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Abstract

We develop a complete Hamiltonian approach to the theory of perturbations
around any spatially homogeneous spacetime. We employ the Dirac method
for constrained systems which is well-suited to cosmological perturbations. We
refine the method via the so-called Kuchaf parametrization of the kinematical
phase space. We separate the gauge-invariant dynamics of the three-surfaces
from the three-surface deformations induced by linear coordinate transforma-
tions. The canonical group of the three-surface deformations and the complete
space of gauge-fixing conditions are explicit in our approach. We introduce
a frame in the space of gauge-fixing conditions and use it to considerably
simplify the prescription for gauge-fixing, partial gauge-fixing and spacetime
reconstruction. Finally, we illustrate our approach by considering the perturbed
Kasner Universe, for which we discuss two kinds of gauges that correspond
respectively to the Coulomb-like and the Lorenz-like gauge in electrodynamics.
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1. Introduction

Cosmological perturbation theory (CPT) is widely assumed to be a working model of gravity

at large cosmological scales. It is also used for constructing quantum theories of the origin of
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the primordial structure in the Universe. A notable example here is the inflationary model, but
it is not the only one. The Hamiltonian formalism for cosmological perturbations, which is the
subject of the present article, is a prerequisite for canonical quantizations of CPT.

Obviously, the Hamiltonian formalism for cosmological perturbations has been derived
before, at least in some simple background spacetime models such as the Friedmann Universe
[1-6] or the Bianchi Type I model [7-9]. Therefore, our goal in the present work is somewhat
different. First of all, we keep our considerations general without specifying any particular
background model until the final section where we study, as an example, the perturbed Kas-
ner Universe. Secondly, we study the complete Hamiltonian formalism that includes both a
gauge-independent description of cosmological perturbations as well as the issues of gauge-
fixing, gauge transformations and spacetime reconstruction. To our best knowledge the latter
elements of the Hamiltonian formalism have not been sufficiently studied in the literature.
Thirdly, we achieve our goal by using and refining the Dirac method for constrained systems
[10] which, despite being well-suited to cosmological perturbations, has not been used for that
purpose until very recently. In [4] the Dirac method was applied to the perturbed flat Fried-
mann Universe with a perfect fluid. The key steps on which this previous work was based are
outlined in section 2 of the present paper and supplemented with additional comments on the
hypersurface deformations in the linearized theory. A significant improvement of the Dirac
method is then obtained in section 3 of the present paper with the use of a new parametrization
of the Arnowitt-Deser-Misner (ADM) phase space. As we will show, the new variables make
the basic elements of the Dirac method such as gauge-fixing or spacetime reconstruction much
clearer, and also simplify the key formulas.

The usual approach to CPT is to identify gauge-invariant variables in the configuration
space and to study their and only their dynamics. The physical interpretation of the gauge-
invariant variables is ambiguous and depends on the choice of the coordinate system for the
spacetime. This choice is always made implicitly by assuming that some linear combinations of
the components of the metric tensor vanish. The Friedmann—Robertson—Walker models have
been studied extensively, and there are some well-known ‘canonical’ gauge-fixing conditions
that can be used for various purposes [1, 11-14]. Much less is known about valid gauges and
the associated physical interpretations of gauge-invariant variables in anisotropic spacetimes.
The Dirac method, as we show, provides a powerful tool for setting valid gauges and for recon-
structing the spacetime metric from gauge-invariant variables in the Hamiltonian formalism. In
this method, it is straightforward to show that the gauge transformations form an abelian group
of translations that act in the ADM phase space, the space of all valid gauges becomes explicit,
and the distinction between complete and partial gauge-fixing is very clear and analogous to
electrodynamics.

The physical motivation for the present work is two-fold. First, purely classical, to develop
a tool for studying gauge-fixing conditions in homogeneous spacetimes both isotropic and
anisotropic. It is interesting to note that in anisotropic spacetimes there may be many repres-
entations of gravitational waves in contrast to isotropic universes where gravitational waves
admit a unique representation in terms of transverse and traceless metric perturbations. In
anisotropic spacetimes, as we show, a gravitational wave may be represented by a scalar metric
perturbation. Second, to fully develop a relatively uncomplicated and thus practical laboratory
for canonical quantizations of gravity. Such issues as the relation between the reduced and
kinematical phase spaces and their respective quantizations, other quantization ambiguities,
the quantum fate of diffeomorphism invariance and the time problem, semiclassical space-
time reconstruction and quantum-to-classical transition can be conveniently studied within
our framework.
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The outline of the article is as follows. In section 2 we first discuss the general form of
the Hamiltonian in CPT, the algebra of constraints and their consistency with the dynamics.
We apply the Dirac procedure to remove the constraints and obtain the reduced Hamiltonian
dynamics for reduced variables. Next we rewrite the reduced Hamiltonian framework in terms
of Dirac observables so that the issues of dynamics and physical spacetime reconstruction are
to be solved separately at this point. In order to reconstruct the full spacetime metric, the stabil-
ity of gauge-fixing conditions under the action of the full Hamiltonian is studied. In section 3
we present an alternative phase space description analogous to the so-called Kuchar decom-
position of the full geometrodynamics. In this new description the gauge transformations are
given by a simple expression, which facilitates gauge-fixing and partial gauge-fixing, and sim-
plifies the problem of spacetime reconstruction. In section 4 we apply our formalism to the
Kasner Universe. We conclude in section 5.

2. Hamiltonian formalism and the gauge-fixing procedure

In this section we briefly show how the Dirac procedure for constrained systems [10] can be
adapted to the Hamiltonian formulation of CPT. We discuss the notions of Dirac observables,
reduced variables, constrained and physical dynamics, and the relations between them. We
also discuss how the spacetime picture can be reconstructed from gauge-fixing conditions.

2.1. Cosmological perturbations as a constrained system

As cosmological background models we assume spatially homogeneous spacetimes with spa-
tial coordinates fixed in such a way as to make the background shift vector components N’
vanish. Also, the diffeomorphism constraints of the background model "Hi(o) = 0 must vanish
trivially. Then the ADM Hamiltonian [15] expanded to second order around such a homogen-
ous spacetime model reads:

H= / (NH(O) +NH® + 5N"’5HN> dx, 1)

where N is the zeroth order lapse function, SN* are the first order lapse and shift functions,
H( and H? are respectively the zeroth-order constraint and the second order scalar Hamilto-
nian, and 0%, are linearized scalar and diffeomorphism constraints. This Hamiltonian is a
function of the homogeneous three-metric g;; and three-momentum 79, and the pure inhomo-
geneous perturbations of the three-metric d¢;; = ¢;; — g;; and three-momentum 67 = 77 — 79,
The Hamiltonian system may include any number of matter fields but for clarity we make expli-
cit use of the gravitational variables only. We emphasize, however, that all the following results
apply equally well to more general set-ups. The total canonical structure can be then shown to
be the sum of the homogeneous and inhomogeneous canonical structures (see, e.g. equation
(18) of [2]),

(@57} = V516567, {0g;(x), 07 ()} = 615763 (x —y),

with all the remaining Poisson brackets vanishing (V) is the coordinate volume of the spa-
tial section usually assumed to equal 1 as in the example of section 4). The interpreta-
tion of the terms in equation (1) is as follows. The zeroth-order constraint (*) generates
time transformations in the homogeneous background spacetime while keeping the inhomo-
geneous fields fixed. The first-order constraints d#,, generate linearized transformations
of the inhomogeneous spacetime while keeping the homogeneous background fixed. The
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second-order Hamiltonian #(® generates the dynamics of perturbations that must occur sim-
ultaneously with the dynamics of the homogeneous background generated by H().

The Hamiltonian (1) defines a gauge system in the sense that the constraints d#, are first-
class up to first order. Specifically, at each spatial point, the algebra of the linearized constraints
reads

{0H;,0H;} =0, {6H;,6H} =0. ?)

We note that the linearized constraints commute strongly at first order, that is, when zeroth-
and second-order outputs of the Poisson brackets are legitimately neglected, and thus the group
of gauge transformations that they generate for each spatial point must be abelian. This is true
independently from any particular choice of background spacetime model'. Furthermore, the
constraints are dynamically stable on the constraint surface, namely,

{/(H(O) +H(2)),6Ho(x)} = M (x) ~ 0, {/ (7-[(0) +”H(2)> ,m(x)} —0 (3)

where 6H'(x) = g¥6H,(x) and the weak equality ‘~’ means ‘equal at the constraint surface’.

Equations (2) and (3) are a linearized version of the algebra of hypersurface deformations
of canonical relativity [16]. The full deformation algebra, and hence its linearization, are uni-
versal in the sense that they do not depend on any particular theory of gravity [17]. We find it
interesting to note that the abelianization of this algebra can also naturally occur for spherically
symmetric hypersurface deformations [18, 19].

2.2. Gauge-fixing conditions

From now on we shall focus on the unconstrained formulation of the dynamics of perturbations
while omitting the separate problem of formulating the unconstrained dynamics of the back-
ground quantities. In order to remove the gauge freedom generated by the constraints 0%,
we choose four gauge-fixing conditions denoted by dc,, = 0, such that the commutation rela-
tions between the gauge-fixing functions and the linear constraints form an invertible matrix,
that is,

det{dc,,0H,,} #0. @)

The gauge-fixing conditions dc,, = 0 are solved by introducing a set of reduced canonical
variables. Specifically, the reduction of the formalism is obtained by replacing the set of the
12 ADM perturbation variables (Jg;;, d7") with a reduced set of four physical variables denoted

by (645", 07lys)» Where I = 1,2 (see section 4.3 for an example of the reduction). The ADM
variables are reduced to those four independent physical variables by virtue of four gauge-
fixing conditions and four constraints. The physical variables are meant to form a canonical
coordinate system on the submanifold in the kinematical phase space, on which the gauge-
fixing functions and the constraints vanish. We call this submanifold the physical phase space.

The canonical structure of the physical phase space is encoded in the Dirac bracket,

{ 3o =1{3 = {00, Ho0u,00,} {50, }, )

! Equation (2) turns out to be completely general for perturbation theory around any homogenous background: since
the homogeneous and inhomogeneous variables commute with each other, any nontrivial output of the Poisson bracket
can be either zeroth-order (coming from the bracket of first-order variables) or second-order (coming from the bracket
of zeroth-order variables).
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where 0¢,, € (0H1,...,0H4,0c1,...,0cs). Note that the Dirac bracket depends on the choice
of the gauge-fixing conditions (dcy,...,dcs).

The second-order part of the Hamiltonian (1) is next expressed in terms of the physical
variables yielding the reduced Hamiltonian:

(VA 4 oneom,, )

— (2) phys I
50;1,:0:57{“ n NHred (5ql 7(S-’]T-l:’hys) ' (6)
Given the reduced set of variables, the reduced Hamiltonian and the Dirac bracket, we find

the reduced Hamilton equations to read (up to first order):

d
—5qlphys = {&ﬁhys,/ (NH(O) —&—N?-ir(ezg)de} ,
jt > ™
2
&57r}1)h}'s = {57r[1)hym / (N%(O) + N,Hr(ecg ) d3x} '
D

Note that the term [ NH® generates the dynamics of the background coefficients that in gen-

eral are included in the definitions of 5¢?™* and Ol hys

Note that the four linearized constraints 67, form a closed algebra that is trivial because
the linearized constraints strongly commute. Hence, they must generate four translations in
the ADM perturbation phase space. Since the perturbation variables are real variables with no
restrictions on their ranges, the translations are unbounded in the phase space. In other words,
the gauge orbits have the topology of R* at each spatial point. To fix a point in R* we need
to impose the vanishing of four linear combinations of perturbation variables, dc,, = 0 (they
represent four 3-d planes that all cross each other at exactly one point in R*). Therefore, there
are no obstructions to gauge-fixing: if the four conditions dc, = 0 fix a gauge locally, they
must fix it globally.

2.3. Gauge-invariant description

Although obtained from a particular choice of gauge-fixing conditions, the reduced Hamilto-
nian and the physical variables in fact encode the gauge-independent dynamics of the model.
This can be showed with the help of the Dirac observables, denoted by §D; and defined as
follows:

{0D;,0H,,} ~ 0 for all p. (8)

The Dirac observables commute with the four constraints ¢, and are understood as functions
on the constraint surface. Hence, the number of independent Dirac observables must be equal
to the number of the ADM perturbation variables minus 8 (four constraints plus four gauge-
fixing conditions), that is, equal to the number of the physical variables. The Dirac observables
provide a parametrization of the space of the gauge orbits in the constraint surface whereas the
physical variables provide a parameterization of a particular gauge-fixing surface that crosses
each gauge orbit once and only once as depicted in figure 1. Therefore, there exists a one-to-
one correspondence between the Dirac observables and the physical variables. Specifically,
for any Dirac observable dD; there must exist a corresponding physical variable § O?hys such
that:

3Dy + €1 3cy, + ¢ OH,, = SO0 (8GP™°, Gtphys) 9)

5



Class. Quantum Grav. 40 (2023) 015003 A Boldrin and P Matkiewicz
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Figure 1. [llustration of the key concepts involved in the Dirac procedure: the constraint
surface, the gauge-fixing surface, the gauge orbit, the Dirac space and the canonical
isomorphism between different gauge-fixing surfaces.

for some zeroth-order coefficients ¢! and ¢}'. Moreover, this relation is a canonical isomorph-
ism as (up to first order)

{6D1,§DJ} = {5D1,§DJ}D = {(SDI +€IM(SC# =+ CIN(SHH,(S-DJ +§5L(5C'u + C}JJ(SHI_L}D
X S (10)

where the Dirac bracket (note the subscript ‘D’) is defined in (5). A slightly more detailed
discussion on this isomorphism can be found in [4]. Now, the dynamics (7) can be re-written
in a gauge-independent manner as

%50,: {50,, / (NH<°>+NH§§3)d3x} : (11)

D

where the reduced Hamiltonian is now understood as a function of the Dirac observables,
Hffc{ = 'Hr(ezg (6D). The inclusion of the term {6D;, [ NH(©d*x} in Hamilton’s equation (11)
comes from the fact that the Dirac observables dD; are linear functions of the ADM perturba-
tion variables (6g,,7) with time-dependent background coefficients whose dynamics must
also be taken into account.

It is convenient to use the Dirac observables 6D (or, the physical variables (5g0™*, 0Tl hys))
as basic canonical variables. The respective canonical transformation is time-dependent at the
level of perturbations and thus it generates an extra Hamiltonian density denoted by Héiz The
new Hamiltonian density, called the physical Hamiltonian density, reads 'Hsi)ys = ’Hr(ezd) + 'HS“)
With such a choice of basic variables the dynamics of the perturbations is now given purely
by the second-order physical Hamiltonian:

d
i, = {513,, / NHéﬁ)ysd%} , (12)
D

where the Dirac bracket {A,B}p = {A,0D;}{6D;,6D;}~'{6D;, B} can now be expressed in
terms of the Poisson bracket and the Dirac observables instead of the gauge-fixing functions.
Note that this definition also depends on the gauge-fixing functions as the Dirac observables (8)
are to some extent ambiguous and can be fixed by assuming that they commute with the gauge-
fixing functions, i.e. {0D;,dc, }p = 0.



Class. Quantum Grav. 40 (2023) 015003 A Boldrin and P Matkiewicz

2.4. Spacetime reconstruction

We have just seen that the problem of dynamics can be solved in a gauge-independent manner,
that is, for all choices of gauge at once. Nevertheless, for the physical interpretation of the
obtained dynamics the gauge-fixing conditions need to be specified. Thanks to the gauge-
invariant formulation of the dynamics, the physical interpretation becomes a separate issue to
be addressed independently of the dynamical equations.

Thanks to the condition (4) there exists a one-to-one map between, on one hand, the values
of the gauge-fixing functions, the constraint functions and the Dirac observables, and on the
other hand, the values of the ADM perturbation variables, i.e.:

(6H,1,6¢,,0Dy) <> (3Gap, 67) . (13)

Thus, fixing 6H,, = 0, dc,, = 0 and assigning some numerical values to 6D;’s, unambiguously
determines the geometry of the spatial leaf in terms of the ADM perturbation variables, in
particular it determines the three-metric at any given time.

For the reconstruction of the full spacetime metric we still need to find the values of the
first-order lapse and shift vector. We obtain them via the stability equation:

I RY e

The above equation is physically meaningful only in the constraint surface, that is, it holds
weakly.

{0c,,H} =0 =

3. Kuchar decomposition

In the present section we revisit the procedure outlined above by means of the so-called Kuchar
decomposition that is a special parametrization of the kinematical phase space with constraints
encoded into canonical variables [20, 21]. The existence of such a parametrization should
become obvious as we proceed, nevertheless a general proof (i.e. valid beyond perturbation
theory) can be found in [22]. The discussion of the choice of gauge-fixing conditions and the
spacetime reconstruction turns out to be very transparent in this parametrization.

3.1. Decomposition

We start by introducing new canonical variables in the kinematical (ADM) phase space. Fol-
lowing Kuchat’s decomposition we define two sets of canonical pairs. First we employ the con-
straints §#,, which, at first order, strongly commute between themselves (see equation (2)).
Then we choose variables conjugate to the constraints, given by 4 gauge-fixing functions C*.
These give us the first set of canonical pairs (67, 6C"). Next, we define the so-called strong
Dirac observables § D; that are uniquely determined by the requirement that they strongly com-
mute with the constraint functions and the gauge-fixing functions. Their Poisson algebra is
closed and they form canonical pairs which we shall denote by (6Q;, 5P!). Alternatively, one
might first choose the strong Dirac observables (§Q;, 6P!), which in turn would determine the
respective gauge-fixing functions.
Finally, the new set of canonical variables in the kinematical phase space reads:

(6H,.,6C*,60;,6P").
It follows that, up to first order,
{0M,,(x),6C" ()} = 6,08 (x—y), {6Qi(x),0P (y)} = 6,/6°(x - y), (15)

7
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with all the remaining basic commutation relations vanishing. The canonical transformation
R 5 (8gap, 67) — (6H,,6C*,50;,6P) € R (16)

is time-dependent as the Kuchar variables are linear combinations of the ADM perturbation
variables with time-dependent zeroth-order coefficients. Hence we need to determine the asso-
ciated extra Hamiltonian K that must be included in the new Hamiltonian H:

The extra Hamiltonian K is needed to compensate for the dynamics of the zeroth-order coeffi-
cients present in the definition of the new canonical variables. Notice that the Poisson brackets
expressed in terms of the ADM variables and the Kuchar variables are equivalent up to first
order only, and the commutation relations (15) are now assumed to be exact. Thus the model,
when expressed in terms of the Kuchar variables, becomes an exact gauge system.

In the Kuchar parametrization the total Hamiltonian is given by

Hy = / (NHO 4N (H® + K) + onvoH,, ) d'x, a7

where [ NK (2)d3x = K. It generates the following Hamilton equations:

. O (H® + @ i O (H® + @
s, - OO EED) -y D(HO £KO)
O0P! 060y (18)
. O(MHP+K®) O(H? +K®)
= _— - N~ O/ (2
OHy=N——per—=, 0C" =N 957, ONH.

The dynamical equations for the new canonical variables allow us to restrict the form of the
Hamiltonian Hg. Because the dynamics of the constraints is conserved in the constraint sur-
face, the terms oc 6CYSCH, o §Q;0C* and x SP'SC* must be absent in Hg. The last two
terms must also vanish by virtue of the fact that the dynamics of the Dirac observables in
the constraint surface must be independent of the choice of gauge. Moreover, it is clear that

the Hamiltonian density () 4+ K(®) must be weakly equal to the Hamiltonian density ’Hl()i)ys of

equation (12), more specifically, %) ~ H'%) and K ~ H'%. The latter term compensates
for the dynamics of the background coefficients in the Dirac observables expressed in terms
of the ADM perturbation variables.

Thus, the total Hamiltonian H is made of the physical part (12) and a weakly vanishing
part. In the Kuchar parametrization the total Hamiltonian reads:

g L
Hx =N / H) (5Q176P1) + <>\’1“6Q1 F XSSP+ NS H + M 6CY + 5%) oH, | dx,

phys

physical part weakly vanishing part

19)

where, in general, the zeroth-order coefficients A;, A, and A3 depend on the particular choice

of gauge-fixing functions  C*. The gauge-dependence of A; and A\, becomes evident from (18)
after writing down the formula for the lapse function and shift vector which themselves are
gauge-dependent:
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ONH

~ & M50 — NoP. (20)
The value of A3 is irrelevant for the physical content of the theory. The value of \4 is gauge-
invariant, that is, it does not depend on the particular gauge-fixing functions that are used.
Indeed, we note from (19) that

)\f(u(sHll = {5HU3HK} = {5Hua/ (H(O) +H(2)) } ,

that is, the matrix )4 is fixed unambiguously by the algebra of hypersurface deformations (3).

3.2. Gauge transformations

The Kuchat decomposition provides a class of parametrizations of the kinematical phase space
rather than a single, fixed parametrization. The relevant freedom in defining Kuchat’s variables
comes from the free choice of gauge-fixing functions. Let us use the twiddle mark over the
new canonical quantities and, in particular, let SC* denote a new set of gauge-fixing functions.
The full gauge transformation is given by the canonical map G:

G (H,,,0C",50;,6P') 1 (6H,,,8C*,601,6P') @1)

where 61 u = O0H,,, i.e. the constraint functions are preserved by the map.

We assume the new gauge-fixing functions C* to be canonically conjugate to the con-
straints 6H,,, that is, {0H,,(x),0C" ()} = 6,/ 6%(x — y). If this is not the case, there is a simple
way to bring any gauge-fixing functions, say 6C! ., to the canonical form, say dCca. Namely,

0 Cln () =/M“u(x7y)5ci”m(y)d3y, where M",(x,y) = {6H,.(x),6CL ()}~ (22)

Now, it is clear that the difference between the gauge-fixing functions should satisfy
{6H,,6C* —5C*} =0,

which has the solution
SCH = §CH 4 0P 4 BH5Q; + 4 6H,,, (23)

where o/}, 8/ and y*¥ are background-dependent parameters. The first two parameters are?
4 x 2 matrices, whereas v*¥ is a 4 x 4 matrix. Since gauge-fixing conditions are physically
relevant only in the constraint surface it follows that the only independent parameters involved
in the gauge transformation (23) must be o; and B!, In other words, the space of gauge-
fixing conditions for any fixed label p is the affine space of dimension equal to the number
of Dirac observables in the system. Note that the choice of gauge-fixing conditions can in
principle depend on time through the time-dependent background quantities o'; and 3#/. These
parameters can be obtained with the formulas

o= {6Q,,/(SC‘“ —5c~)}, g = {/(5&# —5C“),5P1},

where the Poisson bracket is given in any (i.e. the ADM or the Kuchar) parametrization.

2 The index I runs from 1 to half of the number of basic Dirac observables for a given system. Thus, in the vacuum
case I € {1,2} labels two polarization modes of the gravitational wave.
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The symplectic form,
Q =d5Q; NdoP' +dsH,, Nd5CH, (24)
may be re-expressed as
Q= d(501—a0H,) Nd (6P'+5"'6H,)
+dH, A d [5C" + al36P + 1601+ 61, |

+drAd [a*;amap’ + B 5H,.001 + % (é/;ﬁ“’ - a*;B”’) (mﬂ(my} , (25

with v = 1 (a/j8"' — o 3#!), leading to the new Kuchaf variables,

601 = 6Q; — o'i6H,,,
P! = 6P + BM6H,,
5Hy = 0H,,
5CH = 6CH + ali0P" + BH5Qs + 7" 6 H,,

(26)

and the extra Hamiltonian density,
. 1 .
AKD = — | a40H, 0P + B5H,50,+ 5 (a8 = i) (mutmy} . Qn

which, when added to (17), yields a new Hamiltonian that we shall denote by Hj. The matrix
# is determined by o) and 3, as expected. Therefore, the parameters o/; and 3#/ determine
a complete gauge transformation. We note that the extra Hamiltonian is weakly zero as it
must be in order for the dynamical equation (18) for the Dirac observables to be preserved
in the constraint surface. The gauge transformation does not affect the definition of the Dirac
observables in the constraint surface, nevertheless it does modify their (physically irrelevant)
extension beyond the constraint surface.

From (26) we conclude that the local space of gauge-fixing conditions is an affine space of
dimension n and the local gauge group is the space of displacement vectors in this affine space,
G = R", where n is the number of of}’s and B#0’s, that is, the number of Dirac observables times
the number of gauge-fixing conditions. Hence, the group of canonical transformations (21) is
abelian,

Go,30Gar g =Gatar p1p- (28)

The physical part of the Hamiltonian (19) is transformed according to the following replace-
ment:

M) (601,6PT) — M) (604, 0PT),

i.e. it is gauge-invariant. The weakly vanishing part of the Hamiltonian (19) is transformed as
follows:
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2 (121) o2 (l21)
/\,ul 5\”1 — /\/LI_ ol )\u vl phys wuJ phys 1
LA VAN = assp T Bs0mme0,
827'[(2) 827'[(2)

phys u phys BJ;A
)

80P1as0Q, "7~ BPI9SP!
- 1 . 1
)\;3111 N )\gu/ _ )\éﬂ/ + - (Oéljﬂyl _ a;?ﬂul) + EAZN (aﬁlﬂyl _ aulﬁf@l)

Iz VY Y TR Y e 7
A= Ay = Ay — a0+

2
827{(2) 1 aZfH(z)
pl v \popul phys  povg 1 phys u v
AT = = s o0ep 1P T 2 G5 0,000, 1V

1 82 (2)
4= phys ﬁ/tlﬁl/,}
2 QOPIOSP’ ’
AZI/ - )\f:l/ = )\Zy’ (29)

ie. A;, Ay and A3 are gauge-dependent, whereas A4 is gauge-invariant, as previously
mentioned.

3.3. Spacetime reconstruction

The gauge stability condition §C” = 0 is a dynamical equation. Therefore we need to be clear
on which particular parametrization we use in the definition of the Poisson bracket so that the
correct Hamiltonian is used in the dynamical equation. We shall denote the Poisson bracket in
the Kuchar parametrization by {-, -} . Thus, the gauge stability condition reads:

(6C", He)x =0, (30)
or, making use of equation (17),

2 2
Nt OHP +K®) an
N O0H,,

The above formula involves only the weakly vanishing part of the Hamiltonian (19) as the
lapse and shift are pure gauge-dependent quantities. However, the difference between those
quantities for two different gauges depends only on the gauge-independent part of the Hamilto-
nian (19), which simplifies the task of spacetime reconstruction. Indeed, after substituting
equation (29) into equation (20) we find that in the constraint surface

W o
N §Cr=0 N sCr=0
. 827'[(2) 627'[(2)
~ | \» g ul phys ouJ phys 5
(‘Wﬂ Tt Gsomer T aem000,% ) 09
(927'[(2) 827'[(2)
[ Y phys p phys gul | s5pl o)
+<A4vo"+o‘1 aopi000, "+ aspigopi” ) OF" (32)

Clearly, the difference between the lapse and shifts in any two gauges is completely determ-

ined by the physical part of the Hamiltonian Héﬁ)ys and the gauge-invariant coefficient \4. As
indicated below equation (19), the value of A4 can be easily obtained from the algebra of the
hypersurface deformations [17].

1
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Furthermore, it is straightforward to deduce how the three-geometries transform under the
gauge transformations. Consider the following linear map:

5H,,

5(’1(117
oCH =M , (33)
00y Smab
P!

where M is a matrix of the background coefficients computed for the preferred gauge-fixing
functions §C*. Then the physical three-surface is obtained from the vanishing of §C*:

0
66](1!; 0
=M"! (34)
Smab 00;
6P
It turns out that the physical three-surface in any gauge §C* = 0 reads
5 0
qab —atsPl — guls
Y I (35)
sl 00,
opP!

and is a linear function of the coefficients o/; and 3.

Let us summarize the obtained procedure for deriving spacetime solutions for arbitrary
gauges. First, we set up a gauge frame by placing a preferred gauge at the point of origin.
Then, the respective full spacetime metric for that particular gauge is computed as explained
in section 2.4. The usual and convenient choice for the point of origin is the spatially flat (or,
spatially uniform) gauge. Next, we conveniently construct all other gauges by arbitrary choices
of the parameters o/; and 3*/ of a fixed gauge frame. As showed, they completely determine
the new full spacetime metric: (a) they determine the lapse function and the shift vector on
the three-surfaces through the stability equation (32); and (b) they define the metric of the
three-surfaces via equation (35).

3.4. Partial gauge-fixing

It is sometimes useful to fix a gauge in other ways than by explicitly setting gauge-fixing
conditions 6C* = 0. For instance, we may impose the synchronous gauge, that is, specify the
spacetime coordinate system by means of conditions on the lapse and shift functions. More
generally, we may replace only some of the gauge-fixing conditions with conditions on the
lapse and shift functions. Nevertheless, we find it sufficient to restrict our attention to the case
of four conditions on the lapse and shift functions. We shall call this method ‘partial gauge-
fixing’ to distinguish it from the method used in the last subsection.

Let us first observe an interesting analogy with the well-known gauge theory in electro-
dynamics (see e.g. [23, 24]). Indeed, the procedures of gauge-fixing in electrodynamics and
CPT are very similar. In electrodynamics, the Coulomb gauge, VA =0, is an example of a
gauge-fixing condition on the kinematical phase space made of the spatial components of
the four-potential and their conjugate momenta (ﬁ ,7). On the other hand, the Lorenz gauge,
0,A* =0, is an example of a partial gauge-fixing condition on the temporal component of
the four potential A°. The latter plays a role of the Lagrange multiplier analogously to the
lapse and shift, and multiplies the only constraint of electrodynamics, the Gauss constraint.
As we will see below, the partial gauge-fixing in the present theory respects a limited amount

12
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6P

New gauge

6Q

Initial gauge

Figure 2. A displacement vector in the space of gauge-fixing conditions determines a
new gauge via a shift from the initial gauge at the point of origin.

of covariance, which is a clear counterpart of the Lorentz-invariance of the Lorenz gauge in
electrodynamics.

Let us first study the subspace of gauge transformations that preserve the lapse and shift
functions, that s, % Py % scu—o = U- This will determine the residual gauge freedom
associated with this method of gauge-fixing. Making use of equation (32) we find the ambiguity

in the choice of the respective gauge-fixing conditions, here expressed in terms of o/; and 3*/
satisfying the following dynamical equations (for each k):

29/(2) 24,(2)
At = _BM 9 thys +at 9 phys PV
' QoP'OSP! " 95Q,0PT " (36)
527_[(2) 827{(2)
BH’ — _5HJ phys + m phys 2K ﬁyl
d6Pl96Q; ' 1960,060, T

where the second-order partial derivatives yield the background coefficients of the physical
Hamiltonian. Note that the solution does not depend on the particular choice of the lapse and
the shifts. Once o] and 3#/ are set at an initial time for all /= 1,2 and . =0, 1,2,3, a unique
solution 7+ (a;(t), 8"/(1)) exists. Hence, at the initial time 7o we have complete freedom in
defining the gauge-fixing functions,

§CH(t9) ~ 6CH(ty) + (o) dP" + B (1) Qy, (37)

where §C* (1) lies at the point of origin of the gauge frame and §C* (1)) are arbitrary gauge-
fixing functions. Once the choice is made, equation (36) determines the gauge-fixing functions
at all other times. There is a very clear spacetime picture associated with this ambiguity (see
figure 2): once §C* (1) are chosen, the initial three-surface with coordinates on it is fixed. If
the initial values of the gauge-invariant variables (Q;(t),5P(ty)) are known then the initial
three-surface may be reconstructed explicitly in terms of the ADM perturbation variables.

Furthermore, the evolution of the three-surface with its coordinates is uniquely determined
via the evolution of 56‘“(0 and the independent evolution of the gauge-invariant variables
(6Qs(t),6P!(t)). Hence the full spacetime geometry is reconstructed. Note the very important
feature that the spacetime coordinate system is introduced in a way that is independent of the
evolution of the gauge-invariant variables (6Q;(t),dP!(t)).

Now let us consider the case in which the LHS of equation (32) is non-vanishing. Then
SN* ON*
T|5_&u=o ~ N lscr=0
equation (32) implies

is an arbitrary linear combination of Dirac observables. In this case
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2 2 ~
g PP Mo D (NN
= asPIasPT T "1 a50,06PT W spl N ’

@ pere)

aul . ppd phys at phys wopvl 0 SN* — SN*
B ==F 5spras0; T 350,000, 85Q1( N ) ©Y

A unique solution is obtained by assuming initially o/;(79) = 3*/(ty) = 0. The complete
space of solutions is then constructed by combining it with the solutions of equation (36).

4. Perturbed Kasner Universe

Below we illustrate the obtained results by considering the Hamiltonian theory of cosmological
perturbations in the Kasner Universe. The latter is the vacuum limit of the Bianchi Type I model
with a scalar field, which was recently considered in [9]. The reader can consult the mentioned
article for more details.

4.1 Background model

The metric of the Kasner Universe reads:
52 = —dt2—|—2:ai2(dxi)27 a= (alazag)% (39)

where we assume the coordinates (x',x%,x*) € [0,1)3. The x'-axes are the principal axes in
which the extrinsic curvature of the spatial leaves is diagonal, nevertheless the expansion can
occur at different rates along different axes. The three-momentum is diagonal too, and the
Hamiltonian constraint reads:

Mg =a (; > (ap' ) =Y ap'ap’ ) (40)

i i>j

where {a?,p/} = 6. The Hamilton equations read:

P = —( =Y o > iy =5 (a?p‘—zafp-’) @1)
J# J#i
where the initial data (a?(ty),p’(to)) are assumed to lie in the constraint surface, Hy,s = 0.
For studying the three-metric and three-momentum perturbations propagating along a
wavevector k = (k', k2, k%) it is more convenient to switch from the coordinate basis to a basis
of three orthonormal vectors (l%,f@fv). The three vectors are normalized with the conformal

metric, v; = % % 5y, and so ki = K /+\/k'ki~;. We use the triad (k, v, W) to replace the compon-

lJ b
ents of the background level three-momentum (p1 N s 3) with a nondiagonal tensor P whose

components read P,,, = a> >, p'nin;, where i, i € (k v,w). One may show that P is related

to the shear tensor as follows O = A~ 2Py — —TrP Onm» Where the shear is defined as
Opm = ot/ and oy = 1 dff7 (% )6,, The Hamiltonian constraint k. now reads:
Hias =a > ((Ter) - ;(TrP)2> : (42)
Note that the choice of (V,w) is free, nevertheless, it is convenient to impose:
il = —op — oW, % = — O — oy, (43)

dn dn
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where 71 denotes conformal time. For more details, see [9] or [7].

4.2. Perturbations

We incorporate into the Kasner Universe purely inhomogeneous three-metric and three-
momentum perturbations, dg;; and é7¥. The lapse function and the shift vector are also per-
turbed with the purely inhomogeneous SN and JN'. We switch to the momentum represent-
ation of the perturbations: 8g;;(k) = [ dg;;(¥)e™** d’x, 577 (k) = [ 679 (¥)e~*~ dx, SN(k) =
[ ON()e "~ d3x and SN’ (k) = [ ON'(¥)e** d*x. The reality condition for the perturbations
reads: 6g;;(k) = 8G;;(—k) and 87 (k) = 67Y(—k). Furthermore, we decompose all the (spatial)
tensors in a basis given by the triad (lAc,f),W). In particular, any symmetric 2-rank tensor is
decomposed into the following homogeneous tensor fields: Al-'j = Yij» A,-zj = lAciIch — %'yij, Af’j =

I (kv 94k ), A = L (R + iy ) A5 = L (9 + 3 ) AG = L5 (9% — oy ). The
dual tensors A, n = 1,...,6 are defined in such a way that AZAZ’ = ¢;". Finally, our defin-
itions of the perturbation variables read: &g, (k) = 6g;AL, on" (k) = STYAL, ON*(k) = SNk,
SNY(k) = 6N;»" and SNY (k) = SN
The dynamical variables satisfy the following commutation relations:
{0gn(k), 67" (=k")} = 6O - (44)

The Hamiltonian (1) specified to the Kasner Universe and expressed with the help of the triad
(k,v,w) reads

H = / (Amm + NH® 4 SN§Ho + ONCGH, + ON'6H,, + 6NW6HW) $x, (45

where H®), §Ho, 6Hy, 6H, and 6, are given in appendix A.

4.3. Spatially flat gauge

The spatially flat gauge is given by the following set of gauge-fixing functions:
dcy = 0q1, dcy = dqa, dc3 = dqs, 6cq = 6qa. (46)

We use both the constraints §Hy =0, H; =0, §H, =0, 6H,, = 0 and the gauge-fixing con-
ditions (46) to replace 67!, d72, 67> and 67* by linear combinations of gs, dgs, S and §7°.
One advantage of this choice is that the Dirac bracket is immediately obtained:

{"'}D:ZZ 358‘ 6;_ - ?_ a, :
2 05,(8) 00w (—k) 05w (—k) D3gi(k)
The second-order Hamiltonian (45) becomes a quadratic function of the perturbations dgs,
0qs, 57 and 67° only. Furthermore, we find it convenient to use the rescaled variables
0qs = ﬁéqs, 0qs = ﬁéqs, 07 = /2ad7 and §7° = \/2ad7°. Finally, the perturbation
Hamiltonian is found to read (see [9] for details):

@_N
Hred - Z

where the coefficients can be found in appendix B.
The above Hamiltonian can be used to formulate the gauge-invariant dynamics of perturb-
ations. To this end we find four independent Dirac observables, denoted by 6Q;, 60>, SP' and
dP? as linear combinations of the ADM perturbation variables that Poisson-commute with the

{5&% + 072 + (I + U))6G2 + (2 + Uy)0G% + C120456Gs |,  (47)

15
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constraint functions §Hg, 6Hy, 0H,, 6H,, and the gauge-fixing functions dc;, ¢z, dcs, dcy.
They read

1 2P, 1
00| = —=0dg5 + (56]1 - 35612>7

V2a aPy
1 va - wa 1
00, = ECS% + TP (5611 - 3542> ;
5
1 _ E(Trp)ipkk 2va va_wa
6P' =V 2adms + N 5qs — NETS 5046 + Pudgs

3P,
a3 Py

3(TrP) — P Py —Pyy (Py—P
5P2 — 2 (5 6 (5 _ vy ww 124 ww (5 va(s
V2adms + N %= Pel 5 96 + Pr0gs

PVV_PWW P2 _PZ 1 3va_wa
+f< , "W) (5611—356&)—( Lag:

2 2 2a3
V2
+ 7 (Piv0g3 — Prw04qa)

1 V2
+ F(Puws PivProw) (5611 — 35%) — Prdgy + 7 (Piwdq3 + Pry0gqs) , (48)

4 4P+ (P50 )) 2Py (Put )
where F(X,Y) = 5-Y — 2 P 2

observables transform as spin-2 fields under rotations, that is, §Q; and §Q; are two polariz-
ation modes of the gravitational wave. Note that in the gauge-fixing surface (46) these Dirac
observables are numerically equal to the rescaled ADM perturbation variables, that is,

X. It is easy to show that these Dirac

001|gs = 6Gs, 0Qa|g. =0Ge, 0P| =075, 6P|, = O,

where ‘SF’ denotes the spatially flat gauge. Therefore, in terms of the Dirac observables the
Hamiltonian (47) becomes

N
q@ N

phys ~ 5g [(5101)2 + (6P*)? + (K> + U,)60% + (K + U,) 003 + C126Q15Q2} . (49)

It generates the gauge-invariant dynamics of the system as discussed in section 2.3.
In order to reconstruct the actual spacetime we apply the formula (14) and find

(SN va va - PWW
0o T -t s
N~ ape’ T T 2apg 0%
l@ _ 2va - 2PkVPkW + 2P€w + va(va _wa)z o 5va(va +wa) 6Q
i N\ 3 d'Pu | P 24*P2, 6a* P !
P]%w . P%v + va - wa 5(Pa/w - ng) (va - PWW)PEW (va - wa)3 5Q
a*Py  a*Pu 3a* 12a% Py a*Py, 4a*P?, ?
va PI va - wa (SPZ7
a?Py 2a* Py
1 6NY 2kapvw 2Pkw ka(va - wa) 2ka
- = ) _ §
i N ( a* Py + at Qi+ a*Pyy * a* &

1 6N" 2P Py 2Py, Py (Pyy — Py 2Py
! :( P k)6Q1+(M— k)5Q2~ (50)

i N a* Pk at a* Pk at
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(Note that the imaginary units in front of SN, 6N, SNY cancel out in equation (45) when
multiplied by the respective constraints (A2)).

4.4. Gauge transformations

In what follows we consider two other gauges for the illustration of the method.

4.4.1. Scalar gravity gauge.  Let us first consider a gauge in which one of the tensor modes
of the metric perturbation vanishes, say dgs = 0. Moreover, we assume dg; = dg3 = dq4 = 0.
Note that in this gauge one polarization mode of the gravitational wave, Q| = — ff o 0qn, is
carried by a scalar metric perturbation. Thus, we shall call it the scalar gravity gauge (SG).
To make use of the gauge frame based on the spatially flat gauge (SF) we cast both sets of

gauge-fixing functions into canonical form (see equation (22)):

a(30q) — q2) i[(Pw + Puw)(30q1 — 6q2) — Pr(60g1 + 9q2)]

5CM = 5 9
SF 3P 6a2Pkk
i (12ka541 — 4Py, 02 + 3ﬂPkk5Q3)
B 6a2Pkk ’
i (12P/<W5Q1 —4Py,0q2 + 3\/§Pkk6‘I4)
B 6a2Pkk ’
N i (12vadq1 n ﬁ(np)éqs)
56 2\@va’ 8a2va ’
_ i(va(;(fB - ka545) _i(vav5q4 - kav5q5)
\/Easzw 7 \/iazpvw 7
and find the difference in terms of « and 3 to read:
(12
~3, O
—i(TrP)
afj=0, pHi=| A (5D
a0
iPiyy
a0
Furthermore, we find A}, to read
0 0 0 0
ia" %k 0 0 0
Ay = 0 2Py Pu—Pn P |- (52)
a’ a’ a3
0 _ 21’% _ P#;” P *%P ww
Hence, the lapse and shift transform as follows (see equation (32)):
SNE SNE, . 1
SG A ~ (/\i/ﬂul +5“1) 50; + — 6P (53)
N lser—o N lscr—o 2a

SGT
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To reconstruct the three-surfaces we apply the formula (35) with the matrix M which maps
the ADM perturbation variables into the constraint functions (A1) and (A2), the gauge-fixing
functions (46) and the Dirac observables (48).

4.4.2. Synchronous gauge. The synchronous gauge is given by partial gauge-fixing, IN* =
0. The gauge-fixing conditions for synchronous gauge are obtained in terms of o/; and 3*/ as
solutions to equation (38). In the gauge frame originated on the SF gauge, we find:

a’;:—iﬁf‘w 0 <5N§F>7

OSPI \ N
(54

. . . . 0 ONE

where % are given by equation (50). The choice of the initial data o/;(ty), 3*/(ty) determ-
ines unambiguously the synchronous gauge-fixing conditions. Then the three-surfaces can be

reconstructed with the use of matrix M as in the previous example.

5. Conclusions

The purpose of this work was to develop a complete Hamiltonian approach to CPT. The basic
property of our approach is the separation of the gauge-independent dynamics of perturba-
tions from the problem of gauge-fixing and spacetime reconstruction. We use the Dirac pro-
cedure for constrained systems to derive the dynamics of gauge-dependent perturbations and
to rewrite it in terms of gauge-independent quantities, the Dirac observables. A key element of
our approach is the reconstruction of spacetime based on gauge-fixing conditions. The usual
approaches, e.g. [1, 13, 14], suffer from the lack of methodological choice of gauge-fixing con-
ditions, the choice of gauge is often more like a guess rather than an actual choice made within
a well-defined and complete set of possibilities®. To overcome this problem, we introduced the
Kuchar decomposition for the ADM perturbation phase space. The space of all the possible
gauge-fixing conditions and the gauge transformations induced by the linear diffeomorphisms
of three-surfaces are made explicit via this decomposition. Moreover, it makes the transform-
ations of the lapse and shift manifestly dependent on purely gauge-independent terms of the
full Hamiltonian. This simplifies the problem of spacetime reconstruction and provides a tool
for studying partial gauge-fixing.

To illustrate our approach we consider the perturbed Kasner Universe. We established a
gauge frame in the space of all gauges for this model: we chose the spatially flat gauge as
the point of origin and the Dirac observables (48) as basic displacements. We first discussed
a gauge-fixing condition that kills one of the tensor modes of the three-metric perturbation.
In this gauge one polarization mode of the gravitational wave is carried by a pure scalar
metric perturbation. We expressed this gauge in the gauge frame in order to reconstruct the
full spacetime metric. Our next example was the synchronous gauge that is given via partial

3 Some commonly used gauges, their validity and, in some cases, their residual freedom are studied in the mentioned
references. However, no general method for defining a valid gauge and its residual freedom is provided. In particular,
the mentioned references lack a clear exposition of the connection between the residual freedom, the lapse and the
shift, and the choice of the initial three-surface.
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gauge-fixing conditions on the lapse and shift and for which gauge-fixing conditions remain
underdetermined. This is an analog of the Lorenz gauge in electrodynamics. We showed how
to use the gauge frame to determine gauge-fixing conditions and how to use the gauge-fixing
conditions to reconstruct the spacetime.

The possible applications of the presented Hamiltonian formalism include addressing key
conceptual problems in quantum cosmology such as the time problem, the semiclassical space-
time reconstruction, or the relation between the kinematical and reduced phase space quantiz-
ation. The full clarification of the Hamiltonian formalism and its structure is essential for these
and similar tasks.

We note that cosmological perturbation theory owes its simplicity to the abelianization
of the algebra of hypersurface deformations in linear approximation. The abelianization of
the constraints’ algebra is specific to perturbation theory, although it could also occur in the
context of other-type truncations to the full canonical formalism. Therefore, we do not expect
the abelianization of the constraints’ algebra to occur when expanding the constraints beyond
linear order. However, the abelianization of constraints in linear perturbation theory can be
extended to higher orders in the successive order-by-order expansion. At each successive order
one introduces new perturbation variables and derives linear equations of motion for them
while assuming a fixed solution at lower orders. The linear equations of motion can be cast to
the form of Hamilton equations generated by a quadratic (in the new variables) Hamiltonian
with the use of a symplectic form independent of the lower-order symplectic forms. Therefore,
the structure of the Hamiltonian formalism is expected to reproduce at each order (except for
the zero order). At each order linearized gauge transformations are distinct as they act on
separate perturbation variables. Order by order they add up to form a non-linear, ‘curved’
space of gauge-fixing conditions. This theory, however, by assumption cannot be extended
to perturbations large enough to change the topology of gauge-fixing conditions. Therefore,
we do not foresee any obstructions in gauge-fixing in higher-order perturbation theory either.
Nevertheless, the details of this higher-order theory and of the role the Kuchar parametrization
could play in it can be found only via a careful derivation. We postpone a more detailed analysis
of this approach to a future paper.
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Appendix A. Constraints

Note the identity ', = lAcilch + V9 + Wiy It is convenient to introduce §Hy = 67—[;/2,-, 0H, =
OH Vi, 6H,y = OH Wi, SNk = N;k', SNV = SN;» and SN = 6N:w'. The first-order scalar con-
straint reads:
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§Ho = —%cfl (TrP)or" +a~ ' [3Py — (TrP))on* +a~ '2V/2P;, 67
+a ! ZﬁPkw57T4 + Cl_lzﬁpvw(Sﬂ'S + a_l \ﬁ(va - wa)6ﬂ'6

T 1a*S[(TrPZ) - %(TrP)z]dql + %a*S {—2(TrP?)

2
+6(Pi + Piy, + Pioy) — (TrP) [3Py — (TrP)]}og,
+ V207 2P Pow + Pio(Pov — Puw) + PiaPra)0qs (A1)

+ ﬂa75[2PkVva - Pkw(PVV - wa) +PkkPkw]5Q4
+ V24 2P, Piyy — 2PigPow + (TrP)Pony)8gs

1 _
+ 54 S2(Phy — Phy) — 2P (Pow — Puw) + (TrP) (Pyy — Po) )04

_ 1
—2a" 'k (5q1 — géqz),

and the first-order vector constraints read:

1 _ 1 -4
oH, = 2id® [§67r1 +ont+at (Pkk— 5(TrP)> 5q1+ %(Pkk—&—(TrP))éqz

BRI R

NG
. 1 _4 074
OHy = 72161 7(57T +a Py | dq1 — 56]2 ﬁ — Pudgs

074 6174 va*wa(S :|
6>

(A2)

+4 Py +“4P5]
\/ikqu \fszQ()a

a1 - 1 -
OHy = —2102 |:ﬁ57r4 +a 4PkW (5(]1 — §6q2> + %Pkde;‘

a? a4
+—=P0q5 — —=Prv6qs | -
\/2 kv q5 \/E kw q6:|

The second-order non-vanishing part of the Hamiltonian (45) reads

573 3adm?
7—[52) = —% a271'2 + adn2 4 adni 4 adnt + adwi — 5q7
K 47(TrP)? N (TrP?) o K Py 2P 2P
2a3 1647 8d’ 2\ 1843 647  3d’  3d
Pu(TrP)  5(TrP)>  5(TrP?) e (TrP)? N PPy,
3a’ 36a’ 18a’ L 8a’ a’
(TrP?) o (TrP)*  PyP,, (TrP?)
) _
+ 4a’ + 04 8a’ + a’ + 4a’
K (TrP)*> PP, (TrP?)
5 20 % _ wi ww
+05 <4a3 8a’ + a’ + 4a’ >
vog( B p PutPul P (TP) (1)
96\ 443 44’ a’ 8a’ 44’
\/EP kv57r3 \/EP kw(;ﬂ—ét \/ZP vw(sﬂ—i P ww P
+oq1 | — 3 3 3 oms
a a @ V28 24
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_ om(TrP) s (( rP) Pkk) +5q3<\ﬁf;;kav _ 1(TrP)Py

6a’ 6a’ 2a3 V24
V2P, Py, PWPkw 7(TrP)Pyy, V2P Py,
A — +0q4 — 5
a V2d a
+5ge ((V2PuPo 7(TrP)PVW V2P Py,
qs ] ﬂcﬂ 4
+5616<— P, + P, _(Pz _Pysz)_s(va_PWW)(T”P)>
V2adl 247 V24’ 2+/247
L ¥ Py P, P, N 5(TrP)*  5Pu(TrP) N (TrP?)
e 3@ o a’ a’ 6a’ 24’ 34’
2P P, 0 2P, P,0 P, |(TrP) — P, 2P W
+5q3[ kk 7» q4+ kw7vv q5+( 10[(1’7) kk] kw7v )56
a a a a
V2P0m 2P 0m +va57T4 + 2Py, 0T + 2P0
3a3 a’ a’ a3 a’
2(TrP P, 2P, P,,,0q 2P, P,,,
+5ﬂ_3( (303)_6:?v):|+6q4[ va7w 5_|_ 1217 W
P [(TrP) — Pkk])(s V2P, 0m V2P0
- 7 |9~ 3 - 3
a 3a a
va(sﬂ'g, 2PkV(57T5 Q,Pkw(s’l% Z(TVP) PW
+ a’ + @ B +0ms 363 &
(P wa)th \ﬁpvwaﬂ-l \/EPVW(ST‘-z
+ dgs 7 dq6 — > 3
a 3a a
Z(TI’P) Pkk va _wa va _wa
1) - — ) om — 0
+ 7r5( 3a3 a’ +0ds 3243 7T1 V2a3 ™
—|—57T 2(T}’P) _ % +5 Pkk(S’sz 4\[ka671'3 + 4ﬂPkW57T4
o\ 343 a’ L a’ 3a3 3a3
o 2\ﬁpvw67r5 . \ﬁ(va _wa> 577' —|—(57T (TI"P) o %
3a3 3a3 6 "\ 9a3 3a3
oo (V2PuPe _ 2V2PwPy  VATIP)Py  2V/2Pu Py
B\ 34 3d7 3d7 3d7
\f PkkPkw _ 2V2PuPuw | V2(TrP)Pi,  2v/2Pi Py
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3a’ 3a’ 3a’
4\f kaPkw V2PyPy,  5V2P,,(TrP)
a’ 3a’
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4o 3a7 34’ 34’
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Appendix B. Physical Hamiltonian coefficients

The background coefficients in the physical Hamiltonian (47):

(TrP)? + 72 (P, + PiPioy + Piy, + Pow(Piy + Proy) — Py

1 =

36a*
_ 2
+ P%W(4P£v+4piw _4P%w - (PW _PWW)2 _Plzk) _ ZM
a*Py, a*
54P}, —36P3,(TrP) 2Py (8PiyPry + P (TrP))
36a*P, a*P ’
U, = (TrP)2+72(P%v+kaPkw+P]%w+PVW(ka+Pkw) 7P%w)
2 36at
_ 2
| Bl 4B 4B, 4P~ (P~ Pu)—FR) PR,
a4P,%k at
S4PY =3P (TrP) | 2P0 (4P, 4P, 5 (1))
36a*Py, a*Pi ’
Cyy = Pov(Prw = Pun) (4P, + 4P}, = 4P3y = (Po = Pun)®) . Pon(Pov = Pi)
a4P%k at
y 8(P2, — P2,)Puw + 8P Pioy(Puy — Py) + 2(TrP) Pyyy(Pyy — Puw)
a4Pkk ’
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