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Abstract
We develop a complete Hamiltonian approach to the theory of perturbations
around any spatially homogeneous spacetime. We employ the Dirac method
for constrained systems which is well-suited to cosmological perturbations. We
refine the method via the so-called Kuchǎr parametrization of the kinematical
phase space. We separate the gauge-invariant dynamics of the three-surfaces
from the three-surface deformations induced by linear coordinate transforma-
tions. The canonical group of the three-surface deformations and the complete
space of gauge-fixing conditions are explicit in our approach. We introduce
a frame in the space of gauge-fixing conditions and use it to considerably
simplify the prescription for gauge-fixing, partial gauge-fixing and spacetime
reconstruction. Finally, we illustrate our approach by considering the perturbed
Kasner Universe, for which we discuss two kinds of gauges that correspond
respectively to the Coulomb-like and the Lorenz-like gauge in electrodynamics.

Keywords: Hamiltonian formalism, Dirac procedure,
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1. Introduction

Cosmological perturbation theory (CPT) is widely assumed to be a working model of gravity
at large cosmological scales. It is also used for constructing quantum theories of the origin of
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the primordial structure in the Universe. A notable example here is the inflationary model, but
it is not the only one. The Hamiltonian formalism for cosmological perturbations, which is the
subject of the present article, is a prerequisite for canonical quantizations of CPT.

Obviously, the Hamiltonian formalism for cosmological perturbations has been derived
before, at least in some simple background spacetime models such as the Friedmann Universe
[1–6] or the Bianchi Type I model [7–9]. Therefore, our goal in the present work is somewhat
different. First of all, we keep our considerations general without specifying any particular
background model until the final section where we study, as an example, the perturbed Kas-
ner Universe. Secondly, we study the complete Hamiltonian formalism that includes both a
gauge-independent description of cosmological perturbations as well as the issues of gauge-
fixing, gauge transformations and spacetime reconstruction. To our best knowledge the latter
elements of the Hamiltonian formalism have not been sufficiently studied in the literature.
Thirdly, we achieve our goal by using and refining the Dirac method for constrained systems
[10] which, despite being well-suited to cosmological perturbations, has not been used for that
purpose until very recently. In [4] the Dirac method was applied to the perturbed flat Fried-
mann Universe with a perfect fluid. The key steps on which this previous work was based are
outlined in section 2 of the present paper and supplemented with additional comments on the
hypersurface deformations in the linearized theory. A significant improvement of the Dirac
method is then obtained in section 3 of the present paper with the use of a new parametrization
of the Arnowitt-Deser-Misner (ADM) phase space. As we will show, the new variables make
the basic elements of the Dirac method such as gauge-fixing or spacetime reconstruction much
clearer, and also simplify the key formulas.

The usual approach to CPT is to identify gauge-invariant variables in the configuration
space and to study their and only their dynamics. The physical interpretation of the gauge-
invariant variables is ambiguous and depends on the choice of the coordinate system for the
spacetime. This choice is alwaysmade implicitly by assuming that some linear combinations of
the components of the metric tensor vanish. The Friedmann–Robertson–Walker models have
been studied extensively, and there are some well-known ‘canonical’ gauge-fixing conditions
that can be used for various purposes [1, 11–14]. Much less is known about valid gauges and
the associated physical interpretations of gauge-invariant variables in anisotropic spacetimes.
The Dirac method, as we show, provides a powerful tool for setting valid gauges and for recon-
structing the spacetimemetric from gauge-invariant variables in the Hamiltonian formalism. In
this method, it is straightforward to show that the gauge transformations form an abelian group
of translations that act in the ADM phase space, the space of all valid gauges becomes explicit,
and the distinction between complete and partial gauge-fixing is very clear and analogous to
electrodynamics.

The physical motivation for the present work is two-fold. First, purely classical, to develop
a tool for studying gauge-fixing conditions in homogeneous spacetimes both isotropic and
anisotropic. It is interesting to note that in anisotropic spacetimes there may be many repres-
entations of gravitational waves in contrast to isotropic universes where gravitational waves
admit a unique representation in terms of transverse and traceless metric perturbations. In
anisotropic spacetimes, as we show, a gravitational wave may be represented by a scalar metric
perturbation. Second, to fully develop a relatively uncomplicated and thus practical laboratory
for canonical quantizations of gravity. Such issues as the relation between the reduced and
kinematical phase spaces and their respective quantizations, other quantization ambiguities,
the quantum fate of diffeomorphism invariance and the time problem, semiclassical space-
time reconstruction and quantum-to-classical transition can be conveniently studied within
our framework.
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The outline of the article is as follows. In section 2 we first discuss the general form of
the Hamiltonian in CPT, the algebra of constraints and their consistency with the dynamics.
We apply the Dirac procedure to remove the constraints and obtain the reduced Hamiltonian
dynamics for reduced variables. Next we rewrite the reduced Hamiltonian framework in terms
of Dirac observables so that the issues of dynamics and physical spacetime reconstruction are
to be solved separately at this point. In order to reconstruct the full spacetimemetric, the stabil-
ity of gauge-fixing conditions under the action of the full Hamiltonian is studied. In section 3
we present an alternative phase space description analogous to the so-called Kuchǎr decom-
position of the full geometrodynamics. In this new description the gauge transformations are
given by a simple expression, which facilitates gauge-fixing and partial gauge-fixing, and sim-
plifies the problem of spacetime reconstruction. In section 4 we apply our formalism to the
Kasner Universe. We conclude in section 5.

2. Hamiltonian formalism and the gauge-fixing procedure

In this section we briefly show how the Dirac procedure for constrained systems [10] can be
adapted to the Hamiltonian formulation of CPT. We discuss the notions of Dirac observables,
reduced variables, constrained and physical dynamics, and the relations between them. We
also discuss how the spacetime picture can be reconstructed from gauge-fixing conditions.

2.1. Cosmological perturbations as a constrained system

As cosmological background models we assume spatially homogeneous spacetimes with spa-
tial coordinates fixed in such a way as to make the background shift vector components N i

vanish. Also, the diffeomorphism constraints of the background model H(0)
i = 0 must vanish

trivially. Then the ADM Hamiltonian [15] expanded to second order around such a homogen-
ous spacetime model reads:

H=

ˆ (
NH(0) +NH(2) + δNµδHµ

)
d3x, (1)

where N is the zeroth order lapse function, δNµ are the first order lapse and shift functions,
H(0) andH(2) are respectively the zeroth-order constraint and the second order scalar Hamilto-
nian, and δHµ are linearized scalar and diffeomorphism constraints. This Hamiltonian is a
function of the homogeneous three-metric q̄ij and three-momentum π̄ij, and the pure inhomo-
geneous perturbations of the three-metric δqij = qij− q̄ij and three-momentum δπij = πij− π̄ij.
TheHamiltonian systemmay include any number ofmatter fields but for clarity wemake expli-
cit use of the gravitational variables only.We emphasize, however, that all the following results
apply equally well to more general set-ups. The total canonical structure can be then shown to
be the sum of the homogeneous and inhomogeneous canonical structures (see, e.g. equation
(18) of [2]), {

q̄ij, π̄
kl
}
= V−1

0 δ
(k
i δ

l)
j ,
{
δqij(x), δπ

kl(y)
}
= δ

(k
i δ

l)
j δ

3(x− y),

with all the remaining Poisson brackets vanishing (V0 is the coordinate volume of the spa-
tial section usually assumed to equal 1 as in the example of section 4). The interpreta-
tion of the terms in equation (1) is as follows. The zeroth-order constraint H(0) generates
time transformations in the homogeneous background spacetime while keeping the inhomo-
geneous fields fixed. The first-order constraints δHµ generate linearized transformations
of the inhomogeneous spacetime while keeping the homogeneous background fixed. The
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second-order HamiltonianH(2) generates the dynamics of perturbations that must occur sim-
ultaneously with the dynamics of the homogeneous background generated byH(0).

The Hamiltonian (1) defines a gauge system in the sense that the constraints δHµ are first-
class up to first order. Specifically, at each spatial point, the algebra of the linearized constraints
reads

{δHi, δHj}= 0, {δHj, δH0}= 0. (2)

We note that the linearized constraints commute strongly at first order, that is, when zeroth-
and second-order outputs of the Poisson brackets are legitimately neglected, and thus the group
of gauge transformations that they generate for each spatial point must be abelian. This is true
independently from any particular choice of background spacetime model1. Furthermore, the
constraints are dynamically stable on the constraint surface, namely,{ˆ

(H(0) +H(2)), δH0(x)

}
=−δHi

,i(x)≈ 0,

{ˆ (
H(0) +H(2)

)
, δHi(x)

}
= 0 (3)

where δHi(x) = q̄ijδHj(x) and the weak equality ‘≈’ means ‘equal at the constraint surface’.
Equations (2) and (3) are a linearized version of the algebra of hypersurface deformations

of canonical relativity [16]. The full deformation algebra, and hence its linearization, are uni-
versal in the sense that they do not depend on any particular theory of gravity [17]. We find it
interesting to note that the abelianization of this algebra can also naturally occur for spherically
symmetric hypersurface deformations [18, 19].

2.2. Gauge-fixing conditions

From now onwe shall focus on the unconstrained formulation of the dynamics of perturbations
while omitting the separate problem of formulating the unconstrained dynamics of the back-
ground quantities. In order to remove the gauge freedom generated by the constraints δHµ,
we choose four gauge-fixing conditions denoted by δcµ = 0, such that the commutation rela-
tions between the gauge-fixing functions and the linear constraints form an invertible matrix,
that is,

det{δcν , δHµ} 6= 0. (4)

The gauge-fixing conditions δcµ = 0 are solved by introducing a set of reduced canonical
variables. Specifically, the reduction of the formalism is obtained by replacing the set of the
12ADMperturbation variables (δqij, δπij)with a reduced set of four physical variables denoted
by (δqphysI , δπIphys), where I= 1,2 (see section 4.3 for an example of the reduction). The ADM
variables are reduced to those four independent physical variables by virtue of four gauge-
fixing conditions and four constraints. The physical variables are meant to form a canonical
coordinate system on the submanifold in the kinematical phase space, on which the gauge-
fixing functions and the constraints vanish. We call this submanifold the physical phase space.
The canonical structure of the physical phase space is encoded in the Dirac bracket,

{·, ·}D = {·, ·}− {·, δϕµ}{δϕµ, δϕν}−1{δϕν , ·}, (5)

1 Equation (2) turns out to be completely general for perturbation theory around any homogenous background: since
the homogeneous and inhomogeneous variables commute with each other, any nontrivial output of the Poisson bracket
can be either zeroth-order (coming from the bracket of first-order variables) or second-order (coming from the bracket
of zeroth-order variables).
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where δϕµ ∈ (δH1, . . . , δH4, δc1, . . . , δc4). Note that the Dirac bracket depends on the choice
of the gauge-fixing conditions (δc1, . . . , δc4).

The second-order part of the Hamiltonian (1) is next expressed in terms of the physical
variables yielding the reduced Hamiltonian:(

NH(2) + δNµδHµ

)∣∣∣
δcµ=0=δHµ

= NH(2)
red

(
δqphysI , δπIphys

)
. (6)

Given the reduced set of variables, the reduced Hamiltonian and the Dirac bracket, we find
the reduced Hamilton equations to read (up to first order):

d
dt
δqphysI =

{
δqphysI ,

ˆ (
NH(0) +NH(2)

red

)
d3x

}
D

,

d
dt
δπIphys =

{
δπIphys,

ˆ (
NH(0) +NH(2)

red

)
d3x

}
D

.

(7)

Note that the term
´
NH(0) generates the dynamics of the background coefficients that in gen-

eral are included in the definitions of δqphysI and δπIphys.
Note that the four linearized constraints δHµ form a closed algebra that is trivial because

the linearized constraints strongly commute. Hence, they must generate four translations in
the ADM perturbation phase space. Since the perturbation variables are real variables with no
restrictions on their ranges, the translations are unbounded in the phase space. In other words,
the gauge orbits have the topology of R4 at each spatial point. To fix a point in R4 we need
to impose the vanishing of four linear combinations of perturbation variables, δcµ = 0 (they
represent four 3-d planes that all cross each other at exactly one point in R4). Therefore, there
are no obstructions to gauge-fixing: if the four conditions δcµ = 0 fix a gauge locally, they
must fix it globally.

2.3. Gauge-invariant description

Although obtained from a particular choice of gauge-fixing conditions, the reduced Hamilto-
nian and the physical variables in fact encode the gauge-independent dynamics of the model.
This can be showed with the help of the Dirac observables, denoted by δDI and defined as
follows:

{δDI, δHµ} ≈ 0 for all µ. (8)

The Dirac observables commute with the four constraints δHµ and are understood as functions
on the constraint surface. Hence, the number of independent Dirac observables must be equal
to the number of the ADM perturbation variables minus 8 (four constraints plus four gauge-
fixing conditions), that is, equal to the number of the physical variables. The Dirac observables
provide a parametrization of the space of the gauge orbits in the constraint surface whereas the
physical variables provide a parameterization of a particular gauge-fixing surface that crosses
each gauge orbit once and only once as depicted in figure 1. Therefore, there exists a one-to-
one correspondence between the Dirac observables and the physical variables. Specifically,
for any Dirac observable δDI there must exist a corresponding physical variable δOphys

I such
that:

δDI+ ξµI δcµ + ζµI δHµ = δOphys
I

(
δqphys, δπphys

)
, (9)
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Figure 1. Illustration of the key concepts involved in the Dirac procedure: the constraint
surface, the gauge-fixing surface, the gauge orbit, the Dirac space and the canonical
isomorphism between different gauge-fixing surfaces.

for some zeroth-order coefficients ξµI and ζµI . Moreover, this relation is a canonical isomorph-
ism as (up to first order)

{δDI, δDJ}= {δDI, δDJ}D = {δDI+ ξµI δcµ + ζµI δHµ, δDJ+ ξµJ δcµ + ζµJ δHµ}D

=
{
δOphys

I , δOphys
J

}
D
,

(10)

where the Dirac bracket (note the subscript ‘D’) is defined in (5). A slightly more detailed
discussion on this isomorphism can be found in [4]. Now, the dynamics (7) can be re-written
in a gauge-independent manner as

d
dt
δDI =

{
δDI,

ˆ (
NH(0) +NH(2)

red

)
d3x

}
D

, (11)

where the reduced Hamiltonian is now understood as a function of the Dirac observables,
H(2)

red =H(2)
red (δD). The inclusion of the term {δDI,

´
NH(0)d3x} in Hamilton’s equation (11)

comes from the fact that the Dirac observables δDI are linear functions of the ADM perturba-
tion variables (δqab, δπab)with time-dependent background coefficients whose dynamics must
also be taken into account.

It is convenient to use the Dirac observables δDI (or, the physical variables (δq
phys
I , δπIphys))

as basic canonical variables. The respective canonical transformation is time-dependent at the
level of perturbations and thus it generates an extra Hamiltonian density denoted byH(2)

ext . The
new Hamiltonian density, called the physical Hamiltonian density, readsH(2)

phys =H(2)
red +H(2)

ext .
With such a choice of basic variables the dynamics of the perturbations is now given purely
by the second-order physical Hamiltonian:

d
dt
δDI =

{
δDI,

ˆ
NH(2)

physd
3x

}
D

, (12)

where the Dirac bracket {A,B}D = {A, δDJ}{δDI, δDJ}−1{δDI,B} can now be expressed in
terms of the Poisson bracket and the Dirac observables instead of the gauge-fixing functions.
Note that this definition also depends on the gauge-fixing functions as the Dirac observables (8)
are to some extent ambiguous and can be fixed by assuming that they commute with the gauge-
fixing functions, i.e. {δDI, δcµ}D = 0.
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2.4. Spacetime reconstruction

We have just seen that the problem of dynamics can be solved in a gauge-independent manner,
that is, for all choices of gauge at once. Nevertheless, for the physical interpretation of the
obtained dynamics the gauge-fixing conditions need to be specified. Thanks to the gauge-
invariant formulation of the dynamics, the physical interpretation becomes a separate issue to
be addressed independently of the dynamical equations.

Thanks to the condition (4) there exists a one-to-one map between, on one hand, the values
of the gauge-fixing functions, the constraint functions and the Dirac observables, and on the
other hand, the values of the ADM perturbation variables, i.e.:

(δHµ, δcµ, δDI)↔
(
δqab, δπ

ab
)
. (13)

Thus, fixing δHµ = 0, δcµ = 0 and assigning some numerical values to δDI’s, unambiguously
determines the geometry of the spatial leaf in terms of the ADM perturbation variables, in
particular it determines the three-metric at any given time.

For the reconstruction of the full spacetime metric we still need to find the values of the
first-order lapse and shift vector. We obtain them via the stability equation:

{δcν ,H}= 0 ⇒ δNµ

N
=−{δcν , δHµ}−1

({
δcν ,H(0)

}
+
{
δcν ,H(2)

})
. (14)

The above equation is physically meaningful only in the constraint surface, that is, it holds
weakly.

3. Kuchař decomposition

In the present section we revisit the procedure outlined above bymeans of the so-called Kuchǎr
decomposition that is a special parametrization of the kinematical phase space with constraints
encoded into canonical variables [20, 21]. The existence of such a parametrization should
become obvious as we proceed, nevertheless a general proof (i.e. valid beyond perturbation
theory) can be found in [22]. The discussion of the choice of gauge-fixing conditions and the
spacetime reconstruction turns out to be very transparent in this parametrization.

3.1. Decomposition

We start by introducing new canonical variables in the kinematical (ADM) phase space. Fol-
lowingKuchǎr’s decomposition we define two sets of canonical pairs. First we employ the con-
straints δHµ which, at first order, strongly commute between themselves (see equation (2)).
Then we choose variables conjugate to the constraints, given by 4 gauge-fixing functions δCµ.
These give us the first set of canonical pairs (δHµ, δCµ). Next, we define the so-called strong
Dirac observables δDI that are uniquely determined by the requirement that they strongly com-
mute with the constraint functions and the gauge-fixing functions. Their Poisson algebra is
closed and they form canonical pairs which we shall denote by (δQI, δPI). Alternatively, one
might first choose the strong Dirac observables (δQI, δPI), which in turn would determine the
respective gauge-fixing functions.

Finally, the new set of canonical variables in the kinematical phase space reads:(
δHµ, δC

µ, δQI, δP
I
)
.

It follows that, up to first order,

{δHµ(x), δC
ν(y)}= δ ν

µ δ3(x− y), {δQI(x), δP
J(y)}= δ J

I δ
3(x− y), (15)

7
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with all the remaining basic commutation relations vanishing. The canonical transformation

R12 3
(
δqab, δπ

ab
)
7→
(
δHµ, δC

µ, δQI, δP
I
)
∈ R12 (16)

is time-dependent as the Kuchǎr variables are linear combinations of the ADM perturbation
variables with time-dependent zeroth-order coefficients. Hence we need to determine the asso-
ciated extra Hamiltonian K that must be included in the new Hamiltonian HK:

H→HK =H+K.

The extra HamiltonianK is needed to compensate for the dynamics of the zeroth-order coeffi-
cients present in the definition of the new canonical variables. Notice that the Poisson brackets
expressed in terms of the ADM variables and the Kuchǎr variables are equivalent up to first
order only, and the commutation relations (15) are now assumed to be exact. Thus the model,
when expressed in terms of the Kuchǎr variables, becomes an exact gauge system.

In the Kuchǎr parametrization the total Hamiltonian is given by

HK =

ˆ (
NH(0) +N

(
H(2) +K(2)

)
+ δNµδHµ

)
d3x, (17)

where
´
NK(2)d3x=K. It generates the following Hamilton equations:

δQ̇I = N
∂
(
H(2) +K(2)

)
∂δPI

, δṖI =−N
∂
(
H(2) +K(2)

)
∂δQI

,

δḢµ = N
∂
(
H(2) +K(2)

)
∂δCµ

, δĊµ =−N
∂
(
H(2) +K(2)

)
∂δHµ

− δNµ.

(18)

The dynamical equations for the new canonical variables allow us to restrict the form of the
Hamiltonian HK. Because the dynamics of the constraints is conserved in the constraint sur-
face, the terms ∝ δCνδCµ, ∝ δQIδCµ and ∝ δPIδCµ must be absent in HK. The last two
terms must also vanish by virtue of the fact that the dynamics of the Dirac observables in
the constraint surface must be independent of the choice of gauge. Moreover, it is clear that
the Hamiltonian densityH(2) +K(2) must be weakly equal to the Hamiltonian densityH(2)

phys of

equation (12), more specifically, H(2) ≈H(2)
red and K(2) ≈H(2)

ext . The latter term compensates
for the dynamics of the background coefficients in the Dirac observables expressed in terms
of the ADM perturbation variables.

Thus, the total Hamiltonian HK is made of the physical part (12) and a weakly vanishing
part. In the Kuchǎr parametrization the total Hamiltonian reads:

HK = N
ˆ

H(2)
phys

(
δQI, δP

I
)

︸ ︷︷ ︸
physical part

+

(
λµI
1 δQI+λµ

2IδP
I+λµν

3 δHν +λµ
4νδC

ν +
δNµ

N

)
δHµ︸ ︷︷ ︸

weakly vanishing part

d3x,

(19)

where, in general, the zeroth-order coefficients λ1, λ2 and λ3 depend on the particular choice
of gauge-fixing functions δCµ. The gauge-dependence of λ1 and λ2 becomes evident from (18)
after writing down the formula for the lapse function and shift vector which themselves are
gauge-dependent:

8
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δNµ

N
≈−λµI

1 δQI−λµ
2IδP

I. (20)

The value of λ3 is irrelevant for the physical content of the theory. The value of λ4 is gauge-
invariant, that is, it does not depend on the particular gauge-fixing functions that are used.
Indeed, we note from (19) that

λµ
4νδHµ = {δHν ,HK}=

{
δHν ,

ˆ (
H(0) +H(2)

)}
,

that is, the matrix λ4 is fixed unambiguously by the algebra of hypersurface deformations (3).

3.2. Gauge transformations

The Kuchǎr decomposition provides a class of parametrizations of the kinematical phase space
rather than a single, fixed parametrization. The relevant freedom in defining Kuchǎr’s variables
comes from the free choice of gauge-fixing functions. Let us use the twiddle mark over the
new canonical quantities and, in particular, let δC̃µ denote a new set of gauge-fixing functions.
The full gauge transformation is given by the canonical map G:

G :
(
δHµ, δC

µ, δQI, δP
I
)
7→
(
δH̃µ, δC̃

µ, δQ̃I, δP̃
I
)
, (21)

where δH̃µ = δHµ, i.e. the constraint functions are preserved by the map.
We assume the new gauge-fixing functions δC̃µ to be canonically conjugate to the con-

straints δHµ, that is, {δHµ(x), δC̃ν(y)}= δ ν
µ δ3(x− y). If this is not the case, there is a simple

way to bring any gauge-fixing functions, say δCµ
ini, to the canonical form, say δCcan. Namely,

δCµ
can(x) =

ˆ
Mµ

ν(x,y)δC
ν
ini(y)d

3y, where Mµ
ν(x,y) = {δHµ(x), δC

ν
ini(y)}−1. (22)

Now, it is clear that the difference between the gauge-fixing functions should satisfy

{δHν , δC̃
µ − δCµ}= 0,

which has the solution

δC̃µ = δCµ +αµ
IδP

I+βµIδQI+ γµνδHν , (23)

where αµ
I, β

µI and γµν are background-dependent parameters. The first two parameters are2

4× 2 matrices, whereas γµν is a 4× 4 matrix. Since gauge-fixing conditions are physically
relevant only in the constraint surface it follows that the only independent parameters involved
in the gauge transformation (23) must be αµ

I and βµI. In other words, the space of gauge-
fixing conditions for any fixed label µ is the affine space of dimension equal to the number
of Dirac observables in the system. Note that the choice of gauge-fixing conditions can in
principle depend on time through the time-dependent background quantitiesαµ

I and β
µI. These

parameters can be obtained with the formulas

αµ
I =

{
δQI,

ˆ
(δC̃µ − δCµ)

}
, βµI =

{ˆ
(δC̃µ − δCµ), δPI

}
,

where the Poisson bracket is given in any (i.e. the ADM or the Kuchǎr) parametrization.

2 The index I runs from 1 to half of the number of basic Dirac observables for a given system. Thus, in the vacuum
case I ∈ {1,2} labels two polarization modes of the gravitational wave.

9
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The symplectic form,

Ω= dδQI ∧ dδPI+ dδHµ ∧ dδCµ, (24)

may be re-expressed as

Ω= d(δQI−αµ
IδHµ)∧ d

(
δPI+βνIδHν

)
+ dδHµ ∧ d

[
δCµ +αµ

IδP
I+βµIδQI+ γµνδHν

]
+ dt∧ d

[
α̇µ

IδHµδP
I+ β̇µIδHµδQI+

1
2

(
α̇µ

Iβ
νI−αµ

Iβ̇
νI
)
δHµδHν

]
, (25)

with γµν = 1
2

(
αµ

Iβ
νI−αν

Iβ
µI
)
, leading to the new Kuchǎr variables,

δQ̃I = δQI−αµ
IδHµ,

δP̃I = δPI+βµIδHµ,

δH̃µ = δHµ,

δC̃µ = δCµ +αµ
IδP

I+βµIδQI+ γµνδHν ,

(26)

and the extra Hamiltonian density,

∆K(2) =−
[
α̇µ

IδHµδP
I+ β̇µIδHµδQI+

1
2

(
α̇µ

Iβ
νI−αµ

Iβ̇
νI
)
δHµδHν

]
, (27)

which, when added to (17), yields a new Hamiltonian that we shall denote by HK̃. The matrix
γµν is determined byαµ

I and β
µI, as expected. Therefore, the parametersαµ

I and β
µI determine

a complete gauge transformation. We note that the extra Hamiltonian is weakly zero as it
must be in order for the dynamical equation (18) for the Dirac observables to be preserved
in the constraint surface. The gauge transformation does not affect the definition of the Dirac
observables in the constraint surface, nevertheless it does modify their (physically irrelevant)
extension beyond the constraint surface.

From (26) we conclude that the local space of gauge-fixing conditions is an affine space of
dimension n and the local gauge group is the space of displacement vectors in this affine space,
G= Rn, where n is the number ofαµ

I’s and β
µI’s, that is, the number of Dirac observables times

the number of gauge-fixing conditions. Hence, the group of canonical transformations (21) is
abelian,

Gα,β ◦Gα ′,β ′ =Gα+α ′,β+β ′ . (28)

The physical part of the Hamiltonian (19) is transformed according to the following replace-
ment:

H(2)
phys(δQI, δP

I)→H(2)
phys(δQ̃I, δP̃

I),

i.e. it is gauge-invariant. The weakly vanishing part of the Hamiltonian (19) is transformed as
follows:

10
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λµI
1 → λ̃µI

1 = λµI
1 − β̇µI−λµ

4νβ
νI−

∂2H(2)
phys

∂δQI∂δPJ
βµJ+

∂2H(2)
phys

∂δQI∂δQJ
αµ

J,

λµ
2I → λ̃µ

2I = λµ
2I− α̇µ

I−λµ
4να

ν
I+

∂2H(2)
phys

∂δPI∂δQJ
αµ

J−
∂2H(2)

phys

∂δPI∂δPJ
βJµ,

λµν
3 → λ̃µν

3 = λµν
3 +

1
2

(
α̇µ

Iβ
νI−αµ

Iβ̇
νI
)
+

1
2
λµ
4κ

(
ακ

Iβ
νI−αν

Iβ
κI
)

+λµI
1 αν

I−λµ
2Iβ

νI−
∂2H(2)

phys

∂δQI∂δPJ
αµ

Iβ
νJ+

1
2

∂2H(2)
phys

∂δQI∂δQJ
αµ

Iα
ν
J

+
1
2

∂2H(2)
phys

∂δPI∂δPJ
βµIβνJ,

λµ
4ν → λ̃µ

4ν = λµ
4ν , (29)

i.e. λ1, λ2 and λ3 are gauge-dependent, whereas λ4 is gauge-invariant, as previously
mentioned.

3.3. Spacetime reconstruction

The gauge stability condition δĊν = 0 is a dynamical equation. Therefore we need to be clear
on which particular parametrization we use in the definition of the Poisson bracket so that the
correct Hamiltonian is used in the dynamical equation. We shall denote the Poisson bracket in
the Kuchǎr parametrization by {·, ·}K. Thus, the gauge stability condition reads:

{δCν ,HK}K = 0, (30)

or, making use of equation (17),

δNµ

N
=−∂(H(2) +K(2))

∂δHµ
. (31)

The above formula involves only the weakly vanishing part of the Hamiltonian (19) as the
lapse and shift are pure gauge-dependent quantities. However, the difference between those
quantities for two different gauges depends only on the gauge-independent part of the Hamilto-
nian (19), which simplifies the task of spacetime reconstruction. Indeed, after substituting
equation (29) into equation (20) we find that in the constraint surface

δÑµ

N

∣∣∣∣
δC̃µ=0

− δNµ

N

∣∣∣∣
δCµ=0

≈

(
λµ
4νβ

νI+ β̇µI+
∂2H(2)

phys

∂δQI∂δPJ
βµJ−

∂2H(2)
phys

∂δQI∂δQJ
αµ

J

)
δQI

+

(
λµ
4να

ν
I+ α̇µ

I−
∂2H(2)

phys

∂δPI∂δQJ
αµ

J+
∂2H(2)

phys

∂δPI∂δPJ
βµJ

)
δPI. (32)

Clearly, the difference between the lapse and shifts in any two gauges is completely determ-
ined by the physical part of the Hamiltonian H(2)

phys and the gauge-invariant coefficient λ4. As
indicated below equation (19), the value of λ4 can be easily obtained from the algebra of the
hypersurface deformations [17].

11
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Furthermore, it is straightforward to deduce how the three-geometries transform under the
gauge transformations. Consider the following linear map:

δHµ

δCµ

δQI

δPI

=M

 δqab

δπab

 , (33)

where M is a matrix of the background coefficients computed for the preferred gauge-fixing
functions δCµ. Then the physical three-surface is obtained from the vanishing of δCµ: δqab

δπab

=M−1


0
0
δQI

δPI

 . (34)

It turns out that the physical three-surface in any gauge δC̃µ = 0 reads δq̃ab

δπ̃ab

=M−1


0

−αµ
IδP

I−βµIδQI

δQI

δPI

 , (35)

and is a linear function of the coefficients αµ
I and βµI.

Let us summarize the obtained procedure for deriving spacetime solutions for arbitrary
gauges. First, we set up a gauge frame by placing a preferred gauge at the point of origin.
Then, the respective full spacetime metric for that particular gauge is computed as explained
in section 2.4. The usual and convenient choice for the point of origin is the spatially flat (or,
spatially uniform) gauge. Next, we conveniently construct all other gauges by arbitrary choices
of the parameters αµ

I and βµI of a fixed gauge frame. As showed, they completely determine
the new full spacetime metric: (a) they determine the lapse function and the shift vector on
the three-surfaces through the stability equation (32); and (b) they define the metric of the
three-surfaces via equation (35).

3.4. Partial gauge-fixing

It is sometimes useful to fix a gauge in other ways than by explicitly setting gauge-fixing
conditions δCµ = 0. For instance, we may impose the synchronous gauge, that is, specify the
spacetime coordinate system by means of conditions on the lapse and shift functions. More
generally, we may replace only some of the gauge-fixing conditions with conditions on the
lapse and shift functions. Nevertheless, we find it sufficient to restrict our attention to the case
of four conditions on the lapse and shift functions. We shall call this method ‘partial gauge-
fixing’ to distinguish it from the method used in the last subsection.

Let us first observe an interesting analogy with the well-known gauge theory in electro-
dynamics (see e.g. [23, 24]). Indeed, the procedures of gauge-fixing in electrodynamics and
CPT are very similar. In electrodynamics, the Coulomb gauge, ∇A⃗= 0, is an example of a
gauge-fixing condition on the kinematical phase space made of the spatial components of
the four-potential and their conjugate momenta (A⃗, π⃗). On the other hand, the Lorenz gauge,
∂µAµ = 0, is an example of a partial gauge-fixing condition on the temporal component of
the four potential A0. The latter plays a role of the Lagrange multiplier analogously to the
lapse and shift, and multiplies the only constraint of electrodynamics, the Gauss constraint.
As we will see below, the partial gauge-fixing in the present theory respects a limited amount

12
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Figure 2. A displacement vector in the space of gauge-fixing conditions determines a
new gauge via a shift from the initial gauge at the point of origin.

of covariance, which is a clear counterpart of the Lorentz-invariance of the Lorenz gauge in
electrodynamics.

Let us first study the subspace of gauge transformations that preserve the lapse and shift
functions, that is, δÑ

µ

N

∣∣
δC̃µ=0

− δNµ

N

∣∣
δCµ=0

= 0. This will determine the residual gauge freedom
associatedwith thismethod of gauge-fixing.Making use of equation (32)we find the ambiguity
in the choice of the respective gauge-fixing conditions, here expressed in terms of αµ

I and β
µI

satisfying the following dynamical equations (for each k⃗):

α̇µ
I =−βµJ

∂2H(2)
phys

∂δPJ∂δPI
+αµ

J

∂2H(2)
phys

∂δQJ∂δPI
−λµ

4να
ν
I,

β̇µI =−βµJ
∂2H(2)

phys

∂δPJ∂δQI
+αµ

J

∂2H(2)
phys

∂δQJ∂δQI
−λµ

4νβ
νI,

(36)

where the second-order partial derivatives yield the background coefficients of the physical
Hamiltonian. Note that the solution does not depend on the particular choice of the lapse and
the shifts. Once αµ

I and β
µI are set at an initial time for all I= 1,2 and µ= 0,1,2,3, a unique

solution t 7→ (αµ
I(t),β

µI(t)) exists. Hence, at the initial time t0 we have complete freedom in
defining the gauge-fixing functions,

δC̃µ(t0)≈ δCµ(t0)+αµ
I(t0)δP

I+βµI(t0)δQI, (37)

where δCµ(t0) lies at the point of origin of the gauge frame and δC̃µ(t0) are arbitrary gauge-
fixing functions. Once the choice is made, equation (36) determines the gauge-fixing functions
at all other times. There is a very clear spacetime picture associated with this ambiguity (see
figure 2): once δC̃µ(t0) are chosen, the initial three-surface with coordinates on it is fixed. If
the initial values of the gauge-invariant variables (δQI(t0), δPI(t0)) are known then the initial
three-surface may be reconstructed explicitly in terms of the ADM perturbation variables.

Furthermore, the evolution of the three-surface with its coordinates is uniquely determined
via the evolution of δC̃µ(t) and the independent evolution of the gauge-invariant variables
(δQI(t), δPI(t)). Hence the full spacetime geometry is reconstructed. Note the very important
feature that the spacetime coordinate system is introduced in a way that is independent of the
evolution of the gauge-invariant variables (δQI(t), δPI(t)).

Now let us consider the case in which the LHS of equation (32) is non-vanishing. Then
δÑµ

N

∣∣
δC̃µ=0

− δNµ

N

∣∣
δCµ=0

is an arbitrary linear combination of Dirac observables. In this case
equation (32) implies

13
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α̇µ
I =−βµJ ∂2H(2)

phys

∂δPJ∂δPI
+αµ

J

∂2H(2)
phys

∂δQJ∂δPI
−λµ

4να
ν
I−

∂

∂δPI

(
δÑµ − δNµ

N

)
,

β̇µI =−βµJ ∂2H(2)
phys

∂δPJ∂δQI
+αµ

J

∂2H(2)
phys

∂δQJ∂δQI
−λµ

4νβ
νI− ∂

∂δQI

(
δÑµ − δNµ

N

)
. (38)

A unique solution is obtained by assuming initially αµ
I(t0) = βµI(t0) = 0. The complete

space of solutions is then constructed by combining it with the solutions of equation (36).

4. Perturbed Kasner Universe

Belowwe illustrate the obtained results by considering theHamiltonian theory of cosmological
perturbations in theKasner Universe. The latter is the vacuum limit of the Bianchi Type Imodel
with a scalar field, which was recently considered in [9]. The reader can consult the mentioned
article for more details.

4.1. Background model

The metric of the Kasner Universe reads:

ds2 =−dt2 +
∑
i

a2i (dx
i)2, a= (a1a2a3)

1
3 , (39)

where we assume the coordinates (x1,x2,x3) ∈ [0,1)3. The xi-axes are the principal axes in
which the extrinsic curvature of the spatial leaves is diagonal, nevertheless the expansion can
occur at different rates along different axes. The three-momentum is diagonal too, and the
Hamiltonian constraint reads:

HKas = a−3

(
1
2

∑
i

(a2i p
i)2 −

∑
i>j

a2i p
ia2j p

j

)
, (40)

where {a2i ,p j}= δ j
i . The Hamilton equations read:

ṗi =− 1
a3

(
(aip

i)2 −
∑
j̸=i

pia2j p
j

)
, ȧi =

ai
2a3

(
a2i p

i−
∑
j ̸=i

a2j p
j

)
, (41)

where the initial data (a2i (t0),p
i(t0)) are assumed to lie in the constraint surface,HKas = 0.

For studying the three-metric and three-momentum perturbations propagating along a
wavevector k⃗= (k1,k2,k3) it is more convenient to switch from the coordinate basis to a basis
of three orthonormal vectors (k̂, v̂, ŵ). The three vectors are normalized with the conformal

metric, γij =
a2i
a2 δij, and so k̂i = ki/

√
kik jγij. We use the triad (k̂, v̂, ŵ) to replace the compon-

ents of the background-level three-momentum (p1,p2,p3) with a nondiagonal tensor P whose
components read Pnm = a2

∑
i p
in̂im̂i, where n̂, m̂ ∈ (k̂, v̂, ŵ). One may show that P is related

to the shear tensor as follows σnm = a−2Pnm− a−2

3 TrP · δnm, where the shear is defined as

σnm = σijn̂im̂ j and σij =
1
2
d
dη

( a2i
a2
)
δij. The Hamiltonian constraint HKas now reads:

HKas = a−3

(
(TrP2)− 1

2
(TrP)2

)
. (42)

Note that the choice of (v̂, ŵ) is free, nevertheless, it is convenient to impose:

dv̂ j

dη
=−σvvv̂

j−σvwŵ
j,

dŵ j

dη
=−σwwŵ

j−σwvv̂
j, (43)

14
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where η denotes conformal time. For more details, see [9] or [7].

4.2. Perturbations

We incorporate into the Kasner Universe purely inhomogeneous three-metric and three-
momentum perturbations, δqij and δπij. The lapse function and the shift vector are also per-
turbed with the purely inhomogeneous δN and δNi. We switch to the momentum represent-
ation of the perturbations: δq̌ij(k) =

´
δqij(⃗x)e−ikix

i
d3x, δπ̌ij(k) =

´
δπij(⃗x)e−ikix

i
d3x, δŇ(k) =´

δN(⃗x)e−ikix
i
d3x and δŇi(k) =

´
δNi(⃗x)e−ikix

i
d3x. The reality condition for the perturbations

reads: δq̌ij(k) = δ¯̌qij(−k) and δπ̌ij(k) = δ ¯̌πij(−k). Furthermore, we decompose all the (spatial)
tensors in a basis given by the triad (k̂, v̂, ŵ). In particular, any symmetric 2-rank tensor is
decomposed into the following homogeneous tensor fields: A1

ij = γij, A2
ij = k̂ik̂j− 1

3γij, A
3
ij =

1√
2

(
k̂iv̂j+ v̂ik̂j

)
, A4

ij =
1√
2

(
k̂iŵj+ ŵik̂j

)
, A5

ij =
1√
2

(
v̂iŵj+ ŵiv̂j

)
, A6

ij =
1√
2

(
v̂iv̂j− ŵiŵj

)
. The

dual tensors Aijn , n= 1, . . . ,6 are defined in such a way that AijnAmij = δmn . Finally, our defin-

itions of the perturbation variables read: δqn(k) = δq̌ijA
ij
n , δπn(k) = δπ̌ijAnij, δN

k(k) = δŇik̂i,
δNv(k) = δŇiv̂i and δNw(k) = δŇiŵi.

The dynamical variables satisfy the following commutation relations:

{δqn(k), δπm(−k ′)}= δmn δk,k ′ . (44)

The Hamiltonian (1) specified to the Kasner Universe and expressed with the help of the triad
(k̂, v̂, ŵ) reads

H=

ˆ (
NHKas+NH(2) + δNδH0 + δNkδHk+ δNvδHv+ δNwδHw

)
d3x, (45)

where H(2), δH0, δHk, δHv and δHw are given in appendix A.

4.3. Spatially flat gauge

The spatially flat gauge is given by the following set of gauge-fixing functions:

δc1 = δq1, δc2 = δq2, δc3 = δq3, δc4 = δq4. (46)

We use both the constraints δH0 = 0, δHk = 0, δHv = 0, δHw = 0 and the gauge-fixing con-
ditions (46) to replace δπ1, δπ2, δπ3 and δπ4 by linear combinations of δq5, δq6, δπ5 and δπ6.
One advantage of this choice is that the Dirac bracket is immediately obtained:

{·, ·}D =
∑
k

∑
i=5,6

∂ ·
∂δqi(k)

∂ ·
∂δπi(−k)

− ∂ ·
∂δπi(−k)

∂ ·
∂δqi(k)

.

The second-order Hamiltonian (45) becomes a quadratic function of the perturbations δq5,
δq6, δπ5 and δπ6 only. Furthermore, we find it convenient to use the rescaled variables
δq̃5 = 1√

2a
δq5, δq̃5 = 1√

2a
δq5, δπ̃5 =

√
2aδπ5 and δπ̃6 =

√
2aδπ6. Finally, the perturbation

Hamiltonian is found to read (see [9] for details):

H(2)
red =

N
2a

[
δπ̃2

5 + δπ̃2
6 +(k2 +U1)δq̃

2
5 +(k2 +U2)δq̃

2
6 +C12δq̃5δq̃6

]
, (47)

where the coefficients can be found in appendix B.
The above Hamiltonian can be used to formulate the gauge-invariant dynamics of perturb-

ations. To this end we find four independent Dirac observables, denoted by δQ1, δQ2, δP1 and
δP2 as linear combinations of the ADM perturbation variables that Poisson-commute with the
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constraint functions δH0, δHk, δHv, δHw and the gauge-fixing functions δc1, δc2, δc3, δc4.
They read

δQ1 =
1√
2a

δq5 +
2Pvw
aPkk

(
δq1 −

1
3
δq2

)
,

δQ2 =
1√
2a

δq6 +
Pvv−Pww
aPkk

(
δq1 −

1
3
δq2

)
,

δP1 =
√
2aδπ5 +

5
6 (TrP)−Pkk√

2a3
δq5 −

2Pvw√
2a3Pkk

(
Pvv−Pww

2
δq6 +Pvwδq5

)
+F(Pvw,PkvPkw)

(
δq1 −

1
3
δq2

)
− 3Pvw
a3Pkk

Pkkδq1 +

√
2

a3
(Pkwδq3 +Pkvδq4) ,

δP2 =
√
2aδπ6 +

5
6 (TrP)−Pkk√

2a3
δq6 −

Pvv−Pww√
2a3Pkk

(
Pvv−Pww

2
δq6 +Pvwδq5

)
+F

(
Pvv−Pww

2
,
P2
kv−P2

kw

2

)(
δq1 −

1
3
δq2

)
− 3(Pvv−Pww)

2a3
δq1

+

√
2

a3
(Pkvδq3 −Pkwδq4) ,

(48)

where F(X,Y) = 4
a3Pkk

Y− 4(P2
vw+( Pvv−Pww

2 )2)−2Pkk(Pkk+ TrP
3 )

a3P2
kk

X. It is easy to show that these Dirac

observables transform as spin-2 fields under rotations, that is, δQ1 and δQ2 are two polariz-
ation modes of the gravitational wave. Note that in the gauge-fixing surface (46) these Dirac
observables are numerically equal to the rescaled ADM perturbation variables, that is,

δQ1

∣∣
SF

= δq̃5, δQ2

∣∣
SF

= δq̃6, δP1
∣∣
SF

= δπ̃5, δP2
∣∣
SF

= δπ̃6,

where ‘SF’ denotes the spatially flat gauge. Therefore, in terms of the Dirac observables the
Hamiltonian (47) becomes

H(2)
phys =

N
2a

[
(δP1)2 +(δP2)2 +(k2 +U1)δQ

2
1 +(k2 +U2)δQ

2
2 +C12δQ1δQ2

]
. (49)

It generates the gauge-invariant dynamics of the system as discussed in section 2.3.
In order to reconstruct the actual spacetime we apply the formula (14) and find

δN
N

=− Pvw
aPkk

δQ1 −
Pvv−Pww
2aPkk

δQ2,

1
i
δNk

N
=

(
2Pvw
3a4

− 2PkvPkw
a4Pkk

+
2P3

vw

a4P2
kk

+
Pvw(Pvv−Pww)

2

2a4P2
kk

− 5Pvw(Pvv+Pww)
6a4Pkk

)
δQ1

+

(
P2
kw

a4Pkk
− P2

kv

a4Pkk
+
Pvv−Pww

3a4
+

5(P2
ww−P2

vv)

12a4Pkk
+

(Pvv−Pww)P
2
vw

a4P2
kk

+
(Pvv−Pww)

3

4a4P2
kk

)
δQ2

+
Pvw
a2Pkk

δP1 +
Pvv−Pww
2a2Pkk

δP2,

1
i
δNv

N
=

(
2PkvPvw
a4Pkk

+
2Pkw
a4

)
δQ1 +

(
Pkv(Pvv−Pww)

a4Pkk
+

2Pkv
a4

)
δQ2,

1
i
δNw

N
=

(
2PkwPvw
a4Pkk

+
2Pkv
a4

)
δQ1 +

(
Pkw(Pvv−Pww)

a4Pkk
− 2Pkw

a4

)
δQ2. (50)
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(Note that the imaginary units in front of δNk, δNv, δNw cancel out in equation (45) when
multiplied by the respective constraints (A2)).

4.4. Gauge transformations

In what follows we consider two other gauges for the illustration of the method.

4.4.1. Scalar gravity gauge. Let us first consider a gauge in which one of the tensor modes
of the metric perturbation vanishes, say δq5 = 0. Moreover, we assume δq1 = δq3 = δq4 = 0.
Note that in this gauge one polarization mode of the gravitational wave, δQ1 =− 2Pvw

3aPkk
δq2, is

carried by a scalar metric perturbation. Thus, we shall call it the scalar gravity gauge (SG).
To make use of the gauge frame based on the spatially flat gauge (SF) we cast both sets of
gauge-fixing functions into canonical form (see equation (22)):

δCµ
SF =

a(3δq1 − δq2)
3Pkk

,
i [(Pvv+Pww)(3δq1 − δq2)−Pkk(6δq1 + δq2)]

6a2Pkk
,

−
i
(
12Pkvδq1 − 4Pkvδq2 + 3

√
2Pkkδq3

)
6a2Pkk

,

−
i
(
12Pkwδq1 − 4Pkwδq2 + 3

√
2Pkkδq4

)
6a2Pkk

 ,

δCµ
SG =

− aδq5
2
√
2Pvw

,−
i
(
12Pvwδq1 +

√
2(TrP)δq5

)
8a2Pvw

,

− i(Pvwδq3 −Pkvδq5)√
2a2Pvw

,− i(Pvwδq4 −Pkwδq5)√
2a2Pvw

 ,

and find the difference in terms of α and β to read:

αµ
I = 0, βµI =


− a2

2Pvw
0

−i(TrP)
4aPvw

0
iPkv
aPvw

0
iPkw
aPvw

0

 . (51)

Furthermore, we find λµ
4ν to read

λ4 =


0 0 0 0

ia−2k 0 0 0
0 − 2Pkv

a3
Pkk−Pvv

a3 −Pvw
a3

0 − 2Pkw
a3 −Pvw

a3
Pkk−Pww

a3

 . (52)

Hence, the lapse and shift transform as follows (see equation (32)):

δNµ
SG

N

∣∣∣∣
δC̃µ

SG=0

−
δNµ

SF

N

∣∣∣∣
δCµ

SF=0

≈
(
λµ
4νβ

ν1 + β̇µ1
)
δQ1 +

1
2a

βµ1δP1. (53)
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To reconstruct the three-surfaces we apply the formula (35) with the matrix M which maps
the ADM perturbation variables into the constraint functions (A1) and (A2), the gauge-fixing
functions (46) and the Dirac observables (48).

4.4.2. Synchronous gauge. The synchronous gauge is given by partial gauge-fixing, δNµ =
0. The gauge-fixing conditions for synchronous gauge are obtained in terms of αµ

I and β
µI as

solutions to equation (38). In the gauge frame originated on the SF gauge, we find:

α̇µ
I =− 1

2a
βµI+

∂

∂δPI

(
δNµ

SF

N

)
,

β̇µI = UIα
µ
I+CIJα

µ
J−λµ

4νβ
νI+

∂

∂δQI

(
δNµ

SF

N

)
,

(54)

where δNµ
SF
N are given by equation (50). The choice of the initial data αµ

I(t0), β
µI(t0) determ-

ines unambiguously the synchronous gauge-fixing conditions. Then the three-surfaces can be
reconstructed with the use of matrixM as in the previous example.

5. Conclusions

The purpose of this work was to develop a complete Hamiltonian approach to CPT. The basic
property of our approach is the separation of the gauge-independent dynamics of perturba-
tions from the problem of gauge-fixing and spacetime reconstruction. We use the Dirac pro-
cedure for constrained systems to derive the dynamics of gauge-dependent perturbations and
to rewrite it in terms of gauge-independent quantities, the Dirac observables. A key element of
our approach is the reconstruction of spacetime based on gauge-fixing conditions. The usual
approaches, e.g. [1, 13, 14], suffer from the lack of methodological choice of gauge-fixing con-
ditions, the choice of gauge is often more like a guess rather than an actual choice made within
a well-defined and complete set of possibilities3. To overcome this problem, we introduced the
Kuchǎr decomposition for the ADM perturbation phase space. The space of all the possible
gauge-fixing conditions and the gauge transformations induced by the linear diffeomorphisms
of three-surfaces are made explicit via this decomposition. Moreover, it makes the transform-
ations of the lapse and shift manifestly dependent on purely gauge-independent terms of the
full Hamiltonian. This simplifies the problem of spacetime reconstruction and provides a tool
for studying partial gauge-fixing.

To illustrate our approach we consider the perturbed Kasner Universe. We established a
gauge frame in the space of all gauges for this model: we chose the spatially flat gauge as
the point of origin and the Dirac observables (48) as basic displacements. We first discussed
a gauge-fixing condition that kills one of the tensor modes of the three-metric perturbation.
In this gauge one polarization mode of the gravitational wave is carried by a pure scalar
metric perturbation. We expressed this gauge in the gauge frame in order to reconstruct the
full spacetime metric. Our next example was the synchronous gauge that is given via partial

3 Some commonly used gauges, their validity and, in some cases, their residual freedom are studied in the mentioned
references. However, no general method for defining a valid gauge and its residual freedom is provided. In particular,
the mentioned references lack a clear exposition of the connection between the residual freedom, the lapse and the
shift, and the choice of the initial three-surface.
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gauge-fixing conditions on the lapse and shift and for which gauge-fixing conditions remain
underdetermined. This is an analog of the Lorenz gauge in electrodynamics. We showed how
to use the gauge frame to determine gauge-fixing conditions and how to use the gauge-fixing
conditions to reconstruct the spacetime.

The possible applications of the presented Hamiltonian formalism include addressing key
conceptual problems in quantum cosmology such as the time problem, the semiclassical space-
time reconstruction, or the relation between the kinematical and reduced phase space quantiz-
ation. The full clarification of the Hamiltonian formalism and its structure is essential for these
and similar tasks.

We note that cosmological perturbation theory owes its simplicity to the abelianization
of the algebra of hypersurface deformations in linear approximation. The abelianization of
the constraints’ algebra is specific to perturbation theory, although it could also occur in the
context of other-type truncations to the full canonical formalism. Therefore, we do not expect
the abelianization of the constraints’ algebra to occur when expanding the constraints beyond
linear order. However, the abelianization of constraints in linear perturbation theory can be
extended to higher orders in the successive order-by-order expansion. At each successive order
one introduces new perturbation variables and derives linear equations of motion for them
while assuming a fixed solution at lower orders. The linear equations of motion can be cast to
the form of Hamilton equations generated by a quadratic (in the new variables) Hamiltonian
with the use of a symplectic form independent of the lower-order symplectic forms. Therefore,
the structure of the Hamiltonian formalism is expected to reproduce at each order (except for
the zero order). At each order linearized gauge transformations are distinct as they act on
separate perturbation variables. Order by order they add up to form a non-linear, ‘curved’
space of gauge-fixing conditions. This theory, however, by assumption cannot be extended
to perturbations large enough to change the topology of gauge-fixing conditions. Therefore,
we do not foresee any obstructions in gauge-fixing in higher-order perturbation theory either.
Nevertheless, the details of this higher-order theory and of the role the Kuchǎr parametrization
could play in it can be found only via a careful derivation.We postpone amore detailed analysis
of this approach to a future paper.
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Appendix A. Constraints

Note the identity δij = k̂ik̂j+ v̂iv̂j+ ŵiŵj. It is convenient to introduce δHk = δH i
g k̂i, δHv =

δH i
g v̂i, δHw = δH i

g ŵi, δN
k = δNik̂i, δNv = δNiv̂i and δNw = δNiŵi. The first-order scalar con-

straint reads:
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δH0 =−1
3
a−1(TrP)δπ1 + a−1[3Pkk− (TrP)]δπ2 + a−12

√
2Pkvδπ

3

+ a−12
√
2Pkwδπ

4 + a−12
√
2Pvwδπ

5 + a−1√2(Pvv−Pww)δπ
6

+
1
2
a−5[(TrP2)− 1

2
(TrP)2]δq1 +

1
3
a−5{−2(TrP2)

+ 6(P2kk+P2kv+P2kw)− (TrP) [3Pkk− (TrP)]}δq2
+
√
2a−5[2PkwPvw+Pkv(Pvv−Pww)+PkkPkv]δq3

+
√
2a−5[2PkvPvw−Pkw(Pvv−Pww)+PkkPkw]δq4

+
√
2a−5[2PkvPkw− 2PkkPvw+(TrP)Pvw]δq5

+
1√
2
a−5[2(P2kv−P2kw)− 2Pkk(Pvv−Pww)+ (TrP)(Pvv−Pww)]δq6

− 2a−1k2(δq1 −
1
3
δq2),

(A1)

and the first-order vector constraints read:

δHk =−2ia2
[
1
3
δπ1+δπ2 + a−4

(
Pkk−

1
2
(TrP)

)
δq1+

a−4

6
(Pkk+(TrP))δq2

− a−4
√
2
Pvwδq5 −

a−4
√
2

Pvv−Pww
2

δq6

]
,

δHv =−2ia2
[

1√
2
δπ3 + a−4Pkv

(
δq1 −

1
3
δq2

)
+
a−4
√
2
Pkkδq3

+
a−4
√
2
Pkwδq5 +

a−4
√
2
Pkvδq6

]
,

δHw =−2ia2
[

1√
2
δπ4 + a−4Pkw

(
δq1 −

1
3
δq2

)
+
a−4
√
2
Pkkδq4

+
a−4
√
2
Pkvδq5 −

a−4
√
2
Pkwδq6

]
.

(A2)

The second-order non-vanishing part of the Hamiltonian (45) reads

H(2)
0 =−aδπ2

1

6
+

3aδπ2
2

2
+ aδπ2

3 + aδπ2
4 + aδπ2

5 + aδπ2
6 − δq21

×
(
k2

2a3
+

47(TrP)2

16a7
+

(TrP2)

8a7

)
+ δq22

(
− k2

18a3
− P2

kk

6a7
− 2P2

kv

3a7
− 2P2

kw

3a7

+
Pkk(TrP)

3a7
− 5(TrP)2

36a7
+

5(TrP2)

18a7

)
+ δq23

(
− (TrP)2

8a7
+
PkkPvv
a7

+
(TrP2)

4a7

)
+ δq24

(
− (TrP)2

8a7
+
PkkPww
a7

+
(TrP2)

4a7

)
+ δq25

(
k2

4a3
− (TrP)2

8a7
+
PvvPww
a7

+
(TrP2)

4a7

)
+ δq26

(
k2

4a3
+

(Pvv+Pww)2

4a7
− P2

vw

a7
− (TrP)2

8a7
+

(TrP2)

4a7

)
+δq1

[
−
√
2Pkvδπ3

a3
−
√
2Pkwδπ4

a3
−
√
2Pvwδπ5

a3
+

(
Pww√
2a3

− Pvv√
2a3

)
δπ6
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− δπ1(TrP)

6a3
+ δπ2

(
(TrP)

6a3
− Pkk

2a3

)
+ δq3

(√
2PwwPkv
a7

− 7(TrP)Pkv√
2a7

−
√
2PkwPvw
a7

)
+ δq4

(√
2PvvPkw
a7

− 7(TrP)Pkw√
2a7

−
√
2PkvPvw
a7

)
+ δq5

(√
2PkkPvw
a7

− 7(TrP)Pvw√
2a7

−
√
2PkvPkw
a7

)
+ δq6

(
− P2

kv√
2a7

+
P2
kw√
2a7

− (P2
vv−P2

ww)√
2a7

− 5(Pvv−Pww)(TrP)

2
√
2a7

)
+ δq2

(
k2

3a3
− P2

kk

a7
− P2

kv

a7
− P2

kw

a7
+

5(TrP)2

6a7
− 5Pkk(TrP)

2a7
+

(TrP2)

3a7

)]
+δq3

[
2PkkPvwδq4

a7
+
2PkwPvvδq5

a7
+

(
Pkv[(TrP)−Pkk]

a7
− 2PkwPvw

a7

)
δq6

−
√
2Pkvδπ1

3a3
−

√
2Pkvδπ2

a3
+
Pvwδπ4

a3
+

2Pkwδπ5

a3
+

2Pkvδπ6

a3

+ δπ3

(
2(TrP)

3a3
− Pww

a3

)]
+ δq4

[
2PkvPwwδq5

a7
+

(
2PkvPvw
a7

− Pkw[(TrP)−Pkk]

a7

)
δq6 −

√
2Pkwδπ1

3a3
−

√
2Pkwδπ2

a3

+
Pvwδπ3

a3
+

2Pkvδπ5

a3
− 2Pkwδπ6

a3
+ δπ4

(
2(TrP)

3a3
− Pvv

a3

)]
+ δq5

[
(Pvv−Pww)Pvw

a7
δq6 −

√
2Pvwδπ1

3a3
−

√
2Pvwδπ2

a3

+ δπ5

(
2(TrP)

3a3
− Pkk

a3

)]
+ δq6

[
− Pvv−Pww

3
√
2a3

δπ1 −
Pvv−Pww√

2a3
δπ2

+ δπ6

(
2(TrP)

3a3
− Pkk

a3

)]
+ δq2

[
Pkkδπ2

a3
+

4
√
2Pkvδπ3

3a3
+

4
√
2Pkwδπ4

3a3

− 2
√
2Pvwδπ5

3a3
−

√
2(Pvv−Pww)

3a3
δπ6 + δπ1

(
(TrP)

9a3
− Pkk

3a3

)
+ δq3

(√
2PkkPkv
3a7

− 2
√
2PvvPkv
3a7

+

√
2(TrP)Pkv
3a7

− 2
√
2PkwPvw
3a7

)
+ δq4

(√
2PkkPkw
3a7

− 2
√
2PwwPkw
3a7

+

√
2(TrP)Pkw

3a7
− 2

√
2PkvPvw
3a7

)
+ δq5

(
4
√
2PkvPkw
3a7

+

√
2PkkPvw
a7

− 5
√
2Pvw(TrP)

3a7

)
+ δq6

(
2
√
2P2

kv

3a7
− 2

√
2P2

kw

3a7
−

√
2(P2

vv−P2
ww)

3a7

− Pkk(Pvv−Pww)√
2a7

+
(Pvv−Pww)(TrP)

3
√
2a7

)]
. (A3)
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Appendix B. Physical Hamiltonian coefficients

The background coefficients in the physical Hamiltonian (47):

U1 =
(TrP)2 + 72

(
P2kv+PkvPkw+P2kw+Pvw(Pkv+Pkw)−P2vw

)
36a4

+
P2vw(4P

2
kv+ 4P2kw− 4P2vw− (Pvv−Pww)2 −P2kk)

a4P2kk
− 2

(Pvv−Pww)
2

4

a4

+
54P4kk− 36P3kk(TrP)

36a4P2kk
+

2Pvw(8PkvPkw+Pvw(TrP))
a4Pkk

,

U2 =
(TrP)2 + 72(P2kv+PkvPkw+P2kw+Pvw(Pkv+Pkw)−P2vw)

36a4

+
(Pvv−Pww)

2

4 (4P2kv+ 4P2kw− 4P2vw− (Pvv−Pww)2 −P2kk)

a4P2kk
− 2

P2vw
a4

+
54P4kk− 36P3kk(TrP)

36a4P2kk
+

2 (Pvv−Pww)
2 (4P2kv− 4P2kw+

(Pvv−Pww)
2 (TrP))

a4Pkk
,

C12 =
Pvw(Pvv−Pww)(4P2kv+ 4P2kw− 4P2vw− (Pvv−Pww)2)

a4P2kk
+
Pvw(Pvv−Pww)

a4

×
8(P2kv−P2kw)Pvw+ 8PkvPkw(Pvv−Pww)+ 2(TrP)Pvw(Pvv−Pww)

a4Pkk
.

(B1)
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