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Abstract

These lecture notes cover a number of introductory topics in the area of string theory, and are

intended as a foundation for many of the other lecture courses in TASI 2003. The standard topics in

perturbative string theory are covered, including some basic conformal field theory, T–Duality and D–

Branes. Some of the properties of the latter are uncovered using various techniques. Some standard

properties of supersymmetric strings at strong coupling are reviewed, focusing on the role which branes

play in uncovering those properties.
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1 Introductory Remarks

These lectures are intended to serve as an introduction to some of the basic techniques, language and concepts
in string theory and D–branes. by no stretch of the imagination will you learn everything about these topics
from these notes. You should be able to use them to get a good sense for how things work, and this will
allow you to understand the issues which are discussed in the other lecture courses in this school, which will
assume a knowledge of basic string theory, and some previous experience with some of the “post–Second–
Revolution” ideas. Once you get to a certain stage, the notes will need to be supplemented with more careful
treatments of the technology, and you will be curious to know more about some of the topics and further
applications that I did not have time or space to cover here. I recommend the excellent text of Polchinski[1],
and also that of Green, Schwarz and Witten[2], which is still a brilliant text for many aspects of the subject.
You might want to consult the recent book listed in ref.[4], in order to learn more about D–branes and
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further aspects of their applications. There are also many other sources, on the web (e.g., www.arXiv.org)
and elsewhere, of detailed reviews of various specialized topics, even whole string theory books[3].

These notes grew out of a series of notes, including those of ref.[5, 6, 7, 8], and I have also borrowed
from parts of the book “D–Branes”[4]. I’ve included the basic material on stings and T–duality, and tried to
include a little more of the conformal field theory language than I have used before in notes of this sort. It
allows the language of the study of toroidal compactification to be developed quite efficiently and (I hope)
clearly. The payoff is that is becomes easier to see how the heterotic strings work, and how they fit in with
the other strings quite nicely. Furthermore, it allows one to explain a little about non–critical strings, a
topic of considerable interest. It also sets up the important language used in string compactifications, and
prepares one for concepts such as U–duality later on. There’s a touch more geometry covered than I usually
do, such as some basic tools for working on the tangent space any curved spacetime manifold. This comes
into its own in later sections when I describe the anomalies which arise in the low energy effective actions of
the various superstrings. The Green–Schwarz anomaly cancellation mechanism (the foundation of the First
Revolution) is studied in gory detail. This is done for fun in section 6, but there is a bonus in section 8 when
we look a bit more closely at gauge bundles and characteristic classes, allowing us to revisit the language
of anomalies, now on the world–volumes of D–branes. The Green–Schwarz mechanism is then seen to be a
basic paradigm for how extended objects with interesting massless fields on their world–volumes actually fit
into the various field theories. I suspect that there will be some resonance with the lectures of Jeff Harvey
in this area.

There is the obligatory section on strings at strong coupling. I’ve put in the standard classic D–brane
probes of the duality, and outlined other aspects of how the D–branes get involved in the whole story,
including how you can deduce the existence of other important branes, the NS5–branes and the M–branes.
This is important basic lore, but I don’t go too far into this treatment in order to save space. There are
plenty of excellent reviews of this material in the literature I’ve already mentioned, and also in (for example)
ref.[175].

I’ve included a table of contents for you which might help make this a useful reference. Enjoy, —cvj.

2 Relativistic Strings

This section is devoted to an introduction to bosonic strings and their quantization. There is no attempt
made at performing a rigourous or exhaustive derivation of some of the various formulae we will encounter,
since that would take us well away from the main goal. That goal is to understand some of how string theory
incorporates some of the familiar spacetime physics that we know from low energy field theory, and then
rapidly proceed to the point where many of the remarkable properties which make strings so different from
field theory are manifest. That will be a good foundation for appreciating just what D–branes really are.
The careful reader who needs to know more of the details behind some of what we will introduce is invited
to consult texts devoted to the study of string theory.

2.1 Classical Bosonic Strings

Turning to strings, we parameterize the “world–sheet” which the string sweeps out with coordinates (σ1, σ2) =
(τ, σ). The latter is a spatial coordinate, and for now, we take the string to be an open one, with 0 ≤ σ ≤ π
running from one end to the other. The string’s evolution in spacetime is described by the functions Xµ(τ, σ),
µ = 0, · · · , D − 1, giving the shape of the string’s world–sheet in target spacetime (see figure 1).

2.1.1 Two Actions

A natural object which arises from embedding the string into spacetime using the functions (or “map”)
Xµ(τ, σ) is a two dimensional “induced” metric on the world–sheet:

hab = ∂aX
µ∂bX

νηµν . (1)
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Figure 1: A string’s world–sheet. The function Xµ(τ, σ) embeds the world–sheet, parameterized by (τ, σ),
into spacetime, with coordinates given by Xµ.

distances on the world–sheet as an object embedded in spacetime, and hence define an action analogous to
one we would write for a particle: the total area swept out by the world–sheet:

So = −T
∫
dA = −T

∫
dτdσ (−dethab)

1/2 ≡
∫
dτdσ L(Ẋ,X ′;σ, τ) . (2)

So = −T
∫
dτdσ

[(
∂Xµ

∂σ

∂Xµ

∂τ

)2

−
(
∂Xµ

∂σ

)2(
∂Xµ

∂τ

)2
]1/2

= −T
∫
dτdσ

[
(X ′ · Ẋ)2 −X ′2Ẋ2

]1/2
, (3)

where X ′ means ∂X/∂σ and a dot means differentiation with respect to τ . This is the Nambu–Goto action.
T is the tension of the string, which has dimensions of inverse squared length.

Varying the action, we have generally:

δSo =

∫
dτdσ

{
∂L
∂Ẋµ

δẊµ +
∂L
∂X ′µ

δX ′µ

}

=

∫
dτdσ

{
− ∂

∂τ

∂L
∂Ẋµ

− ∂

∂σ

∂L
∂X ′µ

}
δXµ +

∫
dτ

{
∂L
∂X ′µ

δX ′µ

}∣∣∣∣
σ=π

σ=0

. (4)

Requiring this to be zero, we get:

∂

∂τ

∂L
∂Ẋµ

+
∂

∂σ

∂L
∂X ′µ

= 0 and
∂L
∂X ′µ

= 0 at σ = 0, π , (5)

which are statements about the conjugate momenta:

∂

∂τ
Pµτ +

∂

∂σ
Pµσ = 0 and Pµσ = 0 at σ = 0, π . (6)

Here, Pµσ is the momentum running along the string (i.e., in the σ direction) while Pµτ is the momentum
running transverse to it. The total spacetime momentum is given by integrating up the infinitesimal (see
figure 2):

dPµ = Pµτ dσ + Pµσ dτ . (7)
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dσ

Pσ
µ

Pµ
τ

dτ

Figure 2: The infinitesimal momenta on the world sheet.

Actually, we can choose any slice of the world–sheet in order to compute this momentum. A most convenient
one is a slice τ = constant, revealing the string in its original paramaterization: Pµ =

∫
Pµτ dσ, but any other

slice will do.
Similarly, one can define the angular momentum:

Mµν =

∫
(Pµτ X

ν − P ντ X
µ)dσ . (8)

It is a simple exercise to work out the momenta for our particular Lagrangian:

Pµτ = T
ẊµX ′2 −X ′µ(Ẋ ·X ′)√

(Ẋ ·X ′)2 − Ẋ2X ′2

Pµσ = T
X ′µẊ2 − Ẋµ(Ẋ ·X ′)√

(Ẋ ·X ′)2 − Ẋ2X ′2

. (9)

It is interesting to compute the square of Pµσ from this expression, and one finds that

P 2
σ ≡ Pµσ Pµσ = −2T 2Ẋ2 . (10)

This is our first (perhaps) non–intuitive classical result. We noticed that Pσ vanishes at the endpoints, in
order to prevent momentum from flowing off the ends of the string. The equation we just derived implies
that Ẋ2 = 0 at the endpoints, which is to say that they move at the speed of light.

We can introduce an equivalent action which does not have the square root form that the current one
has. Once again, we do it by introducing a independent metric, γab(σ, τ), on the world–sheet, and write the
“Polyakov” action:

S = − 1

4πα′

∫
dτdσ(−γ)1/2γab∂aXµ∂bX

νηµν

= − 1

4πα′

∫
d2σ (−γ)1/2γabhab . (11)

If we vary γ, we get

δS = − 1

4πα′

∫
d2σ

{
−1

2
(−γ)1/2δγγabhab + (−γ)1/2δγabhab

}
. (12)

Using the fact that δγ = γγabδγab = −γγabδγab, we get

δS = − 1

4πα′

∫
d2σ (−γ)1/2δγab

{
hab −

1

2
γabγ

cdhcd

}
. (13)
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Therefore we have

hab −
1

2
γabγ

cdhcd = 0 , (14)

from which we can derive
γabhab = 2(−h)1/2(−γ)−1/2 , (15)

and so substituting into S, we recover the Nambu–Goto action, So.
Let us note some of the symmetries of the action:

• Spacetime Lorentz/Poincaré:
Xµ → X ′µ = ΛµνX

ν +Aµ ,

where Λ is an SO(1, D − 1) Lorentz matrix and Aµ is an arbitrary constant D–vector. Just as before
this is a trivial global symmetry of S (and also So), following from the fact that we wrote them in
covariant form.

• Worldsheet Reparametrisations:

δXµ = ζa∂aX
µ

δγab = ζc∂cγ
ab − ∂cζ

aγcb − ∂cζ
bγac , (16)

for two parameters ζa(τ, σ). This is a non–trivial local or “gauge” symmetry of S. This is a large extra
symmetry on the world–sheet of which we will make great use.

• Weyl invariance:

γab → γ′ab = e2ωγab , (17)

specified by a function ω(τ, σ). This ability to do local rescalings of the metric results from the fact
that we did not have to choose an overall scale when we chose γab to rewrite So in terms of S. This
can be seen especially if we rewrite the relation (15) as (−h)−1/2hab = (−γ)−1/2γab.

We note here for future use that there are just as many parameters needed to specify the local symmetries
(three) as there are independent components of the world-sheet metric. This is very useful, as we shall see.

2.2 String Equations of Motion

We can get equations of motion for the string by varying our action (11) with respect to the Xµ:

δS =
1

2πα′

∫
d2σ ∂a

{
(−γ)1/2γab∂bXµ

}
δXµ

− 1

2πα′

∫
dτ (−γ)1/2∂σXµδX

µ
∣∣∣
σ=π

σ=0
, (18)

which results in the equations of motion:

∂a

(
(−γ)1/2γab∂bXµ

)
≡ (−γ)1/2∇2Xµ = 0 , (19)

with either:
X ′µ(τ, 0) = 0
X ′µ(τ, π) = 0

}
Open String

(Neumann b.c.’s)
(20)

or:
X ′µ(τ, 0) = X ′µ(τ, π)
Xµ(τ, 0) = Xµ(τ, π)
γab(τ, 0) = γab(τ, π)

}
Closed String

(periodic b.c.’s)
(21)

We shall study the equation of motion (19) and the accompanying boundary conditions a lot later. We are
going to look at the standard Neumann boundary conditions mostly, and then consider the case of Dirichlet
conditions later, when we uncover D–branes, using T–duality. Notice that we have taken the liberty of
introducing closed strings by imposing periodicity.
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2.3 Further Aspects of the Two–Dimensional Perspective

The action (11) may be thought of as a two dimensional model of D bosonic fields Xµ(τ, σ). This two
dimensional theory has reparameterisation invariance, as it is constructed using the metric γab(τ, σ) in a
covariant way. It is natural to ask whether there are other terms which we might want to add to the
theory which have similar properties. With some experience from General Relativity two other terms spring
effortlessly to mind. One is the Einstein–Hilbert action (supplemented with a boundary term):

χ =
1

4π

∫

M

d2σ (−γ)1/2R+
1

2π

∫

∂M

dsK , (22)

where R is the two–dimensional Ricci scalar on the world–sheet M and K is the trace of the extrinsic
curvature tensor on the boundary ∂M. The other term is:

Θ =
1

4πα′

∫

M

d2σ (−γ)1/2 , (23)

which is the cosmological term. What is their role here? Well, under a Weyl transformation (17), it can be
seen that (−γ)1/2 → e2ω(−γ)1/2 and R → e−2ω(R− 2∇2ω), and so χ is invariant, (because R changes by a
total derivative which is canceled by the variation of K) but Θ is not.

So we will include χ, but not Θ in what follows. Let us anticipate something that we will do later, which
is to work with Euclidean signature to help make sense of the topological statements to follow: γab with
signature (−+) has been replaced by gab with signature (++). Now, since as we said earlier, the full string
action resembles two–dimensional gravity coupled to D bosonic “matter” fields Xµ, and the equations of
motion are of course:

Rab −
1

2
γabR = Tab . (24)

The left hand side vanishes identically in two dimensions, and so there are no dynamics associated to
(22). The quantity χ depends only on the topology of the world–sheet (it is the Euler number) and so will
only matter when comparing world sheets of different topology. This will arise when we compare results
from different orders of string perturbation theory and when we consider interactions.

We can see this in the following: Let us add our new term to the action, and consider the string action
to be:

S =
1

4πα′

∫

M

d2σ g1/2gab∂aX
µ∂bXµ

+λ

{
1

4π

∫

M

d2σ g1/2R+
1

2π

∫

∂M

dsK

}
, (25)

where λ is —for now— and arbitrary parameter which we have not fixed to any particular value1. So what
will λ do? Recall that it couples to Euler number, so in the full path integral defining the string theory:

Z =

∫
DXDg e−S , (26)

resulting amplitudes will be weighted by a factor e−λχ, where χ = 2−2h−b−c. Here, h, b, c are the numbers
of handles, boundaries and crosscaps, respectively, on the world sheet. Consider figure 3. An emission and
reabsorption of an open string results in a change δχ = −1, while for a closed string it is δχ = −2. Therefore,
relative to the tree level open string diagram (disc topology), the amplitudes are weighted by eλ and e2λ,
respectively. The quantity gs ≡ eλ therefore will be called the closed string coupling. Note that it is the
square of the open string coupling, which justifies the labeling we gave of the two three–string diagrams
in figure 4. It is a striking fact that string theory dynamically determines its own coupling strength. (See
figure 4.)

1Later, it will turn out that λ is not a free parameter. In the full string theory, it has dynamical meaning, and will be
equivalent to the expectation value of one of the massless fields —the “dilaton”— described by the string.
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δχ = −1

δχ = −2

Figure 3: World–sheet topology change due to emission and reabsorption of open and closed strings

gs
gs

2
1

Figure 4: The basic three–string interaction for closed strings, and its analogue for open strings. Its strength,
gs, along with the string tension, determines Newton’s gravitational constant GN .

2.3.1 The Stress Tensor

Let us also note that we can define a two–dimensional energy–momentum tensor:

T ab(τ, σ) ≡ − 2π√−γ
δS

δγab
= − 1

α′

{
∂aXµ∂

bXµ − 1

2
γabγcd∂

cXµ∂
dXµ

}
. (27)

Notice that
T aa ≡ γabT

ab = 0 . (28)

This is a consequence of Weyl symmetry. Reparametrization invariance, δγS
′ = 0, translates here into (see

discussion after equation (24))
T ab = 0 . (29)

These are the classical properties of the theory we have uncovered so far. Later on, we shall attempt to
ensure that they are true in the quantum theory also, with interesting results.

2.4 Gauge Fixing

Now recall that we have three local or “gauge” symmetries of the action:

2d reparametrizations : σ, τ → σ̃(σ, τ), τ̃ (σ, τ)

Weyl : γab → exp(2ω(σ, τ))γab . (30)
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The two dimensional metric γab is also specified by three independent functions, as it is a symmetric 2×2
matrix. We may therefore use the gauge symmetries (see (16), (17)) to choose γab to be a particular form:

γab = ηabe
γϕ =

(
−1 0

0 1

)
eγϕ , (31)

i.e. the metric of two dimensional Minkowski, times a positive function known as a conformal factor. Here,
γ is a constant and ϕ is a function of the world–sheet coordinates. In this “conformal” gauge, our Xµ

equations of motion (19) become: (
∂2

∂σ2
− ∂2

∂τ2

)
Xµ(τ, σ) = 0 , (32)

the two dimensional wave equation. (In fact, the reader should check that the conformal factor cancels out
entirely of the action in equation (11).) As the wave equation is ∂σ+∂σ−Xµ = 0, we see that the full solution
to the equation of motion can be written in the form:

Xµ(σ, τ) = Xµ
L(σ+) +Xµ

R(σ−) , (33)

where σ± ≡ τ ± σ. Write σ± = τ ± σ. This gives metric ds2 = −dτ2 + dσ2 → −dσ+dσ−. So we have
η−+ = η+− = −1/2, η−+ = η+− = −2 and η++ = η−− = η++ = η−− = 0. Also, ∂τ = ∂+ + ∂− and
∂σ = ∂+ − ∂−.

Our constraints on the stress tensor become:

Tτσ = Tστ ≡ 1

α′
ẊµX ′

µ = 0

Tσσ = Tττ =
1

2α′

(
ẊµẊµ +X ′µX ′

µ

)
= 0 , (34)

or

T++ =
1

2
(Tττ + Tτσ) =

1

α′
∂+X

µ∂+Xµ ≡ 1

α′
Ẋ2
L = 0

T−− =
1

2
(Tττ − Tτσ) =

1

α′
∂−X

µ∂−Xµ ≡ 1

α′
Ẋ2
R = 0 , (35)

and T−+ and T+− are identically zero.

2.4.1 The Mode Decomposition

Our equations of motion (33), with our boundary conditions (20) and (21) have the simple solutions:

Xµ(τ, σ) = xµ + 2α′pµτ + i(2α′)1/2
∑

n6=0

1

n
αµne

−inτ cosnσ , (36)

for the open string and

Xµ(τ, σ) = Xµ
R(σ−) +Xµ

L(σ+)

Xµ
R(σ−) =

1

2
xµ + α′pµσ− + i

(
α′

2

)1/2∑

n6=0

1

n
αµne

−2inσ−

Xµ
L(σ+) =

1

2
xµ + α′pµσ+ + i

(
α′

2

)1/2∑

n6=0

1

n
α̃µne

−2inσ+

, (37)

for the closed string, where, to ensure a real solution we impose αµ−n = (αµn)∗ and α̃µ−n = (α̃µn)∗.
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Notice that the mode expansion for the closed string (37) is simply that of a pair of independent left
and right moving traveling waves going around the string in opposite directions. The open string expansion
(36) on the other hand, has a standing wave for its solution, representing the left and right moving sector
reflected into one another by the Neumann boundary condition (20).

Note also that xµ and pµ are the centre of mass position and momentum, respectively. In each case, we
can identify pµ with the zero mode of the expansion:

open string: αµ0 = (2α′)1/2pµ;

closed string: αµ0 =

(
α′

2

)1/2

pµ . (38)

2.5 Conformal Invariance

Actually, we have not gauged away all of the local symmetry by choosing the gauge (31). We can do a
left–right decoupled change of variables:

σ+ → f(σ+) = σ′+; σ− → g(σ−) = σ′− . (39)

Then, as

γ′ab =
∂σc

∂σ′a

∂σd

∂σ′b
γcd , (40)

we have

γ′+− =

(
∂f(σ+)

∂σ+

∂g(σ−)

∂σ−

)−1

γ+− . (41)

However, we can undo this with a Weyl transformation of the form

γ′+− = exp(2ωL(σ+) + 2ωR(σ−))γ+− , (42)

if exp(−2ωL(σ+)) = ∂+f(σ+) and exp(−2ωR(σ−)) = ∂−g(σ
−). So we still have a residual “conformal”

symmetry. As f and g are independent arbitrary functions on the left and right, we have an infinite number
of conserved quantities on the left and right.

This is because the conservation equation ∇aT
ab = 0, together with the result T+− = T−+ = 0, turns

into:
∂−T++ = 0 and ∂+T−− = 0 , (43)

but since ∂−f = 0 = ∂+g, we have

∂−(f(σ+)T++) = 0 and ∂+(g(σ−)T−−) = 0 , (44)

resulting in an infinite number of conserved quantities. The fact that we have this infinite dimensional con-
formal symmetry is the basis of some of the most powerful tools in the subject, for computing in perturbative
string theory. We will return to it not too far ahead.

2.5.1 Some Hamiltonian Dynamics

Our Lagrangian density is

L = − 1

4πα′
(∂σX

µ∂σXµ − ∂τX
µ∂τXµ) , (45)

from which we can derive that the conjugate momentum to Xµ is

Πµ =
δL

δ(∂τXµ)
=

1

2πα′
Ẋµ . (46)
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So we have the equal time Poisson brackets:

[Xµ(σ),Πν (σ′)]P.B. = ηµνδ(σ − σ′) , (47)

[Πµ(σ),Πν(σ′)]P.B. = 0 , (48)

with the following results on the oscillator modes:

[αµm, α
ν
n]P.B. = [α̃µm, α̃

ν
n]P.B. = imδm+nη

µν

[pµ, xν ]P.B. = ηµν ; [αµm, α̃
ν
n]P.B. = 0 . (49)

We can form the Hamiltonian density

H = ẊµΠµ − L =
1

4πα′
(∂σX

µ∂σXµ + ∂τX
µ∂τXµ) , (50)

from which we can construct the Hamiltonian H by integrating along the length of the string. This results
in:

H =

∫ π

0

dσH(σ) =
1

2

∞∑

−∞

α−n · αn (open) (51)

H =

∫ 2π

0

dσH(σ) =
1

2

∞∑

−∞

(α−n · αn + α̃−n · α̃n) (closed) .

(We have used the notation αn · αn ≡ αµnαnµ)
The constraints T++ = 0 = T−− on our energy–momentum tensor can be expressed usefully in this

language. We impose them mode by mode in a Fourier expansion, defining:

Lm =
T

2

∫ π

0

e−2imσT−−dσ =
1

2

∞∑

−∞

αm−n · αn , (52)

and similarly for L̄m, using T++. Using the Poisson brackets (49), these can be shown to satisfy the
“Virasoro” algebra:

[Lm, Ln]P.B. = i(m− n)Lm+n;
[
L̄m, L̄n

]
P.B.

= i(m− n)L̄m+n;[
L̄m, Ln

]
P.B.

= 0 . (53)

Notice that there is a nice relation between the zero modes of our expansion and the Hamiltonian:

H = L0 (open); H = L0 + L̄0 (closed) . (54)

So to impose our constraints, we can do it mode by mode and ask that Lm = 0 and L̄m = 0, for all m.
Looking at the zeroth constraint results in something interesting. Note that

L0 =
1

2
α2

0 + 2 × 1

2

∞∑

n=1

α−n · αn +
D

2

∞∑

n=1

n

= α′pµpµ +

∞∑

n=1

α−n · αn

= −α′M2 +
∞∑

n=1

α−n · αn . (55)
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Requiring L0 to be zero —diffeomorphism invariance— results in a (spacetime) mass relation:

M2 =
1

α′

∞∑

n=1

α−n · αn (open) , (56)

where we have used the zero mode relation (38) for the open string. A similar exercise produces the mass
relation for the closed string:

M2 =
2

α′

∞∑

n=1

(α−n · αn + α̃−n · α̃n) (closed) . (57)

These formulae (56) and (57) give us the result for the mass of a state in terms of how many oscillators
are excited on the string. The masses are set by the string tension T = (2πα′)−1, as they should be. Let us
not dwell for too long on these formulae however, as they are significantly modified when we quantize the
theory.

2.6 Quantised Bosonic Strings

For our purposes, the simplest route to quantisation will be to promote everything we met previously
to operator statements, replacing Poisson Brackets by commutators in the usual fashion: [ , ]P.B. →
−i[ , ]. This gives:

[Xµ(τ, σ),Πν (τ, σ′)] = iηµνδ(σ − σ′) ; [Πµ(τ, σ),Πν(τ, σ′)] = 0

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mδm+nη

µν

[xν , pµ] = iηµν ; [αµm, α̃
ν
n] = 0 . (58)

One of the first things that we ought to notice here is that
√
mαµ±m are like creation and annihilation

operators for the harmonic oscillator. There are actually D independent families of them —one for each
spacetime dimension— labelled by µ. In the usual fashion, we will define our Fock space such that |0; k> is
an eigenstate of pµ with centre of mass momentum kµ. This state is annihilated by ανm.

What about our operators, the Lm? Well, with the usual “normal ordering” are to the right, the Lm are
all fine when promoted to operators, except the Hamiltonian, L0. It needs more careful definition, since αµn
and αµ−n do not commute. Indeed, as an operator, we have that

L0 =
1

2
α2

0 +
∞∑

n=1

α−n · αn + constant , (59)

where the apparently infinite constant is composed as copy of the infinite sum (1/2)
∑∞
n=1 n for each of the

D families of oscillators. As is of course to be anticipated, this infinite constant can be regulated to give a
finite answer, corresponding to the total zero point energy of all of the harmonic oscillators in the system.

2.7 The Constraints and Physical States

For now, let us not worry about the value of the constant, and simply impose our constraints on a state |φ>
as2:

(L0 − a)|φ>= 0; Lm|φ>= 0 for m > 0 ,

(L̄0 − a)|φ>= 0; L̄m|φ>= 0 for m > 0 , (60)

2This assumes that the constant a on each side are equal. At this stage, we have no other choice. We have isomorphic copies
of the same string modes on the left and the right, for which the values of a are by definition the same. When we have more
than one consistent conformal field theory to choose from, then we have the freedom to consider having non–isomorphic sectors
on the left and right. This is how the heterotic string is made, for example, as we shall see later.
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where our infinite constant is set by a, which is to be computed. There is a reason why we have not also
imposed this constraint for the L−m’s. This is because the Virasoro algebra (53) in the quantum case is:

[Lm, Ln] = (m− n)Lm+n +
D

12
(m3 −m)δm+n;

[
L̄m, Ln

]
= 0;

[
L̄m, L̄n

]
= (m− n)L̄m+n +

D

12
(m3 −m)δm+n , (61)

There is a central term in the algebra, which produces a non–zero constant when m = n. Therefore, imposing
both Lm and L−m would produce an inconsistency.

Note now that the first of our constraints (60) produces a modification to the mass formulae:

M2 =
1

α′

(
∞∑

n=1

α−n · αn − a

)
(open) (62)

M2 =
2

α′

(
∞∑

n=1

(α−n · αn + α̃−n · α̃n) − 2a

)
(closed) .

Notice that we can denote the (weighted) number of oscillators excited as N =
∑
α−n · αn (=

∑
nNn)

on the left and N̄ =
∑
α̃−n · α̃n (=

∑
nN̄n) on the right. Nn and N̄n are the true count, on the left and

right, of the number of copies of the oscillator labelled by n is present.
There is an extra condition in the closed string case. While L0 + L̄0 generates time translations on the

world sheet (being the Hamiltonian), the combination L0 − L̄0 generates translations in σ. As there is no
physical significance to where on the string we are, the physics should be invariant under translations in σ,
and we should impose this as an operator condition on our physical states:

(L0 − L̄0)|φ >= 0 , (63)

which results in the “level–matching” condition N = N̄ , equating the number of oscillators excited on the
left and the right. This is indeed the difference between the two equations in (60).

In summary then, we have two copies of the open string on the left and the right, in order to construct
the closed string. The only extra subtlety is that we should use the correct zero mode relation (38) and
match the number of oscillators on each side according to the level matching condition (63).

2.7.1 The Intercept and Critical Dimensions

Let us consider the spectrum of states level by level, and uncover some of the features, focusing on the open
string sector. Our first and simplest state is at level 0, i.e., no oscillators excited at all. There is just some
centre of mass momentum that it can have, which we shall denote as k. Let us write this state as |0; k >.
The first of our constraints (60) leads to an expression for the mass:

(L0 − a)|0; k>= 0 ⇒ α′k2 = a, so M2 = − a

α′
. (64)

This state is a tachyonic state, having negative mass–squared (assuming a > 0.
The next simplest state is that with momentum k, and one oscillator excited. We are also free to specify

a polarization vector ζµ. We denote this state as |ζ, k >≡ (ζ · α−1)|0; k>; it starts out the discussion with
D independent states. The first thing to observe is the norm of this state:

<ζ; k||ζ; k′> = <0; k|ζ∗ · α1ζ · α−1|0; k′>

= ζ∗µζν <0; k|αµ1αν−1|0; k′>

= ζ · ζ <0; k|0; k′>= ζ · ζ(2π)DδD(k − k′) , (65)
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where we have used the commutator (58) for the oscillators. From this we see that the time–like ζ’s will
produce a state with negative norm. Such states cannot be made sense of in a unitary theory, and are often
called3 “ghosts”.

Let us study the first constraint:

(L0 − a)|ζ; k>= 0 ⇒ α′k2 + 1 = a, M2 =
1 − a

α′
. (66)

The next constraint gives:

(L1)|ζ; k>=

√
α′

2
k · α1ζ · α−1|0; k >= 0 ⇒, k · ζ = 0 . (67)

Actually, at level 1, we can also make a special state of interest: |ψ >≡ L−1|0; k >. This state has the
special property that it is orthogonal to any physical state, since <φ|ψ >=<ψ|φ>∗=< 0; k|L1|φ>= 0. It
also has L1|ψ>= 2L0|0; k>= α′k2|0; k > . This state is called a “spurious” state. So we note that there are
three interesting cases for the level 1 physical state we have been considering:

1. a < 1 ⇒M2 > 0 :

• momentum k is timelike.

• We can choose a frame where it is (k, 0, 0, . . .)

• Spurious state is not physical, since k2 6= 0.

• k · ζ = 0 removes the timelike polarization. D − 1 states left

2. a > 1 ⇒M2 < 0 :

• momentum k is spacelike.

• We can choose a frame where it is (0, k1, k2, . . .)

• Spurious state is not physical, since k2 6= 0

• k · ζ = 0 removes a spacelike polarisation. D − 1 tachyonic states left, one which is including
ghosts.

3. a = 1 ⇒M2 = 0 :

• momentum k is null.

• We can choose a frame where it is (k, k, 0, . . .)

• Spurious state is physical and null, since k2 = 0

• k · ζ = 0 and k2 = 0 remove two polarizations; D − 2 states left

So if we choose case (3), we end up with the special situation that we have a massless vector in the
D dimensional target spacetime. It even has an associated gauge invariance: since the spurious state is
physical and null, and therefore we can add it to our physical state with no physical consequences, defining
an equivalence relation:

|φ >∼ |φ > +λ|ψ > ⇒ ζµ ∼ ζµ + λkµ . (68)

Case (1), while interesting, corresponds to a massive vector, where the extra state plays the role of a
longitudinal component. Case (2) seems bad. We shall choose case (3), where a = 1.

It is interesting to proceed to level two to construct physical and spurious states, although we shall not
do it here. The physical states are massive string states. If we insert our level one choice a = 1 and see what

3These are not to be confused with the ghosts of the friendly variety —Faddeev–Popov ghosts. These negative norm states
are problematic and need to be removed.
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the condition is for the spurious states to be both physical and null, we find that there is a condition on the
spacetime dimension4: D = 26.

In summary, we see that a = 1, D = 26 for the open bosonic string gives a family of extra null states,
giving something analogous to a point of “enhanced gauge symmetry” in the space of possible string theories.
This is called a “critical” string theory, for many reasons. We have the 24 states of a massless vector we shall
loosely called the photon, Aµ, since it has a U(1) gauge invariance (68). There is a tachyon of M2 = −1/α′ in
the spectrum, which will not trouble us unduly. We will actually remove it in going to the superstring case.
Tachyons will reappear from time to time, representing situations where we have an unstable configuration
(as happens in field theory frequently). Generally, it seems that we should think of tachyons in the spectrum
as pointing us towards an instability, and in many cases, the source of the instability is manifest.

Our analysis here extends to the closed string, since we can take two copies of our result, use the
appropriate zero mode relation (38), and level matching. At level zero we get the closed string tachyon
which has M2 = −4/α′. At level zero we get a tachyon with mass given by M2 = −4/α′, and at level 1
we get 242 massless states from αµ−1α̃

ν
−1|0; k>. The traceless symmetric part is the graviton, Gµν and the

antisymmetric part, Bµν , is sometimes called the Kalb–Ramond field, and the trace is the dilaton, Φ.

2.8 A Glance at More Sophisticated Techniques

Later we shall do a more careful treatment of our gauge fixing procedure (31) by introducing Faddeev–Popov
ghosts (b, c) to ensure that we stay on our chosen gauge slice in the full theory. Our resulting two dimensional
conformal field theory will have an extra sector coming from the (b, c) ghosts.

The central term in the Virasoro algebra (61) represents an anomaly in the transformation properties of
the stress tensor, spoiling its properties as a tensor under general coordinate transformations. Generally:

(
∂σ′+

∂σ+

)2

T ′
++(σ′+) = T++(σ+) − c

12

{
2∂3
σσ

′∂σσ
′ − 3∂2

σσ
′∂2
σσ

′

2∂σσ′∂σσ′

}
, (69)

where c is a number, the central charge which depends upon the content of the theory. In our case, we have
D bosons, which each contribute 1 to c, for a total anomaly of D.

The ghosts do two crucial things: They contribute to the anomaly the amount −26, and therefore we
can retain all our favourite symmetries for the dimension D = 26. They also cancel the contributions to
the vacuum energy coming from the oscillators in the µ = 0, 1 sector, leaving D − 2 transverse oscillators’
contribution.

The regulated value of −a is the vacuum or “zero point” energy (z.p.e.) of the transverse modes of the
theory. This zero point energy is simply the Casimir energy arising from the fact that the two dimensional
field theory is in a box. The box is the infinite strip, for the case of an open string, or the infinite cylinder,
for the case of the closed string (see figure 5).

A periodic (integer moded) boson such as the types we have here, Xµ, each contribute −1/24 to the
vacuum energy. So we see that in 26 dimensions, with only 24 contributions to count (see previous paragraph),
we get that −a = 24 × (−1/24) = −1. (Notice that from (59), this implies that

∑∞
n=1 n = −1/12, which is

in fact true (!) in ζ–function regularization.)
Later, we shall have world–sheet fermions ψµ as well, in the supersymmetric theory. They each contribute

1/2 to the anomaly. World sheet superghosts will cancel the contributions from ψ0, ψ1. Each anti–periodic
fermion will give a z.p.e. contribution of −1/48. Generally, taking into account the possibility of both
periodicities for either bosons or fermions:

z.p.e. =
1

2
ω for boson; −1

2
ω for fermion (70)

ω =
1

24
− 1

8
(2θ − 1)2

{
θ = 0 (integer modes)
θ = 1

2 (half–integer modes)

4We get a condition on the spacetime dimension here because level 2 is the first time it can enter our formulae for the norms
of states, via the central term in the the Virasoro algebra (61).
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σ

τ

0 π

τ

2π0 < σ <

Figure 5: String world–sheets as boxes upon which live two dimensional conformal field theory.

This is a formula which we shall use many times in what is to come.

2.9 The Sphere, the Plane and the Vertex Operator

The ability to choose the conformal gauge, as first discussed in section 2.4, gives us a remarkable amount
of freedom, which we can put to good use. The diagrams in figure 5 represent free strings coming in from
τ = −∞ and going out to τ = +∞. Let us first focus on the closed string, the cylinder diagram. Working
with Euclidean signature by taking τ → −iτ , the metric on it is:

ds2 = dτ2 + dσ2 , −∞ < τ < +∞ 0 < σ ≤ 2π .

We can do the change of variables
z = eτ−iσ , (71)

with the result that the metric changes to

ds2 = dτ2 + dσ2 −→ |z|−2dzdz̄ .

This is conformal to the metric of the complex plane: dŝ2 = dzdz̄, and so we can use this as our metric on
the world–sheet, since a conformal factor eφ = |z|−2 drops out of the action, as we already noticed.

The string from the infinite past τ = −∞ is mapped to the origin while the string in the infinite future
τ = +∞ is mapped to the “point” at infinity. Intermediate strings are circles of constant radius |z|. See
figure 6. The more forward–thinking reader who prefers to have the τ = +∞ string at the origin can use

8

0

2π0 < σ <

τ

τ− σi

σ
z=e

τ

Figure 6: The cylinder diagram is conformal to the complex plane and the sphere.

the complex coordinate z̃ = 1/z instead.
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One can even ask that both strings be placed at finite distance in z. Then we need a conformal factor
which goes like |z|−2 at z = 0 as before, but like |z|2 at z = ∞. There is an infinite set of functions which
do that, but one particularly nice choice leaves the metric:

ds2 =
4R2dzdz̄

(R2 + |z|2)2 , (72)

which is the familiar expression for the metric on a round S2 with radius R, resulting from adding the point
at infinity to the plane. See figure 6. The reader should check that the precise analogue of this process will
relate the strip of the open string to the upper half plane, or to the disc. The open strings are mapped to
points on the real axis, which is equivalent to the boundary of the disc. See figure 7.

σ

τ− σi
τ

0 π

σ
z=e

τ

Figure 7: The strip diagram is conformal to the upper half of the complex plane and the disc.

We can go even further and consider the interaction with three or more strings. Again, a clever choice of
function in the conformal factor can be made to map any tubes or strips corresponding to incoming strings
to a point on the interior of the plane, or on the surface of a sphere (for the closed string) or the real axis
of the upper half plane of the boundary of the disc (for the open string). See figure 8.

8

0

1

Figure 8: Mapping any number of external string states to the sphere or disc using conformal transformations.

19



2.9.1 Zero Point Energy From the Exponential Map

After doing the transformation to the z–plane, it is interesting to note that the Fourier expansions we have
been working with to define the modes of the stress tensor become Laurent expansions on the complex plane,
e.g.:

Tzz(z) =

∞∑

m=−∞

Lm
zm+2

.

One of the most straightforward exercises is to compute the zero point energy of the cylinder or strip (for a
field of central charge c) by starting with the fact that the plane has no Casimir energy. One simply plugs
the exponential change of coordinates z = ew into the anomalous transformation for the energy momentum
tensor and compute the contribution to Tww starting with Tzz:

Tww = −z2Tzz −
c

24
,

which results in the Fourier expansion on the cylinder, in terms of the modes:

Tww(w) = −
∞∑

m=−∞

(
Lm − c

24
δm,0

)
eiσ−τ .

2.9.2 States and Operators

There is one thing which we might worry about. Have we lost any information about the state that the
string was in by performing this reduction of an entire string to a point? Should we not have some sort of
marker with which we label each point with the properties of the string it came from? The answer is in the
affirmative, and the object which should be inserted at these points is called a “vertex operator”. Let us see
where it comes from.

As we learned in the previous subsection, we can work on the complex plane with coordinate z. In these
coordinates, our mode expansions (36) and (37) become:

Xµ(z, z̄) = xµ − i

(
α′

2

)1/2

αµ0 ln zz̄ + i

(
α′

2

)1/2∑

n6=0

1

n
αµn
(
z−n + z̄−n

)
, (73)

for the open string, and for the closed:

Xµ(z, z̄) = Xµ
L(z) +Xµ

R(z̄)

Xµ
L(z) =

1

2
xµ − i

(
α′

2

)1/2

αµ0 ln z + i

(
α′

2

)1/2∑

n6=0

1

n
αµnz

−n

Xµ
R(z̄) =

1

2
xµ − i

(
α′

2

)1/2

α̃µ0 ln z̄ + i

(
α′

2

)1/2∑

n6=0

1

n
α̃µnz̄

−n ,

(74)

where we have used the zero mode relations (38). In fact, notice that:

∂zX
µ(z) = −i

(
α′

2

)1/2∑

n

αµnz
−n−1

∂z̄X
µ(z̄) = −i

(
α′

2

)1/2∑

n

α̃µnz̄
−n−1 , (75)
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Figure 9: The correspondence between states and operator insertions. A closed string (graviton) state
ζµνα

µ
−1α̃

ν
−1|0; k > is set up on the closed string at τ = −∞ and it propagates in. This is equivalent to

inserting a graviton vertex operator V µν(z) =: ζµν∂zX
µ∂z̄X

νeik·X : at z = 0.

and that we can invert these to get (for the closed string)

αµ−n =

(
2

α′

)1/2 ∮
dz

2π
z−n∂zX

µ(z) α̃µ−n =

(
2

α′

)1/2 ∮
dz

2π
z̄−n∂z̄X

µ(z) , (76)

which are non–zero for n ≥ 0. This is suggestive: Equations (75) define left–moving (holomorphic) and right–
moving (anti–holomorphic) fields. We previously employed the objects on the left in (76) in making states
by acting, e.g., αµ−1|0; k>. The form of the right hand side suggests that this is equivalent to performing a
contour integral around an insertion of a pointlike operator at the point z in the complex plane (see figure 9).
For example, αµ−1 is related to the residue ∂zX

µ(0), while the αµ−m correspond to higher derivatives ∂mz X
µ(0).

This is course makes sense, as higher levels correspond to more oscillators excited on the string, and hence
higher frequency components, as measured by the higher derivatives.

The state with no oscillators excited (the tachyon), but with some momentum k, simply corresponds in
this dictionary to the insertion of:

|0; k > ⇐⇒
∫
d2z : eik·X : (77)

We have integrated over the insertions’ position on the sphere since the result should not depend upon
our parameterization. This is reasonable, as it is the simplest form that allows the right behaviour under
translations: A translation by a constant vector, Xµ → Xµ +Aµ, results in a multiplication of the operator
(and hence the state) by a phase eik·A. The normal ordering signs :: are there to remind that the expression
means to expand and keep all creation operators to the left, when expanding in terms of the α±m’s.

The closed string level 1 vertex operator corresponds to the emission or absorption of Gµν , Bµν and Φ:

ζµνα
µ
−1α̃

ν
−1|0; k> ⇐⇒

∫
d2z : ζµν∂zX

µ∂z̄X
νeik·X : (78)

where the symmetric part of ζµν is the graviton and the antisymmetric part is the antisymmetric tensor.
For the open string, the story is similar, but we get two copies of the relations (76) for the single set of

modes αµ−n (recall that there are no α̃’s). This results in, for example the relation for the photon:

ζµα
µ
−1|0; k> ⇐⇒

∫
dl : ζµ∂tX

µeik·X : , (79)

where the integration is over the position of the insertion along the real axis. Also, ∂t means the derivative
tangential to the boundary. The tachyon is simply the boundary insertion of the momentum : eik·X : alone.
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2.10 Chan–Paton Factors

Let us endow the string endpoints with a slightly more interesting property. We can add non–dynamical
degrees of freedom to the ends of the string without spoiling spacetime Poincaré invariance or world–sheet
conformal invariance. These are called “Chan–Paton” degrees of freedom[25] and by declaring that their
Hamiltonian is zero, we guarantee that they stay in the state that we put them in. In addition to the usual
Fock space labels we have been using for the state of the string, we ask that each end be in a state i or j for
i, j from 1 to N (see figure 10). We use a family of N ×N matrices, λaij , as a basis into which to decompose

i
j

Figure 10: An open string with Chan–Paton degrees of freedom.

a string wavefunction

|k; a〉 =
N∑

i,j=1

|k, ij〉λaij . (80)

These wavefunctions are called “Chan–Paton factors”. Similarly, all open string vertex operators carry such
factors. For example, consider the tree–level (disc) diagram for the interaction of four oriented open strings
in figure 11. As the Chan–Paton degrees of freedom are non–dynamical, the right end of string #1 must be

3

1 2

34

4

1 2

Figure 11: A four–point Scattering of open strings, and its conformally related disc amplitude.

in the same state as the left end of string #2, etc., as we go around the edge of the disc. After summing over
all the possible states involved in tying up the ends, we are left with a trace of the product of Chan–Paton
factors,

λ1
ijλ

2
jkλ

3
klλ

4
li = Tr(λ1λ2λ3λ4). (81)

All open string amplitudes will have a trace like this and are invariant under a global (on the world–sheet)
U(N):

λi → UλiU−1, (82)

under which the endpoints transform as N and N̄.
Notice that the massless vector vertex operator V aµ = λaij∂tX

µ exp(ik · X) transforms as the adjoint
under the U(N) symmetry. This means that the global symmetry of the world–sheet theory is promoted to
a gauge symmetry in spacetime. It is a gauge symmetry because we can make a different U(N) rotation at
separate points Xµ(σ, τ) in spacetime.
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2.11 Unoriented Strings

2.11.1 Unoriented Open Strings

There is an operation of world sheet parity Ω which takes σ → π − σ, on the open string, and acts on
z = eτ−iσ as z ↔ −z̄. In terms of the mode expansion (73), Xµ(z, z̄) → Xµ(−z̄,−z) yields

xµ → xµ

pµ → pµ

αµm → (−1)mαµm . (83)

This is a global symmetry of the open string theory and so, we can if we wish also consider the theory that
results when it is gauged, by which we mean that only Ω–invariant states are left in the spectrum. We must
also consider the case of taking a string around a closed loop. It is allowed to come back to itself only up to
an over all action of Ω, which is to swap the ends. This means that we must include unoriented world–sheets
in our analysis. For open strings, the case of the Möbius strip is a useful example to keep in mind. It is on
the same footing as the cylinder when we consider gauging Ω. The string theories which result from gauging
Ω are understandably called “unoriented string theories”.

Let us see what becomes of the string spectrum when we perform this projection. The open string
tachyon is even under Ω and so survives the projection. However, the photon, which has only one oscillator
acting, does not:

Ω|k〉 = +|k〉
Ωαµ−1|k〉 = −αµ−1|k〉. (84)

We have implicitly made a choice about the sign of Ω as it acts on the vacuum. The choice we have made in
writing equation (84) corresponds to the symmetry of the vertex operators (79): the resulting minus sign
comes from the orientation reversal on the tangent derivative ∂t (see figure 12).

t t

t t

Figure 12: The action of Ω on the photon vertex operator can be deduced from seeing how exchanging the
ends of the string changes the sign of the tangent derivative, ∂t.

Fortunately, we have endowed the string’s ends with Chan–Paton factors, and so there is some additional
structure which can save the photon. While Ω reverses the Chan–Paton factors on the two ends of the string,
it can have some additional action:

Ωλij |k, ij〉 → λ′ij |k, ij〉, λ′ = MλTM−1. (85)

This form of the action on the Chan–Paton factor follows from the requirement that it be a symmetry of
the amplitudes which have factors like those in equation (81).

If we act twice with Ω, this should square to the identity on the fields, and leave only the action on the
Chan–Paton degrees of freedom. States should therefore be invariant under:

λ→MM−TλMTM−1. (86)
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Now it should be clear that the λ must span a complete set of N ×N matrices: If strings with ends labelled
ik and jl are in the spectrum for any values of k and l, then so is the state ij. This is because jl implies lj
by CPT, and a splitting–joining interaction in the middle gives ik + lj → ij + lk.

Now equation (86) and Schur’s lemma require MM−T to be proportional to the identity, so M is either
symmetric or antisymmetric. This gives two distinct cases, modulo a choice of basis[27]. Denoting the n×n
unit matrix as In, we have the symmetric case:

M = MT = IN (87)

In order for the photon λijα
µ
−1|k〉 to be even under Ω and thus survive the projection, λ must be antisym-

metric to cancel the minus sign from the transformation of the oscillator state. So λ = −λT , giving the
gauge group SO(N). For the antisymmetric case, we have:

M = −MT = i

[
0 IN/2

−IN/2 0

]
(88)

For the photon to survive, λ = −MλTM , which is the definition of the gauge group USp(N). Here, we use
the notation that USp(2) ≡ SU(2). Elsewhere in the literature this group is often denoted Sp(N/2).

2.11.2 Unoriented Closed Strings

Turning to the closed string sector. For closed strings, we see that the mode expansion (74) for Xµ(z, z̄) =
Xµ
L(z) +Xµ

R(z̄) is invariant under a world–sheet parity symmetry σ → −σ, which is z → −z̄. (We should
note that this is a little different from the choice of Ω we took for the open strings, but more natural for
this case. The two choices are related to other by a shift of π.) This natural action of Ω simply reverses the
left– and right–moving oscillators:

Ω: αµn ↔ α̃µn. (89)

Let us again gauge this symmetry, projecting out the states which are odd under it. Once again, since the
tachyon contains no oscillators, it is even and is in the projected spectrum. For the level 1 excitations:

Ωαµ−1α̃
ν
−1|k〉 = α̃µ−1α

ν
−1|k〉, (90)

and therefore it is only those states which are symmetric under µ ↔ ν —the graviton and dilaton— which
survive the projection. The antisymmetric tensor is projected out of the theory.

2.12 World–sheet Diagrams

As stated before, once we have gauged Ω, we must allow for unoriented worldsheets, and this gives us rather
more types of string worldsheet than we have studied so far. Figure 13 depicts the two types of one–loop
diagram we must consider when computing amplitudes for the open string. The annulus (or cylinder) is on
the left, and can be taken to represent an open string going around in a loop. The Möbius strip on the
right is an open string going around a loop, but returning with the ends reversed. The two surfaces are
constructed by identifying a pair of opposite edges on a rectangle, one with and the other without a twist.
Figure 14 shows an example of two types of closed string one–loop diagram we must consider. On the left is
a torus, while on the right is a Klein bottle, which is constructed in a similar way to a torus save for a twist
introduced when identifying a pair of edges. In both the open and closed string cases, the two diagrams can
be thought of as descending from the oriented case after the insertion of the normalised projection operator
1
2Tr(1 + Ω) into one–loop amplitudes.

Similarly, the unoriented one–loop open string amplitude comes from the annulus and Möbius strip. We
will discuss these amplitudes in more detail later. The lowest order unoriented amplitude is the projective
plane RP2, which is a disk with opposite points identified. Shrinking the identified hole down, we recover
the fact that RP

2 may be thought of as a sphere with a crosscap inserted, where the crosscap is the result of
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(a) (b)

Figure 13: (a) Constructing a cylinder or annulus by identifying a pair of opposite edges of a rectangle. (b)
Constructing a Möbius strip by identifying after a twist.

(a) (b)

Figure 14: (a) Constructing a torus by identifying opposite edges of a rectangle. (b) Constructing a Klein
bottle by identifying after a twist.

shrinking the identified hole. Actually, a Möbius strip can be thought of as a disc with a crosscap inserted,
and a Klein Bottle is a sphere with two crosscaps. Since a sphere with a hole (one boundary) is the same
as a disc, and a sphere with one handle is a torus, we can classify all world sheet diagrams in terms of the
number of handles, boundaries and crosscaps that they have. In geeneral, each diagram is weighted by a
factor gχs = g2h−2+b+c

s where h, b, c are the numbers of handles, boundaries and crosscaps, respectively.

2.13 Strings in Curved Backgrounds

So far, we have studied strings propagating in the (uncompactified) target spacetime with metric ηµν . While
this alone is interesting, it is curved backgrounds of one sort or another which will occupy much of this book,
and so we ought to see how they fit into the framework so far.

A natural generalisation of our action is simply to study the “σ–model” action:

Sσ = − 1

4πα′

∫
d2σ (−g)1/2gabGµν(X)∂aX

µ∂bX
ν . (91)

Comparing this to what we had before (11), we see that from the two dimensional point of view this still looks
like a model of D bosonic fields Xµ, but with field dependent couplings given by the non–trivial spacetime
metric Gµν(X). This is an interesting action to study.
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Figure 15: Constructing the projective plane RP2 by identifying opposite points on the disk. This is equiv-
alent to a sphere with a crosscap insertion.

A first objection to this is that we seem to have cheated somewhat: Strings are supposed to generate
the graviton (and ultimately any curved backgrounds) dynamically. Have we cheated by putting in such a
background by hand? Or a more careful, less confrontational question might be: Is it consistent with the way
strings generate the graviton to introduce curved backgrounds in this way? Well, let us see. Imagine, to start
off, that the background metric is only locally a small deviation from flat space: Gµν(X) = ηµν + hµν(X),
where h is small. Then, in conformal gauge, we can write in the Euclidean path integral (26):

e−Sσ = e−S
(

1 +
1

4πα′

∫
d2zhµν(X)∂zX

µ∂z̄X
ν + . . .

)
, (92)

and we see that if hµν(X) ∝ gsζµν exp(ik ·X), where ζ is a symmetric polarization matrix, we are simply
inserting a graviton emission vertex operator. So we are indeed consistent with that which we have already
learned about how the graviton arises in string theory. Furthermore, the insertion of the full Gµν(X) is
equivalent in this language to inserting an exponential of the graviton vertex operator, which is another way
of saying that a curved background is a “coherent state” of gravitons. It is clear that we should generalise
our success, by including σ–model couplings which correspond to introducing background fields for the
antisymmetric tensor and the dilaton:

Sσ =
1

4πα′

∫
d2σ g1/2

{
(gabGµν(X) + iεabBµν(X))∂aX

µ∂bX
ν + α′ΦR

}
, (93)

where Bµν is the background antisymmetric tensor field and Φ is the background value of the dilaton. The
coupling for Bµν is a rather straightforward generalisation of the case for the metric. The power of α′ is
there to counter the scaling of the dimension 1 fields Xµ, and the antisymmetric tensor accommodates the
antisymmetry of B. For the dilaton, a coupling to the two dimensional Ricci scalar is the simplest way of
writing a reparameterisation invariant coupling when there is no index structure. Correspondingly, there is
no power of α′ in this coupling, as it is already dimensionless.

It is worth noting at this point that α′ is rather like h̄ for this two dimensional theory, since the action
is very large if α′ → 0, and so this is a good limit to expand around. In this sense, the dilaton coupling is a
one–loop term. Another thing to notice is that the α′ → 0 limit is also like a “large spacetime radius” limit.
This can be seen by scaling lengths by Gµν → r2Gµν , which results in an expansion in α′/r2. Large radius
is equivalent to small α′.

The next step is to do a full analysis of this new action and ensure that in the quantum theory, one
has Weyl invariance, which amounts to the tracelessness of the two dimensional stress tensor. Calculations
(which we will not discuss here) reveal that[1, 2]:

T aa = − 1

2α′
βGµνg

ab∂aX
µ∂bX

ν − i

2α′
βBµνε

ab∂aX
µ∂bX

ν − 1

2
βΦR . (94)

βGµν = α′

(
Rµν + 2∇µ∇νΦ − 1

4
HµκσH

κσ
ν

)
+O(α′2),
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βBµν = α′

(
−1

2
∇κHκµν + ∇κΦHκµν

)
+O(α′2), (95)

βΦ = α′

(
D − 26

6α′
− 1

2
∇2Φ + ∇κΦ∇κΦ − 1

24
HκµνH

κµν

)
+O(α′2) ,

with Hµνκ ≡ ∂µBνκ + ∂νBκµ + ∂κBµν . For Weyl invariance, we ask that each of these β–functions for the
σ–model couplings actually vanish. (See section 3.4 for further explanation of this.) The remarkable thing is
that these resemble spacetime field equations for the background fields. These field equations can be derived
from the following spacetime action:

S =
1

2κ2
0

∫
dDX(−G)1/2e−2Φ

[
R+ 4∇µΦ∇µΦ − 1

12
HµνλH

µνλ

−2(D − 26)

3α′
+O(α′)

]
. (96)

Note something marvellous, by the way: Φ is a background field which appears in the closed string theory
σ–model multiplied by the Euler density. So comparing to (25) (and discussion following), we recover the
remarkable fact that the string coupling gs is not fixed, but is in fact given by the value of one of the
background fields in the theory: gs = e<Φ>. So the only free parameter in the theory is the string tension.

Turning to the open string sector, we may also write the effective action which summarises the leading
order (in α′) open string physics at tree level:

S = −C

4

∫
dDX e−ΦTrFµνF

µν +O(α′) , (97)

with C a dimensionful constant which we will fix later. It is of course of the form of the Yang–Mills action,
where Fµν = ∂µAν − ∂νAµ. The field Aµ is coupled in σ–model fashion to the boundary of the world sheet
by the boundary action: ∫

∂M

dτ Aµ∂tX
µ , (98)

mimicking the form of the vertex operator (79).
One should note the powers of eΦ in the above actions. Recall that the expectation value of eΦ sets the

value of gs. We see that the appearance of Φ in the actions are consistent with this, as we have e−2Φ in front
of all of the closed string parts, representing the sphere (g−2

s ) and e−Φ for the open string, representing the
disc (g−1

s ).
Notice that if we make the following redefinition of the background fields:

G̃µν(X) = e2Ω(X)Gµν = e4(Φ0−Φ)/(D−2)Gµν , (99)

and use the fact that the new Ricci scalar can be derived using:

R̃ = e−2Ω
[
R − 2(D − 1)∇2Ω − (D − 2)(D − 1)∂µΩ∂

µΩ
]
, (100)

The action (96) becomes:

S =
1

2κ2

∫
dDX(−G̃)1/2

[
R̃− 4

D − 2
∇µΦ̃∇µΦ̃ (101)

− 1

12
e−8Φ̃/(D−2)HµνλH

µνλ − 2(D − 26)

3α′
e4Φ̃/(D−2) +O(α′)

]
,
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with Φ̃ = Φ−Φ0, Looking at the part involving the Ricci scalar, we see that we have the form of the standard
Einstein–Hilbert action (i.e., we have removed the factor involving the dilaton Φ), with Newton’s constant
set by

κ ≡ κ0e
Φ0 = (8πGN )1/2 . (102)

The standard terminology to note here is that the action (96) written in terms of the original fields is
called the “string frame action”, while the action (101) is referred to as the “Einstein frame action”. It
is in the latter frame that one gives meaning to measuring quantities like gravitational mass–energy. It is
important to note the means, equation (99), to transform from the fields of one to another, depending upon
dimension.

2.14 A Quick Look at Geometry

Now that we are firmly in curved spacetime, it is probably a good idea to gather some concepts, language
and tools which will be useful to us in many places later on.

2.14.1 Working with the Local Tangent Frames

We can introduce “vielbeins” which locally diagonalize the metric5:

gµν(x) = ηabe
a
µ(x)e

b
ν(x).

The vielbeins form a basis for the tangent space at the point x, and orthonormality gives

eaµ(x)e
µb(x) = ηab .

These are interesting objects, connecting curved and tangent space, and transforming appropriately under
the natural groups of each. It is a covariant vector under general coordinate transformations x→ x′:

eaµ → e′aµ =
∂xν

∂x′µ
eaν ,

and a contravariant vector under local Lorentz:

eaµ(x) → e′aµ (x) = Λab(x)e
b
µ(x) ,

where Λab(x)Λ
c
d(x)ηac = ηbd defines Λ as being in the Lorentz group SO(1, D−1).

So we have the expected freedom to define our vielbein up to a local Lorentz transformation in the
tangent frame. In fact the condition Λ is a Lorentz transformation guarantees that the metric is invariant
under local Lorentz:

gµν = ηabe
′a
µe

′b
ν . (103)

Notice that we can naturally define a family of inverse vielbiens as well, by raising and lowering indices
in the obvious way, eµa = ηabg

µνebν . (We use the same symbol for the vielbien, but the index structure will
make it clear what we mean.) Clearly,

gµν = ηabeµae
ν
b , eµb e

a
µ = δab . (104)

In fact, the vielbien may be thought of as simply the matrix of coefficients of the transformation (that always
exists, by the Equivalence Principle) which finds a locally inertial frame ξa(x) from the general coordinates
xµ at the point x = xo:

eaµ(x) =
∂ξa(x)

∂xµ

∣∣∣∣
x=xo

.

5“Vielbein” means “many legs”, adapted from the German. In D = 4 it is called a “vierbein”. We shall offend the purists
henceforth and not capitalise nouns taken from the German language into physics, such as “ansatz”, “bremsstrahlung” and
“gedankenexperiment”.
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x (x)e1

e2(x)

Figure 16: The local tangent frame to curved spacetime is a copy of Minkowski space, upon which the
Lorentz group acts naturally.

2.14.2 Coordinate vs. Orthonormal Bases

The prototype contravariant vector in curved spacetime is in fact the object whose components are the
infinitessimal coordinate displacements, dxµ, since by the elementary chain rule, under x→ x′:

dxµ → dx′µ =
∂x′µ

∂xν
dxν . (105)

They are often thought of as the coordinate basis elements, {dxµ}, for the “cotangent” space at the point x,
and are a natural dual coordinate basis to that of the tangent space, the objects {∂/∂xµ}, via the perhaps
obvious relation:

∂

∂xµ
· dxν = δνµ . (106)

Of course, the {∂/∂xµ} are the prototype covariant vectors:

∂

∂xµ
→ ∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
. (107)

The things we usually think of as vectors in curved spacetime have a natural expansion in terms of these
bases:

V = V µ
∂

∂xµ
, or V = Vµdx

µ ,

where the latter is sometimes called a “covector”, and is also in fact a 1–form.
Yet another way of thinking of the vielbiens is as a means of converting that coordinate basis into a basis

for the tangent space which is orthonormal, via {ea = eaµ(x)dx
µ}. We see that we have defined a natural

family of 1–forms. Similarly, using the inverse vielbiens, we can make an orthonormal basis for the dual
tangent space via ea = eµa∂/∂x

µ.
As an example, for the two–sphere, S2, of radius R, the metric in standard polar coordinates (θ, φ) is

ds2 = R2(dθ2 + sin2 θdφ2) and so we have:

e1θ = R , e2φ = R sin θ , i .e., e1 = Rdθ, e2 = R sin θ dφ (108)

The things we think of as vectors, familiar from flat space, now have two natural settings. In the local
frame, there is the usual vector property, under which the vector has Lorentz contravariant components
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V a(x). But we can now relate this component to another object which has an index which is contravariant
under general coordinate transformations, V µ. These objects are related by our handy vielbiens: V a(x) =
eaµ(x)V

µ.

2.14.3 The Lorentz Group as a Gauge Group

The standard covariant derivative of e.g., a contravariant vector V µ, has a counterpart for V a = eaµV
µ:

DνV
µ = ∂νV

µ + ΓµνκV
κ ⇒ DνV

a = ∂νV
a + ωabνV

b ,

where ωabν is the spin connection, which we can write as a 1–form in either basis:

ωab = ωabµdx
µ = ωabµe

µ
c e
c
νdx

ν = ωabce
c .

We can think of the two Minkowski indices (a, b) from the space tangent structure as labeling components
of ω as an SO(1, D−1) matrix in the fundamental representation. So in an analogy with Yang–Mills theory,
ωµ is rather like a gauge potential and the gauge group is the Lorentz group. Actually, the most natural
appearance of the spin connection is in the structure equations of Cartan. One defines the torsion T a, and
the curvature Rab, both 2–forms, as follows:

T a ≡ 1

2
T abce

a ∧ eb = dea + ωab ∧ eb

Rab ≡
1

2
Rabcde

c ∧ ed = dωab + ωac ∧ ωcb . (109)

Now consider a Lorentz transformation ea → e′a = Λabe
b. It is amusing to work out how the torsion changes.

Writing the result as T ′a = ΛabT
b, the reader might like to check that this implies that the spin connection

must transform as (treating everything as SO(1, D − 1) matrices):

ω → ΛωΛ−1 − dΛ · Λ−1 , i.e., ωµ → ΛωµΛ
−1 − ∂µΛ · Λ−1 , (110)

or infinitesimally we can write Λ = e−Θ, and it is:

δω = dΘ + [ω,Θ] . (111)

A further check shows that the curvature two–form does

R → R′ = ΛRΛ−1 , or δR = [R,Θ] , (112)

which is awfully nice. This shows that the curvature 2–form is the analogue of the Yang–Mills field strength
2–form. The following rewriting makes it even more suggestive:

Rab =
1

2
Rabµνdx

µ ∧ dxν , Rabµν = ∂µω
a
bν − ∂νω

a
bµ + [ωµ, ων ]

a
b .

2.14.4 Fermions in Curved Spacetime

Another great thing about this formalism is that it allows us to nicely discuss fermions in curved spacetime.
Recall first of all that we can represent the Lorentz group with the Γ–matrices as follows. The group’s
algebra is:

[Jab, Jcd] = −i(ηadJbc + ηbcJad − ηacJbd − ηdbJac) , (113)

with Jab = −Jba, and we can define via the Clifford algebra:

{Γa,Γb} = 2ηab , Jab = − i

4

[
Γa,Γb

]
, (114)
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where the curved space Γ–matrices are related to the familiar flat (tangent) spacetime ones as Γa =
eaµ(x)Γ

µ(x), giving {Γµ,Γν} = 2gµν . With the Lorentz generators defined in this way, it is now natural
to couple a fermion ψ to spacetime. We write a covariant derivative as:

Dµψ(x) = ∂µψ(x) +
i

2
Jabω

ab
µ(x)ψ(x) , (115)

and since the curved space Γ–matrices are now covariantly constant, we can write a sensible Dirac equation
using this: ΓµDµψ = 0.

2.14.5 Comparison to Differential Geometry

Let us make the connection to the usual curved spacetime formalism now, and fix what ω is in terms of the
vielbiens (and hence the metric). Asking that the torsion vanishes is equivalent to saying that the vielbeins
are covariantly constant, so that Dµe

a
ν = 0. This gives DµV

a = eaνDµVν , allowing the two definitions of
covariant derivatives to be simply related by using the vielbeins to convert the indices.

The fact that the metric is covariantly constant in terms of curved spacetime indices relates the affine
connection to the metric connection, and in this language makes ωab antisymmetric in its indices. Finally,
we get that

ωabµ = eaν∇µe
ν
b = eaν(∂µe

ν
b + Γνµκe

κ
b ) .

We can now write covariant derivatives for objects with mixed indices (appropriately generalising the
rule for terms to add depending upon the index structure), for example, on a vielbien:

Dµe
a
ν = ∂µe

a
ν − Γκµνe

a
κ + ωµ

a
be
b
ν (116)

Revisiting our 2–sphere example, with bases given in equation (108), we can see that

0 = de1 + ω1
2 ∧ e2 = 0 + ω1

2 ∧ e2 ,
0 = de2 + ω2

1 ∧ e1 = R cos θdθ ∧ dφ+ ω2
1 ∧ e1 , (117)

from which we see that ω1
2 = − cos θ dφ. The curvature is:

R1
2 = dω1

2 = sin θdθ ∧ dφ =
1

R2
e1 ∧ e2 = R1

212e
1 ∧ e2 . (118)

Notice that we can recover our friend the usual Riemann tensor if we pulled back the tangent space
indices (a, b) on Rabµν to curved space indices using the vielbiens eµa .

3 A Closer Look at the World–Sheet

The careful reader has patiently suspended disbelief for a while now, allowing us to race through a somewhat
rough presentation of some of the highlights of the construction of consistent relativistic strings. This enabled
us, by essentially stringing lots of oscillators together, to go quite far in developing our intuition for how
things work, and for key aspects of the language.

Without promising to suddenly become rigourous, it seems a good idea to revisit some of the things we
went over quickly, in order to unpack some more details of the operation of the theory. This will allow us to
develop more tools and language for later use, and to see a bit further into the structure of the theory.

3.1 Conformal Invariance

We saw in section 2.5 that the use of the symmetries of the action to fix a gauge left over an infinite
dimensional group of transformations which we could still perform and remain in that gauge. These are
conformal transformations, and the world–sheet theory is in fact conformally invariant. It is worth digressing
a little and discussing conformal invariance in arbitrary dimensions first, before specializing to the case of
two dimensions. You will find a reason to come back to conformal invariance in higher dimensions in the
lectures of Juan Maldacena, so there is a point to this.
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3.1.1 Diverse Dimensions

Imagine[9] that we do a change of variables x → x′. Such a change, if invertible, is a “conformal transfor-
mation” if the metric is is invariant up to an overall scale Ω(x), which can depend on position:

g′µν(x
′) = Ω(x)gµν(x) . (119)

The name comes from the fact that angles between vectors are unchanged.
If we consider the infinitessimal change

xµ → x′µ = xµ + εµ(x) , (120)

then since the metric changes as:

gµν −→ g′µν = gαβ
∂xα

∂x′µ
∂xβ

∂x′ν
, (121)

we get:
g′µν = gµν − (∂µεν + ∂νεµ) , (122)

and so we see that in order for this to be a conformal transformation,

∂µεν + ∂νεµ = F (x)gµν , (123)

where, by taking the trace of both sides, it is clear that:

F (x) =
2

D
gµν∂µεν .

It is enough to consider our metric to be Minkowski space, in Cartesian coordinates, i.e. gµν = ηµν . We can
take one more derivative ∂κ of the expression (123), and then do the permutation of indices κ → µ, µ →
ν, ν → κ twice, generating two more expressions. Adding together any two of those and subtracting the
third gives:

2∂µ∂νεκ = ∂µFηνκ + ∂νFηκµ − ∂κFηµν , (124)

which yields
22εκ = (2 −D)∂κF . (125)

We can take another derivative this expression to get 2∂µ2εκ = (2 −D)∂µ∂κF , which should be compared
to the result of acting with 2 on equation (123) to eliminate ε leaving:

ηµν2F = (2 −D)∂µ∂νF =⇒ (D − 1)2F = 0 , (126)

where we have obtained the last result by contraction.
For general D we see that the last equations above ask that ∂µ∂νF = 0, and so F is linear in x. This

means that ε is quadratic in the coordinates, and of the form:

εµ = Aµ +Bµνx
ν + Cµνκx

νxκ , (127)

where C is symmetric in its last two indices. The parameter Aµ is obviously a translation. Placing the
B term in equation (127) back into equation (123) yields that Bµν is the sum of an antisymmetric part
ωµν = −ωνµ and a trace part λ:

Bµν = ωµν + ληµν . (128)

This represents a scale transformation by 1 + λ and an infinitessimal rotation. Finally, direct substitution
shows that

Cµνκ = ηµκbν + ηµνbκ − ηνκbµ , (129)
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Operation Action Generator

translations x′µ = xµ +Aµ Pµ = −i∂µ
rotations x′µ = Mµ

νx
ν Lµν = i(xµ∂ν − xν∂µ)

dilations x′µ = λxµ D = −ixµ∂µ
special

conformal
transf’s

x′µ =
xµ − bµx2

1 − 2(x · b) − bµx2
Kµ = −i(2xµxν∂ν − x2∂µ)

Table 1: The finite form of the Conformal Transformations and their infinitessimal generators.

and so the infinitessimal transformation which results is of the form

x′µ = xµ + 2(x · b)xµ − bµx2 , (130)

which is called a “special conformal transformation”. Its finite form can be written as:

x′µ

x′2
=
xµ

x2
− bµ , (131)

and so it looks like an inversion, then a translation, and then an inversion. We gather together all the
transformations, in their finite form, in table 1.

Poincaré and dilatations together form a subgroup of the full conformal group, and it is indeed a special
theory that has the full conformal invariance given by enlargement by the special conformal transformations.

It is interesting to examine the commutation relations of the generators, and to do so, we rewrite them
as

J−1,µ = 1
2 (Pµ −Kµ) , J0,µ = 1

2 (Pµ +Kµ) ,

J−1,0 = D , Jµν = Lµν , (132)

with Jab = −Jba, a, b = −1, 0, . . . , D, and the commutators are:

[Jab, Jcd] = −i(ηadJbc + ηbcJad − ηacJbd − ηdbJac) . (133)

Note that we have defined an extra value for our indices, and η is now diag(−1,−1,+1, . . .). This is the
algebra of the group SO(2, D) with 1

2 (D + 2)(D + 1) parameters.

3.2 The Special Case of Two Dimensions

As we have already seen in section 2.5, the conformal transformations are equivalent to conformal mappings
of the plane to itself, which is an infinite dimensional group. This might seem puzzling, since from what we
saw just above, one might have expected SO(2, 2), or in the case where we have Euclideanised the world–
sheet, SO(3, 1), a group with six parameters. Actually, this group is a very special subgroup of the infinite
family, which is distinguished by the fact that the mappings are invertible. These are the global conformal
transformations. Imagine that w(z) takes the plane into itself. It can at worst have zeros and poles, (the
map is not unique at a branch point, and is not invertible if there is an essential singularity) and so can be
written as a ratio of polynomials in z. However, for the map to be invertible, it can only have a single zero,
otherwise there would be an ambiguity determining the pre–image of zero in the inverse map. By working
with the coordinate z̃ = 1/z, in order to study the neighbourhood of infinity, we can conclude that it can
only have a single simple pole also. Therefore, up to a trivial overall scaling, we have

z → w(z) =
az + b

cz + d
, (134)
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where a, b, c, d are complex numbers, with for invertability, the determinant of the matrix
(
a b
c d

)

should be non–zero, and after a scaling we can choose ad − bc = 1. This is the group SL(2,C) which is
indeed isomorphic to SO(3, 1). In fact, since a, b, c, d is indistinguishable from −a,−b,−c,−d, the correct
statement is that we have invariance under SL(2,C)/Z2.

For the open string we have the upper half plane, and so we are restricted to considering maps which
preserve (say) the real axis of the complex plane. The result is that a, b, c, d must be real numbers, and the
resulting group of invertible transformations is SL(2,R)/Z2. Correspondingly, the infinite part of the algebra
is also reduced in size by half, as the holomorphic and antiholomorphic parts are no longer independent.

Notice that the dimension of the group SL(2,C) is six, equivalent to three complex parameters. Often,
in computations involving a number of operators located at points, zi, a conventional gauge fixing of this
invariance is to set three of the points to three values: z1 = 0, z2 = 1, z3 = ∞. Similarly, the dimension of
SL(2,R) is three, and the convention used there is to set three (real) points on the boundary to z1 = 0, z2 =
1, z3 = ∞.

3.2.1 States and Operators

A very important class of fields in the theory are those which transform under the SO(2, D) conformal group
as follows:

φ(xµ) −→ φ(x′µ) =

∣∣∣∣
∂x

∂x′

∣∣∣∣
∆
D

φ(xµ) = Ω
∆
2 φ(xµ) . (135)

Here,
∣∣ ∂x
∂x′

∣∣ is the Jacobian of the change of variables. (∆ is the dimension of the field, as mentioned earlier.)
Such fields are called “quasi–primary”, and the correlation functions of some number of the fields will inherit
such transformation properties:

<φ1(x1) · · ·φn(xn)>=

∣∣∣∣
∂x

∂x′

∣∣∣∣

∆1
D

x=x1

· · ·
∣∣∣∣
∂x

∂x′

∣∣∣∣

∆n
D

x=xn

<φ1(x
′
1) · · ·φn(x′n)> (136)

In two dimensions, the relation is

φ(z, z̄) −→ φ(z′, z̄′) =

(
∂z

∂z′

)h(
∂z̄

∂z̄′

)h̄
φ(z, z̄) , (137)

where ∆ = h + h̄, and we see the familiar holomorphic factorization. This mimics the transformation
properties of the metric under z → z′(z):

g′zz̄ =

(
∂z

∂z′

)(
∂z̄

∂z̄′

)
gzz̄ ,

the conformal mappings of the plane. This is an infinite dimensional family, extending the expected six of
SO(2, 2), which is the subset which is globally well–defined. The transformations (137) define what is called
a “primary field”, and the quasi–primaries defined earlier are those restricted to SO(2, 2). So a primary is
automatically a quasi–primary, but not vice–versa.

In any dimension, we can use the definition (135) to construct a definition of a conformal field theory
(CFT). First, we have a notion of a vacuum |0> which is SO(2, D) invariant, in which all the fields act. In
such a theory, all of the fields can be divided into two categories: A field is either quasi–primary, or it is a
linear combination of quasi–primaries and their derivatives. Conformal invariance imposes remarkably strong
constraints on how the two– and three–point functions of the quasiprimary fields must behave. Obviously,
for fields placed at positions xi, translation invariance means that they can only depend on the differences
xi − xj .
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3.3 The Operator Product Expansion

In principle, we ought to be imagining the possibility of constructing a new field at the point xµ by colliding
together two fields at the same point. Let us label the fields as φk. Then we might expect something of the
form:

lim
x→y

φi(x)φj(y) =
∑

k

c k
ij (x− y)φk(y) , (138)

where the coefficients c k
ij (x − y) depend only on which operators (labelled by i, j) enter on the left. Given

the scaling dimensions ∆i for φi, we see that the coordinate behaviour of the coefficient should be:

c k
ij (x− y) ∼ 1

(x − y)∆i+∆j−∆k
.

This “Operator Product Expansion (OPE)” in conformal field theory is actually a convergent series, as
opposed to the case of the OPE in ordinary field theory where it is merely an asymptotic series. An
asymptotic series has a family of exponential contributions of the form exp(−L/|x− y|), where L is a length
scale appropriate to the problem. Here, conformal invariance means that there is no length scale in the
theory to play the role of L in an asymptotic expansion, and so the convergence properties of the OPE
are stronger. In fact, the radius of convergence of the OPE is essentially the distance to the next operator
insertion.

The OPE only really has sensible meaning if we define the operators as acting with a specific time
ordering, and so we should specify that x0 > y0 in the above. In two dimensions, after we have continued to
Euclidean time and work on the plane, the equivalent of time ordering is radial ordering (see figure 6). All
OPE expressions written later will be taken to be appropriately time ordered.

Actually, the OPE is a useful way of giving us a definition of a normal ordering prescription in this
operator language6. It follows from Wick’s theorem, which says that the time ordered expression of a
product of operators is equal to the normal ordered expression plus the sum of all contractions of pairs
of operators in the expressions. The contraction is a number, which is computed by the correlator of the
contracted operators.

φi(x)φj(y) = : φi(x)φj(y) : + <φi(x)φj(y)> . (139)

Actually, we can compute the OPE between objects made out of products of operators with this sort of way
of thinking about it. We’ll compute some examples later (for example in equations (156) and (158)) so that
it will be clear that it is quite straightforward.

3.3.1 The Stress Tensor and the Virasoro Algebra

The stress–energy–momentum tensor’s properties can be seen to be directly conformal invariance in many
ways, because of its definition as a conjugate to the metric:

T µν ≡ − 2√−g
δS

δgµν
. (140)

A change of variables of the form (120) gives, using equation (122):

S −→ S − 1

2

∫
dDx

√−g T µνδgµν = S +
1

2

∫
dDx

√−g T µν (∂µεν + ∂νεµ) .

In view of equation (123), this is:

S −→ S +
1

D

∫
dDx

√−g T µµ∂νεν ,

6For free fields, this definition of normal ordering is equivalent to the definition in terms of modes, where the annihilators
are placed to the right.
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for a conformal transformation. So if the action is conformally invariant, then the stress tensor must be
traceless, T µµ = 0. We can formulate this more carefully using Noether’s theorem, and also extract some
useful information. Since the change in the action is

δS =

∫
dDx

√−g ∂µενT µν ,

given that the stress tensor is conserved, we can integrate by parts to write this as

δS =

∫

∂

ενT
µνdSµ .

We see that the current jµ = T µνεµ, with εν given by equation (123) is associated to the conformal trans-
formations. The charge constructed by integrating over an equal time slice

Q =

∫
dD−1xJ0 ,

is conserved, and it is responsible for infinitessimal conformal transformations of the fields in the theory,
defined in the standard way:

δεφ(x) = ε[Q,φ] . (141)

In two dimensions, infinitesimally, a coordinate transformation can be written as

z → z′ = z + ε(z) , z̄ → z̄′ = z̄ + ε̄(z̄) .

The tracelessness condition yields Tzz̄ = Tz̄z = 0 and the conservation of the stress tensor is

∂zTzz(z) = 0 = ∂z̄Tz̄z̄(z̄) .

For simplicity, we shall often use the shorthand: T (z) ≡ Tzz(z) and T̄ (z̄) ≡ Tz̄z̄(z̄). On the plane, an equal
time slice is over a circle of constant radius, and so we can define

Q =
1

2πi

∮ (
T (y)ε(y)dy + T̄ (ȳ)ε̄(ȳ)dȳ

)
.

Infinitessimal transformations can then be constructed by an appropriate definition of the commutator
[Q,φ(z)] of Q with a field φ:

Notice that this commutator requires a definition of two operators at a point, and so our previous
discussion of the OPE comes into play here. We also have the added complication that we are performing
a y–contour integration around one of the operators, inserted at z or z̄. Under the integral sign, the OPE
requires that |z| < |y|, when we have Qφ(y), or that |z| > |y| if we have φ(y)Q. The commutator requires the
difference between these two, after consulting figure 17, can be seen in the limit y → z to simply result in the y
contour integral around the point z of the OPE T (z)φ(y) (with a similar discussion for the anti–holomorphic
case):

δε,ε̄φ(z, z̄) =
1

2πi

∮ (
{T (y)φ(z, z̄)}ε(y)dy + {T̄ (ȳ)φ(z, z̄)}ε̄(ȳ)dȳ

)
. (142)

The result should simply be the infinitessimal version of the defining equation (137), which the reader
should check is:

δε,ε̄φ(z, z̄) =

(
h
∂ε

∂z
φ+ ε

∂φ

∂z

)
+

(
h
∂ε̄

∂z̄
φ+ ε̄

∂φ

∂z̄

)
. (143)

This defines the operator product expansions T (z)φ(z, z̄) and T̄ (z̄)φ(z, z̄) for us as:

T (y)φ(z, z̄) =
h

(y − z)2
φ(z, z̄) +

1

(y − z)
∂zφ(z, z̄) + · · ·

T̄ (ȳ)φ(z, z̄) =
h̄

(ȳ − z̄)2
φ(z, z̄) +

1

(ȳ − z̄)
∂zφ(z, z̄) + · · · (144)
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Figure 17: Computing the commutator between the generator Q, defined as a contour in the y–plane, and
the operator φ, inserted at z. The result in the limit y → z is on the right.

where the ellipsis indicates that we have ignored parts which are regular (analytic). These OPEs constitute
an alternative definition of a primary field with holomorphic and anti–holomorphic weights h, h̄, often referred
to simply as an (h, h̄) primary.

We are at liberty to Laurent expand the infinitessimal transformation around (z, z̄) = 0:

ε(z) = −
∞∑

n=−∞

anz
n+1 , ε̄(z̄) = −

∞∑

n=−∞

ānz̄
n+1 ,

where the an, ān are coefficients. The quantities which appear as generators, `n = zn+1∂z, ¯̀n = z̄n+1∂z̄,
satisfy the commutation relations

[`n, `m] = (n−m)`n+m ,[
`n, ¯̀m

]
= 0 ,

[
¯̀
n, ¯̀m

]
= (n−m)¯̀n+m , (145)

which is the classical version of the Virasoro algebra we saw previously in equation (53), or the quantum
case in equation (61) with the central extension, c = c̄ = 0.

Now we can compare with what we learned here. It should be clear after some thought that `−1, `0, `1
and their antiholomorphic counterparts form the six generators of the global conformal transformations
generating SL(2,C) = SL(2,R) × SL(2,R). In fact, `−1 = ∂z and ¯̀

−1 = ∂z̄ generate translations, `0 + ¯̀
0

generates dilations, i(`0 − ¯̀
0) generates rotations, while `1 = z2∂z and ¯̀

1 = z̄2∂z̄ generate the special
conformal transformations.

Let us note some useful pieces of terminology and physics here. Recall that we had defined physical states
to be those annihilated by the `n, ¯̀n with n > 0. Then `0 and ¯̀

0 will measure properties of these physical
states. Considering them as operators, we can find a basis of `0 and ¯̀

0 eigenstates, with eigenvalues h and h̄
(two independent numbers), which are the “conformal weights” of the state: `0|h>= h|h>, ¯̀

0|h̄>= h̄|h̄>.
Since the sum and difference of these operators are the dilations and the rotations, we can characterize the
scaling dimension and the spin of a state or field as ∆ = h+ h̄, s = h− h̄.

It is worth noting here that the stress–tensor itself is not in general a primary field of weight (2, 2), despite
the suggestive fact that it has two indices. There can be an anomalous term, allowed by the symmetries of
the theory:

T (z)T (y) =
c

2

1

(z − y)4
+

2

(z − y)2
T (y) +

1

z − y
∂yT (y) ,
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T̄ (z̄)T̄ (ȳ) =
c̄

2

1

(z̄ − ȳ)4
+

2

(z̄ − ȳ)2
T̄ (ȳ) +

1

z̄ − ȳ
∂ȳT̄ (ȳ) . (146)

The holomorphic conformal anomaly c and its antiholomorphic counterpart c̄, can in general be non–zero.
We shall see this occur below.

It is worthwhile turning some of the above facts into statements about commutation relation between
the modes of T (z), T̄ (z̄), which we remind the reader are defined as:

T (z) =
∞∑

n=−∞

Lnz
−n−2 , Ln =

1

2πi

∮
dz zn+1T (z) ,

T̄ (z̄) =
∞∑

n=−∞

L̄nz̄
−n−2 , L̄n =

1

2πi

∮
dz̄ z̄n+1T̄ (z̄) . (147)

In these terms, the resulting commutator between the modes is that displayed in equation (61), with D
replaced by c̄ and c on the right and left.

The definition (143) of the primary fields φ translates into

[Ln, φ(y)] =
1

2πi

∮
dzzn+1T (z)φ(y) = h(n+ 1)ynφ(y) + yn+1∂yφ(y) . (148)

It is useful to decompose the primary into its modes:

φ(z) =

∞∑

n=−∞

φnz
−n−h , φn =

1

2πi

∮
dz zh+n−1φ(z) . (149)

In terms of these, the commutator between a mode of a primary and of the stress tensor is:

[Ln, φm] = [n(h− 1) −m]φn+m , (150)

with a similar antiholomorphic expression. In particular this means that our correspondence between states
and operators can be made precise with these expressions. L0|h >= h|h> matches with the fact that
φ−h|0>= |h> would be used to make a state, or more generally |h, h̄>, if we include both holomorphic and
anti–holomorphic parts. The result [L0, φ−h] = hφ−h guarantees this.

In terms of the finite transformation of the stress tensor under z → z′, the result (146) is

T (z) =

(
∂z′

∂z

)2

T (z′) +
c

12

(
∂z′

∂z

)−2
[
∂z′

∂z

∂3z′

∂z3
− 3

2

(
∂2z′

∂z2

)2
]
, (151)

where the quantity multiplying c/12 is called the “Schwarzian derivative”, S(z, z′). It is interesting to note
(and the reader should check) that for the SL(2,C) subgroup, the proper global transformations, S(z, z′) = 0.
This means that the stress tensor is in fact a quasi–primary field, but not a primary field.

3.4 Revisiting the Relativistic String

Now we see the full role of the energy–momentum tensor which we first encountered in the previous section.
Its Laurent coefficients there, Ln and L̄n, realized there in terms of oscillators, satisfied the Virasoro algebra,
and so its role is to generate the conformal transformations. We can use it to study the properties of various
operators in the theory of interest to us.

First, we translate our result of equation (34) into the appropriate coordinates here:

T (z) = − 1

α′
: ∂zX

µ(z)∂zXµ(z) : ,

T̄ (z̄) = − 1

α′
: ∂z̄X

µ(z̄)∂z̄Xµ(z̄) : . (152)
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We can use here our definition (139) of the normal ordering at the operator level here, which we construct
with the OPE. To do this, we need to know the result for the OPE of ∂Xµ with itself. This we can get by
observing that the propagator of the field Xµ(z, z̄) = X(z) + X̄(z̄) is

<X(z)µXν(y)> = −α
′

2
ηµν log(z − y) ,

<X̄(z̄)µX̄ν(ȳ)> = −α
′

2
ηµν log(z̄ − ȳ) . (153)

By taking a couple of derivatives, we can deduce the OPE of ∂zX
µ(z) or ∂z̄X̄

µ(z̄):

∂zX
µ(z)∂yX

ν(y) = −α
′

2

ηµν

(z − y)2
+ · · ·

∂z̄X̄
ν(z̄)∂ȳX̄

µ(ȳ) = −α
′

2

ηµν

(z̄ − ȳ)2
+ · · · (154)

So in the above, we have, using our definition of the normal ordered expression using the OPE (see discussion
below equation (139)):

T (z) = − 1

α′
: ∂zX

µ(z)∂zXµ(z) := − 1

α′
lim
y→z

[
∂zX

µ(z)∂zXµ(y) −
D

(z̄ − ȳ)2

]
, (155)

with a similar expression for the anti–holomorphic part. It is now straightforward to evaluate the OPE of
T (z) and ∂zX

ν(y). We simply extract the singular part of the following:

T (z)∂yX
ν(y) =

1

α′
: ∂zX

µ(z)∂zXµ(z) : ∂yX
ν(y)

= 2 · 1

α′
∂zX

µ(z) <∂zXµ(z)∂zX
ν(y)> + · · ·

= ∂zX
ν(z)

1

(z − y)2
+ · · · (156)

In the above, we were instructed by Wick to perform the two possible contractions to make the correlator.
The next step is to Taylor expand for small (z − y): Xν(z) = Xν(y) + (z − y)∂yX

ν(y) + · · ·, substitute into
our result, to give:

T (z)∂yX
ν(y) =

∂yX
ν(y)

(z − y)2
+
∂2
yX

ν(y)

z − y
+ · · · (157)

and so we see from our definition in equation (144) that the field ∂zX
ν(z) is a primary field of weight h = 1,

or a (1, 0) primary field, since from the OPE’s (154), its OPE with T̄ obviously vanishes. Similarly, the
anti–holomorphic part is a (0, 1) primary. Notice that we should have suspected this to be true given the
OPE we deduced in (154).

Another operator we used last section was the normal ordered exponentiation V (z) =: exp(ik · X(z)) :,
which allowed us to represent the momentum of a string state. Here, the normal ordering means that we
should not contract the various X ’s which appear in the expansion of the exponential with each other. We
can extract the singular part to define the OPE with T (z) by following our noses and applying the Wick
procedure as before:

T (z)V (y) =
1

α′
: ∂zX

µ(z)∂zXµ(z) :: eik·X(y) :

=
1

α′
(< ∂zX

µ(z)ik ·X(y) >)2 : eik·X(y) :

+2 · 1

α′
∂zX

µ(z) < ∂zXµ(z)ik · X(y) >: eik·X(y) :
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=
α′k2

4

1

(z − y)2
: eik·X(y) : +

ik · ∂zX(z)

(z − y)
: eik·X(y) :

=
α′k2

4

V (y)

(z − y)2
+
∂yV (y)

(z − y)
, (158)

We have Taylor expanded in the last line, and throughout we only displayed explicitly the singular parts.
The expressions tidy up themselves quite nicely if one realizes that the worst singularity comes from when
there are two contractions with products of fields using up both pieces of T (z). Everything else is either non–
singular, or sums to reassemble the exponential after combinatorial factors have been taken into account.
This gives the first term of the second line. The second term of that line comes from single contractions.
The factor of two comes from making two choices to contract with one or other of the two identical pieces of
T (z), while there are other factors coming from the n ways of choosing a field from the term of order n from
the expansion of the exponential. After dropping the non–singular term, the remaining terms (with the n)
reassemble the exponential again. (The reader is advised to check this explicitly to see how it works.) The
final result (when combined with the anti–holomorphic counterpart) shows that V (y) is a primary field of
weight (α′k2/4, α′k2/4).

Now we can pause to see what this all means. Recall from section 2.9.2 that the insertion of states is
equivalent to the insertion of operators into the theory, so that:

S → S′ = S + λ

∫
d2zO(z, z̄) . (159)

In general, we may consider such an operator insertion for a general theory. For the theory to remain
conformally invariant, the operator must be a marginal operator, which is to say that O(z, z̄) must at least
have dimension (1, 1) so that the integrated operator is dimensionless. In principle, the dimension of the
operator after the deformation (i.e. in the new theory defined by S′) can change, and so the full condition
for the operator is that it must remain (1, 1) after the insertion. It in fact defines a direction in the space
of couplings, and λ can be thought of as an infinitessimal motion in that direction. The statement of the
existence of a marginal operator is then referred to the existence of a “flat direction”.

A useful picture to have in mind for later use is of a conformal field theory as a “fixed point” in the space
of theories with coordinates given by the coefficients of possible operators such as in equation (159). (There
is an infinite set of such perturbations and so the space is infinite dimensional.) In the usual reasoning using
the renomalisation group (RG), once the operator is added with some value of the coupling, the theory (i.e.
the value of the coupling) flows along an RG trajectory as the energy scale µ is changed. The “β–function”,
β(λ) ≡ µ∂λ/∂µ characterizes the behaviour of the coupling. One can imagine the existence of “fixed points”
of such flows, where β(λ) = 0 and the coupling tends to a specific value, as shown in the diagram.

λ

λ

λ

β(λ)

λ

β(λ)

On the left, λ̄ is an “infrared (IR) fixed point”, since the coupling is driven to it for decreasing µ, while
on the right, λ̄ is an “ultraviolet (UV) fixed point”, since the coupling is driven to it for increasing µ. The
origins of each diagram of course define a fixed point of the opposite type to that at λ̄. A conformal field
theory is then clearly such a fixed point theory, where the scale dependence of all couplings exactly vanishes.
A “marginal operator” is an operator which when added to the theory, does not take it away from the fixed
point. A “relevant operator” deforms a theory increasingly as µ goes to the IR, while an “irrelevant operator”
is increasingly less important in the IR. This behaviour is reversed on going to the UV. When applied to a
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fixed point, such non–marginal operators can be used to deform fixed point theories away from the conformal
point, often allowing us to find other interesting theories. D = 4 Yang–Mills theories, for sufficiently few
flavours of quark (like QCD), have negative β–function, and so behave roughly as the neighbourhood of the
origin in the left diagram. “Asymptotic freedom” is the process of being driven to the origin (zero coupling)
in the UV.

Returning to the specific case of the basic relativistic string, recall that the use of the tachyon vertex
operator V (z, z̄) corresponds to the addition of

∫
d2z V (z, z̄) to the action. We wish the theory to remain

conformal (preserving the relativistic string’s symmetries, as stressed in section 2), and so V (z, z̄) must
be (1,1). In fact, since our conformal field theory is actually free, we need do no more to check that the
tachyon vertex is marginal. So we require that (α′k2/4, α′k2/4) = (1, 1). Therefore we get the result that
M2 ≡ −k2 = −4/α′, the result that we previously obtained for the tachyon.

Another example is the level 1 closed string vertex operator:

: ∂zX
µ∂z̄X

ν exp(ik ·X) :

It turns out that there are no further singularities in contracting this with the stress tensor, and so the
weight of this operator is (1 + α′k2/4, 1 + α′k2/4). So, marginality requires that M2 ≡ −k2 = 0, which is
the massless result that we encountered earlier.

Another computation that the reader should consider doing is to work out explicitly the T (z)T (y) OPE,
and show that it is of the form (146) with c = D, as each of the D bosons produces a conformal anomaly
of unity. This same is true from the antiholomorphic sector, giving c̄ = D. Also, for open strings, we get
the same amount for the anomaly. This result was alluded to in section 2. This is problematic, since this
conformal anomaly prevents the full operation of the string theory. In particular, the anomaly means that
the stress tensor’s trace does not in fact vanish quantum mechanically.

This is all repaired in the next section, since there is another sector which we have not yet considered.

3.5 Fixing The Conformal Gauge

It must not be forgotten where all of the riches of the previous section —the conformal field theory— came
from. We made a gauge choice in equation (31) from which many excellent results followed. However, despite
everything, we saw that there is in fact a conformal anomaly equal to D (or a copy each on both the left and
the right hand side, for the closed string). The problem is that we have not made sure that the gauge fixing
was performed properly. This is because we are fixing a local symmetry, and it needs to be done dynamically
in the path integral, just as in gauge theory. This is done with Faddeev–Popov ghosts in a very similar way
to the methods used in field theory. Let us not go into the details of it here, but assume that the interested
reader can look into the many presentations of the procedure in the literature. The key difference with field
theory approach is that it introduces two ghosts, ca and bab which are rank one and rank two tensors on the
world sheet. The action for them is:

Sgh = − 1

4π

∫
d2σ

√
ggabcc∇abbc , (160)

and so bab and ca, which are anti–commuting, are conjugates of each other.

3.5.1 Conformal Ghosts

Once the conformal gauge has been chosen, (see equation (31)) picking the diagonal metric, we have

Sgh = − 1

2π

∫
d2z
(
c(z, z̄)∂z̄b(z, z̄) + c̄(z, z̄)∂z b̄(z, z̄)

)
. (161)

From equation (160), the stress tensor for the ghost sector is:

T gh(z) =: c(z)∂z̄b(z) : + : 2(∂z̄c(z))b(z) : , (162)
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with a similar expression for T̄ghost(z̄). Just as before, as the ghosts are free fields, with equations of motion
∂zc = 0 = ∂zb, we can Laurent expand them as follows:

b(z) =

∞∑

n=−∞

bn z
−n−2 , c(z) =

∞∑

n=−∞

cn z
−n+1 , (163)

which follows from the property that b is of weight 2 and c is of weight −1, a fact which might be guessed
from the structure of the action (160). The quantisation yields

{bm, cn} = δm+n . (164)

and the stress tensor is

Lgh
n =

∞∑

m=−∞

(2n−m) : bmcn−m : −δn,0 (165)

where we have a normal ordering constant −1, as in the previous sector.

[Lgh
m , bn] = (m− n)bm+n , [Lgh

m , cn] = −(2m+ n)cm+n . (166)

The OPE for the ghosts is given by

b(z)c(y) =
1

(z − y)
+ · · · , c(z)b(y) =

1

(z − y)
+ · · · ,

b(z)b(y) = O(z − y) , c(z)c(y) = O(z − y) , (167)

where the second expression is obtained from the first by the anticommuting property of the ghosts. The
second line also follows from the anticommuting property. There can be no non–zero result for the singular
parts there.

As with everything for the closed string, we must supplement the above expressions with very similar
ones referring to z̄, c̄(z̄) and b̄(z̄). For the open string, we carry out the same procedures as before, defining
everything on the upper half plane, reflecting the holomorphic into the anti–holomorpic parts, defining a
single set of ghosts.

3.5.2 The Critical Dimension

Now comes the fun part. We can evaluate the conformal anomaly of the ghost system, by using the techniques
for computation of the OPE that we refined in the previous section. We can do it for the ghosts in as simple
a way as for the ordinary fields, using the expression (162) above. In the following, we will focus on the most
singular part, to isolate the conformal anomaly term. This will come from when there are two contractions
in each term. The next level of singularity comes from one contraction, and so on:

T gh(z)T gh(y)

= (: ∂zb(z)c(z) : + : 2b(z)∂zc(z) :)(: ∂yb(y)c(y) : + : 2b(y)∂yc(y) :)

= : ∂zb(z)c(z) :: ∂yb(y)c(y) : +2 : b(z)∂zc(z) :: ∂yb(y)c(y) :

+ 2 : ∂zb(z)c(z) :: b(y)∂yc(y) : +4 : b(z)∂zc(z) :: b(y)∂yc(y) :

= <∂zb(z)c(y)><c(z)∂yb(y)> +2 <b(z)c(y)><∂zc(z)∂yb(y)>

+ 2 <∂zb(z)∂yc(y)><c(z)b(y)> +4 <b(z)∂yc(y)><∂zc(z)b(y)>

= − 13

(z − y)4
, (168)

and so comparing with equation (146), we see that the ghost sector has conformal anomaly c = −26. A
similar computation gives c̄ = −26. So recalling that the “matter” sector, consisting of the D bosons, has
c = c̄ = D, we have achieved the result that the conformal anomaly vanishes in the case D = 26. This also
applies to the open string in the obvious way.
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3.5.3 Further Aspects of Conformal Ghosts

Notice that the flat space expression (161) is also consistent with the stress tensor

T (z) =: ∂zb(z)c(z) : −κ : ∂z [b(z)c(z)] : , (169)

for arbitrary κ, with a similar expression for the antiholomorphic sector. It is a useful exercise to use the
OPE’s of the ghosts given in equation (167) to verify that this gives b and c conformal weights h = κ
and h = 1 − κ, respectively. The case we studied above was κ = 2. Further computation (recommended)
reveals that the conformal anomaly of this system is c = 1 − 3(2κ − 1)2, with a similar expression for the
antiholomorphic version of the above.

The case of fermionic ghosts will be of interest to us later. In that case, the action and stress tensor are
just like before, but with b → β and c → γ, where β and γ, are fermionic. Since they are fermionic, they
have singular OPE’s

β(z)γ(y) = − 1

(z − y)
+ · · · , γ(z)β(y) =

1

(z − y)
+ · · · (170)

A computation gives conformal anomaly 3(2κ− 1)2 − 1, which in the case κ = 3/2, gives an anomaly of 11.
In this case, they are the “superghosts”, required by supersymmetry in the construction of superstrings later
on.

3.6 Non–Critical Strings

Actually, decoupling of the function ϕ in section (2.4) is only exact for matter with c = 26. This does not
mean that we must stay in the critical dimension, however. There is quite an industry in which string theory
in very low dimensions are studied, specifically in two dimensions or fewer. How has can this be? Well, the
answer is easy to state with the language we have developed here. In general ϕ does not decouple, but has
an action:

SL =
1

4πα′

∫
d2z

{
∂ϕ∂̄ϕ+

α′

2
QϕR+ µeγϕ

}
, (171)

where R is the two dimensional Ricci scalar, and µ is a cosmological term. This is called the “Liouville
model”. The stress tensor for this model is readily computed as

Tzz = − 1

α′
∂ϕ∂ϕ+

Q

2
∂2ϕ , (172)

and from it, the central charge can be deduced to be cL = 1+3Q2. This conclusion is unaffected by the case
of µ 6= 0. The case of µ 6= 0 needs to be considered carefully. Think of it as small to begin with, controlling
the insertion of the operator eγϕ. The parameter γ is fixed by requiring that eγϕ is of unit weight, so that
it acts as a marginal operator. The presence of Q in the stress tensor shifts the weight of eγϕ from −γ2/2
to −γ(γ − Q)/2, and so the condition yields the relation Q = 2/γ + γ. Alternatively, this regime can be
regarded as working in the limit of ϕ→ −∞. This is weak coupling in the spacetime string theory as we see
below. The main point to be made here is that one can adjust Q to get a total central charge of c+ cL = 26,
which sets Q =

√
(25 − c)/3. The reparametrisation ghosts then produce their c = −26 in order to cancel

the conformal anomaly of the whole model.
Looking at the complete theory (where we have some number of bosonic fields with some central charge

c ≤ 25), one sees that ϕ is rather like an additional coordinate for the string with an interaction which soaks
up the missing conformal anomaly to ensure a consistent string model. So the spacetime dimension is given
by D = c+ 1.

The case of 25 bosons from the matter sector, c = 25 recovers the usual situation, since in that case
Q = 0 and so ϕ is coupled like a normal boson as well. Notice that γ is purely imaginary in that case, and
so we can get a real metric from gab = eγϕδab by Wick rotating ϕ to iϕ. So ϕ plays the role of the time
coordinate and we are back in 26 spacetime dimensions.
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In general, the complete theory is often thought of as a conformal field theory of central charge c coupled
to two dimensional gravity. The gravity here refers to the physics of the two dimensional metric. This nomen-
clature is consistent with the fact that the Riemann tensor in d dimensions has d2(d2 − 1)/12 independent
components, so that in d = 2 there is one degree of freedom, that represented by ϕ.

For example, with just one ordinary scalar X , (which has c = 1), we have two dimensional string theory.
The spacetime picture that is kept in mind for this model is that ϕ plays the role of a spatial coordinate,
and time is recovered by Wick rotating X . Notice that the spacetime picture meshes very nicely with
the σ–model approach we worked with in equation (93). Comparing our Liouville theory Lagrangian with
that of the sigma model we see that the dilaton is set by ϕ as Φ = Qϕ/(

√
2α′). Choose the spacetime

metric as flat: Gµν = ηµν . This “linear dilaton vacuum” is a solution to the β–function equations (96) if

Q =
√

(26 −D)/3 =
√

(25 − c)/3, as we saw above (where we have D = 2 for the case in hand). Since the
string coupling is set by the dilaton via gs = eΦ, we see that our earlier statement that ϕ → −∞ is weak
coupling is indeed correct. Further to this, we see that the case of larger ϕ is at stronger coupling. Note
that µ sets a natural scale where the cosmological term is of order one and the theory is firmly in the strong
coupling regime, at ϕ ∼ log(1/µ). This is often referred to the “Liouville Wall”, the demarcation between
the strong and weak coupling regimes.

Turning to other cases, the most well–studied conformal field theories are the c < 1 minimal models, an
infinite family indexed by two integers (p, q) with

c = 1 − 6(p− q)2

pq
. (173)

These models are distinguished by (among other things) having a finite number of primary fields. They
are unitary when |p − q| = 1. The trivial model is the (3, 2), which has c = 0. Two other famous unitary
members of the series are (4, 3), which has c = 1/2 and (5, 4), which has c = 7/10 are the critical Ising model
and the tricritical Ising model.

For the (3, 2) coupled to Liouville, we see that the model is just one with no extra embedding for the
string at all, just the Liouville dimension. It is often referred to as “pure gravity”, since the (non–Liouville)
conformal field theory is trivial. In general, the study of these “non–critical string theories” is said to be the
study of strings in D ≤ 2.

Remarkably, the path integral for these models can be supplied with a definition using the techniques
called “Matrix Models”. Basically, the sum over world–sheet metrics is performed by studying the theory of
an N×N matrix valued field, where N is large. The matrix integral can be expanded in terms of Feynmann
diagrams, and for large N , the diagrams can be organized in terms of powers of 1/N . This expansion in
1/N is the same as the gs topological expansion of string perturbation theory, and the Feynmann diagrams
act as a sort of regularized representation of the string world–sheets. We don’t have time or space to study
these models here, but it is a remarkable subject. In fact, it is in these simple string models that a lot of
the important modern string ideas have their roots, such as non–perturbative string theory, the behaviour
of string theory at high orders in perturbation theory, and non–perturbative relations between open and
closed strings7. Recently, this area has been revisited, as it has become increasingly clear that there may be
more lessons to be learned about the above topics and more, such as holography, tachyon condensation, and
open–closed transitions8.

There has yet to be presented a satisfactory interpretation for the physics for a vast range of dimensions,
however. This is because it is only for the case 0 ≤ c ≤ 1 that Q and γ are both real. Outside this range,
the above formulae of non–critical string theory await a physical interpretation.

7For a review of the subject, see for example refs.[10]
8There is no complete review of this area currently available (although see the last of refs.[10]), so it is recommended that

refs.[11] be consulted, as their opening sections give a good guide to the literature, old and new.
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3.7 The Closed String Partition Function

We have all of the ingredients we need to compute our first one–loop diagram9. It will be useful to do this as
a warm up for more complicated examples later, and in fact we will see structures in this simple case which
will persist throughout.

Consider the closed string diagram of figure 18(a). This is a vacuum diagram, since there are no external
strings. This torus is clearly a one loop diagram and in fact it is easily computed. It is distinguished
topologically by having two completely independent one–cycles. To compute the path integral for this we
are instructed, as we have seen, to sum over all possible metrics representing all possible surfaces, and hence
all possible tori.

Re(  )w1

τ
Im(  )w

(b)(a)

2π

2π

Figure 18: (a) A closed string vacuum diagram (b). The flat torus and its complex structure.

Well, the torus is completely specified by giving it a flat metric, and a complex structure, τ , with Imτ ≥ 0.
It can be described by the lattice given by quotienting the complex w–plane by the equivalence relations

w ∼ w + 2πn ; w ∼ w + 2πmτ , (174)

for any integers m and n, as shown in figure 18(b). The two one–cycles can be chosen to be horizontal and
vertical. The complex number τ specifies the shape of a torus, which cannot be changed by infinitesimal
diffeomorphisms of the metric, and so we must sum over all of them. Actually, this naive reasoning will
make us overcount by a lot, since in fact there are a lot of τ ’s which define the same torus. For example,
clearly for a torus with given value of τ , the torus with τ + 1 is the same torus, by the equivalence relation
(174). The full family of equivalent tori can be reached from any τ by the “modular transformations”:

T : τ → τ + 1

S : τ → −1

τ
, (175)

which generate the group SL(2,Z), which is represented here as the group of 2×2 unit determinant matrices
with integer elements:

SL(2,Z) : τ → aτ + b

cτ + d
; with

(
a b
c d

)
, ad− bc = 1 . (176)

(It is worth noting that the map between tori defined by S exchanges the two one–cycles, therefore exchanging
space and (Euclidean) time.) The full family of inequivalent tori is given not by the upper half plane H⊥

(i.e., τ such that Imτ ≥ 0) but the quotient of it by the equivalence relation generated by the group of
modular transformations. This is F = H⊥/PSL(2,Z), where the P reminds us that we divide by the extra

9Actually, we’ve had them for some time now, essentially since section 2.
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Z2 which swaps the sign on the defining SL(2,Z) matrix, which clearly does not give a new torus. The
commonly used fundamental domain in the upper half plane corresponding to the inequivalent tori is drawn
in figure 19. Any point outside that can be mapped into it by a modular transformation. The fundamental
region F is properly defined as follows: Start with the region of the upper half plane which is in the interval
(− 1

2 ,+
1
2 ) and above the circle of unit radius. we must then identify the two vertical edges, and also the two

halves of the remaining segment of the circle. This produces a space which is smooth everywhere except for
two points, τ = i and τ = e

2πi
3 point about which there are conical singularities. They are fixed points of

SL(2,Z) fixed by the elements S, and ST respectively.

(  )τRe 

(  )τIm

1_
2

11_
2

ii

−

i

F

Figure 19: The space of inequivalent tori.

The string propagation on our torus can be described as follows. Imagine that the string is of length 1,
and lies horizontally. Mark a point on the string. Running time upwards, we see that the string propagates
for a time t = 2πImτ ≡ 2πτ2. One it has got to the top of the diagram, we see that our marked point
has shifted rightwards by an amount x = 2πReτ ≡ 2πτ1. We actually already have studied the operators
which perform these two operations. The operator for time translations is the Hamiltonian (54), H =
L0 + L̄0 − (c + c̄)/24 while the operator for translations along the string is the momentum P = L0 − L̄0

discussed above equation (63).
Recall that c = c̄=D−2=24. So our vacuum path integral is

Z = Tr
{
e−2πτ2He2πiτ1P

}
= TrqL0−

c
24 q̄L̄0−

c̄
24 . (177)

Here, q ≡ e2πiτ , and the trace means a sum over everything which is discrete and an integral over everything
which is continuous, which in this case, is simply τ .

This is easily evaluated, as the expressions for L0 and L̄0 give a family of simple geometric sums. To see
where the sums come from, let us look at one dimension, and so one family of oscillators αn. We need to
consider

Tr qL0 = Tr q
∑

∞

n=0
α−nαn .

We can see what the operator q
∑

∞

n=0
α−nαn means if we write it explicitly in a basis of all possible multiparticle
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states of the form α−n|0>, (α−n)2|0>, etc. :

qα−nαn =




1
qn

q2n

q3n

. . .




,

and so clearly Trqα−nαn =
∑∞

i=1(q
n)i = (1 − qn)−1, which is remarkably simple. The final sum over all

modes is trivial, since

Tr q
∑

∞

n=0
α−nαn =

∞∏

n=0

Tr qα−nαn =

∞∏

n=0

(1 − qn)−1 .

We get a factor like this for all 24 dimensions, and we also get contributions from both the left and right to
give the result.

Notice that if our modes were fermions, ψn, things would be even simpler. We would not be able to make
multiparticle states (ψ−n)

2|0>, (Pauli), and so we only have a 2×2 matrix of states to trace in this case,
and so we simply get

Tr qψ−nψn = (1 + qn) .

Therefore the partition function is

Tr q
∑

∞

n=0
ψ−nψn =

∞∏

n=0

Trqψ−nψn =

∞∏

n=0

(1 + qn) .

Returning to the full problem, the result can be written as:

Z =

∫

F

d2τ

τ2
2

Z(q) , where (178)

Z(q) = |τ2|−12(qq̄)−1

∣∣∣∣∣

∞∏

n=1

(1 − qn)−24

∣∣∣∣∣

2

= (
√
τ2ηη̄)

−24
, (179)

is the “partition function”, with Dedekind’s function

η(q) ≡ q
1
24

∞∏

n=1

(1 − qn) ; η

(
−1

τ

)
=

√
−iτ η(τ) . (180)

This is a pleasingly simple result. One very interesting property it has is that it is actually “modular
invariant”. It is invariant under the T transformation in (174), since under τ → τ +1, we get that Z(q) picks
up a factor exp(2πi(L0− L̄0)). This factor is precisely unity, as follows from the level matching formula (63).

Invariance of Z(q) under the S transformation τ → −1/τ follows from the property mentioned in (180),
after a few steps of algebra, and using the result S : τ2 → τ2/|τ |2. Modular invariance of the partition
function is a crucial property. It means that we are correctly integrating over all inequivalent tori, which is
required of us by diffeomorphism invariance of the original construction. Furthermore, we are counting each
torus only once, which is of course important.

Note that Z(q) really deserves the name “partition function” since if it is expanded in powers of q and
q̄, the powers in the expansion —after multiplication by 4/α′— refer to the (mass)2 level of excitations on
the left and right, while the coefficient in the expansion gives the degeneracy at that level. The degeneracy
is the number of partitions of the level number into positive integers. For example, at level 3 this is 3, since
we have α−3, α−1α−2, and α−1α−1α−1.

The overall factor of (qq̄)−1 sets the bottom of the tower of masses. Note for example that at level
zero we have the tachyon, which appears only once, as it should, with M2 = −4/α′. At level one, we have
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the massless states, with multiplicity 242, which is appropriate, since there are 242 physical states in the
graviton multiplet (Gµν , Bµν ,Φ). Introducing a common piece of terminology, a term qw1 q̄w2 , represents
the appearance of a “weight” (w1, w2) field in the 1+1 dimensional conformal field theory, denoting its
left–moving and right–moving weights or “conformal dimensions”.

4 Strings on Circles and T–Duality

In this section we shall study the spectrum of strings propagating in a spacetime which has a compact
direction. The theory has all of the properties we might expect from the knowledge that at low energy we
are placing gravity and field theory on a compact space. Indeed, as the compact direction becomes small, the
parts of the spectrum resulting from momentum in that direction become heavy, and hence less important,
but there is much more. The spectrum has additional sectors coming from the fact that closed strings can
wind around the compact direction, contributing states whose mass is proportional to the radius. Thus,
they become light as the circle shrinks. This will lead us to T–duality, relating a string propagating on a
large circle to a string propagating on a small circle.[18] This is just the first of the remarkable symmetries
relating two string theories in different situations that we shall encounter here. It is a crucial consequence
of the fact that strings are extended objects. Studying its consequences for open strings will lead us to
D–branes, since T–duality will relate the Neumann boundary conditions we have already encountered to
Dirichlet ones[13, 15], corresponding to open strings ending on special hypersurfaces in spacetime.

4.1 Closed Strings on a Circle

The mode expansion (74) for the closed string theory can be written as:

Xµ(z, z̄) =
xµ

2
+
x̃µ

2
− i

√
α′

2
(αµ0 + α̃µ0 )τ +

√
α′

2
(αµ0 − α̃µ0 )σ + oscillators . (181)

We have already identified the spacetime momentum of the string:

pµ =
1√
2α′

(αµ0 + α̃µ0 ) . (182)

If we run around the string, i.e., take σ → σ + 2π, the oscillator terms are periodic and we have

Xµ(z, z̄) → Xµ(z, z̄) + 2π

√
α′

2
(αµ0 − α̃µ0 ) . (183)

So far, we have studied the situation of non–compact spatial directions for which the embedding function
Xµ(z, z̄) is single–valued, and therefore the above change must be zero, giving

αµ0 = α̃µ0 =

√
α′

2
pµ. (184)

Indeed, momentum pµ takes a continuum of values reflecting the fact that the direction Xµ is non–compact.
Let us consider the case that we have a compact direction, say X25, of radius R. Our direction X25

therefore has period 2πR. The momentum p25 now takes the discrete values n/R, for n ∈ Z. Now, under
σ ∼ σ + 2π, X25(z, z̄) is not single valued, and can change by 2πwR, for w ∈ Z. Solving the two resulting
equations gives:

α25
0 + α̃25

0 =
2n

R

√
α′

2

α25
0 − α̃25

0 =

√
2

α′
wR (185)
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and so we have:

α25
0 =

(
n

R
+
wR

α′

)√
α′

2
≡ PL

√
α′

2

α̃25
0 =

(
n

R
− wR

α′

)√
α′

2
≡ PR

√
α′

2
. (186)

We can use this to compute the formula for the mass spectrum in the remaining uncompactified 24+1
dimensions, using the fact that M2 = −pµpµ, where now µ = 0, . . . , 24.

M2 = −pµpµ =
2

α′
(α25

0 )2 +
4

α′
(N − 1)

=
2

α′
(α̃25

0 )2 +
4

α′
(N̄ − 1) , (187)

where N, N̄ denote the total levels on the left– and right–moving sides, as before. These equations follow
from the left and right L0, L̄0 constraints. Recall that the sum and difference of these give the Hamiltonian
and the level–matching formulae. Here, they are modified, and a quick computation gives:

M2 =
n2

R2
+
w2R2

α′2
+

2

α′

(
N + Ñ − 2

)

nw +N − Ñ = 0 . (188)

The key features here are that there are terms in addition to the usual oscillator contributions. In the mass
formula, there is a term giving the familiar contribution of the Kaluza–Klein tower of momentum states for
the string (see the previous subsection), and a new term from the tower of winding states.

This latter term is a very stringy phenomenon. Notice that the level matching term now also allows a
mismatch between the number of left and right oscillators excited, in the presence of discrete winding and
momenta.

In fact, notice that we can get our usual massless Kaluza–Klein states10 by taking

n = w = 0 ; N = N̄ = 1 , (189)

exciting an oscillator in the compact direction. There are two ways of doing this, either on the left or the
right, and so there are two U(1)’s following from the fact that there is an internal component of the metric
and also of the antisymmetric tensor field. We can choose to identify the two gauge fields of this U(1)×U(1)
as follows:

Aµ(R) ≡
1

2
(G−B)µ,25 ; Aµ(L) ≡

1

2
(G+B)µ,25 .

We have written these states out explicitly, together with the corresponding spacetime fields, and the vertex
operators (at zero momentum), below:

field state operator

Gµν (αµ−1α̃
ν
−1 + αν−1α̃

µ
−1)|0; k> ∂Xµ∂̄Xν + ∂Xµ∂̄Xν

Bµν (αµ−1α̃
ν
−1 − αν−1α̃

µ
−1)|0; k> ∂Xµ∂̄Xν − ∂Xµ∂̄Xν

Aµ(R) αµ−1α̃
25
−1|0; k> ∂Xµ∂̄X25

Aµ(L) α̃µ−1α
25
−1|0; k> ∂X25∂̄Xµ

φ ≡ 1
2 logG25,25 α25

−1α̃
25
−1|0; k> ∂X25∂̄X25

10We shall sometimes refer to Kaluza–Klein states as “momentum” states, to distinguish them from “winding” states, in
what follows.
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So we have these 25–dimensional massless states which are basically the components of the graviton
and antisymmetric tensor fields in 26 dimensions, now relabeled. (There is also of course the dilaton Φ,
which we have not listed.) There is a pair of gauge fields giving a U(1)L×U(1)R gauge symmetry, and in
addition a massless scalar field φ. Actually, φ is a massless scalar which can have any background vacuum
expectation value (vev), which in fact sets the radius of the circle. This is because the square root of the
metric component G25,25 is indeed the measure of the radius of the X25 direction.

4.2 T–Duality for Closed Strings

Let us now study the generic behaviour of the spectrum (188) for different values of R. For larger and larger
R, momentum states become lighter, and therefore it is less costly to excite them in the spectrum. At the
same time, winding states become heavier, and are more costly. For smaller and smaller R, the reverse is
true, and it is gets cheaper to excite winding states while it is momentum states which become more costly.

We can take this further: As R→ ∞, all of the winding states i.e., states with w 6= 0, become infinitely
massive, while the w = 0 states with all values of n go over to a continuum. This fits with what we expect
intuitively, and we recover the fully uncompactified result.

Consider instead the case R → 0, where all of the momentum states i.e., states with n 6= 0, become
infinitely massive. If we were studying field theory we would stop here, as this would be all that would
happen—the surviving fields would simply be independent of the compact coordinate, and so we have
performed a dimension reduction. In closed string theory things are quite different: the pure winding states
(i.e., n = 0, w 6= 0, states) form a continuum as R → 0, following from our observation that it is very
cheap to wind around the small circle. Therefore, in the R → 0 limit, an effective uncompactified dimension
actually reappears!

Notice that the formula (188) for the spectrum is invariant under the exchange

n↔ w and R↔ R′ ≡ α′/R . (190)

The string theory compactified on a circle of radius R′ (with momenta and windings exchanged) is the “T–
dual” theory[18], and the process of going from one theory to the other will be referred to as “T–dualising”.

The exchange takes (see (186))
α25

0 → α25
0 , α̃25

0 → −α̃25
0 . (191)

The dual theories are identical in the fully interacting case as well (after a shift of the coupling to be discussed
shortly):[19] Simply rewrite the radius R theory by performing the exchange

X25 = X25(z) +X25(z̄) −→ X ′25(z, z̄) = X25(z) −X25(z̄) . (192)

The energy–momentum tensor and other basic properties of the conformal field theory are invariant under
this rewriting, and so are therefore all of the correlation functions representing scattering amplitudes, etc.
The only change, as follows from equation (191), is that the zero mode spectrum in the new variable is that
of the α′/R theory.

So these theories are physically identical. T–duality, relating the R and α′/R theories, is an exact
symmetry of perturbative closed string theory. Shortly, we shall see that it is non–perturbatively exact as
well.

It is important to note that the transformation (192) can be regarded as a spacetime parity transformation
acting only on the right–moving (in the world sheet sense) degrees of freedom. We shall put this picture to
good use in what is to come.

4.3 A Special Radius: Enhanced Gauge Symmetry

Given the relation we deduced between the spectra of strings on radii R and α′/R, it is clear that there
ought to be something interesting about the theory at the radius R =

√
α′. The theory should be self–dual,
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and this radius is the “self–dual radius”. There is something else special about this theory besides just
self–duality.

At this radius we have, using (186),

α25
0 =

(n+ w)√
2

; α̃25
0 =

(n− w)√
2

, (193)

and so from the left and right we have:

M2 = −pµpµ =
1

α′
(n+ w)2 +

4

α′
(N − 1)

=
2

α′
(n− w)2 +

4

α′
(N̄ − 1) . (194)

So if we look at the massless spectrum, we have the conditions:

(n+ w)2 + 4N = 4 ; (n− w)2 + 4N̄ = 4 . (195)

As solutions, we have the cases n = w = 0 with N = 1 and N̄ = 1 from before. These are include the vectors
of the U(1)×U(1) gauge symmetry of the compactified theory.

Now however, we see that we have more solutions. In particular:

n = −w = ±1 , N = 1 , N̄ = 0 ; n = w = ±1 , N = 0 , N̄ = 1 . (196)

The cases where the excited oscillators are in the non–compact direction yield two pairs of massless vector
fields. In fact, the first pair go with the left U(1) to make an SU(2), while the second pair go with the right
U(1) to make another SU(2). Indeed, they have the correct ±1 charges under the Kaluza–Klein U(1)’s in
order to be the components of the W–bosons for the SU(2)L×SU(2)R “enhanced gauge symmetries”. The
term is appropriate since there is an extra gauge symmetry at this special radius, given that new massless
vectors appear there. When the oscillators are in the compact direction, we get two pairs of massless bosons.
These go with the massless scalar φ to fill out the massless adjoint Higgs field for each SU(2). These are the
scalars whose vevs give the W–bosons their masses when we are away from the special radius.

The vertex operator for the change of radius, ∂X25∂̄X25, corresponding to the field φ, transforms as a
(3,3) under SU(2)L×SU(2)R, and therefore a rotation by π in one of the SU(2)’s transforms it into minus
itself. The transformation R → α′/R is therefore the Z2 Weyl subgroup of the SU(2) × SU(2). Since
T–duality is part of the spacetime gauge theory, this is a clue that it is an exact symmetry of the closed
string theory, if we assume that non–perturbative effects preserve the spacetime gauge symmetry. We shall
see that this assumption seems to fit with non–perturbative discoveries to be described later.

4.4 The Circle Partition Function

It is useful to consider the partition function of the theory on the circle. This is a computation as simple
as the one we did for the uncompactified theory earlier, since we have done the hard work in working out
L0 and L̄0 for the circle compactification. Each non–compact direction will contribute a factor of (ηη̄)−1, as
before, and the non–trivial part of the final τ–integrand, coming from the compact X25 direction is:

Z(q,R) = (ηη̄)−1
∑

n,w

q
α′

4 P
2
L q̄

α′

4 P
2
R , (197)

where PL,R are given in (186). Our partition function is manifestly T–dual, and is in fact also modular
invariant:

Under T , it picks us a phase exp(πi(P 2
L − P 2

R)), which is again unity, as follows from the second line in
(188): P 2

L − P 2
R = 2nw. Under S, the role of the time and space translations as we move on the torus are

exchanged, and this in fact exchanges the sums over momentum and winding. T–duality ensures that the
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S–transformation properties of the exponential parts involving PL,R are correct, while the rest is S invariant
as we have already discussed.

It is a useful exercise to expand this partition function out, after combining it with the factors from the
other non–compact dimensions first, to see that at each level the mass (and level matching) formulae (188)
which we derived explicitly is recovered.

In fact, the modular invariance of this circle partition function is part of a very important larger story.
The left and right momenta PL,R are components of a special two dimensional lattice, Γ1,1. There are two

basis vectors k = (1/R, 1/R) and k̂ = (R,−R). We make the lattice with arbitrary integer combinations

of these, nk + wk̂, whose components are (PL, PR). (c.f. (186)) If we define the dot products between our

basis vectors to be k · k̂ = 2 and k · k = 0 = k̂ · k̂, our lattice then has a Lorentzian signature, and since
P 2
L − P 2

R = 2nw ∈ 2Z, it is called “even”. The “dual” lattice Γ∗
1,1 is the set of all vectors whose dot product

with (PL, PR) gives an integer. In fact, our lattice is self–dual, which is to say that Γ1,1 = Γ∗
1,1. It is the

“even” quality which guarantees invariance under T as we have seen, while it is the “self–dual” feature which
ensures invariance under S. In fact, S is just a change of basis in the lattice, and the self–duality feature
translates into the fact that the Jacobian for this is unity.

In fact, the special properties of the string theory at the self–dual radius is succinctly visible at all mass
levels, by looking at the partition function (197). At the self–dual radius, it can be rewritten as a sum of
squares of “characters” of the SU(2) affine Lie algrebra:

Z(q,R =
√
α′) = |χ1(q)|2 + |χ2(q)|2 , (198)

where
χ1(q) ≡ η−1

∑

n

qn
2

, χ2(q) ≡ η−1
∑

n

q(n+1/2)2 (199)

It is amusing to expand these out (after putting in the other factors of (ηη̄)−1 from the uncompactified
directions) and find the massless states we discussed explicitly above.

It does not matter if an affine Lie algebra has not been encountered before by the reader. We can
take this as an illustrative example, arising in a natural and instructive way. See the next section for
further discussion.[16] In the language of two dimensional conformal field theory, there are additional left–
and right–moving currents (i.e., fields with weights (1,0) and (0,1)) present. We can construct them as
vertex operators by exponentiating some of the existing fields. The full set of vertex operators of the
SU(2)L×SU(2)R spacetime gauge symmetry:

SU(2)L: ∂̄Xµ∂X25(z), ∂̄Xµ exp(±2iX25(z)/
√
α′)

SU(2)R: ∂Xµ∂̄X25(z), ∂Xµ exp(±2iX25(z̄)/
√
α′) , (200)

corresponding to the massless vectors we constructed by hand above.

4.4.1 Affine Lie Algebras

The key structure of an affine Lie algebra is just what we have seen arise naturally in this self–duality
example. In addition to all of the nice structures that the conformal field theory has —most pertinently,
the Virasoro algebra—, there is a family of unit weight operators, often constructed as vertex operators as
we saw in equation (200), which form the Lie algebra of some group G. They are unit weight as measured
either from the left or the right, and so we can have such structures on either side. Let us focus on the left.
Then, as (1, 0) operators, Ja(z), (a is a label) we have:

[Ln, J
a
m] = mJan+m , (201)

where

Jan =
1

2πi

∮
dz znJa(z) , (202)
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and
[Jan , J

b
m] = ifabcJ

c
n+m +mkdabδn+m , (203)

where it should be noticed that the zero modes of these currents form a Lie algebra, with structure constants
fabc. The constants dab define the inner product between the generators (ta, tb) = dab. Since in bosonic
string theory a mode with index −1 creates a state which is massless in spacetime, Ja−1 can be placed either
on the left with α̃µ−1 on the right (or vice–versa) to give a state Ja−1α̃

µ
−1|0> which is a massless vector Aµa

in the adjoint of G, for which the low energy physics must be Yang–Mills theory.
The full algebra is called an “affine Lie algebra”, or a “current algebra”, and sometimes a “Kac–Moody”

algebra. In a standard normalization, k is an integer and is called the “level” of the affinisation. In the case
that we first see this sort of structure, the string at a self–dual radius, the level is 1. The currents in this
case are:

J3(z) = iα′−1/2
∂zX

25(z) ,

J1(z) = : cos(2α′−1/2
X25(z)) : , J2(z) =: sin(2α′−1/2

X25(z)) :

which satisfy the algebra (203) with fabc = εabc, k = 1, and dab = 1
2δ
ab, as appropriate to the fundamental

representation.

4.5 Toriodal Compactifications

It will be very useful later on for us to outline how things work more generally. The case of compactification
on the circle encountered above can be easily generalized to compactification on the torus T d ' (S1)d. Let
us denote the compact dimensions by Xm, where m,n = 1, . . . , d. Their periodicity is specified by

Xm ∼ Xm + 2πR(m)nm ,

where the nm are integers and R(m) is the radius of the mth circle. The metric on the torus, Gmn, can be
diagonalised into standard unit Euclidean form by the vielbeins eam where a, b = 1, . . . , d:

Gmn = δabe
a
me

b
n ,

and it is convenient to use tangent space coordinates Xa = Xmeam so that the equivalence can be written:

Xa ∼ Xa + 2πeamnm .

We have defined for ourselves a lattice Λ = {eamnm, nm ∈ Z}. We now write our torus in terms of this as

T d ≡ Rd

2πΛ
.

There are of course conjugate momenta to the Xa, which we denote as pa. They are quantized, since
moving from one lattice point to another, producing a change in the vector X by δX ∈ 2πΛ are physically
equivalent, and so single–valuedness of the wavefunction imposes exp(ip ·X) = exp(ip · [X + δX ]), i.e.:

p · δX ∈ 2πZ ,

from which we see that clearly
pn = Gmnnm ,

where nm are integers. In other words, the momenta live in the dual lattice, Λ∗, of Λ, defined by

Λ∗ ≡ {e∗amnm, nm ∈ Z} ,

where the inverse vielbiens e∗amnm are defined in the usual way using the inverse metric:

e∗am ≡ eamG
mn , or e∗amebm = δab .
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Of course we can have winding sectors as well, since as we go around the string via σ → σ + 2π, we can
change to a new point on the lattice characterized by a set of integers wm, the winding number. Let us write
out the string mode expansions. We have

Xa(τ, σ) = Xa
L(τ − σ) +Xa

R(τ + σ) , where

Xa
L = xaL − i

√
α′

2
paL(τ − σ) + oscillators xaL =

xa

2
− θa

paL = pa +
waR(a)

α′
≡ e∗amnm +

1

α′
eamw

m , (204)

for the left, while on the right we have

Xa
R = xaR − i

√
α′

2
paR(τ + σ) + oscillators xaR =

xa

2
+ θa

paR = pa − waR(a)

α′
≡ e∗amnm − 1

α′
eamw

m . (205)

The action of the manifest T–duality symmetry is simply to act with a right–handed parity, as before,
swapping pL ↔ pL and pR ↔ −pR, and hence momenta and winding and XL ↔ XL and XR ↔ −XR.

To see more, let us enlarge our bases for the two separate lattices Λ,Λ∗ into a singe one, via:

êm =
1

α′

(
eam

−eam

)
, ê∗m =

(
e∗am

e∗am

)
,

and now we can write

p̂ =

(
paL
paR

)
= êmw

m + ê∗mnm ,

which lives in a (d+ d)–dimensional lattice which we will call Γd,d. We can choose the metric on this space
to be of Lorentzian signature (d, d), which is achieved by

G =

(
δab 0
0 −δab

)
,

and using this we see that

êm · ên = 0 = ê∗m · ê∗n

êm · ê∗n =
2

α′
δmn , (206)

which shows that the lattice is self–dual, since (up to a trivial overall scaling), the structure of the basis
vectors of the dual is identical to that of the original: Γ∗

d,d = Γd,d. Furthermore, we see that the inner
product between any two momenta is given by

(êmw
m + ê∗mnm) · (ênw′n + ê∗nn′n) =

2

α′
(wmn′

m + nmw
′m) . (207)

In other words, the lattice is even, because the inner product gives even integer multiples of 2/α′.
It is these properties that guarantee that the string theory is modular invariant[163]. The partition

function for this compactification is the obvious generalisation of the expression given in (197):

ZTd = (ηη̄)−d
∑

Γd,d

q
α′

4 p
2
L q̄

α′

4 p
2
R , (208)
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where the pL,R are given in (205). Recall that the modular group is generated by T : τ → τ + 1, and
S : τ → −1/τ . So T –invariance follows from the fact that its action produces a factor exp(iπα′(p2

L−p2
R)/2) =

exp(iπα′(p̂2)/2) which is unity because the lattice is even, as shown in equation (207).
Invariance under S follows by rewriting the partition function Z(−1/τ) using the Poisson resummation

formula[9] to get the result that

ZΓ

(
−1

τ

)
= vol(Γ∗)ZΓ∗(τ) .

The volume of the lattice’s unit cell is unity, for a self–dual lattice, since vol(Λ)vol(Λ∗) = 1 for any lattice and
its dual, and therefore S–invariance is demonstrated, and we can define a consistent string compactification.

We shall meet two very important examples of large even and self–dual lattices later in subsection 7.4.
They are associated to the construction of the modular invariant partition functions of the ten dimensional
E8×E8 and SO(32) heterotic strings.[23]

4.5.1 The Moduli Space of Compactifications

There is a large space of inequivalent lattices of the type under discussion, given by the shape of the torus
(specified by background parameters in the metric G) and the fluxes of the B–field through it. We can work
out this “moduli space” of compactifications. It would naively seem to be simply O(d, d), since this is the
space of rotations naturally acting, taking such lattices into each other, i.e., starting with some reference
lattice Γ0, Γ′ = GΓ0 should be a different lattice. We must remember that the physics cares only about the
values of p2

L and p2
R, and so therefore we must count as equivalent any choices related by the O(d) × O(d)

which acts independently on the left and right momenta: G ∼ G′G, for G′ ∈ O(d)×O(d). So at least locally,
the space of lattices is isomorphic to

M =
O(d, d)

O(d) ×O(d)
. (209)

A quick count of the dimension of this space gives 2d(2d−1)/2−2×d(d−1)/2 = d2, which fits nicely, since this
is the number of independent components contained in the metric Gmn, (d(d+ 1)/2) and the antisymmetric
tensor field Bmn, (d(d − 1)/2), for which we can switch on constant values (sourced by winding).

There are still a large number of discrete equivalences between the lattices, which follows from the fact
that there is a discrete subgroup of O(d, d), called O(d, d,Z), which maps our reference lattice Γ0 into itself:
Γ0 ∼ G′′Γ0. This is the set of discrete linear transformations generated by the subgroups of SL(2d,Z) which
preserves the inner product given in equations (206).

This group includes the T–dualities on all of the d circles, linear redefinitions of the axes, and discrete
shifts of the B–field. The full space of torus compactifications is often denoted:

M = O(d, d,Z)\O(d, d)/[O(d) ×O(d)] , (210)

where we divide by one action under left multiplication, and the other under right.
Now we see that there is a possibility of much more than just the SU(2)L × SU(2)R enhanced gauge

symmetry which we got in the case of a single circle. We can have this large symmetry from any of the
d circles, of course but there is more, since there are extra massless states that can be made by choices of
momenta from more than one circle, corresponding to weight one vertex operators. This will allow us to
make very large enhanced gauge groups, up to rank d, as we shall see later in subsection 7.4.

4.6 Another Special Radius: Bosonisation

Before proceeding with the T–duality discussion, let us pause for a moment to remark upon something which
will be useful later. In the case that R =

√
(α′/2), something remarkable happens. The partition function

is:

Z

(
q,R =

√
α′

2

)
= (ηη̄)−1

∑

n,w

q
1
2 (n+ w

2 )
2

q̄
1
2 (n−

w
2 )

2

. (211)
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Note that the allowed momenta at this radius are (c.f. (186)):

α25
0 = PL

√
α′

2
=
(
n+

w

2

)

α̃25
0 = PR

√
α′

2
=
(
n− w

2

)
, (212)

and so they span both integer and half–integer values. Now when PL is an integer, then so is PR and vice–
versa, and so we have two distinct sectors, integer and half–integer. In fact, we can rewrite our partition
function as a set of sums over these separate sectors:

Z
R=

√
α′/2

=
1

2





∣∣∣∣∣
1

η

∑

n

q
1
2n

2

∣∣∣∣∣

2

+

∣∣∣∣∣
1

η

∑

n

(−1)nq
1
2n

2

∣∣∣∣∣

2

+

∣∣∣∣∣∣
1

η

∑

n

q
1
2

(
n+

1
2

)2
∣∣∣∣∣∣

2




.

The middle sum is rather like the first, except that there is a −1 whenever n is odd. Taking the two
sums together, it is just like we have performed the sum (trace) over all the integer momenta, but placed a
projection onto even momenta, using the projector

P =
1

2
(1 + (−1)n) . (213)

In fact, an investigation will reveal that the third term can be written with a partner just like it save for an
insertion of (−1)n also, but that latter sum vanishes identically. This all has a specific meaning which we
will uncover shortly.

Notice that the partition function can be written in yet another nice way, this time as

Z
R=

√
α′/2

=
1

2

(
|f2

4 (q)|2 + |f2
3 (q)|2 + |f2

2 (q)|2
)
, (214)

where, for here and for future use, let us define

f1(q) ≡ = q
1
24

∞∏

n=1

(1 − qn) ≡ η(τ)

f2(q) ≡ =
√

2q
1
24

∞∏

n=1

(1 + qn)

f3(q) ≡ = q−
1
48

∞∏

n=1

(1 + qn−
1
2 )

f4(q) ≡ = q−
1
48

∞∏

n=1

(1 − qn−
1
2 ) , (215)

and note that

f2

(
−1

τ

)
= f4 (τ) ; f3

(
−1

τ

)
= f3 (τ) ; (216)

f3 (τ + 1) = f4 (τ) ; f2 (τ + 1) = f2 (τ) . (217)

While the rewriting (214) might not look like much at first glance, this is in fact the partition function of a
single Dirac fermion in two dimensions!: Z(R =

√
α′/2) = ZDirac. We have arrived at the result that a boson

(at a special radius) is in fact equivalent to a fermion. This is called “bosonisation” or “fermionisation”,
depending upon one’s perspective. How can this possibly be true?
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The action for a Dirac fermion, Ψ = (ΨL,ΨR)T (which has two components in two dimensions) is, in
conformal gauge:

SDirac =
i

2π

∫
d2σ Ψ̄γa∂aΨ =

i

π

∫
d2σ Ψ̄L∂̄ΨL − i

π

∫
d2σ Ψ̄R∂ΨR , (218)

where we have used

γ0 = i

(
0 1
1 0

)
, γ1 = i

(
0 −1
1 0

)
.

Now, as a fermion goes around the cylinder σ → σ+2π, there are two types of boundary condition it can
have: It can be periodic, and hence have integer moding, in which case it is said to be in the “Ramond” (R)
sector. It can instead be antiperiodic, have half integer moding, and is said to be in the “Neveu–Schwarz”
(NS) sector.

In fact, these two sectors in this theory map to the two sectors of allowed momenta in the bosonic theory:
integer momenta to NS and half integer to R. The various parts of the partition function can be picked out
and identified in fermionic language. For example, the contribution:

∣∣f2
3 (q)

∣∣2 ≡
∣∣∣q− 1

24

∣∣∣
2
∣∣∣∣∣

∞∏

n=1

(1 + qn−
1
2 )2

∣∣∣∣∣

2

,

looks very fermionic, and is in fact the trace over the contributions from the NS sector fermions as they go
around the torus. It is squared because there are two components to the fermion, Ψ and Ψ̄. We have the
squared modulus beyond that since we have the contribution from the left and the right.

The f4(q) contribution on the other hand, arises from the NS sector with a (−)F inserted, where F
counts the number of fermions at each level. The f2(q) contribution comes from the R sector, and there is
a vanishing contribution from the R sector with (−1)F inserted. We see that that the projector

P =
1

2
(1 + (−1)F ) (219)

is the fermionic version of the projector (213) we identified previously. Notice that there is an extra factor
of two in front of the R sector contribution due to the definition of f2. This is because the R ground state
is in fact degenerate. The modes Ψ0 and Ψ̄0 define two ground states which map into one another. Denote
the vacuum by |s>, where s can take the values ± 1

2 . Then

Ψ0| − 1
2 >= 0 ; Ψ̄0| + 1

2>= 0 ;

Ψ̄0| − 1
2 >= | + 1

2 > ; Ψ0| + 1
2 >= | − 1

2 > ,
(220)

and Ψ0 and Ψ̄0 therefore form a representation of the two dimensional Clifford algebra. We will see this in
more generality later on. In D dimensions there are D/2 components, and the degeneracy is 2D/2.

As a final check, we can see that the zero point energies work out nicely too. The mnemonic (70) gives
us the zero point energy for a fermion in the NS sector as −1/48, we multiply this by two since there are
two components and we see that that we recover the weight of the ground state in the partition function.
For the Ramond sector, the zero point energy of a single fermion is 1/24. After multiplying by two, we see
that this is again correctly obtained in our partition function, since −1/24 + 1/8 = 1/12. It is awfully nice
that the function f2

2 (q) has the extra factor of 2q1/8, just for this purpose.
This partition function is again modular invariant, as can be checked using elementary properties of the

f–functions (217): f2 transforms into f4 under the S transformation, while under T, f4 transforms into f3.
At the level of vertex operators, the correspondence between the bosons and the fermions is given by:

ΨL(z) = eiβX
25
L (z) ; Ψ̄L(z) = e−iβX

25
L (z) ;

ΨR(z̄) = eiβX
25
R (z̄) ; Ψ̄R(z̄) = e−iβX

25
R (z̄) ,

(221)
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where β =
√

2/α′.
This makes sense, for the exponential factors define fields single–valued under X25 → X25 + 2πR, at our

special radius R =
√
α′/2. We also have

ΨL(z)Ψ̄L(z) = ∂zX
25 ; ΨR(z̄)Ψ̄R(z̄) = ∂z̄X

25 , (222)

which shows how to combine two (0, 1/2) fields to make a (0, 1) field, with a similar structure on the left.
Notice also that the symmetry X25 → −X25 swaps ΨL(R) and Ψ̄L(R), a symmetry of interest in the next
subsection.

We shall briefly this bosonization/fermionization relation in later sections, where it will be useful to write
vertex operators in various ways in the supersymmetric theories.

4.7 String Theory on an Orbifold

There is a rather large class of string vacua, called “orbifolds”,[26] with many applications in string theory.
We ought to study them, as many of the basic structures which will occur in their definition appear in more
complicated examples later on.

The circle S1, parametrised by X25 has the obvious Z2 symmetry R25 : X25 → −X25. This symmetry
extends to the full spectrum of states and operators in the complete theory of the string propagating on
the circle. Some states are even under R25, while others are odd. Just as we saw before in the case of Ω,
it makes sense to ask whether we can define another theory from this one by truncating the theory to the
sector which is even. This would define string theory propagating on the “orbifold” space S1/Z2. In defining
this geometry, note that it is actually a line segment, where the endpoints of the line are actually “fixed
points” of the Z2 action.

The point X25 = 0 is clearly such a point and the other is X25 = πR ∼ −πR, where R is the radius of
the original S1. A picture of the orbifold space is given in figure 20. In order to check whether string theory

Z
0 π 0 πR R

2Z

Figure 20: A Z2 orbifold of a circle, giving a line segment with two fixed points.

on this space is sensible, we ought to compute the partition function for it. We can work this out by simply
inserting the projector

P =
1

2
(1 +R25) , (223)

which will have the desired effect of projecting out the R25–odd parts of the circle spectrum. So we expect
to see two pieces to the partition function: a part that is 1

2 times Zcircle, and another part which is Zcircle

with R25 inserted. Noting that the action of R25 is

R25 :

{
α25
n → −α25

n

α̃25
n → −α̃25

n
, (224)

the partition function is:

Zorbifold =
1

2

[
Z(R, τ) + 2

(
|f2(q)|−2 + |f3(q)|−2 + |f4(q)|−2

)]
, (225)

The f2 part is what one gets if one works out the projected piece, but there are two extra terms. From
where do they come? One way to see that those extra pieces must be there is to realize that the first two
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parts on their own cannot be modular invariant. The first part is of course already modular invariant on its
own, while the second part transforms (217) into f4 under the S transformation, so it has to be there too.
Meanwhile, f4 transforms into f3 under the T –transformation, and so that must be there also, and so on.

While modular invariance is a requirement, as we saw, what is the physical meaning of these two extra
partition functions? What sectors of the theory do they correspond to and how did we forget them?

The sectors we forgot are very stringy in origin, and arise in a similar fashion to the way we saw windings
appear in earlier sections. There, the circle may be considered as a quotient of the real line R by a translation
X25 → X25 +2πR. There, we saw that as we go around the string, σ → σ+2π, the embedding map X25(σ)
is allowed to change by any amount of the lattice, 2πRw. Here, the orbifold further imposes the equivalence
X25 ∼ −X25, and therefore, as we go around the string, we ought to be allowed:

X25(σ + 2π, τ) = −X25(σ, τ) + 2πwR ,

for which the solution to the Laplace equation is:

X25(z, z̄) = x25 + i

√
α′

2

∞∑

n=−∞

1(
n+ 1

2

)
(
α25

n+
1
2

zn+
1
2 + α̃25

n+
1
2

z̄n+
1
2

)
, (226)

with x25 = 0 or πR, no zero mode α25
0 (hence no momentum), and no winding: w = 0.

This is a configuration of the string allowed by our equations of motion and boundary conditions and
therefore has to be included in the spectrum. We have two identical copies of these “twisted sectors”
corresponding to strings trapped at 0 and πR in spacetime. They are trapped, since x25 is fixed and there
is no momentum.

Notice that in this sector, where the boson X25(w, w̄) is antiperiodic as one goes around the cylinder,
there is a zero point energy of 1/16 from the twisted sector: it is a weight (1/16, 1/16) field, in terms of
where it appears in the partition function.

Schematically therefore, the complete partition function ought to be

Zorb. = Truntw′d

(
(1 +R25)

2
qL0−

1
24 q̄L̄0−

1
24

)

+Trtw′d

(
(1 +R25)

2
qL0−

1
24 q̄L̄0−

1
24

)
(227)

to ensure modular invariance, and indeed, this is precisely what we have in (225). The factor of two in front
of the twisted sector contribution is because there are two identical twisted sectors, and we must sum over
all sectors.

In fact, substituting in the expressions for the f–functions, one can discover the weight (1/16, 1/16)
twisted sector fields contributing to the vacuum of the twisted sector. This simply comes from the q−1/48

factor in the definition of the f3,4–functions. They appear inversely, and for example on the left, we have
1/48 = −c/24 + 1/16, where c = 1.

Finally, notice that the contribution from the twisted sectors do not depend upon the radius R. This fits
with the fact that the twisted sectors are trapped at the fixed points, and have no knowledge of the extent
of the circle.

4.8 T–Duality for Open Strings: D–branes

Let us now consider the R → 0 limit of the open string spectrum. Open strings do not have a conserved
winding around the periodic dimension and so they have no quantum number comparable to w, so something
different must happen, as compared to the closed string case. In fact, it is more like field theory: when R→ 0
the states with non–zero internal momentum go to infinite mass, but there is no new continuum of states
coming from winding. So we are left with a theory in one dimension fewer. A puzzle arises when one
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remembers that theories with open strings have closed strings as well, so that in the R → 0 limit the closed
strings live in D spacetime dimensions but the open strings only in D − 1.

This is perfectly fine, though, since the interior of the open string is indistinguishable from the closed
string and so should still be vibrating in D dimensions. The distinguished part of the open string are the
endpoints, and these are restricted to a D − 1 dimensional hyperplane.

This is worth seeing in more detail. Write the open string mode expansion as

Xµ(z, z̄) = Xµ(z) +Xµ(z̄) , (228)

Xµ(z) =
xµ

2
+
x′µ

2
− iα′pµ0 ln z + i

(
α′

2

)1/2∑

n6=0

1

n
αµnz

−n ,

Xµ(z̄) =
xµ

2
− x′µ

2
− iα′pµ0 ln z̄ + i

(
α′

2

)1/2∑

n6=0

1

n
αµnz̄

−n ,

where x′µ is an arbitrary number which cancels out when we make the usual open string coordinate. Imagine
that we place X25 on a circle of radius R. The T–dual coordinate is

X ′25(z, z̄) = X25(z) −X25(z̄)

= x′25 − iα′p25 ln
(z
z̄

)
+ i(2α′)1/2

∑

n6=0

1

n
α25
n e

−inτ sinnσ

= x25 + 2α′p25σ + i(2α′)1/2
∑

n6=0

1

n
α25
n e

−inτ sinnσ

= x25 + 2α′ n

R
σ + i(2α′)1/2

∑

n6=0

1

n
α25
n e

−inτ sinnσ . (229)

Notice that there is no dependence on τ in the zero mode sector. This is where momentum usually comes
from in the mode expansion, and so we have no momentum. In fact, since the oscillator terms vanish at
the endpoints σ = 0, π, we see that the endpoints do not move in the X ′25 direction!. Instead of the usual
Neumann boundary condition ∂nX ≡ ∂σX = 0, we have ∂tX ≡ i∂τX = 0. More precisely, we have the
Dirichlet condition that the ends are at a fixed place:

X ′25(π) −X ′25(0) =
2πα′n

R
= 2πnR′. (230)

In other words, the values of the coordinate X ′25 at the two ends are equal up to an integral multiple of the
periodicity of the dual dimension, corresponding to a string that winds as in figure 21.

This picture is consistent with the fact that under T–duality, the definition of the normal and tangential
derivatives get exchanged:

∂nX
25(z, z̄) =

∂X25(z)

∂z
+
∂X25(z̄)

∂z̄
= ∂tX

′25(z, z̄)

∂tX
25(z, z̄) =

∂X25(z)

∂z
− ∂X25(z̄)

∂z̄
= ∂nX

′25(z, z̄) . (231)

Notice that this all pertains to just the direction which we T–dualised, X25. So the ends are still free to
move in the other 24 spatial dimensions, which constitutes a hyperplane called a “D–brane”. There are 24
spatial directions, so we shall denote it a D24–brane.

4.9 Chan–Paton Factors and Wilson Lines

The picture becomes even more rich when we include Chan–Paton factors and Wilson lines[28]. Let us pause
to recall the latter.
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Figure 21: Open strings with endpoints attached to a hyperplane. The dashed planes are periodically
identified. The strings shown have winding numbers zero and one.

Wilson line configurations in a gauge theory are of relevance when spacetime has non–trivial topology.
Let us consider the case that the coordinate X25 is compactified on a circle of radius R. Consider the case
that we have gauge group U(1). We can make the following choice of constant background gauge potential:

A25(X
µ) = − θ

2πR
= −iΛ−1 ∂Λ

∂X25
, (232)

where Λ(X25) = e−
iθX25

2πR . This is clearly pure gauge, but only locally. There still exists non–trivial physics.
Form the gauge invariant quantity (“Wilson Line”):

Wq = exp

(
iq

∮
dX25A25

)
= e−iqθ . (233)

Where does this observable show up? Imagine a point particle of charge q under the U(1). Its action can be
written as:

S =

∫
dτ

{
1

2
ẊµẊµ − iqAµẊ

µ

}
=

∫
dτL . (234)

The last term is just −iq
∫
A = −iq

∫
Aµdx

µ, in the language of forms. This is the natural coupling of a
world volume to an antisymmetric tensor, as we shall see.)

Recall that in the path integral we are computing e−S . So if the particle does a loop around X25 circle,
it will pick up a phase factor of Wq. Notice that the conjugate momentum to Xµ is

Πµ = i
∂L
∂Ẋµ

= iẊµ , except for Π25 = iẊ25 − qθ

2πR
=
n

R
,

where the last equality results from the fact that we are on a circle. Now we can of course gauge away A
with the choice Λ−1, but it will be the case that as we move around the circle, i.e., X25 → X25 + 2πR, the
particle (and all fields) of charge q will pick up a phase eiqθ . So the canonical momentum is shifted to:

p25 =
n

R
+

qθ

2πR
. (235)

We shall use this result in what follows.
Returning to the oriented open string and consider the case of U(N). When we compactify the X25

direction, we can include a Wilson line

A25 = diag{θ1, θ2, . . . , θN}/2πR ,
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which generically breaks U(N) → U(1)N . Locally this is pure gauge,

A25 = −iΛ−1∂25Λ, Λ = diag{eiX25θ1/2πR, eiX
25θ2/2πR, . . . , eiX

25θ1/2πR} . (236)

We can gauge A25 away, but since the gauge transformation is not periodic, the fields pick up a phase

diag
{
e−iθ1 , e−iθ2 , . . . , e−iθN

}
(237)

under X25 → X25 + 2πR. What is the effect in the dual theory? Due to the phase (237) the open string
momenta are now fractional.

As the momentum is dual to winding number, we conclude that the fields in the dual description have
fractional winding number, i.e., their endpoints are no longer on the same hyperplane. Indeed, a string
whose endpoints are in the state |ij〉 picks up a phase ei(θj−θi), so their momentum is (2πn+ θj − θi)/2πR.
Modifying the endpoint calculation (230) then gives

X ′25(π) −X ′25(0) = (2πn+ θj − θi)R
′. (238)

In other words, up to an arbitrary additive constant, the endpoint in state i is at position

X ′25 = θiR
′ = 2πα′A25,ii. (239)

We have in general N hyperplanes at different positions as depicted in figure 22.

Rθ1 Rθ2 Rθ3 R2  π0
X

25

Figure 22: Three D–branes at different positions, with various strings attached.

4.10 D–Brane Collective Coördinates

Clearly, the whole picture goes through if several coordinates

Xm = {X25, X24, . . . , Xp+1} (240)

are periodic, and we rewrite the periodic dimensions in terms of the dual coordinates. The open string
endpoints are then confined to N (p + 1)–dimensional hyperplanes, the D(p + 1)–branes. The Neumann
conditions on the world sheet, ∂nX

m(σ1, σ2) = 0, have become Dirichlet conditions ∂tX
′m(σ1, σ2) = 0 for

the dual coordinates. In this terminology, the original 26 dimensional open string theory theory contains
N D25–branes. A 25–brane fills space, so the string endpoint can be anywhere: it just corresponds to an
ordinary Chan–Paton factor.

It is natural to expect that the hyperplane is dynamical rather than rigid.[12] For one thing, this theory
still has gravity, and it is difficult to see how a perfectly rigid object could exist. Rather, we would expect
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that the hyperplanes can fluctuate in shape and position as dynamical objects. We can see this by looking
at the massless spectrum of the theory, interpreted in the dual coordinates.

Taking for illustration the case where a single coordinate is dualised, consider the mass spectrum. The
D − 1 dimensional mass is

M2 = (p25)2 +
1

α′
(N − 1)

=

(
[2πn+ (θi − θj)]R

′

2πα′

)2

+
1

α′
(N − 1). (241)

Note that [2πn + (θi − θj)]R
′ is the minimum length of a string winding between hyperplanes i and j.

Massless states arise generically only for non–winding (i.e., n = 0) open strings whose end points are on the
same hyperplane, since the string tension contributes an energy to a stretched string. We have therefore the
massless states (with their vertex operators):

αµ−1|k; ii〉, V = ∂tX
µ,

αm−1|k; ii〉, V = ∂tX
m = ∂nX

′m. (242)

The first of these is a gauge field living on the D–brane, with p+ 1 components tangent to the hyperplane,
Aµ(ξa), µ, a = 0, . . . , p. Here, ξµ = xµ are coordinates on the D–branes’ world–volume. The second was
the gauge field in the compact direction in the original theory. In the dual theory it becomes the transverse
position of the D–brane (see (239)). From the point of view of the world–volume, it is a family of scalar
fields, Φm(ξa), (m = p+ 1, . . . , D − 1) living there.

We saw this in equation (239) for a Wilson line, which was a constant gauge potential. Now imagine that,
as genuine scalar fields, the Φm vary as we move around on the world–volume of the D–brane. This therefore
embeds the brane into a variable place in the transverse coordinates. This is simply describing a specific
shape to the brane as it is embedded in spacetime. The Φm(ξa) are exactly analogous to the embedding
coordinate map Xµ(σ, τ) with which we described strings in the earlier sections.

The values of the gauge field backgrounds describe the shape of the branes as a soliton background, then.
Meanwhile their quanta describe fluctuations of that background. This is the same phenomenon which we
found for our description of spacetime in string theory. We started with strings in a flat background and
discover that a massless closed string state corresponds to fluctuations of the geometry. Here we found first
a flat hyperplane, and then discovered that a certain open string state corresponds to fluctuations of its
shape. Remarkably, these open string states are simply gauge fields, and this is one of the reasons for the
great success of D–branes. There are other branes in string theory (as we shall see in section 11) and they
have other types of field theory describing their collective dynamics. D–branes are special, in that they have
a beautiful description using gauge theory. Ultimately, we can use the long experience of working with gauge
theories to teach us much about D–branes, the geometry of D–branes and the string theories in which they
live can teach us a lot about gauge theories. This is the basis of the dialogue between gauge theory and
geometry which is common in the field at present.

It is interesting to look at the U(N) symmetry breaking in the dual picture where the brane can move
transverse to their world–volumes. When no D–branes coincide, there is just one massless vector each, or
U(1)N in all, the generic unbroken group. If k D–branes coincide, there are new massless states because
strings which are stretched between these branes can achieve vanishing length. Thus, there are k2 vectors,
forming the adjoint of a U(k) gauge group.[28, 29] This coincident position corresponds to θ1 = θ2 = · · · = θk
for some subset of the original {θ}, so in the original theory the Wilson line left a U(k) subgroup unbroken.
At the same time, there appears a set of k2 massless scalars: the k positions are promoted to a matrix. This
is curious and hard to visualize, but plays an important role in the dynamics of D–branes.[29] Note that if
all N branes are coincident, we recover the U(N) gauge symmetry.

While this picture seems a bit exotic, and will become more so in the unoriented theory, the reader should
note that all we have done is to rewrite the original open string theory in terms of variables which are more
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natural in the limit R �
√
α′. Various puzzling features of the small–radius limit become clear in the T–dual

picture.
Observe that, since T–duality interchanges Neumann and Dirichlet boundary conditions, a further T–

duality in a direction tangent to a Dp–brane reduces it to a D(p− 1)–brane, while a T–duality in a direction
orthogonal turns it into a D(p+ 1)–brane.

4.11 T–Duality for Unoriented Strings

4.11.1 Orientifolds.

The R → 0 limit of an unoriented theory also leads to a new extended object. Recall that the effect of
T–duality can also be understood as a one–sided parity transformation.

For closed strings, the original coordinate is Xm(z, z̄) = Xm(z)+Xm(z̄). We have already discussed how
to project string theory with these coordinates by Ω. The dual coordinate is X ′m(z, z̄) = Xm(z) −Xm(z̄).
The action of world sheet parity reversal is to exchangeXµ(z) and Xµ(z̄). This gives for the dual coordinate:

X ′m(z, z̄) ↔ −X ′m(z̄, z) . (243)

This is the product of a world–sheet and a spacetime parity operation.
In the unoriented theory, strings are invariant under the action of Ω, while in the dual coordinate the

theory is invariant under the product of world–sheet parity and a spacetime parity. This generalisation
of the usual unoriented theory is known as an “orientifold”, a term which mixes the term “orbifold” with
orientation reversal.

Imagine that we have separated the string wavefunction into its internal part and its dependence on the
centre of mass, xm. Furthermore, take the internal wavefunction to be an eigenstate of Ω. The projection
then determines the string wavefunction at −xm to be the same as at xm, up to a sign. In practice, the
various components of the metric and antisymmetric tensor satisfy e.g.,

Gµν(x
µ,−xm) = Gµν(x

µ, xm), Bµν(x
µ,−xm) = −Bµν(xµ, xm),

Gµn(xµ,−xm) = −Gµn(xµ, xm), Bµn(x
µ,−xm) = Bµn(x

µ, xm),

Gmn(x
µ,−xm) = Gmn(x

µ, xm), Bmn(x
µ,−xm) = −Bmn(xµ, xm) .

(244)

In other words, when we have k compact directions, the T–dual spacetime is the torus T 25−k modded by a
Z2 reflection in the compact directions. So we are instructed to perform an orbifold construction, modified
by the extra sign. In the case of a single periodic dimension, for example, the dual spacetime is the line
segment 0 ≤ x25 ≤ πR′. The reader should remind themselves of the orbifold construction in section 4.7. At
the ends of the interval, there are fixed “points” , which are in fact spatially 24–dimensional planes.

Looking at the projections (244) in this case, we see that on these fixed planes, the projection is just
like we did for the Ω–projection of the 25+1 dimensional theory in section 2.11: The theory is unoriented
there, and half the states are removed. These orientifold fixed planes are called “O–planes” for short. For
this case, we have two O24–planes. (For k directions we have 2k O(25 − k)–planes arranged on the vertices
of a hypercube.) In particular, we can usefully think of the original case of k = 0 as being on an O25–plane.

While the theory is unoriented on the O–plane, away from the orientifold fixed planes, the local physics
is that of the oriented string theory. The projection relates the physics of a string at some point xm to the
string at the image point −xm.

In string perturbation theory, orientifold planes are not dynamical. Unlike the case of D–branes, there are
no string modes tied to the orientifold plane to represent fluctuations in its shape. Our heuristic argument in
the previous subsection that gravitational fluctuations force a D–brane to move dynamically does not apply
to the orientifold fixed plane. This is because the identifications (244) become boundary conditions at the
fixed plane, such that the incident and reflected gravitational waves cancel. For the D–brane, the reflected
wave is higher order in the string coupling.
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The orientifold construction was discovered via T–duality[12] and independently from other points of
view.[30, 14] One can of course consider more general orientifolds which are not simply T–duals of toroidal
compactifications. The idea is simply to combine a group of discrete symmetries with Ω such that the
resulting group of operations (the “orientifold group”, GΩ) is itself a symmetry of some string theory. One
then has the right to ask what the nature of the projected theory obtained by dividing by GΩ might be. This
is a fruitful way of construction interesting and useful string vacua.[31] We shall have more to say about this
later, since in superstring theory we shall find that O–planes, like D–branes , are sources of various closed
string sector fields. Therefore there will be additional consistency conditions to be satisfied in constructing
an orientifold, amounting to making sure that the field equations are satisfied.

4.11.2 Orientifolds and D–Branes

So far our discussion of orientifolds was just for the closed string sector. Let us see how things are changed
in the presence of open strings. In fact, the situation is similar. Again, let us focus for simplicity on a single
compact dimension. Again there is one orientifold fixed plane at 0 and another at πR′. Introducing SO(N)
Chan–Paton factors, a Wilson line can be brought to the form

diag{θ1,−θ1, θ2,−θ2, · · · , θN/2,−θN/2}. (245)

Thus in the dual picture there are 1
2N D–branes on the line segment 0 ≤ X ′25 < πR′, and 1

2N at their image
points under the orientifold identification.

Strings can stretch between D–branes and their images as shown in figure 23. The generic gauge group

R RRR Rπ
X

25

θ1 θ2θ1θ2 0

Figure 23: Orientifold planes at 0 and πR′. There are D–branes at θ1R
′ and θ2R

′, and their images at
−θ1R′ and −θ2R′. Ω acts on any string by a combination of a spacetime reflection through the planes and
reversing the orientation arrow.

is U(1)N/2, where all branes are separated. As in the oriented case, if m D–branes are coincident there is a
U(m) gauge group. However, now if the m D–branes in addition lie at one of the fixed planes, then strings
stretching between one of these branes and one of the image branes also become massless and we have the
right spectrum of additional states to fill out SO(2m). The maximal SO(N) is restored if all of the branes
are coincident at a single orientifold plane. Note that this maximally symmetric case is asymmetric between
the two fixed planes. Similar considerations apply to USp(N). As we saw before, the difference between the
appearance of the two groups is in a sign on the matrix M as it acts on the string wavefunction. Later, we
shall see that this sign is correlated with the sign of the charge and tension of the orientifold plane.

We should emphasize that there are 1
2N dynamical D–branes but an N–valued Chan–Paton index. An

interesting case is when k + 1
2 D–branes lie on a fixed plane, which makes sense because the number 2k + 1

of indices is integer. A brane plus image can move away from the fixed plane, but the number of branes
remaining is always half–integer.
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5 Background Fields and World–Volume Actions

T–duality is clearly a remarkable phenomenon which is highly indicative of the different view string theory
has of spacetime from that of field theories. This heralds a rather rich landscape of possibilities for new
physics, and indeed T–duality will govern much of what we will study in the rest of this book, either directly
or indirectly. So far, we have uncovered it at the level of the string spectrum, and have used it to discover
D–branes and orientifolds. However, we have so far restricted ourselves to flat spacetime backgrounds, with
none of the other fields in the string spectrum switched on. In this section, we shall study the action of T–
duality when the massless fields of the string theory take on non–trivial values, giving us curved backgrounds
and/or gauge fields on the world–volume of the D–branes. It is also important to uncover further aspects of
the dynamics of D–branes in non–trivial backgrounds, and we shall also uncover an action to describe this
here.

5.1 T–duality in Background Fields

The first thing to notice is that T–duality acts non–trivially on the dilaton, and therefore modifies the
string coupling: [20, 21] After dimensional reduction on a circle of radius R, the effective 25–dimensional
string coupling read off from the reduced string frame supergravity action is now gs = eΦ(2πR)−1/2. Since
the resulting 25–dimensional theory is supposed to have the same physics, by T–duality, as a theory with a

dilaton Φ̃, compactified on a circle of radius R′, it is required that this coupling is equal to g̃s = eΦ̃(2πR′)−1/2,
the string coupling of the dual 25–dimensional theory:

eΦ̃ = eΦ
α′1/2

R
. (246)

This is just part of a larger statement about the T–duality transformation properties of background fields
in general. Starting with background fields Gµν , Bµν and Φ, let us first T–dualise in one direction, which
we shall label X25, as before. In other words, X25 is a direction which is a circle of radius R, and the dual
circle X ′25 is a circle of radius R′ = α′/R.

We may start with the two–dimensional sigma model (93) with background fields Gµν , Bµν , Φ, and
assume that locally, all of the fields are independent of the direction X25. In this case, we may write an
equivalent action by introducing a Lagrange multiplier, which we shall call X ′25:

Sσ =
1

4πα′

∫
d2σg1/2

{
gab [G25,25vavb + 2G25,µva∂bX

µ +Gµν∂aX
µ∂bX

ν]

+ iεab
[
2B25,µva∂bX

µ +Bµν∂aX
µ∂bX

ν + 2X ′25∂avb
]
+ α′RΦ

}
. (247)

Since the equation of motion for the Lagrange multiplier is

∂L
∂X ′25

= iεab∂avb = 0 ,

we can write a solution as vb = ∂bφ for any scalar φ, which we might as well call X25, since upon substitution
of this solution back into the action, we get our original action (93).

Instead, we can find the equation of motion for the quantity va:

∂L
∂va

− ∂

∂σb

(
∂L

∂(∂bva)

)
= 0 (248)

= gab [G25,25vb +G25,µ∂bX
µ] + iεab

[
B25,µ∂bX

µ + ∂bX
′25
]
,
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which, upon solving it for va and substituting back into the equations gives an action of the form (93), but
with fields G̃µν and B̃µν given by:

G̃25,25 =
1

G25,25
; e2Φ̃ =

e2Φ

G25,25
,

G̃µ25 =
Bµ25

G25,25
; B̃µ25 =

Gµ25

G25,25
,

G̃µν = Gµν −
Gµ25Gν25 −Bµ25Bν25

G25,25
,

B̃µν = Bµν −
Bµ25Gν25 −Gµ25Bν25

G25,25
, (249)

where a one loop (not tree level) world–sheet computation (e.g., by checking the β–function equations again,
or by considering the new path integral measure induced by integrating out va), gives the new dilaton. This
fits with the fact that it couples at the next order in α′ (which plays the role of h̄ on the world–sheet) as
discussed previously.

Of course, we can T–dualise on many (say d) independent circles, forming a torus T d. It is not hard
to deduce that one can succinctly write the resulting T–dual background as follows. If we define the D×D
metric

Eµν = Gµν +Bµν , (250)

and if the circles are in the directions X i, i = 1, . . . , d, with the remaining directions labelled by Xa, then
the dual fields are given by

Ẽij = Eij , Ẽaj = EakE
kj , e2Φ̃ = e2Φ det(Eij) ,

Ẽab = Eab − EaiE
ijEjb , (251)

where EikE
kj = δ ji defines Eij as the inverse of Eij . We will find this succinct form of the O(d, d) T–duality

transformation very useful later on.

5.2 A First Look at the D–brane World–Volume Action

The D–brane is a dynamical object, and as such, feels the force of gravity. In fact, it must be able to respond
to the values of the various background fields in the theory. This is especially obvious if one recalls that
the D–branes’ location and shaped is controlled (in at least one way of describing them) by the open strings
which end on them. These strings respond to the background fields in ways we have already studied (we
have written world–sheet actions for them), and so should the D–branes. We must find a world–volume
action describing their dynamics.

If we introduce coordinates ξa, a = 0, . . . p on the brane, we can begin to write an action for the dynamics
of the brane in terms of fields living on the world–volume in much the same way that we did for the string,
in terms of fields living on the world–sheet. The background fields will act as generalized field–dependent
couplings. As we discussed before, the fields on the brane are the embedding Xµ(ξ) and the gauge field
Aa(ξ). We shall ignore the latter for now and concentrate just on the embedding part. By direct analogy to
the particle and string case studied in section 2, the action is

Sp = −Tp
∫
dp+1ξ e−Φ det1/2Gab , (252)

where Gab is the induced metric on the brane, otherwise known as the “pull–back” of the spacetime metric
Gµν to the brane:

Gab ≡
∂Xµ

∂ξa
∂Xν

∂ξb
Gµν . (253)
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Tp is the tension of the Dp–brane, which we shall discuss at length later. The dilaton dependence e−Φ = g−1
s

arises because this is an open string tree level action, and so this is the appropriate function of the dilaton
to introduce.

The world–volume reparametrisation invariant action we have just written is in terms of the determinant
of the metric. It is a common convention to leave the a, b indices dangling in writing this action and its
generalizations, and we shall adopt that somewhat loose notation here. More careful authors sometimes use
other symbols, like det1/2P [G], where the P denotes the pullback, and G means the metric, now properly
thought of as a matrix whose determinant is to be taken. Here, the meaning of what we write using the
looser notation should always be clear from the context.

Of course, this cannot be the whole story, and indeed it is clear that we shall need a richer action, since the
rules of T–duality action on the background fields mean that T–dualising to a D(p+1)– or D(p− 1)–brane’s
action will introduce a dependence on Bµν , since it mixes with components of the metric. Furthermore,
there will be mixing with components of a world–volume gauge field, since some of kinetic terms for the
transverse fields, ∂aX

m, m = p+ 1, . . . , D− 1, implicit in the action (253), will become derivatives of gauge
fields, 2πα′∂aAm according to the rules of T–duality for open strings deduced in the previous section. We
shall construct the full T–duality respecting action in the next subsection. Before we do that, let us consider
what we can learn about the tension of the D–brane from this simple action, and what we learned about the
transformation of the dilaton.

The tension of the brane controls its response to outside influences which try to make it change its shape,
absorb energy, etc., just as we saw for the tension of a string. We shall compute the actual value of the
tension in section 6. Here, we are going to uncover a useful recursion relation relating the tensions of different
D–branes, which follows from T–duality[72, 32]. The mass of a Dp–brane wrapped around a p–torus T p is

Tpe
−Φ

p∏

i=1

(2πRi) . (254)

T–dualising on the single direction Xp and recalling the transformation (246) of the dilaton, we can rewrite
the mass (254) in the dual variables:

Tp(2π
√
α′)e−Φ′

p−1∏

i=1

(2πRi) = Tp−1e
−Φ′

p−1∏

i=1

(2πRi) . (255)

Hence,
Tp = Tp−1/2π

√
α′ ⇒ Tp = Tp′(2π

√
α′)p

′−p . (256)

Where we performed the duality recursively to deduce the general relation.
The next step is to take into account new couplings for the embedding coordinates/fields which result

of other background spacetime fields like the antisymmetric tensor Bµν . This again appears as an induced
tensor Bab on the worldvolume, via a formula like (253).

It is important to notice that that there is a restriction due to spacetime gauge symmetry on the precise
combination ofBab andAa which can appear in the action. The combinationBab+2πα′Fab can be understood
as follows. In the world–sheet sigma model action of the string, we have the usual closed string term (93)
for B and the boundary action (98) for A. So the fields appear in the combination:

1

2πα′

∫

M

B +

∫

∂M

A . (257)

We have written everything in terms of differential forms, since B and A are antisymmetric. For example∫
A ≡

∫
Aadξ

a.
This action is invariant under the spacetime gauge transformation δA = dλ. However, the spacetime

gauge transformation δB = dζ will give a surface term which must be canceled with the following gauge
transformation of A: δA = −ζ/2πα′. So the combination B+2πα′F , where F = dA is invariant under both
symmetries; This is the combination of A and B which must appear in the action in order for spacetime
gauge invariance to be preserved.
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5.2.1 World–Volume Actions from Tilted D–Branes

There are many ways to deduce pieces of the world–volume action. One way is to redo the computation
for Weyl invariance of the complete sigma model, including the boundary terms, which will result in the
(p+1)–dimensional equations of motion for the world–volume fields Gab, Bab and Aa. One can then deduce
the p+ 1–dimensional world–volume action from which those equations of motion may be derived. We will
comment on this below.

Another way, hinted at in the previous subsection, is to use T–duality to build the action piece by piece.
For the purposes of learning more about how the branes work, and in view of the various applications we
will put the branes to, this second way is perhaps more instructive.

Consider[41] a D2–brane extended in the X1 and X2 directions, and let there be a constant gauge field
F12. (We leave the other dimensions unspecified, so the brane could be larger by having extent in other
directions. This will not affect our discussion.) We can choose a gauge in which A2 = X1F12. Now consider
T–dualising along the x2–direction. The relation (239) between the potential and coordinate gives

X ′2 = 2πα′X1F12 , (258)

This says that the resulting D1–brane is tilted at an angle11

θ = tan−1(2πα′F12) (259)

to the X2–axis! This gives a geometric factor in the D1–brane world–volume action,

S ∼
∫

D1

ds =

∫
dX1

√
1 + (∂1X ′2)2 =

∫
dX1

√
1 + (2πα′F12)2 . (260)

We can always boost the D–brane to be aligned with the coordinate axes and then rotate to bring Fµν to
block-diagonal form, and in this way we can reduce the problem to a product of factors like (260) giving a
determinant:

S ∼
∫
dDX det1/2(ηµν + 2πα′Fµν) . (261)

This is the Born–Infeld action.[45]
In fact, this is the complete action (in a particular “static” gauge which we will discuss later) for a

space–filling D25–brane in flat space, and with the dilaton and antisymmetric tensor field set to zero. In
the language of section 2.13, Weyl invariance of the open string sigma model (98) amounts to the following
analogue of (96) for the open string sector:

βAµ = α′

(
1

1 − (2πα′F )2

)νλ
∂(νFλ)µ = 0 , (262)

these equations of motion follow from the action. In fact, in contrast to the Maxwell action written previously
(97), and the closed string action (96), this action is true to all orders in α′, although only for slowly varying
field strengths; there are corrections from derivatives of Fµν .[35]

5.3 The Dirac–Born–Infeld Action

We can uncover a lot of the rest of the action by simply dimensionally reducing. Starting with (261), where
Fµν = ∂µAν − ∂νAµ as usual (we will treat the non–Abelian case later) let us assume that D − p − 1
spatial coordinates are very small circles, small enough that we can neglect all derivatives with respect to

11The reader concerned about achieving irrational angles and hence densely filling the (x1, x2) torus should suspend disbelief
until section 8. There, when we work in the fully consistent quantum theory of superstrings, it will be seen that the fluxes are
quantized in just the right units to make this sensible.

69



those directions, labelled Xm, m = p+ 1, . . . , D − 1. (The uncompactified coordinates will be labelled Xa,
a = 0, . . . , p.) In this case, the matrix whose determinant appears in (261) is:

(
N −AT
A M

)
, (263)

where
N = ηab + 2πα′Fab ; M = δmn ; A = 2πα′∂aAm . (264)

Using the fact that its determinant can be written as |M ||N +ATM−1A|, our action becomes[59]

S ∼ −
∫
dp+1X det1/2(ηab + ∂aX

m∂bXm + 2πα′Fab) , (265)

up to a numerical factor (coming from the volume of the torus we reduced on. Once again, we used the
T–duality rules (239) to replace the gauge fields in the T–dual directions by coordinates: 2πα′Am = Xm.

This is (nearly) the action for a Dp–brane and we have uncovered how to write the action for the
collective coordinates Xm representing the fluctuations of the brane transverse to the world–volume. There
now remains only the issue of putting in the case of non–trivial metric, Bµν and dilaton. This is easy to
guess given that which we have encountered already:

Sp = −Tp
∫
dp+1ξ e−Φ det1/2(Gab +Bab + 2πα′Fab) . (266)

This is the Dirac–Born–Infeld Lagrangian, for arbitrary background fields. The factor of the dilaton is again
a result of the fact that all of this physics arises at open string tree level, hence the factor g−1

s , and the
Bab is in the right place because of spacetime gauge invariance. Tp and Gab are in the right place to match
onto the discussion we had when we computed the tension. Instead of using T–duality, we could have also
deduced this action by a generalisation of the sigma model methods described earlier, and in fact this is how
it was first derived in this context.[37]

We have re–introduced independent coordinates ξa on the world–volume. Note that the actions given in
equations (260) and (265) were written using a choice where we aligned the world–volume with the first p+1
spacetime coordinates as ξa = Xa, leaving the D−p−1 transverse coordinates called Xm. We can always do
this using world–volume and spacetime diffeomorphism invariance. This choice is called the “static gauge”,
and we shall use it quite a bit in these notes. Writing this out (for vanishing dilaton) using the formula (253)
for the induced metric, for the case of Gµν = ηµν we see that we get the action (265).

5.4 The Action of T–Duality

It is amusing[44, 54] to note that our full action obeys (as it should) the rules of T–duality which we
already wrote down for our background fields. The action for the Dp–brane is built out of the determinant
|Eab + 2πα′Fab|, where the (a, b = 0, . . . p) indices on Eab mean that we have performed the pullback of Eµν
(defined in (250)) to the world–volume. This matrix becomes, if we T–dualise on n directions labelled by
X i and use the rules we wrote in (251):

∣∣∣∣
Eab − EaiE

ijEjb + 2πα′Fab −EakEkj − ∂aX
i

EikEkb + ∂bX
i Eij

∣∣∣∣ , (267)

which has determinant |Eij ||Eab+2πα′Fab|. In forming the square root, we get again the determinant needed
for the definition of a T–dual DBI action, as the extra determinant |Eij | precisely cancels the determinant
factor picked up by the dilaton under T–duality. (Recall, Eij is the inverse of Eij .)

Furthermore, the tension Tp′ comes out correctly, because there is a factor of Πn
i (2πRi) from integrating

over the torus directions, and a factor Πni (Ri/
√
α′) from converting the factor e−Φ, (see (246)), which fits

nicely with the recursion formula (256) relating Tp and Tp′ .
The above was done as though the directions on which we dualised were all Neumann or all Dirichlet.

Clearly, we can also extrapolate to the more general case.
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5.5 Non–Abelian Extensions

For N D–branes the story is more complicated. The various fields on the brane representing the collective
motions, Aa and Xm, become matrices valued in the adjoint. In the Abelian case, the various spacetime
background fields (here denoted Fµ for the sake of argument) which can appear on the world–volume typically
depend on the transverse coordinates Xm in some (possibly) non–trivial way. In the non–Abelian case, with
N D–branes, the transverse coordinates are really N ×N matrices, 2πα′Φm, since they are T–dual to non–
Abelian gauge fields as we learned in previous sections, and so inherit the behaviour of gauge fields (see
equation (239)). We write them as Φm = Xm/(2πα′). So not only should the background fields Fµ depend
on the Abelian part, but they ought to possibly depend (implicitly or explicitly) on the full non–Abelian
part as F (Φ)µ in the action.

Furthermore, in (266) we have used the partial derivatives ∂aX
µ to pull back spacetime indices µ to the

world–volume indices, a, e.g., Fa = Fµ∂aX
µ, and so on. To make this gauge covariant in the non–Abelian

case, we should pull back with the covariant derivative: Fa = FµDaXµ = Fµ(∂aX
µ + [Aa, X

µ]).
With the introduction of non–Abelian quantities in all of these places, we need to consider just how to

perform a trace, in order to get a gauge invariant quantity to use for the action. Starting with the fully
Neumann case (261), a first guess is that things generalise by performing a trace (in the fundamental of U(N))
of the square rooted expression. The meaning of the Tr needs to be stated, It is proposed that is means the
“symmetric” trace, denoted “STr” which is to say that one symmetrises over gauge indices, consequently
ignoring all commutators of the field strengths encountered while expanding the action. [46] (This suggestion
is consistent with various studies of scattering amplitudes and also the BPS nature of various non–Abelian
soliton solutions. There is still apparently some ambiguity in the definition which results in problems beyond
fifth order in the field strength. [47])

Once we have this action, we can then again use T–duality to deduce the form for the lower dimensional,
Dp–brane actions. The point is that we can reproduce the steps of the previous analysis, but keeping
commutator terms such as [Aa,Φ

m] and [Φm,Φn]. We will not reproduce those steps here, as they are
similar in spirit to that which we have already done (for a complete discussion, the reader is invited to
consult some of the literature[48].) The resulting action is:

Sp = −Tp
∫
dp+1ξ e−ΦL , where (268)

L = STr
{
det1/2[Eab + Eai(Q

−1 − δ)ijEjb + 2πα′Fab] det1/2[Qij ]
}
,

where Qij = δij + i2πα′[Φi,Φk]Ekj , and we have raised indices with Eij .

5.6 D–Branes and Gauge Theory

In fact, we are now in a position to compute the constant C in equation (97), by considering N D25–branes,
which is the same as an ordinary (fully Neumann) N–valued Chan–Paton factor. Expanding the D25–brane
Lagrangian (261) to second order in the gauge field, we get

−T25

4
(2πα′)2e−ΦTrFµνF

µν , (269)

with the trace in the fundamental representation of U(N). This gives the precise numerical relation between
the open and closed string couplings.

Actually, with Dirichlet and Neumann directions, performing the same expansion, and in addition noting
that

det[Qij ] = 1 − (2πα′)2

4
[Φi,Φj ][Φi,Φj ] + · · · , (270)

one can write the leading order action (268) as

Sp = −Tp(2πα
′)2

4

∫
dp+1ξ e−ΦTr

[
FabF

ab + 2DaΦiDaΦi + [Φi,Φj ]2
]}

. (271)

71



This is the dimensional reduction of the D–dimensional Yang–Mills term, displaying the non–trivial
commutator for the adjoint scalars. This is an important term in many modern applications. Note that the
(p+ 1)–dimensional Yang–Mills coupling for the theory on the branes is

g2
YM,p = gsT

−1
p (2πα′)−2 . (272)

This is worth noting[66]. With the superstring value of Tp which we will compute later, it is used in
many applications to give the correct relation between gauge theory couplings and string quantities.

5.7 BPS Lumps on the World–volume

We can of course treat the Dirac–Born–Infeld action as an interesting theory in its own right, and seek
for interesting solutions of it. These solutions will have both a (p + 1)–dimensional interpretation and a
D–dimensional one.

We shall not dwell on this in great detail, but include a brief discussion here to illustrate an important
point, and refer to the literature for more complete discussions.[58] More details will appear when we get to
the supersymmetric case. One can derive an expression for the energy density contained in the fields on the
world–volume:

E2 = EaEbFcaFcb + EaEbGab + det(G+ 2πα′F ) , (273)

where here the matrix Fab contains only the magnetic components (i.e. no time derivatives) and Ea are the

electric components, subject to the Gauss Law constraint ~∇ · ~E = 0. Also, as before

Gab = ηab + ∂aX
m∂bX

m , m = p+ 1, . . . , D − 1 . (274)

Let us consider the case where we have no magnetic components and only one of the transverse fields,
say X25, switched on. In this case, we have

E2 = (1 ± ~E · ~∇X25)2 + ( ~E ∓ ~∇X25)2 , (275)

and so we see that we have the Bogomol’nyi condition

E ≥ | ~E · ~∇X25| + 1 . (276)

This condition is saturated if ~E = ±~∇X25. In such a case, we have

∇2X25 = 0 ⇒ X25 =
cp
rp−2

, (277)

an harmonic solution, where cp is a constant to be determined.
The total energy (beyond that of the brane itself) is, integrating over the world–volume:

Etot = lim
ε→∞

Tp

∫ ∞

ε

rp−1drdΩp−1(~∇X25)2 = lim
ε→∞

Tp
c2p(p− 2)Ωp−1

εp−2

= lim
ε→∞

Tpcp(p− 2)Ωp−1X
25(ε) , (278)

where Ωp−1 is the volume of the sphere Sp−1 surrounding our point charge source, and we have cut off the
divergent integral by integrating down to r = ε. (We will save the case of p = 1 for later [131, 63].) Now we
can choose1 a value of the electric flux such that we get (p− 2)cpΩp−1Tp = (2πα′)−1. Putting this into our
equation for the total energy, we see that the (divergent) energy of our configuration is:

Etot =
1

2πα′
X25(ε) . (279)

1In the supersymmetric case, this has a physical meaning, since overall consistency of the D–brane charges set a minimum
electric flux. Here, it is a little more arbitrary, and so we choose a value by hand to make the point we wish to illustrate.

72



What does this mean? Well, recall that X25(ξ) gives the transverse position of the brane in the X25

direction. So we see that the brane has grown a semi–infinite spike at r = 0, and the base of this spike
is our point charge. The interpretation of the divergent energy is simply the (infinite) length of the spike
multiplied by a mass per unit length. But this mass per unit length is precisely the fundamental string
tension T = (2πα′)−1! In other words, the spike solution is the fundamental string stretched perpendicular
to the brane and ending on it, forming a point electric charge, known as a “BIon”. See figure 24(a). In
fact, a general BIon includes the non–linear corrections to this spike solution, which we have neglected here,
having only written the linearized solution.

It is a worthwhile computation to show that if test source with the same charges is placed on the brane,
there is no force of attraction or repulsion between it and the source just constructed, as would happen with
pure Maxwell charges. This is because our sources have in addition to electric charge, some scalar (X25)
charge, which can also be attractive or repulsive. In fact, the scalar charges are such that the force due
to electromagnetic charges is canceled by the force of the scalar charge, another characteristic property of
these solutions, which are said to be “Bogomol’nyi–Prasad–Sommerfield” (BPS)–saturated.[64, 65] We shall
encounter solutions with this sort of behaviour a number of times in what is to follow.

Because of this property, the solution is easily generalized to include any number of BIons, at arbitrary
positions, with positive and negative charges. The two choices of charge simply represents strings either
leaving from, or arriving on the brane. See figure 24(b).

(a) (b)

Figure 24: The D dimensional interpretation of the BIon solution. (a) It is an infinitely long spike represent-
ing a fundamental string ending on the D–brane. (b) BIons are BPS and therefore can be added together at
no cost to make a multi–BIon solution.

6 D–Brane Tension and Boundary States

We have already stated that since the D–brane is a dynamical object, and couples to gravity, it should have
a mass per unit volume. This tension will govern the strength of its response to outside influences which try
to make it change its shape, absorb energy, etc. We have already computed a recursion relation (256) for the
tension, which follows from the underlying T–duality which we used to discover D–branes in the first place.

In this section we shall see in detail just how to compute the value of the tension for the D–brane, and
also for the orientifold plane. While the numbers that we will get will not (at face value) be as useful as the
analogous quantities for the supersymmetric case, the structure of the computation is extremely important.
The computation puts together many of the things that we have learned so far in a very elegant manner
which lies at the heart of much of what will follow in more advanced sections.

Along the way, we will see that D–branes can be constructed and studied in an alternative formalism
known as the “Boundary State” formalism, which is essentially conformal field theory with certain sorts of
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boundaries included[36]. For much of what we will do, it will be a clearly equivalent way of formulating things
which we also say (or have already said) based on the spacetime picture of D–branes. However, it should be
noted that it is much more than just a rephrasing since it can be used to consistently formulate D–branes
in many more complicated situations, even when a clear spacetime picture is not available. The method
becomes even more useful in the supersymmetric situation, since it provides a natural way of constructing
stable D–brane vacua of the superstring theories which do not preserve any supersymmetries, a useful starting
point for exploring dualities and other non–perturbative physics in dynamical regimes which ultimately may
have relevance to observable physics.

6.1 The D–brane Tension

6.1.1 An Open String Partition Function

Let us now compute the D–brane tension Tp. As noted previously, it is proportional to g−1
s . We can in

principle calculate it from the gravitational coupling to the D–brane, given by the disk with a graviton vertex
operator in the interior. However, it is much easier to obtain the absolute normalization in the following
manner. Consider two parallel Dp–branes at positions X ′µ = 0 and X ′µ = Y µ. These two objects can feel
each other‘s presence by exchanging closed strings as shown in figure 25. This string graph is an annulus,

0 Y

σ
τ

π2 t

Figure 25: Exchange of a closed string between two D–branes. This is equivalent to a vacuum loop of an
open string with one end on each D–brane.

with no vertex operators. It is therefore as easily calculated as our closed string one loop amplitudes done
earlier in section 3.

In fact, this is rather like an open string partition function, since the amplitude can be thought of as an
open string going in a loop. We should sum over everything that goes around in the loop. Once we have
computed this, we will then change our picture of it as an open string one–loop amplitude, and look at it
as a closed string amplitude for propagation between one D–brane and another. We can take a low energy
limit of the result to focus on the massless closed string states which are being exchanged. Extracting the
poles from graviton and dilaton exchange (we shall see that the anti–symmetric tensor does not couple in
this limit) then give the coupling Tp of closed string states to the D–brane.

Let us parametrised the string world–sheet as (σ2 = τ, σ1 = σ) where now τ is periodic and runs from 0
to 2πt, and σ runs (as usual) from 0 to π. This vacuum graph (a cylinder) has the single modulus t, running
from 0 to ∞. If we slice horizontally, so that σ2 = τ is world–sheet time, we get an open string going in a
loop. If we instead slice vertically, so that σ is time, we see a single closed string propagating in the tree
channel.

Notice that the world–line of the open string boundary can be regarded as a vertex connecting the vacuum
to the single closed string, i.e., a one–point closed string vertex, which is a useful picture in a “boundary
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state” formalism, which we will develop a bit further shortly. This diagram will occur explicitly again
in many places in our treatment of this subject. String theory produces many examples where one–loop
gauge/field theory results (open strings) are related to tree level geometrical/gravity results. This is all
organized by diagrams of this form, and is the basis of much of the gauge theory/geometry correspondences
to be discussed.

Let us consider the limit t → 0 of the loop amplitude. This is the ultra–violet limit for the open string
channel, since the circle of the loop is small. However, this limit is correctly interpreted as an infrared limit
of the closed string. (This is one of the earliest “dualities” of string theory, discussed even before it was
known to be a theory of strings.) Time–slicing vertically shows that the t → 0 limit is dominated by the
lowest lying modes in the closed string spectrum. This all fits with the idea that there are no “ultraviolet
limits” of the moduli space which could give rise to high energy divergences. They can always be related to
amplitudes which have a handle pinching off. This physics is controlled by the lightest states, or the long
distance physics. (This relationship is responsible for the various “UV/IR” relations which are a popular
feature of current research.)

One–loop vacuum amplitudes are given by the Coleman–Weinberg [38, 39] formula, which can be thought
of as the sum of the zero point energies of all the modes:

A = Vp+1

∫
dp+1k

(2π)p+1

∫ ∞

0

dt

2t

∑

I

e−2πα′t(k2+M2
I ). (280)

Here the sum I is over the physical spectrum of the string, i.e., the transverse spectrum, and the momentum
k is in the p+ 1 extended directions of the D–brane world–sheet.

The mass spectrum is given by a familiar formula

M2 =
1

α′

(
∞∑

n=1

αi−nα
i
n − 1

)
+

Y · Y
4π2α′2

(281)

where Y m is the separation of the D–branes. The sums over the oscillator modes work just like the compu-
tations we did before, giving

A = 2Vp+1

∫ ∞

0

dt

2t
(8π2α′t)−

(p+1)
2 e−Y ·Y t/2πα′

f1(q)
−24 . (282)

Here q = e−2πt, and the overall factor of 2 is from exchanging the two ends of the string.
Compare our open string appearance of f1(q), for q = e−2πt with the expressions for f1(q), (q = e2πτ )

defined in our closed string discussion in (215). Here the argument is real. The translation between defi-
nitions is done by setting t = −Im τ . From the modular transformations (217), we can deduce some useful
asymptotics. While the asymptotics as t→ ∞ are obvious, we can get the t→ 0 asymptotics using (217):

f1(e
−2π/s) =

√
s f1(e

−2πs) , f3(e
−2π/s) = f3(e

−2πs) ,

f2(e
−2π/s) = f4(e

−2πs) .

In the present case, (using the asymptotics of the previous paragraph)

A = 2Vp+1

∫ ∞

0

dt

2t
(8π2α′t)−

(p+1)
2 e−Y ·Y t/2πα′

t12
(
e2π/t + 24 + . . .

)
. (283)

The leading divergence is from the tachyon and is the usual bosonic string artifact not relevant to this
discussion. The massless pole, from the second term, is

Amassless ∼ Vp+1
24

212
(4π2α′)11−pπ(p−23)/2Γ((23 − p)/2)|Y |p−23

= Vp+1
24π

210
(4π2α′)11−pG25−p(Y ) (284)
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where Gd(Y ) is the massless scalar Green’s function in d dimensions:

Gd(Y ) =
πd/2

4
Γ

(
d

2
− 1

)
1

Y d−2
. (285)

Here, d = 25 − p, the dimension of the space transverse to the brane.

6.2 A Background Field Computation

We must do a field theory calculation to work out the amplitude for the exchange of the graviton and dilaton
between a pair of D–branes. Our result can the be compared to the low energy string result above to extract
the value of the tension. We need propagators and couplings as per the usual field theory computation. The
propagator is from the bulk action (96) and the couplings are from the D–brane action (266), but we must
massage them a bit in order to find them.

In fact, we should work in the Einstein frame, since that is the appropriate frame in which to discuss
mass and energy, because the dilaton and graviton don’t mix there. We do this (recall equation (99)) by
sending the metric Gµν to G̃µν = exp(4(Φ0 −Φ)/(D− 2))Gµν , which gives the metric in equation (101). Let
us also do this in the Dirac–Born–Infeld action (266), with the result:

SEp = −τp
∫
dp+1ξ e−Φ̃ det1/2(e

4Φ̃
D−2 G̃ab +Bab + 2πα′Fab) , (286)

where Φ̃ = Φ − Φ0 and τp = Tpe
−Φ0 is the physical tension of the brane; it is set by the background value,

Φ0, of the dilaton.
The next step is to linearize about a flat background, in order to extract the propagator and the vertices

for our field theory. We simply write the metric as Gµν = ηµν + hµν(X), and expand up to second order in
hµν . Also, if we do this with the action (286) as well, we see that the antisymmetric field Bab + 2πα′Fab do
not contribute at this order, and so we will drop them in what follows2.

Pick the gauge:

Fµ ≡ ηρσ(∂ρhσµ − 1

2
∂µhρσ) = 0 , (287)

and introduce the gauge choice into the Lagrangian via the addition of a gauge fixing term:

Lfix = −η
µν

4κ2
FµFν . (288)

The result for the bulk action is:

Sbulk = − 1

2κ2

∫
dDX

{
1

2

[
ηµρηνσ + ηµσηνρ − 2

D − 2
ηµνηρσ

]
hµν∂

2hρσ +
4

D − 2
Φ̃∂2Φ̃

}
, (289)

and the interaction terms from the Dirac–Born–Infeld action are:

Sbrane = −τp
∫
dp+1ξ

((
2p−D + 4

D − 2

)
Φ̃ − 1

2
haa

)
, (290)

where the trace on the metric was in the (p+ 1)–dimensional world–volume of the Dp–brane.
Now it is easy to work out the momentum space propagators for the graviton and the dilaton:

< hµνhρσ > = −2iκ2

k2

[
ηµρηνσ + ηµσηνρ −

2

D − 2
ηµνηρσ

]
;

< Φ̃Φ̃ > = − iκ
2(D − 2)

4k2
, (291)

2This fits with the intuition that the D–brane should not be a source for the antisymmetric tensor field. The source for it is
the fundamental closed string itself. We shall come back to this point later.
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for momentum k.
The reader might recognize the graviton propagator as the generalisation of the four dimensional case. If

the reader has not encountered it before, the resulting form should be thought of as entirely consistent with
gauge invariance for a massless spin two particle.

All we need to do is compute two tree level Feynman diagrams, one for exchange of the dilaton and one
for the exchange of the graviton, and add the result. The vertices are given in action (290). The result is
(returning to position space):

Amassless = Vp+1T
2
p κ

2
0G25−p(Y )

{
D − 2

4

(
2p−D + 4

D − 2

)2

+
1

2

[
2(p+ 1) − 2

D − 2
(p+ 1)2

]}

=
D − 2

4
Vp+1T

2
p κ

2
0G25−p(Y ) (292)

and so after comparing to our result from the string theory computation (284) we have:

Tp =

√
π

16κ0
(4π2α′)(11−p)/2 . (293)

This agrees rather nicely with the recursion relation (256). We can also write it in terms of the physical
value of the D–brane tension, which includes a factor of the string coupling gs = eΦ0 ,

τp =

√
π

16κ
(4π2α′)(11−p)/2 (294)

where κ = κ0gs, and we shall use τp this to denote the tension when we include the string coupling henceforth,
and reserve T for situations where the string coupling is included in the background field e−Φ. (This will be
less confusing than it sounds, since it will always be clear from the context which we mean.)

As promised, the tension τp of a Dp–brane is of order g−1
s , following from the fact that the diagram

connecting the brane to the closed string sector is a disc diagram. An immediate consequence of this is
that they will produce non–perturbative effects of order exp(−1/gs) in string theory, since their action is
of the same order as their mass. This is consistent with anticipated behaviour from earlier studies of toy
non–perturbative string theories[95], the very D ≤ 1 string theories already mentioned in section 3.6. The
precise numbers in formula (293) will not concern us much beyond these sections, since we will derive a new
one for the superstring case later.

6.3 The Orientifold Tension

The O–plane, like the D–brane, couples to the dilaton and metric. The most direct amplitude to use to
compute the tension is the same as in the previous section, but with RP

2 in place of the disk; i.e., a crosscap
replaces the boundary loop. The orientifold identifies Xm with −Xm at the opposite point on the crosscap,
so the crosscap is localized near one of the orientifold fixed planes. However, once again, it is easier to
organize the computation in terms of a one–loop diagram, and then extract the parts we need.

6.3.1 Another Open String Partition Function

To calculate this via vacuum graphs, the cylinder has one or both of its boundary loops replaced by crosscaps.
This gives the Möbius strip and Klein bottle, respectively. To understand this, consider figure 26, which
shows two copies of the fundamental region for the Möbius strip.

The lower half is identified with the reflection of the upper, and the edges σ1 = 0, π are boundaries.
Taking the lower half as the fundamental region gives the familiar representation of the Möbius strip as a
strip of length 2πt, with ends twisted and glued. Taking instead the left half of the figure, the line σ1 = 0 is
a boundary loop while the line σ1 = π/2 is identified with itself under a shift σ2 → σ2 + 2πt plus reflection
of σ1: it is a crosscap. The same construction applies to the Klein bottle, with the right and left edges
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2πt

π0
0

σ2

σ1

Figure 26: Two copies of the fundamental region for the Möbius strip.

now identified. Another way to think of the Möbius strip amplitude we are going to compute here is as
representing the exchange of a closed string between a D—brane and its mirror image, as shown in figure 27.
The identification with a twist is performed on the two D–branes, turning the cylinder into a Möbius strip.
The Möbius strip is given by the vacuum amplitude

σ

Y0Y

τ
π2 t

Figure 27: The Möbius strip as the exchange of closed strings between a brane and its mirror image. The
dotted plane is the orientifold plane.

AM = Vp+1

∫
dp+1k

(2π)p+1

∫ ∞

0

dt

2t

∑

i

Ωi
2
e−2πα′t(p2+M2

I ), (295)

where ΩI is the Ω eigenvalue of state i. The oscillator contribution to ΩI is (−1)n from equation (84).
Actually, in the directions orthogonal to the brane and orientifold there are two additional signs in ΩI
which cancel. One is from the fact that world–sheet parity contributes an extra minus sign in the direc-
tions with Dirichlet boundary conditions (this is evident from the mode expansions we shall list later, in
equations (425)). The other is from the fact that spacetime reflection produces an additional sign.

For the SO(N) open string the Chan–Paton factors have 1
2N(N + 1) even states and 1

2N(N − 1) odd for
a net of +N . For USp(N) these numbers are reversed for a net of −N . Focus on a D–brane and its image,
which correspondingly contribute ±2. The diagonal elements, which contribute to the trace, are those where
one end is on the D–brane and one on its image. The total separation is then Y m = 2Xm. Then,

AM = ±Vp+1

∫ ∞

0

dt

2t
(8π2α′t)−

(p+1)
2 e−2~Y ·~Y t/πα′

[
q−2

∞∏

k=1

(1 + q4k−2)−24(1 − q4k)−24

]
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The factor in braces is

f3(q
2)−24f1(q

2)−24 = (2t)12f3(e
−π/2t)−24f1(e

−π/2t)−24

= (2t)12
(
eπ/2t − 24 + . . .

)
. (296)

One thus finds a pole

∓2p−12Vp+1
3π

26
(4π2α′)11−pG25−p(Y ) . (297)

This is to be compared with the field theory result

D − 2

2
Vp+1TpT

′
pκ

2
0G25−p(Y ) , (298)

where T ′
p is the O–plane tension. A factor of 2 as compared to the earlier field theory result of equation (292)

comes because the spacetime boundary forces all the flux in one direction. Thus the O–plane and D–brane
tensions are related

τ ′p = ∓2p−13τp . (299)

A similar calculation with the Klein bottle gives a result proportional to τ ′2p .
Noting that there are 225−p O–planes (recall that one doubles the number every time another new

direction is T–dualised, starting with a single D25–brane), the total charge of an O–plane source must be
∓212τp. Now, by Gauss’ law, the total source must vanish because the volume of the torus T p on which we
are working is finite and the flux must end on sinks and sources.

So we conclude that there are 2(D−2)/2 = 212 D–branes (times two for the images) and that the gauge
group is SO(213) = SO(2D/2). [40] For this group the “tadpoles” associated with the dilaton and graviton,
representing violations of the field equations, cancel at order g−1

s . This has no special significance in the
bosonic string, as the one loop g0

s tadpoles are nonzero and imaginary due to the tachyon instability, but
similar considerations will give a restriction on anomaly free Chan–Paton gauge groups in the superstring.

6.4 The Boundary State Formalism

The asymptotics (283) can be interpreted in terms of a sum over closed string states exchanged between the
two D–branes. One can write the cylinder path integral in a Hilbert space formalism treating σ1 rather than
σ2 as time. It then has the form

〈B|e−(L0+L̃0)π/t|B〉 (300)

where the “boundary state” |B〉 is the closed string state created by the boundary loop.
Let us unpack this formalism a little, seeing where this all comes from. Recall that a Dp–brane is specified

by the following open string boundary conditions:

∂σX
µ|σ=0,π = 0 , µ = 0, . . . , p ;

Xm|σ=0,π = Y m , m = p+ 1, . . . , D − 1 . (301)

Now we have to reinterpret this as a closed string statement. This involves exchanging τ and σ. So we write,
focusing on the initial time:

∂τX
µ|τ=0 = 0 , µ = 0, . . . , p ;

Xm|τ=0 = Y m , m = p+ 1, . . . , D − 1 . (302)

Recall that in the quantum theory we pass to an operator formalism, and so the conditions above should be
written as an operator statement, where we are operating on some state in the Hilbert space. This defines
for us then the boundary state |B>:

∂τX
µ|τ=0|B> = 0 , µ = 0, . . . , p ;

(Xm|τ=0 − Y m)|B> = 0 , m = p+ 1, . . . , D − 1 . (303)
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As with everything we did in section 2, we can convert our equations above into a statement about the
modes:

(αµn + α̃µ−n)|B> = 0 , µ = 0, . . . , p ;

(αmn − α̃m−n)|B> = 0 , m = p+ 1, . . . , D − 1 ;

pµ|B> = 0 , µ = 0, . . . , p ;

(xm − Y m)|B> = 0 , m = p+ 1, . . . , D − 1 . (304)

As before, we either use only D − 2 of the oscillator modes here (ignoring µ = 0, 1) or we do everything
covariantly and make sure that we include the ghost sector and impose BRST invariance. We shall do the
former here.

The solution to the condition above can we found by analogy with the (perhaps) familiar technology of
coherent states in harmonic oscillator physics.

|B>= Npδ(x
m − Y m)

(
∞∏

n=1

e−
1
nα−n·S·α̃−n

)
|0> . (305)

The object S = (ηµν ,−δmn) is just shorthand for the fact that the dot product must be the usual Lorentz
one in the directions parallel to the brane, but there is a minus sign for the transverse directions.

The normalization constant is determined by simply computing the closed string amplitude directly in
this formalism. The closed string is prepared in a boundary state that corresponds to a D–brane, and it
propagates for a while, ending in a similar boundary state at position ~Y :

A =<B|∆|B> , (306)

where ∆ is the closed string propagator.
How is this object constructed? Well, we might expect that it is essentially the inverse of Hcl = 2(L0 +

L̄0 − 2)/α′, the closed string Hamiltonian, which we can easily represent as:

∆ =
α′

2

∫ 1

0

dρρL0+L̄0−3 ,

and we must integrate the modulus ` = − log ρ of the cylinder from 0 to ∞. We must remember, however,
that a physical state |φ> is annihilated by L0 − L̄0, and so we can modify our propagator so that it only
propagates such states:

∆ =
α′

2

∫ 1

0

dρ
dφ

2π

∫ 2π

0

dφ

2π
ρL0+L̄0−3eiφ(L0−L̄0) ,

which, after the change of variable to z = ρeiφ, gives

∆ =
α′

4π

∫

|z|≤1

dzdz̄

|z|2 z
L0−1z̄L̄0−1 .

Computing the amplitude (306) using this definition of the propagator is a straightforward exercise, similar
in spirit to what we did in the open string sector. We get geometric sums over the oscillator modes resulting
from traces, and integrals over the continuous quantities. If we make the choices |z| = e−πs and dzdz̄ =
−πe−2πsdsdφ for our closed string cylinder, the result is:

A = N 2
p Vp+1

α′π

2
(2πα′)−

25−p
2

∫ ∞

0

ds

s
s−

25−p
2 e−Y ·Y/s2πα′

f1(q)
−24 . (307)

Here q = e−2π/s.
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Now we can compare to the open string computation, which is the result in equation (282). We must
do a modular transformation s = −1/t, and using the modular transformation properties given in equations
(217), we find exactly the open string result if we have

Np =
Tp
2
,

where Tp is the brane tension (293) computed earlier.
This is a very useful way of formulating the whole D–brane construction. In fact, the boundary state

constructed above is just a special case of a sensible conformal field theory object. It is a state which can
arise in the conformal field theory with boundary. Not all boundary states have such a simple spacetime
interpretation as the one we made here. We see therefore that D–branes, if interpreted simply as resulting
from the introduction of open string sectors into closed string theory, have a worldsheet formulation which
does not necessarily always have a spacetime interpretation as its counterpart. Similar things happen in
closed string conformal field theory: There are very many conformal field theories which are perfectly good
string vacua, which have no spacetime interpretation in terms of an unambiguous target space geometry. It
is natural that this also be true for the open string sector.

7 Supersymmetric Strings

The previous five sections’ discussion of bosonic strings allowed us to uncover a great deal of the structure
essential to understanding D–branes and other background solutions, in addition to the basic concepts used
in discussing and working with critical string theory.

At the back of our mind was always the expectation that we would move on to include supersymmetry.
Two of the main reasons are that we can remove the tachyon from the spectrum and that we will be able to
use supersymmetry to endow many of our results with extra potency, since stability and non–renormalisation
arguments will allow us to extrapolate beyond perturbation theory.

Let us set aside D–branes and T–duality for a while and use the ideas we discussed earlier to construct the
supersymmetric string theories which we need to carry the discussion further. There are five such theories.
Three of these are the “superstrings”, while two are the “heterotic strings”3.

7.1 The Three Basic Superstring Theories

7.1.1 Open Superstrings: Type I

Let us go back to the beginning, almost. We can generalise the bosonic string action we had earlier to include
fermions. In conformal gauge it is:

S =
1

4π

∫

M

d2σ

{
1

α′
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

}
(308)

where the open string world–sheet is the strip 0 < σ < π, −∞ < τ <∞.
Recall that α′ is the loop expansion parameter analogous to h̄ on worldsheet. It is therefore natural for

the fermions’ kinetic terms to be normalised in this way. We get a modification to the energy–momentum
tensor from before (which we now denote as TB, since it is the bosonic part):

TB(z) = − 1

α′
∂Xµ∂Xµ − 1

2
ψµ∂ψµ , (309)

which is now accompanied by a fermionic energy–momentum tensor:

TF (z) = i
2

α′
ψµ∂Xµ . (310)

3A looser and probably more sensible nomenclature is to call them all “superstrings”, but we’ll choose the catch–all term to
be the one we used for the title of this section.
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This enlarges our theory somewhat, while much of the logic of what we did in the purely bosonic story
survives intact here. Now, one extremely important feature which we encountered in section 4.6 is the fact
that the equations of motion admit two possible boundary conditions on the world–sheet fermions consistent
with Lorentz invariance. These are denoted the “Ramond” (R) and the “Neveu–Schwarz” (NS) sectors:

R: ψµ(0, τ) = ψ̃µ(0, τ) ψµ(π, τ) = ψ̃µ(π, τ)

NS: ψµ(0, τ) = −ψ̃µ(0, τ) ψµ(π, τ) = ψ̃µ(π, τ) (311)

We are free to choose the boundary condition at, for example the σ = π end, in order to have a + sign, by
redefinition of ψ̃. The boundary conditions and equations of motion are summarised by the “doubling trick”:
Take just left–moving (analytic) fields ψµ on the range 0 to 2π and define ψ̃µ(σ, τ) to be ψµ(2π−σ, τ). These
left–moving fields are periodic in the Ramond (R) sector and antiperiodic in the Neveu–Schwarz (NS).

On the complex z–plane, the NS sector fermions are half–integer moded while the R sector ones are
integer, and we have:

ψµ(z) =
∑

r

ψµr
zr+1/2

, where r ∈ Z or r ∈ Z + 1
2 (312)

and canonical quantisation gives
{ψµr , ψνs } = {ψ̃µr , ψ̃νs } = ηµνδr+s . (313)

Similarly we have

TB(z) =

∞∑

m=−∞

Lm
zm+2

as before, and

TF (z) =
∑

r

Gr
zr+3/2

, where r ∈ Z (R) or Z + 1
2 (NS) (314)

Correspondingly, the Virasoro algebra is enlarged, with the non–zero (anti) commutators being

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − b)δr+s

[Lm, Gr] =
1

2
(m− 2r)Gm+r , (315)

where b is 1 or 0, respectively, for the NS or R sector, respectively, and

Lm =
1

2

∑

n

: αn−m · αm : +
1

4

∑

r

(2r −m) : ψm−r · ψr : +aδm,0

Gr =
∑

n

αn · ψr−n . (316)

In the above, c is the total contribution to the conformal anomaly, which is D +D/2, where D is from the
D bosons while D/2 is from the D fermions.

The values of D and a are again determined by any of the methods mentioned in the discussion of the
bosonic string. For the superstring, it turns out that D = 10 and a = 0 for the R sector and a = −1/2 for
the NS sector. This comes about because the contributions from the X0 and X1 directions are canceled by
the Faddeev–Popov ghosts as before, and the contributions from the ψ0 and ψ1 oscillators are canceled by
the superghosts. Then, the computation uses the mnemonic/formula given in equation (70).

NS sector: zpe = 8

(
− 1

24

)
+ 8

(
− 1

48

)
= −1

2
,

R sector: zpe = 8

(
− 1

24

)
+ 8

(
1

24

)
= 0 . (317)
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As before, there is a physical state condition imposed by annihilating with the positive modes of the
(super) Virasoro generators:

Gr|φ〉 = 0 , r > 0 ; Ln|φ〉 = 0 , n > 0 ; (L0 − a)|φ〉 = 0 . (318)

The L0 constraint leads to a mass formula:

M2 =
1

α′

(
∑

n,r

α−n · αn + rψ−r · ψr − a

)
. (319)

In the NS sector the ground state is a Lorentz singlet and is assigned odd fermion number, i.e., under the
operator (−1)F , it has eigenvalue −1.

In order to achieve spacetime supersymmetry, the spectrum is projected on to states with even fermion
number. This is called the “GSO projection”,[67] and for our purposes, it is enough to simply state that
this obtains spacetime supersymmetry, as we will show at the massless level. A more complete treatment
—which gets it right for all mass levels— is contained in the full superconformal field theory. The GSO
projection there is a statement about locality with the gravitino vertex operator. Yet another way to think
of its origin is as a requirement of modular invariance.

Since the open string tachyon clearly has (−1)F = −1, it is removed from the spectrum by GSO. This
is our first achievement, and justifies our earlier practice of ignoring the tachyons appearance in the bosonic
spectrum in what has gone before. From what we will do for the rest of the this book, the tachyon will
largely remain in the wings, but it (and other tachyons) do have a role to play, since they are often a signal
that the vacuum wants to move to a (perhaps) more interesting place.

Massless particle states in ten dimensions are classified by their SO(8) representation under Lorentz
rotations, that leave the momentum invariant: SO(8) is the “little group” of SO(1, 9). The lowest lying
surviving states in the NS sector are the eight transverse polarizations of the massless open string photon,
Aµ, made by exciting the ψ oscillators:

ψµ−1/2|k〉, M2 = 0 . (320)

These states clearly form the vector of SO(8). They have (−)F = 1 and so survive GSO.
In the R sector the ground state energy always vanishes because the world–sheet bosons and their

superconformal partners have the same moding. The Ramond vacuum has a 32–fold degeneracy, since the
ψµ0 take ground states into ground states. The ground states form a representation of the ten dimensional
Dirac matrix algebra

{ψµ0 , ψν0} = ηµν . (321)

(Note the similarity with the standard Γ–matrix algebra, {Γµ,Γν} = 2ηµν . We see that ψµ0 ≡ Γµ/
√

2.)
For this representation, it is useful to choose this basis:

d±i =
1√
2

(
ψ2i

0 ± iψ2i+1
0

)
i = 1, · · · , 4

d±0 =
1√
2

(
ψ1

0 ∓ ψ0
0

)
. (322)

In this basis, the Clifford algebra takes the form

{d+
i , d

−
j } = δij . (323)

The d±i , i = 0, · · · , 4 act as creation and annihilation operators, generating the 210/2 = 32 Ramond ground
states. Denote these states

|s0, s1, s2, s3, s4〉 = |s〉 (324)
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where each of the si takes the values ± 1
2 , and where

d−i | − 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 〉 = 0 (325)

while d+
i raises si from − 1

2 to 1
2 . This notation has physical meaning: The fermionic part of the ten

dimensional Lorentz generators is

Sµν = − i

2

∑

r∈Z+κ

[ψµ−r, ψ
ν
r ] , (326)

(recall equation (114)). The states (324) above are eigenstates of S0 = iS01, Si = S2i,2i+1, with si the
corresponding eigenvalues. Since by construction the Lorentz generators (326) always flip an even number
of si, the Dirac representation 32 decomposes into a 16 with an even number of − 1

2 ’s and 16′ with an odd
number.

The physical state conditions (318), on these ground states, reduce to G0 = (2α′)1/2pµψ
µ
0 . (Note that

G2
0 ∼ L0.) Let us pick the (massless) frame p0 = p1. This becomes

G0 = α′1/2p1Γ0 (1 − Γ0Γ1) = 2α′1/2p1Γ0

(
1
2 − S0

)
, (327)

which means that s0 = 1
2 , giving a sixteen–fold degeneracy for the physical Ramond vacuum. This is

a representation of SO(8) which decomposes into 8s with an even number of − 1
2 ’s and 8c with an odd

number. One is in the 16 and the 16′, but the two choices, 16 or 16′, are physically equivalent, differing
only by a spacetime parity redefinition, which would therefore swap the 8s and the 8c.

In the R sector the GSO projection amounts to requiring

4∑

i=1

si = 0 (mod 2), (328)

picking out the 8s. Of course, it is just a convention that we associated an even number of 1
2 ’s with the 8s; a

physically equivalent discussion with things the other way around would have resulted in 8c. The difference
between these two is only meaningful when they are both present, and at this stage we only have one copy,
so either is as good as the other.

The ground state spectrum is then 8v⊕8s, a vector multiplet ofD = 10, N = 1 spacetime supersymmetry.
Including Chan–Paton factors gives again a U(N) gauge theory in the oriented theory and SO(N) or USp(N)
in the unoriented. This completes our tree–level construction of the open superstring theory.

Of course, we are not finished, since this theory is (on its own) inconsistent for many reasons. One such
reason (there are many others) is that it is anomalous. Both gauge invariance and coordinate invariance
have anomalies arising because it is a chiral theory: e.g., the fermion 8s has a specific chirality in spacetime.
The gauge and gravitational anomalies are very useful probes of the consistency of any theory. These show
up quantum inconsistencies of the theory resulting in the failure of gauge invariance and general coordinate
invariance, and hence must be absent.

Another reason we will see that the theory is inconsistent is that, as we learned in section 4, the theory
is equivalent to some number of space–filling D9–branes in spacetime, and it will turn out later that these
are positive electric sources of a particular 10–form field in the theory. The field equation for this field asks
that all of its sources must simply vanish, and so we must have a negative source of this same field in order
to cancel the D9–branes’ contribution. This will lead us to the closed string sector i.e. one–loop, the same
level at which we see the anomaly.

Let us study some closed strings. We will find three of interest here. Two of them will stand in their
own right, with two ten dimensional supersymmetries, while the third will have half of that, and will be
anomalous. This latter will be the closed string sector we need to supplement the open string we made here,
curing its one–loop anomalies.
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Figure 28: One–loop diagrams displaying anomalies in dimensions four, six, and ten, respectively.

7.1.2 Gauge and Gravitational Anomalies

The beauty of the anomaly is that it is both a UV and an IR tool. UV since it represents the failure to be
able to find a consistent regulator at the quantum level and IR since it cares only about the massless sector
of the theory: Any potentially anomalous variations for the effective action Γ = lnZ should be written as
the variation of a local term which allows it to be canceled by adding a local counterterm. Massive fields
always give effectively local terms at long distance.

An anomaly in D dimensions arises from complex representations of the Lorentz group which include
chiral fermions in general but also bosonic representations if D = 4k+2, e.g., the rank 2k+1 (anti) self–dual
tensor. The anomalies are controlled by the so–called “hexagon” diagram which generalizes the (perhaps
more familiar) triangle of four dimensional field theory or a square in six dimensions. See figure 28.

The external legs are either gauge bosons, gravitons, or a mixture. We shall not spend any time on the
details[56], but simply state that consistency demands that the structure of the anomaly,

δ lnZ =
i

(2π)D/2

∫
ÎD ,

is in terms of a D–form ÎD, polynomial in traces of even powers of the field strength 2–forms F = dA+A2

and R = dω + ω2. (Recall section 2.14.) It is naturally related to a (D + 2)–form polynomial ÎD+2 which
is gauge invariant and written as an exact form ÎD+2 = dÎD+1. The latter is not gauge invariant, but its
variation is another exact form:

δÎD+1 = dÎD . (329)

A key example of this is the Chern–Simons 3–form, which is discussed in section 7.1.3. See also section 7.1.4
for explicit expressions in dimensions D = 4k + 2. We shall see that the anomalies are a useful check of the
consistency of string spectra that we construct in various dimensions.

7.1.3 The Chern–Simons Three–Form

The Chern–Simons 3–form is a very important structure which will appear in a number of places, and it is
worth pausing a while to consider its properties. Recall that we can write the gauge potential, and the field
strength as Lie Algebra–valued forms: A = taAaµdx

µ, where the ta are generators of the Lie algebra. We
can write the Yang–Mills field strength as a matrix–valued 2–form, F = taF aµνdx

µ ∧ dxν . We can define the
Chern–Simons 3–form as

ω3Y = Tr

(
A ∧ F − 1

3
A ∧A ∧A

)
= Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

One interesting thing about this object is that we can write:

dω3Y = Tr (F ∧ F ) .
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Furthermore, under a gauge transformation δA = dΛ + [A,Λ]:

δω3Y = Tr(dΛdA) = dω2 , ω2 = Tr(ΛdA) .

So its gauge variation, while not vanishing, is an exact 3–form. Note that there is a similar structure in the
pure geometry sector. From section 2.14, we recall that the potential analogous to A is the spin connection
1–form ωab = ωabµdx

µ, with a and b being Minkowski indices in the space tangent to the point xµ in
spacetime and so ω is an SO(D−1, 1) matrix in the fundamental representation. The curvature is a 2–form
Rab = dωab + ωac ∧ ωcb = Rabµνdx

µ ∧ dxν , and the gauge transformation is now δω = dΘ + [ω,Θ]. We can
define:

ω3L = tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
,

with similar properties to ω3Y, above. Here tr means trace on the indices a, b.

7.1.4 A list of Anomaly Polynomials

It is useful to list here some anomaly polynomials for later use. In ten dimensions, the contributions to
the polynomial come from three sorts of field, the spinors 8s,c, the gravitinos 56c,s, and the 5th rank
antisymmetric tensor field strength with its self–dual and anti–self–dual parts. The anomalies for each pair
within each sort are equal and opposite in sign, i.e., Î8s

12 = −Î8c
12 , etc. and we have:

Î8s
12 = − Tr(F 6)

1440

+
Tr(F 4)tr(R2)

2304
− Tr(F 2)tr(R4)

23040
− Tr(F 2)[tr(R2)]2

18432

+
ntr(R6)

725760
+
ntr(R4)tr(R2)

552960
+
n[tr(R2)]3

1327104
.

Î56c
12 = − 495

tr(R6)

725760
+ 225

tr(R4)tr(R2)

552960
− 63

[tr(R2)]3

1327104
.

Î
35+

12 = + 992
tr(R6)

725760
− 448

tr(R4)tr(R2)

552960
+ 128

[tr(R2)]3

1327104
,

and n is the dimension of the gauge representation under which the spinor transforms, for which we use
the trace denoted Tr. We also have suppressed the use of ∧, for brevity. For D = 6, there are anomaly
8–forms. We denote the various fields by their transformation properties of the D = 6 little group SO(4) ∼
SU(2) × SU(2):

Î
(1,2)
8 = +

Tr(F 4)

24
− Tr(F 2)tr(R2)

96
+
ntr(R4)

5760
+
n[tr(R2)]2

4608
.

Î
(3,2)
8 = + 245

tr(R4)

5760
− 43

[tr(R2)]2

4608
.

Î
(3,1)
8 = + 28

tr(R4)

5760
− 8

[tr(R2)]2

4608
.

Note that the first two are for complex fermions. For real fermions, one must divide by two. For completeness,
for D = 2 we list the three analogous anomaly 4–forms:

Î
1/2
4 =

ntr(R2)

48
− Tr(F 2)

2
, Î

3/2
4 = −23

tr(R2)

48
, Î0

4 =
tr(R2)

48
.

It is amusing to note that the anomaly polynomials can be written in terms of geometrical characteristic
classes. This should be kept at the back of the mind for a bit later, in section 9.5.
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7.2 Closed Superstrings: Type II

Just as we saw before, the closed string spectrum is the product of two copies of the open string spectrum,
with right– and left–moving levels matched. In the open string the two choices for the GSO projection were
equivalent, but in the closed string there are two inequivalent choices, since we have to pick two copies to
make a closed string.

Taking the same projection on both sides gives the “type IIB” case, while taking them opposite gives
“type IIA”. These lead to the massless sectors

Type IIA: (8v ⊕ 8s) ⊗ (8v ⊕ 8c)

Type IIB: (8v ⊕ 8s) ⊗ (8v ⊕ 8s) . (330)

Let us expand out these products to see the resulting Lorentz (SO(8)) content. In the NS–NS sector,
this is

8v ⊗ 8v = Φ ⊕Bµν ⊕Gµν = 1⊕ 28⊕ 35. (331)

In the R–R sector, the IIA and IIB spectra are respectively

8s ⊗ 8c = [1] ⊕ [3] = 8v ⊕ 56t

8s ⊗ 8s = [0] ⊕ [2] ⊕ [4]+ = 1 ⊕ 28⊕ 35+. (332)

Here [n] denotes the n–times antisymmetrised representation of SO(8), and [4]+ is self–dual. Note that
the representations [n] and [8 − n] are the same, as they are related by contraction with the 8–dimensional
ε–tensor. The NS–NS and R–R spectra together form the bosonic components of D = 10 IIA (nonchiral)
and IIB (chiral) supergravity respectively; We will write their effective actions shortly.

In the NS–R and R–NS sectors are the products

8v ⊗ 8c = 8s ⊕ 56c

8v ⊗ 8s = 8c ⊕ 56s. (333)

The 56s,c are gravitinos. Their vertex operators are made roughly by tensoring a NS field ψµ with a vertex
operator Vα = e−ϕ/2Sα, where the latter is a “spin field”, made by bosonising the di’s of equation (322) and
building:

S = exp

[
i

4∑

i=0

siH
i

]
; di = e±iHi

. (334)

(The factor e−ϕ/2 is the bosonisation (see section 4.6) of the Faddeev–Popov ghosts, about which we will have
nothing more to say here.) The resulting full gravitino vertex operators, which correctly have one vector and
one spinor index, are two fields of weight (0, 1) and (1, 0), respectively, depending upon whether ψµ comes
from the left or right. These are therefore holomorphic and anti–holomorphic world–sheet currents, and the
symmetry associated to them in spacetime is the supersymmetry. In the IIA theory the two gravitinos (and
supercharges) have opposite chirality, and in the IIB the same.

Consider the vertex operators for the R–R states.[1] This will involve a product of spin fields, [70] one
from the left and one from the right. These again decompose into antisymmetric tensors, now of SO(9, 1):

V = VαVβ(Γ[µ1 · · ·Γµn]C)αβG[µ1···µn](X) (335)

with C the charge conjugation matrix. In the IIA theory the product is 16 ⊗ 16′ giving even n (with
n ∼= 10− n) and in the IIB theory it is 16⊗ 16 giving odd n. As in the bosonic case, the classical equations
of motion follow from the physical state conditions, which at the massless level reduce to G0 ·V = G̃0 ·V = 0.
The relevant part of G0 is just pµψ

µ
0 and similarly for G̃0. The pµ act by differentiation on G, while ψµ0 acts

on the spin fields as it does on the corresponding ground states: as multiplication by Γµ. Noting the identity

ΓνΓ[µ1 · · ·Γµn] = Γ[ν · · ·Γµn] +
(
δνµ1Γ[µ2 · · ·Γµn] + perms

)
(336)
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and similarly for right multiplication, the physical state conditions become

dG = 0 d∗G = 0. (337)

These are the Bianchi identity and field equation for an antisymmetric tensor field strength. This is in accord
with the representations found: in the IIA theory we have odd–rank tensors of SO(8) but even–rank tensors
of SO(9, 1) (and reversed in the IIB), the extra index being contracted with the momentum to form the
field strength. It also follows that R–R amplitudes involving elementary strings vanish at zero momentum,
so strings do not carry R–R charges4.

As an aside, when the dilaton background is nontrivial, the Ramond generators have a term Φ,µ∂ψ
µ,

and the Bianchi identity and field strength pick up terms proportional to dΦ∧G and dΦ∧ ∗G. The Bianchi
identity is nonstandard, so G is not of the form dC. Defining G′ = e−ΦG removes the extra term from both
the Bianchi identity and field strength. The field G′ is thus decoupled from the dilaton. In terms of the
action, the fields G in the vertex operators appear with the usual closed string e−2Φ but with non-standard
dilaton gradient terms. The fields we are calling G′ (which in fact are the usual fields used in the literature,
and so we will drop the prime symbol in the sequel) have a dilaton–independent action.

The type IIB theory is chiral since it has different numbers of left moving fermions from right–moving.
Furthermore, there is a self–dual R–R tensor. These structures in principle produce gravitational anomalies,
and it is one of the miracles (from the point of view of the low energy theory) of string theory that the
massless spectrum is in fact anomaly free. There is a delicate cancellation between the anomalies for the
8c’s and for the 56s’s and the 35+. The reader should check this by using the anomaly polynomials in
section 7.1.4, (of course, put n = 1 and F = 0) to see that

−2Î8s
12 + 2Î56c

12 + Î
35+

12 = 0 , (338)

which is in fact miraculous, as previously stated[101].

7.2.1 Type I from Type IIB, The Prototype Orientifold

As we saw in the bosonic case, we can construct an unoriented theory by projecting onto states invariant
under world sheet parity, Ω. In order to get a consistent theory, we must of course project a theory which is
invariant under Ω to start with. Since the left and right moving sectors have the same GSO projection for
type IIB, it is invariant under Ω, so we can again form an unoriented theory by gauging. We cannot gauge
Ω in type IIA to get a consistent theory, but see later.

Projecting onto Ω = +1 interchanges left–moving and right–moving oscillators and so one linear combi-
nation of the R–NS and NS–R gravitinos survives, so there can be only one supersymmetry remaining. In
the NS–NS sector, the dilaton and graviton are symmetric under Ω and survive, while the antisymmetric
tensor is odd and is projected out. In the R–R sector, by counting we can see that the 1 and 35+ are in the
symmetric product of 8s ⊗ 8s while the 28 is in the antisymmetric. The R–R state is the product of right–
and left–moving fermions, so there is an extra minus in the exchange. Therefore it is the 28 that survives.
The bosonic massless sector is thus 1⊕ 28⊕ 35, and together with the surviving gravitino, this give us the
D = 10 N = 1 supergravity multiplet.

Sadly, this supergravity is in fact anomalous. The delicate balance (338) between the anomalies from
the various chiral sectors, which we noted previously, vanishes since one each of the 8c and 56s, and the
35+, have been projected out. Nothing can save the theory unless there is an additional sector to cancel the
anomaly.[101]

This sector turns out to be N = 1 supersymmetric Yang–Mills theory, with gauge group SO(32) or
E8×E8. Happily, we already know at least one place to find the first choice: We can use the low–energy
(massless) sector of SO(32) unoriented open superstring theory. This fits nicely, since as we have seen before,
at one loop open strings couple to closed strings. We will not be able to get gauge group E8 × E8 from

4The reader might wish to think of this as analogous to the discovery that a moving electric point source generates a magnetic
field, but of course is not a basic magnetic monopole source.
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perturbative open string theory (Chan–Paton factors can’t make this sort of group), but we will see shortly
that there is another way of getting this group, but from a closed string theory.

The total anomaly is that of the gravitino, dilatino and the gaugino, the latter being charged in the
adjoint of the gauge group:

I12 = −Î8s
12 (R) + Î56c

12 (R) + Î8s
12 (F,R) (339)

Using the polynomials given in section 7.1.4, it should be easily seen that there is an irreducible term

(n− 496)
tr(R6)

725760
, (340)

which must simply vanish, and so n, the dimension of the group, must be 496. Since SO(32) and E8 × E8

both have this dimension, this is encouraging. That the rest of the anomaly cancels is a very delicate and
important story which deserves some attention. We will do that in the next section.

Finishing the present discussion, in the language we learned in section 4.11.1, we put a single (space–
filling) O9–plane into type IIB theory, making the type IIB theory into the unoriented N = 1 closed string
theory. This is anomalous, but we can cancel the resulting anomalies by adding 16 D9–branes. Another
way of putting it is that (as we shall see) the O9–plane has 16 units of C10 charge, which cancels that of 16
D9–branes, satisfying the equations of motion for that field.

We have just constructed our first (and in fact, the simplest) example of an “orientifolding” of a super-
string theory to get another. More complicated orientifolds may be constructed by gauging combinations of
Ω with other discrete symmetries of a given string theory which form an “orientifold group” GΩ under which
the theory is invariant.[31] Generically, there will be the requirement to cancel anomalies by the addition of
open string sectors (i.e. D–branes), which results in consistent new string theory with some spacetime gauge
group carried by the D–branes. In fact, these projections give rise to gauge groups containing any of U(n),
USp(n) factors, and not just SO(n) sectors.

7.3 The Green–Schwarz Mechanism

Let us finish showing that the anomalies of N = 1, D = 10 supergravity coupled to Yang–Mills do vanish
for the groups SO(32) and E8 × E8. We have already shown above that the dimension of the group must
be n = 496. Some algebra shows that the rest of the anomaly (339), for this value of n can be written
suggestively as:

I
(n=496)
12 =

1

3 × 28
Y4X8 (341)

− 1

1440

(
Tradj(F

6) − Tradj(F
2)Tradj(F

4)

48
+

[Tradj(F
2)]3

14400

)
,

where

Y4 = tr(R2) − 1

30
Tradj(F

2) , (342)

X8 =
Tradj(F

4)

3
− [Tradj(F

2)]2

900
− Tradj(F

2)tr(R2)

30
+ tr(R4) +

[tr(R2)]2

4
.

On the face of it, it does not really seem possible that this can be canceled, since the gaugino carries gauge
charge and nothing else does, and so there are a lot of gauge quantities which simply stand on their own.
This seems hopeless because we have so far restricted ourselves to quantum anomalies arising from the gauge
and gravitational sector. If we include the rank two R–R potential C(2) in a cunning way, we can generate
a mechanism for canceling the anomaly. Consider the interaction

SGS =
1

3 × 26(2π)5α′

∫
C(2) ∧X8 . (343)
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It is invariant under the usual gauge transformations

δA = dΛ + [A,Λ] ; δω = dΘ + [ω,Θ] , (344)

since it is constructed out of the field strengths F and R. It is also invariant under the 2–form potential’s
standard transformation δC(2) = dλ. Let us however give C(2) another gauge transformation rule. While
A and ω transform under (344), let it transform as:

δC(2) =
α′

4

(
1

30
Tr(ΛF ) − tr(ΘR)

)
. (345)

Then the variation of the action does not vanish, and is:

δSGS =
1

3 × 28(2π)5

∫ [
1

30
Tr(ΛF ) − tr(ΘR)

]
∧X8 .

However, using the properties of the Chern–Simons 3–form discussed in section 7.1.3, this classical variation
can be written as descending via the consistency chain of equation (329) from precisely the 12–form poly-
nomial given in the first line of equation (342), but with a minus sign. Therefore we cancel that offending
term with this classical modification of the transformation of C(2). Later on, when we write the supergravity
action for this field in the type I model, we will use the modified field strength:

G̃(3) = dC(2) − α′

4

[
1

30
ω3Y(A) − ω3L(Ω)

]
, (346)

where because of the transformation properties of the Chern–Simons 3–form (see section 7.1.3), G̃(3) is gauge
invariant under the new transformation rule (345).

It is worth noting here that this is a quite subtle mechanism. We are canceling the anomaly generated
by a one loop diagram with a tree–level graph. It is easy to see what the tree level diagram is. The kinetic
term for the modified field strength will have its square appearing, and so looking at its definition (346), we
see that there is a vertex coupling C(2) to two gauge bosons or to two gravitons. There is another vertex
which comes from the interaction (343) which couples C(2) to four particles, pairs of gravitons and pairs of
gauge bosons, or a mixture. So the tree level diagram in figure 29 can mix with the hexagon anomaly of
figure 28.

Figure 29: The tree which cures the N = 1 D = 10 anomalies. A 2–form field is exchanged.

Somehow, the terms in the second line must cancel amongst themselves. Miraculously, they do for a
number of groups, SO(32) and E8 × E8 included. For the first group, it follows from the fact that for the
group SO(n), we can write:

Tradj(t
6) = (n− 32)Trf(t

6) + 15Trf(t
2)Trf(t

4) ;

Tradj(t
4) = (n− 8)Trf(t

4) + 3Trf(t
2)Trf(t

2) ;

Tradj(t
2) = (n− 2)Trf(t

2) , (347)
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where “f” denotes the fundamental representation. For E8, we have that

Tradj(t
6) =

1

7200
[Trf(t

2)]3 ,

Tradj(t
4) =

1

100
[Trf(t

2)]2 . (348)

In checking these (which of course the reader will do) one should combine the traces as TrG1×G2 = TrG1 +
TrG2 , etc.

Overall, the results[101] of this subsection are quite remarkable, and generated a lot of excitement which
we now call the First Superstring Revolution. This excitement was of course justified, since the discovery of
the mechanism revealed that there were consistent superstring theories with considerably intricate structures
with promise for making contact with the physics that we see in Nature.

7.4 The Two Basic Heterotic String Theories

In addition to the three superstring theories briefly constructed above, there are actually two more super-
symmetric string theories which live in ten dimensions. In addition, they have non–Abelian spacetime gauge
symmetry, and they are also free of tachyons. These are the “Heterotic Strings”.[23] The fact that they
are chiral, have fermions and non–Abelian gauge symmetry meant that they were considered extremely at-
tractive as starting points for constructing “realistic” phenomenology based on string theory. It is in fact
remarkable that one can come tantalizingly close to naturally realizing many of the features of the Standard
Model of particle physics by starting with, say, the E8 ×E8 Heterotic String, while remaining entirely in the
perturbative regime. This was the focus of much of the First Superstring Revolution. Getting many of the
harder questions right led to the search for non–perturbative physics, which ultimately led us to the Second
Superstring Revolution, and the realization that all of the other string theories were just as important too,
because of duality.

One of the more striking things about the heterotic strings, from the point of view of what we have done
so far, is the fact that they have non–Abelian gauge symmetry and are still closed strings. The SO(32) of
the type I string theory comes from Chan–Paton factors at the ends of the open string, or in the language
we now use, from 16 coincident D9–branes.

We saw a big hint of what is needed to get spacetime gauge symmetry in the heterotic string in section 4.
Upon compactifying bosonic string theory on a circle, at a special radius of the circle, an enhanced SU(2)L×
SU(2)R gauge symmetry arose. From the two dimensional world–sheet point of view, this was a special case
of a current algebra, which we uncovered further in section 4.3. We can take two key things away from that
section for use here. The first is that we can generalise this to a larger non–Abelian gauge group if we use
more bosons, although this would seem to force us to have many compact directions. The second is that
there were identical and independent structures coming from the left and the right to give this result. So
we can take, say, the left hand side of the construction and work with it, to produce a single copy of the
non–Abelian gauge group in spacetime.

This latter observation is the origin of the word “heterotic” which comes from “heterosis”. The theory
is a hybrid of two very different constructions on the left and the right. Let us take the right hand side to
be a copy of the right hand side of the superstrings we constructed previously, and so we use only the right
hand side of the action given in equation (308) (with closed string boundary conditions).

Then the usual consistency checks give that the critical dimension is of course ten, as before: The central
charge (conformal anomaly) is −26+11 = 15 from the conformal and superconformal ghosts. This is canceled
by ten bosons and their superpartners since they contribute to the anomaly an amount 10×1+10× 1

2 = 15.
The left hand side is in fact a purely bosonic string, and so the anomaly is canceled to zero by the −26 from
the conformal ghosts and there must be the equivalent of 26 bosonic degrees of freedom, producing 26 × 1
to the anomaly.

How can the theory make sense as a ten dimensional theory? The answer to this question is just what
gives the non–Abelian gauge symmetry. Sixteen of the bosons are periodic, and so may be thought of as
compactified on a torus T 16 ' (S1)16 with very specific properties.
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Those properties are such that the generic U(1)16 one might have expected from such a toroidal com-
pactification is enhanced to one of two special rank 16 gauge groups: SO(32), or E8 × E8, via the very
mechanism we saw in section 4: The torus is “self–dual”. The remaining 10 non–compact bosons on the
left combine with the 10 on the right to make the usual ten spacetime coordinates, on which the usual ten
dimensional Lorentz group SO(1, 9) acts.

7.4.1 SO(32) and E8 × E8 From Self–Dual Lattices

The requirements are simple to state. We are required to have a sixteen dimensional lattice, according to
the above discussion, and so we can apply the results of section 4, but there is a crucial difference. Recalling
what we learned there, we see that since we only have a left–moving component to this lattice, we do not have
the Lorentzian signature which arose there, but only a Euclidean signature. But all of the other conditions
apply: It must be even, in order to build gauge bosons as vertex operators, and it must be self–dual, to
ensure modular invariance.

The answer turns out the be quite simple. There are only two choices, since even self–dual Euclidean
lattices are very rare (They only exist when the dimension is a multiple of eight). For sixteen dimensions,
there is either Γ8 × Γ8 or Γ16. The lattice Γ8 is the collection of points:

(n1, n2, . . . , n8) or (n1 + 1
2 , n2 + 1

2 , . . . , n8 + 1
2 ) ,

∑

i

ni ∈ 2Z ,

with
∑

i n
2
i = 2. The integer lattice points are actually the root lattice of SO(16), with which the 120

dimensional adjoint representation is made. The half integer points construct the spinor representation of
SO(16). A bit of thought shows that it is just like the construction we made of the spinor representations
of SO(8) previously; the entries are only ± 1

2 in 8 different slots, with only an even number of minus signs
appearing, which again gives a squared length of two. There are 27 = 128 possibilities, which is the dimension
of the spinor representation. The total dimension of the representation we can make is 120 + 128 = 248
which is the dimension of E8. The sixteen dimensional lattice is made as the obvious tensor product of two
copies of this, giving gauge group E8 × E8, which is 496 dimensional.

The lattice Γ16 is extremely similar, in that it is:

(n1, n2, . . . , n16) or (n1 + 1
2 , n2 + 1

2 , . . . , n16 + 1
2 ) ,

∑

i

ni ∈ 2Z ,

with
∑
i n

2
i = 2. Again, we see that the integer points make the root lattice of SO(32), but there is more.

There is a spinor representation of SO(32), but it is clear that since 16 × 1/4 = 4, the squared length
is twice as large as it need to be to make a massless vector, and so the gauge bosons remain from the
adjoint of SO(32), which is 496 dimensional. In fact, the full structure is more than SO(32), because of
this spinor representation. It is not quite the cover, which is Spin(32) because the conjugate spinor and the
vector representations are missing. It is instead written as Spin(32)/Z2. In fact, SO(32) in the quotient of
Spin(32) by another Z2.

Actually, before concluding, we should note that there is an alternative construction to this one using
left–moving fermions instead of bosons. This is easily arrived at from here using what we learned about
fermionisation in section 4.6. From there, we learn that we can trade in each of the left–moving bosons here
for two left–moving Majorana–Weyl fermions, giving a fermionic construction with 32 fermions Ψi. The
construction divides the fermions into the NS and R sectors as before, which correspond to the integer and
half–integer lattice sites in the above discussion. The difference between the two heterotic strings is whether
the fermions are split into two sets with independent boundary conditions (giving E8 × E8) or if they have
all the same boundary conditions (SO(32)).

In this approach, there is a GSO projection, which in fact throws out a tachyon, etc.. Notice that in the
R sector, the zero modes of the 32 Ψ will generate a spinor and conjugate spinor 231 + ¯231 of SO(32) for
much the same reasons as we saw a 16 + 1̄6 in the construction of the superstring. Just as there, a GSO
projection arises in the construction, which throws out the conjugate spinor, leaving the sole massive spinor
we saw arise in the direct lattice approach.
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7.5 The Massless Spectrum

In the case we must consider here, we can borrow a lot of what we learned in section 4.5 with hardly any
adornment. We have sixteen compact left–moving bosons, X i, which, together with the allowed momenta
P i, define a lattice Γ. The difference between this lattice and the ones we considered in section 4.5 is that
there is no second part coming from a family of right–moving momenta, and hence it is only half the expected
dimension, and with a purely Euclidean signature. This sixteen dimensional lattice must again be self–dual
and even. This amounts to the requirement of modular invariance, just as before. More directly, we can see
what effect this has on the low–lying parts of the spectrum.

Recall that the NS and R sector of the right hand side has zero point energy equal to −1/2 and 0,
respectively. Recall that we then make, after the GSO projection, the vector 8v, and its superpartner the
spinor 8s from these two sectors. On the left hand side, we have the structure of the bosonic string, with zero
point energy −1. There is no GSO projection on this side, and so potentially we have the tachyon, |0>, the
familiar massless states αµ−1|0>, and the current algebra elements Ja−1|0>. These must be tensored together
with the right hand side’s states, but we must be aware that the level–matching condition is modified.
To work out what it is we must take the difference between the correctly normalised ten dimensional M2

operators on each side. We must also recall that in making the ten dimensional M2 operator, we are left
with a remainder, the contribution to the internal momentum α′p2

L/4. The result is:

α′p2
L

4
+N − 1 = Ñ −

{
− 1

2
0

,

where the choice corresponds to the NS or R sectors.
Now we can see how the tachyon is projected out of the theory, even without a GSO projection on the

left. The GSO on the right has thrown out the tachyon there, and so we start with Ñ = 1
2 there. The

left tachyon is N = 0, but this is not allowed, and we must have the even condition α′p2
L/2 = 2 which

corresponds to switching on a current Ja−1, making a massless state. If we do not have this state excited,
then we can also make a massless state with N = 1, corresponding to αµ−1|0>.

The massless states we can make by tensoring left and right, respecting level–matching are actually
familiar: In the NS–NS sector, we have αµ−1ψ

ν
− 1

2

|0>, which is the graviton, Gµν antisymmetric tensor Bµν

and dilaton Φ in the usual way. We also have Ja−1ψ
µ

− 1
2

|0>, which gives an E8 ×E8 or SO(32) gauge boson,

Aµa. In the NS–R sector, we have αµ−1|0>α which is the gravitino, ψµα. Finally, we have Ja−1|0>α, which
is the superpartner of the gauge boson, λaα. In the language we used earlier, we can write the left hand
representations under SO(8)×G (where G is SO(32) or E8 ×E8) as (8v,1) or (1,496) . Then the tensoring
is

(8v,1) ⊗ (8v + 8s) = (1,1) + (35,1) + (28,1) + (56,1) + (8′,1) ,

(1,496) ⊗ (8v + 8s) = (8v,496) + (8s,496) .

So we see that we have again obtained the N = 1 supergravity multiplet, coupled to a massless vector. The
effective theory which must result at low energy must have the same gravity sector, but since the gauge
fields arise at closed string tree level, their Lagrangian must have a dilaton coupling e2Φ, instead of eΦ for
the open string where the gauge fields arise at open string tree level.

7.6 The Ten Dimensional Supergravities

Just as we saw in the case of the bosonic string, we can truncate consistently to focus on the massless
sector of the string theories, by focusing on low energy limit α′ → 0. Also as before, the dynamics can be
summarised in terms of a low energy effective (field theory) action for these fields, commonly referred to as
“supergravity”.

The bosonic part of the low energy action for the type IIA string theory in ten dimensions may be written
(c.f. (96)) as (the wedge product is understood):[1, 2, 71]
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SIIA =
1

2κ2
0

∫
d10x(−G)1/2

{
e−2Φ

[
R+ 4(∇Φ)2 − 1

12
(H(3))2

]

−1

4
(G(2))2 − 1

48
(G(4))2

}
− 1

4κ2
0

∫
B(2)dC(3)dC(3) . (349)

As before Gµν is the metric in string frame, Φ is the dilaton, H(3) = dB(2) is the field strength of the NS–NS
two form, while the Ramond-Ramond field strengths are G(2) = dC(1) and G(4) = dC(3) +H(3) ∧ C(1).5

For the bosonic part in the case of type IIB, we have:

SIIB =
1

2κ2
0

∫
d10x(−G)1/2

{
e−2φ

[
R+ 4(∇Φ)2 − 1

12
(H(3))2

]

− 1

12
(G(3) + C(0)H(3))2 − 1

2
(dC(0))2 − 1

480
(G(5))2

}

+
1

4κ2
0

∫ (
C(4) +

1

2
B(2) C(2)

)
G(3)H(3) . (350)

Now, G(3) = dC(2) and G(5) = dC(4) +H(3)C(2) are R–R field strengths, and C(0) is the RR scalar. (Note
that we have canonical normalizations for the kinetic terms of forms: there is a prefactor of the inverse of
−2 × p! for a p–form field strength.) There is a small complication due to the fact that we require the R–R
four form C(4) to be self dual, or we will have too many degrees of freedom. We write the action here and
remind ourselves to always impose the self duality constraint on its field strength F (5) = dC(4) by hand in
the equations of motion: F (5) = ∗F (5).

Equation (99) tells us that in ten dimensions, we must use:

G̃µν = e(Φ0−Φ)/2Gµν . (351)

to convert these actions to the Einstein frame. As before, (see discussion below (101)) Newton’s constant
will be set by

2κ2 ≡ 2κ2
0g

2
s = 16πGN = (2π)7α′4g2

s , (352)

where the latter equality can be established by (for example) direct examination of the results of a graviton
scattering computation. We will see that it gives a very natural normalization for the masses and charges of
the various branes in the theory. Also gs is set by the asymptotic value of the dilaton at infinity: gs ≡ eΦ0 .

Those were the actions for the ten dimensional supergravities with thirty–two supercharges. Let us
consider those with sixteen supercharges. For the bosonic part of type I, we can construct it by dropping the
fields which are odd under Ω and then adding the gauge sector, plus a number of cross terms which result
from canceling anomalies, as we discussed in subsection 7.2.1:

SI =
1

2κ2
0

∫
d10x(−G)1/2

{
e−2Φ

[
R+ 4(∇φ)2

]
− 1

12
(G̃(3))2 − α′

8
e−ΦTr(F (2))2

}
. (353)

Here, G̃(3) is a modified field strength for the 2–form potential, defined in equation (346). Recall that this
modification followed from the requirement of cancellation of the anomaly via the Green–Schwarz mechanism.

We can generate the heterotic low–energy action using a curiosity which will be meaningful later. Notice
that a simple redefinition of fields:

Gµν(type I) = e−ΦGµν(heterotic)

5This can be derived by dimensional reduction from the structurally simpler eleven dimensional supergravity action, presented
in section 11, but at this stage, this relation is a merely formal one. We shall see a dynamical connection later.
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Φ(type I) = −Φ(heterotic)

G̃(3)(type I) = H̃(3)(heterotic)

Aµ(type I) = Aµ(heterotic) , (354)

takes one from the type I Lagrangian to:

SH =
1

2κ2
0

∫
d10x(−G)1/2e−2Φ

{
R+ 4(∇φ)2 − 1

12
(H̃(3))2 − α′

8
Tr(F (2))2

}
, (355)

where (renaming C(2) → B(2))

H̃(3) = dB(2) − α′

4

[
1

30
ω3Y(A) − ω3L(Ω)

]
. (356)

This is the low energy effective Lagrangian for the heterotic string theories. Note that in (355), α′ is measured
in heterotic units of length.

We can immediately see two key features about these theories. The first was anticipated earlier: Their
Lagrangian for the gauge fields have a dilaton coupling e−2Φ, since they arise at closed string tree level,
instead of e−Φ for the open string where where the gauge fields arise at open string tree level. The second
observation is that since from equation.(354) the dilaton relations tell us that gs(type I) = g−1

s (heterotic),
there is a non–perturbative connection between these two theories, although they are radically different in
perturbation theory. We are indeed forced to consider these theories when we study the type I string in the
limit of strong coupling.

7.7 Heterotic Toroidal Compactifications

Much later, it will be of interest to study simple compactifications of the heterotic strings, and the simplest
result from placing them on tori[164, 165]. Our interest here is not in low energy particle physics phe-
nomenology, as this would require us to compactify on more complicated spaces to break the large amount of
supersymmetry and gauge symmetry. Instead, we shall see that it is quite instructive, on the one hand, and
on the other hand, studying various superstring compactifications with D–brane sectors taken into account
will produce vacua which are in fact strong/weak coupling dual to heterotic strings on tori. This is another
remarkable consequence of duality which forces us to consider the heterotic strings even though they cannot
have D–brane sectors.

Actually, there is not much to do. From our work in section 7.4 and from that in section 4.5, it is easy to
see what the conditions for the consistency of a heterotic toroidal compactification must be. Placing some of
the ten dimensions on a torus T d will give us the possibility of having windings, and right–moving momenta.
In addition, the gauge group can be broken by introducing Wilson lines (see section 4.9) on the torus for
the gauge fields Aµ. This latter choice breaks the gauge group to the maximal Abelian subgroup, which is
U(1)16.

The compactification simply enlarges our basic sixteen dimensional Euclidean lattice from Γ8⊕Γ8 or Γ16

by two dimensions of Lorentzian signature (1, 1) for each additional compact direction, for the reasons we
already discussed in section 4.5. So we end up with a lattice with signature (16 + d, d), on which there must
be an action of O(d, 16 + d) generating the lattices.

Again, we will have that there is a physical equivalence between some of these lattices, because physics
only depends on p2

L and p2
R, and further, there will be the discrete equivalences corresponding to the action

of a T–duality group, which is O(d, 16 + d,Z).
The required lattices are completely classified, as a mathematical exercise. In summary, the space of

inequivalent toroidal compactifications turns out to be:

MTd = [O(d) ×O(d + 16)]\O(d, d+ 16)/O(d, d+ 16,Z) . (357)
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Notice, after a quick computation, that the dimension of this space is d2 + 16d. So in addition to the fields
Gµν , Bµν and Φ, we have that number of extra massless scalars in the N = 2, D = 6 low energy theory.
The first part of the result comes, as before from the available constant components, Gmn and Bmn, of
the internal metric and antisymmetric tensor on T d. The remaining part comes from the sixteen generic
constant internal gauge bosons (the Wilson lines), Am for each circle.

Let us compute what the generic gauge group of this compactified model is. There is of course the U(1)16

from the original current algebra sector. In addition, there is a U(1) × U(1) coming from each compact
dimension, since we have Kaluza–Klein reduction of the metric and antisymmetric tensor. Therefore, the
generic gauge group is U(1)16+2d.

To get something less generic, we must tune some moduli to special points. Of course, we can choose
to switch off some of the Wilson lines, getting non–Abelian gauge groups from the current algebra sector,
restoring an E8×E8×U(1)2d or SO(32)×U(1)2d gauge symmetry. We also have the possibility of enhancing
the Kaluza–Klein factor by tuning the torus to special points. We simply need to make states of the form
exp(ikL · XL)ψµ−1/2|0>, where we can have left–moving momenta of α′p2

L/2 = 2, (we are referring to the

components of pL which are in the torus T d). This will give any of the A–D–E series of gauge groups up to
a rank 2d in this sector.

The reader will have noticed that we only gave one family of lattices for each dimension d of the torus.
We did not have one choice for the E8×E8 string and another for the SO(32) string. In other words, as soon
as we compactify one heterotic string on a circle, we find that we could have arrived at the same spectrum
by compactifying the other heterotic string on a circle. This is of course T–duality. It is worth examining
further, and we do this in section 8.1.3.

7.8 Superstring Toroidal Compactification

The placement of the superstrings on tori is at face value rather less interesting than the heterotic case, and
so we will not spend much time on it here, although will return to it later when we revisit T–duality, and
again when we study U–duality.

Imagine that we compactify one of our superstring theories on the torus T d. We simply ask that d of
the directions are periodic with some chosen radius, as we did in section 4.5 for the bosonic string. This
does not not affect any of our discussion of supercharges, etc, and we simply have a (10 − d)–dimensional
theory with the same amount of supersymmetry as the ten dimensional theory which we started with. As
discussed in section 4.4, there is a large O(d, d,Z) pattern of T–duality groups available to us. There are
also Kaluza–Klein gauge groups U(1)2d coming from the internal components of the graviton and the anti–
symmetric tensor. In addition, there are Kaluza–Klein gauge groups coming from the possibility of some of
the R–R sector antisymmetric tensors having internal indices. Note that there aren’t the associated enhanced
gauge symmetries present at special radii, since the appropriate objects which would have arisen in a current
algebra, Ja−1, do not give masses states in spacetime, and in any case level matching would have forbidden
them from being properly paired with ψµ−1/2 to give a spacetime vector.

To examine the possibilities, it is probably best to study a specific example, and we do the case of placing
the type IIA string theory on T 5. Let us first count the gauge fields. This can be worked out simply by
counting the number of ways of wrapping the metric and the various p–form potentials (with p odd) in the
theory on the five circles of the T 5 to give a one–form in the remaining five non–compact directions. From the
NS–NS sector there are 5 Kaluza–Klein gauge bosons and 5 gauge bosons from the antisymmetric tensor.
There are 16 gauge bosons from the dimensional reduction of the various R–R forms: The breakdown is
10+5+1 from the forms C(3), C(5) and C(1), respectively, since e.g. there are 10 independent ways of making
two out of the three indices of C(3) be any two out of the five internal directions, and so on. Finally, in five
dimensions, one can form a two form field strength from the Hodge dual ∗H of the 3–form field strength of
the NS–NS Bµν , thus defining another gauge field.

So the gauge group is generically U(1)27. There are in fact a number of massless fields corresponding
to moduli representing inequivalent sizes and shapes for the T 5. We can count them easily. We have the
52 = 25 components coming from the graviton and anti–symmetric tensor field. From the R–R sector there
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is only one way of getting a scalar from C(5), and 5 and 10 ways from C(1) and C(3), respectively. This gives
41 moduli. Along with the dilaton, this gives a total of 42 scalars for this compactification.

By now, the reader should be able to construct the very same five dimensional spectrum but starting
with the type IIB string and placing it on T 5. This is a useful exercise in preparation for later. The same
phenomenon will happen with any torus, T d. Thus we begin to uncover the fact that the type IIA and
type IIB string theories are (T–dual) equivalent to each other when placed on circles. We shall examine this
in more detail in section 8.1, showing that the equivalence is exact.

The full T–duality group is actually O(5, 5; Z). It acts on the different sectors independently, as it ought
to. For example, for the gauge fields, it mixes the first 10 NS–NS gauge fields among themselves, and the
16 R–R gauge fields among themselves, and leaves the final NS–NS field invariant. Notice that the fields
fill out sensible representations of O(5, 5; Z). Thinking of the group as roughly SO(10), those familiar with
numerology from grand unification might recognize that the sectors are transforming as the 10, 16, and 1.

A little further knowledge will lead to questions about the fact that 10⊕ 16⊕ 1 is the decomposition of
the 27 (the fundamental representation) of the group E6, but we should leave this for a later time, when we
come to discuss U–duality in section 11.

7.9 A Superstring Orbifold: The K3 Manifold

Before we go further, let us briefly revisit the idea of strings propagating on an orbifold, and take it a bit
further. Imagine that we compactify one of our closed string theories on the four torus, T 4. Let us take the
simple case where there the torus is simply the product of four circles, S1, each with radius R. Let us choose
that the four directions (say) x6, x7, x8 and x9 are periodic with period 2πR. The resulting six dimensional
theory has N = 4 supersymmetry.

Let us orbifold the theory by the Z2 group which has the action

R : x6, x7, x8, x9 → −x6,−x7,−x8,−x9 , (358)

which is clearly a good symmetry to divide by. The R4 is naturally acted on by rotations, SO(4) ∼
SU(2)L × SU(2)R. We can choose to let R be embedded in the SU(2)L which acts on the R4. This will
leave an SU(2)R which descends to the six dimensions as a global symmetry. It is in fact the R–symmetry
of the remaining D = 6, N = 2 model. We shall use this convention a number of times in what is to come.

7.9.1 The Orbifold Spectrum

We can construct the resulting six dimensional spectrum by first working out (say) the left—moving spec-
trum, seeing how it transforms under R and then tensoring with another copy from the right in order to
construct the closed string spectrum.

Let us now introduce a bit of notation which will be useful in the future. Use the label xm, m = 6, 7, 8, 9
for the orbifolded directions, and use xµ, µ = 0, . . . , 5, for the remaining. Let us also note that the ten
dimensional Lorentz group is decomposed as

SO(1, 9) ⊃ SO(1, 5) × SO(4) .

We shall label the transformation properties of our massless states in the theory under the SU(2)×SU(2) =
SO(4) Little group. Just as we did before, it will be useful in the Ramond sector to choose a labeling of
the states which refers to the rotations in the planes (x0, x1), (x2, x3), etc., as eigenstates s0, s1...s4 of the
operator S01, S23, etc., (see equations (324) and (326) and surrounding discussion). With this in mind, we
can list the states on the left which survive the GSO projection:
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sector state R charge SO(4) charge

NS ψµ
−

1
2

|0; k> + (2,2)

ψm
−

1
2

|0; k> − 4(1,1)

R |s1s2s3s4>; s1 = +s2, s3 = −s4 + 2(2,1)

|s1s2s3s4>; s1 = −s2, s3 = +s4 − 2(1,2)

Crucially, we should also examine the “twisted sectors” which will arise, in order to make sure that we get
a modular invariant theory. The big difference here is that in the twisted sector, the moding of the fields in
the xm directions is shifted. For example, the bosons are now half–integer moded. We have to recompute
the zero point energies in each sector in order to see how to get massless states (see (70)):

NS sector: 4

(
− 1

24

)
+ 4

(
− 1

48

)
+ 4

(
1

48

)
+ 4

(
1

24

)
= 0 ,

R sector: 4

(
− 1

24

)
+ 4

(
1

24

)
+ 4

(
1

48

)
+ 4

(
− 1

48

)
= 0. (359)

This is amusing, both the Ramond and NS sectors have zero vacuum energy, and so the integer moded
sectors will give us degenerate vacua. We see that it is only states |s1s2> which contribute from the R–sector
(since they are half integer moded in the xm directions) and the NS sector, since it is integer moded in the
xm directions, has states |s3s4>.

It is worth seeing in (359) how we achieved this ability to make a massless field in this case. The
single twisted sector ground state in the bosonic orbifold theory with energy 1/48, was multiplied by 4 since
there are four such orbifolded directions. Combining this with the contribution from the four unorbifolded
directions produced just the energy needed to cancel the contribution from the fermions.

The states and their charges are (after imposing GSO):

sector state R charge SO(4) charge

NS |s3s4>; s3 = −s4 + 2(1,1)

R |s1s2 >; s1 = −s2 − (1,2)

Now we are ready to tensor. Recall that we could have taken the opposite GSO choice here to get a left
moving with the identical spectrum, but with the swap (1,2) ↔ (2,1). Again we have two choices: Tensor
together two identical GSO choices, or two opposite. In fact, since six dimensional supersymmetries are
chiral, and the orbifold will keep only two of the four we started with, we can write these choices as (0, 2)
or (1, 1) supersymmetry, resulting from type IIB or IIA on K3. It is useful to tabulate the result for the
bosonic spectra for the untwisted sector:

sector SO(4) charge

NS–NS
(3,3) + (1,3) + (3,1) + (1,1)

10(1,1) + 6(1,1)

R–R (IIB)
2(3,1) + 4(1,1)
2(1,3) + 4(1,1)

R–R (IIA)
4(2,2)
4(2,2)

and for the twisted sector:

sector SO(4) charge

NS–NS 3(1,1) + (1,1)

R–R (IIB) (1,3) + (1,1)
R–R (IIA) (2,2)
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Recall now that we have two twisted sectors for each orbifolded circle, and hence there are 16 twisted sectors
in all, for T 4/Z2. Therefore, to make the complete model, we must take sixteen copies of the content of the
twisted sector table above.

Now let identify the various pieces of the spectrum. The gravity multiplet Gµν + Bµν + Φ is in fact the
first line of our untwisted sector table, coming from the NS–NS sector, as expected. The field B can be
seen to be broken into its self–dual and anti–self–dual parts B+

µν and B−
µν , transforming as (1,3) and (3,1).

There are sixteen other scalar fields, ((1,1)), from the untwisted NS–NS sector. The twisted sector NS–NS
sector has 4×16 scalars. Not including the dilaton, there are 80 scalars in total from the NS–NS sector.

Turning to the R–R sectors, we must consider the cases of IIA and IIB separately. For type IIA, there
are 8 one–forms (vectors, (2,2)) from the untwisted sector and 16 from the twisted, giving a total of 24
vectors, and have a generic gauge group U(1)24.

For type IIB, the untwisted R–R sector contains three self–dual and three anti–self–dual tensors, while
there are an additional 16 self–dual tensors (1,3). We therefore have 19 self–dual C+

µν and 3 anti–self–dual
C−
µν . There are also eight scalars from the untwisted R–R sector and 16 scalars from the twisted R–R sector.

In fact, including the dilaton, there are 105 scalars in total for the type IIB case.

7.9.2 Another Miraculous Anomaly Cancellation

This type IIB spectrum is chiral, as already mentioned, and in view of what we studied in earlier sections,
the reader must be wondering whether or not it is anomaly–free. It actually is, and it is a worthwhile exercise
to check this, using the polynomials in section 7.1.4.

The cancellation is so splendid that we cannot resist explaining it in detail here. To do so we should be
careful to understand the N = 2 multiplet structure properly. A sensible non–gravitational multiplet has
the same number of bosonic degrees of freedom as fermionic, and so it is possible to readily write out the
available ones given what we have already seen. (Or we could simply finish the tensoring done in the last
section, doing the NS–R and R–NS parts to get the fermions.) Either way, table 2 has the multiplets listed.
The 16 components of the supergravity bosonic multiplet is accompanied by two copies of the 16 components

Multiplet Bosons Fermions

vector (2,2)+4(1,1) 2(1,2)+2(2,1)
SD tensor (1,3)+5(1,1) 4(2,1)

ASD tensor (3,1)+5(1,1) 4(2,1)

supergravity (3,3) + (3,1) + (1,3) + (1,1)
2(3,2) + 2(2,1)

or 2(2,3) + 2(1,2)

Table 2: The structure of the N = 2 multiplets in D = 6.

making up a gravitino and a dilatino. These two copies are the same chirality for type IIB and opposite for
type IIA.

The next thing to do is to repackage the spectrum we identified earlier in terms of these multiplets. First,
notice that the supergravity multiplet has one (1,1), four (2,1)’s and one (1,3). With four other scalars,
we can make a full tensor multiplet. (The other (3,1), which is an anti–self dual piece makes up the rest
of Bµν .) That gives us 19 complete self dual tensor multiplets in total and 2 complete anti–self dual ones
since the last one is not complete. Since there are five scalars in a tensor multiplet this accounts for the 105
scalars that we have.

So we can study the anomaly now, knowing what (anti–) self dual tensors, and fermions we have. Con-
sulting section 7.1.4, we note that the polynomials listed for the fermions are for complex fermions, and
so we must divide them by 2 to get the ones appropriate for the real components we have counted in the
orbifolding. Putting it together according to what we have said above for the content of the spectrum, we
have:

19Î
(1,3)
8 + 19 × 4Î

(2,1)
8 + 2Î

(3,1)
8 + 2 × 4Î

(2,1)
8 + 2Î

(3,2)
8 + Î

(3,1)
8 = 0 , (360)
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where we have listed, respectively, the contribution of the 19 self dual tensors, the two anti self dual ten-
sors, the two gravitinos, and the remaining piece of the supergravity multiplet. That this combination of
polynomials vanishes is amazing[103].

7.9.3 The K3 Manifold

Quite remarkably, there is a geometrical interpretation of all of those data presented in the previous sub-
sections in terms of compactifying type II string theory on a smooth manifold. The manifold is K3. It is a
four dimensional manifold containing 22 independent two–cycles, which are topologically two–spheres more
properly described as the complex surface CP1 in this context. Correspondingly the space of two forms
which can be integrated over these two cycles is 22 dimensional. So we can choose a basis for this space.
Nineteen of them are self–dual and three of them are anti–self–dual, in fact. The space of metrics on K3 is
in fact parametrised by 58 numbers.

In compactifying the type II superstrings on K3, the ten dimensional gravity multiplet and the other R–R
fields gives rise to six dimensional fields by direct dimensional reduction, while the components of the fields
in the K3 give other fields. The six dimensional gravity multiplet arises by direct reduction from the NS–NS
sector, while 58 scalars arise, parameterizing the 58 dimensional space of K3 metrics which the internal parts
of the metric, Gmn, can choose. Correspondingly, there are 22 scalars arising from the 19+3 ways of placing
the internal components of the antisymmetric tensor, Bmn on the manifold. A commonly used terminology
is that the form has been “wrapped” on the 22 two–cycles to give 22 scalars.

In the R–R sector of type IIB, there is one scalar in ten dimensions, which directly reduces to a scalar
in six. There is a two–form, which produces 22 scalars, in the same way as the NS–NS two form did. The
self–dual four form can be integrated over the 22 two cycles to give 22 two forms in six dimensions, 19 of
them self–dual and 3 anti–self–dual. Finally, there is an extra scalar from wrapping the four form entirely
on K3. This is precisely the spectrum of fields which we computed directly in the type IIB orbifold.

Alternatively, while the NS–NS sector of type IIA gives rise to the same fields as before, there is in the R–
R sector a one form, three form and five form. The one form directly reduces to a one form in six dimensions.
The three form gives rise to 22 one forms in six dimensions while the five form gives rise to a single one
form. We therefore have 24 one forms (generically carrying a U(1) gauge symmetry) in six dimensions. This
also completes the smooth description of the type IIA on K3 spectrum, which we computed directly in the
orbifold limit. See section 7.9.5 for a significant comment on this spectrum.

7.9.4 Blowing Up the Orbifold

The connection between the orbifold and the smooth K3 manifold is as follows:[74] K3 does indeed have a
geometrical limit which is T 4/Z2, and it can be arrived at by tuning enough parameters, which corresponds
here to choosing the vev’s of the various scalar fields. Starting with the T 4/Z2, there are 16 fixed points
which look locally like R4/Z2, a singular point of infinite curvature. It is easy to see where the 58 geometric
parameters of the K3 metric come from in this case. Ten of them are just the symmetric Gmn constant
components, on the internal directions. This is enough to specify a torus T 4, since the hypercube of the
lattice in R4 is specified by the ten angles between its unit vectors, em · en. Meanwhile each of the 16 fixed
points has 3 scalars associated to its metric geometry. (The remaining fixed point NS–NS scalar in the table
is from the field B, about which we will have more to say later.)

The three metric scalars can be tuned to resolve or “blow up” the fixed point, and smooth it out into
the CP1 which we mentioned earlier. (This accounts for 16 of the two–cycles. The other six correspond
to the six Z2 invariant forms dXm ∧ dXn on the four–torus.) The smooth space has a known metric, the
“Eguchi–Hanson” metric,[80] which is locally asymptotic to R4 (like the singular space) but with a global Z2

identification. Its metric is:

ds2 =

(
1 −

(a
r

)4
)−1

dr2 + r2
(

1 −
(a
r

)4
)

(dψ + cos θdφ)2 + r2dΩ2
2 . (361)
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Here, dΩ2 is the metric on a round S2, written in polar coordinates as dθ2 + sin2 θdφ2. The angles θ, φ, ψ
are the S3 Euler angles, where 0 < θ ≤ π, 0 < φ ≤ 2π, 0 < ψ ≤ 4π.

The point r = a is an example of a “bolt” singularity. Near there, the space is topologically R2
rψ × S2

θφ,

with the S2 of radius a, and the singularity is a coordinate one provided ψ has period 2π.
Let us see how this works. To examine the potential singularity at r = a, look near r = a. Choose, if

you will, r = a+ ε for small ε, and:

ds2 =
a

4ε

[
dε2 + 16ε2(dψ + cos θdφ)2

]
+ (a2 + 2aε)dΩ2

2 ,

which as ε → 0 is obviously topologically looking locally like R2
ε,ψ × S2

θ,φ, where the S2 is of radius a.
(Globally, there is a fibred structure due to the dψdφ cross term.) Incidentally, this is perhaps the quickest
way to see that the Euler number or “Euler characteristic” of the space has to be equal to that of an S2,
which is 2. There is a potential “bolt” singularity at r = 0.

It is a true singularity for arbitrary choices of periodicity ∆ψ of ψ, since there is a conical deficit angle
in the plane. In other words, we have to ensure that as we get to the origin of the plane, ε = 0, the ψ–circles
have circumference 2π, no more or less. Infinitesimally, we make those measures with the metric, and so the
condition is:

2π = lim
ε→0

(
d(2

√
aε1/2)∆ψ

dε
√

(a/4)ε−1/2

)
,

which gives ∆ψ = 2π. So in fact, we must spoil our S3 which was a nice orbit of the SU(2) isometry, by
performing an Z2 identification on ψ, giving it half its usual period. In this way, the “bolt” singularity r = a
is just a harmless artifact of coordinates.[79, 78] Also, we are left with an SO(3) = SU(2)/Z2 isometry of
the metric. The space at infinity is S3/Z2, just like an R

4/Z2 fixed point. For small enough a, the Eguchi–
Hanson space can b neatly slotted into the space left after cutting out the neighbourhood of the fixed point.
The bolt is in fact the CP1 of the blowup mentioned earlier. The parameter a controls the size of the CP1,
while the other two parameters correspond to how the R2 (say) is oriented in R4.

The Eguchi–Hanson space is the simplest example of an “Asymptotically Locally Euclidean” (ALE)
space, which K3 can always be tuned to resemble locally. These spaces are classified [81] according to their
identification at infinity, which can be any discrete subgroup, Γ, [82] of the SU(2) which acts on the S3

at infinity, to give S3/Γ. These subgroups have been characterized by McKay, [83] and have an A–D–E
classification. The metrics on the A–series are known explicitly as the Gibbons–Hawking metrics, [87] and
Eguchi–Hanson is in fact the simplest of this series, corresponding to A1. [88] We shall later use a D–brane
as a probe of string theory on a R4/Z2 orbifold, an example which will show that the string theory correctly
recovers all of the metric data (361) of these fixed points, and not just the algebraic data we have seen here.

For completeness, let us compute one more thing about K3 using this description. The Euler character-
istic, in this situation, can be written in two ways[78]

χ(K3) =
1

32π2

∫

K3

√
g
(
RabcdR

abcd − 4RabR
ab +R2

)

=
1

32π2

∫

K3

√
gεabcdR

abRcd

= − 1

16π2

∫

K3

TrR ∧R = 24 . (362)

Even though no explicit metric for K3 has been written, we can compute χ as follows. [76, 78] If we take a
manifold M , divide by some group G, remove some fixed point set F , and add in some set of new manifolds
N , one at each point of F , the Euler characteristic of the new manifold is

χ =
χ(M) − χ(F )

|G| + χ(N) . (363)
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Here, G = R ≡ Z2, and the Euler characteristic of the Eguchi–Hanson space is equal to 2, as we saw earlier.
That of a point is 1, and of the torus is zero. We therefore get

χ(K3) = −16

2
+ 16 × 2 = 24 , (364)

which will be of considerable use later on. So we have constructed the consistent, supersymmetric string
propagation on the K3 manifold, using orbifold techniques.

7.9.5 Anticipating a String/String Duality in D = 6

We have seen that for type IIA we have an N = 2, D = 6 supergravity with 80 additional scalars and
24 gauge bosons with a generic gauge group U(1)24. The attentive reader will have noticed an apparent
coincidence between the result for the spectrum of type IIA on K3 and another six dimensional spectrum
which we obtained earlier. That was the spectrum of the heterotic string compactified on T 4, obtained in
section 7.7 (put d = 4 in the results there). The moduli space of compactifications is in fact

O(20, 4,Z)\O(20, 4)/[O(20) ×O(4)]

on both sides. We have seen where this comes from on the heterotic side. On the type IIA side it arises too.
Start with the known

O(19, 3,Z)\O(19, 3)/[O(19) ×O(3)]

for the standard moduli space of K3’s (you should check that this has 57 parameters; there is an additional
one for the volume). It acts on the 19 self–dual and 3 anti–self–dual 2–cycles. This classical geometry is
supplemented by stringy geometry arising from Bµν , which can have fluxes on the 22 2–cycles, giving the
missing 22 parameters. We will not prove here that the moduli space is precisely as above, and hence the
same as globally and locally as the heterotic one, as it will take us beyond the scope of these notes.

Perturbatively, the coincidence of the spectra must be an accident. The two string theories in D = 10 are
extremely dissimilar. One has twice the supersymmetry of the other and is simpler, having no large gauge
group, while the other is chiral. We place the simpler theory on a complicated space (K3) and the more
complex theory on a simple space T 4 and result in the same spectrum. The theories cannot be T–dual since
the map would have to mix things which are unrelated by properties of circles. The only duality possible
would have to go beyond perturbation theory. We will study such situations briefly in section duality. Note
also that there is something missing. At special points in the heterotic moduli space we have seen that it
is possible to get large enhanced non–Abelian gauge groups. There is no sign of that here in how we have
described the type IIA string theory using conformal field theory. In fact it is possible to go beyond conformal
field theory and describe these special points using D–branes although time will not permit us to do that
here. You should be able to anticipate it though. There is an A–D–E classification of the singularities of
K3, as already mentioned, where a two dimensional locus (a family of intersecting CP

1s) shrinks to zero size.
In type IIA, we can wrap D2–branes on this locus. They appear as particles in the six–dimensional theory.
When the cycles shrink, these particles become massless, and are precisely the new massless states required
to act give the enhanced gauge symmetry needed to match the dual heterotic spectrum. You can learn more
about this from reviews in the literature[86, 152].

8 Supersymmetric Strings and T–Duality

8.1 T–Duality of Supersymmetric Strings

We noticed in section 7.8, when considering the low energy spectrum of the type II superstrings compactified
on tori, that there is an equivalence between them. We saw much the same things happen for the heterotic
strings in section 7.7 too. This is of course T–duality, as we should examine it further here and check that
it is the familiar exact equivalence. Just as in the case of bosonic strings, doing this when there are open
string sectors present will uncover D–branes of various dimensions.
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8.1.1 T–Duality of Type II Superstrings

T–duality on the closed oriented Type II theories has a somewhat more interesting effect than in the bosonic
case.[16, 12] Consider compactifying a single coordinate X9, of radius R. In the R→ ∞ limit the momenta
are p9

R = p9
L, while in the R → 0 limit p9

R = −p9
L. Both theories are SO(9, 1) invariant but under different

SO(9, 1)’s. T–duality, as a right–handed parity transformation (see (191)), reverses the sign of the right–
moving X9(z̄); therefore by superconformal invariance it does so on ψ̃9(z̄). Separate the Lorentz generators

into their left-and right–moving parts Mµν + M̃µν . Duality reverses all terms in M̃µ9, so the µ9 Lorentz
generators of the T–dual theory are Mµ9 − M̃µ9. In particular this reverses the sign of the helicity s̃4 and so
switches the chirality on the right–moving side. If one starts in the IIA theory, with opposite chiralities, the
R → 0 theory has the same chirality on both sides and is the R→ ∞ limit of the IIB theory, and vice–versa.
In short, T–duality, as a one–sided spacetime parity operation, reverses the relative chiralities of the right–
and left–moving ground states. The same is true if one dualises on any odd number of dimensions, whilst
dualising on an even number returns the original Type II theory.

Since the IIA and IIB theories have different R–R fields, T9 duality must transform one set into the
other. The action of duality on the spin fields is of the form

Sα(z) → Sα(z), S̃α(z̄) → P9S̃α(z̄) (365)

for some matrix P9, the parity transformation (9-reflection) on the spinors. In order for this to be consistent
with the action ψ̃9 → −ψ̃9, P9 must anticommute with Γ9 and commute with the remaining Γµ. Thus
P9 = Γ9Γ11 (the phase of P9 is determined, up to sign, by hermiticity of the spin field). Now consider
the effect on the R–R vertex operators (335). The Γ11 just contributes a sign, because the spin fields have
definite chirality. Then by the Γ–matrix identity (336), the effect is to add a 9-index to G if none is present,
or to remove one if it is. The effect on the potential C (G = dC) is the same. Take as an example the Type
IIA vector Cµ. The component C9 maps to the IIB scalar C, while the µ 6= 9 components map to Cµ9. The
remaining components of Cµν come from Cµν9, and so on.

Of course, these relations should be translated into rules for T–dualising the spacetime fields in the
supergravity actions (349) and (350). The NS–NS sector fields’ transformations are the same as those shown
in equations (249),(251), while for the R–R potentials:[73]

C̃
(n)
µ···να9 = C

(n−1)
µ···να − (n− 1)

C
(n−1)
[µ···ν|9G|α]9

G99
(366)

C̃
(n)
µ···ναβ = C

(n+1)
µ···ναβ9 + nC

(n−1)
[µ···ναBβ]9 + n(n− 1)

C
(n−1)
[µ···ν|9B|α|9G|β]9

G99

8.1.2 T–Duality of Type I Superstrings

Just as in the case of the bosonic string, the action of T–duality in the open and unoriented open superstring
theory produces D–branes and orientifold planes. Having done it once, (say on X9 with radius R), we get a
T9–dual theory on the line interval S1/Z2, where Z2 acts as the reflection X9 → −X9. The S1 has radius
R′ = α′/R). There are 16 D8–branes and their mirror images (coming from the 16 D9–branes), together
with two orientifold O8–planes located at X9 = 0, πR′. This is called the “Type I′” theory (and sometimes
the “Type IA” theory, and then the usual open string it “Type IB”), about which we will have more to say
later as well.

Starting with the type IB theory, i.e., 16 D9–branes and one O9–plane, we can carry this out n times
on n directions, giving us 16 D(9 − n) and their mirror images through 2n O(9− n)–planes arranged on the
hypercube of fixed points of T n/Z2, where the Z2 acts as a reflection in the n directions. If n is odd, the bulk
theory away from the planes and branes is type IIA string theory, while we are back in type IIB otherwise.

Let us focus here on a single D–brane, taking a limit in which the other D–branes and the O–planes are
distant and can be ignored. Away from the D–brane, only closed strings propagate. The local physics is
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that of the Type II theory, with two gravitinos. This is true even though we began with the unoriented Type
I theory which has only a single gravitino. The point is that the closed string begins with two gravitinos,
one with the spacetime supersymmetry on the right–moving side of the world–sheet and one on the left.
The orientation projection of the Type I theory leaves one linear combination of these. But in the T–dual
theory, the orientation projection does not constrain the local state of the string, but relates it to the state
of the (distant) image gravitino. Locally there are two independent gravitinos, with equal chiralities if n,
(the number of dimensions on which we dualised) is even and opposite if n is odd.

This is all summarised nicely by saying that while the type I string theory comes from projecting the
type IIB theory by Ω, the T–dual string theories come from projecting type II string theory compactified
on the torus T n by Ω

∏
m[Rm(−1)F ], where the product over m is over all the n directions, and Rm is a

reflection in the mth direction. This is indeed a symmetry of the theory and hence a good symmetry with
which to project. So we have that T–duality takes the orientifold groups into one another:

{Ω} ↔ {1,Ω∏m[Rm(−1)F ]} . (367)

This is a rather trivial example of an orientifold group, since it takes type II strings on the torus T n and
simply gives a theory which is simply related to type I string theory on T n by n T–dualities. Nevertheless,
it is illustrative of the general constructions of orientifold backgrounds made by using more complicated
orientifold groups. This is a useful piece of technology for constructing string backgrounds with interesting
gauge groups, with fewer symmetries, as a starting point for phenomenological applications.

8.1.3 T–duality for the Heterotic Strings

As we noticed in section 7.7, there is a T–duality equivalence between the heterotic strings once we compactify
on a circle. Let us uncover it carefully. We can begin by compactifying the SO(32) string on a circle of
radius R, with Wilson line:

Ai9 =
1

2πR
diag

{
1

2
, · · · 1

2
, 0, · · · , 0

}
, (368)

with eight 1
2 ’s and eight 0’s breaking down the gauge group to SO(16)×SO(16). We can compute the mass

spectrum of the nine–dimensional theory which results from this reduction, in the presence of the Wilson
line. This is no harder than the computations which we did in section 4. The Wilson line simply shifts the
contribution to the spectrum coming from the piL momenta. We can focus on the sector which is uncharged
under the gauge group, i.e. we switch off the piL. The mass formula is:

pL

R
=

(n+ 2m)

R
± 2mR

α′
,

where we see that the allowed windings (coming in units of two) are controlled by the integer m, and the
momenta are controlled by m and n in the combination n+ 2m.

We could instead have started from the E8 × E8 string on a circle of radius R′, with Wilson line

Ai9 =
1

2πR′
diag{1, 0 · · ·0, 1, 0, · · · , 0} , (369)

again in two equal blocks of eight. This also breaks down the gauge group to SO(16)×SO(16). A computation
of the spectrum of the neutral states gives:

p′L
R

=
(n′ + 2m′)

R′
± 2m′R′

α′
,

for integers n′ and m′. We see that if we exchange n+ 2m with m′ and m with n′ + 2m′ then the spectrum
is invariant if we do the right handed parity identification pL ↔ p′L, pR ↔ −p′R, provided that the circles’
radii are inversely related as R′ = α′/(2R).

We shall see that this relation will result in some very remarkable connections between non–perturbative
string vacua much later, in section 11.
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8.2 D–Branes as BPS Solitons

Let us return to the type II strings, and the D–branes which we can place in them. While there is type II
string theory in the bulk, (i.e., away from the branes and orientifolds), notice that the open string boundary
conditions are invariant under only one supersymmetry. In the original Type I theory, the left–moving world–
sheet current for spacetime supersymmetry jα(z) flows into the boundary and the right–moving current j̃α(z̄)
flows out, so only the total charge Qα + Q̃α of the left- and right-movers is conserved. Under T–duality this
becomes

Qα + (
∏
mPm) Q̃α , (370)

where the product of reflections Pm runs over all the dualised dimensions, that is, over all directions orthog-
onal to the D–brane. Closed strings couple to open, so the general amplitude has only one linearly realized
supersymmetry. That is, the vacuum without D–branes is invariant under N = 2 supersymmetry, but the
state containing the D–brane is invariant under only N = 1: it is a BPS state.[180, 89]

BPS states must carry conserved charges. In the present case there is only one set of charges with the
correct Lorentz properties, namely the antisymmetric R-R charges. The world volume of a p–brane naturally
couples to a (p+1)–form potential C(p+1), which has a (p+2)-form field strength G(p+2). This identification
can also be made from the g−1

s behaviour of the D–brane tension: this is the behaviour of an R–R soliton,
as can be seen directly from writing solutions of the supergravity equations of motion. we won’t have time
to develop that here[90, 91].

The IIA theory has Dp–branes for p = 0, 2, 4, 6, and 8. The vertex operators (335) describe field
strengths of all even ranks from 0 to 10. The n–form and (10−n)–form field strengths are Hodge dual to one
another6, so a p–brane and (6 − p)–brane are sources for the same field, but one magnetic and one electric.
The field equation for the 10-form field strength allows no propagating states, but the field can still have a
physically significant energy density[180, 92, 93].

The IIB theory has Dp–branes for p = −1, 1, 3, 5, 7, and 9. The vertex operators (335) describe field
strengths of all odd ranks from 1 to 9, appropriate to couple to all but the 9–brane. The 9–brane does couple
to a nontrivial potential, as we will see below.

A (−1)–brane is a Dirichlet instanton, defined by Dirichlet conditions in the time direction as well as all
spatial directions.[94] Of course, it is not clear that T–duality in the time direction has any meaning, but
one can argue for the presence of (−1)–branes as follows. Given 0–branes in the IIA theory, there should
be virtual 0–brane world–lines that wind in a purely spatial direction. Such world–lines are required by
quantum mechanics, but note that they are essentially instantons, being localized in time. A T–duality in
the winding direction then gives a (−1)–brane. One of the first clues to the relevance of D–branes,[28] was
the observation that D–instantons, having action g−1

s , would contribute effects of order e−1/gs as expected
from the behaviour of large orders of string perturbation theory.[95]

The D–brane, unlike the fundamental string, carries R–R charge. This is consistent with the fact that
they are BPS states, and so there must be a conserved charge. A more careful argument, involving the R–R
vertex operators, can be used to show that they must couple thus, and furthermore that fundamental strings
cannot carry R–R charges.

8.2.1 A Summary of Forms and Branes

Common to both type IIA and IIB are the NS–NS sector fields

Φ , Gµν , Bµν .

The latter is a rank two antisymmetric tensor potential, and we have seen that the fundamental closed string
couples to it electrically by the coupling

ν1

∫

M2

B(2) ,

6This works at the level of vertex operators via a Γ–matrix identity.
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where ν1 = (2πα′)−1, M2 is the world sheet, with coordinates ξa, a = 0, 1. B(2) = Babdξ
adξb, and Bab is

the pullback of Bµν via (253).
By ten dimensional Hodge duality, we can also construct a six form potential B(6), by the relation dB(6) =

∗dB(2). There is a natural electric coupling ν5
∫
M6

B(6), to the world–volume M6 of a five dimensional
extended object. This NS–NS charged object, which is commonly called the “NS5–brane” is the magnetic
dual of the fundamental string.[68, 69] It is in fact, in the ten dimensional sense, the monopole of the U(1)
associated to B(2). We shall be forced to discuss it by strong coupling considerations in section 11.3.

The string theory has other potentials, from the R–R sector:

type IIA : C(1) , C(3) , C(5) , C(7)

type IIB : C(0) , C(2) , C(4) , C(6) , C(8)

where in each case the last two are Hodge duals of the first two, and C(4) is self dual. (A p–form potential
and a rank q–form potential are Hodge dual to one another in D dimensions if p+q = D−2.) Dp–branes are
the basic p–dimensional extended sources which couple to all of these via an electric coupling of the form:

µp

∫

Mp+1

C(p+1)

to their p+ 1–dimensional world volumes Mp+1.

8.3 The D–Brane Charge and Tension

The discussion of section 5.3 will supply us with the world–volume action (266) for the bosonic excitations
of the D–branes in this supersymmetric context. Now that we have seen that Dp–branes are BPS states, and
couple to R–R sector (p+ 1)–form potential, we ought to compute the values of their charges and tensions.

Focusing on the R–R sector for now, supplementing the spacetime supergravity action with the D–brane
action we must have at least (recall that the dilaton will not appear here, and also that we cannot write this
for p = 3):

S = − 1

2κ2
0

∫
G(p+2)

∗G(p+2) + µp

∫

Mp+1

C(p+1), (371)

where µp is the charge of the Dp–brane under the (p+1)–form C(p+1). Mp+1 is the world–volume of the
Dp–brane.

Now the same vacuum cylinder diagram as in the bosonic string, as we did in section 6. With the
fermionic sectors, our trace must include a sum over the NS and R sectors, and furthermore must include
the GSO projection onto even fermion number. Formally, therefore, the amplitude looks like:[180]

A =

∫ ∞

0

dt

2t
TrNS+R

{
1 + (−1)F

2
e−2πtL0

}
. (372)

Performing the traces over the open superstring spectrum gives

A = 2Vp+1

∫
dt

2t
(8π2α′t)−(p+1)/2e−t

Y 2

2πα′

1

2
f−8
1 (q)

{
−f2(q)8 + f3(q)

8 − f4(q)
8
}
, (373)

where again q = e−2πt, and we are using the definitions given in section 4, when we computed partition
functions of various sorts.

The three terms in the braces come from the open string R sector with 1
2 in the trace, from the NS sector

with 1
2 in the trace, and the NS sector with 1

2 (−1)F in the trace; the R sector with 1
2 (−1)F gives no net

contribution. In fact, these three terms sum to zero by Jacobi’s abstruse identity, 0 = −f2(q)8 + f3(q)
8 −
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f4(q)
8, as they ought to since the open string spectrum is supersymmetric, and we are computing a vacuum

diagram.
What does this result mean? Recall that this vacuum diagram also represents the exchange of closed

strings between two identical branes. the result A = 0 is simply a restatement of the fact that D–branes
are BPS states: The net forces from the NS–NS and R–R exchanges cancel. A = 0 has a useful structure,
nonetheless, and we can learn more by identifying the separate NS–NS and R–R pieces. This is easy, if we
look at the diagram afresh in terms of closed string: In the terms with (−1)F , the world–sheet fermions are
periodic around the cylinder thus correspond to R–R exchange. Meanwhile the terms without (−1)F have
anti–periodic fermions and are therefore NS–NS exchange.

Obtaining the t→ 0 behaviour as before (use the limits in equations (217)) gives

ANS = −AR ∼ 1

2
Vp+1

∫
dt

t
(2πt)−(p+1)/2(t/2πα′)4e−t

Y 2

8π2α′2

= Vp+12π(4π2α′)3−pG9−p(Y
2). (374)

Comparing with field theory calculations runs just as it did in section 6, with the result:[180]

2κ2
0µ

2
p = 2κ2τ2

p = 2π(4π2α′)3−p. (375)

Finally, using the explicit expression (352) for κ in terms of string theory quantities, we get an extremely
simple form for the charge:

µp = (2π)−pα′−
(p+1)

2 , and τp = g−1
s µp . (376)

(For consistency with the discussion in the bosonic case, we shall still use the symbol Tp to mean τpgs, in
situations where we write the action with the dilaton present. It will be understood then that e−Φ contains
the required factor of g−1

s .)
It is worth updating our bosonic formula (272) for the coupling of the Yang–Mills theory which appears

on the world–volume of Dp–branes with our superstring result above, to give:

g2
YM,p = τ−1

p (2πα′)−2 = (2π)p−2α′(p−3)/2 , (377)

a formula we will use a lot in what is to follow.
Note that our formula for the tension (376) gives for the D1–brane

τ1 =
1

2πα′gs
, (378)

which sets the ratios of the tension of the fundamental string, τF
1 ≡ T = (2πα′)−1 , and the D–string to be

simply the string coupling gs. This is a very elegant normalization and is quite natural.
D–branes that are not parallel feel a net force since the cancellation is no longer exact. In the extreme

case, where one of the D–branes is rotated by π, the coupling to the dilaton and graviton is unchanged but
the coupling to the R–R tensor is reversed in sign. So the two terms in the cylinder amplitude add, instead
of canceling, as Jacobi cannot help us. The result is:

A = Vp+1

∫
dt

t
(2πt)−(p+1)/2e−t(Y

2−2πα′)/8π2α′2

f(t) (379)

where f(t) approaches zero as t → 0. Differentiating this with respect to Y to extract the force per unit
world–volume, we get

F (Y ) = Y

∫
dt

t
(2πt)−(p+3)/2e−t(Y

2−2πα′)/8π2α′2

f(t) . (380)

The point to notice here is that the force diverges as Y 2 → 2πα′. This is significant. One would expect
a divergence, of course, since the two oppositely charged objects are on their way to annihilating.[96] The
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interesting feature is that the divergence begins when their separation is of order the string length. This is
where the physics of light fundamental strings stretching between the two branes begins to take over. Notice
that the argument of the exponential is tU2, where U = Y/(2α′) is the energy of the lightest open string
connecting the branes. A scale like U will appear again, as it is a useful guide to new variables to D–brane
physics at “substringy” distances[97, 98, 99] in the limit where α′ and Y go to zero.

8.4 The Orientifold Charge and Tension

Orientifold planes also break half the supersymmetry and are R–R and NS–NS sources. In the original Type
I theory the orientation projection keeps only the linear combination Qα+Q̃α. In the T–dualised theory this
becomes Qα + (

∏
m Pm)Q̃α just as for the D–branes. The force between an orientifold plane and a D–brane

can be obtained from the Möbius strip as in the bosonic case; again the total is zero and can be separated
into NS–NS and R–R exchanges. The result is similar to the bosonic result (297),

µ′
p = ∓2p−5µp, τ ′p = ∓2p−5τp , (381)

where the plus sign is correlated with SO(n) groups and the minus with USp(n). Since there are 29−p

orientifold planes, the total O–plane charge is ∓16µp, and the total fixed-plane tension is ∓16τp.

8.5 Type I from Type IIB, Revisited

A non–zero total tension represents a source for the graviton and dilaton, for which the response is simply
a time dependence of these background fields[100]. A non–zero total R–R source is more serious, since this
would mean that the field equations are inconsistent: There is a violation of Gauss’ Law, as R–R flux lines
have no place to go in the compact space T 9−p. So our result tells us that on T 9−p, we need exactly 16
D–branes, with the SO projection, in order to cancel the R–R G(p+2) form charge. This gives the T–dual of
SO(32), completing our simple orientifold story.

The spacetime anomalies forG 6= SO(32) (see also section 7.2.1) are thus accompanied by a divergence[101]
in the full string theory, as promised, with inconsistent field equations in the R–R sector: As in field theory,
the anomaly is related to the ultraviolet limit of a (open string) loop graph. But this ultraviolet limit of the
annulus/cylinder (t→ ∞) is in fact the infrared limit of the closed string tree graph, and the anomaly comes
from this infrared divergence. From the world–sheet point of view, as we have seen in the bosonic case,
inconsistency of the field equations indicates that there is a conformal anomaly that cannot be canceled.
This is associated to the presence of a “tadpole” which is simply an amplitude for creating quanta out of
the vacuum with a one–point function, which is a sickness of the theory which must be cured.

The prototype of all of this is the original D = 10 Type I theory[34]. The N D9–branes and single
O9–plane couple to an R–R 10-form, and we can write its action formally as

(32 ∓N)
µ10

2

∫
C10. (382)

The field equation from varying C10 is just G = SO(32).

8.6 Dirac Charge Quantization

We are of course studying a quantum theory, and so the presence of both magnetic and electric sources of
various potentials in the theory should give some cause for concern. We should check that the values of the
charges are consistent with the appropriate generalisation of[108] the Dirac quantisation condition. The field
strengths to which a Dp–brane and D(6 − p)–brane couple are dual to one another, G(p+2) = ∗G(8−p).

We can integrate the field strength ∗G(p+2) on an (8− p)–sphere surrounding a Dp–brane, and using the
action (371), we find a total flux Φ = µp. We can write ∗G(p+2) = G(8−p) = dC(7−p) everywhere except
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on a Dirac “string” (see also insert 9.2.1; here it is really a sheet), at the end of which lives the D(6 − p)
“monopole”. Then

Φ =
1

2κ2
0

∫

S8−p

∗G(p+2) =
1

2κ2
0

∫

S7−p

C(7−p) . (383)

where we perform the last integral on a small sphere surrounding the Dirac string. A (6− p)–brane circling
the string picks up a phase eiµ6−pΦ. The condition that the string be invisible is

µ6−pΦ = 2κ2
0µ6−pµp = 2πn. (384)

The D–branes’ charges (375) satisfy this with the minimum quantum n = 1.
While this argument does not apply directly to the case p = 3, as the self–dual 5–form field strength has

no covariant action, the result follows by the T–duality recursion relation (256) and the BPS property.

8.7 D–Branes in Type I

As we saw in section 7.2.1, the only R–R potentials available in type I theory are the 2–form and its dual,
the 6–form, and so we can have D1–branes in the theory, and D5–branes, which are electromagnetic duals
of each other. The overall 16 d9–branes carry an SO(32) gauge group, as we have seen from many points of
view. Let us remind ourselves of how this gauge group came about, since there are important subtleties of
which we should be mindful[123].

The action of Ω has representation γΩ, which acts on the Chan–Paton indices, as discussed in section 4:

Ω : |ψ, ij >−→ (γΩ)ii′ |Ωψ, j′i′ > (γ−1
Ω )j′j ,

where ψ represents the vertex operator which makes the state in question, and Ωψ is the action of Ω on it.
The reader should recall that we transposed the indices because Ω exchanges the endpoints of the string.
We can consider the square of Ω:

Ω2 : |ψ, ij >−→
[
γΩ(γTΩ)−1

]
ii′

|ψ, i′j′ >
[
γTΩγΩ

]
j′j

, (385)

and so we see that we have the choice
γTΩ = ±γΩ .

If γΩ is symmetric, the with n branes we can write it as I2n, the 2n× 2n identity matrix. Since the 99 open
string vertex operator is ∂tX

µ, it has (as we have seen a lot in section 4) Ω = −1. Therefore we do have
the symmetric choice since, as we tacitly assumed in equation (385) Ω2 = 1, and so we conclude that the
Chan–Paton wave–function is antisymmetric. Since n = 16, we have gauge group SO(32).

If γΩ was antisymmetric, then we could have written it as

γΩ =

(
0 iIn

−iIn 0

)
,

and we would have been able to have gauge group USp(2n). In fact, we shall have to make this choice for
D5–branes. Let us see why. Let us place the D5–branes so that they are point–like in the directions Xm,
m = 6, 7, 8, 9, and aligned in the directions Xµ, µ = 0, 1, . . . , 5.

Consider the 5–5 sector, i.e. strings beginning and ending on D5–branes. Again we have Ω = −1 for
the vectors ∂tX

µ, and the opposite sign for the transverse scalars ∂nX
m. In general, other sectors can have

different mode expansions. Generically the mode for a fermion is ψr and Ω acts on this as ±(−1)r = ±eiπr.
In the NS sector they are half–integer and since GSO requires them to act in pairs in vertex operators, their
individual ±i’s give Ω = ±1, with a similar result in the R sector by supersymmetry.

The 59 sector is more subtle[123]. The Xm are now half–integer moded and the ψm are integer moded.
The ground states of the latter therefore form a representation of the Clifford algebra and we can bosonise
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them into a spin field, as we did in section 7 in a similar situation: eiH3 ∼ ψ6 + iψ7, and eiH4 ∼ ψ8 + iψ9.
In fact, the vertex operator (the part of it relevant to this discussion) in that sector is

V59 ∼ ei(H3+H4)/2 .

Now consider the square of this operator. It has parts which are either in the 55 sector or the 99 sector, and
is of the form

V 2
59 ∼ ei(H3+H4) ∼ (ψ6 + iψ7)−1/2(ψ

8 + iψ9)−1/2|0 > .

So it has Ω = −1, since each ψ−1/2 gives ±i. So Ω2 = −1 for V59 for consistency.
Returning to our problem of the choices to make for the Chan–Paton factors we see that we have an

extra sign in equation 385, and so must choose the antisymmetric condition γTΩ = −γΩ. Therefore, in type I
string theory, n D5–branes have gauge group USp(2n). Notice that this means that a single one has SU(2),
and the Chan–Paton wave function can be chosen as the Pauli matrices. The Chan–Paton wave–function
for the scalars for transverse motion must simply be δij , since we have another sign. This simply means that
the two D5–branes (corresponding to the 2 index choices) are forced to move with each other as one unit.

Notice that this fits rather nicely with our charge quantisation computation of the last section.[123]
The orientifold projection will halve the force between D1–branes and between D5–branes in the charge
calculation, and so their effective charges would be reduced by

√
2, violating the Dirac quantisation condition

by a factor of a half. However, the fact that the D5–branes are forced to move as a pair restores a factor
of two in the quantisation condition, and so we learn that D–branes are still the smallest consistent charge
carries of the R–R sector.

We can augment the argument above for Dp branes in type I in general, and obtain[123]

Ω2 = (±i) 9−p
2 .

For p = 3 and p = 7, we see that it simply gives an inconsistency, which is itself consistent with the fact that
there is no R–R 4–forms or 8–form for a stable D3–brane or D7–brane to couple to. For p = 1 we recover
the naively expected result that they have an SO(2n) gauge group.

9 World–Volume Curvature Couplings

We’ve now seen that we can construct D–branes which, in superstring theory, have important extra proper-
ties. Much of what we have learned about them in the bosonic theory is still true here of course, a key result
being that the world–volume dynamics is governed by the dynamics of open strings, etc. Still relevant is the
Dirac–Born–Infeld action (266) for the coupling to the background NS–NS fields,

SDBI = −τp
∫

Mp+1

dp+1ξ e−Φ det1/2(Gab +Bab + 2πα′Fab) . (386)

and the non–Abelian extensions mentioned later in section 5.
As we have seen in the previous section, for the R–R sector, they are sources of C(p+1). We therefore

also have the Wess–Zumino–like term

SWZ = µp

∫

Mp+1

C(p+1) . (387)

Perhaps not surprisingly, there are other terms of great importance, and this section will uncover a
number of them. In fact, there are many ways of deducing that there must be other terms, and one way is
to use the fact that D–branes turn into each other under T–duality.
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9.1 Tilted D–Branes and Branes within Branes

There are additional terms in the action involving the D–brane gauge field. Again these can be determined
from T–duality. Consider, as an example, a D1–brane in the 1–2 plane. The action is

µ1

∫
dx0 dx1

(
C01 + ∂1X

2C02

)
. (388)

Under a T–duality in the x2–direction this becomes

µ2

∫
dx0dx1dx2 (C012 + 2πα′F12C0) . (389)

We have used the T–transformation of the C fields as discussed in section 8.1.1, and also the recursion
relation (256) between D–brane tensions.

This has an interesting interpretation. As we saw before in section 5.2.1, a Dp–brane tilted at an angle
θ is equivalent to a D(p+ 1)–brane with a constant gauge field of strength F = (1/2πα′) tan θ. Now we see
that there is additional structure: the flux of the gauge field couples to the R–R potential C(p). In other
words, the flux acts as a source for a D(p − 1)–brane living in the world–volume of the D(p + 1)–brane. In
fact, given that the flux comes from an integral over the whole world–volume, we cannot localize the smaller
brane at a particular place in the world–volume: it is “smeared” or “dissolved” in the world–volume.

In fact, we shall see when we come to study supersymmetric combinations of D–branes that supersym-
metry requires the D0–brane to be completely smeared inside the D2–brane. It is clear here how it manages
this, by being simply T–dual to a tilted D1–brane.

9.2 Anomalous Gauge Couplings

The T–duality argument of the previous section can be generalized to discover more terms in the action, but
we shall take another route to discover such terms, exploiting some important physics in which we already
have invested considerable time.

Let us return to the type I string theory, and the curious fact that we had to employ the Green–
Schwarz mechanism (see section 7.3, where we mixed a classical and a quantum anomaly in order to achieve
consistency). Focusing on the gauge sector alone for the moment, the classical coupling which we wrote in
equation (343) implies a mixture of the 2–form C(2) with gauge field strengths:

S =
1

3 × 26(2π)5α′

∫
C(2)

(
Tradj(F

4)

3
− [Tradj(F

2)]2

900

)
. (390)

We can think of this as an interaction on the world–volume of the D9–branes showing a coupling to a D1–
brane, analogous to that which we saw for a D0–brane inside a D2–brane in equation (389). This might
seem a bit of a stretch, but let us write it in a different way:

S = µ9

∫
(2πα′)4

3 × 26
C(2)

(
Tradj(F

4)

3
− [Tradj(F

2)]2

900

)

= µ9

∫
(2πα′)4

4!
C(2)Tr(F 4) , (391)

where, crucially, in the last line we have used the properties (347) of the traces for SO(32) to rewrite things
in terms of the trace in the fundamental.

Another exhibit we would like to consider is the kinetic term for the modified 3–form field strength, G̃(3),
which is

S = − 1

4κ2
0

∫
G̃(3) ∧∗ G̃(3) . (392)
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Since dω3Y = Tr(F ∧F ) and dω3L = Tr(R∧R), this gives, after integrating by parts and, dropping the parts
with R for now:

S =
α′

4κ2

∫
C(6) ∧

(
1

30
Tradj(F ∧ F )

)

= µ9

∫
(2πα′)2

2
C(6) ∧ (Tr(F ∧ F )) . (393)

again, we have converted the traces using (347), we’ve used the relation (352) for κ0 and we’ve recalled the
definition (346).

Upon consideration of the three examples (389), (391), and (393), it should be apparent that a pattern
is forming. The full answer for the gauge sector is the result[110, 111]

µp

∫

Mp+1

[∑
pC(p+1)

]
∧ Tr e2πα

′F+B , (394)

(We have included non–trivial B on the basis of the argument given in section 5.2.) So far, the gauge
trace (which is in the fundamental) has the obvious meaning. We note that there is the possibility that
in the full non–Abelian situation, the C can depend on non–commuting transverse fields X i, and so we
need something more general[54]. The expansion of the integrand (394) involves forms of various rank; the
notation means that the integral picks out precisely the terms whose rank is (p + 1), the dimension of the
Dp–brane’s world–volume.

Looking at the first non–trivial term in the expansion of the exponential in the action we see that there
is the term that we studied above corresponding to the dissolution of a D(p− 2)–brane into the sub 2–plane
in the Dp–brane’s world volume formed by the axes X i and Xj , if field strength components Fij are turned
on.

At the next order, we have a term which is quadratic in F which we could rewrite as:

S =
µp−4

8π2

∫
C(p−3) ∧ Tr(F ∧ F ) . (395)

We have used the fact that µp−4/µp = (2π
√
α′)4. Recall that there are non–Abelian field configurations

called “instantons” for which the quantity
∫

Tr(F ∧ F )/8π2 gives integer values.
Interestingly, we see that if we excite an instanton configuration on a 4 dimensional sub–space of the

Dp–brane’s world–volume, it is equivalent to precisely one unit of D(p−4)–brane charge, which is remarkable.
In trying to understand what might be the justification (other than T–duality) for writing the full

result (394) for all branes so readily, the reader might recognize something familiar about the object we
built the action out of. The quantity exp(iF/(2π)), using a perhaps more familiar normalization, generates
polynomials of the Chern classes of the gauge bundle of which F is the curvature. It is called the Chern
character.

In the Abelian case we first studied, we had non–vanishing first Chern class TrF/(2π), which after
integrating over the manifold, gives a number which is in fact quantized. For the non–Abelian case, the
second Chern class Tr(F ∧F )/(8π2) computes the integer known as the instanton number, and so on. These
numbers, being integers, are topological invariants of the gauge bundle. By the latter, we mean the fibre
bundle of the gauge group over the world–volume, for which the gauge field A is a connection.

A fibre bundle is a rule for assigning a copy of a certain space (the fibre: in this case, the gauge group G)
to every point of another space (the base: here, the world–volume). The most obvious case of this is simply
a product of two manifolds (since one can be taken as the base and then the product places a copy of the
other at every point of the base), but this is awfully trivial. More interesting is to have only a product space
locally.

Then, the whole structure of the bundle is given by a collection of such local products glued together in
an overlapping way, together with a set of transition functions which tell one how to translate from one local
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Figure 30: Constructing the monopole bundle

patch to another on the overlap. In the case of a gauge theory, this is all familiar. The transition rule is
simply a G gauge transformation, and we are allowed to use the term “vector bundle” in this case. For the
connection or gauge field this is: A → gAg−1 + gdg−1. So the gauge field is not globally defined. Perhaps
the most familiar gauge bundle is the monopole bundle corresponding to a Dirac monopole. See the next
section.

9.2.1 The Dirac Monopole as a Gauge Bundle

A gauge bundle is sometimes called a principal fibre bundle. Perhaps everybody’s favourite gauge bundle is
the Dirac monopole. Take a sphere S2 as our base. We will fibre a circle over it. Recall that S2 cannot be
described by a global set of coordinates, but we can use two, the Northern and the Southern hemisphere,
with overlap in the vicinity of the Equator. Put standard polar coordinates (θ, φ) on S2, where θ = π/2 is
the Equator. Put an angular coordinate eiψ on the circle. We will use φ+ in the North and ψ− in the South.

So our bundle is a copy of two patches which are locally S2 × S1,

+Patch : {θ, φ, eiψ+} ; −Patch : {θ, φ, eiψ−} ,

together with a transition function which relates them.
The relation between the two can be chosen to be

eiψ− = einφeiψ+ ,

where n is an integer, since as we go around the equator, φ→ φ+ 2π, the gluing together of the fibres must
still make sense.

The boring case n = 0 is sensible, but it simply gives the trivial bundle S2 × S1. The case n = 1 is the
familiar Hopf fibration, which describes the manifold S3 as a circle bundle over S2. It is a Dirac monopole
of unit charge. Higher values of n give charge n monopoles. The integer n is characteristic of the bundle. It
is in fact (minus) the integral of the first Chern class.

Let us compute the first Chern number. A natural choice for the connection 1–form (gauge potential) in
each patch is simply

+Patch : A+ + dψ+ ; −Patch : A− + dψ− ,

so that the transition function defined above allows us to connect the two patches, defining the standard
U(1) gauge transformation

A+ = A− + nφ .

Here are the gauge potentials which are standard in this example:

A± = n
(±1 − cos θ)

2
dφ ,
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which, while being regular almost everywhere, clearly have a singularity (the famous Dirac string) in the ∓
patch. The curvature 2–form is simply

F = dA =
n

2
sin θdθ ∧ dφ .

This is a closed form, but it is not exact, since there is not a unique answer to what A can be over the whole
manifold. We can compute the first Chern number by integrating the first Chern class to get:

∫

S2

F

2π
=

∫

+

F

2π
+

∫

−

F

2π
= n .

9.3 Characteristic Classes and Invariant Polynomials

The topology of a particular fibration can be computed by working out just the right information about its
collection of transition functions. For a gauge bundle, the field strength or curvature 2–form F = dA+A∧A
is a nice object with which to go and count, since it is globally defined over the whole base manifold. When
the group is Abelian, F = dA and so dF = 0. If the bundle is not trivial, then we can’t write F as dA
everywhere and so F is closed but not exact. Then F is said to be an element of the cohomology group
H2(B,R) of the base, which we’ll call B. The first Chern class F/2π defines an integer when integrated over
B, telling us to which topological class F belongs; this integer is a topological invariant.

For the non–Abelian case, F is no longer closed, and so we don’t have the first Chern class. However,
the quantity Tr(F ∧ F ) is closed, since as we know from section 7.1.3, it is actually dω3Y .

So if the Chern–Simons 3–form ω3Y is not globally defined, we have a non–trivial bundle, and Tr(F ∧F ),
being closed but not exact, defines an element of the cohomology group H4(B,R). The second Chern class
Tr(F ∧F )/8π2 integrated over B gives an integer which says to which topological class F belongs. Physicists
call such configurations with non–zero values of this integer “instantons”, and this number is the “instanton
number”.

As we have said above, D–branes appear to compute certain topological features of the gauge bundle
on their world–volumes, corresponding here to the Chern classes of the cohomology. As we shall see, they
compute other topological numbers as well, and so let us pause to appreciate a little of the tools that they
employ, in order to better be able to put them to work for us.

The first and second Chern classes shall be denoted c1(F ) and c2(F ) and so on, cj(F ) for the jth Chern
class. Let us call the gauge group G, and keep in mind U(n) (we will make appropriate modifications to our
statements to include O(n) later). We’d like to know how to compute the cj(F ). The remarkable thing is
that they arise from forming polynomials in F which are invariant under G. Forget that F is a two–form for
now, and just think of it as an n×n matrix. The cj(F ) are found by expanding a natural invariant expression
in F as a series in t:

det

(
tI +

iF

2π

)
=

n∑

j=0

cn−j(F )tj . (396)

(Here, we use the i in F to keep the expression real, since U(N) generators are anti–Hermitean.) The great
thing about this is that there is an excellent trick for finding explicit expressions for the cj ’s which will
allow us to manipulate them and relate them to other quantities. Assume that the matrix iF/2π has been
diagonalised. Call this diagonal matrix X , with n distinct non–vanishing eigenvalues xi, i = 1 . . . n. Then
we have

det(tI +X) =

n∏

i=1

(t+ xi) =

n∑

j=0

cn−j(x)t
j , (397)

and we find by explicit computation that the cj ’s are symmetric polynomials:
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c0 = 1 , c1 =
n∑

i

xi , c2 =
n∑

i1<i2

xi1xi2 , · · ·

cj =
n∑

i1<i2<···ij

xi1xi2 · · ·xij , cn = x1x2 · · ·xn . (398)

Now rewrite the expressions on the eigenvalues back as matrix expressions in terms of X , and then replace
X by iF/2π, to get:

c0(F ) = 1 , c1(F ) =
i

2π
TrF ,

c2(F ) =
1

2

(
i

2π

)2

[TrF ∧ TrF − Tr(F ∧ F )] ,

cn(F ) =

(
i

2π

)n
detF . (399)

In the case of SU(N), the generators are traceless, and so

c2(F ) =
1

8π2
Tr(F ∧ F ) ,

the expression we saw before. The cj(F ) are rank 2j forms, so of course, the largest one that is gives a
meaningful quantity is the one for which dim(B) = 2j.

The natural object which D–branes seem to have on their world–volume is in fact the Chern character[172],
ch(F ) = Tr exp(iF/2π). This computes a specific combination of the Chern classes, and we can compute
this by using our symmetric polynomial expressions in (398). Working with the diagonal X again we have

ch(x) =
∑

i

exi =
∑

i

(
1 + xi +

x2
i

2
+ · · ·

)

= n+ c1 +
1

2
(c21 − 2c2) + · · · , and so we have:

ch(F ) = n+ c1(F ) +
1

2
(c21(F ) − 2c2(F )) + · · · (400)

The Chern character is to be thought of as an important generating function of the Chern classes and in fact
it is a powerful tool, in that it is well behaved in the sense that for bundle E and a bundle F , the relations

ch(E ⊕ F ) = ch(E) + ch(F ) , and ch(E ⊗ F ) = ch(E) ∧ ch(F ) (401)

are true. This is part of an important technology to doing “algebra” on bundles allowing one to perform
operations which compare them to each other, etc.

For the case G = O(n), the characteristic classes are called Pontryagin classes. We may think of the
bundle as a real vector bundle. Now we have

det

(
tI +

F

2π

)
=

n∑

j=0

pn−j(F )tj . (402)

Again, consider having diagonalised to X . We can’t quite diagonalize, but can get it into the block diagonal
form:

X =




0 x1

−x1 0
0 x2

−x2 0
. . .




. (403)
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Now we have the relation:
det (tI +X) = det

(
tI +XT

)
= det (tI −X) ,

and so we see that the pj(F ) must be even in F . A bit of work similar to that which we did above for the
Chern classes gives:

p1(F ) = −1

2

(
1

2π

)2

TrF 2 ,

p2(F ) =
1

8

(
1

2π

)4 [
(TrF 2)2 − 2TrF 4

]
, · · · , etc.

p[ n
2 ](F ) =

(
1

2π

)n
detF , (404)

where [n/2] = n/2 if n is even or (n− 1)/2 otherwise.
Now an important case of orthogonal groups is of course the tangent bundle to a manifold of dimension

n. Using the vielbiens formalism of section 2.14, the structure group is O(n). The 2–form to use is the
curvature 2–form R. Then we have e.g.,

p1(R) = − 1

8π2
TrR ∧R . (405)

The Euler class is naturally defined here too. For an orientable even dimensional n = 2k manifold M ,
the Euler class class e(M) is defined via

e(X)e(X) = pk(X) .

We write X here and not the 2–form R, since we would have a 4k–form which vanishes on M . However,
e(R) makes sense as a form since its rank is n, which is the dimension of M .

Let’s test this out for the two–sphere S2. Using the formalism of section 2.14, the curvature two–form
can be computed as Rθφ = sin θdθ ∧ dφ. Then we can compute

p1(S
2) = − 1

8π2
TrR ∧R =

(
1

2π
sin θdθ ∧ dφ

)2

.

So we see that

e(S2) =
1

2π
sin θdθ ∧ dφ .

The integral of this from over the manifold given the Euler number:

χ =

∫

S2

e(S2) = 2 ,

a result we know well and have used extensively.
Returning to our story, two other remarkable generating functions of importance are the Â (“A–roof”)

or Dirac genus:

Â =

n∏

j=1

xj/2

sinhxj/2
=

n∏

j=1


1 +

∑

n≥1

(−1)n
22n − 2

(2n)!
Bnx

2n
j




= 1 − 1

24
p1 +

1

5760
(7p2

1 − 4p2) + · · · , (406)
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and the Hirzebruch L̂–polynomial

L =

n∏

j=1

xj
tanhxj

=

n∏

j=1


1 +

∑

n≥1

(−1)n−1 22n

(2n)!
Bnx

2n
j




= 1 +
1

3
p1 +

1

45
(7p2 − p2

1) + · · · , (407)

where the Bn are the Bernoulli numbers, B1 = 1/6, B2 = 1/30, B3 = 1/42, . . .. These are very important
characteristics as well, and again have useful algebraic properties for facilitating the calculus of vector bundles
along the lines given by (401). As we shall see, they also play a very natural role in our story here.

9.4 Anomalous Curvature Couplings

So we seem to have wandered away from our story somewhat, but in fact we are getting closer to a big
part of the answer. If the above formula (394) is true, then D–branes evidently know how to compute the
topological properties of the gauge bundle associated to their world–volumes. This is in fact a hint of a
deeper mathematical structure underlying the structure of D–branes and their charge, and we shall see it
again later.

There is another strong hint of what is going on based on the fact that we began to deduce much of
this structure using the terms we discovered were needed to cancel anomalies. So far we have only looked
at the terms involving the curvature of the gauge bundle, and not the geometry of the brane itself which
might have non–trivial R associated to its tangent bundle. Indeed, since the gauge curvature terms came
from anomalies, we might expect that the tangent bundle curvatures do too. Since these are so closely
related, one might expect that there is a very succinct formula for those couplings as well. Let us look at
the anomaly terms again. The key terms are the curvature terms in (343) and the curvature terms arising
from the modification (346) of the field strength of C(3) to achieve gauge invariance. The same deduction we
made to arrive at (393) will lead us to TrR2 terms coupling to C(6). Also, if we convert to the fundamental
representation, we can see that there is a term

− 1

3 × 26(2π)5

∫
C(2)TrF 2trR2.

This mixed anomaly type term can be generated in a number of ways, but a natural guess[104, 105, 106]

(motivated by remarks we shall make shortly) is that there is a
√
Â term on the world volume, multiplying

the Chern characteristic. In fact, the precise term, written for all branes, is:

µp

∫

Mp+1

∑

i

C(i)

[
e2πα

′F+B
]√

Â(4π2α′R) . (408)

Working with this expression, using the precise form given in (406) will get the mixed term precisely
right, but the C(6)trR

2 will not have the right coefficient, and also the remaining fourth order terms coupling
to C(2) are incorrect, after comparing the result to (343).

The reason why they are not correct is because there is another crucial contribution which we have not
included. There is an orientifold O9–plane of charge −32µ9 as well. As we saw, it is crucial in the anomaly
cancellation story of the previous section and it must be included here for precisely the same reasons. While
it doe not couple to the SO(32) gauge fields (open strings), it certainly has every right to couple to gravity,
and hence source curvature terms involving R. Again, as will be clear shortly, the precise term for Op–planes
of this type is: [117]

µ̃p

∫

Mp+1

∑

i

C(i)

√
L̂(π2α′R) , (409)
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where L̂(R) is defined above in equation (407). Remarkably, expanding this out will repair the pure curvature
terms so as to give all of the correct terms in X8 to reproduce (343), and the C(6) coupling is precisely:

S = µ9

∫
(2πα′)2

2
C(6) ∧ (Tr(F ∧ F ) − TrR ∧R)

= µ9

∫
(2πα′)2

2
C(6) ∧ Y4 . (410)

Beyond just type I, it is worth noting that the R ∧ R term will play an important role on the world
volumes of branes. It can be written in the form:

µp(4π
2α′)2

48

∫

Mp+1

C(p−3) ∧ p1(R) . (411)

By straightforward analogy with what we have already observed about instantons, another way to get a
D(p− 4)–brane inside the world–volume of a Dp–brane is to wrap the brane on a four dimensional surface of
non–zero p1(R). Indeed, as we saw in equation (362), the K3 surface has p1 = −2χ = −48, and so wrapping
a Dp–brane on K3 gives D(p− 4)–brane charge of precisely −1. This will be important to us later.[109, 113]

9.5 A Relation to Anomalies

There is one last amusing fact that we should notice, which will make it very clear that the curvature
couplings that we have written above are natural for branes and O–planes of all dimensionalities. The point
is that the curvature terms just don’t accidentally resemble the anomaly polynomials we saw before, but
are built out of the very objects which can be used to generate the anomaly polynomials that we listed in
section 7.1.4.

In fact, we can use them to generate anomaly polynomials for dimension D = 4k + 2. We can pick out
the appropriate powers of the curvature two forms by using the substitution

2k+1∑

i=1

x2m
i =

1

2
(−1)mtrR2m .

Then in fact the polynomial Î1/2 is given by the Â genus:

Î1/2 = Â =

2k+1∏

j=1

xj/2

sinhxj/2

=

2k+1∏

j=1

(
1 +

y2
j

3!
+
y4
j

5!
+ · · ·

)−1

=

2k+1∏

j=1

(
1 − 1

6
y2
j +

7

360
y4
j −

31

15120
y6
j + · · ·

)

= 1 − 1

6
Y2 +

1

180
Y4 +

1

72
Y2

2

− 1

2835
Y6 −

1

1080
Y2Y4 −

1

1296
Y3

2 + · · · (412)

where

Y2m =

2k+1∑

i=1

y2m
i =

1

2

(
−1

4

)m
trR2m .
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The trick is then to simply pick out the piece of the expansion which fits the dimension of interest, remem-
bering that the desired polynomial is of rank D+2. So for example, picking out the order 12 terms will give
precisely the 12–form polynomial in section 7.1.4, etc.

The gravitino polynomials come about in a similar way. In fact,

I3/2 = I1/2


−1 + 2

2k+1∑

j=1

coshxi




= I1/2

(
D − 1 + 4Y2 +

4

3
Y4 +

8

45
Y6 + · · ·

)
. (413)

Also, the polynomials for the antisymmetric tensor comes from

IA = −1

8
L̂(R) = −1

8

2k+1∑

j=1

xj
tanhxj

= −1

8
− 1

6
Y2 +

(
7

45
− 1

9
Y2

2

)

+
1

2835

(
−496Y6 + 588Y2Y4 − 140Y3

2 + · · ·
)
. (414)

Finally, it is easy to work out the anomaly polynomial for a charged fermion. One simply multiplies by the
Chern character:

I1/2(F,R) = TreiF I1/2(R) . (415)

Now it is perhaps clearer what must be going on[105, 106]. The D–branes and O–planes, and any
intersections between them all define sub–spacetimes of the ten dimensional spacetime, where potentially
anomalous theories live. This is natural, since as we have already learned, and shall explore much more,
there are massless fields of various sorts living on them, possibly charged under any gauge group they might
carry.

As the world–volume intersections may be thought of as embedded in the full ten dimensional theory,
there is a mechanism for canceling the anomaly which generalizes that which we have already encountered.
For example, since the Dp–brane is also a source for the R–R sector field G(p+2), it modifies it according to

G(p+2) = dC(p+1) − µpδ(x0) · · · δ(xp)dx0 ∧ · · ·dxpF(R,F ) , (416)

where the delta functions are chosen to localize the contribution to the world–volume of the brane, extended
in the directions x0, x1, . . . xp. Also µp is the Dp–brane (or Op–plane) charge, and the polynomial F must
be chosen so that the classically anomalous variation δC(p+1) required to keep G(p+2) gauge invariant can
cancel the anomaly on the branes’ intersection. Following this argument to its logical conclusion, and using
the previously mentioned fact that the possible anomalies are described in terms of the characteristic classes
exp(iF ), Â(R) and L̂(R), reveals that F takes the form of the couplings that we have already written. We
see that the Green–Schwarz mechanism from type I is an example of something much more general, involving
the various geometrical objects which can appear embedded in the theory, and not just the fundamental
string itself. Arguments along these lines also uncover the feature that the normal bundle also contributes
to the curvature couplings as well. The full expressions, for completeness, are:

µp

∫

Mp+1

∑

i

C(i)

[
e2πα

′F+B
]√ Â(4π2α′RT )

Â(4π2α′RN )
, (417)

and

µ̃p

∫

Mp+1

∑

i

C(i)

√
L̂(π2α′RT )

L̂(π2α′RN )
, (418)

where the subscripts T,N denotes curvatures of the tangent and the normal frame, respectively.
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9.6 D–branes and K–Theory

In fact, the sort of argument above is an independent check on the precise normalization of the D–brane
charges, which we worked out by direct computation in previous sections. As already said before, the close
relation to the topology of the gauge and tangent bundles of the branes suggests a connection with tools
which might uncover a deeper classification. This tool is called “K–theory”. K–theory should be thought
of as a calculus for working out subtle topological differences between vector bundles, and as such makes a
natural physical appearance here[107, 22, 24].

This is because there is a means of constructing a D–brane by a mechanism known as “tachyon con-
densation” on the world volume of higher dimensional branes. Recall that in section 8 we observed that a
Dp–brane and an anti–Dp–brane will annihilate. Indeed, there is a tachyon in the spectrum of pp̄ strings.
Let us make the number of brane be N , and the number of anti–branes as N̄ . Then the tachyon is charged
under the gauge group U(N) × U(N̄). The idea is that a suitable choice of the tachyon can give rise to
topology which must survive even if all of the parent branes annihilate away. For example, if the tachyon
field is given a topologically stable kink as a function of one of the dimensions inside the brane, then there
will be a p− 1 dimensional structure left over, to be identified with a D(p− 1)–brane. This idea is the key
to seeing how to classify D–branes, by constructing all branes in this way.

Most importantly, we have two gauge bundles, that of the Dp–branes, which we might call E, and
that of the Dp̄–branes, called F . To classify the possible D–branes which can exist in the world volume,
one must classify all such bundles, defining as equivalent all pairs which can be reached by brane creation
or annihilation: If some number of Dp–branes annihilate with Dp̄–branes, (or if the reverse happens, i.e.
creation of Dp–Dp̄ pairs), the pair (E,F ) changes to (E⊕G,F ⊕G), where G is the gauge bundle associated
to the new branes, identical in each set. These two pairs of bundles are equivalent. The group of distinct
such pairs is (roughly) the object called K(X), where X is the spacetime which the branes fill (the base
of the gauge bundles). Physically distinct pairs have non–trivial differences in their tachyon configurations
which would correspond to different D–branes after complete annihilation had taken place. So K–theory,
defined in this way, is a sort of more subtle or advanced cohomology which goes beyond the more familiar
sort of cohomology we encounter daily.

The technology of K–theory is beyond that which we have room for here, but it should be clear from
what we have seen in this section that it is quite natural, since the world–volume couplings of the charge
of the branes is via the most natural objects with which one would want to perform sensible operations on
the gauge bundles of the branes like addition and subtraction: the characteristic classes, exp(iF ), Â(R) and
L̂(R). Actually, this might have been enough to simply get the result that D–brane charges were classified by
cohomology. The fact that it is K–theory (which can compute differences between bundles that cohomology
alone would miss) is probably related to a very important physical fact about the underlying theory which
will be more manifest one day.

9.7 Further Non–Abelian Extensions

One can use T–duality to go a bit further and deduce a number of non–Abelian extensions of the action,
being mindful of the sort of complications mentioned at the beginning of section (5.5). In the absence of
geometrical curvature terms it turns out to be:[54, 55]

µp

∫

p−brane

Tr
([
e2πα

′
iΦiΦ

∑
pC(p+1)

]
e2πα

′F+B
)
. (419)

Here, we ascribe the same meaning to the gauge trace as we did previously (see section (5.5)). The
meaning of iX is as the “interior product” in the direction given by the vector Φi, which produces a form of
one degree fewer in rank. For example, on a two form C(2)(Φ) = (1/2)Cij(Φ)dX idXj, we have

iΦC(2) = ΦiCij(Φ)dXj ; iΦiΦC(2)(Φ) = ΦjΦiCij(Φ) =
1

2
[Φi,Φj ]Cij(Φ) , (420)
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where we see that the result of acting twice is non–vanishing when we allow for the non–Abelian case, with
C having a nontrivial dependence on Φ.

9.8 Further Curvature Couplings

We deduced geometrical curvature couplings to the R–R potentials a few subsections ago. In particular,
such couplings induce the charge of lower p branes by wrapping larger branes on topologically non–trivial
surfaces.

In fact, as we saw before, if we wrap a Dp–brane on K3, there is induced precisely −1 units of charge of
a D(p− 4)–brane. This means that the charge of the effective (p− 4)–dimensional object is

µ = µpVK3 − µp−4 , (421)

where VK3 is the volume of the K3. However, we can go further and notice that since this is a BPS object
of the six dimensional N = 2 string theory obtained by compactifying on K3, we should expect that it has
a tension which is

τ = τpVK3 − τp−4 = g−1
s µ . (422)

If this is indeed so, then there must be a means by which the curvature of K3 induces a shift in the tension
in the world–volume action. Since the part of the action which refers to the tension is the Dirac–Born–Infeld
action, we deduce that there must be a set of curvature couplings for that part of the action as well. Some
of them are given by the following:[114, 120]

S = −τp
∫
dp+1ξ e−Φdet1/2(Gab + Fab)

(
1 − 1

3 × 28π2
×

(
RabcdRabcd −RαβabR

αβab + 2R̂αβR̂αβ − 2R̂abR̂ab
)

+O(α′4)

)
, (423)

where Rabcd = (4π2α′)Rabcd, etc., and a, b, c, d are the usual tangent space indices running along the brane’s
world volume, while α, β are normal indices, running transverse to the world–volume.

Some explanation is needed. Recall that the embedding of the brane into D–dimensional spacetime is
achieved with the functions Xµ(ξa), (a = 0, . . . , p;µ = 0, . . . , D − 1) and the pullback of a spacetime field
Fµ is performed by soaking up spacetime indices µ with the local “tangent frame” vectors ∂aX

µ, to give
Fa = Fµ∂aX

µ. There is another frame, the “normal frame”, with basis vectors ζµα , (α = p+ 1, . . . , D − 1).
Orthonormality gives ζµαζ

ν
βGµν = δαβ and also we have ζµα∂aX

νGµν = 0.
We can pull back the spacetime Riemann tensor Rµνκλ in a number of ways, using these different frames,

as can be seen in the action. R̂ with two indices are objects which were constructed by contraction of the
pulled–back fields. They are not the pull back of the bulk Ricci tensor, which vanishes at this order of string
perturbation theory anyway.

In fact, for the case of K3, it is Ricci flat and everything with normal space indices vanishes and so we
get only RabcdR

abcd appearing, which alone computes the result (362) for us, and so after integrating over
K3, the action becomes:

S = −
∫
dp−3ξ e−Φ [τpVK3 − τp−4] det1/2(Gab + Fab) , (424)

where again we have used the recursion relation between the D–brane tensions. So we see that we have
correctly reproduced the shift in the tension that we expected on general grounds for the effective D(p− 4)–
brane.
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10 Multiple D–Branes

In section 5, we saw a number of interesting terms arise in the D–brane world–volume action which had
interpretations as smaller branes. For example, a U(1) flux was a D(p − 2)–brane fully delocalized in the
world–volume, while for the non–Abelian case, we saw a D(p− 4)–brane arise as an instanton in the world–
volume gauge theory. Interestingly, while the latter breaks half of the supersymmetry again, as it ought to,
the former is still half BPS, since it is T–dual to a tilted D(p+ 1)–brane.

It is worthwhile trying to understand this better back in the basic description using boundary conditions
and open string sectors, and this is the first goal of this section. After that, we’ll have a closer look at the
nature of the BPS bound and the superalgebra, and study various key illustrative examples.

10.1 Dp and Dp′ From Boundary Conditions

Let us consider two D–branes, Dp and Dp′, each parallel to the coordinate axes. (We can of course have
D–branes at angles, [121] but we will not consider this here.) An open string can have both ends on the
same D–brane or one on each. The p−p and p′−p′ spectra are the same as before, but the p−p′ strings are
new. Since we are taking the D–branes to be parallel to the coordinate axes, there are four possible sets of
boundary conditions for each spatial coordinate X i of the open string, namely NN (Neumann at both ends),
DD, ND, and DN. What really will matter is the number ν of ND plus DN coordinates. A T–duality can
switch NN and DD, or ND and DN, but ν is invariant. Of course ν is even because we only have p even or
p odd in a given theory in order to have a chance of preserving supersymmetry.

The respective mode expansions are

NN: Xµ(z, z̄) = xµ − iα′pµ ln(zz̄) + i

√
α′

2

∑

m 6=0

αµm
m

(z−m + z̄−m),

DN,ND: Xµ(z, z̄) = i

√
α′

2

∑

r∈Z+1/2

αµr
r

(z−r ± z̄−r), (425)

DD: Xµ(z, z̄) = −i δX
µ

2π
ln(z/z̄) + i

√
α′

2

∑

m 6=0

αµm
m

(z−m − z̄−m) .

In particular, the DN and ND coordinates have half–integer moding. The fermions have the same moding in
the Ramond sector (by definition) and opposite in the Neveu–Schwarz sector. The string zero point energy
is 0 in the R sector as always, and using (70) we get:

(8 − ν)

(
− 1

24
− 1

48

)
+ ν

(
1

48
+

1

24

)
= −1

2
+
ν

8
(426)

in the NS sector.
The oscillators can raise the level in half–integer units, so only for ν a multiple of 4 is degeneracy between

the R and NS sectors possible. Indeed, it is in this case that the Dp–Dp′ system is supersymmetric. We can
see this directly. As discussed in sections 8.1.1 and 8.2, a D–brane leaves unbroken the supersymmetries

Qα + PQ̃α , (427)

where P acts as a reflection in the direction transverse to the D–brane. With a second D–brane, the only
unbroken supersymmetries will be those that are also of the form

Qα + P ′Q̃α = Qα + P (P−1P ′)Q̃α . (428)

with P ′ the reflection transverse to the second D–brane. Then the unbroken supersymmetries correspond to
the +1 eigenvalues of P−1P ′. In DD and NN directions this is trivial, while in DN and ND directions it is
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a net parity transformation. Since the number ν of such dimensions is even, we can pair them as we did in
section 7.1.1, and write P−1P ′ as a product of rotations by π,

eiπ(J1+...+Jν/2) . (429)

In a spinor representation, each eiπJ has eigenvalues ±i, so there will be unbroken supersymmetry only if ν
is a multiple of 4 as found above. 7

For example, Type I theory, besides the D9–branes, will have D1–branes and D5–branes. This is consistent
with the fact that the only R-R field strengths are the three-form and its Hodge–dual seven–form. The D5–
brane is required to have two Chan–Paton degrees of freedom (which can be thought of as images under Ω)
and so an SU(2) gauge group.[122, 123]

When ν = 0, P−1P ′ = 1 identically and there is a full ten-dimensional spinor of supersymmetries. This
is the same as for the original Type I theory, to which it is T–dual. In D = 4 units, this is N = 4, or sixteen
supercharges. For ν = 4 or ν = 8 there is D = 4 N = 2 supersymmetry.

Let us now study the spectrum for ν = 4, saving ν = 8 for later. Sometimes it is useful to draw a quick
table showing where the branes are located. Here is one for the (9,5) system, where the D5–brane is pointlike
in the x6, x7, x8, x9 directions and the D9–brane is (of course) extended everywhere:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D9 − − − − − − − − − −
D5 − − − − − − • • • •

A dash under xi means that the brane is extended in that direction, while a dot means that it is pointlike
there. Continuing with our analysis, we see that the NS zero–point energy is zero. There are four periodic
world–sheet fermions ψi, namely those in the ND directions. The four zero modes generate 24/2 or four
ground states, of which two survive the GSO projection. In the R sector the zero–point energy is also zero;
there are four periodic transverse ψ, from the NN and DD directions not counting the directions µ = 0, 1.
Again these generate four ground states of which two survive the GSO projection. The full content of the
p–p′ system is then is half of an N = 2 hypermultiplet. The other half comes from the p′–p states, obtained
from the orientation reversed strings: these are distinct because for ν 6= 0 the ends are always on different
D–branes.

Let us write the action for the bosonic p− p′ fields χA, starting with (p, p′) = (9, 5). Here A is a doublet
index under the SU(2)R of the N = 2 algebra. The field χA has charges (+1,−1) under the U(1) × U(1)
gauge theories on the branes, since one end leaves, and the other arrives. The minimally coupled action is
then ∫

d6ξ

(
5∑

a=0

|(∂a + iAa − iA′
a)χ|

2
+

(
1

4g2
YM,p

+
1

4g2
YM,p′

) 3∑

I=1

(χ†τIχ)2

)
, (430)

with Aa and A′
a the brane gauge fields, gYM,p and gYM,p′ the effective Yang–Mills couplings (377), and τI

the Pauli matrices. The second term is from the N = 2 D–terms for the two gauge fields. It can also be
written as a commutator Tr [φi, φj ]2 for appropriately chosen fields φi, showing that its form is controlled
by the dimensional reduction of an F 2 pure Yang–Mills term.

The integral is over the 5–brane world-volume, which lies in the 9–brane world-volume. Under T–dualities
in any of the ND directions, one obtains (p, p′) = (8, 6), (7, 7), (6, 8), or (5, 9), but the intersection of the
branes remains (5 + 1)-dimensional and the p–p′ strings live on the intersection with action (430). In the
present case the D-term is non–vanishing only for χA = 0, though more generally (say when there are several
coincident p and p′–branes), there will be additional massless charged fields and flat directions arise.

7We will see that there are supersymmetric bound states when ν = 2.
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Under T–dualities in r NN directions, one obtains (p, p′) = (9 − r, 5 − r). The action becomes

∫
d6−rξ

(
5−r∑

a=0

|(∂a + iAa − iA′
a)χ|

2
+

χ†χ

(2πα′)2

5∑

a=6−r

(Xa −X ′
a)

2

+

(
1

4g2
YM,p

+
1

4g2
YMp′

) 3∑

i=1

(χ†τIχ)2

)
. (431)

The second term, proportional to the separation of the branes, is from the tension of the stretched string.

10.2 The BPS Bound for the Dp–Dp′ System

The ten dimensional N = 2 supersymmetry algebra (in a Majorana basis) is

{Qα, Qβ} = 2(Γ0Γµ)αβ(Pµ +QNS
µ /2πα′)

{Q̃α, Q̃β} = 2(Γ0Γµ)αβ(Pµ −QNS
µ /2πα′)

{Qα, Q̃β} = 2
∑

p

τp
p!

(Γ0Γm1 . . .Γmp)αβQ
R
m1...mp

. (432)

Here QNS is the charge to which the NS–NS two–form couples, it is essentially the winding of a fundamental
string stretched along M1:

QNS
µ ≡ QNS

v1

∫

M1

dXµ , with QNS =
1

VolS7

∫

S7

e−2Φ ∗H(3) (433)

and the charge QNS is normalised to one per unit spatial world–volume, v1 = L, the length of the string. It
is obtained by integrating over the S7 which surrounds the string. The QR are the R–R charges, defined as
a generalisation of winding on the space Mp:

QR
µ1...µp

≡ QR
p

vp

∫

Mp

dXµ1 ∧ · · ·dXµp , with QR
p =

1

VolS8−p

∫

S8−p

∗G(p+2) . (434)

The sum in (432) runs over all orderings of indices, and we divide by p! Of course, p is even for IIA or odd
for IIB. The R–R charges appear in the product of the right- and left–moving supersymmetries, since the
corresponding vertex operators are a product of spin fields, while the NS-NS charges appear in right–right
and left–left combinations of supercharges.

As an example of how this all works, consider an object of length L, with the charges of p fundamental
strings (“F–strings”, for short) and q D1–branes (“D–strings) in the IIB theory, at rest and aligned along
the direction X1. The anticommutator implies

1

2

{[
Qα
Q̃α

]
,
[
Qβ Q̃β

]}
=

[
1 0
0 1

]
Mδαβ +

[
p q/gs

q/gs −p

]
L(Γ0Γ1)αβ

2πα′
. (435)

The eigenvalues of Γ0Γ1 are ±1 so those of the right–hand side are M ± L(p2 + q2/g2)1/2/2πα′. The left
side is a positive matrix, and so we get the “BPS bound” on the tension [124]

M

L
≥
√
p2 + q2/g2

s

2πα′
≡ τp,q . (436)

Quite pleasingly, this is saturated by the fundamental string, (p, q) = (1, 0), and by the D–string, (p, q) =
(0, 1).
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(a) (c)(b)

Figure 31: (a) A parallel D–string and F–string, which is not supersymmetric. (b) The F–string breaks, its
ends attaching to the D-string, resulting in (c) the final supersymmetric state, a D–string with flux.

It is not too hard to extend this to a system with the quantum numbers of Dirichlet p and p′ branes.
The result for ν a multiple of 4 is

M ≥ τpvp + τp′vp′ (437)

and for ν even but not a multiple of 4 it is 8

M ≥
√
τ2
p v

2
p + τ2

p′v
2
p′ . (438)

The branes are wrapped on tori of volumes vp and v′p in order to make the masses finite.
The results (437) and (438) are consistent with the earlier results on supersymmetry breaking. For ν a

multiple of 4, a separated p–brane and p′–brane do indeed saturate the bound (437). For ν not a multiple
of four, they do not saturate the bound (438) and cannot be supersymmetric.

10.3 Bound States of Fundamental Strings and D–Strings

Consider a parallel D1–brane (D–string) and a fundamental string (F–string) lying along X1. The total
tension

τD1 + τF1 =
g−1
s + 1

2πα′
(439)

exceeds the BPS bound (436) and so this configuration is not supersymmetric. However, it can lower its
energy[29] as shown in figure 31. The F–string breaks, its endpoints attached to the D–string. The endpoints
can then move off to infinity, leaving only the D–string behind. Of course, the D–string must now carry
the charge of the F-string as well. This comes about because the F–string endpoints are charged under the
D–string gauge field, so a flux runs between them; this flux remains at the end.

Thus the final D–string carries both the NS–NS and R–R two–form charges. The flux is of order gs,
its energy density is of order gs, and so the final tension is (g−1

s + O(gs))/2πα
′. This is below the tension

of the separated strings and of the same form as the BPS bound (436) for a (1, 1) string. A more detailed
calculation shows that the final tension saturates the bound,[110] so the state is supersymmetric. In effect,
the F–string has dissolved into the D–string, leaving flux behind.

We can see quite readily that this is a supersymmetric situation using T–duality. We can choose a gauge
in which the electric flux is F01=Ȧ1. T–dualising along the x1 direction, we ought to get a D0–brane, which
we do, except that it is moving with constant velocity, since we get Ẋ1 = 2πα′Ȧ1. This clearly has the same
supersymmetry as a stationary D0–brane, having been simply boosted.

8The difference between the two cases comes from the relative sign of ΓM (ΓM
′

)T and ΓM
′

(ΓM )T .
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To calculate the number of BPS states we should put the strings in a box of length L to make the
spectrum discrete. For the (1, 0) F-string, the usual quantization of the ground state gives eight bosonic and
eight fermionic states moving in each direction for 162 = 256 in all.

This is the ultrashort representation of supersymmetry: half the 32 generators annihilate the BPS state
and the other half generate 28 = 256 states. The same is true of the (0, 1) D-string and the (1, 1) bound
state just found, as will be clear from the later duality discussion of the D–string.

It is worth noting that the (1, 0) F–string leaves unbroken half the supersymmetry and the (0, 1) D–
string leaves unbroken a different half of the supersymmetry. The (1, 1) bound state leaves unbroken not
the intersection of the two (which is empty), but yet a different half. The unbroken symmetries are linear
combinations of the unbroken and broken supersymmetries of the D–string.

All the above extends immediately to p F–strings and one D–string, forming a supersymmetric (p, 1)
bound state. The more general case of p F–strings and q D–strings is more complicated. The gauge dynamics
are now non–Abelian, the interactions are strong in the infrared, and no explicit solution is known. When
p and q have a common factor, the BPS bound makes any bound state only neutrally stable against falling
apart into subsystems. To avoid this complication let p and q be relatively prime, so any supersymmetric
state is discretely below the continuum of separated states. This allows the Hamiltonian to be deformed to a
simpler supersymmetric Hamiltonian whose supersymmetric states can be determined explicitly, and again
there is one ultrashort representation, 256 states. It is left to the reader to consult the literature[29, 1] for
the details.

10.4 The Three–String Junction

Let us consider further the BPS saturated formula derived and studied in the two previous subsections, and
write it as follows:

τp,q =
√

(pτ1,0)2 + (qτ0,1)2 . (440)

An obvious solution to this is
τp,q sinα = qτ0,1 , τp,q cosα = pτ1,0 . (441)

with tanα = q/(pgs). Recall that these are tensions of strings, and therefore we can interpret the equations
(441) as balance conditions for the components of forces. In fact, it is the required balance for three
strings,[128, 126] and we draw the case of p = q = 1 in figure 32.
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(1,1)
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β

x

x
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Figure 32: (a) When an F–string ends on a D–string it causes it to bend at an angle set by the string
coupling. On the other side of the junction is a (1,1) string. This is in fact a BPS state. (b) Switching on
some amount of the R–R scalar can vary the other angle, as shown.
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Is this at all consistent with what we already know? The answer is yes. An F–string is allowed to end
on a D–string by definition, and a (1,1) string is produced, due to flux conservation, as we discussed above.
The issue here is just how we see that there is bending. The first thing to notice is that the angle α goes
to π/2 in the limit of zero string coupling, and so the D–string appears in that case to run straight. This
had better be true, since it is then clear that we simply were allowed to ignore the bending in our previous
weakly coupled string analysis. (This study of the bending of branes beyond zero coupling has important
consequences for the study of one–loop gauge theory data.[130])

Parenthetically, it is nice to see that in the limit of infinite string coupling, α goes to 0. The diagram is
better interpreted as a D–string ending on an F–string with no resulting bending. This fits nicely with the
fact that the D– and F–strings exchange roles under the strong/weak coupling duality (“S–duality”) of the
type IIB string theory, as we shall see in section 11.

When we wrote the linearized BIon equations in section 5.7, we ignored the 1+1 dimensional case. Let
us now include that part of the story here as a 1+1 dimensional gauge theory discussion. There is a flux F01

on the world–volume, and the end of the F–string is an electric source. Given that there is only one spatial
dimension, the F–string creates a discontinuity on the flux, such that e.g:[131, 63]

F01 =

{
gs , x1 > 0
0 , x1 < 0

, (442)

so we can choose a gauge such that

A0 =

{
gsx

1 , x1 > 0
0 , x1 < 0

. (443)

Just as in section 5.7, this is BPS if one of the eight scalars Φm is also switched on so that

Φ2(x1) = A0 . (444)

How do we interpret this? Since (2πα′)Φ2 represents the x2 position of the D–string, we see that for x1 < 0
the D–string is lying along the x1 axis, while for x1 > 0, it lies on a line forming an angle tan−1(1/gs) with
the x1, axis.

Recall the T1–dual picture we mentioned in the previous section, where we saw that the flux on the
D–string (making the (1,1) string) is equivalent to a D0–brane moving with velocity (2πα′)F01. Now we
see that the D0–brane loses its velocity at x1 = 0. This is fine, since the apparent impulse is accounted for
by the momentum carried by the F–string in the T–dual picture. (One has to tilt the diagram in order to
T–dualise along the (1,1) string in order to see that there is F–string momentum.)

Since as we have seen many times that the presence of flux on the world–volume of a Dp–brane is
equivalent to having a dissolved D(p − 2)–brane, i.e., non–zero C(p−1) source, we can modify the flux on
the x1 < 0 part of the string this way by turning on the R–R scalar C0. This means that Φ2(x1) will be
linear there too, and so the angle β between the D– and F–strings can be varied too (see figure 32(b)). It is
interesting to derive the balance conditions from this, and then convert it into a modified tension formula,
but we will not do that here.[131]

It is not hard to imagine that given the presence we have already deduced of a general (p, q) string in the
theory that there are three–string junctions to be made out of any three strings such that the (p, q)–charges
add up correctly, giving a condition on the angles at which they can meet. This is harder to do in the full
non–Abelian gauge theories on their world–volumes, but in fact a complete formula can be derived using the
underlying SL(2,Z) symmetry of the type IIB string theory. We will have more to say about this symmetry
later.

General three–string junctions have been shown to be important in a number of applications (see e.g.
refs.[128, 129]), and there is a large literature on the subject which we are unfortunately not able to review
here.
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10.5 Aspects of D–Brane Bound States

Bound states of p–branes and p′–branes have many applications, and so it is worth listing some of the results
here. Here we focus on p′ = 0, since we can always reach it from a general (p, p′) using T–duality.

10.5.1 0–0 bound states

The BPS bound for the quantum numbers of n 0–branes is nτ0, so any bound state will be at the edge
of the continuum. What we would like to know is if there is actually a true bound state wave function,
i.e., a wavefunction which is normalisable. To make the bound state counting well defined, compactify
one direction and give the system momentum m/R with m and n relatively prime.[132] The bound state
now lies discretely below the continuum, because the momentum cannot be shared evenly among unbound
subsystems.

This bound state problem is T–dual to the one just considered. Taking the T–dual, the n D0–branes
become D1–branes, while the momentum becomes winding number, corresponding to m F-strings. There is
therefore one ultrashort multiplet of supersymmetric states when m and n are relatively prime.[132] This
bound state should still be present back in infinite volume, since one can take R to be large compared to the
size of the bound state. There is a danger that the size of the wavefunction we have just implicitly found
might simply grow with R such that as R → ∞ it becomes non–normalisable again. More careful analysis
is needed to show this. It is sufficient to say here that the bound states for arbitrary numbers of D0–branes
are needed for the consistency of string duality, so this is an important problem. Some strong arguments
have been presented in the literature, (n = 2 is proven) but the general case is not yet proven[133].

10.5.2 0–2 bound states

Now the BPS bound (438) puts any bound state discretely below the continuum. One can see a hint of
a bound state forming by noticing that for a coincident D0–brane and D2–brane the NS 0–2 string has a
negative zero–point energy (426) and so a tachyon (which survives the GSO projection), indicating instability
towards something. In fact the bound state (one short representation) is easily described: the D0–brane
dissolves in the D2–brane, leaving flux, as we have seen numerous times. The brane R–R action (394)
contains the coupling C(1)F , so with the flux the D2–brane also carries the D0–brane charge.[134] There is
also one short multiplet for n D0–branes. This same bound state is always present when ν = 2.

10.5.3 0–4 bound states

The BPS bound (437) makes any bound state marginally stable, so the problem is made well–defined as in the
0–0 case by compactifying and adding momentum.[135] The interactions in the action (431) are relevant in
the infrared so this is again a hard problem, but as before it can be deformed into a solvable supersymmetric
system. Again there is one multiplet of bound states.[135] Now, though, the bound state is invariant only
under 1

4 of the original supersymmetry, the intersection of the supersymmetries of the D0–brane and of the
D4–brane. The bound states then lie in a short (but not ultrashort) multiplet of 212 states.

For 2 D0–branes and one D4–brane, one gets the correct count as follows.[136] Think of the case that
the volume of the D4–brane is large. The 16 supersymmetries broken by the D4–brane generate 256 states
that are delocalized on the D4–brane. The 8 supersymmetries unbroken by the D4–brane and broken by
the D0–brane generate 16 states (half bosonic and half fermionic), localized on the D0–brane. The total
number is the product 212. Now count the number of ways two D0–branes can be put into their 16 states on
the D4–brane: there are 8 states with both D0–branes in the same (bosonic) state and 1

216 · 15 states with
the D–branes in different states, for a total of 8 · 16 states. But in addition, the two–branes can bind, and
there are again 16 states where the bound state binds to the D4–brane. The total, tensoring again with the
D4–brane ground states, is 9 · 16 · 256.
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For n D0–branes and one D4–brane, the degeneracy Dn is given by the generating functional [136]

∞∑

n=0

qnDn = 256

∞∏

k=1

(
1 + qk

1 − qk

)8

, (445)

where the term k in the product comes from bound states of k D0–branes then bound to the D4–brane.
Some discussion of the D0–D4 bound state, and related issues, can be found in the references[137].

10.5.4 0–6 bound states

The relevant bound is (438) and again any bound state would be below the continuum. The NS zero-point
energy for 0–6 strings is positive, so there is no sign of decay. One can give D0–brane charge to the D6–brane
by turning on flux, but there is no way to do this and saturate the BPS bound. So it appears that there
are no supersymmetric bound states. Incidentally, and unlike the 0–2 case, the 0–6 interaction is repulsive,
both at short distance and at long.

10.5.5 0–8 bound states

The case of the D8–brane is special, since it is rather big. It is a domain wall, since there is only one spatial
dimension transverse to it. In fact, the D8–brane on its own is not really a consistent object. Trying to
put it into type IIA runs into trouble, since the string coupling blows up a finite distance from it on either
side because of the nature of its coupling to the dilaton. To stop this happening, one has to introduce a
pair of O8–planes, one on each side, since they (for SO groups) have negative charge (−8 times that of the
D8–brane) and can soak up the dilaton. We therefore should have 16 D8–branes for consistency, and so we
end up in the type I′ theory, the T–dual of Type I. The bound state problem is now quite different, and
certain details of it pertain to the strong coupling limit of certain string theories, and their “matrix”[148, 149]
formulation.[138, 139] We shall revisit this in section 11.5.

11 Strings at Strong Coupling

One of the most striking results of the middle ’90’s was the realization that all of the superstring theories
are in fact dual to one another at strong coupling.[140]

This also brought eleven dimensional supergravity into the picture and started the search for M–theory,
the dynamical theory within which all of those theories would fit as various effective descriptions of perturba-
tive limits. All of this is referred to as the “Second Superstring Revolution”. Every revolution is supposed to
have a hero or heroes. We shall consider branes to be cast in that particular role, since they (and D–branes
especially) supplied the truly damning evidence of the strong coupling fate of the various string theories.
We shall discuss aspects of this in the present section. We simply study the properties of D–branes in the
various string theories, and then trust to that fact that as they are BPS states, many of these properties will
survive at strong coupling.

11.1 Type IIB/Type IIB Duality

11.1.1 D1–Brane Collective Coordinates

Let us first study the D1–brane. This will be appropriate to the study of type IIB and the type I string by
Ω–projection. Its collective dynamics as a BPS soliton moving in flat ten dimensions is captured by the 1+1
dimensional world–volume theory, with 16 or 8 supercharges, depending upon the theory we are in. (See
figure 33(a).)

It is worth first setting up a notation and examining the global symmetries. Let us put the D1–brane to
lie along the x1 direction, as we will do many times in what is to come. This arrangement of branes breaks
the Lorentz group up as follows:
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SO(1, 9) ⊃ SO(1, 1)01 × SO(8)2−9 , (446)

Accordingly, the supercharges decompose under (446) as

16 = 8+ ⊕ 8− (447)

where ± subscripts denote a chirality with respect to SO(1, 1).
For the 1–1 strings, there are 8 Dirichlet–Dirichlet (DD) directions, the Neveu–Schwarz (NS) sector has

zero point energy −1/2. The massless excitations form vectors and scalars in the 1+1 dimensional model.
For the vectors, the Neumann–Neumann (NN) directions give a gauge field Aµ. Now, the gauge field has no
local dynamics, so the only contentful bosonic excitations are the transverse fluctuations. These come from
the 8 Dirichlet–Dirichlet (DD) directions xm, m = 2, · · · , 9, and are

φm(x0, x1) : λφψ
m
− 1

2
|0 > . (448)

The fermionic states ξ from the Ramond (R) sector (with zero point energy 0, as always) are built on
the vacua formed by the zero modes ψi0, i=0, . . . , 9. This gives the initial 16. The GSO projection acts on
the vacuum in this sector as:

(−1)F = eiπ(S0+S1+S2+S3+S4) . (449)

A left or right–moving state obeys Γ0Γ1ξ± = ±ξ±, and so the projection onto (−1)F ξ=ξ says that left and
right moving states are odd and (respectively) even under Γ2 . . .Γ9, which is to say that they are either in
the 8s or the 8c. So we see that the GSO projection simply correlates world sheet chirality with spacetime
chirality: ξ− is in the 8c of SO(8) and ξ+ is in the 8s.

So we have seen that for a D1–brane in type IIB string theory, the right–moving spinors are in the 8s

of SO(8), and the left-moving spinors in the 8c. These are the same as the fluctuations of a fundamental
IIB string, in static gauge[29], and here spacetime supersymmetry is manifest. (It is in “Green–Schwarz”
form[102].) There, the supersymmetries Qα and Q̃α have the same chirality. Half of each spinor annihilates
the F–string and the other half generates fluctuations. Since the supersymmetries have the same SO(9, 1)
chirality, the SO(8) chirality is correlated with the direction of motion.

So far we have been using the string metric. We can switch to the Einstein metric, g
(E)
µν = e−Φ/2g

(S)
µν ,

since in this case gravitational action has no dependence on the dilaton, and so it is an invariant under
duality. The tensions in this frame are:

F–string: g1/2
s /2πα′

D–string: g−1/2
s /2πα′ . (450)

Since these are BPS states, we are able to trust these formulae at arbitrary values of gs.
Let us see what interpretation we can make of these formulae: At weak coupling the D–string is heavy

and the F–string tension is the lightest scale in the theory. At strong coupling, however, the D–string
is the lightest object in the theory, (a dimensional argument shows that the lowest–dimensional branes
have the lowest scale[141]), and it is natural to believe that the theory can be reinterpreted as a theory
of weakly coupled D–strings, with g′s = g−1

s . One cannot prove this without a non–perturbative definition
of the theory, but quantizing the light D–string implies a large number of the states that would be found
in the dual theory, and self–duality of the IIB theory seems by far the simplest interpretation—given that
physics below the Planck energy is described by some specific string theory, it seems likely that there is a
unique extension to higher energies. This agrees with the duality deduced from the low energy action and
other considerations.[140, 154] In particular, the NS–NS and R–R two-form potentials, to which the D– and
F–strings respectively couple, are interchanged by this duality.

This duality also explains our remark about the strong and weak coupling limits of the three string
junction depicted in figure 32. The roles of the D– and F–strings are swapped in the gs → 0,∞ limits, which
fits with the two limiting values α→ π/2, 0.
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11.1.2 S–Duality and SL(2,Z)

The full duality group of the D = 10 Type IIB theory is expected to be SL(2,Z).[142, 144] This relates
the fundamental string not only to the R–R string but to a whole set of strings with the quantum numbers
of p F–strings and q D–strings for p and q relatively prime.[124] The bound states found in section 10.3
are just what is required for SL(2,Z) duality.[29] As the coupling and the R–R scalar are varied, each of
these strings becomes light at the appropriate point in moduli space. It is worth noting here that there is a
beautiful subject called “F–theory”, which is a tool for generating very complicated type IIB backgrounds
by geometrizing the SL(2,Z) symmetry[173, 174]. We won’t be able to cover this here due to lack of time,
sadly.

11.2 SO(32) Type I/Heterotic Duality

11.2.1 D1–Brane Collective Coordinates

Let us now consider the D1–brane in the Type I theory. We must modify our previous analysis in two ways.
First, we must project onto Ω–even states. As in section 2.6, the U(1) gauge field A is in fact projected out,
since ∂t is odd under Ω. The normal derivative ∂n, is even under Ω, and hence the Φm survive. Turning
to the fermions, we see that Ω acts as eiπ(S1+S2+S3+S4) and so the left–moving 8c is projected out and the
right-moving 8s survives.

Recall that D9–branes must be introduced after doing the Ω projection of the type IIB string theory.
These are the SO(32) Chan–Paton factors. This means that we must also include the massless fluctuations
due to strings with one end on the D1-brane and the other on a D9–brane. (See figure 33(b)) The zero point
energy in the NS sector for these states is 1/2, and so there is way to make a massless state. The R sector
has zero point energy zero, as usual, and the ground states come from excitations in the x0, x1 direction,
since it is in the NN sector that the modes are integer. The GSO projection (−)F = Γ0Γ1 will project out

(b)(a)

Figure 33: D1–branes (a) in Type IIB theory its fluctuations are described by 1–1 strings. (b) in Type I
string theory, there are additional contributions from 1–9 strings.

one of these, λ−, while the right moving one will remain. The Ω projection simply relates 1–9 strings to 9–1
strings, and so places no constraint on them. Finally, we should note that the 1–9 strings, as they have one
end on a D9–brane, transform as vectors of SO(32).

Now, by the argument that we saw in the case of the type IIB string, we should deduce that this string
becomes a light fundamental string in some dual string theory at strong coupling. We have seen such a
string before in section 7.4. It is the “heterotic” string with has (0, 1) spacetime supersymmetry, and a left
moving family of 32 fermions transforming as the 32 of SO(32). They carry a current algebra which realizes
the SO(32) as a spacetime gauge symmetry. The other ten dimensional heterotic string, with gauge group
E8×E8, has a strong coupling limit which we will examine shortly, using the fact that upon compactifying on
a circle, the two heterotic string theories are perturbatively related by T–duality (see section 8.1.3).[163, 164]

We have obtained the SO(32) string here with spacetime supersymmetry and with a left–moving current
algebra SO(32) in fermionic form[153]. As we learned in section 7.4, we can bosonise these into the 16 chiral
bosons which we used to construct the heterotic string in the first instance. This also fits rather well with
the fact that we had already notice that we could have deduced that such a string theory might exist just
by looking at the supergravity sector in section 7.6. This is just how type I/heterotic duality was deduced
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first[144, 154] and then D–brane constructions were used to test it more sharply[153]. We shall see that
considerations of the strong coupling limit of various other string theories will again point to the existence
of the heterotic string. We have already seen hints of that in section 7.9.5. Of course, the heterotic strings
were discovered by direct perturbative construction, but it is amusing to thing that in another world, they
may be discovered by string duality.

We end with a brief remark about some further details that we shall not pursue. Recall that it was
mentioned at the end of section 7.4, the fermionic SO(32) current algebra requires a GSO projection. By
considering a closed D1–brane we see that the Ω projection removes the U(1) gauge field, but in fact allows
a discrete gauge symmetry: a holonomy ±1 around the D1–brane.

This discrete gauge symmetry is the GSO projection, and we should sum over all consistent possibilities.
The heterotic strings have spinor representations of SO(32), and we need to be able to make them in the
Type I theory, in order for duality to be correct. In the R sector of the discrete D1–brane gauge theory, the
1–9 strings are periodic. The zero modes of the fields Ψi, representing the massless 1–9 strings, satisfy the
Clifford algebra {Ψi

0,Ψ
j
0} = δij , for i, j = 1, · · · , 32, and so just as for the fundamental heterotic string we

get spinors 231 + 231. One of them is removed by the discrete gauge symmetry to match the spectrum with
a single massive spinor which we uncovered directly using lattices in section 7.4.1.

11.3 Dual Branes from 10D String–String Duality

There is an instructive way to see how the D–string tension turns into that of an F–string. In terms of
supergravity fields, part of the duality transformation (354) involves

Gµν → e−Φ̃G̃µν , Φ → −Φ̃ , (451)

where the quantities on the right, with tildes, are in the dual theory. This means that in addition to gs = g̃−1
s ,

for the relation of the string coupling to the dual string coupling, there is also a redefinition of the string
length, via

α′ = g̃−1
s α̃′ ,

which is the same as
α′g−1

s = α̃′ .

Starting with the D–string tension, these relations give:

τ1 =
1

2πα′gs
→ 1

2πα̃′
= τF

1 ,

precisely the tension of the fundamental string in the dual string theory, measured in the correct units of
length.

One might understandably ask the question about the fate of other branes under S–dualities[155]. For
the type IIB’s D3–brane:

τ3 =
1

(2π)3α′2gs
→ 1

(2π)3α̃′2g̃s
= τ3 ,

showing that the dual object is again a D3–brane. For the D5–brane, in either type IIB or type I theory:

τ5 =
1

(2π)5α′3gs
→ 1

(2π)5α̃′3g̃2
s

= τF
5 ,

This is the tension of a fivebrane which is not a D5–brane. This is interesting, since for both dualities, the
R–R 2–form C(2) is exchanged for the NS–NS 2–form B(2), and so this fivebrane is magnetically charged
under the latter. It is in fact the magnetic dual of the fundamental string. Its g−2

s behaviour identifies it as
a soliton of the NS–NS sector.

So we conclude that there exists in both the type IIB and SO(32) heterotic theories such a brane, and
in fact such a brane can be constructed directly as a soliton solution[68]. They should perhaps be called
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“F5–branes”, since they are magnetic duals to fundamental strings or “F1–branes”, but this name never
stuck. They go by various names like “NS5–brane”, since they are made of NS–NS sector fields, or “solitonic
fivebrane”, and so on. As they are constructed completely out of closed string fields, T–duality along a
direction parallel to the brane does not change its dimensionality, as would happen for a D–brane. We
conclude therefore that they also exist in the T–dual Type IIA and E8 × E8 string theories. Let us study
them a bit further.

11.3.1 The Heterotic NS–Fivebrane

For the heterotic cases, the soliton solution also involves a background gauge field, which is in fact an
instanton. This follows from the fact that in type I string theory, the D5–brane is an instanton of the D9–
brane gauge fields as we saw with dramatic success in section 9.2. As we saw there and in section 7, through
equation (346), Tr(F ∧ F ) and tr(R ∧ R) both magnetically source the two–form potential C(2), since by
taking one derivative:

dG̃(3) = −α
′

4

[
TrF 2 − trR2

]
.

By strong/weak coupling duality, this must be the case for the NS–NS two form B(2). To leading order in
α′, we can make a solution of the heterotic low energy equation of motion with these clues quite easily as
follows. Take for example an SU(2) instanton embedded in an SU(2) subgroup of the SO(4) in the natural
decomposition: SO(32) ⊃ SO(28)× SO(4). As we said, this will source some dH , which in turn will source
the metric and the dilaton. In fact, to leading order in α′, the corrections to the metric away from flat space
will not give any contribution to tr(R ∧ R), which has more derivatives than Tr(F ∧ F ), and is therefore
subleading in this discussion. The result should be an object which is localized in R4 with a finite core size
(the “dressed” instanton), and translationally invariant in the remaining 3 + 1 directions. This deserves to
be called a fivebrane.

Once we have deduced the existence of this object in the SO(32) heterotic string, it is straightforward to
see that it must exist in the E8×E8 heterotic string too. We simply compactify on a circle in a world–volume
direction where there is no structure at all. Shrinking it away takes us to the other heterotic theory, with an
NS5–brane of precisely the same sort of structure as above. Alternatively, we could have just constructed
the fivebrane directly using the ideas above without appealing to T–duality at all.

11.3.2 The Type IIA and Type IIB NS5–brane

As already stated, similar reasoning leads one to deduce that there must be an NS5–brane in type II string
theory9.

For the same reasons as for the heterotic string, once we have made an NS5–brane for the type IIB string,
it is easy to see that we can use T–duality along a world–volume direction (where the solution is trivial) in
order to make one in the type IIA string theory as well.

A feature worth considering is the world–volume theory describing the low energy collective motions of
these type II branes. This can be worked out directly, and string duality is consistent with the answer: From
the duality, we can immediately deduce that the type IIB’s NS5–brane must have a vector multiplet, just like
the D5–brane. Also as with D5–branes, there is enhanced SU(N) gauge symmetry when N coincide[151],
the extra massless states being supplied by light D1–branes stretched between them. (See figure 34.) The
vector multiplet can be read off from table 2 as (2,2) + 4(1,1) + 2(1,2) + 2(2,1). There are four scalars,
which are the four transverse positions of the brane in ten dimensions. The fermionic content can be seen
to be manifestly non–chiral giving a (1, 1) supersymmetry on the world–volume.

For the type IIA NS5–brane, things are different. Following the T–duality route mentioned above, it can
be seen that the brane actually must have a chiral (0,2) supersymmetry. So it cannot have a vector multiplet
any more, and instead there is a six dimensional tensor multiplet on the brane. So there is a two–form

9In the older literature, it is sometimes called a “symmetric fivebrane”, after its left–right symmetric σ–model description,
in constrast to that of the heterotic NS5–brane[68].
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Figure 34: D1–branes stretched between NS5–branes in type IIB string theory will give extra massless vectors
when the NS5–branes coincide.

potential instead of a 1–form potential, which is interesting. The tensor multiplet can be read off from
table 2 as (1,3) + 5(1,1) + 4(2,1), with a manifestly chiral fermionic content. There are now five scalars,
which is suggestive, since in their interpretation as collective coordinates for transverse motions of the brane,
there is an implication of an eleventh direction. This extra direction will become even more manifest in
section 11.4.

There is an obvious U(1) gauge symmetry under the transformationB+
(2) → B+

(2)+dΛ(1), and the question

arises as to whether there is a non–Abelian generalisation of this when many branes coincide. On the D–brane
side of things, it is clear how to construct the extra massless states as open strings stretched between the
branes whose lengths can shrink to zero size in the limit. Here, there is a similar, but less well–understood
phenomenon. The tensor potential on the world–volume is naturally sourced by six–dimensional strings,
which are in fact the ends of open D2–branes ending on the NS5–branes. The mass or tension of these
strings is set by the amount that the D2–branes are stretched between two NS–branes, by precise analogy
with the D–brane case. So we are led to the interesting case that there are tensionless strings when many
NS5–branes coincide, forming a generalized enhanced gauge tensor multiplet. (See figure 35.) These strings
are not very well understood, it must be said.

They are not sources of a gravity multiplet, and they appear not to be weakly coupled in any sense that
is understood well enough to develop an intrinsic perturbation theory for them10.

However, the theory that they imply for the branes is apparently well–defined. The information about
how it works fits well with the dualities relating it to better understood things, as we have seen here.
Furthermore, it can be indirectly defined using the AdS/CFT correspondence[181, 182].

It should be noted that we do not have to use D–branes or duality to deduce a number of the features
mentioned above for the world–volume theories on the NS5–branes. That there is either a (1,1) vector
multiplet or a (0,2) tensor multiplet was first uncovered by direct analysis of the collective dynamics of the
NS5–branes as supergravity solitons in the type II theories[150].

10The cogniscenti will refer to theories of non–Abelian “gerbes” at this point. The reader should know that these are not
small furry pets, but well–defined mathematical objects. They are (apparently) a generalisation of the connection on a vector
bundle, appropriate to 2–form gauge fields.[86]
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Figure 35: D2–branes stretched between NS5–branes in type IIA string theory will give extra massless
self–dual tensors when the NS5–branes coincide.

11.4 Type IIA/M–Theory Duality

Let us turn our attention to the type IIA theory and see if at strong coupling we can see signs of a duality
to a useful weakly coupled theory. In doing this we will find that there are even stranger dualities than just
a string/string duality (which is strange and beautiful enough as it is!), but in fact a duality which points
us firmly in the direction of the unexplored and the unknown.

11.4.1 A Closer Look at D0–branes

Notice that in the IIA theory, the D0–brane has a mass τ0 = α′−1/2
gs, as measured in the string metric. As

gs → ∞, this mass becomes light, and eventually becomes the lightest scale in the theory, lighter even than
that of the fundamental string itself.

We can trust the extrapolation of the mass formula done in this way because the D0–brane is a BPS
object, and so the formula is protected from e.g., leveling off to some still not–too–light scale by loop
corrections, etc. So we are being shown a new feature of the theory here, and it would be nice to make sense
of these new feature. Notice that in addition, we have seen in section 10.5 that n D0–branes have a single
supersymmetric bound state with mass nτ0. So in fact, these are genuine physical particles, charged under
the U(1) of the R–R one–form C(1), and forming an evenly spaced tower of mass states which is become light
as we go further to strong coupling. How are we to make sense of this in ten dimensional string theory?

In fact, the spectrum we just described is characteristic of the appearance of an additional dimension,
where the momentum (Kaluza–Klein) states have masses n/R and form a continuum as R → ∞. Here,
R = α′1/2gs, so weak coupling is small R and the theory is effectively ten dimensional, while strong coupling
is large R, and the theory is eleven dimensional. We saw such Kaluza–Klein behaviour in section 4.2. The
charge of the nth Kaluza–Klein particle corresponds to n units of momentum 1/R in the hidden dimension.
In this case, this U(1) is the R–R one form of type IIA, and so we interpret D0–brane charge as eleven
dimensional momentum.
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11.4.2 Eleven Dimensional Supergravity

In this way, we are led to consider eleven dimensional supergravity as the strong coupling limit of the
type IIA string. This is only for low energy, of course, and the issue of the complete description of the short
distance physics at strong coupling to complete the “M–theory”, is yet to be settled. It cannot be simply
eleven dimensional supergravity, since that theory (like all purely field theories of gravity) is ill–defined at
short distances. A most widely examined proposal for the structure of the short distance physics is “Matrix
Theory”[148, 149], which we unfortunately don’t have time to discuss here.

In the absence of a short distance theory, we have to make do with the low-energy effective theory, which
is a graviton, and antisymmetric 3–form tensor gauge field A(3), and their superpartners. Notice that this
theory has the same number of bosonic and fermionic components as the type II theory. Take type IIA and
note that the NS–NS sector has 64 bosonic components as does the R–R sector, giving a total of 128. Now
count the number of physical components of a graviton, together with a 3–form in eleven dimensions. The
answer is 9 × 10/2 − 1 = 44 for the graviton and 9 × 8 × 7/(3 × 2) = 84 for the 3–form. The superpartners
constitute the same number of fermionic degrees of freedom, of course, giving an N = 1 supersymmetry in
eleven dimensions, equivalent to 32 supercharges, counting in four dimensional units. In fact, a common
trick to be found in many discussions for remembering how to write the type IIA Lagrangian (see e.g. ref.[2])
is to simply dimensionally reduce the 11 dimensional supergravity Lagrangian. Now we see that a physical
reason lies behind it. The bosonic part of the action is:

SIID =
1

2κ2
11

∫
d11x

√
−G

(
R− 1

48
(F(4))

2

)
− 1

12κ2
11

∫
A(3) ∧ F(4) ∧ F(4) , (452)

and we shall work out 2κ2
11 = 16πG11

N shortly.
To relate the type IIA string coupling to the size of the eleventh dimension we need to compare the

respective Einstein–Hilbert actions,[144] ignoring the rest of the actions for now:
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The string and eleven dimensional supergravity metrics are equal up to an overall rescaling,

Gsµν = ζ2G11µν (454)

and so ζ8 = 2πRκ2
0g

2
s/κ

2
11. The respective masses are related n/R = m11 = ζms = nζτ0 or R = α′1/2gs/ζ.

Combining these with the result (352) for κ0, we obtain

ζ = g1/3
s

[
27/9π8/9α′κ

−2/9
11

]
(455)

and the radius in eleven dimensional units is:

R = g2/3
s

[
2−7/9π−8/9κ

2/9
11

]
. (456)

In order to emphasize the basic structure we hide in braces numerical factors and factors of κ11 and α′. The
latter factors are determined by dimensional analysis, with κ11 having units of (11D supergravity length9/2)
and α′ (string theory length2). We are free to set ζ = 1, using the same metric and units in M–theory as in
string theory. In this case

κ2
11 = g3

s

[
27π8α′9/2

]
, and then R = gs`s . (457)

The reason for not always doing so is that when we have a series of dualities, as below, there will be
different string metrics. For completeness, let us note that if we define Newton’s constant via 2κ2

11 = 16πG11
N ,

then we have:

κ2
11 = 27π8`9p ; `p = g1/3

s

√
α′ = g1/3

s `s . (458)
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11.5 E8 × E8 Heterotic String/M–Theory Duality

We have deduced the duals of four of the five ten dimensional string theories. Let us study the final one, the
E8 × E8 heterotic string, which is T–dual to the SO(32) string.[163, 164]

Compactify on a large radius RHA and turn on a Wilson line which breaks E8 ×E8 to SO(16)×SO(16).
As we learned in section 8.1.3, this is T–dual to the SO(32) heterotic string, again with a Wilson line breaking
the group to SO(16) × SO(16). The couplings and radii are related

RHB =
`2s
RHA

,

gs,HB = gs,HA
`s
RHA

. (459)

Now use type I/heterotic duality to write this as a type I theory with [144]

RIB = g
−1/2
s,HBRHB = g

−1/2
s,HA

`
3/2
s

R
1/2
HA

,

gs,IB = g−1
s,HB = g−1

s,HA

RHA

`s
. (460)

The radius is very small, so it is useful to make another T–duality, to the “type I′” or “type IA” theory.
The compact dimension is then a segment of length πRIA with eight D8–branes and O8–planes at each

end, and

RIA =
`2s
RIB

= g
1/2
s,HAR

1/2
HA`

1/2
s ,
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`s
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2
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3/2
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`
3/2
s

√
2
. (461)

It is worth drawing a picture of this arrangement, and it is displayed in figure 36. Notice that since the
charge of an O8–plane is precisely that of 8 D8–branes, the charge of the R–R sector is locally canceled at
each end. There is therefore no R–R flux in the interior of the interval and so crucially, we see that the
physics between the ends of the segment is given locally by the IIA string. Now we can take RHA → ∞
to recover the original ten–dimensional theory (in particular the Wilson line is irrelevant and the original
E8 × E8 restored). Both the radius and the coupling of the Type IA theory become large. Since the bulk
physics is locally that of the IIA string11, the strongly coupled limit is eleven dimensional.

Taking into account the transformations (454) and (456), the radii of the two compact dimensions in
M–theory units are

R9 = ζ−1
IA RIA = g2/3

s

[
2−11/18π−8/9κ

2/9
11

]
(462)

R10 = g
2/3
s,IA

[
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2/9
11
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−1/3
s,HARHA

[
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κ
2/9
11

]
.

Again, had we chosen ζIA = 1, we would have

R10 = RHA2−1/3 , R9 = gs`s2
1/6 . (463)

11Notice that this is not the case if the D8–branes are placed in a more general arrangement where the charges are not canceled
locally. For such arrangements, the dilaton and R–R 9–form is allowed to vary piecewise linearly between neighbouring D8–
branes. The supergravity between the branes is the “massive” supergravity considered by Romans[92]. This is a very interesting
topic in its own right, which we shall not have room to touch upon here. A review of some aspects, with references, is given in
the bibliography[171].
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Figure 36: The type IA configuration of two groups of 8 D8–branes and O8–planes resulting from a SO(16)×
SO(16) Wilson line.

As R → ∞, R10 → ∞ also, while R9 remains fixed and (for gs large) large compared to the Planck scale.
This suggests that in the strongly coupled limit of the ten–dimensional E8 ×E8 heterotic string an, eleventh
dimension again appears: It is a line segment of length R9, with one E8 factor on each endpoint.[159]

We have not fully completed the argument, since we only have argued for SO(16) at each end. One
way to see how the E8 arises is to start from the other end and place eleven dimensional supergravity on
a line segment. This theory is anomalous, but the anomaly can be canceled by having 248 vector fields on
each ten dimensional boundary. So the 120 of SO(16) is evidently joined by 128 new massless states at
strong coupling. As we saw in section 7.4 in the decomposition of E8 to SO(16), the adjoint breaks up as
248 = 120 ⊕ 128, where the 128 is the spinor representation of SO(16). Now we see why we could not
construct this in perturbative type IA string theory. Spinor representations of orthogonal groups cannot be
made with Chan–Paton factors. However, we can see these states as massive D0–D8 bound states, T–dual
to the D1–D9 spinors we were able to make in the SO(32) case in section 11.2. Now, with SO(16) at each
end, we can make precisely the pair of 128’s we need.

11.6 M2–branes and M5–branes

Just as in the other superstring theories, we can make extended objects in the theory. The most natural one
to consider first, given what we have displayed as the content of the theory is one which carries the charge
of the higher rank gauge field, A(3). This is a two dimensional brane (a membrane) which we shall call the
M2–brane[156]:

By eleven dimensional Hodge duality, it is easy to see that there is another natural object, a fivebrane
which is magnetically dual to the M2–brane, called the M5–brane[157]. The tensions of the single M2– and
M5–branes of 11 dimensional supergravity are:

τM
2 = (2π)−2`−3

p ; τM
5 = (2π)−5`−6

p . (464)

The product of the M–branes’ tensions gives

τM
2 τM

5 = 2π(2π)−8`−9
p =

2π

2κ2
11

(465)
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and so is the minimum allowed by the quantum theory, in close analogy with what we know for D–branes
from equation (384).

11.6.1 From D–Branes and NS5–branes to M–Branes and Back

It is interesting to track the eleven–dimensional origin of the various branes of the IIA theory.[145] The
D0–branes are, as we saw above, are Kaluza–Klein states. The F1–branes, the IIA strings themselves,
are wrapped M2–branes of M–theory. The D2–branes are M2–branes transverse to the eleventh dimension
X10. The D4–branes are M5–theory wrapped on X10, while the NS5–branes are M5–branes transverse to
X10. The D6–branes, being the magnetic duals of the D0–branes, are Kaluza–Klein monopoles[143, 158]
As mentioned in the previous section, the D8–branes have a more complicated fate. To recapitulate, the
point is that the D8–branes cause the dilaton to diverge within a finite distance,[153] and must therefore
be a finite distance from an orientifold plane, which is essentially a boundary of spacetime as we saw in
section 4.11.1. As the coupling grows, the distance to the divergence and the boundary necessarily shrinks,
so that they disappear into it in the strong coupling limit: they become part of the gauge dynamics of the
nine–dimensional boundary of M–theory,[159] used to make the E8 × E8 heterotic string, as discussed in
more detail above. This raises the issue of the strong coupling limit of orientifolds in general.

There are various results in the literature, but since the issues are complicated, and because the techniques
used are largely strongly coupled field theory deductions, which take us well beyond the scope of these notes,
so we will have to refer the reader to the literature[176].

One can see further indication of the eleventh dimension in the world–volume dynamics of the various
branes. We have already seen this in section 11.3.2 where we saw that the type IIA NS5–brane has a chiral
tensor multiplet on its world–volume, the five scalars of which are indicative of an eleven dimensional origin.
We saw in the above that this is really a precursor of the fact that it lifts to the M5–brane with the same
world–volume tensor multiplet, when type IIA goes to strong coupling. The world–volume theory is believed
to be a 5+1 dimensional fixed point theory. Consider as another example the D2–brane. In 2+1 dimensions,
the vector field on the brane is dual to a scalar, through Hodge duality of the field strength, ∗F2 = dφ. This
scalar is the eleventh embedding dimension.[146] It joins the other seven scalars already defining the collective
modes for transverse motion to show that there are eight transverse dimensions. Carrying out the duality
in detail, the D2–brane action is therefore found to have a hidden eleven–dimensional Lorentz invariance.
So we learn that the M2–brane, which it becomes, has a 2+1 dimensional theory with eight scalars on its
worldvolume. The existence of this theory may be inferred in purely field theory terms as being an infra–red
fixed point of the 2+1 dimensional gauge theory.[170]

11.7 U–Duality

A very interesting feature of string duality is the enlargement of the duality group under further toroidal
compactification. There is a lot to cover, and it is somewhat orthogonal to most of what we want to do for
the rest of the book, so we will err on the side of brevity (for a change). The example of the Type II string
on a five–torus T 5 is useful, since it is the setting for the simplest black hole state counting, and we have
already started discussing it in section 7.8.

11.7.1 Type II Strings on T 5 and E6(6)

As we saw in section 7.8, the T–duality group is O(5, 5,Z). The 27 gauge fields split into 10 + 16 + 1 where
the middle set have their origin in the R–R sector and the rest are NS–NS sector fields. The O(5, 5; Z)
representations here correspond directly to the 10, 16, and 1 of SO(10). There are also 42 scalars.

The crucial point here is that there is a larger symmetry group of the supergravity, which is in fact E6,(6).
It generalizes the SL(2,R) (SU(1, 1)) S–duality group of the type IIB string in ten dimensions. In that case
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SL(5)

SL(6)O(5,5)

E6,(6)

Figure 37: The origins of E6(6) for Type II strings on T 5.

there are two scalars, the dilaton Φ and the R–R scalar C(0), and they take values on the coset space

SL(2,R)

U(1)
' SU(1, 1)

SO(2)
.

The low energy supergravity theory for this compactification has a continuous symmetry, E6(6) which is a
non–compact version of E6.[166]

One way of seeing roughly where E6,(6) comes from is as follows: The naive symmetry resulting from a
T 5 compactification would be SL(5,R), the generalisation of the SL(2,R) of the T 2 to higher dimensional
tori. There are two things which enlarge this somewhat. The first is an enlargement to SL(6,R), which
ought to be expected, since the type IIB string already has an SL(2,R) in ten dimensions. This implies the
existence of an an extra circle, enlarging the naive torus from T 5 to T 6. This is of course something we have
already discovered in section 11.4: at strong coupling, the type IIA string sees an extra circle. Below ten
dimensions, T–duality puts both type II strings on the same footing, and so it is most efficient to simply
think of the problem as M–theory (at least in its 11 dimensional supergravity limit) compactified on a T 6.
Another enlargement is due to T–duality. As we have learned, the full T–duality group is O(5, 5,Z), and so
we should expect a classical enlargement of the naive SL(5,R) to O(5, 5). That E6,(6) contains these two
enlargements can be seen quite efficiently[171] in the Dynkin diagrams in figure 37:

Actually, the above embedding is not unique, but we are not attempting a proof here; we are simply
showing that E6,(6) is not unreasonable, given what we already know. The notation E6,(6) means that by
analytic continuation of some of the generators, we make a non–compact version of the group (much as in
the same way as we get SL(2,R) from SU(2)). The maximal number of generators for which this is possible
is the relevant case here.

The gauge bosons are in the 27 of E6(6)(Z), which is the same as the 27 of E6(6). The decomposition
under SO(10) ∼ O(5, 5; Z) is familiar from grand unified model building: 27 → 10 + 16 + 1 . Another
generalisation is that the 42 scalars live on the coset

E6,(6)

USp(8)
.

In the light of string duality, just as the various branes in type IIB string theory formed physical realizations
of multiplets of SL(2,Z), so do the branes here. A discrete subgroup E6(6)(Z) is the “U–duality” symmetry.
The particle excitations carrying the 10 charges are just the Kaluza–Klein and winding strings. The U–
duality requires also states in the 16. These are just the various ways of wrapping Dp–branes to give
D–particles (10 for D2, 5 for D4 and 1 for D0). Finally, the state carrying the 1 charge is the NS5–brane,
wrapped entirely on the T 5.
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In fact, the U–duality group for the type II strings on T d is Ed+1,(d+1), where for d = 4, 3, 2, 1, 0 we have
that the definition of the appropriate E–group is SO(5, 5), SL(5), SL(2)×SL(3), SL(2)×R+, SL(2). These
groups can be seen with similar embedding of Dynkin diagrams we we have done above.

12 Concluding Remarks

I hope that these notes have been a useful starting point for you. There was a lot to cover, so no doubt
I have disappointed nearly everyone, since their favourite topic was not covered. On the other hand, you
now have a basic spring–board from which you can launch yourself into studying some of the exciting topics
covered in the other lecture courses, seeing how the ideas you’ve learned fit into more advanced areas of
string theory, branes, field theory, cosmology, etc. Have fun!
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