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Abstract

G
ravitational perturbations can be in the form of scalars, vec-
tors or tensors. This thesis focuses on the evolution of scalar
perturbations in cosmology, and interactions between tensor

perturbations, in the form of gravitational waves, and plasma waves.
The gravitational waves studied in this thesis are assumed to have

small amplitudes and wavelengths much shorter than the background
length scale, allowing for the assumption of a flat background metric.
Interactions between gravitational waves and plasmas are described
by the Einstein-Maxwell-Vlasov, or the Einstein-Maxwell-fluid equa-
tions, depending on the level of detail required. Using such models,
linear wave excitation of various waves by gravitational waves in astro-
physical plasmas are studied, with a focus on resonance effects. Fur-
thermore, the influence of strong magnetic field quantum electrody-
namics, leading to detuning of the gravitational wave-electromagnetic
wave resonances, is considered. Various nonlinear phenomena, in-
cluding parametric excitation and wave steepening are also studied in
different astrophysical settings.

In cosmology the evolution of gravitational perturbations are of
interest in processes such as structure formation and generation of
large scale magnetic fields. Here, the growth of density perturbations
in Kantowski-Sachs cosmologies with positive cosmological constant
is studied.
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Sammanfattning

G
ravitationsstörningar finns i form av skalärer, vektorer och ten-
sorer. Denna avhandling behandlar utvecklingen av skalära
störningar inom kosmologi och växelverkan mellan tensor-

störningar, i form av gravitationsv̊agor, och plasmav̊agor.
Gravitationsv̊agorna som studeras i avhandlingen antas ha sm̊a

amplituder och v̊aglängder mycket kortare än bakgrundens karak-
teristiska längdskala, vilket möjliggör antagandet av en plan bak-
grundsmetrik. Växelverkan mellan gravitationsv̊agor och plasmor
beskrivs av Einstein-Maxwell-Vlasov-, eller Einstein-Maxwell-
vätskeekvationerna beroende p̊a vilken grad av detaljinformation som
krävs. Inom ramen för s̊adana modeller studeras linjär koppling av
plasmav̊agor och gravitationsv̊agor i astrofysikaliska sammanhang,
med fokus p̊a resonanseffekter. Vidare undersöks modifieringen av
resonansen mellan gravitationsv̊agor och elekromagnetiska v̊agor p̊a
grund av kvantelektrodynamiska effekter i starka magnetfält. Olika
ickelinjära fenomen, bland annat parametrisk excitation och sk. wave
steepening behandlas ocks̊a i att antal astrofysikaliska sammanhang.

Studiet av tidsutvecklingen av gravitationsstörningar är av intresse
inom kosmologi, d̊a bland annat i processer s̊asom strukturformation
och generering av storskaliga magnetiska fält. I denna avhandling
studeras tillväxt av densitetsstörningar i Kantowski-Sachs kosmologier
med positiv kosmologisk konstant.
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Chapter 1

Introduction

T
his thesis details the propagation and interaction of gravita-
tional perturbations on different backgrounds. Gravitation is
assumed to be described by general relativity (GR), the cur-

rently most strongly supported theory of gravity. GR differs from
Newtonian gravity in a number of ways, for example GR predicts
the existence of gravitational waves (GWs), although the two theories
coincide in the limit of low velocities and weak fields.

The gravitational processes discussed in this thesis will mostly
involve GWs, whose interaction with various plasma waves and elec-
tromagnetic waves (EMWs) are studied and discussed in Papers I-V.
Scalar gravitational perturbations in an anisotropic cosmology are also
studied; this is done in Paper VI.

The fundamentals of GR and the various formalisms used in this
thesis are detailed in Chapter 2. This includes an introduction to
GWs, the 1+3 covariant formalism, the 1+1+2 covariant formalism
and the construction of tetrads. Accordingly, GR is very much the
theme of this thesis, since all papers on which this thesis is built
contain various GR processes.

There are many textbooks and reviews directed towards GR and
perturbations in GR, such as Refs. [1, 2, 3, 4] as well as books devoted
to cosmology [5, 6] where the interested reader can find out more about
the details of these subjects.

Chapter 3 contains basic plasma theory and the coupling of plasma
physics, electrodynamics and GR. The coupling between GR and plas-
mas are of interest due to the presence of plasmas close to strong GW



2 Introduction

sources. As a consequence interactions between strong GWs and plas-
mas, including EMWs, become possible. Even if the GWs produced
by such sources cannot be detected directly by observers on Earth,
there is a possibility that waves and other phenomena resulting from
such interactions are possible to observe by e.g. radio telescopes [7, 8].
Furthermore GW-plasma and GW-EMW interactions can be of inter-
est in models of the early universe. Strong magnetic field quantum
electrodynamical (QED) effects are also discussed in this chapter.

Further details on plasma physics can be found in textbooks such
as Refs. [9, 10, 11]. Electromagnetic fields in cosmology are detailed
in Ref. [12] and QED effects has been covered by e.g. Refs. [13, 14].

Chaper 4 is devoted to the study of some interesting nonlinear
wave phenomena. Due to the nonlinear nature of plasmas such phe-
nomena are commonly studied in the field of plasma physics. Phe-
nomena of interest here include nonlinear wave steepening and three
wave couplings. Textbooks detailing nonlinear waves and interactions
include Refs. [15, 16, 17, 18, 19].



Chapter 2

General Relativity

G
eneral relativity (GR) describes gravitation not as forces act-
ing instantaneously between masses, as is the case in Newto-
nian gravity, but instead as an effect of the curvature of space-

time. Effects of changes in the geometry propagate with the speed
of light, c. A test mass, only affected by gravitation, will follow the
straightest possible path on the curved spacetime; these paths are
called geodesics. Locally geodesics will appear to be straight, since
locally the curvature of spacetime can always be transformed away by
the appropriate choice of inertial frame.

In GR the curvature of spacetime is determined by the distribution
of matter and energy through Einstein’s field equations (EFE)

G�� = �T�� − Λg�� , (2.1)

where G�� is the Einstein tensor, which contains term related to the
curvature, Λ the cosmological constant, which can be neglected in
most astrophysical applications, and T�� the energy-momentum ten-
sor, containing the distribution of matter and energy. The constant
�, relating curvature with matter and energy density takes the value
� = 8�G/c4, where G is the gravitational constant.

The mathematical description of GR is based on differential ge-
ometry, and spacetime in this case is a four dimensional Lorentzian
manifold, ℳ, with a metric, g�� , where each point on the manifold
corresponds to an event. The metric, which describes the curvature
of spacetime, is a tensor determining the distance between nearby
points. There are numerous textbooks (see e.g. Refs. [20, 21] ) where
differential geometry is described in detail.
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Notation and Conventions

Throughout this thesis it will be assumed that the metric has the
signature (−,+,+,+). Furthermore, tensor elements, such as T�...

�...,
will usually be referred to as tensors, since it is generally understood
which basis is used. Strictly speaking the tensor is actually T =
T�...

�...∂� ⊗ ...⊗ dx� ⊗ ... , where {∂�} is the vector basis, {dx�} the
dual of the vector basis, and ⊗ denotes the tensor product. In this
example the basis is a coordinate basis but, as will be discussed later,
the basis can be chosen in different ways.

Greek indices, �, �, ... = 0, 1, 2, 3, will be used in the coordinate
formalism, and latin indices, a, b, ..., ℎ = 0, 1, 2, 3, will be used in a
tetrad basis. Latin indices, i, j, ... = 1, 2, 3, are reserved for the spatial
parts of any basis.

The covariant derivative of a tensor T�� will be denoted by ∇�T��
or T��;�, while the partial derivative is written ∂�T�� or T��,� .

2.1 Gravitational Waves

One interesting prediction of GR that has not yet been directly ver-
ified is the existence of gravitational waves (GWs). These are wave-
like vacuum solutions to EFE, propagating with the speed of light.
GWs manifest themselves as ripples in spacetime, which will alter the
distance between test particles as they propagate past them. In a
similar way as EMWs are generated from accelerated charges, GWs
are generated from accelerated masses1. However, since the second
time derivative of the mass dipole moment vanishes (due to conserva-
tion of momentum) there is no GW dipole radiation; in a multipole
expansion of the radiation the lowest order non-vanishing part is the
quadrupole.

GWs were originally predicted as early as 1916 [22], but their
existence was highly debated until the late seventies. The discovery of
the Hulse-Taylor binary pulsar in 1975 [23] provided the first indirect
evidence of the existence of GWs. Measurements of the orbital period
showed a slow decay of the orbits of the binary, indicating a loss of
energy consistent with the loss due to emission of GWs predicted by

1This analogy gives the essence of the physics, but should not be taken too
literally.
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GR.
The main reason that GWs have proven to be so hard to detect

directly is their weak coupling to matter and the vast distances to
their sources. As an example it can be noted that the GW emission
from a supernova collapse in a nearby galaxy will only perturb the
distance between two test particles on Earth by roughly 10−20 times
the original distance [24]. Nevertheless there are ambitious projects,
both running and planned [25], and the hope is to be able to detect
GWs in the near future.

Some of the sources considered to be interesting for the purpose
of direct detection include massive binary stars [26], supernovae [27],
neutron star quakes [28] and black holes during ringdown [29]. Fur-
thermore, cosmological GWs, possibly generated in the early universe,
see e.g. Ref. [30], might provide very interesting information if they
could be detected.

2.1.1 Linear GWs in Vacuum

In what follows a short derivation of weak GWs in the high frequency
limit in vacuum will be considered. Let gB�� be a vacuum metric that
satisfies the EFEs and assume that this metric is perturbed by the
quantity ℎ�� , which is considered small, i.e. ℎ�� ≪ 1 holds. The full
metric can now be written

g�� = gB�� + ℎ�� . (2.2)

Since ℎ�� is small, only terms to lowest order in ℎ�� are considered,
and thus the background metric can be used for raising and lowering
indices of quantities proportional to ℎ�� and its derivatives.

The Ricci tensor, R�� , can now be split into a background part,
RB

�� and a first order perturbation part, RP
�� ∝ ℎ�� , such that

R�� = RB
�� +RP

�� +O
(

ℎ2��
)

. (2.3)

Since it is a vacuum spacetime, the Ricci tensor must be zero to all
orders, i.e. RB

�� = RP
�� = 0. Expressing the first order Ricci tensor in

terms of the metric perturbation yields

RP
�� = 1

2 (∇�∇�ℎ�
� +∇�∇�ℎ�� −∇�∇�ℎ�

� −∇�∇�ℎ�
�) = 0 .

(2.4)
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Assuming that the wavelength of the GW is much smaller than the
background curvature, an approximation referred to as the high fre-

quency limit, the order of the covariant derivatives in the last two
terms of Eq. (2.4) can be exchanged. Furthermore, ℎ�� can still be
subjected to certain gauge transformations (see e.g. Refs. [1, 2] for
more details on this). Choosing a gauge such that ∇�ℎ

�� = ℎ�� = 0,
referred to as the transverse traceless (TT) gauge, reduces Eq. (2.4)
to

∇�∇�ℎ�� = 0 . (2.5)

As an example, the wave equation Eq. (2.5) for a GW propagating in
the z-direction on a flat background reduces to

(

− 1

c2
∂2t + ∂2z

)

ℎ+,× = 0 , (2.6)

where ℎ+ ≡ ℎ11 = −ℎ22 and ℎ× ≡ ℎ12 and all other components of ℎ��
are zero. As can be seen there are just two remaining independent
degrees of freedom, i.e. two independent polarizations which differ
only by a rotation of �/4 around the direction of propagation.

The energy density, W , carried by a GW is obtained from the
Landau-Lifshitz energy-momentum pseudo tensor [1]. In the case of
linear GWs in the TT-gauge this reduces to

W =
1

2�c2

(

ℎ̇2+ + ℎ̇2×

)

, (2.7)

as detailed in [1].

2.2 Cosmology and the 1+3 Covariant

Formalism

Cosmology is the study of the large scale structure of the universe
and its evolution. It is often assumed that on sufficiently large scales,
the universe is homogeneous and isotropic, which is referred to as the
cosmological principle. Recent observations, see e.g. [31], indicates
that this at least seems to be a good approximation. The most general
models of the universe satisfying the cosmological principle are the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmologies.

There are of course other cosmological models, where the cos-
mological principle is not invoked; in particular the class of models
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which are homogeneous, but not isotropic, consists of Bianchi types
I-IX [5], and the Kantowski-Sachs solution [32]. These type of mod-
els, although maybe not describing the universe as a whole, might still
be interesting to study. Also, many of these models may be close to
FLRW models during large periods of time.

In order to provide a clearer description of the physics in a par-
ticular system it is often convenient to divide spacetime into a three
dimensional space part and a one dimensional time part. This can be
achieved by splitting with respect to a four-velocity field, u�, which
can be seen as a field of fictitious observers (in cosmology this is usu-
ally taken to be the average four-velocity of the cosmic fluid). An
observer will perceive space as the hypersurface perpendicular to its
own four-velocity.

The chosen four-velocity can be used to construct the useful pro-
jection operators

ℎ�� ≡ g�� + u�u� , (2.8)

which projects on the local space perpendicular to u�, and

U�
� ≡ −u�u� , (2.9)

which projects parallel to u�.
With the help of these projection operators, two different deriva-

tive operators can be defined. The first of these is the covariant time

derivative, denoted with a dot, which when acting on a second rank
tensor T�

� produces
Ṫ�

� = u�∇�T
�
� . (2.10)

The second kind of derivative operator, the fully orthogonally projected
covariant derivative, ∇̃, is defined as the covariant derivative with the
projection ℎ�� operator acting on all free indices, i.e.

∇̃�T
�
� = ℎ��ℎ

�
�ℎ



�∇
T

�
� . (2.11)

Projections with ℎ�� of vectors are denoted with angle brackets, so
for a vector V � the corresponding projected vector is

V <�> ≡ ℎ��V
� . (2.12)

The projected symmetric trace-free (PSTF) part of a second rank
tensor is also denoted by the use of angle brackets, such that the
PSTF part of the tensor T�� is
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T<��> ≡
[

ℎ�
(�ℎ�

�) − 1
3ℎ

��ℎ��

]

T�� . (2.13)

Given the four dimensional volume element ����� = �[���� ], where

�0123 =
√

∣ det g�� ∣, it is useful to define the rest-space volume element

as
���� ≡ u� �����. (2.14)

With these ingredients the curl of the tensor T�� can be defined as

(curl T )�� ≡ ���<�∇̃�T
�>

� . (2.15)

Taking the covariant derivative of the chosen four-velocity field u�

yields

∇�u� = −u�u̇� + ∇̃� = −u�u̇� + 1
3�ℎ�� + !�� + ��� , (2.16)

where u̇� is the acceleration, � ≡ ∇̃�u
� the expansion, !�� ≡ ∇̃[�u�]

the vorticity and ��� ≡ ∇̃<�u�> the shear. For a more detailed de-
scription and interpretation of these quantities see Ref. [6]. Although
models with nonzero vorticity has been studied by some authors (see
e.g. Ref. [33]) they will not be considered here, so for the remainder
of the thesis it will be assumed that !�� = 0.

The Weyl conformal curvature tensor, C���� , or Weyl tensor for
short, is related to purely gravitational degrees of freedom, such as
tidal forces, frame dragging and GWs. In a similar way as the Faraday
tensor can be split into an electric and a magnetic part (this will be
detailed in Chapter 3), the Weyl tensor can be split relative to u�

into its “electric” and “magnetic” parts. The electric part of the Weyl
tensor is defined as

E�� ≡ C����u
�u� , (2.17)

and the magnetic part is

H�� ≡ 1
2����C

��
�
u


 . (2.18)

Note that both E�� and H�� are PSTF.
The energy and matter content can also be decomposed rela-

tive the observer four-velocity. This is done by splitting the energy-
momentum tensor as

T�� = �u�u� + pℎ�� + 2q(�u�) + ��� , (2.19)
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where � ≡ T��u
�u� is the relativistic energy density relative to u�,

p ≡ (1/3)T��ℎ�� is the isotropic pressure, q� ≡ −T��u�ℎ�� is the
energy flux and ��� ≡ T��ℎ

�
<�ℎ

�
�> the anisotropic pressure.

In order to fully describe the matter content, equations of state
are needed. The equations of state relate the quantities obtained from
Eq. (2.19) to each other, as governed by the physics of the situation.
In most cosmological models, the equations of state are usually taken
to be

p = (
 − 1)� , q� = ��� = 0, (2.20)

where 
 is referred to as the barytropic index. This is a special case
of a perfect fluid, and the cases of 
 = 1 and 
 = 4/3 are generally
referred to as “dust” and “radiation” respectively. The choice of a
perfect fluid as matter content in the universe seems reasonable based
on observations.

There are situations when non-perfect fluids can be considered in
cosmological models, see e.g. Refs. [33, 34] , but in what follows it
will be assumed that the equation of state is of the form (2.20).

2.2.1 Propagation equations and constraints

The evolution of spacetime, represented by the set
{u̇�, �, ��� , E�� , H��} and its perfect fluid contents, represented by
{�, 
}, is determined by the EFE (2.1) and its integrability conditions,
resulting in three sets of equations.

The first set is obtained from the Ricci identities for the observer
four-velocity, i.e.

2∇[�∇�]u
� = R��

�
�u

� , (2.21)

where R���� is the Riemann tensor. Using Eqs. (2.16) and (2.1) these
identities split into two propagation equations and two constraints.
The propagation equations are the Raychaudhuri equation

�̇ − ∇̃�u̇
� = −1

3�
2 + u̇�u̇� − 2�2 + 1

2 (�+ 3p) + Λ, (2.22)

where �2 ≡ ������/2, and the shear propagation equation

�̇<��> − ∇̃<�u̇�> = −2
3��

�� + u̇<�u̇�> − �<�
��

�>� − E�� , (2.23)

and the constraint equations are the (0i)-equations

∇̃��
�� − 2

3
∇̃�� = 0 . (2.24)
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and the H��-equations

H�� − (curl �)�� = 0. (2.25)

The second set of equations is obtained from the twice-contracted

Bianchi identities, G��
;� = 0 which, together with the EFE (2.1),

result in a propagation equation, known as the energy conservation

equation

�̇ = −� (�+ p) , (2.26)

and a constraint, called the momentum conservation equation,

∇̃�p = −u̇� (�+ p) . (2.27)

The third set of equations arises from the remaining Bianchi identities,

∇[�R��]�� = 0 , (2.28)

together with the EFE (2.1). By rewriting the Riemann tensor in
terms of the kinematical quantities and the electric and magnetic part
of the Weyl tensor (see Ref. [6] for details), two propagation equa-
tions and two constraints are obtained. The first of the propagation
equations is the Ė-equation

Ė<��> − (curl H)�� =

−1
2 (�+ p)��� − �E�� + 3�<�

�E
�>� + 2���<�u̇�H

�>
� ,(2.29)

and the second one the Ḣ-equation

Ḣ<��>+(curl E)�� = −�H��+3�<�
�H

�>�−2���<�u̇�E
�>
� . (2.30)

The constraint equations are

∇̃�E
�� − 1

3∇̃
��− ������
H



� = 0 , (2.31)

and
∇̃�H

�� + ������
E


� = 0 . (2.32)

Note that from the two propagation equations (2.29) and (2.30) it is
possible to see how GW solutions arises. Taking the time derivative
of Eq. (2.29), and using the commutation relations to interchange the
covariant time and fully orthogonally projected covariant derivatives,
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and then eliminating the Ḣ<��> term will result in a wave equation
for the tensor E<��>. The commutation relations are useful tools
since they can be used to construct propagation equations for other
quantities, e.g. the density gradient.

The 1+3 covariant formalism, as well as the 1+1+2 covariant for-
malism presented below, are suitable for perturbative calculations.
The perturbed quantities are in these methods represented by co-
variantly defined objects that vanish on the background, making the
theory gauge invariant [35].

2.2.2 Harmonic Decomposition in the 1+3 Covariant

Formalism

Similarly to a plane wave ansatz, the spatial and temporal dependence
of a perturbed variable can be separated using an harmonic decom-
position, provided that the background is homogeneous and isotropic.
By introducing scalar harmonics, Qk, satisfying

∇̃2Qk = − k2

A2
Qk , Q̇k = 0 , (2.33)

where A is the scale factor, any scalar Ψ can now be expressed as the
sum

Ψ =
∑

k

ΨkQk . (2.34)

As Eq. (2.34) shows this decomposition is very similar to expanding
a function into a Fourier series.

In a similar fashion as the expansion of scalar harmonics, vectors
and tensors can be decomposed using vector harmonics and tensor

harmonics. Details of this harmonic decomposition can be found in
e.g. Refs. [6, 36].

2.3 1+1+2 Covariant Formalism

The 1+3 covariant formalism has many advantages, especially when
the spacetime is an almost FLRW model. However, when examining
models that at each point have a preferred spatial direction, such as
locally rotationally symmetric (LRS) models, this formalism might
not be so suitable.
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By starting from the 1+3 covariant formalism and performing yet
another split, this time with respect to a spatial vector n�, parallel to
the direction of the anisotropy, such spacetimes can be conveniently
modelled. This is referred to as the 1+1+2 covariant formalism and
is detailed in Ref. [37].

The spatial vector n� allows construction of the projection opera-
tor

N�
� ≡ ℎ�

� − n�n
� . (2.35)

N�
� is used to project vectors and tensors perpendicular to n� (and

u�). Any projected vector V <�> can now be decomposed with respect
to n� as

V <�> = V n� + V �̄ , (2.36)

where V ≡ n�V
� and the bar over an index denotes projection with

N�� , i.e. V �̄ ≡ N�
�V

�. PSTF Tensors are decomposed as

T<��> =
(

n�n� − 1
2N

��
)

T + 2n(�T �) + T {��} , (2.37)

where

T ≡ n�n�T<��> , (2.38)

T� ≡ N�
�n�T<��> , (2.39)

T {��} ≡
(

N�
(�N�

�) − 1
2N

��N��

)

T<��> . (2.40)

In the same fashion as the 1+3 split separates the time and spatial
derivatives, the derivative ∇̃ can be further divided into a derivative
along n�, denoted with a “hat”, i.e.

T̂�� ≡ n�∇̃�T�� , (2.41)

and a derivative perpendicular to n�, denoted by �, such that

��T�� ≡ N�

N�

�N�
�T�� . (2.42)

It is useful to define the surface element perpendicular to n� by

��� ≡ n����� . (2.43)

The fully orthogonally projected covariant derivative of the spatial
vector n� can be decomposed, in much the same way as the decompo-
sition of the derivative of the four-velocity in the 1+3 split, in order
to obtain

∇̃�n� = n�a� +
1
2N���+ ���� + ��� , (2.44)
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where a� ≡ n̂� is the “acceleration” , � = ��n
� the sheet expansion ,

� ≡ 1
2�����n� the “twisting”, i.e. rotation of n� and ��� ≡ �{�n�} the

shear of n�, i.e. the distortion of the sheet.
Similarly, the covariant time derivative of n� can be decomposed

as
ṅ� = Au� + ṅ�̄ , (2.45)

where A ≡ n�u̇�.

2.3.1 Harmonic Decomposition in the 1+1+2 Covariant

Formalism

Similar to what is done in the 1+3 formalism it is also possible to
make a harmonic decomposition in the 1+1+2 split, but now there
are two different harmonic functions to consider; one will be parallel
to n� and the other one will be lying on the sheet perpendicular to
n�.

The two different spatial derivatives, defined in Eqs. (2.41 - 2.42),
can be used to construct two different Laplace operators

�2 ≡ ���� , (2.46)

and
Δ̂ ≡ n�∇̃�n

�∇̃� , (2.47)

The operator (2.46) can now be used to introduce the perpendicular
scalar harmonic function, Qk⊥ , satisfying

Q̂k⊥ = Q̇k⊥ = 0 , �2Qk⊥ = − k⊥
2

A⊥
2Qk⊥ , (2.48)

where A⊥ is the scale factor perpendicular to n�, which in a LRS
model satisfies

Ȧ⊥

A⊥
=

1

3
� − 1

2
Σ , (2.49)

where Σ is defined from the shear by ��� = Σ
(

n�n� − 1
2N��

)

. In the
same fashion the operator (2.47) can be used to define the parallel
scalar harmonic function, Pk∥ , by demanding

�Pk∥ = Ṗk∥ = 0 , Δ̂Pk∥ = −
k∥

2

A∥
2Pk∥ , (2.50)
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holds, where A∥ is the scale factor along n�, and

Ȧ∥

A∥
=

1

3
� +Σ , (2.51)

holds if the model is LRS. Using these scalar harmonics any scalar
quantity Ψ can be expressed as

Ψ =
∑

k∥,k⊥

Ψk∥k⊥Pk∥Qk⊥ . (2.52)

Here only the decomposition of scalar perturbations are considered.
Vectors and tensors can also be decomposed using vector and tensor
harmonics, as detailed in [37, 38].

The 1+1+2 formalism is used in Paper VI, where scalar perturba-
tions of a Kantowski-Sachs background with a nonzero cosmological
constant are studied.

2.4 Tetrad Formalism

When working with spacetimes that lack any particular symmetries
it can be useful to use a more general basis than the coordinate basis.
A tetrad is a set of four linearly independent vectors, ea, related to
the coordinate vector basis, ∂�, through ea = ea

�∂� . To this vector
basis there is a corresponding dual basis consisting of four one-forms
!a = !a

�dx
� such that

!aeb = �ab . (2.53)

Any tensor with elements T�...
�... in the coordinate description can

now be expressed in the tetrad basis as

T a...
b... = T�...

�...!
a
�...eb

� ... . (2.54)

In particular the metric in a coordinate basis, g�� , is related to the
metric in a tetrad basis, gab, by gab = g��ea

�eb
� .

The commutator of two tetrad basis vectors can be written

[ea, eb] = Cc
abec , (2.55)

where Cc
ab(x

d) are the structure coefficients of the basis. Note that
in the case of a coordinate basis the structure coefficients are zero.
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The covariant derivative of a vector Va in the tetrad basis becomes

∇aVb = eaVb − Γc
abVc , (2.56)

where the connection coefficients, Γa
bc, analogous to the Christoffel

symbols in a coordinate basis, are related to the structure coefficients
and the metric by

Γa
bc =

1
2g

ad (gdb,c + gdc,b − gbc,d) +
1
2g

ad (gebC
e
dc + gecC

e
db)− 1

2C
a
bc .

(2.57)
The Riemann tensor can be described in terms of Ricci rotation and
structure coefficients as

Ra
bcd = ecΓ

a
bd − edΓ

a
bc + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed − Ce

cdΓ
a
be . (2.58)

In a coordinate basis it can be seen, from Eqs. (2.57) and (2.58), that
the Ricci rotation coefficients are equal to the Christoffel symbols and
that the Riemann tensor takes its usual form (see e.g. [5]).

2.4.1 Orthonormal Frames and Three-Vector Notation

It is often convenient to choose the tetrad such that the metric gab is
constant. In such a setting the connection coefficients (2.57) simplify
considerably, resulting in

Γabc =
1
2 (Cbac + Ccab − Cabc) . (2.59)

These are referred to as the Ricci rotation coefficients and, due to the
definition of the structure coefficients (2.55), they are anti-symmetric
in the first two indices, i.e. Γabc = −Γbac holds.

The particular choice of gab = �ab is very useful since it implies
that the metric is locally Minkowski everywhere. Such a tetrad is
normally referred to as an orthonormal frame (ONF).

An ONF has a rather nice feature, especially when using pertur-
bation theory, in that raising and lowering indices will not introduce
additional terms coupled to the curvature, thus making the introduc-
tion and interpretation of perturbations clearer.

When using an ONF it often makes sense to introduce a three-
vector notation, such that the three spatial components of the four-
vector V a are defined as V ≡ (V 1, V 2, V 3). Furthermore it is conve-
nient to define the three dimensional del operator, similar to the usual
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del operator (sometimes referred to as the nabla operator) in vector
calculus, by

∇ ≡ (e1, e2, e3) . (2.60)

ONFs are used in Papers I-V when describing GWs as perturbations
on a Minkowski spacetime.

2.4.2 GWs in an Orthonormal Frame

Here an example of the use of an ONF in the case of weak GWs in the
TT gauge, propagating in the z-direction on a flat vacuum background
will be considered. In this setting the line element is

ds2 = −c2dt2 + (1 + ℎ+) dx
2 + 2ℎ×dxdy + (1− ℎ+) dy

2 + dz2 ,(2.61)

where ℎ×,+ ≪ 1. Using an orthonormal frame the metric is expressed
as

ds2 = �ab!
a!b , (2.62)

where the basis 1-forms {!a} are

!0 = cdt ,

!1 =
(

1 + 1
2ℎ+

)

dx+ 1
2ℎ×dy ,

!2 =
(

1− 1
2ℎ+

)

dy + 1
2ℎ×dx ,

!3 = dz . (2.63)

The basis vectors, {ea}, corresponding to the basis one-forms are

e0 = c−1∂t ,

e1 =
(

1− 1
2ℎ+

)

∂x − 1
2ℎ×∂y ,

e2 =
(

1 + 1
2ℎ+

)

∂y − 1
2ℎ×∂x ,

e3 = ∂z . (2.64)

The nonzero Ricci rotation coefficients of this geometry are

Γ0
11 = −Γ0

22 = Γ1
01 = −Γ2

02 =
1

2c
∂tℎ+,

Γ0
12 = Γ0

21 = Γ1
02 = Γ2

01 =
1

2c
∂tℎ×,

Γ1
31 = −Γ2

32 = −Γ3
11 = Γ3

22 =
1

2
∂zℎ+,

Γ1
32 = Γ2

31 = −Γ3
12 = −Γ3

21 =
1

2
∂zℎ×. (2.65)



Chapter 3

Plasma Physics in General

Relativity

P
lasmas can be a wide variety of substances containing free
charges (for example in the form of electrons and ions), which
show a collective behaviour due to the long range of the Cou-

lomb forces. The presence of free charges makes the plasma electri-
cally conductive, and thus responsive to electromagnetic fields. Any
charge imbalance will be neutralized, or screened, by attracting freely
moving charges of opposite signs and repelling charges of the same
sign. This leads to an exponential drop of the potential with distance
to any free charge, a phenomena called Debye shielding. The char-
acteristic length scale of the Debye shielding, �D, called the Debye

length, can be seen as the distance from a charge imbalance at which
the potential energy of the screening particle is roughly the same as
its thermal energy. The Debye length of an electron-ion plasma is
given by

�D =
(

�0KT/nie
2
)1/2

, (3.1)

where �0 is the dielectric constant in vacuum, K the Stefan-Boltzmann
constant, T the temperature, ni the ion number density, and e the ele-
mentary charge. Since charge imbalances are screened in this fashion,
a plasma will be roughly neutral on length scales larger than �D,
a property commonly referred to as quasi-neutrality, provided that
other macroscopic parameters such as density and temperature are
approximately constant on those length scales.
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The collective behaviour of plasmas arise from the long range na-
ture of the forces between particles. In a normal (i.e. non-charged)
fluid or gas the particle-particle interaction is mainly due to collisions;
the forces governing these interaction might be very strong, but the
range is very short. In a plasma, particle interactions, in addition to
collisions, consist of interactions where one charged particle influences
several other charged particles at distances much greater than in the
case of collisions. This is what gives plasmas their rich set of phe-
nomena, allowing for a multitude of wave modes and instabilities. For
a good and thorough introduction to plasma physics, see e.g. Refs
[9, 10].

Plasmas in various forms can often be found around various as-
trophysical objects where GWs are generated, this includes accre-
tion discs or electron-positron plasmas surrounding compact massive
binaries, which is of relevance for the present thesis. As the GWs
amplitudes are large close to their sources, it is of interest to study
GW-plasma interactions in such regions, as has been done by many
authors (see e.g. [39, 40, 41] ).

Furthermore, plasma physics might play a role for mechanisms
generating [42] or strengthening [43, 44] large scale magnetic fields,
particularly in the early stage of the evolution of the universe.

Finally it is worth noting the existence of so called dusty plasmas,
which might be of importance close to astrophysical GW sources, as
investigated in Paper I. In addition to ions and electrons these plas-
mas contain dust particles, which might have a considerable mass
compared to the ions, see e.g. Refs. [45, 46] for details.

3.1 Electrodynamics and General Relativity

Taking the spacetime curvature in account Maxwell’s equations can
be formulated as

F��
;� = �0j

�,

F[��;�] = 0 , (3.2)

where F�� is the Faraday tensor and j� is the four-current density.
The Faraday tensor contains both the electric and magnetic fields.
However, what is perceived as an electric or a magnetic field depends
on the motion of the observer. If the Faraday tensor is specified in a
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system with four-velocity u�, the electric field perceived by observers
in that system is

E� = F��u
� , (3.3)

and the magnetic field is

B� = 1
2����
F

��u
 . (3.4)

3.1.1 Electrodynamics in the 1+3 Covariant Formalism

This split of the Faraday tensor into a magnetic part and an elec-
tric part is to be expected in the 1+3 formalism, since all tensors
are decomposed relative to the observer four-velocity. Expressing the
Maxwell equations (3.2) in terms of electric and magnetic fields, and
the observable quantities defined in Eq. (2.16), results in two propa-
gation equations

Ė<�> − ����∇̃�B� = −j<�> − 2
3�E

� + ���E� + ����u̇�B� ,(3.5)

Ḃ<�> + ����∇̃�E� = −2
3�B

� + ���B� − ����u̇�E� , (3.6)

and two constraints

∇̃�E
� − �e = 0 , (3.7)

∇̃�B
� = 0 , (3.8)

where �e ≡ −j�u� is the charge density. Note that in Eqs. (3.5-3.8)
it is assumed that the vorticity is zero (for a thorough derivation with
a nonzero vorticity see Ref. [6] ).

3.1.2 Electrodynamics in an Orthonormal Frame

In an ONF it might be advantageous to express the electric and mag-
netic fields using a three-vector notation (see Section 2.4.1), e.g. for
easier comparison with physically relevant processes in flat spacetime
previously analysed in such a formalism. The electric and magnetic
fields are then described by the three-vectors B = (B1, B2, B3) and
E = (E1, E2, E3) respectively. The Maxwell equations (3.2) now split
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into the four equations

∇ ⋅E =
1

�0
(�+ �E) , (3.9)

∇ ⋅B =
�B
c�0

, (3.10)

1

c
e0E−∇×B = −�0 (j+ jE) , (3.11)

e0B+
∇×E

c
= −�0jB , (3.12)

where the effective charge densities, �E , and �B are

�E ≡ −�0
(

Γi
jiE

j + �ijkΓ0
ijcBk

)

,

�B ≡ −�0
(

Γi
jicB

j − �ijkΓ0
ijEk

)

, (3.13)

and the effective current densities, jE , and jB are

jiE ≡ 1
�0

[

1
c

(

Γi
j0 − Γi

0j

)

Ej + 1
cΓ

j
0jE

i − �ijk(Γ0
0jBk + Γm

jkBm)
]

,

jiB ≡ 1
�0

[

(

Γi
j0 − Γi

0j

)

Bj + Γj
0jB

i + 1
c �

ijk
(

Γ0
0jEk + Γm

jkEm

)

]

,

(3.14)

Eqs. (3.9-3.12) strongly resembles regular, non-GR electrodynamics
but with effects from the curvature included in the effective charge
and current densities and the del operator, ∇ = (e1, e2, e3). The
difference of the standard del operator and that in curved space time
is seen from the expression for the basis vectors, as for example in Eq.
(2.64).

3.1.3 Strong Magnetic Field QED Effects

In the presence of strong electromagnetic fields, that is when the field
strength approaches or surpasses the Schwinger critical field strength,
i.e. E ≳ Ecr ≡ m2

ec
3/ℏe in case of electric fields and B ≳ Bcr ≡ Ecr/c

in case of magnetic fields, QED effects will become important. These
QED effects arise due to interactions between virtual particles and the
background field, and cause an effective polarization and magnetiza-
tion of the vacuum which will affect photon propagation. Provided the
soft photon approximation is valid, i.e. the photon energy is smaller
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than the electron rest mass, an effective field theory including all or-
ders of one-loop photon-photon interaction diagrams ( see [13, 14] for
details) can be constructed. By imposing the additional condition
that the background fields are slowly varying 1 , the effect of all these
processes are included in the Heisenberg-Euler Lagrangian density

ℒ = − 1

�0
ℱ −A�j

� − �

2��0e2

∫ i∞

0

ds

s3
e−eEcrs/c

×
[

(es)2ab coth (eas) cot (ebs)− (es)2

3
(a2 − b2)− 1

]

,(3.15)

where Aa is the four-potential, ja the four-current and � the fine
structure constant. The auxiliary quantities a and b are defined by

a =
(

√

ℱ2 + G2 + ℱ
)1/2

, (3.16)

b =
(

√

ℱ2 + G2 −ℱ
)1/2

, (3.17)

where the electromagnetic invariants ℱ and G are

ℱ = (1/4)FabF
ab , (3.18)

G = (1/4)FabF̂
ab , (3.19)

and the dual of the Faraday tensor is F̂ ab = 1
2�

abcdFcd.
When the background field is a pure magnetic field the situation

simplifies considerably. Using the Lagrangian density (3.15) to derive
the Maxwell equations on a curved background in an ONF results in
the modification of Eqs. (3.9) and (3.11) to

∇ ⋅E =
1

�0

(

�


F
+ �E

)

, (3.20)

and
1

c
e0E−∇×B = −�0

(

jQ +
j


F
+ jE

)

, (3.21)

respectively, while leaving Eqs. (3.10) and (3.12) unchanged. The
expressions for the factor 
F and the current density due to the QED

1“Slowly varying” is in comparison with the QED scales, i.e. the Compton
frequency and the Compton wavelength, hence the processes may still be fast
compared to the GW scales.
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polarization and magnetization, jQ can be found in Paper IV, where
a study of how GWs interact with an ultra strong magnetic field is
made, showing that the QED effects lead to a detuning of the GW-
EMW wave resonances. Furthermore it might be worth noting that
the integral in the Lagrangian (3.15) can be calculated explicitly in
this case; this is also done in Paper IV.

3.2 Kinetic Plasma Description

In an ONF the equation of motion due to gravitation and Lorentz
force of a charged particle with mass m and charge q, subjected to
the electric and magnetic fields E and B, is given by

paeap = q [
mE+ p×B]− 
mG (3.22)

where Gi = Γi
abp

apb/
m, 
 =
√

1 + papa/m2 and pa is the four-
momentum of the particle. In a plasma consisting of a large number
of particles it is not possible to keep track of all individual particles
and their effect on the fields. Therefore it is common to use less
detailed descriptions in order to capture the essence of the behaviour
of the plasma.

In the kinetic plasma description it is assumed that each plasma
species, s, can be described by a distribution function, fs(x

a,p), de-
fined as the ensemble average number of point particles per unit unit
phase space. The initial distribution function is usually taken to be
a reasonable, smooth function, and can often be a thermodynamic
equilibrium distribution with some imposed perturbation.

The evolution of the distribution function is governed by the Bolz-
mann equation

ℒ [fs] = C , (3.23)

where C describes collisions, and ℒ is the Liouville operator, which
can be written

ce0 +
p ⋅ ∇

m

+

[

q

(

E+
p×B


m

)

−G

]

⋅ ∇p = 0 , (3.24)

where ∇p = (∂p1 , ∂p2 , ∂p3). When the collision term is neglected Eq.
(3.23) reduces to the Vlasov equation

ce0fs +
p ⋅ ∇fs

m

+

[

q

(

E+
p×B


m

)

−G

]

⋅ ∇pfs = 0 . (3.25)
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The Vlasov equation can be thought of as an equation describing the
conservation of phase space volume occupied by a set of neighbouring
(in phase space) particles (cf. Liouvilles theorem [9]).

Macroscopic plasma quantities are obtained by integrating prod-
ucts of the distribution function over momentum space. For example,
the number density of particles of species s, denoted ns, is obtained
from the distribution function by integrating over the three-momenta,
i.e.

ns(x
a) =

∫

d3pfs(x
a,p) , (3.26)

and the bulk three-momentum of particles of species s is obtained
from

Ps =
1

ns

∫

d3p pfs . (3.27)

The four-current ja is obtained by summation over the four-current
contributions from the different species

ja =
∑

s

qs

∫

d3p
pa


m
fs , (3.28)

and finally the contribution to the energy-momentum tensor from all
particle species in a plasma is obtained by

T
(PL)
ab =

∑

s

∫

d3p
papb

m

fs . (3.29)

A general relativistic plasma can be described completely by the EFE
(2.1), the Vlasov equation (3.25), and the Maxwell equations (3.9-
3.12). The kinetic plasma description is used in papers III and V.

3.3 Multifluid Description

When the level of detail provided by kinetic theory is not required,
it may be useful to adopt a simpler approach and treat the plasma
species as a set of separate, interpenetrating fluids. Electrons and one
or more ion species, as well as positrons and dust particles, may all
be included in this model; each species having its own fluid equation.

The approach may be to view each species as parts of a fluid
energy-momentum tensor, supplemented by appropriate equations of
state. The fluid equation for each species can be derived by taking
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the divergence of the energy-momentum tensor, using the Maxwell
equations, and projecting along the fluid four-momentum. Details of
the multifluid description can be found in e.g. Ref [47].

Alternatively, the multifluid description can be derived from ki-
netic theory. Multiplying the Vlasov equation (3.25) by appropriate
functions of the three momentum, and integrating over momentum
space provides equations governing the evolution of the macroscopic
quantities, such as the fluid momentum and number density. Further-
more, this will also give an idea of the applicability of the equations
of state.

The multifluid description is used in paper II.

3.4 Magnetohydrodynamic Description

In many cases the different species in a plasma are ions and electrons
and, since electrons are much lighter than ions, the electrons move
on a completely different, much faster time scale than the ions. In
the case of low frequency plasma phenomena the motion of electrons
can be regarded as instantaneous, thus any deviation from neutrality
caused by the ion motion is immediately nullified by the electron re-
sponse. This can be seen as the ion fluid dragging the lighter electron
fluid along. Furthermore, when the plasma is magnetized, the ions
are bound to the magnetic field. In this setting the plasma can be de-
scribed as a single, electrically conducting, magnetized fluid. This is
usually referred to as the magnetohydrodynamic (MHD) description.

The MHD model can be derived from multifluid theory, and de-
pends on a number of rather restrictive assumptions. It is hard to find
systems where all of these assumptions are valid simultaneously, but
the MHD description can nevertheless be useful in many systems due
to its simplicity. Furthermore, experience has shown that the MHD
model is more accurate than would be expected from the formal valid-
ity conditions [10]. For a more detailed description of MHD models,
see Ref. [10].

Presence of even heavier dust particles in an otherwise pure
electron-ion MHD plasma leads to a modification of MHD theory,
which is described in Refs. [45, 46] . Such a modified MHD model is
used in paper I.



Chapter 4

Wave Interactions in

Plasmas

P
lasma systems are inherently nonlinear, even in flat spacetime,
which in most cases makes exact modelling of plasma waves
very difficult. However, if the wave amplitudes are sufficiently

small, nonlinear effects can be neglected and the plasma waves can be
described by linear wave theory (see Ref. [9]). The linearised system
of wave equations can be written in the form

ŴopΨ = S , (4.1)

where Ŵop is the wave operator, Ψ the vector representing the wave
variables and S a vector describing source terms.

As long as the wavelength, �, is much smaller than the character-
istic length-scale of the background, L, and there is no source term,
the solution of Eq. (4.1) is a superposition of plane waves, i.e.

Ψ =
∑

k,!

Ψk,!e
i(k⋅x−!t) , (4.2)

in three-vector notation (which will be used throughout this chapter)
where k is the wave vector and ! the frequency. A matrix, Wk,!, can

be constructed from the operator Ŵop by using (4.2) as an ansatz and
letting ∂t → −i! and ∇ → ik. Now, since the different vectors Ψk,!

are independent, Eq. (4.1) leads to

Wk,!Ψk,! = 0 . (4.3)
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For nontrivial solutions, i.e. Ψk,! ∕= 0, to exist, the determinant of
the matrix Wk,! must be zero. Factorising the determinant yields

det (Wk,!) =
N
∏

n=1

Dn(!,k) , (4.4)

i.e., a product of N polynomials Dn(!,k). The determinant is zero
if any of the polynomials are zero, and each solution Dn(!,k) = 0,
called a dispersion relation, represents a different wave mode. Each
eigenvector of a corresponding eigenvalue provides the polarisation
vector for all wave variables (EM-fields, velocity fields, etc.).

The dispersion relation of a wave mode describes how the wave
vector and the frequency are related. This relationship can used to
determine the phase velocity, vpℎ ≡ !k/k2, and the group velocity,
vg ≡ d!/dk of a wave mode.

Nonlinear theory can be divided into coherent (phase dependent)
and non-coherent processes. The latter usually includes a turbulent
(broadband) spectra, and will not be considered here.

4.1 Three Wave Coupling and Parametric

Excitation

By relaxing the linear approximation and including second order non-
linear terms, three different wave modes can be nonlinearly coupled.
Assuming that for each wave mode, n = 0, 1, 2, the wave can be de-
scribed as an approximately linear wave

 n = 1
2

(

 ̃ne
i[kn⋅r−!nt] +  ̃∗

ne
−i[kn⋅r−!nt]

)

(4.5)

where ∗ denotes complex conjugate and  is a scalar1. Here  ̃n is
allowed to vary slowly in time, i.e. ∂t ̃n ≪ !n ̃n. The wave vectors
and frequencies satisfy the dispersion relations Dn(kn, !n) = 0.

For each wave mode, the wave equation (4.1), can now be written

Ŵ (n)
op  n = S(n)( 1,  2,  3) , (4.6)

1By assuming that the waves can be described by scalars the discussion is
somewhat simplified, but it should be stressed that the same principles can be
applied to the eigenvectors found from Eq. (4.4).
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where the source term is a function of the different waves. Using the
dispersion relation, the wave equation of the wave-mode n = 1 can
now be written

i!0
d ̃0

dt
ei[k0⋅r−!0t] − i!0

d ̃∗
0

dt
e−i[k0⋅r−!0t] = S0( 0,  1,  2) . (4.7)

Second order terms in S0 (higher order terms are neglected) contain
products of the different wave amplitudes, such as

 1 2 =  ̃1 ̃2e
i[(k1+k2)⋅r−(!1+!2)t] +  ̃∗

1 ̃2e
i[(−k1+k2)⋅r−(−!1+!2)t]

+  ̃1 ̃
∗
2e

i[(k1−k2)⋅r−(!1−!2)t] +  ̃∗
1 ̃

∗
2e

i[(−k1−k2)⋅r−(−!1−!2)t].

(4.8)

For n = 0 terms in S0 proportional to  1 2 in the right hand side of
Eq. (4.7) will be resonant if the matching conditions

!0 = !1 + !2 , (4.9)

and
k0 = k1 + k2 , (4.10)

are fulfilled. The non-resonant terms also cause nonlinear fluctuations,
but these will be insignificant. Ignoring the non-resonant terms, per-
forming the same calculations for all three wave modes, and using
these matching conditions, leads to the coupled mode equations

d ̃0

dt
= c0 ̃1 ̃2 ,

d ̃1

dt
= c1 ̃0 ̃

∗
2 ,

d ̃2

dt
= c2 ̃

∗
0 ̃1 , (4.11)

where c0, c1 and c2 are the coupling coefficients. Analytical solutions
of this system can be found in terms of Jacobian elliptic functions, see
Ref. [15].

The wave energy Wn of the wave  n is proportional to ∣ n∣2, such
that it is possible to express Eqs. (4.11) in terms of the wave energies
as

dWn

dt
= −!nVn . (4.12)
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Whenever a system has the property V0 = V1 = V2, the total wave
energy of the system is conserved, i.e. W ≡

∑

nWn = constant.
Furthermore, this also implies the Manley-Rowe relations [15],

d

dt

(

W1

!1
− W2

!2

)

=
d

dt

(

W0

!0
+
W1

!1

)

=
d

dt

(

W0

!0
+
W2

!2

)

= 0 . (4.13)

The Manley-Rowe relations describe the proportion of wave energy
exchanged between waves. One interpretation of this is to view the
interaction quantum-mechanically: N = V/ℏ!0 quanta with energy
ℏ!0 and momenta ℏk0 decays into N pairs of quanta with energies
ℏ!1 and ℏ!2 and momenta ℏk1 and ℏk2. While the Manley-Rowe rela-
tions have a quantum mechanical interpretation, it should be stressed
that these relations apply equally well to systems described by purely
classical equations. The reason is that non-dissipative physical sys-
tems generally have an underlaying Hamiltonian structure, which is
the principal cause of Eqs. (4.13) [48].

If one of the waves in the system (4.11) is externally imposed and
can be considered to act as a continuous input of energy, a pump wave,
the system can become unstable. This can be explained as follows:
Assuming that  0 acts as a pump wave implies that d ̃0/dt = 0. This
in turn will lead to solutions to the system (4.11) of the form  ̃1,2 ∝ eΓt

where the growth rate is found to be Γ =
√
c1c2

∣

∣

∣
 ̃0

∣

∣

∣
. Thus, if

√
c1c2 is

positive, (which will be the case if !0 has the highest frequency, which
is a further consequence of the Manley-Rowe relations), the solutions
will grow exponentially. This process is called parametric excitation

and is considered in Papers I and III.

4.2 Nonlinear Wave Propagation

In this section the propagation of a single wave mode, whose am-
plitude is sufficiently large for nonlinear profile modifications to be
important, will be considered. As a rule of thumb, this requires wave
perturbations that are not too much smaller than the corresponding
background variables.

When confronted with waves having large amplitudes, linear the-
ory might not be enough to accurately model the physics. As an ex-
ample, consider a system where the propagation of a wave described
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by  (z, t) is governed by the equation

[∂t + V ( ) ∂z] = 0 . (4.14)

This equation may be relevant for e.g. surface waves on water [16], ion-
acoustic waves [10] or Compressional Alfvén waves, where the latter
case is studied in Paper II. Since the wave-velocity depends on Ψ, a
simple (e.g. sinusoidal) wave profile will be nonlinearly deformed, as
will be outlined below.

Making a change of variable such that

t = � , z = � +

∫ �

0
d� ′ V

(

 (� ′, � ′)
)

, (4.15)

implies

∂t = ∂� −
V ( )

ℛ ∂� , (4.16)

and

∂z =
1

ℛ∂� , (4.17)

where

ℛ ≡ 1 +

∫ �

0
d� ′

∂V ( (� ′, � ′))

∂�
. (4.18)

The solution to Eq. (4.14) can now be written  (z, t) =  (�). Now Eq.
(4.17) shows that in a comoving system ∂z → ∞ if ℛ → 0. Typically,
when ℛ changes with time, the wave undergoes wave steepening and,
if ℛ equals zero at some finite time, wave breaking will occur. In
general terms wave breaking is the phenomena when the wave profile
becomes multi-valued at some point(s).

Wave steepening might be thought of as the wave having a speed
dependent on the deviation from equilibrium, causing an initial wave
profile to deform. If the different speeds cause parts of the wave to
overtake other parts, wave breaking occurs. This is what happens with
water waves close to the beach; the wave-top overtakes the rest of the
wave causing the water to come crashing down. Another example of
wave steepening can be found in ion acoustic waves, which is explained
in [10].

The convective derivative nonlinearities that always occur in fluid
dynamics can induce a similar behaviour as is discussed here, even for
wave modes where Eq. (4.14) does not apply [49].
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The nonlinear wave phenomena discussed in Chaper IV applies
to a broad range of plasma systems. Other examples of important
nonlinear processes include e.g. soliton formation, self-focusing and
wave collapse [50, 51], which is outside of the scope of the present
thesis, however.



Summary of Papers

Paper I

Nonlinear interactions between gravitational

radiation and modified Alfvén modes in

astrophysical dusty plasmas

In this paper a multi-fluid plasma model including dust-particles is de-
tailed. The main significance of the dust is to enable new wave modes.
Furthermore, we present an investigation of nonlinear interactions be-
tween Gravitational Radiation and modified Alfvén modes - so called
Alfvén-Rao modes - in astrophysical dusty plasmas. Assuming that
stationary charged dust grains form a neutralising background in an
electron-ion-dust plasma, we obtain the three wave coupling coeffi-
cients, which are shown to fulfill the Manley-Rowe symmetries. From
the coupling coefficients the growth rates of the Alfvén-Rao modes
is calculated. The threshold value of the gravitational wave ampli-
tude associated with convective stabilisation is particularly small if
the gravitational frequency is close to twice the modified Alfvén wave-
frequency.

In this work I did all of the calculations, some of which was checked

by the co-authors. I also participated in the discussions of the inter-

pretation of our results.
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Paper II

Harmonic generation of gravitational wave induced

Alfvén waves

Using multifluid theory adapted to the MHD-regime we examine the
nonlinear evolution of Alfvén waves, excited by gravitational waves
from merging binary pulsars. We derive a wave equation for strongly
nonlinear and Alfvén waves. Due to the low frequency the Alfvén
waves are initially weakly dispersive. During the evolution, the nonlin-
ear wave steepening leads to strong dispersion, associated with strong
harmonic generation. We find that the harmonic generation is even-
tually saturated due to dispersive effects, and use this to estimate the
resulting spectrum. Finally we discuss the possibility of observing the
above process.

In this work I did the vast majority of the analytical calculation,

and all of the numerical calculations. I contributed to the presentation

through numerous discussions of the astrophysical applications.

Paper III

Interaction between gravitational waves and plasma

waves in the Vlasov description

The nonlinear interaction between electromagnetic, electrostatic Lang-
muir waves and GWs in a Vlasov plasma is considered. By using an
orthonormal tetrad description the three-wave coupling coefficients
are computed, which e.g. determines the growth rate for parametric
instabilities. Comparing with previous results, it is found that the
present theory leads to algebraic expression that are much reduced,
as compared to those computed using a coordinate frame formalism.
Furthermore, the Manley-Rowe symmetries are discussed. Moreover,
we calculate the back-reaction on the gravitational waves, and a sim-
ple energy conservation law is deduced in the limit of a cold plasma.

In this work I did a majority of the calculations, and took part in

the discussions regarding the interpretation of the results.
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Paper IV

Influence of strong field vacuum polarization on

gravitational-electromagnetic wave interaction

The interaction between gravitational and electromagnetic waves in
the presence of a static magnetic field is studied using an effective field
theory based on the Heisenberg-Euler Lagrangian. The field strength
of the static field is allowed to surpass the Schwinger critical field,
such that the QED effects of vacuum polarization and magnetization
are significant. This is of relevance for certain astrophysical objects,
e.g. pulsars and magnetars. Equations governing the interaction are
derived and analyzed. It turns out that the energy conversion from
gravitational to electromagnetic waves can be significantly altered due
to the QED effects. The consequences of our results are discussed.

In this work I did the vast majority of the analytical calculation,

some of which was confirmed by the co-authors. I also did all of the

numerical calculations and the figures. Furthermore, I wrote parts

of the article, and contributed to the rest of the presentation through

several discussions.

Paper V

Linear theory of gravitational wave propagation in a

magnetized, relativistic Vlasov plasma.

We consider propagation of gravitational waves in a magnetized plasma,
using the linearized Maxwell-Vlasov equations coupled to Einstein’s
equations. A set of coupled electromagnetic-gravitational wave equa-
tions are derived, that can be straightforwardly reduced to a single
dispersion relation. We demonstrate that there is a number of differ-
ent resonance effects that can enhance the influence of the plasma on
the gravitational waves. In particular cyclotron modes can be excited
when the GW frequency is twice the cyclotron frequency, extraordi-
nary modes when the GW frequency matches the plasma frequency,
and compressional Alfvén waves when the relativistic Alfvén velocity
is close to the speed of light.

In this work I did all calculations leading up to the general disper-

sion relation. I also wrote most of the technical parts of the article. I
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contributed to the rest of the presentation, for example by discussing

the astrophysical implications.

Paper VI

Density growth in Kantowski-Sachs cosmologies with

cosmological constant

Here we consider the evolution of density perturbations in Kantowski-
Sachs cosmologies with a positive cosmological constant. These per-
turbations are represented by gradients of density, expansion, shear
and one more auxiliary variable needed to close the system. All of
these variables are zero on the background, and hence gauge invari-
ant. Their time evolution is obtained by taking the spatial gradients
of the evolution equations and using commutation relations between
the covariant time derivatives and the fully orthogonally projected
covariant derivatives. The solutions to this system are analyzed both
analytically and numerically. In particular the effects of anisotropy
and the behaviour close to bounces is considered.

In this work I did analytical calculations as well as all of the nu-

merics. Furthermore, I contributed to the presentation through several

discussions.



Acknowledgements

First of all I wish to thank Gert Brodin and Michael Bradley for being
the best supervisors anyone can ask for. You have been generous with
your time, guidance and support. Thank you!

During my work related travels I’ve met some great and hospitable
collaborators, to whom I’m greatly indebted. In particular I would
like to mention Prof. P.K.S. Dunsby who made my two trips to Cape
Town possible, productive and enjoyable and Prof. D. Papadopoulos
who made my visit to Thessaloniki both scientifically rewarding and
pleasant.

The time spent working in Ume̊a has been a hoot as well, which
is hardly surprising since I have been sharing offices with people like
Daniel, Joakim, Jens, Anders and Martin - fierce competitors on the
MBL list.

Furthermore I would like to thank the rest of the research group,
especially Mattias, Anton, Chris (thanks for the proofreading!) and
Lars for being awesome colleagues.

The rest of the physics department also deserves mentioning. You
have made my years here very enjoyable, in particular the cakes in
the coffee room and the lunches at Örnen with Krister, Maria, Patrik.
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