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Préambule

Ce mémoire contient les résultats obtenus durant trois années de theése au labora-
toire de Physique théorique de 'ENS sous la direction de Denis Bernard. Il s’appuie sur
les articles [1, 2, 3, 4, 5, 6, 7, 8] publiés pendant ces trois ans et dont cinqg sont reproduits
en annexes C, D, E, F et G en anglais. Ce manuscrit contient aussi quelques résul-
tats originaux notamment au chapitre 4 et en appendice B. La présentation s’éloigne
quelque peu de celle des articles académiques. On a essayé autant que possible de se
concentrer sur les résultats et arguments généraux en reléguant en annexes une partie
des preuves et développements techniques. Le style se veut aussi un peu moins formel
et on espere que la lecture y gagnera en fluidité sans que la précision ne souffre trop.

e

On s’intéresse dans cette thése au probleme de la mesure continue en mécanique
quantique. La mesure est quelque chose de notoirement subtile en mécanique quantique,
a la fois pour des raisons fondamentales et pour des raisons pratiques. Si I'on prend
le formalisme orthodoxe pour argent comptant, alors le fait de mesurer, d’extraire de
I'information sur quelque chose, est une opération loin d’étre anodine qui obéit a des lois
différentes de celles qui régissent le reste de la Physique. C’est aussi une opération qui
est fondamentalement discrete et localisée dans le temps. Comme souvent, le probleme
posé par une telle spécificité de la mesure est expliqué de maniere éloquente par Bell :

“The problem of measurement and the observer is the problem of where the
measurement begins and ends, where the observer begins and ends. Consider
my spectacles, for example : if I take them off now, how far away must I
put them before they are part of the object rather than part of the oberver ¢”

John S. Bell, cité dans [9]

L’idée des mesures continues est en quelque sorte d’intégrer les «lunettes» au systeme
étudié pour arrondir les angles du formalisme. Cela ne réduit évidemment pas I’ambi-
guité théorique mais permet de répondre a un grand nombre de problemes empiriques.
L’objectif de cette these est d’essayer de comprendre quantitativement la dynamique
induite par les mesures continues, de voir ce qu’elle contraint et ce qu’elle permet, le
tout sans perdre de vue le contexte plus général des problemes conceptuels liés a la
mesure.

On commence par rappeler au chapitre 1 la construction de la théorie des mesures
continues a partir de la méthode des interactions répétées. On profite du fait que ’on
introduit une théorie déja connue pour en expliciter les paralleles avec les modeles de
collapse objectif et avec le probleme du filtrage en théorie des probabilités classiques.



ii

La majeure partie des résultats techniques nouveaux est présentée au chapitre 2. On y
étudie la limite de mesure forte a partir des mesures continues et plus particulierement
deux phénomenes caractéristiques : les sauts et les échardes quantiques. On s’intéresse
aussi brievement a un probleme d’extraction optimale d’information. Le chapitre 3 est
consacré aux applications du formalisme et des résultats précédents. On s’intéresse a
la possibilité du controle par I'intensité de la mesure et au comportement des marches
aléatoires quantiques ouvertes, deux exemples ou 'on peut appliquer presque direc-
tement les résultats du chapitre 2. On propose aussi une application inattendue du
formalisme introduit au chapitre 1 a la gravité semi-classique. Le chapitre 4 est enfin
consacrée a de possibles extensions plus spéculatives.

***

Le lecteur peu familier de la théorie des mesures continues peut progresser linéaire-
ment dans le mémoire. Le lecteur érudit et intéressé surtout par les résultats techniques
utilisera probablement mieux son temps en allant directement aux annexes C a G qui
sont toutes lisibles sans référence au reste. Enfin, le lecteur plus attiré par les questions
fondamentales ou épistémologiques peut commencer par ’appendice A.
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Chapitre 1

Introduction générale

1.1 Mécanique quantique et mesure

La mécanique quantique est une théorie dans laquelle la mesure possede un sta-
tut assez original. Le fait de mesurer un systéme, d’extraire une information sur ses
propriétés, induit une dynamique particuliere, a priori distincte de 1’évolution usuelle
et qui fait en tout cas 'objet d’'un postulat dédié. Cette spécificité fascinante de la
mesure, qui apparait au coeur de la «bizarrerie» quantique, motive une grande partie
des questions attaquées durant cette these. Méme si les ambitions de cette derniére
sont essentiellement limitées & une compréhension pratique' de la mesure, il convient
de rappeler les difficultés d’ordre plus fondamental qui sont posées par le formalisme.

1.1.1 Rudiments de mécanique quantique

Commencgons par rappeler de maniere tres rapide les postulats fondamentaux de
la mécanique quantique non relativiste pour un systeme fermé. Le premier postulat
stipule que tout ce que 'on peut dire d’un systéeme physique donné est contenu dans
sa fonction d’onde ou son vecteur d’état |¢)) qui est un rayon d’'un espace de Hilbert
. La signification profonde, de ce vecteur d’état, s’il y en a une, n’est pas éclairée
par le formalisme qui se contente d’en donner une caractérisation opérationnelle. Le
deuxieme postulat précise la dynamique du systeme et stipule qu’il existe un opérateur
auto-adjoint H qui génere ’évolution dans le temps :

. 0
ih o) = HIY).

On travaillera par la suite dans un systeme d’unité dans lequel la constante de Planck
réduite h vaut 1. Le troisiéme postulat relie enfin le vecteur d’état a ce qui est obser-
vable, mesurable. Il se décompose en deux sous postulats. Il précise que la probabilité
de mesurer le systéme dans un certain état |i) d’une base orthonormée {|1), ..., |n)} est
donnée par P[|i)] = |(i|1)|?, ce qu'on appelle parfois la régle de Born, et qu’a 'issue

1. Les aspects plus fondamentaux du «probléme de la mesure» sont discutés dans l’appendice A.
On discute aussi en section 1.3 le lien entre la résolution pratique et des résolutions fondamentales du
probléme.
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de la mesure, le systéme se trouve dans 1’état |i), ce qu’on appelle parfois le collapse
de la fonction d’onde.

A ce stade, on peut d’ores et déja se permettre quelques remarques. On décrit un
systéme fermé (potentiellement 'univers) avec un vecteur d’état |1)) qui ne possede
pas d’interprétation physique en ’absence de mesure, mesure qui ne peut venir que
de 'extérieur. Par ailleurs, la mesure obéit a une regle distincte de 1’évolution usuelle,
ne serait-ce que parce qu’elle engendre une transition aléatoire qui contraste avec la
dynamique déterministe prescrite par le deuxiéme postulat. Que I'on soit ou non in-
téressé par les fondements de la mécanique quantique, on doit admettre qu’il y a au
minimum une certaine tension dans cette partie du formalisme dit orthodoxe. On peut
citer Bell qui aborde le probléme avec ironie dans Against ‘Measurement’ [10] :

Was the wave function of the world waiting to jump for thousands of mil-
lions of years until a single-celled living creature appeared ? Or did it have
to wait a little longer, for some better qualified system... with a PhD?

Plus sérieusement, qu’est ce qui fait qu’une certaine évolution est une mesure 7 Qu’est-
ce méme qu’un résultat de mesure ? Pourrait-on se passer du postulat 3 en considérant
un systéme assez gros contenant ’appareil de mesure lui méme ? Comme on va le voir,
la réponse & la derniére question est malheureusement négative? mais il est malgré
tout instructif d’essayer d’appliquer le programme qui y est ébauché, c’est a dire de
prendre en compte ce qui est extérieur au systeéme.

1.1.2 Le probleme de la mesure

Notre objectif est ici de mettre en évidence le probleme de la mesure, c’est a dire
le fait que méme en intégrant l’environnement au systeme, il n’est pas possible de
reproduire le postulat de la mesure sans autre hypothése que le postulat 2 d’évolu-
tion linéaire. On considére désormais I’ensemble systéme + environnement (ce dernier
contenant éventuellement ’appareil de mesure). L’ensemble est décrit par un rayon
|1) appartement & l'espace de Hilbert total % qui se décompose sur le systéme et
Ienvironnement J4 = 4, @ J..

Supposons pour simplifier que le systéme est simplement un qubit, c’est a dire un
systéme a deux niveaux : % = C? = Vect{|0),|1)}. On imagine que le systéme est
initialement dans un état superposé et isolé de ’environnement, i.e. que 1’état total
s’écrit par exemple :

1

V2

Avant d’étre couplé a I’environnement, le systéme est dans une superposition cohérente.
Cela signifie que P[|0)] = 1/2 mais P[(|0) + [1))/v2] = 1, la seconde probabilité
distinguant cet état d’un simple mélange statistique.

On cherche désormais a savoir comment un tel état peut évoluer en fonction du
temps, pour réaliser, par exemple, une mesure. Pour qu'une telle évolution conduise a
une mesure dans la base {|0),|1)}, il faut qu’elle préserve les états propres correspon-

|¥h)i=0 (10) +11)) @ |env)

2. On peut consulter Bassi et Ghirardi [11] pour une preuve plus précise et générale de cette
impossibilité.
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dant, autrement dit que l'opérateur unitaire Ur donnant 1’évolution totale vérifie :

Ur|0) @ |env) = [0) @ U |env) = |0) @ |env 0)
Ur|l) ® |env) = |1) ® U}1)|env> = 1) ® |env 1)

La linéarité de I’évolution implique ensuite que 1’état total apres un temps 1" partant
de I’état superposé se trouve de la maniere suivante :

1
NG

Pour un environnement ou un appareil de mesure typique, .77, possede une dimen-
sion D extrémement grande. Pour une évolution elle aussi typique, env 0) et |env 1)
vont étre deux rayons grosso modo aléatoires d’un espace de Hilbert de dimension as-
tronomique et vont donc avoir un recouvrement extrémement petit, plus précisément
{env Olenv 1) o< 1/+/D — 0. C’est ce phénomene qui est & origine de la décohérence,
i.e. du fait qu’apres 1’évolution on a toujours P[|0)] = 1/2 mais P[(|0) +|1))/v/2] = 1/2
a cause de la perte de cohérence dans I’environnement. Tout se passe ainsi comme si
on possédait désormais un état statistiquement soit dans ’état |0) soit dans I'état |1).
Toute la subtilité, qui donne lieu a tant d’incompréhensions dans la littérature, est
dans ce «comme si». En effet, si I'on utilise le postulat de la mesure pour tirer des
prédictions de ’état apres évolution, alors tout se passe comme si on avait un mélange
statistique, mais cela suppose évidemment qu’on se donne le droit d’utiliser le postulat
de la mesure a la fin, celui 1 méme que l'on cherchait initialement & démontrer. A
la fin de I’évolution, on a en réalité une superposition de poids égaux dans chaque
pointeur. La cohérence a fuit dans I'’environnement, la superposition n’a pas disparu,
elle est devenue macroscopique a l'image du chat de Schrédinger, appareil de mesure
malheureux d’une désintégration atomique. L’absence de cohérence au niveau du sys-
teme n’est empiriquement équivalente au collapse qu’une fois ajouté le postulat de la
mesure.

Notons que I'on peut tres facilement démontrer 'apparition de la décohérence pour
une large classe de modeles sans avoir besoin de faire ’hypothése ad hoc que les états
de ’environnement diffusent aléatoirement, la n’est pas la difficulté théorique, mais le
risque est alors de se perdre dans la technique pour finir, une fois le résultat durement
gagné, par confondre cohérence et superposition oubliant ainsi ce qu’on était venu
chercher, un peu comme Villeret dans la fameuse scéne du Diner de cons.

Il existe des solutions pragmatiques et des solutions théoriques plus débattues au
probleme de la mesure mais il faut accepter la déception suivante : il y a bel et bien un
probléme ou au minimum une ambiguité qui, quoi que 'on fasse, ne sont pas résolus
par la théorie de la décohérence (voir appendice A).

i=0) = Ut [¢hi=0) = —= [|0) ® [env 0) +[1) @ |env 1)]

1.1.3 Déplacer la coupure de Heisenberg

Dans la situation précédente, il était donc vain de chercher a résoudre le probleme
de la mesure en intégrant ’appareil de mesure a ’environnement. Pour casser la super-
position il elit fallu un nouvel appareil de mesure extérieur mesurant le précédent. La
procédure précédente présente néanmoins un intérét pratique en éloignant la bizarrerie
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détecteur!

amplificateur

autre...

autre... Wigner

FiGure 1.1 — Illustration des différentes coupures de Heisenberg possibles. On peut
appliquer le postulat de la mesure a différents systémes délimités par les lignes poin-
tillées.

du postulat 3 du systéme étudié. Dans une situation ot on n’est pas siir que 'appareil
de mesure (par exemple un photodétecteur) en est vraiment un, i.e. qu’on peut utiliser
le postulat 3 pour décrire son évolution, alors on peut déplacer le probleme d’un cran
et intégrer ’appareil de mesure au systeme mettant ainsi la mesure une étape plus loin,
par exemple au niveau de I'amplificateur. Si 'on posseéde un doute sur ce dernier, on
peut de nouveau l'intégrer au systeme et réitérer la méme procédure. Le moment ou
I’on choisit d’arréter cette chaine et d’appliquer le postulat 3 est la coupure d’Heisen-
berg (voir Fig. 1.1), parfois aussi appelée coupure de Von Neumann. A moins d’aller
jusqu’a la conscience et de croire comme Wigner ® que cette derniére est a ’origine du
collapse, cette méthode est une fuite en avant, un déplacement, qui ne résout pas fon-
damentalement le probleme mais permet de répondre a toutes les questions pratiques.
La théorie est utilisable “for all practical purposes”.

En plus de clarifier I'utilisation pratique du postulat de la mesure, le déplacement
de la coupure de Heisenberg permet de définir une classe plus générale de mesures et
en particulier les mesures continues qui sont ’objet d’étude principal de ce mémoire.
Ce dernier n’a ainsi pas pour ambition initiale de proposer une nouvelle résolution
du probléme de la mesure (méme si cette question est discutée en appendice) mais
d’explorer les possibilités offertes par le déplacement de la coupure de Heisenberg*.

1.2 Des interactions répétées a la mesure continue

Dans ce qui suit, on va introduire les trajectoires quantiques de la manieére la plus
directe possible a partir des interactions répétées. Le lecteur a la recherche d’autres
dérivations abordables de ces équations peut se référer a Brun [13] ou Jacobs et al.
[14]. Pour rentrer directement dans le vif du sujet, on reporte le bref historique de leur

3. “It will remain remarkable, in whatever way our future concepts may develop, that the very study
of the external world led to the scientific conclusion that the content of the conciousness is an ultimalte

reality.” Eugene Wigner cité par Bricmont dans [9]. A sa décharge, on peut noter que Wigner a changé
de point de vue au cours de sa vie pour se rapprocher de 'idée d’un mécanisme purement physique de
collapse (voir par exemple Esfeld [12]).

4. 1II se trouve que le formalisme que 1’on obtiendra, combiné & une interprétation hétérodoxe, est
aussi utilisable pour obtenir une résolution du probléme de la mesure.
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découverte en 1.2.5.

1.2.1 Interaction répétées

La méthode la plus simple permettant d’arriver au formalisme des mesures conti-
nues consiste a imaginer une succession rapide de mesures faibles obtenues en envoyant
des sondes sur le systeme. Commencons donc par décrire une étape élémentaire de cette
procédure. On considére que le systéme est décrit par un état (ou plus généralement
une matrice densité) d’un espace de Hilbert .77;. Une sonde (probe) sera pour simplifier
un qubit, c’est a dire un systeme physique décrit par un espace de Hilbert .77, = C2.
On note Hy, = H; @ H;, V'espace de Hilbert total. L’ensemble { systéeme + sonde }

est initialement dans un état produit |U;,) = |[¢) @ |[+), = [¢¥) ® % € Hot.

A Dinteraction entre sonde et systéme correspond un opérateur unitaire U agissant
sur Pespace de Hilbert total. A issue de l'interaction, le systéme est donc dans 1’état
|Wout) = Ult) @ |[4). que on peut désormais décomposer sur la base {|+),,|—).} de
T

Wout) = By|th) @ |+). + B-[¢) @ [—)-

ou 'unitarité de U implique pour seule contrainte que BI_BJ,_ + B B_ = 1. Cette
premiere étape d’évolution intrique systeme et sonde, cette derniere emportant ainsi
une partie de 'information du systeme. L’analogue classique de cette étape consisterait
a prendre une photo (éventuellement floue) d’un systéeme de particules sans en regarder
pour le moment le résultat.

La deuxiéme étape consiste & mesurer la sonde dans la base {|+).,|—).} pour en
tirer un résultat binaire § = 1. En oubliant alors I’état de la sonde apres la mesure
(qui est potentiellement détruite) 1’état du systéme devient :

By|)

— =/ avec probabilité¢ P[+] = (| BLBL|y) (1.2.1)
(| BLBLly)

) —

Si By et B_ sont des projecteurs orthogonaux, alors la procédure précédente réalise
une mesure projective indirecte. Inversement, si B, = B_ = 1/4/2, il n’y a pas d’inter-
action entre le systeme et la sonde et on n’obtient aucune information. Pour toutes les
autres valeurs intermédiaires, on obtient une mesure généralisée. Cette seconde étape
est I’analogue classique du fait de regarder la photo et de s’en servir pour mettre a
jour linformation possédée sur le systéme.

On obtient des mesures répétées lorsque l'on réitere la procédure précédente un
grand nombre de fois avec une nouvelle sonde a chaque fois (voir Fig. 1.2). Apres n
étapes, 1’état du systeme [|¢),, vaut :

_ BBy Be,|¥)

avec probabilité Pley, 2, ..., 0] = (|Bl ...Bl B.,...B., [¢))
Plei, g2, ..., 0]

[V)n

ou g; = £. Une réalisation du processus stochastique |¢);, ¢ € [1,n] est une trajectoire
quantique discréte. Si 'on souhaite revenir a la description dans ’espace de Hilbert
total contenant les sondes, alors il faut considérer i,y = 7 @ @i, %(i). L’état
initial s’écrit par exemple |¥) = [¢)) ® ]—|—>§51) ® ... ® |—|—)g(cn). A Détape i, I'opérateur



6 CHAPITRE 1. INTRODUCTION GENERALE

détecteur

90 Po5bens

i
'
'

'

'

-1 -1 41 -1 +1 +1

|
[¢)n

systeme

o

3V Vo) Yar Vai Yoy

sondes

FIGURE 1.2 — Représentation schématique d’une situation de mesure indirecte via des
interactions répétées.

unitaire U; agit sur le systeme et la ¢-éme sonde uniquement dont 1’état appartient
a %(Z). A la limite continue, la description dans l'espace de Hilbert total contenant
I'infinité des sondes donne lieu aux bruits quantiques, formalisme auquel on préférera
en général les trajectoires quantiques dans ce mémoire.

Avant de passer a la limite continue, on peut étendre le formalisme des interactions
répétées aux cas ou le systeme n’est pas dans un état pur. Ce dernier est alors décrit
par une matrice densité p € J @ S5 et 'équation (1.2.1) précisant 1’évolution pour
une itération devient simplement :

BpB]
Lﬁ avec probabilité P[+] = tr[B+pBl] (1.2.2)
tr[BypBL]
qui est strictement équivalente & (1.2.1) dans le cas ot p = |[¢)(¢)|, équation qui se

dérive en calquant la méthode précédente. L’avantage de la représentation en matrice
densité, méme dans le cas d’états purs, est que les valeurs moyennes quantiques sont
linéaires en la matrice densité alors qu’elles sont quadratiques en I’état. Cette linéarité
facilite fortement la prise de valeurs moyennes sur les trajectoires quantiques, on se
limitera donc a cette représentation par la suite. Faire la moyenne sur les trajectoires
quantiques revient a moyenner a chaque itération sur les probabilités de réalisation
ou, de maniere équivalente, a effectuer la trace partielle sur ’état des sondes. On
obtient alors a chaque étape une application complétement positive préservant la trace
—completely positive trace preserving (CPTP)-, explicitement sous la forme dite de
Krauss, envoyant une matrice densité moyennée sur une autre :

p— B pB! + B_pBl.

Cette représentation moyennée donnera une équation maitresse sous la forme de Lind-
blad [15] & la limite continue.

Réalisation expérimentale : Les mesures répétées peuvent étre réalisées expéri-
mentalement. On peut mentionner par exemple I'expérience du groupe de Serge Ha-
roche au College de France (voir Fig. 1.3) et qui a contribué a lui faire gagner le prix
Nobel 2012 (voir par exemple [16] ou [17] pour une expérience similaire du groupe de
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FIGURE 1.3 — Représentation extrémement simplifiée de ’expérience du groupe de
Serge Haroche. Des atomes sont envoyées successivement dans la cavité, s’intriquent
avec un mode du champ électromagnétique et sont enfin mesurés.

Wineland). Dans cette expérience une cavité supraconductrice sélectionne un mode
du champ électromagnétique qui peut étre peuplé d’un nombre discret d’excitations
(photons). L’espace de Hilbert du systéme est ici I'espace de Fock ® associé & ce mode.
On envoie ensuite des atomes oscillant entre deux états de Rydberg a travers la cavité
contenant les photons, sonde qui peut ici aussi étre assimilée & un systeme a deux
niveaux. Le couplage photon-atome intrique sonde et systéme et une partie de I’infor-
mation sur le champ est emportée par 'atome. On mesure enfin ’état de Rydberg de
I’atome pour obtenir un résultat de mesure qui donne acces a une information sur la
population dans la cavité. En itérant cette procédure, on peut connaitre 1’évolution du
nombre de photons dans la cavité de maniere non destructive en fonction du temps,
prouesse qui fait I'originalité de cette expérience.

1.2.2 Limite de scaling

Pour obtenir une limite continue, on comprend intuitivement qu’il faut que chaque
sonde ait une action négligeable sur le systéme et que les sondes soient envoyées a
une fréquence tres élevée. Une possibilité, qui correspond a la limite d’interactions
faibles, est donc de prendre By et B_ tous deux proches de la limite sans interaction
1/v/2 tout en prenant en compte la contrainte BLBJ,_ +B'B_ = 1. Pour simplifier,
comme on ne cherche pas ici la généralité ®, on peut faire ’hypotheése supplémentaire
que la procédure n’introduit pas d’évolution unitaire supplémentaire déterministe sur
le systéme.

En développant la contrainte au second ordre —second ordre qui sera nécessaire par
la suite & cause du terme aléatoire— et en prenant en compte les restrictions précédentes

5. Méme si un espace de Fock est stricto sensu de dimension infinie, ’expérience considérée est
réalisée & basse température et seuls les premiers niveaux excités ont une probabilité non négligeable
d’étre peuplés. On peut donc se restreindre & un nombre fini d’états et considérer un espace de Hilbert
H; de dimension finie comme précédemment.

6. Voir par exemple [7] pour I'expression la plus générale.
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on obtient :
B, = 1 (]1 +VEN - SNTN + 0(53/2)>
V2 2 (1.2.3)
1 € -
B =—(1-eN—--NiN 3/2)
7 ( Ve 5 +0(E=7%) ),

ou € est un petit parametre qui vaudra dt¢ a la limite continue et N est une matrice
quelconque (pas forcément auto-adjointe). La deuxiéme étape, assez pénible, consiste
a développer dp; = prrar — pe (ol on note désormais ¢ = ndt) jusqu’a lordre e = dt.
On obtient :

dpy = D[N](pr)dt + H[N](p)(AY; — tx [(N + NV)py| dt) + O(at*/?),
ou on a utilisé les notations de Milburn et Wiseman [18] :

DIN](p) = NpNT - %{NTN,/)}
H[N](p) = Np+ pN = tr [(N + NT)p| p.

La variable aléatoire dY; correspond ici au n-iéme résultat de mesure 6,, = £1 multiplié
par Vdt, i.e. V; = \/&Z?:l d;. La troisieme étape du raisonnement consiste a noter
que Y est une somme de variables aléatoires indépendantes presque identiquement
distribuées, de sorte que 'on s’attend a ce que ses incréments deviennent gaussiens
en vertu du théoréme centrale limite . En acceptant cet argument, il ne reste qu’a
déterminer la variance et la moyenne de dY; sachant tous les résultats de mesure avant
t, information que I'on résume dans la filtration F; = o({Y,}, u € [0,¢[). On a :

B[dY;| 7] = vVt (tr[B_pBL] - tr[BipiBL]) ~ tr [(N + N1)p,|
E[dY2|F] = dt.
Il existe par conséquent un processus de Wiener ® W; tel que dY; = tr [(N + N T)Pt} dt+
dW; ce qui nous fournit I’équation différentielle stochastique vérifiée par le signal, qui

est le pendant continu des résultats de mesure dans le cas discret. Enfin, on a donc
deux équations différentielles stochastiques (EDS) pour p et Y qui s’écrivent ? :

dpt = D[N](pt) dt + H[N](p¢) dW;

. (1.2.4)
dY; = tr [(N +N )pt] dt + dW,.

7. Evidemment, la variable dY; que 'on a défini par commodité ne peut prendre que deux valeurs,
mais en définissant une nouvelle variable dY; égale a la somme de la précédente sur un grand nombre de
petits intervalles, on comprend qu’elle deviendra gaussienne. Voir par exemple [1] pour une dérivation
plus précise dans un cas particulier.

8. C’est a dire un mouvement Brownien, ou de maniére moins rigoureuse un processus dont la
dérivée est un bruit blanc.

9. Le bruit étant multiplicatif dans ’équation pour p, il est nécessaire de préciser la convention
qui est ici It6, ce qui signifie que le bruit dW; est décorrélé de p:. C’est la convention naturelle dans
ce contexte, on peut alors trés facilement prendre la moyenne de ’équation en supprimant le terme
contenant le bruit, ce qui est moins naturel avec Stratonovitch.
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[ lh >
J(t) + constante

cavité qui fuit fort champ cohérent photodétecteur

FIGURE 1.4 — Détection homodyme du champ s’échappant d’une cavité. Un fort champ
cohérent est ajouté. Le signal obtenu contient & une constante pres J(t) = %, ou Y;
est donné par 1’équation (1.2.4) pour N = a l'opérateur d’annihilation du mode de la

cavité mesuré. On peut consulter [19] pour une dérivation de (1.2.4) dans ce contexte.

Ce jeu d’équations, qui permet de décrire ’évolution continue du systeme et du signal
en fonction du temps est en général appelé équation maitresse stochastique (EMS) par
opposition a I’équation maitresse qui en est la moyenne sur le bruit (c’est a dire lorsque
l’on ne tient pas compte des résultats) et se lit simplement : 9,pr = D[N](pt).

Dans ce qui suit, on supposera en général que le systeme possede une dynamique
ouverte propre en plus de la mesure, dynamique pouvant s’écrire dp; = Z(p) ou
Z est le générateur d’une application CPTP (par exemple £ (o) = —i[H,e]). Par
conséquent, la classe générale d’équations a laquelle on va s’attacher dans ce qui suit
est composée des EDS de la forme :

dpr = Z(pt) dt + vy D[N|(pe) dt + /7 H[N](p¢) dWr (1.2.5)

ol 'on a adimensionné N pour en extraire un taux ~. Il s’agira, si 'on veut, de la
nouvelle équation de Schrédinger que 1’on prendra pour donnée en oubliant peu a peu
son origine. On peut malgré tout dire un mot sur sa réalisation expérimentale.

Réalisation expérimentale : Une premiére méthode —naive mais fonctionnelle— est
de suivre a la lettre la dérivation précédente et d’imaginer une situation a la Haroche
ou le couplage atome-cavité est faible et ou les atomes sont envoyés a une fréquence
élevée, c’est a dire ou le continu est obtenu comme limite du discret.

Une autre autre maniére d’obtenir I’équation (1.2.5) est possible sans utiliser I’étape
intermédiaire du discret et est réalisée en optique quantique avec la détection homo-
dyne (voir Fig. 1.4). La dérivation est alors un peu moins parlante mais on obtient
le méme type d’équations sans jamais passer par le discret (voir par exemple [18]).
Plus généralement, on peut imaginer que tout appareil de mesure possédant un grand
nombre de degrés de liberté internes, couplé de maniere suffisamment faible avec le sys-
teme et fournissant un signal a une résolution temporelle bien plus fine que le temps
typique de collapse, peut étre fidelement décrit par le modele précédent.

Remarque 1 (Représentation linéarisée). L’équation maitresse (1.2.5) est non linéaire
a cause de la contrainte de normalisation de p;. Il est parfois plus commode de tra-
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vailler avec une version linéaire et d’imposer la normalisation a posteriori. On introduit
alors la matrice densité non normalisée p; vérifiant I’équation différentielle stochastique
linéaire :

dpy = Z(p1) At + v DIN)(3) dt + 5 (Npu + 3NT) dv,

équation que l'on peut résoudre (en fonction de Y;) notamment dans les situations
de mesure pure. On peut ensuite vérifier en utilisant le lemme d’It6 qu’il suffit de
normaliser p; pour obtenir p;. Autrement dit, le processus stochastique p; = trfﬁt]
vérifie ’équation différentielle stochastique non linéaire (1.2.5) et est bien de trace 1.

1.2.3 Phénoménologie élémentaire

Comment se comporte ’équation (1.2.4) —dans un premier temps en l’absence
d’autre dynamique—? Pourquoi obtient-on bien quelque chose qui se comporte comme
une mesure ? Un bon moyen de comprendre la dynamique induite par la mesure conti-
nue est d’étudier le premier exemple non trivial avant d’attaquer le cas général.

1.2.3.a Exemple

Considérons donc un qubit, i.e. un systéme tel que # = Vect{|+),|—)} ~ C%.
Prenons N = (,/7/4) 02, ce qui correspond a une mesure dans la base canonique avec
une «force» proportionnelle a v qui a la dimension d’un taux. Dans la base canonique
on peut paramétrer p de la maniere suivante :

_( ¢ u

et observer ce que le systéme d’équations (1.2.4) fournit une fois développé en compo-
santes.

Probabilités : La probabilité g obéit a une équation fermée indépendante de la
phase u :

dgr = V7 ¢ (1 — q) dW. (1.2.6)

Intuitivement, cette équation induit un collapse progressif vers les points fixes ¢ = 1
ou ¢ = 0 ou le bruit s’annule. On est en effet naturellement attiré vers les points fixes
d’une diffusion non uniforme. Plus précisément, le processus stochastique ¢; est une
martingale continue, i.e. q vérifie E[dg|F;] = 0, et qui est par ailleurs bornée. Un
résultat classique de théorie des probabilités [20, 21] généralement attribué a Doob
est qu'un tel processus stochastique (martingale bornée) converge presque stirement,
réalisation par réalisation. La seule limite possible étant un point fixe de 1’équation
différentielle stochastique, on en conclut que ¢; tend vers 0 ou 1 suivant la réalisation
(voir Fig. 1.5). Mais avec quelle probabilité atteint-on l'une ou l'autre valeur? La
propriété de martingale garantit que I'on retrouve bien la regle de Born. En effet,
cette derniére implique que IE[g|Fp] = qo. Par conséquent on a ¢ = 1 x Plgy —
1] +0 x Plgg — 0] = P[g: — 1], soit exactement la régle de Born. On peut étudier
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1.0 == T .

FIGURE 1.5 — Echantillon de trois trajectoires correspondant & la simulation naive de
I'équation (1.2.6) avec dt = 1073, 4 = 1.0 et gg = 1/3 pour différentes réalisations du
bruit.

la vitesse de convergence en s’intéressant par exemple a la quantité A = /q(1 — q).
L’application du lemme d’It6 fournit :

1
dA; = —% A dt + 5\/ 'YAt (1 — QQt)th-

Par conséquent, on a E[A;] = e~ /8 la convergence est exponentiellement rapide en

moyenne avec un temps caractéristique de collapse o< v~ L.

Phases : La phase u obéit a une équation différentielle stochastique qui n’est pas
indépendante des probabilités mais qui possede néanmoins un comportement assez
simple :

dut = —%’U,t dt + g (2Qt — ].) Ut th
On a donc en particulier 9;JE[us] = —{E[uy]. La phase décroit ainsi exponentiellement
vite en moyenne, c’est la décohérence induite par la mesure. Une mesure continue induit
donc un collapse des probabilités doublé d’'un déphasage exponentiellement rapide.

Signal : Le signal Y; vérifie 'EDS suivante :

Aux temps longs, c’est & dire pour ¢t > v~ !, on a 2(g; — 1) = +1 et par conséquent
dY; = £,/7/2dt 4+ dW;. La valeur finale de ¢; peut donc tres simplement se lire 10 sur

la pente du signal aux temps longs.

10. 11 s’agit évidemment d’une méthode approchée, et p; étant en toute rigueur une fonction de ¢
et Y: il est toujours possible de calculer exactement ¢; en fonction du signal. Il s’agit d’une trivialité
dans le discret, ’état quantique est nécessairement une fonction des résultats de mesure et du temps.
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Remarque 2. L’équation (1.2.6) admet une solution analytique simple en terme de
Y; (la somme des résultats de mesure). En effet, on peut utiliser la remarque 1 pour
exprimer p en fonction de Y puis normaliser pour obtenir :
qoeV7
9= qoe\/:}/yt/2 + (1 — qo) e_\/’VYt/Q‘

(1.2.7)

Cette forme permet de reconstruire facilement la probabilité en fonction des résultats de
mesure. Il n’y a pas de dépendance en la trajectoire de mesure compléte mais seulement
en la valeur finale de la somme (cette caractéristique est perdue deés qu’une autre
dynamique est superposée a la mesure). L’expression (1.2.7) ne permet en revanche
pas immédiatement de calculer la distribution de ¢ car Y n’est pas Brownien. On verra
a la remarque 4 comment calculer tres facilement la distribution de Y et donc in fine
celle de q. Le cas de la mesure pure étant le seul qui se préte aux résolutions exactes, on
sera néanmoins contraint dans le reste de ce mémoire de s’appuyer sur les arguments
généraux précédents.

Remarque 3. Avant de passer au cas général, notons la similarité entre 1’équation (1.2.6)
et la limite continue de I’équation de Wright-Fisher en dynamique des populations '!
(voir par exemple [22]) qui s’écrit :

d.’I)t = \/{L't(l — J}t) th

Le bruit possede ici deux points fixes et la propriété de martingale garantit que la
probabilité d’atteindre le point fixe 1 vaut la valeur de départ. La similarité s’arréte
la et la racine carrée —en plus de rendre ’existence de solutions fortes problématique
[20]- modifie profondément la vitesse de convergence. Ici cette derniére n’est pas expo-
nentielle mais plus brutale et les points fixes sont atteints presque siirement en temps
fini [22]. 11 existe en dynamique des populations une équation possédant exactement le
méme terme de bruit que I’équation (1.2.6), i.e. sans la racine. Il s’agit de ’équation de
Karlin-Kimura & la limite de grande population [23] mais cette derniére posseéde alors
un terme en dt non trivial et en particulier non-linéaire qu’aucun modeéle quantique ne
peut reproduire.

1.2.3.b Cas presque général

Le comportement des équations de mesure continue générales est une extension
simple du précédent exemple dans le cas ou N est diagonalisable (ce qui correspond a
une mesure sans démolition) et de valeurs propres v; toutes de parties réelles distinctes
(ce qui garantit que les espaces propres de la mesure ne sont pas dégénérés). On se
place alors dans la base # = {li)}1<i<|%| dans laquelle N est diagonale, on note
Vi, g; = (i|p¢]i) les probabilités, Vi # j,u;; = (i|p¢|j) les phases et on omet 'indice du
temps par souci de clarté. L’équation (1.2.4) s’écrit alors en composantes :

dgi = (X = D arhe) AW,
k

(1.2.8)
dugy = —Ajjuigdt +ugi(vi +v; =Y gphe) AWy,
k

11. Je remercie Thierry Huillet qui m’a suggéré ce parallele.
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N sz . o 1 2 2
ot on a utilisé les notations A; = v; + v et Ay; = 5(|vi|* + |v5]° — 2v07).

Probabilités : Les probabilités sont comme précédemment des martingales et, si
toutes les valeurs propres v; sont de parties réelles distinctes, les points fixes sont de la
forme ¢; = dx;, la valeur de k dépendant de la réalisation. On obtient donc un collapse
progressif des probabilités dans la base propre de N, la statistique de la valeur de ¢;
atteinte aux temps longs étant donnée par la régle de Born, i.e. P[g; — 1] = ¢;(0).

Phases : Les phases décroissent exponentiellement en moyenne a un taux e [A;;] =
%|V¢ — vj|%. Plus deux valeurs propres de N sont différentes, c’est a dire plus elles
permettent de distinguer deux pointeurs entre eux, plus les cohérences entre ces deux
pointeurs décroissent vite. Notons au passage que dans le formalisme des mesures
continues, les valeurs propres de l'opérateur mesuré ne sont pas de simples labels
(comme pour une mesure projective) mais ont un impact sur la dynamique.

Signal : Le signal Y; vérifie

dYy =) Apqi dt + dW.
k

Aux temps longs on a ¢; = Jg; et la pente moyenne du signal, qui vaut alors A\, permet
de remonter immédiatement au label du pointeur atteint.
1.2.4 Généralisations

Nous nous sommes jusqu’a maintenant contentés de traiter le cas de la mesure
continue d’un unique opérateur mais la théorie se généralise pour inclure de multiples
opérateurs mesurés simultanément. On peut comprendre intuitivement cette situation
dans le discret comme 'envoi de plusieurs types de sondes différentes possédant un
Hamiltonien d’interaction différent avec le systéme '?. On donne ici les résultats sans
preuve, cette derniére étant une généralisation directe de celle du cas a 1 opérateur.

1.2.4.a Nombre discret d’opérateurs

On considére la mesure simultanée de n opérateurs A*, ’équation maitresse la plus
générale que 'on peut écrire pour la matrice densité p; et les n signaux Y* s’écrit (voir
par exemple [7]) :

dp = iFWD’“’(p) dt + %FW’H“(p)dW”
dY* = tr[A¥py| At + dWH,
ou on a utilisé la convention de sommation sur les indices répétés et les notations :
D (p) = AlpAVT — % {AVTAu’p}
H"(p) = H[A"](p).

12. Alternativement, on peut considérer I’envoi de sondes possédant un plus grand nombre de degrés
de liberté.
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Les processus WH* sont des Browniens dont la matrice de corrélation est non triviale
et donnée par I'"!, soit la regle d’Itd suivante :

AW (H)dw” () = [17] " at

ou I' est une matrice symétrique réelle positive. Le cas de la mesure simultanée de
plusieurs opérateurs possede une plus grande liberté que ce que 'on pourrait imagi-
ner naivement et les bruits sont potentiellement corrélés'3. Notons qu’il n’y a pas de
lien direct entre ™! la matrice de corrélation entre les bruits et le choix des opéra-
teurs A¥*. On peut tres bien choisir des opérateurs qui ne commutent pas et avoir des
bruits décorrélés ou se donner des opérateurs qui commutent tout en ayant des bruits
corrélés 1.

Dans le cas ou les opérateurs A* sont codiagonalisables, la phénoménologie est
essentiellement la méme que dans le cas d’un unique opérateur —a la vitesse de conver-
gence pres— dans le cas ou tous les états de la base propre commune aux A* peuvent
étre distingués. On entend par la que les seuls points fixes du bruit sur les probabilités
soient de la forme ¢; = d; comme précédemment. La condition est donc que la base
propre des A* soit unique.

1.2.4.b Continuum d’opérateurs

On peut encore généraliser formellement la construction précédente a un continuum
d’opérateurs A(x) pour x € R%. Ce type de généralisation permet de définir la plupart
des modeles de collapse objectif utilisés en fondements de la mécanique quantique
dans le cas ou A(x) est opérateur densité de masse régularisée en x. On préfere ici
abandonner I’écriture en terme d’équations différentielles stochastiques et adopter une
description en termes de champs gaussiens comme il est d’usage dans la littérature '°.
L’équation maitresse la plus générale que ’on peut écrire pour la matrice densité p; et
le champ de signaux s(x,t) s’écrit :

% = i/dxdy I'(x,y)D[x,y](p) + %/dxdyF(X,y)H[X](p)w(y)

s(x,t) = tr[A(x)pe] + w(x, t),

(1.2.9)

ou w est un champ gaussien de fonction de corrélation :

Elw(x, t)w(y,7)] = T7(x,y)d(t — 7).

13. L’éventuelle corrélation des bruits est la conséquence de la possible intrication des différentes
sondes dans le modele discret.

14. 11 y a parfois une confusion dans la littérature sur les modeles de collapse objectif entre la
régularisation spaciale appliquée aux opérateurs et la régularisation spatiale appliquée aux bruits qui
par le méme argument peuvent en réalité étre fixées indépendamment I'une de 'autre.

15. On effectue ce changement principalement pour ne pas donner l'impression que l'on travaille
au méme niveau de rigueur mathématique que précédemment. En effet, on a besoin de définir un
continuum de processus d’Itd potentiellement § corrélés, dW (z)dW (y) = d(x — y)dt, définition qui
nous amene de toute fagcon a un niveau de rigueur de «physicien». Dans la littérature, I’écriture en
terme de champ gaussien est aussi privilégiée pour ne pas séparer espace et temps de maniére artificielle,
notamment lorsque ’on cherche & construire des théories invariantes de Lorentz.
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Comme précédemment, I' est un noyau positif et on a utilisé les notations compactes
évidentes :

Dlx,y](p) = AG)pAl(y) — 5 { A AR o)

1.2.4.c Autres généralisations possibles

On peut imaginer un certain nombre d’extensions au formalisme précédemment
développé. La premiere idée a laquelle on pense immédiatement est de sortir du cadre
markovien. Une telle généralisation est évidemment utile pour intégrer d’éventuels
effets de mémoire dans le cas d’'une unique observable mesurée mais, surtout, pour
pouvoir construire des théories contenant des symétries comme l’invariance de Lorentz.
En effet, on s’attend dans ce cas a ce que les corrélations spatiales entre les bruits (que
l'on sait modéliser) donnent lieu naturellement a des corrélations temporelles et donc
a des bruits colorés. Une telle généralisation est donc importante que ce soit pour
construire des modeles de mesure plus fins ou pour les fondements ot on a ultimement
besoin de théories invariantes de Lorentz.

Evidemment, I'évolution d’un systéme ouvert non markovien pouvant a priori étre
quelconque, il ne s’agit pas de chercher I’évolution la plus générale, mais plutét une
classe d’évolutions facilement paramétrables et pour lesquelles on sait dire quelque
chose de non trivial. A peine 10 ans aprés les débuts de la théorie de la mesure conti-
nue, Didsi, Strunz et Gisin [24, 25] ont introduit une classe d’équations de Schrodinger
stochastiques a bruit coloré. Plus récemment, une large classe d’équations maltresses
non markoviennes et leur représentation en équations de Schrédinger stochastiques ont
été classifiées par Didsi et Ferialdi [26]. Dans certains cas particuliers, on dispose méme
de solutions exactes [27]. Pourquoi, dés lors, présenter 1’extension non markovienne de
la mesure continue comme un probleme ouvert 7 C’est que si les modeles précédents
donnent lieu a des trajectoires quantiques stochastiques qui permettent d’obtenir une
fois moyennées une équation maitresse non markovienne, ils ne possedent pas d’inter-
prétation claire en terme de mesure continue. Autrement dit, on n’est pas capable d’y
mettre en évidence une quantité analogue au signal Y;, c’est a dire un continuum de
résultats associés a la trajectoire. Une telle introduction a malgré tout été proposée par
Diési [28] mais Gambetta et Wiseman ont montré qu’un tel signal n’était en général
pas définissable en temps réel [29, 30] ce qui pose probléme notamment si I'on souhaite
parler de controle avec feedback. Le statut de la théorie non markovienne de la mesure
continue est de ce fait encore largement ouvert, ce qui ne sera d’ailleurs pas sans nous
poser des problémes en 3.3.

Une autre généralisation souhaitable (sur laquelle on reviendra en 4.3.1) serait le
passage a la théorie quantique des champs. Deux problemes principaux se posent qui
rendent la théorie non intuitive et ’entreprise largement ouverte. Premierement, on
ne peut mesurer des opérateurs locaux comme la densité de masse ou I’énergie sans
une certaine régularisation spatiale sans quoi la décohérence induite est divergente.
Cette régularisation spatiale est ensuite liée au second probléme qui est la nécessité de
I'invariance de Lorentz. La régularisation en espace donnant nécessairement lieu a une
régularisation en temps, on doit d’une certaine maniere introduire un formalisme non
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markovien dont on a vu qu’il était aujourd’hui encore en chantier. Certaines théories ont
néanmoins été proposées dans le contexte des fondements [31, 32] mais elles nécessitent
de modifier de maniére substantielle le formalisme usuel de la théorique quantique des
champs et leur interprétation en terme de mesure continue est loin d’étre évidente.

1.2.5 Autres dérivations et représentations

11 existe d’autres méthodes pour obtenir I’équation (1.2.5), la dérivation précédente,
bien que probablement la plus directe, n’étant pas historiquement celle qui a permis
d’arriver au résultat. La premiere référence ' est due & Barchielli, Lanz et Prosperi
en 1982 [31] et part directement du continu en utilisant le formalisme de l'intégrale

de chemin (ils généralisent en fait un exemple de Mensky [35] pour l'oscillateur har-
monique). La théorie est étendue en 1986 par Barchielli [36] en utilisant le formalisme
des bruits quantiques puis Caves [37] qui résume les différentes approches et s’intéresse

surtout aux équations maitresses (moyennées) pour la position. A ce stade, la théo-
rie est assez difficile a exploiter pour obtenir la dynamique conditionnée aux résultats
de mesure car bruits quantiques et intégrales de chemin se prétent mieux aux calculs
de valeurs moyennes. C’est Diési qui introduit en 1988 la formulation «moderne» en
terme d’équation différentielle stochastique [38] pour la mesure continue de la posi-
tion avec une preuve similaire a la notre. Les équations générales pour tout observable
apparaissent ensuite dans Barchielli et Belavkin [39, 10].

Parallelement, le méme type d’équations a été développé dans la communauté des
fondements de la mécanique quantique dans le but de résoudre le probleme de la me-
sure, question sur laquelle on reviendra. Dans ce contexte, il n’y a pas de dérivation et
les équations sont simplement conjecturées '’ pour obtenir un certain comportement
limite souhaité (typiquement une réduction des superpositions quantiques macrosco-
piques dans une certaine base, généralement la position). On peut penser notamment
aux travaux de Pearle [12, 13] et Didsi [14, 15] qui généralisent le modele de réduction
dynamique discret de Ghirardi, Rimini et Weber [16] (GRW).

Quittons désormais le fil historique pour présenter tres brievement une autre mé-
thode pour dériver le formalisme des mesures continue ainsi que deux autres manieres
de le représenter.

Une maniére alternative de comprendre la mesure continue est de la voir comme le
couplage faible du systeme considéré avec un bain d’oscillateurs harmoniques répartis
en un continuum de fréquences. Sous la double hypothese que le couplage est infiniment
faible et que la dynamique du bain est infiniment plus rapide que celle du systeme,
on peut mesurer 1’énergie du bain tous les dt pour obtenir une équation effective de
la forme précédemment considérée (1.2.5) ou l'opérateur N dépend de la forme du
couplage bain-systéme '®. On ne s’attardera pas ici sur cette méthode qui a le défaut

16. La paternité de ces équations pourtant simples est assez discutée. On cite en général une référence
de 1980 en russe due & Belavkin mais lorsqu’on en lit une traduction (voir [33]), il est difficile de trouver
un lien qui dépasse la proximité du titre.

17. C’est pour cette raison qu’il y a eu plus de tdtonnements dans le contexte des fondements, avec de
nombreuses propositions incohérentes, jusqu’a ce que l'on réalise que toute modification déterministe
non-linéaire de I’équation de Schrédinger ne pouvait fonctionner [11].

18. Une dérivation extrémement claire du formalisme dans ce contexte et dans les trois représenta-
tions possibles est présentée dans le mémoire de M1 de Flavien Simon [47].
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de demander une certaine vigilance sur la maniere dont sont prises les approximations
successives. En contre partie, il faut noter que cette derniere approche se préte mieux
aux généralisations en particulier non markoviennes.

Outre les trajectoires quantiques, il existe deux autres représentations possibles
du résultat : les bruits quantiques, qui est plus fine, et ’équation maitresse (non
stochastique) qui est plus grossiére. Le formalisme des bruits quantiques (ou calcul
stochastique quantique) a été introduit par Hudson et Parthasarathy [18] comme une
généralisation non commutative du calcul d’It6. Le lien rigoureuz entre cette approche
—essentiellement axiomatique et abstraite— et les mesures continues a ensuite été com-
pris par Attal et Pautrat [19] dans le contexte des mesures répétées et par Accardi et al.
[50, 51] puis Attal et Joye [52] dans le contexte du couplage faible avec un bain. Dans
la mesure ou ’on n’utilisera pas les bruits quantiques dans la suite de ce mémoire,
il est raisonnable de se contenter d’une présentation rapide bien que probablement
cryptique pour qui voudrait réellement s’en servir '?. La ol l'on mesure les sondes
(ou le bain) pour obtenir les trajectoires quantiques, I'idée des bruits quantiques est
de garder l'espace de Hilbert complet (systéeme + sondes) pour écrire la dynamique
et conserver ainsi la possibilité de choisir ultérieurement la mesure a effectuer. Une
grande partie de la subtilité mathématique de cette approche consiste & montrer que
le bon espace de Hilbert limite pour les sondes, correspondant au produit tensoriel
continu €? ® C? @ ..., est l'espace de Fock bosonique .# {IL%([0,¢[, C)}, puis que l'on
peut y écrire I’évolution simplement. On privilégie alors en général la représentation
de Heisenberg et écrit I’évolution pour un opérateur A; agissant éventuellement sur
I’espace complet :

dA; = D*[N)(A),dt + [NT, A],dg;, + [N, Al,de],

ou D* est le super-opérateur dual a D et d&; et df;r sont des opérateurs agissant sur
les sondes envoyées entre ¢ et ¢ + dt, i.e. # {L?([t,t + dt[,C)}. Les bruits quantiques
obéissent alors aux relations d’Itd6 quantique (& température nulle) :

dgde] = dt1 et d¢fde =0,

relations qui font intuitivement de dg et d&; les opérateurs créateurs et annihilateurs
de F {IL%([t,t + dt[,C)}. Pour en déduire la représentation en terme de trajectoires
quantiques (1.2.5), il faut mesurer les sondes. Plus précisément, pour obtenir exacte-
ment équation (1.2.5), il faut mesurer 'opérateur d&; + dfg a chaque instant ¢; le
résultat fournissant alors le signal dY; introduit précédemment (voir [7] pour plus de
détails). De cette présentation sommaire il faut simplement retenir que le formalisme
des bruits quantiques permet de représenter une situation de mesure continue dans
I’espace complet, sans choisir a priori la mesure sur les sondes, et de retrouver la repré-
sentation en terme de trajectoires quantiques a ’aide d’une mesure d’opérateurs bien
choisis sur ces dernieres.

On retrouve —a 'autre extréme de la finesse de description— la représentation en
terme d’équation maitresse qui donne la dynamique de la la moyenne (au sens statis-

19. On peut consulter [7] pour une introduction (trop) courte d la physicienne avec un vocabulaire
emprunté a la théorie quantique des champs. Le lecteur mathématiquement plus érudit préférera sans
aucun doute approche rigoureuse d’Attal [53].
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tique) de la matrice densité sur les trajectoires quantiques :
9ipr = D[N](pr)-

De maniére équivalente, c’est aussi ’équation que 1’on obtient lorsque l’on trace sur
les degrés de liberté du bain dans la méthode du couplage faible. Plus généralement,
c’est le type d’équation que 'on utilise pour décrire les systémes ouverts markoviens
en 'absence d’extraction d’information sur I’environnement.

On peut évidemment passer d’une représentation & une autre. On passe facilement
des trajectoires quantiques a 1’équation maitresse en moyennant sur les trajectoires et
des bruits quantiques a I’équation maitresse en tragant sur les degrés de liberté du bain.
Pour I’étude d’un systeme ouvert markovien dont la dynamique est naturellement don-
née sous forme d’une équation maitresse, on peut aussi avoir envie de remonter & une
représentation en trajectoires quantiques (qu’on appelle alors «unravelling»). Cette
derniere n’est alors évidemment pas unique et on peut en particulier choisir un bruit
gaussien ou un processus de saut. L’avantage est alors que les trajectoires quantiques
préservent la pureté [51] de sorte qu’il est possible d’utiliser |.7;| nombres pour pa-
ramétrer la dynamique (au lieu de |7%|? pour 1’équation maitresse). C'est d’ailleurs
cet intérét numérique, noté pour la premiere fois par Dalibard, Mglmer et Castin [55]
qui a fait la popularité des trajectoires quantiques au dela méme des situations de
mesure (voir aussi [50, 57]). Il est enfin possible de remonter de I’équation maitresse
aux bruits quantiques, opération que 'on appelle alors une dilatation (dilation) et
qui est essentiellement d’intérét mathématique (en permettant de simplifier certaines
preuves).

En résumé, on a trois représentations possibles entre lesquelles on peut facilement
naviguer suivant la situation considérée :

trace partielle
bruits quantiques équation maitresse

dA=D*[N](A)dt+ [N, Al d€+[N,Alpd€] < : 9:pt=D[N](pt)
dilatation :

=
S

trajectoires quantiques L )
dpr=DIN](p:) dt-+H[N](pr) AW, < «unravelling

Dans le reste de ce mémoire, on s’intéressera quasi exclusivement aux trajectoires
)

quantiques et étudiera tres ponctuellement les équations maitresses correspondant a

leur moyenne.

1.2.6 Point de vue des modeéles de Markov caché

Le formalisme des mesures quantiques continues peut étre vu comme une extension
des modeles de Markov caché et de la théorie du filtrage en calcul stochastique. En
particulier, I’équation (1.2.5) possede de fortes similarités avec 1’équation de Kushner-
Stratonovitch en théorie des probabilités classiques. A ma connaissance, si le paralléle
est parfois évoqué de maniere tres heuristique dans la littérature, il n’a jamais été



1.2. DES INTERACTIONS REPETEES A LA MESURE CONTINUE 19

donné explicitement ? dans le cas général. Commencons par rappeler briévement la
définition d’'un modele de markov caché.

Un modele de Markov caché en théorie des probabilités (classiques) est un proces-
sus de Markov R,, sur un graphe fini ¢4 que ’on ne connait que par 'intermédiaire de
mesures (ou observations) bruitées d,,, le processus lui méme n’étant pas directement
accessible (d’ou le terme «cachéy). L’objectif de la théorie du filtrage est de reconstruire
la probabilité que le processus de Markov soit en un certain site a 1’étape n sachant
I'ensemble des observations avant n. Plus précisément, on note F,, = o ({0 }1<k<n})
I'information contenue dans les n premieéres mesures, on se donne P[0, |R,,] la probabi-
lité d’obtenir un certain résultat de mesure sachant la valeur du processus de Markov
et on se donne enfin M la matrice de Markov de R. Le probleme du filtrage est alors
de calculer P[R,|F,].

1.2.6.a Un premier exemple presque trivial

Pour simplifier ’analyse, nous allons commencer par nous restreindre au cas ou ¢
contient uniquement deux sites et ou la matrice de Markov du processus R,, est triviale,
autrement dit R, = R = constante et le processus de Markov est en fait une unique
variable cachée. Notre objectif étant ici de convaincre le lecteur le plus rapidement
possible de la pertinence du parallele, nous ne nous attarderons pas sur les preuves et
laissons le traitement du cas général a 'appendice B.

Imaginons qu’une observation 9,, = £1 apporte une petite quantité d’information
sur la valeur de R (qui peut valoir 0 ou 1) :

]P[(Snzl\R:O]:l—;E
]__
R[S, = 1|R = 1] = 25.

L’application de la reégle de Bayes permet de calculer simplement @, = P[R|F,] en
fonction de @,,_1 et §y, :

(1 +€5n)Qn—l
(1 + 56n)Qn—1 + (1 - 5571)(1 - Qn—l) '

Le lecteur peut d’ores et déja remarquer que cette regle de mise a jour de la proba-
bilité en fonction d’un résultat de mesure est exactement identique a la prescription
quantique (1.2.2) dans le cas ou By, B_ et p sont diagonales dans la méme base.
Autrement dit, et méme si I’étude de cet exemple ne fait évidemment pas office de
preuve, une mesure indirecte quantique est a priori simplement une mesure imparfaite
classique dans une certaine base doublée d’un déphasage, c’est a dire d’'une suppression
des coefficients non diagonaux dans la base d’intérét.

Comme on I’a fait dans le cas quantique, on peut s’intéresser a la limite continue
en posant t = ndt et ¢ = \ﬁ\/&/ 2 pour obtenir (voir par exemple 'appencide D pour
une preuve) :

Qn:

f
dQr = A Qi(1 — Q1) AWT, (1.2.10)
20. Un cas analogue a néanmoins traité dans le contexte des fondements (mais sans utiliser ce
vocabulaire) par Bedingham [58, 59] et on peut voir les traces d’un raisonnement similaire chez Laloé

[60], encore une fois dans le contexte des fondements.
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oit Wi est un processus de Wiener pour la filtration F, soit exactement ’équation
(1.2.6)! La «probabilité» dans un modele de Markov caché dont la dynamique est
triviale évolue exactement comme la probabilité d'un systeme quantique soumis a
une mesure continue pure. L’avantage de la représentation en terme de modele de
Markov caché est que 'on possede un espace probabilisé plus grand dans lequel on
peut considérer que la valeur finale atteinte par la probabilité est prédéterminée, ce
qui permet notamment de conditionner facilement la trajectoire quantique a sa valeur
finale. En effet, on peut introduire la filtration G; = o(R, F;) qui contient 'information
sur la valeur de la variable cachée en plus des résultats de mesure. Sous cette nouvelle
filtration, le processus W n’est plus un processus de Wiener et on peut écrire (voir
appendice B) 2! :

AWy = dwf + /7 (R — Q) dt, (1.2.11)

ou th est un processus de Wiener pour la filtration G ce qui permet de réécrire
Iéquation (1.2.10) de la maniére suivante :

dQ: = vAQu(1 = Qu) (AW + 74 (R - Qo) dt) . (1.2.12)

Cela signifie si I'on se donne (g en pratique, on peut simuler le processus stochastique
Q@ directement avec 1’équation (1.2.10) ou alors tirer R avec la probabilité Qg puis
simuler le processus stochastique @; avec 1’équation (1.2.12) et on obtiendra deux
processus avec exactement la méme loi. Autrement dit, étant donné un ensemble de
réalisations du processus, il est impossible de savoir avec quelle méthode il a été obtenu.
L’avantage est alors que le comportement de I’équation (1.2.12) est tout a fait intuitif
et on comprend bien que @Q; — R. On exploitera cette idée lorsque l'on abordera la
limite de mesure forte et les sauts quantiques.

Remarque 4 (Distribution de ¢;). On peut exploiter la réécriture de I’équation (1.2.11)
pour calculer la distribution explicite de Y, calcul a priori non trivial sans ce passage
par les variables cachées. On a en effet en fonction du nouveau mouvement Brownien :

dy; = @ (2R — 1)dt + dW,

et en se souvenant que P[R =1] =¢p on a :

_ w=vAt/2)? _ (wv/At/2)?
2t

e 2t e
dy + (1 — qo)

dPlY, = = - -
[t ?/|QO] q0 \/2—7# \/%

dy. (1.2.13)

On peut ensuite inverser 1’équation (1.2.7) pour exprimer Y en fonction de ¢ :

e \2ﬁ (m {1 thj o {1 EO%D |

21. Ce changement de mouvement Brownien rappelle le théoréme de Girsanov [20].
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Plg:|qo]
Pla:|qo]

qt

FIGURE 1.6 — Probabilité de ¢; sachant go = 1/3, v = 1.0 pour différentes valeurs de ¢
(temps «courts» a gauche et temps «longs» a droite).

soit finalement :

(3 (12 -1 [s25]) - v’

2
dP[g: = g|qo] Z% exp | — ot dg
2
2 a4 | _ q
n 2(1 — qo) ( gl (m L—q} In [1—310}) + \ﬁt/2)
o XD |~ dg,
V2mytq(1 — q) 2t

distribution qui est tracée en Fig 1.6.

Il est remarquable qu'une équation a priori aussi simple : dg; = \/7q:(1 — g;)dW;
donne lieu a une distribution si compliquée. On peut ici mesurer la puissance du
formalisme d’Itd en comparant cette dérivation relativement rapide avec le calcul de la
méme quantité dans le formalisme de intégrale de chemin développé dans [61] et qui
nécessite plusieurs pages d’arguments.

1.2.6.b Cas général

Si 'on imagine trés bien que 'exemple précédent se généralise aisément au cas
d’un graphe de taille arbitraire, la question plus subtile est de savoir si la description
en terme de processus de Markov caché s’étend aux cas ou la mesure est doublée
d’une dynamique ouverte générale de la forme d;p; = L(p;). Plus précisément, peut-
on fixer une matrice de Markov M telle que les coefficients diagonaux de la matrice
densité p; s’interpretent comme les probabilités (sachant les résultats de mesure) d’un
certain processus de Markov R;. La réponse est négative si 'on demande que M soit
une matrice indépendante du temps. Néanmoins, si I’on accepte la généralisation tres
non-classique que M puisse dépendre explicitement de p;, alors on peut construire un
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modele de Markov caché correspondant a tout modéle de mesure continue + évolution.
Nous allons nous contenter ici d’énoncer le résultat qui est démontré dans ’appendice
B.
On cherche un modele de Markov caché reproduisant I’équation (1.2.5) que 1'on
rappelle ici :
dpy = Z(py) dt + v D[N](p) dt + /7 H[N](pr) dWs, (1.2.14)

pour N diagonalisable. On introduit alors le processus de sauts (caché) R; a valeurs
dans les projecteurs sur les états pointeurs |i)(i| de N. A chaque instant, le processus
R; possede une probabilité M (p);; dt de passer du pointeur j au pointeur 7. On fixe
M (p) de la maniére suivante :

) _ i)y (o]
| Seal Ly — 263 /)]
] 709

M(p)icj = + "?f(;;))

ou [e]" dénote la partie positive et on a utilisé 'écriture de .Z en composantes
ZL(p)i) = Dkl D%(Iz’lj)) p¥D . Notons comme prévu qu’avec cette définition R; saute
donc en général avec une probabilité qui dépend des coefficients non-diagonaux de p,

comme si ces derniers guidaient le processus. On définit ensuite le modeéle complet
donnant 1’évolution jointe entre p et R de la maniere suivante :

dpr = Z(pt) dt + v DIN](pe)dt + A HIN(pr) (dWT + y/Ate [(N + N (R, = py)| dt)

P [Ryvar = [0)(i] | Re = [7)(j] ] = M (pr)icjdt.
(1.2.15)

L’affirmation démontrée dans 'appendice B est que le p; défini dans le modele sans
variable cachée par I’équation (1.2.14) posséde exactement la méme loi que le processus
p¢ défini par I’équation (1.2.15) dans I’espace probabilisé étendu contenant une variable
cachée. Par ailleurs, dans ce second modele on a E[R:|F;] = diag(p:), autrement dit
les coefficients diagonaux de p; s’interpretent comme les probabilités d’une variable
cachée bien définie. L’état quantique possede dans 'interprétation de Markov caché
un double statut épistémique, car les coefficients diagonaux s’interprétent comme des
probabilités de quelque chose et dynamique?’, car les coeffcients non diagonaux ont
un impact sur les taux de transition du processus de Markov caché.

Remarque 5 (Cas classique). Dans le cas ou M est indépendant de p (ce qui est le
cas par exemple deés que .Z est diagonal), on peut construire un modele de Markov
caché ou la dynamique de la variable cachée ne dépend pas de p. L’état quantique p
est alors simplement une maniere commode de stocker les probabilités d’une chaine
de Markov et la mesure n’a pas de rétroaction sur la dynamique qui est purement
markovienne. On dira dans ce cas que 1’équation quantique initiale est «classique» au
sens des modeles de Markov cachés.

Résumons le contenu de cette partie sur les modeles de Markov caché. En mécanique
quantique, la mesure continue ne révele pas a priori la valeur d’une variable cachée bien

22. Ce role dynamique est nécessaire et ’état quantique ne peut étre purement épistémique et
reproduire les résultats de la mécanique quantique orthodoxe, c’est le théoréme de Pusey, Barrett et
Rudolph (PBR) [62]
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définie a chaque instant. Néanmoins, il est possible en étendant I’espace de probabilités
de construire un modele de Markov caché ou la mesure continue révele effectivement la
valeur d’une variable cachée bien définie a chaque instant. Il n’y a évidemment pas de
miracle et il faut accepter que la dynamique de la variable cachée dépende explicitement
de I'état quantique >*. Ce paralléle est malgré tout utile pour des raisons pratiques en
donnant acces a d’autres méthodes de simulation de I’équation maitresse stochastique,
et «philosophiques» en offrant éventuellement un meilleur support a 'intuition pour
qui aime raisonner classiquement 2*.

1.3 Lien avec le programme de réduction dynamique

1.3.1 Idée et modeéle jouet

On a jusqu’a maintenant beaucoup insisté sur le fait que les mesures continues
ne fournissaient pas une résolution théorique du probléme de la mesure mais n’étaient
qu’un déplacement de la coupure de Heisenberg. En effet, méme si les mesure continues
peuvent permettre de se faire une intuition sur le fonctionnement de la mesure en
mécanique quantique?’, elles nécessitent pour leur définition méme 1'utilisation du
postulat de la mesure. On peut malgré tout exploiter le formalisme précédemment
développé pour construire les théories de «réduction dynamique »(ou aussi «collapse
objectif»).

L’idée de ces diverses approches initiées par Ghirardi, Rimini, Weber, Pearle et
Diési [16, 44, 64] est de postuler une modification de I’équation de Schrodinger qui
ait un impact minime sur la dynamique microscopique mais qui permette de cas-
ser le principe de superposition a 1’échelle macroscopique pour n’obtenir qu'une seule
«réalité» a cette échelle. En brisant la linéarité, il devient possible de démontrer le
postulat de la mesure —de montrer son émergence— en n’utilisant qu'un postulat mo-
difié sur la dynamique. Dans ces modeles, la distinction microscopique/macroscopique
perd son arbitraire et devient précisément définie par le choix des parametres, nou-
velles constantes fondamentales de la Nature. L’approche peut sembler ad hoc, il existe
a priori une infinité de maniéres de modifier ’équation de Schrédinger si on léve la
contrainte d’unitarité et cette trop grande liberté doit nous rendre suspicieux. En réa-
lité, 'espace des théories est plus contraint qu’il n’y parait et en imposant (1) la regle
de Born (lien fonction d’onde/probabilités) et (2) I'impossibilité d’utiliser des états
intriqués pour envoyer de I'information plus vite que la lumiere (no faster-than-light
signalling) %, on peut démontrer [65, (6] que toutes les modifications continues et mar-
koviennes de 1’équation de Schréodinger admissibles correspondent formellement a la
mesure continue de quelque chose, c’est a dire a I’équation (1.2.5) pour un certain en-
semble d’opérateurs V. C’est ce qui fait le lien formel, souvent peu exploité d’ailleurs,
entre modeles de mesure continue et modeles de collapse objectif.

23. Sans quoi la théorie serait trivialement en contradiction avec l'inégalité de Bell.

24. Je dois confesser appartenir a cette catégorie d’étres cognitivement limités.

25. Ce que [63] appelle comprendre I’émergence des faits.

26. En information quantique, on appelle en général «no faster than light signalling» le fait que
I'intrication ne puisse étre utilisée pour transmettre de 'information instantanément en mécanique
quantique non relativiste. Voir 3.3.2.b pour plus de détails.
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L’exemple le plus simple pour un systéme de particules discernables est le modele
jouet QMUPL (Quantum Mechanics With Universal Position Localization) [15] qui
correspond a la mesure continue de la position (donné ici en 1d) :

dpe = —i[H, p]dt +~D[X](ps) dt + /7 H[X](pe) AW, (1.3.1)

ou le Hamiltonien est le Hamiltonien de la mécanique quantique standard et ~ est ici
un petit parametre qui caractérise la force de la localisation spontanée. Cette équation
(1.3.1) a été étudiée en détail par Bassi et Diirr [67, 63]. Nous allons nous contenter
d’en expliquer le comportement avec des arguments intuitifs. En pratique, on souhaite
que ~ soit suffisamment petit pour que les termes responsables du collapse en position
n’influencent pas la dynamique microscopique d’une particule unique. On souhaite par
exemple qu’un tel terme reste petit devant le terme d’interaction coulombienne pour
un électron dans un atome d’hydrogene ce qui donne approximativement :
e? 9 e?
— >0, =7 <K —3,
£0ap €0ayg

ou ag est le rayon de Bohr. Pour un tel 7, on s’attend a ce que toutes les prédictions
de la théorie pour des systémes microscopiques, typiquement les niveaux d’énergie
atomiques, soient conformes & ’expérience et aux calculs effectués avec la mécanique
quantique orthodoxe. Une particule unique est donc loin d’étre localisée en position
dans ce modele, ce qui est d’ailleurs souhaitable car cela entrerait en contradiction
avec la mécanique quantique.

Pour comprendre la réduction des superpositions macroscopiques, il faut s’intéresser
a un systéme de n particules régies par I’équation (1.3.1) et observer que le 7 effectif
auquel est soumis le centre de masse est renormalisé d’un facteur n?. Pour simplifier
encore ’analyse, considérons désormais qu’il n’existe que deux positions accessibles,
|+¢) et | — ) correspondant par exemple aux deux positions mécaniquement accessibles
a l’aiguille d’un appareil de mesure. L’espace de Hilbert du systéme de n particules est
donc 2, = @}, C%. L'opérateur position X devient sur cet espace de Hilbert réduit :

X=v Z ng),
k=1

(k)

ou o’ est opérateur o, agissant sur la k-ieme particule et ’équation (1.3.1) se réécrit :

1

A =130 po = L (oo + oo

dt + 70> HoP](p)dW,
k=1

ol on a omis I’éventuel Hamiltonien d’interaction entre les positions £¢. Considérons
désormais une superposition macroscopique de ces n particules, c’est a dire un état

p = V) (| tel que :
|+ +0®..9|+0)+|-0H@| -6 ®...0|—0)
B V2

La dynamique laisse stable l'espace de Hilbert engendré par |++---+) et | ——--- —).
Par conséquent, si 'on regarde une des particules de la superposition en ignorant les

[¥)
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autres, c'est & dire en regardant Détat p!) = tr(,—1)(p) ot on a fait la trace sur les
n — 1 particules restantes, on a d tout temps :

dpt") = m? Do) (o) dt + At Ho D) (o) d.

Le parametre de collapse est renormalisé du nombre de particules au carré. Ainsi, le
passage du microscopique au macroscopique fournit une renormalisation de la vitesse
de collapse effective d’un facteur n? ~ 10%° qui rend possible, du moins en principe, la
coexistence entre des superposition microscopiques et une réalité macroscopique bien
définie. On comprend donc intuitivement comment un modele de réduction dynamique
peut fonctionner. Evidemment dans ce contexte, l'interprétation est complétement
différente de celle de la mesure continue ou les équations correspondent seulement a
une certaine limite du formalisme orthodoxe. Ici, on imagine que la modification est
fondamentale et il n’y a pas d’observateur responsable du collapse.

1.3.2 Modeles physiques

Si le modele QMUPL permet par sa compacité et son écriture simple en terme de
mesure de comprendre rapidement le fonctionnement des modeéles de collapse objectif,
il n’est pas physique pour de nombreuses raisons. Ses limites principales sont une
explosion quadratique de la décohérence en fonction de la distance qui est trop brutale
pour étre conciliable avec I’expérience et une apparente impossibilité a généraliser le
modele au cas de particules indiscernables.

On obtient des modeles plus physiques et plus facilement généralisables en rem-
plagant la position X par la densité de masse régularisée 9,(x) en chaque point x de
I'espace R®. La régularisation est nécessaire pour la plupart des modeéles afin d’éviter
que le terme de collapse n’engendre une décohérence infinie. Dans le cas d’une particule
unique ?” de masse m, on prend par exemple :

o) =m [ dy guix = y]) )y

ou g, est typiquement une gaussienne de largeur o. Pour écrire I’équation maitresse
stochastique, on utilise ensuite simplement le formalisme introduit pour la mesure
continue d’un continuum d’observables en (1.2.9) :

D — il o) [ axdy T 3) (00001 100 (v), 1+ [ dxdy T, y)HIoo () () (),

(1.3.2)
ol les intégrations sont & effectuer sur R3. Les deux modeles les plus couramment
utilisés dans la littérature peuvent se mettre sous la forme précédente et ne se dis-

tinguent que par le choix du noyau I'(x,y). Le choix le plus simple, qui consiste a

27. Le cas général avec n especes de particules indiscernables de masse my en est la généralisation
immeédiate et on peut prendre par exemple :

) =Y [ ayao(x— ) al ),
k=1 R?

ol al (x) et ay(x) sont les créateurs et anhiliateurs pour espéce k au point x.
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prendre I'(x,y) = 7d(x — y) donne le modele Continuous Spontaneous Localization ou
CSL introduit principalement par Pearle. Une autre possibilité, proposée par Diodsi puis
Penrose [(9, 70, 71], consiste a prendre I'(x,y) = ﬁ Ce second choix est en général
motivé par des arguments heuristiques cherchant a mettre la gravitation a 1’origine du
collapse. Au dela de ces considérations assez vagues, on peut noter que ce second choix
donne a 7 la dimension de G la constante de gravitation. On peut alors potentiellement
éliminer un parameétre du modele en fixant >® 4 & un multiple entier ou une fraction
simple de G.

Tous les modeles de collapse continus actuellement discutés possédent une phéno-
ménologie qualitativement similaire a celle de CSL ou DP et on renvoie le lecteur aux
revues de Bassi et al. [72, 73] pour une zoologie détaillée. Une fois les modeles définis,
il faut ensuite inévitablement une interprétation pour savoir comment relier le vecteur
d’état (dont la dynamique a été modifiée) et le monde réel >”. En effet, comme 1'obser-
vateur n’est plus une notion primitive dans une telle théorie, il est impossible d’utiliser
la regle de Born pour donner un sens au vecteur d’état : les résultats de mesure sont
en effet censés étre des propriétés émergentes de ’état! La solution est de définir ce
que 'on appelle en général une ontologie primitive, terme un peu pompeux pour dire
«ce & quoi on accorde le statut de réalité» ou simplement «ce qui existen», le stuff (voir
appendice A pour plus de détails). On voit alors la théorie comme la prescription de
la dynamique pour cette ontologie primitive a partir de quoi tout doit potentiellement
pouvoir se déduire. La solution la plus populaire (méme si on va voir en 3.3 qu’elle
pose des problémes & bien des égards), est de définir la densité de masse (p) & partir
du vecteur d’état de la maniere suivante :

(0)(x) = tr[p 05 (x)]. (1.3.3)

Ce champ, fonction de l’espace-temps et a valeur scalaire, définissable a priori pour
I'univers tout entier, est alors la seule chose «réelle» dans la théorie a partir de laquelle
on postule que toutes les observations et prédictions peuvent se formuler. Le choix
entre diverses ontologies cohérentes est a ce stade essentiellement une question de
gotit, mais on verra en 3.3 qu’on peut obtenir des résultats intéressants en faisant un
choix différent de celui de I’équation (1.3.3).

1.3.3 Difficultés

Les modeles de collapse offrent une solution possible au probléme de la mesure
qui a l'avantage d’étre définie de maniére mathématiquement précise (avec le méme
formalisme que la théorie de la mesure continue). Cette solution n’est évidemment pas
gratuite, et la résolution du probléme initial se paie d’un certain nombre de défauts.

Le premier défaut immédiat est celui de ’arbitraire du choix des opérateurs dé-
finissant la base de collapse. Sans méme aborder les subtilités de la régularisation et

28. On peut montrer (voir G) que des considérations sur la gravité semi-classique permettent en fait
de fixer exactement le lien entre v et G pour peu que 'on impose une contrainte assez naturelle de
minimisation de la décohérence.

29. Cette étape est souvent ignorée car «non mathématique», elle est pourtant fondamentale car
elle permet de désamorcer de nombreux faux problémes comme le «tail problem» dont la discussion a
empoisonné les débuts de la théorie (voir par exemple Tumulka [74]).
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de la fonction a deux points du bruit, on pourrait imaginer une série de modeles lo-
calisant la matiere dans une autre base de pointeurs que celle de la densité de masse.
Dans le cas général, il est évidemment difficile de voir comment une telle prescription
donnerait des objets macroscopiques localisés conformément a l'intuition, mais on ne
peut pas ’éliminer a priori. On peut aussi étre attaché a la structure symplectique
de la mécanique quantique et regretter qu’elle soit détruite par le primat accordé a la
position 3",

Un autre défaut aux conséquences empiriques immédiates est la non conservation
de I'énergie. La présence du bruit sans termes de friction tend a chauffer trés lentement
la matiere : un gaz isolé décrit par un modele de collapse est sujet a une infime élévation
continue de température. Cette augmentation lente, qui a été observée des la geneése
des théories de collapse [16] n’est en conflit avec aucune observation actuelle, mais on
est en droit de la trouver problématique au moins théoriquement. On peut construire
des modeles rendant cette augmentation d’énergie convergente [75], mais on doit alors
introduire un nouveau parametre controlant I’amortissement nécessaire, ce qui réduit
la simplicité et ainsi 'attractivité de I'approche.

Les modeles de collapse ont aussi un probléme plus paradoxal : ils redonnent exacte-
ment la mécanique quantique orthodoxe, & des difficultés d’interprétation pres, lorsque
le parametre de collapse v tend vers 0. De ce fait, il est assez difficile de contraindre
expérimentalement les valeurs de ce parametre sans faire appel a des considérations
philosophiques ou & une étude fine et inévitablement contestable des perceptions .
On verra en 3.3 une possible porte de sortie a ce probleme utilisant la gravité semi-
classique.

Les modeles de collapse se sont aussi montrés récalcitrants a des extensions a la
théorie quantique des champs. Ce ne doit pas étre une surprise et les difficultés sont
naturelles si on a a ’esprit les problemes rencontrés par la théorie de la mesure conti-
nue dans ce méme domaine (voir 1.2.4.c). Il existe malgré tout quelques pistes avec
un modele de collapse discret sans interactions dit & Tumulka [77] ainsi que deux mo-
deles plus généraux mais infiniment plus techniques proposés par Bedingham [31] et
Pearle [32]. Ces derniers modeles sont néanmoins complexes ce qui rend I’étude de leur
cohérence difficile *2.

Résumons. Les modeles de collapse utilisent les mémes mathématiques que la théo-
rie de la mesure continue pour résoudre le probleme de la mesure. La ou la mesure
continue est vue comme une description phénoménologique dérivable de la mécanique
quantique orthodoxe, les modeles de collapse prennent le point de vue que la modi-

30. Une réponse possible a cette objection est que la symétrie entre la position et son moment conju-
gué est de toute facon le propre de la mécanique quantique non relativiste. En relativité générale par
exemple, la variété et son espace tangent sont deux objets mathématiques de nature fondamentalement
différentes et il n’est pas absurde d’étre «localisé» dans I’'un sans ’étre dans 'autre.

31. On peut par exemple imposer que les superpositions quantiques ne survivent pas au passage
par le nerf optique ou qu’'une certaine configuration des neurones soit suffisamment objective pour
qu’il n’y ait pas de superposition d’états de conscience [76]. Méme si ces études sont rigoureuses, leur
interprétation est fortement conditionnée a des présupposés philosophiques qui sont justement ce que
Pon cherche a éviter.

32. Le modele de Bedingham, bien que particulierement astucieux, introduit une non-linéarité qui
permet de transmettre de I'information plus vite que la lumiére. Le dernier modele de Pearle ne semble
pas contenir de probléme similaire mais sa formulation assez implicite ne permet pas de garantir que
d’autres phénomenes tout aussi bizarres n’émergent pas.
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fication a la dynamique usuelle est fondamentale et ne nécessite pas d’observateurs.
Ce second point de vue offre une solution précise au probleme de la mesure qui se
paie des difficultés précédemment énoncées. La question de savoir si le prix a payer
est raisonnable, sachant notamment qu’il existe d’autres solutions possibles, est ou-
verte. La question ne restera cependant pas sans réponse éternellement puisque les
valeurs raisonnables du parameétre de collapse [7%] seront prochainement falsifiables
expérimentalement.

1.4 Conclusion sur les mesures continues

Les mesures continues en mécanique quantique n’ajoutent pas d’éléments nouveaux
a l'interprétation de la théorie quantique et permettent a priori simplement de décrire
plus finement les mesures. L’idée est de s’appuyer sur 'interprétation orthodoxe mais
d’inclure ’appareil de mesure au systéme (ou de décaler la coupure de Heisenberg d’'un
cran). La maniére la plus simple d’obtenir des équations continues est de considérer
des interactions répétées entre le systeme et des sondes dans la limite ou le couplage
est faible et le nombre de sondes envoyées par unité de temps élevé. La dynamique
que l'on obtient a alors les bonnes propriétés d’une mesure (comme la régle de Born),
la progressivité en plus. Le formalisme permet de traiter la mesure simultanée de plu-
sieurs opérateurs, voire d’un continuum. La question de I’extension du formalisme a
la théorie quantique des champs et a des dynamiques non markoviennes est en re-
vanche ouverte. Par ailleurs, il est bien connu que la mesure quantique ne révele pas
une valeur pré-existante de ’observable mesuré. Pour autant, il est possible d’inter-
préter le formalisme des mesures quantiques continues en terme de variables cachées
en exploitant la similarité formelle de la théorie avec les modeles de Markov caché en
théorie des probabilités (et en particulier avec I’équation de Kushner-Stratonovitch en
théorie du filtrage). Ce point de vue alternatif permet de simplifier certaines preuves
et d’offrir un guide puissant a l'intuition. Il est enfin possible d’utiliser la théorie des
mesures continues pour construire des modeles de collapse vus comme fondements de la
mécanique quantique. L’idée est alors de ne plus voir la théorie comme effective (confor-
mément & ce que sa dérivation initiale suggere) mais comme fondamentale. On peut
alors s’en servir pour construire des théories physiques ne souffrant pas du probleme
de la mesure. Ce possible renversement de perspective rend le domaine d’application
du formalisme des mesures continues extrémement large, de 'optique quantique a la
physique fondamentale.

La théorie a pris sa forme définitive entre la fin des années 1980 et le début des
années 1990, il n’y a donc rien de nouveau dans ce mémoire sur la structure méme des
équations qui a été largement étudiée. Ce sont leurs applications (au controle par la
mesure, a 'optimisation, aux fondements) ainsi que I’étude de leur comportement qui
ont été peu considérés et qui constituent le coeur de la nouveauté que 'on va tacher
d’explorer.



Chapitre 2

Résultats théoriques

If we are going to stick to this dam-
ned quantum-jumping, then I regret I
ever had anything to do with quantum
theory.

Erwin Schrodinger, cité dans [79)

Dans ce chapitre on s’intéresse a I’étude quantitative de la dynamique induite par les
mesures continues a partir des équations et du formalisme précédemment introduits. Il
s’agit, si 'on veut, de résultats de « physique mathématique», en ce sens que ’on cherche
a comprendre des équations avec un regard désormais plus distant sur leur réalisation
physique. Le niveau de rigueur, comme dans le reste de cette these, est malgré tout tres
inférieur a ce que des mathématiciens seraient en droit d’attendre. On explore dans les
deux premiéres sections la maniére dont les mesures continues s’approchent (ou non)
des mesures projectives lorsque leur taux ou vitesse v tend vers l'infini. On s’intéresse
en particulier aux sauts quantiques et aux échardes quantiques qui constituent les deux
phénomenes principaux observés dans cette limite. La derniere section quitte la mesure
forte pour s’intéresser justement a ce qui distingue la mesure continue d’une mesure
projective : le fait que l'information ne s’extraie que progressivement.

2.1 Mesure forte et sauts quantiques

On possede maintenant un formalisme qui permet de décrire plus finement une
situation de mesure que ’approche projective issue directement des postulats. Il est
naturel de se demander ce qui se passe lorsque 'on augmente la force de la mesure
continue pour la rendre quasi projective. Autrement dit, comment atteint-on un ré-
gime de mesure forte & partir d’une mesure continue 7 La question est d’autant plus
intéressante lorsqu’il existe une compétition non triviale entre mesure et évolution.
Dans ce cas, on sait en effet qu’en répétant fréquemment des mesures projectives, on
finit par bloquer le systéeme dans un des états pointeurs, c’est I'effet Zénon quantique.
Au premier ordre non trivial, on obtient des sauts entre différents pointeurs & une
fréquence inversement proportionnelle a la fréquence des mesures répétées, ce sont les
sauts quantiques. Plus précisément, considérons un état [¢) dont la dynamique est

29
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’

—

bain thermique qubit mesure continue

FIGURE 2.1 — On considére la mesure continue de I’énergie d’un qubit couplé a un bain
thermique.

donnée par H et qui est mesuré tous les At = y~! dans la base {9 }1<i<|,- Partons
d’un état ), = |i). Pour At assez petit on a :

V) erae = (1 —iAtH)]7)

La probabilité de mesurer |j) apres At vaut alors |(i|H|j)|?At? = |H;;|? At? soit une
probabilité de saut par unité de temps entre i et j :
|Hij|”
Y

Peut-on retrouver un phénomene analogue dans le cas des mesures continues? Si
oui, obtient-on quelque chose de plus, la description reste-t-elle quand méme plus
fine dans cette limite ? A 'exception d’une dérivation assez ad hoc dans [61] pour le
cas particulier d'un qubit, ce probleme a été assez peu étudié’. Il est malgré tout
indispensable de ’explorer car ce type de régime quasi Zénon intéresse de plus en plus

les expérimentateurs pour des systémes aussi divers que les atomes froids sur réseaux
optiques [81, 82, 83] et les qubits supraconducteurs [$4, 85].

Miej = |Hij|*At =

2.1.1 Heuristique

Avant de traiter le cas général, intéressons nous a ’exemple non-trivial le plus
simple. On considére un qubit couplé & un bain thermique markovien dont on mesure
continuement ’énergie (voir Fig. 2.1). En ’absence de mesure, une bonne modélisation
d’un bain thermique peut se faire a 1’aide d’une évolution Lindbladienne 0;p; = Zin(pr)
pour un générateur de la forme :

Zanlp) = M Dlo4)(p) + N, Do (), (2.1.1)

ou Ay/) représentent les taux d’excitation et de désexcitation induits par le bain. Une
modification du ratio entre ces deux taux change la valeur de la température d’équilibre
et la multiplication par un facteur global modifie la force du couplage entre le qubit et
le bain. La mesure continue de ’énergie correspond a I'opérateur N = 132 et I’équation
pour I’évolution complete s’écrit donc :

dpr = Zin(pe) dt + 4 Dlo/2)(pr) dt + T Hlow/A(pr) AW (2.1.2)

1. Trés récemment, des questions similaires ont été explorées par Azouit, Sarlette et Rouchon [80]
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La limite de la mesure forte correspond au cas v > A/, que nous allons étudier. En
développant I’équation (2.1.2), on observe que les coeffcients non diagonaux de p sont
supprimés exponentiellement rapidement et n’ont de toute fagon pas de rétroaction
sur les probabilités. Toute la dynamique qui nous intéresse est donc paramétrée par un
unique scalaire g; = (0|p¢|0), la population de ’état fondamental & l'instant ¢t. Cette
derniere quantité obéit a 1’équation fermée suivante :

dgr = Mqeqg — qi) dt + /7y @ (1 — q¢) dW4. (2.1.3)

ou on a introduit les notations A = A + A et g = A/A;. C’est I’équation la plus
simple permettant de mettre en évidence une compétition non triviale? entre une
dynamique propre déterministe et une mesure continue. Le couplage entre le systeme
et le bain, modélisé par le terme A(geq — ¢¢) dt attire la population vers la probabilité
d’équilibre geq ¢ {0,1} alors que la mesure tend & la tirer vers les points fixes 0 et 1
qui correspondent & une certitude parfaite dans la base propre de 1’énergie.

Cette équation a été étudiée en détail par Bauer et Bernard [36], nous allons nous
contenter ici d’en proposer une analyse élémentaire lorsque v > A. Une simulation
numérique de 1’équation (2.1.3) est fournie en Fig. 2.2. On observe que lorsque v > A,
la probabilité ¢; saute entre des plateaux & ¢ = 0 et ¢ = 1 (nous ignorons pour ’heure
les fluctuations résiduelles). On voit ainsi émerger progressivement des sauts quantiques
de trajectoires continues. Essayons de comprendre ce fait et de calculer les probabilités
de sauts.

Lorsque la mesure est forte, le terme /7 q;(1—¢;) dW; domine I’évolution des que ¢;
s’éloigne un peu du bord ¢ = 0 ou ¢ = 1. Par conséquent, le terme de mesure contraint
la probabilité q; a rester soit tres prés de 0 soit tres pres de 1 en premiere analyse.
Admettons ce premier résultat, c’est a dire que ¢ est approximativement un processus
de Markov * entre 0 et 1 lorsque v — 400 & A fixé. Intéressons nous alors & 1’évolution
de la moyenne ¢ = E[g|Fo]. Pour obtenir '’équation différentielle ordinaire vérifiée
par ¢, il suffit de moyenner ’équation (2.1.3) ce qui fournit :

Gt = Mqeq — @)- (2.1.4)

Maintenant, si ¢; est un processus de Markov, il est entierement spécifié par les para-
metres mo_,1 et mq_ taux de sauts entre 0 et 1, et 1 et 0. La valeur moyenne ¢ de ¢
vérifie donc :

Orqr = —mo—1 G +miso (1 — q)- (2.1.5)
11 suffit désormais d’identifier les termes entre (2.1.4) et (2.1.5) pour obtenir :
mo—1 = A (1 = geg) = M
mi o = )\qeq = )\L

Dans ce cas trés simple les taux de sauts étaient donc immédiatement lisibles sur
I’équation maitresse et on obtient a la limite de mesure continue forte ce qu’aurait four-
nit Vunravelling poissonien de I’équation thermique (2.1.1) sans mesure. Par ailleurs,

2. Notons en revanche qu’au sens des modeéles de Markov caché définis en 1.2.6 cette équation reste
malgré tout classique.

3. Notons que cela demande de faire ’hypotheése additionnelle assez forte que ’évolution de ¢ vu
comme processus de saut, est aussi markovienne ce qui n’est pas a priori évident.
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FIGURE 2.2 — Trajectoires de ¢; obtenues par discrétisation naive de (2.1.3) pour A = 1,
Geq = 0.5, dt = 5.1073, go = 0.1, et v = 0.01, 1, 25 et 400.

la force la mesure ne possede ici aucune influence sur les taux de sauts qui restent
constants lorsque v — +00; on n’a en particulier pas d’effet Zeno quantique. On verra
qu’il s’agit d’une caractéristique générale pour des sauts liés a un phénomene dissipatif
comme le couplage a un bain (ou toute situation classique au sens des modeles de
Markov caché 1.2.6).

Remarque 6 (Markov caché). On a montré que lorsque v — +o0, g se comporte
comme un processus de saut de matrice de Markov bien définie. En revanche, dans
le modele considéré, on n’a pas a priori de processus de saut prédéfini vers lequel g
pourrait converger et on doit accepter que le comportement discret est en quelque sorte
émergent et non préexistant. En utilisant ’analogie avec les modeles de Markov caché
développée en 1.2.6 on peut malgré tout construire un modele analogue dans lequel
les sauts sont préexistants. Le modele de Markov caché reproduisant la statistique de
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Iéquation (2.1.3) s’écrit en effet :

dgi = A (geq — a1) At + /7 (1 = q1) (AWF +27(R, — q1) dt)
PlRirar = 1[R; = 0] = M dt et P[Riar = 0By = 1] = A dt.

Dans ce modele, I’équation différentielle stochastique contient le terme v q;(1—q;) (R —
qt)dt qui oblige ¢ a rester proche de R quand v — +oo. Par conséquent, il est tout a
fait possible d’avoir un modele ou ¢; possede exactement la loi donnée par la mécanique
quantique et ou les sauts préexistent a la mesure. Notons que dans cette approche, il
est tres facile de retrouver les taux de saut a la limite et ces derniers sont simplement
donnés par ceux de Ry, i.e. Ay

2.1.2 Cas général

Le cas général est traité en détail dans ’appendice C. On se contente dans cette
partie de donner le résultat, d’ébaucher une idée de la preuve rigoureuse, de proposer
des preuves alternatives non publiées et enfin de discuter le résultat ainsi que ses
potentielles extensions.

2.1.2.a Résultat

Dans le cas général, on s’intéresse a ’équation (1.2.5), que 'on reproduit ici :
dpr = ZL(pt) dt +yD[N](pe) dt + /7 H[N](p) AWz, (2.1.6)

pour N diagonalisable, i.e. N = ", v;|i)(i|, dans la limite ot v — 400 en s’autorisant
a faire éventuellement dépendre .# explicitement de «. Le résultat qualitatif que ’'on
a observé sur ’exemple précédent reste valable dans le cas général : lorsque la mesure
continue devient forte, la matrice densité se met a sauter entre les états propres de
lopérateur mesuré ; le phénomene des sauts quantique est générique et universel (voir
Fig. 2.3). Cette premiere partie du résultat est finalement assez simple et se comprend
bien avec a l’esprit 'analyse du cas de la mesure pure 1.2.3 ot ’on a vu que le systeme
était attiré vers les états pointeurs.

Pour quantifier ce qui se passe a la limite, il est nécessaire d’effectuer un rescaling
de la dynamique en I'absence de mesure afin d’éviter que les transitions cohérentes
ne soient complétement supprimées par 'effet Zénon. Il n’est pas possible d’appliquer
un rescaling uniforme, car comme on I’a vu dans ’exemple précédent, certains sauts
ne sont pas soumis a 'effet Zénon. Le scaling qui permet de garder le maximum de
contributions non nulles sans introduire de terme singulier demande de séparer le
générateur £ de I’évolution en I’absence de mesure en 4 termes et de les redéfinir
séparément :

L = Aj+0(1)

szf = \fyB,icl + o(y/y) pour k #1

2 = VACY +o(y7) pour i #j

gkll] = fyDz +o(y) pour i #j et k#1 et D;jl = —dklé}iélj
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¥ — 400

FIGURE 2.3 — Heuristique du passage d’'un comportement diffusif a un comportement
de saut entre pointeurs quand la mesure devient forte.

Intuitivement, ’effet Zénon n’a pas d’impact sur les termes envoyant directement les
probabilités sur les probabilités (typiquement les phénomenes dissipatifs), l'effet Zénon
tend a écraser les phases ce qui explique qu’il faille multiplier par /7 les termes ou
celles-ci se trouvent d’'un coté et par «y les termes ou elles se trouvent des deux cotés.
Voir 'appendice C pour une discussion plus précise. Evidemment, il faut d’ores et déja
préciser que ce rescaling n’est pas nécessaire pour que la proposition soit valable : si
'on ne fait pas «grandir» B ou C' comme /7 par exemple, ils disparaissent simplement
du calcul des taux de sauts qui ne dépendent alors que de A. On a désormais tous les
éléments pour écrire la proposition :

Proposition (Sauts quantiques). Quand v — 400, p; se comporte comme un proces-
sus de Markov d valeur sur les projecteurs sur les états propres |i)(i| de N dans le sens
que toutes ses fonctions a n points sont celles d’un processus de Markov de taux de
transition :

By
Ap

Mi<_j :AE +2%ek§:l
<

(2.1.7)

avec Ay = % (Jvk)? + [v|? = 2v1}) + di

On peut instancier cette proposition dans le cas d’un systeme fermé (en 1’absence
de mesure) .2 (o) = —i,/7[H, o] et de valeurs propres v; réelles. On obtient dans ce cas
la formule simplifiée suivante :

Mi(—j =4 |—

2.1.2.b Idée de la preuve

La stratégie de la preuve proposée en C consiste a étudier le noyau de probabilité
K(po,dp) qui donne la probabilité de passer de py & une nouvelle matrice densité
p a dp pres. Ce dernier vérifie une équation de Kolmogorov 0;K; = K;® ou ® est
un opérateur différentiel du second ordre, parfois appelé opérateur de Dynkin, qui se
déduit directement de I’équation (2.1.6). Ce dernier se décompose alors en deux termes
D =Dg+7vD2etona K; = et®0+t17D2 Tidée est ensuite de noter que les seuls vecteurs
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qui vont survivre a y grand deés que ¢ # 0 sont ceux qui sont dans le noyau de ®a,
ce dernier étant un opérateur négatif. Il s’agit ensuite d’effectuer un développement
perturbatif autour des vecteurs propres restants pour calculer les taux de saut entre
eux.

On peut donner ici une preuve plus simple bien que moins rigoureuse en exploitant
une méthode similaire a celle de I'’exemple précédent, c’est a dire en admettant que
I'on obtient bien un processus de Markov sur les pointeurs de la mesure a la limite.
On va par conséquent uniquement chercher a lire les taux de sauts sur I’équation
maitresse, c’est & dire I’équation maitresse stochastique moyennée sur les trajectoires .
Cette approche permet d’effectuer un développement perturbatif directement sur un
Lindbladien plutét que sur un noyau de probabilité qui est un peu plus difficile a
manier.

On considére 1’équation (2.1.6) que 'on moyenne sur les trajectoires, c’est a dire :
Ohpr = L(pr) = Z(pt) + v DIN](pe),
que 'on peut écrire en regroupant les puissances de v :
Opr = (A+ /7 (B +C) +v(D+D[N])) (pr)- (2.1.8)

L’objectif est d’effectuer un développement perturbatif des valeurs propres pour y lire
les taux de sauts entre les pointeurs |i)(i|. L’opérateur £ agit sur 'espace vectoriel
S ~ I, @ 4 que on peut décomposer en somme directe S = Sy @& S; ou Sy =
ker(D + D[N]) = Vect {|i)(i|,1 <i < |[H;|}. On a alors les faits suivants :

A:So—)So
B+C:Sl—>80 et So—>51
9 =D +DIN|: 5 — S et Zg, inversible,

ou «—»» signifie «envoie sur» (méme si tous les opérateurs agissent naturellement
sur S). On note ensuite F une valeur propre proche d’une valeur propre nulle de &
(les espaces propres associés & une valeur propre négative de 2 sont exponentiellement
supprimés, le seul développement perturbatif pertinent est donc autour du noyau Sy
de 2). On écrit donc

E=vx047xE +1x Ey+0(y"?).
On peut écrire un développement perturbatif pour le vecteur propre correspondant :
z=ag+7 e+ w0+ 0

ou g € Sy. En utilisant ces deux expressions dans I’équation aux valeurs propres tirée
de (2.1.8) on obtient :

\/’7((3 + C)$0 + @l‘fl) + Azg + (B+C):E71 +Dx_o = \/’7E1 xo+ F1x_1 + Ey xo,

4. Je remercie Denis qui a eu I'idée de cette «preuve» simplifiée.
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Soit :
(B + C):L’o +9x_1=FEixg
Axg + (B + C’)x,l + Dx_9 = Eix_1 + Eyzg
Il suffit maintenant de décomposer x_; = x&oi + w(f% avec :UQ € S et x&li € S1. La
premiere ligne du systeéme (2.1.9) fournit alors :

(2.1.9)

(B+ C)xo + 91’(_1%
Elxo

0
0.

Ce qui donne E; = 0. Par ailleurs, souvenons nous que & est inversible sur S, on a
donc x(f} = _‘@L—?I(B + C)xg. Le second ligne du systéme (2.1.9) permet quant a elle

d’obtenir :
Azg + (B + C)z!Y] = Eyzq
(B+C)a") + 92 5 =0
On peut par conséquent écrire I’équation fermée suivante pour xg :
(A= (B+C)2;5(B +C)| w0 = Eyxo
qui se simplifie en se souvenant des espaces de départ et d’arrivée de B et C en :

[A - B@IE&C} o — EO Zo-

| S —
M

Autrement dit, si 'on admet qu’a la limite p; se comporte comme un processus de
saut sur les pointeurs, alors la matrice diag(p;) qui contient les probabilités d’étre en
chaque site (ou pointeur) au temps ¢ vérifie au premier ordre non trivial : d;diag(p;) =
M diag(p;) ou diag(p;) est ici identifié & un vecteur colonne. Par conséquent, M contient
directement les probabilités de passer d’un site & Pautre. Evidemment ce petit calcul
ne fixe pas le choix de la combinaison linéaire de projecteurs |i)(i| faisant office de
site pour le processus de Markov limite et c’est ’analyse du cas de «mesure pure»
qui valide ce choix des |i)(i| (vecteurs propres de N) pour les sites. Reste désormais a
donner une forme plus parlante a M;.; en explicitant @E. L’inversion est simple car
2 est un superopérateur diagonal sur S; et on a pour i # j :

A « 1 N
2451 = (= 0 = 5 [l + 1] ) 1
= —Aqli) (],
ce qui donne finalement bien ’équation (2.1.7) :

BicH
Ap

Mi<_j = A; + 23%2

k<l

On a comme on 'attendait deux contributions aux sauts, une premiere venant d’un

terme dissipatif A couplant directement les pointeurs entre eux, et une, cohérente,

passant par l'intermédiaire des coefficients non diagonaux et qui est supprimée avec
un facteur 4~! en I’absence de rescaling.



2.1. MESURE FORTE ET SAUTS QUANTIQUES 37

2.1.2.c Lien avec le formalisme de Markov caché

Comme pour ’exemple précédent, on peut comprendre ce résultat dans le forma-
lisme des processus de Markov caché. Dans ce formalisme le processus de sauts «existe»
déja, méme pour une mesure a vy < 1 voire v = 0. Quand y devient grand deuz choses
importantes se produisent :

1. La partie diagonale de p se rapproche de la variable cachée R.

2. Les taux de transition de la variable cachée convergent et se moyennent de sorte
que R devient de maniere effective un processus de saut de matrice de Markov
fixée.

Cette deuxieme étape, qui n’était pas présente dans ’exemple, est nécessaire dans la
mesure ou ’équation (2.1.6) n’est en général pas classique, et la matrice de Markov
de R dépend a priori de p & « fini. Le miracle de la limite v > 1 est justement que
cette dépendance a priori non triviale disparait. Il est donc une nouvelle fois possible
de voir cette limite ou p se comporte comme un processus de sauts comme une réelle
convergence vers un processus de saut préexistant, la seule différence étant que dans
ce cas, la statistique du processus de saut sous-jacent dépend aussi explicitement de ~.

Pour étre un peu plus précis, rappelons la forme du modeéle de Markov caché cor-
respondant & 1’équation (2.1.6) et donné en (1.2.15) qui s’écrit :

dps = Z(p)dt + 4 DIN](pr)dt + A HIN)(pr) (AW + \/Ate [(N + NT) (R, — py)| dt)
P (R, = |i){il | Ry = [5)4] ] = M(pe)icj-

avec :
i j\j +
(S (i) — 208 o]

()
Al p3) t4

M(p)icj = ()

Le fait que p se rapproche de R pour « grand est immédiat et vient du terme supplé-
mentaire YH[N](p¢)tr [(N + ND(R; — ,ot)} qui, en 'absence d’autre dynamique, fait
converger p vers R exponentiellement rapidement sur une échelle de temps y~!. Si 'on
admet que R est un processus de saut bien défini et non singulier a la limite v — 400,
alors R est essentiellement constant sur des durées d’ordre y~! et p; converge rapide-
ment vers R;.

Le deuxiéme point, c’est a dire le fait que M (p) se comporte bien & grand v n’est
pas immédiatement évident et le calcul est rendu compliqué par la partie positive dans
le cas non classique. Intuitivement, on a envie de remplacer p¥!) par D'état invariant
a la limite grand ~ en ignorant la partie positive, mais cette substitution est difficile
a justifier. Encore une fois, la solution la plus simple est encore d’accepter que R est
bien un processus de Markov a la limite et de calculer les taux de saut avec la méthode
précédente. Le formalisme de Markov caché fournit donc indubitablement un meilleur
support a I'intuition mais ne semble pas permettre une preuve plus simple hors du cas
classique.
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2.1.2.d Extensions

La proposition précédente pourrait étre étendue de plusieurs manieres. On peut
tout d’abord se demander ce qui se passerait dans le cas d’un espace de Hilbert de
dimension infini pour la mesure d’un opérateur a spectre continu. Le modele QMUPL
(voir 1.3.1) qui correspond a la mesure continue de la position entre typiquement dans
cette catégorie. Il a été étudié en détail [67, (8] (dans le contexte des fondements)
a la limite temps long qui donne une idée du comportement 7 — 4o00. Les sauts
entre des états pointeurs sont remplacés par la diffusion d’un paquet d’onde gaussien
de variance fixée. On peut comprendre intuitivement ce comportement a partir de
la proposition pour le cas discret en voyant cette diffusion comme la limite continue
d’un processus de saut sur un nombre infini de pointeurs. La variance finie du processus
limite est en revanche impossible a expliquer avec notre version discréte car elle provient
manifestement du fait que la limite de spectre continu pour 'opérateur mesuré est prise
avant la limite grand . En prenant les limites dans 1’autre sens, on ne s’autorise qu’une
fonction d’onde parfaitement localisée.

Une autre situation intéressante a étudier est celle de la mesure continue d’un
opérateur dont le spectre est dégénéré avec la possibilité d’une dynamique cohérente
a lintérieur de chaque sous espace propre de la mesure. Dans ce cas on s’attend a
conserver des sauts entre les sous espaces, mais on perd trés probablement le caractere
markovien des transitions a cause de la dynamique cohérente interne. Probablement
plus difficile a étudier, cette situation aurait I’avantage de fournir des processus de
sauts a priori tres non triviaux avec des effets de mémoire variés.

On peut enfin proposer une généralisation immédiate au cas de la mesure simultanée
de plusieurs opérateurs N* codiagonalisables, N# = Y. v¥|i)(i|. On peut suivre la
preuve simplifiée précédente, la seule modification apparaissant a I’expression de ¥ —
2’ (le prime dénotant le cas & plusieurs observables) ou il devient nécessaire de sommer
sur [ :

1 = (- 5 [y [t 17 ) 19
m
— -8}

La formule pour M;, ; s’obtient ensuite simplement en substituant A;; dans I’équation
(2.1.7) par la nouvelle matrice A}; ainsi calculée.

2.1.3 Discussion

On a montré que lorsqu’une mesure continue devient «forte», la dynamique qua-
litative de I'état du systéme s’approche effectivement de ce que 'on attendrait d’une
itération rapide de mesures projectives : on observe des sauts entre les états propres de
I’observable mesurée. Néanmoins, et comme on pouvait s’y attendre, prendre la limite
a partir de la mesure continue donne acces a une dynamique plus fine dépendant de
plus de parametres. En effet, I’expression des taux de saut M; ; dépend explicitement
des valeurs propres de 'observable mesurée, valeurs propres qui ne sont que de purs
labels sans connotation dynamique dans le cas de mesures projectives itérées. On peut
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donc expérimentalement faire une différence entre la mesure continue de deux obser-
vables qui partagent par ailleurs les mémes espaces propres. Plus surprenant, et pour
peu que l'on connaisse la dynamique en l'absence de mesure, on peut aussi faire la
différence entre une mesure projective itérée et la mesure continue de n’importe quelle
observable.

La mesure projective ne distingue pas les sites les uns par rapport aux autres et
correspond au cas A;; = constante pour 7 # j et, de ce fait, ne peut pas étre reproduite
par la mesure continue d’une unique observable qui conserve nécessairement une struc-
ture unidimensionnelle. En effet, en se restreignant au cas d’une dynamique pure et de
valeurs propres v; réelles pour simplifier, les taux de sauts entre i et j dépendent de la
différence des valeurs propres |v; — v;|. Mais il est évidemment trivial d’observer que
toutes ces différences ne peuvent étre identiques dés que || > 3 : mesurer une unique
observable munit le graphe ¢ des sites ¢ d’une structure unidimensionnelle (déterminée
par l'ordre des valeurs propres) qui biaise nécessairement la convergence et les sauts.
Un moyen d’obtenir exactement (i.e. a la fois qualitativement et quantitativement) le
cas projectif a partir de mesures continues est de mesurer simultanément |.7;| pro-
jecteurs |i)(i]. On a alors une symétrie parfaite entre tous les états propres qui est
impossible a obtenir avec une unique observable dont la structure unidimensionnelle
ne peut s’accommoder d’un graphe complet.

On peut résumer les progres de notre exploration jusqu’a maintenant. Lorsqu’un
systeme quantique est mesuré continuement et fortement, il se met a sauter entre
les états pointeurs, comportement intuitif et similaire & ce que l'on obtient dans le
cas de mesures projectives répétées. On peut calculer explicitement les taux de saut
entre chaque état propre, ces derniers dépendent explicitement des valeurs propres de
Iopérateur mesuré ce qui contraste cette fois ci avec le cas de la mesure projective.
Cette liberté additionnelle est néanmoins doublée d’une contrainte dans le cas de la
mesure d’une unique observable : les taux de saut dépendent de la différence des valeurs
propres et possédent de ce fait une structure unidimensionnelle qui ne peut reproduire
le cas projectif qu’en dimension 2.

2.2 Echardes quantiques

On a jusqu’a maintenant accepté que s’il existait des différences quantitatives entre
la limite forte de mesures continues et des mesures projectives itérées, le comportement
qualitatif de sauts entre pointeurs était néanmoins identique. Un regard rapide sur les
simulations numériques montre pourtant que des fluctuations autour du processus de
saut semblent persister a la limite v — +o0o (voir Fig. 2.2 et 2.4). Ces derniéres semblent
en effet s’affiner a mesure que la force de la mesure augmente sans pour autant que leur
amplitude typique ne décroisse. C’est ce phénomeéne —qu’une analogie rapide avec les
mesures projectives itérées ne permet pas naturellement d’anticiper— que nous avons
appelé les échardes quantiques [1, 1] et que nous allons étudier dans cette section.

La ou I’étude précédente était extrémement générale, les résultats sur les échardes
qui suivent se limitent & deux cas simples avec || = 2 ot il est possible de paramétrer
la dynamique par un unique scalaire. Pour autant, a la fois I'intuition et les simulations
numériques suggerent que le phénomeéne possede la méme universalité que les sauts,
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méme si nos méthodes analytiques échouent pour le moment dans tout contexte plus
général.

2.2.1 Remarques préliminaires sur la convergence

Avant d’étudier les échardes plus en détail, notons que leur existence n’entre pas en
contradiction avec les résultats de la section précédente. On peut en effet dire quelques
mots sur la convergence vers le processus de saut. Nous avons montré la convergence en
loi de p vers un processus de Markov dans le sens que toutes les fonctions a N points de
la forme E[f(pt,, ..., pty )] convergent vers leur expression calculée avec le processus de
Markov limite. En ’absence de processus de Markov sous-jacent vers lequel converger,
il est difficile a priori de demander plus. Ici encore, passer a I'expression en terme de
processus de Markov cachés permet de rendre les choses plus précises. Dans ce contexte,
on a en effet un processus vers lequel on converge et on peut se poser la question de
I’existence ou non de convergences plus fortes que la convergence en loi.

Considérons pour simplifier le cas classique ou le processus de saut sous-jacent R
posséde une statistique indépendante de ~ (voir par exemple le cas traité en 2.1.1).
Dans ce cas, on peut assez facilement montrer la convergence suivante :

soit t > 0, ||Rt — pt]]| — 0O en probabilité,
~y—+o0

N 3 . . . . . 5
ou || || dénote une norme sur Hs®Hs de dimension finie. Cette convergence implique °
par exemple :

t1
|R—pllL, = {// dt||R; — pt]|P — 0 en probabilité.
to y—+00

Autrement dit, on peut tout & fait obtenir une convergence plus forte que la convergence
en loi en incluant des variables cachés (ou, si on n’aime pas ce terme, en augmentant la
taille de ’espace probabilisé). L’existence des échardes vient en fait de 'absence d’une
convergence encore plus forte au niveau du processus. En effet, on va montrer que pour
to et ty tels que Vit € [tg,t1], Ry = constante on a le résultat contre-intuitif suivant :

sup ||[R: —pt|| — constante # 0.
t€[to,t1] o

Méme sur un intervalle ou le processus de saut sous-jacent est constant, c’est a dire
intuitivement ou il n’y a pas de sauts, p fait un certain nombre (au moins d’ordre 1)
d’excursions d’ordre 1 méme a la limite v — 4-oc0.

2.2.2 Existence des échardes

Comme annoncé précédemment, les résultats sur les échardes se limitent a deux
cas particuliers ou la dynamique est paramétrable par un unique scalaire. Nous allons
ici nous intéresser a ’exemple le plus simple d’un qubit couplé & un bain thermique et
fournir une fois encore des preuves intuitives. Les dérivations pour les deux exemples
ainsi qu’une discussion physique plus détaillée sont laissées en appendice D.

5. On se rappelle que t — ||p: — R:|| est borné
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L’équation que l'on considére dans cette partie (et la suivante) est I’équation mai-
tresse stochastique (2.1.3) pour la probabilité de 1’état fondamental d’un qubit couplé
a un bain thermique et dont on mesure continuement 1’énergie :

dg; = )\(qeq — Qt) dt + \ﬁqt(l — qt) dWrs, (221)

équation dont on a déja ébauché ’étude en 2.1.1. Commencons par un argument heu-
ristique pour l’existence des échardes. Pres d’un bord, typiquement ¢ = 0, on peut
linéariser I’équation précédente (2.2.1) pour obtenir :

dqt = )\qeq dt + \f’yqt th (222)

Dans cette limite, P(q,t) = P[q; = q| qo] vérifie 'équation de Fokker-Planck ® associée
a (2.2.2):

o = Mgy
On atteint la mesure stationnaire, c’est a dire P(q,t) = P°°(q) en un temps de ’ordre
de 471, c’est a dire quasi instantanément & la limite. Cette dernieres vérifie alors
simplement 1’équation (2.2.3) sans la dérivée en temps qui donne une fois intégrée sur
q:

oP oP Y
2

+ (¢ P). (2.2.3)

62
g

7O 4
Adeq P™(q) = 58*(}(@ P>),
équation qui s’integre avec une simple séparation des variables pour donner P*>° qu’on
intégre une nouvelle fois pour obtenir la fonction de répartition F(q) = [ dQ P>(Q) :

_ 2Meq

F(q)=e¢ a. (2.2.4)

La probabilité d’avoir une grande valeur de ¢ décroit donc bien avec . Néanmoins, cette
décroissance est compensée par le nombre de «tentatives» pour effectuer une excursion.
En effet, I'échelle de temps typique sur laquelle évolue ¢; est y~1, ¢; et ¢, 4~-1 sont par
conséquent presque décorrélés. La probabilité que le maximum maxy, 4, (¢:) de g sur

6. Pour une équation différentielle stochastique de la forme dX; = f(X¢,t)dt + g(X¢,t) dWy, on
trouve I’équation de Fokker-Planck vérifiée par P(x,t) = P[X; = x| Xo] en calculant dE[¢(X¢)] pour
une fonction ¢ test de deux manieres différentes. La premiére premiére méthode consiste a appliquer
le lemme d’It6 en faisant rentrer le «d» dans ’espérance :

dzP(z,t) <8¢(x)f(a:, t) +

E[dp(X.)] = /

1 82¢($) 2
R Ox 2 22 I (m,t))
0

~ [ asoto (%w,wm,t» + ;;xQ(gQ(x,t)P(x,t))) .

La deuxiéme méthode consiste a dériver directement la moyenne écrite sous sa forme intégrale :

_ OP(zx,t)
AE[¢(X,)] = /]R do =22 9(x) dt.

En écrivant ’égalité des deux expressions précédentes on obtient finalement ’équation de Fokker-

Planck :
oP(z,t) 0 167

o = 5 U@ OP@,0) + 5 5 (6 (@, 1) P(a, 1))
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FIGURE 2.4 — Une réalisation de (2.2.1) pour A = 1, g, = 0.5, v = 400, dt = 5.107%.
On note qu’aux sauts se superposent des pics, extrémement fins mais dont la hauteur
est d’ordre 1 : ce sont les échardes.

[to, t1] soit inférieur & m est donc calculable en supposant que 1'on tire v(t; — tg) fois
la variable ¢ avec la fonction de répartition (2.2.4) ce qui fournit :

Plmaxg,, (¢2) < m) = F(m)1710) = ¢=2ealti—to)/m,

ce qui fournit P[maxy, 4, (q¢) > m] o~ 1 — e~ 2Mea(ti=t0)/m Cette probabilité est indé-
pendante de v, on en déduit que ¢ fait typiquement des excursions d’ordre 1 méme
sur un intervalle ou il n’y a pas de sauts (car on se souvient qu’on a obtenu le résultat
avec ’équation linéarisée). Ces excursions qui persistent a la limite 7 — 400 sont les
échardes quantiques, ou «spikes» (voir Fig. 2.4).

Remarque 7 (Markov caché). La réécriture en terme de processus de Markov caché
permet d’éviter d’avoir a recourir a 1’équation linéarisée dans le raisonnement précé-
dent. On se souvient en effet (voir remarque 6) que 1’équation (2.2.1) est équivalente
au modele suivant :

dgr = A(geq — q1) At + /7 (1 — q) (thg + 2y (R — qt) dt)
]P[Rt—l—dt = 1|Rt = 0] = )\T dt et ]P[Rt+dt = 0|Rt = 1] = )\¢ dt.

L’avantage de cette réécriture est qu’elle permet de séparer précisément le phénomene
des échardes du phénomene des sauts. Le processus R saute sur une échelle de temps de
I'ordre de A~! alors que la dynamique typique de ¢ (3 R fixé) a lieu sur une échelle de
temps bien plus courte de l'ordre de v~ !. Pour étudier les échardes, on peut se placer
sur une échelle de temps ou il n’y a pas de sauts, c’est a dire ou R est fixé (par exemple
R = 0) et n’étudier que la dynamique «rapide» & 1’échelle y~!. Ainsi, sur un intervalle
de temps ou ¢ est conditionné a rester proche de 0 en probabilité (la méme analyse se
fait pour g proche de 1), ¢ obéit a I’équation différentielle stochastique suivante :

dgr = A (geg — a0) At + VT (1 — @) (AWF —2,/7g,dt) (2.2.5)

L’avantage de cette derniére équation par rapport a (2.2.1) est qu’elle posséde une
mesure stationnaire P° qui n’est pas perturbée par le processus de saut et dont la
masse est concentrée en 0 (au lieu d’une distribution bimodale avec des pics en 0 et en 1



2.2. ECHARDES QUANTIQUES 43

pour la mesure stationnaire de (2.2.1)). Cette derniere est dans le noyau de 'opérateur
de Fokker-Planck associé a (2.2.5) et vérifie donc :

2
0=-3 (A= geq) = 290%(1 = @) P>) + 2 0 (21 - 9)*P)
qu’on peut s’amuser a résoudre pour tout v et dont la solution se simplifie quand v > A

pour donner :
_ 2)Ageq

PR = (4, q)2 @

Contrairement au cas linéaire on peut ici calculer la moyenne de ¢ et on obtient IE[gs]
v~ = 0, autrement dit ¢ reste proche de 0 en moyenne qui est ici la valeur de la variable
cachée, mais le méme argument que précédemment avec le calcul du maximum montre
que la probabilité d’'une excursion d’ordre 1 est finie et indépendante de v a la limite.
Bref il y a bien des échardes et celles-ci sont nécessairement infiniment fines.

Nous avons donc montré, ou au moins suggéré, qu’il existe nécessairement des
échardes, fluctuations infiniment fines qui «décorent» les plateaux entre chaque saut
de ¢. Les arguments utilisés impliquent par ailleurs que la statistique de ces échardes
converge a la limite v + co. Ces échardes sont évidemment absentes dans le cas de
mesures projectives itérées rapidement ou aucune excursion hors des plateaux n’est
tolérée, le comportement qualitatif est en fait lui aussi différent dans le cas de mesures
continues.

On peut en fait faire mieux que montrer que les échardes existent et calculer exacte-
ment leur distribution. Le calcul, bien que relativement simple, est laissé en appendice
D (et plus précisément en D.7) et on se contente d’en donner ici le résultat. A ce stade,
on ne peut plus se contenter de dire que les échardes sont des «excursions infiniment
fines» et il faut se donner une définition formelle provisoire (qui sera complétée en
2.2.3). On s’intéresse une fois encore au cas ¢ proche de 0 (le cas ¢ proche de 1 se
traitant de maniére analogue) et on se donne ¢ et ¢§ tels que :

<y lsdicexl

A ~ fixé, on définit une écharde de hauteur h > & comme une trajectoire ¢ de G, =€a
qt, = 0 et dont le maximum entre ces deux points vaut h (voir Fig. 2.5). On identifiera
souvent I’écharde, qui est au sens strict une trajectoire, a la valeur de son maximum h
dans la mesure ou quand v — +00, la trajectoire est parcourue en un temps infiniment
court. La définition précédente n’est valable —a v fixé— que pour des échardes plus
grandes que €. Pour autant, a la limite v — 400 on peut rendre € aussi petit que ’on
veut et définir des échardes de tailles arbitrairement petites. Avec cette définition pour
les échardes, on a la proposition suivante :

Proposition (Distribution des échardes). Sur un intervalle ot ¢ ne saute pas et reste
en moyenne prés de 0, le nombre d’échardes finissant dans le domaine <7 du plan q,t
(voir Fig. 2.6) est un processus de Poisson d’intensité p = [, dv(q,t) avec :

dv(q,t) = dtdg Aq;q (2.2.6)
q
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FIGURE 2.5 — Définition d’une écharde de hauteur h.
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FIGURE 2.6 — La statistique du nombre d’échardes (ici 3) possédant leur maximum
dans le domaine 7 est donné par la proposition.

La proposition reste évidemment valable dans le cas ol ¢ est pres de 'autre bord,

auquel cas on a :
A (L= geg)

(1-q)?
On observe ainsi que les échardes sont invariantes d’échelle et qu’il en existe par consé-
quent un nombre infini de «petites» a la limite v — +o00. Notons encore une fois ce que
cette proposition a de surprenant si 'on a a 'esprit seulement le fait que les mesures
continues fortes doivent se comporter comme des mesures.

dv(q,t) = dtdg

Remarque 8 (Autre exemple). L’exemple que 'on a étudié, et qui correspond a la
mesure continue de ’énergie d’un qubit couplé a un bain thermique, possede le défaut
d’étre classique (au sens des modeles de Markov caché). L’état du systéme n’étant
jamais pur, il est tentant d’associer les échardes a une ignorance purement classique.
En fait, on sait traiter un autre exemple dans lequel I’état du systeme est pur a chaque
instant et pour lequel on observe aussi des échardes avec la méme statistique. Il s’agit de
la mesure continue de 1'observable o, (au taux ) pour un qubit dont le Hamiltonien est
Vway /2. Dans ce cas I'état du systeme est pur a chaque instant et obéit a 1’équation
mafitresse stochastique :

ape = i o, pi) dt + 4Dl /2)(p) At + T Ho/2)(pr) AW
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On peut montrer que quand v — 400, la variable aléatoire ¢; = (+,|p¢|+) vérifie une
équation similaire a celle que 'on a étudié précédemment a l'intérieur de 'intervalle
10, 1[. On peut alors prouver (voir D.7.2) que ¢; posséde des échardes dont la statistique
est identique & celle de la formule (2.2.6) avec la substitution Age; — w?. Autrement
dit, les échardes sont visibles aussi dans une situation que 'on pourrait qualifier de
purement quantique méme si I'analyse y est plus délicate. On continuera a étudier
I’équation (2.2.1) par la suite tout en gardant a Iesprit que le phénomene des échardes
est en réalité plus général.

2.2.3 Formalisme du temps effectif et opérateurs anormaux

Les résultats de la section 2.1 nous ont montré que l'on avait une convergence en
loi de la matrice densité vers un processus de saut a la limite de mesure forte. Néan-
moins, on a vu que cette convergence trop grossiére ratait un phénomene important,
les échardes, ces dernieres se manifestant de maniere quantitative dans la statistique
des maxima locaux des probabilités calculées avec p. Ces échardes, infiniment fines a
la limite, sont a priori impossibles a capturer par une limite v — 400 effectuée di-
rectement au niveau du processus stochastique, i.e. '’équation (2.2.1) ne possede pas
de limite bien définie quand v — 4o00. Ou pour reformuler ce probléeme de maniére
peut-étre un peu plus parlante : le dessin d’une trajectoire de g; possede intuitivement
une limite ou on voit les échardes alors que ¢, vu comme un processus stochastique,
n’en possede pas naturellement. Une question des lors se pose : existe-t-il un moyen
de définir une limite au niveau du processus qui capte le phénoméne des échardes” ?

En exploitant le fait que le dessin d’une trajectoire posséde une statistique conver-
gente (que précise I'’équation (2.2.6)), on pourrait étre tenté ® de définir une convergence
au niveau du processus stochastique en utilisant la distance de Hausdorff sur le plan
(¢,t) qui correspond bien a l'idée que c’est en tant que sous-ensemble du plan plus
qu’en tant que fonction que ¢; converge quand v — +oo. S’il semble possible de définir
I’ensemble limite avec cette méthode [37], démontrer méme heuristiquement la conver-
gence parait hors de portée. La difficulté vient du fait que ¢ est un processus continu
a v fini mais que les échardes sont un processus ponctuel a la limite v — 4oc0. La
situation serait beaucoup plus simple si le processus limite était lui aussi continu, si
I’on avait une méthode pour déplier les échardes. C’est cette seconde voie que 'on va
explorer ici et qui est présentée plus en détail en appendice E. L’idée est de redéfinir
le temps de maniere dynamique pour qu’il ne s’écoule que lorsqu’il se passe réellement
quelque chose et que 'on puisse donner a chaque écharde une durée finie a la limite.
Avec ce nouveau temps effectif, le processus ¢ possédera une limite bien définie (et en
particulier continue) quand v — +oo.

7. Cette question est a priori un peu plus mathématique que la moyenne des problémes abordés
dans cette these. Néanmoins, y répondre peut éventuellement permettre de faire de menues avancées
pratiques, fussent-elles simplement confinées & ’amélioration de la présentation visuelle des résultats
expérimentaux.

8. L’idée a été suggérée par Martin Hairer.
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2.2.3.a Temps effectif

On aimerait que le temps effectif 7 s’écoule d’une maniére proportionnelle aux
variations de I’état du systeme. Dans le discret, pour des mesures faibles itérées tous
les At, on peut proposer une définition de la forme :

AT, = tr [(pnﬂ — pn)2] , (2.2.7)

ou le carré permet d’obtenir le bon comportement & la limite”. Il y a évidemment
d’autres possibilités compatibles avec ce scaling (avec par exemple la possibilité d’insé-
rer un opérateur). Cette prescription tres générale de redéfinition du temps est a priori
applicable quel que soit le systeme et quelle que soit la dimension. Pour autant, et
comme précédemment, nous n’avons été capables d’obtenir des résultats analytiques
que pour l'exemple simple des fluctuations thermiques d’un qubit (2.2.1) :

dqt = )\(qeq — qt) dt + ﬁQt(l — qt) th (228)

Dans ce contexte continu, un équivalent de la définition discrete (2.2.7) est de choisir
un temps effectif proportionnel a la variation quadratique de ¢, i.e. plus précisément :

t t
T(t) = /0 (dge)* = ’Y/O g (1—q)° dt
On peut alors réécrire I’équation (2.2.8) avec ce nouveau parametre pour obtenir :

A(Qeq - QT)

dg, = 5 dr +dB;, (2.2.9)

(1 —qr)
ou B; est un processus de Wiener (en tant que fonction de 7) que 1’on obtient a partir
de W; en posant : dB; = /7 q:(1 — ¢;) dW;. L’avantage de cette réécriture, c’est que
le terme en d7 dans (2.2.9) devient nul deés que ¢ # 0 ou 1 quand v — +o0 et ne
persiste que sous la forme d’une condition aux limites qui empéche ¢, de traverser les
bords 0 et 1. On peut montrer la proposition suivante (voir E) :

Proposition (Limite en temps effectif). Quand v — 400 :
1. qr est simplement un mouvement Brownien réfléchi en 0 et 1 (voir Fig. 2.7).
2. On peut relier temps effectif T et temps réel t de maniére exacte en utilisant les

temps locaux ' L, et U, passés par q- respectivement en 0 et en 1 :

t(7) L - Ur
T =
AMeqg A1 = Geq)

En temps effectif, le comportement limite de ¢, est ainsi extrémement simple et par-
faitement bien défini. On peut en profiter pour donner une nouvelle définition directe
des sauts et des échardes (sans procédure avec des € et 0) :

9. En effet on a |dp:| o< Vdt.
10. Le temps local L; d’un processus Brownien X; en 0 est défini de maniére informelle comme le
temps (rescalé) que passe le processus en 0, i.e. :

t
Lt:/ dud(X,),
0

ou cette définition un peu impropre avec une masse de Dirac doit étre comprise comme la limite € — 0
pour une suite de Dirac . quelconque.



2.2. ECHARDES QUANTIQUES 47

1 ]lrwwn"' T '{V" T T[P T w A yrww T ru’[ T W”*W TT [l T ww T w””w
-
0 . ”JJ .\VHL " Ah [ u‘.. A
0 t 10
1 i I 1
Sy
0
0 T 7
7
T
0
0 t 10

FIGURE 2.7 — Une réalisation de I’équation (2.2.8) en temps réel ¢t (haut) et en temps
effectif 7 (milieu) pour v — +00. On donne aussi le temps effectif 7(¢) en fonction du
temps réel t en bas.

— Un saut est une trajectoire de ¢, passant de 0 & 1 oude 1 a 0.

— Une écharde est une trajectoire de ¢, passant de 0 a 0 oude 1 & 1.
Les échardes qui étaient instantanées en temps réel sont dépliées en une excursion
d’un mouvement Brownien en temps effectif. On comprend alors leur nombre infini
grace a la propriété de récurrence en 0 du mouvement Brownien. Le deuxieme point
de la proposition permet de remonter au temps réel a partir de la description en temps
effectif. Ce deuxiéme point étant légerement plus technique et moins intuitif que la
limite Brownienne en temps effectif, on renvoie le lecteur a I'appendice E pour plus de
détails.

2.2.3.b Opérateur anormaux

Cette nouvelle maniére de définir la limite de mesure forte a I'aide du temps effectif
permet d’aller encore plus loin que la description en terme d’échardes et de sauts. En
effet, pour une certaine réalisation d’échardes et de sauts, la description en temps
effectif contient encore de nombreuses quantités fluctuantes. Il y a une infinité de
trajectoires possibles reliant 0 & 1 par exemple, ce qui signifie que ce qui donne un saut
a la limite v — 400 en temps réel peut malgré tout conserver une structure interne
plus fine en temps effectif. Le méme raisonnement s’applique a une écharde de hauteur
h donnée.
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On appelle opérateur anormal une fonction @ de p (vue comme trajectoire sur
lintervalle Z) telle que :
lim E[O(p)] # E[O(p")],
ott p# est le processus de Markov limite (contenant donc uniquement les sauts) vers
lequel p converge en loi. Cette convergence, bien que faible, impose que les fonctions
de la forme f(pt, ..., pr,) ne peuvent étre anormales. En revanche, en s’inspirant des
échardes on peut facilement construire des opérateurs anormaux, par exemple :

X(p)=1si It €Z,(0|p]0) =1/2, =0 sinon,

ou l'existence des échardes impose de maniéere évidente que :

lim E[X(p)] > BIX(p )]
(voir D pour une version quantitative de cette affirmation). L’existence d’opérateurs
anormaux comme X est ce qui avait motivé notre étude initiale des échardes. Le temps
effectif permet d’aller plus loin. On appelle opérateur fortement anormal une fonction
O de p telle que méme en prenant la limite de p en tenant compte des échardes, on ne
peut pas reconstruire la moyenne de la fonction, i.e. :

lim E[O(p)] # E[O(p")], (2.2.10)

Y—+00

ot p® est le processus ponctuel saut + échardes limite reconstruit a l'aide de (2.2.6).
Dans cette définition un peu informelle, on accepte que le terme de droite dans (2.2.10)
ne soit lui méme pas défini. Un opérateur Y tel que :

Yip) = 3 Arilp),

ou A7i(p) est le temps effectif qui s’écoule pendant le i-éme saut de p sur Z, est
fortement anormal bien que trivial a calculer en temps effectif.

La description en temps effectif permet donc a priori de faire passer plus de quan-
tités a la limite v — +o0o que ’approche «brutale» consistant a remplacer le processus
p par sa limite de Markov. Evidemment, la question se pose de savoir s’il existe des
quantités anormales physiques que l'on peut effectivement avoir envie de transporter
a la limite. Le paragraphe suivant présente un tel exemple sur lequel on est capable
d’effectuer des calculs exacts.

2.2.3.c  Un exemple

Un probléme non trivial a la limite v — 400 qui se traite particuliérement bien a
I'aide du formalisme du temps effectif est celui de 1’évolution de I’entropie linéaire '
SE =1 —1tr[p?] =2¢(1 — q). En temps réel et & ~ fini, la formule d’It6 fournit :

dSF =201 — 2¢¢)(qeq — ar)dt + qr(1 — 1) [2/7(1 — 2Q)dW; — 2yq,(1 — g;)dt] ,

11. Le logarithme divergent en 0 de ’entropie de Von Neumann rend malheureusement les calculs
avec cette derniére infiniment plus pénibles.
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équation qui n’a pas de limite claire quand v — +00. On peut en trouver une facilement
en temps effectif. Dans cette limite ¢, est un mouvement Brownien réfléchi et vérifie
donc'? : d¢; = dB, + dL, — dU,. En appliquant la formule d’It6 & S* on obtient une
équation trés simple pour SZ & v = 400 :

dSt =2(1 — 2¢,)dB, — 2dt + 2(dL, + dU,),

ou on identifie la facilement la contribution de la mesure dans les deux premier termes
et la contribution du bain localisée sur les bords et contenue dans le dernier terme.
I1 est ainsi possible de faire du calcul différentiel (stochastique) a la limite v — +oo
grace au formalisme du temps effectif.

2.2.4 Discussion

Apres ces longs développements peut-étre un peu techniques sur les subtilités du
passage a la limite, on a pu observer que le comportement qualitatif de mesures conti-
nues fortes était bien plus riche '* que celui des mesures projectives avec une variété
de nouveaux phénomenes.

En oubliant pour le moment les opérateurs fortement anormaux, on peut s’interro-
ger sur le statut physique des échardes (voir D pour une discussion complémentaire).
Est-il possible de qualifier ces échardes de quantiques, de réelles? Sinon ont-elles au
moins une pertinence opérationnelle? Est-il possible de les observer expérimentale-
ment ?

2.2.4.a De la réalité des échardes

Il est toujours un peu délicat de parler du caractére réel ou non d’un certain phé-
nomene en mécanique quantique dans la mesure ou 1’ontologie, c’est a dire ’ensemble
des objets auquel on attribue un statut de réalité dans la théorie, dépend de l'inter-
prétation choisie et n’est pas fixée par le formalisme (voir appendice A). Le cas des
échardes n’échappe malheureusement pas a cette ambiguité. Les échardes sont en effet
aussi «réelles» que peut I'étre le vecteur d’état. Dans certaines interprétations du type
collapse objectif, la matiere, ce qui est réel au point x (en anglais on dirait le «stuff»)
est une fonction du vecteur d’état, typiquement tr[pM (x)] ot M(x) est Popérateur
densité de masse régularisé en x. Par conséquent, les échardes correspondent dans ce
contexte a des fluctuations extrémement abruptes de la distribution de matiere (si 'on
imagine par exemple le systeme a deux niveaux d’un électron dans un double puits
pouvant passer de 'un a Pautre par effet tunnel). C’est d’ailleurs un des arguments
(loin en revanche d’étre le plus fort) pour privilégier d’autres ontologies dans les mo-
deles de collapse objectif. A I'inverse, la simple existence d’une interprétation en terme
de variables cachées, qui est en fait une version jouet d’une théorie du type de Broglie-
Bohm, montre qu’il est tout & fait possible d’avoir une ontologie entierement exempte
d’échardes et dans laquelle ces derniéres ne sont qu'un artefact de modélisation.

12. Cette écriture est liée a la formule de Tanaka [38], voir E

13. La richesse supplémentaire des mesures continues fortes pourrait motiver l'exploration d’un
nouveau formalisme «Copenhague + e» ou ces derniéres seraient substituées aux mesures projectives
habituellement utilisées dans le postulat de la mesure.
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La question de savoir si les échardes sont un phénomeéne quantique est en revanche
plus fermée. On peut obtenir des échardes dans des cas classiques au sens des modeles
de Markov caché ', c’est & dire dans lesquels la mécanique quantique ne joue aucun role
et dans lesquels tout peut étre réécrit en terme de probabilités usuelles. Les échardes
sont dans ce cas un pur produit de l'ignorance sur le systeme : elles sont classiques
pour toute définition raisonnable du terme «classique». On peut en revanche aussi
observer des échardes pour des systemes sans modele classique équivalent et pour
lesquels l'origine des échardes est donc nécessairement quantique. Ces dernieres ne
sont donc pas un phénomene purement quantique —les voir ne suffit pas a s’assurer de
la présence d’un effet quantique— mais leur origine est dans certains cas inexplicable
sans recourir a la mécanique quantique.

2.2.4.b Echardes et controle

Plutot que de se demander si les échardes sont vraiment quantiques ou méme
physiques, on peut regarder quel impact elles ont sur notre maniere de prédire et de
rétroagir sur I’état d’un systeme. Les échardes ont indubitablement un impact sur la
prédiction et ces fluctuations d’ordre 1 qui persistent quand 7 — 400 montrent une
limite intrinséque a notre capacité a «parier» de maniere sire sur I’état du systeme.

Remarque 9 (Illustration avec un jeu de bonneteau). La caractére surprenant des
échardes du point de vue de la prédiction peut étre illustré a 'aide d’un petit jeu
de bonneteau simplifié (présenté plus en détail en D). On imagine qu’une bille peut
étre dans deux boites L et R avec une probabilité Adt de sauter de I'une a ’autre par
unité de temps. On a acces & une série trés rapide de photos floues de la boite (en
temps réel) qui donnent chacune une petite information sur la position de la bille. On
peut montrer '° que la probabilité p; que 1’on attribue & la proposition «la bille est &
gauche» sachant les photos floues vérifie exactement 1’équation (2.1.3), i.e. !0 :

1
dpe = A(pe — 5) dt + v pe(1 — py) AW,

ofl v est proportionnel & la vitesse a laquelle les photos sont prises et & leur qualité. A
grand 7, on sait donc que p; a des échardes d’ordre 1. Méme sur un intervalle de temps
I pendant lequel la bille ne saute pas, la probabilité qu’il existe au moins un instant
ol on a tort sur sa position converge vers une constante non nulle quand v — 4o0.
Autrement dit, quelle que soit la fréquence a laquelle j’extrais de I'information sur
la position de la bille, si je dois dire a chaque instant en temps réel ou je pense que
la bille se trouve, alors la probabilité que je me trompe au moins une fois ne peut
pas étre arbitrairement réduite 7. La personne qui a acces & la position de la variable

14. C’est d’ailleurs motivés par cette question (posée de maniére répétée notamment par Irénée
Frérot), que nous nous sommes intéressés aux modeles & variables cachées. Des interrogations purement
«philosophiques» peuvent déboucher sur des résultats mathématiques (que l'on estime ou pas qu’ils
aient un intérét dans ce cas précis).

15. On a en fait reconstruit le modele de Markov caché classique reproduisant (2.1.3).

16. Notons que les échardes sont numériquement robustes et ne nécessitent pas la limite continue.
Tout ce qui est dit dans cette remarque reste vrai si la quantité d’information contenue dans chaque
photo est fixée, c’est a dire ni maximale ni infinitésimale.

17. Dans I’exemple proposé, si |Z] = A7, la probabilité d’erreur se calcule avec la formule sur les
échardes (2.2.6) et on trouve P[au moins une erreur] = 1/2.
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cachée, typiquement celui qui manipule les boites, peut lui aussi reconstruire p; et
savoir quand je me trompe. Il peut alors décider de me demander ou je pense que
la bille se trouve exactement au mauvais moment et extraire de 'information & une
fréquence plus élevée ne peut paradoxalement pas me sauver. Il s’agit si 'on veut
d’une explication excessivement savante —ou pédante— de pourquoi on perd toujours

au bonneteau 8.

Avoir des limites a la capacité de prédire impose aussi des difficultés pour contro-
ler le systeme. Imaginons un protocole de controle dans lequel une action spécifique
(éventuellement cofiteuse) est réalisée deés que le systéme quitte un état cible (c’est
typiquement le genre de procédures auxquelles on s’intéressera en 3.1). On peut choi-
sir de déclencher cette action lorsque la probabilité d’étre dans ’état voulu devient
inférieure & une certaine valeur prédéfinie, par exemple 50%. On imagine naivement
que si la force de la mesure continue est suffisamment élevée, on ne déclenchera ’action
que lorsque c’est nécessaire. La présence des échardes montre au contraire que 'on va
réagir bien trop souvent, et ce quelle que soit la force de la mesure continue. Pour
ne pas se faire piéger, il faut nécessairement soit moyenner sur un petit intervalle de
temps, soit introduire une forme d’hystérésis qui empéche le controleur d’étre déclen-
ché trop fréquemment par les fluctuations. Comme les échardes existent évidemment
dans notre connaissance du systéme, elle ont au moins une importance opérationnelle
que Pon ne peut négliger (a défaut d’avoir un statut physique clair).

2.2.4.c Observer les échardes quantiques

Les échardes pouvant étre obtenues par de simples observations classiques bruitées
d’un processus classique de saut, il faut d’abord se demander ce que 'on compte ou
accepte de valider comme observation d’échardes quantiques. Afin d’éliminer I'interpré-
tation classique des échardes, une possibilité est de travailler avec des états suffisam-
ment purs pour que les échardes soient inexplicables par de I'ignorance classique. Dans
le cas d'un qubit, les échardes dues a des erreurs classiques (ou du moins explicables
avec un modele classique) sont radiales dans la boule de Bloch, alors que les échardes
quantiques, compatibles avec la pureté, sont orthoradiales. Méme s’il n’y a pour le
moment pas de critére quantitatif précis, ’observation de fluctuations rapides d’ordre
1, invariantes d’échelle, «suffisamment proches» de la sphere de Bloch ou au moins ap-
proximativement orthoradiales, constituerait une preuve expérimentale probablement
satisfaisante de leur existence.

Un moyen de satisfaire les contraintes précédentes est de travailler avec un qubit
mesuré selon o, et soumis a un champ extérieur imposant un Hamiltonien selon un
axe orthogonal, typiquement o, (qui correspond & I'exemple de la remarque 8). Toute
implémentation de cette situation idéale théorique est a priori valable méme si des
contraintes quantitatives s’ajoutent. Il faut en effet que I'efficacité de la détection soit

18. La similarité entre cet exemple et le vrai jeu de bonneteau est évidemment limitée et le lecteur
est invité a ne pas prendre le parallele trop au sérieux. En pratique, on obtient de I'information surtout
au moment ou la bille passe furtivement d’un compartiment a un autre et on en perd petit a petit
sinon, a mesure que ’on oublie la succession rapide des mouvements effectués par le prestidigitateur
expérimenté. A cela s’ajoute en pratique la probabilité élevée que I'on ait affaire & un charlatan usant
éventuellement de gobelets truqués.
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suffisante pour conserver une pureté élevée, que le «y» de la mesure continue soit élevé
devant la fréquence des oscillations de Rabi et enfin que la bande passante ' des divers
mécanismes d’amplification du signal puisse étre rendue supérieure a . Ces contraintes
semblent compatibles avec une implémentation dans un qubit supraconducteur couplé
a une cavité micro-onde (éventuellement dans les expériences du groupe de Benjamin
Huard au Laboratoire Pierre Aigrin de ’'Ecole Normale Supérieure).

Si observer les échardes parait a portée, vérifier que les échardes correspondent a
quelque chose 20 est a priori plus difficile. En effet, il faudrait en principe étre capable
d’arréter I’évolution et d’effectuer la tomographie compleéte de ’état (ou au moins une
mesure forte dans une autre base) une fois «sur» une écharde. Cela permettrait de
s’assurer que 'information contenue dans les éléments non diagonaux —justement celle
qui garantit que les échardes sont quantiques— est bien réelle. Le probléeme est qu’il
est difficile de reconstruire ’état en temps réel avec I’équation maitresse stochastique
afin de rétroagir sur le systéme en un temps At < v~ qui est la durée typique d’une
écharde. On pourrait imaginer arréter la mesure continue aléatoirement, reconstruire
a posteriori I’état a partir des mesures continues et post-sélectionner les cas ou on
était effectivement sur une écharde. Mais la largeur des échardes étant typiquement
o 77!, le nombre d’événements & conserver décroit justement fortement dans le régime
d’intérét. I1 faudrait donc a priori soit une méthode de feedback en temps réel, soit une
énorme quantité de données, pour obtenir une observation robuste a la fois directe et
indirecte des échardes.

2.3 Extraction optimale d’information

On abandonne dans cette section I’étude de la mesure continue forte pour s’inté-
resser & des problémes d’optimisation. On a cherché précédemment & montrer quelles
similarités (les sauts) et différences (leur taux, les échardes) il y avait entre la mesure
continue forte et les mesures projectives. On s’intéresse ici a la spécificité de la mesure
continue hors du régime fort : son caractere lent et progressif. Si la mesure met un cer-
tain temps, de nouvelles question auparavant inaccessibles ou dénuées de sens peuvent
étre posées. Combien de temps met-on a extraire une certaine quantité d’information ?
Ce temps peut-il étre optimisé avec des «ressourcesy» (en terme d’appareils de mesure)
fixées 7 Un schéma optimal pour mesurer vite est il le méme qu’un schéma pour acqué-
rir de I'information vite 7 Les éventuels gains en vitesse sont-ils d’origine quantique ou
classique 7

2.3.1 Etat de I'art

2.3.1.a Présentation du probléme

L’objectif des schémas d’extraction optimale d’information est d’accélérer la vitesse
de convergence d’une certaine métrigue d’information avec des ressources en mesure

19. On pourrait ajouter la fréquence finale de discrétisation mais cette derniére est en général bien
plus élevée que la bande passante des amplificateurs en amont.

20. C’est a dire vérifier que ’état que ’on attribue au systéme & ’aide des mesures continues et qui
contient des échardes correspond bien a I’état réel du systeme.
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fixées et en s’autorisant un contréle Hamiltonien en temps réel sur le systeme. Ty-
piquement, on mesure continuement un certain opérateur O, on se donne un certain
Hamiltonien de contrdle dépendant du temps H (t) tel que I’état p du systeme évolue
selon :

dpy = —i[H(t), pe] dt + v D[O](p¢) dt + /7 H[O](p¢) dWr,

et on cherche a maximiser la vitesse de convergence d’une certaine mesure d’informa-
tion comme l’entropie en jouant sur H(t). Si H dépend explicitement des résultats de
mesure passés, alors on a un schéma avec boucle de rétroaction fermée (closed loop),
si ’évolution de H est fixée au départ, ce qui est plus facile a réaliser en pratique,
on a un schéma de controle ouvert (open loop). On ne se donne aucune restriction
sur 'amplitude de H et on peut donc supposer que 'on est capable d’appliquer des
unitaires instantanés. Par un simple changement de point de vue, on fait en général le
choix d’appliquer 'unitaire a O plutdt qu’a p ce qui revient a considérer qu’on «tourney
Pappareil de mesure plutot que I’état (ce qui est évidemment équivalent). On considére
alors plutét I’équation :

dpr =y D[UOU(pr) dt + /3 HIU,OU ] (pr) AW (23.1)

On aimerait en théorie utiliser I'entropie de Von-Neumann S(p) = —p In p comme
mesure de l'information (ou éventuellement ’entropie de Shannon prise dans une cer-
taine base) mais on est assez vite confronté au fait que le logarithme rend le calcul
stochastique et 1’écriture de problémes d’optimisation inextricables?'. En pratique, la
plupart des auteurs utilisent soit I’entropie linéaire S*(p) = 1 — tr[p?] soit I'infidélité
A(p) =1—A1(p) ou Ai(p) est la plus grande valeur propre de p.

On peut ensuite chercher un schéma localement optimal, c’est & dire pour lequel
E[df|F:] (ou f; est la mesure d’information choisie) est extremal, ou plus rarement
—car c’est souvent tres difficile- un schéma globalement optimal, i.e. tel que IE[f (tapal)]
soit extremal. Dans le premier cas, on peut travailler directement sur I’équation diffé-
rentielle stochastique vérifiée par la métrique d’information alors que dans le second
cas, on doit se plonger dans les raffinements du contréle stochastique et des équations
de Hamilton-Bellman-Jacobi (HBJ) ou les solutions analytiques sont rarissimes. La
plupart de la littérature ainsi que les ambitions de cette section se limitent ainsi au
premier probléme.

Une ultime distinction, peut-étre la plus importante, se fait entre les schémas dans
lesquels tous les coups sont permis pour acquérir I'information rapidement (e.g. changer
fortement les propriétés de I'état qu’on est en train de mesurer), c’est le probléme de
la purification optimale, et les schémas pour lesquels on veut que 'action globale sur
le systéme (mesure + controle) continue & étre globalement une mesure ??, c’est le
probléme de la mesure optimale.

21. En particulier, il n’est pas tout a fait évident d’écrire une formule d’It6 pour calculer dS; dans la
mesure ou p; et dp; ne commutent pas. En travaillant un peu, on peut vérifier que la formule intégrale
suivante fonctionne :

+oo
dS; = —vtr {D[O](pt)log pt+/ dss(s+pe) " (H[O](pe) (s + pt)_l)Q]dt—ﬁtr {H[O](pt)logpt} dw;

mais elle n’est pas facile & manipuler et je n’ai pas réussi a trouver mieux...
22. On veut par exemple que le résultat final corresponde & une mesure dans une certaine base et
que sa statistique soit donnée par la regle de Born
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2.3.1.b Purification

Commencons par nous intéresser a la purification optimale pour un qubit. On se
donne ¢, comme opérateur mesuré, on note p; = 1%‘7"6 et on choisit de prendre le point
de vue dual de I’équation (2.3.1). Le probléme devient ainsi d’optimiser l’extraction
d’information pour la mesure de o, = U;-& ou u; le parametre dynamique de controle
sur lequel on cherche & optimiser. En appliquant le lemme d’Ité & S¥ =1 — tr[p?] on
obtient :

BlASE 7] = —tr [200 Dl )(p) + Hlow] ()] dt. (232)

On obtient donc un schéma de purification localement optimal pour :

i, = argmax {tr 2 py Do) (pr) + Hlow,(p)?] } -
Ut €S2
On peut ensuite s’amuser a faire un peu d’algebre en utilisant o,0, = u.v 1 + i oy
pour obtenir aprés quelques lignes de calcul vectoriel élémentaire :

BASHF) = =27 [(1— - d@)(1 - [d - @]?)] dt.

Le schéma est localement optimal pour 4; | @ qui est le résultat proposé par Jacobs
en 2003 [29]. Notons que pour ce choix, I’évolution est particuliérement simple et le
lemme d’It6 fournit :

dSt = —4~Sk dt.

L’extraction d’information est déterministe dans le schéma optimal et S = S& e,
La trajectoire de p; dans la boule de Bloch reste évidemment aléatoire et comme
I’évolution tend & rendre u et « paralleles, il faut constamment faire tourner la base
de mesure avec un feedback actif.

On peut comparer ce résultat au cas sans contrdle —paradoxalement légérement
plus technique— dans lequel on a 0, = 0, et p = (1 + (2¢ — 1)0;])/2 ce qui fournit
SE=2q,(1 —q) et :

dgr = 4/vq:(1 — q)dW,

équation que 'on a résolue & la remarque 2. En injectant la solution dans I’expression
de ST on obtient I’expression exacte suivante :
SL
Sk — 0 5 (2.3.3)
(= e+ o]

ol on se souvient que Y n’est pas un mouvement Brownien mais le signal. En utilisant
Iexpression (1.2.13) pour la distribution de Y on obtient :

2
y
e 2t e 2t

- V8nt Jr cosh(2,/7y

ol on a pris qo = 1/2 pour simplifier 'expression. On peut en calculer explicitement
I’équivalent & t grand pour obtenir :

T efQ'yt
BIST~ 5y i

E[S/] ] dy
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Le schéma «optimal» améliore donc d’un facteur 2 le taux de convergence de la
moyenne de I'entropie linéaire (au terme sous dominant /¢ pres). Paradoxalement,
ce schéma n’est pas trés utile en pratique car on préfere en général optimiser le temps
nécessaire pour atteindre une certaine entropie linéaire cible plutoét que la moyenne
de Pentropie linéaire pour un certain temps. Pour estimer le temps nécessaire pour
atteindre une entropie cible, on peut regarder le comportement asymptotique de SF.
Aux temps longs, on a Y; ~ £2,/7dt soit en utilisant I’équation (2.3.3) SE o~ e 8
pour le cas sans controle. Autrement dit, ’algorithme sans controle est typiquement
2 fois plus rapide que ’algorithme optimal! Ce fait surprenant est a l'origine d’une
énorme quantité de confusion dans la littérature, notamment dans ’article originel
[39] et on peut consulter [19, 90, 91] pour diverses explications du phénomene. L’al-
gorithme optimal consistant & mesurer constamment orthogonalement a I’état dans la
boule de Bloch posséde malgré tout I'avantage d’étre parfaitement déterministe : on
sait exactement combien de temps il faut pour arriver a une certaine entropie linéaire
cible ce qui peut-étre utile dans le cas ou on doit purifier de nombreux états différents
en paralléle.

Dans le cas général, pour un espace de Hilbert de dimension || quelconque,
I’algorithme optimal n’est pas connu. On peut montrer qu’il est possible de gagner un
facteur d’ordre || pour la mesure d’un opérateur dont les valeurs propres sont linéai-
rement espacées en cherchant notamment a maximiser la complémentarité entre 1’état
du systéme et l'opérateur mesuré en temps réel [92, 93] (prescription qui est ’ana-
logue multidimensionnel de 'orthogonalité dans la boule de Bloch). On peut montrer
que cette prescription seule n’est pas suffisante pour atteindre ’accélération maximale
[94] et on peut démontrer que des gains o< |77 |? sont accessibles en ajoutant aux mé-
thodes quantiques utilisant la complémentarité des astuces classiques qui dépendent
de maniére cruciale du spectre de 'opérateur mesuré.

Dans le cas du qubit et dans le cas général, les schémas optimaux nécessitent un
asservissement en temps réel du systéme pour rendre constamment la mesure orthogo-
nale a I’état (resp. complémentaire a ’état dans le cas général). Il serait évidemment
préférable de posséder une stratégie sans asservissement —open-loop— permettant d’ob-
tenir des gains comparables, éventuellement a un préfacteur pres. Pour un qubit, un
bon moyen d’étre typiquement orthogonal a I’état est de faire tourner rapidement et
aléatoirement lopérateur mesuré. A la limite ol cette rotation est effectuée trés fré-
quemment, on obtient 1’évolution en moyennant I’équation (2.3.2) sur la sphére de
Bloch?®. En dimension quelconque, la prescription équivalente consiste & moyenner
Péquation (2.3.1) sur le groupe unitaire muni de la mesure de Haar. Combes et al. [90]
ont montré qu’on obtient dans ce cas une accélération de la convergence ~ %\%@\

2.3.1.c Mesure optimale

L’objectif de la mesure optimale est toujours d’obtenir une extraction d’information
rapide mais avec cette fois-ci la contrainte additionnelle que les propriétés mesurées
ne changent pas. Autrement dit, on s’interdit ici de changer les espaces propres de la
mesure afin que l'opération globale continue a étre une mesure (ce qui n’était évidem-

23. Une autre possibilité est d’alterner trés rapidement entre les trois axes orthogonaux de mesure.
On peut montrer que le gain est alors analogue [95].
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ment pas le cas dans les schémas de purification optimale précédents). Cela restreint le
controle a des permutations de vecteurs dans la base propre de I'opérateur mesuré. De
telles opérations préservent la classicalité (au sens des modeles de Markov caché) de
la procédure et les gains éventuels ne sont pas attribuables a la mécanique quantique
(ce qui ne les rend évidemment pas moins réels). On considérera donc par la suite des
matrices densité diagonales dans la base de la mesure. Pour un qubit, on n’attend pas
de gain car les permutations de la base sont triviales, mais on espere des améliorations
de vitesse en dimensions |.77;| supérieures.

Comme on va étudier en détail la mesure optimale d’un registre de qubits en
2.3.2 et surtout en F, on va rester pour le moment a un niveau d’explication intuitif.
Considérons un espace de Hilbert 7, de dimension n > 3. On considére la mesure d’un
opérateur J dont les valeurs propres \;, rangées par ordre décroissant, sont linéairement
espacées. On se souvient que la vitesse de convergence dépend de maniére cruciale de
|\i — Aj| (voir par exemple (1.2.8) ou (2.1.7)) : le taux auquel une superposition de
|i) et |j) collapse vers un des deux états propres est proportionnel a |A; — \;j|%. Cette
simple constatation permet de trouver facilement la stratégie localement optimale.

Pour la mesure optimale, on considére en général une autre métrique, I’'infidélité,
dont on rappelle 'expression : Ay = 1 — Aj(p) ou A;(p) est la i-éme valeur propre
de p dans 'ordre décroissant. Pour que l'infidélité réduise «vitey, il faut que Az(p)
décroisse le plus vite possible. Le probleme c’est que comme le taux de convergence
est proportionnel a |A\; — )\j\Q, il y a toutes les chances qu’aux temps longs, A; et Ag
correspondent & deux sites 7 et j tels que |[A\; — Aj| = ming4; | A\, — Nj| = 1 car c’est entre
deux états de ce type que le collapse est le plus lent, la mesure discrimine mal deux
états dont les valeurs propres associées sont proches. L’idée est alors d’effectuer une
permutation de la base telle que A; soit envoyé sur A1, As sur Ay, Agsur \,_1, etc. Dans
cette nouvelle base, Ay décroit en moyenne n? fois plus vite. Si on admet que c’est la
décroissance de Ao qui domine la vitesse de convergence de I'infidélité, alors on s’attend
a ce qu'un tel schéma apporte un gain d’ordre |7%|? sur le temps caractéristique de
convergence ce qui est effectivement le cas [97]. On écrivant explicitement I’expression
de dA;, on voit immédiatement qu’'un tel schéma est aussi localement optimal.

Comme dans le cas de la purification, la procédure localement optimale précédente
demande de controler le systéme en temps réel conditionnellement aux résultats de
mesure. En effet, une fois dans une base dans laquelle Ay décroit «rapidementy, cette
derniére finit par croiser Ag et il faut de nouveau changer de base. On peut se deman-
der s’il existe une procédure open-loop du méme type que la moyenne sur le groupe
unitaire pour la purification dans le cas de la mesure. La réponse est positive. Un
bon moyen d’avoir un écart |A; — A;j| > 1 pour tous les états i # j est de changer
constamment aléatoirement de base de mesure. Encore une fois, si ce changement est
effectué rapidement, cela revient a moyenner 1’équation d’évolution sur le groupe de
permutations de la base de pointeurs (au lieu du groupe unitaire pour la purification).
L’écart entre deux valeurs propres tirées aléatoirement est toujours oc n et on s’attend
donc & un gain de l'ordre de |%|?, c’est & dire la méme chose que pour le schéma
localement optimal a un pré-facteur pres. C’est un résultat que I’on peut aussi prouver
sans trop de difficulté en encadrant E[dA,] [96].
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2.3.2 Mesure optimale pour un registre de qubits

On quitte désormais cette courte revue de I’état de ’art pour s’intéresser a un pro-
bleme de mesure optimale particulier dans lequel la solution habituellement proposée
peut-étre largement améliorée. Pour plus de détails notamment techniques, on pourra
se reporter a 'appendice F. On s’intéresse a la mesure optimale d’un registre de qu-
bits. La lecture d’un registre n’est pas un probléme purement éthéré ou académique
puisqu’il s’agit de la derniere étape nécessaire d’'un calcul quantique. Méme s’il n’est
pas aujourd’hui possible de construire de grands registres de qubits pour lesquels une
amélioration de la vitesse de mesure apporte un gain déterminant, on peut imaginer
que la situation change dans un futur proche.

2.3.2.a Enoncé du probléme

On considere la mesure continue d’un registre de n qubit. On considere que les qu-
bits sont mesurés séparément et indépendamment par n détecteurs. L’état du systeme
pr € K @ A avee A = @), C? vérifie 'équation maitresse stochastique ?* :

dpr =2y > DloW)(p) dt + 27 > H[o D (pr) aw” (2.3.4)
=1 =1
ou ‘
c=1919..00,9..01

avec o, en t-eme position. Les processus de bruit ne sont pas corrélés, i.e. th(i)th(j ) =
d;5dt, trace de I'indépendance des détecteurs. On donne 'équation (2.3.4) pour que le
modele considéré soit clair, mais on va rester a un niveau d’explication heuristique
dans ce paragraphe et le suivant.

Avant d’exposer brievement les schémas optimaux open-loop et closed-loop, regar-
dons pourquoi on s’attend a ce qu'une accélération d’un facteur o< n soit effective-
ment atteignable. Les détecteurs mesurent les qubits séparément. En admettant que
I’état initial soit maximalement mélangé, la probabilité d’un certain état, par exemple
|0) = |0) ® |0) @ ... ® |0), s’écrit comme le produit des probabilités marginales pour
chaque qubit?®. A cause de cette forme produit, on peut se convaincre facilement
que Détat le plus probable (dont la probabilité vaut Aj) et I'état le «deuxieéme plus
probable» (dont la probabilité vaut Ag) different seulement d’un bit, par exemple en
position i. Seul un détecteur, celui en position ¢, apporte donc réellement une informa-
tion utile permettant de séparer ces deux états, séparation dont on a vu qu’elle était le
processus dominant la convergence. Un «bon» schéma de mesure optimale devrait étre
capable d’exploiter constamment la puissance de discrimination des n détecteurs et
fournir une accélération d’un facteur d’ordre n comparativement au cas sans controle.

Le concept clé dans cette situation, qui va permettre d’ordonner les états d’une
manieére analogue a ce que 'on avait fait dans le cas de la mesure d’un unique opé-
rateur, est celui de distance de Hamming [99]. La distance de Hamming entre deux

24. Le facteur 2 devant «y est choisi pour coller & la convention utilisée dans la littérature, notamment
dans [93].

25. Encore une fois, on rappelle que la situation est classique et qu’on peut donc avoir en téte que
la configuration du registre est bien définie et inconnue et qu’on cherche simplement a en calculer la
probabilité en fonction des résultats de mesure.
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configurations de bits est égale au nombre de bits différents entre elles. Dans le modele
de mesure que l'on considere, la vitesse a laquelle un mélange de deux états collapse
est proportionnelle a la distance de Hamming entre les deux configurations corres-
pondantes (la distance de Hamming compte essentiellement le nombre de détecteurs
«utilesy ). L’idée du schéma localement optimal est d’implémenter un changement de
base en temps réel tel que I’état correspondant & A; soit fixé, par exemple |0) et que les
autres soient ensuite ordonnés en fonction de la distance de Hamming a 1’état le plus
probable. On envoie par exemple I’état correspondant & Ag sur |1) = |11...1), & A3 sur
|011...1) etc. . On s’attend dans ce cas & un gain d’ordre n sur le taux de convergence
ce qui est effectivement ce que Combes et al. [97] obtiennent.

Encore une fois, plutét qu'un algorithme en temps réel ,on peut imaginer un schéma
open-loop consistant a permuter tres rapidement la base de mesure. On s’attend dans
ce cas a un gain du méme ordre, 7.e. x n qui est effectivement ce que Combes et al.
[9%8] parviennent a montrer. En fait, dans ce cas précis, on peut calculer exactement la
valeur du gain obtenu (voir appendice F), mais il s’agit d’un résultat essentiellement
académique puisque ce schéma est de toute facon inutilisable en pratique.

En effet, que ce soit en open-loop ou en closed-loop, les schémas précédents pour
le registre de qubits présentent un défaut rédhibitoire qui les rend inexploitables en
pratique; défaut qui a été, il me semble, largement sous estimé dans la littérature.
Les gains linéaires fournis par les deux approchent rendent l'algorithme particuliere-
ment utile pour les grands registres. Le probleme c’est que la ou I'indépendance des
probabilités permettait a la procédure sans controle de ne stocker que n nombres cor-
respondant aux n marginales, le constant brassage de la base nécessite de stocker les
2" probabilités correspondant aux configurations completes. Le gain linéaire en vitesse
s’accompagne donc d’un colit exponentiel en mémoire qui limite en pratique les pos-
sibilités d’utilisation des algorithmes précédents a des registres de quelques qubits. Se
pose immédiatement la nécessité de ce colit exponentiel : ce dernier est il la contrepartie
nécessaire du gain en vitesse linéaire ? Peut-on avoir le beurre et 'argent du beurre 26 ?
Un autre probleme des méthodes précédentes est qu’elles demandent en théorie d’étre
capable d’effectuer un nombre grand (typiquement [2"!] pour le cas open-loop) de per-
mutations de la base, nombre absolument inatteignable en pratique. Est-il possible
d’étre plus frugal ?

2.3.2.b Heuristique de la solution

Pour étre réellement utilisable, il faut donc un algorithme au cotit en mémoire mo-
déré (polynomial mais idéalement linéaire en le nombre de bits) et parcimonieux avec
les opérations de controle. L’idée des algorithmes précédents consistant a s’intéresser
a la distance de Hamming peut étre conservée mais c’est le choix des permutations a
effectuer sur la base qui est a modifier.

Intuitivement, on a besoin de beaucoup de mémoire parce que I'on utilise beaucoup
de bases différentes. Peut-on réduire le nombre de bases utilisées et conserver le méme
gain ? Demander que les états soient tous «éloignés» en moyenne les uns par rapport
aux autres du point de vue de la distance de Hamming en utilisant seulement un

26. Comme beaucoup de maximes populaires, cette derniére souffre heureusement de quelques ex-
ceptions.
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nombre «petity de bases apparait impossible ?’. Mais rien ne nous oblige en fait & ce
que les états soient loin les uns par rapport aux autres, ils suffit qu’ils soient loin du
«candidat», c’est a dire de ’état associé & la valeur propre Aj. Avec seulement deux
bases, tous les états peuvent étre a une distance de Hamming moyenne n/2 d’un certain
état donné. La solution est simplement de choisir une premiere base quelconque % et
une seconde Z dans laquelle le candidat ainsi que son opposé bit & bit sont retournés.

L’idée du nouvel algorithme est donc de commencer par effectuer une mesure conti-
nue du registre sans controle jusqu’a ce qu'un premier candidat se dégage (tel par
exemple que A; dépasse 1/2). Ensuite, mesurer alternativement dans % et %, cette
étape devant entrainer un collapse n/2 fois plus rapide vers le candidat si ce dernier
est le bon. Dans le cas contraire, si le candidat change, recommencer ’algorithme du
début. Si 'on admet :

1. que I'étape initiale de sélection du candidat prend un temps négligeable si I’on
s’intéresse au comportement asymptotique de la log-infidélité,

2. que le nombre de fois que l'on doit recommencer 'algorithme au début est
fini en moyenne (= 2) et donc que cette possibilité n’a pas d’impact sur le
comportement asymptotique de la log infidélité,

3. que l'on gagne bien un facteur n/2 quand on mesure dans % et P successive-
ment,

4. que 'on peut reconstruire exactement la probabilité des états avec la donnée
2n probabilités marginales dans % et 4,

alors l'algorithme fait bien ce que 'on voulait et fournit un gain de vitesse d’ordre n
(= n/2), pour une utilisation linéaire de mémoire (2n) et avec un nombre fini (2 en
moyenne) d’opérations de controle. Ces 4 points techniques, a priori crédibles, sont
prouvés rigoureusement en appendice F. De maniere intéressante 1’algorithme obtenu
n’est pas strictement open-loop car on a un petit nombre d’opérations de contrdle
a effectuer. Cependant la convergence asymptotique n’est pas sensible & un éventuel
délai de feedback (éventuellement d’ordre y~!) ce qui rend l'algorithme malgré tout
trés robuste et «quasi open-loop» dans le sens que ’on n’a pas strictement besoin d’un
contrdle en temps réel. Compte tenu de sa forme particuliere ot on devine un candidat
qu’on «vérifiey ensuite rapidement avec deux bases complémentaires, on a proposé le
nom de «Guess and Check» (GC) pour le schéma précédent.

Meéme si I’algorithme améliore de nombreuses faiblesses des approches précédentes
qui les rendaient irréalisables, il souffre d’une de leurs limitations : ses gains théo-

27. Cette impossibilité semble pouvoir étre liée & la théorie du codage [100]. La borne de Plotkin
[101] montre par exemple qu’il est impossible d’espérer obtenir une distance de Hamming d = n/2 en
moyenne entre tous les états en utilisant un nombre k «petit» de bases. Cette derniere stipule en effet
que le nombre maximum .4~ de mots que I'on peut coder avec N bits en conservant une distance de
Hamming d = N/2 entre chaque mot est borné :

A <2N.
Dans notre cas, on a A4 = 2%, N = n X k soit dans le meilleur des cas : 2—,: < 2n X k ce qui demande
que k soit exponentiel en le nombre de bits. Dans le cas général, si on ne demande pas une distance de
Hamming d = n/2 mais une autre fraction de n, je ne connais pas d’inégalité permettant de conclure
(la borne de Singleton [102], bien que générale, n’est pas assez contraignante), je ne doute cependant
pas que le résultat survive.
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riques sont uniquement asymptotiques et généralement treés inférieurs pour une cible
d’infidélité réaliste.

2.3.3 Commentaires généraux

Cette exploration des problemes d’extraction d’information optimale a permis de
proposer un nouvel algorithme, peut-étre le seul effectivement réalisable, pour la me-
sure d’un registre de qubits. C’est un résultat qu’on est en droit de juger modeste mais
qui montre que malgré 'abondance de littérature sur le sujet, il reste des problémes
intéressants a attaquer. On peut proposer quelques pistes futures pour tout opportu-
niste souhaitant attaquer des problemes «low risk — low reward» qui ne révolutionnent
pas la Physique mais sont plaisants a étudier, ne serait-ce que pour mieux comprendre
les équations maitresses stochastiques utilisées en mesure continue.

La littérature actuelle —et notre contribution n’y fait pas exception— s’est uni-
quement focalisée sur 'optimisation asymptotique de I'extraction d’information. Les
simulations numériques montrent malheureusement que lorsque la taille de ’espace de
Hilbert considéré grandit, la vitesse obtenue en pratique peut étre trés inférieure a ce
que le comportement & t — +oo peut laisser supposer (voir appendice F). Pourtant,
comme on est capable de calculer exactement la distribution de n’importe quelle quan-
tité pour une mesure pure (en s’inspirant par exemple de la remarque 4), obtenir des
résultats aux temps intermédiaires n’est pas inaccessible en principe. Cela demande
de sortir de "'approche «usuelle» consistant a étudier directement et exclusivement le
processus stochastique pour passer a ’approche duale sur la densité de probabilité
de la quantité considérée. Il s’agit d’'un angle d’attaque probablement plus lourd et
moins «joli» mathématiquement, mais les divers paradoxes que I’on a observés notam-
ment pour la purification optimale d’un qubit montrent que I’entreprise n’est pas sans
intérét.

Que ce soit pour la purification ou la mesure optimale, et a I'exception du cas
particulier des registres, les seuls observables considérées ont été celles possédant un
espacement linéaire entre les valeurs propres. Beaucoup de résultats dépendent direc-
tement de ce choix qui est pourtant assez restrictif et pas forcément motivé?®. On
pourrait se demander quels résultats sont valables pour des observables ayant une
structure différente, par exemple pour la mesure continue simultanée de |7%;| projec-
teurs sur les états d’'une base orthonormée donnée. Dans ce dernier cas, la structure
unidimensionnelle disparait et tous les états sont discriminables avec la méme facilité.
On imagine assez volontiers que les gains que 'on peut obtenir dans cette situation
sont moindres et on peut se demander comment caractériser les cas ou il est possible
d’obtenir un certain gain.

Nous n’avons que superficiellement étudié le probléme de la mémoire, c’est a dire
le probleme de la représentation d’un état avec un nombre petit de parametres. Dans
le cas d’un registre de qubits on a proposé une méthode, mais il serait intéressant
de généraliser au cas de systemes quelconques pour voir si une telle économie y est
possible. Ce probleme de I’explosion du nombre exponentiel du nombre de degré de
liberté a été largement attaqué dans d’autres domaines (et notamment en matiere

28. Pourquoi, par exemple, devrait-on privilégier la structure unidimensionnelle qu'un tel choix
induit ?
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condensée) avec I'introduction des réseaux de tenseurs [103] qui permettent d’approcher
des états «physiques» d’espace de Hilbert de dimension 2™ avec un nombre uniquement
polynomial de parameétres [104]. Il n’est pas impossible qu’une telle technologie puisse-
t-étre utilisée dans le contexte de I’extraction optimale d’information ?”.

Enfin, mentionnons que le caractére classique de la mesure optimale a été sous
exploité et qu’il permet de trivialiser certaines preuves existantes inutilement obscurcies
par ’écriture quantique. Peut-étre est-il possible de profiter de cette nouvelle maniere
de présenter le probléme pour trouver d’autres situations d’intérét ou faire le lien avec

des problémes déja résolus en théorie des probabilités (classiques).

29. Il s’agirait d’un juste retour aux sources puisque ces modeles furent inventés pour résoudre des
problémes en information quantique.



62

CHAPITRE 2. RESULTATS THEORIQUES



Chapitre 3
Applications

Les «applications» de ce chapitre se distinguent des «résultats» précédents en ce
qu’elles ne demandent a priori pas de nouveaux développements mathématiques mais
utilisent les théorémes précédemment démontrés (pour la section 3.1) ou simplement
la structure générale des équations introduites au premier chapitre (pour les sections
3.2 et 3.3).

3.1 Controle par I'intensité de la mesure

3.1.1 Introduction

L’objectif du controdle quantique est de guider un systeme d’intérét vers un état cible
en exploitant I'information obtenue en temps réel par une mesure continue. Comme
dans la section 2.3, la partie «active» du contrdle que 1'on s’autorise est typiquement
un Hamiltonien dépendant du temps et (ici) borné. La théorie générale présente de
fortes similarités avec la théorie classique du contréle stochastique et a été posée sur
les mémes bases mathématiques rigoureuses [105, ]. Les protocoles optimaux sont
généralement inconnus (& part une exception dans le cas d’'un qubit [107]) car & la
liberté du Hamiltonien de controle s’ajoute la liberté de 'opérateur mesuré. Le carac-
tere non-commutatif de la mécanique quantique ajoute ici la subtilité que la mesure ne
possede pas seulement un effet de conditionnement bayesien mais aussi un réel impact
sur la dynamique (en contractant les phases dans la base propre de mesure). Agir sur
la mesure permet ainsi non seulement de modifier ’extraction d’information —la partie
passive du contrdle— mais aussi d’influencer activement la dynamique.

En fait, en utilisant simplement la rétroaction de la mesure, il est possible de contro-
ler un systéme sans utiliser de Hamiltonien additionnel. En changeant dynamiquement
I'opérateur mesuré on peut méme controler le systéme aussi bien qu’avec un actuateur
externe [108, 109] (voir [110] pour une étude similaire dans le discret), situation évi-
demment impossible en classique. On peut se demander s’il est possible de faire avec
encore moins. Peut-on contréler un systeme quantique en gardant I'opérateur mesuré
fixe et en ne jouant qu’avec 1’intensité v de la mesure ?

Dans ce qui suit, on ne va pas tant s’intéresser a la préparation d’états arbitraires,
qui est manifestement impossible avec une contrainte aussi forte, qu’a la construction
de dynamiques hors équilibre intéressantes. L’idée est d’exploiter notre étude des sauts
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FIGURE 3.1 — Modeéle minimal : la particule rouge peut sauter d’un site a I'autre de
maniére cohérente (double fleche) ou d’un site a un bain de maniére dissipative (simples
fleches).

quantiques en 2.1 et en particulier la découverte que les taux de sauts dans la limite
de mesure forte sont renormalisés différemment pour un couplage dissipatif et pour
un couplage cohérent. Jouer sur l'intensité de la mesure permet par conséquent de
favoriser une transition par rapport a un autre et cela conditionnellement a 1’état du
systeme. Méme si on n’a ainsi qu’'une prise rudimentaire sur la dynamique du systeme,
on va voir que cette derniére est suffisante pour modifier profondément les propriétés
thermodynamiques observées par rapport au cas sans controle.

3.1.2 Exemple minimal
3.1.2.a Modele

On peut commencer par étudier un exemple minimal (voir [6] pour plus de détails)
dans lequel les comportements «intéressants» annoncés précédemment peuvent étre
observés. On consideére un systeme (ouvert) a trois niveaux .7; = Vect{|0), |L), |R)} qui
correspondent typiquement & une particule pouvant occuper le site de gauche, le site
de droite ou aucun site d’'une double boite (voir Fig. 3.1). On imagine qu’il existe un
Hamiltonien H de couplage permettant un «tunnelling» cohérent entre |L) et |R) :

H = 2 (L) (] + [R) (L))

On suppose que des particules peuvent aussi étre injectées par des réservoirs markoviens
a gauche et a droite ce qui ajoute a ’évolution les termes dissipatifs suivants :

L){0[1(p) + AL DII0)(LI](p)
R)(0[](p) + A& DII0)(RI}(p),

~
2=
DD
[
> >
|
S8

oit \j et A[ correspondent aux taux d’injection et de capture & gauche (resp. pour Ay
et Az a droite). Multiplier ces taux par une constante modifie le couplage au réservoir
et changer leur ratio modifie le potentiel chimique associé. On suppose enfin que 'on
est capable de mesurer continuement la position de la particule a I’aide de I'opérateur !

1. On aurait pu tout aussi bien considérer la mesure continue des trois projecteurs |0)(0], [L)(L| et
|R)(R| au méme taux 7(¢). Dans ce second cas, la mesure distingue aussi bien les états deux a deux
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FIGURE 3.2 — Heuristique de la méthode de contrdle du flux. La force de la mesure
permet d’ouvrir ou de fermer la transition cohérente conditionnellement a la position
de la particule et ainsi de créer un biais.

O = |L)(L] — |R)(R| & un taux ~y(¢). La matrice densité du systeme obéit donc finalement
a I’équation différentielle stochastique :

Apy = —i[H, pi] dt + L (pr) dt + La(py) dt +1(2) DIO] (o) dlt + /(&) H[O](pr) AW

(3.1.1)
Que le lecteur ne se laisse pas impressionner par ’abondance de termes, la situation
physique considérée est relativement simple. On a une «chaine» de deux sites, couplés
entre eux par un Hamiltonien, couplés chacun a 'extérieur par un bain et on mesure
continuement le tout. C’est le modele le plus simple dans lequel on peut avoir une
dynamique hors équilibre non triviale (typiquement un flux moyen de particules d’un
réservoir a l'autre) et une compétition entre mesure continue, dynamique incohérente
et dynamique cohérente. Bien que ce modele soit aussi pertinent a étudier pour v du
méme ordre que w et )\f > On va s’intéresser a la limite mesure forte (ou semi-classique)
dans laquelle la mesure domine la dynamique.

Pour construire une dynamique hors équilibre non triviale, on va s’inspirer du
démon de Maxwell classique. Le couplage cohérent entre L et R est une «porte» que la
mesure peut fermer ou ouvrir grace a 'effet Zénon : plus la mesure est forte, plus cette
transition est bloquée. A I'inverse, les connections dissipatives aux bains ne sont pas
touchées par la mesure. En jouant sur la force de la mesure on peut choisir d’ouvrir
ou de fermer la porte entre L et R, sans influence sur les autres taux de transition, et
conditionnellement & la position de la particule (voir Fig. 3.2). On peut ainsi espérer
biaiser le flux de particules vers la gauche ou vers la droite, éventuellement dans le sens
inverse a celui qui serait induit par la différence de potentiels chimiques en I’absence de
contrdle. Ce qui suit n’est que la mise en équations un peu pédante de cette trivialité.

3.1.2.b Limite 7y - +0c0 et calcul du flux

Avant de nous attaquer au cas avec contrdle, regardons ce qui se passe lorsque
v(t) = constante. A la limite de mesure forte, on peut utiliser le théoreme (2.1.7) pour
simplifier fortement la dynamique du systéme donnée par (3.1.1). La matrice densité

alors que pour O = |L)(L| — |R)(R| on distingue mieux L et R (la différence des valeurs propres vaut 2)
que 0 et L ou R (la différence des valeurs propres vaut 1). Cette asymétrie étant sans conséquence sur
Pesprit des résultats, on a choisi d’aller au plus simple.
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p devient un processus de Markov classique entre les états pointeurs |0)(0|, |L)(L| et
IR)(R| et on a les taux de transition suivants :

w2
ML<—R = MR(—L = -
4y
ML<—0 - )‘I—_i._a
MO<—L - )\Ev
MR<—0 = )‘1—1’_7
MO%R = )\1;-

Dans cette limite, on peut calculer extrémement facilement P;(¢), la probabilité que
I’état soit au site ¢ = 0, L ou R en ¢t comme pour n’importe quel processus de Markov
et on a :

d
&Pi(t) = > M, Py(t),
ke{0,L,R}
avec la convention M;; = — > ;. 2; My ;. Aux temps longs, la probabilité stationnaire

P2 est dans le noyau de M et on calcule explicitement :

pre _ QD) +9)
0o — E J

o KAL) A A
IPL = )

>
o _ BORAD) + AR AL
Py = -

avec Kk = % et :
Y =AM AR FARAD (AR AL 208 +2)0).

La limite grand + n’était pas nécessaire pour ce calcul que l'on peut trés bien
effectuer sans cette simplification. Le réel avantage de cette approche —semi-classique
par essence— est qu’elle permet d’obtenir une caractérisation classique du flux. En effet,
il suffit de faire la différence entre le nombre de trajectoires L — R et le nombre de
trajectoires R — L (ou compter le nombre de tours dans le triangle (0,L,R), voir Fig.
3.3). Le flux de particules J allant de gauche vers la droite est alors un processus
stochastique scalaire dont la moyenne aux temps longs vaut simplement :

EOO[J] = My+r IPEO — Mgt IPan
soit :
MM =MD MM = ML
KR— ~ K .
» y=too  AFAL AR AT+ AR AL
Pour fixer les idées on peut prendre un taux de capture par les réservoirs constant
A . = A et jouer uniquement sur les taux d’injection )\; = Ag/L pour obtenir :

E®[J] =

L/R
AL — AR

E>*[J] ~ _—
| ]7—>+°0K)\R+)\L+1’
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A N

mesure modérée mesure forte

N

flux résultant

FIGURE 3.3 — On mesure modérément quand la particule est a gauche et fort quand
elle est a droite. On biaise ainsi les taux de transition et crée un flux moyen strictement
positif de la gauche vers la droite.

expression dont le comportement est intuitif et correspond a ce qu’on attendrait clas-
siquement dans le cas ou la transition entre L et R serait limitante. On observe natu-
rellement que si le potentiel chimique est plus élevé a gauche qu’a droite, on a un flux
de particules de la gauche vers la droite (et inversement si le potentiel chimique est
plus élevé a droite).

3.1.2.c Controle du flux moyen

Comme annoncé dans la présentation du modele, le couplage cohérent entre L et
R va jouer le role de la «porte» entre les deux compartiments comme pour le démon
de Maxwell classique. L’idée est de mesurer plus fort quand la particule est en R que
lorsqu’elle est en L, de sorte que sa probabilité d’effectuer la transition R — L soit plus
faible que la probabilité du saut L — R (voir Fig. 3.3). On choisit donc deux forces de
mesure Ymin €t Ymax que 'on utilise suivant que la particule est a gauche ou a droite.
Notons que dans les deux cas, on garde v trés grand devant les autres parameétres de
la dynamique w et )\f/R afin que p; reste un processus de saut a tout temps.
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On peut refaire la méme analyse que précédemment avec les taux modifiés :

2
My g = = Kmin,
4’Ymax
_ 2
MR<—L = - = Kmax,
4’7/min
My o=M\
L+0 L
MO%L - >‘L )
MR<—O — )‘R y
M0<—R - )\R ;

pour obtenir :
Kmax )\L — Kmin AR

E>[J ~
[ ] Nminyﬁmaxﬁo AR + )\L + 1 ’
ol on a effectué comme précédemment les simplifications A = Aet )\; = Ag/L- On

observe ainsi que pour “max > %’ on peut créer un flux de particule dans le sens opposé
min

a celui prévu par la dynamique sans controle. L’opérateur peut contréler le flux, sa

direction et son intensité, avec pour seul parametre libre la force de la mesure.

Remarque 10 (Echardes). Si c’est la proposition sur les sauts qui permet de com-
prendre le fonctionnement du controdle par la mesure, la section sur les échardes n’est
pour autant pas inutile pour I'implémentation du protocole. En effet, la présence des
échardes & v — +oo rend légerement non trivial le choix du critére permettant de
dire que la particule est ou non a gauche. Une méthode naive comparant simplement
PL(t) et Pg(t) risque de déclencher de maniére intempestive un changement de la force
de mesure. La présence des échardes impose soit de moyenner ces probabilités sur un
temps de l'ordre de =1, soit d’introduire une hystérésis.

Remarque 11 (Interprétation). Le fait qu’il soit possible de contrdler une quantité ther-
modynamique potentiellement macroscopique comme un flux de particules en jouant
uniquement sur la force de la mesure peut sembler paradoxal si on voit cette derniere
comme une simple acquisition d’information passive sur un systeme. Comment, en ef-
fet, pourrait-on modifier la thermodynamique d’un objet en «clignant des yeux», méme
de manieére subtile ? Afin de dissiper tout malentendu, il convient d’insister sur le fait
que ce n’est pas de cette maniere que fonctionne la méthode précédente. Souvenons
nous que la mesure continue contient deux parties, une phase d’interaction avec une
sonde et une phase de mesure projective de la sonde. Modifier le ratio de sondes mesu-
rées ne change pas les propriétés du processus de Markov limite. En jouant sur v, on
modifie la quantité de sondes envoyées par unité de temps ou de manieére équivalente
la force de leur interaction avec le systéme, on a donc un effet mécanique direct sur
ce dernier qui ne se limite pas a une acquisition d’information et qui explique qu’un
controle soit possible. Sauf & croire comme Ptolémée que les yeux émettent les rayons
qui permettent de voir les choses”? un peu comme le sonar des chauve-souris, on ne

2. Notons que cette théorie est trivialement falsifiée comme ’a remarqué le physicien et philosophe
perse Alhazen au XI-iéme siécle : si les yeux émettaient vraiment le flux qui nous permet de voir les
choses, alors on verrait aussi bien le jour que la nuit.
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peut contrdler quoi que ce soit en clignant des yeux, et c’est plutot en allumant et
éteignant subtilement la lumiere que la méthode précédente parvient, en apparence, a
défier la thermodynamique.

3.1.3 Cas presque général

L’exemple précédent s’étend facilement a un cas plus général sur un graphe ¢
quelconque de | 74| sites. Pour simplifier 1égérement la situation, on va considérer une
évolution en 'absence de mesure induite par le générateur :

Z(p) = Alp) —ilH, p],

ol A est un supéropérateur restreint a la diagonale de p, i.e. A(p)ij = 6ij Y1, AikPrkks
que 'on peut donc voir comme une simple matrice et qui code pour une évolution dis-
sipative générale. On suppose qu’on mesure continuement l'opérateur O = Y, Ag|k) (k|
ou tous les Ay sont réels et différents. On écrit la force de la mesure ~y(¢) sous la forme
~v(t) = T'e(t) qui fait apparaitre un parametre de scaling I' et le controle c. Pour sim-
plifier on rescale aussi le Hamiltonien que l'on note H = VT h. A T' fixé, la matrice
densité p du systeme considéré obéit donc a I’équation différentielle stochastique :

dpr = Alp) dt — i[H, p] dt 4 T c(t) D[O](pe) dt + /T c(t) H[O](pr) AW

qui est simplement la généralisation & un nombre arbitraire de dimensions (et & un
rescaling pres) de (3.1.1). La proposition (2.1.7) sur les sauts nous dit que quand
I' — +o0, p; devient un processus de saut de matrice de Markov M telle que :

2

1 .
Micj = Aij + — , pour i # j

4c

Xi— A

avec encore une fois la convention que M;, ; = —>_ ki M. ;. Le controle par la mesure

consiste a faire dépendre la force de la mesure du site sur lequel se trouve le processus
hij
X=X
et le vecteur k; = 1/(4¢;) qu’on identifiera avec la matrice diagonale correspondante
Kk = > ; ki|i)(i|. La liberté induite par le contrdle est ainsi symbolisée par les |.773]
composantes de k et la matrice du Markov en présence de contrdle devient :

de Markov et donc d’avoir ¢ — ¢;j. Pour simplifier on introduit la matrice B;; =

M =A+Bk (pour les coefficients non-diagonaux),

et Mij; = — Dokt Mj,;. Comprendre les propriétés du systéme controlé revient dés
lors simplement & étudier la nouvelle matrice de Markov M en fonction de k.

On peut commencer par étudier le cas purement cohérent, c’est a dire le cas ou
A = 0. Dans ce cas, pour £ = 1 on a M symétrique et donc en faisant une hypothése
classique d’ergodicité, on obtient que la probabilité stationnaire IP°°(B) est uniforme
sur ¢ et qu’il n’y a pas de flux & I’équilibre. En jouant sur la force de la mesure, on
peut biaiser arbitrairement cette probabilité. En effet, on a :
[Klillpoo<3)] . H,_l

7 K3

= Po(B)[l [l

P (Br) =
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Autrement dit, il est possible d’obtenir n’importe quelle probabilité stationnaire cible
sur le graphe avec le controle approprié. Il est en revanche impossible de créer un flux
dans cette situation, et ce quel que soit le controle appliqué. En effet, le flux J;;(Bk)
de probabilité moyen de j vers i est toujours contraint par la condition de balance
détaillée :
o - Bij . 1
Ji<_j<BK) = IPj (BH)Binj — IPZ- (BH)Bjilﬁi = W(Hj Rj — K, /ii) =0.

Ce résultat est assez intuitif, si on n’a que des transitions cohérentes, jouer sur I'effet Zé-
non avec la mesure a pour unique conséquence que de ralentir ou accélérer I’écoulement
local du temps. Cela permet de biaiser la probabilité stationnaire mais évidemment
pas le flux moyen qui reste nul.

Supposons désormais que A est la matrice de Markov d’un processus sans flux a
I’équilibre, i.e. :

Jicj =P (A) - Aij — P(A) - Aji,

ou P>°(A) est la probabilité stationnaire du processus de Markov de matrice A. Alors,
en I’absence de dynamique cohérente il n’y a évidemment aucune possibilité de contrdle
puisque la mesure n’a pas d’influence sur la dynamique dissipative. Néanmoins, en
combinant ces deux dynamiques sans flux, on peut créer une dynamique avec flux.
Si A et Bk sont les matrices de Markov de processus sans flux a 1’équilibre, alors
M = A+ Bk peut avoir un flux non nul comme le montre exemple minimal étudié
précédemment. En fait, le phénomene est méme générique et on peut presque toujours
biaiser une des transitions pour créer du flux. C’est assez intuitif mais on peut malgré
tout vouloir s’en convaincre par le calcul en posant :

Ki = €01,

pour un certain [ a choisir plus tard et en supposant —uniquement par commodité—
que tous les A;; sont non nuls. On peut réécrire la condition d’absence de flux comme
I’égalité suivante pour tout cycle de trois sites ¢, j, k

igk = M Mij3 My; — My My; M;j; = 0 (3.1.2)
Au premier ordre en € on a :
i = e AijAuBj — e AijAjiBy.
En ce souvenant que A vérifie la condition (3.1.2) on obtient :

.Alj.Aji

Ajp

ii=¢ [AuBji — BilAjl

expression qui est non nulle a condition qu’il existe i, 7,1 tels que :

Aa , Ba

Aj " By’
qui est vérifiée pour au moins un ! dans la situation peu restrictive ou A n’est pas
proportionnelle a B.
Apres ces développements quelque peu formels, résumons ce qu’il y a a retenir du
cas général. En faisant simplement varier la force de la mesure :
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— On peut controler la distribution stationnaire sur les pointeurs pour peu que la
dynamique contienne une partie cohérente.

— On peut créer du flux de maniere générique —dans un systeme dans lequel il
n’y en a pas sans controle- pour peu que ce dernier contienne a la fois des
transitions dissipatives et cohérentes.

La conclusion plus générale est que lorsque I'on a la capacité de mesurer continuement
un systéme quantique, alors on a de maniére générique une prise pour influencer ses
propriétés a 1’équilibre et une capacité a engendrer une dynamique hors équilibre non
triviale.

Remarque 12 (Paradoxe de Parrondo). On vient de voir qu’il était possible de créer
un flux moyen dans un systéme quantique en alternant entre deux situations (ymin €t
Ymax), dans lesquelles le flux stationnaire est nul. On a vu dans le premier exemple
minimal qu’il était méme possible de créer un flux net dans un certain sens en alternant
entre deux situations dans lesquelles le flux va naturellement dans ’autre sens. Ce
phénomeéne rappelle le paradoxe de Parrondo [I11] dans lequel un joueur alternant
entre deux jeux perdant en moyenne parvient a dégager un profit et ¢’est un mécanisme
analogue qui permet le fonctionnement des moteurs browniens [112, , ].

Remarque 13 (Robustesse). Méme si 1’étude précédente a été faite exclusivement dans
la limite ou la mesure est forte, il ne fait aucun doute que les résultats sont qualitati-
vement robustes et restent valables pour une mesure faible. C’est d’ailleurs un régime
qu’il serait intéressant d’étudier & I’avenir car, en I’absence de rescaling de la dynamique
cohérente, il existe certainement un optimum non trivial de v permettant d’obtenir un
flux maximal. En effet, plus la mesure est forte, mieux on connait le systeme et donc
mieux on peut le controler. L’effet Zénon quant & lui commande d’utiliser la mesure
la plus faible possible pour ne pas trop renormaliser les transitions cohérentes et ne
pas geler le flux. Il faut acquérir de I'information pour contréler mais en acquérir trop
sabote la dynamique que I’on souhaite engendrer. Explorer ce régime fournirait pro-
bablement quelques intuitions sur la bonne manieére de formuler la thermodynamique
quantique en présence de mesures répétées.

3.1.4 Réalisation expérimentale

L’idée qui a motivé I'exemple minimal étudié précédemment (et P’article [6] corres-
pondant) —avant méme en fait que la proposition générale sur les sauts ne soit connue—
était de controler le flux dans une double boite quantique (double quantum dot) mesurée
par un point quantique (quantum point contact) et couplée a deux réservoirs d’électrons
(source et drain). Il se trouve que les ordres de grandeurs aujourd’hui atteignables sur
les doubles boites y rendent le régime que nous avons étudié complétement irréaliste.
En pratique, le couplage avec I'environnement (phonons, champ électromagnétique,
etc.) rend le tunneling entre les deux boites incohérent aux échelles ot on est capable
de l'observer. De plus, le temps typique de mesure 7! est en général bien plus grand
que les autres constantes de la dynamique. Intuitivement, un tel systéme est donc bien
mieux modélisé par une équation différentielle stochastique de la forme :

dpy = —i[Hy, prldt+Li(pe) dt+Ly(p)dt+(y(t) + Tr) D[O)(pr) dt+1/~(t) H[O](pr) AW,
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ouw et I'g, qui correspond & la décohérence induite par I’environnement, sont plusieurs
ordres de grandeur au dessus des valeurs atteignables par y(¢). Le tunneling entre L et
R apparait ainsi incohérent (ou classique) et se fait a un taux :

w2

Mo = m7

que le contréle ne peut donc influencer que de maniere extrémement marginale.

En pratique, il vaut probablement mieux explorer d’autres types de systémes sur
lesquels on a un bon contréle (voir par exemple [115] pour une revue). On peut penser
par exemple aux qubits supraconducteurs pour lesquels on peut atteindre la bonne hié-
rarchie d’ordres de grandeur entre dynamique cohérente interne et vitesse de mesure.
Dans ces systémes en revanche, on n’a pas d’équivalent immédiat de «flux de par-
ticules». Les qubits supraconducteurs ont aussi Pavantage (mais ici le défaut) d’étre
plus facilement contrélables ce qui rend 'action par la force de la mesure seule inutile-
ment restrictive. On peut néanmoins imaginer les utiliser pour une preuve de principe
dans l'espoir d’utiliser la méthode un jour pour le controle du transport quantique
mésoscopique.

3.2 Marches quantiques ouvertes

Les marches quantiques ouvertes (open quantum random walks ou OQW) sont une
généralisation des marches aléatoires usuelles introduites par Attal, Petruccione, Sabot
et Sinayskiy [116] en 2012 (voir aussi [117, 118]). Elles sont a distinguer des marches
aléatoire quantiques tout court (que l'on pourrait appeler unitaires ou UQW), qui
ont déja été largement étudiées [119] depuis les années 1990 et qui sont a la base de
nombreux algorithmes quantiques comme 1’algorithme de Grover [120]. Les marches
quantiques unitaires sont inspirées des marches aléatoires classiques mais n’ont de
marche que le nom puisqu’il est impossible d’y définir une notion de trajectoire. Les
marches quantiques ouvertes sont a l'inverse des processus stochastiques classiques,
dans le sens que leur trajectoire est toujours bien définie, mais non-markoviens et c’est
dans cette non-markovianité particuliere que réside leur caractere quantique. L’intérét
des OQW n’est pas seulement mathématique dans la mesure ou elles constituent une
implémentation possible du calcul quantique dissipatif [121, | et sont en principe
réalisables expérimentalement [123, , , |, deux caractéristiques qui motivent
indubitablement leur exploration.

Les marches quantiques ouvertes ne sont pas non plus sans rapport avec ’étude
précédente. Comme leur nom l'indique, il existe un lien direct entre ces marches et
les systemes ouverts et plus particulierement les interactions répétées, lien que 1’on va
expliciter. Il est ainsi possible d’importer les résultats dérivés précédemment dans le
contexte des mesures pour comprendre le comportement des OQW 2. Ce parallele va
nous permettre de définir une limite continue pour les marches quantiques ouvertes, le

3. Il faut noter que nous avons historiquement fait le cheminement opposé. C’est en comprenant
le comportement des marches aléatoires quantiques ouvertes aux temps courts, puis en découvrant le
paralléle avec le formalisme des mesures répétées, que nous avons découvert les résultats plus généraux
du chapitre 2 (modeste découverte qui peut &tre mise au crédit des OQW).
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mouvement brownien quantique ouvert (OQBM), et de comprendre le comportement
balistique et diffusif de ce dernier.

3.2.1 Construction standard des marches quantiques ouvertes

On peut donner la définition des marches quantiques ouvertes dans un cadre re-
lativement général, pour un graphe ¢ quelconque, pas forcément fini. Par simplicité
on va en revanche se limiter a un espace interne (parfois appelé gyroscope ou coin
space) A de dimension fini. Une marche aléatoire quantique ouverte est une évolution
stochastique d’un doublet (z, p) constitué d’une position  sur un graphe ¢4 et d’une
matrice densité p sur S ® € qui joue le role de degré de liberté interne du marcheur :

(i, pi)  —  (Tit1, piy1)
stochastique

Plus précisément, on a avec probabilité II[y] = tr[By« s, pi B;&xi] :

Tiv1 =Y

o By a; pi Bg:r,exi
=
' I[y]

ou les matrices By, spécifient les propriétés statistiques de la marche et sont les
équivalents matriciels des racines de probabilités de transition pour une marche aléa-
toire classique (voir Fig. 3.4). La conservation de la probabilité implique une unique
contrainte pour ces matrices :

> Bl . Bycs=1.

yeYy
Le processus stochastique ainsi construit et restreint au graphe ¢ est non markovien
et les probabilités de saut dépendent de la trajectoire passée. L’évolution globale en
tenant compte de I'information sur I’espace interne est en revanche bien markovienne.
Notons qu’il n’y a évidemment aucune objection a parler de trajectoire du marcheur,
cette derniere étant simplement la succession des positions x; occupées par ce dernier.

Une marche aléatoire quantique ouverte peut aussi facilement étre interprétée
comme une suite de mesures répétées doublée d’un feedback non trivial des résultats
de mesure passés sur le choix des mesures futures. La position sur le graphe peut alors
étre interprétée comme 1’état du contrdleur. Supposons que le contréleur est dans un
état x; et que le systeme a mesurer est dans un état p;. On suppose qu’on applique au
systéme la mesure généralisée (dépendant de ’état du contréleur suivante) :

By,l“z‘ Pi B;E,a:i
II[y]
Le résultat, que ’on note alors ¥, est le nouvel état du contréleur qui permet de choisir
les mesures généralisées a appliquer a I'étape suivante. Dans le cas ou la marche aléa-
toire est homogéne, typiquement sur R%, alors les matrices B ne dépendent pas du site
et on peut supprimer la partie rétroaction du controleur. L’OQW est alors équivalente
a une suite de mesures répétées sur un espace interne dont les résultats correspondent
aux changements de position successifs d’un marcheur. Ce parallele permet de définir
une limite continue commode en s’inspirant du résultat sur les mesures répétées.

avec probabilité TI[y] = tr[By ., p; B}

pi - y,:l‘i]'
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FIGURE 3.4 — Marche aléatoire quantique ouverte sur un graphe ¢. Le degré de liberté
interne p du marcheur peut étre vu comme un élément d’une fibre au dessus de chaque
point du graph.

3.2.2 Passage au Brownien quantique ouvert

On va construire le Brownien quantique homogene a une dimension mais la construc-
tion se généralise aisément au cas inhomogene et en dimension arbitraire (voir [7]). On
commence par simplifier I’évolution 3.2.1 au cas ¥ = Z, homogene et pour des sauts
vers les plus proches voisins :

Ti41 :xiil

o B.p;BL
Pi+1 H:t 3

avec probabilité IT. = tr[Byp;Bl] et la condition BLBJ,_ + B'B_ = 1. On obtient
la limite continue comme en 1.2.2 et finalement comme pour une marche aléatoire
classique en développant B et B_ au voisinage de 1/2. Contrairement a (1.2.3) ou
on ne cherchait pas la généralité mais simplement a obtenir une mesure, on veut ici
I’expression donnant I’équation la plus compléte possible a la limite. Le développement
le plus général s’écrit [7] :

1 1
B, =—(1 N —e(iH+ M+ =-NTN 3/2)
n \/§< +VeN —e(iH + +5 )+ O(e”?)
1 1
B_ 7 <]1 VEN —e(iH — M + 2N N)+O(e )> ,

ou H est auto-adjoint mais M et N sont quelconques. Avec le méme raisonnement
qu’en 1.2.2, on obtient la limite continue suivante :

. (3.2.1)
dpy = —i[H, p] dt + D[N|(p¢) dt + H[N](p) AWy,
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expression qui, on le rappelle, utilise les notations :

D[N](p) = NpNT — %{N*N,p}
H[N](p) = Np+ pN' —tr [(N + NT)p| p.

La matrice M est donc une simple «jauge» qui disparait dans la dynamique. On peut
se référer aux Fig. 3.6 et 3.7 pour des exemples de trajectoires.

Dans ce contexte unidimensionnel et homogene, la position du marcheur est exac-
tement le signal des mesures continues. Pour autant, méme si les deux concepts sont
formellement équivalents, l'interprétation en terme de position modifie les questions
que ’on se pose naturellement. Notamment, on peut se demander comment calculer la
distribution P(x,t) de z;, quantité essentielle pour une marche aléatoire, mais a priori
sans aucun intérét si z; était une somme de résultats de mesure. En raison du caractere
non markovien de x; considéré seul, il n’y a pas d’espoir de trouver une équation aux
dérivées partielles fermée a la Fokker-Planck pour P, mais on peut écrire P comme la
trace d’un objet qui en possede une.

On définit ainsi :

p(x,t) = Elpt|zy = 2] P(x, ),

qui est en quelque sorte la généralisation «non-commutative» de la probabilité d’étre
en z. On a bien tr[p(z,t)] = P(x,t), mais p posseéde avantage d’obéir a une équation
autonome. En effet, soit une fonction test ¢, on a :

Elo(e1) pr) = /R dz () pla, ).

On peut calculer 9;E[¢(x¢) pi] en utilisant le lemme d’'Itd dans 'espérance ou en déri-
vant directement dans l'intégrale. On obtient ainsi apres calcul :

[ da S 0020 (@) + (Vi) + pla, ON ()
+[=ilH, pla. 0] + DIN)(@, )] (@) = [ dwdpla,t) ¢a),
soit en intégrant par partie :
0up = 502 — (NOp -+ 0upN') — ilH, 7] + DIN)(p), (3.2.2)

équation qui est I’équivalent de I’équation de Fokker-Planck pour une marche quantique
ouverte. On peut la résoudre numériquement pour obtenir la distribution de probabi-
lité P de z; et observer les non-gaussianités caractéristiques des marches quantiques
ouvertes (voir Fig. 3.5).

Le mouvement brownien quantique ouvert 1d montre deux types d’anomalies par
rapport au mouvement brownien usuel (voir [3, 7] pour une étude plus détaillée) :

1. la présence de plusieurs * gaussiennes aux temps longs (au lieu d’une seule) pour
certaines conditions initiales,

4. On a au maximum n = || gaussiennes différentes [127].
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FIGURE 3.5 — P obtenu avec 'équation (3.2.2) pour |#| = 2, N = \/y0., H = wo,.
En noir, £ = 0.01, en bleu ¢t = 0.04, en rouge ¢t = 0.07.

~ a gauche — v = 225, w = 102, pg = diag(0.5,0.5), 29 = 0

~ a droite — v = 900, w = 10, pg = diag(1.0,0.0), 29 = 0

Calculs effectués avec julia et une discrétisation naive de (3.2.2) pour dt = 107°, dz =
1073, Les résultats sont robustes et le calcul exact en discret fournit des distributions
analogues (voir par exemple dans [3]).

2. un comportement trés non gaussien aux temps courts, qui se manifeste notam-
ment par la présence d’'une grande région ot la distribution est quasi-uniforme.

Le premier phénomene a été observé des le départ [110] et il fait 'objet d’un théoréme
centrale limite [128]. La présence de plusieurs gaussiennes est en fait un peu moins
surprenante qu’il n’y parait et ne se «voit» pas au niveau des trajectoires individuelles.
Intuitivement, on peut considérer qu’on tire au hasard au départ le paquet gaussien
que Ion va suivre ® pour I’évolution ultérieure.

La seconde non-gaussianité est plus surprenante et on va voir en 3.2.3 qu’elle se
manifeste aussi au niveau des trajectoires.

3.2.3 Comprendre la transition balistique — diffusif

Le comportement aux temps courts peut se comprendre en étudiant 1’équation
de Fokker-Planck (3.2.2) mais il existe une limite dans laquelle il est plus simple de
revenir & l'expression directe (3.2.1). Sans surprise, il s’agit de la situation dans laquelle
N =, N =/ Nt et H = V/YH qui est formellement analogue a une situation de
mesure forte (voir Fig. 3.7). Dans ce cas on peut utiliser la proposition (2.1.7) pour
simplifier ’évolution du gyroscope p. Quand v — +o00, p saute entre les pointeurs de

5. Plus précisément, on peut une fois encore comprendre ce résultat en terme de variables cachées,
en particulier dans le cas H = 0 qui est classique au sens des modeles de Markov caché. Pour chaque
valeur de la variable cachée, une réalisation de 'OQBM est un mouvement brownien drifté classique,
le drift dépendant de la valeur de la variable cachée.
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N avec des taux de transition finis que 'on peut calculer a 'aide de I’équation (2.1.7).
Si p est sur le pointeur |i)(i| correspondant & la valeur propre A\; de N on a :

da; = 27N dt.

Le marcheur posséde ainsi un comportement balistique (& un petit bruit addition-
nel pres) dont la pente change de maniere abrupte lorsque le gyroscope fait un saut
(voir Fig 3.7). Si l'on retranche au processus x; sa dérive moyenne qui vaut d; =
27 Zlﬁ‘ T;Ait —ou 7; est le temps moyen passé par le gyroscope dans le pointeur i,
alors x; va bien atteindre une distribution gaussienne aux temps longs. La variance de
la gaussienne finale n’a en revanche aucun rapport avec la variance du bruit W; présent
dans I’équation initiale (3.2.1) et vient de I’alternance entre des mouvements balistiques
de vitesses différentes. Le coefficient de diffusion effectif dépend alors des taux de saut
entre pointeur et est proportionnel a /7, c’est a dire beaucoup plus grand que ce 'on
attendrait naivement si le comportement gaussien venait de la dérivée seconde® dans
(3.2.2).

Résumons, pour des temps courts comparés a Mij_lj, le taux de saut entre les poin-
teurs, la distribution de x; apparait tres non gaussienne car elle est dominée par le
parcours moyen balistique entre les sauts. Pour des temps longs devant Mz:_lj en re-
vanche, les parcours balistiques entre chaque saut du gyroscope peuvent se voir comme
les incréments indépendants d’une marche aléatoire classique et le comportement ef-
fectif de la marche est gaussien.

Le brownien quantique ouvert est un processus stochastique non markovien en po-
sition qui posseéde une dynamique intéressante —dans certains régimes de parametres—
mélant comportement balistique aux temps courts et fluctuations gaussiennes aux
temps longs. Ce comportement le rend a priori intéressant pour modéliser le trans-
port quantique qui possede une transition analogue mais que 'on ne sait pas encore
bien modéliser 7 ou éventuellement des situations sans lien avec la mécanique quantique
comme ’étude de la matiere active et la biologie.

3.3 Gravité et mécanique quantique

Que le lecteur peu familier des questions relatives a la quantification de la gravité ne
s’émeuve pas d’un tel titre, cette section ne demande aucune connaissance particuliere
des hypotheses actuellement avancées en gravité quantique. Pas de supersymétrie, de
cordes ni de boucles ®, 'objectif est ici de montrer comment le probléme de 'unification
entre gravité et mécanique quantique peut étre éclairé par une étude assez élémentaire
de situations non-relativistes et 'utilisation d’idées héritées de la mesure continue, du
contrdle et des modeles de collapse. Galvanisé par I'ignorance exaltée typique du physi-

6. On pourrait d’ailleurs supprimer cette derivée seconde et avoir toujours un comportement gaus-
sien aux temps longs [8].

7. On peut comprendre le transport balistique quantique en 1d a 'aide des théories conformes hors
équilibre [129] mais ces derniéres ne permettent pas (encore) de modéliser le passage au diffusif pour
les temps longs.

8. Concepts dont la compréhension est de toute fagon hors de portée des capacités intellectuelles
du présent auteur.
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FIGURE 3.6 — Trajectoire de (3.2.1) pour N = \/70., H = wo, avec w = 3 et v =
0.1. Les courbes sont obtenues par discrétisation naive de (3.2.1) avec dt = 10~%.
Le marcheur et le gyroscope sont faiblement couplés et la situation est formellement
équivalente & une mesure continue faible.

cien sorti de son domaine de compétence, on pourra se prendre a réver de contributions
de la théorie des mesures continue a une hypothétique théorie du tout.

3.3.1 Introduction
3.3.1.a Contexte

Il n’existe pas de théorie physique cohérente unifiant mécanique quantique et gra-
vité qui soit aujourd’hui précisément définie ou méme capable de faire des prédictions
testables dans des situations simples. Cette constatation désormais banale motive une
quantité de recherche impressionnante en physique théorique, en particulier dans les
institutions de recherche prestigieuses. Depuis environ un demi-siecle, la recherche sur
la gravité quantique a donné lieu & une foule de résultats mathématiques indubita-
blement originaux mais & remarquablement peu de résultats physiques indiscutables
[130]. A ce stade une précision est fondamentale : on désigne en général par théorie de
gravité quantique toutes les théories dans lesquelles, que ce soit de maniere primitive ou
émergente, les degrés de liberté dynamiques de 1’espace-temps sont quantifiés”. Rien
n’oblige pourtant 'unification a se faire de cette maniere et il est tout a fait imaginable

9. On pourrait dire plus prosaiquement qu’'une théorie de gravité quantique est une théorie dans
laquelle un certain schéma de perturbation fait apparaitre une particule quantique (un graviton) vecteur
de l'interaction.
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FIGURE 3.7 — Trajectoire de (3.2.1) pour N = \/q0., H = wo, avec w = 3 et v =
10.0. Les courbes sont obtenues par discrétisation naive de (3.2.1) avec dt = 1074
Le marcheur et le gyroscope sont fortement couplés et la situation est formellement
équivalente a une mesure continue forte.

que la gravité elle méme ne soit pas quantifiée dans une «théorie du tout» [131]. Nous
allons utiliser le formalisme développé au chapitre 1 pour explorer une voie quasi in-
empruntée : une unification semi-classique dans laquelle la matiere est quantique mais
I’espace-temps classique. Avant cela, il convient peut-étre de rappeler les arguments
usuels —discutables et insuffisamment discutés— pour lesquels on privilégie en général
I’approche infiniment plus difficile d’une quantification compleéte incluant les degrés de
liberté gravitationnels.

Une bréve étude éminemment non-scientifique montre que les physiciens qui ex-
plorent la voie de la gravité quantique utilisent principalement trois types d’arguments
pour défendre leur approche. Le premier est philosophique. La gravité doit étre quanti-
fiée car la théorie quantique est une méta-théorie plus qu'une théorie de la matiere, une
méthode ultime et indépassable pour construire des théories physiques acceptables. Cet
absolutisme est en général guidé par une compréhension contestable des implications
réelles du formalisme (voir A) et il est raisonnable de lui accorder un crédit limité,
surtout alors que la voie de la quantification s’avere extrémement difficile en pratique.
Le second argument est un épouvantail. L’approche semi-classique naive proposée par
Mpgller et Rosenfeld [132, 133] en 1962 donne lieu a des incohérences théoriques que
I’on va détailler plus tard et qui ont été identifiées en partie par Hannah et Eppley en
1977 [134]. De plus, a quelques ambiguités d’interprétation pres, on peut considérer
que 'approche de Mgller et Rossenfeld a aussi été falsifiée expérimentalement par Page
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et Geiker en 1981 [135]. Mais cet échec d’une théorie naive vieille de plus de 50 ans ne
peut étre utilisé comme une preuve de 'impossibilité d’une gravité fondamentalement
semi-classique qu’au prix d’un sophisme grossier. On verra qu’aussi naturelle qu’elle
puisse sembler, 'approche de Mgller et Rosenfeld est loin d’étre la plus raisonnable
quand on a a l’esprit les modeles de mesure continue. Reste le dernier argument, la
gravité quantique comme tapis sous lequel cacher les problemes du modele standard.
Il est «bien connu» que le secteur électrofaible du modele standard contient un péle de
Landau : la constante de couplage diverge pour une énergie élevée mais finie estimée a
10286 eV. On espére qu’une gravité quantifiée apporte un cut-off en distance qui per-
mette de régulariser la théorie. On ne s’attaquera évidemment pas a ce probléme mais
on peut simplement mentionner qu’invoquer ici la quantification de la gravité comme
solution est un moyen de s’abstenir de résoudre quoi que ce soit. Par ailleurs, on peut
imaginer nombre d’autres mécanismes non gravitationnels qui viendraient supprimer
le pole de Landau'’. Les arguments en faveur de la quantification de la gravité n’ap-
paraissent donc pas completement définitifs et il ne semble pas impossible en principe
d’essayer la voie semi-classique.

3.3.1.b Limite newtonienne

Les difficultés rencontrées par ’approche standard a la gravité semi-classique se
manifestent presque toutes a la limite newtonienne. Les subtilités et paradoxes que ’on
rencontre avec la gravité sont en effet d’avantage d’origine quantique que relativiste.
C’est pourtant une limite qui est peu étudiée, les efforts se concentrant principalement
sur les trés hautes énergies ' et la cosmologie. Pourtant, il est probable que les premiers
effets a la fois gravitationnels et quantiques que ’on réussira a observer le seront & basse
énergie [130].

Concentrons nous désormais sur la gravité semi-classique. A 1a limite newtonienne,
on a de la matiére quantique et un champ gravitationnel scalaire classique. Il faut
alors comprendre qu’il y a deux questions fondamentalement différentes & se poser,
une trés facile (et validée) et une plus difficile (et aussi plus ouverte). Etant donné
un champ gravitationnel extérieur, on sait trés bien comment calculer la dynamique
de la matiere quantique : il suffit d’ajouter le potentiel correspondant dans 1’équation
de Schrodinger. Non seulement cette prescription est raisonnable mais elle est aussi
expérimentalement validée : on sait par exemple prédire avec précision comment une
particule quantique tombe dans le champ gravitationnel terrestre [137]. La question
bien plus subtile est de savoir comment de la matiere quantique crée le champ gravi-
tationnel au départ. Le lecteur peut prendre ici quelques instants pour se demander
quelle prescription lui semble naturelle. Par exemple, pour une particule dans un état
de superposition |gauche)+|droite), observe-t-on une force d’attraction entre les deux
pics de la fonction d’onde 7 Une telle question est a priori ouverte...

Evidemment, & la limite newtonienne, on pourrait imaginer régler le probléme en
supprimant le champ gravitationnel et en implémentant I'attraction entre particules

10. Les théories de grande unification, malgré leur relatif échec, apportent I’exemple d’un tel méca-
nisme.

11. A se concentrer sur 'échelle de Planck ot la «nouvelle physique» était supposée émerger, on a
laissé de coté les situations plus simples ou aucune théorie n’apportait pourtant de prédiction claire.
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comme en électrostatique avec un potentiel de paire V', qui s’écrirait typiquement, dans
un cas a 2 particules de masses mi et my :

GmlmQ

V=[] dxdy ’ %) (x| @ [y) (¥l

RS 2]x—y
Néanmoins, méme si on s’intéresse a la limite newtonienne pour sa simplicité, on tient
au champ et aux degrés de liberté gravitationnels dont on sait qu’ils existeront for-
cément de maniére autonome en relativité générale. Deés lors, on veut une version
newtonienne qui permette la définition d’un champ gravitationnel classique, ce qui ex-
clut le potentiel de paire trivial ci-dessus. Dans ce qui suit, ’objectif sera donc de faire
une proposition claire de la maniére dont un tel champ gravitationnel peut étre crée
par la matiere quantique et d’en suggérer une extension relativiste raisonnable.

3.3.2 Difficultés du couplage classique / quantique naif
3.3.2.a Des absurdités de Mgller-Rosenfeld et Schrodinger-Newton

Commencons par expliquer 'approche historique de Mgller et Rosenfeld a la gravité
semi-classique. Le probléme posé par une telle théorie est le méme que pour toutes les
théories semi-classiques : on doit coupler des nombres a des opérateurs. Dans I’équation
d’Einstein, qui explique comment la matiére courbe ’espace, on a en effet naivement :

G () = 87G Ty (),

mais le tenseur d’Einstein est associé a une métrique classique, ¢’est un nombre, alors
que le tenseur énergie impulsion est un opérateur. Une maniére d’obtenir un nombre
a partir d’'un opérateur est de prendre une valeur moyenne et c’est ce que font sans
hésitation Mgller et Rosenfeld :

G () = 87G (V[T ()| ¥) (3.3.1)

ple(z)»

ou la valeur moyenne est prise sur le cone de lumiére passé pour préserver l'invariance
relativiste. Comme on l'a annoncé précédemment, les difficultés de cette équation,
lorsqu’elle est prise pour fondamentale, se manifestent immédiatement & la limite new-
tonienne dans laquelle on obtient I’équation de Schrédinger-Newton. A la limite non
relativiste, ’équation (3.3.1) devient en effet :

V20(x) = 47G (|p(x)| D), (3.3.2)
ou ® est le potentiel newtonien et g(z) I'opérateur densité de masse en z :

0(x) = m|x){x| pour une unique particule de masse m,

n
o(x) = Z mkaL(x)ak(x) pour n especes de particules différentes de masse my,.
k=1

Le champ gravitationnel peut alors étre integré a 1’équation de Schrédinger en ajoutant
un potentiel V' de la forme :

V=[] dx®(x)ox).
R3
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équation déterministe manifestement non linéaire. Une telle équation possede un cer-
tain nombre de problémes lorsqu’elle est prise au sérieux comme équation fondamen-
tale. Un premier probléme, tres général, est le fait qu'une équation déterministe et
non-linéaire permet de transmettre de l'information instantanément en utilisant l’in-
trication'? [11]. Le deuxiéme probléme, particuliérement génant, est que dans une telle
théorie les superpositions décohérentes'® s’attirent. Autrement dit, dans I'expérience
de pensée de Schrodinger, les chats mort et vivant interagissent et ce méme en prenant
la décohérence en compte.
Plus précisément, dans ’expérience de Schrédinger on a un état de la forme :

|¥) =|atome désintégré) ® |chat mort) ® |environnement 1)

+|atome non désintégré) ® |chat vivant) ® |environnement 2),
ou la décohérence se manifeste dans le fait que
(environnement 1|environnement 2) ~ 0,

ce qui rend cette superposition inobservable en pratique (pour la mécanique quantique
standard qui est linéaire). Néanmoins, il suffit de mettre cet état dans (3.3.2) pour
se rendre compte que l'orthogonalité des états de 'environnement ne permet pas de
supprimer Pinteraction entre les deux termes. Evidemment, on a pris ici un chat, mais
I'intrication se propage sur des objets de plus en plus gros jusqu’a atteindre des si-
tuations de plus en plus ridicules de superpositions décohérentes en interaction. C’est
d’ailleurs en remplacant le chat par une boule métallique pouvant se trouver a droite
ou a gauche que Page et Geiker [135] ont mis en évidence expérimentalement 1’échec
de cette approche semi-classique. Si I’équation de Schrédinger Newton est malgré tout
étudiée, c’est soit parce qu’elle est vue comme une approximation de champ moyen
a une description plus fondamentale inconnue, soit parce que les auteurs ont en téte
(sans forcément 1’écrire) un mécanisme de collapse venant supprimer les superposi-
tions macroscopiques. Un tel mécanisme permet de supprimer les chats de Schrédinger
gravitationnels mais il ne permet pas seul de construire une théorie cohérente, en par-
ticulier a cause du premier probleme de transmission d’information plus vite que la
lumiere.

12. On va y revenir mais il est important d’étre précis car une telle affirmation est souvent mal
comprise. Evidemment, on s’intéresse ici & la limite non relativiste, et donc il n’est pas surprenant que
de l'information puisse éventuellement se transmettre instantanément, ne serait-ce que par I'intermé-
diaire des forces gravitationnelles. Le probléme est que cette information puisse se transmettre par
Pintrication : Alice et Bob peuvent alors communiquer en partageant un état EPR. En information
quantique, on appelle en général «no faster than light signalling» —condition qui en fait ne dépend
pas de la vitesse de la lumiére— le fait que l'intrication ne puisse étre utilisée pour transmettre de
I'information instantanément en mécanique quantique non relativiste.

13. C’est d’ailleurs une raison supplémentaire pour ne pas confondre mélanges statistiques et super-
positions décohérentes, distinction sur laquelle on a lourdement insisté au chapitre 1 et en appendice
A.
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3.3.2.b Transmission d’information dans les théories non-linéaires

Pour comprendre le probleme de transmission d’information instantanée posé par
I’équation de Schrodinger-Newton et pour le résoudre dans une nouvelle approche,
il convient de prendre un peu de recul et de se demander a quel niveau de la théorie
quantique la linéarité est nécessaire. On peut généraliser facilement le résultat de Gisin
[11], proposé initialement pour des théories déterministes, au cas de théories contenant
un terme aléatoire (ce qui permet d’étendre le résultat aux modeles de collapse). On
a alors le pseudo-théoréme '* suivant :

—Une fois écrite sous forme d’équation maitresse, c’est a dire en matrice
densité et moyennée sur le bruit, la dynamique doit étre linéaire. Dans le
cas contraire, on peut transmettre de I'information via 'intrication.—

Ce résultat, qui parait assez fort, est en fait extrémement facile & démontrer. L’idée
est simplement qu’une non linéarité permet de distinguer superpositions décohérentes
et mélanges statistiques. On consideére une situation ot Alice posseéde un certain sys-
teme physique éventuellement compliqué intriqué avec un qubit possédé par Bob. On
suppose que Bob est trés éloigné d’Alice de sorte qu’aucune «force» dont la vitesse de
propagation est finie ne puisse interférer dans la situation considérée. L’état global du
systeéme s’écrit :

|¥) = |systéme compliqué 1)4 ® | 1)p + |systéme compliqué 2)4, ®||)p.

La non linéarité de la dynamique en matrice densité implique que ’on peut choisir le
systeme d’Alice tel que :

1 1
8tp(Al)+(2) # 5@0541) + iatpf),

ouona:

p4 (0) = |systéme compliqué 1)(systéme compliqué 1|

pa (0) = |systéme compliqué 2)(systéme compliqué 2|

(+2) gy = P (0) + p(0)
2

Autrement dit, la non linéarité implique que 'on peut trouver une situation dans
laquelle la statistique des mesures faites par Alice (qui se lit dans la matrice densité)
dépend du fait que Bob a ou non mesuré'® son qubit. De cette manieére, Bob peut
transmettre de 'information & Alice! Il suffit pour cela qu’Alice et Bob disposent d’un
grand nombre de copies du systéme précédent et que Bob choisisse de mesurer ou non

son qubit sur un certain sous ensemble de copies pour envoyer a Alice un message en

14. C’est un pseudo-théoréme car on pourrait évidemment imaginer des modéles conspirationnistes
massivement non-locaux rendant toujours la non linéarité inobservable et interdisant en pratique de
considérer la situation de la preuve.

15. Le résultat reste valable que cette mesure soit comprise comme fondamentale et axiomatique,
dans D’esprit de l'interprétation de Copenhague, ou comme approximative, via un appareil de mesure
dont I’évolution est régie par un modele de collapse objectif.
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FIGURE 3.8 — Si Alice et Bob partagent un état intriqué et qu’une dynamique non
linéaire attire localement les deux superpositions, alors Bob peut communiquer un bit
d’information & Alice en choisissant ou non de mesurer son état a I'instant initial. En
effet, si Bob a mesuré son état au départ, la masse d’Alice se trouve & gauche ou a
droite, alors que si les superpositions ont été maintenues, la masse d’Alice a été attirée
vers le centre.

binaire. Pour rendre la situation plus concrete, voyons a quoi pourrait ressembler la
méthode dans le cas de I’équation de Schrédinger-Newton.
On suppose qu’Alice et Bob partagent un état intriqué de la forme :

|V)=|masse & gauche) |masse & gauche)p+|masse & droite)y|masse & droite)p

ou les positions droite et gauche sont distantes de quelques centimétres pour chacun
alors qu’Alice et Bob sont tres éloignés I'un de l'autre (voir Fig. 3.8). L’équation de
Schréodinger Newton prédit que pour un tel état, les masses d’Alice et de Bob sont
attirées vers le centre. En revanche, si I'un ou 'autre mesure la position de sa masse,
la dynamique est arrétée. Alice et Bob peuvent ainsi communiquer. Alice peut par
exemple regarder si la masse est au centre apres un certain temps, si c’est le cas c’est
que Bob n’a pas mesuré de son c6té et cette information s’est propagée arbitrairement
vite. On voit que l'interaction gravitationnelle que ’on utilise ici n’est pas limitante :
on s’en sert uniquement sur quelques centimetres, elle pourrait étre extrémement lente.
C’est 'intrication qui est le réel vecteur de I'information. Ainsi la prescription de Mgller
et Rosenfeld : R

G () = 8TG(U|T,, ()| )

équation qui semble naivement raisonnable et compatible avec la relativité (a cause de
la moyenne sur le cone de lumiére passé) permet en réalité la transmission d’information

ple(z)s

plus vite que la lumiere.

Remarque 14 (Et si on acceptait le «faster-than-light signalling» 7). Comme on croit
en général que la possibilité de transmettre de 'information plus vite que la lumieére est
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FIGURE 3.9 — La possibilité d’influences causales plus rapides que la lumiére combinée
a l'invariance de Lorentz permet & A d’influencer indirectement C' qui est dans son
passé.

inhérente & toute théorie de la gravité semi-classique ', on cherche parfois & se rassurer
en se disant que cette capacité est inexploitable en pratique. Ce serait oublier qu’une
telle possibilité, méme théorique, est logiquement incompatible avec 'invariance de
Lorentz. Considérons deux points A et B de 'espace temps séparés par un intervalle
de genre espace. Alors il existe un référentiel Z dans lequel A est avant B et un
autre référentiel %’ dans lequel B est avant A. Il est donc possible que A influence
causalement B puis que B influence un événement C juste avant A (voir Fig. 3.9).
Autrement dit, I'invariance de Lorentz couplée & la possibilité de causes se transmettant
plus vite que la lumiere permet d’influencer causalement le passé. On tombe alors sur
les paradoxes logiques usuels du voyage dans le passé qu’aucune théorie cohérente ne
peut tolérer.

Notons que la condition de Gisin est extrémement restrictive. Un modele de col-
lapse quelconque est non-linéaire et aléatoire, mais donne lieu par construction & une
équation maltresse linéaire. Pourtant, on peut étre siir que tout terme non linéaire
supplémentaire que 'on y ajoutera, typiquement a la Schrédinger-Newton, viendra né-
cessairement briser cette linéarité durement construite. Mais cette contrainte est aussi
une chance car elle montre qu’il n’existe en réalité que peu de maniéres de construire
des théories semi-classiques cohérentes méme a partir de modeles de collapse : on ne
peut y aller au hasard et il faut que la construction méme du couplage garantisse la
cohérence.

3.3.3 Classe de modeles prometteurs

3.3.3.a Mesure continue et feedback

Avant méme de parler des mesures continues, demandons nous comment on peut
coupler classiquement deux systémes en mécanique quantique. Une solution est qu’un

16. On va voir par la suite que ¢a n’est évidemment pas le cas.
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observateur mesure le premier, puis effectue une action sur le second conditionnelle-
ment au résultat obtenu. Une telle procédure, qui correspond a un controle trivial, est
garantie par construction de donner lieu a une évolution logiquement cohérente. La
méme procédure est possible pour une mesure continue, I’analogue des résultats étant
cette fois-ci le signal. Le signal est donc une quantité «classique» (en tant que résultat
de mesure) dont on peut se servir pour modifier I’évolution future du systéme.

Evidemment, on n’a pas le droit d’invoquer la mesure continue si on cherche &
construire une théorie fondamentale. Pour autant, on a le droit de se souvenir que
les modeles de collapse continus comme CSL sont formellement équivalents a des mo-
deles de mesure continue. Ainsi, méme si on ne I’écrit jamais, on peut toujours définir
I’équivalent d’un signal pour un modele de collapse objectif. Comme les modeles de
collapse correspondent tous a la mesure locale de la densité de masse, on a acceés a un
champ stochastique interprétable comme une densité locale de masse et qui possede les
bonnes propriétés d’'un résultat de mesure classique. Plus précisément, pour un modele
de collapse continu défini par 1’équation (1.3.2) :

d . 1 R R 1 R

b = il p)— g dxdy D, 3)[20 (), 120 (¥), Al + 5 [ dxdy Do,y Lon () (o))
(3.3.3)

on peut définir un «signal» o(x) en exploitant la similarité formelle avec les mesures

continues :

o(x) = tr[2,(x) pl + w(x),

ou on omet encore une fois les indices temporels pour ne pas surcharger 1’écriture.
Il n’y a ensuite qu’'un pas pour mettre un tel champ stochastique, qui correspond
intuitivement & un «champ de densité de masse», & la source du champ gravitationnel :

V20 = 47G o. (3.3.4)

Evidemment, dans ce contexte, o n’a aucune interprétation en terme de résultat de
mesure, mais c’est le parallele formel avec la théorie de la mesure continue qui fait
fonctionner ’ensemble. En effet, la rétroaction du champ gravitationnel ainsi crée sur
la matiére peut s’interpréter a l’intérieur de la mécanique quantique orthodoxe comme
un simple schéma de controle avec feedback. La cohérence de la théorie est garantie par
construction '”!

Remarque 15 (Lien avec 'ontologie primitive). Le champ stochastique g précédemment
défini peut étre choisi comme ontologie primitive de la théorie (voir appendice A pour
une discussion du concept). Il est alors particulierement naturel de le coupler au champ
gravitationnel. On a intuitivement le schéma suivant :

17. 11 existe en fait un faisceau d’arguments suggérant que la méthode que nous avons proposée
(utiliser un champ interprétable en terme de résultats de mesures continues) est en réalité la seule
possible [138, , |. Bizarrement, les auteurs n’avaient jamais pensé appliquer une telle idée a la
gravité.
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.

état quant|que

ontologle primitive
cham

ou l'ontologie primitive (le champ stochastique de densité de masse) crée le champ
gravitationnel qui modifie la dynamique de I’état quantique qui détermine a son tour
la statistique du champ de masse.

p gravitationnel

3.3.3.b Construction pour les modeles de collapse

Maintenant que l'on a donné intuitivement la marche a suivre, reste a faire les
calculs pour voir ce que la prescription (3.3.4) implique précisément. A ce stade, le
lecteur peut se référer a I’appendice G pour plus de détails. L’équation de Poisson
(3.3.4) s’integre immédiatement pour donner le champ gravitationnel :

o(x) = -G \ dy |xg(—Y)y]

On obtient ensuite le potentiel gravitationnel V en fonction du champ en posant :
V dx @( ) (U)(X)7
R3

ot I'indice (o) désigne une régularisation optionnelle'® par une gaussienne de largeur
0. Reste a intégrer ce potentiel dans ’équation de Schrédinger. La présence de bruit
blanc multiplicatif demande cependant de faire un peu attention : on souhaite que
la procédure corresponde & un schéma de feedback, par conséquent on veut que le
potentiel agisse infinitésimalement apres I’évolution «libre». Autrement dit on pose :

p+dp= efif/dt(p + dplibre)eif/dt7

ot dp!r® correspond & I’évolution sans gravitation donnée par 1’équation (3.3.3). Apres

calcul on obtient :

dp B dplibre' R R 1 . N .
- ax ! [‘Gﬂr/dxw(X)‘P(a)(X)m] + g/dxdyf (%) [$(0) (%), [0 (%), 1]
(3.3.5)

ou on a désormais le potentiel de paire :

1 .
= /dx B0 (%) B0 (x),

18. Suivant le modeéle de collapse précis considéré, on peut ou non s’abstenir de mettre cette régu-
larisation.
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avec la notation : )
2 Oa)\Y
D (x) = dy ———.
(o)( ) R y |X — y|
L’équation (3.3.5) résume la dynamique de notre classe de modeles de gravitation
semi-classique. En fixant I'; on peut obtenir la proposition pour différents modeles de

collapse et en particulier les classiques CSL et DP.

3.3.3.c  Propriétés élémentaires

Par construction, la proposition précédente ne souffre pas des problemes de l'ap-
proche semi-classique naive a la Schrédinger Newton. Une fois moyennée sur le bruit,
Iéquation (3.3.5) est linéaire ce qui sauve la théorie du théoréme d’impossibilité de
Gisin. L’utilisation d’un modele de collapse sous-jacent empéche aussi les chats de
Schrodinger gravitationnels. Plus généralement, la construction —dont le formalisme
est interprétable dans un langage purement orthodoxe— garantit la cohérence globale
de la théorie sans qu’il n’y ait besoin d’effectuer des vérifications spécifiques.

Le modele fait apparaitre un terme de couplage Vp de paire effectif qui est exac-
tement celui que 'on aurait mis a la main intuitivement. De maniére remarquable,
ce dernier ne contient pas d’autointeraction (ou plutot, 1'énergie d’autointeraction est
constante et par conséquent renormalisable) alors méme que notre construction utilise
un champ comme intermédiaire : les deux pics d’une fonction d’onde d’une particule
ne s’attirent pas! C’est un résultat fondamental car les propositions expérimentales
visant a mettre en évidence la quantification de la gravitation testent en pratique la
présence d’une autointeraction a la Schrodinger-Newton [141]. Néanmoins, notre classe
de modeles montre que I'absence d’une telle autointeraction est tout a fait compatible
avec une gravité semi-classique!

Le modeéle donne aussi lieu a une décohérence supplémentaire d’origine gravita-
tionnelle. Un aspect fascinant de cette nouvelle décohérence est que son intensité est
inversement proportionnelle & la force de la décohérence «intrinseque» en I’absence de
gravitation . Cela rend ainsi les faibles valeurs de I falsifiables alors qu’elles n’étaient
précédemment que philosophiquement exclues [78]. Le lecteur intéressé peut consul-
ter 'appendice G pour d’autres caractéristiques de ces modeles et les dérivations des
propriétés précédemment évoquées.

3.3.4 Discussion

On a proposé un modele de gravité semi-classique effacant les problémes concep-
tuels connus de ’approche usuelle due a Mgller et Rosenfeld. Le modeéle est entierement
explicite dans la mesure ou il est possible d’obtenir 1’équation maitresse stochastique
régissant la dynamique couplée de maniére exacte. On peut ainsi directement I’appli-
quer aux situations expérimentales proposées [130] dans lesquelles une théorie unifiée
de la gravité et de la mécanique quantique est nécessaire. Reste maintenant & montrer

19. Intuitivement, un collapse fort, correspondant & une mesure forte, fait fortement décohérer I’état
en position, en contrepartie, le bruit d’origine gravitationnelle est faible car la distribution de masse
est bien connue. Un collapse faible, & I'inverse, induit un fort bruit gravitationnel et c’est alors la
décohérence gravitationnelle qui domine.
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comment notre approche pourrait raisonnablement se dériver comme approximation
d’une théorie invariante de Lorentz. A ce stade, en particulier parce que I’on ne dispose
pas encore de modeles de collapse relativistes facilement maniables en espace courbe >
(voir notamment 1.3.3), la discussion devient inévitablement plus spéculative.

3.3.4.a Extension relativiste (avec les mains)

Pour la construction d’un modele relativiste, on imagine disposer d’un modele de
collapse formellement analogue & la mesure du tenseur énergie impulsion local régu-
larisé en chaque point Tg“’ (x). De maniére trés heuristique, on doit alors avoir une
équation d’évolution de la forme de (3.3.3) :

dp . 1 - A 1 -

S ilH, g xdyT (e, 3 T2 (), T (), 11+ ey T e,y HITE 0] ) (3)
vue comme équation de Tomonaga-Schwinger pour une certaine foliation de 1’espace-
temps et une certaine théorie quantique des champs raisonnablement régularisée. On
peut ensuite définir :

T (x) = tr[pTH (x)] + wh (x).

L’interprétation en terme de résultat de mesure garantit 'invariance par difféomor-
phisme de T""(x) alors méme que sa décomposition en moyenne + bruit laisserait
naivement penser que ce champ dépend de la foliation (voir par exemple [31] pour une
situation analogue). Le probleme est ensuite son absence de conservation a cause du
bruit ; conservation que 'on peut étre tenté mettre a la main en fixant une partie du
bruit comme une jauge ?'. Une fois qu’on en est arrivé la, on n’est de toute facon plus
vraiment a ca pres. En imaginant que tout tienne et qu’on soit capable de donner un
sens aux objets, on peut engendrer la courbure & partir du champ d’énergie impulsion :

Guv(x) = 8nG Ty (x).

La régularisation en espace engendrant une régularisation en temps a cause de 'inva-
riance relativiste, le bruit n’est plus blanc mais coloré. Le champ T}, (x) n’est ainsi
plus divergeant et 1’équation semble & peu prés bien définie >?. En croisant les doigts,
on a alors un couplage entre une relativité générale classique et de la matiere quantique
décrite par une théorie quantique des champs dans laquelle les incohérences usuelles
ne sont a priori pas présentes.

On donne parfois le résumé heuristique suivant pour la relativité générale : la ma-
tiere courbe I'espace-temps et la courbure de ’espace-temps influe sur la dynamique de
la matiere. Dans le modele proposé, on a un intermédiaire entre espace-temps et ma-
tiere. L’état quantique détermine la loi d’évolution d’'un champ stochastique d’énergie

20. On pourrait ajouter qu’on ne dispose pas non plus de théorie quantique des champs qui ne soit
pas purement axiomatique.

21. On peut imaginer, comme 'ont suggéré trés récemment Josset, Perez et Sudarsky, d’utiliser la
gravité unimodulaire dans laquelle la conservation du tenseur énergie impulsion est remplacée par une
condition sur la métrique. Au passage, les auteurs montrent que 1'utilisation d’un modele de collapse
fait émerger une constante cosmologique effective compatible avec les mesures actuelles [142]!

22. On peut au moins se satisfaire de n’avoir pas a priori de production instantanée de trous noirs...
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impulsion. Ce dernier courbe ’espace temps, courbure qui influe ensuite sur la dyna-
mique de I’état quantique. Dans le langage des théories a ontologie primitive [113] (voir
A), on a un espace-temps dynamique, une loi (I’état quantique) et une ontologie pri-
mitive (le champ stochastique). Schématiquement on a ainsi la représentation suivante
analogue a celle de la remarque 15 :

TH

/ ontologie primitive
W) Guv
état quantique métrique

ou l'ontologie primitive (le champ stochastique de «tenseur énergie impulsion») courbe
I’espace-temps qui modifie la dynamique de I’état quantique qui détermine a son tour
la statistique du champ stochastique de «tenseur énergie impulsion».

3.3.4.b Autres approches

Notre approche a la gravité semi-classique vue comme théorie potentiellement fon-
damentale peut étre rapidement contrastée avec des entreprises antérieures. L’idée de
construire une théorie de la gravité semi-classique stochastique n’est pas nouvelle (voir
[144, ]). L’objectif de cette approche originelle était en revanche bien plus modeste :
I’idée était simplement de raffiner ’approche de Mgller et Rosenfeld & la main et de ma-
niere perturbative en ajoutant les fluctuations quantiques du tenseur énergie impulsion
dans le terme source :

G = 81G {(Tw,(x)) + <AT5,/(:U)> X bruit classique} : (3.3.6)

L’espoir est qu’une telle théorie soit quantitativement plus proche d’une hypothétique
gravité quantique sous-jacente. La prescription (3.3.6) ressemble superficiellement & la
notre mais elle ne résout ici aucun des problémes fondamentaux de ’approche de Mgller
et Rosenfeld (transport d’information plus vite que la lumiere et chats de Schrodinger
gravitationnels). Le bruit est purement ad hoc et la transformation des fluctuations
quantiques en fluctuations classiques, qui rappelle I'approximation effectuée en cosmo-
logie inflationiste, élimine d’emblée les prétentions fondationelles de 'approche.

Une autre idée antérieure, est de combiner un modele de collapse comme GRW et
le couplage par la moyenne a la Mgller Rosenfeld [116]. Une telle approche résout le
probléme des chats de Schrodinger gravitationnels mais contient toujours les anomalies
dues a la non linéarité. On pourrait ajouter que I'approche est aussi moins satisfaisante
philosophiquement que la notre car elle n’utilise pas autant la structure propre des
modeles de collapse.

3.3.4.c Conclusion sur la gravité semi-classique

Nous avons présenté une théorie de la gravité semi-classique qui apparait suffisam-
ment cohérente a la limite Newtonienne et généralisable de maniere crédible pour étre
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prise au sérieux comme une potentielle théorie «fondamentale». A notre connaissance,
il n’existe pas aujourd’hui d’alternative et les autres voies d’unification actuellement
explorées intensivement contiennent toutes un secteur gravitationnel quantifié. Méme
si la probabilité que la théorie proposée décrive effectivement la réalité est sans aucun
doute assez mince, sa simple existence montre que la voie de la gravité semi-classique
n’est pas impossible & emprunter et mérite d’étre explorée.

Les modeles de collapse sont souvent considérés comme une solution assez ad hoc
au probléeme de la mesure et cette critique est tres certainement méritée. Le fait qu’il
semblent étre un outil indispensable pour la construction de théories semi-classiques
cohérentes leur donne en revanche une justification inespérée. Alternativement, si I’on
accepte que le priz des modeles de collapse a déja été payé pour la résolution du
probleme de la mesure, alors la théorie que nous avons proposé vient gratuitement,

sans nouveau parameétre ni hypotheése douteuse 2.

23. Apres cette exploration, on peut regretter qu’il ne soit pas possible de comparer les prédictions
simples de cette section avec celles de théories ou le secteur gravitationnel est aussi quantifié. En
effet, & force d’attaquer les problemes les plus difficile et profonds (perte d’information dans les trous
noirs, multivers ou tout phénomeéne se manifestant & I’échelle de Planck) a ’aide d’outils de plus
en plus raffinés et exotiques (supercordes en 11 dimensions, gravité quantique & boucle, supergravité,
triangulations dynamique causales, mousses de spin, correspondance AdS-CFT, conjecture ER=EPR),
la communauté de la gravité quantique semble avoir délaissé les situations simples, un jour testables,
et pour lesquelles on manque de propositions. Sous la plume d’un des physiciens les plus connus du
domaine, dans un cours a I'Institute for Advanced Study [117], on lit plutdt ce genre de discussion :

“Suppose that after successfully teleporting C, Alice and Bob conclude that there must be a
wormhole connecting their black holes. Bob sends a classical message to Alice telling her
that he will jump into his black hole if she will jump in to hers. With suitable preparation
they will meet and indeed discover that the black holes are connected by an Finstein-Rosen
bridge.”.
Il n’est évidemment pas interdit de faire des expériences de pensée et de s’intéresser a des questions
éventuellement tres spéculatives. Mais on peut se demander si on ne laisse pas dans le méme temps
des problémes comparativement plus simples et accessibles sans réponse.
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Chapitre 4

Extension du domaine de la théorie

Ce chapitre contient des travaux a un niveau d’avancement inférieur, résultats
non publiés qui constituent peut-étre des pistes a explorer a I'avenir. L’objectif est
d’étudier des extensions possibles de la théorie des mesures continues. On présente dans
la premieére section les diverses approches permettant d’étendre la théorie a ’estimation
a posteriori. On s’attaque ensuite a ’extension des résultats du chapitre 2 au discret,
c’est a dire le passage des mesures continues aux mesures répétées. On discute enfin
plus brievement une hypothétique extension a la théorie quantique des champs et on
risque une allusion a de nouvelles applications a la gravité.

4.1 Extension a I'estimation a posteriori

Dans la théorie de la mesure continue, on détermine 1’état du systéeme au temps
t en fonction des résultats de mesure antérieurs. On aimerait étendre le formalisme
pour intégrer I'information future et pouvoir attribuer a posteriori au systéme un état
différent reflétant cette information additionnelle. Un tel probleme a été abordé des
la fin des années 1980 par Aharonov, Albert et Vaidman pour des mesures discrétes
et a donné lieu a 'introduction du concept de weak value [118]. Des le départ, il fut
cependant clair que le comportement de cette nouvelle grandeur était étonnamment
paradoxal [119]. L’introduction des mesures continues et le paralléle avec les modeles
de Markov caché permet de reconsidérer cette question et d’explorer de nouveaux
équivalents quantiques de l’estimation a posteriori.

4.1.1 Cas classique

Avant de nous attaquer au cas quantique qui contient quelques subtilités, commen-
cons par rappeler les définitions classiques que ’on cherche a reproduire. On consideére
un modele treés général (pas forcément Markov caché) ou des observations Y; donnent
une certaine quantité d’information (on ne précise pas comment) sur une variable d’in-
térét R;, qui ne peut étre connue que par 'intermédiaire de ces mesures. On suppose
pour simplifier que les mesures Y; n’ont pas de rétroaction mécanique sur R;. On
note comme il est d'usage Fr = o({Yy}uez) l'information contenue dans les mesures
effectuées aux temps u € 7 ou Z est typiquement un intervalle.
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Le probléeme du filtrage ou de l'estimation forward (ou encore a priori) est de
calculer la probabilité de R; sachant les résultats de mesure antérieurs.

—

PR, =P [Rt | f[o,t[}

C’est typiquement la quantité intéressante si on veut faire de ’estimation en temps
réel ou du contrdle. Une trajectoire p; en est 'analogue quantique, c¢’est une quantité
qui ne dépend que des résultats de mesure passés.

Le probleme du lissage (smoothing) ou de I'estimation forward-backward (ou encore
a posteriori) est de calculer la probabilité de R; sachant tous les résultats de mesure.

P[Ri] = P [R:| Fig,soe] (4.1.1)

C’est la quantité intéressante si I’on veut I'estimation la plus précise possible sans
avoir besoin de la donner en temps réel. Cette quantité n’a pas d’équivalent quantique
immédiat méme si on va voir qu’il existe deux propositions radicalement différentes
suivant ’analogue quantique de R; choisi.

Il existe une troisieme quantité d’intérét dans ce contexte, c’est la trajectoire RY
la plus probable sachant tous les résultats de mesure. En effet, la trajectoire constituée
des Ry les plus probables & chaque temps ¢ (du point de vue de la probabilité lissée) n’a
aucune raison d’étre globalement la trajectoire la plus probable. On appelle en général
la trajectoire RV chemin de Viterbi (Viterbi path) du nom de I’algorithme qui permet
de la calculer pour un nombre discret de mesures.

RV = argglax P {R | ‘7:[0’+°°d :

Cette trajectoire ne possede pas non plus d’analogue quantique évident.

Jusqu’a maintenant, la théorie de la mesure continue s’est concentrée sur le filtrage
en l'absence d’équivalent quantique évident pour la probabilité lissée et le chemin de
Viterbi. Deux propositions de généralisation ont récemment émergé pour la probabilité
lissée. On va les décrire brievement avant de suggérer une troisieme voie et de proposer
deux nouvelles approches possibles a la définition du Viterbi path.

4.1.2 Propositions
4.1.2.a Past quantum state

La premiere idée pour généraliser au cas quantique la notion d’état a posteriori
s’inspire directement des weak-values. Elle a été introduite par Gammelmark, Julsgaard
et Mglmer (GJM) [150] en 2013 et a déja eté appliquée avec succes pour 'analyse des
résultats d’au moins trois groupes expérimentaux différents [151, , .

L’idée de GJM est de considérer une situation o, en plus d’étre soumis a des
mesures répétées, le systeme est couplé a une sonde additionnelle a l'instant ¢. On
imagine que cette sonde est mesurée mais que le résultat o est inconnu. Peut-on cal-
culer la probabilité P[a] associée & ce résultat sachant toutes les autres mesures aux
temps antérieurs et ultérieurs 7 Connaitre le résultat des mesures ultérieures permet-il
d’améliorer la prédiction ? Evidemment, la situation considérée n’est pas exactement
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FIGURE 4.1 — Représentation schématique de I’évolution considérée. En plus des me-
sures répétées, le systeme est intriqué avec une sonde a 1’étape n, sonde qui est mesurée
dans une base de pointeurs |k), le résultat étant inconnu.

une situation de mesures répétées puisqu’il faut ajouter le couplage & cette sonde
supplémentaire. Néanmoins, on pourra ultimement rendre ce couplage aussi petit que
possible. Commencons par décrire la situation pour des mesures répétées discreétes et
généralisons ensuite au continu.

On consideére un systeme de matrice densité p € J4; ® %, et une sonde d’espace de
Hilbert .74, ’ensemble étant initialement dans un état produit py ® |s)(s|. On imagine
que le systeme est soumis a des mesures généralisées répétées de la forme :

BmpB],
Pi =7 Pit II[m]
oil le résultat m est obtenu avec probabilité TI[m] = tr[B,,pB},]. On suppose qu’a

I'instant n, le systeme est intriqué avec la sonde, cette derniére étant ensuite mesu-
rée projectivement dans une certaine base {|k)} d’états pointeurs (le résultat k étant
inconnu). L’évolution correspondante s’écrit :

P @ [s)(s| = D ArpnAL @ [k) (k].
k

Le lecteur peut se référer a la figure 4.1 pour une représentation schématique de 1’évolu-
tion considérée. L’application des regles usuelles de la mécanique quantique permet de
calculer exactement la probabilité du résultat de mesure k sachant 'intégralité des ré-
sultats de mesure antérieurs mz, ...my, et ultérieurs m,,, ...my effectuées sur le systeme.

On a en effet :
tr [EnAkpnAH

N S, tr [EnAlpnAﬂ ’

ou ’état a posteriori Z,, est le couple d’opérateurs (p,, Ey,) avec p, la matrice densité
au temps n et E,, la matrice des effets :

o — Bin, By _y--Bm, po B}, ...Bl,  Bm,
n — Y
tr[Bm., B, 1By po Bhy .. Bl Bm.]

Bl . Bl Bl 1 Bmy...Bm, s Bm..

Mp41"" Mn42°
En: n—+ n—+ B

tr[Bl Bl s Bhiy 1 By ... B

9

Mp42 mn+1]
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ou E, correspond par conséquent a la matrice densité évoluée a l'envers a partir de
I’identité au temps IN. On posséde une sorte d’équivalent du lissage dans le sens qu’on
peut calculer la probabilité de quelque chose a posteriori d’une maniére qui a un sens
précis. Le défaut est double : on a dii changer la situation physique, I’évolution globale
est ainsi modifiée et on possede désormais un couple d’objets alors qu’on préférerait
en avoir un seul. En faisant tendre l'interaction vers 0 on peut néanmoins définir une
nouvelle matrice densité indépendante de la sonde. On s’intéresse pour cela au cas ou
|74 =2 et a = %1 et on pose :

A+ = EA
) (4.1.2)
A =1—AfA
2
et on définit :
(A) = lim ~ E[a]
w = 2 Bl

On a alors :

(A)w = tr[Ap{],

n

(P)

ol py, ’ est la matrice densité a posteriori® :

) _ _Pnn
" tr[pn En] ’

matrice qui n’est en général pas hermitienne. Cette matrice est I’analogue quantique
de la probabilité lissée dans ce contexte. La matrice densité a posteriori se définit
de maniere immédiate a la limite temps continu. Dans ce cas p; verifie une équation
maftresse stochastique standard et E; une équation maitresse stochastique ou le temps
est renversé. On peut démontrer (voir [150]) que pt) est effectivement plus lisse > que
p. En particulier, p(’) ne contient pas d’échardes 4 la limite de mesure forte (voir D).
Cette régularité se paie évidemment de la méme difficulté interprétative que pour les
weak values.

La caractérisation opérationnelle en terme de sonde couplée de maniere infinitési-
male peut aussi sembler un peu indirecte. On peut proposer la caractérisation contre-
factuelle intuitive suivante : si I'on avait interagi de maniére infinitésimale avec le
systeme en t, alors I'influence moyenne que ’on aurait ressentie est contenue dans la
matrice densité a posteriori. Cette derniere est en quelque sorte ce que 'on aurait vu
du systeme si I'on s’était donné la peine de le regarder.
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FIGURE 4.2 — Représentation schématique de la situation considérée par Guevara et
Wiseman. A gauche, la représentation en terme d’interactions répétées ou une fraction
des sondes est perdue et n’est pas mesurée et a droite en terme de détection homodyne
ou une partie du champ est détournée du détecteur.

4.1.2.b Quantum state smoothing

Une autre maniere d’utiliser 'information future est de s’en servir pour améliorer
a posteriori la pureté d'un état apres une suite de mesures d’efficacité n < 1. Proposé
en 2015 par Guevara et Wiseman [151] (GW), le Quantum Smoothed state (état lissé)
répond a cet objectif. On peut présenter brievement I'idée de GW en la reformulant di-
rectement pour des mesures continues. L’idée est de considérer une équation maitresse
stochastique standard de la forme :

dp = £ (p1) dt + DIN](py) dt + H[N](py) (dY; — tr[(N + ND)p]dt)

que 'on a écrit cette fois-ci explicitement en fonction du signal Y; des mesures plutot
que du brownien W; (deux processus qui sont, on le rappelle, reliés par dY; = tr[(N +
N1)pi]dt + dW;). Cette matrice densité p; est la matrice densité «vraie» mais elle
est en pratique inconnue. GW supposent en effet que seule une fraction du signal
est observable, le reste étant perdu?® typiquement & cause d’inefficiences au niveau du
détecteur (voir Fig. 4.2 pour deux représentations possibles de la situation considérée).
1)

En pratique cela revient & décomposer le signal Y; en une partie observable Y,/ et une

partie inobservée Yt(2) :
dy; = dY;(l) 4 d}/t(Q)a
ouona:

Ay = mtr[(N + N')pi] dt + /g dw
AV, = ptr[(N + Npy) dt + /g a2,

1. Notons que prescription dépend fortement du choix effectué en (4.1.2). Si I'on avait choisi de
développer symétriquement Ay et A_ en choisissant :

A =1/V2+ (¢/V2)A
A =1/V2—(5/V2)A,
alors on aurait plus naturellement posé p;P) = 2{t€ E;nEISJ]

2. Plus précisément, p(P ) peut s’écrire comme I'intégrale d’un processus d’It6 et est donc de classe
c3/2.

3. En terme de mesures répétées cela revient a ne mesurer qu'une fraction des sondes.
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avec n +n2 =1et WO et W® des processus de Wiener indépendants. En pratique,
comme seul Yt(l) est connu, a la fois W) et W sont inconnus car il nécessitent
de connaitre la matrice densité vraie pour étre reconstruits. Avec la connaissance de
Yt(l) on peut en revanche facilement construire 7 = E[p]| Yu(l), u < t], qui correspond
simplement a la matrice densité usuelle pour une mesure avec efficacité # 1 et on a :

A7 = Z(F)dt + DIN)(F o) dt + HIN)(F) (0 = tr](N + NT)F ]t
= Z(7)dt + DIN](F) )dt + /m HIN NI(7+) th,

ou W est un processus de Wiener vis & vis de la filtration engendrée par les résultats
de mesure observés (et donc pas vis a vis de I'information totale),

A =i (v = g2 (N + NP dr).

Jusque la, rien qui ne soit pas traditionnel. GM proposent alors de définir I'état lissé

? en conditionnant aussi sur les résultats de mesure futurs :

?t:E[MYu(U, u§tetu>t].

Dans ce cas il n’existe pas a priori de systeme d’équations simples vérifiées par ?
et GM se contentent de démontrer numériquement que ? est typiquement plus pur?
que la matrice densité usuelle «forward» ? En revanche, la procédure n’améliore
typiquement pas la régularité et 7) semble garder une variation quadratique finie
dans toutes les situations. La caractérisation opérationnelle de la procédure n’est pas
non plus immédiatement évidente. A quoi bon se rapprocher de p; la matrice densité
«vraie» qui n’est connue de personne’? On peut imaginer que le signal Yt(2)
en fait pas perdu mais mesuré par un autre observateur, ’état lissé permet alors au
premier observateur de mieux estimer la statistique des résultats du second, mais on
n’a pour le moment guere mieux.

n’est

4.1.2.c Discussion

Les deux procédures précédentes abordent le probleme du lissage de maniére tres
différente et généralisent la situation classique avec des philosophies orthogonales. GJM
n’ont pas de variable cachée mais calquent la construction classique en voyant la ma-
trice densité p; comme une probabilité généralisée qui peut donc étre raffinée a pos-
teriori. Pour GW, p; est au contraire la «variable cachée» a estimer. L’approche de
GJM essaie en quelque sorte de réduire 'incertitude quantique alors que celle de GW
la voit comme indépassable et utilise les résultats futurs pour réduire I'incertitude clas-
sique qui la décore. Le cofit de la radicalité de GJM est la construction d’une matrice
non hermitienne dont les coefficients diagonaux n’ont pas d’interprétation probabiliste
claire. La relative prudence de GW donne lieu & une procédure qui ne change pas

4. Le résultat reste a priori valable pour d’autres métriques d’information comme l’entropie de Von
Neumann.

5. Howard Wiseman 'appelle par conséquent «matrice densité de Dieu» dans ses présentations,
signe que 'utilité pratique de la procédure n’est pas encore entierement claire.
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la régularité de I’état (malgré son nom, la procédure n’offre pas de lissage) et n’est
utilisable que dans les cas ou l'efficacité de la mesure est différente de 1.

GJM et GW raisonnent par analogie avec les modeles de Markov caché, mais puis-
qu’on a construit précédemment (voir 1.2.6 et B) un paralléle exact entre ces modeles
et la mesure continue, pourquoi ne pas 'utiliser 7

4.1.3 Nouvelles idées

4.1.3.a Lissage et Viterbi Path avec les variables cachées

On peut utiliser le parallele avec les modeles de Markov caché pour proposer une
nouvelle définition du lissage et un premier analogue quantique du chemin de Viterbi.
On considere toujours une situation de mesure continue modélisée par une équation
maitresse stochastique de la forme :

dpr = £ (pt) dt + D[N](py) dt + H[N](pe) AW/,

ol on précise que le processus W7 est un processus de Wiener du point de vue de
la filtration naturelle associée aux résultats de mesure. On rappelle (voir 1.2.6) que
cette équation peut se réécrire en faisant explicitement intervenir une variable cachée
R; telle que les coefficients diagonaux de p; dans la base propre de N s’interprétent
comme les probabilités de Ry,

dps = Z(p) dt + yDIN|(p)dt + /7 H[N](p:) (thg +/tr {<N + NT>(Rt N pt)} dt)
P [Riyar = [0)(i] | Re = 15)(j] | = M (pt)iey dt.

avec

i +
[Ek;ﬁl(‘iﬂ((k,l)) - "%(kj,l]))) P(k’l)} + pij n i)
| 2] pt7) b

smooth

M (P)i<—j =

Avec une telle réécriture en téte, on peut simplement définir p en utilisant la

définition classique (4.1.1) :
B[ ]

Cette nouvelle matrice densité lissée dépend de la base de mesure et supprime 'in-
formation des coefficients diagonaux. En contrepartie, elle possede une interprétation
probabiliste immédiate, apporte une information supplémentaire quelle que soit 1’effi-
cacité de la mesure, et est plus réguliére que p;. En effet, dans le cas ou £ préserve la
diagonalité de p dans la base propre de N, i.e. dans le cas classique, la matrice densité
lissée coincide avec la proposition de GJM pSteothed — ,n qui est réguliére. Dans le cas
général, le calcul explicite est rendu difficile par la dépendance des taux de saut en la
matrice densité p; forward.

Cette dépendance implique d’ailleurs un sens privilégié de I’écoulement du temps
qui rend la procédure proposée malgré tout asymétrique. Les taux de saut dépendent en
effet d’'une quantité calculable dans un sens mais pas dans ’autre, p; possede un impact
dynamique sur la variable cachée mais pas FE;. Par ailleurs, en dépit de ses avantages
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précédemment cités, pSm°tted posseéde le défaut de ne posséder aucune caractérisation

opérationnelle, la matrice n’est liée a rien de mesurable. On peut seulement en proposer
la caractérisation contrefactuelle un peu vide suivante : si I’on avait fait une mesure
projective en ¢, alors on aurait mesuré R; et pf™°*® en fournirait la meilleure estimation.
Mais il est bien connu que les mesures non effectuées n’ont pas de sens et la procédure
permet ainsi a priori au mieux de lisser numériquement des courbes expérimentales.
On peut de la méme maniére définir un chemin de Viterbi p¥ comme en classique

avec la définition :

PV = argg’lax P [R | ]:[OHFOO[} ’

qui correspond en quelque sorte a la trajectoire de sauts entre pointeurs sous jacente
la plus probable sachant I’ensemble des résultats de mesure. Dans le discret, elle est a
priori calculable numériquement avec 1’algorithme de Viterbi classique [155].

Les deux nouvelles définitions proposées dépendent évidemment de la base propre
de la mesure et supposent d’une certaine maniere que cette derniere est stable. Pour
autant elles constituent probablement ’extension la plus directe et la plus simple des
définitions classiques et méritent d’étre étudiées et comparées quantitativement avec

les procédures de GJM et GW.

4.1.3.b  Viterbi state avec 1’intégrale de chemin

L’approche de GW peut étre utilisée pour proposer une autre définition de I’état de
Viterbi, définition qui permet de faire des calculs un peu plus explicites. On consideére
la méme situation que celle de GW ou une partie de l'information est perdue. Au

lieu de considérer comme GW la moyenne conditionnée a tous les résultats ?t =

E [pt| ~7:[0,+oo[}a on peut regarder la trajectoire la plus probable :

pVs = arg;nax P [p | ‘F[OHFOOJ ,

ou l'exposant Vs est 'abréviation de Viterbi state. Cette quantité représente la trajec-
toire la plus probable de la matrice densité vraie sachant tous les résultats de mesure.
Etant donné les résultats expérimentaux, c’est la meilleure reconstruction que l'on
puisse espérer. L’avantage de cette quantité par rapport a 1’état lissé de GW et le
chemin de Viterbi défini précédemment est que ’on peut en donner une expression un
peu plus explicite en I'exprimant comme le point col d'une intégrale de chemin °.

On peut représenter tout processus d’It6 sous la forme d’une intégrale de chemin
a l'aide d’une technique inventée par Martin Siggia et Rose [150] et écrit sous forme
intégrale moderne par de Dominicis [157] et Janssen [158] (MSRADJ). Pour I’équation
qui nous intéresse ici, c’est a dire :

dp = Z(py) dt + DIN)(pr) dt + HIN(pr) (0 +d¥,® — te[(N + NT)pi] dt)

6. Il faut voir les calculs qui suivent comme une suggestion de ce a quoi le résultat pourrait res-
sembler plutot que comme des développements rigoureux. A terme, il faudrait idéalement dériver les
équations finales (4.1.3) avec une méthode plus siire comme le théoréme de Girsanov.
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la prescription de MSRADJ consiste & introduire I’action S suivante” :

1 2 f

Slp, p, WO, W] :/t dt tr{ﬁt [0epr — Z(pt) — DIN](pt)
0

2 2

B atWt(l) B atWt(Q)

2 2 7

— HIN) (o) (VoW + oW )] |

ou p est un multiplicateur sans interprétation physique. Cette action permet de calculer
la valeur moyenne de n’importe quel opérateur de la maniére suivante :

EO()) x [ 210202 ) 2(W ) Ol ¢*

et encode ainsi typiquement le processus stochastique. On peut réécrire cette expression
en fixant YU

Slp, p, W] = /ttl dt tr{ﬁt [0tpe — Z(pt) — DIN](ps)

2
@Y= mU(p)?*  aw?
2’)71 2

—HIN(p) (@ = mU (p) + oW )]} —

ol on a utilisé la notation U(p) = tr[(N + NT)p]. On peut désormais calculer le chemin
le plus probable® ( Viterbi state) en différentiant I’action par rapport & p, au multipli-
cateur p et au bruit, i.e. en fixant :

oS _,. 88 _,. _9S

<~ Y < Y I 07
0t o0pt 58tWt(2)

ce qui fournit :

dpr =%(py) dt + DIN(pr) dt + H[N](p) (A, — U (pr)dt + /ipd W)
~dpr—ar =Z*(pr) dt + D*[N](pe) dt — (N + NDY(@Y,") — iU (py)dt)
+ [NTp+ N — tr((N + N pr) g — tr(prpr) (N + NT)] :
% (@YY — U (p)dt + /ipdW,?)
aw,?) = /i tr [HHIN] (o) dt

ou on omet 'exposant «Vs» pour ne pas surcharger ’écriture. L’expression précédente

7. On omet ici le Jacobien qui apparait dans la normalisation.

8. On choisit en fait le minimum de l'action comme définition du chemin le plus probable. Il est
peu vraisemblable que cette définition fournisse le méme résultat que la limite d’une discrétisation ou
méme que toute autre définition mathématiquement raisonnable dans le continu. En ’absence de bruit
faible, ’action MSR ne donne pas plus.
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donne finalement,

dpr =2 (pr) dt +D[N](pe)dt + HIN)(po)(AY, V= iU (pr)dt + motr [ H[N] (pr)] it
~dpr—ae =Z*(pr) dt + D*[N)(py) dt — (N + NN)(@Y,) — iU (py)dt)
+ [NTp + 5N = te((N + NN)py) g — tr(pepe) (N + N1

% (@, — U (p)dt + o tr [5H[N] (00)] ).
(4.1.3)

Un tel systéeme d’équations différentielles stochastiques généralise la proposition de
Chantasri et Jordan [159] au cas ou toutes les mesures ne sont pas perdues. Il n’est pas
tres facile de résoudre un tel systéme, méme numériquement, car on a des conditions
aux limites mixtes (initiale sur p et finale sur p). On peut néanmoins calculer d’assez
bonnes approximations des solutions en résolvant pour un certain nombre de conditions
initiales puis en essayant de se rapprocher des bonnes conditions finales par dichotomie.

La méthode proposée permet de repurifier une trajectoire quantique et pourrait de
ce fait étre utile pour nettoyer des résultats expérimentaux a posteriori (ne serait-ce que
pour les courbes soient plus «jolies»). Il y a évidemment encore un travail important
a effectuer pour s’assurer qu’on est effectivement capable d’approximer fidélement les
solutions de (4.1.3), étudier leurs propriétés et éventuellement leur trouver d’autres
intéréts pratiques.

4.2 Extension des résultats au discret

Les résultats que ’on a obtenus pour la limite de mesure forte sont plus robustes
qu’il n’y parait. La situation que l'on a étudiée en 2.1 et 2.2 peut en effet sembler
exotique. On a effectué une premiere limite pour passer des mesures faibles itérées
aux mesures continues, puis on a pris la limite de mesure forte a partir de cette pre-
miere limite. En réalité, les simulations numériques montrent que la premiere limite,
bien qu’indéniablement pratique puisqu’elle permet de faire du calcul différentiel, n’est
manifestement pas nécessaire. Plus précisément, si 'on considere des mesures faibles
(mais pas infiniment faibles) itérées et que l'on fait simplement tendre la fréquence de
ces derniéres vers 400, le comportement limite que ’on obtient est (au moins qualita-
tivement) similaire & ce que ’on a observé au chapitre 2 (voir Fig. 4.3). Cette nouvelle
situation est pourtant bien plus générale! Si nos résultats s’y exportent vraiment, alors
il est indispensable de le prouver.

Dans ce qui suit on va préciser la situation générale simple que 1'on a a l’esprit. On
va montrer qu’il est possible d’y démontrer un nouveau théoreme sur les sauts. Dans
ce nouveau contexte, un analogue de la proposition sur la distribution des échardes
est en revanche manifestement plus difficile a prouver mais on peut se risquer a une
conjecture. Plus généralement, le fait que ces résultats semblent s’étendre montre qu’il
est possible de définir une nouvelle limite continue pour les trajectoires quantiques.

4.2.1 Modéle considéré

On considére qu'un systeme possédant une dynamique propre est soumis a une me-
sure faible sans démolition tous les At. La mesure faible est symbolisée par 'application
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FIGURE 4.3 — Trajectoire quantique discréte ¢, = g(nAt) générée a partir de 1’équation
(4.2.6) pour A = 1, geg = 0.5, At = 1073 et ¢ = 0.5 c’est & dire une limite de
mesure forte obtenue & partir de mesures faibles discretes (et pas infiniment faibles). La
trajectoire est qualitativement similaire a ce que 1’on observe en partant de trajectoires
quantiques continues.

stochastique M :

QupY,

1oy 2 — t
i avec probabilité II[a] = tr[Q.pQ]].

M(p) =

Les matrices €2, sont codiagonalisables, ce qui est équivalent a la condition de non-
démolition, et on a 3, Qf Q, par conservation de la probabilité. On note |k) les poin-
teurs de la base dans laquelle les Q, sont diagonaux. On note M ’application com-
plétement positive correspondant & la moyenne de M : M = Do QapQL. On suppose
que I’évolution du systéeme entre chaque mesure est donnée par une application com-
plétement positive ¢a; possédant un générateur .Z, i.e. pap = e,

La dynamique consiste en 'itération de ’application stochastique x = Mo @gay, i.e.
on s’intéresse a la trajectoire quantique discrete p, = x"po. Faire tendre la fréquence
des mesures vers l'infini correspond a prendre la limite At — 0 avec t = nAt¢. Comme
pour les sauts obtenus dans le cas continu, il faut rescaler la dynamique propre pour
éviter que les transitions dissipatives ne soient les seules a survivre. Il faudrait évi-
demment faire le méme type d’analyse sérieuse qu’en C pour déterminer le rescaling le
plus général. Pour une premieére étude on peut simplement essayer de prendre la méme
redéfinition qu’en 2.1 :

1 1
L =A+—(B+C)+—D
\/At( ) At

ou on rappelle que A envoie les probabilités sur les probabilités, B les phases sur les
probabilités, C' les probabilités sur les phases, D les phases sur les phases; et D est
diagonal : D} = —0:.6/dy,;. En pratique le rescaling en 1/At de D est un peu artificiel.
Dans toutes les situations simples, typiquement évolution Hamiltonienne + couplage a
un environnement thermique, D = 0 et les calculs suivant sont un peu plus simples (et
le lecteur peut raisonnablement fixer D = 0 quand bon lui semble sans perte excessive
de généralité).
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4.2.2 Sauts quantiques

Le fait que la limite est bien une limite de saut est assez clair. En 'absence d’évolu-
tion propre, 'application stochastique M fait naturellement tendre le systéme vers un
des états pointeurs (voir par exemple [160]). Quand At — 0, M domine la dynamique
et le systéme est presque tout le temps dans un pointeur de la mesure. Reste a savoir
quel sont les taux de transition entre les différents pointeurs. Pour cela on peut utili-
ser le méme type d’approche perturbative sur 1’équation maitresse (moyennée) qu’en
2.1.2.b. L’idée est de faire apparaitre les taux de saut sur I’équation aux valeurs propres
de I’évolution élémentaire moyenne :

A=xy—1=Mo¢pa — 1.

Par la suite, on note At = dt pour mettre ’accent sur le fait qu’on attend une limite
continue bien définie de processus de saut. La premiere chose a faire est de développer
bqr jusqu’au premier ordre en dt. A cause du terme D # 0 cette application n’est pas
infinitésimale a la limite et le développement est du coup un tout petit peu non trivial.
On a en effet :

par = M
BC 4.2.1
= P VA B D)+ (D) C) +at (4+ 5 4 p,0)) + 0@y Y
avec
D —+00 Dn—l D j 66,] 1 _ e—dkl d 0 1
= o S5t - - t .
f(D) ngl ol — f(D)g k9] i pour di; #0 e sinon

+oon—2 DkCBDn—k—Q

g(D,CB)=)Y_>"

|
n=2 k=0 n:

Encore une fois, notons que le lecteur peut fixer D = 0 sans perte excessive de géné-
ralité. De plus, la fonction g n’est utile que pour écrire 1’équation (4.2.1) et n’apparait
pas par la suite. L’objectif est désormais d’écrire ’équation aux valeurs propres pour
A

Az = Ez. (4.2.2)

On peut ensuite développer perturbativement valeurs propres et vecteurs propres :

xr =x9+ \/&{L‘fl +dt Tr_9 + O(dt3/2)

42.3
E=Ey+ VAt E_| +dt E_y + O(dt*/?) (4.23)

On s’intéressera par la suite aux valeurs propres au voisinage de Eg = 0 car, comme
en 2.1.2.b tous les états correspondant aux valeurs propres non nulles sont écrasés
a la limite. Reste désormais a calculer, 7.e. a insérer le développement (4.2.3) dans
I’équation aux valeurs propres (4.2.2) et & écrire les équations obtenues aux ordres v/dt
et dt :

Vdt : (MeP —1)z_y + Mf(D)Cxo = E_110
- - 1
dt : (MGD - ]l).’l,‘fg + M(Bf(D) + f(D)C)l’,l + Axg + §BC$0:E71£L'71 + E_sxg
(4.2.4)
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car MA = Aet MB = B.On suit toujours la méme idée qu’en 2.1.2.b et on décompose
I’espace Vectorieli sur lequel agit A de la maniere suivante : S ~ J&, ® J¢ = Sy & 51,
avec Sy = Ker(Me” — 1). On décompose ensuite z_; sur cette somme directe z_1 =

(1)

:E(_O% +221. On a alors :

(MeP — 1)z + Mf(D)Cx =0
E_1:B0 =0

L’opérateur (Me? — 1) est inversible sur S; et on peut donc écrire
:Egl) = —(MeP - ]l)fsllj\;lf(D) Cxo.

La deuxiéme ligne de ’équation (4.2.4) donne quant a elle :

(MeP —1)z_y + ./\;lf(D)C'x(_O% =0

1
Bf(D).T(_? + Axg + chxO = FE_sxg

(1)

En insérant I'expression de ' a la deuxieme ligne on obtient :

1 . _
A+§Bc+BﬂDﬂ1—A@%&pr@ncmozEQm

M
ol on reconnait comme précédemment la matrice M telle que Axg = dtMzg, i.e. la

matrice contenant les taux de transition entre pointeurs. On peut étre explicite en
introduisant une expression en composantes pour M :

Q=D vilk) (Kl — My = 6.8] Y v,

On obtient ainsi :

Mi<_j = A; + ERGZBIZ;ICJM (1 +2
k>1

1— e—dkl 2 Za V(g{k)yg)*
dp 1 —e—ak Za I/&k) Vg)*

Ce qui se simplifie pour D = 0 (le cas qui servira probablement dans la plupart des
situations) en :

i i vkl Za’/c(xk)”g)*
MH:&+m;&ﬁjrml = 0,0 )
> - ZuaVa Pa

Aux réserves sur la généralité du scaling pres, on voit que 'on peut étendre la propo-
sition sur les sauts & une situation de mesures répétées sans limite continue.
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4.2.3 Echardes

Les échardes semblent pouvoir aussi bien se passer de la limite continue pour appa-
raitre dans une situation de mesure forte. Ce résultat est assez contre intuitif et semble
méme impossible a premiere vue. En effet, dans une situation ou I'on itére des mesures
faibles discretes, la matrice densité du systeme possede une évolution discontinue en-
trecoupée de sauts (pas entre pointeurs) de taille finie. Il est difficile d’imaginer qu'une
telle évolution puisse donner lieu & une distribution continue et invariante d’échelle
pour les maxima locaux (échardes). Et pourtant, au moins visuellement, il est difficile
de distinguer une limite de mesure forte venant d’une mesure continue ou de mesures
faibles itérées. Essayons au moins de donner précisément une conjecture minimale.

Méme a la limite continue, nous n’avons en réalité exploré les échardes que dans
deux situations précises avec || = 2. La plus simple des deux consistait en la me-
sure continue de I’énergie pour un qubit couplé a un bain thermique. Dans ce cas la
population ¢; de I'état fondamental vérifiait I’équation différentielle stochastique :

dqt = /\(qeq — qt) dt + \F’}’Qt(l — qt) th (425)
Comme on I'a vu en 1.2.6, la partie mesure /7 ¢;(1 — ¢;) dW; peut étre vue comme la

limite continue de 1’évolution discrete :

(1+¢d)q
(I1+ed)g+ (1 —ed)(1—q)

q— avec probabilité P[d =1] = ¢ (4.2.6)
ou d = *1 est le résultat de mesure, quand € — 0 et que l'itération élémentaire discrete
est répétée rapidement. Le cas «discret» le plus simple que 'on puisse imaginer est
donc I’évolution :

0rqt = M Geq — qt)

— t les At,
T Mg+ (e l—q)

qui correspond a un couplage a un bain doublé d’une mesure faible de I’énergie tous les
At. La conjecture que 1’on peut faire est que I’évolution (4.2.7) quand At — 0 a e # 1
fizé donne lieu ezactement a la méme distribution d’échardes que ’équation (4.2.5) a
la limite v — 4o00. Cette conjecture semble numériquement crédible mais la preuve
apparait pour le moment hors de portée des outils introduits dans cette these.

4.2.4 Discussion

En imaginant que ’on réussisse a prouver une version un peu plus générale de la
conjecture sur les échardes en plus de la proposition sur les sauts qui est déja plus
solidement établie, on est une nouvelle fois surpris par le caractére extrémement parti-
culier des mesures projectives. En effet, les mesures purement projectives du postulat
de la mesure apparaissent comme qualitativement isolées et extrémement particulieres
au milieu de I’ensemble des mesures possibles. Ajouter une probabilité d’erreur, fut
elle infime, transforme une mesure projective en une mesure faible pour laquelle la
dynamique est bien plus riche (avec notamment la présence d’échardes). Les mesures
continues, qui peuvent apparaitre a premiere vue aussi comme un cas assez particulier,
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semblent en revanche capter plus finement I’étendue des comportement possibles a la
limite de mesure forte et constituent de ce fait un meilleur guide que les mesures de
Von Neumann pour ’exploration de cette limite.

4.3 Et pour la route...

Les sections précédentes de ce chapitre présentaient des extensions possibles du
formalisme et des résultats présentés dans cette these. Bien que spéculatives, ces pro-
positions étaient étayées par des calculs préliminaires et des arguments d’une solidité
raisonnable. Alors que 'on approche la conclusion de cette thése, on peut se risquer a
quelques propositions pour des recherches futures ; esquisse d’un programme pour une
extension de la théorie a deux domaines, la théorie quantique des champs et la gravité.

4.3.1 Etendre la mesure continue aux théories des champs

Faire passer la théorie de la mesure continue de la mécanique quantique en espace
de Hilbert discret a la théorie quantique des champs est une tache naturelle et a priori
inévitable. Les intéréts d’une telle généralisation seraient nombreux. Du point de vue
de la physique fondamentale, une telle théorie pourrait permettre d’introduire facile-
ment les détecteurs dans la description sans avoir a recourir a des modeles purement
quantiques. Une telle théorie donnerait aussi acces a la possibilité de faire du couplage
semi-classique, notamment pour la gravité, a partir de théories plus réalistes que la mé-
canique quantique non-relavitiste. Maltriser la mesure continue dans des théories avec
un continuum de degrés de liberté permettrait d’étendre son domaine d’application —
aujourd’hui essentiellement confiné a 'optique quantique— a la matiere condensée. On
pourrait notamment s’intéresser au transport électronique et a sa statistique sans avoir
a recourir au formalisme habituel des mesures projectives & 'instant initial et final.
Une telle théorie permettrait aussi de mieux comprendre les modeles possédant des
propriétés topologiques non triviales, que ce soit pour étudier leur stabilité vis a vis de
la mesure ou pour savoir comment extraire I'information quantique qui y est éventuel-
lement encodée. D’un point de vue purement mathématique (et encore plus spéculatif),
la mesure continue permet de produire des théories statistiques des champs (le champ
étant alors le signal) a partir de théories quantiques des champs et on pourrait imaginer
en produire ainsi des non triviales.

La difficulté principale, déja évoquée, est que la théorie de la mesure fait appa-
raitre des termes quadratiques en les opérateurs mesurés D[O(z)](p) ox O*(z)p ce qui
donne des quantités divergentes pour des opérateurs locaux. Le probleme est que cette
divergence n’est typiquement pas renormalisable et a des conséquences physiques ob-
servables (comme la décohérence infinie). Il faut donc régulariser la théorie. On peut
soit régulariser les opérateurs @(x) — @a(a:) mesurés eux mémes, soit introduire une
régularisation via la corrélation entre les bruits, avec un noyau I'(z,y) # d(z — y).
Dans le premier cas, on détruit, faute de mieux, la localité de la théorie. C’est la voie
la plus utilisée et celle que l'on a suivie en 3.3. Dans le second cas, on peut conserver
des opérateurs locaux et la non localité ne se manifeste que dans le bruit, donc dans
laléa. La difficulté est alors de trouver des I'(z, y) interprétables comme des fonctions
de corrélation (donc, notamment, dont la transformée de Fourier est positive) et qui
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ont des bonnes propriétés d’invariance (conforme par exemple, pour ne pas introduire
de nouvelle échelle dans le probléme). Alternativement on peut essayer de redéfinir
complétement la théorie quantique des champs pour y adapter la mesure continue
des le départ, approche suivie en quelque sorte par Pearle [32] dans le contexte des
fondements.

La prochaine étape raisonnable est probablement d’étudier une classe de modeéles
simples, comme la mesure continue d’opérateurs locaux pour des fermions libres 1d.
Plutot que de chercher la situation la plus générique, on doit pouvoir observer sur
quelques modeles jouets quelles sont les pistes prometteuses pour définir correctement
une hypothétique théorie générale.

4.3.2 Gravitation

Construire un modele complet de gravité semi-classique relativiste semble inat-
teignable a court terme, ne serait-ce que parce que les différentes pieces du puzzle
(théorie quantique des champs en espace courbe, modeles de collapse) ne sont que
partiellement comprises dans ce domaine. Méme si un tel modele était disponible, il
serait probablement plus utile d’étudier quelques situations simples, éventuellement a
I’aide de modeles jouet, dans lesquelles I'approche standard fonctionne mal ou fait des
prédictions ambigués.

On peut penser a quelques exemples. L’idée est d’oublier provisoirement toutes
les contraintes d’une théorie unifiée. Le formalisme que I'on a développé a la section
3.3 fonctionne a la limite newtonienne. Une application immédiate serait a un modele
jouet de cosmologie inflationniste. Dans ce contexte, les perturbations autour de la
métrique plate donnent en effet lieu a une description newtonienne effective. Au facteur
d’échelle prét, on doit donc pouvoir utiliser directement notre formalisme”. Notre
modele grossier brisera évidemment toutes les invariances et introduira une distance
caractéristique a cause de la régularisation des opérateurs locaux mais on peut espérer
pouvoir comparer malgré tout de maniere profitable les résultats obtenus avec celles
d’autres modeles.

Plus généralement, I’avantage de notre approche est qu’elle permet de sortir de la
situation usuelle ou la matiere quantique évolue dans un background fixe pour avoir un
espace-temps dynamique. Les modeles de collapse en background fixe ont déja permis
a Okon et al. d’attaquer des problémes aussi exotiques que le paradoxe de l'informa-
tion dans les trous noirs [161]. Il ne fait aucun doute qu’en ajoutant la possibilité de
prendre en compte au moins perturbativement une rétroaction sur l’espace-temps a
I’aide de notre mécanisme on puisse trouver de nouvelles situations intéressantes. On
pourrait, en révant, construire un modele (sans invariance relativiste) adapté a un sys-
téme de coordonnées particulier (comme une métrique a symétrie sphérique dans les
coordonnées de Schwarzschild) pour étudier le probléme de la singularité '°.

En redescendant sur Terre, la priorité est de faire des prédictions précises a la
limite newtonienne pour des situations expérimentales crédibles. On peut notamment
penser aux expériences du projet MAQRO (Macroscopic Quantum Resonators)[162]

9. Idée suggérée par Daniel Sudarsky.
10. Il ne semble en effet pas impossible que les fluctuations de la métrique induite par le collapse ne
régularisent la singularité.
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pour lesquelles il y a peu de prédictions quantitatives hors des calculs effectués avec
I’équation de Schrédinger-Newton.



110 CHAPITRE 4. EXTENSION DU DOMAINE DE LA THEORIE



Conclusion

Au terme de cette longue exploration des mesures continues, on peut résumer brie-
vement les quelques résultats originaux que 'on a obtenus. Sur le front «techniquey,
on s’est principalement intéressé a la limite «forte» des mesures continues. On a ob-
tenu un théoréme permettant de comprendre ’émergence des sauts quantiques et de
calculer leur statistique dans le cas général. Dans un cas simple, on a mis en évidence
un phénomene plus original, les échardes quantiques, fluctuations inattendues dont on
a proposé une caractérisation. Guidé par la découverte de ces deux phénomeénes, on
a introduit une redéfinition du temps dans les trajectoires quantiques qui offre une
description unifiée et simplifiée de la limite de mesure forte. On a consacré une étude
plus breve a l’extraction optimale d’information. Dans ce domaine, la contribution
principale de cette these consiste en I'introduction d’un algorithme exponentiellement
plus frugal en ressources que les méthodes précédemment avancées.

Du coté des «applications», on a exploré une forme de controle a priori extréme-
ment faible par I'intensité de la mesure. On a montré qu’elle permettait d’engendrer
des dynamiques hors équilibre non triviales et de contréler essentiellement n’importe
quelle distribution d’équilibre semi-classique. On s’est ensuite intéressé aux marches
quantiques ouvertes o1 on a compris la transition entre un comportement balistique et
un comportement diffusif a partir d’une reformulation en terme de mesure continue. On
a exploité la puissance du formalisme des mesures continues et en particulier sa capa-
cité a modéliser des dynamiques semi-classiques cohérentes pour explorer I’hypothese
d’une gravité fondamentalement semi-classique. A la limite newtonienne on a proposé
un modele simple, explicite, et exempt des difficultés de I’approche traditionnelle.

On a enfin suggéré quelques «ouverturesy», idées pas tout a fait abouties pour
étendre le domaine d’application de la théorie des mesures continues. On s’est intéressé
a l'estimation a posteriori ou on a proposé deux possibles définitions du concept de
«chemin le plus probable» pour les trajectoires quantiques. On a aussi montré que nos
résultats techniques sur la mesure forte étaient vraisemblablement exportables au cas
de mesures répétées, sans nécessité de prendre une limite continue au départ. Dans
le cas des sauts, on a donné une preuve de «physicien» et on s’est contenté d’une
conjecture dans le cas des échardes.

e

L’objectif de cette these était aussi de clarifier un certain nombre de liens souvent
laissés implicites entre différents domaines et approches. On a explicité la connexion
entre les modeles de collapse utilisés en fondements et la théorie de la mesure continue
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en écrivant les deux dans le méme langage. On a aussi clarifié le lien entre le filtrage en
théorie des probabilités et la mesure quantique en construisant un modele de Markov
caché explicite pour le cas quantique. De maniére plus modeste, la connexion entre
marches aléatoires ouvertes et mesure quantique avec feedback a permis d’étendre le
champ d’application du théoréme sur les sauts. On a enfin fait le lien entre couplage
semi-classique et contrdle quantique markovien, parallele qui a motivé notre courte
exploration du probléme de la gravité semi-classique.

On peut, puisque c’est I'usage, se risquer a donner quelques perspectives. La théo-
rie des mesures continues a été inventée presque trop tot, alors que ses possibilités
d’applications pratiques étaient encore modestes. Comme on a tenté de le montrer
dans ce mémoire, elles sont pourtant aujourd’hui au centre d’un nombre important
de développements prometteurs, qu’ils soient théoriques ou expérimentaux, fondamen-
taux ou appliqués. L’utilité du formalisme est inévitablement reconnue dans le champ
expérimental et il ne fait aucun doute que son usage va s’intensifier & mesure que le
domaine des systemes quantiques finement controlables va s’étendre. On peut penser
a la matiére condensée et plus généralement a tous les systéemes possédant un grand
nombre de particules ou excitations. Enfin, c’est peut-étre du c6té de la théorie et de
la physique fondamentale —ou le postulat de la mesure est le plus génant et ou les
outils liés & la mesure continue sont pratiquement inconnus— que ’on peut espérer de
nouveaux développements inattendus.

***

Il est un peu périlleux de tirer des conclusions normatives d’une unique et courte
expérience personnelle. Faire le lien entre différents points de vues et représentations
semble néanmoins étre une manieére productive ou en tout cas intéressante de faire de la
recherche. Ne pas s’interdire de poser des questions fondamentales, les garder a I’esprit
sans se laisser aveugler par elles, et s’en servir de motivation pour faire avancer des
problemes pratiques est aussi un moyen de rendre la recherche stimulante. Durant cette
these, le role des «questions fondamentales» a sans conteste été joué par le probléme
de la mesure et plus généralement par les fondements de la mécanique quantique. On
espére avoir réussi a montrer que ces questionnements quasi métaphysiques ne sont
pas totalement stériles puisqu’ils sont sources de motivation autant que d’idées pour
aborder des problémes méme techniques. On peut finalement laisser la parole a Bell :

“One wants to be able to take a realistic view about the world, to talk about
the world as if it is really there, even when it is not being observed. I
certainly believe in a world that was here before me, and will be here after
me, and I believe you are part of it! And I believe that most physicists take
this point of view when they are being pushed into a corner by philosophers.”

John S. Bell, interview & la BBC [9]

La physique théorique est d’autant plus passionnante que 'on reste attaché a cette
trivialité...



Annexe A

Quelques remarques sur les fonde-
ments de la mécanique quantique

La question des fondements de la mécanique quantique n’est pas le sujet principal
de cette these. Pour autant, il ne fait aucun doute que ce probléme a été central dans
les réflexions qui ont mené a son élaboration et il me semble légitime de lui attri-
buer une petite place en appendice. Il existe sur le sujet, au milieu d’une quantité de
contributions incohérentes ou réinventant la roue, quelques articles et livres de grande
qualité. On peut penser au livre de Laloé [163] qui offre un panorama clair et sans
parti pris des fondements et au dernier ouvrage de Bricmont [9] riche de ses références
historiques. Le lecteur dont le temps est plus limité peut consulter le remarquable ar-
ticle de Goldstein dans Physics Today [161]. La contribution qui suit, inévitablement
inférieure et indubitablement incompléte, a pour objectif de présenter quelques aspects
des fondements en insistant sur leurs apports conceptuels mais aussi éventuellement
pratiques.

A.1 De l'existence du probleme

“Bohr brainwashed a whole generation of physicists into thinking that the
job was done 50 years ago.”

Murray Gell-Mann, cité dans [9]

Evidemment, pour que les fondements de la mécanique quantique aient un intérét,
encore faut-il qu’il y ait un probléeme a résoudre, ce que tout le monde n’est, semble-t-il,
pas prét a concéder [165]. Avant de faire I’éloge des vertus d’une recherche rigoureuse
sur les fondements, il convient peut-étre de se convaincre de I'étendue du probleme
pré-existant.

Le probléeme fondamental posé par la formalisation standard' de la mécanique

1. J’utilise le terme «formalisme standard» de maniére assez libérale, pour désigner les interpréta-
tions que 'on regroupe en général sous le qualificatif vague de «Copenhague» ou «néo-Copenhague»
et qui sont celles que l'on trouve en général dans les livres sérieux. Plus généralement, rentre dans le
«formalisme standard» toute interprétation dans laquelle le postulat de la mesure est fondamental ou
indépassable (qu’il soit compris comme un phénomeéne physique ou une simple régle épistémique).
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quantique est celui de la non existence a priori d’'un monde macroscopique tangible et
objectif. Un corollaire, qui est en général celui sur lequel se concentrent les débats est
le probleme de la mesure, c’est a dire 'impossibilité de réduire le postulat de la mesure
a des phénomenes physiques.

Il existe & ma connaissance deux négations possibles de I'existence méme du pro-
bleme :

1. le probleme est déja résolu par la théorie «moderne» de la décohérence qui
explique de maniére satisfaisante ’émergence des faits,

2. le probleme vient de préjugés philosophiques dépassés, il n’y a pas de réalité, ou
plutdét vouloir en parler c’est se compromettre avec la métaphysique et renoncer
a la science.

Dans le premier cas, on admet que le probleme est réel ou plutot I'a été, mais on
affirme qu’il est résolu par une théorie, la décohérence, qui parce qu’elle peut étre
raisonnablement incluse dans le formalisme orthodoxe, n’en entame pas la suprématie.
Dans le second cas, on critique la 1égitimité méme de la question en s’appuyant sur un
argument de scientificité paresseux. Il me semble que ceux que les fondements laissent
froids se divisent a peu pres équitablement entre les deux catégories et oscillent le
plus souvent entre I'une et I'autre ligne de défense en fonction de la situation. Il peut
étre utile d’expliquer pourquoi ces deux arguments sont inadéquats; plus précisément
démontrablement faux pour le premier et philosophiquement douteux pour le second.

A.1.1 De la décohérence

On a déja dit quelques mots sur la théorie de la décohérence en 1.1.2 mais le sujet
mérite qu’on s’y attarde.

L’objectif de la théorie de la décohérence est d’expliquer comment le couplage
d’un systéme de matrice densité p®) & un environnement extérieur muni de certaines
propriétés raisonnables entraine la décroissance rapide des coefficients non diagonaux
de p®) dans une certaine base. La décohérence permet de comprendre & la fois la vitesse
de décroissance et le choix de la base de diagonalisation de p(*). Notons dés & présent
que ce programme [166] a été un succes. Zurek et ses collaborateurs sont parvenus a
montrer que le phénomene était universel et robuste au prix de développements parfois
difficiles et indubitablement élégants.

Néanmoins —et la profusion de nouveaux concepts comme einselection (pour envi-
ronment induced superselection) [167, | ou le légérement pédant Quantum Darwi-
nism [169, | n’y change rien— la décohérence explique uniquement la diagonalisation
de p'®) dans une certaine base et ne dit rien sur le collapse. Méme si les contributeurs &
la théorie de la décohérence prétendent rarement ezplicitement résoudre le probleme de
la mesure, ces derniers entretiennent malheureusement ’ambiguité, notamment dans
les articles grand public [171].

Rappelons brievement pourquoi la diagonalisation de p(S) dans une certaine base
n’est pas suffisante. La partie mathématique de tout article sur la décohérence consiste
a montrer que dans une certaine situation, plus ou moins générale, on a :

(S) — A1 décohérence A O
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On sait déterminer dans quel base cette diagonalisation s’effectue et cette derniere
correspond fidelement a celle des pointeurs de la mesure réalisée. C’est un succes indu-
bitable de la méthode, la décohérence permet d’expliquer quelle observable un appareil
de mesure permet de mesurer, si l’on admet que ce dernier collapse. A ce stade, il y
a un saut philosophique & ne pas faire mais qui est malheureusement souvent fait,
qui consiste a identifier cette matrice densité diagonale, correspondant a un mélange
impropre (improper mizture) & la méme matrice densité représentant un vrai mélange
statistique (proper mizture). Cette confusion est ce que 1’on appelle parfois une erreur
de catégorie (category mistake) en philosophie : deux objets fondamentalement diffé-
rents sont identifiés abusivement parce que leur représentation est identique. C’est une
erreur que l'on ne ferait pas dans une autre situation. Considérons par exemple un état
EPR partagé entre Alice a gauche (A) et Bob a droite (B) :

[)epr = (| Da® [ DB — | Ha®] 1)B) /V2.

La matrice densité réduite du point de vue d’ Alice s’écrit particulierement simplement

dans la base {| 1), })} :
(12 0
pa = ( 0 1/2 )

En conclut-on dans ce cas que la simple existence d’'une partie de I’état du coté de
Bob fait «émerger» les propriétés classiques chez Alice ? Méme en supposant que Bob
est a jamais inacessible, la réponse est évidemment non. L’objet p; ne peut pas étre
assimilé a un mélange statistique sans violer 'inégalité de Bell. Dans ce cas, identifier
deux situations physiques différentes parce que leur représentation mathématique est
identique conduit & une erreur manifeste. C’est pourtant exactement la méme sub-
stitution que l'on effectue lorsque 'on tente de déduire la macro-objectification de la
décohérence”. Le tour de magie est en général effectué en fin d’article, en quelques
phrases sibyllines de conclusion apres de longues dérivations parfaitement raisonnables
et passe de ce fait relativement inapercu.

Notons que cette confusion entretenue autour des supposées implications «fonda-
tionnelles» de la décohérence n’a pas que des conséquences philosophiques et a donné
lieu a quantité d’extrapolations problématiques en cosmologie et en gravité quantique
(voir [172, 173, 174, 175] pour une discussion). La situation semble néanmoins évoluer
positivement si I'on en croit 'exemple de Steven Weinberg, qui a récemment admis que
la décohérence devait étre doublée d’un mécanisme de collapse & définir [176], preuve
qu’il n’est pas impossible de changer d’avis dans ce domaine sensible.

A.1.2 De l'observable et des perceptions comme seule réalité

L’autre option pour refuser de considérer sérieusement le probleme de la mesure
est de se réclamer d’une forme extréme de positivisme dont on peut faire la caricature

2. D’aucuns pourraient répondre que dans le cas de la décohérence, ’environnement possede un
grand nombre de degrés de liberté, ce qui rend difficile et méme impossible en pratique la mise en
évidence d’une violation de l'inégalité de Bell qui démontrerait ’absurdité de la substitution. On voit
cependant difficilement comment ce que 'on appelle «objectif» pourrait raisonnablement dépendre de
notre avancement technologique et de notre capacité a mettre en évidence telle ou telle violation en
pratique. Le monde physique semble se soucier peu de nos limitations empiriques.
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suivante. L’objectif de la science étant in fine de produire un ensemble de prédictions
falsifiables, les théories physiques ne devraient étre formulées qu’en terme de ce qui est
observable, ne parler que de résultats. Disséquer le résultat lui méme, le microfonder,
le réduire a un phénomene, n’aurait pas de sens puisqu’il est la seule chose qui possede
une objectivité. Dés lors il n’y a pas de probléme avec ’axiomatisation de la mécanique
quantique qui fournit un algorithme que 'on sait, en pratique, appliquer de maniére
non ambigueé.

Cependant, une telle vision de la science est extrémement restrictive et n’est en tout
cas aucunement impliquée par I’pistémologie popperienne. Que les prédictions soient le
produit ultime qui permet de wvalider ou falsifier une théorie n’empéche pas que cette
derniére utilise la réalité comme intermédiaire pour les faire émerger. Les résultats
n’ont pas besoin d’étre des notions primitives. Si encore un tel saut était nécessaire,
impliqué par expérience, une telle attitude instrumentaliste serait justifiable. On verra
qu’il n’en est rien et qu'une attitude souvent décriée comme classique et qui consiste
simplement & supposer qu'un monde réel existe de maniére objective —les mesures étant
des configurations particuliéres de ce monde— n’est absolument pas incompatible avec
les prédictions de la mécanique quantique.

Une variante moderne et & la mode de I’argument précédent est de dire que la seule
chose réelle est 'information ?, que I’algorithmique quantique est une sorte de théorie
des probabilités généralisée qui en régit les échanges, la réalité étant encore une fois
dans l'information elle méme. Il faut reconnaitre a ce point de vue strictement informa-
tionnel le mérite d’étre un excellent guide heuristique, notamment dans le contexte des
mesures répétées. Pour autant, il parait impossible de le considérer sérieusement tant
il est contre intuitif de concéder un caractere primitif & 'information. En effet, I'infor-
mation seule n’existe pas, on a toujours de l'information sur quelque chose. Au fond
c’est ce «quelque chose» qu’il convient de définir pour rendre I'approche rigoureuse ;
pourquoi s’interdire de le faire ?

A.2 Un faisceau de solutions

A.2.1 Théories a ontologies primitives

Commencgons par avertir le lecteur, cette section ne vise pas l'exhaustivité (pour
laquelle il vaut mieux se référer a Laloé [163]) et de nombreuses approches sont volon-
tairement ignorées®. L’objectif est simplement de présenter une maniére possible de
construire des théories reproduisant les résultats du formalisme standard sans souffrir
ses ambiguités.

Il est possible que 'on trouve un jour des manieres extrémement subtiles et contre
intuitives de construire des théories physiques raisonnables. En attendant une voie

3. Il s’agit notamment de I’approche défendue par Caves, Fuchs et Schack qui lui ont donné le nom
de «QBism» (pour Quantum Bayesianism) [177].

4. C’est notamment le cas de l'interprétation des «histoires décohérentes» (decoherent histories)
[178] dont on peut raisonnablement considérer qu’elle n’est pas crédible & son stade de développement
actuel [179, ], de Papproche transactionnelle [181] qui me semble a priori intéressante mais que je
connais assez mal et de l'interprétation des mondes multiples [182] qui ne me parait pas étre définie
sur des bases suffisamment claires pour étre discutée de maniére productive [183].
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presque naive proposée par Bell [184, | est —une fois reformulée dans le vocabulaire
moderne— celle des théories a ontologie primitive [113]. Derriére ce terme inutilement
prétentieux, qui fait dégainer aux physiciens leur revolver anti-philosophie, se cache
une notion extrémement simple. L’ontologie est ce qui est”, les physiciens diraient la
«réalitéy» et Bell les beables (étrables?). Le terme «primitify renvoie au fait que cette
ontologie est la base qui donne sa réalité au reste et qu’elle ne demande pas elle méme
a étre expliquée en terme d’un concept «plus primitif» (comme par exemple les atomes
de Démocrite). Cela ne signifie évidemment pas que ce que I'on considére comme pri-
mitif ne peut changer au cours du temps, cela signifie que ce qu'une théorie physique
donnée considere comme primitif doit étre défini. On ajoute en général la contrainte
supplémentaire que 'ontologie primitive doit étre locale, c’est a dire étre une fonction
de l'espace-temps (et pas, par exemple, de 1’espace des phases). A priori, rien ne rend
cette contrainte absolument nécessaire’, elle permet simplement de comprendre plus
facilement comment les objets macroscopiques, qui vivent naturellement dans ’espace-
temps, émergent de ’ontologie primitive. Si effectuer cette simplification est possible,
c’est & dire permet toujours de construire des théories cohérentes, autant ne pas s’en
priver. Notons qu’il existe une grande variété d’ontologies primitives a priori accep-
tables, c’est a dire qui permettent de modéliser le monde : les particules évidemment,
mais aussi les champs, pourquoi pas les cordes et méme récemment les flashs”.

Une fois 'ontologie primitive définie, les postulats d’'une théorie physique doivent
se limiter a en prescrire la dynamique. Tout le reste, les observations, les résultats
de mesure, tel ou tel comportement macroscopique, doivent pouvoir s’en déduire logi-
quement et les lois effectives sur ces derniers constituer des théorémes. Tout cela n’a
rien de révolutionnaire; la mécanique classique —dans ’aquelle 'ontologie est simple-
ment les particules— rentre par exemple parfaitement dans cette définition et personne
n’imaginerait lui contester sa scientificité. Cette approche bizarrement autrefois hété-
rodoxe commence a étre utilisée par une large fraction des physiciens et philosophes
qui s’intéressent aux fondements ® car elle rend les discussions précises, mathématiques
et sort le débat des habituelles querelles philosophiques. Une théorie fondée sur une
ontologie primitive est non ambigué et donc facilement contestable. Aucune question
n’est a priori interdite comme dans le formalisme standard; la théorie prend d’une
certaine maniere plus de risques qu’une pure théorie de la «prédiction» mais est en
contrepartie immédiatement intelligible.

On peut présenter trés briévement (c’est & dire sans preuve de leur cohérence) trois
exemples de théories a ontologie primitive compatibles (éventuellement & e pres) avec
les prédictions de la mécanique quantique non relativiste.

5. Ou de maniere équivalente une «représentation de ce qui est». On a tendance a identifier dans
le langage courant le réel et sa représentation mathématique.

6. David Albert défend notamment la possibilité d’une ontologie hautement non locale, voir [180].

7. La ou un champ scalaire est une surface dans 1’espace-temps, une particule une trajectoire, un
flash est simplement un point. On peut consulter par exemple [187] pour voir quelques avantages de
cette ontologie, notamment vis a vis de I'invariance de Lorentz.

8. Ce formalisme est utilisé par ceux qui travaillent sur la théorie de de Broglie-Bohm, ceux qui
s’intéressent aux modeles de collapse objectif mais aussi, & autre coté de 1’échiquier, par ceux qui
voient la théorie quantique comme une pure théorie des probabilités sans tendre vers 'extrémisme du
Quantum Bayesianism (avec par exemple les modéles ontologiques de Spekkens [133]).
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A.2.2 Un exemple d’ontologie primitive constituée de particules

La théorie de de Broglie-Bohm (dBB) possede une ontologie primitive extrémement

simple : un certain nombre de particules sans propriétés se meuvent dans I'espace”.

(%)

En notant ¢, ’ la trajectoire de la particule ¢ on a I’évolution purement déterministe

suivante : @
dg;’ VARRVA
g 290 :mm(v).

dt AR

La fonction d’onde ¥ (qui peut étre a valeur scalaire, vectorielle ou spinorielle)
obéit quant a elle a 1’équation usuelle (Schrodinger, Dirac,...) et posseéde un statut
nomologique plus qu’ontologique. Autrement dit, ¥ guide les particules comme une loi
et possede de ce fait un statut analogue a celui du hamiltonien en mécanique classique
(qui prescrit la forme des trajectoires sans que ces derniéres ne rétroagissent sur lui).
Il a été montré, et c’est le fruit d’un long travail de physiciens et philosophes car le
résultat n’est pas trivial, que cette théorie est empiriquement équivalente a I'algorithme
quantique lorsque les prédictions de ce dernier sont non ambigués (voir par exemple
[193, ]). On a donc une théorie précisément définie, dans laquelle les particules
ont une position et une vitesse toujours bien définies, dans laquelle 'observateur est
un systéme physique comme un autre, qui est entierement déterministe '’ et dans
laquelle toutes les bizarreries quantiques (principe d’incertitude, non localité, impact
irréductible de la mesure, etc.) ont une explication purement mécanique et causale,
bref non romantique.

La théorie dBB ne doit pas étre vue comme une approche ultime a adopter ou a
combattre, mais comme un prototype particulierement clair et simple de ce a quoi peut
ressembler une théorie & ontologie primitive ''. Ce n’est néanmoins pas la seule et les
théories de collapse objectif peuvent aussi étre mises sous cette forme. On a dans ce cas
soit une ontologie primitive de champ, soit une ontologie primitive de flash (on peut
aussi calquer la construction de dBB et proposer une ontologie en terme de particules
[60] mais on ne s’y intéressera pas ici).

A.2.3 Deux ontologies pour les modeéles de collapse

Il existe principalement deux choix d’ontologie pour les modeles de collapse objectif
introduits en 1.3 et qui sont applicables aux modeles discrets comme aux modeles
continus.

La possibilité la plus simple est de définir un champ scalaire, la densité de masse
locale moyenne, g(z) = m|¥(x)|> pour une particule unique de masse m, et de se
rendre compte que toutes les situations expérimentales (c’est & dire méme les mesures

9. Contrairement & un préjugé populaire, la théorie peut facilement étre généralisée pour inclure
une ontologie primitive constituée de champs [189], voire de cordes [190] et peut tout aussi bien
s’accommoder de la non conservation du nombre de particules en théorie quantique des champs [191,

].
10. L’émergence de ’aléa dans dBB est une simple conséquence de 'impossibilité de connaitre pré-
cisément les conditions initiales. En plus des références données en introduction, on peut consulter le
court article de Oldofredi et al. [195] qui explique trés clairement le statut des probabilités dans dBB.

11. Les défenseurs de dBB comme Sheldon Goldstein mettent d’ailleurs aujourd’hui plus ’accent
sur l'aspect «ontologie primitive» contenue dans la théorie que sur les détails de son implémentation.
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de spin par exemple) sont interprétables en terme de fluctuations de ce champ. La fonc-
tion d’onde elle méme n’est alors qu’un intermédiaire de calcul commode pour écrire la
dynamique de ’ontologie primitive. Evidemment on aurait pu utiliser la moyenne quan-
tique d’autres opérateurs mais la densité de masse est celle qui permet de comprendre
le plus clairement la localisation spatiale des objets macroscopiques. Cette ontologie
de champ continu en espace est utilisable pour les modeles de collapse discrets comme
GRW mais aussi continus comme CSL.

Une deuxieme possibilité d’ontologie est celle des flashs et elle ne s’applique dans
sa version naive qu’a GRW. L’idée est de faire résider I'ontologie dans la collection
des points de l'espace-temps x; ol un événement de collapse discret se produit. Ce
qui est réel dans la théorie est alors ’ensemble de ces flashs, localisés en espace mais
aussi en temps. On peut se convaincre que I’émergence de chaises et de tables tangibles
a ’échelle macroscopique se comprend bien comme un tableau pointilliste en espace-
temps. On peut exporter cette prescription aux théories de collapse continues comme
CSL mais on retrouve alors un champ, cette fois-ci stochastique, qui obéit au méme
type d’équations que le signal dans la théorie de la mesure continue '? (voir 1.3, 3.3 et
G).

La différence entre ces deux approches et la théorie de dBB présentée précédemment
est existence d’un aléa a priori intrinseque de la Nature : les deux ontologies des
modeles de collapse objectif contiennent une composante stochastique au sens classique
du terme. A cela s’ajoute la présence d’une décohérence intrinséque qui fait que les
modeles de collapse objectif ne sont pas rigoureusement équivalents a la mécanique
quantique orthodoxe du point de vue des prédictions empiriques. Ces modeles sont
évidemment discutables, en grande partie ad hoc, probablement excessivement fine-
tuned, mais il faut leur reconnaitre d’étre définis de maniere extrémement précise sans
référence a un observateur.

On pourrait s’inquiéter (et on s’inquiete d’ailleurs souvent) de la présence de plu-
sieurs ontologies primitives fournissant des théories avec le méme contenu empirique.
N’est-ce pas une preuve que ces ontologies n’ont aucun sens ? Evidemment non, quelle
que soit la théorie, une infinité de réalités possibles sont toujours admissibles pour ex-
pliquer un ensemble de résultats. L’ontologie des particules ponctuelles en mécanique
classique est indistingable d’une ontologie constituée de minuscules anges invisibles qui
déplaceraient une matiere continue et infiniment sécable pour reproduire miraculeu-
sement les lois de Newton. Cela implique-t-il que l'ontologie des points matériels doit
étre abandonnée en mécanique classique ? Que le simple fait de parler d’atomes n’a
pas de sens? Evidemment non et le choix entre diverses ontologies primitives doit se
faire a I’aide du rasoir d’Occam qui tranche ici les anges invisibles. Il ne faut pas mal
interpréter 'argument de la théiere de Russell : que la présence d’une théiére en or-
bite autour de Saturne soit pratiquement infalsifiable n’oblige pas & abandonner toute
réalité qui ne se manifeste pas immédiatement au niveau des sens.

12. De maniere intéressante, on peut voir dans le choix du signal comme ontologie un moyen de
donner un sens précis aux prétentions fondationnelles du bayesianisme quantique. Dans une théorie
comme CSL munie de 'ontologie primitive du signal, tout ce qui est réel —la matiére— est un champ
scalaire stochastique dont les propriétés sont similaires & celles d’une information pure comme les
résultats de mesure d’une théorie de la prédiction, bref comme la seule chose qui est réelle pour les
«QBistes».
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A.3 Quelques bénéfices d’une théorie démystifiée

Méme si le lecteur est convaincu que le programme précédent résout un réel pro-
bleme physique, il est en droit de questionner I'utilité pratique de la solution proposée.
L’approche orthodoxe n’a-t-elle pas permis de faire d’immenses progres techniques ?
Pourquoi le «Shut up and calculate !» de Mermin serait-il moins légitime aujourd’hui
si 'on s’intéresse uniquement a la pratique ? L’objectif de cette section est de montrer
que d’un point de vue purement intéressé et pragmatique, il est extrémement profitable
d’avoir des idées claires sur les fondements de la mécanique quantique.

Avoir une classe de théories précises reproduisant les prédictions du formalisme
quantique orthodoxe permet d’avoir une meilleure base (ou au moins une base diffé-
rente) pour généraliser la théorie, par exemple & la gravitation. On peut par exemple
penser a coupler I'ontologie primitive d’'un modele de collapse a ’espace temps pour
unifier gravitation et mécanique quantique avec une coexistence cohérente de secteurs
classiques et quantiques, apportant ainsi une indication supplémentaire que la gravi-
tation n’est pas forcément «quantifiée». C’est I'idée qui a motivé le programme es-
quissé en 3.3 et développé en G. Si l'on tient a la quantification de la gravitation,
alors ’approche Bohmienne explorée notamment par Struyve montre sur quelques mo-
deles jouets que 'on peut donner un sens précis a ’espace-temps et ses éventuelles
singularités de maniére non perturbative [196], la ou 'approche «standard» nécessite
de nombreuses couches d’interprétations pour comprendre un espace-temps qui n’est
alors qu’émergeant. Cette constatation est peut-étre anecdotique, mais il semble que
les modeles de collapse objectifs permettent d’unifier de maniére extrémement intuitive
mécanique quantique et gravitation classique sans pour autant simplifier le probléme
dans Péventualité d’une gravité quantifiée. A I'inverse, la mécanique bohmienne semble
impuissante & unifier secteurs classique et quantique sans incohérence mais permet as-
sez facilement de construire des modeles jouet ou la gravitation est quantifiée. Les
fondements peuvent ainsi guider de maniére forte 'unification future des deux secteurs
actuellement séparés de la physique.

Sur des probléemes plus précis mettant en jeu a la fois la gravitation et la mécanique
quantique, les théories a ontologie primitive ont permis des avancées significatives. Le
probleme des fluctuations en cosmologie inflationiste —c’est dire le fait que sans la

substitution injustifiée [197] des corrélateurs a deux points quantiques par des fluctua-
tions classiques, la théorie ne fournit pas les bonnes prédictions— a été éclairé avec des
modeles jouets de collapse [193, , ] et des théories inspirées de dBB [201].

La recherche dans les fondements a aussi des produits dérivés utiles comme la dé-
couverte de méthodes numériques plus performantes que les méthodes semi-classiques
usuelles [202]; la théorie dBB est ainsi utilisée de maniére routiniére en chimie quan-
tique (voir par exemple [203, 204]). Les modeles a variables cachées utilisés tout au
long de cette theése sont aussi directement inspirés de ’approche bohmienne de la théo-
rie quantique des champs. Le résultat le plus important découvert de maniere fortuite
grace aux fondements est sans conteste le théoréme de Bell. En effet, John Bell s’étant
rendu compte que les théoremes d’impossibilité de Von Neumann et Gleason sur les
variables cachées ne prouvaient en réalité rien (comme le démontrait I'existence la théo-
rie de Bohm de 1952), se demanda si la non localité de cette derniere était inévitable.
Citons John Bell dans son article On the Problem of Hidden Variables in Quantum
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Mechanics publiée dans Rev. Mod. Phys. en 1966 [205] et qui précede la découverte
de son inégalité :

«Bohm of course was very well aware of the [non locality problems] of his
scheme, and has given them much attention. However, it must be stressed
that, to the present writer’s knowledge, there is no proof that any hidden
variable account of quantum mechanics must have this extraordinary cha-
racter. It would therefore be interesting, perhaps, to pursue some further
‘impossibility proofs’, replacing the arbitrary axioms objected to above by
some condition of locality, or of separability of distant systems.»

dernier paragraphe qui se lit comme un programme.

Raisonner en terme d’ontologie primitive peut aussi permettre de contourner des
difficultés du raisonnement en terme de fonction d’onde ou de d’algebre d’opérateurs.
Avoir une ontologie primitive claire (dans ce cas les flashs) a permis a Tumulka de
construire en 2006 [77] une théorie de collapse objectif sans interaction entiérement
invariante de Lorentz alors qu’un tel résultat était impossible & obtenir au niveau de
la fonction d’onde. La théorie obtenue n’a aucune expression simple possible en terme
d’algebre d’opérateurs ou d’espace de Hilbert mais reproduit les prédictions de la mé-
canique quantique a € pres. Un contournement du vecteur d’état peut potentiellement
donner des idées pour passer outre les problemes de définition de la théorie quantique
des champs avec interaction. En effet, on comprend assez bien qu’une loi (typiquement
la statistique d’une fonction & deux points) puisse étre obtenue par une procédure
itérative, comme une limite de quelque chose, via le groupe de renormalisation. Mais
c’est le fait que les objets fondamentaux de la théories eux mémes n’aient qu’une dé-
finition en terme de limite qui pose des problémes de rigueur mathématique. Il n’est
pas inimaginable que 'on puisse un jour construire une théorie a ontologie primitive
reproduisant les prédictions de la théorie quantique des champs, sans régularisation ni
brisure d’aucune invariance, mais qui utilise le groupe de renormalisation pour calculer
la lo7, c’est a dire la dynamique de I'ontologie. Autrement dit, plutdt que de penser I'al-
gebre d’opérateur comme primitive, comme c’est souvent le cas en théorie axiomatique
des champs, on pourrait espérer obtenir cette derniére de maniere émergente, a partir
d’une ontologie primitive, et passer ainsi outre certains théoremes d’impossibilité. Un
tel programme est évidemment tres spéculatif, 'objectif est simplement de montrer
que les fondements peuvent aussi avoir un intérét en physique mathématique.

Enfin, un avantage majeur d’une clarification des fondements de la mécanique quan-
tique allant au dela de la formalisation standard est qu’elle permet de liquider un
nombre important de préjugés qui encombrent la physique, la philosophie et parfois
méme la sphére publique. On est parfaitement en droit de détester la théorie dBB et
de lui préférer le formalisme orthodoxe (et c’est d’une certaine maniére souhaitable
si Pon souhaite faire des calculs). Pour autant, la simple ezxistence de dBB, qui est
compatible avec toutes les prédictions de la mécanique quantique, rend caduques les
affirmations extrémes sur les supposées implications épistémologiques de la mécanique
quantique. La mécanique quantique n’implique pas que la Nature soit fondamentale-
ment aléatoire, elle n’implique pas que ’observateur soit inséparable du systéme étudié,
elle n’implique pas un quelconque role de la conscience, elle n’interdit pas I'utilisation
de trajectoires, elle n’empéche pas de définir simultanément position et vitesse (elle
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empéche de les observer), elle n’implique pas ’existence de monde multiples. Au fond
la mécanique quantique ne demande aucune des supposées révolutions épistémologique
qu’on lui attribue souvent. La seule implication démontrable du formalisme est la non-
localité et c’est rarement cette caractéristique, finalement peu choquante pour le grand
public, qui est mise en avant. Le mystere est pourtant entretenu par des physiciens
souvent de bonne foi. Un effet positif est d’ailleurs de couvrir la discipline d’un vernis
glamour et, sans doute, d’en améliorer le financement et I'attractivité. Pour autant,
un tel comportement n’est pas sans risque et brouille la distinction entre sciences et
pseudo-sciences. La prolifération de littérature New Age '* prétant des vertus absurdes
a la mécanique quantique pourrait préter a sourire. Ce serait oublier que ce qu’on y lit
ne se distingue que tres peu, du point de vue du grand public, de ce que des physiciens
sérieux peuvent dire en conférence.

La mécanique quantique est trop importante pour que ’on puisse négliger ses fon-
dements. Un certain nombre de résultats simples clarifient fortement le statut et les
implications du formalise standard. Les connaitre peut permettre de se sentir mieux
avec la théorie (ce qui n’est pas négligeable pour les étudiants) et surtout d’avoir de
nouvelles idées pour ’étendre ou démontrer des résultats mathématiques non triviaux.
La pluralité des points de vue possibles sur le formalisme permet aussi de dissiper les
malentendus épistémologiques que les physiciens ont malencontreusement exporté en
philosophie et parfois dans le grand public. Finalement, il n’y a pas de raison valable
de laisser ces questions a l'exclusive attention de théoriciens retraités...

13. On peut penser par exemple & Deepak Choprah qui vend probablement plus de livres & lui seul
que tous les physiciens francais.



Annexe B

Construction d’'un modele de Mar-
kov caché reproduisant les résultats
d’'une dynamique quantique générale

It is therefore not, as is often assumed,
a question of a reinterpretation of quan-
tum mechanics — the present system of
quantum mechanics whould have to be
objectively false, in order that another
description of the elementary processes
than the statistical one be possible.

John Von Neumann [200]

B.1 Introduction

L’objectif de ce chapitre est d’expliquer comment on peut construire un modele a
variables cachées adapté a une certaine équation maitresse stochastique. Plus précisé-
ment, on cherche & construire un processus de saut R; a valeurs sur une certaine base
de pointeurs tel que la diagonale de la matrice densité contienne les probabilités de ce
processus :

PRy = [i) (i | Fi] = (ilpeld),

ou de maniere équivalente E[R;|F;] = diag(p:). C’est un moyen de voir la mesure
de maniere tres classique comme révélant (et modifiant) une grandeur toujours bien
définie. Une telle représentation est par exemple extrémement utile si ’on cherche a
comprendre I’émergence d'un processus de saut a la limite de mesure forte (voir 2.1)
comme la convergence progressive de p vers un processus préexistant !.

1. Notons que notre motivation n’est ici absolument pas fondationnelle, on s’intéresse peu au fait
de savoir si R; existe dans le monde physique, mais mathématique : on cherche une réécriture plus
lisible des équations.
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Une telle construction est souvent jugée irréalisable a cause des divers théorémes
sur 'impossibilité des variables cachées. Il s’agit d’une des rares situations ou il ne
faut pas se laisser intimider par Von Neumann. On sait que la théorie de de Broglie-
Bohm (dBB) [9] (voir A) permet de passer outre les «no-go theorems» et on peut donc
essayer de s’en inspirer. Le probleme est qu’elle est évidemment définie dans le continu
et qu'on s’intéresse ici plutét a des espaces de Hilbert de dimension finie. De plus,
la théorie dBB, étant donnée ses prétentions fondamentales, ne prend pas en compte
les mesures répétées extérieures. Elle est enfin déterministe alors qu’on souhaite une
théorie fondamentalement stochatique. On va voir qu’on peut malgré tout s’en sortir.

La construction qui suit s’inspire de divers travaux antérieurs peu connus. Dans
[207], Diirr et al. construisent une version discréte et stochastique de dBB pour prendre
en compte les événements de création et annihilation en théorie quantique des champs.
Une construction analogue de la dynamique discréte a été proposée par Gambetta et
Wiseman dans le contexte de ce qu’on appelle 'interprétation modale de la mécanique
quantique [208]. Pour la partie «mesure» on s’inspire du modele jouet construit en
D [41]. On peut considérer qu'une intégration formellement similaire de la mesure a
été proposée par Bedingham [58] (puis simplifiée par Tumulka [59]) mais dans un
contexte -GRW- trop différent pour que 'on puisse s’en servir. Ainsi, méme si la
construction qui suit recycle un certain nombre d’idées d’articles injustement oubliés,
elle est, semble-t-il, nouvelle et originale.

B.2 En discret

11 est plus simple de construire le modeéle dans le discret ? et de prendre ensuite la
limite continue. Il est aussi utile de décomposer ’évolution en une dynamique ouverte
quelconque et une mesure faible sans démolition.

B.2.1 Evolution discréte sans mesure

On se donne une évolution discrete générale sans mesure. Typiquement :

Pn = 9" (po)

ou ¢ est une application complétement positive dont on supposera pour le passage
a la limite continue qu’elle est infiniment décomposable, i.e. qu'il existe £ tel que
¢ = e2Z. On se donne une certaine base canonique |i) de .7, qui sera par la suite
celle des pointeurs d’une mesure mais qui est pour le moment quelconque. On veut
construire R, processus de saut a valeurs sur les projecteurs |i) (i, tel que :

Q) = PIRy = 1i)il] = (ilpnli) = o). (B.2.1)

On suppose que I'égalité précédente est vérifiée a I'instant initial, i.e. on fixe Qg tel que

(()i) = (i|po|i). On cherche & déterminer les taux de transitions M;.;(py) du processus

2. Au passage, posséder un modele & variables cachées dans le discret pourrait s’avérer utile pour
généraliser un certain nombre de nos résultats de mesure forte au discret, notamment ceux sur les
échardes (voir 4.2).
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de saut R, tels que l’équation (B.2.1) reste vérifiée pour tout n. Par définition du
processus de saut on a :

Qn+1 Q(Z +ZM1<—] Pn ZMy—z Pn)Q( )-

J#i Jj#i

On a par ailleurs I’équation maitresse pour p en composantes :
Z¢ ey P
On cherche un ansatz pour M ;(pn) > 0 tel que :

Vi, QW = pi) = Vi, Qi = P

Notons que l'identification est immédiate dans le cas ou ¢> n’agit que sur les coefficients

(B.2.2)

(4,3)
n+1

diagonaux, 7.e. ou seuls les coefficients qui s’écrivent ng . sont non nuls. Dans ce cas

il suffit de prendre M;._; = gi)g] j)) pour satisfaire la récurrence. Dans le cas général, on

k7l)

est a priori embété par les phases py,
(4.9)
n

pour k # [. Notons tout d’abord que M;.;(pn)
apparait multiplié par Q%” ) = p dans (B.2.2), par conséquent pour prendre en
compte les termes dépendant des phases, il est raisonnable de chercher un ansatz de
la forme (qui n’enléve pas de généralité) :

oy mig(p) )

M ; (p) = 0:d) Cb(j’j)'

Enfin, et cette fois ci la forme de 'ansatz ne pourra se comprendre qu’avec la preuve
qui suit, on peut poser
+

| mi;(p) —

pij(p) = kZ# (‘2552,?) ¢E?fl ) (0

et chercher donc M;, j(p) avec la paramétrisation suivante :
2,0 , +
{Zk;ﬁl (¢§k,l)) ¢ggjl ) (k, l)} + Wi (p)
|| PO '

Notons qu’il s’agit simplement d’une réécriture sans perte de généralité. Injectons
maintenant cette expression dans I’équation (B.2.2) pour voir quelle est la condition
sur u. On a :

Mij(p) = ¢8;

i i Zkyél ¢EZ’% - éf)E] ]g /ngk o + /‘w
QY = pt +Z[ ( ’%,2’ } +Z¢
JF#i jF#i
D okAl ¢Eijl§ — ¢EZ% PO+ 1ii(p) ) (i
_ ; [ ( ’%)’ } _ ; ¢8,73)) p; )
J7F J7
- Ew( i) ¢<m)) ) )
(4,9) (k.1 (k,1) Nz,] — H55\pP
= Pn +
LAY EA > \ffr
+ 2 = 2 ool
J# J#i
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Maintenant, il faut utiliser quelques propriétés structurelles de ¢. Souvenons nous

d’abord que ¢ conserve la trace, par conséquent on a ) ;; gbg ’]§ = —qﬁggil)) ce qui

fournit :

Zk;ﬁl k: l) gbgc’,]l; p(k Y 1,0
Z ( 7 ) qugkl) (kl.

JF k#l

1)

(ii)’ soit :

La conservation de la probabilité implique par ailleurs que > i qﬁEZ N = =1- ¢(

| A5 |

“+Z¢(§§ (9 — Zcﬁff)pn Z;sbg’,?)pﬁfj)
J:

JFi J#i

On a donc finalement :

1ij(p) — 1ji(p
Qfﬁ-l Pn+1+§: o sl )
< \jf\

Ainsi M, j(p) convient si et seulement si p1; j(p) est symétrique et tel que les coefficients
de M;;(p) restent positifs. On a ainsi une indétermination du processus de Markov
sous-jacent . On peut choisir de fixer i j(p) = 0 qui semble étre la solution la plus
simple?. Par la suite, on omettra en général la possibilité que j soit non nulle.

Résumons. On a montré que le processus de saut R,, a valeurs sur les projecteurs
i) (i| vérifiant :

P[Rop1 = [i)(i] | Bnir = 15){Gl] = Micj(pn),
avec,
Mic(p) = 957 + 2 Gt dﬁ?g) p(k’l)r,
’ || P09
vérifiait P[R,, = |i)(i|]] = (i|pn|i). Autrement dit, en langage courant, on a construit R

une variable cachée dont les coefficients diagonaux de p donnent les probabilités.

B.2.2 Mesure sans démolition

On considére désormais une mesure faible sans démolition et cherche a savoir com-
ment construire un modele & variable cachée équivalent dans une telle situation. On
cherche in fine a reproduire 1’évolution stochastique élémentaire suivante p — M(p) :

Qo pU,

M(p) = T[]

avec probabilité II[a] = tr {Qaan};] ou les 2, sont codiagonalisables dans une base

de pointeurs |7).

3. Notons que la situation est analogue dans dBB qui peut étre définie d’une infinité de maniére
différentes [9] en conservant le méme contenu empirique.

4. On peut imaginer des condltlons plus complexes comme choisir p tel que les taux de sauts soient
minimaux ce qui, dés que qS( 9 # 0, donne un résultat non trivial ou p # 0.
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On définit pour une nouvelle évolution stochastique élémentaire M pour p telle
que :

- T
M(p) = S

avec probabilité II[a] = tr [QQRQL} ou R = [i)(i| pour un certain i. Autrement dit,
la probabilité du résultat o dépend dans cette nouvelle application uniquement de la
valeur d’une variable cachée R. On suppose qu’on se donne la probabilité initiale de
cette variable cachée & partir de la diagonale de pg, i.e. P[R = |i)(i| | Fo] = (i|po]7).
On note ici F, la filtration naturelle attachée aux résultats de mesure. Observons
désormais que si 'on ne connait pas la valeur de R mais seulement sa probabilité,
alors I'évolution M est équivalente a ’évolution M dans le sens que les trajectoires
quantiques engendrées sont empiriquement indistinguables. En effet supposons que ’'on
ait P[R = |i)(i| | Fn] = (i|pn|i), alors :

P |pns1 = ““”Qarf] Ztr(m i124) PR = [i)(il | ]

= tr (Qudiag(pn)2,)
=tr (QaanL)
= II[a].
Reste désormais & montrer I'hérédité, i.e. P[R = |i)(i| |Fnt1] = (i|pn+1]?). Notons

dp+1 = a le (n + 1)-iéme résultat de mesure. Calculons :

IR = 0] | Fora] = Plones = | R = J) ] oL

= tr [Qali)il2}) = T2upl]

= (ilpnt]d).

Résumons. On a construit une nouvelle évolution stochastique pour p notée M qui
dépend explicitement d’une variable cachée R et telle que, si 'on fixe initialement
PR = |i)(i| | Fo] = (¢|poli) alors :

— Vn, PR = [i){il | Fu] = (ilonli)

— M a la méme statistique que M, i.e.

QapnQf

- i
P [) = S50 17| =2 [ M(s) = et 5,

II]a]

On peut donc désormais utiliser M au lieu de M pour représenter une mesure faible
sans démolition. On ne change ainsi aucune prédiction empirique mais ajoute une
variable cachée que la mesure «réveley.
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B.2.3 Recoller les morceaux

On a traité séparément évolution ouverte générique et mesures répétées. On peut
sans aucun probleme recoller les morceaux. On considére désormais une évolution conti-
nue entrecoupée de mesures tous les At comme en 4.2, c’est a dire qui est engendrée
par I’évolution élémentaire xao; = Mopa;. On définit la trajectoire quantique discrete :

pn = X"po (B.2.7)

que l'on cherche a reproduire avec un modele a variable cachées. Inspiré par les
constructions précédentes, on introduit le modéle a variables cachées suivant :

® pni1 = X(pn) avee ¥ = Mo g
o P[Rnpr=1[i)(i] | Bn= 1)l = Micj(pn)

i) G (kD] T
o Dk (0 — o) o]
avee Mij(p) = ;5 + ] plD) )
o PRy = [i)(i] | Fo] = (ilpoli).

Les résultats des deux sous sections précédentes montrent que cette nouvelle évolution
discrete pour le couple (p,, R,) fournit une trajectoire quantique p, avec la méme
statistique que celle de I’équation (B.2.7). Les probabilités de la variable cachée sont
aussi immédiatement lisibles dans les coefficients diagonaux de p : P[R,, = [i)(i| | Fn] =
(i]pn|i). On vient donc de construire un modele de Markov caché général adaptable a
toute évolution quantique entrecoupée de mesures sans démolition.

B.3 Passage au continu

Il faut désormais faire passer le modele précédent a la limite continue. On cherche
un modele de Markov caché correspondant a I’équation maitresse stochastique (1.2.5) :

dpy = Z(pr) dt + v DIN](p) dt + /7 H[N](p) dW;

On peut une nouvelle fois s’intéresser séparément a la partie mesure et a la partie
évolution ouverte.

Commencons par cette derniere qui est la plus simple. Quand At — 0 on a ¢a; =
1+ AtZ. Cela permet d’écrire immédiatement les taux de saut M;.;(p) différentiels
du processus de Markov caché au continu :

(i,i) (4,9) +
{Zk#l("iﬂ(k,l) - g(lg,lj) ) p(k’l)} Z(i’i)

Ainsi le modele a variable cachées correspondant & ’évolution O,p; = £ (p;) s’écrit :

o Oipr =L (pt)
o P[Rirar = 1[0)(i] | Re=15){l] = Mij(pe) dt
N g(ivi) _g(]} ‘)) (k,l)}+
oy oolid) [Zk#( (kD) — “hb) )P
avee Micj(p) = Z(;5 + || pla-d) ’
o P[Ro = [)(i] | Fo] = (ilpoli)

M(p)ij =
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Pour passer des mesures répétées aux mesures continues, on fait comme en (1.2.3)
et on pose 2, = B4 avec :
1 € .
By =— (14 eN - -NIN +0O(%? )

B = % <]1 ~ \EN — %NTN+ 0(53/2)> .

On utilise toutes les notations introduites a ce moment. La seule différence avec la
dérivation standard de la mesure continue arrive lorsque l’on calcule la moyenne du
signal. En effet on a :

E(AY;|R,) ~ tr[(N + NDR,] dt.

Par conséquent, on peut introduire un nouveau processus de Wiener® W9 tel que
Y, = Ay tr[(N+NTRy] dt+dW¥. Ainsi, le modéle de Markov caché pour une mesure
continue pure s’écrit :

e dp =y D[N](pe) dt + /7 H[N)(pe) (AW + Ate[(N + N (R, — py)] dt)

e Ri=R

o PR =1i){il | Fo] = (ilpoli)-
On peut finalement combiner les deux résultats pour obtenir un modele a variables
cachées complet pour 1’équation (1.2.5) :

dpy = Z(py) dt + v D[N](pe) dt + /7 H[N](pr) dWr. (B.3.1)
Ce dernier s’écrit simplement :
o dpy = L(p)dt +ADIN(pr) dt + AHIN] (00) (AWE + /AN + NTY(R, — py)] dt)
o P[Riar = 1)(i| | Re=1[§){jl] = Micj(pr) dt
1) o)) kD] T
e i) = 1+ A LB h) o]
o PRy = [i)(i] | Fol = (ilpoli).

(B.3.2)

Rappelons que cela signifie que des trajectoires quantiques p; obtenues avec les équa-
tions (B.3.1) et (B.3.2) ont exactement la méme statistique. Dans le second cas on dis-
pose cependant d’un processus de sauts caché vers lequel p; converge quand v — +400.
On possede donc désormais une réécriture des trajectoires quantiques dans laquelle
on peut interpréter les coefficients de p; comme les probabilités d’une variable cachée
toujours bien définie. Il n’y a évidemment pas de miracle et la dynamique de la variable
cachée dépend explicitement de la matrice densité, elle est guidée par I’état quantique.
Notons aussi que la construction du modele dépend de la base dans laquelle la mesure
continue projette car la variable cachée est a valeur dans ses pointeurs. Malgré ses
limitations, le modele obtenu permet de comprendre les mesures continues avec une
intuition essentiellement classique. D’un point de vue purement pragmatique, il permet
une réécriture non triviale de I’équation maitresse stochastique qui peut rendre plus
naturelles les propriétés de la dynamique engendrée.

5. Il s’agit d’un processus de Wiener du point de vue de la filtration G engendrée par les résultats
de mesure et et les valeurs successives de la variable cachée : G = o((Yu, Ru), u < t).
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Annexe C

Calcul de la fréquence des sauts in-
duits par la mesure

L’appendice qui suit est directement tiré de I’article Computing the rates of measu-
rement induced quantum jumps [5] écrit par M. Bauer, D. Bernard et ’auteur et publié
dans Journal of Physics A. Seules quelques modifications de notation ainsi qu’une sim-
plification de I’équation (C.2.1) ont été effectuées pour éviter de dérouter le lecteur
et cet appendice peut étre lu sans référence au reste. On y calcule la fréquence des
sauts induits par une mesure continue forte, illustre la proposition sur deux exemples
et justifie rigoureusement que le scaling proposé en 2.1 est bien le plus général.

Abstract : Small quantum systems can now be continuously monitored experimen-
tally which allows for the reconstruction of quantum trajectories. A peculiar feature of
these trajectories is the emergence of jumps between the eigenstates of the observable
which is measured. Using the Stochastic Master Equation (SME) formalism for conti-
nuous quantum measurements, we show that the density matrix of a system indeed
shows a jumpy behavior when it is subjected to a tight measurement (even if the noise
in the SME is Gaussian). We are able to compute the jump rates analytically for any
system evolution, i.e. any Lindbladian, and we illustrate how our general recipe can
be applied to two simple examples. We then discuss the mathematical, foundational
and practical applications of our results. The analysis we present is based on a study
of the strong noise limit of a class of stochastic differential equations (the SME) and
as such the method may be applicable to other physical situations in which a strong
noise limit plays a role.

C.1 Introduction

Recent advances in experimental techniques now allow for a tight monitoring, i.e. a
continuous and strong measurement, of small open quantum systems. The correspon-
ding quantum trajectories can now be recorded with increasing precision [209, . A
striking feature of such systems undergoing continuous measurement is the emergence
of a jumpy behaviour between measurement eigenstates. This interesting and ubiqui-

131
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tous phenomenon has already been observed in many experiments [211, , ].
Even if quantum jumps were already well known to Bohr [211], to our knowledge,
their emergence and statistics have never been studied thoroughly in the general case.
This theoretical investigation is the main purpose of this article.

We conduct our study using the formalism of continuous measurement developed in
[36, 37, 40, , 39, 216], that is we study a stochastic differential equation (SDE) with
Gaussian noise describing the (continuous) evolution of the density matrix of a small
open system of interest. The stochasticity comes from the conditioning of the density
matrix on the (random) measurement outcomes. Such equations can be obtained as the
limit of a series of weak measurements carried out on a quantum system [19, , ].
In this setting, the jumpy regime arises when the rate of measurements, that we call
v, is large. At this point we should emphasize that these quantum jumps obtained in
the large v limit of continuous equations are not the same as those emerging from the
intrinsically discontinuous Poissonian unravelling of a quantum master equation.

From a mathematical perspective, we study a class of non-linear SDE in the strong
noise limit, and show that the solution converges, in a very weak sense, to a continuous-
time finite-state Markov process on the measurement pointer states and we compute
the transition rates. We show that the finite dimensional distributions converge weakly
towards those of a finite-state Markov process on the measurement pointer states'.
We should stress that the convergence is weak also in the sense that some interesting
quantum fluctuations, which should be further studied, are preserved in the limit.

Eventually, we believe this study provides a quantitative understanding on the
semi-classical behaviour of tightly monitored quantum systems and heavily generalises
the specific cases treated in [01, 8, 86]. As such it could have applications to a wide
class of microscopic open systems showing a jumpy behaviour ranging from quantum
dots to photons in a cavity.

Outline This paper is structured as follows. In section C.2 we present our model and
the main claim of the article without proof. We discuss the implications of the result
and then study two simple examples of applications in section C.3. Section C.4 is more
technical and devoted to the proofs. We first show the emergence of the jumps and
compute their rate assuming a given scaling limit. We then proceed to show that this
scaling is actually the most general. Eventually, we discuss in more details the physical
meaning of our results in section C.5.

C.2 Main Results

We consider a very general quantum system, but with a finite dimensional Hilbert
space, whose dynamics are prescribed by a Lindbladian £. We assume that an obser-
vable O is also continuously measured at a rate, or strength, 42 (say with a repeated
interaction scheme as in [16, 17]) with efficiency 7. As a result the density matrix of

1. Weak convergence is also called convergence in law : expectations of bounded continuous func-
tions depending on the positions at fixed times ¢1, ..., tr have a large « limit which is the expectation
with respect to a finite-state Markov process.
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the system evolves in the following way [18] :

dpy = Z(ps) dt + DN (pr) dt + AV HIN] (pr) AW,

where W; is a standard Wiener process, and N is the so-called measurement operator
with O = N + NT the measured observable, D[N](p) = NpNt — L{NTN, p} is the
Lindblad generator associated to N and H[N](p) = Np+pNT—ptr(Op) the stochastic
innovation term. Any given realisation of the Wiener process corresponds to a sample
of a time series of measurements. Measurement outputs x; are random according to
the rules of Quantum Mechanics and given by dx; = \/tr(Op)dt + n= Y2 dw; [18].
Solutions of eq.(C.2) are called quantum trajectories. We will write everything in the
basis where O is diagonal, i.e. O = >, A\g|k)(k| and suppose that all its eigenvalues
are different. We assume that the measurement operators N are diagonal in this basis,
N =37 vilk) (k| with A\, = v+ = 2 Re vy, in order to ensure for the process to be a
non-demolition measurement in absence of the dynamics generated by the Lindbladian
L. The eigenstates |k) will be called pointer states in what follows.

When « is large, the system density matrix will undergo quantum jumps between
the pointer states of the observable 0. Our objective is to characterise those jumps at
the stochastic process level and not only at the ensemble average level, i.e. we want
to show that the conditioned density matrix becomes itself, as far as the diagonal is
concerned and in the large « limit, a finite state Markov process (and not only that
the diagonal of the unconditioned density matrix is the probability density associated
to a finite state Markov process as in [219, ]). Especially, the objective of this paper
is to show how the jump rates between different states depend on the parameters of
the Lindbladian .Z and as a result how they also partially characterise it.

We first need to say a brief word about the scaling limit in order to state the results,
and it will be more carefully explained later in Section C.4.2. It is well known that if .Z
is generated by a simple Hamiltonian, a continuous strong measurement will tend to
Zeno freeze the system in one of the pointer states for an arbitrary long time, i.e. when
~v — oo all the jump rates will go to 0. As a result and to get meaningful predictions
in this limit, we need to adequately rescale the different parts of the dynamics to keep
finite jump rates in the large ~ limit. Such a rescaling is not required for all parts
of the dynamics because as was argued in [$0], jumps that emerge from a dissipative
coupling cannot be Zeno frozen. To get the most general scaling limit, we consequently
need to split the Lindbladian into different parts, actually four, that need to be rescaled
separately. We write Q; for the diagonal coefficients of p in the measurement eigenbasis,
the probabilities, and U;; for the non diagonal coefficients of p, the (not yet rescaled)
phases,

Qi = (ilpli), Uij = (ilplj), i # J.

We decompose L in four super-operators, A that sends the probabilities to the proba-
bilities, B the phases to the probabilities, C' the probabilities to the phases and D the
phases to the phases.

B oQ; = A(Q)i + B(U);
Oepr = L(pt) en { 0U;; = C(Q)ij + D(U)y5
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with A(Q)Z = Aka, B(U)l = BlklUkl, O(Q)l] = CZ]EQk, and D(U) == DZZUM ; summa-
tion over repeated indices is implicit. The reason why this decomposition is legitimate
will be clearer later but a good rationale for it is that as the strong measurement will
tend to shrink the phases, they will obviously need a differentiated treatment from the
probabilities. We now claim that A needs no rescaling, that C' and B need to scale like

v and D like 2. In what follow, we thus write :
A=A, B=,/B, C=./C,D =~D.

For such a scaling to be consistent with the complete positivity of the map generated
by .Z in the large ~ limit, we will see that D needs to be diagonal :

Di = —d;; 676!

We should also add that equation (C.2) only gives the dominant terms in an expan-
sion in power of 7 and that the sub-leading corrections may in general be needed for
compatibility with the complete positivity of the map associated to .Z. We just claim
that they have no impact on the large v limit as expected and omit them for clarity.

Our main result, which will be proved in section C.4.1, can then be stated as
follows :

Proposition. With the previous notations, when v — oo the finite dimensional distri-
butions of the conditioned density matriz p; converge to those of a finite state Markov
process on the projectors associated to the measurement eigenvectors. The jump rate
from site i to site j then reads in terms of the rescaled coefficients :

, 4 ci, B
i— AL 49 il
m; = Aj +2Re kzd AL

with Ay = %(‘VkP + ’Vl’2 — 2uy) + dyy.

In other words, in the strong measurement limit, the density matrix behaves as
a jump process between the projectors |i)(i| with jump rates given by the previous
formula. Let us now make several remarks.

Remark 1. The result does not depend on the efficiency 7 of the measurement (provided
it does not vanish).

Remark 2. The mean probabilities Q, := E[Q;] obtained by averaging over quantum
trajectories, satisfy the finite state Markov process equation

As a result, our framework can also be applied to systems with strong dissipation or
equivalently systems that are strongly measured with unrecorded outcomes. In such a
situation, the density matrix is diagonal and its evolution is simply given by the average
over trajectories of the jump process : 8t@j =3,0, m; In that case, the density matrix
itself is not a finite state Markov process but the probability distribution of a finite
state Markov process. In this simpler setting, result (2) can admittedly be derived
from the Lindblad equation (i.e. the SME averaged over the noise). However, remark
2 shows that it can be seen as a trivial byproduct of our more general proposition.
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Remark 3. The reader may wonder how our result written in terms of A, B,C and
D may be related to the generators of the Lindbladian. We claim and will prove in
Section C.4.2 that the most general scaling that can be written is the following :

ZL(p) = —i[yH +~*H¥9_p] + Z D[NJ)(p) ++* Z D[N,;ﬁag](p) + subleading terms
a b

where Ly denotes as above the Lindblad generator associated to N and where the
superscript "diag" means that the corresponding matrix has to be diagonal, H (without
superscript) is any self-adjoint matrix and the N, (without superscript) can be any
matrix. The subleading terms in v are irrelevant for the jump rate computation. Notice
that the most general scaling is again far from trivial, possibly with terms of order 0,
1 and 2 in «. Using the notation in equation (3) we get the following expression for
the terms appearing in the jump rates in (C.2) :

Al =37 ([(Na)jal* = 655 (NI N)s5)

C,ilBj?l = (Hzlélk — H;W(Sll) (ijéjl — Hljdjk) (: |Hij’25ik6jl fori < ] and k < l)

1 . . S o N
dij=352 {|(Ng“g)z‘z‘!2 + |[(Ne9) 5517 — Q(Nél”g)ii(Namg)jj} +i(H" = H3)
a
(C.2.1)

where the second line is understood without summation on repeated indices. If we
forget about the terms that need to be rescaled in 72, this means that the main
contribution to the jump rates comes from the non diagonal part of the matrices
appearing in the Lindblad generators. The second contribution comes from the non
diagonal parts of the Hamiltonian that need to be rescaled with a factor v to remain
relevant in the strong measurement limit. Before going to the proof of this result, we
give two simple examples of application of our formula.

C.3 Applications

We now study two examples where the jump rates depend in a very different way
on the system dynamics. In the first example, jumps will emerge from the competition
between a unitary evolution and continuous quantum measurement (B # 0 and C # 0) :
when the Hamiltonian is kept constant, the jump rates will go to zero when ~ goes
to infinity, the evolution will be progressively Zeno-frozen. In the second example, the
jumps will emerge from the competition between a dissipative evolution and continuous
quantum measurement (A # 0) : the jump rates will converge to a constant when ~
goes to infinity, the evolution will not be Zeno-frozen. A system in which those two
kinds of evolution are present at the same time has been studied in [0].

C.3.1 Simple Hamiltonian

The simplest non trivial example that one can consider is that of a two level sys-
tem, say a spin 1/2, evolving according to a Hamiltonian H = wo/2, and that is
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F1GURE C.1 — Sample trajectory of the density matrix coefficients Q; = (1]p¢|1) and
Uy = (0]p¢|1) for w = 1 and /7y = 0.25 on the left and /5 = 5.0 on the right. Notice
the change of regime from smooth Rabi oscillations to sharp quantum jumps when -~y
is increased. The remaining thin fluctuations around the limiting jump process are not
described in our framework.

continuously measured in a basis different from the energy basis. Indeed if the measu-
red observable commutes with the Hamiltonian, the system will collapse in one of the
Hamiltonian eigenvectors and never jump afterwards, a situation we want to avoid.
We thus chose to arbitrarily measure O = 0,/2 at a rate 72 so that the measurement
basis is the canonical basis. Eventually we need to rescale the Hamiltonian (or equi-
valently adimensionalise time) w = /yu in order to avoid a complete Zeno-freezing of
the jumps. In the absence of measurement the system Lindbladian simply reads :

z@p:q“?ﬂ%my

Expanding equation (C.3.1) gives :

A =0,

By =B = —By" = —B1° = —iu/2,

Cgl = Cllo = _Cél = Cgl = iu/2,
so that eventually we get the jump rates m{ = m} = u2. If we reintroduce the dimension
in the Hamiltonian, that is we keep w fixed for large yet fixed v we get an average time
between two jumps 7 = 7/w? which goes to oo when 7 goes to infinity. Thus the
well known Zeno effect [221] is recovered in this framework. An analogous result had
already been derived in this setting with a less general method in [61, 8, 7].

C.3.2 Simple thermal jumps

Another application of our result is the study of thermal jumps. The jump rates
and more details of the stochastic process had already been derived in [36] albeit with
an ad hoc method. We consider a simple two level system consisting of a ground state
|0) and an excited state |1) coupled to a thermal bath. It evolves according to an
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Qr

FIGURE C.2 — Sample trajectory of the density matrix coefficient Q; = (1|p¢|1) with
p = 0.5 for \/4 = 0.05 on the left and /4 = 10.0 on the right. Notice the change of
regime from a smooth thermalization to sharp quantum jumps when - is increased.

Hamiltonian H = $o, and the dissipative part of the evolution is induced by o and
o_ in the form of two Lindblad generators :

1
Lai = 04p0x — §{U$U:t7p}‘
Eventually the Lindbladian in the absence of measurement reads :
Z(p) = —ilH, p| + ApD[o_](p) + A(1 = p) Do 4] (p),

where ) is the coupling strength with the bath and p := 1/(1+4e~%¥) is the probability
to be in the ground state at thermal equilibrium. This is a simple yet legitimate model
for the evolution of a system coupled to a thermal bath [222]. We also assume that its
energy is continuously measured (i.e. O = 0,) at a rate v and want to characterise the
thermally activated quantum jumps that appear in the large ~ limit. This is actually
a trivial question with the help of our proposition. Expanding equation (C.3.2) gives,
with the previous notations :

As =, A} =A(1-p)
B=0
c=0

So that A immediately encodes the jump rates. We recover the Gibbs equilibrium dis-
tribution for the occupation ratios and see that the jump rates are directly proportional
to the system-bath coupling strength.

C.4 Proofs

C.4.1 Proof of the proposition

Here our objective is to prove that a density matrix obeying equation (C.2) becomes
a finite state Markov process on the projectors on the eigenvectors of the measured
observable in the large ~ limit and to compute the jump rates mé- or equivalently
the Markov transition matrix M. Using the previous notations equation (C.2) can be
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expanded to :
dQi = A(Q)idt + B(Y);dt + iy Qi (A — Y- Qe ) AW,
K
dYij = ’Y(C(Q)z‘j SEAY Yij)dt + v Yi; (Vi + =y Qk/\k)th-
K

We have used the additional notation Y;; := /yU;; and Ay; := 5 (|vi[>+|v;|> —2v05)% +
di;. Recall that A\, = v, + 1. The process is written in terms of the rescaled variables
Q and Y but we shall sometimes abbreviate the notation by using p to collectively
refer to these variables; for instance f(p) is going to be a short name for f(Q,Y).

C.4.1.a Strategy :

The main object we will consider is the probability kernel K;(pp,dp) to go from
a given density matrix pp to another density matrix p, up to dp, after a time t. The
kernel K; verifies the Kolmogorov equation 0;K; = K:® where ® is the second or-
der differential operator (or Dynkin operator) associated to the SDE (C.4.1). These
concepts will be defined in more details below. At this stage, we do not need to write
© explicitly but simply to notice that, because of It6’s formula, the coefficients in front
of the noise terms will come squared so that © will only contain terms of order 0 and
2in /7. As a result we write

and will compute K; = e®0T72 for large ~.

The main argument is then the following. Any second order operator associated to
well defined SDE’s is a non-positive operator, so that when v is very large, even after
a small amount of time, only the eigenvectors that are in the kernel of ©5 will remain
when considering €72, The idea is then to perform a perturbative expansion around
those remaining eigenvectors and compute the jump rate between them.

C.4.1.b Definitions

We first start by introducing some definitions and notations (see [21, 20] for more
detail). The kernel K; codes for the probability of a solution of the flow equation
started at pg to be at p at time ¢. It can be used to compute the average of any regular
function f :

ELf (] = [ Koo, dp) £(0).

with p; the solution of the SDE started at pg at time 0 and the integration domain is
the set? of density operators . The probability kernel K; can also be viewed as an
operator acting on functions defined on K via :

Ki: f = Kof with (K. f)(p) = / Ko, d) 1),

2. By the Lindblad construction, the flow associated to the SDE defined above preserves this set.
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An equation for Ky can be obtained by computing the time derivative of E[f(p¢)]
in two different ways. One can first apply Itd calculus to f(p) :

df(pe) = (Df)(pe) dt + (--- )dW4,

with ® the second order differential operator associated to the SDEs (C.4.1) (also
called Dynkin operator or sometimes dual Fokker-Planck operator). A function f(p¢)
is called a local martingale if there is no drift terms in its Itd derivative, that is if
Df=0.

Thanks to the defining property of the Ito calculus, the above equation implies

OHE[f (pr)] = E[(Df) ()],
Writing the expectations in terms of the probability kernel K; gives

/ 8th(po,dp)f(p)=/ Ki(po,dp) (D f)(p),
peEK peEK

for any function f. Hence, we get what we had claimed in the introduction of the proof,
0Ky = KD,

as an equation on operators acting on functions over . The formal solution of this
differential equation, with initial data Ky—g = Id, is

K, = exp(t9),

again viewed as an operator identity.
The same can be done in the dual picture. If f(p) and u(dp) respectively denote a
function and a measure on K, the duality is the obvious one :

<t >i= [ uldp) flp).

peK

If © is an operator acting on functions, its dual O7 acts on measures via
<OTp, f>=< 1, 0f >.

In particular, the dual ®7 of the Dynkin operator ® is the usual Fokker-Planck ope-
rator.
By duality, the flow on p defined by the SDE induces a flow on the measures via

po — py - with i (dp) := / to(dpo) Ki(po, dp),
po€EK
Of course it is such that < pg, f >=< po, Kif >, so that we can write this flow as
we = K[ jo. By definition we then have

Ot = DT

or equivalently &; K7 = DT K. A measure is said to be invariant if it is constant in
time, 4.e. if it is annihilated by ©7. Invariant measures and local martingales are thus
dual objects. Now that we have reminded the reader of these definitions, we can apply
the announced strategy.
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C.4.1.c The large v limit of the transition kernel

Let us proceed. Let F; be the basis diagonalizing the operator ©, let E; be the
associated eigenvalues, ©F; = E; F;, E; < 0, and let AT be the associated dual basis
so that :

Ki(po, dp) = > """ Fi(po) A (dp).
I

All E;, F; and A’ depend on . Since ® = D3 4+ ®g, perturbation theory tells
that

Er=7*er+el+y e +0(v?),
Fr=fr+y'ff +O(y™?),
A =p" +97 ] +0(7?),

with e an eigenvalue of D9 and f; (resp. u!) the corresponding eigenvector (resp. dual
eigenvector). Hence, only the terms corresponding to eigenvalues F; whose dominating
contribution ey vanishes survive in the pointwise limit of the sum (C.4.1.c) :

lim Ki(po,dp) = el f; I(dp).
lim Ky (po, dp) MZI::O fr(po) 1’ (dp)
Restricting the sum to ey = 0 selects f7 to be in the kernel of D9 : Do f; = 0.
Let now f; be a basis of Ker(®3) and u' be the associated dual basis of Ker(D1),
so that fr (with D2 f; = 0) is a linear combination of f; : f; = 37, f;(/ i/ f1).
Degenerate perturbation theory around the zero eigenvalue tells us that ©o f]
Dof1 = eV fr. Integrating this last equation against p; yields

/M (dp) Do fr)(p —61/M (dp) f1(p),

so that e(} are eigenvalues of the matrix mi = [ 17 Dofr and f; the corresponding
eigenvectors.

Consequently, we may write the limiting formula for the point-wise limit of the
kernel K; in the basis f; as

Jim_ K (po, dp) = ng po) (e )‘ui(dp),

with

_ / 1 (dp) (Do fi)(p),

where f; is a basis of Ker®, and p/ is the dual basis. Recall that ®5 is the second order
differential operator associated to SDE’s. Hence, to any element of Ker®, corresponds
a (local) martingale for the associated stochastic process. The dual basis of invariant
measures ¢ € Ker®3 that we shall identify below have disjoint supports so that we
can use those to index the states of a finite dimensional Markov chain (we say that
the chain is in the state i if p is in the support of 4¢) and to ensure the consistency of
the associated process. The large v limit thus projects the original process on a finite
state Markov chain whose states are indexed by the ®s-martingales and the matrix M
contains the transition probabilities between the states.
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C.4.1.d Computing the Markov transition matrix :

We now need to compute the f’s and the p’s to eventually get the Markov matrix
M. The operator ®s is the second order operator associated to the set of SDE’s :

dQ; = v Qi(Ni — Y QuAr) AW
k
dYij = (C(Q)z’j SAYY Yz‘j)dt + Y (Vi +ui=> Qk)\k>th
k

To compute the invariant measures associated to this SDE, we could try to solve its
Fokker-Planck equation. However as the invariant measures are singular in the Q’s, it
is easier to study the stochastic process directly. Let us first notice that the @’s are
bounded martingales and as a result they converge almost surely to one of the fixed
points. It is easy to see that the only fixed points of the noise term are of the form
Qr = dir where 7 is random and depends on the trajectory. (Recall that we assumed
that all \; were distinct). This is an expected result because eqs.(C.4.1.d), but without
the C(Q);;-terms, are those for indirect non-demolition measurements : it simply means
that, because of measurement, the probabilities tend to collapse with all the mass in
a (random) pointer state. These are all linearly independent martingales and

fi(p) := Q; € KerDs.

form a basis of Ker®,. Notice that >, f; = 1 and this ensures that >, mf = 0. There
are as many dual invariant forms du’s as there are fixed points and we have

p'(dp) = 6"(dQ) p'(dY) € KerD3,

where §(dQ) = §(1 — Q;)dQ; [1,£ 6(Q;)dQj, with §(Q)dQ the Dirac measure, and
pu'(dY) is the normalized Y-dependence of the invariant measure conditioned on the
fact that the trajectory in the Q-subspace converge to ); = d;;. Notice that in general,
p*(dY) has no reason to be peaked and is actually rather broad with power law tails.
Computing p‘(dY) is difficult in general because ij need not be real. A possible
solution is to solve the equation for Yj; to compute its moments. But it is even easier
to notice that neither p*(dY) nor all its moments will actually ever be needed to
compute the transition rates [ ‘Do fj which only depend on the average value of Y.
This average can be easily computed. Let us integrate the SDE for Y},; conditioned on

Ql — 51'1 for all [ :

Y = /Ot (C/il - Aszkl>dt + \/77/; Y (Vk: +u - )\i>th

We now take the average and write yt, = E[Y|Q. = 6.;] which gives g, = Ci, — Auyl,

so that yi,(t) = % + yi,(0)e=2kt and, since Re Ay, > 0,
, Ci

() = E[Y|Q. = 0. kL

Yra(t) YulQ il o0 Ay

Recall that Ay := %(|I/k’2 + ’VZP — 2Vkl7[)2 ~+ dy;-
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We can now compute the transition rates mz- = [ piDg fj- The operator ®g can be
easily computed as it is the operator associated to the (S)DE d@; = A(Q);dt+B(Y);dt,
without noisy terms, so that ®g is the first order differential operator :

Do = Y [A(Q): + B(Y)i] do,

)

Recalling that fj(p) = Q; we get (with implicit summation on repeated indices) :
mh = / 1'Dof;
= [L#'aQ)u(ay) (4fQc + B'Yi)

=4 [ F(aQQuiaY) + B! [ p(aY)¥ie'(aQ)

. B
— Al‘ + J kl ,
J % Ap

which is the result that was announced previously.

C.4.2 What is the most general jumpy scaling limit ?

We now prove that we have derived the most general scaling limit that gives rise
to quantum jumps. For A, B and C we obviously have the most general scaling as if
they were scaled with a smaller power, they would become irrelevant in the scaling
limit (or equivalently the Zeno effect would kill the associated transition rates), and if
they were scaled with a bigger power, the jump rates would diverge in the large v limit
and the limit would not be jumpy anymore. To say it differently, the simple fact that
we ask the limit to be jumpy and that the system parameters have an influence fixes
completely the scaling. We now need to show, as we have previously announced, that
the phase-phase coupling term D in the Lindbladian is always irrelevant no matter
how it is rescaled unless it is diagonal. We will first show that that the non diagonal
terms cannot grow faster than /4 and then prove that such a limiting scaling would
still make them irrelevant. Eventually we prove the link between the scaling expressed
in terms of A, B, C' and D and the Linblad generators of remark 3.

D cannot grow faster than /7, unless diagonal : Let us suppose that D can
grow faster than /7. It would then need to be rescaled independently of A, B and
C which were shown to grow no faster than /7. As a result D needs to be itself the
generator of a completely positive map ®; that couples only the phases with the phases.
Let us suppose that we have a completely positive application ®; with generator 5
that couples only the phases and write it using the usual decomposition :

ZL(p)=—i[H, p] +Z (M“pM‘”L - %{M“TMa,p}),

for some operators M®. We ask that .2 does not act on the diagonal coefficients, i.e.
Z(]i)(i]) = 0 for any projector on the measurement eigenvector |i)(i|. In particular,
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imposing that the diagonal elements vanish, 4.e. (j]-Z(|i)(i])|) = 0 for any j, reads

Z (!M;LZF - 5ij(MaTMa)jj) =0.

a

Thus, for j # i, we get
>l <o,
a

and hence MJ; = 0 for all a and j = 4. That is, all the M“’s are diagonal matrices. The
Hamiltonian part of the flow also needs to be diagonal. Indeed, if Hy; # 0 for some
k and I, k # [, we have (k|[H, |l)(l|]|l) = Hy; so H couples the probabilities to the
phase which is forbidden. Therefore, H is also diagonal and as a result .Z cannot mix
the phases. Writing M® = >, n{|k)(k|, this means that at most D(Y);; = —D;;Yj,
with Dy; = £ 3, (|n¢|* + |n31|2 —2n¢n$) +i(H; — Hjj), a term that is proportional to
the deterministic part of the measurement acting on the phase. The only non-trivial
consistent scaling is that D scales as 2 and D(Y);; = —'YQdZ-jYij. Notice that we have
proved at the same time that in the generators picture, the terms contributing to D
come from a diagonal Hamiltonian and the diagonal part of the matrices M® appearing
in the Lindblad generator.

If D scales as /7 then it is irrelevant : Let us suppose that D = 4D which
is the limiting scaling allowed for a non-diagonal D. In that case the Fokker-Planck
operator associated to equation (C.2) needs to be written with a new term of order ~
that is ® = Do + /701 + ¥D2 where D is the Fokker-Planck operator associated to
the (S)DE : dY;; = ijlYkl dt. We thus have :
D1 =Y DiYudy,

ijkl

We now proceed with the same perturbative expansion as before except this time
we assume that a term of order v remains, i.e. that K; = e/7®2Hv7P14190 The first
two terms of the eigenvalue expansion will need to be zero to give a non trivial jumpy
behavior in the large ~ limit. We use the same notation as before, that is :

Fr=fi+v"?f+77 7 +
Er=0xy+0x7+ef+..
for the eigen-modes with leading vanishing eigenvalues. We then have, up to second
order in /v :
Daofr=0
Daf] +D1fr =0
Doff +D1f7 +Dofr =er fi
Recall that the f’s only depend on 2 and are thus the same as before, that is
1i(Q,Y) = Q; which gives in particular ©; f; = 0. In that case we have i)gf} =0 so

that f} € Ker(®2) and as a consequence, D, f} is also zero. As a result, the terms of
order v no longer have any role to play in the computations and D is irrelevant.
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The scaling provided in remark 3 is the most general : Now that we have
the most general scaling in terms of A, B, C' and D, we only need to relate them to
the expression of the Lindblad generators. Using the generic Linbladian of equation
(C.4.2) we get :
AL =37 (Mg = o5 (et )
a

This show that if the M,’s have non diagonal parts, then they have to be of order zero
in 7. As a result, the contribution of the M,’s having non diagonal parts to B and C
is also of order zero and vanishes once we consider the rescaled coefficients B and C.
If the M,’s are purely diagonal, we have already proved that they only contribute to
D. As a result, the only contributions to B and C come from the Hamiltonian and we
compute :

CuBY = (Hydy — Hyidq) (Hjudj — Hyjojn)

This means that only the non diagonal parts contribute as k # [ and they need to
be rescaled as v to be relevant. Eventually, the diagonal parts of the M,’s and of H
appear in D and consequently need to be rescaled with a factor 42 to stay relevant in
the large v limit. To summarise, the non diagonal coefficients of the M,’s need not be
rescaled, the non diagonal coefficients of the Hamiltonian need to be rescaled with a
factor /7 and the diagonal part of the Hamiltonian and the M,’s need to be rescaled
with a factor . This proves the form of equation (3).

C.5 Discussion

After these lengthy derivations, let us step back and comment on the mathematical
results and their physical implications. We have shown that an open quantum system
that is continuously measured has an evolution that gets jumpy when the measurement
process dominates. Our derivation shows that quantum jumps are ubiquitous in the
sense that any quantum system subjected to a tight monitoring will undergo quantum
jumps (or will simply be frozen, i.e. will have a jump rate equal to zero).

However, we should insist that for large but finite ~y, the evolution of the system
density matrix is still continuous and the jumps —though they look instantaneous in
the limit— have a finite duration of order y~!. In this setting, quantum jumps are not
strictly instantaneous and are only the effective description of a more fundamental
evolution. This is in stark contrast with the quantum jumps that appear directly
in stochastic master equations for Poissonian unravellings. Our derivation thus gives
some insights into the debate about the reality of quantum jumps. The conclusions
will however depend on the foundational attitude of the reader. If one is ready to
give an ontological status to the conditioned density matrix — as it is the case for
example in dynamical reduction models [16, 72]—, then the jumps we observe are really
a consequence of measurement and can even be assumed to be progressively created
by measurement. From a more epistemic or Bayesian perspective, measurements could
just be progressively revealing, as well as influencing, a (yet to be specified) underlying
jump process. As far as we know, a specific model for the second option has not been
provided yet —though it should certainly be investigated.
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From a more practical point of view, we have provided a simple analytical recipe
to compute the effective evolution of systems that are either continuously monitored
or subjected to strong dissipation. The jump rates are simple analytical functions of
the measured operator and the Linbladian. Our results have been derived for a single
measured observable but can effortlessly be generalised to a larger set of commuting
observables. Finally, we should add that we have voluntarily neglected the study of
the remaining fluctuations around the jump process. This admittedly difficult but
fascinating enquiry is, we believe, the next step in the thorough understanding of
quantum jumps.
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Annexe D

Echardes dans les trajectoires quan-
tiques

L’appendice qui suit est directement tiré de l'article Spikes in quantum trajectories
[1] écrit par M. Bauer, D. Bernard et 'auteur et publié dans Physical Review A.
Seules quelques modifications de notation ont été effectuées pour éviter de dérouter
le lecteur et cet appendice peut étre lu sans référence au reste. On y montre que des
échardes (spikes) viennent décorer les sauts quantiques lorsqu’un systéme est soumis
a une mesure continue forte. On effectue une analogie avec un modele jouet classique
et on discute l'interprétation du phénomeéne.

Abstract : A quantum system subjected to a strong continuous monitoring under-
goes quantum jumps. This very well known fact hides a neglected subtlety : sharp scale-
invariant fluctuations invariably decorate the jump process even in the limit where the
measurement rate is very large. This article is devoted to the quantitative study of
these remaining fluctuations, which we call spikes, and propounds a physical interpre-
tation. We start by introducing a classical model where the origin of these fluctuations
is more intuitive and then jump to the quantum realm where their existence is irreduci-
bly puzzling. We show why in some situations, and contrary to what would naively be
expected, the spikes cannot be neglected. Eventually we show that this phenomenon
gives some insights into the procedure of quantum smoothing and into the choice of
primitive ontology in quantum foundations.

D.1 Introduction

The quantum jumps emerging from the continuous monitoring of a quantum sys-
tem have been known since the begining of quantum mechanics [214] and have been
the subject of both theoretical [223, 61, 86] and experimental [211, , , ] in-
vestigation. It has been emphasized recently [5], though it was certainly expected, that
they are a generic phenomenon in the sense that they necessarily appear anytime a
quantum system is subjected to a strong continuous measurement. However, fluctua-
tions around the dominant jump process are unavoidable. They persist in the strong
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F1GURE D.1 — Schematics of the classical model considered. The particle jumps are
recorded in a variable R, an imperfect camera yields blurry photos from which a binary
variable §; is extracted. An estimate @y of R; is constructed from the §,’s for u < t.
The obtained @ is expected to be close to R; when the camera takes many images
per unit time.

measurement limit and are not artifacts of experimental uncertainties, a fact which
seems to have been largely overlooked in the literature. Even in the limit of infinitely
strong continuous measurements, the Poissonian jumps of the density matrix always
appear decorated with a residual noise. When the measurement rate becomes infinite,
this decorating noise becomes punctual and has a vanishing impact on the finite di-
mensional probability distributions. However, as we will see, this does not mean that
it should be discarded all together.

The objective of this article is to prove that some sharp fluctuations, which we call
spikes, indeed persist even in the infinitely strong measurement limit and to show that
they can be precisely quantified. We start by studying a classical toy model of iterated
imperfect measurement where the phenomenon of spikes appears in a very clear and
non puzzling way. We then go to the quantum realm where we show that a continuously
monitored qubit displays the same type of surprising fluctuations. In that case, no
straightforward physical interpretation can be provided and the phenomenon remains
irreducibly startling. We eventually discuss how spikes can give a criterion to evaluate
the different proposals for a quantum smoothing procedure and very partially unriddle
the debate on the choice of what can constitute the stuff in quantum foundations.

D.2 A classical toy model

Let us start with a model for a classical iterated imperfect measurement. We consi-
der a classical particle hopping between two compartments "left" and "right" of a box.
To make things simpler we start with a discrete time and assume that the particle has
a probability A\ to change of compartment at every step. Our objective is to track the
real position R; of the particle (R, = 1 for "left" and R, = 0 for "right"). For that
matter we take a photo of the box at each time step but we assume that the camera
is bad and provides us only with very blurry pictures. Every photo yields a binary
answer 0, = £1 which gives some information about the possible localization of the
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particle :

1+e¢

P(6,, = 1|particle on the left) =
1—
P(4,, = 1|particle on the right) = Tg

where ¢ €0, 1] represents the measurement precision. What we have constructed (see
Fig. D.1) is actually one of the simplest possible instance of a Hidden Markov Model
[224]. As often in such a situation, we are interested in knowing the best estimate @,
that the particle is on the left at the n-th iteration, i.e. :

@, = P(particle on the left at time n|pictures before n)
=P(R, = 1’{5k}k§n)

To compute @11, knowing @), and the result from the last picture d,1, we simply
need to :
— Incorporate the information from the last measurement result d,,41 using Bayes
rule :

Qn+1 = P(left at n+1[{0 }r<n, On+1)
_ IP((Sn_H’Rn_H = 1)P<Rn+1 = 1’{6k}k§n)
P (041 {0k }k<n)

— Take into account the fact that we know that the particle tends to jump during
the time interval separating two photos :

P(Rpi1=1|R,=1)=1- A
P(Rpi1 =1|R, =0) = A

Using the law of total probability and the fact that P(R,+1|R,) is independent from

{0k }r<n gives
P(Ryt1 = {0k} k<n) = (1 = AN)Qn + A1 = Qn).

Similarly the law of total probability can be used to compute the denominator of
equation (D.2). Eventually, inserting formulae (D.2) and (D.2) in equation (D.2) one
can construct Qn+1 from @, and §,+1 : Elementary algebra and standard probability
theory then give :

(1+0n41) [(1 = N)Qn + A1 — Qn)]
1+ 220011 (1= N)Qn + ML — Qn) — 1/2]

Qn+1 == (D21)

i.e. Qn can be iteratively constructed from {dj}r<,. To summarize we have a real
physical quantity R, that jumps between 0 and 1. The only information available at
step n is the collection of §; for k < n from which we can construct, the best estimation
@y, of R, at the step n. Our objective is to show the similarities and differences between
the behavior of R,,, the physical quantity, and @Q,, which represents what we know of
R,. We will loosely say that we have a lot of information on R, if @, is close to 0 or
1.
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For computational convenience, one can derive the continuous version of the pre-
vious discrete evolution in the limit of infinitely blurry pictures taken at an infinitely
high frequency (so that information is extracted continuously at a finite rate). With
the following rescaling and definitions :

t=ndt, = Vot/2, \=Ait/2,

one can write a stochastic differential equation ' (in the Ité form) for the evolution of

Qr

(1
4G = (5~ Q) dt+ 7 Qul1 - QI (D.2.2)
where W; is a Wiener process (i.e. % is the Gaussian white noise). The details of

the derivation can be found in appendix D.6. Let us emphasize the fact that this
continuous limit is only needed to get closed form results and to give a more intuitive
understanding of the phenomena at play. It is by no means required for the "spikes" to
emerge. Even with a fixed value of £ < 1 say € = 1/2 the plots will look qualitatively
the same ; the results we are going to show are not an artifact of the rescaling.
Equation (D.2.2) is now easy to interpret with the physical picture in mind. When
v is small, i.e. when the rate at which information is extracted is negligible compared
to the jump rate, the evolution is dominated by the drift term which tends to drag
the probability to 1/2, that is to complete ignorance. When + is large, the noise term
dominates and ); tends to be attracted to the fixed points of the diffusion, 0 and 1, 7.e.
perfect certainty. This intuition is largely confirmed by a direct numerical simulation of
the evolution (see Fig. D.2). However, it misses an important aspect of the fluctuations.
The numerical simulations of Fig. D.2 show that our estimate @); indeed undergoes
jumps mirroring those of R; when ~ is large. What is more surprising is the fact that
the sharp fluctuations around the plateaus do not disappear for large v as one would
naively expect. They become sharper and sharper but their statistics do converge to
a limit. These remaining net fluctuations, which become instantaneous when v — oo,
are what we call spikes. Spikes can be characterized by the following proposition :

Proposition. In a time interval [0,T] when Ry = 0, the probability to have N spikes
with maxima in the domain D C [0,T] %[0, 1] is a Poisson variable, i.e. P(N) = ’%e_“
with intensity p = [ dv. The measure dv is given by :

A

dV:@

dQdt

The situation is completely symmetric when R; = 1, the spikes then start from the
top of the graph, i.e. Q = 1 and go down; in this case dv = O_#Q)Q d@dt. The proof
is provided in appendix D.7.1 and extensively uses the fact that when ~ is large, Q; is
almost a continuous martingale, 7.e. a Brownian motion up to a time re-parametrization

[20, 21].

1. Incidentally, eq. (D.2.2) can also be seen as describing the continuous energy monitoring of a
qubit coupled to a thermal bath at infinite temperature (see e.g. [30]), in that case, Q: is the probability
to find the qubit in the ground state). This means that the features of this classical toy model can also
be displayed by genuinely quantum systems.
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FIGURE D.2 — Emergence of the spikes : (; for various choices of . Top-left /v = 0.1,
the information flow is weak and @ fluctuates around 1/2. As 7 increases, Q; gets
closer to R; but sharp excursions persist. No qualitative difference can be seen with
the naked eye between /7 = 100 and v — +o0.
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F1GURE D.3 — Details of the spikes in an interval where R; = 0. The number of spikes
(here 3) in the domain D is quantified by the proposition.
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Let us remark a few straightforward consequences of the proposition. Spikes are
scale invariant fluctuations. More precisely, Fig. D.3 would look exactly the same with
the transformations ¢ — At and Q — AQ. There are consequently infinitely many
small spikes (but a finite number of spikes bigger than Qg for Qo > 0).

This phenomenon of spikes could be thought to have no interesting practical conse-
quences, after all as there is only a countable number of punctual spikes in the v — 400
limit, the simple jump process with the spikes removed is almost everywhere equal to
the one dressed with the full fluctuations. However, if we look at quantities like arrival
times, taking into account the spikes is fundamental. The probability that @); reaches
a region of relative uncertainty, say 0.4 < @; < 0.6, in a given time interval has a
dramatically higher value once the spikes are taken into account. As a more concrete
example, consider two consecutive jumps of R and the (unknown) random times ¢;
and to when they happen. Then we can see from the proposition that, in the interval
Jt1,t2[, we have 50% chance to make at least one wrong prediction of R; using Q, i.e.

P <3t7 |Qr — Ryl > ;) = %7
even though strictly nothing physical happens inside this interval and the measurement
rate is infinite! Had we naively taken the large ~ limit we would have imagined this
probability to be 0.

However as useful as the fine description of the spikes is in practice, it has no dra-
matic fundamental implications. No physical quantity is intrinsically "spiky", only our
information on the particle position behaves in such a peculiar way. Had we considered
a forward-backward (or smoothed) estimate, i.e. had we used all the photos to retro-
dict the position of the particle at an earlier time, the estimate Q7 = E[R|dy, u € R]
would have been more regular and notably spikeless (see Fig. D.4). At most this means
that the (filtered) Bayesian estimate of a quantity does not need to behave like the
quantity itself even in the limit where the estimate is naively expected to be faithful.
The emergence of a similar phenomenon in the quantum realm, where no underlying
spikeless jump process can simply be invoked, should be more surprising.

D.3 The quantum realm

A good and widely studied quantum analog of our classical toy model is the conti-
nuous monitoring of a quantum system. For simplicity we will only treat the case of
a 2-level quantum system but conjecture that the phenomenon we see is ubiquitous
in the sense that any continuously measured quantum system would display similar
fluctuations.

Let us consider the continuous monitoring of a qubit (e.g. a spin 1/2 in a magnetic
field). In analogy with the classical toy model, this can be seen as an iteration of weak
measurements on a qubit [19, , , 7] carried out via repeated interactions with
probes. In such a setting a probe interacts for some time with the system before being
measured by a perfect detector (see Fig. D.5). Because of the entanglement between the
probe and the system, this measurement result gives some information on the system
state. The probe consequently plays exactly the same role as the blurry picture of the
classical case. Using the standard rules of quantum mechanics, it is straightforward to



D.3. THE QUANTUM REALM 153

1 i y=01 1 N 5 =10
:
Rt [/w\
\-/\\\‘//\\

0 0 A/LJ \'\'\/\AAJ \/VJ

0 0y 0 10¢
L M v =10 ! i v =100
0} — 0

0 10¢ 0 10¢

FIGURE D.4 — The smoothed estimate QF = E[R;|d,,u € R] of R; shows no spikes.

get the evolution of the system state p as a function of time knowing the initial state
of the probes, the unitary system-probe interaction U;,; and the measurement results.
In what follows, we will go directly to the continuous limit of this scheme (i.e. quickly
repeated weak interactions) but again, the results qualitatively hold in the discrete
case.

We suppose that we continuously monitor the qubit in a basis different? from
its energy basis (e.g. we continuously measure a spin in a direction orthogonal to
that of the external magnetic field). Using continuous quantum measurement theory
[36, 37, 40, , 39, ] one can get a stochastic master equation (SME) for the
evolution of the density matrix p; of the qubit (with 7 =1) :

XY
dPt = — Zg[ay, pt]dt — g [Uz [027 Pt]] de

+ 7 (02pt + pro, — 2tr[o,pi]) AWy,

where we have considered for simplicity a measurement along Oz and a magnetic field
along Oy. The first term corresponds to the unitary part of the system evolution and
the two other terms correspond respectively to the decoherence and localization (or
collapse) induced by the measurement scheme. In this setting, the analogous Y; of
the integrated information from the photos ), _; dx, often called the signal, verifies
dY; = 2\/ytr[o.p]dt + dW;. To avoid a complete Zeno freezing of the evolution, which
will undoubtedly happen if we increase the measurement rate carelessly, we increase
the magnetic field proportionally to the measurement rate, i.e. we take {2 = |/yw with
w constant. As before we are interested in the quantity Q; = (+|.p¢|+)- the probability
that the qubit is found in the state |+), .

2. This is necessary to avoid a trivial evolution, for if the measurement operator and the Hamil-
tonian commute, the density matrix will simply be progressively projected on a measurement pointer
state with no subsequent evolution.
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F1cURE D.5 — Repeated interaction scheme. A collection of probes, typically two le-
vel systems, successively interact unitarily with the system before being projectively
measured by a perfect detector. The probability Q; = (1|p¢|) for the system to be
in some state [¢)) can be computed using the measurement results and the standard
rules of quantum mechanics. Notice the analogy with the classical scheme of Fig. D.1.
In this setting, the randomness in the evolution does not come from experimental
imperfections but is purely of quantum origin.

The direct numerical simulations of eq. (D.3) for various values of v are shown
on Fig. D.6. As before, we see the emergence of (quantum) spikes around a jumpy
trajectory which —at first sight— seem to have the same characteristic than that of Fig.
D.2. Actually, the analogy is not just qualitative and the spikes can be shown to be
characterized by the same Poisson process as before, this time with measure :

w2

QQ

The proof uses essentially the same method as before (see appendix D.7.2).

dv = = dQdt

With the help of numerical simulations, we conjecture that the phenomenon of
spikes is ubiquitous in tightly monitored quantum systems. However, it is less clear to
see along which direction of the density operator space the spikes should occur in a more
general setting. This is a question which should be studied further and a fully rigorous
proof of the generality of the spikes, completed by their precise characterization, would

be gripping.

D.4 Discussion

We have shown that the phenomenon of spikes could be understood as a pure arti-
fact of Bayesian filtering in a classical toy model where nothing physical (in that case
the particle classical position Ry) is spiky. However, the interpretation of the very same
phenomenon in the quantum case is more problematic as we have no good underlying
spikeless jump process. Moreover, in the case we have considered, the quantum state
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F1cURE D.6 — Emergence of the spikes : Q; for various choices of +. Again, no qua-
litative difference can be seen with the naked eye between ,/y = 100 and v — +o0.
We take 2 = 2+ /7, i.e. {2 not linear in v to keep a non trivial evolution (some Rabi
oscillations) at v ~ 0. Notice that this time there is no underlying jump process R;.

stays pure® during the whole evolution making the spikes difficult to dismiss as a spu-
rious consequence of ignorance. One could still argue that nothing physical is spiky in
our quantum model by resorting to a purely epistemic interpretation of the quantum
state but this point of view creates other difficulties [62].

One can nevertheless learn from the classical situation. For the classical toy model,
we have claimed that using smoothing instead of filtering would remove the spikes.
Different quantum analogs of smoothing have been proposed in the literature [220, ,

]. In [150], the authors define the past quantum state which is a quantum equivalent
of smoothing rooted in the weak value formalism. The quantities computed with the
past quantum state are more regular than p; and it can be checked numerically that
they are spikeless which explains the popularity of the procedure. However because
it is based on the weak value, this formalism suffers from the same difficulties of
interpretation [119]. In an other proposal [151], the authors define a procedure called
quantum state smoothing which seems more appealing at first because it keeps the usual
interpretation of the quantum state. However, it is of no help in our specific situation
as it keeps a pure quantum state unchanged and can only be used to recover purity.
The different proposals for a quantum equivalent of smoothing have various advantages
and drawbacks and their ability to trim the spikes could give a quantitative criterion
to compare them.

Spikes could also shed some light on the foundations of quantum mechanics. In ob-
jective collapse theories [72], the primitive ontology [113] —i.e. the stuff in 3d space— is

3. This can be seen by computing d(det p;) using It6 formula and noticing that det p; is a super-
martingale converging exponentially fast to 0 so that the evolution purifies the state. A general proof,
valid in arbitrary dimension, is provided for example in [225]
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often derived directly from the quantum state via a quantum average of the mass den-
sity. This is done most of the time for Continuous Spontaneous Localization (CSL) and
sometimes for Ghirardi-Rimini-Weber (GRW) theory [10] (called in that case GRWm
[227, ]). In these theories, if one considers a particle in a deep double-well potential
whose position is continuously and strongly monitored, the effective equation descri-
bing the system density matrix in the basis {|right well), |left well)} will be exactly
eq. (D.3). In such a setting, the spikes will correspond to actual sharp fluctuations
of the mass density, i.e. fluctuations of matter, thus making the primitive ontology a
bit puzzling. An other possibility, advocated e.g. in [229] consists in basing the pri-
mitive ontology on the signal (in this article Y;) as it is sometimes done for GRW
with the flash ontology (GRWTf). It is interesting to see that the spikes do not show
up in the signal as they are hidden by the noise. Indeed, in our simplified example,
dY; = 2,/ytr[o.ps]dt + dW; so that the spiky character of p; disappears ? after integra-
tion even for large . Spikes consequently give another relevant criterion to compare
the different propositions of primitive ontology for collapse models.

A last interesting and fundamental problem is the observation of spikes in expe-
riments. One could look at experiments of repeated interactions as [16, 17]. Provided
no averaging is applied to the measurement results, one can reconstruct the spikes wi-
thout problems. In such a setting, spikes have already been observed qualitatively but
a precise verification of the quantitative agreement with our model is still lacking’.

D.5 Conclusion

We have shown that the filtered estimate of the position of a continuously monito-
red classical particle showed sharp fluctuations, spikes, unrelated to the real physical
behavior of the system. Albeit surprising, this finding could simply be understood as
an artifact of a Bayesian updating. We have then shown that a similar phenomenon
could be observed in 2-level quantum systems and conjectured that it were actually
ubiquitous, showing up in any quantum system of arbitrary finite dimension. In the
quantum realm, spikes have no simple explanation and remain a puzzling phenome-
non. Nevertheless, they can be helpful to discriminate between different proposals of
quantum smoothing and to shed some light on the problem of the choice of primitive
ontology in dynamical reduction models. From a mathematical point a view, there is
still some work to be done to clarify the status of spikes in higher dimension. A precise
experimental verification of the spike statistics is also needed. Eventually, a better in-
tuitive understanding of the spikes in the quantum case could make it a useful concept
in quantum foundations.

4. The numerical verification of this statement has been done in [8], admittedly in the different
context of open quantum random walks.
5. Mostly because spikes have often been mistaken for experimental errors in need for a fix
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D.6 Technical complement 1 : Continuous limit of the toy mo-
del

In this appendix, we provide a physicist proof of equation (D.2.2) of the main text,
which is the limit of equation (D.2.1) when A and ¢ are small. As we know that A will
scale as dt and € as V/dt, we expand equation (D.2.1) up to order dt by keeping only
terms of order €, €2 and A. This gives :

Qn+1 - Qn >~ >\(1 - Qn) - )\Qn + QEQn(l - Qn)5n+1
- 252Qn(1 - Qn)(QQn - 1)
We now divide time ¢ in m intervals d¢ each of them divided in [ even smaller intervals

0t, i.e. t = ndét = mldt = mdt. In what follow, both [ and m will be large. We introduce

dQt = Qu41) — Qmu and dXy = X1y — Xy = ZECZE)I 8xV/0t and recall that

e = Vot/2, A= \t/2,

summing ! times equation (D.6) gives :

dQy ~ X(% — Qu)dt + /7Q(1 — Q1) (dXt - %ﬁ@@t — 1)dt>

When [ is large with dt¢ kept small, dX; is an (infinitesimal) Gaussian random variable
as a sum of independent increments with (almost) the same law and equation (D.6)
becomes a stochastic differential equation. We only need to compute the mean and
variance of the r.h.s of equation (D.6) to rewrite it in the Itd form.

B(AX) (8} uee) ~ Y27 (2, — 1)ist = Y (2, — 1)a
E(dX2 {6y ust) =~ 10t = dt

Which means that d.X; = 4 (2Q¢—1)dt+dW; where W, is a Wiener process. Eventually
we get :

dQ; = A (; - Qt) dt + /v Qi(1 — Qy)dW;,

Which is what we have claimed.

D.7 Technical complement 2 : Proof of the emergence of the
spikes

In this appendix we provide an intuitive proof of the emergence of the spikes for
the classical toy model and for the continuously monitored qubit.
D.7.1 Case of the toy model

The basic ingredients are the fact that when - is large, Q); is almost a martingale
and the fact that stopped martingale, i.e. a martingale conditioned on stopping at a
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Qr

FiGure D.7 — Two trajectories of @), starting from gq.

predetermined event, is still a martingale. We will focus on the spikes starting from
@ = 0 (the situation is the same for @ = 1). We will compute the statistics of the
maximum reached by @, starting from ¢ close to 0 at t=0, before it reaches g5 < q.
In what follows we will consequently have the hierarchy :

1>qg>q >~y 1A

We consider the stopping time 7 which is a random variable such that 7 =t as long
as Q¢ does not reach either g5 or Q) and 7 = tyeach after @y reached g5 or () at time
t = treach. Because 1> g5 > 771\, we see from equation (D.2.2) that Q; is almost a
martingale, i.e. the drift term is much smaller than the noise term. Probability theory
now tells us that @, (see Fig. D.7) is also a martingale which gives :

E(Q-|Qo=1q) =¢
But the direct computation of this expected value for ¢ large gives :

E(Q-|Qo = q) =P(Q; = Q|Qo = q)Q
+P(Qr = ¢5|Qo = q)¢s

which gives : P(Q, = Q|Qo = q) ~ %. Something which we can rewrite :

P, Mo (@)>QlQ=q)=F
Or eventually in differential form :
d
4P (Max (Q1) = QI =) = a (‘g3 + 61 - Q)aQ)

This gives us the 1/Q? dependency in equation (8). Notice also the Dirac mass, cor-
responding to complete jumps, that comes from the fact that

]P< Max (Qt)>1|Q0:q>:q7§O,

tvvu<t7 Qu >qs
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FIGURE D.8 — On the left, a trajectory starting from ¢, going up to () and eventually
going down below ¢s. In the large v limit, this whole trajectory is followed almost
instantaneously and looks like a single vertical spike (shown on the right).

This equation is an equation for a conditioned probability and thus only gives us a
ratio of probabilities, we still need to find the normalisation. This is naively given by
the rate at which @Q; reaches again ¢ after reaching g¢s, i.e. to how often Q; gets to
"try" to do a large excursion.

We first have to notice that an excursion, 7.e. starting from g, reaching a maximum
@ and going below gs, takes an infinitely small amount of time in the large v limit. This
simply comes from the fact that the dominant martingale term in equation (D.2.2) is
independent from 7 once we do the rescaling u = vt : dX,, = Qu(1 — Qy)dW,,. This
means that the typical time scale of an excursion is proportional to 7!, hence that
excursions are instantaneous in the large -y limit (which is why we now call them spikes).
What equation (D.7.1) actually does in this context is giving us the probability that a
spike higher than ¢ has a total height ). In an interval d¢ we know just one thing, we
know that the probability to reach @ ~ 1, i.e. the probability to do a complete jump,
is Adt. The probability that a spike higher than ¢ reaches Q = 1 is simply ¢. This
means that the probability to have a spike higher than ¢ in an interval d¢ is ¢~ \dt,
which provides the normalisation we wanted . Eventually, if we specify that we are on
an interval without jumps to remove the Dirac mass, we get :

~ dQ
That is, during an inﬁnite§imal time interval dt, the probability that there is a spike of
maximum @ up to dQ is AdtdQ/Q?. As the spikes are independent from one another,

this gives a Poissonian probability P(N) to have N spikes in any domain D :

N
P(N) = Se

with yt = [, 2zdtdQ, which is what we had claimed.

6. We use the fact that as the probability to reach ¢ is infinitesimal, the probability to reach it
twice or more is negligible
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D.7.2 Case of the qubit

The case of the qubit can be solved in the same way. Indeed, expanding equation
(9) gives the following equation for Q; = (+|.p¢|+). and Y; = /¥ (+|.p¢|—)- :

dQ; = —wYidt + 4/7Qi(1 — Q1)dW,
dY; = v [w(2Q: — 1) — 2Y3] dt + 7Yy (1 — 2Q¢)dW;

We would like to use the same reasoning as before, i.e. say that (); is almost a martin-
gale. In order to do that, we have to show first that Y; is of order 0 in «y. This is indeed
the case : when + is large, @, is typically close to 0 or 1. As before we will consider
the case where Q) is close to 0. In that case, and if we rescale time by taking u = ~t

we have :
dY, ~ [~w — 2Y, ] du + Y, dW,,

This means that the average of Y, Yy, verifies, the ordinary differential equation 9,Y, =
[—w — 21_@] When ~ is large, v flows infinitely fast so that we reach the stationary

value of Y instantaneously and Y, ~ 5—5 This means that the term wY; is typically
of order 0 in v and thus negligible compared to the noise term in equation (D.7.2).
This shows that, as before, Q; is almost a martingale in the large v limit (and is the
same martingale as before) which is the only thing that was used in the first part of the
previous proof. What differs in this setting is the normalisation argument of the second
part. It has been proved in [5], and it can be guessed by dimensional analysis, that the
rate of (complete) jumps in the large + limit is w? in the case we now consider. This
means that in the previous normalisation argument Adt simply needs to be replaced
by w?dt which provides the formula (10) we had put forward.



Annexe E

Zoom sur les trajectoires quantiques

L’appendice qui suit est directement tiré de I’article Zooming in on quantum trajec-
tories [1] écrit par M. Bauer, D. Bernard et 'auteur et publié dans Journal of Physics
A Letters. Seules quelques modifications de notation ont été effectuées pour éviter de
dérouter le lecteur et cet appendice peut étre lu sans référence au reste. On y montre
qu’en reparamétrant le temps de maniere dynamique, il est possible de comprendre les
sauts et échardes quantiques de maniere immédiate. On développe un formalisme qui
permet de faire des calculs directement a la limite v — 400 et on 'applique sur un
exemple simple.

Abstract : We propose to use the effect of measurements instead of their number to
study the time evolution of quantum systems under monitoring. This time redefinition
acts like a microscope which blows up the inner details of seemingly instantaneous
transitions like quantum jumps. In the simple example of a continuously monitored
qubit coupled to a heat bath, we show that this procedure provides well defined and
simple evolution equations in an otherwise singular strong monitoring limit. We show
that there exists anomalous observable localised on sharp transitions which can only
be resolved with our new effective time. We apply our simplified description to study
the competition between information extraction and dissipation in the evolution of the
linear entropy. Finally, we show that the evolution of the new time as a function of the
real time is closely related to a stable Lévy process of index 1/2.

E.1 Introduction

Quantum monitoring equations play a key role in modern theoretical quantum
physics and are used widely in control [230, , ], quantum information [389, 97,
|, and even foundations [72, 73]. They describe a system subjected to iterated or
continuous measurements and can be used to treat a large variety of experimental
setups e.g. in cavity QED [16, | and circuit QED [209, ]
An interesting regime which has been explored recently [5] is that of “tight” mo-
nitoring, i.e. the limit when the measurement strength (or frequency) dominates the
evolution. This regime is characterised by the emergence of quantum jumps similar to
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what could be seen in early monitoring experiments [211, , | but with a richer
and subtler structure in the fluctuations [1]. What makes this limit interesting is that
it is expected to yield a finer description of Von Neuman measurements and quantum
jumps. It is however difficult to study because the evolution equations become singular
and ill-defined with infinitely sharp transitions when the monitoring tightness goes to
infinity. In this article, we propose a time redefinition which allows to take the latter
limit exactly at the evolution level without losing any information.

Although the rest of the article deals with an example of continuous quantum
trajectory, let us introduce our idea in a discrete setting for simplicity. In the discrete
case, quantum monitoring is simply a succession of (generalised) discrete measurements
and evolution. After each measurement, the density matrix is updated conditionally on
the result. The sequence of the system density matrices {p,} after each measurement
is a discrete quantum trajectory. If we suppose that the measurements are carried out
regularly, the natural time to parametrise the evolution is simply proportional to the
number of measurements n. Here, we propose a new parametrisation —different from
the real physical time— proportional to the effects of the measurements on the system :

tni=>_ Tr((om — pm-1)?, (E.1.1)

1<m<n

which is simply the quadratic variation of the density matrix '. Because this new ef-
fective time will low more when the system evolves abruptly, it will resolve the inner
structure of sharp transitions. Notice that as p, is a function of the measurement
results, t, is a quantity which can be computed from standard experimental data.

Let us be more concrete and specify the procedure in a simple example of evolution
with discrete measurements. We consider a two-level system coupled to a thermal bath
with a density matrix ps obeying :

Osps = E(ps)

where L is a Lindblad operator of the form :
1
L(p) =xp(o-pos = S{oso-.p})

+A(1=p) (0+,007 - %{Jfﬁ,p})

A is interpreted as the thermal relaxation rate and p the average population of the
ground state at equilibrium. Every As, the system energy is weakly measured, i.e. it
is subjected to the discrete random map :

BipnAs_ le:
Tr [BiPnAs— B:H

PnAst =
with probability Tr I:B:t PnAs— BH where
1+e 0
By = ( 0 1Fe )

1. Other prescriptions with the same quadratic scaling are possible, e.g. At, = Tr[(D(pn) —
D(pn-1))?] where D(-) denotes the diagonal part of a matrix in the measurement pointer basis.
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FIGURE E.1 — Discrete quantum trajectories in real and effective time. Top : The
evolution of the ground state probability Q) in real time s shows sharp jumps and spikes.
Center : The evolution of Q in effective time t allows to resolve what happens outside
the boundaries 0 and 1, the details are unfolded. Bottom : Effective time as a function
of the real time. The plots are shown for the same realisation with ¢ = 0.3, As = 1075,
p=0.5and A=1.

with € €]0, 1] coding for the measurement strength and B}LBJr +B' B_ = 1. For a fixed
value of € # 1, when the real time As between two measurements goes to zero, the fast
weak measurements should behave like a strong measurement and it is this limit we
are interested in. Numerical simulations for Q = (0|p|0) are shown in Fig. E.1. They
shows —at least visually— that the prescription of eq. (E.1.1) indeed allows to blow up
the details of the sharp fluctuations. In the continuous setting, the reparametrisation
in effective time will have the extra advantage of yielding simpler equations which can
be analysed in detail.

E.2 Model

In this article, we will focus on one of the simplest instances of continuous quantum
trajectory equations [36, 39, 14, 18] which contains the quintessential subtlety of the
fast measurement limit while being analytically manageable (see e.g. [20]). It describes
the continuous energy monitoring of a two-level system coupled in the same way as
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before to a thermal bath and reads :

dQs = )‘(p - QS) ds + ﬁ@s(l - Qs) dWs, (E'2'1)

where again Q = (0|p|0) is the probability to be in the ground state, s the real physical
time and 7y codes for the measurement rate, i.e. the rate at which information is
extracted from the system. As in the discrete case, A is the thermal relaxation rate and
p the average population of the ground state at equilibrium. The stochastic process W
is a Brownian motion which echoes the intrinsic quantum randomness of continuous
measurements. Notice that we do not consider the non-diagonal coefficients of the
density matrix because they have no effect on the probabilities in this model and are
anyway exponentially suppressed. Our objective is to see what the limit of equation
(E.2.1) is when v — 400, i.e. when the measurement strength becomes infinite.

The trajectories of equation (E.2.1) become very singular when 7 — +o0o with
sharp jumps between plateaus decorated with instantaneous excursions dubbed spikes
(see Fig. E.2)2. Although the stochastic differential equation (SDE) (E.2.1) in real
time has no well defined limit when v — +oc, the plot of the process heuristically has
one in the sense that the extrema of the spikes are a sample of a v independent Cox
process. This limiting process can be studied directly as was done in [1] but the analysis
with the effective time provides a cleaner derivation in addition with the discovery of
an even finer anomalous® structure.

E.3 Results

The effective time we are going to use to redefine the process is :

t(S) = /Os(dQu)Q = ’Y/Os Q%(l - Qu)Qdua

which is the continuous analog of the prescription (E.1.1). With this effective time ¢,
equation (E.2.1) becomes :

dQ; = LQ”Q dt + dB;, (E.3.1)

a Y Q% (1-Q)
where By is a Brownian motion (as a function of ¢) related to W by dB; := /7 Qs(1 —
Qs) dWs. The crucial feature of the new evolution equation is that, for large v, the
first term is negligible as long as @ is not very close to 0 or 1. It is positive (resp.
negative) when Q) is close to 0 (resp. close to 1). Intuitively, this term will survive only

2. One can give a heuristic argument for the existence of spikes. Near a boundary say ) = 0,
dQs ~ Apds + /7QsdW;. One can show that for large v, this means that the distribution of @ is
given by P[Q < ¢] = e~/ 0PD) and that Qs+1/4 is weakly correlated with Qs. As a result, the
maximum M, of @ in an interval [a, b] has a distribution which can be approximated by P[M,, <

m] ~ (672/(“’)‘1""))7(177&). The «y cancel out which means that excursions with height of order 0 (but
vanishing width) persist in the limit : these are the spikes.

3. We borrow this terminology from quantum or statistical field theory and from fluid turbulence.
For instance, observables linked to dissipative processes in Burgers’ turbulence are localised on velocity
shocks [234, , ]. In a way similar to Burgers’ turbulence, we can consider “anomalous observables”
localised on spikes and jumps.
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FiGurk E.2 — Continuous quantum trajectories in real and effective time. Top : The
evolution of the ground state probability Q) in real time s shows sharp jumps and spikes.
Center : The evolution of Q) in effective time t looks like a reflected Brownian motion
without sharp transitions. Bottom : Effective time as a function of the real time. The
plots are shown for the same realisation with v = 200 (which looks like v — +00),
p=0.5and A=1.

as a boundary condition preventing @) from crossing 0 and 1 and Q)¢ will be a simple
Brownian motion in the bulk ]0, 1.

Proposition. When v — +oo :
(i) Q¢ is a Brownian motion reflected at 0 and 1.
(i) The linear time s can be expressed as a function of the effective time t :

L U,
s = w A1 —p)

where Ly and Uy are the local times spent by @Q; respectively in 0 and 1.

For a Brownian like process X, the local time L; at 0 is defined informally by
Ly = fg dt’§(Xy ). More rigorously, it can defined by introducing a mollifier §. of the
Dirac distribution, e.g. .(X) = ¢ '1yep,), and taking L; = lim__,q+ Jy dt's.(Xy).
Intuitively, the local time in 0 represents the rescaled time the process spends in 0.

Incidentally, this proposition gives a way to define jumps and spikes precisely in
the infinite 4 limit. A jump is simply a transition from @ = 0 to @ =1 (resp. 1 to 0)
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while a spike is a transition from @ = 0 to @ = 0 (resp. 1 to 1) through some finite
value of (). Both types of transitions are instantaneous in real time s but take a finite
effective time ¢. This shows that a finer description is preserved by the effective time.
The following proposition provides an example of such a finer quantity : the effective
time itself.

Corollary. The effective time description is strictly finer than the real time descrip-
tion.

There exists anomalous quantities, 7.e. quantities which can be computed in effec-
tive time but are hidden in the standard physical time description. For example, the
effective times to go up or to go down a spike of height m are distributed with the
same probability density &2,,(t) of Laplace transform :

. +o0 my/ 20
iz U:/ elop (t)dt = ————
m(0) 0 m(?) sinh mv/ 20
This means that the effective time is an anomalous observable in the sense that it is
not determined entirely by the naive large ~ limit in real time s which contains only
discrete spikes and jumps. It has intrinsic fluctuations even when the sample of spikes
of given height is fixed.

E.4 Proofs

Let us start by looking precisely at what happens near the boundary @ = 0 when
v — +oo (the boundary @ = 1 can be treated in the same way). When @ is close to
0, equation (E.3.1) becomes :

dQ; = ApcthrdBt,
1Q?

which reads in integral form :

Q= Qo+ / du + Bt. (E.4.1)

The integral is an increasing function of t which remains nearly constant on time
intervals for which Q, > 7~ /2. Hence, when v — 400, this function only increases
when @, = 0. The Skorokhod lemma [237, 238] is the key to understand precisely the
large ~y limit.

=0, and

Lemma (Skorokhod). Let b(t), t € [0, +00] be a continuous function with b(0)
t € [0,+o0],

let xy > 0. There is a unique pair of continuous functions xz(t), l(t), for
such that :
(i) x(0) = zo, and z(t) > 0 for t € [0, +o0|,
(ii) l(t) is non-decreasing,
(iii) 1(t) increases only at x(t) = 0, i.e. I(t) is constant on each interval where
z(t) >0
(iv) z(t) = xo +1(t) + b(t) fort € [0, +o0].
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The solution is given by
I[(t) :== max[0, —m(t) — xo] and x(t) := zo + b(t) + max[0, —m(t) — xo]
where m(t) := miny <, b(t').

Equation (E.4.1) is nearly a Skorokhod decomposition of the Brownian motion, i.e.
with b(t) = B; and z(t) = Q;. We get a true Skorokhod decomposition when v — 400
and the lemma guaranties the unicity of the solution. The fundamental trick is that the
Skorokhod decomposition of the Brownian motion on [0, +o00[ is known independently
and can be found through Tanaka’s formula [38, 20] for the Ito derivative of the absolute
value of a Brownian motion :

- t - "
By = /0 sen(By)dBy + L,

where Bu is a Brownian motion and L; is the local time in 0 of this Brownian. But
By = fot sgn(B,)dB, is also a Brownian motion so we can write :

|B;| = By + Ly,

which, by unicity, is the infinite - limit of equation (E.4.1) (up to the initial condition).
We thus see that near ) = 0, @) behaves like the absolute value of a Brownian motion
and that :

t Ap
2w — L E.4.2
/0 Q% ! ( )

Y—+00

We can now get the connection between physical time and effective time. Near the
boundary @ = 0, dt = yQ2ds. Inserting this change of variable in the Lh.s of (E.4.2)
removes the v and yields : .
¢
s(t) = » (E.4.3)
We can apply the same reasoning near the boundary @Q = 1 to get that @ is reflected
by this boundary and that :

P A1 -p)
————du — U,
/0 7(1 - Qu)2 “ Y—+oo !

where U, is the local time spent by @), in 1. Near this boundary the relation between
physical and effective time can be found in the same way :

S(t) — L

Al =p)
Out of the two boundaries, Ly = Uy = 0, eq. (E.3.1) shows that @Q; is simply a Brownian
motion and the physical time does not flow. Finally, we can put all the pieces together
and we get that in the infinite v limit, Q); is a Brownian motion reflected in 0 and 1
or equivalently that Q; verifies* :

Qi=Qo+ B+ L — Uy

4. Such a decomposition could have also been obtained directly from a straightforward generalisa-
tion of Skorokhod’s lemma in the strip [0, 1] instead of the open interval [0, 4o0[.
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and the physical time is related to the effective time by :

Ly Ut
() T AI—p)
which is what we had claimed in the first proposition.

We may now prove the corollary using a standard result [20, 21] for Brownian
excursions. The time t; it takes for a Brownian motion starting from 0 to reach a
maximum m and the time ¢5 it then needs to go back to zero are independent random
variables distributed with the same law of Laplace transform :

_m 20
_sinhm\/ZU

Restricted to m < 1, this is thus the probability distribution for the time it takes @
to reach a maximum m before eventually going back to 0. Because the real time does
not flow in the bulk, this excursion looks instantaneous when parametrised with s —it
is reduced to a spike— and its finer structure, in this example the quadratic variation,
is lost.

Do) = /O et g () at

E.5 Applications

The formalism previously introduced can be applied to describe the evolution of
physical quantities when v — +o0o. A simple example one can consider is the linear
entropy ° S¥ = 1 — tr[p?] = 2Q(1 — Q). In real time and for finite v, It6’s formula
gives :

de = 2/\(1 - 2@8)(17 - Qs) ds
+Qs(1 - QS) [2\ﬁ<1 - 2Q5>dws - 27@5(1 - Qs)ds]

The first term codes for the effect of the thermal bath and the second for the effect of
the information extraction, the latter always decreasing the linear entropy on average.
When ~ goes to infinity, the previous equation has no limit. Intuitively, in real time, @
is almost surely equal to 0 or 1 and the linear entropy is thus almost always equal to
zero, all the interesting fluctuations being lost. The latter can be recovered in effective
time. Indeed, in effective time, when v — oo, dQ; = dB; + dL; — dU;. Applying the
It6 formula to S* and noting that dL (resp. dU) is only non zero when @ = 0 (resp.
Q =1) gives :
dSE =2(1 —2Q;) dB; — 2dt + 2(dL; + dUy)

The effect of measurements appears clearly in the first two terms with a noise term
and a deterministic negative drift. The effect of the bath is localised on the boundaries,
i.e. on pure states, where it thus always increases the linear entropy. The details of
this competition are simply lost when taking naively the v — 400 limit in real time.
The proposition also shows an interesting link with Lévy processes. Near a boun-
dary, say near 0, the real time is given as a function of the effective time by eq. (E.4.3).

5. Similar computations could be carried out with the Von Neumann entropy but the analysis
would be mathematically much subtler because of the divergence of the logarithm in zero.
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It is a standard result (see e.g. [238]) that t(s), obtained by inverting the latter relation,
is exactly the stable Lévy process with index 1/2 and scale v/2\p. This means that,
for 0 < s1 < -+ < Sy,

]E[e_Ult(Sl)—02t((82)—t(81))—"'—Un(t(sn)—t(snfl))} —

6—81>\p\/20'1—(82—81)>\p 202——(Sn—8n—1)ApV20n )

In particular ]E[e_“t(s)] = e=WV29 whose Laplace transform can be inverted to get
that the probability density of ¢(s) is
dt Aps _(ws)?
dPs(t) = 7\/%1‘/376 2t

Because of the presence of the second boundary, the description in terms of Lévy
processes is correct only near a boundary, i.e. for small jumps of t. In general the
process t is still infinitely divisible but not stable and its probability distribution has
no simple closed form to our knowledge.

E.6 Conclusion

We have argued that using a time proportional to the effect of measurements on
the system provided a better parametrisation of the evolution in the limit of infinitely
strong continuous measurements (infinite v limit). We have illustrated the benefits of
this approach on the example of a continuously monitored qubit coupled to a thermal
reservoir. Actually, our result is general in two dimensions and the dissipative coupling
via a bath could have been replaced by an appropriately rescaled ® unitary evolution
to yield the same process in the limit. In the infinite ~ limit, we have obtained a very
simple description in terms of a reflected Brownian motion, unravelling a much finer
structure than one would have gotten taking naively the limit in real time. In the
limit, most quantities of interest can be computed using standard results on Brownian
excursions.

Although our prescription for the time redefinition is very general, we have only
treated in detail an example in two dimensions and with continuous measurements. We
believe the same ideas could be used in the discrete case of iterated weak measurement
and in higher dimensions but specific examples of interest are still to be worked out.
Eventually, the method we propose is general enough that it could have applications
to the analysis of other SDE’s in the strong noise limit, e.g. in population dynamics
and turbulence.

6. If the dissipative coupling is replaced by a unitary evolution, the latter needs to be rescaled by
/7 to counter the Zeno effect and get meaningful results in the limit.
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Annexe F

Extraction optimale d’information d’un
registre

L’appendice qui suit est directement tiré de 'article Efficient readout of a register
of qubits [2] écrit par auteur et publié dans Physical Review A. Seules quelques
modifications de notation ont été effectuées pour éviter de dérouter le lecteur et cet
appendice peut étre lu sans référence au reste. On y montre qu’il est possible de
construire un schéma de contrdle permettant de mesurer un registre de n qubit aussi
vite que les schémas optimaux précédemment mis en avant mais & un cotit en ressources
réduit. On obtient en effet un gain en vitesse d’ordre n par rapport a la mesure sans
controle au prix d’un cotit en mémoire linéaire en n alors que les schémas précédents
avaient un cotit o< 2™.

Abstract Recently, a series of articles by Combes et al. has shown that it was possible
to greatly improve the measurement rate of a register of qubits for given detector
resources by means of a clever feedback control scheme. However, this speed-up came
at an exponential cost in terms of complexity and memory use. In this article, I propose
a simple efficient algorithm —exponentially more frugal in memory and less complex to
implement— which is asymptotically as fast. I use extensively the implicit classicality
of the situation to provide a slightly more straightforward interpretation of the results.
I compute the speed-up rates exactly in the case of the proposed model and in the
case of the open-loop scheme of Combes et al. and prove that they indeed provide the
same asymptotic speed-up.

F.1 Introduction

Measuring a quantum system usually takes a non negligible amount of time. In
some cases, this time turns out to be much larger than the typical timescales of the
system dynamics, making e.g. system characterization and measurement-based control
difficult. In the future, finite measurement times may also put constraints on the per-
formance of quantum computers by limiting the speed at which large qubit register can
be read out. Procedures that can reduce this measurement time while using the same

171
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detector resources are thus interesting both from a theoretical and practical point of
view.

In a recent series of articles [97, 96, 94, 98], Combes et al. have proposed control
schemes which increase the measurement speed of qubit registers. The methods they
proposed provide a speedup rate proportional to the register size. However, in contrast
to the simple no control procedure, they require a prohibitive exponential amount of
memory. In addition to their relative complexity, this latter limitation makes these
new procedures implementable only for small qubit registers. It may have seemed that
the use of an exponential complexity was the price to pay for this linear speed-up :
“You cannot have your cake and eat it”. Fortunately, it turns out that this is not the
case here. In this article we introduce a quasi open-loop scheme that gives a similar
gain (with the same speed-up for large registers) while requiring much fewer control
operations on the system (~ 2 on average for typical parameter values, instead of
theoretically infinitely many) and using only a linear amount of memory.

This article is structured as follows. We shall first introduce briefly in section F.2
the quantum trajectory formalism for the continuous measurement of a qubit and show
that, at least in the case we consider, it is formally equivalent to a fully classical pro-
babilistic model. We shall then review in section F.3 the previous approaches to rapid
measurement before presenting our own model and deriving its properties in section
F.4. We will then briefly review additional numerical results in F.5 and conclude by
discussing possible improvements and extensions. The proof that the schemes provide
the claimed speed-up rates are rather cumbersome and relegated to appendices.

F.2 Continuous measurement of a register of (qu)bits

The standard way to describe the progressive measurement of a quantum system
is by means of repeated interaction schemes. A quantum system is coupled briefly
with a ancilla which is subsequently measured. As the interaction has entangled the
two quantum systems, measuring the ancilla gives some information on the system of
interest. The measured ancilla is then discarded and a new one is sent to interact with
the system before being measured again. Iterating this procedure many times then gives
a progressive measurement of the system in a basis which is fixed by the system-ancilla
unitary interaction. In the limit where this procedure is repeated infinitely frequently
with an infinitely small interaction time, one gets a continuous stochastic evolution for
the system which is called a quantum trajectory [13, 14]. In what follows we will first
give, without proof, the equations one gets for a continuously monitored qubit. Then
we will show that, in the specific case we consider, the same equations can be derived
from a much simpler classical model. This classical picture provides valuable insights
and the reader unfamiliar with quantum trajectories is encouraged to take it as the
starting point.

Using standard continuous quantum measurement theory [36, 37, 38, 10, , 39,

], one can show that a qubit of density matrix p € C2®C? subjected to the continuous
measurement of the operator o, obeys the Stochastic Master Equation (SME) :

dpe = 29D|o:](pe) At + /2y Ho:)(pe) AW, (F.2.1)
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where v denotes for the measurement strength, W; is a Wiener process and we have
used the standard notation from [18] :

DIA)(p) = ApAt — (AlAp 1 paTA)
H[AY(p) = Ap+ pAT — tx [(4+ AT)p] o

The associated measurement signal, which is the continuous and weak equivalent of the
(random) result from a Von Neumann measurement in an infinitesimal time interval
[t,t + dt[, reads :

dY; = 2v/2v tr(o.pp) dt + AW, (F.2.2)

In the absence of proper Hamiltonian for the qubit, it is easy to notice that the phases
of the density matrix in the eigenbasis of o, are exponentially suppressed and have
no back-action on the diagonal coefficients. Consequently, if we are only interested in
the probabilities in the measurement basis, we can consider without lack of generality
that we start from a diagonal density matrix. In that case, eq. (F.2.1) takes the simple
form :

dpr = 2v/2y pe(1 — pr) dW%, (F.2.3)

where p; is simply the probability to be in the state |0) = |+), at time ¢ : p; =
(0|p¢]0). This can be seen by writing p; = p|0)(0] + (1 — pg)|1){(1| + (u|0)(1] + h.c.),
injecting this expression in eq. (F.2.1), and noticing that p; evolves independently of
ug. An interesting feature of eq. (F.2.3) is that it is completely classical. In the absence
of phases, eq. (F.2.1) a quantum rewriting of an inherently classical model where a
classical bit has a well defined value which is progressively revealed. Let us make this
claim more precise by explicitly constructing the equivalent classical model.

Consider a classical bit that can take two values R = 0 and R =1 (or equivalently
+ and —). The bit state is fixed but unknown. An observer progressively extracts infor-
mation about the bit state by doing a succession of imperfect classical measurements
with results 0 = +1. A measurement gives some, but not all, the information on the
system state, more precisely we take :

1

P(5, = 1|R = 0) = "2”
1 —

P(5, =1|R=1) = 25

which fully specifies how the information is extracted. The parameter € € |0, 1 codes for
the quality of the measurement and we will be interested in the very bad measurement
limit ¢ — 0. We write F, = o ({d;},i < k) the natural filtration associated to the
stochastic process of the measurement results. In other words, Fj corresponds to the
intuitive notion of the information contained in the measurement records up to step
k in exact analogy with what is done in quantum trajectory theory. The quantity of
interest is the probability py, = P (R = 0|F%), i.e. the probability for the bit state to
be zero knowing the first £ measurement results. A simple application of Bayes’ rule
gives the following update rule for py :

(14 ¢€0k11) P
1+ 2 (5k+1)(pk — 1/2)

Prt1 = | (F.2.4)
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FIGURE F.1 — Schematics of the continuous measurement of a register of bits with
feedback control. Each bit is measured by a dedicated detector and the corresponding
signals allow for the reconstruction of the register probability through the use of the
stochastic master equation (SME). The result can then be used to back-react on the
register state in order to increase the convergence speed.

This discrete update rule becomes a set of stochastic differential equations in the
appropriate weak measurement limit ¢ = kdt, e = \/ydt and Y; = v/dt Zle J; (see e.g.

[4]) -

dps = 2v/2y pe(1 — py) AWy
dY; = 2/2v (2py — 1) dt + AW,

Which is exactly the same set of equations as in the quantum case. From now on we
will thus use the classical picture when it makes the proofs mathematically simpler or
just more intuitive. The reader unfamiliar with continuous quantum measurement can
also simply keep the previous classical picture in mind and stop being bothered with
quantum mechanics, at least regarding the rest of this article.

Building upon the previous construction, it is easy to describe the continuous
measurement of a register of n qubits (which, with the same argument as before,
is equivalent to the continuous measurement of a register of classical bits). We assume
that all the (qu)bits are measured independently by n detectors, the density matrix
pe (C*® C2)®n verifies the SME :

dpr =27y Do) dt + /27 Y Hlo D] (pr) AW,
i=1

i=1
where :
cD=1919..00,9..01

with o, in i-th position. The Wiener processes are uncorrelated, i.e. th(i)th(j ) =
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0;;dt. The signals Y0 associated to the detectors verify the same equation as before :
dYt(i) =2y/27tr (agi)pt) dt + th(i).

Everything can be rewritten with the help of a classical vocabulary in the same way as
before. Assuming one has no prior information on the true state R = (R(l), o R(”))
of the classical register, all the bits can be considered independently in the sense that
the total probability factorizes :

P [Rlo(FY, .. 7] =P [ROIFV] P RO FM].

It is only necessary to compute the evolution of the probabilities of the n single bit
states, or say of the n marginals, to know the probability of a register configuration.
Storing the 2" probabilities of all the register configurations is not needed in this simple
measurement setup. This helpful property will unfortunately be lost for more elaborate
measurement schemes.

To quantify the rate at which information is extracted as a function of time with
the continuous measurement scheme, the (now standard) approach is to consider the
log-infidelity In A where A = 1— )y with )¢ the largest eigenvalue of p (or equivalently
here, the probability of the most probable register configuration). In addition to its
simplicity, this measure has conceptual advantages which are detailed in [97]. We shall
not elaborate on this fact here and simply assume that the log-infidelity is a relevant
measure of information extraction.

Writing the density matrix in a basis where the most probable state is noted 0 =
|00...0) and using It6 rule, one gets after a straightforward computation :

- : 2 (1—Ay)?
Bldma] = 47yt [0l 1)) L2 (F.2.5)
i=1 t
In the simple case I consider here, it can be shown (see e.g. [98]) that for large time,

i.e. t > v~ ! the previous expression simplifies to :
E[dIn Ay = —16vdt

The objective of rapid measurement schemes is to improve this convergence rate while
still using the same detector resources.

F.3 Standard rapid measurement schemes

Before going into the details of the rapid measurement schemes, we should give
an intuition of why some asymptotic speed-up is expected. Consider that the previous
measurement scheme has been run for a while and look at the two most probable
configurations. Being able to discriminate rapidly between these two configurations is
what makes a measurement scheme fast, at least in a first approximation. However,
because the probability of a configuration can be written as a product of single bit
probabilities, the two most probable configurations differ only by one bit. Consequently,
only one detector actually provides relevant information while the n — 1 other ones are
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essentially useless. Intuitively, one can expect that a good measurement scheme will
find a way to harness the information extraction ability of the n detectors at the same
time. Doing so should naively provide a speed up of order n (and we will see that this
is what all the algorithms get).

Let us now recall what is allowed for a rapid quantum measurement scheme. In
contrast with rapid purification schemes [29, 92, 19, 93], the control applied on the sys-
tem should commute with the measured observables, i.e. the control should not amount
to a change of the measurement basis. The only operations that are consequently allo-
wed are permutations of vectors in the measurement basis[07]. Incidentally, this means
that the evolution of the density matrix with the control is still equivalent to that of a
classical system as long as one is only interested in the probabilities in the measurement
basis (as noted by Combes et al. [97]) because the control itself is a purely classical
operation ; rapid quantum measurement is inherently a classical problem. This classi-
cality is very helpful to understand what the measurement result means after such a
procedure. If we stick to the quantum, we have to say that the measurement result
allows us to retrodict what the system state would have been in the absence of control.
Classically, the system state is fixed, it is then subjected to a measurement procedure
with operations that can easily be reversed at the end, once the result is known. Using
the mathematical equivalence of the situation, we can thus say that everything hap-
pens as if the system state were fixed but unknown at the beginning and that the
optimal measurement procedure simply revealed it.

Let us now review briefly the first proposal of Combes et al. [97] for a locally optimal
measurement scheme. A brief look at eq. (F.2.5) shows that the locally optimal case is
obtained for a permutation of the initial basis that maximises the quantity :

n

>t 1o - 110]’

=1

where p%o is the optimally permuted density matrix.
The asymptotic speed-up is then defined as :

L (1-A4A)2 & (3) Lo|?
SLO _tl}},f—nooE [LLA% ;tr |:(O'Z _]l)pt :| .

which is the asymptotic ratio of the convergence rates for the locally optimal case and
the no feedback case. Following [97], the key concept is the Hamming distance [99]. The
Hamming distance between two states counts the number of bit differences between
them. The idea is to do a permutation of the pointer basis which puts the next-to-most
probable states as far as possible (with respect to the Hamming distance) from the
most probable one. This will maximise > ;" ; tr [(ay) - ]l)pgor. More precisely, one
first needs to order all the states but the most probable one by decreasing order of
probability in a first list, then to order the states in decreasing order of Hamming
distance with respect to the most probable one in a second list. The control then
consists in mapping the states of the first list to the states of the second list while
keeping the most probable state unchanged. Intuitively, one expects this scheme to
provide a speed up of order n because the probable states can be discriminated from



F.4. “GUESS AND CHECK” ALGORITHM 177

the most probable one with approximately n detectors at the same time. And indeed,
in [97] the authors manage to prove that for large n :

<SLo<n

>3

The previous locally optimal scheme requires a real time feedback loop which may
be difficult to implement in practice. It would be more convenient to have a predefined
strategy implementable in open-loop. In [98] the authors provide such a scheme. The
idea is simply to do rapid random permutations of the pointer basis. One expects that,
on average, the states will be at a Hamming distance of order n/2 from each other
yielding the same kind of speed-up as before but for a different pre-factor. And indeed,
in [98] the authors prove that the speed-up Sgp for the open-loop random permutation
scheme verifies for large n :

n_g o T
4= "R =0
Actually, it is possible to prove that the upper bound is reached exactly, i.e. that :

n n

n
2 27 — 1 n+too 2

Srp =

see technical complement F.7.1. This result will allow us to compare this scheme with
our new measurement procedure more precisely.

These two schemes are certainly appealing but they suffer from an important limi-
tation which makes them essentially impossible to implement on future large registers.
Setting aside the astonishingly high number of permutations Np = (2")! that are nee-
ded in the open-loop case (because a smaller number, say only exponential, might give
similar speed-ups), the main obstacle is that the two schemes require an exponential
amount of memory to store the 2™ diagonal coefficients of the full density matrix, 7.e.
the probabilities of all the register configurations. Indeed because of the successive
permutations of the pointer basis, it is no longer true that the probability of a configu-
ration can be reconstructed from a product of the n marginals, a lot of information is
stored in the bit correlations. Additionally, the two schemes require that the operator
do a huge number of permutations on the system, something which may be difficult to
implement in practice.

F.4 “Guess and Check” Algorithm

F.4.1 Description

Naively, a good way to build a procedure more frugal in memory would be to reduce
the number of different basis used in the open-loop scheme hoping that the states still
stay far away from one another on average with respect to the Hamming distance. It
turns out that requiring that every state is far away from every other one on average
is a very demanding requirement which is only needed for a truly open-loop control
scheme. Slightly relaxing the open-loop condition, it is possible to construct a quasi
open-loop, or as we will call it “guess and check” (GC) algorithm which is fast and
memory efficient.
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F1cURE F.2 — Guess and Check algorithm. At first, the state in the logical basis is
unknown. A standard continuous measurement in the basis % yields a first candidate
(here 10110), this is the guess phase. From this candidate one can build a new basis
% where the candidate and its bit-wise opposite are flipped. The check phase then
consists in the simultaneous (or successive) measurement in % and 2 until the target
infidelity is reached, in which case the algorithm stops, or the candidate changes, in
which case one goes back to the guess phase.

The idea goes as follows (see Fig. F.2). Imagine one knows a good candidate for
the register state after running the standard measurement scheme for a while. Then
two ordered pointer basis are enough to keep the candidate at an average Hamming
distance of n/2 from every other state. The solution is simply to take an ordered basis
% and then exchange the candidate and its bitwise opposite to get a new basis 4. If
a given state is close to the candidate ¢ in % then it will be far from ¢ in % and vice
versa. Measuring successively in 2 and 2 should yield a convergence speed-up of n/2
provided the candidate initially chosen was correct. If this is not the case and the most
probable state changes during the measurement process, then a crude yet practical
solution is simply to start the whole process again and discard all the information
acquired before. The key thing to notice is that the time spent in the guessing process
and in eliminating wrong guesses is finite and even finite on average and has accordingly
no impact on the asymptotic speed-up. This will be discussed in more detail later, but
let us start by presenting the algorithm precisely this time :

Guess and Check measurement protocol

1. Run the standard measurement protocol until a register configuration, later cal-
led the candidate, reaches a probability superior to a predefined threshold pg
(e.g. po = 1/2). Notice that this threshold is always reached because the stan-
dard measurement procedure yields an exponentially fast convergence towards
perfect certainty.
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2. Implement the permutation mapping the initial ordered pointer basis % to the
new ordered pointer basis % where the candidate and its bitwise opposite are
exchanged.

3. Measure in the two basis by applying the permutation and its inverse successi-
vely until the target infidelity is reached or until the probability of the candidate
becomes negligibly small (say inferior to pz) < po)-

4. In the latter case, start the whole protocol again from the first step and discard
all the information previously acquired.

At this point, a few comments are in order. The value of the thresholds, though
important for the short term behavior of the protocol, has no impact on the asymptotic
behavior of the infidelity. The frequency at which one should switch of measurement
basis is voluntarily left open for the simple reason that it does not matter ' ! Indeed,
as it is clear from the classical picture, the measurements can be done in any order
without changing the statistics (equivalently, one can assume that all the measurement
have already been done in the two basis, that the system state is fixed, and that one
only progressively reveals the measurement results). The only thing that is needed is
that the same amount of time is spent in every basis and that the most probable state
is computed from time to time to check if it has changed. Step 4 of the protocol is
obviously highly suboptimal and could be improved greatly in the future. However, as
it is, it has the great advantage of making the whole algorithm very easy to analyse
rigorously.

The protocol is quasi open loop in the sense that only a small number of actions
(finite on average) has to be done by the controller which makes it much easier to
implement than a real-time feedback loop. Moreover, the feedback part consists in a
simple unitary operation on a 2-level system consisting of the candidate and its bitwise
opposite. The protocol is thus simple and robust, the only thing that remains is to show
that it indeed provides a speedup of order n and that it only requires a memory of size
O(n).

In what follows and for notational simplicity, we will assume that the candidate is
labelled in the same way in % and A i.e. we will use a notation where all the bits
are flipped in 4. Alternatively, one can consider that % is obtained from £ via a full
bit flip of all the states but the candidate and its bitwise opposite which is strictly
equivalent.

F.4.2 Speedup of order n
Provided the candidate turns out to stay the most probable state during the whole

process, it can be shown (see technical complement F.7.2) that the infidelity decreases
at a rate n/2 times larger than with the standard measurement scheme. More precisely,
it can be shown that for large time :

E[—dIn Ay o g x 167t.

1. Actually the same answer can be given to the program outlined by Combes et al. in the conclusion
of [98] : “Finally and perhaps most importantly [...] future work should include imperfections [...] such
as a finite number of permutations in a fized time interval.”. As long as all the permutations are
sampled in the end, the frequency simply does not matter !
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However, this does not straightforwardly give the speedup rate as the candidate might
just turn out not to stay the most probable state forever if the initial guess was
wrong. Two additional contributions need to be taken into account. First, some time
7o (finite on average) is needed to find a first candidate with probability superior
to the predefined threshold. Second, some time 7; may be needed to realize that
this was not the good candidate. In such a situation, which happens with probabi-
lity (1 —po)/(1 —pp) =~ (1 — po), we then have to start over and wait for a time 7y
before finding a new good candidate, which may turn out to be wrong after a time 75,
and so on. As a result the average time T spent out of the fast converging phase of the

algorithm is :
+00

T ~ E[’To] -+ Z(l — p())Z (E[ﬁ + ’7‘1])
i=1
Because we start over every time the candidate turns out to be incorrect, 7; and 7;
are random variables with a law independent on ¢. Consequently, the latter equation
reduces to :

1 —po
Po
which is finite. As a result, the amount of time wasted trying to find the candidate
and eliminating incorrect ones does not matter for the asymptotic properties of the

log-infidelity. Finally we have, for the guess and check algorithm and n > 2 :

T ~ E[r] +

(E[r] + E[7])

n
Sec =5

This means that the guess and check procedure offers an asymptotic speedup equal to
that of the true open-loop scheme for large n.

F.4.3 Computation with O(n) memory

To prove that we do not need to store the full density matrix, it is easier to use
the mathematically equivalent classical picture. In what follows, we will decompose
the information coming from the 2n measurement records (n measurement apparatus
in two distinct basis). For that matter, it is convenient to introduce the notations :

i ({Y(’“)} < t)

]}f :0({ lek)},u t)
(

Gi=o ({Yu’f),qu’“)} u<tk= 1..n)

IN

where Y(%) is the signal from detector k in %, where Y ¥) is the signal from detector k
in % and where G, thus contains all the information available up to time ¢. Marginals
with respect to the filtrations F and ft’“ can be computed in real time using only one
signal and independently of the rest via eq. (F.2.3). The objective is now to express
probabilities with respect to the full filtration as a function of these easily computable
marginals. Elementary applications of Bayes’ rule allow to express the probability to
have a given register configuration knowing all the measurement results up to time ¢
as a function of the probabilities conditioned independently on each detector results :
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FI1GURE F.3 — On the left, speed-up provided by the GC algorithm for finite infidelity
target A for various values of the number of qubits n. On the right, percentage of
the asymptotic speed-up reached for finite infidelity target. For large values of n,
the asymptotic speed-up is only approached for extremely small values of A. The
computations are done with thresholds py = 0.5 and p; = 0.001, using the discrete
equation (F.2.4) with e = 0.025 as an approximation for the continuum which provides
a better accuracy than the Euler integration of equation (F.2.3).

1 & PR = s|FP PR = s| FF)

P[R = |G| = Zkl;[l P[R|Go)?

where Z; is the normalization. Assuming equal probability at initial time for simplicity
we get :

P[s|Gi|= Zi IIe [R(k) = s<k>|f§k>} IP[R(k) _ 5] ]i-t(k)}

t k=1

where, again, R*) (resp. R®)) is the value of the k-th bit of R in # (resp. in %4). The
difficulty is now that the normalisation factor Z; contains an exponential number of
terms so that it would seem that we still need an exponential number of operations.
However, because of the simple permutation between the two basis, the normalization
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factor Z; can be computed exactly :

Z = Z ﬁ P [R(k) = S(k)|]:t(k)} P [R(’“) — g(k)|}-t(k)]
s€s k=1

= 3 [T P{R® = sO 5] B[R =1 - o017
s€ k=1

+ TP [R® = 0] P [R® = 07
i (F.4.1)
+ [T P [r® = 17| P [R® = 117"
k=1

- f[ P [R® = ol 7P| P [R® = 1| "]
k=1

- I P [R® = O e [70) o 7H],
k=1

where we have used the fact that for all the states s but two (the candidate 0 and
its bitwise opposite I = [11...1)), %) = 1 — s(*). To simplify the expressions we
introduce the compact notations for the marginals in the two basis knowing only the
information from one series of measurements : pgk) = P[R®) = 0|.7:t(k)} and ﬁgk) =
P[R*) = O]ft(k)] (which, it should be emphasized, are not the true marginals, i.e.
the marginals conditioned on all the available information). Theses marginals can be
computed independently and easily in real time from the measurement records Yt(k)

and Yt(k) using eq. (F.2.2) and (F.2.3) (or in the discrete case eq. (F.2.4)) . The sum
in eq. (F.4.1) can be done separately on each term of the product which gives :

n n
2 =1 [pt" 0 =" + 0 =p™)p”] + [T 2p" = D25 - 1)
k=1 k=1
where the first term comes from the sum over all states and the second comes from
the 4 correction terms of eq. (F.4.1). This means that the normalization factor can be
computed knowing only the 2n marginals in the two basis and doing only a number
O(n) of elementary operations (additions and multiplications) on them. Eventually,
the probability of any state can be computed from a linear number of operations on
the marginals. For example, we can compute the probability of the candidate Ag :

k) ~(k
o

Tz ({pe, Pe})

which allows for an on-demand exact and rapid computation of the log-infidelity kno-
wing only the 2n independently computable bit probabilities.

F.5 Numerics

Computing the speed-up rate numerically is useful for two reasons. First, the results
previously derived are asymptotic and the speed-up could very well be much smaller
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for a reasonable non-zero infidelity target. Second and most importantly, computing
the speed-up rate numerically for large values of n is the best way to make sure that
the protocol does not require an exponential amount of memory and is indeed easily
implementable.

The numerical computations can be easily carried out with the help of the discrete
equation (F.2.4) for ¢ < 1. Starting from a fully unknown register state, the time to
reach a given infidelity target is computed for the standard no control scheme and
for the GC procedure from which the non-asymptotic speed-up rate is computed. The
results for various register sizes are shown in Fig. F.3. Unsurprisingly, for large registers,
the asymptotic speed-up is only reached for absurdly small infidelity targets. This is
because most of the time is spent in the “guess” phase trying to find a candidate.
Optimizing over the thresholds py and pE) would probably slightly tame this noxious
waste of time. Further, the suboptimal step 4 of the procedure does lead to a substantial
slow down for reasonable infidelity targets and a less naive procedure might be able to
make the non-asymptotic part of the algorithm less costly.

Alternatively, one could imagine a multi-stage algorithm where a global candidate
is found by applying the GC procedure on a series of subregisters, i.e. where the
“guess” phase itself is sped up using the GC algorithm. In any case, these numerical
simulations show that the asymptotic speed-up should not be the only metric used
to assess the efficiency of rapid measurement schemes in the future as the asympto-
tic regime may be irrelevant in realistic setups. Note that the previous schemes of
Combes et al. [97, 98] which could only be probed numerically for small registers, also
showed lower performances for finite infidelity targets. All these reserves being made,
the GC algorithm does provide a large speed-up in absolute value for all register sizes
and reasonably small infidelity targets. As a result, and even without the previously
mentioned potential improvements, the GC algorithm can be applied profitably to the
rapid measurement of qubit registers.

F.6 Discussion

We have proposed a new and simple protocol (GC) aimed at increasing the measu-
rement rate of qubit registers and derived the exact asymptotic speed-up it provides.
Its asymptotic speed-up rate, compared to that of the earlier schemes of [97] and [9¥],
is displayed in Fig. F.4. The main comparative advantage of the procedure does not
reside in its performance increase but in its practical and computational simplicity.
Indeed, in terms of control, the GC algorithm only requires a finite number (on ave-
rage 2 for thresholds pyp = 1/2 and pz) < 1) of simple permutations on a subspace of
dimension 2. Even if the scheme is not, strictly speaking, open-loop, the fact that the
control operations can be done with a delay without performance loss makes it much
less demanding than a true real-time feedback control scheme. Eventually and most
importantly, the GC algorithm allows to encode the probabilities of all the register
configurations in 2n real numbers in contrast with the prohibitive exponential num-
ber required by other protocols. This last feature makes the GC algorithm, or other
algorithms built upon similar ideas, particularly suitable for the rapid measurement of
future quantum computer registers where an exponential memory scaling will simply
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FIGURE F.4 — Exact asymptotic speed-up for the Random Permutation scheme (RP)
and the Guess and Check (GC) scheme computed in this article. The two lines “sup
LO” and “inf LO” show the analytic upper and lower bounds known for the Locally
Optimal measurement scheme of [98] and delimit the shaded area where the true speed-
up could be.

be prohibitive.

Although this was not strictly necessary for our derivation, we have used a classi-
cal probabilistic picture throughout the paper. As the rapid measurement problem is
essentially a classical problem, recasting everything in an equivalent classical language
provides a simpler and hopefully more pedagogical introduction to the subject. Ad-
ditionally, it helps give intuitive and straightforward answers to questions otherwise
non trivial like the sensitivity to control imperfections or the meaning of the result
obtained at the end of the protocol.

In the future, ideas similar to the one developed in this article could be applied
to the rapid measurement of more general quantum systems. Even in the restricted
context of qubit registers, the numerical simulations have shown that improving the
short time behavior of the algorithm could greatly improve its performance in practice.
For that matter, analytic studies of the finite time behavior of the log infidelity could
certainly be illuminating.

F.7 Technical complements

F.7.1 Exact speed-up for open-loop control

The exact speed-up can actually be computed using an exact solution of the sto-
chastic differential equation and a bit of combinatorics. The method is very similar to
the one used by Combes et al. in [98] to compute the convergence rate of the infidelity
in the no feedback case.



F.7. TECHNICAL COMPLEMENTS 185

We start by assuming that the random permutations are carried out very quickly so
that the whole permutation group is sampled in any infinitesimal time interval. Notice
again that this is just needed for simplicity, the order in which the measurements are
done does not matter so we can reorganise them a posteriori to fulfill the previous
condition. In this setting the register density matrix verifies :

2’7 1/2 i kT (k,T)
dp; — {(2")'} ST ST H R (p)dW, (F.7.1)
: TEG(2") k=1

where &(2") is the permutation group on the set .# of the 2" configurations, o%™ =

U-'o*U, where U, is the unitary operator implementing the permutation 7 and the
Wt(k’T) are independent Wiener processes 1.e. th(k’T)th(k/’Tl) = Op 10~ dt. Equation
(F.7.1) is invariant under the change ¢¥7 — ¢%7 4+ 1 which allows to work with
projectors on spaces of dimension 2”~!. There are only (237,11) such projectors which

allows the following factorisation.

dpe =2V N > H[PT|(p)aW]
PC.S,|P|=2n—1
with n
N = Ton N
(gn-1)
and PP denotes the projector on the subset P of the set of possible register configura-
tion .. The new Wiener processes are obtained as a normalized sum of the previous
independent Wiener processes and are thus also independent Wiener processes. For
pure mathematical convenience we can associate a corresponding set of signals which
will allow us to work with what is often called linear quantum trajectories [13] (the
knowledge of which is not needed here) :

AV = 42y N tr [PPp, | dt + dW]. (F.7.2)
We introduce an auxiliary density matrix p verifying the linear SDE :

dpr = 42y N Y PPp Y.
P

One can verify, using the It6 formula, that the ¢rue density matrix p can be recovered
from p through a simple normalisation. The previous equation can easily be expanded
and gives in components :

dAs = 4V/29N A Y vy,

P,seP

where A, is the eigenvalue of j associated to the state (or configuration) s and which,
once normalized, will give its probability. This equation can be solved exactly as a
function of the Y;7’s :

- 2"
As =exp [4/29N ) Yf—8'y./\/'<2n_1>t ,

P,seP
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Finally we can express the normalized probability for the state s of maximum proba-
bility :
e (N Ypoep V)

25 €XP (4\/ 29N Lpsep Ytp)

Up to now, everything is exact and some approximations are now needed to work out
the large time limit. In this limit Ag is close to one and all the other probabilities are
much smaller and decrease exponentially (on average) as a function of time. Using eq.
(F.7.2) we thus get :

Ao

Y,” o 429 Ntif0 € P
Q .
Y2 = 0 ()if0¢Q

Now, one only needs to notice that for the sum over subsets containing 0 there are

(,2°71) = (,2°1)/2 non negligible terms whereas for the sum over subsets containing

on—1_1
s # 0, there are only (;ifzz) =122 (23711) non negligible terms :

42n—1

> ypP L (;:) x 42y N't

t
P.0EP too 2

SoyP L2 _2< 2_1>x4\/2fy/\ft

potocp T 42n —1\ 2"

Which gives :

In(1 - Ao) L2 <23n1><4\/2'y/\/')2t

t;rvoo S 49n ]
n 2"
t+oo 22" — 1

X —16~t

So that the exact speed-up rate reads :

n 2 n
2 2" — 1 ntoo 2

Srp =

which is what we had claimed. This exact result coincides with the upper bound
proposed in [98] and seems consistent with its numerical results.

F.7.2 Speed-up rate for Guess and Check control

In this section, we compute the speed-up rate for the “Check” part of the algorithm,
assuming the candidate picked at the beginning turns out to be correct, i.e. that it
stays the most probable state during the whole process. Without lack of generality,
we write then 0 the candidate (a notation valid in the two basis). We also assume for
convenience that the measurements are made in the two basis simultaneously, which
as we argued before, does not change anything in the statistics as long as the same
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amount of time is spent in each basis. The system density matrix verifies the following
SDE :

dpr = ’YZ% (pt) th( )
(F.7.3)

VA Z H[o ")) (pr) AW )

k'=1

where p; is the matrix of p; in A and Wt(k), Wt(k) are independent Wiener processes.

(k) _,

As in the previous case, we make the transformation o (k) + 1 = 2P® which

leaves the previous SDE invariant. The associated signals Y(l) and Y (@) verify
v = 470 [P, dt +aw”

(i . oy (F.7.4)

av " = a5 [POg| dt +awy”

As in the previous appendix, we can solve eq. (F.7.3) explicitly (as a function of the
signal) using a linearised version of the SDE :

dpr =47 ) [P(k)ﬁtdyt(k) + P(k)ﬁtdf/t(k)]
k=1

which is solved in components :

As = exp <4fi [ (1—s®y® 41— g(k))f/(k)D

X exp <—8’y > [(1 —s®) 4 (1 - §(k)} t) :
k=0

At large time, when most of the probability is concentrated on the state s = 0, eq.
(F.7.4) gives :

(F.7.5)

~ Ayt
~ 4/t

t+oo

From eq. (F.7.5) it is then easy to see that the non-normalised eigenvalues have three
possible behaviors :

X = exp [16n9¢ + oft)]
Ai = exp [o(t)]
As = exp [8nyt + o(t)] for s#0,1
Recalling that -
A,
)\(_) = 70—7
Zsey As

we finally get, for n £ 1 :
In(Ay) =In(1 — Ay) ~ —167t —
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Annexe G

Gravité semi-classique et modeéles de
collapse objectifs

L’appendice qui suit est directement tiré de I'article Sourcing semiclassical gravity
from spontaneously localized quantum matter [3] écrit par L. Didsi et auteur et publié
dans Physical Review D. Seules quelques modifications de notation ont été effectuées
pour éviter de dérouter le lecteur et cet appendice peut étre lu sans référence au reste.
On y propose une classe de modeles cohérents de gravité semi-classique a la limite
Newtonienne inspirés du programme de réduction dynamique et notamment de CSL.

Abstract The possibility that a classical space-time and quantum matter cohabit at
the deepest level, i.e. the possibility of having a fundamental and not phenomenologi-
cal semiclassical gravity, is often disregarded for lack of a good candidate theory. The
standard semiclassical theory suffers from fundamental inconsistencies (e.g. : Schrodin-
ger cat sources, faster-than-light communication and violation of the Born rule) which
can only be ignored in simple typical situations. We harness the power of sponta-
neous localization models, historically constructed to solve the measurement problem
in quantum mechanics, to build a consistent theory of (stochastic) semiclassical gra-
vity in the Newtonian limit. Our model makes quantitative and potentially testable
predictions : we recover the Newtonian pair potential up to a short distance cut-off
(hence we predict no 1 particle self-interaction) and uncover an additional gravitatio-
nal decoherence term which depends on the specifics of the underlying spontaneous
localization model considered. We hint at a possible program to go past the Newtonian
limit, towards a consistent general relativistic semiclassical gravity.

G.1 Introduction

Marrying quantum mechanics and gravity in the same physical theory is an extre-
mely difficult endeavour, yet one that is desperately needed to understand the extreme
scenarios where space-time becomes so singular that quantum effects should arise, e.g.,
in the early universe and in black holes. Insuring the consistency and unity of physics is
another no less important motivation. Many routes to quantum gravity, which aims at
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describing space-time as emerging from quantum dynamical degrees of freedom, have
been explored [130]. These efforts have yielded interesting results but, after nearly half
a century of hard work, none of them gave birth to an unanimously accepted quantum
theory of gravity.

But do we really need to quantize gravity ? Could we not imagine a dynamical
classical curved space-time (in the sense of relativistic but not quantized) with some
quantum matter in it 7 To build a complete semiclassical theory of gravity, one needs to
say how quantum matter, described by state vectors |¥) in a Hilbert space, can source
the curvature of a classical space-time. The standard approach to semiclassical gravity,

due to Mgller [132] and Rosenfeld [133], is to use the quantum mechanical average to
get a classical quantity out of the energy-momentum operator 7, of quantized matter :
Gap = 8TG(U|T | W) (G.1.1)

where G, is the Einstein tensor. So far, this is the only available model of back-action
of quantized matter on a classical space-time, indispensable to the description of our
cosmology, stars and black holes. When it is seen as an approximate theory, and as
it ignores quantum fluctuations of Tab, it becomes incorrect if the quantum state |¥)
codes for large matter density fluctuations [135]. The semiclassiacal theory possesses
deep fundamental anomalies as well, the most spectacular one being faster-than-light
communication [134]. The standard semiclassical equation (G.1.1) is consequently un-
tenable as the building block of a fundamental theory. One faces Mielnik’s deep-rooted
alternative [239] : either the gravitation is not classical or quantum mechanics is not
orthodox. We are going to explore the latter option.

Interestingly, these anomalies already appear in the Newtonian regime as they are
of quantum and not of relativistic nature. The defective prediction of the semiclassical
theory in the case of large quantum uncertainties of T can be best understood in this
simpler limit. Consider the superposition |¥) = |A) 4+ |B) of a massive macroscopic
object at two macroscopically different locations A and B. Such Schrodinger cat states
yield an intuitively and empirically incorrect source term in Eq. (G.1.1) [135]. The
other anomaly [134], too, turns out to be basically quantum, i.e. essentially unrelated
to relativity and even to gravity. Having a quantum average <A) in any determinis-
tic dynamics spoils the linearity of quantum mechanics which allows faster-than-light
communication [11] and induces a break down of the statistical interpretation (Born
rule) [239, 54].

The objective of this article is to provide another way to source gravity from quan-
tum matter in the non-relativistic limit, free of the inconsistencies of the standard
approach. It turns out that all the previous anomalies can be dealt with through the
use of spontaneous collapse models, a class of models initially aimed at solving the
measurement problem in quantum mechanics. Most spontaneous wave function col-
lapse models, see Sec. G.3, propose the addition of a small non-linear stochastic term
in the Schrodinger equation. This small term is responsible for the dynamical collapse
of macroscopic superpositions, i.e. the mechanism

V) =|4) +|B) = [4)or|B)

for macroscopic Schrodinger cat states, only at the price of a negligible stochastic
modification of the microscopic dynamics. These non-relativistic models are formally
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equivalent to the standard time-continuous quantum measurement (or monitoring) of
the mass density operator ¢ = Ti oo at each point in space by hidden unsharp detectors.
A crucial interest of this interpretation is that it naturally suggests to introduce the
measured classical signal Ty (time-continuous equivalent of von Neumann measure-
ment outcomes), a now classical field which will be fluctuating around the quantum
average value : R

Too = (Too) + 6Tvo,

where §Tj is the signal noise.

The following speculation, outlined already in [240, , ], is now tempting.
Suppose we were able to construct a relativistic model of spontaneous collapse, i.e.,
formally monitoring the full energy-momentum tensor T.p. This would be useful in
two ways. First, the quantum monitoring of T, would suppress large quantum fluc-
tuations of T,;, removing in particular the large Schrodinger cat ambiguities. Second,

A

the random signal Ty, = (Typ) + 6T 4p, when used to source the Einstein-tensor
Gup = 87G (<Tab> + 5Tab) , (G.1.2)

would by construction respect the linear structure of quantum mechanics. It would
yield a back-action of quantized matter on space-time free of the anomalies of the
deterministic semiclassical coupling (G.1.1). In terms of quantum control, back-action
would be realized by a dynamical feedback conditioned on the signal.

Our objective with this theory of spontaneous-collapse-based stochastic semiclas-
sical gravity is not to construct another approximate theory, more precise than the
standard semiclassical one, to an exact yet unknown theory of quantum gravity. Ra-
ther, it is to propose a conceptually healthier semiclassical theory which is not plagued
by foundational anomalies so it might in principle be the ultimate theory of gravity
plus quantized matter. In this article, we will make this proposal precise and quantita-
tive only in the non-relativistic sector. This is unfortunately needed for lack of a good
relativistic spontaneous localization model. However, as the anomalies of the standard
approach already show up in the Newtonian limit, showing that they can be cured
represents a first promising step.

Outline— The article is structured as follows. We first recall the standard possible
approaches to semiclassical gravity in the Newtonian limit in Sec. G.2. We then give
a short introduction to the spirit of spontaneous localization models and explain how
they can be harnessed in semiclassical gravity in Sec. G.3. The core of our theory is
then developed in mathematical details in Sec. G.4, first for a general spontaneous
localization model, then in more details for the most studied ones, mainly Continuous
Spontaneous Localization (CSL) and Diési-Penrose (DP) models. Eventually we discuss
some related works in Sec. G.5, the main findings and their interpretation in the last
section.

G.2 Classical gravity vs quantized matter

Throughout all this article, we will consider N particles of mass m1, ...my evolving
in 3 spatial dimensions. We write H the many-body Hamiltonian (in the absence of
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gravity), p = |¥)(¥| the many-body pure state density matrix, X,, the position operator
of the n-th particle and we use i = 1 through all sections.

In the non-relativistic realm, where everything is technically easy, one can add
gravity by a Newtonian pair-potential VG in the Schrodinger-von Neumann equation :

dp A
L= il + Ve, p, (G.2.1)
dt
with the gravitational pair-potential :
A a Al A
Ve = —/drdsg(r)g(s) (G.2.2)
2 |r — s|

where the spatial mass density of point-like constituents of masses m,, and locations
%,, is defined as ! :

o(r) = Z mpd(r — Xy,).

Equations (G.2.1-G.2) represent the standard non-relativistic many-body quantum
theory of gravitating constituents and do not use the concept of gravitational field.
This theory is free of any serious inconsistency (the infinite self-interaction energy has
no dynamical consequence and is easily renormalized out) but it is not a very good
candidate for a more general theory where the gravitational field is expected to be an
autonomous entity. Admittedly, one can formally introduce the Newton field as a field
operator slaved to the matter density :

o(s)
r—s|’

d(r) = —G/ds (G.2.3)
but relating a classical gravitational field to this operator is a delicate issue and a
central task of the present work.

Alternatively, and keeping an eye on general relativity where the gravitational field
is a separate dynamical entity interacting with matter, one studies matter-field in-
teraction instead of the pair-potential V. The non-relativistic limit of the standard
semiclassical approach (G.1.1) amounts to take a classical (i.e. not quantized) Newto-
nian potential ®(r) satisfying the Poisson equation with the quantum average of the
mass density operator as a source :

V2®(r) = 47G(p(r)), (G.2.4)
yielding

O(r) = —G/ds|<r@(_s)s>|

which is a semiclassical counterpart of (G.2.3). In this setting, the semiclassical Newton
interaction can be introduced in the following way :

Vs = [ ard()a). (G25)

1. The results of our work are also valid for indistinguishable particles provided one takes g(r) =
Do mkd}; (r)ar(r) where ar(r) and d}; (r) are the local annihilation and creation operators of species
of particle of mass my.
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and then be used in the von Neumann equation (G.2.1) in place of the pair-potential
Vo

dp AL A

a = _Z[H + VGsclvp]-
This equation, understood for pure states p = |¥)(¥|, is equivalent to the Schrodinger-
Newton equation which has been proposed earlier for the natural localization of quan-
tum massive objects [242, (9] :

) — i + Vo) ). (G20
This equation is the subject of intensive studies currently, cf., e.g. : [213, , , ,

]. The most salient feature of the Schrodinger-Newton equation is self-interaction :
even the single-body dynamics contains a gravitational self-interaction term. Such a
term would presumably not show up in a (so far elusive) theory of quantum gravity
[248] but this does not discredit it a priori in the eventuality that space-time is funda-
mentally classical.

However, and as natural as it may seem, the latter standard semiclassical approach
is plagued by foundational problems. The most obvious one is that such a semiclassical
coupling means non-linear deterministic quantum mechanics and, as we mentioned
earlier, this in itself leads to fatal anomalies. The problem does not come from the way
the gravitational potential is introduced in the Schrédinger von-Neumann equation,
which is completely standard, but from the very way it is sourced from quantum matter.
The failure of this specific version of semiclassical gravity, at least when it is seen as a
fundamental theory, is often taken as a strong argument in favour of the quantization of
gravity. However, this only means that one of the most naive couplings between classical
gravity and quantum matter does not do the trick. In the next section we discuss a
way to get a stochastic classical mass density o(r) from continuous localization models.
This will give us a consistent source of the classical Newton field ®(r) that we will use
in Sec. G.4. As we shall see, the proposed theory will solve the problems previously
encountered and induce the Newtonian pair-potential from a classical gravitational
field without the inconsistencies arising from non-linearity.

G.3 Spontaneous localization models

We now step back from gravity and review briefly a class of models originally aimed
at solving the measurement problem in quantum mechanics. A particular class of mo-
dels, called spontaneous (or sometimes dynamical, objective) collapse (or sometimes
localization, reduction) of the quantum state, describe the emergence of classical ma-
croscopic phenomena dynamically and without reference to the presence of observers.
The standard unitary evolution of the quantum state is modified by a universal weak
collapse mechanism irrelevant for microscopic degrees of freedom but which suppresses
macroscopically large quantum uncertainties of the local mass densities. Spontaneous
collapse theories, spearheaded by Ghirardi, Rimini, Weber (GRW) [16] and Pearle [12],
are reviewed in [73]. The emphasis on mass density was proposed by one of the present
authors [11, 15].
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We will focus on the continuous versions of these models. They come in two main
flavors, DP (for Didsi-Penrose) [11, 15, , , , , 69, 70, 71] and CSL (for
Continuous Spontaneous Localization) [64, ]. Although they have some differences
we will discuss later, these models share an important characteristic : their forma-
lism can be interpreted as describing a quantum system subjected to a continuous
monitoring of its (smeared) mass density, i.e. of the operators :

N
0o(r) = Z Mngo(r — Xp).
n=0

The function g, is a normalized Gaussian of width ¢ and the smearing is necessary
to keep the theory finite [252]. In what comes next we will generically define the
smeared version f, of a field f in the following way : f, = g, * f. The analogy
with continuous monitoring theory is only formal, the equations are the same but
the interpretation is obviously different : in CSL and DP there is no detector and
the spontaneous localization is taken as a fundamental fact of nature. The parallel
is nevertheless extremely useful because it insures the consistency of the formalism :
as they can be obtained from plain quantum theory, the equations of spontaneous
localization models are guaranteed to preserve the statistical interpretation of the
state vector. In what follows, we will sometimes use a vocabulary from continuous
measurement theory (detectors, signal, etc.) but the reader should keep in mind that
we only use it as a way to derive a consistent formalism, and not as if there were some
real observer continuously doing measurements in nature.

We can illustrate this dual point of view on the example of the signal. In conti-
nuous measurement theory, the signal is the time-continuous version of a measurement
outcome and in the case we consider it reads :

0t(r) = (0o )t + 00t (r),

where dg.(r) is a white-noise in time with a potentially non trivial space correlator
which we will specify later. In CSL or DP, the same quantity g;(r) is formally a
fundamental stochastic (classical) field of the theory which can be taken as physical °.
In the following section, we will use this field to source gravity. Why is this a better
idea than simply using the average (g,); as one would do in standard semiclassical
gravity 7 The answer is that the signal is simply a measurement result, and modifying
the subsequent evolution of a quantum system based on a measurement result is allowed
in orthodox quantum theory ! Therefore, if we use the stochastic field g;(r) to source
gravity, formally as in a feedback scheme, we will get a theory which, by construction,
will be free of the anomalies of standard semiclassical gravity.

In the next section we will apply this program and marry spontaneous collapse with
(Newtonian) semiclassical gravity, first for a generic spontaneous collapse model and
then in more details in the specific cases of CSL and DP. Technically, we rely on the
density matrix formalism and stochastic master equations. Nevertheless everything can

2. More precisely, the signal can be taken as the primitive ontology [184, , ] of CSL and DP,
i.e. as the only local physical stuff living in space, a point of view which was advocated in [229]. We
shall not develop this idea in details here but this is another way to see why one would naturally want
to use the signal to source gravity.
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be recast in the state vector formalism, with the corresponding stochastic Schrédinger
equations.

G.4 Spontaneous monitoring of mass density and back-action

G.4.1 General case

We now consider a general many-particle spontaneous localization model which
includes CSL and DP as specific cases. Formally it is equivalent to the continuous
monitoring of the mass density by (hidden) detectors of spatial resolution o. The
detectors are also possibly entangled, which correlates their measurement outcomes. As
we have claimed in the previous section, the continuous equivalent of a von-Neumann
measurement result, called the signal, reads in this context :

01(r) = (05 )1 + d0u(r), (G.4.1)
where dg;(r) is a spatially correlated white-noise (understood with the Itd convention) :
E[60:(r)d0-(8)] = s 0(t — 1), (G.4.2)

and s is a non-negative kernel which intuitively encodes the correlation between the
detectors at positions r and s (see Fig. G.1). The stochastic master equation (SME)
prescribing the dynamics of the system density matrix reads :

% _ _Z-[f[,,s]_/drds%[@a(r),[@a(sm]]
n / drds?%[ég(r)]ﬁ@(s),

where

H[05(r)](p) = {05 (r) = (05 (r)), Pt} -

The Egs. (G.4.1-G.4.1) complete the specification of our many-particle spontaneous
localization model without gravity. We give more mathematical details on the deri-
vation of these equations from continuous measurement theory in the 1.2. In what
follows, we will take them as given but we can nevertheless give the reader a quick
heuristic understanding of the different terms. The deterministic term with the double
commutator in (G.4.3) implements the decoherence induced by the coupling with the
detectors and tends to reduce the state purity and to make the density matrix diagonal
in the position basis of bulky objects. The stochastic term implements the localization
coming from the conditioning on the measurement results : it drives the density matrix
towards localized states and exactly compensate the purity loss induced by the deco-
herence term. For a typical spontaneous localization model like CSL or DP, these two
terms are small in the sense that they have a negligible impact on the dynamics of mi-
croscopic systems but dominate for macroscopic systems which become well localized
in position.

We are now in the position to construct the back-action of the quantized matter
on the classical gravitational field. Technically, we make the “monitored” value g;(r)
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FIGURE G.1 — Intuitive representation of the detectors (here in 2D). The locations of
the detectors are represented by black dots on a lattice for simplicity but the reader
should imagine that they fill space continuously (or that the lattice spacing is much
smaller than all the other length scales). The radius o represents the spatial resolution
of a single detector and ;g codes for the correlation of the outputs of a detector in r
and one in s. Notice that ¢ and ~ys represent completely different physical quantities
and as such, they can be chosen independently.

(G.4.1) of the matter density the source of the classical Newton potential in the Poisson
eq. (G.2.4), instead of (o(r)) :

V2®(r) = 47rGo(r).

We should mention that this equation was already present in [253] but the objective of
the authors was very different : their aim was to find a possible gravitational origin for
the white noise in spontaneous localization models, our objective is essentially opposite.
The modified semiclassical Newton potential then becomes stochastic and takes the
form :

o(s)

v —s|’

O(r) = —G/ds

Inserting this field, we obtain the stochastic semiclassical interaction VGSCl of the same
form (G.2.5) as before only with the small technical difference that we leave an option
of o-smearing open :

Vo = / drd(r) (o) (r)

where (o) denotes an optional convolution with g,. As we will see, this optional smea-
ring will be necessary for DP to avoid divergences but superfluous for CSL.
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To introduce this potential into the evolution, we have to be careful because of the
multiplicative white-noise (again in the Itd convention). Technically, we introduce it as
if it were a feedback, i.e. have the potential act an infinitesimal amount of time after
the “free” evolution given by Eq. (G.4.3) :

ﬁ + dﬁ _ lVGscldt(p + dAfree) iVGscldt.

More details on how to implement a generic feedback scheme in continuous measure-
ment theory are provided in section 1.2. Expanding the exponential up to second order
then gives the SME for the complete evolution :

% = —Z|:H+VGU+/dI‘5Q (J) p]
ﬁrd (71‘5 ) [AU(S)’M]_’_%[&)(U)(I')’ [é(a)(s)’ﬁ]b
+ [ drds ™= (0 ()| pbo(s),

where the deterministic part of the back-action Hamiltonian yields

. 1 .
Voo = / dr oy (1)) (x). (G.4.6)

This is a remarkable result, it is independent of the strength ~,5 we assume for moni-
toring the mass density g,(r). We can write it in the equivalent form :

VG,U = /drds )( )

_S|

This is the Newton pair-potential of the standard gravitational interaction (G.2.2) —
up to smearing of the mass density around the point-like constituents. Note that the
semiclassical self-interaction of individual constituents, one of the characteristic fea-
tures of deterministic standard semiclassical gravity, has been cancelled in our signal-
based stochastic semiclassical gravity. More precisely, self interaction only shifts all
the energies by a finite quantity (diverging when o — 0) and thus has no dynamical
consequence.

Let us summarize our model of stochastic semiclassical gravity. The mass density
0o is spontaneously monitored yielding the signal ¢ (G.4.1) containing the white noise
do (G.4.2), which is used to create the back-action on gravity. The quantum state p is
evolved by the SME (G.4.5) which implements the back-action of gravity. Monitoring
leads to local decoherence in g,. Gravitational back-action leads to an additional local
decoherence in @(0). Back-action generates the standard Newton pair-potential up to
a microscopic smearing. The stochastic Hamiltonian term directly corresponds to the
back-action of the signal noise dp. Eventually, the non-Hamiltonian stochastic term is
responsible for the time-continuous collapse, i.e., localization in g,, preventing large
quantum fluctuations of mass density and Schrédinger cat sources in particular.
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G.4.2 CSL : Continuous spontaneous localization

This is the simplest spontaneous localization model one can think of. It is a bit
ad hoc in the sense that it is historically motivated only by the resolution of the
measurement problem and has two free parameters, unrelated to gravity. It is on the
other hand very simple. It is formally equivalent to the continuous monitoring of the
mass density by independent (hidden) detectors, i.e. it uses a trivial correlator :

Yrs = YO (r — 8). (G.4.7)

The standard choice of GRW, which is compatible with experiments carried out up
to now, is to take a space cutoff o ~ 10°cm and a strength parameter v ~ h? x
10%cm3g=2s7L. Other choices are possible, see for example Adler [254], but combi-
nations of significantly larger v and significantly smaller o, yielding fast spontaneous
collapse, are excluded by experiments [78].

Let us recall, for completeness, the measured (monitored) value (G.4.1) of g,(r) :

0(r) = (05 (1)), + dor(r),
where, according to (G.4.2) and (G.4.7) :
E[601(r)50x(s)] = }ya(t T

In CSL it is possible to define the gravitational potential (G.4.4) via the sharp density
without getting infinities so we do it for simplicity :

Vs = [ drd(r)a).
This yields the SME (G.4.5) :
% = [If[+ Voo —l—/drég(r)@,ﬁ}
- [ (Fleoto).aotw). Al + 5 B(0). [B06). 1)
+ [ ardula, () els),

where the back-action Hamiltonian (G.4.6) takes the following symmetric form :

N 0, r)o, ]
VGg:—G/drds /ﬂ() /ﬁ()
’ 2 Ir — s|

The first decoherence term — [ dr{[d,(r), [0,(r),p]] is already present in CSL so we
will only discuss the second one, Dg[p] = — fdr%[@(r), [®(r), p]], introduced by the
back-action noise of the coupling with gravity. We consider the case of a single particle
of mass m and density matrix p(x,y). It this case, the contribution of the back-action
decoherence to the dynamics of p(x,y) can luckily be computed explicitly :

G?*m? 1 1 \?
Dglpl(x,y) = —— dr( — > X,
7G?m?2
= - x =yl p(x,y)

2y



(G.4. SPONTANEOUS MONITORING OF MASS DENSITY AND BACK-ACTION 199

So the back-action decoherence term simply damps the phases of the density matrix
proportionally with the distance |x — y| separating the positions (in real space) consi-
dered. This is to be contrasted with decoherence coming from CSL’s 9,-decoherence
itself which increases quadratically for short (|x — y| < o) and saturates for long
(Ix —y| > o) distances. This means that depending on the value of 7, either back-
action decoherence dominates at every scale or it dominates at very short and very
long distances. Back-action decoherence also globally increases when the strength of
collapse v decreases and could give a stringent lower bound on the collapse rate. This
is fundamental because the only lower bounds currently available for the collapse rate
are of metaphysical origin [78], i.e. one requires that the collapse model gives a philo-
sophically satisfactory description of the macroscopic world. The coupling with gravity
thus provides empirical constraints on the lower bound although the details deserve
additional investigations.

G.4.3 DP — Gravity related spontaneous collapse

This model was historically constructed in order to reduce macroscopic quantum
fluctuations of mass density [14, 141] and to solve the measurement problem with the
help of heuristic considerations involving gravity which we will not develop here. It
is equivalent with spontaneous monitoring of g, (r) by spatially correlated (hidden)
detectors. DP thus uses the slightly less trivial correlator :

1
Vs = KG—— (G.4.9)

r—s|

where G is the gravitational constant. The obvious interest of this form is that the
constant k is now a dimensionless parameter which will be fixed to 2 soon by an
additional physical consideration. In DP, the localization strength is thus tightly related
to gravity right from the start and there is one less free parameter than in CSL. *. The
more complicated form of (G.4.9) will also help us get a more symmetric SME in the
end.

The inverse kernel is quasi-local :

1
Trs = A7rkG

5(t — T)V?6(r —s). (G.4.10)
Recall the measured (monitored) value (G.4.1) of §,(r), for completeness :
00,4(r) = (00 (r)); + d04(r),

where, according to (G.4.2) and (G.4.10) :

1
4G

E[dot(r)dor(s)] = 5(t —1)V3(r —s).

3. There is however a difficulty to fix the spacial cut-off o in a way which is consistent with
experiments [255]. In [250], one of the present authors nevertheless supported the natural cutoff o ~
10~ *2cm and worked out an SME to lift earlier conflicts with experiments.
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In DP we have to use the smeared density in (G.4.4) to avoid divergences :

Vesae = / drd(r) oy (r).

This yields the SME (G.4.5) :

o _ gy ~ ] kG [ drds .. . )
a = [H+ Voo + /dr&g(r)q)mp} 3 3] [00(r), [05 (1), ]
1 - & R kG [ drds _ . R
T 87kG /dr[V@U(r), [V, (r), o] + by r— S|H[Qa(r)]p59(s),

where the back-action Hamiltonian (G.4.6) takes the following symmetric form :

VGJ = —G/drds@a(r)@a(s).
’ 2 Ir — s|
Observe that, due to the quasi-locality of (G.4.10), the back-action decoherence
has become local in the Newton acceleration field V®,. Interestingly, this structure
coincides with the typical non-local g,-decoherence term caused by DP spontaneous
collapses. The two decoherence terms can be united into the following local form :

_% ’rdr_dz‘[@g(r), [6(r), p]] — 87;G /dr[vig(r), [Vo(r), ]
_ (Z n i) E;;G/dr[vcﬁg(r), [Vé,(r), ).

If we now require that decoherence be minimal in the full model of DP-based stochastic
semiclassical gravity, which seems to be a reasonable physical assumption, we get Kk = 2.
The ultimate local form of the SME (G.4.11) then reads :

1

dp 1
&G

dt = - [ﬁ+VG,U+/dr5Q(r)Aa7ﬁ]

— [ Akl ()]ps0(r).

/ dr[Vé, (r), [V, (r), ]

where back-action has just doubled the decoherence term of the initial DP model.
Historically, this doubling had been derived in [240] while [241] had cancelled it by an
ad hoc mean-field ansatz.

G.5 Related approaches

This work can be contrasted with earlier non-standard approaches to semiclassical
gravity. A stochastic semiclassical theory of gravity [250] (see also [115]) was proposed
a long time ago. The objective of the authors was to phenomenologically relax the
ignorance of the standard source term (¥|T,,|¥) with respect to quantum fluctuations.
In their model, the Einstein equation takes a stochastic form similar to ours (G.1.2)
but the stochastic noise 671y, is constructed to mimic the quantum fluctuations of T
and is not related to spontaneous monitoring. The dynamics of the quantum state |¥)
remains non-linear on each sample of the classical background space-time and does
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not include any collapse mechanism. As a result, it still suffers from the anomalies
of the standard semiclassical theory which are caused by the coupling to (¥|Tj,|¥).
Similarly, even if the recent approach [146] includes the GRW discrete spontaneous
collapse mechanism which suppresses macroscopic Schrodinger-cat states, the author
uses the average mass density to source the gravitational field which pushes him to
propose a statistical interpretation different from the standard Born rule.

Recently, the Newtonian sector of semiclassical gravity has been investigated with
approaches bearing some similarities with the present work. In [257], the authors attack
a slightly more specific problem and attempt to cure the faster-than-light communi-
cation anomaly of the Schrodinger-Newton equation (G.2.6). They supplement it with
an ad hoc nonlinear stochastic term. The modified dynamics leads, like ours does, to
the unconditional DP master equation which is free of the usual anomalies of semiclas-
sical gravity. Yet, interestingly, the semiclassical coupling cancels out, without leaving
the Newton pair-potential behind. This ad hoc stochastic semiclassical gravity thus
lacks a gravitational interaction. On the contrary, in our approach, the analogue of the
Schrodinger-Newton equation (G.2.6) reads :

aw) _ (H + VG,U) T)

i
—87T1G/dr (Véo(r) — (Voo () w)
() [ dr (8(6) = (80(1))) d0(x)|¥)

which can be obtained from (G.4.12) writing p = |¥)(¥|. Note that the semiclassical
potential of (G.2.6) becomes a pair-potential in our version.

We should eventually mention the pioneering work of Kafri et al. [258]. The au-
thors formulate a theory conceptually similar to ours in a quantum communication
context. Classical (non-quantum) gravity between two objects is interpreted as a clas-
sical measurement channel. In this context, the word “classical” means the channel
cannot entangle the two separated objects. The two-body toy model of [258] turns out
to be a specific case of the stochastic semiclassical gravity with the DP signal (Sec.
G.4.3) and anticipates its remarkable quantum informational features. The toy model
operates at the noise threshold where the Newton interaction cannot entangle the two
objects any more. How our theory satisfies this informational condition of classicality
in the general case is an interesting subject for future work.

G.6 Summary, outlook

In this article, we have shown how to source a classical gravitational field from
spontaneously localized quantum particles. Using the fact that localization models are
formally equivalent to continuous quantum measurement models, we have introduced
a new quantity, the signal, and promoted it to the status of physical source of the
gravitational field. In terms of quantum control, back-action has been formally realized
as a dynamical feedback based on the signal. One of us argued earlier that signal, i.e. :
quantum measurement outcome, is the only variable tangible for control like feedback
[259]. This fact gives a justification for spontaneous collapse models as they seem to
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be the only way to couple a quantum theory of matter with a classical theory of
space-time. Spontaneous localization models are seen by many as an ad hoc method
to solve the measurement problem. However, the fact that they seem unavoidable for
a classical-quantum coupling is one of their less known yet remarkable feature.

Our model is mathematically tractable and makes some precise and testable predic-
tions. We have shown that it gives rise to the expected Newtonian pair potential up to
a small correction at short distances coming from the spatial cut-off of the underlying
localization model. This pair potential does not give rise to 1 particle self-interaction
which means that such a self interaction is not a necessary consequence of semiclassical
gravity as it is often believed. Failing to see self-interaction in experiments [216, ]
would prove the failure of the Schrédinger-Newton equation, but it would not imply
the quantization of gravity. Additionally, gravitational back-action introduces a new
decoherence term which depends strongly on the underlying localization model cho-
sen. In CSL, gravitational back-action adds a decoherence term which increases linearly
with distance, has consequently no characteristic scale and is independent on the mi-
croscopic details of the theory. This decoherence term also globally increases when the
collapse strength decreases which makes low values of v experimentally falsifiable (and
not only metaphysically unsatisfying). In DP, the additional decoherence term takes
the same form as the original intrinsic decoherence which makes the final equations
very symmetric. In this case, the fact that gravitational decoherence increases when
the collapse strength decreases allows us to find a global minimum for decoherence
which singles out the gravitational constant G as the collapse strength.

Eventually, as it solves the inconsistencies of standard semiclassical gravity in the
Newtonian regime, our model —or class of models— is a sound first step in the construc-
tion of a full relativistic semiclassical theory of gravity. In the relativistic realm, the
covariant equation of back-action should be given by the stochastic Einstein equa-
tion (G.1.2) with noise 7,;. However even the basic principles governing a theory of
convariant continuous monitoring are still problematic. Working with white-noises (the
Markovian case), the only Lorentz covariant possibility is the one with both temporally
and spatially uncorrelated noise, which leads to fatal divergences [13] once it is coupled
to local quantum fields. The divergences can be eliminated through a covariant smea-
ring depending on (Ty;) [31], but such a non-linear addition would be in conflict with
the aims of the present article. Another possibility is to use colored noises right from
start. Such a non-Markovian field-theoretic formalism of monitoring and feedback was
laid down a long time ago [2410]. In the Markovian limit, it yielded —albeit in a different
formalism— exactly the theory presented in the 1.2 and used throughout the present
article. However a serious difficulty of this approach comes from the non-instantaneous
availability of the non-Markovian signal [30, 28, 29]. Making our model relativistic is
thus not just a purely technical task and many additional unexpected obstacles might
be encountered in the way. In the worst case, if these hurdles cannot be overcome, our
model may still provide a consistent phenomenology of the Newtonian setting. Hoping
that some of its features survive the generalisation, applications of this model to spe-
cific problems of physical interest could be explored even if a fully consistent theory is
still lacking. In this spirit, applications to black-holes and cosmological models of the
early universe might be tractable and should definitely be considered in the future.
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Résumé : Cette theése est consacrée & 1'étude des trajectoires quantiques issues de la théorie des
mesures continues en mécanique quantique non relativiste. On y présente de nouveaux résultats
théoriques ainsi que des exemples d’applications. Sur le front théorique, on étudie principalement
la limite de mesure «forte» dans laquelle on met en évidence ’émergence de sauts quantiques et
d’échardes quantiques, deux phénomenes dont on précise la statistique. Hors de la limite forte, on
propose une méthode d’extraction optimale d’information pour un registre de qubits. Sur le front
des applications, on introduit une méthode originale de contrdle utilisant I'intensité de la mesure
comme unique variable et on explique la transition balistique-diffusif dans les marches aléatoires
quantiques ouvertes; deux sous produits de I’étude théorique préalable des situations de mesure
forte. On s’intéresse aussi au probléme de la gravité semi-classique et montre que la théorie des
mesures continues peut permettre d’en construire un modeéle cohérent a la limite newtonienne. On
suggere enfin quelques extensions possibles de la théorie a I'estimation a posteriori et d’éventuelles
généralisations des résultats théoriques a des situations de mesures répétées discrétes. Dans la
présentation des résultats, 'accent est mis davantage sur I’explicitation des liens entre les multiples
points de vue possibles sur les trajectoires quantiques (paralléles avec la théorie classique du filtrage
et les modeles de collapse objectif utilisés dans les fondements) que sur la rigueur mathématique.
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Subject : Continuous measurement in quantum mechanics : a few
results and applications

Abstract : This thesis is devoted to the study of the quantum trajectories obtained from the
theory of continuous measurement in non relativistic quantum mechanics. New theoretical results
as well as examples of applications are presented. On the theoretical front, we study mostly the
limit of «strong» measurement where we put forward the emergence of quantum jumps and quan-
tum spikes, two phenomena we characterize in detail. Out of the strong measurement limit, we
investigate a method to extract information from a register of qubits optimally. On the application
front, we introduce an original method to control quantum systems exploiting only the freedom
of changing the measurement intensity and we explain the transition between a ballistic and a
diffusive behavior in open quantum random walks; two byproduct of the theoretical study of the
strong measurement regime. We further study the problem of semi-classical gravity and show that
continuous measurement theory allows to construct a consistent model in the Newtonian regime.
We eventually suggest possible extensions of the formalism to a posteriori estimation and hint at
generalizations of the results for the strong measurement limit in the wider context of discrete
repeated measurements. In the course of our presentation, we emphasize the link with other ap-
proaches to the theory of continuous measurement (parallels with stochastic filtering and collapse
models in foundations) rather than aim for mathematical rigor.
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Résumeé
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classique du filtrage et les modéles de
collapse objectif utilisés dans les fondements)
que sur la rigueur mathématique.
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