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Few problems in nature are amenable to an exact solution and hence when one
proceeds from elegant problems of theory to messy complicated problems of practice one
is forced to recourse to methods of approximation and perturbation. The development of
such techniques has been natural in attempts to extract physically verifiable consequences
from either exact solutions of general relativity or from specific astrophysical systems for
which an exact solution is impossible to find. However, this should not be taken to imply
giving up of mathematical rigour and an appeal to only physical intuition.

1. Approximation Methods

Though the topic of approximation methods have been with us since the inception of the
theory of general relativity it received a fresh impetus with the observation of the secular
acceleration in the mean orbital motion of the Binary Pulsar. Suddenly, the observations
were getting to be accurate enough to make measurable higher order effects coming from
general relativity and the theorist had also to update his tools and make more precise the
conceptual foundations that formed the paradigm for matching the increasingly accurate
observations to a theoretical model. The main class of approximation schemes that
have been developed so far are the Post Newtonian Approximation(PNA) and the Post
Minkowskian Approximation(PMA). Originally developed in the context of the solar
system these old approximation schemes used a global coordinate system, a global weak
field assumption and a single asymptotic expansion. The need to treat binary systems
containing two neutron stars or black holes requires looking at regimes where strong field
effects come into play. A more detailed description incorporating the clumpiness of the
universe is also called for in cosmology. These new problems require new approximation
methods characterised by the use of several coordinate systems and several asymptotic
expansions[1].

What is the relation between the approximation methods and the exact theory?
How do we go about investigating this? This was the theme of Alan Rendall’s talk on
‘Approximation methods in theory and practice’. It was concerned with the passage from
practical use of approximations which are heuristically defined to rigorous theorems on
how well and in what sense, the results of calculations of this kind, approximate solutions
of the exact equations. A possible programme for such an undertaking could be : First,
find a definition which on the one hand looks likely to provide a basis for rigorous
theorems and on the other hand is relevant to practical calculations. Next, use this
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definition to prove that the approximations are qualitatively good in some sense. Finally,
obtain quantitative estimates of the difference between exact and approximate solutions.
For PMA a definition was given by Blanchet and Damour [2] which was tailored to their
practical calculations and proved useful for questions of rigorous justification. Damour
and Schmidt[3] showed on the basis of these definitions that in general circumstances
PMA are asymptotic to solutions of Einstein’s equation. That this is essentially optimal
follows from the fact that the series obtained does not converge[4]. Quantitative estimates
seem out of reach at present and is a challenge to the theory of partial differential
equations which rarely yield quantitative information. On the other hand though a good
definition of the newtonian limit of general relativity has existed for some time[5] its
relation to PNA was unclear( however, see[6]). Recently, a definition of PNA has been
given[7] which appears to have a good chance of linking theory and practice. Work is in
progress towards justification of the PNA. The first step is the proof that the spherically
symmetric Vlasov-Einstein system has a regular newtonian limit[8]. A comparison of
the new definition of PNA with the traditional approach e.g. Chandrasekhar[9] shows
that the most obvious difference is that in the former case all the variables including
the matter variables are expanded in powers of cA—1 whereas in the latter case only
the variables describing the gravitational field are expanded. This leads to problems in
regard to secular effects and quantitative information seems absolutely necessary to pin
down good properties of PNA.

The new approximation methods are used mainly to investigate problems of motion
and the generation problem in gravitational radiation theory. They are also used in prob-
lems of relativistic celestial mechanics as explained by Chongming Xu. He summarized
the new formalism of Damour, Soffel and Xu[10] for studying general relativistic celes-
tial mechanics of systems of N arbitrary, weakly self- gravitating, rotating bodies using
a sophisticated version of the first PNA. It is characterised by use of a multi-reference
system; a global one for describing overall dynamics of N bodies and N local systems
to describe the internal structure of each body. The special features of the scheme are
that the field equation and transformation laws are linear; the structure of the energy-
momentum tensor is left open; each body is characterised by the Blanchet-Damour PN
multipole moment[11] and external PN tidal moments. This allows one to obtain com-
plete and explicit results for laws of translational motion at 1PN level for bodies with
arbitrary composition and shapes. One can obtain an expression for the tidal moment
in terms of PN multipole moments of other bodies. The discussion of PN spin motion
requires in addition the Damour-Iyer[12] spin moments.

Moreschi talked about approximation methods around stationary systems. He ar-
gued that since the asymptotic symmetry group is the infinite dimensional BMS group
and not the ten dimensional Poincaré group it led to an arbitrariness both in the defini-
tion of physical concepts associated with the system and also the best flat background
to expand around. Consequently, approximation methods around a fixed stationary
background metric can give a consistent description of the system at a fixed time at
most[13].

Cutler commented briefly on their recent work[14] on calculation of inspiral wave-
forms using the Regge-Wheeler-Teukolsky perturbation formalism. The relevant equa-
tions were solved numerically to very high accuracy and a post newtonian expansion was
fit to the numerical results. This lead to the surprising result that higher order terms
were not getting smaller causing the template waveform to go out of phase with the
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general relativity waveform very quickly.

Will presented the recent results of Iyer and Will[15] on gravitation radiation re-
action in equation of motion of binary systems at PN order beyond the quadrupole
approximation. The method is based on PN expression for energy and angular momen-
tum flux to infinity and an assumption of energy and angular momentum balance. The
arbitrariness in the formula is related to the coordinate system dependence of the radia-
tion reaction formula. As mentioned earlier it is important to know this secular damping
very accurately so that the theoretical template not lose phase with the observed signal.

2. Perturbations

The subject of perturbations in general relativity has developed into a specialized dis-
cipline on its own. Bulk of the work in this area has been in one of the following two
topics: Cosmological Pertubations and Black Hole Perturbations.

2.1. Cosmological Perturbations

The basic questions that started these investigations was the attempt to understand the
formation of structure in Cosmology and the growth of inhomogeneities in the expanding
universe. Recently, a new covariant approach has been given to study the perturbations
and this was summarized by George Ellis in his presentation.The gauge problem of per-
turbations in cosmology is the arbitrariness in the perturbed quantities arising from the
arbitrariness in the choice of the map between the background spacetime and the real
spacetime. The gauge problem in perturbed Robertson-Walker cosmologies has not been
resolved in a satisfactory way. Bardeen’s[16] introduction of gauge invariant variables
was a major triumph. However, the formalism and method are not geometrically trans-
parent, the split into scalar, vector and tensors is nonlocal/nonunique, it is not easily
related to observations and cannot be easily extended beyond linear order because it is
linearized ab initio. Moreover, the analysis is not invariant under general gauge trans-
formations but only under a restricted set that respects the harmonic splitting. A more
transparent gauge invariant formalism has been set up using fully covariant methods in
terms of variables that are both gauge invariant and covariantly defined, leading to co-
variant evolution equations. The basic variables are spatial gradients of density, pressure
and expansion of the cosmological fluid taken orthogonal to the fluid flow vector. Since
they vanish in a Robertson-Walker universe they are gauge invariant and characterise
inhomogeneities in the universe. The basic formalism is set up and applied to pressure
free matter[17], perfect fluid [18], scalar field[19], multi-fluids and imperfect fluids(20].
Subtle effects due to rotation(21], relation to the Bardeen’s approach[22], density waves
in cosmology [23] and applications to newtonian cosmology[24] have also been investi-
gated. The main advantages of this formalism is that the geometrical definition is clear,
it is defined in an arbitrary spacetime(no background is needed), nonlinear equations can
be obtained, the variables are observable in principle and finally there exist newtonian
analogues of all equations. The effect of this programme has so far been to rederive
standard results in a more transparent gauge invariant way as also more generally valid
equations before linearizing about Robertson-Walker. The idea of density waves in cos-
mology is new. The formalism is also being used to study the Sachs-Wolfe effect(25] and
clarify the gauge invariance of these calculations.
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2.2. Black Hole Perturbations

The issues that led to the development of this subject were the following: Are black
holes stable against small changes? Can one compute what happens when a test particle
or radiation scatters off the black hole? What are the frequencies in which the black
hole rings and how do the notes die off? The studies were made with all the analytically
known black hole solutions: Schwarzschild, Reissner-Nordstrom, Kerr and Kerr-Newman
e.g[26]. A variety of methods have been used in these investigations: scalar, vector and
tensor harmonics, Newman-Penrose formalism, Debye-Hertz potentials, gauge invariant
approaches e.g[27].

2.2.1. Separability of Wave Equations in Curved Backgrounds. One of the most remark-
able results was the separability of the perturbation equations of Hamilton Jacobi, scalar,
electromagnetic, gravitational, neutrino and electron fields in the background of the
Kerr-Newman black hole. The miracle continues and some time back the separability of
a Nambu-Goto string configuration in the Kerr background was also established[28]. All
this led on to a more critical investigation of the question of separability, the operators
commuting with the wave operator and operators whose eigenvalues the separation con-
stants are. The status of issues related to the separability of wave equations on curved
backgrounds was the subject of Ray McLenaghan’s presentation. A symmetry opera-
tor of the equations satisfied by the variables of a physical system is a linear differential
operator that maps the space of solutions into itself. The most familiar examples of sym-
metry operators are operators which commute with the differential operator appearing
in the field equations. They are called constants of the motion and their eigenvalues are
interpretable as quantum numbers of the system[29]. A remarkable example of such an
operator is given by Carter and McLenaghan’s[30] discovery of a first order commuting
operator for the Dirac operator on Kerr spacetime by an analysis of the separation of
variables procedure devised by Chandrasekhar[31]. They showed that these operators
admit the separable solutions as eigenfunctions with the corresponding eigenvalues as
separation constants and characterised one of them in terms of a valence two Killing
spinor satisfying a skew-hermiticity condition. McLenaghan and Spindel[32] gave a ten-
sorial expression for the most general first order commuting operator with the charged
Dirac operator on a general curved background in terms of Killing-Yano tensors of va-
lence one, two and three. A different situation arises when dealing with the conformally
invariant Klein-Gordon, Dirac and Maxwell equations for zero rest mass particles where
symmetry operators which are not necessarily commuting operators must be considered.
In the case of the conformally invariant Klein-Gordon equation and the Dirac equation
for the neutrino, the symmetry operators appear in the form of R-commuting operators
that is operators whose commutators with the wave operator are proportional to it. All
such operators up to the second order for the Klein-Gordon equation and up to first
order for the Dirac equation have been characterised by Kamran and McLenaghan(33]
in terms of conformal Killing vectors and conformal Killing tensors of valence two and
conformal Killing-Yano tensors of valence one, two and three respectively. A correspond-
ing analysis for Maxwell’s equations has proved more elusive. However, Kalnins, Miller
and Williams([34] recently found a second order symmetry operator for Maxwell’s equa-
tions in the Kerr solution which characterises the separable solutions found previously by
Teukolsky. The most general second order symmetry operator for Maxwell’s equations
on a general curved spacetime has been constructed[35]. This uses a conformal Killing
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vector, a conformal Killing tensor of valence two and a new valence four tensor with the
same algebraic symmetries as the Weyl tensor which satisfles a first order differential
equation which has similarities to both the conformal Killing equation and the confor-
mal Killing- Yano equation. This tensor corresponds to a valence four Killing spinor; its
properties and integrability conditions for its existence have been studied.

2.2.2. Quasi-Normal Modes. At late times, all perturbations of the black hole are ra-
diated away like the last pure dying tones of a ringing bell. To describe this ‘ringing’
the notion of quasinormal modes (QNM) was introduced around 1970. QNM’s are the
sourceless perturbations of spacetime and in the case of the time-evolution of small per-
turbations of a Schwarzschild black hole are governed by a one-dimensional wave equa-
tion. The QNM frequencies are characteristic of the black hole, and (in the Schwarzschild
case) depend only on its mass. QNM'’s excited during for example a gravitational col-
lapse may be eventually detected. Thus the determination of QNM’s of black holes is
an important problem on which considerable effort and progress has been made in the
last three years. Nils Andersson summarized the current status of these calculations as
follows. Recently, Nollert and Schmidt [36] proved that the QNM’s should be properly
defined as poles of the Green’s function to the Laplace transformed wave equation. In
a simplified picture, the desired solutions correspond to boundary conditions of purely
outgoing waves arriving at spatial infinity, and purely ingoing waves crossing the event
horizon. The desired solutions to the radial problem increase exponentially towards
spatial infinity and the event horizon. To identify a QNM solution an exponentially
decreasing solution must be singled out from the exponentially increasing one in the
asymptotic region. Hence, the determination of QNM frequencies is a delicate prob-
lem. During the last ten years several attempts to determine the QNM frequencies have
been made. Leaver[37] determined accurate values for them using a continued fraction
approach. Recently Leaver’s results have been confirmed as reliable using numerical in-
tegration in the complex coordinate plane [38]. For gravitational perturbations, recent
double-precision calculations by Leaver (unpublished) agree to nine decimal places with
the numerical integration results. Nollert and Schmidt have also verified Leaver’s results.
These three independent investigations of the problem yield results that agree perfectly
for the first ten modes. A semi-analytical phase-integral method has also been applied to
the problem {39]. A powerful phase-integral formula determining QNM frequencies for a
Schwarzschild black hole has been derived by Andersson and Linnaeus[40] . The results
obtained from this formula are in good agreement with the numerical results mentioned
above. This method may also prove to be powerful in situations more general than the
Schwarzschild case, where the methods mentioned above are difficult to apply.

Omar Ortiz talked about recent work[41] on hyberbolizing the heat equation. Sys-
tems described by parabolic or hyperbolic-parabolic systems have arbitrarily high prop-
agation velocities incompatible with relativity. One therefore looks for a one parameter
family of hyberbolic systems that goes over to the parabolic system in an appropriate
limit. For the heat diffusion equation, such an analysis can be done, using as parameter
the reciprocal of the maximum speed of propagation. The solution to this family equals
the solution to the heat equation plus terms that vanish when the maximum speed of

propagation becomes infinite.
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3. Open Questions

We conclude with a list of important open questions that remain in these areas[42, 43].
(i) Characterisation of the Teukolsky parameter for gravitational perturbations in Kerr
background by a symmetry operator. (ii) Solve the perturbation problem for Kerr-
Newman i.e exhibit the relevant symmetry operator and its solutions. (iii) Extend the
results of separability to other backgrounds like Cosmological and String backgrounds.
Do generalized Hertz potentials exist? And if they do, how do we find them? (iv) What
can we say about the completeness of QNM’s in the neighbourhood of the black hole?
(v) Investigate the relation between Einstein’s Theory and PNA. (vi) Prove existence
theorems for various sources since validity of approximation methods cannot be judged
otherwise. (vii) Put procedures used to relate near zone approximations with far fields on
a sound basis since they are always used in most applications to astrophysical systems.
Normally one relates a higher order PN description of sources to PMA of higher order.
(vili) Are different PNA schemes like Chandrasekhar’s, Damour- Soffel- Xu and Rendall’s
equivalent? (ix) Do PNA methods have a fundamental limitation? Can their convergence
be improved using better numerical techniques? Are some variables better than others?
Or do we need a very different approximation scheme?
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