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MicroBooNE
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Transverse Kinematic Imbalance
● We know the initial momentum 

perpendidular to the beam is 
zero

● Measuring non-zero 
transverse momentum tells us 
about missing momentum

● Three primary variables 
measured:
– δpT

– δɑT

– δɸT Phys.Rev.C 94 015503 (2016)

https://link.aps.org/doi/10.1103/PhysRevC.94.015503
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What does δpT mean?

● Non-zero value is due to missing 
momentum
– δpT is the negative of the missing momentum

● In the absence of FSI, this will be the 
(transverse) momentum of the struck 
nucleon
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What does δɑT mean?
● -pμ

T is the transverse momentum transfer
– δɑT is the angle between the momentum 

transfer and the missing momentum (δpT)
– In the transverse plane

● In the absence of FSI, this is the angle 
between momtentum transfer and initial 
state nucleon direction
– And there should be no directional preference



Andrew Furmanski
University of Minnesota 6

What does δɸT mean?

● Similarly, δɸT is the angle 
between the momentum 
transfer and the total 
hadron momentum
– Or the leading proton 

momentum, depending on 
your choice
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What transverse variables miss

● All these variables are 
2D projections of a 3D 
system

● Sometimes that 3rd 
dimension contains a lot 
of additional information!
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Longitudinal component

● We know more than the initial transverse momentum
● We know (near enough) the neutrino mass is zero
● And therefore we have two measures of the neutrino 

energy – energy and momentum should be equal
● Assuming there is no missing momentum/energy:

Eν=Eμ+K p+B=pL
μ+ pL

p

B = 30.9 MeV



Andrew Furmanski
University of Minnesota 9

Longitudinal missing momentum
● If the nuclear recoil carries away all 

missing momentum, there is negligible 
missing energy

Neutrino energy 
estimate

Longitudinal missing 
momentum

Estimated 
momentum transfer
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Generalised Kinematic Imbalance 
● All built as direct analogues of 

the transverse equivalents
● Note, these are well-defined 

even if our assumptions are 
wrong
– And in fact, there’s physics to be 

seen when our assumptions fail
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Signal Definition
● We measure these with the simplest topology we can: one muon, 

one proton
– Also happens to be a very common topology…

● Specifically:
– One muon (100 MeV/c – 1200 MeV/c)
– One proton (300 MeV/c – 1000 MeV/c)
– No charged pions over 70 MeV/c
– No neutral pions or heavier mesons
– Any number of neutrons

● Low thresholds due to reconstruction
● High limits due to containment and re-interactions
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How we make the measurement
● Select events with:

– One muon-like track
– One proton-like track
– Nothing else

● Estimate uncertainties on predicted 
event rate
– This includes flux normalisation and shape
– Does not include signal uncertainties, other 

than impact on smearing/efficiency
● Transform to regularised space

– And include matrix that converts truth space 
to regularised space

● Scale for exposure (flux, targets) N pred (xr)=∑t
U tr∫ϕ(Eν)σ (Eν , x t)dEν+Br
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Data!
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FSI sensitivity
● Comparing ratios with and without FSI
● Generalised variables have more sensitivity to the 

presence, and details, of FSI
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Multi-differential measurement
● TKI measurements more powerful when we 

measure δpT and δɑT simultaneously
● Follow the same strategy here – isolate 

FSI, MEC, and Fermi motion separately
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Low missing momentum
● Minimal FSI, highly pure QE sample
● No direction preference – sin curve shape from phase space
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The last word on GENIE v2?

● GENIE v2 has a number of 
bugs, which aren’t hugely 
obvious when measuring 
inclusive muon kinematics

● These variables are extremely 
sensitive to unphysical 
effects!

● GENIE v2 should probably be 
resigned to history
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High missing momentum
● High ɑ – FSI has x4 impact on the cross section

– Mainly QE events with proton FSI
● Low ɑ – MEC-dominated (50-75% pure MEC)
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Low-FSI
● Clean QE peak
● Tail is a mix of RES (plus π-abs) and MEC events

– Limited stats due to cutting hard on ɑ3D
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High-FSI
● High-pn tail dominated by FSI
● QE peak reduced considerably by FSI
● Statistics plus resolution wash out double-peak structure currently
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More...
arXiv:2310.06082

https://arxiv.org/abs/2310.06082
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Summary
● Generalising kinematic imbalance variables enhances sensitivity 

to FSI, Fermi motion, and MEC events
– These apply to any final state – we started with CC0π1p

● Multi-differential measurements provide additional sensitivity
● Primary conclusions:

– GENIE G18 does best in low-FSI regions
– GiBUU does best in high-FSI regions

● Limitations to the analysis:
– We have more data to analyse!
– No correlations between observables (see next talk!)

arXiv:2310.06082

https://arxiv.org/abs/2310.06082
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Backup slides
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Reconstruction

● Pandora multi-algorithm toolkit
● Rejects obvious cosmic ray 

muons
● Reconstructs remainder under 

neutrino assumption
● Produces “slices”, and selects 

the most neutrino-like slice
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Projection variables

● Also measure δpT,x and 
δpT,y

● δpT,x also known as δpTT
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δpTT, δpT,x, δpT,y?

● These variables are the 
projections of δpT parallel and 
perpendicular to the momentum 
transfer

● The final state hadrons boosted 
along the momentum transfer, 
so x should be symmetric and y 
will have an asymmetry
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Generalised Kinematic Imbalance 
● Projection variables work the same way
● Now there are two perpendicular components
● Fairly arbitrarily, we place one (x) in the transverse plane

These cross products 
produce unit vectors pointing 
in the right direction
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Particle Identification

● dE/dx measured vs 
distance from end point

● Compared to predictions 
from muon and proton

● Use all three planes, 
produce log likelihood 
ratio

`

JHEP 12, 153 (2021)

https://doi.org/10.1007/JHEP12(2021)153
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Final Event Sample
● All particles required to stop 

in the detector
– Necessary for resolution

● 9,051 events selected
● 70% purity
● Most common backgrounds 

are 2-proton events with a 
missed proton
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Uncertainties
● Vary all systematic parameters in MC, to 

produce covariance matrix for predicted 
event rate

● Assume this covariance matrix applies to 
the data
– This requires “reasonable” data/MC 

agreement to hold
● For signal interaction modelling, only vary 

the impact on efficiency and smearing
● Divide by assumed integrated flux – all 

uncertainties are in the numerator
– Including flux shape uncertainties
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Unfolding
● Wiener-SVD unfolding used

– From signal processing – 
treat uncertainties as “noise”

● Method provides “additional 
smearing matrix” to smear 
predictions into regularised 
space

● Our resolution is good, so 
truth, reco, and regularised 
spaces look very similar!

JINST 12, P10002 (2017)

https://doi.org/10.1088/1748-0221/12/10/P10002
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Unfolding
● Wiener-SVD unfolding used

– From signal processing – treat 
uncertainties as “noise”

● Method provides “additional 
smearing matrix” to smear 
predictions
– An artefact of regularising

● Allows preservation of χ2 from reco 
space to regularised space

● Our resolution is good, so truth, 
reco, and regularised spaces look 
very similar!

JINST 12, P10002 (2017)

https://doi.org/10.1088/1748-0221/12/10/P10002

