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Transverse Kinematic Imbalance

* We know the initial momentum
perpendidular to the beam is
Zero

* Measuring non-zero
transverse momentum tells us
about missing momentum

* Three primary variables _ i
measured: e G \B=H
B BpT 7 \

— 007
— 6¢T

- 0T
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What does opr mean?

* Non-zero value Is due to missing
momentum

- 0pr IS the negative of the missing momentum

* In the absence of FSI, this will be the
(transverse) momentum of the struck
nucleon
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What does 6ar mean?

* Pt IS the transverse momentum transfer

- dar Is the angle between the momentum
transfer and the missing momentum (dpr)

- In the transverse plane

* In the absence of FSI, this is the angle
between momtentum transfer and initial
state nucleon direction

- And there should be no directional preference
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What does d¢r mean?

* Similarly, o¢r Is the angle

between the momentum O
transfer and the total o AN
hadron momentum ’ a
— Or the leading proton EJa

momentum, depending on
your choice
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What transverse variables miss

e All these variables are
2D projections of a 3D
system

e Sometimes that 3™
dimension contains a lot
of additional information!
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Longitudinal component

 \We know more than the initial transverse momentum
* We know (near enough) the neutrino mass Is zero

 And therefore we have two measures of the neutrino
energy — energy and momentum should be equal

* Assuming there is no missing momentum/energy:

EVZEM+KP+B=pﬁ+p£

B =30.9 MeV

Andrew Furmanski
University of Minnesota




Longitudinal missing momentum

* If the nuclear recoll carries away all
missing momentum, there is negligible
missing energy

e By = F, + K, + B
ongitudinal missin _— “’ p
anomgetn(t]lumI ) pL - pL _I_ pL o Ecal

—

Estimated E Z —_—
momentum transfer q Ca,l Zj [,L
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Generalised Kinematic Imbalance

 All built as direct analogues of
the transverse equivalents

= | 2 2
|pn| — \/pL + 5pT » Note, these are well-defined

even if our assumptions are

Pn
. (j’ ; ﬁ " wrong
COS - And in fact, there’s physics to be

d3p L= ot
|q | |p | | seen when our assumptions fail

a3p = COS_1 ( Ci}in )
alizy
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Signal Definition

* We measure these with the simplest topology we can: one muon,

one proton
— Also happens to be a very common topology...
» Specifically:
nBooNE _
— One muon (100 MeV/c — 1200 MeV/c) BNB Run 1 Data : -
Run 5127 Subrun 138 Event 6904 ||

— One proton (300 MeV/c — 1000 MeV/c) |/ Candidate n
- No charged pions over 70 MeV/c '

CClpOm

— No neutral pions or heavier mesons
— Any number of neutrons

* Low thresholds due to reconstruction
* High limits due to containment and re-interactions
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How we make the measurement

e Select events with;
— One muon-like track

Intensity of v source

~ pBoo

TPC & light variations

— One proton-like track
— Nothing else

Cross section

/1
V4 v
o
-
e - ~— i

Modeling accuracy

» Estimate uncertainties on predicted
event rate

— This includes flux normalisation and shape

— Does not include signal uncertainties, other
than impact on smearing/efficiency

Out-of-cryostat v interactions

POT counting P
- -t
» -> ‘ - (2%)

ot
.
aaaa
......

Protons-on-target precision

Hadron rescattering

* Transform to regularised space

— And include matrix that converts truth space
to regularised space

» Scale for exposure (flux, targets) Npa(%,)=2., U, | 9(E,) o(E,, x)dE + B,
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Data!
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FSI sensitivity

* Comparing ratios with and without FSI

* Generalised variables have more sensitivity to the
presence, and details, of FSI

-G18 oy, —-NuWro o, -G18 ¢3D —-NuWro ¢3D
- G18 do; - NuWro ot -G18 6¢T --NuWro BQ)T
7 7
H H
=) =)
= =
7 7
<2 =2
= =
s s
a4 a2
0 L L | | \ | | | 0 | | \ | | | | |
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Struck Nucleon - Missing Momentum Angle [deg] Proton - Missing Momentum Angle [deg]
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Multi-differential measurement

* TKI measurements more powerful when we
measure opr and ddr simultaneously

* Follow the same strategy here — isolate

FSI, , and Fermi motion separately
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Low missing momentum

* Minimal FSI, highly pure QE sample
* No direction preference — sin curve shape from phase space
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The last word on GENIE v27?

* GENIE v2 has a number of
bugs, which aren’t hugely

DVi h - IE T SIS PO QYR (15977
obvious when measuring S 0o + S0S Shape
inclusive muon kinematics = Cob
* These variables are extremely =~ o5 O
sensitive to unphysical —— ol s T e
effects! % 005 i
 GENIE v2 should probably be % 20 40 60 80 100 120 140 160 180

resigned to history

p, <02 GeV/e

Oy [deg]
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High missing momentum

* High a — FSI has x4 impact on the cross section
- Mainly QE events with proton FSI

* Low a — MEC-dominated (50-75% pure MEC)
-FSI  *No FSI Gl8 P, >0.4 GeV/c
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Low-FSI

* Clean QE peak

 Tail is a mix of RES (plus 1t-abs) and MEC events
— Limited stats due to cutting hard on asp

Olypy < 45°
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High-FSI

* High-p, tail dominated by FSI
* QE peak reduced considerably by FSI

« Statistics plus resolution wash out double-peak structure currently
135° < 0y, < 180°
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More...

arXiv:2310.06082
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Summary

* Generalising kinematic imbalance variables enhances sensitivity
to FSI, Fermi motion, and MEC events

- These apply to any final state — we started with CCOTtlp
* Multi-differential measurements provide additional sensitivity

* Primary conclusions:
- GENIE G18 does best in low-FSI regions
— GIBUU does best in high-FSI regions

* Limitations to the analysis:
- We have more data to analyse!
— No correlations between observables (see next talk!)
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Backup slides
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Reconstruction

* Pandora multi-algorithm toolkit

* Rejects obvious cosmic ray
muons

* Reconstructs remainder under Ry
neutrino assumption —

* Produces “slices”, and selects | \
the most neutrino-like slice
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Projection variables

,/'&‘\ p’
» Also measure 3prxand A
T/ \
60T,y ’// \
5
* Oprx also known as dprr iy
Spty/// LY
7
/
/
A
7oA
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OPTT, OPTX, OPTY?

e These variables are the
projections of oprparallel and

perpendicular to the momentum A P
transfer 8., ,/

* The final state hadrons boosted J
along the momentum transfer, .77,

so X should be symmetric and y
will have an asymmetry
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Generalised Kinematic Imbalance

* Projection variables work the same way
* Now there are two perpendicular components
* Fairly arbitrarily, we place one (x) in the transverse plane

— (A 2\ . mn ~These cross products
p nl,r — (QT X Z) <pn7 - produce unit vectors pointing

Pnl y = (q N ((’]\T Y 2))Aﬁn, in the right direction

Pnl = \/(an_,:U)Q + (an_,y)Q — |pn| Sil’l(Ong),
Pn| = qPn = |pn| COS(@BD)-

Andrew Furmanski
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Particle Identification

50,0 MicroBooNE 4.05 x 10%° POT 1 o MicroBooNE 4.05 x 10%° POT
proton MPV muon MPV
17.5 @ local piteh =1 cm T | @ local pitchi={1cm
15.0 ____ proton MPV ____ muon MPV
® T ' @ local pitch = 0.3 cm @ local pitch = 0.3 cm
E/dx measured vs e

[
= 10.0

distance from end point -

25 B

 Compared to predictions *
from muon and proton

0 15 20 25 30 35 4
Residual range [cm]

* Use all three planes,
produce log likelihood
ratio

Entries per 0.04

2004

T +
w
1 “ateiprtieeo it

Observed/Predicted
-
o

0.5 T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Three-plane P

Andrew Furmanski 78
University of Minnesota



https://doi.org/10.1007/JHEP12(2021)153

Final Event Sample

. . .
A” partICIeS reqUIred to Stop ¢ BNB Data S QE (51%)[] S MEC (15%)Hl S RES (3%) [l S DIS (0%)
Ta th e d ete CtO r Cosmic (8%)[1B QE (7%) | |B MEC (4%) [:1i B RES (9%)[Zi B DIS (2%)

3000 MicroBooNE 6.79 x 10°° POT
— Necessary for resolution £
» 9,051 events selected R
* 70% purity E
* Most common backgrounds  ————
are 2-proton events witha  go'Fe et 1
. L 08l *
missed proton S

Reconstructed E“* [GeV]
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Uncertainties

 Vary all systematic parameters in MC, to

produce covariance matrix for predicted s |
event rate A@ (7.3% e
L B v ” f pBop_@

« Assume this covariance matrix applies to / TPC & light variations

Intensity of v source

the data Cross section
. ross secti <
- This requires “reasonable” data/MC v
agreement to hold .’ i
- - — ~
e For Signal interaction mode”ing’ Only Vary Modeling accuracy Out-of-cryostat v interactions
the impact on efficiency and smearing POT counting  _v
. . o a > e o)
* Divide by assumed integrated flux — all e
uncertainties are in the numerator Protons-on-target precision
Hadron rescattering

- Including flux shape uncertainties
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Unfolding

* Wiener-SVD unfolding used

- From signal processing —
treat uncertainties as “noise”

* Method provides “additional
smearing matrix” to smear

predictions into regularised i = .x

Space Measurement

_ _ in reco space
* Our resolution is good, so
truth, reco, and regularised
spaces look very similar!

Response matrix

M=% R+ S+B,

Underlying signal
in truth space

Andrew Furmanski
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Unfolding

* Wiener-SVD unfolding used

- From signal processing — treat
uncertainties as “noise”

* Method provides “additional
smearing matrix” to smear
predictions

- An artefact of regularising

* Allows preservation of x? from reco
space to regularised space

* Our resolution is good, so truth,
reco, and regularised spaces look
very similar!

M=% R+ S+B,

Measurement
in reco space

Response matrix

Fagd E

Underlying signal
in truth space
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