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Adversarial machine learning is an emerging field that focuses on studying vulnerabilities of machine learning
approaches in adversarial settings and developing techniques accordingly to make learning robust to adversarial
manipulations. It plays a vital role in various machine learning applications and recently has attracted tremendous
attention across different communities. In this paper, we explore different adversarial scenarios in the context of
quantum machine learning. We find that, similar to traditional classifiers based on classical neural networks,
quantum learning systems are likewise vulnerable to crafted adversarial examples, independent of whether
the input data is classical or quantum. In particular, we find that a quantum classifier that achieves nearly the
state-of-the-art accuracy can be conclusively deceived by adversarial examples obtained via adding imperceptible
perturbations to the original legitimate samples. This is explicitly demonstrated with quantum adversarial
learning in different scenarios, including classifying real-life images (e.g., handwritten digit images in the
dataset MNIST), learning phases of matter (such as ferromagnetic/paramagnetic orders and symmetry protected
topological phases), and classifying quantum data. Furthermore, we show that based on the information of the
adversarial examples at hand, practical defense strategies can be designed to fight against a number of different
attacks. Our results uncover the notable vulnerability of quantum machine learning systems to adversarial
perturbations, which not only reveals another perspective in bridging machine learning and quantum physics
in theory but also provides valuable guidance for practical applications of quantum classifiers based on both
near-term and future quantum technologies.
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I. INTRODUCTION

The interplay between machine learning and quantum
physics may lead to unprecedented perspectives for both fields
[1]. On the one hand, machine learning, or more broadly arti-
ficial intelligence, has progressed dramatically over the past
two decades [2,3] and many problems that were extremely
challenging or even inaccessible to automated learning have
been solved successfully [4,5]. This raises new possibilities
for utilizing machine learning to crack outstanding problems
in quantum science as well [1,6–16]. On the other hand, the
idea of quantum computing has revolutionized theories and
implementations of computation, giving rise to new striking
opportunities to enhance, speed up, or innovate machine
learning with quantum devices, in turn [17–19]. This emergent
field is growing rapidly, and notable progress is made on a
daily basis. Yet, it is largely still in its infancy, and many
important issues remain barely explored [1,17–19]. In this
paper, we study such an issue concerning quantum machine
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learning in various adversarial scenarios. We show, with con-
crete examples, that quantum machine learning systems are
likewise vulnerable to adversarial perturbations (see Fig. 1
for an illustration) and suitable countermeasures should be
designed to mitigate the threat associated with them.

In classical machine learning, the vulnerability of machine
learning to intentionally crafted adversarial examples as well
as the design of proper defense strategies has been actively
investigated, giving rise to an emergent field of adversarial
machine learning [20–33]. Adversarial examples are inputs to
machine learning models that an attacker has crafted to cause
the model to make a mistake. The first seminal adversarial
example dates back to 2004 when Dalvi et al. studied the
techniques used by spammers to circumvent spam filters [34].
It was shown that linear classifiers could be easily fooled by
few carefully crafted modifications (such as adding innocent
text or substituting synonyms for words that are common in
malignant message) in the content of the spam emails, with
no significant change of the meaning and readability of the
spam message. Since then, adversarial learning has attracted
enormous attention, and different attack and defense strategies
were proposed [22,27,32,33,35,36]. More strikingly, adversar-
ial examples can even come in the form of imperceptibly small
perturbations to input data, such as making a human-invisible
change to every pixel in an image [21,37,38]. A prominent
example of this kind in the context of deep learning was
observed by Szegedy et al. and has become a celebrated pro-
totype example that showcases the vulnerability of machine
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FIG. 1. A schematic illustration of quantum adversarial machine
learning. (a) A quantum classifier that can successfully identify the
image of a panda as “panda” with the state-of-the-art accuracy.
(b) Adding a small amount of carefully crafted noise will cause the
same quantum classifier to misclassify the slightly modified image,
which is indistinguishable from the original one to human eyes, into
a “gibbon” with notable high confidence.

learning in a dramatic way [21]: Starting with an image of
a panda, an attacker may add a tiny amount of carefully
crafted noise (which is imperceptible to the human eye) to
make the image be classified incorrectly as a gibbon with
notably high confidence. In fact, the existence of adversarial
examples is now widely believed to be ubiquitous in classical
machine learning. Almost all type of learning models suffer
from adversarial attacks, for a wide range of data types
including images, audio, text, and other inputs [23,24]. From
a more theoretical computer science perspective, the vulner-
ability of classical classifiers to adversarial perturbations is
reminiscent of the “no free lunch” theorem—there exists an
intrinsic tension between adversarial robustness and general-
ization accuracy [39–41]. More precisely, it has been proved
recently that if the data distribution satisfies the W2 Talagrand
transportation-cost inequality (a general condition satisfied
in a large number of situations, such as the cases where
the class-conditional distribution has log-concave density or
is the uniform measure on a compact Riemannian manifold
with positive Ricci curvature), any classical classifier could
be adversarially deceived with high probability [42].

Meanwhile, over the past few years, a number of intriguing
quantum learning algorithms have been discovered [17,43–
61], and some been demonstrated in proof-of-principle ex-
periments [62]. These algorithms exploit the unique enig-
matic properties of quantum phenomena (such as superpo-
sition and entanglement) and promise to have exponential
advantages compared to their classical counterparts. Notable
examples include the Harrow-Hassidim-Lloyd (HHL) algo-
rithm [63], quantum principal component analysis [64], quan-
tum support-vector machine [65,66], and quantum genera-
tive model [58]. Despite this remarkable progress, quantum
learning within different adversarial scenarios remains largely
unexplored [67–69]. A noteworthy step along this direction
has been made recently by Liu and Wittek [67], where they
showed in theory that a perturbation by an amount scaling
inversely with the Hilbert space dimension of a quantum
system to be classified should be sufficient to cause a mis-

classification, indicating a fundamental trade-off between the
robustness of the classification algorithms against adversarial
attacks and the potential quantum advantages we expect for
high-dimensional problems. Yet, in practice, it is unclear how
to obtain adversarial examples in a quantum learning system,
and the corresponding defense strategy is lacking as well.

In this paper, we study the vulnerability of quantum ma-
chine learning to various adversarial attacks, with a focus
on a specific learning model called quantum classifiers. We
show that, similar to traditional classifiers based on classical
neural networks, quantum classifiers are likewise vulnerable
to carefully crafted adversarial examples, which are obtained
by adding imperceptible perturbations to the legitimate input
data. We carry out extensive numerical simulations for sev-
eral concrete examples, which cover different scenarios with
diverse types of data (including handwritten digit images in
the dataset MNIST, simulated time-of-flight images in a cold-
atom experiment, and quantum data from a one-dimensional
transverse field Ising model) and different attack strategies
(such as fast gradient sign method [32], basic iterative method
[27], momentum iterative method [35], and projected gradient
descent [32] in the white-box attack setting, and transfer-
attack method [70] and zeroth-order optimization [33] in
the black-box attack setting, etc.) to obtain the adversarial
perturbations. Based on these adversarial examples, practi-
cal defense strategies, such as adversarial training, can be
developed to fight against the corresponding attacks. We
demonstrate that, after the adversarial training, the robustness
of the quantum classifier to the specific attack will increase
significantly. Our results shed light on the fledgling field of
quantum machine learning by uncovering the vulnerability
aspect of quantum classifiers with comprehensive numerical
simulations, which will provide valuable guidance for practi-
cal applications of using quantum classifiers to solve intricate
problems where adversarial considerations are inevitable.

II. CLASSICAL ADVERSARIAL LEARNING AND
QUANTUM CLASSIFIERS: CONCEPTS AND NOTATIONS

Modern technologies based on machine learning (espe-
cially deep learning) and data-driven artificial intelligence
have achieved remarkable success in a broad spectrum of
application domains [2,3], ranging from face or speech recog-
nition, spam and malware detection, language translation, to
self-driving cars and autonomous robots, etc. This success
raises the illusion that machine learning is currently at a state
to be applied robustly and reliably on virtually any task. Yet,
as machine learning has found its way from laboratories to the
real world, the security and integrity of its applications lead to
more serious concerns as well, especially for these applica-
tions in safety and security-critical environments [20,23,24],
such as self-driving cars, malware detection, biometric au-
thentication, and medical diagnostics [71]. For instance, the
sign recognition system of a self-driving car may misclassify
a stop sign with a little dirt on it as a parking prohibition
sign, and subsequently result in a catastrophic accident. In
medical diagnostics, a deep neural network may incorrectly
identify a slightly modified dermatoscopic image of a benign
melanocytic nevus as malignant with even 100% confidence
[72], leading to a possible medical disaster. To address these
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crucial concerns and problems, a new field of adversarial
machine learning has emerged to study vulnerabilities of
different machine learning approaches in various adversarial
settings and to develop appropriate techniques to make learn-
ing more robust to adversarial manipulations [25].

This field has attracted considerable attention and is grow-
ing rapidly. In this paper, we take one step further to study
the vulnerabilities of quantum classifiers and possible strate-
gies to make them more robust to adversarial perturba-
tions. For simplicity and concreteness, we will only focus
our discussion on supervised learning scenarios, although a
generalization to unsupervised cases is possible and worth
systematic future investigations. We start with a brief intro-
duction to the basic concepts, notations, and ideas of clas-
sical adversarial learning and quantum classifiers. In super-
vised learning, the training data is labeled beforehand: DN =
{(x(1), y(1) ), . . . , (x(N ), y(N ) )}, where x(i) (i = 1, . . . , N) is the
data to be classified and y(i) denotes its corresponding label.
The essential task of supervised learning is to learn from the
labeled data a model y = h(x; η) (a classifier) that provides
a general rule on how to assign labels to data outside the
training set [73]. This is usually accomplished by minimizing
certain loss function over some set of model parameters that
are collectively denoted as η: minη LN (η), where LN (η) =
1
N

∑N
i=1 L(h(x(i); η), y(i)) denotes the averaged loss function

over the training data set. To solve this minimization problem,
different loss functions and optimization methods have been
developed, each of them bearing its own advantages and
disadvantages, and the choice of which one to use depends
on the specific problem.

Unlike training the classifiers, generating adversarial ex-
amples is a different process, where we consider the model
parameters η as fixed and instead optimize over the input
space. More specifically, we search for a perturbation δ within
a small region �, which can be added into the input sample
x(i) so as to maximize the loss function:

max
δ∈�

L(h(x(i) + δ; η), y(i)). (1)

Here, in order to ensure that the adversarial perturbation is not
completely changing the input data, we constrain δ to be from
a small region �, the choice of which is domain-specific and
vitally depends on the problem under consideration. A widely
adopted choice of � is the �p-norm bound: ||δ||p � ε, where

the �p-norm is defined as ‖x‖p = (
∑N

i=1 ‖xi‖p)
1
p . In addition,

since there is more than one way to attack machine learn-
ing systems, different classification schemes of the attacking
strategies have been proposed in adversarial machine learning
[24,25,74,75]. Here, we follow Ref. [25] and classify attacks
along the following three dimensions: timing (considering
when the attack takes place, such as attacks on models versus
on algorithms), information (considering what information
the attacker has about the learning model or algorithm, such as
white-box versus black-box attacks), and goals (considering
different reasons for attacking, such as targeted versus un-
targeted attacks). We will not attempt to exhaust all possible
attacking scenarios, which is implausible due to their vastness
and complexity. Instead, we focus on only several types of at-
tacks that have already capture the essential messages we want
to deliver in this paper. In particular, along the “information”

dimension, we consider white-box and black-box attacks. In
the white-box setting, the attacker has full information about
the learned model and the learning algorithm, whereas the
black-box setting assumes that the adversary does not have
precise information about either the model or the algorithm
used by the learner. In general, obtaining adversarial exam-
ples in the black-box setting is more challenging. Along the
“goals” dimension, we distinguish two major categories: tar-
geted and untargeted attacks. In a targeted attack, the attacker
aims to deceive the classifier into outputting a particularly
targeted label. In contrast, untargeted attacks (also called
reliability attacks in the literature) just attempt to cause the
classifier make erroneous predictions, but no particular class
is aimed. We also mention that a number of different methods
have been proposed to solve the optimization problem in
Eq. (1) or its variants in different scenarios [23]. We refer
to Refs. [21–23,25,27,31–33,35,36,70,76] for more technique
details. As for our purpose, we will mainly explore the fast
gradient sign method (FGSM) [32], basic iterative method
(BIM) [27], projected gradient descent (PGD) [32], and mo-
mentum iterative method (MIM) [35] in the white-box setting
and the transfer attack [22], substitute model attack [31,70],
and zeroth-order optimization (ZOO) attack [33] methods in
the black-box setting.

On the other hand, another major motivation for studying
adversarial learning is to develop proper defense strategies
to enhance the robustness of machine learning systems to
adversarial attacks. Along this direction, a number of coun-
termeasures have been proposed as well in recent years [25].
For instance, Kurakin et al. introduced the idea of adversarial
training [77], where the robustness of the targeted classifier
is enhanced by retraining with both the original legitimate
data and the crafted data. Samangouei et al. came up with a
mechanism [78] that uses generative adversarial network [79]
as a countermeasure for adversarial perturbations. Papernot
et al. proposed a defensive mechanism [80] against adversarial
examples based on distilling knowledge in neural networks
[81]. Each of these proposed defense mechanisms works
notably well against particular classes of attacks, but none
of them could be used as a generic solution for all kinds of
attacks. In fact, we cannot expect a universal defense strategy
that can make all machine learning systems robust to all types
of attacks, as one strategy that closes a certain kind of attack
will unavoidably open another vulnerability for other types
of attacks which exploit the underlying defense mechanism.
In this work, we will use adversarial learning to enhance
the robustness of quantum classifiers against certain types of
adversarial perturbations.

Quantum classifiers are counterparts of classical ones that
run on quantum devices. In recent years, a number of different
approaches have been proposed to construct efficient quantum
classifiers [45,47–57,57,65,82,83], with some of them even
implemented in proof-of-principle experiments. One straight-
forward construction, called the quantum variational classifier
[45,47,49], is to use a variational quantum circuit to classify
the data in a way analogous to the classical support vector
machines [73]. Variants of this type of classifiers include
hierarchical quantum classifiers [55] (such as these inspired
by the structure of tree tensor network or multiscale entan-
glement renormalization ansatz) and quantum convolutional
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neural networks [53]. Another approach, called the quantum
kernel [50,51,82], utilizes the quantum Hilbert space as the
feature space for data and compute the kernel function via
quantum devices. Both the quantum variational classifier and
the quantum kernel approach have been demonstrated in a re-
cent experiment with superconducting qubits [51]. In addition,
hierarchical quantum classifiers have also been implemented
by using the IBM quantum experience [84] and their robust-
ness to depolarizing noises has been demonstrated in principle
[55]. These experiments showcase the intriguing potentials
of using the noisy intermediate-scale quantum devices [85]
(which are widely expected to be available in the near future)
to solve practical machine learning problems, although an un-
ambiguous demonstration of quantum advantages is still lack-
ing. Despite these exciting advances, an important question
of both theoretical and experimental relevance concerning the
reliability of quantum classifiers remains largely unexplored:
Are they robust to adversarial perturbations?

III. VULNERABILITY OF QUANTUM CLASSIFIERS

As advertised in the above discussion, quantum classifiers
are vulnerable to adversarial perturbations. In this section,
we will first introduce the general structure of the quantum
classifiers and the learning algorithms used in this paper and
several attacking methods to obtain adversarial perturbations,
with technique details provided in the Appendix. We then
apply these methods to concrete examples to explicitly show
the vulnerability of quantum classifiers in diverse scenarios,
including quantum adversarial learning of real-life images
(e.g., handwritten digit images in MNIST), topological phases
of matter, and quantum data from the ground states of physical
Hamiltonians.

A. Quantum classifiers: Training and adversarial attacks

Quantum classifiers take quantum states as input. Thus,
when they are used to classify classical data, we need first to
convert classical data into quantum states. This can be done
with an encoding operation, which basically implements a
feature map from the D-dimensional Euclidean space (where
the class data are typically represented by D-dimensional
vectors) to the 2n-dimensional Hilbert space for n qubits: ϕ :
RD → C2n

. There are two common ways of encoding clas-
sical data into quantum states: amplitude encoding and qubit
encoding [45,48,63–65,65,86–91]. Amplitude encoder maps
an input vector x ∈ RD (with some possible preprocessing
such as normalization) directly into the amplitudes of the 2n-
dimensional ket vector |ψ〉in for n qubits in the computational
basis. Here, for simplicity, we assume that D is a power of 2
such that we can use D = 2n amplitudes of a n-qubit system
(in fact, if D < 2n we can add 2n − D zeros at the end of
the input vector to make it of length 2n). Such a converting
procedure can be achieved with a circuit whose depth is linear
in the number of features in the input vectors with the routines
in Refs. [92–94]. With certain approximation or structure, the
required overhead can be reduced to polylogarithmic in D
[95,96]. This encoding operation can also be made more effi-
cient by using more complicated approaches such as tensorial
feature maps [45]. Qubit encoder, in contrast, uses D [rather
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FIG. 2. The sketch of a quantum circuit classifier. The classifier
consists of p layers, with each layer containing a rotation unit and
an entangler unit. The rotation unit performs arbitrary single-qubit
Euler rotations implemented as a combination of Z and X gates:
Uq,i(θ) = Zθc

q,i
Xθb

q,i
Zθa

q,i
with θ representing the Euler angles, q iden-

tifying the qubit, and i = 1, 2, . . . , p referring to the label of layers.
The entangler unit entangles all qubits and is composed of a series
of controlled-NOT (CNOT) gates. The initial state |ψ〉in, which is a
n-qubit state, encodes the complete information of the input data to
be classified. The projection measurement on the output qubits gives
the predicting probability for each category and the input data are
assigned a label that bears the largest probability.

than O(log D) as in amplitude encoding] qubits to encode the
input vector. We first rescale the data vectors elementwise to
lie in [0, π

2 ] and encode each element with a qubit using the
following scheme: |φd〉 = cos(xd )|0〉 + sin(xd )|1〉, where xd

is the dth element of the rescaled vector. The total quantum
input state that encodes the data vectors is then a tensor
product |φ〉 = ⊗D

d=1|φd〉. Qubit encoding does not require a
quantum random access memory [90] or a complicated circuit
to prepare the highly entangled state |ψ〉in, but it demands
much more qubits to perform the encoding and hence is
more challenging to numerically simulate the training and
adversarial attacking processes on a classical computer. As
a result, we will only focus on amplitude encoding in this
work, but the generalization to other encoding schemes is
straightforward and worth investigation in the future.

We choose a hardware-efficient quantum circuit classifica-
tion model, which has been used as a variational quantum
eigensolver for small molecules and quantum magnets in
a recent experiment with superconducting qubits [97]. The
schematic illustration of the model is shown in Fig. 2. Without
loss of generality, we assume that the number of categories
to be classified is K and each class is labeled by an integer
number 1 � k � K . We use m qubits (2m−1 < K � 2m) to
serve as output qubits that encode the category labels. A
convenient encoding strategy that turns discrete labels into
a vector of real numbers is the so-called one-hot encod-
ing [73], which converts a discrete input value 0 < k � K
into a vector a ≡ (a1, . . . , a2m ) of length 2m with ak = 1
and a j = 0 for j �= k. For the convenience of presentation,
we will use y and a interchangeably to denote the labels
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throughout the rest of the paper. In such a circuit model,
we first prepare the input state to be |ψ〉in ⊗ |1〉⊗m with
|ψ〉in an n-qubit state encoding the complete information of
the data to be classified, and then apply a unitary trans-
form consisting of p layers of interleaved operations. Each
layer contains a rotation unit that performs arbitrary single-
qubit Euler rotations and an entangler layer that generates
entanglement between qubits. This generates a variational
wave function |�(
)〉 = ∏p

i=1 Ui(|ψ〉in ⊗ |1〉⊗m), where Ui =
[
∏

q U q
i (θi )]UENT = (

∏
q Zθ

q
i,c

Xθ
q
i,b

Zθ
q
i,a

)UENT denotes the uni-
tary operation for the ith layer. Here, UENT represents the
unitary operation generated by the entangler unit and we use
θi to denote collectively all the parameters in the ith layer
and 
 to denote collectively all the parameters evolved in
the whole model. We mention that the arbitrary single-qubit
rotation together with the control-NOT (CNOT) gate gives a
universal gate set in quantum computation. Hence, our choice
of this circuit classifier is universal as well, in the sense that
it can approximate any desired function as long as p is large
enough. One may choose other models, such as hierarchical
quantum classifiers [55] or the quantum convolutional neural
network [53], and we expect that the attacking methods and
the general conclusion should carry over straightforwardly to
these models.

During the training process, the variational parameters 


will be updated iteratively so as to minimize certain loss
functions. The measurement statistics on the output qubits
will determine the predicted label for the input data encoded
in state |ψ〉in. For example, in the case of two-category
classification, we can use y ∈ {0, 1} to label the two categories
and the number of output qubits is one. We estimate the prob-
ability for each class by measuring the expectation values of
the projections: P(y = l ) = Tr(ρout|l〉〈l|), where l = 0, 1 and
ρout = Tr1,...,n(|�(
)〉〈�(
)|) is the reduced density matrix
for the output qubit. We assign a label y = 0 to the data sample
x if P(y = 0) is larger than P(y = 1) and say that x is classi-
fied to be in the 0 category with probability P(y = 0) by the
classifier. The generalization to multicategory classification
is straightforward. One observation which may simplify the
numerical simulations a bit is that the diagonal elements of
ρout, denoted as g ≡ (g1, . . . , g2m ) = diag(ρout), in fact give
all the probabilities for the corresponding categories.

In classical machine learning, a number of different loss
functions have been introduced for training the networks and
characterizing their performances. Different loss functions
possess their own pros and cons and are best suitable for
different problems. For our purpose, we define the following
loss function based on cross-entropy for a single data sample
encoded as |ψ〉in:

L(h(|ψ〉in; 
), a) = −
∑

k

ak log gk . (2)

During the training process, a classical optimizer is used
to search for the optimal parameters 
∗ that minimize the
averaged loss function over the training data set: LN (
) =
1
N

∑N
i=1 L(h(|ψ〉(i)

in ; 
), a(i)). Various gradient descent algo-
rithms, such as the stochastic gradient descent [98] and quan-
tum natural gradient descent [99,100], can be employed to
do the optimization. We use Adam [101,102], which is an

adaptive learning rate optimization algorithm designed specif-
ically for training deep neural networks, to train the quantum
classifiers.

A crucial quantity that plays a vital role in minimizing
LN (
) is its gradient with respect to model parameters.
Interestingly, owing to the special structures of our quantum
classifiers, this quantity can be directly obtained from the
projection measurements through the following equality [59]:

∂〈LN (
)〉ϑ
∂ϑ

= 1

2

(〈LN (
)〉ϑ+ π
2

− 〈LN (
)〉ϑ− π
2

)
, (3)

where ϑ denotes an arbitrary single parameter in our circuit
classifier and 〈LN (
)〉ξ (ξ = ϑ, ϑ + π

2 , and ϑ − π
2 ) repre-

sents the expectation value of LN (
) with the corresponding
parameter set to be ξ . We note that the equality in Eq. (3) is ex-
act, in sharp contrast to other models for quantum variational
classifiers where the gradients can only be approximated by
finite-difference methods in general. It has been proved that
an accurate gradient based on quantum measurements could
lead to substantially faster convergence to the optimum in
many scenarios [103], in comparison with the finite-difference
method approach.

We now give a general recipe on how to generate adversar-
ial perturbations for quantum classifiers. Similar to the case
of classical adversarial learning, this task essentially reduces
to another optimization problem where we search for a small
perturbation within an appropriate region � that can be added
into the input data so that the loss function is maximized.
A quantum classifier can classify both classical and quantum
data. Yet, adding perturbations to classical data is equivalent
to adding perturbations to the initial quantum state |ψ〉in.
Hence, it is sufficient to consider only perturbations to |ψ〉in,
regardless of whether the data to be classified are quantum or
classical. A pictorial illustration of adding adversarial pertur-
bations to the input data for a quantum classifier is shown in
Fig. 3. In the case of untargeted attacks, we attempt to search a
perturbation operator Uδ acting on |ψ〉in to maximize the loss
function:

Uδ ≡ argmax
Uδ∈�

L(h(Uδ|ψ〉in; 
∗), a), (4)

where 
∗ denotes the fixed parameters determined during the
training process, |ψ〉in encodes the information of the data
sample x supposed to be under attack, and a represents the
correct label for x in the form of one-hot encoding. On the
other hand, in the case of targeted attacks we aim to search a
perturbation U (t)

δ that minimizes (rather than maximizes) the
loss function under the condition that the predicted label is
targeted to be a particular one:

U (t)
δ ≡ argmin

U (t)
δ ∈�

L
(
h
(
U (t)

δ

∣∣ψ 〉
in; 
∗), a(t)), (5)

where a(t) is the targeted label that is different from the correct
one a �= a(t).

In general, � can be a set of all unitaries (or even any
completely positive and trace-preserving operations) that are
close to the identity operator. This corresponds to the additive
attack in classical adversarial machine learning, where we
modify each component of the data vector independently. In
our simulations, we use automatic differentiation [104], which
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|ψin

adv.
perturb.

model circuit

output
qubits

|1

|1

FIG. 3. A sketch of adding adversarial perturbations to the input
data for quantum classifiers. Throughout this paper, we mainly focus
on evasion attack [25], which is the most common type of attack in
adversarial learning. In this setting, the attacker attempts to deceive
the quantum classifiers by adjusting malicious samples during the
testing phase. Adding a tiny amount of adversarial noise can cause
quantum classifiers to make incorrect predictions.

computes derivatives to machine precision, to implement this
type of attack. In addition, for simplicity we can further re-
strict � to be a set of products of local unitaries that are close
to the identity operator. This corresponds to the functional
adversarial attack [105] in classical machine learning. It is
clear that the searching space for the functional attack is much
smaller than that for the additive attack and one may regard the
former as a special case for the later.

We numerically simulate the training and inference process
of the quantum classifiers on a classical cluster by using the
Julia language [106] and Yao.jl [107] framework. We run the
simulation parallelly on the central processing units (CPUs)
or graphical processing units (GPUs), depending on different
scenarios. The parallel nature of the minibatch gradient de-
scent algorithm naturally fits the merits of GPUs and thus we
use CuYao.jl [107], which is a very efficient GPU implemen-
tation of Yao.jl [107], to gain speedups for the cases that are
more resource consuming. We find that the performance of
calculating minibatch gradients on a single GPU is ten times
better than that of parallelly running on CPUs with 40 cores.
The automatic differentiation is implemented with Flux.jl
[108] and Zygote.jl [109]. Based on this implementation, we
can optimize over a large number of parameters for circuit
depth as large as p = 50. In general, we find that increases in
circuit depth (model capacity) are conducive to the achieved
accuracy. We check that the model does not overfit because
the loss of the training data set and validation data set is close,
so there is no need for introducing regularization techniques
such as Dropout [110] to avoid overfitting.

Now we have introduced the general structure of our
quantum classifiers and the methods to train them and to
obtain adversarial perturbations. In the following subsections,
we will demonstrate how these methods work by giving three

concrete examples. These examples explicitly showcase the
extreme vulnerability of quantum classifiers.

B. Quantum adversarial learning images

Quantum information processors possess unique proper-
ties such as quantum parallelism and quantum superposition,
making them intriguing candidates for speeding up image
recognitions in machine learning. It has been shown that some
quantum image-processing algorithms may achieve expo-
nential speedups over their classical counterparts [111,112].
Researchers have employed quantum classifiers for many
different image data sets [45]. Here, we focus on the MNIST
handwritten digit classification data set [113], which is widely
considered to be a real-life test bed for machine learning
paradigms. For this data set, near-perfect results have been
reached using various classical supervised learning algorithms
[114]. The MNIST data set consists of hand-drawn digits,
from 0 through 9, in the form of grayscale images. Each image
is two dimensional, and contains 28 × 28 pixels. Each pixel of
an image in the dataset has a pixel value, which is an integer
ranging from 0 to 255 with 0 meaning the darkest and 255
the whitest color. For our purpose, we slightly reduced the
size of the images from 28 × 28 pixels to 16 × 16 pixels, so
that we can simulate the training and attacking processes of
the quantum classifier with moderate classical computational
resources. In addition, we normalize these pixel values and
encode them into a pure quantum state using the amplitude
encoding method mentioned in Sec. III A.

We first train the quantum classifiers to identify different
images in the MNIST with sufficient classification accuracy.
The first case we consider is a two-category classification
problem, where we aim to classify the images of digits 1
and 9 by a quantum classifier with structures introduced
shown in Fig. 2. From the MNIST data set, we select out
all images of 1 and 9 to form a subset, which contains a
training data set of size 11 633 (used for training the quantum
classifier), a validation data set of size 1058 (used for tuning
hyperparameters, such as the learning rate), and a testing
set of size 2144 (used for evaluating the final performance
of the quantum classifier). In Fig. 4, we plot the average
accuracy and loss for the training and validation data sets
respectively as a function of the number of epochs. From
this figure, the accuracy for both the training and validation
increases rapidly at the beginning of the training process and
then saturate at a high value of ≈98%. Meanwhile, the average
loss for both training and validation decreases as the number
of epochs increases. The difference between the training loss
and validation loss is very small, indicating that the model
does not overfit. In addition, the performance of the quantum
classifier is also tested on the testing set and we find that our
classifier can achieve a notable accuracy of 98% after around
15 epochs.

For two-category classifications, the distinction between
targeted and untargeted attacks blurs since the target label
can only be simply the alternative label. Hence, in order to
illustrate the vulnerability of quantum classifiers under tar-
geted attacks, we also need to consider a case of multicategory
classification. To this end, we train a quantum classifier to
distinguish four categories of handwritten digits: 1, 3, 7,
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FIG. 4. The average accuracy and loss as a function of the
number of training steps. We use a depth-10 quantum classifier with
structures shown in Fig. 2 to perform binary classification for images
of digits 1 and 9 in MNIST. To train the classifier, we use the Adam
optimizer with a batch size of 256 and a learning rate of 0.005 to
minimize the loss function in Eq. (2). The accuracy and loss are
averaged on 11633 training samples and 1058 validation samples
(which are not contained in the training dataset).

and 9. Our results are plotted Fig. 5. Similar to the case of
two-category classification, we find that both the training and
validation accuracies increase rapidly at the beginning of the
training process and then saturate at a value of ≈92%, which is
smaller than that for the two-category case. After training, the
classifier is capable of predicting the corresponding digits for
the testing data set with an accuracy of 91.6%. We mention
that one can further increase the accuracy for both the two-
and four-category classifications, by using the original 28 ×
28-pixel images in MNIST or using a quantum classifier with
more layers, but this demands more computational resources.

After training, we now fix the parameters of the corre-
sponding quantum classifiers and study the problem of how
to generate adversarial examples in different situations. We
consider both the white-box and black-box attack scenarios.
For the white-box scenario, we explore both untargeted and
targeted attacks. For the black-box scenario, we first generate
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FIG. 5. The average accuracy and loss for the four-category
quantum classifier as a function of the number of epochs. Here, we
use a quantum classifier with structures shown in Fig. 2 and depth 40
(p = 40) to perform multiclass classification for images of digits 1,
3, 7, and 9. To train the classifier, we use the Adam optimizer with
a batch size of 512 and learning rate of 0.005 to minimize the loss
function in Eq. (2). The accuracy and loss are averaged on 20 000
training samples and 2000 validation samples.
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FIG. 6. The clean and the corresponding adversarial images for
the quantum classifier generated by the basic iterative method (see
the Appendix). Here, we apply the additive attack in the white-box
untargeted setting. For the legitimate clean images, the quantum
classifier can correctly predict their labels with confidence larger
than 78%. After attacks, the classifier will misclassify the crafted
images of digit 1 (9) as digit 9 (1) with notably high confidence,
although the differences between the crafted and clean images are
almost imperceptible to human eyes. In fact, the average fidelity is
0.916, which is very close to unity.

adversarial examples for classical classifiers and show that
quantum classifiers are also vulnerable to these examples ow-
ing to the transferability properties of adversarial examples.

1. White-box attack: Untargeted

In the white-box setting, the attacker has full information
about the quantum classifiers and the learning algorithms.
In particular, the attacker knows the loss function that has
been used and hence can calculate its gradients with respect
to the parameters that characterize the perturbations. As a
consequence, we can use different gradient-based methods
developed in the classical adversarial machine learning lit-
erature, such as the FGSM [32], BIM [27], PGD [32], and
MIM [35], to generate adversarial examples. For untargeted
attacks, the attacker only attempts to cause the classifier to
make incorrect predictions, but no particular class is aimed.
In classical adversarial learning, a well-known example in
the white-box untargeted scenario concerns facial biometric
systems [115], whereby wearing a pair of carefully crafted
eyeglasses the attacker can have her face misidentified by the
state-of-the-art face-recognition system as any other arbitrary
face (dodging attacks). Here, we show that quantum classifiers
are vulnerable to such attacks as well.

For the simplest illustration, we first consider attacking ad-
ditively the two-category quantum classifier discussed above
in the withe-box untargeted setting. In Fig. 6, we randomly
choose samples for digits 1 and 9 from MNIST and then solve
the Eq. (4) iteratively by the BIM method to obtain their corre-
sponding adversarial examples. This figure shows the original
clean images and their corresponding adversarial ones for the
two-category quantum classifier. For these particular clean
images, the quantum classifier can correctly assign their labels
with confidence larger than 78%. Yet, after attacks the same
classifier will misclassify the crafted images of digit 1 (9) as
digit 9 (1) with decent high confidence 73%. Strikingly, the
obtained adversarial examples look the same as the original
legitimate samples. They only differ by a tiny amount of noise
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FIG. 7. Effect of adversarial untargeted additive attacks on the
accuracy of the quantum classifier for the problem of classifying
handwritten digits. We use the basic iterative method to obtain adver-
sarial examples. The circuit depth of the model is 20. We choose the
step size as 0.1. [(a), (b)] For the classifier that classifies digit 1 and
9, accuracy decreases as the average fidelity between the adversarial
samples and clean samples decreases. Accuracy decreases as we
increase the number of iterations of the attacking algorithm. [(c), (d)]
Similar plots for the problem of classifying four digits 1, 3, 7, and 9.

that is almost imperceptible to human eyes. To further verify
that the vulnerability of the quantum classifier is not specific
to particular images, but rather generic for most of (if not all)
images in the data set, we apply the same attack to all images
of digits 1 and 9 in the testing set of MNIST. In Fig. 7(a), we
plot the accuracy as a function of the number of the BIM iter-
ations. It is clear from this figure that the accuracy decreases
rapidly at the beginning of the attack, indicating that more
adjusted images are misclassified. After five BIM iterations,
the accuracy decreases to zero and all adjusted images become
adversarial examples misclassified by the quantum classifier.
In addition, to characterize how close a clean legitimate image
is to its adversarial counterpart in the quantum framework,
we define the fidelity between the quantum states that encode
them: F = |〈ψadv.|ψ leg.〉|2, where |ψadv.〉 and |ψ leg.〉 denote
the states that encode the legitimate and adversarial sample,
respectively. In Fig. 7(b), we compute the average fidelity
at each BIM iteration and plot the accuracy as a function
of average fidelity. Since the fidelity basically measures the
difference between the legitimate and adversarial images, and
hence it is straightforward to obtain that the accuracy will
decrease as the average fidelity decreases. This is explicitly
demonstrated in Fig. 7(b). What is more interesting is that
even when the accuracy decreases to zero, namely when all the
adjusted images are misclassified, the average fidelity is still
larger than 0.73. We mention that this is a fairly high average
fidelity, given that the Hilbert space dimension of the quantum
classifier is already very large.

TABLE I. Average fidelity (F̄ ) and accuracy (in %) of the quan-
tum classifier when being additively attacked by the BIM and FGSM
methods in the white-box untargeted setting. For the two-category
(four-category) classification, we use a model circuit of depth p = 10
(p = 40). For the BIM method, we generate adversarial examples
using three iterations with a step size of 0.1. We denote such attack
as BIM(3, 0.1). For the FGSM method, we generate adversarial
examples using a single step with a step size of 0.03 (0.05) for the
two-category (four-category) classifier. We denote such attacks as
FGSM(1, 0.03) and FGSM(1, 0.05), respectively.

Attacks F̄ Accuracy

Two-category BIM (3, 0.1) 0.923 15.6%
FGSM (1, 0.03) 0.901 00.0%

Four-category BIM (3, 0.1) 0.943 23.7%
FGSM (1, 0.05) 0.528 00.0%

In the above discussion, we have used Eq. (4), which
is suitable for the untargeted attack, to generate adversarial
examples. However, the problem we considered is a two-
category classification problem and the distinction between
targeted and untargeted attacks is ambiguous. A more unam-
biguous approach is to consider untargeted attacks to the four-
category quantum classifier. Indeed, we have carried out such
attacks and our results are plotted in Figs. 7(c) and 7(d), which
are similar to the corresponding results for the two-category
scenarios. Moreover, we can also consider utilizing different
optimization methods to do white-box untargeted attacking
for the quantum classifiers. In Table I, we summarize the
performance of two different methods (BIM and FGSM) in
attacking both the two-category and four-category quantum
classifiers. Both the BIM and FGSM methods perform notice-
ably well.

Now, we have demonstrated how to obtained adversarial
examples for the quantum classifiers by additive attacks,
where each component of the data vectors are modified in-
dependently. In real experiments, to realize such adversarial
examples with quantum devices might be challenging because
this requires implementations of complicated global unitaries
with very high precision. To this end, a more practical ap-
proach is to consider functional attacks, where the adversarial
perturbation operators are implemented with a layer of local
unitary transformations. In this case, the searching space is
much smaller than that for the additive attacks, and hence
we may not be able to find the most efficient adversarial
perturbations. Yet, once we find the adversarial perturbations,
it could be much easier to realize such perturbations in the
quantum laboratory. To study functional attacks, in our numer-
ical simulations we consider adding a layer of local unitary
transformations before sending the quantum states to the
classifiers. We restrict that these local unitaries are close to the
identity operators so as to keep the perturbations reasonably
small. We apply both the BIM and FGSM methods to solve
Eq. (4) in the white-box untargeted setting. Partial of our
results for the case of functional attacks are plotted in Fig. 8.
From this figure, it is easy to see that the performances of both
the BIM and FGSM methods are a bit poorer than that for the
case of additive attacks. For instance, in the case of functional
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FIG. 8. Effects of adversarial untargeted functional attack on the
accuracy of the quantum classifier for the problem of classifying
handwritten digits 1 and 9. Here, the adversarial perturbation opera-
tors are assumed to be a layer of local unitary transformation. We use
both the BIM method and the FGSM method to obtain adversarial
examples. (a) For the BIM method, we generated adversarial pertur-
bations using different number of iterations with the fixed step size
0.1. (b) For the FGSM method, we generate adversarial perturbations
using different step sizes, and the accuracy drops accordingly with
increasing step size.

attacks after six BIM iterations there is still a residue accuracy
about 14% [see Fig. 8(a)], despite the fact that the average
fidelity has already decreased to 0.2 [see Fig. 8(c)]. This is in
sharp contrast to the case of additive attacks, where five BIM
iterations are enough to reduce the accuracy down to zero [see
Fig. 7(a)] and meanwhile maintain the average fidelity larger
than 0.73 [see Fig. 7(b)]. The reduction of the performances
for both methods is consistent with the fact that the searching
space for functional attacks are much smaller than that for
additive attacks.

2. White-box attack: Targeted

Unlike in the case of untargeted attacks, in targeted attacks
the attacker attempts to mislead the classifier to classify a data
sample incorrectly into a specific targeted category. A good
example that manifestly showcases the importance of targeted
attacks occurs in face recognition as well: In some situations
the attacker may attempt to disguise her face inconspicuously
to be recognized as an authorized user of a laptop or phone
that authenticates users through face recognition. This type
of attack has a particular name of impersonation attack in
classical adversarial learning. It has been shown surprisingly
in Ref. [115] that physically realizable and inconspicuous
impersonation attacks can be carried out by wearing a pair of
carefully crafted glasses designed for deceiving the state-of-
the-art face recognition systems. In this subsection, we show
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FIG. 9. Visual illustration of adversarial examples crafted using
different attacks. From top to bottom: the clean and adversarial im-
ages generated for the quantum classifier by the BIM algorithm. By
applying the additive attack, we can change the quantum classifier’s
classification result. The top images represent an correctly predicted
legitimate example. The bottom images are incorrectly predicted
adversarial example, even though they bear a close resemblance
to the clean image. Here, the attacking algorithm we employed is
BIM(0.1,3).

that quantum classifiers are likewise vulnerable to targeted
attacks in the white-box setting.

We consider attacking the four-category quantum classifier.
In Fig. 9, we randomly choose samples for digits 1, 3, 7,
and 9 from MNIST and then solve the Eq. (5) iteratively
by the BIM method to obtain their corresponding adversarial
examples. This figure shows the original legitimate images
and their corresponding targeted adversarial ones for the four-
category quantum classifier. For these legitimate samples, the
quantum classifier can assign their labels correctly with high
confidence. But after targeted attacks, the same classifier is
misled to classify the crafted images of digits {7, 1, 3, 9}
erroneously as the targeted digits {9, 3, 7, 7} with a decent
high confidence, despite the fact that the differences between
the crafted and legitimate images are almost imperceptible.
To further illustrate how this works, in Figs. 10(a)–10(d), we
plot the classification probabilities for each digit and the loss
functions with respect to particular digits as a function of the
number of epochs. Here, we randomly choose an image of a
given digit and then consider either additive [Figs. 10(a) and
10(b)] or functional [Figs. 10(c) and 10(d)] targeted attacks
through the BIM method. For instance, in Fig. 10(a) the image
we choose is an image for digit 1 and the targeted label
is digit 3. From this figure, at the beginning the quantum
classifier is able to correctly identify this image as digit 1 with
probability P(y = 1) ≈ 0.41. As the number of BIM iteration
increases P(y = 1) decreases and P(y = 3) increases, and
after about six iterations P(y = 3) becomes larger than P(y =
1), indicating that the classifier begins to be deceived into
predict the image as a digit 3. Figure 10(b) shows the loss
as a function of the number of epochs. From this figure, as the
iteration number increases, the loss for classifying the image
as digit 1 (3) increases (decreases), which is consistent with
the classification probability behaviors in Fig. 10(a).

More surprisingly, we can in fact fool the quantum clas-
sifier to identify any images as a given targeted digit. This
is clearly observed from Figs. 10(e) and 10(f) and Table II,
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FIG. 10. White-box targeted attacks for the four-category quan-
tum classifier with depth p = 40. (a) The classification probabilities
for each digits as a function of the number of attacking epochs. Here,
we use the BIM method to attack the quantum classifier. (b) The loss
for classifying the image to be 1 or 3 as a function of the number
of epochs. [(c), (d)] Similar plots for the functional attacks. [(e), (f)]
The accuracy as a function of the average fidelity during the attacking
process. Here, we consider additive attacks with both the BIM (e) and
FGSM (f) methods.

where we perform additive attacks for all the images of
digits {1, 3, 7, 9} with different targeted labels and different
attacking methods. In Figs. 10(e) and 10(f), we plot the
accuracy versus the average fidelity. Here, for a given targeted

TABLE II. The accuracy αadv (in %) and average fidelity F̄
for the four-category quantum classifier with depth p = 10 on the
test data set when being attacked by different methods for different
targeted labels. Here, we consider additive attacks with both the BIM
and FGSM methods. For the BIM method, we generate adversarial
examples using three iterations with a step size of 0.05, whereas for
the FGSM method, we use a single step with step size of 0.03.

���������Attacks
Targets

1 3 7 9

BIM(3, 0.05) αadv 5.7% 6.6% 2.7% 0.0%
F̄ 0.941 0.936 0.938 0.935

FGSM(1, 0.03) αadv 2.1% 10.9% 15.7% 11.9%
F̄ 0.899 0.902 0.902 0.901

TABLE III. Black-box attacks to the quantum classifier. Here,
the adversarial examples are generated by three different methods
(i.e., BIM, FGSM, and MIM) for two different classical classifiers,
one based on CNN and the other on FNN (see the Appendix). This
table shows the corresponding accuracy (in %) for each case on
the MNIST test data set. We denote the predication accuracy of the
classical neural networks (quantum classifier) on the test set as αC

(αQ), and the predication accuracy on the adversarial test set as αadv
C

(αadv
Q ). The accuracy of the quantum classifier drops significantly on

the adversarial examples generated for the classical neural networks.

�������Attacks
Accuracy

αadv
C αC − αadv

C αadv
Q αQ − αadv

Q

BIM (50, 0.01) 0.07% 98.2% 66.4% 25.6%
CNN FGSM (1, 0.3) 0.6% 98.3% 51.6% 40.4%

MIM (10, 0.06) 0.7% 98.2% 62.3% 29.7%

BIM (50, 0.01) 0.6% 99.3% 68.1% 23.9%
FNN FGSM (1, 0.3) 1.0% 98.9% 56.8% 35.2%

MIM (10, 0.06) 0.8% 99.1% 59.9% 32.1%

label l (l = 1, 3, 7, or, 9), we perform additive attacks for
all images with original labels not equal to l and compute
the accuracy and the average fidelity based on these images.
From these figures, even when the average fidelity maintains
larger than 0.85 the accuracy can indeed decrease to zero,
indicating that all the images are classified by the quantum
classifier incorrectly as digit l . In Table II, we summarize
the performance of the BIM and FGSM methods in attacking
the four-category quantum classifier in the white-box targeted
setting.

3. Black-box attack: Transferability

Unlike white-box attacks, black-box attacks assume lim-
ited or even no information about the internal structures of the
classifiers and the learning algorithms. In classical adversarial
learning, two basic premises that make black-box attacks
possible have been actively studied [74]: the transferability
of the adversarial examples and probing the behavior of the
classifier. Adversarial sample transferability is the property
that an adversarial example produced to deceive one specific
learning model can deceive another different model, even if
their architectures differ greatly or they are trained on different
sets of training data [21,22,31], whereas probing is another
important premise of the black-box attack that the attacker
uses the victim model as an oracle to label a synthetic training
set for training a substitute model, and hence the attacker
needs not even collect a training set to mount the attack. Here,
we study the transferability of adversarial examples in a more
exotic setting, where we first generate adversarial examples
for different classical classifiers and then investigate whether
they transfer to the quantum classifiers or not. This would have
important future applications considering a situation where
the attacker may only have access to classical resources.

Our results are summarized in Table III. To obtain these
results, we first train two classical classifiers, one based on a
convolutional neural network (CNN) and the other based on
a feedforward neural network (see the Appendix for details),
with training data from the original MNIST dataset. Then we
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use three different methods (i.e., BIM, FGSM, and MIM)
to produce adversarial examples in a white-box untargeted
setting for both classical classifiers separately. After these ad-
versarial examples are obtained, we evaluate the performance
of the trained quantum classifier on them. From Table III, it is
evident that the performance of the quantum classifier on the
adversarial examples is much worse than that on the original
legitimate samples. For instance, for the adversarial examples
generated for the CNN classifier by the MIM method, the
accuracy of the quantum classifier is only 62.3%, which is
29.7% lower than that for the clean legitimate samples. This
indicates roughly that 29.7% of the adversarial examples
originally produced for attacking the CNN classifier transfer
to the quantum classifier. This transferability ratio may not
be as large as that for adversarial transferability between two
classical classifiers. Yet, given the fact that the structure of the
quantum classifier is completely different from the classical
ones, it is in fact a bit surprising that such a high transferability
ratio can be achieved in reality. We expect that if we use
another quantum classifier to play as the surrogate classifier,
the transferability ratio might increase significantly. We leave
this interesting problem for future studies.

4. Adversarial perturbations are not random noises

The above discussions explicitly demonstrated the vulnera-
bility of quantum classifiers against adversarial perturbations.
The existence of adversarial examples is likewise a general
property for quantum learning systems with high-dimensional
Hilbert space. For almost all the images of hand-writing digits
in MNIST, there always exists at least one corresponding
adversarial example. Yet, it is worthwhile to clarify that
adversarial perturbations are not random noises. They are
carefully engineered to mislead the quantum classifiers and
in fact only occupy a tiny subspace of the total Hilbert space.
To demonstrate this more explicitly, we compare the effects
of random noises on the accuracy of both two- and four-
category quantum classifiers with the effects of adversarial
perturbations. For simplicity and concreteness, we consider
the uncorrelated decoherence noises that occur in a number
of experimental platforms (such as Rydberg atoms, super-
conducting qubits, and trapped ions) for quantum computing
[116–119]:

Edepl(ρ) = (1 − β )ρ + β

3
(σ xρσ x + σ yρσ y + σ zρσ z ), (6)

where ρ denotes the density state of a qubit, σ x,y,z are the
usual Pauli matrices, and β ∈ [0, 1] is a positive number
characterizing the strength of the decoherence noises.

In Fig. 11, we plot the classification accuracy of the quan-
tum classifiers versus the noise strength p and the average
fidelity between the original state and the state affected by
a single layer of depolarizing noise on each qubit described
by Eq. (6). From this figure, we observe that the accuracy for
both the two- and four-category quantum classifiers decreases
roughly linearly with the increase of p and the decrease of
the average fidelity. This is in sharp contrast to the case for
adversarial perturbations [see Figs. 10(e), 10(f), 8(c), 7(b),
and 7(d) for comparison], where the accuracy has a dramatic
reduction as the average fidelity begins to decrease from unity,
indicating that the adversarial perturbations are not random
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FIG. 11. Effects of depolarizing noises with varying strengths on
the accuracy of the quantum classifiers with depth p = 20. The mean
classification accuracy is computed on the test set with respect to
the fidelity between the original input states and the states affected
by depolarizing noises on each qubit with varying strengths. The
accuracy and fidelity are averaged over 1000 random realizations.
(a) Results for the two-category quantum classifier. (b) Results for
the four-category quantum classifier.

noises. In fact, since the accuracy only decreases linearly
with the average fidelity, this result also implies that quantum
classifiers are actually rather robust to random noises. We
mention that one may also consider the bit-flip or phase-flip
noises and observe similar results. The fact that the adversarial
perturbations are distinct from random noises is also reflected
in our numerical simulations of the defense strategy by data
augmentation—we find that the performance of the quantum
classifier is noticeably better if we augment the training set by
adversarial examples, rather than samples with random noises.

5. Larger models are more robust

Recently, it has been shown in the classical adversarial
machine learning literature that increasing the capacity of the
classifiers may enhance the robustness to adversarial perturba-
tions [32]. This could be understood intuitively from the fact
that the presence of adversarial examples will typically change
the decision boundary of the problem to a more complicated
one. Hence, a more complicated network might be needed
to correctly classify the adversarial examples. Inspired by
this, here we find similar observations for quantum classifiers:
Increasing the capacity of the quantum classifiers may also
improve their robustness.

For concreteness, we consider increasing the circuit depth
(the number of layers p) to increase the capacity of our
quantum classifiers. We choose the two- and four-category
classifiers in the white-box untargeted setting as an example.
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FIG. 12. Increasing the capacity of quantum classifiers will en-
hance their robustness to adversarial perturbations. Here, we first
train two different quantum classifiers with the same fixed learning
rate 0.005 and training algorithm (Adam), but different model capac-
ity by varying the circuit depth (the number of layers p in Fig. 2).
Then we use the same attacking algorithm (BIM with step size 0.1)
to attack these trained models in the white-box untargeted setting.
We find that the predication accuracy increases as the circuit depth
increases for both (a) the two-category classification for images of
digits 1 and 9, and (b) the four-category classification for images of
digits 1, 3, 7, and 9.

To make a fair comparison, we train both models with varying
circuit depths using the same learning rate, batch size, and
optimizer. After training, we use the same attacking method,
namely the BIM algorithm, to generate adversarial examples.
Our results are shown in Fig. 12. From this figure, it is evident
that for fixed BIM iteration steps, the accuracy for both
classifiers increases as the circuit depth increases, implying a
strengthening of their robustness to adversarial perturbations.

C. Quantum adversarial learning topological phases of matter

Classifying different phases and the transitions between
them is one of the central problems in condensed mat-
ter physics. Recently, various machine learning tools and
techniques have been adopted to tackle this intricate prob-
lem. In particular, a number of supervised and unsuper-
vised learning methods have been introduced to classify
phases of matter and identify phase transitions [8,10,120–
130], giving rise to an emergent research frontier for machine
learning phases of matter. Following these theoretical ap-
proaches, proof-of-principle experiments with different plat-
forms [131–134], such as doped CuO2 [134], electron spins
in diamond nitrogen-vacancy centers [131], and cold atoms in
optical lattices [132,133], have been carried out in laboratories
to demonstrate their feasibility and unparalleled potentials.
In addition, the vulnerability of these machine learning ap-
proaches to adversarial perturbations has been pointed out in
a recent work as well [135]. It has been shown that typical
phase classifiers based on classical deep neural networks are
extremely vulnerable to adversarial attacks: Adding a tiny
amount of carefully crafted noises or even just changing a
single pixel of the legitimate sample may cause the classifier
to make erroneous predictions with a surprisingly high confi-
dence level.

Despite these exciting progresses made in the area of
machine learning phases of matter, most previous approaches
are based on classical classifiers and using quantum classi-
fiers to classify different phases and transitions still remains

barely explored. Here, in this section we study the problem
of using quantum classifiers to classify different phases of
matter, with a focus on topological phases that are widely
believed to be more challenging than conventional symmetry-
breaking phases (such as the paramagnetic and ferromagnetic
phases) for machine-learning approaches [120,128,129,136].
We show, through a concrete example, that the quantum
classifiers are likewise vulnerable to adversarial perturbations.
We consider the following 2D square-lattice model for quan-
tum anomalous Hall (QAH) effect, where a combination of
spontaneous magnetization and spin-orbit coupling leads to
quantized Hall conductivity in the absence of an external
magnetic field:

HQAH = J (x)
SO

∑
r

[(c†
r↑cr+x̂↓ − c†

r↑cr−x̂↓) + H.c.]

+ iJ (y)
SO

∑
r

[(c†
r↑cr+ŷ↓ − c†

r↑cr−ŷ↓) + H.c.]

− t
∑
〈r,s〉

(c†
r↑cs↑ − c†

r↓cs↓) + μ
∑

r

(c†
r↑cr↑ − c†

r↓cr↓).

(7)

Here c†
rσ (crσ ) is the fermionic creation (annihilation) operator

with pseudospin σ = (↑,↓) at site r, and x̂, ŷ are unit lattice
vectors along the x, y directions. The first two terms describe
the spin-orbit coupling with J (x)

SO and J (y)
SO denoting its strength

along the x and y directions, respectively. The third and the
fourth terms denote respectively the spin-conserved nearest-
neighbor hopping and the on-site Zeeman interaction. In
momentum space, this Hamiltonian has two Bloch bands and
the topological structure of this model can be characterized by
the first Chern number:

C1 = − 1

2π

∫
BZ

dkxdkyFxy(k), (8)

where Fxy denotes the Berry curvature Fxy(k) ≡ ∂kx Ay(k) −
∂ky Ax(k) with the Berry connection Aμ(k) ≡ 〈ϕ(k)|i∂kμ

|ϕ(k)〉
[μ = x, y and ϕ(k) is the Bloch wave function of the lower
band], and the integration is over the whole first Brillouin zone
(BZ). It is straightforward to obtain that C1 = −sgn(μ) when
0 < |μ| < 4t and C1 = 0 otherwise.

The above Hamiltonian can be implemented with syn-
thetic spin-orbit couplings in cold-atom experiment [137] and
the topological index C1 can be obtained from the standard
time-of-flight images [138,139]. Indeed, by using ultracold
fermionic atoms in a periodically modulated optical hon-
eycomb lattice, the experimental realization of the Haldane
model, which bears similar physics and Hamiltonian struc-
tures as in Eq. (8), has been reported [140]. For our purpose,
we first train a two-category quantum classifier to assign
labels of C1 = 0 or C1 = 1 to the time-of-flight images. To
obtain the training data, we diagonalize the Hamiltonian in
Eq. (7) with an open boundary condition and calculate the
atomic density distributions with different spin bases for
the lower band. These density distributions can be directly
measured through the time-of-flight imaging techniques in
cold atom experiments and serve as our input data. We vary
λSO and t in both the topological and topologically trivial
regions to generate several thousand data samples. As in the
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FIG. 13. (a) The average accuracy and loss for the two-category
quantum classifier as a function of the number of epochs. Here,
we use a quantum classifier with structures shown in Fig. 2 and
depth 10 (p = 10) to perform binary classification for topological
and nontopological phases. To train the classifier, we use the Adam
optimizer with a batch size of 512 and a learning rate of 0.005 to
minimize the loss function in Eq. (2). The accuracy and loss are
averaged on 19 956 training samples and 6652 validation samples.
(b) The accuracy of the quantum classifier as a function of the
iterations of the BIM attack. Here, the BIM step size is 0.01.

above discussion on identifying images of hand-writing digits,
we use amplitude encoding to convert the data for density
distributions to the input quantum states for the quantum
classifier. In Fig. 13(a), we plot the average accuracy and loss
as a function of the number of epochs. It shows that after
training, the quantum classifier can successfully identify the
time-of-flight images with reasonably high accuracy. Yet, we
note that this accuracy is a bit lower than that for the case of
classifying paramagnetic and ferromagnetic phases discussed
in the next section, which is consistent with the general belief
that topological phases are harder to learning.

Unlike the conventional phases or the hand-writing digit
images, topological phases are described by nonlocal topo-
logical invariants (such as the first Chern number), rather
than local order parameters. Thus, intuitively the obtaining of
adversarial examples might also be more challenging, since
the topological invariants capture only the global properties of
the systems and are insensitive to local perturbations. Yet, here
we show that adversarial examples do exist in this case and the
quantum classifier is indeed vulnerable in learning topological
phases. To obtain adversarial examples, we consider attacking
the quantum classifier additively in the white-box untargeted
setting. Partial of our results are plotted in Fig. 13(b). From
this figure, the accuracy for the quantum classifier in classi-
fying time-of-flight images decreases rapidly as the number
of attacking iterations increases and after about six iterations
it becomes less than 0.4, indicating that more than 60% the
attacked images in the test set are misclassified. To illustrate
this even more concretely, in Fig. 14 we randomly choose
a time-of-flight image and then solve the Eq. (4) iteratively
by the BIM method to obtain its corresponding adversarial
examples. Again, as shown in this figure the obtained ad-
versarial example looks like the same as the clean legitimate
time-of-flight image. They differ only by a tiny amount of per-
turbation that is imperceptible to human eyes. In addition, we
summarize the performance of two different methods (BIM
and FGSM) in attacking the quantum classifier in Table IV.
Both the BIM and FGSM methods perform noticeably well.
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FIG. 14. The clean and the corresponding adversarial time-of-
flight images for using the quantum classifier to classify topological
phases. (Top) A legitimate sample of the density distribution in
momentum space for the lower band with lattice size 10 × 10.
(Bottom) An adversarial example obtained by the fast gradient sign
method, which only differs with the original one by a tiny amount of
noise that is imperceptible to human eyes.

D. Adversarial learning quantum data

In the above discussion, we considered using quantum
classifiers to classify classical data (images) and studied their
vulnerabilities to adversarial perturbations. This may have
important applications in solving practical machine learning
problems in our daily life. However, in such a scenario a
prerequisite is to first transfer classical data to quantum states,
which may require certain costly processes or techniques
(such as quantum random access memories [90]) and thus
renders the potential quantum speedups nullified [91]. Unlike
classical classifiers that can only take classical data as input,
quantum classifiers can also classify directly quantum states
produced by quantum devices. Indeed, it has been shown
that certain quantum classifiers, such as quantum principal
component analysis [141] and quantum support vector ma-
chine [65], could offer an exponential speedup over their
classical counterparts in classifying quantum data directly.
In this subsection, we consider the vulnerability of quantum
classifiers in classifying quantum states.

For simplicity and concreteness, we consider the following
1D transverse field Ising model:

HIsing = −
L−1∑
i=1

σ z
i σ z

i+1 − Jx

L∑
i=1

σ x
i , (9)

TABLE IV. Average fidelity F̄ and accuracy (in %) of the two-
category quantum classifier with depth p = 10 when being attacked
by the BIM and FGSM methods in the white-box untargeted setting.
Here, the accuracy and fidelity are averaged over 2000 testing
samples.

Attacks F̄ Accuracy

BIM (3, 0.01) 0.988 31.6%
FGSM (1, 0.03) 0.952 6.3%
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FIG. 15. The average accuracy and loss function as a function of
the number of training steps. We use a depth-10 quantum classifier
with structures shown in Fig. 2 to classify the ferromagnetic and
paramagnetic phases for the ground states of HIsing. We plot the
accuracy of 1182 training samples and 395 validation samples (which
are not in the training data set). We present the results of the first 200
iteration epochs. The learning rate is 0.005. The difference between
the training loss and validation loss is very small, indicating that the
quantum classifier does not overfit. The final accuracy on the 395 test
samples is roughly 98%.

where σ z
i and σ x

i are the usual Pauli matrices acting on the ith
spin and Jx is a positive parameter describing the strength of
the transverse field. This model maps to free fermions through
a Jordan-Wigner transformation and is exactly solvable. At
zero temperature, it features a well-understood quantum phase
transition at Jx = 1, between a paramagnetic phase for Jx > 1
and a ferromagnetic phase for Jx < 1. It is an exemplary toy
model for studying quantum phase transitions and an excellent
test bed for different new methods and techniques. Here, we
use a quantum classifier, with structures shown in Fig. 2,
to classify the ground states of HIsing with varying Jx (from
Jx = 0 to Jx = 2) and show that this approach is extremely
vulnerable to adversarial perturbations as well.

To generate the data sets for training, validation, and
testing, we sample a series of Hamiltonians with varying Jx

from 0 to 2 and calculating their corresponding ground states,
which are used as input data to the quantum classifier. We
train the quantum classifier with the generated training data
set and our results for training are shown in Fig. 15. Strikingly,
our quantum classifier is very efficient in classifying these
ground states of HIsing into categories of paramagnetic and
ferromagnetic phases and we find that a model circuit with
depth p = 5 is enough to achieve near-perfect classification
accuracy. This is in contrast to the case of learning topological
phases, where a quantum classifier with depth p = 10 only
gives an accuracy of around 90%. In addition, we mention that
one can also use the quantum classifier to study the quantum
phase transition.

Similar to the cases for classical input data, the quantum
classifiers are vulnerable to adversarial perturbations in clas-
sifying quantum data as well. To show this more explicitly, we
consider attacking the above quantum classifier trained with
quantum inputs additively in the white-box untargeted setting.
Partial of our results are plotted in Fig. 16. In Fig. 16(a), we
plot the accuracy as a function of the number of the BIM
iterations and find that it decreases to zero after 10 BIM iter-
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FIG. 16. Effect of additive adversarial attack on the accuracy of
the two-category quantum classifier in classifying the ferromagnetic
and paramagnetic phases for the ground states of the transverse field
Ising model. We use both the BIM and FGSM methods to generate
adversarial examples in the white-box untargeted setting. For the
BIM method, we fix the step size to be 0.05 and the iteration number
to be 10. For the FGSM method, we perform the attack using a
single step but with step size ranging from 0.1 to 1.0. The circuit
depth of the quantum classifier being attacked is p = 10 and the
system size for the Ising model is L = 8. (a) The results for the BIM
attack. (b) The accuracy as a function of average fidelity between
the legitimate and adversarial samples for both the BIM and FGSM
methods.

ations, indicating that all the slightly adjusted quantum states,
including even these far away from the phase transition point,
are misclassified by the quantum classifier. In Fig. 16(b),
we plot the accuracy as a function of averaged fidelity for
different attacking methods. From this figure, both the BIM
and FGSM methods are notably effective in this scenario
and the accuracy of the quantum classifier on the generated
adversarial examples decreases to zero, whereas the average
fidelity maintains moderately large for both methods.

IV. DEFENSE: QUANTUM ADVERSARIAL TRAINING

In the above discussions, we have explicitly shown that
quantum classifiers are vulnerable to adversarial perturba-
tions. This may raise serious concerns about the reliability
and security of quantum learning systems, especially for
these applications that are safety and security critical, such
as self-driving cars and biometric authentications. Thus, it is
of both fundamental and practical importance to study possi-
ble defense strategies to increase the robustness of quantum
classifiers to adversarial perturbations [142].

In general, adversarial examples are hard to defend against
because of the following two reasons. First, it is difficult to
build a precise theoretical model for the adversarial example
crafting process. This is a highly nonlinear and nonconvex
sophisticated optimization process and we lack proper theo-
retical tools to analyze this process, making it notoriously hard
to obtain any theoretical argument that a particular defense
strategy will rule out a set of adversarial examples. Second,
defending adversarial examples requires the learning system
to produce proper outputs for every possible input, the number
of which typically scales exponentially with the size of the
problem. Most of the time, the machine learning models work
very well but only for a very small ratio of all the possible in-
puts. Nevertheless, in the field of classical adversarial machine
learning, a variety of defense strategies have been proposed
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in recent years to mitigate the effect of adversarial attacks,
including adversarial training [77], gradient hiding [143],
defensive distillation [80], and defense-GAN [78], etc. Each
of these strategies has its own advantages and disadvantages
and none of them is adaptive to all types of adversarial attacks.
In this section, we study the problem of how to increase the
robustness of quantum classifiers against adversarial pertur-
bations. We adopt one of the simplest and effective methods,
namely adversarial training, to the case of quantum learning
and show that it can significantly enhance the performance of
quantum classifiers in defending adversarial attacks.

The basic idea of adversarial training is to strengthen
model robustness by injecting adversarial examples into the
training set. It is a straightforward brute force approach where
one simply generates a lot of adversarial examples using
one or more chosen attacking strategies and then retrain the
classifier with both the legitimate and adversarial samples. For
our purpose, we employ a robust optimization [144] approach
and reduce the task to solving a typical min-max optimization
problem:

min



1

N

N∑
i=1

max
Uδ∈�

L
(
h
(
Uδ

∣∣ψ 〉(i)
in ; 


)
, y(i)

)
, (10)

where |ψ〉(i)
in is the ith sample under attack and y(i) denotes

its original corresponding label. The meaning of Eq. (10) is
clear: We are training the quantum classifier to minimize the
adversarial risk, which is described by the average loss for the
worst-case perturbations of the input samples. We mention
that this min-max formulation has already been extensively
studied in the field of robust optimization and many methods
for solving such min-max problems have been developed
[144]. One efficient method is to split Eq. (10) into two
parts: the outer minimization and the inner maximization. The
inner maximization problem is exactly the same problem of
generating adversarial perturbations, which have discussed
in detail in Secs. II and III. The outer minimization task
boils down to a task of minimizing the loss function on
adversarial examples. With this in mind, we develop a three-
step procedure to solve the total optimization problem. In
the first step, we randomly choose a batch of input samples
|ψ〉(i)

in together with their corresponding labels y(i). Then, we
calculate the “worst-case” perturbation of |ψ〉(i)

in with respect
to the current model parameters 
t , that is, to solve Uδ∗ =
argmaxUδ∈� L(h(Uδ|ψ〉; 
), y(i)). In the third step, we update
the parameters 
t according to the minimization problem
at Uδ∗ |ψ〉in: 
t+1 = 
t − η∇
L(h(Uδ∗ |ψ〉(i)

in ; 
t ), y(i) ). We
repeat these three steps until the accuracy converges to a
reasonable value.

Partial results are shown in Fig. 17. In this figure, we
consider the adversarial training of a quantum classifier in
identifying handwritten digits in MNIST. We use the BIM
method in the white-box untargeted setting to generate ad-
versarial examples. We use 20 000 clean images and generate
their corresponding adversarial images. The clean images and
the adversarial ones together form the training data set, and
another 2000 images are used for the testing. From this figure,
it is evident that, after adversarial training, the accuracy of
the quantum classifier for both the adversarial samples and
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FIG. 17. Strengthening the robustness of the quantum classifier
against adversarial perturbations by quantum adversarial training. In
each epoch, we first generate adequate adversarial examples with
the BIM method for the quantum classifier with the current model
parameters. The iteration number is set to be three and the BIM step
size is set to be 0.05. Then, we train the quantum classifier with both
the legitimate and crafted samples. The circuit depth of the quantum
classifier is 10 and the learning rate is set to be 0.005.

legitimate samples increases significantly. At the beginning of
the training, the accuracy for the adversarial samples in the
testing set remains zero. This is because the initial model pa-
rameters are randomly chosen, so the quantum classifier does
not learn enough information and its performance on even
legitimate samples is still very poor at the beginning (hence
for each sample it is always possible to find an adversarial
example by the BIM method, resulting in a zero accuracy on
the testing set of adversarial examples). After the early stage
of the adversarial training, this accuracy begins to increase
rapidly and the quantum classifier is able to classify more
crafted samples correctly. In other words, the BIM attack
becomes less effective on more samples. At the end of the
training, the accuracies for both the legitimate and adversarial
data sets converge to a saturated value larger than 98%,
indicating that the adversarially retrained quantum classifier
is immune to the adversarial examples generated by the BIM
attack. We also notice that, due to the competition between
the inner maximization and outer minimization, the accuracies
for the legitimate data sets for training and validation both
have an oscillation at the beginning of the adversarial training
process.

The above example explicitly shows that adversarial train-
ing can indeed increase the robustness of quantum classifiers
against a certain type of adversarial perturbations. Yet, it is
worthwhile to mention that the adversarially trained quantum
classifier may only perform well on adversarial examples
that are generated by the same attacking method. It does not
perform as well when a different attack strategy is used by the
attacker. In addition, adversarial training tends to make the
quantum classifier more robust to white-box attacks than to
black-box attacks due to gradient masking [31,143]. In fact,
we expect no universal defense strategy that is adaptive to all
types of adversarial attacks, as one approach may block one
kind of attack for the quantum classifier but will inevitably
leave another vulnerability open to an attacker who knows
and makes use of the underlying defense mechanism. In
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the field of classical adversarial learning, another intriguing
defense mechanism that is effective against both white-box
and black-box attacks has been proposed recently [78]. This
strategy is called defense-GAN, which leverages the repre-
sentative power of GAN to diminish the effect of adversarial
perturbations via projecting input data onto the range of the
GAN’s generator before feeding it to the classifier. More
recently, a quantum version of GAN (dubbed QGAN) has
been theoretically proposed [43,44] and a proof-of-principle
experimental realization of QGAN has been reported with
superconducting quantum circuits [62]. Likewise, it would be
interesting and important to develop a defense-QGAN strat-
egy to enhance the robustness of quantum classifiers against
adversarial perturbations. We leave this interesting topic for
future study.

V. CONCLUSION AND OUTLOOK

In summary, we have systematically studied the vulnera-
bility of quantum classifiers to adversarial examples in dif-
ferent scenarios. We found that, similar to classical classi-
fiers based on deep neural networks, quantum classifiers are
likewise extremely vulnerable to adversarial attacks: Adding
a tiny amount of carefully crafted perturbations, which are
imperceptible to human eyes or ineffective to conventional
methods, into the original legitimate data (either classical or
quantum mechanical) will cause the quantum classifiers to
make incorrect predictions with a notably high confidence
level. We introduced a generic recipe on how to generate
adversarial perturbations for quantum classifiers with differ-
ent attacking methods and gave three concrete examples in
different adversarial settings, including classifying real-life
handwritten digit images in MNIST, simulated time-of-flight
images for topological phases of matter, and quantum ground
states for studying the paramagnetic to ferromagnetic quan-
tum phase transition. In addition, through adversarial training,
we have shown that the vulnerability of quantum classifiers to
specific types of adversarial perturbations can be significantly
suppressed. Our discussion is mainly focused on supervised
learning based on quantum circuit classifiers, but its gen-
eralizations to the case of unsupervised learning and other
types of quantum classifiers are possible and straightforward.
Our results reveal a vulnerability aspect for quantum machine
learning systems to adversarial perturbations, which would
be crucial for practical applications of quantum classifiers in
the realms of both artificial intelligence and machine learning
phases of matter.

It is worthwhile to clarify the differences between the
quantum adversarial learning discussed in this paper and the
quantum generative adversarial networks (QGAN) studied in
previous works [43,44,46,62,145]. A QGAN contains two
major components, a generator and a discriminator, which are
trained alternatively in the way of an adversarial game: At
each learning round, the discriminator optimizes her strategies
to identify the fake data produced by the generator, whereas
the generator updates his strategies to fool the discriminator.
At the end of the training, such an adversarial procedure
will end up at a Nash equilibrium point, where the generator
produces data that match the statistics of the true data from
the original training set and the discriminator can no longer

distinguish the fake data with a probability larger than one
half. The major goal of QGAN is to produce new data (either
classical or quantum mechanical) that match the statistics of
the training data, rather than to generate adversarial examples
that are endowed with wild patterns.

This work only reveals the tip of the iceberg. Many
important questions remain unexplored and deserve further
investigations. First, the existence of adversarial examples
seems to be a fundamental feature of quantum machine
learning applications in high-dimensional spaces [67] due
to the concentration of measure phenomenon [146]. Thus,
we expect that various machine learning approaches to a
variety of high-dimensional problems, such as separability-
entanglement classification [147,148], quantum state discrim-
ination [149], quantum Hamiltonian learning [150], and quan-
tum state tomography [7,151], should also be vulnerable
to adversarial attacks. Yet, in practice how to find out all
possible adversarial perturbations in these scenarios and de-
velop appropriate countermeasures feasible in experiments to
strengthen the reliability of these approaches still remains
unclear. Second, in classical adversarial learning a strong “no
free lunch” theorem has been established recently [39–41],
which shows that there exists an intrinsic tension between
adversarial robustness and generalization accuracy. In the fu-
ture, it would be interesting and important to prove a quantum
version of such a profound theorem and study its implications
in practical applications of quantum technologies. Third, the
adversarial perturbations obtained in this paper are dependent
on input state. Yet, in real experiments the input states might
be inaccessible in certain circumstances. Thus, it would be
interesting and important to study whether there exist univer-
sal perturbations for quantum classifiers that could make most
of the input samples to be adversarial examples. In addition,
there seems to be a deep connection between the existence
of adversarial perturbations in quantum deep learning and the
phenomenon of orthogonality catastrophe in quantum many-
body physics [152,153], where adding a weak local perturba-
tion into a metallic or many-body localized Hamiltonian will
make the ground state of the slightly modified Hamiltonian
orthogonal to that of the original one in the thermodynamic
limit. A thorough investigation of this will provide insight into
the understanding of both adversarial learning and orthogo-
nality catastrophe. Finally, an experimental demonstration of
quantum adversarial learning should be a crucial step toward
practical applications of quantum technologies in artificial
intelligence in the future.
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APPENDIX: ATTACK ALGORITHMS

As mentioned in the main text, the type of attacks we
consider is mainly evasion attack from the perspective of
attack surface. Evasion attack is the most common type of
attack in classical adversarial learning [25]. In this setting,
the attacker attempts to deceive the classifier by adjusting
malicious samples during the testing phase. This setting as-
sumes no modification of the training data, which is in sharp
contrast to poisoning attack, where the adversary tries to poi-
son the training data by injecting carefully crafted samples to
compromise the whole learning process. Within the evasion-
attack umbrella, the attacks considered in this paper can be
further categorized into additive or functional, targeted or
untargeted, and white-box or black-box attacks along different
classification dimensions. Here, in this Appendix, we give
more technique details about the attack algorithms used.

1. White-box attacks

White-box attacks assume full information about the clas-
sifier, so the attacker can exploit the gradient of the loss
function: ∇xL(h(x + δ; θ ), y). For the convenience and con-
ciseness of the presentation, we will use x (y) and |ψ〉in (a)
interchangeably to represent the input data (corresponding
label) throughout the whole Appendix. Based on the informa-
tion of gradients, a number of methods have been proposed
in the classical adversarial learning community to generate
adversarial samples. In this work, we adopt some of these
methods to the quantum setting, including the FGSM, BIM,
and PGD methods. In the following, we introduce these meth-
ods one by one and provide a pseudocode for each method.

a. Quantum-adapted FGSM method (Q-FGSM).

The FGSM method is a simple one-step scheme for ob-
taining adversarial examples and has been widely used in the
classical adversarial machine learning community [22,32]. It
calculates the gradient of the loss function with respect to the
input of the classifier. The adversarial examples are generated
using the following equation:

x∗ = x + ε · sgn(∇xL(h(|ψ〉in; 
∗), a)), (A1)

where L(h(|ψ〉in; 
∗), a) is the loss function of the trained
quantum classifier, ε is the perturbation bound, ∇x denotes
the gradient of the loss with respect to a legitimate sample x
with correct label a, and x∗ denotes the generated adversarial
example corresponding to x. For the case of additive attacks,
where we modify each component of the data vector indepen-
dently, ∇x is computed componentwise and a normalization
of the data vector will be performed if necessary. For the
case of functional attacks, we use a layer of parametrized
local unitaries to implement the perturbations to the input data
|ψ〉in. In this case, ∇x is implemented via the gradient of the
loss with respect to the parameters defining the local unitaries.

Algorithm 1 Quantum-adopted fast gradient sign method

Input The trained quantum classifier h, loss function L,
the legitimate sample (|ψ〉in, a).

Input The perturbation bound ε

Output An adversarial example x∗.
1: Input |ψ〉in into F to obtain ∇xL(h(|ψ〉; 
∗), a)
2: for Every component xi of |ψ〉in do
3: δi = ε · sign(∇xi L(h(|ψ〉in; 
∗), a)
4: x∗

i = xi + δi

5: end for
6: return x∗ or its equivalent |ψ〉∗

Equation (A1) should be understood as

ω∗ = ε · sgn(∇ωL(h(U (ω)|ψ〉in; 
∗), a)), (A2)

|ψ〉adv = U (ω∗)|ψ〉in, (A3)

where ω denotes collectively all the parameters for the local
unitaries. A pseudocode representation of the Q-FGSM algo-
rithm for the case of additive attacks is shown in Algorithm 1.
The pseudocode for the case of functional attacks is similar
and straightforward, and thus has been omitted for brevity.

b. Quantum-adapted BIM method (Q-BIM)

The BIM method is a straightforward extension of the
basic FGSM method [27]. It generates adversarial examples
by iteratively applying the FGSM method with a small step
size α:

x∗
k+1 = πC[x∗

k + α · sgn(∇xL(h(|ψ〉∗k ; 
∗), a))], (A4)

where x∗
k denotes the modified sample at step k and πC

is projection operator that normalizes the wave function. A
pseudocode representation of the Q-BIM algorithm for the
case of additive attacks is shown in Algorithm 2.

Algorithm 2 Quantum-adapted basic iterative method

Input The trained model h, loss function L, the legitimate
sample (|ψ〉in, a).

Input The perturbation bound ε, iteration number T , decay
factor μ, upper and lower bound xmin, xmax.

Output An adversarial example |ψ〉∗.
1: |ψ〉∗

0 = |ψ〉in

2: α = ε

T
3: for k = 1, . . . , T do
4: Input |ψ〉i−1 into F to obtain bk = ∇xL(h(|ψ〉k−1; θ ), a)
5: for Every component (xk ) j of |ψ〉∗

k−1 do
6: δ j = α · sgn((bk ) j )
7: (xk ) j = (xk−1) j + δ j

8: end for
9: (xk ) = πC (xk )
10: end for
11: return |ψ〉∗ = |ψ〉T
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2. Black-box attacks: Transfer attack

Unlike in the white-box setting, black-box attacks assume
that the adversary does not have full information about either
the model or the algorithm used by the learner. In par-
ticular, the adversary does not have the information about
the loss function used by the quantum classifier, and thus
cannot use the gradient-based attacking methods to generate
adversarial examples. Yet, for simplicity we do assume that
the attacker has access to a vast data set to train a local
substitute classifier that approximates the decision boundary
of the target classifier. Once the substitute classifier is trained
with high confidence, any white-box attack strategy can be
applied on it to generate adversarial examples, which can be
used to deceive the target classifier due to the transferability
property of adversarial examples. In this work, we consider
the transfer attack in a more exotic setting, where we use
different classical classifiers as the local substitute classifier
to generate adversarial examples for the quantum classifier.
The two classical classifiers are based on the CNN and FNN,
respectively. In Table V, we show the detailed structures of
the CNN and FNN. To train these two classical classifiers,
we use the Adam optimizer [101] and a batch size of 256.
The learning rate is set to be 10−3 during training. The
corresponding learning process is implemented using Keras
[154], a high-level deep learning library running on top of the
TensorFlow framework [155]. After training, both the CNN
and FNN classifiers achieve a remarkably high accuracy on
the legitimate testing data set (98.9% and 99.9% respectively;
see Table III in the main text).

We use three different methods, namely the BIM, FGSM,
and MIM methods, to attack both the CNN and FNN clas-
sifiers in a white-box setting to obtain adversarial examples.
These attacks are implemented by using of Cleverhans [157].

TABLE V. Model architectures for the classical neural networks.
(a) The CNN architecture consists of three layers: a 2D convolu-
tion layer, an activational ReLu layer [156], and a fully connected
flattening layer with 0.5 dropout regularization. The last layer is
then connected to the final softmax classifier, which outputs the
probability for each possible handwritten digit. In our case, we have
four categories: 1, 3, 7, 9. (b) The feedforward neural network
architecture consists of fully connected layers and dropout [110]
layers with a dropping rate 0.1, which are important for avoiding
overfitting.

Classifier based on CNN Classifier based on FNN

Conv(64,8,8)+ReLu FC(512)+ReLu
Conv(128,4,4)+ReLu Dropout(0.1)
Conv(128,2,2)+ReLu FC(53)+ReLu
Flatten Dropout(0.1)
FC(4)+Softmax FC(4)+Softmax

For the BIM attack, the number of attack iterations is set to be
10 and the step size α is set to be 0.01. For the FGSM attack,
the number of iteration is one and the step size is set to be 0.3.
For the MIM method, the number of attack iterations is set to
be 10, the step size is set to be 0.06, and the decay factor μ

is set to be 1.0. A detailed description of the MIM method,
together with a pseudocode, can be find in Ref. [135]. The
performance of both classifiers on the corresponding sets of
adversarial examples is shown in Table III in the main text,
from which it is clear that the attack is very effective (the
accuracy for both classifiers decreases to a value less than
1%). After the adversarial examples were generated, we test
the performance of the quantum classifiers on them and find
that its accuracy decreases noticeably (see Table III in the
main text).
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