term which prevents large differences between adjacent cells [177].

By employing an isobaric hotspot approximation, these 3D reconstructions are being

used to infer burn averaged density and temperature profiles [48]. While shape analysis

through the 17% contour appears robust to attenuation effects, this may not apply to the

reconstructions. Further work to investigate these effects in reconstruction techniques

is required. Some results from the Volegov et al. reconstructions will be shown at the

end of Section 4.2 alongside density reconstructions from scattered neutron images.

4.1.2 4π Yield Variation

The FNADs measure the incident neutron fluence modulated by the activation cross

section which possesses an energy threshold [15, 190, 191]. This system is distributed

over 4π of solid angle and aims to capture the 3D nature of the areal density. Since the
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Figure 4.4: Three orthogonal images were used to perform a tomographic reconstruc-
tion of the 3D neutron production source, S. (Top) Comparison between the
central x-y planes of the source and reconstructed neutron production distri-
bution. Various reconstruction artefacts are seen. (Bottom left) Line outs
through the 3D volumes along the x, y and z axes for the source (solid lines)
and the reconstruction (dashed lines). (Bottom right) The cumulative radial
volume integral of the fractional neutron production rate, S/Yn.
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neutron fluence is attenuated by areal density, variation in FNAD signal is correlated

with capsule areal density variations. The hotspot is generally extended and therefore

it is expected that the areal density variation inferred in this way is correlated with the

neutron-averaged areal density. Due to the energy dependence of the activation cross

section, the Doppler shifts induced by fluid velocity in the hotspot will also affect the

FNADs signal [15, 148]. Flows towards an activation sample will increase the signal

measured. In this work we will focus on the finite FNAD resolution due to the extended

source.

The hotspot and shell can become highly distorted, this can cause a chord from

an emitting cell to enter and exit the shell multiple times before exiting the capsule.

This geometrically complex (non-convex) system is difficult to analyse. We will make a

number of simplifying assumptions here to show the effect of an extended source. The

hotspot is taken as a uniform sphere of negligible density, the shell as a uniform shell

and perturbations as uniform increases in density on patches of the shell. This model is

therefore purely illustrative – the results of detailed numerical calculation will be given

later in this section. The loss of resolution induced by an extended source can be shown

by varying the hotspot radius. Figure 4.5 shows the test case geometry and the results

for two perturbation sizes.

Figure 4.5: (Left) The geometry of the FNAD test problem. The source region lies within
Rh, the shell starts at Rs = 1 and has thickness ∆ � Rs. The density
perturbation lies at polar angles less than χp. Rays are traced from every
point in the source volume out at angle χ. (Centre) The average areal density
for cosχp = 0.9 at various hotspot radii. (Right) The average areal density
for cosχp = 0.5 at various hotspot radii.

The extended hotspot results deviate from the point source result quite strongly even

in the unperturbed region. This is because of the increased average chord length through

the shell. Additionally the perturbation is smoothed out considerably by the extended

source. From a geometric analysis, the last ray angle that intersects the perturbation

(using the angle definitions in Fig. 4.5) is given by:

sin (χ− χp) =
Rh
Rs

. (4.2)

This sets the angular resolution for a given hotspot-shell radius ratio e.g. the apparent

perturbation width is increased by 30◦ for Rh/Rs = 0.5. There are many differences

between this simple model and realistic stagnation conditions. However, the same con-
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clusions can be carried across. An extended hotspot has poorer angular resolution and

an increased average chord through the shell.

We will now consider a more accurate representation of the FNAD diagnostic by

post-processing a 3D hydrodynamics simulation. To form the synthetic 90Zr FNADs a

forward ray trace was performed from all the emitting cells along a detector direction

vector. A birth spectrum was created for each emitting cell based on the temperature

and fluid velocity. The areal density along the neutron path was used to attenuate the

number of neutrons measured. Using the 3D multimode simulation shown in Fig. 4.2,

5000 synthetic FNADs were distributed at uniform angular intervals over 4π. The

resultant measurement is given in Fig. 4.6 a). A low mode (l,m ≤ 2) spherical harmonic

fit was performed on the 19 experimental FNAD locations [190, 191], shown as coloured

circles. This shows asymmetry in both the polar, l, modes and azimuthal, m, modes,

see Fig. 4.6 b).

g/cm
2
 g/cm

2
 

a) b) 

c) d) 

30o 

60o 

0o 
360o 

θ 

φ 

Figure 4.6: Sky maps of a) the synthetic FNAD signal for an implosion with multimode
perturbations applied; b) a l,m ≤ 2 spherical harmonic fit performed on the
synthetic FNAD data sampled at the experimental detector positions; c) the
neutron-averaged areal density and d) the line integrated density from the
simulation centre point weighted by the burn history. Figure a) marks the
angles of some lines of latitude and longitude for orientation. [17]

The degree of smoothing of high mode perturbations can be seen by comparing the

neutron-averaged areal density (Fig. 4.6c) and the line integrated density from the

simulation centre point weighted by the burn history (Fig. 4.6d). As expected, the

neutron-averaged areal density shows the same features as the FNAD map. However,

the map of centre point ρR weighted by the burn history is notably different. In the
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〈ρR〉 map, the high mode detail has been greatly smoothed and the magnitude of the

resulting low mode alias is lower. The extended nature of the hotspot means that the

bubbles and spikes seen clearly in the ρR map are sampled from multiple starting points.

Spikes surrounded by emitting material thus appear spatially larger. Also, when viewed

down the spike axis, the attenuation effect appears reduced due to emitting plasma

surrounding the spike. Hence high mode perturbations are not resolvable, no matter

the number of activation detectors, and the magnitude of the low mode sample of

these perturbations is lowered. Experimental FNADs sky-maps often exhibit modes

l,m ≤ 2 of similar or larger magnitude as those found in the multimode synthetic

data [15, 91]. In this multimode simulation a large polar spike produces a P1 signal

in the FNADs. Possible high mode detail missed by the FNADs would be visible in

well-resolved primary and scattered neutron images, e.g. Figs. 4.2 and 4.3. The neutron-

averaged fluid velocity inferred from the primary spectra (29 km/s) accounts for ≈ 25%

of the FNAD variation. This L=1 effect exacerbates the aliasing of the high mode

areal density variation, although correction of the fluid velocity effect is possible with

a spectroscopic hotspot velocity measurement[148]. Performing downscattered neutron

spectral measurements along the poles, the ρRDSR were found to be 0.71 and 0.81

g/cm2 respectively. These are consistent with the P1 measured in the FNADs. It

should be noted that the DSR measurement samples between ∼ 30 − 60 degrees away

from the detector axis.

4.2 Scattered Neutron Imaging

Scattered neutron images can be used to identify areas of increased density as this will

lead to increased scattering. However, these images contain information about both

the density and the neutron flux at the scattering site. Therefore additional analysis

is required to infer the scattering ion density. Fluence compensation is a technique,

developed by Casey et al. , which can be used to approximately decouple the primary

flux from scattered neutron images and therefore directly image the scatterer density

[25]. The technique involves using the primary image to infer the primary fluence at

the scattering locations.

Simplifying assumptions are needed to calculate the primary fluence from the primary

image. First, the primary neutron emission rate is assumed to be constant along the

line of sight2. Second, a single average scattering angle, θ̄s, is used. The average angle

depends on the energy gate, [Emin, Emax], used to form the scattered neutron image.

The scattered neutron spectrum within this energy gate can be used to compute θ̄s .

This is done by first calculating the angle of scattering of a 14 MeV neutron from the

2Technically, the neutron source is assumed to be separable along the line of sight direction, z, such
that S(x, y, z) = S̃(x, y)I(z). However this has the same effect as the constant along z assumption.



4.2 Scattered Neutron Imaging 135

average fuel ion with a given outgoing neutron energy, E:

cos θs(E) =
1

2

[
(Ā+ 1)

√
E

14 MeV
− (Ā− 1)

√
14 MeV

E

]
, (4.3)

where Ā is the average ion mass divided by the neutron mass. The scattering angle is

then averaged using the outgoing scattered neutron spectrum, Qs(E), as follows:

θ̄s =

∫ Emax

Emin
θs(E)Qs(E)dE

∫ Emax

Emin
Qs(E)dE

. (4.4)

The primary fluence, ψi,j , is then found using θ̄s to calculate the 1/r2 dilution between

source and scattering site:

ψi,j =
∑

k,l

Sk,l
4πr2

k,l,i,j

, (4.5)

rk,l,i,j =

√
(xi − xk)2 + (yj − yl)2

sin θ̄s
, (4.6)

where Si,j is the primary neutron image and the image coordinate distances are xi and

yj . Attenuation effects on the primary fluence calculation are neglected.

Dividing the scattered neutron image by the approximated primary fluence retrieves

the product of the areal density seen by these scattered neutrons and the differential

cross section. For a downscattered neutron image, DSni,j , the fluence compensated

image, 〈ρLσ〉i,j , is given by [25]:

〈ρLσ〉i,j =
Āmn

Ap

DSni,j
ψi,j

, (4.7)

where Ap is the image pixel size and mn is the neutron mass.

The simplifying assumptions of a single scattering angle and uniform brightness per

unit length appear restrictive and one would like to see the effects of these approxi-

mations. However, constructing a suitable test problem is tricky, as with all scattering

problems. As a test case, we will consider an unattenuated monoenergetic spherical

neutron source and a spherically symmetric scattering medium with density ns(r). A

scattered neutron image is made at infinity with a radial coordinate s. This leads to a

scattered image per unit radius of the form:

Psn(s) =

∫
dµ

∫
2πr2drns(r)δ

(
s− r

√
1− µ2

)

∫
dµ′Ψ(r, µ′)

∫
dµ∗I(µ′, µ, µ∗)

dσ

dΩ
(µ∗) , (4.8)

where I is the angular transition probability (Eq. 2.134) and Ψ is the angular neutron

flux. The Dirac-δ ensures that we move along the line of sight of the detector. Figure 4.7

shows the imaging and scattering geometry.



136 Chapter 4. Neutron Imaging

s

r

Image
plane

Source
origin Im

ag
e 

Ch
or

d
Outgoing
neutron

Incoming
neutron

Radial path

Scattering
volume

Figure 4.7: Diagrams showing the imaging and scattering geometry for the formation
of scattered neutron images from a spherically symmetric source. Direction
cosines, µ and µ′, are defined relative to the radial path. The image radius, s,
is then linked to the source radius, r, through the outgoing neutron direction,
µ, as given by trigonometry: s = r

√
1− µ2.

To proceed, we will integrate out the Dirac-δ and retrieve the image intensity per

unit area to reach our final expression:

Fsn(s) =
Psn
2πs

=

∫
dµ

s

(1− µ2)3/2
ns

(
s√

1− µ2

)

∫
dµ′Ψ

(
s√

1− µ2
, µ′
)∫

dµ∗I(µ′, µ, µ∗)
dσ

dΩ
(µ∗) . (4.9)

This integral becomes the forward Abel transform (in angular form) for constant Ψ

and isotropic differential cross section. Unfortunately the differential cross section does

not have a simple analytic form therefore this integral must be integrated numerically

over all scattering angles. We can construct a simple numerical test to assess only the

uniform brightness per unit length approximation. This will be done by including the

single scattering angle approximation. The allowed scattering cosine, µ∗, will be varied

to observe its effect. We will use the bang time conditions of a 1D Chimera simulation of

the HDC shot n170601 to set our density and neutron flux. From this we can calculate

our primary and scattered images from Eq. 4.9 and then find our fluence compensated

image. The results of this test are shown in Fig. 4.8.

In this test, we see that the shape of the scattered images is very different between

isotropic and peaked differential cross sections. More forward directed scattering pro-

duces images of the front of the dense DT layer, while larger scattering angles highlight

the peripheries. This carries over into the fluence compensated images which become

more strongly peaked at larger radii for larger scattering angle. The fluence compen-
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Figure 4.8: (Left) Plot showing the DT density, total density and scaled neutron flux
radial profiles at bang time in the 1D Chimera simulation of the HDC shot
n170601 . (Centre) Plot showing the resulting primary (Pn) and scattered
(Sn) neutron images as a function of image radius, s. Three single scattering
angle cases are considered (30◦, 45◦ and 90◦) shown with the black curves
as well as the isotropic scattering case in green. (Right) Shown in blue is
the line integrated density, ρL, as given by the forward Abel transform on
the DT density, ρDT , in the left hand plot. Using the fluence compensation
technique, the three single scattering angle images are converted into fluence
compensated images (FC). These have been scaled to the ρL maximum.

sated images deviate strongly from the line integrated density due to the scattering

geometry restriction. We can see that the assumption of uniform brightness per unit

length prevents us from recovering the underlying spherical density distribution. How-

ever, we can convert the scattered image into a, more physically useful, distribution of

areal density along the scattering paths. In Casey et al. [25], the average scattering

angle is taken as 45◦ for which the fluence compensated image is closest to matching

the position of peak ρL in this test case.

Typically, experimental images use an energy gate between 6 and 12 MeV to measure

the scattered neutron image. There are many contributions to this range beyond singly

scattered neutrons, see Fig. 2.19. Notably, the inelastic D(n,2n) process comprises a

significant portion of signal, reaching equality with the DT elastically scattered fraction

at ∼ 6 MeV, see Fig. 3.11. Multiple scattering also becomes important at higher areal

densities, see Fig. 2.20 for the contributions of double and triple scattering to the spec-

trum at 1 g/cm2. There are therefore multiple benefits to restricting the energy range

at the cost of reduced signal. Sources which are difficult to describe and analyse, such

as inelastic and multiple scattering, can be minimised. Also the range of allowed elastic

scattering angles is reduced, leading to a more directed measurement.

If the large range of scattered neutron energies was split into multiple energy gates

then different regions of the dense shell could be sampled, see Fig. 3.19. To illustrate

this technique we will consider a calculation where a single spike Rayleigh-Taylor[171]

velocity perturbation has been applied to an otherwise symmetric implosion at peak ve-

locity. The neutron transport calculation was carried out with AKED. At initialisation,

the maximal radial velocity of this spike was a factor of ∼ 2 times greater than in the
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Figure 4.9: a) Fuel density slice in the x-y plane at bang time and the fusion reaction
rate contours overlaid. The solid and dashed lines represent a single and dou-
ble e-folding of the reaction rate respectively. b) A scattered neutron image
taken down the z-axis with a 10-12 MeV gate. c) and d) Fluence compen-
sated images showing the single spike perturbation along the detector line of
sight (90o,45o), shown by the red arrow in a). The two images correspond
to two energy gates, 10.0-11.5 MeV and 11.5-13 MeV respectively. The aver-
age scattering angles inferred from the neutron spectrum are ∼ 45o and 30o

respectively.
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rest of the shell. Using two energy gates above 10 MeV allowed separate imaging of the

spike density and the shell density at higher angles, see Fig. 4.9. The time dispersion

of the neutrons would allow this technique to be applied along a single line of sight. By

viewing the spike along its axis, blurring due to radial motion is avoided in the time

integrated image. A time integrated scattered neutron image perpendicular to the spike

axis reproduces the shape of the perturbation. The 11.5-13 MeV image can be used to

estimate the areal density of the cold fuel spike and the preceding shell. Dividing out

by the differential cross section evaluated at the average angle of 30o, an areal density

of ∼ 2.0 g/cm2 was obtained. An areal density of 1.8 g/cm2 was found at bang time

directly from the Chimera simulation.

Working with the Neutron Imaging Group at LANL, synthetic primary and (6-12

MeV) scattered neutron images from the multimode simulation were used in tomo-

graphic reconstruction of the neutron production and density [179]. Using AKED,

time integrated images were taken along experimental NIS lines of sight to test and

benchmark the reconstruction technique for use with experimental data. To aid in the

comparison, the time integrated neutron production and density were calculated from

the hydrodynamic simulation. When integrating up the density, each time was weighted

by the total neutron production rate at that time to give the correct burn average. The

6-12 MeV window for the scattered images includes a much larger angular range (∼
30◦-100◦) than for the 10-13 MeV cases discussed above. This greatly increased the

computational expense of the calculation, and the efficient ray trace method was essen-

tial in making this task tractable. Figure 4.10 shows the results of the reconstruction.

Given this synthetic data test, the reconstruction technique has been used to analyse

experimental data.

The third line of sight on the NIS will soon be upgraded to measure a scattered neutron

image [179]. This will allow more accurate reconstruction of the density distribution.

The synthetic data analysis can then be revisited and the new scattered image line of

sight included. Carbon γ-ray images (see Section 5.1 for details) on the NIS lines of

sight were also calculated using AKED for the multimode simulation – these will be the

subject of future reconstruction work to measure the remaining ablator morphology.

4.3 Combined Imaging Analysis

Spectroscopic measurements regularly measure large hotspot velocities [75, 116, 148].

However, these measurements are unable to distinguish different spatial hydrodynamic

profiles if they have the same integrated flow velocities. In this section we will explore

two different perturbation types which can induce hotspot flows. We aim to answer the

question: can imaging techniques distinguish between the different perturbations when

the spectroscopic measurements cannot?

To do this we consider two scenarios: a P1 drive asymmetry and a more localised

reduction in the implosion velocity, which will be named an aneurysm perturbation

for reasons which will become clear. Both result in neutron spectroscopic measure-
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(1a) (2a) 

(1b) 
(2b) 

Figure 4.10: Plot (1a) shows the time integrated neutron production rate from the mul-
timode Chimera simulation. Plot (1b) shows the reconstructed neutron pro-
duction rate from 3 primary neutron images taken along experimental NIS
lines of sight (shown on the figure). Plot (2a) shows the burn averaged den-
sity in the multimode simulation. Due to current experimental availability
of only 1 scattered image, the density distribution must be assumed axisym-
metric for the analysis to proceed. Plot (2b) shows the reconstructed density
from 1 scattered neutron image using the source reconstruction in plot (1b).
Reproduced from “Density determination of the thermonuclear fuel region
in inertial confinement fusion implosions”, Journal of Applied Physics 127,
083301 (2020), P. L. Volegov, S. H. Batha, V. Geppert-Kleinrath, C. R.
Danly, F. E. Merrill, C. H. Wilde, D. C. Wilson, D. T. Casey, D. Fittinghoff,
B. Appelbe, J. P. Chittenden, A. J. Crilly, and K. McGlinchey, with the
permission of AIP Publishing.
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ments with the axes of centroid shift, 〈v〉, and inferred ion temperature asymmetry,

∆Ti, aligned3. Thus without additional information these scenarios are difficult to dis-

tinguish. However, they have very different hydrodynamic behaviour at stagnation.

The P1 exhibits bulk motion along the drive axis while maintaining a relatively round

hotspot. The shell is more strongly compressed on the side with harder drive. The

hotspot does not break out of the shell during neutron production. In contrast, the

aneurysm perturbation proceeds as a normal implosion with a localised region lagging

behind. Once the pressure in the hotspot builds up during stagnation, this localised

region has the lowest areal density and, consequently, is forced outwards. The hotspot

starts to flow out through this developing aneurysm leading to a measurable hotspot

velocity in neutron spectra. Therefore the different structures of the shell and hotspot

should present themselves in primary and fluence compensated images as shown in

Fig. 4.11.

a) b) 

c) d) 

Figure 4.11: Graphs a) and b) are the primary and fluence compensated neutron images
for the P1 drive asymmetry case. The drive axis is along θ = 0. The contours
on the fluence compensated images are the contours of the primary neutron
image. Graphs c) and d) are the primary and fluence compensated neutron
images for the aneurysm case. The axis of the perturbation is along θ = 80◦,
φ = 30◦. The NIS polar and equatorial lines of sight were considered and
the line of sight which gave the best representation of the hotspot and shell
shape was used. Some slight Cartesian grid imprinting is visible but is small
compared to the perturbation size.

The P1 case shows a close-to round hotspot from the primary neutron image. Its cen-

3In this context, I am using axes to refer to the directions given by the vector component and maximal
principal axis of the matrix component of the primary spectrum cumulants. See discussion of
Eqs. 2.74 to 2.77 and Appendix C.1 for detail
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troid is displaced from target chamber centre by ≈ 20 µm. However, this displacement

would be difficult to detect with the NIS as the final neutron image is an average of

many images through many pinholes. The fluence compensated image reveals the areal

density asymmetry aligned with the drive asymmetry axis. The aneurysm case shows a

distorted hotspot with a ‘teardrop’ shape due to the outflowing hotspot. The centroid

of the emission is very close to the centre. The nature of the perturbation means that

for most of the shell the implosion is unperturbed, this leads to a centred implosion.

This also shows up in the fluence compensated image which shows a small weak patch

in the shell through which the hotspot is flowing. The imaging resolution of the primary

and scattered neutron images are ∼ 10 µm [176, 179]. This is sufficient to resolve the

differences visible in Fig. 4.11.

Similar analysis has been performed with X-ray images by Ruby et al. [152]. X-ray

images have the benefits of having better spatial resolution than neutron images and

being time resolved (∼ 100 ps), this allows a direct measurement of velocity. However, X-

ray images do not measure the same behaviour of the fusing material as neutron images,

even in the case of no mix. This is due to the different temperature dependencies of X-

ray emissivity and nuclear reactivity. Also mix induced by the fill tube or other defects

can dominate X-ray images. Then the dynamics of the mixed region rather than fusing

region are measured. X-rays images also cannot measure shell conditions. Therefore,

the correlation between hotspot flows and low areal density regions cannot be seen.

While these perturbations were applied in an idealised manner, the important dis-

tinction is their different extent: whole capsule (P1) vs localised (aneurysm). Potential

sources of these two cases are quite different due to this fact. The P1 asymmetry could

be caused by smooth top-bottom drive imbalance [114] while the aneurysm could be

caused by the growth of more localised defects. These could be dust on the capsule,

voids or grain boundaries in the ablator, the fill tube or stalk, surface roughness and the

capsule support tent. Many tailored experiments have been performed to observe the

growth of these perturbations as detailed within the comprehensive reviews by Smalyuk

et al. and the references therein [160, 161].
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Content in this chapter has been reproduced from “Synthetic nuclear diagnostics for in-

ferring plasma properties of inertial confinement fusion implosions”, Physics of Plasmas

25, 122703 (2018), Crilly et al. [42] with the permission of AIP Publishing.

In indirect drive implosions there is remaining ablator at stagnation. This is to

prevent radiative heating of the dense DT shell which would limit compression. Most

of the shots on NIF to date have used an ablator containing carbon (CH, HDC). This

chapter is concerned with these shots, although the discussion of DT fusion γ rays is

more general as it does not rely on a carbon-based ablator.

5.1 Imaging the Carbon Ablator via Inelastic Neutron

Scattering

Fine scale hydrodynamic mix between the ablator and fuel has been suggested as a

possible cause of lower than expected compressions as measured by the DSR [37]. While

this mix can not be resolved at stagnation, measurements of the reduced compression

of DT and carbon would lend credence to this hypothesis. The carbon γ history, the

topic of the following section, can be used to measure the average ablator areal density

[30, 84, 121]. However this gives no information on the spatial distribution of ablator.

Imaging the carbon ablator through the 4.4 MeV γ-rays made in inelastic neutron

scattering could provide this information.

Much of the analysis applied to scattered neutron imaging can be equally applied to

carbon γ imaging. One key difference is that the differential cross section for γ emission

is symmetric and close to isotropic, with a P2 coefficient of ∼ 0.15 [64]. Within the

isotropic approximation, a carbon γ image is given by:

Iγ(x, y) =

∫
dz

ρC(~r)

mC

∫
dE σ(E)φn(~r,E) , (5.1)

where φn ≡
∫
dµΨn is the total flux of neutrons, ρC is the carbon density, mC the mass

of a carbon nuclei and σ is the inelastic scattering cross section. As the primary DT

neutron fluence is ∼ 100 times greater than at other neutron energies, we will neglect

other neutron energies and invoke energy separability:

Iγ(x, y) ≈
∫
dz

ρC(~r)

mC
φn(~r)

∫
dE σ(E)Qn(E) =

〈σ〉
mC

∫
dz ρC(~r)φn(~r) , (5.2)
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where 〈σ〉 defines the average scattering cross section across the primary DT spectrum.

For a uniform isotropic neutron flux the images shows the carbon areal density along

chords. Since the carbon occupies the remaining ablator shell, we expect a limb bright-

ened image. This is due to the largest chord residing at the inner radius of a shell. In

more realistic scenarios, the total neutron flux, φn, will highlight carbon closer to the

neutron source. Unlike scattered neutron images, the emission and scattering sources

are separated in carbon γ imaging.

To show the effect of the neutron flux term we will consider a 1D hydrodynamic

simulation of the HDC implosion N170601. Figure 5.1 shows the density, the neutron

flux and their product at bang time. Also shown are the resultant carbon gamma images

with and without the neutron fluence term. The effect, while subtle, is to reduce the

effective emission with increasing distance from the hotspot.
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Figure 5.1: (Left) The density, neutron flux and their product as a function of radius from
a 1D simulation of the HDC implosion n170601 at bang time. The neutron
flux has been normalised and is plotted on the right hand log scale, all other
quantities are on left linear scale. (Centre) Carbon γ-ray images constructed
using a forward Abel transform. The upper half (a) takes account of the
neutron flux and the lower half (b) assumes a uniform isotropic flux. Both
images are normalised to their peak. (Right) Lineouts through the constructed
normalised images shown in the centre plot.

For this symmetric case it is clear that the inner radius of the ablator can be found

given sufficient spatial resolution. Decompression of the ablator would reduce the in-

tensity measured and increase the thickness of the ring seen in the image.

Perturbations within the ablator can seed or feed through to the fuel creating cold

fuel spikes [119]. If these ablator perturbations do not break out into the hotspot then

they will not create a measurable X-ray signal. It is therefore critical to image the shape

of the ablator near bang time to identify such perturbations. The remaining ablator

also provides areal density to maintain confinement. Thin regions in the ablator will

reduce confinement and allow early decompression.

The multimode simulation will be used as a case study for these potential further

uses of carbon γ imaging. Figure 5.2 shows time integrated carbon γ images at the

resolution of the simulation and with a 10 µm Gaussian filter applied to mock up

potential experimental resolution. The third line of sight of NIS will soon be upgraded
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to image the carbon γ rays [179]. We will use the ∼ 10 µm resolution reported for

the neutron imaging as an estimate for γ imaging resolution [179]. The spikes created

by the perturbations and the blow-off region are clearly visible. Thin regions of the

ablator can also be seen. The presence of spikes still persists after the addition of a

10µm Gaussian filter.
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Figure 5.2: a) Time integrated carbon γ ray image at the resolution of the simulation (1
µm) for multimode simulation. b) A 10 µm Gaussian filter applied to image
a). Carbon spikes from all 4π of solid angle and the blow-off region are seen.

The fill tube has been experimentally observed to inject doped ablator into the

hotspot, which greatly increases X-ray emission [47, 185]. There has been detailed

simulation work aiming to capture the hydrodynamic behaviour of the fill tube induced

mix and the resulting diagnostic signatures [39, 46, 185]. One might wonder if carbon

γ imaging may be able to contribute a direct nuclear measurement of the mixed carbon

to corroborate the X-ray images. To answer this question, we will be using the 3D

Chimera simulation of N161023, including the fill tube and 2D radiation drive asymme-

tries, performed by Dr Kris McGlinchey. Other synthetic nuclear measurements from

this simulation are reported in McGlinchey et al. [120]. Figure 5.3 shows equatorial

carbon-γ images perpendicular to the fill tube jet. At the resolution of the simulation

(2 µm) the injected carbon due to the fill tube is visible in the image1. While the mass

of ablator mix induced by the fill tube is small (30 - 100 ng depending on ablator type

and fill tube size [185]), the carbon is injected into the hotspot and hence experiences a

very high neutron flux which increases its carbon-γ-ray production. However, at a more

realistic resolution of 10 µm the fill tube mix is washed out in the image. Interplay

1It is worth noting that the interface tracker used in the hydrodynamics of this simulation [136] prevents
movement of mix cells once they become a single isolated cell. Therefore we might expect the fill tube
mix to travel further into the hotspot in reality. This has the potential to increase its carbon-γ-ray
signal due to the increased neutron fluence.
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between the radiation drive asymmetries (primarily P4) and the fill tube has caused

ablator decompression around the fill tube which is visible as reduced carbon-γ-ray in-

tensity. This implosion is significantly less perturbed than the multimode simulation

and hence the γ-ray images more closely resembles the 1D result shown in Fig. 5.1.
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Figure 5.3: a) Time integrated carbon γ-ray image at the resolution of the simulation
(2 µm) for a 3D simulation of NIF shot n161023 including the fill tube and
radiation drive asymmetries. The position and direction of the fill tube is
indicated with the white arrow. b) A 10 µm Gaussian filter applied to image
a). While the fill tube induced hotspot mix is visible in image a), it is not
resolved in image b). The radiation drive asymmetry is primarily P4, this
creates increased ablator areal density at the 45◦ and 135◦ angles which is
visible in both cases.

From a computational model standpoint, the inverse ray trace has led to clear images

allowing physical interpretation. Due to the low cross section, previous Monte Carlo

γ-ray calculations have exhibited poor statistics leading to noisy images [20]. While this

could be remedied in future calculations, the inverse ray trace by construction produces

images at the resolution of the hydrodynamic grid.

5.2 Fusion and Carbon γ-ray Histories

DT fusion γ-rays can be used to track the progress of burn in time without complications

from additional interactions in flight to the detector. The Gamma Reaction History

(GRH) and Gas Cherenkov Detector (GCD) measure the burn history and extract the

bang time and burn width which correspond to the centroid and FWHM of the fusion

γ-ray production rate.

The measured burn widths are consistently higher than most simulations predict.

Through numerical investigation it is found that perturbations can both elongate or

truncate the burn depending on their nature [120]. Perturbations which introduce high

atomic number mix, such as the fill tube, tend to lower the burn duration by reducing
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the effective size of the hotspot through radiative cooling. In contrast, asymmetric

implosions without mix tend to have longer burn widths. We will look at two types of

asymmetry: low mode drive asymmetry (P2 and P4) and the multimode perturbation

(which has been used multiple times within this thesis). The asynchronous convergence

of these implosions extends the time over which mechanical work is done on the hotspot,

see Fig. 5.4. We define a few timescales, beyond the burn width, to compare the different

simulations. First we define the stagnation time to be when the PdV work on the hotspot

goes to zero. The time difference between the stagnation time and bang time will be

denoted ∆tstag. Secondly a PdV timescale is defined as the peak-to-trough PdV work

divided by the gradient of the PdV work at stagnation, this will be denoted tPdV .
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Figure 5.4: The PdV work on the 1 keV hotspot for each simulation type are shown in
solid lines and in dashed lines are the normalised DT reaction rates. The
simulations are high foot implosions which are symmetric (P0), perturbed
with multimode (MM) or driven with radiation drive asymmetries (RA). Also
shown are the time difference between bang time and stagnation, ∆tstag, and

the peak-to-trough PdV work, |PdV |, for the RA case.

To find correlations between the mechanical work and burn pulse, principal compo-

nent analysis (PCA) was utilised. This technique constructs the correlation matrix of

the data and performs an eigen-decomposition. However, rather than looking at the

directions (eigenvectors) with the highest variance within the data we will look for the

highly correlated data i.e. the directions with the lowest eigenvalues. The yield, burn
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width, tPdV and ∆tstag were taken from 6 simulations (3 high foot and 3 HDC implo-

sions) and PCA was performed. For both the high foot and HDC design, symmetric,

low mode radiation asymmetries and multimode cases were considered. From PCA, it

was found that 99% of the data variance lay in the first two directions. Therefore the re-

maining two directions are highly correlated, potentially revealing physical connections

between the data coordinates. These two relationships are as follows:

∆t̂stag = kt̂PdV k = −0.882 , (5.3)

∆t̂burn = k1t̂PdV + k2Ŷ





k1 = 1.548 ,

k2 = 1.204 ,
(5.4)

where x̂ denotes the standardised quantity i.e. x̂ = (x − µx)/σx where µx and σx are

the population mean and standard deviation of variable x. Firstly we find that the

timescale over which PdV work is done is directly proportional to the time difference

between bang time and stagnation. As the PdV work is a source of heating for the

hotspot, a slower rate will allow energy loss mechanisms, such as radiative losses, more

time leading to early burn truncation. Secondly we find the burn width is proportional to

a linear combination of yield and PdV work timescale. The dependence on yield, at first

counter intuitive, comes from the fact the two capsule designs used in the simulations are

different sizes. Purely from hydrodynamic scaling, the smaller capsules will give lower

yields, smaller hotspots and shorter burn durations. More interestingly, we see the

burn width is proportional to the PdV work timescale. If the hotspot is compressively

heated over a longer period this will extend the burn. The asynchronous stagnation

of perturbed implosions cause an increased tPdV . Therefore a possible explanation for

long experimental burn widths is that not all perturbation sources are accounted for in

simulations.

Detailed 3D high fidelity hydrodynamics simulations come closest to matching the ex-

perimental observables when all known perturbation modes are included [37]. An active

area of research in both indirect and direct drive is looking into 3D drive asymmetries

brought about by laser balance or target placement issues [63, 114, 137]. These drive

asymmetries may account for the difference in simulated and experimental burn widths.

From this investigation principal component analysis has proved itself a powerful tool

and it could be used in a combined analysis of different diagnostic measurements.

Using γ-ray energy gating, both the fusion and carbon γ-ray production rates have

been measured [30]. Neglecting the neutron time of flight between the source and the

ablator (∼ 1 ps), the instantaneous yield of carbon γ-rays for a spherical capsule is given

by:

YCγ(t) =

∫
4πr2dr

ρC(r)

mC

∫
dE σ(E)φn(r, t, E) . (5.5)

Similar to the carbon γ images, we will only consider the scattering of primary DT
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neutrons and invoke energy separability:

YCγ(t) ≈
∫

4πr2dr
ρC(r)

mC
〈σ〉φn(r, t) . (5.6)

If the neutron source is a point source then φn(r) ∝ 1/r2 and the yield is directly propor-

tional to the areal density. However, as with many examples in this work, the neutron

averaged areal density is not equal to the line integrated areal density. Introducing a

extended source flux factor, Fn(r, t)Yn(t) ≡ 4πr2φn(r, t), we arrive at:

YCγ(t) ≈ 〈σ〉
mC

Yn(t)

∫
drρC(r)Fn(r, t) . (5.7)

For most analyses, Fn(r, t) is taken as 1 and the carbon γ yield is directly proportional

to the product of the carbon areal density and neutron yield – this is known as the mo-

noenergetic instantaneous point source or MIPS model [84]. However, one can calculate

an approximate Fn(r, t) by assuming a uniform extended neutron source of radius R(t):

Fn(r, t) =
3r

2R3

(
rR− (r2 −R2) ln

[
r +R√
r2 −R2

])
, (5.8)

Fn(r, t) lim
r→∞

= 1, Fn(r, t) lim
r→R

=
3

2
. (5.9)

The function Fn quantifies the increase in flux due to the increased solid angle subtended

by the source at distance r, compared to a point source. This modifies the carbon γ

yield formula given by Eq. 5.7 as follows:

YCγ(t) ≈ 〈σ〉
mC
〈ρCL〉(t) · Yn(t), ρCR ≤ 〈ρCL〉 ≤

3

2
ρCR . (5.10)

Therefore the carbon γ yield can be increased due to the higher average chord length

through the ablator given by an extended source. Estimates of ρCR based on a point

source model will be too high by at most 50%.

Without significant alpha heating, the carbon areal density is still increasing through-

out the fusing period and peak compression is reached after bang time. Thus it is ex-

pected that the peak carbon γ signal will be reached after bang time for a symmetric

case. Areal density asymmetries which disrupt the hotspot will alter both the fusion

and carbon γ-ray histories. As the time between peak neutron production and peak

areal density increases, an increasing delay between fusion and carbon γ-ray peaks will

be observed. With hotspot self-heating, thermonuclear burn can continue during re-

expansion [174] and therefore for these cases the carbon γ peak will occur before bang

time. Time shifts between fusion and carbon γ peaks have been observed experimentally

[122].

Figure 5.5 presents the γ-ray histories from the multimode case and the symmetric

simulation from which the multimode simulation was initialised. Both exclude alpha

heating. For the symmetric case, peak carbon γ signal occurred ∼ 15 ps after bang
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time. The time difference between peak fusion and carbon γ production was 30 ps

for the multimode case. Meaney et al. report average peak delays of ∼ 15 ps in

experiments at NIF [122]. As discussed earlier, the increased PdV work timescale leads

to an increased time delay between bang time and stagnation. Stagnation defined as

the zero of mechanical work on the hotspot should be well correlated with the peak

areal density. Therefore the larger time difference between peak fusion and carbon γ

production in the multimode case is a direct result of the increased PdV work timescale

brought about by the perturbations. The symmetric case was also run with alpha

heating included and the carbon γ-ray signal peaks 10 ps before bang time. This

shows that burn had continued through re-expansion, a signature of robust ignition and

propagating burn, details of which can be found in Tong et al. [174].
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Figure 5.5: Time histories of D(T, γ) and C(n, n1γ) yields for a symmetric implosion (P0)
and the multimode simulation (MM). It is observed that in both cases the peak
carbon γ signal was reached after bang time. For the multimode simulation, a
more significant time shift in carbon γ signal is observed. The fusion γ signals
are normalised to the P0 peak value, the carbon γ signals peaks match their
respective fusion γ signals. The dashed line shows the evolution of the product
of ablator areal density and fusion reaction rate in the symmetric simulation.

As shown in Eq. 5.10, the time evolution of the carbon γ signal should be equal to
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Yn · ρCR within a simplified point source model. This can easily be calculated for the

symmetric case and is displayed in the Fig. 5.5. We note a ∼ 10% discrepancy between

this simplified model and the carbon γ yield calculated via the inverse ray trace method.

First we will consider the correction from an extended source. When the hotspot is

large compared to the thickness of remaining ablator then 〈ρCL〉 → 3ρCR/2 (within

the uniform source model). This explains why the carbon γ production is higher than

the simplified model prediction at early times. As the ratio of hotspot radius to ablator

thickness decreases 〈ρCL〉 → ρCR.

An additional effect not considered in Eq. 5.10 but included in the AKED calculation

is attenuation. Primary DT neutrons are scattered by the fuel and ablator altering

their energy and direction. This modified the total neutron flux seen by the ablator and

therefore alters the carbon γ production rate. If we first ignore the scattered neutrons,

then attenuation just acts to dilute the neutron flux in the ablator. Therefore as the

areal density of the fuel increases as the capsule converges the degree of attenuation will

increase. This will act to reduce the carbon γ yield relative to the unattenuated case.

This is indeed seen in the results. In reality a fraction of the neutrons scattered prior

to exiting the fuel will inelastically scatter off the ablator producing γ-rays which the

simulation does not account for. Hence the real signal is expected to lie between the

extremes of no attenuation with a point source, given by the areal density burn rate

product, and full attenuation with an extended source, given by the inverse ray trace

model.
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6.1 Neutron Spectroscopy

In Section 3.1, the effect of ion velocities on the spectrum of backscattered neutron

energies was investigated theoretically and through numerical neutron transport calcu-

lations [42, 43]. The work in this thesis showed for the first time that the shape of the

backscatter edge is dependent on the scattering rate weighted ion velocity distribution.

Hydrodynamic conditions throughout the capsule dictate the form of this distribution

and hence these conditions can be inferred from spectroscopic analysis. The mean, v̄,

and variance, ∆2
v, of the distribution are given by averaged fluid velocity and the sum

of the averaged temperature and fluid velocity variance respectively. Since the neutrons

scatter in dense DT fuel which has a low neutron and photon emittance, the backscatter

edge presents an avenue to probe regions of the stagnating capsule currently unmea-

sured. Diagnosing these conditions allows inference of hydrodynamic quantities relevant

to capsule performance. For example, from v̄ the rate of mechanical work done on the

hotspot by the imploding shell during neutron production can be calculated. The ∆v

value can be converted to an inferred scatter weighted temperature, with the effect

of fluid velocity variance included. Measurement of both the nD and nT edge would

allow separation of the thermal and non-thermal contributions to the variance in the

scattering ion velocity.

In order to fit the shape of nT backscatter edge, a spectral model for the background

was developed. This includes single and double scattering terms, and the attenuated

primary TT neutrons. The model was tested on synthetic data produced by the neutron

transport code Minotaur[42] and showed good agreement at current direct drive ICF

experimental areal densities. For LILAC simulations of the triple picket shot 87653

and the single picket shot 89224, the model and neutron transport result were within

1% of each other at all energies of the fitting region. Using a single Gaussian model

for the scattering ion velocity distribution, best fit values for v̄ and ∆v were all within

10% of theoretical values. Numerical results suggest that to analyse at areal densities

& 0.75 g/cm2 (DSR ∼ 3.8%) may require the inclusion of more spectral backgrounds

and attenuation effects. The cumulants for the scattering triton velocity distribution

were calculated for a large ensemble of 1D LILAC simulations. Large correlations were

observed between the cumulants of the hotspot, shocked shell and free-falling shell

indicating a more fundamental underlying relationship. For example, the total ∆v was

seen to be strongly correlated with the hotspot areal density. Future work will aim to

construct a simple model which can explain these strong correlations. This will allow

152
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more detailed information to be extracted from the backscatter edge measurements.

Analysis of experimental backscatter edge data would be possible using the same

forward fitting technique currently used for neutron time-of-flight spectra [74]. The nT

and nD edges occur in the vicinity of the DD peak so instrumental characterisation

at these energies would be mutually beneficial for these spectral signals. Analysis of

experimental nT backscatter edge data at OMEGA is in progress, for which the author

has provided analysis tools [117].

For 3D perturbed implosions different lines of sight would measure the conditions of

different regions of the capsule. Asymmetries in dense fuel conditions could therefore

be inferred. Four neutron spectrometers are sufficient to characterise the DT neutron

birth spectrum needed to analyse the edge. Future investigation is required for the

treatment of large areal density asymmetries in the detailed spectral model. However,

functional fits based on a simplified backscatter model including an ad-hoc background

were able to account for the areal density asymmetry. With the use of anti-podal

primary and nT edge spectral measurements, this model inferred birth spectral moments

and shell velocity means and variances for a P1 implosion. Differences between the anti-

podal edge measurements quantified the large residual kinetic energy and asymmetric

deceleration brought about by the P1 drive. The effect of temperature on scattering

was not included in this calculation but a separate analysis showed that asymmetry in

the scattered weighted temperature was present.

In Section 3.2, we showed that the DSR range in the spectrum can exhibit significant

slope changes in the presence of areal density asymmetries. By comparison to 1D spec-

tra, areal densities within different angular ranges were calculated for a P2 simulation.

Experimental spectral data measuring down to 10 MeV exists [74] and a comparison of

inferred areal densities, FNADs and neutron images would test the viability of this anal-

ysis. Measuring the primary spectrum, backscatter edges and DSR range, and hence

the inferred hotspot and shell velocities and areal density asymmetries, would allow for

a more complete description of low mode perturbations.

In Section 3.3.1, the viability of using the secondary DT spectrum in pre-magnetised

spherical implosions as a measure of fast ion magnetisation was explored. Conditions

for an exploding pusher target were considered in order to minimise the fuel areal

density, and hence minimise slowing of the fast tritons created in DD reactions. It was

shown for a 2 kT magnetic field that the magnetised triton paths created significant

asymmetry in the measured secondary DT spectrum. There was also an increase in

secondary DT yield. The level of asymmetry and yield increase was dependent on the

burn time, i.e. how long the stagnation conditions could survive. For 100 and 200 ps

burn durations the secondary DT yield increased by 1.5 and 2.2 times compared to the

unmagnetised case. These two timescales are approximately 2 and 4 times the triton

time of flight across the fuel. The anisotropy in the secondary neutron spectrum also

increased with increasing burn duration. However, an anisotropic spectrum can also be

obtained from shape asymmetry in the fuel. A 33% P2 shape asymmetry was shown to

give similar anisotropy in the secondary spectrum to the 100 ps magnetised burn case.
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There was not an associated increase in secondary DT yield for the unmagnetised P2

case. Secondary spectral signals indicating areal density asymmetry on unmagnetised

targets have been observed experimentally at NIF [106]. Therefore, it may be possible

to estimate the average magnetic field strength with measurements of secondary yield,

secondary spectra and X-ray imaging.

In Section 3.3.2, the spectrum of high energy neutrons created by tertiary DT reac-

tions was shown to be sensitive to the temperature and density profiles of the hotspot.

In particular, the alpha knock on component is dependent on the energy at which alpha

particles reach the dense DT fuel layer. The slowing of alphas is reduced if the hotspot

is more transparent. This increases the high energy yield of alpha-mediated tertiaries,

altering the neutron spectrum shape. One way in which to increase the hotspot trans-

parency is to flatten the temperature and density profile within the central hotspot.

The neutron-mediated tertiaries are less sensitive to this profile effect. Thus, the high

energy neutron spectra above ∼ 19 MeV become close to equal for different hotspot

profiles. The alpha-mediated tertiaries are of particular interest as they present a direct

measurement of alpha collisions, and hence alpha heating.

6.1.1 Future Work

The backscatter edge shape has been well described through the scattering rate weighted

ion velocity distribution. However, understanding of the various contributions to the

ion velocity distribution requires further work. The ensemble of LILAC simulations

revealed that the hotspot, shocked shell and free-falling shell contributions to the ve-

locity distribution are highly correlated. The return shock plays a key role in setting

the conditions in the hotspot and shocked shell. However, other processes are occurring

which prevent a purely static shock based analysis. A few possible examples are the

subsonic compression post-shock, thermal flux from the hotspot and the time evolution

of the shock and free-falling shell. A more fundamental understanding of the stagna-

tion process will greatly benefit the backscatter edge measurement. This will be gained

through numerical modelling and simplified analytic models.

The current spectral model for the backscatter edge cannot capture areal density

asymmetries without the inclusion of ad-hoc backgrounds. Therefore, further develop-

ment of the model is required. This will require the drawing of areal density asymmetry

data from other diagnostics to feed into the model. Separately, extension of the model

to higher areal densities will require additional considerations such as triple scattering.

A surrogate background model developed from a database of 1D neutron spectra may be

an efficient route to including the multiple backgrounds. This analysis will also benefit

the spectral slope analysis in the presence of areal density asymmetries.

While the static model discussed in 3.3.1 gives a good first estimate, the capability

to perform magnetised secondary spectra calculations in line with the hydrodynamics

is currently being developed and tested by Dr Brian Appelbe. This will allow the sec-

ondary spectral signals from hydrodynamic simulations of proposed magnetised target
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designs to be investigated.

Modelling of tertiary spectra is in its nascent stages and there are many avenues for

further work. Development of the codes used to model tertiaries will be discussed later

in Section 6.5. On the theoretical side, previous models for the tertiary spectrum were

local [77, 78]. However, results presented here show that profile effects modify the spec-

trum highlighting the non-local nature. Therefore, a simple theoretical model including

the finite range of alphas is required. Separately, the backscatter edge measurement

samples the same region as the neutron-mediated tertiaries. A combined analysis would

remove some of the unknowns present in the tertiary analysis. For example, the finite

temperature of the shell alters the stopping power of knocked on ions – the backscatter

edge could provide a measurement/constraint on this.

6.2 Neutron Imaging

Primary neutron imaging was investigated in Section 4.1.1. It has been shown that

spatially varying attenuation does not affect shape analysis using the 17% contour.

Since the 17% contour is the primary shape analysis method in use for neutron imaging,

this result ensures confidence in its interpretation. This was tested for both idealised

1D and perturbed 3D conditions. While the attenuation factor varied by a few tens

of percent over a few µm for the 3D perturbed case, the contour position was moved

by only < 3 µm. Three dimensional reconstruction techniques using multiple lines of

sight were tested on synthetic primary images. The technique developed by Volegov

et al. [177–179] produced encouraging results on synthetic images created by AKED.

However, further analysis investigating the effects of differential attenuation is required.

In Section 4.1.2, the use of activation diagnostics to measure areal density asymme-

tries was shown to have limited resolution due to the extended hotspot. A simple test

case showed that the angular resolution (∆θ) on areal density asymmetries is depen-

dent on the shell to hotspot radius ratio (Rs/Rh): ∆θ ∝ sin−1 (Rh/Rs). Therefore, the

neutron-averaged areal density, as seen by the FNADs, will have less high mode content

than the centre-point areal density. For a multimode simulation, the high mode pertur-

bations were not resolvable by the FNADs due to the extended nature of the hotspot.

Hotspot velocity appears as an additional low mode signal, further reducing the ability

to measure high mode areal density variation. Theoretically, scattered neutron imaging

is better suited to resolve high mode areal density asymmetries. However, it is limited

by low image resolution in experiment.

In Section 4.2, it was shown that multiple energy-gated neutron images and the fluence

compensation technique allow a detailed description of shell conditions. Multiple energy

gates probe different angular ranges and hence localised features such as high mode

spikes and the tent scar can be isolated in this scheme. For a simulation with a single

spike perturbation, fluence compensated images faithfully recovered the areal density

conditions near bang time. Performing the gating on a single line of sight would allow

such features to be imaged with the same projection characteristics - this capability has



156 Chapter 6. Conclusions

already been proven with the 6-12 MeV and 13-17 MeV gates on one NIS line of sight.

The recent increase in neutron yields [50, 108] may allow for sufficient signal-to-noise

ratio in narrower energy gates. In collaboration with Volegov et al. [179], scattered

neutron images of the multimode simulation were used in a density reconstruction.

The perturbation structure and density values were in modest agreement, with the

reconstructed mass 20% lower than simulated [179]. These are encouraging results

given that only a single scattered neutron image was used in the reconstruction.

In Section 4.3, combined imaging and spectroscopic analysis has been shown to aid

in diagnosing different failure mechanisms and understanding the correlation between

hotspot flows, shell asymmetries and drive imbalances. The particular examples consid-

ered had very similar spectroscopic signals. However, primary and fluence compensated

imaging revealed that one was due to bulk motion of both shell and hotspot whilst the

other had a more localised out-flowing or aneurysm of the hotspot. Since the remedies

to these two failure mechanisms could be very different, it is important to differentiate

between them.

6.2.1 Future Work

We expect that reconstruction techniques will become more reliable as additional imag-

ing lines of sight are being constructed. The effect of an increased number of lines of

sight can be readily tested using synthetic data. While tomography potentially leaves

17% contour and fluence compensation 2D analysis behind, new metrics and analysis

of the reconstructed 3D volumes are required in order to compare prediction and ex-

periment. Separately, analysis involving multiple energy gates on a single line of sight

may allow more accurate inferred conditions without the assumptions and degeneracy

of tomographic techniques.

6.3 Gamma Ray Measurements

In Section 5.1, an investigation was carried out to produce simulated images of remain-

ing carbon-based ablator using the 4.4 MeV γ-ray produced by inelastic scattering of

primary DT neutrons. The third line of sight of NIS will soon be upgraded to image the

carbon γ rays – the ∼ 10 µm resolution reported for the neutron imaging [176, 179] was

used as an estimate for the γ imaging resolution1. Carbon γ imaging was shown to be an

effective method to image the ablator areal density for both spherical and asymmetric

implosions. The ablator features closest to the hotspot have an increased signal. This

allows the feed-through of ablator perturbations to hotspot and dense fuel morphology

to be investigated. For a multimode simulation, a spatial resolution of 10 µm on a time

integrated image was sufficient to observe the perturbed structure. A simulation using

realistic perturbation sources [120] showed that low mode radiation drive asymmetries

1One of the main limiting factors on the neutron image resolution is the neutrons long mean free path
in the aperture materials (> 3 cm) therefore requiring specialised thick aperture arrays [176, 179],
an issue which will persist with γ imaging.



6.3 Gamma Ray Measurements 157

can be imaged and resolved at 10 µm. However, the fine scale ablator mix induced by

the fill tube defect does not give a strong enough carbon γ signal to overcome imaging

spatial resolution. A combination of high fidelity simulations, which accurately capture

mix dynamics [37], and synthetic carbon γ images can be used in future to find the

required spatial resolution to resolve the fill tube mix.

In Section 5.2, the time series of DT fusion γ production were analysed for a number

of radiation hydrodynamics simulations performed by Chimera. Comparison between

the PdV work performed on the hotspot and the burn history revealed some corre-

lations. The time between stagnation (PdV work = 0) and bang time was found to

be proportional to the timescale over which the PdV work was performed. In other

words, a rapid compression of the hotspot brought the stagnation and bang time closer.

This is intuitive as this gives loss mechanisms, such as radiative cooling, less time over

which to operate – the energy loss is therefore reduced. A second strong correlation

was found between the burn width, PdV work timescale and yield. The yield depen-

dence is purely from hydrodynamic scaling, as the smaller capsules will give lower yields,

smaller hotspots and shorter burn durations. The PdV work timescale sets the heating

rate of the hotspot. A prolonged heating rate will extend the burn time at the expense

of a lower peak fusion rate. Hydrodynamic simulations which under-predict the burn

width are likely missing perturbation sources which cause a more asynchronous stag-

nation. As understanding of the experiment has improved, additional perturbations

such as 3D drive asymmetries have been analysed. When included in simulation, these

perturbations generally bring the simulated and experimental burn widths into closer

agreement.

The time series of carbon γ-rays were also consider in Section 5.2. The carbon γ-ray

production rate is, to first order, proportional to the product of neutron yield and ablator

areal density. Comparison of time series of DT fusion and carbon γ-ray production

showed a delay between the peaks. The length of this delay changed depending on the

degree of burn truncation. Symmetric and multimode simulations showed 15 and 30 ps

delays respectively. Similar delays (∼ 15 ps) between fusion and carbon γ-ray peaks

have been systematically observed in experiments at NIF [122]. The simulation results

indicate that the delay between stagnation and bang time increases for asymmetric

implosions. The same conclusion was made independently from analysis of the fusion

γ-rays.

6.3.1 Future Work

In a similar fashion to the scattered neutron images, the carbon γ-ray images can

be used to reconstruct the remaining ablator density given a source distribution. The

images contain information of carbon distribution in all 4π, unlike the restricted angular

range of the scattered neutron images. This makes the reconstruction easier as there

are no blind spots, but more degenerate as more solutions could create the observed

image. Synthetic data created using techniques described in this work could be used to
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determine if the current reconstruction techniques for scattered neutron images can be

applied to carbon γ-ray images without modification.

Recent experimental developments in the measurements of the DT fusion γ-ray histo-

ries has greatly increased the time resolution possible to ∼10 ps [66]. Features beyond

the centroid and width of the production rate can now be resolved. Therefore, a more

extensive simulation study of DT fusion γ-ray histories including higher moments (such

as skew and kurtosis) would allow more information to be inferred from experimental

measurements. Similarly features of the carbon γ-ray signal, such as the width, could

be explored to extract time resolved ablator density properties. Foremost, developing

analysis to extract the ablator areal density as a function of time using the fusion and

carbon γ-ray history.

6.4 Outlook

Diagnosing failure mechanisms in current ICF experiments is key in improving future

experimental performance. The list of potential sources of perturbations and asym-

metries is constantly evolving. Existing measurements can be used to identify and

remove/minimise these sources. However, these measurements do not give a com-

plete picture of the experiment and failure mechanisms can be missed or misidentified.

Novel measurements are vital in both constraining known mechanisms and revealing

new degradation sources. To date, the majority of measurements are focussed on the

conditions within the hotspot. This is due to its central importance in the hotspot

ignition scheme but also due to its high emittance of observable signals. The properties

of the dense DT fuel are relatively poorly measured, similarly for the remaining ablator

in indirect drive experiments. This is due to the low emittance of these regions. Instead

scattering measurements must be relied on, which currently are used to infer areal den-

sity [84, 95] but do not measure hydrodynamics conditions such as fluid velocity and

temperature. As preheating of the fuel and fuel-ablator mix are proposed as degradation

mechanisms [58], hotspot measurements cannot currently directly measure these effects.

Therefore, efforts towards increasing the capabilities of nuclear measurements, such as

the backscatter edge analysis, is required in order to better understand the dominant

degradation mechanisms at play.

Combining measurements allows more information to be extracted than analysis of

the measurements separately. In the field of ICF, a Bayesian analysis using multiple

measurements has been developed to infer stagnation conditions during Magnetic Lin-

ear Inertial Fusion (MagLIF) experiments at Z [103]. Integrating a similar framework

to spherical ICF experiments would allow assumptions used in analysis of individual

measurements to be relaxed. For example, the conversion of DSR to areal density is

found from 1D neutron transport calculations so cannot account for the effects of asym-

metries. By the inclusion of FNADS and neutron images, the fuel morphology could

be included in the DSR to areal density measurement. In recent years, Artificial Intel-

ligence (AI) techniques have started to enter the areas of ICF design and experiments.
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These generally involved design optimisation [70, 76] and/or calibrating simulation to

experimental data [58, 70, 87]. AI also has great potential in pure experimental data

analysis, for example genetic algorithms have been used in X-ray spectroscopy [67]. For

complex systems, it is often the case that it is difficult to construct a simple model to

solve the inverse problem [99]. However, it is possible to perform a large number of

calculations of the forward problem for various input conditions. Bayesian inference

(using Markov chain Monte Carlo or similar) presents a way to construct a method

which can use these forward calculations to fit experimental data and estimate with

uncertainties the input conditions. Doing large numbers of calculations of the forward

problem however can be prohibitively computationally expensive; in these situations

using a machine learned emulator can speed up calculations. This is relevant to many

of the nuclear measurements discussed in this thesis.

One of the primary aims of this research has been to expand the number of measurable

quantities in ICF experiments. However, measurements in ICF tend to be averaged in

some sense, usually temporal and/or spatial integration has been performed. Therefore

potentially vital information about the time evolution and spatial profiles is still missing.

For example, the burn-average ion temperature can be approximately measured but the

cooling rate of the hotspot cannot. A similar problem exists with lack of measurements

on spatial gradients. To access this information one needs to include higher order terms

in the current analysis or to combine diagnostic information. An example of the former is

to measure the kurtosis of the DT peak and therefore have a measurement of the variance

of the ion temperature, see Eq. 2.77. An example of the latter is the analysis proposed

and performed by Divol et al. [48] which uses primary neutron imaging tomography

and spectral analysis to reconstruct spatially resolved 3D ion temperature maps.

As experiments towards magnetised ICF on NIF start, the role of nuclear measure-

ments in diagnosing the effects of the magnetic fields needs to be investigated. In this

work we presented the use of secondary DT spectra in diagnosing magnetic fields in low

areal density targets. However, these techniques are not viable for high gain layered

implosions as the triton stopping distance becomes too short. Direct measurements of

the magnetic field strength with nuclear observables will become increasingly difficult.

Indirect measurements, such as increased temperature and change in capsule shape,

can be performed but will rely on some additional model to extract a magnetic field

strength.

The measurements presented in this thesis have been given in the context of ICF.

However, some of the techniques are applicable in other high energy density physics

experiments. These experiments commonly involve the shock compression of materials

to high densities. Ions and electrons can behave very differently at shock fronts and

therefore separate measurements of ionic and electronic conditions are valuable. As the

radiative properties are dominated by the electrons, it is often difficult to measure the

ionic contribution. Nuclear measurements can be used to focus on the ions. With the

use of an external neutron source, the backscatter edge could be used to infer velocities

and temperatures of the ions.
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Capsule implosions have been used to study nuclear fusion reactions at conditions

relevant to stellar and Big Bang nucleosynthesis. Nuclear measurements are relied on in

these cases to measure the yield and spectrum of fusion products [27, 28, 96, 193, 194].

ICF experiments also more accurately recreate the astrophysical environment in terms

of plasma conditions. In more traditional accelerator experiments, the target is cold

and hence has bound electron screening of the nucleus. Separately, the high neutron

flux environment of a DT capsule allows neutron-induced reactions to be studied. Light

nuclei provide a good test bed for fundamental nuclear theory. For example, accurate

modelling of nucleon-nucleon and 3-nucleon interactions is needed to gain agreement

with measurements of the D(n,2n)p reaction [52, 158]. Heavier nuclei (atomic mass >

56) are also of interest as their neutron-capture reactions have astrophysical relevance.

The slow (s) and rapid (r) neutron-capture processes account for all the neutron rich

heavy elements observed in the universe [9]. While directly measuring these processes

is extremely difficult due to their high temperature and number density requirements,

nuclear physics problems which affect these processes could be investigated using ICF

experiments [31]. One such effect is the thermal excitation of nuclear states altering the

neutron-capture cross section. This will require temperatures in the tens of keV range

[31] – this would be possible in the case of a strongly igniting DT capsule.

6.5 Future Work in Numerical Modelling

In order to continue using simulated data to inform experimental analysis, continued

development of simulation tools to improve accuracy is required. We will discuss two

facets of the ongoing research in numerical modelling of ICF implosions at Imperial Col-

lege. These are improvements to the calculation of radiative properties used in radhydro

simulations and the transport models used to post process the radhydro simulations to

calculate the nuclear observables.

6.5.1 Minotaur

While Minotaur is currently the most comprehensive code at Imperial College for pro-

ducing neutron spectra from 1D hydrodynamics simulations, there are several avenues

for further work. Currently, the computation time is dominated by the calculation of

transfer cross sections including the effects of fluid velocity and temperature. Either

some increase in efficiency of the calculation is needed or the creation of tables which

could be loaded to reduce run time. Since we are working with neutron energies much

higher than those of the scattering ions, some suitable expansion may allow an increased

efficiency. Alternatively, the scattering matrices are sparse, see Fig. 2.9, and therefore

the tables would be easily compressed. The inclusion of ion velocities to inelastic pro-

cesses is also currently neglected. Relativistic corrections have proved important in

matching physical neutron spectra and therefore should be an aim to include these in

Minotaur. Fast ion transport is in a less developed state than the neutron transport
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in Minotaur. Given interesting preliminary results in high energy neutron spectra, see

Section 3.3, development of the fast ion transport would allow a wider range of re-

search paths. A key update would be to include stopping power models that can handle

partially degenerate and coupled plasmas. This would aid in modelling the tertiary

neutrons.

6.5.2 AKED

In order to make AKED efficient enough for 3D calculations, many simplifying steps

have been taken. An important new addition to AKED would be the inclusion of

inelastic scattering such as D(n,2n), allowing some accuracy to be recovered at lower

neutron energies. The ray trace algorithm also traces between cell centres, albeit with

some angular smoothing (see Appendix B.3), which can cause some grid effects. A sub-

grid or stochastic sampling of the starting and finishing points of a ray may be used to

eliminate this.

6.5.3 SpK

A proposed improvement to SpK is to implement and develop a model for IPD and

pressure ionisation which is self consistent i.e. the shift in continuum and loss of bound

states are calculated from the same model. This non-ideal plasma behaviour can be

formulated in terms of an interacting fluid description of structure factors and radial

distribution functions2. Work from Lin et al. [110] describes a method to calculate IPD

from the static structure factor. Work from Iglesias et al. [93] describes how to calculate

a microfields distribution from a radial distribution function. Combining these methods

within SpK with a interacting fluid model, such as hyper-netted chain or mean spherical

approximation, would be a step in the direction of self-consistent non-ideal behaviour.

2The radial distribution function, g(r) is related to the static structure factor, S(q), through a Fourier
transform, S(q) = 1 + nF(g).
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A Theory Appendices

A.1 Statistical Mechanics

A.1.1 Microfield Distribution

The microfields problem was originally approached by Holtsmark when considering the

distribution of gravitational forces acting on a particle due to all neighbouring particles.

The same analysis can be used in plasmas due to the same radial dependence of Newton’s

law of gravitation and Coloumb’s force law. Since many derivations in the literature aim

to provide a more general microfield distribution, the Holtsmark result is often quoted

without derivation. A detailed derivation will therefore be given here for reference.

We first assume that particles are uniformly distributed in space d3r, the distribution

of force, W (~F ), at the origin is then given by:

W (~F ) =

∫ N∏

i

d3ri
V

δ

(
~F −

N∑

i

~Fi(~ri)

)
, (A.1)

where V is the volume of the space, ri is the position of the i-th particle and Fi is the

force due to the i-th particle. Using the Fourier transform identity:

δ(~x) =
1

(2π)3

∫
d3k exp

[
−i~k · ~x

]
, (A.2)

we then arrive at:

W (~F ) =
1

(2π)3

∫
d3k exp

[
−i~k · ~F

] ∫ N∏

i

d3ri
V

exp

[
i~k ·

N∑

i

~Fi(~ri)

]
, (A.3)

W (~F ) ≡ 1

(2π)3

∫
d3k exp

[
−i~k · ~F

]
T (~k) . (A.4)

Since the interparticle force only depends on the separation, T (~k) can be written as a

power of a single integral:

T (~k) =

∫ N∏

i

d3ri
V

exp

[
i~k ·

N∑

i

~Fi(~ri)

]
=

(∫
d3x

V
exp

[
i~k · ~F (x)

])N
. (A.5)

The common statistical mechanics trick of adding and subtracting 1 will then be used to

obtain a convergent result in the thermodynamic limit (N →∞, V →∞, n = N/V =
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const.):

T (~k) =

{
1−

∫
d3x

V

(
1− exp

[
i~k · ~F (x)

])}N
=

{
1− 1

N

∫
d3x n

(
1− exp

[
i~k · ~F (x)

])}N
,

T (~k) = exp

[
−n
∫
d3x

(
1− exp

[
i~k · ~F (x)

])]
. (A.6)

If we now specify the form of the force as inverse square ~F = A~x/x3, then T (k) can be

found through integration:

∫
d3x

(
1− exp

[
i~k · ~F (x)

])
= 4π

∫ ∞

0
dx

[
x2 − x4

kA
sin

(
kA

x2

)]
=

4

15
(2πk|A|)3/2 ,

T (k) = exp

[
−n 4

15
(2πk|A|)3/2

]
. (A.7)

Using the isotropy of the system to integrate out the angular dimensions in k-space [21],

we define the probability of finding a field strength, F =
∣∣∣~F
∣∣∣:

P (F ) = 4πF 2W (~F ) =

2F

π

∫ ∞

0
dk k sin(kF ) exp


−2

√
2π

5

(
k|A|

[
4πn

3

]2/3
)3/2


 . (A.8)

Finally the Holtsmark distribution is commonly written in terms of the reduced dimen-

sionless microfield parameter β = F/F0 and integration variable y = kF0:

PH(β) =
2β

π

∫ ∞

0
dy y sin(yβ) exp

(
−2
√

2π

5
y3/2

)
, (A.9)

F0 = |A|
[

4πn

3

]2/3

=
|A|
r2

0

, (A.10)

where r0 is the interparticle separation and therefore F0 represents the force at the

interparticle separation. A plot of the functional forms of the Holtsmark distribution

and its cumulative are shown in Fig. A.1. The constant 2
√

2π/5 = 1.002651... is often

dropped due to its proximity to 1.

The assumption of uniformly distributed particles used in deriving the Holtsmark

distribution is the same as an ideal gas approximation. In reality the repulsive forces

between charged particles reduce the probability of finding particles in close proxim-

ity. Therefore microfield distributions in real plasmas are more peaked at lower field

strengths. There are many models which aim to capture this behaviour [85] of which

APEX is a notable example [92, 93]. APEX calculates the microfield distribution based

on the pair correlation function, g(r), which can be calculated from statistical fluid

equations.
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Figure A.1: The Holtsmark distribution and its cumulative as a function of the dimen-
sionless microfield parameter β

A.2 Scattering Kinematics

A.2.1 Beam Target Geometry

We will consider a general 2 → 2 body interaction for species i + j → k + l where

energy Q is released (negative Q gives absorbed energy). In the beam target (BT)

frame, species i is our beam and species j our target. We will solve for the properties

of species k without loss of generality. As with most kinematics problems, transforming

to the centre of mass (CoM) frame greatly simplifies the analysis, see Fig. A.2 for the

geometry of the two frames.

Beam Target Frame Centre of Mass Frame

Figure A.2: Diagram showing the 2→ 2 scattering geometry in the beam target and centre
of mass frames. Relevant velocities and angles are defined in the figure. Note
in the centre of mass frame that the target particle j is moving at the centre
of mass velocity as it is stationary in the lab frame.

Firstly we will consider the classical case (v � c and E = p2/2m), using energy and
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momentum conservation in the CoM frame to solve for the energy of k:

Ec,i + Ec,j +Q = Ec,k + Ec,l , (A.11)

mi +mj = mk +ml , (A.12)

~pc,i = −~pc,j and ~pc,k = −~pc,l , (A.13)

Ec,k =
mlkmi

mkmij
Ec,i

(
1 +

Q

E∗

)
, (A.14)

where we defined the reduced mass 1/mij = 1/mi + 1/mj and the total CoM energy

pre collision E∗ = Ec,i + Ec,j = mi
mij

Ec,i. From here we will derive the first “mass

parameter”, a, relating the BT and CoM frame energies:

~vcm =
mij

mj
~vi → ~pc,i =

mij

mi
~pi, (A.15)

Ec,i =

(
mij

mi

)2

Ei, E
∗ =

mij

mi
Ei , (A.16)

Ec,k =
mlkmij

mkmi

(
1 +

Q

E∗

)
Ei ≡ a2Ei . (A.17)

Next we find the energy of the outgoing particle in the BT frame and along the way

define the second “mass parameter”, b. The outgoing energy is found as a function of

incoming energy and CoM scattering cosine:

1

2
mkv

2
cm =

1

2
mk

(
mij

mj

)2

v2
i =

m2
ijmk

m2
jmi

Ei ≡ b2Ei , (A.18)

Ek =
1

2
mkv

2
k =

1

2
mk(~vc,k + ~vcm)2 = Ec,k +mk~vc,k · ~vcm +

1

2
mkv

2
cm , (A.19)

= a2Ei +mkvc,kvcmµc + b2Ei =
(
a2 + 2abµc + b2

)
Ei , (A.20)

this allows the slowing down kernel, g = ∂µc/∂Ek, to be found:

g =
∂µc
∂Ek

=
1

2abEi
=

2

((a+ b)2 − (a− b)2)Ei
=

2

Ek,max − Ek,min
. (A.21)

The maximum and minimum energy of the outgoing particle occur at µc = +1 and

µc = −1 respectively. Finally the BT frame scattering cosine, µ∗0, is related to the

incoming and outgoing energies:

Ec,k =
1

2
mk(~vk − ~vcm)2 = Ek −mk~vk · ~vcm + b2Ei , (A.22)

mk~vk · ~vcm = 2b
√
EkEiµ

∗
0 = Ek + b2Ei − a2Ei , (A.23)

µ∗0 =
1

2b

[√
Ek
Ei
− (a2 − b2)

√
Ei
Ek

]
. (A.24)

Combining Eqs. A.20 and A.24 one can find a relationship between BT and CoM scat-
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tering cosines and evaluate the Jacobian:

µc =
b

a

[
µ∗20 − 1 + µ∗0

√
µ∗20 − 1 + a2/b2

]
, (A.25)

∂µc
∂µ∗0

=
b

a

[
2µ∗0 +

2µ∗20 − 1 + a2/b2√
µ∗20 − 1 + a2/b2

]
. (A.26)

In the following sections pre collision motion of the target will be included and a

relativistic treatment of elastic scattering will be given.

A.2.2 Classical Lab Frame Scattering Kinematics

This section will use the notation and results outlined in the previous section, subscript

BT will be used to identify BT frame quantities.

In the lab frame, target species j is no longer stationary thus altering the velocity of

the CoM. Therefore, we must define additional angles between the projectile and target

in the problem:

µ′ ≡ ~vi · ~vj
vivj

, µ ≡ ~vk · ~vj
vkvj

. (A.27)

The BT in and outgoing energies can be simply related to lab frame equivalents through

frame transforms:

EBT,i =
1

2
mi(~vi − ~vj)2 = Ei +

mi

mj
Ej − 2

√
mi

mj

√
EiEjµ

′ , (A.28)

EBT,k =
1

2
mk(~vk − ~vj)2 = Ek +

mk

mj
Ej − 2

√
mk

mj

√
EkEjµ . (A.29)

These can be used to find the CoM scattering cosine by subbing into the expression:

µc =
1

2ab

EBT,k

EBT,i
− (a2 + b2) =

1

2ab

Ek + mk
mj
Ej − 2

√
mk
mj

√
EkEjµ

Ei + mi
mj
Ej − 2

√
mi
mj

√
EiEjµ′

− (a2 + b2) . (A.30)

For the lab frame scattering cosine it is simpler to re-derive from energy and momentum

conservation in the lab frame than to transform the BT scattering cosine. We eliminate

species l from the conservation equations and rearrange for µ∗0 to obtain:

µ∗0 = µ∗BT,0 +

√
mjEj
mkEk

µ′ −
√
mjEj
miEi

µ+
ml −mj

2
√
mimk

Ej√
EiEk

, (A.31)

µ∗BT,0 =
1

2b

[√
Ek
Ei
− (a2 − b2)

√
Ei
Ek

]
. (A.32)

If we are considering reactions where species l and j are the same then the final term

in Eq. A.31 vanishes, e.g. for neutron scattering.

The slowing down kernel is also needed to bring the differential cross section from the
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CoM to lab frame.

g =
∂µc
∂Ek

=
∂µc

∂EBT,k

∂EBT,k

∂Ek
=

1

2abEBT,i

(
1−

√
mkEj
mjEk

µ

)
. (A.33)

Finally the cross section must be altered to account for the change in flux due to the

change in relative velocity. The factor is introduced to the cross section so that the

collision operator is given by the product of the scattering kernel and lab frame incident

flux:

σ(E)→ |~vi − ~vj |
vi

σ(E) . (A.34)

A.2.3 Relativistic Lab Frame Scattering Kinematics

Natural units (c = 1) will be used in the following section leading to following relativistic

definitions:

γ =
1√

1− β2
, (A.35)

~p = γM~β , (A.36)

E =
√
M2 + p2 = γM , (A.37)

K = E −M = (γ − 1)M , (A.38)

M∗ =

√∑
E2 −

∣∣∣
∑

~p
∣∣∣
2
, (A.39)

where γ, ~p, M , ~β, E, K and M∗ denote the Lorentz factor, 3-momentum, rest mass,

velocity, energy, kinetic energy and invariant mass respectively.

Relativistic corrections to scattering kinematics are required to very accurately de-

scribe the post collision velocities at MeV particle kinetic energies. In particular, this

analysis will be of interest for the elastic scattering of DT fusion neutrons. We will

therefore focus on the kinematics of the incoming and outgoing neutron.

Similar to the analysis in the previous two sections, the quantities that will be required

for the scattering analysis are the scattering cosines, in the lab and centre of mass frames,

and the slowing downing kernel[169]. These are given by the following definitions:

µ∗ ≡ ~p ′n · ~pn
p′npn

, µc ≡
~p ′c,n · ~pc,n
p2
c,n

, g ≡
∣∣∣∣
∂µc
∂En

∣∣∣∣ . (A.40)

As before, subscript c denotes centre of mass frame quantities, primed quantities are

pre-collision and unprimed quantities are post-collision. We also need to define the

various angles between neutron and ion:

µ′ ≡ ~p ′n · ~p ′i
p′np
′
i

, µ ≡ ~pn · ~p ′i
pnp′i

. (A.41)

We will proceed in this analysis by finding the properties of the centre of mass frame,



A.2 Scattering Kinematics 169

using the invariant mass to link to the lab frame:

~βc =
~p ′n + ~p ′i
E′n + E′i

, γc =
1√

1− β2
c

, (A.42)

p2
c,n =

1

4

(
M∗ +

M2
n −M2

i

M∗

)2

−M2
n , (A.43)

M∗2 = M2
n +M2

i + 2E′nE
′
i − 2p′np

′
iµ
′ , (A.44)

where βc is the velocity of centre of mass frame and γc is the equivalent Lorentz factor.

The lab and centre of mass frame 3-momenta can then be related via a Lorentz boost

of ~βc:

~p ′c,n = ~p ′n +

[(
γc − 1

β2
c

)
~βc · ~p ′n − γcE′n

]
~βc , (A.45)

~pc,n = ~pn +

[(
γc − 1

β2
c

)
~βc · ~pn − γcEn

]
~βc . (A.46)

Combining the above equations and the energy-momentum conservation laws, the fol-

lowing expressions are found:

µ∗ =
En(E′n + E′i) + 1

2

(
M2
i −M2

n −M∗2
)
− p′ipnµ

p′npn
, (A.47)

µc =
γ2
c

p2
c,n

[(
E′n~βc + ~p ′n

)
·
(
En~βc + ~pn

)
+ ~βc · ~p ′n~βc · ~pn − β2

cp
′
npnµ

∗
]
, (A.48)

g =
E′i − p′iµ/βn

p2
c,n

. (A.49)

To show the order of correction, we will consider the relativistic expression for µ∗ for βi

= 0:

µ∗ =
EnE

′
n +Mi(En − E′n)−M2

n

p′npn
=

1

β′nβn

[
1− 1

γnγ′n
+Ai

(
1

γ′n
− 1

γn

)]
. (A.50)

We can solve this quadratic1 for either βn or γn − 1, picking positive roots:

βn
β′n

=

(
Ai
γ′n

+ 1
)
µ∗ +

(
Ai + 1

γ′n

)√
µ∗2 +A2

i − 1

A2
i + 2Aiγ′n

+ 1
γ′2n

(1− µ∗2) + µ∗2
, (A.51)

γn − 1

γ′n − 1
=
Kn

K ′n
=

1−γ′n
2 (Ai − 1)2 + 1+γ′n

2

(
µ∗ +

√
µ∗2 +A2

i − 1
)2

(Ai + γ′n)2 − (γ′2n − 1)µ∗2
, (A.52)

where Ai = Mi/Mn as before. We see that these equations reduce to the more familiar

classical expressions for γ′n = 1. Of particular interest is the kinematic edge at µ∗ = −1,

1The route I took involved many factorisations, rearrangements and cancellations to reach these rather
pleasing final results. I imagine this is the kind of algebra a textbook might label as an exercise for
the reader.
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the relativistic equations give the following results:

βn
β′n

(µ∗ = −1) =
A2
i − 1

A2
i + 2Aiγ′n

+ 1
=
Ai − 1

Ai + 1
·
[
1 +

2Ai
(Ai + 1)2

(
1

γ′n
− 1

)]−1

, (A.53)

Kn

K ′n
(µ∗ = −1) =

(Ai − 1)2

A2
i + 2Aiγ′n + 1

=

(
Ai − 1

Ai + 1

)2

·
[
1 +

2Ai
(Ai + 1)2

(
γ′n − 1

)]−1

. (A.54)

The terms in the square brackets are the relativistic corrections to the backscatter edge

velocity and kinetic energy. For K ′n = 14 MeV, the incoming neutron Lorentz factor

γ′n ≈ 1.015 leads to a correction factor of 0.993 (0.994) for D (T) backscatter giving

downshifts of a few tens of keV to the backscattered neutron.

A.3 Quantum Mechanical Scattering Problem

The aim of this appendix is to show how nuclear potentials are related to the differential

and total scattering cross sections. The basics of the quantum mechanical scattering

problem are laid out while hinting at the true complexity of the full analysis.

Spinless solutions, ψ(~r), of the Schrödinger equation for a central potential V (r) can

be decomposed into spherical harmonics, Ylm(r̂), and the radial Schrödinger equation

formed:

ψ(~r) =
∑

lm

Clm
ul(r)

kr
Ylm(r̂) , (A.55)

[
d2

dρ2
+ 1− l(l + 1)

ρ2

]
ul(ρ) = U(ρ)ul(ρ) , (A.56)

U(ρ) =
V (r)

E
, E =

~2k2

2m
, ρ = kr . (A.57)

In the absence of the potential, Eq. A.56 is the Ricatti-Bessel function which permits

solutions, ĵl(ρ) = ρjl(ρ) and n̂l(ρ) = ρnl(ρ) where jl and nl are the spherical Bessel

functions. Constructing a normalised linear combination using a mixing phase shift δl:

ul(ρ) = cos δlĵl(ρ) + sin δln̂l(ρ) . (A.58)

As long as the potential decays sufficiently fast, solutions must asymptote to this free

particle solution.

Now if we consider the scattering problem, we have state of definite linear momentum

(i.e. plane wave) incident on the scattering potential. The probability of scattering into

a given solid angle is then found through the outgoing flux at a distance much larger

than the effective radius of the potential. The incoming plane wave solution can be

shown to be given by [13]:

ei
~k·~r =

∑

l

(2l + 1)iljl(kr)Pl(cos θ) ===⇒
r→∞

1

kr

∑

l

(2l + 1)il sin (kr − lπ/2)Pl(cos θ) ,

(A.59)
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where Pl are the Legendre polynomials and θ is the angle between ~k and ~r.

The total wavefunction must have the asymptotic form which satisfies the large r

radial Schrödinger equation given in Eq. A.58:

ψ(~r) ===⇒
r→∞

∑

lm

Clm(cos δljl(kr) + sin δlnl(kr))Ylm(r̂) , (A.60)

=
1

kr

∑

lm

Clm sin (kr − lπ/2 + δl)Ylm(r̂) . (A.61)

The naming of δl as a phase shift is now clear, it is the phase difference between the

incident and scattered waves. The scattered wave is the difference between this total

wavefunction and the incident plane wave. By requiring that the scattered wave is

purely outgoing, the coefficients Clm can be solved for and the following partial wave

solution is found [13, 59]:

ψscat(~r) = ψ(~r)− ei~k·~r ===⇒
r→∞

eikr

kr

∑

l

(2l + 1)eiδl sin δlPl(cos θ) ≡ eikr

r
f(θ) . (A.62)

Thus the differential and total cross section can be written in terms of the phase shifts,

δl, introduced by the potential:

dσ

dΩ
= |f(θ)|2 =

(
4π

k

)2∑

l,l′
(2l + 1)(2l′ + 1)ei(δl−δl′ ) sin δl sin δl′PlPl′ , (A.63)

σ =
4π

k2

∑

l

(2l + 1) sin2 δl . (A.64)

The partial-wave analysis gives an exact procedure to solve the scattering problem at all

energies. The phase shifts can be calculated for a specified V (r) or found by fitting to

experimental data. The former is done by invoking the continuity of the wavefunction,

ul(ρ), at the potential radius R:

tan δl = − kRĵ
′
l(kR)− ĵl(kR)L

kRn̂′l(kR)− n̂l(kR)L , L ≡
(

R

ul(k, r)

dul(k, r)

dr

)

r=R

, (A.65)

here we have ignored spin which introduces a spin-orbit interaction term to the Hamil-

tonian. A more complex expression for f(θ, φ) is needed with spin dependent phase

shifts δJL [13]. Fitting experimental data is generally aided by the phenomenological

R-matrix analysis described in the following references [13, 45].
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B.1 Primary Fusion Reactions Spectral Cumulants

This appendix will summarise the key results of the paper “Relativisitic calculation of

fusion product spectra for thermonuclear plasmas” by Ballabio et al.. The mean and

variance of the fusion product energy spectra are used within numerical calculations

within this thesis. Natural units (c = 1) will be used in this appendix.

First the reaction rate weighted average is defined as follows:

〈f(K, vcm)〉 =

∫
KdK

∫
v2
cmdvcmf(K, vcm)σ(K)A∫

KdK
∫
v2
cmdvcmσ(K)A

, (B.1)

A = exp

[
−K
T

]
exp

[
−(m1 +m2)v2

cm

2T

]
. (B.2)

By expanding expressions for energy and momentum in terms of velocity, one can derive

expressions for the mean and variance of the outgoing particle.

〈E〉 = α0 + αK〈K〉+ αV 〈v2
cm〉+ ... , (B.3)

〈E2 − 〈E〉2〉 = β0〈v2
cm〉+ βV 2

(
〈v4
cm〉 − 〈v2

cm〉2
)

+ , (B.4)

βK2

(
〈K2〉 − 〈K〉2

)
+ βV K〈v2

cm〉〈K〉+ ... , (B.5)

where the coefficients α and β are functions of the particle masses only. We will use the

reaction notation 1 + 2 → 3 + 4, where 3 is the outgoing particle:

α0 =
(m1 +m2)2 +m2

3 −m2
4

2(m1 +m2)
−m3, αK =

(m1 +m2)2 −m2
3 +m2

4

2(m1 +m2)2
,

αV =
(m1 +m2)2 +m2

3 −m2
4

4(m1 +m2)
,

β0 =
1

3
α0(α0 + 2m3), βV 2 =

1

4
m2

3, βK2 =

(
m4

m3 +m4

)2

, βV K =
2m3m4

3(m3 +m4)
.

The averages of K and v2
cm can be readily calculated from the definition in Eq. B.1,

although the averages of v2
cm have a particularly simple form:

〈v2n
cm〉 = (2n+ 1)!!

(
T

m1 +m2

)n
. (B.6)

By noting the definition of the reactivity 〈σv〉 (as shown in Eq. 2.72), the K averages

172
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can be shown to be given by [11]:

〈Kn〉 = T 2〈Kn−1〉 d
dT

ln
(
T

3
2 〈σv〉〈Kn−1〉

)
. (B.7)

For DT and DD, Bosch and Hale [18] provide analytic formulae for the reactivity there-

fore allowing for analytic, albeit complex, expressions for the K averages.

These above expressions work for any 2 → 2 body thermonuclear reaction with mas-

sive reactants and products.

B.2 Transfer Cross Sections in Minotaur

In Minotaur differential cross sections dependent on material conditions, fluid velocity

and temperature, need to be integrated over to form transfer cross sections. This can

be a numerically intensive task so analytic expressions are sought for where possible.

For temperature alone, the cross section is of the form given in Eq. 2.91, which shall

be repeated here:

d2σ

dΩdE
≈ 1

2π

dσ

dµc

∣∣∣∣
∂µc
∂E

∣∣∣∣D(µ0, E,E
′) , (B.8)

D(µ0, E,E
′) =

2
√
EE′

A

√
1

4πTκ2
exp

[
− 1

4Tκ2

(
ε− κ2

)2
]
, (B.9)

ε ≡ E′ − E, κ2 ≡ 1

A

(
E′ + E − 2µ0

√
EE′

)
. (B.10)

As it is only a function of the scattering cosine, the I*-method can be used. Addition-

ally, the D function can be integrated analytically over µ0 reducing calculation time

considerably. From Mathematica, the integral over µ0 between µdw0 and µup0 is given by:

∫ µup0

µdw0

D(µ0, E,E
′)dµ0 =

−1

2

[
e
ε−|ε|
2T

(
1 + erf

(
κ2 − |ε|
2κ
√
T

))
+ e

ε+|ε|
2T

(
erf

(
κ2 + |ε|
2κ
√
T

)
− 1

)]µup0

µdw0

, (B.11)

where in the limit of T → 0, the top-hat function between the beam-target kinematic

limits is retrieved. If we consider the typical ICF relevant conditions E/T � 1, then

the second term can be neglected as (κ2 + |ε|)/κ > 0 for all energies and angles so

the argument of the error function is far into the tail. The level of upscatter can be

calculated from D(µ0, E,E
′) over the whole angular range, for E′ = 14 MeV and T = 10

keV it was found to be 0.07% and 0.08% for nD and nT respectively. Therefore upscatter

can be neglected at ICF relevant temperatures.

For fluid velocity alone, the cross section is of the form given in Eq. 2.95, which shall
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be repeated here:

d2σ

dΩdE
=

1

2π

dσ

dµc

2

1− α

(
1−

√
E′i
AEµ

)

(
E′ − 2

√
E′E′i
A µ′ + E′i

A

)δ(µ0 − µ∗0) , (B.12)

µ∗0 =
1

2

[
(A+ 1)

√
E

E′
− (A− 1)

√
E′

E

]
+

√
AE′i
E

µ′ −
√
AE′i
E′

µ . (B.13)

As it is a function of lab frame neutron directions, the expression for µ∗0 must be inserted

into the angular transition probability before integration. The ATP can then be ana-

lytically integrated over µ and then numerically integrated over the remaining degrees

of freedom [166]. The analytical integral over µ between µdw and µup is performed in

the reduced variable y domain:

∫ µup

µdw
I(µ′, µ, µ∗0)dµ =

∫ µup

µdw

1

π
√
A+Bµ− Cµ2

dµ , (B.14)

1√
C

∫ yup

ydw

1

π
√

1− y2
dy =

1

π
√
C

(
arcsin(yup)− arcsin(ydw)

)
, (B.15)

where we have completed the square in order to form the reduced variable y:

β′i ≡
v′i
v′n

=

√
E′i
AE′

, βi ≡
v′i
vn

=

√
E′i
AE

,

A = 1− µ′2 − (µ∗BT,0 +Aβiµ
′)2 , (B.16)

B = 2µ′(1 +Aβ′i)(µ
∗
BT,0 +Aβiµ

′) , (B.17)

C = 1 + 2Aβ′iµ
′ +A2β′2i , (B.18)

y =
µ− B

2C√
A
C + B2

4C2

, (B.19)

y(vi = 0) =
µ− µ′µ∗BT,0√

1− µ′2
√

1− µ∗2BT,0
. (B.20)

The transfer cross section is then found from the product of the ATP, differential cross

section and Jacobian. This method was benchmarked at the backscatter edge by com-

paring numerical results to direct integration of the double differential cross section with

colinear ion and neutron velocities.

Finally if both temperature and fluid velocity are non-zero then the product I and D

must be integrated over. Unfortunately this must be done numerically over all degrees of

freedom. A Gaussian-Legendre adaptive Gaussian quadrature routine is used to ensure

converged results. Now that no analytic integration can be done, the singularities in

I(y) at y = ±1 are problematic. The variable transform y = sin(x) removes these



B.3 Raytracing in AKED 175

singularities so integration is performed in the x-domain (−π
2 < x < π

2 ):

∫
I(µ′, µ, µ0)D(µ0, E

′, E, µ′, µ, E′i)dµ0 =
1

π

∫
D(x[µ0, E

′, E, µ′, µ, E′i])dx , (B.21)

as D is strongly peaked the integration domain is split into 3, two regions either sides

of the peak and one that encloses the peak:

∫ xup

xdw
D(x)dx =

∫ xpeak−Nσσx

xdw
D(x)dx+

∫ xpeak+Nσσx

xpeak−Nσσx
D(x)dx+

∫ xup

xpeak+Nσσx

D(x)dx ,

µ0,peak =
E′ + E −Aε

2
√
E′E

, σµ0 =

√
A2Tε

2E′E
, (B.22)

ε = E′ − E − 2

√
E′E′i
A

µ′ + 2

√
EE′i
A

µ, (B.23)

κ2 =
1

A

(
E′ + E − 2µ0

√
EE′

)
. (B.24)

A value of Nσ = 4 was chosen as this generally causes the integrated regions outside

the peak to be close to zero and thus quickly neglected by adaptive integration. If

the peak lay outside the integration region the limits and the number of regions was

altered appropriately. An approximate analytic method of calculating the integral in

the x-domain would greatly improve calculation time.

B.3 Raytracing in AKED

AKED performs raytracing and line integrals on 3D regular Cartesian grids. Efficient

algorithms are required to handle the large grid sizes and high number of rays needed

to perform scattering calculations. In this appendix we will discuss the raytracing

implemented in AKED, this has been improved compared to older versions of the code

[115]. These improvements were aimed to address the overall computational efficiency

of the code and ‘grid-imprint’ effects.

B.3.1 Cardinal directions and grid rotations

We will refer to the basis vectors of the Cartesian grid as the cardinal directions. Ray

tracing along cardinal directions is trivial and the preferred method of calculation.

Line integrals are simply for-loop sums over the cardinal direction and their total path

length through the grid is the same. The grid can be reoriented via rotation followed

by interpolation, see Fig. B.1.

The cardinal directions can then be orientated with the imaging coordinates. While

some error is introduced during the interpolation this is compensated by the speed up

gained in ray tracing along the detector direction. Rays will not intersect grid cell edges

and imaging pixel coordinates match the data grid coordinates. There is potential to

domain split the grid and rays between processors as each ray needs only the information

in a single row of the grid. This has not been pursued as scattering breaks this simplicity
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Detector Direction

Trilinear
interpolation Rotated subgrid

Simulation grid

Figure B.1: Diagram showing how a rotated subgrid is formed. The axes are oriented with
the detector and trilinear interpolation from the hydrodynamic simulation
grid is performed to fill in the new grid.

- however rotated domain splitting could be employed in problems without scattering

e.g. X-ray imaging/spectroscopy.

B.3.2 Non-cardinal directions

Scattering calculations must include rays travelling in non-cardinal directions in order

to fully explore the space. These rays cut through grid cells in chords with varying chord

length. However solving the line equation in each cell is relatively expensive. Since the

grids on which AKED works are regular the line equation needs only to be solved a

single time. Defining the line equation with the coordinate origin at the ray origin:

~r = p~λ (B.25)

Where p is the path length travelled and ~λ is the normalised ray direction. The distances

to the nearest cell boundaries in each cardinal direction can be found simply (pi = ∆i/λi)

for regular grid spacings ∆i. The algorithm for the marching the rays is then:

� Find the path lengths, qi, required to move into the next grid cell in each direction

qi = p0
i + nipi , (B.26)
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where p0
i are the path lengths to exit the initial starting cell as the origin may

not lie at a cell boundary. ni are the number of steps taken in each direction and

therefore all ni are initially 0.

� The smallest value of qi is found as this will give the smallest chord to move. Then

ni is incremented by 1 for the direction i corresponding to the smallest qi. The

path length taken in this step is qi,min − p. The grid coordinates of the ray can

also be incremented in a similar way to ni. In the special cases were 2 or 3 of

the qi’s are equal then the ray has reached a cell vertex and multiple ni must be

incremented.

� This procedure is repeated until the ray exits the grid

A schematic of this algorithm on a 2D grid is shown in Fig. B.2.

O

y

x

Figure B.2: Diagram showing a non-cardinal direction ray trace with the marching path
lengths pi shown. In this example the stepping order is (x, y, x, x, y, ...) with
path length values p = (p0x, p

0
y, p

0
x + px, p

0
x + 2px, p

0
y + py, ...)

The simplicity of the regular grid allows this efficient algorithm which leads to reduced

computation time spent in the ray trace.

B.3.3 Angular averaging

In a scattering calculation emitter and scatterer cells are paired up and a ray connecting

their centres is considered. For large separations, any small change in the ray direction

would disconnect the emitter and scatterer cell. Therefore a single ray along the line of

centres is a good approximation. However for emitters and scatterers in close proximity

this is not true. The line connecting any two points within the cells can vary from

the line of centres by a large degree. The magnitude of this effect will depend on the
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parameter a = R/∆ where R is the emitter-scatterer separation and ∆ the grid cell

size. One could subdivide the cells N times and consider many rays for each sub-cell

pairing but this is computationally expensive (order N2). Instead a single ray will

be considered but with an approximate averaging of the scattering angle over many

ray directions. The weighting function W (θs, a) is approximated by considering the

fractional illumination of a circle by another circle both with radius ∆ and separated

by distance R. This configuration is shown in Fig. B.3 as well as angular definitions.

R

y

1.

2.

Figure B.3: Diagram showing the geometric system used to estimate the angular average
weighting function. Circle 1 (the emitter) uniformly illuminates circle 2 (the
scatterer), the area which is illuminated at chord angle θ is given by A(θ).
The scattering angle between scatterer-emitter-detector is given by θs = θ0+θ
where θ0 is the scattering angle for the ray connecting grid cell centres.

The weighting function is taken as the normalised distribution of illuminated area:

W (θs, a) =
A(θ)∫
dθA(θ)

, (B.27)

W (θs, a) =
∆2

∫
dθA(θ)

[
(1− x)

√
2x− x2 + arcsin(1− x) +

π

2

]
, (B.28)

x = a sin(θ) = a sin(θs − θ0) . (B.29)

The maximum chord angle permitted is given by θmax = arcsin(2/a) and thus the

weighting function becomes more peaked as the emitter and scatterer draw further

apart. Hence at sufficient high a the angular averaging can be neglected, a limit of
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a > 10 is used in AKED. While considerable simplification has been used to obtain

the weighting function, it is vast improvement over the single ray treatment. Due to

the cubic grid, connecting cell centres causes certain angles to be emphasized. This

causes peaks to appear in the scattered neutron spectrum - similar to Bragg diffraction

in crystals. The benefits of angular averaging are evident when comparing the scattered

neutron spectrum with and without the angular averaging as shown in Fig. B.4.
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Figure B.4: Comparing the singly scattered neutron spectrum over a restricted angular
range for a single angle and angular averaging treatment.



C Results Appendices

C.1 Optimal Neutron Spectrometer Arrangement

When measuring neutron spectra properties are resolved to the detector line of sight.

To measure the underlying properties, multiple measurements of their components must

be combined. There is therefore an optimal arrangement which minimises the error in

the combined measurement. To begin we will consider the measurement of a linear

combination of isotropic and vector properties. This is relevant for the centroid shift of

primary DT and DD peaks:

~m = A ·~b , (C.1)

~b =




k

vx

vy

vz



, (C.2)

where ~m is a vector of measured centroid shifts, A is the matrix of projections to detector

lines of sight and ~b is the vector containing the isotropic and vector components. With

4 unknowns, we need 4 detectors to fully determine the system. For 4 detectors, the

projection matrix is given by:

A =




1 Ω1
x Ω1

y Ω1
z

1 Ω2
x Ω2

y Ω2
z

1 Ω3
x Ω3

y Ω3
z

1 Ω4
x Ω4

y Ω4
z



, (C.3)

Ωi =




Ωi
x

Ωi
y

Ωi
z


 =




sin(θi) cos(φi)

sin(θi) sin(φi)

cos(θi)


 . (C.4)

Altering the detector arrangement changes the line of sight vectors Ωi. The error in the

inferred vector ~b is given by:

Var
(
~b
)

= A−1Var (~m)
(
A−1

)T
. (C.5)

We will now assume that the spectrometers all have the same measurement error (σm)

such that Var (~m) = σ2
mI, where I is the identity matrix. The determinant of covariance

matrix is a measure of the total uncertainty in the inferred quantities. Therefore we

180
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must aim to minimise this. Using the properties of determinants:

∣∣∣Var
(
~b
)∣∣∣ =

σ2
m

|A|2
, (C.6)

therefore we must aim to maximise the determinant of the projection matrix, A. Using

that the determinant of a 3x3 matrix with columns ~a, ~b and ~c is the signed volume of

the parallelepied, Vabc, defined by the vectors ~a, ~b and ~c:

|A| = V234 − V134 + V124 − V123 . (C.7)

Therefore we aim to maximise the volume enclosed by the line of sight vectors. For 4

detectors, this creates a tetrahedron with total volume V = |A| = 16/3
√

3. In this case,

the covariance matrix of ~b is given by:

Var
(
~b
)

=
σ2
m

4




1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3



,
∣∣∣Var

(
~b
)∣∣∣ =

27

256
σ2
m =

σ2
m

V 2
. (C.8)

As we can see, the tetrahedral arrangement also ensures no covariance between inferred

quantities.

Now we consider the optimal detector arrangement if we have additional detectors (for

a total ofN) and therefore have an overdetermined system. Since we are overdetermined,

the normal equation must now be solved in order to minimise the least squares distance

to the data:

AT · ~m = ATA ·~b , (C.9)

~b =
(
ATA

)−1 ·AT · ~m = A+ · ~m . (C.10)

The error propagation follows a similar format but with the pseudo inverse, A+, rather

than the square matrix inverse:

Var
(
~b
)

= A+Var (~m)
(
A+
)T

= σ2
mA

+
(
A+
)T

, (C.11)

∣∣∣Var
(
~b
)∣∣∣ = σ2

m

∣∣∣A+
(
A+
)T ∣∣∣ =

σ2
m

|ATA| . (C.12)

Since A is not square, the determinant cannot be split further. However, the square 4x4

ATA matrix has a simple form in terms of the detector lines of sight components:

ATA =

[
1 1 · · ·
~Ω1 ~Ω2 · · ·

]



1 ~Ω1

1 ~Ω2

...
...


 =




N
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i Ωi
x
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y

∑
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∑
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xΩi
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xΩi
z∑

i Ωi
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xΩi
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z∑

i Ωi
z
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xΩi
z

∑
i Ωi

yΩ
i
z

∑
i Ωi2

z .




(C.13)
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The determinant of this matrix must again be maximised to minimise the inference

uncertainty. We also note that if we want no covariance between inferred quantities

then ATA must be diagonal. This requires that:

∑

i

Ωi
x =

∑

i

Ωi
y =

∑

i

Ωi
z =

∑

i

Ωi
xΩi

y =
∑

i

Ωi
xΩi

z =
∑

i

Ωi
yΩ

i
z = 0 . (C.14)

These above conditions are indeed satisfied by the tetrahedral arrangement for 4 spec-

trometers. For 5 detectors, the lines of sight which satisfy these conditions form a square

pyramid with ATA of:

ATA =




5 0 0 0

0 15
8 0 0

0 0 15
8 0

0 0 0 5
4



, Var

(
~b
)

=
σ2
m

15




3 0 0 0

0 8 0 0

0 0 8 0

0 0 0 12



. (C.15)

Interestingly, while there are no covariances, the errors are not equal for each vector

component. The x and y components are treated equally, as the pyramid is rotationally

symmetric around z, however the z component has a larger error.

A similar analysis can be performed if measuring a symmetric matrix component,

this is relevant for the width of the primary DT and DD peaks. For each line of sight

k, the measured value is given by:

mk =
(
~Ωk
)T
·B · ~Ωk , (C.16)

B =



bxx bxy bxz

bxy byy byz

bxz byz bzz


 . (C.17)

Since B is a 3x3 symmetric matrix there are 6 unknowns and therefore at least 6

measurements are required. Any isotropic component can be added by addition to the

diagonal of B. Therefore the isotropic component cannot be separated from the matrix

component and the number of unknowns remains as 6. A more suitable form of the

above equation can be found if we can diagonalise B:

mk =
(
~Ωk
)T
· ST ·D · S · ~Ωk =

(
~ωk
)T
·D · ~ωk , (C.18)

~ω = S · ~Ω . (C.19)

The elements of D are the values which are measured along the principal axes of B.

In terms of inferred ion temperature, the largest and smallest values in D give the

maximum and minimum inferred temperatures. The projection matrix S projects the

line of sight vectors to the principal axes basis of B. Therefore ~ω are the projected line

of sight vectors. In this form our 6 unknowns are split into 3 which form the elements of

D and 3 which rotate/reflect the line of sight basis into the principal axis basis through
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orthonormal matrix S.

The error propagation analysis will be more complex in this case so will not be pursued

here.

C.2 Simplified Backscatter Edge Fitting Model

Early development of the theory of the backscatter edge spectral shape was reported in

the Crilly et al. [42]. At this time, an ad-hoc background model was invoked rather than

the physically based model shown in Section 3.1. The differential cross section of nT

was also assumed isotropic and therefore a very restrictive fitting range had to be used

to accommodate these assumptions. However this model does allow more freedom in

the shape of backgrounds and therefore is, currently, more successful when considering

spectra from implosions with large areal density asymmetries. However, despite the

differences, the progression from the model presented below and the model presented in

Section 3.1 is clear.

For elastic scattering with an isotropic centre-of-mass differential cross section and

stationary scatterer, the energy spectrum at the backscatter edge can be approximated

by:

Ibs(E) ≈
∫ ∞

0
dE′

dσ

dΩc
g(E′)Qb(E

′)
∫
dµδ(µ− µ∗) ,

=

∫ ∞

0
dE′

σ(E′)
4π

g(E′)Qb(E
′)
∫
dµδ(µ− µ∗) ,

=

∫ E/α

E
dE′

σ(E′)
4π

g(E′)Qb(E
′) ,

µ∗ =
1

2

[
(A+ 1)

√
E

E′
− (A− 1)

√
E′

E

]
,

α =

(
A− 1

A+ 1

)2

, g(E′) =
2

(1− α)E′
.

The backscatter energy reduction factor, α, is given above for the case of negligible

fluid velocity of the scattering medium. The functional form of the integral can be

approximated for a Gaussian birth spectrum, Qb(E
′), with a mean a and variance b2. If

the birth spectrum is strongly peaked (i.e. b � a) then the slowing down kernel [169],

g(E′), can be expanded about a and the elastic scattering cross section taken as linear
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in energy, i.e. σ ≈ σmE + σc.

Let x =
E′ − a
b

,

σ(E′) ≈ σmE′ + σc → (σma+ σc) + σmbx ,

g(E′)→ 2

1− α (a+ bx)−1 ≈ 2

(1− α)a

(
1− b

a
x+

b2

a2
x2

)
,

Ibs(E) ∝
∫ E−αa

αb

E−a
b

dx

[
(σma+ σc)−

b

a
σcx

]
exp

[
−x

2

2

]
+O

(
b2

a2

)
.

There is no σm contribution to the first order in b/a term due to cancellation in the

product of the cross section and slowing down kernel. These approximations allow the

integral to be performed analytically. To first order in b/a, this produces:

Ibs(E) ∝ (σma+ σc)

√
π

2

[
erf

(
E − αa√

2αb

)
+ 1

]
+
b

a
σce
− (E−αa)2

2(αb)2 . (C.20)

Hence information about the mean and variance of the birth spectrum are stored in the

form of the backscatter edge. Therefore, there is inherent slope to the edge shape even

for stationary scattering ions.

By using Minotaur, this fit was tested on spectra produced by an isobaric hotspot

model [172]. Figure C.1 shows the simulated nT edge and a best fit. The effect of

fluid and thermal velocities on the broadening on the birth spectra was included. The

effects of fluid and thermal velocities on the edge will be investigated in the following

discussion and therefore will be neglected here. A limited energy range around the

edge must be used for two reasons. Firstly, the assumption of isotropic centre-of-mass

frame scattering will affect the spectral shape above the edge, this will constrain the

upper limit of the fitting region. Secondly, using a small energy range will limit the

variation in the background sources; over this range they can assumed to be constant,

this will constrain the lower limit of the fitting region. For these conditions, it should

be noted that the background signal is relatively constant around the nT edge. The

fit was performed from 3.3 MeV up to the peak value of the backscatter edge. Fits

extended to higher energy and those which only included a limited section of the edge

performed poorly. In these scenarios, the height of the edge was poorly constrained

which had a knock on effect on the best fit mean and variance. Hence the fitting region

adopted extended from the peak of the edge down to ≥ 200 keV below the centre of

the edge. From the edge fit the mean and standard deviation of the birth spectrum

were calculated to be 14.03 and 0.145 respectively. The primary spectrum moments

gave values of 14.05 and 0.147, thus the fit produced good agreement. Since Minotaur

does not included the approximations used to obtain Eq. C.20, the good fit validates

the choices made.

Often significant fluid velocity, vf , is present in the scattering medium so it is required

to extend this spectral backscatter edge fit to moving scatterers. By considering only co-
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Figure C.1: Plot showing a simulated nT edge with backgrounds from scattering from D,
multiple scattering, ablator scattering, deuteron break-up and TT primary
neutrons. The edge fit is of the form given in Eq. C.20 plus a constant to
fit the background. The solid red line shows the region over which a non-
linear least-squares fit was performed. The dashed line shows the value of
the fitting function, Eq. C.20, beyond this region.

linear collisions between neutrons and the scattering ions we can reformulate to include

fluid velocity effects through the energy reduction factor α:

α(vf 6= 0) =

(
A− 1

A+ 1− 2Avf/vn

)2

, (C.21)

replacing α(vf = 0)→ α(vf ) in Eq. C.20 .

This will allow a single average shell velocity to be inferred by fitting the backscatter

edge. As an extension we will assume that scattering ion velocities sampled by the

backscattering neutrons are normally distributed with mean and variance: v̄ and ∆2
v.

We can see here the link with the more detailed analysis in terms of the scattering rate

weighted ion velocity distribution. This allows us to calculate the expected value of the

backscattered spectrum for a range of scattering ion velocities. The total backscatter

shape is simply the sum of edges shifted by variable scattering medium velocity. This

will cause an additional shift and smoothing of the resultant edge shape. Expanding α
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to first order in vf/vn we find:

〈Ibs(E)〉 =
1√

2π∆2
v

∫ +∞

−∞
dvfIbs(E, vf ) exp

[
−(vf − v̄)2

2∆2
v

]
, (C.22)

〈Ibs(E)〉 ∝ (σma+ σc)

√
π

2
[erf (z) + 1] +

b

a
σce
−z2

, (C.23)

c ≡ E − α0a− 4Av̄/(A+ 1)√
2α0b

, m ≡ 4AE√
2(A+ 1)α0b

∆v

vn
, (C.24)

z ≡ c√
2m2 + 1

, (C.25)

where α0 = α(vf = 0). Comparing to Eq. C.20, we see the additional shape changes

due to the v̄ and ∆v. Figure C.2 compares the results of this simple model with the

more detailed model of Section 3.1, without consideration of backgrounds.
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Figure C.2: A comparison between models with and without the effect of the differen-
tial cross section included. The simple model replicates the more detailed
detailed model up to a certain point beyond which the shape of differen-
tial cross section alters the shape of the nT scattering signal drastically.
Therefore, simple model, if used, must consider only a very limited range
of energies.

A more sophisticated model which can handle both the areal density asymmetries and

the physical shape of the signal and background is required to replace the two models

considered in this work.
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botham, L. Juha, J. Krzywinski, H. J. Lee, M. Messerschmidt, C. D. Murphy,

Y. Ping, D. S. Rackstraw, A. Scherz, W. Schlotter, S. Toleikis, J. J. Turner,

L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Zhu, R. W. Lee, P. Heimann, B. Na-

gler, and J. S. Wark. “Direct Measurements of the Ionization Potential De-

pression in a Dense Plasma”. Phys. Rev. Lett., 109:065002, Aug 2012. doi:

10.1103/PhysRevLett.109.065002. 57



Bibliography 191

[37] D. S. Clark, C. R. Weber, J. L. Milovich, A. E. Pak, D. T. Casey, B. A. Hammel,

D. D. Ho, O. S. Jones, J. M. Koning, A. L. Kritcher, M. M. Marinak, L. P. Masse,

D. H. Munro, M. V. Patel, P. K. Patel, H. F. Robey, C. R. Schroeder, S. M. Sepke,

and M. J. Edwards. “Three-dimensional modeling and hydrodynamic scaling of

National Ignition Facility implosions”. Physics of Plasmas, 26(5):050601, 2019.

doi: 10.1063/1.5091449. 32, 143, 148, 157

[38] DS Clark, AL Kritcher, JL Milovich, JD Salmonson, CR Weber, SW Haan,

BA Hammel, DE Hinkel, MM Marinak, MV Patel, et al. “Capsule modeling

of high foot implosion experiments on the National Ignition Facility”. Plasma

Physics and Controlled Fusion, 59(5):055006, 2017. 32, 211

[39] D.S. Clark, C.R. Weber, A.L. Kritcher, J.L. Milovich, P.K. Patel, S.W. Haan,

B.A. Hammel, J.M. Koning, M.M. Marinak, M.V. Patel, C.R. Schroeder, S.M.

Sepke, and M.J. Edwards. “Modeling and projecting implosion performance for

the National Ignition Facility”. Nuclear Fusion, 59(3):032008, dec 2018. 32, 145,

211

[40] Cathie Clarke, Bob Carswell, RF Carswell, et al. “Principles of astrophysical fluid

dynamics”. Cambridge University Press, 2007. 44

[41] G. W. Cooper, C. L. Ruiz, R. J. Leeper, G. A. Chandler, K. D. Hahn, A. J. Nelson,

J. A. Torres, R. M. Smelser, B. R. McWatters, D. L. Bleuel, C. B. Yeamans, K. M.

Knittel, D. T. Casey, J. A. Frenje, M. Gatu Johnson, R. D. Petrasso, and J. D.

Styron. “Copper activation deuterium-tritium neutron yield measurements at

the National Ignition Facility”. Review of Scientific Instruments, 83(10):10D918,

2012. doi: 10.1063/1.4746999. 38

[42] A. J. Crilly, B. D. Appelbe, K. McGlinchey, C. A. Walsh, J. K. Tong, A. B.

Boxall, and J. P. Chittenden. “Synthetic nuclear diagnostics for inferring plasma

properties of inertial confinement fusion implosions”. Physics of Plasmas, 25(12):

122703, 2018. doi: 10.1063/1.5027462. 5, 15, 33, 36, 42, 92, 108, 111, 113, 114,

116, 117, 118, 119, 127, 143, 152, 183, 211

[43] A. J. Crilly, B. D. Appelbe, O. M. Mannion, C. J. Forrest, V. Gopalaswamy,

C. A. Walsh, and J. P. Chittenden. “Neutron backscatter edge: A measure of the

hydrodynamic properties of the dense DT fuel at stagnation in ICF experiments”.

Physics of Plasmas, 27(1):012701, 2020. doi: 10.1063/1.5128830. 5, 92, 152, 211

[44] J. Delettrez, R. Epstein, M. C. Richardson, P. A. Jaanimagi, and B. L. Henke.

“Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray

measurements in uv spherical transport experiments”. Phys. Rev. A, 36:3926–

3934, Oct 1987. doi: 10.1103/PhysRevA.36.3926. 13, 94, 98

[45] P Descouvemont and D Baye. “The R matrix theory”. Reports on Progress in



192 Bibliography

Physics, 73(3):036301, Feb 2010. ISSN 1361-6633. doi: 10.1088/0034-4885/73/3/

036301. 171

[46] T R Dittrich, O A Hurricane, L F Berzak-Hopkins, D A Callahan, D T Casey,

D Clark, E L Dewald, T Doeppner, S W Haan, B A Hammel, J A Harte, D E

Hinkel, B J Kozioziemski, A L Kritcher, T Ma, A Nikroo, A E Pak, T G Parham,

H-S Park, P K Patel, B A Remington, J D Salmonson, P T Springer, C R Weber,

G B Zimmerman, and J L Kline. “Simulations of fill tube effects on the implosion

of high-foot NIF ignition capsules”. Journal of Physics: Conference Series, 717:

012013, may 2016. 145

[47] L Divol, A Pak, LF Berzak Hopkins, S Le Pape, NB Meezan, EL Dewald, DD-M

Ho, SF Khan, AJ Mackinnon, JS Ross, et al. “Symmetry control of an indi-

rectly driven high-density-carbon implosion at high convergence and high veloc-

ity”. Physics of Plasmas, 24(5):056309, 2017. 145

[48] Laurent Divol. “3D isobaric hotspot reconstruction from multiple neutron and

Xray views on the NIF: quantifying radiative loss impact on DT implosion and

other insights”. Bulletin of the American Physical Society, 64, 2019. 32, 130, 159

[49] R Paul Drake. “High-energy-density physics”. Phys. Today, 63(6):28, 2010. 105

[50] M. J. Edwards and Ignition Team. “The Ignition Physics Campaign on NIF:

Status and Progress”. Journal of Physics: Conference Series, 688(1):012017,

2016. 156

[51] V. E. Fatherley, D. N. Fittinghoff, R. L. Hibbard, H. J. Jorgenson, J. I. Mar-

tinez, J. A. Oertel, D. W. Schmidt, C. S. Waltz, C. H. Wilde, and P. L. Volegov.

“Aperture design for the third neutron and first gamma-ray imaging systems for

the National Ignition Facility”. Review of Scientific Instruments, 89(10):10I127,

2018. doi: 10.1063/1.5039328. 36, 40

[52] C. J. Forrest, A. Deltuva, W. U. Schröder, A. V. Voinov, J. P. Knauer, E. M.
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Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline,

S. Le Pape, T. Ma, A. G. Macphee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel,

B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini. “Fuel gain

exceeding unity in an inertially confined fusion implosion”. Nature, 506:343–348,

2014. 11, 32

[91] O. A. Hurricane, D. A. Callahan, D. T. Casey, E. L. Dewald, T. R. Dittrich,
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Walter, G. Mertens, J. M. Lambert, H. Wita la, and W. Glöckle. “Cross-section
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[163] Lyman Spitzer and Richard Härm. “Transport Phenomena in a Completely Ion-

ized Gas”. Phys. Rev., 89:977–981, Mar 1953. doi: 10.1103/PhysRev.89.977. 44

[164] John C Stewart and Kedar D Pyatt Jr. “Lowering of ionization potentials in

plasmas”. The Astrophysical Journal, 144:1203, 1966. 56

[165] James M Stone, Dimitri Mihalas, and Michael L Norman. “ZEUS-2D: A radiation

magnetohydrodynamics code for astrophysical flows in two space dimensions. III-

The radiation hydrodynamic algorithms and tests”. The Astrophysical Journal

Supplement Series, 80:819–845, 1992. 47

[166] Mary M Tai. “A mathematical model for the determination of total area under

glucose tolerance and other metabolic curves”. Diabetes care, 17(2):152–154, 1994.

174

[167] A. Takahashi and D. Rusch. “Fast rigorous numerical method for the solution

of the anisotropic neutron transport problem and the NITRAN system for fusion

neutronics application. Pt. 1”. Technical report, 1979. 66, 78, 79

[168] A. Takahashi and D. Rusch. “Fast rigorous numerical method for the solution

of the anisotropic neutron transport problem and the NITRAN system for fusion

neutronics application. Pt. 2”. Technical report, 1979. 66, 79



208 Bibliography

[169] Akito Takahashi, Junji Yamamoto, Mituo Ebisuya, and Kenji Sumita. “Method

for calculating anisotropic neutron transport using scattering kernel without poly-

nomial expansion”. Journal of Nuclear Science and Technology, 16(1):1–15, 1979.

64, 75, 78, 79, 94, 168, 183
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