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Abstract 

The feld of gravitational waves has made a huge progress over the last decade, especially since 
their frst detection by LIGO in September 2015. Throughout this thesis, I will give an overview of 
some of the research lines where this progress is more tangible, all of them related in some way to 
the stochastic gravitational wave background or primordial black holes. 

First, gravitational waves and stochastic gravitational wave backgrounds will be introduced, 
covering the standard formalisms, equations and data analysis tools, together with some works on 
anisotropies and constraints on theoretical models involving non-Gaussianities. 

Then, we will study some of the phenomena related to hyperbolic encounters and primordial 
black holes, which are two of the areas that are progressively getting more attention as the number of 
detected gravitational-wave signals increases. In particular, hyperbolic encounters will be analyzed 
using Numerical Relativity, which is a key tool for the interpretation of these signals and, in this 
case, will be used to study the efect of spin induction in black holes. 

Finally, the thesis will delve into the topic of stochastic gravitational wave backgrounds in 
diferent frequency ranges. After a brief overview, we will study how to set constraints for this 
background using astrometric data from astronomical surveys such as Gaia. This will illustrate 
that there is much more to gravitational waves than the work within the usual gravitational wave 
detectors, providing complementary information which is otherwise inaccessible. The thesis will 
ultimately conclude with some fnal remarks. 
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Resumen 

El campo de las ondas gravitacionales ha experimentado un enorme progreso durante la última 
década, especialmente desde su primera detección por LIGO en septiembre de 2015. A lo largo 
de esta tesis, daré una visión general sobre algunas de las líneas de investigación en las que este 
progreso es más tangible, todas ellas relacionadas de alguna manera con el fondo estocástico de 
ondas gravitacionales o los agujeros negros primordiales. 

En primer lugar, se introducirán las ondas gravitacionales y los fondos estocásticos de ondas 
gravitacionales, desarrollando los formalismos usuales, ecuaciones y herramientas para el análisis 
de datos, junto con algunos trabajos sobre anisotropías e imposición de límites en modelos teóricos 
que involucran no-Gaussianidades. 

A continuación, estudiaremos algunos de los fenómenos relacionados con los encuentros hiper-
bólicos y los agujeros negros primordiales, que son dos de las áreas que progresivamente están 
recibiendo más atención a medida que aumenta el número de señales de ondas gravitacionales de-
tectadas. En particular, los encuentros hiperbólicos se analizarán utilizando Relatividad Numérica, 
que es una herramienta clave para la interpretación de estas señales y, en este caso, se utilizará para 
estudiar el efecto de la inducción de espín en los agujeros negros. 

Finalmente, la tesis desarrollará el estudio de los fondos estocásticos de ondas gravitacionales en 
diferentes rangos de frecuencia. Después de una breve descripción general, veremos cómo establecer 
límites sobre dicho fondo utilizando datos astrométricos de misiones astronómicas como Gaia. Esto 
servirá para ilustrar que las ondas gravitacionales abarcan mucho más que el trabajo relacionado con 
los detectores de ondas gravitacionales habituales, proporcionando información complementaria que 
sería de otro modo inaccesible. La tesis fnalmente concluirá con algunas observaciones adicionales. 
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Introduction 

Over the last decade, the feld of gravitational waves (GW) has seen an astonishing evolution, from 
their frst detection in 2015 by LIGO [6, 7] to the recent hints of a stochastic gravitational wave 
background (SGWB) from pulsar timing arrays (PTAs) [8, 9, 10, 11] in 2023. Just to mention some 
of the recent developments, new ground-based detectors have joined the observations (Virgo [12], 
KAGRA [13]), more than 90 signals from compact binary coalescences (CBCs) have ofcially been 
detected [14], the neutron star merger GW170817 has been observed jointly in GW and electromag-
netic (EM) radiation [15], a merger between two black holes of masses 91 and 67 solar masses has 
been observed (GW190521) [16], standing as the most energetic astrophysical event ever observed, 
etc. 

Next-generation detectors have also been proposed, where the ground-based ones, such as Ein-
stein Telescope (ET) [17] and Cosmic Explorer (CE) [18], will dig drastically deeper into the Hz-kHz 
frequency band that LIGO-Virgo-KAGRA (LVK) [19] is already observing. Furthermore, the space 
missions (LISA [20], TianQin [21], Taiji [22], DECIGO [23]) will open up a new frequency band 
around the mHz, which will provide invaluable information we do not currently have access to. 

All of this collaborative efort is expected to prove extremely fruitful for science in the com-
ing decades. We anticipate more joint detections in GW and EM radiation, entering the era of 
multimessenger astronomy; a larger number of observations by orders of magnitude, due to the 
progressive increase in sensitivity and especially after LISA starts observing; long observations in 
mHz pointing to later observations in the LVK range (and in EM radiation) of the same sources, 
etc. 

One of the possibilities is that small (under a solar mass) black holes (BHs) are detected, thus 
confrming the long theorized primordial black holes (PBHs) [24, 25, 26, 27], generated in the 
early universe without a star precursor. The overwhelming amount of signals will also allow to do 
black hole population analyses, constraining the abundance of these primordial black holes. This 
is especially relevant given that they are one of the candidates to be dark matter (DM), so these 
observations will potentially confrm them as one of the contributions to DM or rule them out, in 
any case providing invaluable evidence for one of the greatest problems in contemporary Physics. 

Particularly interesting is the case of stochastic gravitational wave backgrounds, which could 
potentially play the role that the cosmic microwave background (CMB) has been playing in the last 
decades. A SGWB detection would, presumably, frst consist on an astrophysical foreground from 
a superposition of CBC signals [28, 29, 30, 31, 32], but once technology is able to overcome that, we 
should be able to see the imprint of cosmological contributions. The data analysis of cosmological 
sources is assumed to be much more challenging, but the physical information we can gain from it 
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goes beyond recombination, thus providing unique cosmological insights of the moments closer to 
the CMB that no other messenger can deliver. 

Together with the advancements on the experimental side, one of the key felds that had to be 
developed to properly analyze gravitational waves was Numerical Relativity (NR). It was not until 
2005 that a successful numerical simulation of a binary black hole (BBH) merger was produced [33, 
34, 35]. Since then, a lot of progress has been done on the analytic side and there are now various 
waveform models which can reproduce a real signal with a very high accuracy in a fraction of a 
second [36, 37]. In any case, Numerical Relativity is still relevant to calibrate them and test them, 
despite the heavy computational cost that these simulations have. 

During this thesis, I will provide an overview of several of these felds: stochastic gravitational 
wave backgrounds, primordial black holes, hyperbolic encounters, numerical relativity and other 
probes of the SGWB in diferent frequency ranges. 

The thesis is structured as follows. We will start by introducing the topic of gravitational waves 
in Chapter 1, continuing in Chapter 2 with the theory and data analysis formalism for an isotropic 
stochastic gravitational-wave background, and for its anisotropies in Chapter 3, presenting two of 
my works in this regard. In Chapter 4, I will give a brief introduction to primordial black holes, 
which will lead to a work on the SGWB produced by clustered PBH within hyperbolic encounters 
in Chapter 5. In Chapter 6, we will delve into Numerical Relativity from diferent perspectives: 
the critical collapse of a PBH and the more standard, binary black hole simulations, both from 
a CBC point of view and for hyperbolic encounters, concluding with our work on black hole spin 
induction within these interactions in Chapter 7. In Chapter 8, I will give a brief introduction 
to other probes of SGWB in diferent frequency ranges and develop the formalism relating this 
background to astrometric measurements, following with an overview of the Gaia mission and 
practical considerations to work with its data in Chapter 9 and concluding in Chapter 10 with our 
work constraining the SGWB amplitude below the nHz with Gaia data. Finally, I will outline some 
conclusions to this thesis in Chapter 11. 
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Introducción 

Durante la última década, el campo de las ondas gravitacionales (GW) ha experimentado una sor-
prendente evolución, desde su primera detección en 2015 por LIGO [6, 7] hasta los recientes indicios 
de un fondo estocástico de ondas gravitacionales (SGWB) por parte de las matrices de medición 
temporal de púlsares (pulsar timing arrays, PTAs) [8, 9, 10, 11] en 2023. Solo por mencionar al-
gunos de los desarrollos recientes, nuevos detectores terrestres se han sumado a las observaciones 
(Virgo [12], KAGRA [13]), se han detectado ofcialmente más de 90 señales de coalescencias de 
binarias compactas (CBCs) [14], se ha detectado la fusión de estrellas de neutrones GW170817 ob-
servada conjuntamente en GW y radiación electromagnética (EM) [15], se ha observado una fusión 
entre dos agujeros negros de masas 91 y 67 masas solares (GW190521) [16], situándose como el 
evento astrofísico más energético que se ha observado, etc. 

También se han propuesto detectores de próxima generación, donde los terrestres, como el 
Einstein Telescope (ET) [17] y Cosmic Explorer (CE) [18], profundizarán signifcativamente en la 
banda de frecuencia Hz-kHz que LIGO-Virgo-KAGRA (LVK) [19] ya está observando. Además, las 
misiones espaciales (LISA [20], TianQin [21], Taiji [22], DECIGO [23]) abrirán un nueva banda de 
frecuencia alrededor de los mHz, que proporcionará una valiosa información a la que actualmente 
no tenemos acceso. 

Se prevé que todo este esfuerzo colaborativo resulte extremadamente fructífero para la ciencia 
en las próximas décadas. Se esperan más detecciones conjuntas en GW y radiación EM, entrando 
en la era de la astronomía multimensajero; un drástico aumento en el número de observaciones 
debido a la mejora progresiva de la sensibilidad y especialmente después de que LISA comience a 
observar; observaciones largas en mHz que indiquen observaciones posteriores en el rango de LVK 
(y en radiación EM) de las mismas fuentes, etc. 

Una de las posibilidades es que se detecten agujeros negros (BH) pequeños (menores que una 
masa solar), confrmando así los llamados agujeros negros primordiales (PBH) que han sido teoriza-
dos durante mucho tiempo [24, 25, 26, 27], generados en el universo temprano sin una estrella 
precursora. La abrumadora cantidad de señales también permitirá realizar análisis de la población 
de agujeros negros, lo que pondrá límites observacionales a la abundancia de estos PBHs. Esto 
es especialmente relevante dado que son uno de los candidatos a materia oscura (DM), por lo que 
estas observaciones potencialmente los confrmarán como, al menos, parte de la DM, o bien los 
descartarán, proporcionando, en cualquier caso, una valiosa información sobre uno de los mayores 
problemas de la Física contemporánea. 

Particularmente interesante es el caso de los fondos estocásticos de ondas gravitacionales, que 
podrían, potencialmente, desempeñar el papel que ha ocupado el fondo cósmico de microondas 
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(CMB) en las últimas décadas. Una detección de SGWB, en principio, consistiría primero en una 
señal astrofísica proveniente de una superposición de señales de CBCs [28, 29, 30, 31, 32]. Sin 
embargo, una vez que la tecnología sea capaz de indagar más allá de dicha señal, deberíamos poder 
ver la huella de las contribuciones cosmológicas. Se asume que el análisis de datos para estas fuentes 
cosmológicas será mucho más desafante, pero la información física que podemos obtener de ellas 
va más allá de la recombinación, proporcionando así un conocimiento cosmológico único sobre los 
momentos más cercanos al CMB que ningún otro mensajero puede ofrecer. 

Junto con los avances en el lado experimental, uno de los campos clave que hubo que desarrollar 
para analizar adecuadamente las ondas gravitacionales fue la Relatividad Numérica (NR). No fue 
hasta 2005 cuando se produjo una simulación numérica exitosa de una fusión de una binaria de 
agujeros negros (BBH) [33, 34, 35]. Desde entonces, se ha avanzado mucho en los desarrollos 
analíticos y actualmente existen múltiples modelos que pueden reproducir una señal real con una 
precisión muy alta en una fracción de segundo [36, 37]. En cualquier caso, la Relatividad Numérica 
sigue siendo relevante para calibrarlos y ponerlos a prueba, a pesar del alto coste computacional 
que tienen estas simulaciones. 

A lo largo de esta tesis, proporcionaré una visión general de varios de estos campos: fondos 
estocásticos de ondas gravitacionales, agujeros negros primordiales, encuentros hiperbólicos, rela-
tividad numérica y otras maneras de caracterizar el SGWB en diferentes rangos de frecuencia. 

La tesis se estructura de la siguiente manera. Comenzaremos introduciendo el tema de las 
ondas gravitacionales en el Capítulo 1, continuando en el Capítulo 2 con la teoría y el formalismo 
del análisis de datos para un SGWB isotrópico, y para sus anisotropías en el Capítulo 3, presentando 
dos de mis trabajos al respecto. En el Capítulo 4, daré una breve introducción a los agujeros negros 
primordiales, lo que conducirá a un trabajo sobre el SGWB producido por encuentros hiperbólicos 
de PBHs en cúmulos en el Capítulo 5. En el Capítulo 6, profundizaremos en la Relatividad Numérica 
desde diferentes perspectivas: el colapso crítico de un PBH y las simulaciones de binarias de agujeros 
negros, tanto desde el punto de vista de CBCs como para encuentros hiperbólicos, y concluyendo 
con nuestro trabajo sobre la inducción de espín de agujeros negros en estas interacciones en el 
Capítulo 7. En el Capítulo 8, daré una breve introducción a otros métodos para caracterizar el 
SGWB en diferentes rangos de frecuencia y desarrollaré el formalismo que relaciona estos fondos con 
mediciones astrométricas, siguiendo con una descripción general de la misión Gaia y consideraciones 
prácticas para el manejo de sus datos en el Capítulo 9 y concluyendo en el Capítulo 10 con nuestro 
trabajo en el que utilizamos datos de Gaia para imponer límites a la amplitud del SGWB por debajo 
de los nHz. Finalmente, concluiremos con algunas observaciones sobre la tesis en el Capítulo 11. 
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Notation 

In the context of General Relativity, we use the signature convention (-+++). We denote 

xµ = (x 0, ⃗x), x 0 = ct, (0.1) 

with c the speed of light. We will use Greek indices for either time or space coordinates (µ = 0, 1, 2, 3) 
and Latin indices to denote space coordinates (i = 1, 2, 3). 

We will also use Einstein’s summation convention over repeated indices, so that 

X3 3X 
aµb

µ ≡ aµb
µ, aib

i ≡ aib
i(≡ aibi ≡ a ibi), (0.2) 

µ=0 i=1 

where the latter conventions for both spatial indices either raised or lowered only applies in the 
context of a Minkowskian metric. This is possible because, with our signature convention, ηij = δij , 
so that ai = ηij a

j = ai . This cannot be done for µ = 0, for which lowering or raising indices 
generates an extra minus sign. 

The convention for the Christofel symbols will be 

Γµ =
1 
gµσ (∂ν gσρ + ∂ρgσν − ∂σ gνρ) . (0.3)νρ 2 

The Riemann tensor is then defned as 

= ∂ρΓµ 
νρ + Γµ 

ασΓ
α (0.4)Rµ

νρσ νσ − ∂σ Γ
µ 

αρΓ
α
νσ − Γµ 

νρ. 

The Ricci tensor is defned as the contraction of the frst and third indices of the Riemann 
tensor, 

Rµν = Rα
µαν , (0.5) 

and, fnaly, the Ricci scalar is the contraction of the Ricci tensor, 

R = gµν Rµν . (0.6) 

The convention for the n-dimensional Fourier transform of a certain function f : Rn → R will 
be Z 

ikx f(x) = 
dnk

f̃(k)e , (0.7) 
Rn (2π)n 
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while the inverse Fourier transform is then given by Z 
−ikx f̃(k) = dnxf(k)e . (0.8) 

Rn 

Then, for a function of time, the signature convention implies Z ∞ dω −iωt f(t) = f̃(ω)e (0.9)
2π−∞ 

and, conversely, Z ∞ 
iωt f̃(ω) = dtf(t)e , (0.10) 

−∞ 

matching the Landau-Lifshitz notation [38]. 

In addition, the Dirac delta satisfes Z 
dnx −ikx δ(k) = (k)e , (0.11) 

Rn (2π)n 

so that, in one dimension, Z ∞ 
dte−2πift δ(f) = . (0.12) 

−∞ 
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Chapter 1 

Gravitational wave theory 

In this frst chapter of the thesis, it is necessary that we start by reviewing the most important 
aspects of Gravitational Wave theory. Despite the existence of much more complete introductions 
to the feld in the scientifc literature, it is more convenient to present here the needed theory and 
equations in a suitable way for the purposes of this thesis. In addition, even for a reader who is 
familiar with the topic, it is useful to review the basic concepts so that the ideas presented later in 
the thesis will become more clear to follow. All of this will also contribute to the thesis being more 
self-contained, which was one of the main intentions during the writing process, and it is the same 
philosophy which guided the rest of the chapters of this thesis. 

In any case, this chapter does not mean to be a complete and thorough introduction to Gravi-
tational Wave theory. Whenever possible, all equations will be properly derived and justifed, but 
this is not always feasible when aiming for a reasonable extension of the thesis. Therefore, in some 
occasions, we will simply refer to other sources providing a more complete picture for the treated 
topic. In the frst sections of this chapter, in particular, the main reference for consultation will be 
Michele Maggiore’s books on Gravitational waves [39, 40], which provide an excellent introduction 
to the feld. 

1.1 Gravitational wave formalism 

Gravitational waves can be studied as the tensor perturbations hµν of a background metric. In the 
context of Cosmology, arguably the most important metric is the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric, which has a line element � � 

dr2 
ds2 = gµν dx

µdxν = −dt2 + a(t)2 + r 2dΩ2 , (1.1)
1 − kr2 

where Ω denotes the solid angle, dΩ2 = dθ2 + sin2 θdφ2 . 

Despite its simplicity, the FLRW metric is harder to work with than the Minkowski metric, with 
line element 

ds2 = ηµν dx
µdxν = −dt2 + δij dx

idxj . (1.2) 
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As a result, it is usually a good idea to get familiar with gravitational waves within a Minkowski 
background metric, and then generalize to curved spacetimes as FLRW. In this case, we can add a 
small perturbation hµν to a Minkowski background, so that 

gµν = ηµν + hµν , |hµν | ≪ 1. (1.3) 

This perturbation is usually called GW strain amplitude, or simply GW strain, due to the efect it 
produces on matter and, in particular, in the arm lengths of GW detectors, as we will see. 

The concept of “small perturbation” is frame-dependent, given that a coordinate transformation 
alters the metric and can increase the value of its components. More precisely, the rigorous state-
ment of the previous equation is that there exists a reference system in which |hµν | ≪ 1 holds in 
a sufciently large region of space. By choosing a reference frame, however, we are breaking one 
of the symmetries of General Relativity: the invariance under coordinate transformations. In the 
next subsections, we will continue making some choices regarding the reference system and gauge 
to reduce the non-physical degrees of freedom of the equations, until only the physically relevant 
information remains. 

1.1.1 Linearized theory 

Given that we consider hµν to be very small, we will compute the equations of motion to linear 
order, in a formalism which is called linearized theory. This means that we can raise and lower 
indices of quantities related to hµν with the Minkowski metric ηµν . As a result, Christofel symbols 
in Eq. (0.3) can be obtained, to frst order, as 

Γµ =
1 
ηµσ (∂ν hσρ + ∂ρhσν − ∂σhνρ) . (1.4)νρ 2 

Similarly, given that the Christofel symbols are frst order in hµν , the Riemann tensor in 
Eq. (0.4) can be computed as the sum of just the frst two terms: 

Rµνρσ = 
1
(∂ρ∂ν hµσ + ∂σ∂µhνρ − ∂ρ∂µhνσ − ∂σ∂ν hµρ) . (1.5)

2 

The Ricci tensor is then 

1 
Rµν = (∂ρ∂µhρν + ∂ρ∂ν hµρ − □hµν − ∂µ∂ν h) , (1.6)

2 

with □ = ∂ρ∂ρ the D’Alembertian operator and where we defne h as the contraction of hµν , 
h = ηµν hµν . Finally, the Ricci scalar is 

R = ∂ρ∂σ hρσ − □h. (1.7) 

In order to express Einstein’s feld equations, 

1 8πG 
Rµν − gµν R = Tµν , (1.8)

2 c4 
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1.1. Gravitational wave formalism 

with G the universal gravitation constant and T µν the stress-energy tensor, we compute the Einstein 
tensor as 

1 1
(∂ρ∂µGµν ≡ Rµν − gµν R = hρν + ∂ρ∂ν hµρ − □hµν − ∂µ∂ν h − ηµν [∂

ρ∂σhρσ − □h]) , (1.9)
2 2 

which, for convenience, can be rewritten as � � � � � 
1 1 1 

Gµν = ∂ρ∂µ hρν − ηρν h + ∂ρ∂ν hµρ − ηµρh 
2 2 2� � � �� 

1 1 −□ hµν − ηµν h − ηµν ∂
ρ∂σ hρσ − ηρσh . (1.10)

2 2 

Thus, we can naturally defne 
hµν = hµν − 

1 
ηµν h, (1.11)

2 
so that, using Eq. (1.10), the Einstein equations in Eq. (1.8) can be expressed as 

16πG 
□hµν + ηµν ∂

ρ∂σ hρσ − ∂ρ∂µhρν − ∂ρ∂ν hµρ = − 
c4 Tµν . (1.12) 

In the next subsection, we will simplify this equation by choosing a specifc coordinate system. 

1.1.2 The harmonic gauge 

Even if we chose a reference system so that |hµν | ≪ 1, there is still some symmetry under the 
following transformation: 

′µxµ 7→ x + ξµ(x), (1.13) 

where |∂µξν | ≲ |hµν | ≪ 1. Using the tensor transformation rule for gµν under a coordinate change, 

∂xρ ∂xσ 
′ gµν (x ′ ) = (1.14)

∂x ′µ ∂x ′ν gρσ(x), 

we get that, under the transformation in Eq. (1.13), 

hµν (x) 7→ h ′ µν (x ′ ) = hµν(x) − (∂µξν + ∂ν ξµ). (1.15) 

Therefore, if |∂µξν | ≪ 1 as we had imposed, then the condition |hµν | ≪ 1 still holds. This symmetry 
is usually referred to as residual gauge freedom. 

We can use this freedom to impose the condition 

∂ν hµν = 0, (1.16) 

which is usually called the harmonic gauge, also named the Lorentz, Hilbert or De Donder gauge. 
The metric hµν transforms as 

′ 
hµν (x) 7→ hµν (x ′ ) = hµν(x) − (∂µξν + ∂ν ξµ − ηµν ∂ρξ

ρ), (1.17) 
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so its contracted derivative transforms as 

∂ν hµν 7→ (∂ν hµν ) ′ = ∂ν hµν − □ξµ. (1.18) 

Thus, if ∂ν hµν (x) = fµ(x) for a certain tensor function fµ(x) which is not identically zero, we 
can make a coordinate change like Eq. (1.13) with a ξµ which satisfes 

□ξµ(x) = fµ(x), (1.19) 

so that, according to Eq. (1.18), then (∂ν hµν ) ′ = 0 in the new coordinate system. It is known that 
an equation of the form of Eq. (1.19) always has solutions, given that there exist Green’s functions 
of the D’Alembertian operator, meaning 

□G(x − y) = δ4(x − y), (1.20) 

with y another point with coordinates independent of x and δ4(x − y) the 4-dimensional Dirac delta 
function. For any given Green’s function of the D’Alembertian, it is then immediate to show that 
a solution of Eq. (1.19) is given by Z 

ξµ(x) = d4yG(x − y)fµ(y). (1.21) 

Thus, it is always possible to choose a coordinate system in which the harmonic condition (1.16) 
holds. In this case, the second to fourth terms in Eq. (1.12) vanish, and we get the simpler expression 

16πG 
□hµν = − 

c4 Tµν . (1.22) 

It is worth noting that the harmonic condition (1.16) gives four independent equations. Given 
that a 4-dimensional metric has 10 independent components due to the symmetry, the harmonic 
gauge restricts the remaining degrees of freedom to just 6. In the next subsection, we will see how 
they can be reduced to just 2 outside a source, in vacuum. 

1.1.3 The transverse traceless gauge 

The previous Equation (1.22) shows the dynamics of a perturbation hµν in any context, with 
a generic stress-energy tensor Tµν . However, for the propagation of gravitational waves, we are 
interested in what happens in vacuum, outside any source. In this case, the stress-energy momentum 
vanishes and Eq. (1.22) is reduced to 

□hµν = 0. (1.23) 

Given that the D’Alembertian is given by 

□ = ηµν ∂µ 
1 

∂ν = − 
c2 ∂t + ∇2 , (1.24) 

with ∇ = (∂x, ∂y, ∂z), Eq. (1.23) is a standard wave equation with propagation speed c, which 
means that gravitational waves propagate at the speed of light. 
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1.1. Gravitational wave formalism 

Because the right-hand side in Eq. (1.23) is now zero, then there is some extra gauge freedom, 
so that the condition ∂ν hµν = 0 does not completely determine the gauge. Indeed, an additional 
transformation of the form of Eq. (1.13) will preserve the condition ∂ν hµν = 0 as long as it satisfes 

□ξµ = 0, (1.25) 

something which can be deduced from Eq. (1.19). In addition, the extra term arising from this 
coordinate change in hµν , shown in Eq. (1.17), has a zero D’Alembertian under the condition (1.25), 

□(∂µξν + ∂ν ξµ − ηµν ∂ρξ
ρ) = 0, (1.26) 

due to the fact that the derivatives commute. This means that, under a coordinate change of the 
form (1.13) with the condition (1.25), the metric will satisfy the Einstein equation in the form (1.23). 
Then, we have the freedom to choose these functions ξµ to impose 4 independent conditions on hµν 
via Eq. (1.17). 

The frst of the conditions we will impose is the traceless condition, that is 

h = 0. (1.27) 

From its defnition in Eq. (1.11), the previous equation implies hµν = hµν . Thus, we can forget 
about the bars from now on. 

The three remaining conditions will be used to impose the transversality conditions, 

hi0 = 0. (1.28) 

Under these equations, the harmonic condition (1.16) for µ = 0 simplifes to 

∂0h00 = 0, (1.29) 

which means h00 is constant in time. This static contribution corresponds to the gravitational 
potential of the source. However, since we are studying gravitational waves, which correspond to 
the time-dependent part of the metric, we can safely ignore the static contribution and write 

h00 = 0. (1.30) 

All the conditions we imposed up to now, including also the harmonic condition (1.16) for spatial 
indices, defne the transverse-traceless (TT) gauge: 

h0µ = 0, hi
i = 0, ∂j hij = 0. (1.31) 

In this gauge, we have used four extra conditions over the 6 degrees of freedom that we had 
from the harmonic gauge. Therefore, only 2 degrees of freedom remain. 

In the next subsection, we will use this gauge to get the plane wave solutions to Eq. (1.23) in a 
physically meaningful form. 
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Chapter 1. Gravitational wave theory 

1.1.4 Plane waves 

Given that the Einstein equations in the harmonic gauge take the form of a D’Alembert equa-
tion (1.23), they admit plane wave solutions. In the TT gauge, the time components hµ0 vanish, so 
any metric is fully characterized by its spatial components. Thus, a plane wave solution takes the 
form 

hij (x) = Aij (k⃗)e ikµx
µ 
, (1.32) 

where k⃗ is the wave vector carrying information of the direction of propagation n⃗ ≡ k⃗/|⃗k|, wave-
length λ ≡ 2π/|⃗k| and, using the propagation speed c, also its frequency ω = c|⃗k|; Aij (k⃗) is the 
amplitude, which depends on k⃗, and kµ ≡ (ω/c, ⃗k) is the wave 4-vector, which is a light-like 4-vector 
by defnition. 

In order to better study these plane waves, we fx the propagation direction to be the z axis. 
We now use the conditions defning the TT gauge in Eq. (1.31) to simplify the previous equation. 

First, the condition ∂ihij = 0 implies nihij = 0. In this case, since we take n⃗ = (0, 0, 1), 
then the three Ai3 in Eq. (1.32) vanish. With this constraint, the transversality condition remains 
A11 + A22 = 0, so we can defne h+ ≡ A11 = −A22. Taking into account the metric symmetry, 
the only remaining component is A12, which we defne as h×. Thus, Eq. (1.32) can be written in 
matrix form as   

h+ h× 0 
iω(t−z/c)hij (t, z) = h× −h+ 0 e . (1.33) 

0 0 0 
ij 

This equation clearly exposes the two remaining degrees of freedom of the TT gauge, mentioned 
in the previous subsection. The subindices + and × denote the “plus” and “cross” polarizations. 
They have these names because of the efect they produce on test masses, which can be observed 
in Fig. 1.1. 

In this case, where n⃗ = ẑ, the basis tensors for these modes are given by � � � � 
+ 1 0 × 0 1 
e = , e = , (1.34)ab ab0 −1 1 0 

ab ab 

where a, b = 1, 2, given that the rest of the components are zero. More generally, for an arbitrary 
direction of propagation n⃗, these basis tensors can be expressed as 

+ × e (n⃗) = uiuj − vivj , e (n⃗) = uivj + viuj , (1.35)ij ij 

with u⃗, v⃗ unitary vectors orthogonal to each other and to the propagation direction n⃗. 

Since the solution of Eq. (1.23) can be expressed as a superposition of plane waves, and given 
the previous defnitions under the TT gauge, the most general solution of Eq. (1.23) is Z ZX ∞ 

A −2πif (t−n⃗·x⃗/c)hij (t, ⃗x) = df d2Ω h̃ 
A(f, ⃗n)eij (n⃗)e + c.c., (1.36) 

0A=+,× 

where the negative frequencies are unphysical and are therefore not included. However, in order to 
avoid adding the complex conjugate term, a common “trick” is to defne, for negative frequencies, 

˜ h̃∗ hA(−f, ⃗n) = A(f, ⃗n), (1.37) 
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1.1. Gravitational wave formalism 

ωt = 0 ωt = π
2 ωt = π ωt = 3π

2

h+

h×

Figure 1.1: Efect of the polarizations plus (+) and cross (×) on a circle consisting of test masses. 

∗where the notation denotes complex conjugate. In this case, the complex conjugate term can 
be included into the frst integral occupying the negative frequencies, so that Eq. (1.36) can be 
rewritten as Z ZX ∞ 

A −2πif (t−n⃗·x⃗/c)hij (t, ⃗x) = df d2Ω h̃ 
A(f, ⃗n)eij (n⃗)e + c.c. (1.38) 

−∞A=+,× 

1.1.5 Projection to TT gauge 

Related to the TT gauge, it is convenient to introduce a special tensor which will be used later. 
First, we defne the projection tensor onto the plane orthogonal to the direction n⃗: 

Pij (n⃗) ≡ δij − ninj . (1.39) 

This is a projector (PikPkj = Pij ), it is symmetric and transverse (niPij (n⃗) = 0), and it has a trace 
δij Pij = 2. Based on it, we construct the following projection tensor: 

Λij,kl(n⃗) = PikPil − 
1 
Pij Pkl. (1.40)

2 

This is again a projector (Λij,klΛkl,mn = Λij,mn), transverse in its projected indices (niΛij,kl = 
nj Λij,kl = 0), traceless in the frst and second pair of indices (δij Λij,kl = δklΛij,kl = 0) and 
invariant under the change (i, j) ↔ (k, l). Substituting Eq. (1.39) into Eq. (1.40), we get the 
explicit expression 

1 
Λij,kl(n⃗) =δikδjl − δij δkl − nj nlδik − ninkδjl 

2 
1 

+ (nknlδij + ninj δkl + ninj nknl). (1.41)
2 
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Chapter 1. Gravitational wave theory 

Then, for a certain plane wave hµν in the harmonic gauge (1.16) propagating in the direction n⃗ 
which is not necessarily in the TT gauge, the projected metric with spatial components 

hTT 
ij = Λij,klhkl, (1.42) 

being the rest of them null, is a plane wave in the TT gauge. As just mentioned, the resulting metric 
is transverse, traceless and, if it was previously in the harmonic gauge (1.16) and a solution of the 
Einstein equations (1.23), then the projection does not spoil these conditions, as it also happens 
with the symmetry. 

In general, the transverse-traceless projection of any symmetric tensor Sij will be given by 

STT 
ij = Λij,klSkl. (1.43) 

1.2 Generalization to curved backgrounds 

We now want to generalize the previous results for plane gravitational waves to an arbitrary back-
ground. Among other things, this is necessary to see how gravitational waves curve the spacetime. 
For this purpose, we decompose the metric as 

gµν (x) = gµν (x) + hµν (x), gµν = O(1), |hµν | ≪ 1, (1.44) 

where taking the background metric as O(1) is something we can always do in a region of spacetime 
under a change of coordinates, if necessary. However, since both terms are now dependent on x 
(unlike the background Minkowskian case), it is more subtle to argue how to decompose the metric 
into these two terms. In a general situation, this is not possible, but there is a natural way to divide 
the metric whenever there is a clear separation of either length scales or frequencies. If we denote 
the background length scale as LB , then it is possible to clearly separate small perturbations if 
their wavelength λ is much smaller than LB . Similarly, it is possible to disentangle a perturbation 
in the frequency spectrum if its frequency f is much higher than the one of the background, fB . 
To summarize, we need either 

λ ≪ LB or f ≫ fB , (1.45) 

where λ is the reduced wavelength λ = λ/(2π), which represents the physical scale associated to 
the wavelength λ. From now on, we will discuss only in terms of either λ or f , depending on what 
is more convenient for each argumentation. Both situations are analogous due to the fact that 
f ∝ λ−1 , but it may be more clear to use one or the other in diferent contexts. 

Now, we need to rewrite the Einstein equations up to second order in h, where h is loosely used 
as a synonym of hµν with any indices. First, we rewrite Eq. (1.8) as � � 

8πG 1 
Rµν = Tµν − gµν T . (1.46)

c4 2 

Now, we need to separate this equation into its low and high-frequency parts. For this purpose, 
frst we decompose the Ricci tensor up to O(h2). To avoid the explicit computations and just 
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1.2. Generalization to curved backgrounds 

illustrate the general procedure, we defne Rµν as the part of the Ricci tensor dependent only on 
(i)

gµν (the zero-th order in h) and Rµν the i-th order in h. Thus, up to second order, we have 

= Rµν + R(1) 
µν + R(2)Rµν µν . (1.47) 

(1)By construction, the term Rµν is only dependent on low frequencies and Rµν , on high ones, given 
(2)that it is linear on h. However, the second order term Rµν depends on both, since it is quadratic 

⃗on h, and two high wave vectors k⃗1, k2 can combine to give a low one if k⃗2 ≈ −k⃗1. Then, Rµν will 
(1) (2)only appear in the low-frequency part of Eq. (1.46) and Rµν in the high-frequency one, while Rµν 

will appear in both. Thus, the low-frequency part of Eq. (1.46) can be written as 

8πG 1 
= −⟨R(2)Rµν µν ⟩ + ⟨Tµν − gµν T ⟩, (1.48)

c4 2 

where ⟨ ⟩ denotes temporal average over many 1/f , but much less than 1/fB or, for the discussion 
in terms of λ, spatial average over many λ, but much less than one LB . From now on, we denote 

T µν = ⟨Tµν ⟩. (1.49) 

In practice, if Tµν comes from a macroscopic matter distribution, it will have a long wavelength, so 
that the trace of T ≡ gµν T µν will satisfy 

1 1 ⟨Tµν − gµν T ⟩ = T µν − gµν T . (1.50)
2 2 

Notice that, if Tµν had a high-frequency component, there could be terms in gµν T combining high 
frequencies in gµν and T so that the result is a low frequency, as argued before. Thus, the previous 
Eq. (1.50) would not hold with the defnition (1.49), and then Eq. (1.50) would have to be imposed 
as a defnition, as it is done in [39]. This is less natural, but applies for a wider range of contexts. 

Next, we also defne 
4c 1 ⟨R(2) gµν R

(2)⟩,tµν = − µν − (1.51)
8πG 2 

µν R
(2)with R(2) = g µν , so that its trace satisfes 

4c ⟨R(2)⟩.t = gµνtµν = (1.52)
8πG 

(2)With these defnitions, we can express the term −⟨Rµν ⟩ in Eq. (1.48) as � � 
8πG 1 −⟨R(2) 

µν ⟩ = tµν − gµν t , (1.53)
c4 2 

so that Eq. (1.48) can be rewritten, with the previous defnitions, as � � � � 
Rµν = 

8πG 
c4 tµν − 

1 
gµν t 2 

+ 
8πG 
c4 T µν − 

1 
gµν T 

2 
. (1.54) 
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Chapter 1. Gravitational wave theory 

Recast in the usual form of the Einstein equations, we get 

1 8πG 
Rµν − gµν R = (T µν + tµν ). (1.55)

2 c4 

In this form, we can see tµν as an efective energy-momentum tensor coming from the perturbation 
hµν , and quadratic in this feld. This equation very clearly showcases how a gravitational wave 
can act as a source to curve spacetime through tµν , similar to the behavior of a usual matter feld 
through its energy-momentum tensor Tµν . 

In fact, we can get a conservation rule from Eq. (1.55). Due to the contracted Bianchi identi-
ties [41], 

1 ∇ρRρµ = ∇µR, (1.56)
2 

where ∇µ denotes covariant derivative, then, the left-hand side of Eq. (1.55) vanishes under con-
traction with the covariant derivative with respect to gµν , which we denote by ∇µ. Then, the 
right-hand side of Eq. (1.55), which leaves 

µ∇ (T µν + tµν ) = 0. (1.57) 

The previous expression implies that the energy-momentum tensor T µν is not conserved any-
more, but rather, its sum with tµν . This illustrates how both matter and gravitational waves 
exchange energy and momentum, given that these are the quantities to remain invariant. In ad-
dition, outside the source, T µν , and for the limit of large distances, the background metric is 
approximately fat again and the covariant derivative reduces to the ordinary one. Thus, in this 
regime, we get the conservation law 

∂µtµν = 0. (1.58) 

In Subsec. 1.2.2, we will better study the properties of tµν to characterize the energy that 
gravitational waves carry, as well as their energy fux. This will be needed in later chapters of the 
thesis. However, before that, it is worth commenting on the other equation we have ignored in this 
process, which is the high-frequency version of Eq. (1.48). 

1.2.1 Propagation of gravitational waves 

As discussed before, the background Ricci tensor Rµν will not appear in the high-frequency part 
(1)of Eq. (1.46), due to it being purely low-frequency. However, Rµν , which is purely high-frequency, 

(2)will appear, as well as the corresponding component of Rµν . Thus, we get the equation � � �High�High 8πG 1 
R(1) R(2) 

µν = − µν + Tµν − gµν T , (1.59)
c4 2 

where the “High” superscript denotes the projection on the high frequencies, similarly to how the 
averages ⟨ ⟩ acted before for low frequencies. The main quantity to be computed here is the frst 
order of the Ricci tensor, which is � �1 ρ ρ ρ 

R(1) 
µν = ∇ ∇µhνρ + ∇ ∇ν hµρ −∇ ∇ρhµν −∇µ∇ν h , (1.60)

2 

16 



1.2. Generalization to curved backgrounds 

with ∇µ the covariant derivative with respect to gµν . We can see it is exactly the same as the one 
we obtained in linearized theory, Eq. (1.6), only with covariant derivatives instead of ordinary ones. 

Studying the behavior of Eq. (1.54) in vacuum, Tµν = 0, the spacetime curvature is determined 
by the gravitational wave perturbation, that is, 

Rµν ∼ (∂h)2 . (1.61) 

We now recall that LB is the typical scale of gµν , so that Rµν ∼ ∂2gµν ∼ 1/L2 (since gµν ∼ 1).B 
On the other hand, λ is the typical scale for h, so ∂h ∼ h/λ. Then, Eq. (1.61) implies 

λ 
h ∼ ≡ ϵ (≪ 1). (1.62)

LB 

(1)In this case, according to Eq. (1.60) and setting LB ∼ 1 for simplicity, the leading order in Rµν 
(2)is ∂2h ∼ h/λ2 ∼ 1/ϵ. Similarly, one can compute Rµν to check that its dominant order is ∂2h2 ∼ 

(1)
h2/λ2 ∼ 1 [39]. Thus, the leading order of Eq. (1.59) consists on the dominant order of Rµν 
being null. Defning again hµν as in Eq. (1.11) and using the harmonic gauge in Eq. (1.16), we get 
again the wave equation (1.23), recovering the results of linearized theory for gravitational wave 
propagation. 

If, instead, we allow for a non-zero energy-momentum tensor, then the curvature is determined 
by it, dominating the gravitational wave contribution, 

λ 
h ≪ . (1.63)

LB 

This time, we can stay at leading order in h and truncate the expansion in λ/LB at the next-to-
(1) (1)leading order. In this case, Eq. (1.59) is simply Rµν = 0. By having a look at the form Rµν in 

Eq. (1.60), we can simplify this equation with a similar gauge condition as the harmonic gauge in 
Eq. (1.16), only that with covariant derivatives instead of ordinary ones, 

ν ∇ hµν = 0, (1.64) 

Thus, the high-frequency Einstein equation (1.59) takes the fnal form 
ρ ∇ ∇ρhµν = 0, (1.65) 

again, completely analogous to Eq. (1.23) but with covariant derivatives. This generalizes the 
propagation of gravitational waves to a curved background for either of the conditions (1.45). 

1.2.2 Energy of a gravitational wave 

In order to properly study how gravitational waves interact with the background spacetime, which 
is a dynamics given by Eq. (1.55), we must study the behavior of the tµν tensor. Given its defnition 

(2)in Eq. (1.51), it is frst necessary to compute the second-order of the Ricci tensor, Rµν . To simplify 
the analysis, we will study the energy and momentum of the gravitational waves at large distances 
from the source, which is how we detect them. This means we can go back to Minkowski spacetime. 
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Chapter 1. Gravitational wave theory 

In addition, one can apply several simplifcations to the second-order Ricci tensor, involving gauge 
freedom reduction arguments similar to those in Sec. 1.1 which include setting the harmonic gauge 
condition (1.16), as well as arguments based on integration by parts inside the spatial or temporal 
averages in Eq. (1.51) (see the discussion in [39] for the full details). In this case, one can show that 

1 ⟨R(2) 
µν ⟩ = − 

4 
⟨∂µhαβ ∂ν h

αβ ⟩, (1.66) 

whose trace vanishes using □hµν = 0. Then, tµν takes the form 
4c 

tµν = ⟨∂µhαβ ∂ν h
αβ ⟩. (1.67)

32πG 

In Eq. (1.55), the tensor tµν plays the role of a usual energy-momentum tensor. Thus, the 
properties of a gravitational wave can be inferred from its components. On the one hand, the 
t00 component provides the energy density. From the Eq. (1.67), t00 takes a particularly simple 
expression in the TT gauge (1.31): 

2dE c00 hTT hTT ≡ t = ⟨ ̇ ˙ ⟩, (1.68)ij ijd3V 32πG 
or, in terms of the polarization amplitudes h+ and h×, 

2dE c00≡ t = ⟨ḣ 2 + ḣ 2 ⟩. (1.69)
d3V 16πG + × 

On the other hand, the momentum fux in the direction k per unit time and surface can be 
obtained from the t0k component: 

dP k c3 
0k hTT ∂khTT ≡ t = − ⟨ ̇  ⟩. (1.70)ij ijd2A dt 32πG 

The main situation for physical interest is considering that the source is at the origin and the 
observer is very far away at a certain distance r. In this context, we want to compute how much 
momentum fux the gravitational wave carries away through the sphere of radius r. Then, we 
can write the surface element as d2A = r2d2Ω, so that the total temporal momentum fux in the 
direction k which goes through the sphere of radius r can be written as 

3 Z 
dP k c0k 2 hTT ∂khTT ≡ t = − r d2Ω⟨ ̇  

ij ⟩. (1.71)ijdt 32πG 

In order to obtain the energy fux in the same situation, we can use the time derivative of the 
expression for the energy density in terms of t00 (1.68): 

1 dE 00 0k = ∂0t = −∂kt , (1.72)
c d3V dt 

where in the second step we have used the conservation law for tµν in Eq. (1.58). Using Stokes’ 
theorem [42] and considering V the volume inside a sphere of radius r, we get Z Z 

0k 0kdE 
= −c d3V ∂kt = −c d2Ankt , (1.73)

dt 
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kwhere A is the boundary of the volume V , i.e. the spherical surface of radius r, and n is the 
orthogonal unit vector to it in the outward direction, which means it is the radial unit vector r̂. 
Then, using Eq. (1.67) in the TT gauge, 

5dE c ⟨∂0hTT hTT = − ∂r ij ⟩. (1.74)ijdt 32πG 
If our gravitational wave is propagating radially outward, we can assume the functional form � �1 r 

hTT 
ij (t, r) = fij t − (1.75)

r c 
for certain functions fij . As a result, � � � � � �1 r 1 1 r 1 r 

hTT∂r ij = − fij t − + ∂rfij (t − r/c) = − fij t − − ∂tfij t − . (1.76)
r2 c r r2 c c c 

hTT ≈ ∂0hTTAssuming large distances, we can neglect the frst term, so that ∂r ij ij , which, using 
= t00Eq. (1.74), implies t0r . Thus, Eq. (1.74) can be rewritten as 

3 2 Z dE c r 
hTTḣ TTP = = d2Ω⟨ ̇  ⟩, (1.77)ij ijdt 32πG 

or, in terms of the polarization amplitudes h+ and h×, 
3 2 Z dE c r 

P = = d2Ω⟨ḣ 2 + ḣ 2 ⟩, (1.78)
dt 16πG + × 

Then, in order to obtain the total fux of energy through d2A = r2d2Ω for all time, one would have 
to integrate the previous expression from t → −∞ to t → ∞. In this case, we can frst do this 
integral, which makes the averages ⟨ ⟩ unnecessary. Then, going back to the diferential form per 
surface unit, we can write Z3 ∞ � �dE c 

d2A 
= dt ḣ +2 + ḣ × 

2 . (1.79)
16πG −∞ 

We can now Fourier-decompose each of the polarizations, likeZ ∞ 
−2πift h+,×(t) = dfh̃ 

+,×e , (1.80) 
−∞ 

so that the previous equation can be rewritten as Z ∞ � �dE πc3 
= df f2 |h̃ 

+|2 + |h̃ ×|2 . (1.81)
d2A 4G −∞ 

Using the parity symmetry f 7→ −f , we can only integrate in positive frequencies, by multiplying 
the integral by a factor of 2. Then, we can write the energy fux per unit surface and unit frequency 
as � �dE πc3 

= f2 |h̃ 
+|2 + |h̃ ×|2 , (1.82)

d2Adf 2G 
with the convention that dE/df is only defned for positive frequencies, giving the total energy 
when integrated over this range. Then, using again d2A = r2d2Ω, we can integrate to get Z � �dE πc3 2 = f2 r d2Ω |h̃ 

+(f)|2 + |h̃ ×(f)|2 . (1.83)
df 2G 

19 



Chapter 1. Gravitational wave theory 

1.2.3 Quadrupole formulae 

The equations in the previous subsection relate the GW strain to the radiated energy. However, 
in order to know how much energy is emitted by a given physical system, we must relate these 
quantities to the source confguration, that is, to its energy-momentum tensor. Eq. (1.22) precisely 
relates these quantities, so in this subsection, we will solve it and derive important equations from 
its solution. 

For this purpose, we frst notice that Eq. (1.22) is formally identical to the the one obtained 
in Electromagnetism, so we can use the same procedure to solve it. First, we use that a Green’s 
function for the D’Alembertian is given by 

δ(t − |x⃗ − ⃗x ′ |/c)
G(x − x ′ ) = − , (1.84)

4π|x⃗ − x⃗′| 
where the argument of the delta is usually called retarded time, 

|x⃗ − ⃗x ′ |
tr = t − . (1.85)

c 
Then, applying this Green’s function to Eq. (1.22), we getZ 

4G ′ Tµν (tr, ⃗x ′ )
hµν (t, ⃗x) = d3 x . (1.86)

c4 |x⃗ − ⃗x ′| 

As a result, the Fourier transform of hµν satisfes Z iω|x⃗−x⃗ ′ |4G 
h̃ 
µν (ω, ⃗x) = d3 x ′ 

e
T̃µν (ω, ⃗x ′ ). (1.87)

c4 |x⃗ − ⃗x ′| 

For large distances from the source, we can assume that the distances involved at the source 
given by |x⃗ ′ | are negligible with respect to |x⃗|. Then, we can approximate |x⃗ − x⃗ ′ | ≈ |x⃗| ≡ r (see 
Fig. 1.2), so that the previous equation is 

4G eiωr Z 
˜ ′ hµν (ω, ⃗x) = d3 x T̃µν (ω, ⃗x ′ ). (1.88)

c4 r 

µν˜From the harmonic gauge condition (1.16) applied to h̃ 
µν , ∂µh = 0, we get 

0ν iνi 
h̃ = − ∂ih̃

 , (1.89)
ω 

ij iν˜so, for ν = j, the spatial components h̃ provide the mixed components h and, for ν = 0, these 
00 

ones provide h̃ . Thus, it is only necessary to compute the spatial components from Eq. (1.88). 
T µνUsing the conservation of the energy-momentum tensor ∂µ = 0 within linearized theory, we can 

operate the integral as Z Z Z 
d3 ˜ iT̃ kj ) − d3 T̃ kj xT ij (ω, ⃗x) = d3x ∂k(x xx i∂k Z Z 

= d3 xx i∂0T̃ 0j = 
iω 

d3 xx iT̃ 0j , (1.90)
c 
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x⃗′

x⃗ = rn⃗

x⃗− x⃗′

Source

Observer

Figure 1.2: Illustration of the distances involved in Eqs. (1.86) and (1.87), where x⃗ is the distance 
′from the source to the observer and x⃗ is an internal distance of the source distribution. In the limit 

in which the distance from the source to the observer is much larger than the internal distances, 
′|x⃗| ≫ |x⃗ ′ |, we can see how x⃗ − x⃗ ≈ x⃗. 

where the second step uses that the surface integral vanishes at infnity. Then, using the symmetry 
of the energy-momentum tensor, we can get the symmetric part of the previous equation to write Z Z Z h iiω iωiT̃ 0j j ˜ i j ˜ id3 x T̃ ij (ω, ⃗x) = d3 x (x + x T 0i) = d3 x ∂l(x x T 0l) − x xj ∂lT̃

0l 
2c 2cZ Z 
iω ω2 

i T̃ 00 i j T̃ 00 = d3 xx xj ∂0 = − d3 xx x . (1.91)
2c 2c2 

We can then defne the quantity 

T 00(t, ⃗x)
ρ(t, ⃗x) ≡ , (1.92)

c2 

which has dimensions of mass density and it is, in fact, the rest mass density at the leading order 
2in v/c. This is inferred from the fact that ρ is the energy density divided by c . Then, we defne 

the quadrupole moment of ρ as Z 
Iij (t) ≡ d3 i xx xj ρ(t, ⃗x) (1.93) 

Going back to Eq. (1.88), we get 

2Gω2 eiωr 
h̃ij (ω, ⃗x) = − Ĩij (ω), (1.94)

c4 r 
so taking the inverse Fourier transform, 

¨ hij (t, ⃗x) = 
2G

Iij (tr), (1.95)
c4r 

which is the so-called quadrupole formula for the gravitational wave amplitude, frst derived by 
Einstein in 1918. 

We usually want to express this equation in the transverse-traceless gauge. Therefore, since 
Iij has a certain trace I ≡ δij Iij , it is sometimes more convenient to use the reduced quadrupole 
moment, which is a traceless quantity: Z � � 

Qij (t) ≡ Iij (t) − 
1 
δij I(t) = i j − 2δijd3x ρ(t, ⃗x) x x 

1 
r . (1.96)

3 3 
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Chapter 1. Gravitational wave theory 

Thus, in the TT gauge, we can express Eq. (1.95) as 

hTT 2G
Q ¨TT 

ij (t, ⃗x) = 
c4r ij (tr), (1.97) 

In practical terms, however, it is usually easier to compute the quadrupole moments Iij in 
Eq. (1.93). It is therefore useful to compute the previous equation (1.97) in terms of the Iij 
components. If we assume that the gravitational wave is propagating in the direction n⃗ = ẑ, then 
it is easy to check that, applying the projector to the TT gauge in Eq. (1.40), we get 

= 

 ¨ ¨ ¨ (I11 − I22)/2 I12 0 
¨ ¨ I12 −(I11 − I ̈ 22)/2 0 

 . (1.98)Q ¨TT ¨ 
ij = Λij,kl Ikl 

0 0 0 

In this tensor, we can clearly see the amplitudes of the plus and cross polarizations. Thus, substi-
tuting it in Eq. (1.97), we can get the gravitational wave amplitudes for each mode: 

G ¨ ¨ h+(t, ⃗x) = (I11 − I22)(tr), (1.99)
c4r 
2G ¨ h×(t, ⃗x) = I12(tr). (1.100)
c4r 

By assuming that the gravitational wave propagates in direction n⃗ = ẑ, we are not losing generality, 
since we can always apply a rotation so that this assumption is true, and then rotate back to 
recover the original reference system. However, there are cases in which it is easier to compute the 
quadrupole momenta in certain preferred axes, so it is useful to obtain Eqs. (1.99) and (1.100) for 
an arbitrary propagation direction. 

In order to do this, we start from the quadrupole momentum tensor Iij in its natural reference 
system S, with the additional hypothesis that the mass distribution is approximately fat in the z 
coordinate, so that Ii3 = 0 for all i. This is to simplify the equations, given that during this thesis, 
all the systems considered will satisfy this assumption. We want to characterize a gravitational 
wave propagating in the direction n⃗ = (sin θ cos ϕ, sin θ sin ϕ, cos θ), so we defne a rotated reference 

′ system S ′ such that its axis ẑ  aligns with this direction. Note that there is still some freedom to 
defne the reference system, given that a generic rotated reference system is characterized by three 

′Euler angles: θ around the y axis, ϕ around the z axis and a third rotation around the z axis 
′ ′determines the fnal orientation of the x and y axes. This third rotation would have the efect of 

shifting a fraction of the amplitude of one polarization to the other one, and vice versa, which is 
exactly the freedom we have when choosing the basis vectors u⃗ and v⃗ that defne the polarization 

+ ×basis tensors e and e in Eq. (1.35). Thus, since this is a question of defnition rather than aij ij 
physical efect, we do not consider it here and ignore this third rotation, so that our rotated system 
is characterized by the rotation matrix 

R(θ, ϕ) = 

 cos ϕ − sin ϕ 0 
sin ϕ cos ϕ 0 

  cos θ 0 sin θ 
0 1 0 

 . (1.101) 
0 0 1 − sin θ 0 cos θ 

This rotation transforms the coordinates of S ′ to the coordinates of S, like 
′ xi = Rij xj , (1.102) 
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′similar to how we obtain n⃗ = (sin θ cos ϕ, sin θ sin ϕ, cos θ) from ẑ  = (0, 0, 1). The polarization 
tensor undergoes the same transformation, so that 

′ Iij = RikRjlIkl (1.103) 

or, in matrix form, 
′′ RTI = RI ⇒ I = RT IR, (1.104) 

where we have used that rotations satisfy R−1 = RT . We can then use the second equation to 
′obtain the quadrupole momentum tensor Iij in the reference system S ′ , 

′ I = (I11 cos 2 ϕ + I22 sin
2 ϕ) cos2 θ + I12 cos 2 θ sin(2ϕ),11 (1.105) 

′ I22 − I11
I = cos θ sin(2ϕ) + I12 cos θ cos(2ϕ),12 2 

(1.106) 
′ I22 = I11 sin

2 ϕ + I22 cos 2 ϕ − I12 sin(2ϕ). (1.107) 

′In this system S ′ , the z axis and the direction of propagation of the gravitational wave coincide, 
so that Eqs. (1.99) and (1.100) hold. Thus, we can simply substitute the previous expressions for 
′ Iij to get the expressions for h+ and h× as functions of Iij , h ̈

 h+(t, ⃗x) = 
G

I11(cos
2 θ cos 2 ϕ − sin2 ϕ) + I ̈ 22(cos2 θ sin2 ϕ − cos 2 ϕ) 

c4r i 
¨ + I12 sin(2ϕ)(1 + cos 2 θ) , (1.108) h iG ¨ ¨ h×(t, ⃗x) = 

c4r 
(I22 − I ̈ 11) cos θ sin(2ϕ) + 2I12 cos θ cos(2ϕ) , (1.109) 

where the quantities at the right-hand side must be evaluated at tr. Note that these expressions 
do not exactly match the ones in [39] due to the diferent choice of coordinates for n⃗. 

To fnish this section, we will compute the radiated power. For this purpose, we can substitute 
Eq. (1.97) into Eq. (1.77) to get Z ... ...G TT TT 

P = d2Ω ⟨Q ij (tr)Q ij (tr)⟩. (1.110)
8πc5 

In order to get this power from an arbitrary gauge, we can use the projection tensor Λij,kl(n⃗)... 
defned in Eq. (1.40) and apply Eq. (1.43) to Q ij . In this case, Eq. (1.110) implies Z ... ...G 

P = d2ΩΛij,kl(n⃗)⟨Q ij (tr)Qkl(tr)⟩, (1.111)
8πc5 

where the only dependence on the direction is in Λij,kl(n⃗). Therefore, using its explicit expression 
in Eq. (1.41), we get Z ... ... ... ...2π 

d2ΩΛij,kl(n⃗)⟨Q ij (tr)Q ij (tr)⟩ = (11δikδjl − 4δij δkl + δilδjk)⟨Q ij (tr)Qkl(tr)⟩ 15 
8π ... ... 

=
5 
⟨Q ij (tr)Q ij (tr)⟩. (1.112) 
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Then, substituting back into Eq. (1.111), we get 

... ... 
P = ⟨Q ij (tr)Q ij (tr)⟩, (1.113)

G 
5c5 

which is also called quadrupole formula for the radiated power, and was also derived by Einstein in 
1918. 

1.3 Gravitational waves from a bound two-body system 

According to the frst Kepler law, bound celestial bodies move following elliptical orbits around each 
other, in which the focus is located at the center of mass. In General Relativity, this is not true due to 
the energy emission in the form of gravitational waves. This energy loss causes the masses to become 
progressively closer to each other, in an inward spiral usually called inspiral. When they get too 
close, if both objects are massive enough, the two masses start merging into a common, fnal mass 
which sufers some oscillations until it stabilizes, in a fnal phase called ringdown. An example of 
trajectory is shown in the right panel of Fig. 1.3, while the three mentioned stages (inspiral, merger, 
ringdown) can clearly be distinguished from the qualitative behavior of the emitted gravitational 
waves shown in the left panel. These plots have been obtained from the numerical simulation in 
Sec. 6.2, to which one can refer for details on the plotted variables. 
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Figure 1.3: Gravitational-wave strain (left) and black hole trajectories (right) during a CBC, show-
ing the inspiral, merger and ringdown in diferent colors. 

The case of greatest interest for Astrophysics and Cosmology is that one in which both objects 
are compact, which is a term used to refer to neutron stars (NS) and black holes, due to the 
tremendous amount of energy they release within these interactions. The bound two-body systems 
they form can thus be binary black holes (BBHs), when both objects are black holes; binary neutron 
stars (BNS), if they are instead two neutron stars, and neutron star-black hole binaries (NSBH, 
or sometimes BHNS, binaries). The joint phenomenon of their inspiral, merger and ringdown is 
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1.3. Gravitational waves from a bound two-body system 

called compact binary coalescence (CBC), and it represents the main source of gravitational-wave 
emission that we are able to detect with current GW detectors. 

In general, the inspiral part of a CBC can be analytically treated, given that the distance 
from both masses is still large enough. This means that the interaction is still very similar to the 
Keplerian one, and it can be studied just by incorporating a frst-order correction coming from 
the relativistic energy loss. This is exactly what we will do in this section, computing how much 
gravitational radiation these two-body systems emit, and how this afects to the evolution of their 
properties with time. As the masses get closer to each other, however, these approximations stop 
being valid and one has to resort to next-order corrections, following either post-Newtonian (PN, 
expansion in 1/c) [43] or post-Minkowskian (PM, expansion in G) [44] approximations. For the 
post-Newtonian formalism, it is common to denote the expansion as PPN(n), or nPN, where PPN 
stands for parameterized post-Newtonian [45] and the n indicates the perturbative order. Refer 
to [45] for a very complete review on these approximations. 

The ringdown can also be analytically modelled by using perturbation theory and studying the 
quasi-normal modes (QNMs) of black holes [46, 47]. However, at the stage of the merger, the 
dynamics is highly non-linear and no analytical approximation works accurately. One has then to 
resort to Numerical Relativity, which is further explained in Chapter 6. 

For now, let us study the inspiral behavior by computing the power radiated by these two-body 
systems. We will do so by frst reviewing the dynamics in the Keplerian case. 

1.3.1 Keplerian dynamics 

In order to study the elliptic motion of a two-body system, we should frst defne the geometrical 
elements of an ellipse, which are depicted in Fig. 1.4. In this fgure, the relevant distances are the 
semi-major axis a, the semi-minor axis b and the distance c from the center of the ellipse to any of 
its foci. The ellipse is defned as the closed curve whose points satisfy that the sum of distances to 
the two foci is constant. From the points in the major (horizontal) axis, we have that this distance √ 
is 2a, while for the ones in the minor (vertical) axis, we get that it is also 2 b2 + c2. Thus, c can 
be computed from a and b as p 

c = a2 − b2 . (1.114) 

Another important parameter is the eccentricity, defned as the ratio between c and a, so that s � �2 pc b 
e = = 1 − , or b = a 1 − e2 . (1.115)

a a 

This parameter is defned in the range [0, 1) and characterizes the similarity of the ellipse with a 
circumference, which corresponds to the case e = 0. For e → 1, the ellipse would tend to a parabola, 
and beyond that, e > 1, the trajectory would be a hyperbola, with some parameters having to be 
redefned. We will study the hyperbolic case in Sec. 1.4. 

An ellipse of fxed center and axis direction is fully characterized by two of these parameters, 
which are usually the semi-major axis a and eccentricity e. If we fx the center to be the right-most 
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φ
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c

Figure 1.4: Ellipse with its relevant points, distances and angle. C indicates the center of the ellipse, 
while F indicates the focus which is taken as the origin of the coordinate system, while the other 
focus would be in the symmetric position. P indicates a generic point in the ellipse with radial 
coordinate r and phase φ. The semimajor and semiminor axes a and b are also shown, as well as 
the distance c from the center to the focus. 

focus, the cartesian coordinates of the ellipse satisfy the equation � �2 � �2(x + c)2 y
+ = 1. (1.116)

a b 

If we defne a set of polar coordinates with the same center, related to the previous x and y with 
the usual equations, � 

x = r cos φ 
, (1.117)

y = r sin φ 

then we can use Eq. (1.116) to derive the relation 

a(1 − e2) 
r = . (1.118)

1 + e cos φ 

In Celestial Mechanics [48, 49], the parameter φ is called true anomaly and it is usually denoted 
by ν. Then, the periapsis and apoapsis are given by the maximum and minimum values of the 
denominator, cos φ = 1 and cos φ = −1, respectively, so that 

rp = a(1 − e), ra = a(1 + e). (1.119) 

When considering an ellipse in the context of an orbital trajectory, we have to introduce time, 
speed and other physical quantities to the picture, including the masses of the objects m1 and m2. 
As we know, we can treat the two-body problem as an efective one-body problem in the reference 
system of the center of mass, in which a particle of mass 

µ = 
m1m2 

, (1.120)
m1 + m2 
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1.3. Gravitational waves from a bound two-body system 

which is called reduced mass, experiences a gravitational acceleration given by the universal gravi-
tational law, 

GM¨ r⃗ = − r,̂ (1.121)
r2 

where M = m1 + m2 is the total mass. We can also write the conserved quantities, which are the 
orbital angular momentum L = Lz and the energy E, given by 

1 GµM
L = µ|r⃗ × ⃗v|, E = µv 2 − , (1.122)

2 r 
or, using the expression for the velocity in polar coordinates, v⃗ = ṙr̂ + rφ̇φ̂, 

1 GµM2L = µr 2φ,˙ E = µ(ṙ + r 2φ̇2) − . (1.123)
2 r 

We can fnd explicit expressions for L and E in terms of the orbital parameters using the fact 
that they are conserved quantities. For this purpose, we evaluate them from Eq. (1.122) at the 
periapsis and apoapsis, and make the expressions at both points equal due to their conservation. 
At these points, the speed is perpendicular to the vector radius, so that 

1 + e 
Lp = La ⇒ µrpvp = µrava ⇒ vp = 

ra 
va = va, (1.124)

rp 1 − e 

where in the last step we have used the explicit expressions for r at the periapsis and apoapsis in 
Eq. (1.119). Repeating the process for the energy, we get 

1 GµM 1 GµM2 2Ep = Ea ⇒ µv − = µv −p a2 rp 2 ra"� �2 
# � � 

1 + e 2GM 1 1 GM 1 − e2 2⇒ v − 1 = − ⇒ v = . (1.125)a a1 − e a 1 − e 1 + e a 1 + e 

Substituting this expression into the angular momentum and energy for the aphelion, we get p GµM
L = µ GMa(1 − e2), E = − . (1.126)

2a 
Conversely, we can get the orbital parameters from the conserved quantities as 

GµM 2EL2 
a = , e 2 − 1 = . (1.127)

2|E| G2M2µ3 

In particular, the fact that the expressions for the energy in Eqs. (1.122) and (1.126) are equal 
provides an easy way to compute the velocity, � � 

2 12 v = GM − (1.128)
r a 

In Celestial Mechanics [48, 49], this expression is called the vis-viva equation. 

Finally, the period of motion is given by Kepler’s third law, 

4π2 
3T 2 = a . (1.129)

GM 
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1.3.2 Radiated power 

We can now study the bound two-body problem in General Relativity by incorporating the energy 
loss arising from Einstein’s equations. This energy loss is given by Eq. (1.113), which involves the 
reduced quadrupole moment Qij defned in Eq. (1.96). To simplify the computations, it is better to 
start from the quadrupole moment Iij defned in Eq. (1.93), and then compute Qij by subtracting 
1/3 of the trace. From Eqs. (1.117) and assuming that the bodies are point masses, Iij takes the 
form 

2 

  = 

  cos2 φ cos2 φsin φ cos φ 0 sin φ cos φ 0 
µa2(1 − e2)2 

sin2 φ 0 sin2 φ 0 , (1.130)Iij = µr sin φ cos φ sin φ cos φ 
(1 + e cos φ)2 

0 0 1 0 0 1 

where we have used Eq. (1.118) so that this expression only depends on φ. In order to take the 
temporal derivatives, we can use the expression of φ̇ from the angular momentum in Eq. (1.122) s 

φ̇ = 
L 

= 
GM 

(1 + e cos φ)2 , (1.131)
µr2 a3(1 − e2)3 

where we have used the expressions for L and r in Eqs. (1.126) and (1.118), respectively. Then, the 
third derivatives of the relevant matrix elements in Eq. (1.130) are s

s
s 

... G3M3 
I 11 = 2µ (1 + e cos φ)2[2 sin(2φ) + 3e sin φ cos 2 φ], (1.132)

a5(1 − e2)5 

... G3M3 
I 22 = 2µ (1 + e cos φ)2[−2 sin(2φ) − e sin φ(1 + 3 cos2 φ)], (1.133)

a5(1 − e2)5 

... 
I 12 = 2µ 

G3M3 
(1 + e cos φ)2[−2 cos(2φ) + e cos φ(1 − 3 cos2 φ)]. 

a5(1 − e2)5 (1.134) 

... ... ... 
Instead of computing directly Q ij = I ij − δij I /3, it is easier to simplify the contraction as 

... ... ... ... ... ... ... ... ... ...1 2 2 2 2 1 
Q ij Q ij = I ij I ij − I = I 11 + I 22 + 2 I 12 − ( I 11 + I 22)2 (1.135)

3 3 
8G3 µ2M3 

= (1 + e cos φ)4[12(1 + e cos φ)2 + e 2 sin2 φ]. (1.136)
3 a5(1 − e2)5 

Using this expression in Eq. (1.113), we get to the result 

8G4 µ2M3 
P = ⟨(1 + e cos φ)4[12(1 + e cos φ)2 + e 2 sin2 φ]⟩. (1.137)

15c5 a5(1 − e2)5 

We still have to do the time average over several periods, represented by the angle brackets ⟨ ⟩. 
For convenience, we will denote the argument of the average as P (φ). Then, the radiated power is Z ZT 2π1 1 dφ 

P (φ). (1.138)P = dtP (φ) = 
T T φ̇0 0 
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Having a look at the expression of φ̇ in Eq. (1.131) and at the period in Eq. (1.129), we can notice 
that multiplying them gets rid of most of the constants: 

(1 + e cos φ)2 
˙ = 2π (1.139)φT . 

(1 − e2)3/2 

Then, we can substitute this into Eq. (1.138), together with P (φ) in Eq. (1.137), to get Z2M3 2π4G4 µ
P = dφ (1 + e cos φ)2[12(1 + e cos φ)2 + e 2 sin2 φ]

15πc5 a5(1 − e2)7/2 
0 

G4 µ2M3 
= (96 + 292e 2 + 37e 4). (1.140)

15c5 a5(1 − e2)7/2 

This is the known expression for the radiated power frst derived by Peters and Mathews [50], which 
is usually presented as 

32G4µ2M3 
P = f(e), (1.141)

5c5a5 

where � � 
1 73 372 4f(e) = 1 + e + e . (1.142)

(1 − e2)7/2 24 96 

This function f(e) represents the enhancement due to the eccentricity, given that, for the circular 
case, e = 0 implies f(e) = 1, and Eq. (1.141) can be written changing a to R, representing the 
constant orbital radius. 

1.3.3 Gravitational waves and energy loss 

In the previous subsection, we arrived to an expression for the power radiated by a bound two-body 
system. We will continue this study by computing how this energy loss translates into gravitational 
waves, as well as how much time it takes the system to merge. Throughout this section, in order 
to match the notation in Subsec. 1.2.3, we denote the distance from the observer to the CBC 
(sometimes simply called source) by r, which must not be confused with the radial coordinate in 
Eq. (1.118). 

We start by computing the gravitational wave amplitudes. First, from Eq. (1.130) for Iij and 
using Eq. (1.131) for ϕ̇ again, we compute the derivatives of the quadrupole momenta, 

2GµM¨ I11 = − [cos(2φ) + e cos 3 φ], (1.143)
a(1 − e2) 
2GµM

I ̈ 22 = [cos(2φ) + e cos φ(1 + cos 2 φ) + e 2], (1.144)
a(1 − e2) 

2GµM
I ̈ 12 = − [sin(2φ) + e(1 + cos 2 φ]. (1.145)

a(1 − e2) 
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Then, using Eqs. (1.108) and (1.109), � 
G2µM

h+(t) = − (1 + cos 2 θ) 2 cos(2φ − 2ϕ) 
c4ra(1 − e2) � � 

cos φ sin2 θ 1 
+ e + (5 cos(φ − 2ϕ) + cos(3φ − 2ϕ)

1 + cos2 θ 2 � �� 
sin2 θ2+ e cos(2ϕ) + , (1.146)

1 + cos2 θ� 
G2µM

h×(t) = − cos θ 4 sin(2φ − 2ϕ) 
c4ra(1 − e2) 

+ e [5 sin(φ − 2ϕ) + sin(3φ − 2ϕ)] (1.147)� 
− 2e 2 sin(2ϕ) , 

where we must recall that the right-hand side quantities should be evaluated in the retarded time 
tr in Eq. (1.85). 

From now on, we will focus on the circular case, e = 1, due to the complexity of the equations. 
For more details on the elliptic case, see [51, 39]. In General Relativity, due to the energy loss, 
the radius of the trajectory R gets progressively smaller, so these trajectories receive the name of 
quasi-circular orbits. Furthermore, BBHs tend to reduce their eccentricity over time, in a phe-
nomenon called circularization [51, 39]. Therefore, quasi-circular orbits are expected to be much 
more common than eccentric ones, so we are not losing much generality. In this case, the previous 
expressions greatly simplify: 

4G2µM 1 + cos2 θ 
h+(t) = − cos(2φ − 2ϕ), (1.148)

c4rR 2 
4G2µM

h×(t) = − cos θ sin(2φ − 2ϕ). (1.149)
c4rR 

Furthermore, in the quasi-circular case, to frst order, the trajectory can be parametrized as φ(t) = 
ω0t, with ω0 the angular frequency corresponding to the period in Eq. (1.129) for a = T , r 

2π GM 
ω0 = = . (1.150)

T R3 

The angular frequency of the gravitational wave, however, doubles this number, given that it is 2φ 
what appears in the argument of the trigonometric functions. Thus, we defne the gravitational 
wave frequency as 

ω0
ωgw = 2ω0 and, correspondingly, fgw = 2f0 = . (1.151)

π 
Particularly useful are the expressions relating fgw and R, r � �1/3

GM GM 
πfgw = , R = , (1.152)

R3 π2f2 
gw 

where the last expression is particularly useful to get rid of R in favour of fgw. This is precisely 
what we do in Eqs. (1.148) and (1.149). Moreover, we can choose the initial setting of the system 
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to be at phase π, so that the corresponding trigonometric functions change sign and we can get rid 
of the global minus sign. With these changes, Eqs. (1.148) and (1.149) are now � �5/3 � �2/3

4µ G Mπfgw 1 + cos2 θ 
h+(t) = cos(2πfgwtr − 2ϕ), (1.153)

r c2 c 2 � �5/3 � �2/3
4µ G Mπfgw

h×(t) = cos θ sin(2πfgwtr − 2ϕ). (1.154)
r c2 c 

The amplitude dependence on the mass here is very important: if a gravitational wave is observed 
with a certain frequency fgw at a certain distance r, from its amplitude we can derive a mass-related 
quantity. So that it has units of mass, this quantity, called chirp mass, is defned as 

3/5 3/5 
m m3/5M2/5 1 2Mc = µ = , (1.155)

(m1 + m2)1/5 

so that the previous equations can be rewritten as � �5/3 � �2/3
4 GMc πfgw 1 + cos2 θ 

h+(t) = cos(2πfgwtr − 2ϕ), (1.156)
r c2 c 2 � �5/3 � �2/3
4 GMc πfgw

h×(t) = cos θ sin(2πfgwtr − 2ϕ). (1.157)
r c2 c 

In a typical case, we will not know the distance r at which this event was produced. Thus, the 
chirp mass will be degenerate with the distance. 

Then, from Eq. (1.77), we can compute the radiated power per unit angle as 

3 2dP c r 
= ⟨ḣ 2 + ḣ 2 ⟩, (1.158)

d2Ω 16πG + × 

so that, substituting Eqs. (1.156) and (1.157), we get 

5 � GMc 
�10/3

dP 2c πfgw
= g(θ), (1.159)

d2Ω πG c3 

with � �2
1 + cos2 θ 

g(θ) = + cos 2 θ. (1.160)
2 

Integrating over the solid angle, Z 
d2Ωg(θ) = 

16π
, (1.161)

5 
so that 

5 � �10/3
32c GMcπfgw

P = . (1.162)
5G c3 

Using the defnition of fgw, it is easy to check that this expression matches the one obtained for 
the elliptic case in Eq. (1.141) for e = 1. 
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Now, from Eq. (1.126), we have that the energy of the system is 

1 � �1/3 
E = − G2M5π2f2 . (1.163)c gw2 

To frst order, its negative (energy loss) time derivative is given by the radiated power in Eq. (1.162). 
Making both expressions equal, � �1/3 � �10/3

G2M5π2 5ḟ  
gw c 32c GMcπfgw

= , (1.164)
3 fgw 5G c3 

we can fnd an expression for the frequency time variation to frst order, � �5/3
96 GMc

π8/3 f11/3ḟ  
gw =

5 c3 gw . (1.165) 

Integrating, its solution is given by � �3/8 � �−5/8
5 1 GMc

fgw(t) = , (1.166)
256 C − t c3 

with C an arbitrary function. Analyzing this expression, we can see it has a divergence precisely 
at time t = C. Physically speaking, the fact that the frequency fgw is inversely proportional to a 
power of the orbital radius, fgw ∝ R−3/2 (Eq. (1.152)) means that, as time passes, the frequency 
gets higher as the orbital radius gets smaller. Therefore, the instant at which fgw → ∞ corresponds 
to R → 0. Thus, we denote this time by tcoal, the time of coalescence, or merger. To be precise, both 
times should be the corresponding retarded times but, given the defnition in Eq. (1.85) and the fact 
that the distance to the source is assumed to be the same at both times, then tcoal,r − tr = tcoal − t. 
If we denote τ ≡ tcoal − t, which is the time to coalescence, we can express the previous equation as � �3/8 � �−5/8

1 5 1 GMc
fgw(τ ) = . (1.167)

π 256 τ c3 

In an observational context, this means that, if we are able to detect a gravitational wave of a 
certain frequency and somehow determine its distance (so that the chirp mass is not degenerate 
with it), we can compute the time to coalescence as � �−5/3

5 GMc 
)−8/3τ = (πfgw . (1.168)

256 c3 

We can express this equation in terms of more practical units. Using c = 2.998 × 105 km/s and 
2GM⊙/c2 = 2.95 km, we get � �5/3 � �8/3

8.71M⊙ 100 Hz 
τ ≈ 82 ms , (1.169)

Mc fgw 

where a chirp mass of 8.71M⊙ corresponds to two equal masses of 10M⊙. Of course, in a real event, 
we will not observe a divergence at this point. What happens is that our approximation to frst 
order is not valid anymore, entering in a regime of strong gravity in which, frst, post-Newtonian 
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approximations to higher orders have to be used and, later, even these approximations fail and one 
has to resort to Numerical Relativity. We will see more on NR in Chapter 6. 

As a result of the changes in frequency, the waveforms in Eqs. (1.156) and (1.157) will vary over 
time. Assuming a null global phase at the initial moment for simplicity, we can compute the new 
phase as an integral over time, Z t 

Φ(t) = dt ′ ωgw(t ′ ), (1.170) 
0 

which coincides with the Keplerian case for a constant ωgw. Using Eq. (1.167), we get that � �3/8 � �−5/8 � �−5/8
8τ5/8 

Φ(τ) = −2 +Φ0 = −2 τ 5/8 +Φ0, (1.171)
5 GMc 5GMc 

256 c3 5 c3 

where the minus sign comes from the defnition τ = tcoal − t and Φ0 = Φ(τ = 0) is the phase 
corresponding to the instant of coalescence. We cannot set it Φ0 to zero since we already imposed 
Φ(t = 0) = 0. Substituting this Φ(τ) in Eqs. (1.156) and (1.157) as well as fgw(τ) from Eq. (1.167), 
we get � �5/4 � �1/4 

" � �5/8 
# 

1 GMc 5 1 + cos2 θ c3τ 
h+(t) = cos −2 +Φ0 , (1.172)

r c2 cτ 2 5GMc " #� �5/4 � �1/4 � �5/8
1 GMc 5 c3τ 

h×(t) = cos θ sin −2 +Φ0 . (1.173)
r c2 cτ 5GMc 

1.3.4 Energy spectrum 

To fnish this section, we are interested in the energy spectrum in frequency for the circular orbits. 
This is a key quantity to compute the stochastic gravitational wave background from astrophysical 
events. In Chapter 2, we will see the main formalism for SGWBs and, in Chapter 5, we will compute 
the contribution from these CBCs, as well as from hyperbolic encounters (see Sec. 1.4). 

Stationary phase integration 

In order to get the energy spectrum, we frst need the Fourier transforms of Eqs. (1.172) and (1.173). 
We follow a similar procedure to the one in Maggiore’s book [39], which is based on an integration 
technique called stationary phase integration [52]. The main idea is that, if we have an integral like Z ∞ 

i[2πft−Φ(t)]I(f) = dtA(t)e , (1.174) 
−∞ 

then, the main contribution to the integral will be given by the point(s) that make the frst derivative 
of the phase ϕ(t) = 2πft − Φ(t) vanish. We call these points stationary points. 

Otherwise, in a certain point t1 such that ϕ̇(t1) ≠ 0, the frst order in the Taylor expansion will 
dominate the time evolution, ϕ(t) ≈ ϕ(t1) + ϕ̇(t1)(t − t1) and the integral will be dominated by 
the oscillatory behavior of a factor of the form eikt for a certain constant k. The integral will then 
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rapidly oscillate, with a higher frequency as it goes away from a stationary point, so that, if ln A(t) 
varies slower than the phase, the contributions from 2πft − Φ(t) ∈ [2nπ, (2n + 1)π] will (at least 
partially) compensate the ones from 2πft − Φ(t) ∈ [(2n + 1)π, (2n + 2)π]. This oscillatory behavior 
is the reason why the Fourier transform of 1, given by the Cauchy principal value or the integral 

−2πift of e over the real numbers for t, is δ(f), which is zero for all frequencies except for the one 
(f = 0) that makes the exponential non-oscillatory. 

For simplicity, we will assume there is just one stationary point, which we denote by t∗. We 
can then Taylor-expand the exponential phase around t∗ up to order (t − t∗)2 , thus neglecting the 
contributions to third order. The third-order contributions and beyond only start to be relevant 
far away from t∗, for which we assume that the oscillatory suppression already dominates, so we 
can safely ignore them. Thus, 

¨ ϕ(t) ≈ 2πft∗ − Φ(t∗) − 
1
Φ(t∗)(t − t∗)2 . (1.175)

2 

Assuming that the function log A(t) varies slower than ϕ(t) around t∗, we can approximate the 
integral as Z ∞ 

I(f) ≈ A(t∗)e i[2πft∗−Φ(t∗)] dte−
1 
2 i ̈  Φ(t∗)(t−t∗)

2 
(1.176). 

−∞ 

We can now use Z ∞ Z ∞ 
s s 

√ ¨ 2π 2πΦ(t∗)(t−t∗)
2 
= = 

2 
dte−

1 
2 idxe−x −iπ/4 (1.177)= π ⇒ e ,

¨ ¨ −∞ −∞ iΦ(t∗) Φ(t∗) 

so that our integral is s 
2π i[2πft∗ −Φ(t∗ )−π/4] (1.178)I(f) ≈ A(t∗) e
¨ . 
Φ(t∗) 

Fourier transform of polarization amplitudes 

Using the stationary phase integration method described above, we will compute the Fourier trans-
form of h+ and h× in Eqs. (1.172) and (1.173). Following our criterion in Subsec. 1.1.4 (Eq. (1.38)), 
we will only consider positive frequencies. Starting by h+, its Fourier transform is given by Z ∞ 

2πift h̃+(f) = dt h+(t)e 
−∞ Z ∞ � �5/4 � �1/4

1 GMc 5 1 + cos2 θ 2πift = dt cos Φ(tr)e , (1.179) 
−∞ r c2 c(tcoal,r − tr) 2 

with Φ defned in Eq. (1.170), so that Φ(˙ tr) = ωgw(tr). In this equation, the distinction between 
t and tr is now important. In previous equations, given that h+(t) only depends on the diference 
τ = tcoal,r − tr = tcoal,r − tr, we could use either t or tr indistinctly as long as the coalescence time 
was the corresponding non-retarded or retarded version. Now, however, the integrand has an extra 
factor dependent on t, to which this simplifcation cannot be applied. Additionally, the integral 
range should not be the full real numbers, but there should be a cutof at the time of coalescence. 
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Otherwise, the integrand will diverge. However, due to the integration method we will use, which 
approximates the integral by an expression in terms of local quantities, this will not be a problem. 

For simplicity, we defne � �5/4 � �1/4
1 GMc 5 1 + cos2 θ 

A(tr) = , (1.180)
r c2 c(tcoal,r − tr) 2 

so that Eq. (1.179) can be rewritten as Z ∞ 
2πifr/c 2πiftrh̃ 

+(f) = e dtr A(tr) cos Φ(tr)e , (1.181) 
−∞ 

where the extra factor e2πifr/c compensates the e2πifr/c factor inside the integral that has been 
reabsorbed to express the exponential in terms of tr. Now that everything is expressed in terms of 
tr, we drop the index to simplify the equations, but we should keep in mind that the t from now 
on has to be understood as a tr, until we fnish the integration and recover the notation. Thus, we 
can write Eq. (1.181) as Z ∞ h i1 2πifr/c iΦ(t) −iΦ(t) 2πift h̃+(f) = e dtA(t) e + e e , (1.182)

2 −∞ 

where we have expressed the cosine as a sum of imaginary exponentials. Of these two terms, the 
frst one has a phase without stationary points: since Φ(˙ t) = ωgw(t) > 0 and we are considering 
only positive frequencies, then the time derivative of this phase is ωgw(t)+2πf , which is positive for 
all times. Thus, this term will rapidly oscillate and can be neglected over the second one, which will 
have stationary points that dominate the integral. This second term has a phase with stationary 
point t∗ such that 

ωgw(t∗) = 2πf. (1.183) 

We also have that ln A(t) varies slower than the phase, given that it is a power law of exponent −1/4, 
2πifr/c/2, we so we are under the conditions to apply Eq. (1.178). Accounting for the extra factor e 

get s 
1 2π˜ i[2πf (t∗+r/c)−Φ(t∗)−π/4]h+(f) ≈ A(t∗) e . (1.184)
2 ¨ Φ(t∗) 

At this point, we can get back to the discussion on the subscript for tr. Both A and Φ only depend 
on τ , so we can work with this variable regardless of whether it is defned with both the usual and 
coalescence time in their retarded forms or not. The only place where this distinction matters is in 
the phase, where t∗ should be interpreted as retarded. Moreover, we can get rid of this quantity in 
favour of f using Eq. (1.183). For this purpose, we can use the expression for fgw(t) in Eq. (1.167), 
so that � �3/8 � �−5/8 � �−5/3

1 5 1 GMc 5 GMc −8/3
f = ⇒ τ∗ = (πf) , (1.185)

π 256 τ∗ c3 256 c3 

where t∗ is computed as tcoal,r − τ∗, given that it refers to a retarded time. Conveniently, the 
extra factor −r/c in tcoal,r will cancel out with the +r/c of the phase shown in Eq. (1.184), so the 
fnal expression will not depend on any retarded quantity. For Φ(t∗), we use that it is the integral 
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with respect to t of ωgw as shown in Eq. (1.170). Since ωgw ∝ τ −3/8 and we already defned the 
integration constant as Φ0, we have � �−5/3

8 1 GMc −8/3
Φ(t∗) = − 2πfτ∗ +Φ0 = −2πf (πf) +Φ0, (1.186)

5 32 c3 

which, aside from the global phase Φ0, is identical to the term coming from 2πft∗ but with a 
diferent numerical factor. As a result, the fnal phase in Eq. (1.184) is � �−5/3

π 3 GMc
Ψ+(f) = 2πftcoal − Φ0 − + πf . (1.187)

4 128 c3 

¨To compute Φ(t∗), we can use that it is the derivative with respect to t of ωgw and, again, that 
∝ τ −3/8ωgw , so that � �5/3

3 2πf 96 GMc 8/3¨ Φ(t∗) = = 2πf (πf)
8 τ∗ 5 c3 s r � �−5/6

2π 5 GMc 
π−4/3f−11/6⇒ = , (1.188)

¨ 96 c3Φ(t∗) 

while for A(t∗), we can simply substitute τ∗ in Eq. (1.185) into the expression for A(tr) in Eq. (1.180): � �5/3
4c GMc 1 + cos2 θ 

A(t∗) = (πf)2/3 . (1.189)
r c3 2 

Multiplying the two last equations by 1/2, we get the amplitude in Eq. (1.184), r � �5/6
1 5 c GMc 1 + cos2 θ 

. (1.190)
π2/3 c324 r 2 

Then, the Fourier transform of the plus polarization is fnally r � �5/6 iΨ+(f )1 5 c GMc 1 + cos2 θ e 
h̃ 
+(f) = 

f7/6 , (1.191)
π2/3 24 r c3 2 

with the phase Ψ+ defned in Eq. (1.187). 

Similarly, one can go through the same procedure to fnd h̃ ×. Aside from the diferent factors 
in the defnition of A(tr) coming from the diferent prefactors in Eqs. (1.172) and (1.173), the main 
diference is that the trigonometric function dependent on Φ is now a sine instead of a cosine. Thus, 
at the step (1.182), the negative exponential term, which is the only relevant one, would have an 
extra −1/i = i = eiπ/2 factor. This translates into an additional global phase π/2, but the rest of 
the computation is identical. Thus, we would get to the equation r � �5/6 iΨ× (f)1 5 c GMc e 

h̃ ×(f) = cos θ , (1.192)
π2/3 c3 f7/624 r 

with Ψ× = Ψ+ + π/2, that is, � �−5/3
π 3 GMc

Ψ×(f) = 2πftcoal,r − Φ0 + + πf . (1.193)
4 128 c3 
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Computation of energy spectrum 

Having computed the polarization amplitudes (1.191) and (1.192), we can use Eq. (1.83) to get 

dE 5 1 5/3 
f−1/3 = (GMc) g(θ), (1.194)

dfd2Ω 48 π1/3G 

with the same g(θ) as the one defned in Eq. (1.160). Using that its integral over the solid angle is 
16π/5, as stated in Eq. (1.161), then the energy spectrum is fnally 

π2/3dE 5/3 
f−1/3 = (GMc) , (1.195)

df 3G 

which is more commonly used as the energy derivative per logarithmic frequency bin, 

π2/3dE 5/3 
f2/3 = (GMc) . (1.196)

d(ln f) 3G 

The reason to use the frequency logarithm is that it is more natural when discussing in terms of 
diferent orders of magnitude. Furthermore, ln f is a dimensionless quantity, so the spectrum per 
logarithmic frequency bin has units of energy. In addition, it will also appear in this form when 
computing the SGWB from CBCs and hyperbolic encounters, as we will see in Chapter 5. 

Before fnishing this section, we should recall that these equations are only valid as a frst ap-
proach. We have been using Keplerian expressions for the relations between the orbital parameters, 
masses, etc., and computed the quadrupole radiated power using them but, in General Relativity, 
this radiated energy would have an impact on the spacetime geometry, which would, in turn, alter 
the GW energy again. This kind of efect is usually called backreaction. To be precise, one would 
have to take into account the variation of the orbital parameters with time, which is linked to the 
energy loss. This inter-dependence makes this problem difcult to treat, so that post-Newtonian 
approximations or Numerical Relativity have to be used. Nevertheless, when both masses are still 
far from merging, this frst-approach approximation is usually precise enough. The problem arises 
close to the merger and, of course, during it and the ringdown. 

In the next section, we will study what happens when the two bodies are not bound, but they 
have enough energy to escape from each other. 

1.4 Hyperbolic encounters 

In the Keplerian regime, it is known that the two-body problem describes a conical curve trajectory, 
which can either be an ellipse (e < 1, circumference if e = 0) if both masses are bound, as studied 
in the previous section, or a hyperbola (e > 1) if their kinetic energy is enough to overcome the 
gravitational pull. Between both cases, there is the parabolic limit for which e = 1, but this is more 
a theoretical limit than a practical case. 

The gravitational wave theory is better developed for the elliptic case given its practical appli-
cation: because their interaction is strong during a lot of orbits, the integrated sensitivity over time 
for this events is much larger. A hyperbolic interaction generates an energy burst when both masses 
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are closest to each other, but it disappears shortly after. In addition, the merger between two black 
holes or neutron stars generates a tremendous amount of energy, which is not really comparable to 
the one that they can release due to a hyperbolic interaction. 

Thus, it is no wonder that elliptic orbits, particularly CBCs, attract the main attention of 
scientists. Nevertheless, hyperbolic encounters should also be there and, when they are close enough 
(close hyperbolic encounters, CHEs), produce a non-negligible amount of energy, which should be 
detectable with either current or future detectors depending on the specifcs of the black hole and 
neutron star populations. Over the last years, the number of articles on hyperbolic encounters 
has increased [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], a growth we contributed to with our 
articles [1, 2]. It is therefore useful to make the analogous computations to the elliptic/circular 
case. 

1.4.1 Keplerian dynamics 

Again, we start by recalling the relevant equations of the hyperbolic motion within the Newtonian 
regime. As we can see in Fig. 1.5, the semi-major axis a represents the distance from the center 
of the hyperbola to its vertex, similar to the elliptic case. As in the elliptic case, c is the distance 
from the center to the focus and its ratio with a is the eccentricity, 

c 
e = . (1.197)

a 

One can also defne a “semi-minor axis” b which, as we can see in Fig. 1.5, it is related to a and 
e as p

2b2 = c 2 − a ⇒ b = a e2 − 1 (1.198) 

similarly to Eq. (1.115). This parameter measures the distance from the focus to the asymptote. 
In Physics, this is a relevant quantity in any scattering problem and it is more commonly referred 
to as impact parameter. As a particle tends to go towards t → ∞, the impact parameter represents 
the projection of the vector radius over the orthogonal axis to its velocity. Therefore, the angular 
momentum can be expressed as 

L = µbv∞, (1.199) 

with v∞ the limit of the particle speed at an infnite time. 

Similarly to Eq. (1.118), the orbital radius is now given by 

a(e2 − 1) 
r = , (1.200)

1 + e cos φ 

where the denominator is now only defned for 1 + e cos φ > 0 (or < 0, but not both due to the 
discontinuity at 0), so that � � 

1 
φ ∈ (−φ0, φ0) , φ ≡ arccos − , (1.201)

e 

where we take the arccosine image to range from 0 to π. This angle φ0 is also shown in Fig. 1.5. 
In Physics, most references [54, 65, 66, 67, 68] take a rotated reference system with an angle φ0, 
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Figure 1.5: Left branch of a hyperbola with its relevant points, distances and angles. C indicates 
the center of the hyperbola, A is the branch vertex and F its focus, which is taken as the origin 
of the coordinate system. P indicates a generic point in the left branch with radial coordinate r 
and phase φ. The semimajor axis a is also shown, representing the distance from the center to 
the vertex, as well as the distance c from the center to the focus. The dash-dotted lines represent 
the asymptotes of the hyperbola, while φ0 is the angle they form with the major axis. Finally, the 
impact parameter b indicates the distance from the focus to the asymptotes. 

so that one of the asymptote is at the x axis, showing that the particle originally has a horizontal 
velocity, which is then bent due to the interaction. Nevertheless, I decided to keep this orientation, 
more standard in Mathematics, due to its better analogy with the elliptic case and the better 
explainability of its geometrical elements. 

The periapsis is given by the value that maximizes the denominator, which is φ = 0, so that 

rp = a(e − 1), (1.202) 

while there is no apoapsis, since the distance can be arbitrarily large since the denominator can be 
arbitrarily close to zero. 

We now turn our attention to speeds. We denote v0 the speed at the periapsis. On the one 
hand, the angular momentum at infnity is given by µbv∞ (Eq. (1.199)) and, for the one at the 
periapsis, the speed and vector radius are orthogonal. The fact that both are equal indicates r 

e + 1 
bv∞ = a(e − 1)v0 ⇒ v0 = v∞, (1.203)

e − 1 

where we have used the equation for the periapsis radius in Eq. (1.202) and the expression of b from 
a and e in Eq. (1.198). 
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On the other hand, the gravitational energy vanishes at infnity. Making the energies at infnity 
and at the periapsis equal, we get � � 

1 1 GM e + 1 2GM GM2 2 2 2 v = v0 − ⇒ − 1 v = ⇒ v = , (1.204)∞ ∞ ∞2 2 a(e − 1) e − 1 a(e − 1) a 
so the velocities at infnity and the periapsis are, respectively, r r 

GM e + 1 GM 
v∞ = , v0 = . (1.205)

a e − 1 a 
Then, the angular momentum and energy can be computed as r pGM GM 

L = µb = µ GMa(e2 − 1), E = . (1.206)
a 2a 

From the expression of the energy (which is positive, unlike in the elliptic case), we can again 
compute an expression for the velocity (vis-viva equation) using the fact that it is a conserved 
quantity, � � 

2 12 v = GM + . (1.207)
r a 

As we can see, most of the expressions are essentially equal to the elliptic ones, only that with 
a 7→ −a. In practice, this can better be noticed in that all the factors 1 − e which appeared before 
in the elliptic case now appear as e − 1, being positive in either of the cases. 

1.4.2 Radiated power 

The radiated power can be obtained very similarly to the elliptic case. First, the quadrupole 
moment is     

cos2 φ sin φ cos φ 0 cos2 φ sin φ cos φ 0 
µa2(e2 − 1)2 

2Iij = µr sin φ cos φ sin2 φ 0 = sin φ cos φ sin2 φ 0 , (1.208)
(1 + e cos φ)2 

0 0 1 0 0 1 

which is very similar to the elliptic one, Eq. (1.130), but with 1 − e 7→ e − 1. From the conservation 
of angular momentum, we can also get an expression for φ̇ similar to (1.131), s 

φ̇ = 
L 

= 
GM 

(1 + e cos φ)2 . (1.209)
µr2 a3(e2 − 1)3 

We need this expression to compute the third derivative of the quadrupole moment in Eq. (1.208), 
which are s 

... G3M3 
I 11 = 2µ (1 + e cos φ)2[2 sin(2φ) + 3e sin φ cos 2 φ], (1.210)

a5(e2 − 1)5 s 
... G3M3 
I 22 = 2µ (1 + e cos φ)2[−2 sin(2φ) − e sin φ(1 + 3 cos2 φ)], (1.211)

a5(e2 − 1)5 s 
... G3M3 
I 12 = 2µ (1 + e cos φ)2[−2 cos(2φ) + e cos φ(1 − 3 cos2 φ)]. (1.212)

a5(e2 − 1)5 
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... ... ... 
Using the expression for Q ij Q ij in terms of I ij in Eq. (1.135), we get 

... ... ... ... ... ... ... ... ... ...1 2 2 2 2 1 
Q ij Q ij = I ij I ij − I = I 11 + I 22 + 2 I 12 − ( I 11 + I 22)2 

3 3 
8G3 µ2M3 

= (1 + e cos φ)4[12(1 + e cos φ)2 + e 2 sin2 φ], (1.213)
3 a5(e2 − 1)5 

so that, substituting this expression in Eq. (1.113), we get to the result 

8G4 µ2M3 
P (φ) = (1 + e cos φ)4[12(1 + e cos φ)2 + e 2 sin2 φ], (1.214)

15c5 a5(e2 − 1)5 

which exactly matches the one for the elliptic case in Eq. (1.137) except for the mentioned change 
in eccentricity. With the corresponding variable changes, it also matches other expressions in the 
literature [66], also when shown as functions of φ0 [67, 68]. 

Finally, in the elliptic case, we computed the power averaged in a period. In a hyperbolic orbit, 
there is no periodicity, so what we can do instead is computing the energy loss in the full orbit. For 
this purpose, we have to integrate over time or, equivalently, over φ if we divide by φ̇ in Eq. (1.209), 
using the chain rule. In this case, the integral range goes from φ → −φ0 to φ → φ0, corresponding 
to the past and future infnity, respectively, as explained in the previous subsection. We will denote 
φ0 = arccos(−1/e) Thus, Z ∞ Z φ0 dφ 

∆E = dtP (φ) = P (φ)
φ̇−∞ −φ0 Z 

8G7/2 2M5/2 φ0 

= 
µ 

dφ (1 + e cos φ)2[12(1 + e cos φ)2 + e 2 sin2 φ]. (1.215)
15c5 a7/2(e2 − 1)7/2 −φ0 

Solving this integral yields the result 

2G7/2 2M5/2 hp i 
∆E = 

µ
e2 − 1(602 + 673e 2) + 3(96 + 292e 2 + 37e 4)ϕ0 , (1.216)

45c5 a7/2(e2 − 1)7/2 

where the second term matches the expression for the elliptic case (1.141) except for the mentioned 
changes in the eccentricity and the presence of ϕ0. Using the relation between rp and a in Eq. (1.202), 
this expression is usually presented in the literature [54, 69, 68, 2] as 

8G7/2 2
2
2M1/2 

∆E = 
m1m f(e) (1.217)

15c5 
r 7/2 
p 

with � � �� � � ��p1 1 73 37 301 6732 4 2f(e) = 24 arccos − 1 + e + e + e2 − 1 + e , (1.218)
(e + 1)7/2 e 24 96 6 12 

which also matches similar expressions in the literature as functions of φ0 [68, 67]. 

We will use this equation later in Chapter 5. In this chapter, we compute the stochastic gravi-
tational wave backgrounds that these hyperbolic encounters produce under certain hypotheses. In 
the next section, these stochastic gravitational wave backgrounds will be introduced. 
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Chapter 1. Gravitational wave theory 

In order to compute the gravitational wave backgrounds from hyperbolic encounters, as in 
the circular case, we also need their energy spectrum, similar to Eq. (1.196) but for a hyperbolic 
trajectory. The computation in that case was somewhat tedious despite being in the simplifed case 
of circular motion. In the elliptic case or, in this case, the hyperbolic, the computation is even 
harder, so we just indicate the equation here and refer to [54, 68] for the derivation. Expressed as 
in our article [2], 

dE dE 4π G3m2 2 
= ν = 1m2 ν5Fe(ν) , (1.219)

d(ln f) dν 45 a2c5ν0 

with ν = 2πν0f , ν0 being a constant that makes ν dimensionless, r 
a3 

ν0 = , (1.220)
GM 

and with Fe(ν) a function of frequency and eccentricity that can be approximated at low eccentric-
ities as [54] 

12F (ν) −2ν ξ(y)ν5Fe(ν) ≃ e ,
π y (1 + y2)2 � �

6F (ν) = ν2 1 − y 2 − 3 ν y3 + 4 y 4 + 9 ν y5 + 6 ν2 y , 
−1ξ(y) = y − tan y , p 

y = e2 − 1 . (1.221) 

Taking the numerical constants (12/π) and the leading order of the frequency (ν2) outside Fe(ν), 
we can rewrite Eq. (1.219) in a more comparable way to the circular case, 

2dE 64π2 (GM)3/2µ 
= f2 ge(f), (1.222)

d(ln f) 15c5G a1/2 

where ge(f) = 1/y at the leading order in f and y. This expression is somewhat diferently to the 
one for the circular case in Eq. (1.196), mainly due to its frequency dependence. The hyperbolic 
case goes like f2 and the circular one, as f2/3 . In Chapter 5, we will see why this diference in the 
frequency dependence, coming from the diferent behaviors of the orbits, is something which will 
be of great observational interest, given that it allows to clearly distinguish both types of signal. 
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Chapter 2 

Stochastic gravitational wave 
backgrounds 

In the previous chapter, we have studied the general formalism for gravitational waves and focused 
on signals coming from 2-body interactions. In this chapter, we will instead focus on another type 
of signal which gives name to the title of the thesis: the stochastic gravitational wave background. 
This is a background signal consisting of the superposition of gravitational waves, which should be 
below the signals we observe with the current detectors, similar to the role of the cosmic microwave 
background for electromagnetic radiation. 

There are a lot of sources which generate a stochastic gravitational wave background, usually 
classifed in two types: astrophysical or cosmological. 

The astrophysical signals are the ones which undoubtedly exist, constituted by the superposition 
of weak gravitational waves coming from CBCs or other astrophysical sources. Those signals with 
a high enough amplitude stand out above the background and noise and we can observe them with 
current or future detectors. However, similar to these ones, there should be many more with smaller 
amplitudes which fall below the noise and, even with very precise detectors, the fact that they are so 
many would make it impossible to resolve them. Thus, this superposition of unresolved, incoherent 
gravitational waves will constitute one of the contributions to the SGWB. In fact, it is expected to 
be the dominant one, at least at LVK-like frequencies [28, 29]. 

In addition to the contribution from CBCs, there are other astrophysical sources such as hyper-
bolic encounters (see Chapter 5), supernovae [70, 71, 72, 73] or Galactic binaries [74, 75]. 

The cosmological signals are more difcult to be detected, given that they usually have smaller 
amplitudes. Some examples include infation [76, 77], cosmic strings [78, 79] or phase transitions [80], 
as Fig. 2.1 shows, as well as axion-gauge infation [81, 82, 83, 84, 85, 86, 87] and scalar-induced 
gravitational waves [88, 89, 90, 91, 92, 93, 94, 95, 96, 97] (see also Sec. 2.5). In this fgure, we can 
also see that the cosmological sources spread over all the frequency spectrum, which is also true for 
the astrophysical ones. In Chapter 10, we will elaborate a bit more on the diferent constraining 
methods. 

43 



Chapter 2. Stochastic gravitational wave backgrounds 

Ω
G
W

10-11 10-6 0.1

10-15

10-10

10-5

1

R2 inflation

Stiff EOSCBC

Phase
transition

Cosmic strings

CMB

Astrometry

LiteBIRD

current PTA

SKA

LISA

LVK O3

design

ET

DECIGO

BBN

f [Hz]

Figure 2.1: SGWB spectra for several cosmological models (colored solid curves) compared to 
current upper limits (shaded in gray) and expected sensitivities of future experiments (black dashed 
lines), taken from [98]. The fgure includes signals from infation (R2 infation [76]) along with 
their modifcation by a stif equation of state [77], but one should note that the amplitude and 
spectral behavior of these signals heavily depend on the model parameters. The GW spectrum 
of cosmic string loops [78, 79] is also presented, as well as the electroweak phase transition [80]. 
Current constraints include the Advanced-LIGO O3 upper limit [28], constraints based on Big Bang 
nucleosynthesis and CMB observations [99], pulsar timing, the astrometric measurements by Gaia 
explained in Chapter 10, CMB temperature and polarization observations [100], and pulsar timing 
arrays [11]. Future expected sensitivities include the fnal sensitivity of Advanced-LIGO [101], 
ET [102], DECIGO [23], LISA [103], SKA [104], and LiteBIRD [105]. An observing period of 
3 years is assumed for interferometer experiments and 20 years for SKA. The blue-shaded band 
indicates the expected amplitude of the SGWB due to the cosmic population of CBCs, based 
on the observed individual events in the O3 catalog [106], while the expected spectral amplitude 
is extrapolated to the LISA frequency band assuming the f2/3 dependence of the inspiral phase 
(Eq. (1.196)). However, the lower frequencies could be modifed by the efects of eccentricity and 
precession at the time of binary formation [107, 108]. 

We will begin this chapter by computing the general equations to work with a SGWB, where 
some useful references include [39, 109, 110, 111, 112]. 
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2.1. Stochastic gravitational wave background formalism 

2.1 Stochastic gravitational wave background formalism 

We start from the general decomposition of a gravitational wave in diferent propagation directions, 
frequencies and polarizations in Eq. (1.38), which we rewrite here for convenience: Z ∞ ZX 

A −2πif (t−n⃗·x⃗/c)hij (t, ⃗x) = df d2Ω h̃ 
A(f, ⃗n)eij (n⃗)e , (2.1) 

−∞A=+,× 

The word stochastic is used to describe the fact that the amplitudes h̃ 
A(f, ⃗n) are random vari-

ables. Therefore, we can characterize them by their ensemble averages, for which we use temporal 
averages, similarly to other felds in Cosmology. Statistically speaking, under the assumptions which 
we will discuss below, the quantity in Eq. (2.1) averages out to zero, so the one-point correlator 
⟨h̃ 

A(f, ⃗n)⟩ is also zero for all frequencies. 

We are therefore interested in characterizing the correlators ⟨h̃∗ (f, ⃗n)h̃ 
A ′ (f ′ , ⃗n ′ )⟩. If we assumeA 

that the background is Gaussian, these are the only useful correlators, given that any other N-point 
correlator can be reduced to it. This assumption is justifed by the Central Limit Theorem [113] 
for unresolved sources, but it fails for other sources such as axion-gauge infation [81, 82, 83, 84, 
85, 86, 87]. For simplicity in the exposition, however, we will keep this assumption, as well as 
make other ones which are standard in SGWB theory. These can generally be relaxed and obtain 
diferent formalisms, such as assuming the presence of anisotropies. Nevertheless, we follow these 
assumptions as a frst step, for simplicity: 

• Stationarity: we assume that the correlators will only depend on time diferences t − t ′ , but 
not on the absolute values of time. This means that, even if the background has a certain 
time dependence, it is only local rather than something on larger time scales. In practice, this 
is needed so that we can assume ⟨h̃∗ (f, ⃗n)h̃ 

A ′ (f ′ , ⃗n ′ )⟩ ∝ δ(f − f ′ ).A 

• No polarization: we assume that the background is unpolarized, so that 
⟨h̃∗ (f, ⃗n)h̃ 

A ′ (f ′ , ⃗n ′ )⟩ ∝ δAA ′ . Again, some sources such as axion-gauge infation doA 
not satisfy this, producing a chiral background [114]. 

• Isotropy: similarly to the CMB, we assume the background is statistically isotropic at frst 
order, so that ⟨h̃∗ (f, ⃗n)h̃ 

A ′ (f ′ , ⃗n ′ )⟩ ∝ δ2(n⃗, ⃗n ′ ), which is a Dirac delta over the two-sphere, A 

δ2(n⃗, ⃗n ′ ) = δ(ϕ − ϕ ′ )δ(cos θ − cos θ ′ ). (2.2) 

Of course, just as the CMB, the real background will have anisotropies. For the treatment of 
an anisotropic SGWB, see Chapter 3. 

Under these assumptions, the two-point correlator can be expressed as 

δ2(n⃗, ⃗n ′ ) 1 ⟨h̃ ∗ 
A(f, ⃗n)h̃ 

A ′ (f ′ , ⃗n ′ )⟩ = δ(f − f ′ ) δAA ′ Sh(f), (2.3)
4π 2 

for a certain function Sh(f) which is called power spectral density (PSD). The factor 1/2 is chosen 
to be there when the frequency integral covers the full real numbers, while it should be removed 
if we integrate just the positive range f > 0. Additionally, the 4π is a normalization factor which 
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Chapter 2. Stochastic gravitational wave backgrounds 

′compensates for the one arising from the integral over the spheres for n⃗ and n⃗ . Using this expression 
for the second correlator of hij in Eq. (2.1), we get Z ∞ 

⟨hij (t, ⃗x)hij (t, ⃗x)⟩ = 4 dfSh(f), (2.4) 
0 

where the factor 4 comes from the contraction of the polarization tensors defned in Eq. (1.35): X 
+ + × × A A eij eij = |u⃗|4 + |v⃗|4 = 2, eij eij = 2|u⃗|2|v⃗|2 = 2 ⇒ eij eij = 4. (2.5) 

A=+,× 

We also note that this is the step where we lose the position dependence. In Eq. (2.4), both 
hij (t, ⃗x) depend on the position only through their exponentials. Given that one of them must be 
conjugate, both exponentials cancel out and the result is position-independent, as a background 
should be. 

From Eq. (1.68), we also know that the energy density of gravitational waves is related to the 
strain amplitude as 

2c 
hTT ḣ TT ρgw = ⟨ ̇  ⟩. (2.6)ij ij32πG 

Substituting hij in Eq. (2.1) into this equation, we get 

c2 Z ∞ πc2 Z ∞ 
ρgw = df(2πf)2Sh(f) = dff2Sh(f). (2.7)

8πG 2G1 1 

In Cosmology, the common practice is to indicate these densities with the density parameter, 

ρgw
Ωgw = , (2.8)

ρc 

where ρc is the critical density, defned as 

2H23c 0ρc = , (2.9)
8πG 

with H0 the Hubble constant. Throughout this thesis, we will, in general, use its normalization 

H0 = 70 h70 km/s/Mpc. (2.10) 

Given that the contributions to the density come from diferent frequencies spread over several 
orders of magnitude, Z ∞ dρgw

ρgw = d(ln f) , (2.11)
d(ln f)1 

we are interested in the energy density parameter as a function of frequency, so we defne 

1 dρgw
Ωgw(f) = , (2.12)

ρc d(ln f) 
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2.2. Detection of gravitational waves 

where the dependence indication (f) will mark if we are referring to the frst defnition (2.8) or the 
second one (2.12), in an abuse of notation which is common practice in the literature. By defnition, 
both are then related as Z ∞ 

Ωgw = d(ln f)Ωgw(f). (2.13) 
1 

From the expression for ρgw as a function of Sh(f) in Eq. (2.7) and Eq. (2.11), we get 

dρgw πc2 
= f3Sh(f), (2.14)

d(ln f) 2G 

so that, from the defnition of Ωgw(f) in Eq. (2.12) and the critical density ρc in Eq. (2.9), we have 

4π2 
Ωgw(f) = f3Sh(f). (2.15)

3H0
2 

2.2 Detection of gravitational waves 

Up until now, we have studied gravitational waves in space, but at the end of this chapter and 
the next one, we want to do data analysis with actual data. Thus, we frst need to know how the 
picture changes when we get the observational data with a detector. 

Current gravitational-wave detectors like LIGO [6], Virgo [12] or KAGRA [13] consist on a 
Michelson interferometer with two orthogonal arms. In the future, detectors like LISA [20] and 
Cosmic Explorer [18] will have diferent confgurations, while it is still unclear whether Einstein 
Telescope [17] will have a similar design to the current detectors or not. If a gravitational wave 
goes through a detector, propagating orthogonally to the plane defned by its arms, their lengths 
are contracted or expanded according to the wave polarization, following the patterns in Fig. 1.1. 
This tiny length change makes the optical path of both arms difer, so that these slight variations 
of the system confguration can be detected through interferometry. 

In this section, we will see how the detector’s response changes for a general orientation and 
how we can apply the output signal to derive the properties of a stochastic gravitational wave 
background. Useful references for the frst Subsec. 2.2.1 include [39, 112, 115], while for the data 
analysis part in Subsec. 2.2.2, one can refer to [73, 116, 28, 112, 117, 110]. 

2.2.1 Detector pattern functions 

Whenever a gravitational wave goes through a detector, which we will denote with an index I, the 
output signal it will produce cannot be the gravitational wave itself, which is a tensor. For now, we 
will assume there is no noise and the detector is perfectly able to react to all frequencies equally, 
with zero loss. Then, its output signal will be given by 

hI (t) = DI
ij hij (t), (2.16) 

where Dij is the detector tensor, characterizing the efect that a gravitational wave with a given I 
propagation direction and polarization will have in the detector, due to its orientation and geometry. 
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We consider a gravitational wave propagating in direction n⃗ given by (θ, ϕ) with frequency f and 
arbitrary polarization, X 

Ahij (t) = hA(t)eij (n⃗), (2.17) 
A=+,× 

where we drop the spatial dependence for now, assuming that all the detector can be assigned 
roughly the same position x⃗ = 0. Then, the output signal in Eq. (2.16) can be expressed as 

hI (t) = h+(t)F +(θ, ϕ) + h×(t)F ×(θ, ϕ), (2.18)I I 

where we have defned the detector pattern functions, or antenna patterns F A(n⃗), asI 

ij AFI
A(n⃗) = DI eij (n⃗). (2.19) 

We can characterize them by frst studying a simpler case, which is the one in which the gravi-
tational wave propagates in the orthogonal direction to the detector plane. In this case, if we defne 
the polarization h+ so that its base directions coincide with the arms, the detector will be fully 
able to measure h+, but it will not react to the polarization h×. Thus, the response function in 
this case is F + = 1, F × = 0. In other words, for a detector whose base directions are û and v̂, theI I 
detection tensor is given by �1ij = u i i juj − v v , (2.20)DI 2 
so that F + = DI

ij eA = δA+ , with the defnitions in Eq. (1.35). By knowing this, we can computeI ij 
the response function for an arbitrary direction with an auxiliary rotated reference system, similar 
to how we did in Subsec. 1.2.3. 

Again, the reference system S ′ will be defned by the rotation in Eq. (1.101), where the prop-
′agation direction n⃗ of our gravitational wave will coincide with ẑ  . Once again, we could defne a 

third rotation around n⃗ which alters the polarization defnitions, but we disregard this degree of 
′freedom. In S ′ , since the wave propagates in the direction ẑ  , then hij 

′ is simply 

h ′ ij = 

 h ′ h ′ + × 0 
h ′ −h ′ × + 0 

 . (2.21) 
0 0 0 

ij 

We now have to evaluate how this perturbation is observed in S, for which we apply Eq. (1.104). 
′Note that, while in that case, we wanted to get I from I, now we want the opposite: obtaining hij 

from h ′ ij , so we use the frst equation in Eq. (1.104) rather than the second. Additionally, from that 
equation we will obtain hij in an arbitrary gauge, for which we will then need to project to the TT 
gauge. This projection means setting all hi3 components to zero and subtracting the trace, so that 

1 
= hTTh+ 11 = (h11 − h12). (2.22)

2 

Thus, it is enough to compute h11 and h22 from Eq. (1.104), which gives 

h11 = h+ 
′ (cos2 θ cos 2 ϕ − sin2 ϕ) − h ′× cos θ sin(2ϕ), (2.23) 

h22 = h×
′ (cos2 θ sin2 ϕ − cos 2 ϕ) + h ′× cos θ sin(2ϕ), (2.24) 
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2.2. Detection of gravitational waves 

where the second sign of both equations difers from [39] due to the diferent defnitions for ϕ, where 
a transformation ϕ 7→ −ϕ converts from one system to the other. Therefore, the plus polarization 
(which, as we saw, is the only one that the detector lets pass) is 

1 1 
h+ = (h11 − h12) = h ′ (1 + cos 2 θ) cos(2ϕ) − h×

′ cos θ sin(2ϕ), (2.25)
2 2 + 

where the minus sign can actually be absorbed by redefning ϕ 7→ −ϕ. From this equation and 
Eq. (2.18), we can read the antenna patterns as the coefcients for h+ 

′ and h×
′ , 

F +(θ, ϕ) = 
1
(1 + cos 2 θ) cos(2ϕ), (2.26)I 2 

F ×(θ, ϕ) = − cos θ sin(2ϕ). (2.27)I 

We can see from this equation that the detector maximally detects gravitational waves in some 
directions and polarizations, while it completely misses them in other cases. In particular, for h×, 
the signals have maximal amplitude (either positive or negative) when θ = 0, π (ϕ in this case 
represents the extra rotation we disregard) and the detector is blind to them for ϕ = π/4 + nπ/2, 
which is also true for h× in the particular case θ = π/2. These blind spots are completely reasonable 
when one takes into account the efect outlined in Fig. 1.1, given that they coincide with a null 
efect on both arms or the exact same, non-null efect on both of them, so that the diference in 
optical length between them is null. 

Finally, we should note that the antenna patterns just characterize the signal the detector 
observes due to its relative position and confguration. However, even neglecting the noise, its 
output signal will not be directly given by this hI (t), which is going through a complex system that 
produces the output. This process will be more sensitive to certain frequencies and not to others at 
all, which is something that is characterized by a transfer function T (f). Therefore, as a function 
of frequency, the output we will observe is given by 

h̃out(f) = T (f)h̃ 
I (f), (2.28)I 

plus, of course, the noise going into the detector from any possible source able to cause a displace-
ment on the interferometer arms. 

2.2.2 SGWB data analysis 

For a SGWB, the picture outlined in Sec. 2.1 changes in the context of a detector. We have seen 
how a detector measures a gravitational wave propagating in direction n⃗ with frequency f is given 
by Eq. (2.18). Thus, the decomposition in Eq. (2.1) for a generic gravitational wave is now Z ZX ∞ 

−2πif (t−n⃗·x⃗I /c)hI (t) = df d2Ω h̃ 
A(f, ⃗n)F A(n⃗)e , (2.29)I 

−∞A=+,× 

where x⃗I is the position of the I detector. The main change with respect to Eq. (2.1) is that, under 
Athe contraction with the detector tensor Dij , the polarization basis tensors eij (n⃗) must be replaced 

by the detector pattern functions FA(n⃗). 
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However, there is one more important change when dealing with real data: noise. In particular, 
in a gravitational-wave detector, the output is mostly dominated by noise. Therefore, if we divide 
the detector signal sI (t) as the sum of the gravitational wave strain hI (t) and a noise component 
nI (t)

1 , 
sI (t) = hI (t) + nI (t), ⟨nI (t)nI (t)⟩ ≫ ⟨hI (t)hI (t)⟩, (2.30) 

then the noise will dominate the signal two-point correlator. We call this regime the weak-signal 
limit. In order to avoid this, what we do is correlating the signal obtained by two diferent detectors, 
where we will denote the second one by J ̸= I. The idea is that the noise is completely uncorrelated 
between two diferent detectors, as well as uncorrelated from any of the GW signals hI . In practice, 
there are some sources of noise which are correlated, the most relevant of which are the Schumann 
resonances in the Earth’s magnetic feld, caused by lightning strikes and covering thousands of 
kilometers [118, 119, 120, 121, 112]. Nevertheless, for simplicity in the explanation, we will keep the 
assumption of no correlation between detectors, while we refer to [112] for additional information 
on correlated sources and to [118, 119, 120, 121] for more details of Schumann resonances. Under 
this assumption, the following approximation holds: 

⟨sI (t)sJ (t)⟩ = ⟨hI (t)hJ (t)⟩ + ⟨hI (t)nJ (t)⟩ + ⟨nI (t)hJ (t)⟩ + ⟨nI (t)nJ (t)⟩ ≈ ⟨hI (t)hJ (t)⟩, (2.31) 

so we will use ⟨sI (t)sJ (t)⟩ and ⟨hI (t)hJ (t)⟩ interchangeably. 

When correlating diferent detectors, Eq. (2.3) still holds, since it only depends on h̃ 
A, but the 

Aeij contraction in Eq. (2.5) must now be replaced by the contraction between the detector pattern 
functions FI

A(n⃗). Thus, Eq. (2.4) now takes the form Z ZX ∞ 
2πifn⃗·(x⃗I −x⃗J )/c)⟨sI (t)sJ (t)⟩ =

1 
df d2Ω F A(n⃗)FJ

A(n⃗)Sh(f)e . (2.32)I4π 0A=+,× 

When we were correlating a signal with itself, this exponential factor dependent on the position 
did not appear, since both positions were the same and the factor cancelled out. Now, however, 
this factor cannot be simplifed. Related to it, it is useful to defne the so-called overlap reduction 
function (ORF) as ZX5 

d2Ω F A n)F A 2πifn⃗·(x⃗I −x⃗J )/cγIJ (f) ≡ I (⃗ J (n⃗)Sh(f)e , (2.33)
8π 

A=+,× 

where the normalization factor 5/(8π) is chosen so that the self-ORF γII (f) = 1. This factor can 
easily be computed by using the explicit form of F A in Eqs. (2.26) and (2.27), so thatI Z Z π Z 2π � �� � 1 

d2Ω (F +)2 + (F ×)2 = dθ dϕ sin θ (1 + cos 2 θ)2 cos 2(2ϕ) + cos 2 θ sin2(2ϕ)I I 
0� 0 � 4 
14 2 8π 

= π + = . (2.34)
15 3 5 

1In this thesis, we keep the name strain for h in the context of a detector, while its sum with the noise is called 
signal. However, in other texts, signal is used to refer to the real signal coming from GW, as opposed to the noise, 
while strain is used for its sum with the noise. In any case, any possible confusion is cleared up with the variable 
names s, h and n, such that s = h + n (Eq. (2.30)). 
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2.2. Detection of gravitational waves 

Therefore, Eq. (2.32) can now be written as Z ∞2 ⟨sI (t)sJ (t)⟩ = df γIJ (f)Sh(f). (2.35)
5 0 

Additionally, using the relation between Sh(f) and Ωgw in Eq. (2.15), we get Z ∞3H0
2 Ωgw(f)⟨sI (t)sJ (t)⟩ = df γIJ (f) . (2.36)

10π2
0 f3 

We usually work with time segments of duration T , so that, for the time segment centered in t, 
we defne Z t+T/2 

YIJ (t) = dt sI (t)sJ (t). (2.37) 
t−T/2 

In this text, we will assume these time segments do not overlap, that is, that the distance between 
one center t and the following one is exactly T . In the real analysis by LVK, these centers are 
separated by T/2, so their frst half completely overlaps with the last half of the previous segment, 
and similarly for the second half with the next segment. For details of how to deal with this analysis, 
see [110]. 

Using Eq. (2.36), we obtain that the expected value for YIJ (t) in Eq. (2.37) is Z Zt+T/2 ∞3H0
2 Ωgw(f)⟨YIJ (t)⟩ = dt ⟨sI (t)sJ (t)⟩ = T df γIJ (f)

10π2 f3 
t−T/2 0Z ∞ 

≡ T df γIJ (f)S0(f)Ωgw(f), (2.38) 
0 

where we have defned 
3H0

2 
S0(f) = , (2.39)

10π2f3 

matching the notation in [110]. This way, YIJ (t) constitutes an unbiased estimator for the right-
hand side quantity in Eq. (2.38). 

We now divide the integral frequency range into a discrete range of frequencies with resolution 
∆f , in order to get an estimate for Ωgw(f) in each of these frequencies. This is called the narrow-
band analysis. In order to be coherent with the resolutions, we note that T imposes a minimum 
characterized frequency, fmin = 1/T . Therefore, we must choose T and ∆f so that they satisfy 
T ∆f > T × 1/T = 1. In LVK, we usually work with T = 192 s, which corresponds to a frequency 
of 0.0052 Hz, while the typical resolution is 1/32 ≈ 0.031 Hz. Thus, T ∆f = 6 > 1, so the analysis 
is coherent. 

For the narrowband analysis, we have to take Eq. (2.38) and divide into frequency bins. For 
this purpose, if is useful to go to Fourier space, but note that the time integration only goes from 
t − T/2 to t + T/2. Thus, we defne the short-time Fourier transform of sI (t) over a period T as Z t+T/2 

2πift ′ 
s̃I (f, t) = dt ′ sI (t ′ )e , (2.40) 

t−T/2 
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where the t does not indicate a real dependence, but rather, it can be thought of as a tag which 
points to the time segment of length T that has been used to compute s̃I (f, t). 

Short-time Fourier transforms essentially behave as usual Fourier transforms with some proper-
ties slightly changed. One of them is the associated Dirac delta function, which is now Z t+T/2 

−2πi(f −f )tδT (f − f ′ ) = e 
′ 

= T sinc[πT (f − f ′ )], (2.41) 
t−T/2 

with sinc(x) = sin(x)/x for x ̸= 0 and sinc(0) = 1 for continuity in all real numbers. In particular, 
we notice that δT (0) = T , which is a fnite value. As T → ∞, we would recover the standard Dirac 
delta function, just as the short-time Fourier transform tends to the standard one. 

This way, YIJ (t) in Eq. (2.37) can be expressed as Z ∞ Z ∞ Z t+T /2 
′ 

YIJ (t) = df ′ df dt e2πi(f −f )t ̃ ∗ sI (f, t)s̃J (f, t) 
−∞Z ∞ 

−∞Z ∞ 
t−T /2 

= df ∗ ′ df ′ δT (f − f ′ )s̃I (f, t)s̃J (f , t) (2.42) 
−∞Z ∞ 

−∞ Z ∞ 
= ∗ df ̃sI (f, t)s̃J (f, t) = 2 ∗ df ̃sI (f, t)s̃J (f, t), (2.43) 

−∞ 0 

where the δT (f − f ′ ) has been used as a standard Dirac delta. If we discretize in frequency bins of 
resolution ∆f , using Eq. (2.43), Eq. (2.38) can be expressed as X X ∗ 2∆f ⟨s̃I (f, t)s̃J (f, t)⟩ = T ∆f γIJ (f)S0(f)Ωgw(f). (2.44) 

f f 

Making the contributions per frequency bin at both sides equal and solving for Ωgw(f), we get its 
narrowband estimate for each time segment and baseline, 

∗2 Re[s̃ (f, t)s̃J (f, t)]
Ω̂ IJ I(f, t) = , (2.45)gw T γIJ (f)S0(f) 

where the hat denotes estimator and we take the real part to avoid complex-valued estimators. 
Based on this equation, we defne the cross-spectral density (CSD) [73, 116, 117, 28, 110] CIJ as 

2 ∗ CIJ (f, t) = s̃I (f, t)s̃J (f, t), (2.46)
T 

so that Eq. (2.45) can fnally be expressed as 

Re[CIJ (f, t)]
ΩIJ ˆ (f, t) = . (2.47)gw γIJ (f)S0(f) 

It is also important to get an associated error for these estimates. We frst start by estimating the 
variance for YIJ (t), in the form of Eq. (2.43). Given that its mean involves a two-point correlator, 
the variance σ2 (t) = ⟨YIJ (t)

2⟩ − ⟨YIJ (t)⟩2 will involve four-point correlators. In the weak-signal Y,IJ 
2limit, given by the condition ⟨h2⟩ ≪ ⟨n ⟩, there will be terms in which the signal from a detectorI I 
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2 2combines with itself, getting that ⟨s ⟩ ≈ ⟨n ⟩. Thus, these terms will dominate the ones proportional I I 
to h2 , particularly ⟨YIJ (t)⟩2 , so that we can assume σ2 (t) ≈ ⟨YIJ (t)

2⟩. We can also substituteY,IJ 
all sI by the noise nI , so that Z Z Z Z∞ ∞ ∞ ∞ 

′ ′′ ′′′ δT (f − f ′′ ′′′ )σ2 df df df df ′ )δT (f − f (2.48)Y,IJ (t) ≈ 
−∞ −∞ −∞ −∞ 

∗ ′ ′′ ∗ ′′′ × ⟨ñI (f, t) ñJ (f , t) ñI (f , t) ñJ (f , t)⟩. 

Assuming that the noise is uncorrelated between diferent detectors, we can express 

∗ ′ ′′ ∗ ′′′ ∗ ′ ′′ ∗ ′′′ ⟨ñI (f, t) ñJ (f , t) ñI (f , t) ñJ (f , t)⟩ = ⟨ñI (f, t)ñJ (f , t)⟩ ⟨ñI (f , t) ñJ (f , t)⟩ 
∗ ′′ ′ ∗ ′′′ + ⟨ñI (f, t) ñI (f , t)⟩ ⟨ñJ (f , t) ñJ (f , t)⟩ 
∗ ∗ ′′′ ′ ′′ + ⟨ñI (f, t) ñJ (f , t)⟩ ⟨ñJ (f , t) ñI (f , t)⟩ 

∗ ′′ ′ ∗ ′′′ ≈⟨ñI (f, t) ñI (f , t)⟩ ⟨ñJ (f , t) ñJ (f , t)⟩. (2.49) 

′ ′′′Substituting this into Eq. (2.48) and integrating over f and f using the delta functions, Z ∞ Z ∞ 
σ2 ′′ ⟨˜ ∗ ′′ ∗ ′′ )⟩.Y,IJ (t) ≈ df df nI (f, t) ñI (f , t)⟩ ⟨ñJ (f, t) ñJ (f (2.50) 

−∞ −∞ 

At this point, similar to Eq. (2.3), we defne the one-sided power spectral density PI (f) as 

′ )⟩ = 1 ′ )PI (f) ′ )⟩) ,⟨ñI (f) ñI (f δ(f − f (= ⟨s̃I (f) s̃I (f (2.51)
2 

where the tilde indicates a standard Fourier transform in this case, and the last equality is a 
consequence of the weak-signal limit. The short-time Fourier transforms satisfy a similar relation, 

′ ⟨ñI (f, t) ñI (f , t)⟩ = 1 
δT (f − f ′ )PI (f), (2.52)

2 

where these PI (f) can be estimated for each time segment as 

2 ∗ PI (f, t) = sI (f, t)sI (f, t), (2.53)
T 

similar to how we did for Ωgw(f) in Eq. (2.47). From the previous expression, we can see that 
PI (f, t) is actually just CIJ (f, t) in Eq. (2.46) for the particular case I = J . Now, substituting 
Eq. (2.52) into Eq. (2.50), we get Z Z Z∞ ∞ ∞ 

σ2 1 ′′ δ2 ′′ )PI (f)PJ (f ′′ ) = 
1 

df df T (f − f dfδT (0)PI (f)PJ (f)Y,IJ (t) ≈ 
4 4−∞ −∞ −∞Z ∞T 

= dfPI (f)PJ (f), (2.54)
2 0 

′′where we have used one of the δT (f − f ′′ ) as a standard delta function, for the integration in f , 
and the other one has been evaluated at zero. This expression coincides with the expression in [73], 
and we can see that this result, which is an expected value, is independent of t. In order to get our 
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estimate for σ2 
Y,IJ , we only have to add the time dependence due to estimating PI (f) and PJ (f) 

via Eq. (2.53). Thus, Z ∞ 
σ2ˆY,IJ (t) = 

T 
dfPI (f, t)PJ (f, t), (2.55)

2 0 

σ2 (t)⟩ = σ2which satisfes ⟨ˆY,IJ (t). This is the fnal expression we were looking for in the case ofY,IJ 
YIJ (t). 

For the narrowband estimator for Ωgw(f), frst we write, from Eq. (2.38) and the discretization 
in later equations, X 

ΩIJ YIJ (t) = T ∆f γIJ (f)S0(f)ˆ 
gw(f, t). (2.56) 

f 

Therefore, its variance satisfes XX 
ΩIJ ΩIJ ′ σ2 = ⟨YIJ (t)

2⟩ = T 2(∆f)2 ′ )S0(f ′ )⟨ˆ (f, t)ˆ (f , t)⟩Y,IJ δff ′ γIJ (f)S0(f)γIJ (f gw gw 
f f ′ X 

γ2 ΩIJ = T 2(∆f)2 
IJ (f)S0

2(f)⟨(ˆ (f, t))2⟩gw 
fX 

= T 2(∆f)2 γ2
0 (f)σ

2 (2.57)IJ (f)S
2 

IJ (f), 
f 

ΩIJ where we denote the variance of the ˆ 
gw IJ (f).(f, t) estimate by σ2 If we now make this equation 

equal to the discretized version of Eq. (2.54), 

X X 
T 2(∆f)2 γ2

0 (f)σ
2 T 

∆f PI (f)PJ (f), (2.58)IJ (f)S
2 

IJ (f) = 
2 

f f 

we get, solving for σ2 (f),IJ 
1 PI (f)PJ (f)

σ2 
IJ (f) = , (2.59)

2T ∆f γ2 (f)S2(f)IJ 0 

which coincides with the expressions in the literature [116, 122, 110]. Thus, the corresponding 
estimate is 

1 PI (f, t)PJ (f, t)
σ̂2 ,IJ (f, t) = (2.60)

2T ∆f γ2 (f)S2(f)IJ 0 

which is our fnal result for the narrow-band analysis. 

With this formalism, we have an independent estimator for Ωgw(f) per time segment, which is 
useful to see their variability and address possible problems. In particular, this helps to remove 
the worst-quality time segments, improving the quality of a combined estimator for all time data. 
The estimation of these variances is therefore essential, given that they can be used to weigh how 
much each time segment should contribute. The usual criterion is to do an inverse-noise-weighted 
average, like P 

ΩIJ ˆ (f, t)σ−2(f, t)
Ω̂IJ t gw IJ 

gw(f) = P 
σ−2 , (2.61)

(f, t)t IJ 
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with the estimated uncertainty given by !−1X 
σ̂2 σ−2(f, t) . (2.62)IJ (f) = IJ 

t 

These estimates for Ωgw and σ are used to do parameter estimation and model selection, as we 
will see in Secs. 2.4 and 2.5, as well as in Chapter 3. Before going into these topics, however, there 
is another type of estimate we can build with the ones defned up to now. 

ΩIJ If we applied a similar average for ˆ (f) and its variance over frequency, we would get a joint gw 
estimate for the amplitude of a fat Ωgw(f). We can generalize this idea for a power-law functional 
form for Ωgw(f), � �α 

Ωgw(f) = Ωα 
f

, (2.63)
fref 

where Ωα = Ωgw(f = fref ) for a certain reference frequency fref . If we defne � �α
f 

Href (f) = , (2.64)
fref 

then, an estimator for Ωα is given by P 
ΩIJ σ−2 

Ω̂IJ f Href (f)ˆ 
gw(f)ˆ (f)IJ 

α = P , (2.65)
σ−2H2 (f)ˆ (f)f ref IJ 

which is called broad-band estimator. In addition, the associated uncertainty can be estimated as  −1 X 
σ2  H2 σ−2 ˆ = ref (f)ˆ (f) . (2.66)α,IJ IJ 

f 

In fact, similar estimators can be used for the amplitudes of arbitrary Href (f) (not necessarily 
given by Eq. (2.63)), as long as they have no other free parameter than a global amplitude. 

We also note that all the estimates depend on the baseline IJ that we are using. When we have 
several baselines, the broadband estimators in Eqs. (2.65) and Eq. (2.66) have the same defnition 
with an additional sum over the baselines. 

In the next section, we will see an introduction to Bayesian inference, which, together with the 
narrowband and broadband formalisms, will then be used in Sections 2.4 and 2.5, as well as in 
Chapter 3, to get constraints on models from gravitational-wave data. 

2.3 Introduction to Bayesian inference 

Whenever we have some data and we want to extract its physical information, we usually assume 
it follows some model M with certain parameters θ⃗. Under this hypothesis, the main task is then 
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inferring the values of these parameters from the data, a procedure that is usually called parameter 
estimation. 

There are many ways to do parameter estimation using statistical tools, including frequentist 
and Bayesian methods (see [123] for further details on the topic). In this thesis, I will focus on the 
latter, which are the most used in the feld of Gravitational Waves [28, 124, 14, 8]. 

The main idea of Bayesian inference is that the parameters are random variables with some 
unknown distribution we aim to determine. For this purpose, we use our data D. It is also 
necessary to assume some a priori distribution for θ⃗, or prior P (θ⃗) (sometimes denoted π(θ⃗)), as a 
starting point, where P denotes probability. Then, using Bayes’ theorem, we can get the probability 
distribution for our parameters conditioned to the data, or posterior distribution P (θ⃗|D, M), 

P (D|⃗ θ)θ, M)P (⃗ 
P (θ⃗|D, M ) = , (2.67)

P (D|M) 

where P (D|θ⃗, M) measures how likely it is to obtain the data with the model M for a given set of 
parameters θ⃗. Due to this defnition, this quantity is usually called likelihood, which we will denote 
by L(θ⃗) throughout the thesis. Additionally, P (D|M) is the total probability to obtain the data 
given the model M . Due to the law of total probability, it is marginalization of the numerator over 
all parameter space. It is usually called the model evidence and denoted by Z,Z Z 

Z(M) = P (D|M) = dθP⃗ (D|⃗ θ) = d⃗ θ)π(θ⃗). (2.68)θ, M)P (⃗ θL(⃗ 

When we have two diferent models M1 and M2 for the same problem, the evidence can be used 
to decide which one of them is favoured by the data. The natural tool to see which of them is more 
likely is the odds ratio, 

P (M1|D) P (D|M1)π(M1)OM1 = = , (2.69)M2 P (M2|D) P (D|M2)π(M2) 
where in the second step we have used Bayes’ theorem (2.67) applied to models rather than param-
eters. If we assume that none of the models is preferred, so that π(M1) = π(M2), then the odds 
ratio reduces to the Bayes factor, 

P (D|M1) Z(M1)BM1 = = , (2.70)M2 P (D|M2) Z(M2) 

which is just the ratio of evidences defned in Eq. (2.68). It is commonly agreed that the evidence 
in favour of M1 is strong for BM1 ≳ 10 and conclusive for BM1 ≳ 100 [125], although the exactM2 M2 
numbers and statements may vary in diferent references. Using these statistical tools to distinguish 
between two models, one of which is preferred by the data, is called model selection. 

With the formalism defned, all that remains is to choose a suitable likelihood and characterize 
the numerator of Eq. (2.67) in a sufciently large area of the parameter space, which is a procedure 
called sampling. 

2.3.1 The likelihood 

Suppose we have a set of points {xi}, i = 1, . . . , N , where we measure the value of the quantity 
y with certain experimental errors σi. According to our model M , y is given by a function f 
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⃗depending on some parameters θ⃗, so that y = f(x, θ). Thus, we should expect a value close enough 
to µi = f(xi, θ⃗) for each i, where the measurement of how close it is depends on the error scale σi. 
Then, for a single measurement i, we can approximate the expected probability distribution of yi 
by a Gaussian with mean µi = f(xi, θ⃗) and width σi, yi ∼ N(µi, σi), so that its probability density 
function (PDF) is " #� �2

1 1 yi − µi
P (yi|θ, M⃗ ) = √ exp − . (2.71)

2πσi 2 σi 

If all the measurements are independent, their joint PDF is the product of all the individual PDFs. 
If the Gaussian hypothesis holds for all points, then the joint probability for y⃗ = (y1, . . . yN ) is 
given by !−1 " # 

N N � �2Y X1 1 yi − µi
P (y⃗|⃗ σi exp − . (2.72)θ, M) = 

(2π)N/2 2 σii=1 i=1 

This is the standard Gaussian likelihood used in the majority of parameter estimations. However, 
as we will see in Chapter 10, there are other likelihoods which are also acceptable under diferent 
hypotheses. For the frst chapters, however, we will always use Gaussian likelihoods. 

The Gaussian likelihood has a quadratic exponential dependence on the model, which implicitly 
appears in the µi terms. As we know, exponentials are very sensitive to changes in their exponents, 
so it is more natural to work with the logarithm of the likelihood to avoid this issue. In this case, 
the products appearing in Eq. (2.72) can now be expressed as sums. 

In general, the samplers which will characterize the product of the likelihood and priors (the nu-
merator in Eq. (2.67)) will only care about the shape of this function and disregard its normalization 
constant. Therefore, from Eq. (2.72), it is enough to know that " # 

N � �2X1 yi − µiL ∝ exp − , (2.73)
2 σii=1 

or, in terms of the log-likelihood, 

N � �2X1 yi − µi
ln L = − + const. (2.74)

2 σii=1 

2.3.2 Sampling methods 

In order to evaluate the shape of the posterior in Eq. (2.67), it is necessary to evaluate the likelihood 
and prior at a large region of the parameter space. For a problem with moderate or high dimen-
sionality, it is not possible to explore the parameter space with a uniform grid or similar “brute 
force” methods. Thus, we need a more sophisticated algorithm that helps us with this exploration, 
which is what we call a sampler. 

There are two main families of sampler which are widely used: Markov chain Monte Carlo 
(MCMC) sampling and nested sampling, both of which are based on some random process which 
explores the parameter space based on where the likelihood is higher. We will briefy comment on 
both methods, where a good review can be consulted in [126]. 
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Markov chain Monte Carlo sampling 

MCMC sampling was frst introduced in 1953 in an article by Nicholas C. Metropolis and other 
collaborators [127] and extended by Wilfred K. Hastings [128]. Broadly speaking, a Monte Carlo 
method is an algorithm that aims to obtain a numerical result through repeated random sampling. 
The most paradigmatic example is obtaining the area of a circle by randomly sampling points in 
the circumscribed square, and then multiplying the fraction of samples inside the circle by the 
area of the square (see Fig. 2.2). This family of methods was frst developed by Metropolis and 
his collaborator Stanislaw Ulam in 1949 [129]. Metropolis decided to name this method after the 
Monte Carlo casino in Monaco, where Ulam’s uncle used to go to gamble [130]. 
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Figure 2.2: Example of a Monte Carlo method for the computation of π. N denotes the number of 
2 2points, while Nin is the number of them inside the radius x + y = 1 (black line). The exact value 

of π is given by 4Acircle/Asquare, so an approximation is given by 4Nin/N . For each realization, we 
can see the number of used points and their approximation of π, which statistically gets better as 
N increases. 

There are many implementations of MCMCs in diferent programming languages. Here, I will 
focus on Python, for which some of the most popular ones are emcee [131] or PyMC [132]. 

The idea of MCMC sampling is to have a certain number of walkers, which can be thought of as 
particles occupying a diferent position at each iteration. Each walker starts at a random position 
at the parameter space and moves randomly through it according to some rules, evaluating the 
likelihood and prior at each new point. Because, at each iteration, the following point is selecting 
only based on the present state, disregarding the previous ones, the fnal set of points for each 
walker is said to be a Markov chain, completing the other half of the method’s name. 

The term MCMC is, subsequently, naming a family of diferent methods based on the same 
concept. I will describe here the rules for the original Metropolis algorithm, but there are many 
more possibilities. If we have a function f(x) proportional to the desired PDF, such as the numerator 
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of Eq. (2.67), the rules can be summarized in the following steps: 

• First, each walker is initialized by choosing a random position x1 within the parameter space. 
Additionally, some proposal function g(x|y) must be chosen from which to draw subsequent 
points. In the original article by Metropolis et al. [127], this function was a uniform distri-
bution over a circular shape centered on y, but one can also choose a Gaussian distribution 
centered on this point. In general, the formalism attributed to Metropolis used a symmetric 
(in x, y) proposal function, and Hastings extended the formalism to more generic proposal 
functions [128]. 

′• For each iteration at position xi, a candidate x is proposed by randomly sampling the proposal 
distribution g(x ′ |xi). Then, the acceptance ratio is defned as 

f(x ′ )
α = , (2.75)

f(xi) 

where we notice here the irrelevance of a possible normalization constant in f(x). Then, a 
random number u is generated uniformly in the interval [0,1], so that 

+ If u ≤ α, the candidate is accepted, so that xi+1 = xi. In particular, this is always 
satisfed if f(x ′ ) > f(xi). 

– If u > α, the candidate is rejected, so that xi+1 = xi. 

With these rules, the algorithm will tend to fnd the points of maximum probability, but still 
sampling the nearby area with a certain probability, dropping more as f decreases. After a sufcient 
time of iterations, the sampled points should reach an equilibrium distribution which coincides with 
the distribution of f(x). 

This algorithm has some drawbacks, of which we mention three of them. First, the points of 
nearby iterations of a certain chain are correlated, so, to correct for this behavior, it is necessary 
to take the points of a chain only every Nthin iterations. For this purpose, a useful quantity is 
the autocorrelation time τi [133], which measures how many iterations have to pass until a point 
“forgets” where it started. This quantity is chain-dependent, so it is usually good to set a common 
autocorrelation time as τ = maxi τi. Then, we can thin our distribution by this quantity, Nthin = τ 
(even half of it is enough, Nthin = τ/2), which means taking only the iterations every Nthin steps. 

Another problem of this method is that the frst iterations do not follow the fnal distribution 
so, once sampled, it is necessary to get rid of them, in a procedure called burn-in, which consists 
on removing the frst Nburn iterations. A good number is usually around 2 or 3 times τ . Finally, 
the MCMC does not have a natural stopping criterion, so the user has to impose one. The usual 
practice is to stop the MCMC after 50 − 100 autocorrelation times. 

We will apply this method in Chapter 10. For now, let us see the other main family of samplers. 

Nested sampling 

Nested sampling is an alternative to MCMC which was proposed in 2004 by John Skilling [134]. 
This method is designed to compute the evidence and generates posterior samples as a byproduct. 
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The idea of nested sampling is populating the parameter space by drawing a certain number 
of so-called live points from the prior distribution. Then, at each iteration i, the point with the 
lowest likelihood Li is removed and saved as a sample point with a certain assigned prior volume 
wi, adding its contribution Liwi to the evidence. The point is then substituted by a new one with 
a higher likelihood, possibly found with some MCMC steps. 

The algorithm is continuously moving towards higher likelihood areas. At each iteration, if 
we assume that all the remaining prior volume has a likelihood equal to the maximum likelihood 
live point, we get an upper bound for the evidence. This quantity can then be used to impose a 
termination condition, so that the algorithm stops when the current computed evidence reaches 
a certain fraction of the upper bound. In practice, this is given by the quantity (∆ ln Z)i = 
ln Zi,max − ln Zi, where Zi,max denotes the evidence upper bound at iteration i and Zi, the actual 
computed number. What this is saying is that, at most, ln Z will be able to increase by (∆ ln Z)i, 
so at some small value, which is usually around 0.1, it is pointless to continue the sampling since 
the evidence is already very precisely characterized: it is usually several orders of magnitude higher. 

A variation of these methods is given by the dynamic nested sampling, in which the number 
of samples in diferent regions is dynamically adjusted to maximize accuracy. Examples of imple-
mentation of nested sampling in Python include PyMultinest [135] and PolyChord [136, 137], 
while for dynamic nested sampling there is the dynesty package [138], which is the state-of-the-art 
sampler in areas like gravitational-wave physics and other branches of Astrophysics and Cosmology. 

In the next sections, we will see some applications of these techniques to real gravitational-wave 
data. 

2.3.3 Post-processing techniques 

Contours, credible regions and upper bounds 

In these analyses based on parameter estimation, the output is an n-dimensional posterior distribu-
tion. If we want to give an estimate for a certain parameter, the usual procedure is to marginalize 
over the rest of the parameters and provide some central value and estimated uncertainty. The 
central value can be the mean, the median or the value that maximizes the likelihood, which is 
called maximum likelihood estimate (MLE). 

For the uncertainty, one takes the marginalized posterior distribution to determine the central 
interval that encloses some fraction of the total probability, which is called credible interval, as 
opposed as in frequentist analysis, where they are called confdence intervals. Here, “central” means 
there is exactly half of the remaining probability below it, and half above it. For a Gaussian 
distribution of mean µ and width σ, the total probability enclosed between µ − σ and µ + σ is 
0.68, so, by analogy, any central interval enclosing 68% of the total probability is called 1-sigma 
region, and its half-width is called 1-sigma uncertainty, or 1-sigma error. Similarly, the 2-sigma 
region encloses 95% of the total probability, while the 3-sigma region covers 99.7%. These regions 
are illustrated in Fig. 2.3. It is thus common to provide the 1-sigma (or n-sigma) error as an 
uncertainty estimation. 

However, there might be cases in which we do not aim to provide a fnal value of a parameter. In 
the case of a SGWB analysis, this background has not yet been detected, so it is still soon to derive 
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its value, which is dominated by uncertainties. Instead, it is better to provide an upper bound, 
indicating that the SGWB amplitude is very likely to be under that value. In this case, one can 
take the corresponding posterior distribution and fnd the point below which the probability is 95%, 
thus labeled 95% credible-level (CL) upper bound (see Fig. 2.3). One can also provide upper bounds 
with diferent credible levels, but 95% is a standard widely used in the literature [139, 28, 97, 140]. 
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Figure 2.3: Gaussian PDF illustrating the 1-sigma (blue), 2-sigma (orange+blue) and 3-sigma 
(green+orange+blue) regions, covering the 68%, 95% and 99.7% of the total central probability, 
respectively. The dashed, vertical line also marks the 95% credible-level upper bound. 

In addition, it is often useful to look at 2D posteriors, marginalized over all the parameters 
except for two of them. In this case, one can also defne credible regions, which, in analogy with the 
1D case, are usually plotted at 68% and 95% credible levels. Some authors refer to them as 1-sigma 
and 2-sigma regions, which is somewhat confusing: in 2D, a multivariate Gaussian with covariance 
matrix σI, with I the identity matrix, encloses 39% probability inside the radius |x⃗| = σ and 0.86% 
inside |x⃗| = 2σ. Thus, it is preferable to simply call them 68% and 95% CL regions, to avoid the 
ambiguity. See the corner Python package documentation [141] for a more detailed discussion. 

These credible level regions are marked by a closed curve enclosing, called contour. Some 
examples of 2D contours, which are usually plotted together with the marginalized 1D posteriors 
in a joint fgure called corner plot, can be seen in Figs. 2.4, 2.6, 3.1 and D.1-D.3. 

In Section 2.5 and Chapter 10, we will use these concepts to set upper bounds to some SGWB-
related quantities. Before that, let us see one more useful post-processing technique for MCMC. 
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Evidence estimate for Gaussian posteriors 

Even if both MCMC and nested sampling are used for parameter estimation, there are some dif-
ferences between them that make either one or the other better suited for each problem. Nested 
sampling has the advantage that it computes the evidence of the model, while MCMC, in general, 
does not. 

When the algorithm only provides the posterior samples, and does not give any estimate of the 
model evidence, it can be difcult to compute it in a precise way. As defned in Eq. (2.68), the 
evidence computation involves an integral in an n-dimensional space, which can be computationally 
expensive to estimate accurately. 

Nevertheless, under some hypotheses, it is possible to obtain analytic estimates. This is the 
case if the posterior distribution approximately follows a multivariate Gaussian distribution, which 
is usually the case for large datasets due to the Central Limit Theorem [113]. In particular, this 
assumption holds in our article [4], explained in detail in Chapter 10. If this is the case, we only 
need the posterior covariance matrix Σ and the maximum likelihood L to compute the evidence, 
using the approach described in [142]. 

With the notations introduced at the beginning of the section, the multivariate Gaussian pos-
terior hypothesis implies that � � 

1 L(θ⃗)π(θ⃗) ≈ C exp − (θ⃗ − µ⃗)T Σ−1(θ⃗ − µ⃗) , (2.76)
2 

where µ is the mean of the distribution, Σ its covariance matrix and C a certain unknown constant. 
We should keep in mind that this is not a proper distribution because it is not normalized (the 
normalization comes from dividing by the evidence in Eq. (2.67)), so C is not a normalization 
constant. In order to compute it, we realize that L(µ⃗)π(µ⃗) = C. Here, we introduce the additional 
assumption that the priors are uniform, so that π(θ⃗) = 1/V for any θ⃗ ∈ V , where V is the prior 
volume. Therefore, � � L(µ⃗) 1 L(θ⃗)π(θ) ≈ exp − (θ⃗ − µ⃗)T Σ−1(θ⃗ − µ⃗) . (2.77)

V 2 

As a result, the evidence is just its integral, Z Z � � 
Z = 

V 
L(θ⃗)π(θ⃗)dθ⃗ ≈ 

L(µ⃗) 
V V 

exp 
1 − (θ⃗ − µ⃗)T Σ−1(θ⃗ − µ⃗)
2 

dθ⃗. (2.78) 

In order to make this integral simpler, we now make a third assumption, which that the distribution 
of our posteriors has a low value at the edge of the prior volume. This way, the probability outside 
V can be approximated by zero, so that the previous integral can be computed in the full Rn , with 
n the dimension of the parameter space. Knowing that the result of this integral is Z � � 

1
(⃗ µ)T Σ−1(⃗ d⃗exp − θ − ⃗ θ − µ⃗) θ = (2π)n/2 det(Σ)1/2 , (2.79) 

Rn 2 

we fnally have Z L(µ⃗)
Z = L(θ⃗)π(θ⃗)dθ⃗ ≈ (2π)n/2 det(Σ)1/2 . (2.80) 

Rn V 
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Finally, if we compare two diferent models M1 and M2 with equal prior probabilities, their 
Bayes factor in Eq. (2.70) will be given by � �1/2L1(µ⃗1) V2 det(Σ1)BM1 ≈ (2π)(n1−n2 )/2 . (2.81)M2 L2(µ⃗2) V1 det(Σ2) 

2.3.4 Parameter estimation of isotropic SGWB 

Applying the theory from Sec. 2.2, we can now compare the data to a given model for Ωgw(f). For 
ΩIJ this purpose, we take a Gaussian likelihood and use the estimators ˆ (f) in Eq. (2.61) with itsgw 

σ2variance ˆIJ (f) in Eq. (2.62), so that !2XX Ω̂IJ (f)(f) − λIJ Ω
M1 gw gw

ln L = − , (2.82)
2 σIJ 

IJ f 

where the factor λIJ accounts for the calibration uncertainty in each baseline. Following the ap-
proach in [143], this factor is modeled as a Gaussian distribution with mean 1 and variance ϵ2 

IJ , 
and then marginalized analytically before running the parameter estimation [110]. If we denote the 
calibration uncertainty of each detector I by ϵI , then the variance for λIJ can be estimated as the 
quadratic sum, ϵ2 = ϵI 

2 + ϵ2 
J . See [5, 28, 122, 139] for the exact numbers used in each work. IJ 

Additionally, the frequency range we consider for parameter estimation is usually from 20 to 
1726 Hz. Outside this range, the detectors still take data, but their sensitivity starts being too low 
to be useful for any analysis. 

2.4 Constraints from LVK 

The LVK collaboration analyzes the data from their detectors (LIGO, Virgo, KAGRA) and produces 
estimates and upper bounds for the stochastic gravitational wave background after every observing 
run. These works which look for the SGWB are usually called searches. We are currently immersed 
in the fourth observing run of GW detectors (O4), so the most results are those from O3 [28], 
produced in 2021. During this third observing run, the KAGRA detector sensitivity was not 
enough to produce these estimates, similar to what happened with Virgo for O1 [139] and O2 [122]. 
Therefore, there are three baselines used for the analysis: HL, HV and HV, where H stands for 
LIGO Hanford, L for LIGO Livingstone and V for Virgo. 

The estimates provided in [28] can be classifed in two types: broadband estimates like the ones 
defned in Eqs. (2.65) and (2.66) and others derived from the posteriors of a Bayesian analysis using 
the formalism of Sec. 2.3. In any of the cases, when a power-law Ωgw(f) (Eq. (2.63)) is considered, 
they work with three scenarios: 

• α = 0. This corresponds to a fat Ωgw(f) spectrum, which arises for cosmic strings [78, 79]. 
R2 infation [76] or slow-roll infation [144], as can be seen in Fig. 2.1. 

• α = 2/3. This corresponds to the frequency dependence of the inspiral of CBCs, as can be 
seen in Eq. (1.196) and is computed more in detail in Chapter 5. 
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α 
Ω̂α/10

−9 

O1 O2 O3 O1+O2+O3HL HV LV 
0 

2/3 
3 

44 ± 59 
35 ± 44 
3.7 ± 6.5 

22 ± 22 
20 ± 16 
3.5 ± 2.8 

−2.1 ± 8.2 
−3.4 ± 6.1 
−1.3 ± 0.9 

229 ± 98 
145 ± 60 
9.1 ± 4.1 

−134 ± 63 
−82 ± 40 
−4.9 ± 3.1 

1.1 ± 7.5 
−0.2 ± 5.6 
−0.6 ± 0.8 

Table 2.1: Broadband estimates Ω̂ 
α given by Eq. (2.65), for a power-law Ωgw of exponent α and 

reference frequency fref = 25 Hz. A separate estimate is provided for O1 [139], O2 [122] and O3 [28] 
LVK data, in this last case separated by baseline, together with the joint O1+O2+O3 estimates. 

• α = 3. This corresponds to a fat strain spectrum Sh(f), as seen in the relation between 
Ωgw and Sh(f) in Eq. (2.15). It approximately describes some astrophysical sources such as 
supernovae [70, 71, 72, 73]. 

For each of these power-law indices, they obtain the broadband estimates as in Eq. (2.65) for 
a reference frequency of fref = 25 Hz. They do this separately for each baseline, and also provide 
a combined estimate with the three of them for O3 together with the HL baseline for O1 and O2, 
which was the only one available in those observing runs. The results are summarized in Table 2.1, 
together with the O1 and O2 results for reference. We can see how the combined estimates get 
lower with each observing run. 

In addition, the LVK collaboration uses the narrowband estimates in Eqs. (2.61) and (2.62) 
to do parameter estimation with the likelihood in Eq. (2.82). For this purpose, they consider a 
power-law Ωgw(f) with the three fxed indices α = 0, 2/3, 3 mentioned above, but also one with free 
α. They do two runs for each case: in one of them, the prior for Ωα is uniform, where the lower and 
upper ends are large enough so the posterior does not have any support there. In the other case, 
a log-uniform prior is taken (meaning a uniform prior in log Ωα), where the upper end satisfes the 
same criterion as for the uniform case and the lower end is taken to be Ωα = 10−13 . For the cases 
of free α, a Gaussian prior is chosen for this exponent, with zero mean and standard deviation 3.5. 

For each of these runs, upper bounds are provided in Table 2.2. Additionally, the corner plot 
for the case of variable α and log-uniform prior for Ωα is shown in Fig. 2.4. We can see how the 
upper bounds progressively get reduced with each observing run. 

In the article [28], there are also other models considered, but the goal of this section was just 
to give a brief overview of the state of the art in LVK, so the power-law models are enough for this 
purpose. 

In addition to the formalism that has been explained here, the LVK collaboration does some data 
quality checks and additional modifcations to the data: high-pass fltering, glitch removing through 
a technique called gating [145], removing time segments for which σ estimates are too diferent from 
its neighbours (delta-sigma cut [146]), etc. I will not cover them in this thesis, so one can refer 
to [28, 110] for more details. They are also integrated in standard tools like pygwb [147, 110]. In 
the next subsection, we will see a similar parameter estimation work which we did in a recent article 
using this Python package, where the model is more complicated than the power laws considered 
here. 
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α 
Ω̂up (95%) /10−9 

α 
Uniform prior Log-uniform prior 
O1 O2 O3 O1 O2 O3 

0 
2/3 
3 

Free 

170 
130 
17 
250 

60 
48 
7.9 
110 

17 
12 
1.3 
27 

64 
51 
6.7 
55 

35 
30 
5.1 
34 

5.8 
3.4 
0.39 
6.6 

Table 2.2: 95% credible-level upper bounds for the amplitude Ωα of a power-law Ωgw(f) of exponent 
α and reference frequency fref = 25 Hz. A separate estimate is provided for uniform and log-uniform 
priors and for the diferent datasets, consisting on O1 [139], O1+O2 [122] and O1+O2+O3 [28] LVK 
data. Three fxed-α cases are provided, as well as one with free α. 

2.5 Constraints to non-Gaussianities from O3 data 

In this section, I summarize the content of our article [5], in which we set constraints to a non-
Gaussian, scalar-induced gravitational wave background. My main contribution to this work was 
the data analysis part, so this section will be focused on this aspect of the article. 

2.5.1 Introduction 

As we have seen at the beginning of this chapter, particularly in Fig. 2.1, there are a lot of sources, 
both astrophysical and cosmological, which can generate a stochastic gravitational wave background 
through diferent mechanisms. In particular, large curvature fuctuations generated during infation 
produce one of these contributions, at the second perturbative order. This is called the scalar-
induced gravitational wave (SIGW) background. 

This is a very interesting source due to two reasons: frst, it allows to test and characterize 
existing infation models through gravitational waves at LVK frequencies [91, 92, 93, 94, 95, 96, 97], 
which correspond to much smaller scales than those probed by CMB observations. The second 
reason is that it relates to the formation of primordial black holes (PBHs), a topic which will be 
explained in more detail in Chapter 4. If these PBHs exist and constitute a relevant fraction of dark 
matter, the primordial curvature perturbations must be large enough to produce them, causing a 
strong contribution for the SIGW background. Thus, from the constraints of this contribution, one 
can better characterize the PBH scenario, which is getting increasing attention by the scientifc 
community as more GW signals are detected. 

Previous works have set constraints to this background from LVK O2 [96] and O3 [97] data. 
However, these articles assumed a Gaussian distribution for the primordial curvature perturbations, 
while other works argue that such a shape cannot be assumed, and the so-called non-Gaussianities 
are important [148, 149, 150, 151, 81, 85]. We elaborate more on the topic of non-Gaussianities in 
Subsec. 4.2.2. In our work [5], we set constraints to a non-Gaussian SIGW background, assuming 
a simple FNL parametrization [152, 153, 154]. 
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Figure 2.4: Corner plot for the parameter estimation run by LVK with a Gaussian prior for α and 
log-uniform prior for Ωα, denoted here by Ωref . Figure taken from [28]. 

2.5.2 The model 

The formalism to model a scalar-induced gravitational wave and, moreover, with non-Gaussianities, 
is not very related to the topic of this thesis and, therefore, it is only explained in detailed in 
App. A. What I will explain here are the strictly necessary elements to understand the data analysis 
component of the article. 

We denote by ζ the primordial curvature perturbation in uniform energy density slices on super-
horizon scales, which is a standard quantity in infation theory. Its Gaussian component will be 
denoted by ζg. Following references like [155, 156, 154], we study the simplest and well-studied type 
of non-Gaussianity, which is local and quadratic, 

ζ(x⃗) = ζg(x⃗) + FNLζ
2(x⃗), (2.83)g 

where FNL is called non-linearity parameter. One of its key properties is its power spectrum, which, 

k3 

for the Gaussian part, we denote by Pg (k), so that 

⟨ζg(k⃗)ζg(k⃗ ′ )⟩ = (2π)3δ3(k⃗ + ⃗k ′ )Pg(k). (2.84) 

We consider a monochromatic power spectrum, which is expressed as 

Pg(k) = 
2π2 

Agδ(ln k − ln k∗), (2.85) 

where Ag is its amplitude and k∗ is a scale parameter. This scale in k will determine another scale 
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in frequency through the relation � � 
k k 

f = = 25 Hz. (2.86)
2π 1.67 × 1016 Mpc−1 

The frequency scale f∗ corresponding to by k∗ will determine the position of a peak in the Ωgw(f) 
spectrum, as we can see in Fig. 2.5. 

As we can see in App. A, our model for SIGW will be proportional to f2 times seven terms with 
diferent dependence on the Ag and FNL parameters: 

• The frst contribution is the Gaussian part, which is proportional to A2 . We will denote this g 
contribution as A2Ωg(f/f∗).g 

• The next three terms correspond to the leading-order non-Gaussian correction. They are 
proportional to F 2 A3, and we will denote the sum of these three terms as F 2 A3ΩNG,1(f/f∗).NL g NL g 

• The fnal three terms are the next-order correction, proportional to F 4 A4 . We will denote NL g 
their sum by F 4 A4ΩNG,2(f/f∗).NL g 

In order to have an intuition for the efect of the FNL parameter, we can have a look at Fig. 2.5, 
where we plot the SIGW contribution to ΩGW(f) for a fxed value of Ag. 
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Figure 2.5: ΩGW(f) spectrum for diferent FNL values, with Ag = 0.001. 

Finally, we also consider the contribution from CBCs. The reason is that they are expected 
to be the dominant contribution in LVK frequencies [28, 29], so ignoring it will provide biased 
results. At the point we are now, with no detection of a SGWB, accounting for this efect may 
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not be crucial, but it will become more relevant with subsequent observing runs, as data gets a 
progressively stricter constraining power. Similar to other works [28, 97], we just model the inspiral 
part with a power-law of exponent 2/3 and reference frequency fref = 25 Hz. 

Therefore, our model can be expressed as � � � � � � � �2/3
f f f f 

(f) = A2Ωg + F 2 + F 4 +ΩCBC . (2.87)
f∗ f∗ f∗ fref 

Ωgw g NLAg 
3ΩNG,1 NLAg 

4ΩNG,2 

Note that, while fref is degenerate with ΩCBC and thus can be fxed without loss of generality, f∗ 
is not degenerate with the other parameters, due to the more complicated frequency dependence of 
Ωg , ΩNG,1 and ΩNG,2. Therefore, it will also be a free parameter. As a result, our model has four 
free parameters: Ag, f∗, FNL and ΩCBC, where we use k∗ for the parameter estimation instead of 
f∗. 

2.5.3 Data analysis 

We run a similar parameter estimation as in the previous section, using the likelihood in Eq. (2.82). 
These runs are done through the pygwb [147, 110] Python package, which relies on bilby [124] for 
parameter estimation, using data from the frst three observing runs of LVK [139, 122, 28, 157, 158]. 
To sample the parameter space, we use the dynesty [138] sampler, with the default dlogz=0.1 
convergence criterion and a large number of live points (of order 100,000) to get smoother posteriors. 
This dlogz parameter corresponds to the ∆ ln Z for nested sampling explained in Subsec. 2.3.2. 
Additionally, the priors for each parameter are indicated in Table 2.3. 

Parameters Prior 
ΩCBC Log-uniform[10−10 , 10−7] 

Ag Log-uniform[10−3.5 , 101] 

FNL Log-uniform[10−1 , 104] 

k∗/Mpc−1 Log-uniform[1015.5 , 1018.5] 

Table 2.3: Prior distributions used for the parameter estimation. 

First, we run the parameter estimation for the four free parameters with the priors in Tab. 2.3, 
showing the posterior distributions in the corner plot of Fig. 2.6. We add two lines to the FNL − Ag 
subplot: the orange one marks the asymptotic behavior of the 95% CL contour, where the third term 
in Eq. (2.87), proportional to F 4 A4 , dominates. This line follows the equation FNLAg ≈ 0.380.NL g 
The second, red line, roughly corresponds to the boundary where non-Gaussianities start to be 
comparable to the Gaussian contribution. For this line, we assumed Ωg and ΩNG,1 are similar in 
magnitude, so that the frst and second terms in Eq. (2.87) are comparable when A2 ≈ F 2 A3 ,g NL g 
or F 2 Ag ≈ 1. Thus, the transition between Gaussian and non-Gaussian for the 95% CL contour NL 
occurs at its intersection with the red line, which is at FNL ≃ 3.55. We quote this transition value 
as one of our results, but one should keep in mind that this number not only depends on the data, 
but it is also prior and credible-level dependent. 

From the Ag − k∗ subplot, we can also derive that, at 95% credible level, Ag ≲ 0.015 for the 
best-constrained scale, k∗ ≃ 2.04 × 1016 Mpc. However, this constraint marginalizes over FNL 
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Figure 2.6: Posterior distributions for the combined SIGW and CBC search, where the blue and 
light blue contours correspond to the 68 and 95% CL regions, respectively. For reference, we plot 
the red line corresponding to F 2 Ag = 1, which is the boundary where the non-Gaussian termsNL 
start to dominate over the Gaussian contribution in the Ωgw(f) power spectrum (Eq. (2.87)). The 
orange line corresponds to the asymptotic behavior at large FNL values, following FNLAg = 0.380. 
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and Ag, which mixes all contributions of diferent FNL and it is thus complicated to understand 
its efect. For this purpose, we did some 3-parameter runs with fxed FNL, while the rest of the 
parameters keep their priors from Table 2.3. From their posteriors, we take the 95% CL curves in 
the Ag − k∗ plane and show all of them together in Fig. 2.7. We can see that the constraints on Ag 
become tighter as FNL increases, given that a larger FNL enhances the overall SGWB amplitude. 
It is also worth noting that the shape of these curves varies with FNL, but in any case, similar k∗ 
produce a minimum in all of them, corresponding to the best constrained frequencies in LVK data. 
Additionally, our curve for FNL = 0 should recover the Gaussian case studied in [97], which we fnd 
to be the case, except for some small diferences due to our choice of priors and narrower primordial 
power spectrum Pg(k) (2.85). Hence, both of our works are consistent. 
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Figure 2.7: Posterior 95% CL contours for Ag − k∗, obtained from the fxed FNL runs. The 95% 
CL region corresponds to the area under these curves. 

Finally, we also examined the efect of the scale k∗ on the FNL − Ag constraints. Similarly to 
the previous case, we now fxed the scale parameter k∗ and did 3-parameter runs with the rest of 
the priors corresponding to the ones in Table 2.3. In Fig. 2.8, we show the 95% CL contours for 
FNL − Ag for k∗ = 1016 , 1016.5 and 1017 Mpc. One of the main changes with respect to the 4-
parameter case is that the asymptotic behavior for large FNL keeps the same trend FNLAg =const., 
but the constant gets tighter. This is expected, since a parameter estimation run with less free 
parameters is usually more constraining. There is also small variability between diferent scales 
and, in particular, the constraint at k∗ = 1016.5 Mpc is slightly stronger, given that it corresponds 
to the case where the peak in Ωgw(f) is located at the most sensitive range of the LVK detectors: 

0.115 (k∗/Mpc−1 = 1016) 
FNLAg ≈ 0.100 (k∗/Mpc−1 = 1016.5) (2.88) 

0.112 (k∗/Mpc−1 = 1017). 

  
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Figure 2.8: Posterior 95% CL contours for Ag − FNL plane (solid lines), obtained from the fxed k∗ 
runs. The dashed lines represent the asymptotic behavior for large non-Gaussianity (orange) and 
the red one marks the boundary where non-Gaussian term start to dominate over the Gaussian 
contribution in Ωgw(f), similar to the lines in Fig. 2.6. Dotted lines correspond to analytically 
derived relations between FNL and Ag which show the limit at which PBHs make up 100% of the 
dark matter, showing small diferences between diferent values of k∗. 

We can see another, more obvious diference in Fig. 2.8 for low values of FNL and high Ag, in 
which the contour for Ag is almost independent of FNL for k∗ = 10−16.5 and 10−17 Mpc, while 
there is a clear correlation with FNL for k∗ = 10−16 Mpc. The reason is that, below the dashed, 
red line, the non-Gaussian contributions are subdominant with respect to the Gaussian one. Also, 
as we can see in Fig. 2.5, the non-Gaussian contributions are more relevant for f > f∗. In this case, 
given the subdominance of the non-Gaussian contributions, only k∗ = 10−16 Mpc manages to make 
some diference by generating a relevant non-Gaussian contributions on LVK sensitive frequencies, 
which explains the diference of behavior with the other scales. Finally, the dotted lines represent 
the limit at which PBHs would constitute all the dark matter (fPBH = 1, see Chapter 4). They 
were computed using peak theory [159, 160] to estimate PBH abundance, while for generalizations 
for non-Gaussianity, we refer to [161, 162]. We can see that, for now, the constraints coming from 
gravitational waves are less stringent than those imposed by overproduction of PBHs. 

2.5.4 Conclusions 

In this work, we derived constraints for non-Gaussian primordial curvature perturbations using the 
most recent gravitational-wave data from LVK (O1-O3). This was done via the SIGW induced by 
second-order cosmological perturbations, which constitutes a unique probe for infation at much 
smaller scales than those constrained by CMB measurements. Our model takes into account both 
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this SIGW contribution and the standard background coming from CBC inspirals. 

From our 4-parameter run shown in Fig. 2.6, we derived an upper bound Ag < 0.015 for 
k∗ = 2.04 × 1016 Mpc at 95% credible level. In addition, we observed that the infuence of non-
Gaussianities on Ωgw(f) becomes non-negligible when FNL ≃ 3.55. Given that marginalized con-
straints inevitably depend on the range of priors, we have also run similar analyses with either the 
FNL parameter or the peak scale k∗ fxed (Figs. 2.7 and 2.8). Although the current constraints 
are weaker than those imposed by overproduction of PBHs, Fig. 2.8 shows that, by refning these 
constraints with new measurements, gravitational waves will eventually be able to place meaningful 
constraints on the PBH production. In particular, it is expected that much stronger constraints 
are imposed by third-generation GW detectors such as the Einstein Telescope [17] and Cosmic 
Explorer [18]. 

Finally, we have assumed a quadratic, local non-Gaussianity, which represents the simplest 
parametrization. However, it is known that non-Gaussian tails can vary signifcantly depending 
on the mechanisms which generate these large curvature perturbations [85, 81, 163, 164, 149, 165, 
166, 167, 168, 150, 169]. One of the main theoretical challenges is developing a computing method 
for the SIGW spectrum which is able to handle arbitrary shapes of non-Gaussianity. Once such a 
robust framework is developed, we will be able to provide more valuable observational constraints 
for primordial curvature perturbations. This task is becoming increasingly important due to the 
anticipated increase in observational opportunities with gravitational waves. 
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SGWB anisotropies 

In the previous chapter, we have worked under three assumptions for the SGWB: that it is station-
ary, unpolarized and isotropic. In the absence of a detection, the assumption of isotropy is the most 
reasonable approach: similar to the CMB, we expect that this assumption is satisfed to frst order. 
However, we also know from the CMB that anisotropies carry a tremendous amount of information 
which is inaccessible via the isotropic component. Hence, once we detect the isotropic component 
of the SGWB, the next goal will be to characterize its anisotropies. 

Simultaneous to the isotropic searches, there have also been directional searches looking for 
these anisotropies, going as far back as to, at least, the analysis of the ffth science run (S5) of 
LIGO [170] in 2011, while the most recent results are those from O3 [171]. On the other hand, 
isotropic searches have been performed from LIGO’s frst science run (S1), with the frst analysis 
being released in 2003 [172]. 

In this chapter, we will study the formalism for an anisotropic SGWB, based mainly on [111, 112], 
in Sec. 3.1. In Sec. 3.2, we will see a data analysis work on the SGWB anisotropies [3], to which I 
contributed mainly in the code optimization and model selection analysis. 

3.1 Formalism for anisotropic SGWB 

In Section 2.1, we saw the formalism for an isotropic SGWB. We will follow a similar approach, 
changing and introducing new notation where necessary. For this purpose, we start from the two-
point estimator Eq. (2.3), for which we defned an angle-independent function called PSD, Sh(f). 
Now, we aim to follow a similar procedure but introducing an angular dependence, so we defne a 
function P(f, ⃗n) such that 

⟨h̃∗ n)˜ ′ )⟩ = 1 ′ )δ2(⃗A(f, ⃗ hA ′ (f ′ , n⃗ δ(f − f n, ⃗n ′ )δAA ′ P(f, ⃗n). (3.1)
4 

Besides the introduction of an angular dependence, note the diferences with respect to Eq. (2.3): 
the normalization factor 4π for the solid angle integration is missing, and the 1/2 factor has been 
replaced by 1/4. This is to match the notation of [111], which will be the main reference we will 
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follow for this chapter, as well as our article [3]. It is also common to denote the angular dependence 
by Ω̂ instead of n⃗, but we will stick to the latter to match our notation from previous sections. 

We can then go forward in our isotropic formalism in Sec. 2.1 by substituting Sh(f) 7→ 2πP(f, ⃗n), 
as long as an integration over the solid angle has not been made. Otherwise, one can substituteR 
Sh(f) 7→ (1/2) × d2Ω P(f, ⃗n). Then, from Eq. (2.15), we get Z 

2π2 
Ωgw(f) = f3 d2Ω P(f, ⃗n). (3.2)

3H0
2 

Similar to what was done for Ωgw in Eq. (2.8) and Ωgw(f) in Eq. (2.12), which have diferent 
defnitions, it is common practice to defne, in another slight abuse of notation, 

1 dρgw
Ωgw(f, ⃗n) ≡ , (3.3)

ρc d(ln f) d2Ω 

so that, from Eq. (3.2), we have 

Ωgw(f, ⃗n) = 
3

2 
H

π2

2 f
3P(f, ⃗n). (3.4) 

0 

We must now go through the formalism for detected gravitational waves in Sec. 2.2. We frst 
decompose the signal as in Eq. (2.29) with one key diference: in the isotropic case, the Earth’s 
rotation was irrelevant, given that one can always do the analysis in the Earth’s reference system 
and, even if the background rotates, the isotropic component will remain invariant. Now, we want to 
characterize the background anisotropies, so a rotation will make them change in time. Therefore, 
we consider a static reference frame in which it is the Earth what rotates, and not the background, 
so the detector’s position will be time-dependent. In practice, the analyses in the literature account 
for the Earth rotation, which is the clearly dominant efect, but not for the Earth’s motion around 
the Sun or the Solar System local motion. These subdominant efects can be modeled as time-
dependent anisotropies inducing a dipole, similar to the case of the CMB [173, 174]. We will talk 
more about this in Subsec. 3.2.3. 

In any case, for now, we will suppose that the background is time-independent, but the detector’s 
position xI (t) is not. Whenever it is necessary, we will assume that our detector is ground-based, 
so that its position is periodic over time, with a period corresponding to an Earth’s sidereal day (a 
standard day is measured with respect to the Sun, not the background). Thus, Eq. (2.29) can now 
be replaced by Z ∞ ZX −2πif (t−n⃗·x⃗I (t)/c)hI (t) = df d2Ω h̃ 

A(f, ⃗n)F A(n⃗, t)e . (3.5)I 
−∞A=+,× 

We can now correlate the signals of diferent detectors and get the equivalent equation to Eq. (2.32),Z ∞ ZX 
2πifn⃗·(x⃗I (t)−x⃗J (t))/c)⟨sI (t)sJ (t)⟩ =

1 
df d2Ω F A(n⃗, t)FJ

A(n⃗, t)P(f, ⃗n)e . (3.6)I2 0A=+,× 

If we now short-Fourier transform the left-hand side, similar to what was done in Sec. 2.2 but 
without yet relating these quantities to Ωgw(f), we getZX ∗ 2πifn⃗·(x⃗I (t)−x⃗J (t))/c)2⟨sI (f, t)sJ (f, t)⟩ = 

T
d2Ω F A(n⃗, t)FJ

A(n⃗, t)P(f, ⃗n)e , (3.7)I2 
A=+,× 
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where, as usual, the factor 2 on the left-hand side comes from redefning the frequency integration 
range from the real to the positive numbers. Given that the right-hand side now depends on time, 
the expected value of the left-hand side must not be understood as a time average, but an average 
over many equivalent times, where the concept of “equivalent” is given by the Earth rotation. 
Therefore, two times are equivalent if their diference is an integer multiple of a sidereal day. 

We now defne the quantity X 
F A 2πifn⃗·(x⃗I (t)−x⃗J (t))/c)γIJ (n⃗, f, t) ≡ 

1
(n⃗, t)FJ

A(n⃗, t)e , (3.8)I2 
A=+,× 

which has the same role as the overlap reduction function in Eq. (2.33): accounting for the relative 
position of the two detectors and absorbing other factors which are not relevant in the analysis. 
In the isotropic case, and substituting the detector positions by their static versions, this function 
would be related to the ORF γIJ (f) as Z 

γIJ (f) = 
5 

d2Ω γIJ (n⃗, f, t). (3.9)
4π 

Using Eq. (3.8) and going back to the defnition of the cross-spectral density CIJ (f, t), we can 
rewrite Eq. (3.7) as Z 

⟨CIJ (f, t)⟩ = d2Ω γIJ (n⃗, f, t)P(f, ⃗n), (3.10) 

In general, it is assumed that the angular and frequency dependences can be factorized, 

P(f, ⃗n) = P(n⃗)H̄(f), (3.11) 
¯where H(f) is normalized so that, for a reference frequency fref , H̄(fref ) = 1. In particular, this 

¯ means that, when considering a power-law model, there is no global amplitude in H(f), 

H̄(f) = (f/fref )
α−3 , (3.12) 

where the exponent is usually set to α − 3 so that, from Eq. (3.4), Ωgw(f, ⃗n) is proportional to fα . 

This factorization is standard in the literature and does not imply much loss of generality for 
small enough frequency bands [111, 112]. In any case, a similar formalism would apply if we 
considered a coupled dependence of the frequency and sky distribution, although some notations 
and simplifcations would have to be modifed. For simplicity and in order to follow the most 
standard approach, we will keep this assumption during this chapter. Thus, Eq. (3.10) can be 
rewritten as Z 

¯⟨CIJ (f, t)⟩ = H(f) d2Ω γIJ (n⃗, f, t)P(n⃗). (3.13) 

3.1.1 Basis decomposition 

We now decompose the angular dependence in some basis, starting by the angular dependence of 
Ωgw(f, ⃗n), encoded in P(n⃗). For this purpose, we need an orthonormal basis for the sphere eµ(n⃗), 
so that it should satisfy the propertyZ 

∗ d2Ω eµ(n⃗)eν (n⃗) = δµν . (3.14) 
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Then, we can decompose P(n⃗) as 
P(n⃗) = Pµeµ(n⃗), (3.15) 

where, in this chapter, we also sum over repeated Greek indices, since they are related to an 
arbitrary spherical base, not to spacetime tensors in GR. Using the basis orthonormality property 
in Eq. (3.14), the coefcients can be obtained from P(n⃗) as Z 

∗ Pµ = d2Ω P(n⃗)e (n⃗). (3.16)µ 

The two most standard basis choices are: 

• A pixel basis, so that the index µ is the pixel position. The decomposition in Eq. (3.15) can 
then be expressed as 

P(n⃗) = Pn⃗ ′ δ(n⃗, ⃗n ′ ). (3.17) 

This is the preferred choice to look for gravitational-wave point sources, in what is called 
radiometer analysis [175, 176, 177]. 

• A spherical harmonics basis, so that the index µ divides into the two multipole indices l, m. 
If we denote the spherical harmonics by Ylm(n⃗), the decomposition in Eq. (3.15) can be 
expressed as 

P(n⃗) = PlmYlm(n⃗), (3.18) 

where we consider the dipole direction of this basis to be aligned with the Earth’s rotation axis. 
This is the preferred choice to look for a difuse background, dominated by low multipoles. 

In this chapter, we will focus on the spherical harmonics basis. Since they will be extensively 
used in Chapters 8, 9 and 10, there is a detailed introduction to them in Sec. 8.7. For this chapter, 
we do not need to make use of any property aside from the orthonormality, so it is not necessary 
to introduce them in detail at this point. 

If we decompose P(n⃗) as in Eq. (3.15), we should express γIJ (n⃗, f, t) in a similar basis. For this 
purpose, we decompose it as 

∗ γIJ (n⃗, f, t) = γIJ,µ(f, t)eµ(n⃗), (3.19) 

where the coefcients can be obtained as Z 
γIJ,µ(f, t) = d2Ω γIJ (n⃗, f, t)eµ(n⃗). (3.20) 

Note that these defnitions difer from Eqs. (3.15) and (3.16) by a complex conjugation, following 
the notation in [178, 111, 3]. The reason to have opposite defnitions becomes obvious when we 
substitute both γIJ (n⃗, f, t) given by Eq. (3.19) and P(n⃗) given by Eq. (3.15) into Eq. (3.13): Z � �∗ ⟨CIJ (f, t)⟩ = H̄(f) d2Ω γIJ,µ(f, t)eµ(n⃗) (Pν eν (n⃗)) Z 

∗ = H̄(f)γIJ,µ(f, t)Pν d2Ω eµ(n⃗)eν (n⃗) 

¯ = H(f)γIJ,µ(f, t)Pν δµν 
¯ = H(f)γIJ,µ(f, t)Pµ, (3.21) 
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so that the basis will not appear in the subsequent analysis. 

The spherical harmonics basis has several advantages with respect to the pixel basis. In partic-√ 
ular, for an isotropic background, using that Y00 = 1/ 4π, Eq. (3.2) for Ωgw(f) in terms of P(f, ⃗n), 

¯Eq. (3.11) for the factorization of P(f, ⃗n) in terms of H(f) and P(n⃗), and the spherical harmonics 
decomposition of P(n⃗) in Eq. (3.15) imply 

2π2 √ 
Ωgw(f) = f3H̄(f) 4πP00, (3.22)

3H2 
0 

from which we can derive the isotropic component from the anisotropic analysis. In addition, 
Eq. (3.9) for the relation of the ORF γIJ (f) with the anisotropic γIJ (f, ⃗n), together with its 
decomposition in Eq. (3.19), implies 

5 
γIJ (f) = √ γIJ,00(f, t) (3.23)

4π 

for any t. Furthermore, in the anisotropic case, the time dependence of γIJ,µ(f, t) in the spherical 
harmonics basis is especially simple. The spherical harmonics with multipole coefcient m show an 
angular periodicity 2π/m in ϕ so, in the context of a rotation ϕ = 2πt/T , they have a temporal 
periodicity of T/m. Therefore, we can write � � 

t 
γIJ,lm(f, t) = γIJ,lm(f, 0) exp 2πim . (3.24)

1 sidereal day 

3.1.2 Anisotropic SGWB data analysis 

In the isotropic analysis in Subsec. 2.2.2, we defned our likelihood from the Ω̂ 
gw(f, t) estimators in 

Eq. (2.61) and its variance in Eq. (2.62). In the anisotropic analysis, instead of using this estimator, 
the common practice is to use the cross-correlated spectra CIJ (f, t) and make use of the identity 
in Eq. (3.21). Going through a similar procedure as the one in Subsec. 2.2.2, one can show that its 
variance is [111, 112, 3] 

PI (f, t)PJ (f, t)
σ̂2 . (3.25)C,IJ (f, t) = 

T ∆f 
Then, using Eq. (3.21), the equivalent likelihood to the one in Eq. (2.82), is 

1 XX T ∆f |CIJ (f, t) − H̄(f)γIJ,µ(f, t)Pµ|2 
ln L = − , (3.26)

2 PI (f, t)PJ (f, t)
IJ t,f 

Expanding the square of this equation, we get XX T ∆f |CIJ (f, t)|2 
2 ln L = − + 2Re[Pµ 

∗ Xµ] − Pµ 
∗ Γµν Pν , (3.27)

PI (f, t)PJ (f, t)
IJ t,f 

where we defned XX ¯T ∆f H(f) 
= γ ∗ CIJ (f, t), (3.28)Xµ IJ,µ(f, t) PI (f, t)PJ (f, t)

IJ t,f 

77 



Chapter 3. SGWB anisotropies 

XX ¯T ∆f H2(f)
Γµν IJ,µ(f, t) γIJ,ν (f, t).= γ ∗ (3.29)

PI (f, t)PJ (f, t)
IJ t,f 

¯If H(f) is given by a power law with a fxed exponent, meaning we do not consider it as a 
free parameter, then the likelihood in Eq. (3.27) is quadratic in the coefcients. This makes it 
straightforward to derive the maximum likelihood estimate: one can fnd the local extrema by 
taking the partial derivatives with respect to Pµ and making them equal to zero. In this case, the 
maximum likelihood estimates for the Pµ are given by 

P̂µ = (Γ−1)µν Xν . (3.30) 

Due to this equation, Xµ is usually called “dirty” map, as it represents the sky distribution of 
the gravitational wave background as seen through the beam matrix of the two detectors, Γµν . 
Then, the estimator P̂ 

µ in Eq. (3.30) is named “clean” map, showing the real sky distribution of the 
gravitational waves. In addition, in the weak-signal approximation, the dirty map variance is given 
by [111] 

⟨XµXν 
∗ ⟩ − ⟨Xµ⟩⟨Xν 

∗ ⟩ ≈ Γµν , (3.31) 

so that, for the clean map, we have � � 
⟨P̂ 

µP̂ 
ν 
∗ ⟩ − ⟨P̂ 

µ⟩⟨P̂ 
ν 
∗ ⟩ ≈ Γ−1 . (3.32)

µν 

Given that this is a matrix whose inverse is the covariance matrix of the parameters, Γµν is called 
Fisher information matrix. 

Aside from requiring fxing the power-law exponent, the estimate P̂ 
µ has another, more impor-

tant problem: the invertibility of Γµν . Similar to how we saw that the detector is blind to certain 
directions in Subsec. 2.2.1, the Fisher matrix has some eigenvalues close to zero, which make it 
close to singular and thus difcult to invert numerically. One possible solution is regularizing it by 
manually imposing a minimum eigenvalue. A reasonable criterion used in the literature [111, 112] 
is to keep the 2/3 largest eigenvalues, denoting the smallest one of them by λmin, and then set the 
smallest 1/3 eigenvalues to this λmin. This, however, introduces some bias in the results. 

On the contrary, doing Bayesian inference over the likelihood defned in Eq. (3.27) does not 
present this problem, while it also allows to have a variable exponent in the power law or more 

¯generic models for H(f). In our article [3], explained in the next section, we follow this statistical 
approach. 

3.2 Bayesian PE for targeted anisotropic GWB 

3.2.1 Introduction 

From the introduction of Chapter 2, we know there are many theoretical models which predict 
stochastic gravitational wave background contributions, spreading over a wide range of frequencies. 
Some of the main features we can use to distinguish between them are their amplitude and spectral 
shape, as studied previously. However, some of these sources also predict anisotropic angular 
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distributions [179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190], so we can use these 
signatures to further characterize these signals and diferentiate them better. 

Most articles on the SGWB focus on its isotropic component [191, 139, 122, 28, 2]. However, 
there are also directional searches which look for anisotropies [170, 192, 193, 194, 171], mostly by 
computing the maximum likelihood estimates described in the previous sections. Finally, there 
a few which do targeted (assuming an a priori model) searches [195, 196], either by following a 
Bayesian approach or other statistical methods, but they are not so numerous as the previous ones. 

In our article [3], we introduced a parameter estimation formalism based on the Bayesian frame-
work. In addition to parameter estimation, we describe how to easily inject signals on the data 
and do diferent tests over them. In this thesis, I will focus on the formalism and model selection 
aspects of the article, the latter being the main part I contributed to. 

3.2.2 The formalism 

We start from the formalism explained in Sec. 3.1 with the choice of a spherical harmonics basis. 
In our article, we work with Plm coefcients normalized by P00, such that 

Plm P̄lm ≡ . (3.33)P0 

Therefore, we need an additional parameter which is able to change the global amplitude of the 
background. We denote this parameter by ϵ, so that the decomposition in Eq. (3.11) is now 

Plm(f) = ϵH̄(f)P̄ 
lm. (3.34) 

Therefore, for the isotropic case, Eq. (3.22) is now 

2π2 √ 
Ωgw(f) = f3H̄(f) 4πϵ. (3.35)

3H2 
0 

In order to explain the data analysis formalism, we will use ϵ with this normalization. However, for 
the real data analysis, we normalize ϵ by 1/( 2π

2 
f3 ) so that it coincides with the isotropic energy 

3H2 ref 
0 

density parameter Ωgw(fref ), given that it is much more natural to interpret the results with this 
normalization. 

With these changes, the likelihood in Eq. (3.27) now takes the form XX T ∆f |CIJ (f, t)|2 
2 ln L = − + 2ϵRe[P̄ 

µ 
∗ Xµ] − ϵ2P̄ 

µ 
∗ Γµν P̄ 

ν , (3.36)
PI (f, t)PJ (f, t)

IJ t,f 

where Xµ and Γµν have the same defnitions as in Eqs. (3.28) and (3.29), which we copy here again 
for better clarity in the next subsection: XX 

γ ∗ T ∆f H̄(f)
Xµ = IJ,µ(f, t) CIJ (f, t), (3.37)

PI (f, t)PJ (f, t)
IJ t,f XX ¯T ∆f H2(f)

Γµν IJ,µ(f, t) γIJ,ν (f, t).= γ ∗ (3.38)
PI (f, t)PJ (f, t)

IJ t,f 
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Likelihood evaluation optimization 

In general, the likelihood evaluation in Eq. (3.36) involves some products and multipole index 
contractions followed by a sum in frequency, another one in time and fnally, in baseline, with the 
consequent computational cost. If we want our implementation to be generic, all these steps are 
unavoidable, but in practice, there are many cases in which we can skip some of these steps. 

First of all, the frst term in Eq. (3.36) can be computed in advance, so that, in practice, it 
¯ ¯behaves as a constant in each likelihood evaluation. In addition, if neither H(f) nor Pµ depend 

on time, the sum in this variable can be done beforehand. Moreover, whenever we have a known 
¯anisotropy distribution for which we do not want to estimate any parameter, then the Plm appearing 

in the second and third terms in Eq. (3.36) can be contracted with the corresponding γIJ,µ(f, t) in 
advance. 

Thus, in this last ideal case, in each likelihood evaluation and for each baseline, it is only nec-
¯ essary to evaluate H(f), which may be parameter-dependent, multiply by precomputed quantities 

and by the global amplitude ϵ, integrate in frequency and sum the three contributions. Assum-
ing that the frequencies are the same for all the baselines, we can also do the sum in baselines 
in advance. However, in general, the analyses in our article have only used one baseline, so this 
additional modifcation would not have made any diference. 

¯This precomputation formalism can also be extended for parameter-dependent Plm, as long as 
they can be decomposed as a sum of a few terms with parameter-dependent coefcients. This will 
be the case for the dipole artifact caused by Doppler efect introduced in the next subsection. 

Signal injection 

If we want a signal to be added to our data, from Eq. (3.21), we know that the cross-spectra 
CIJ (f, t) have to be modifed like 

′ P injCIJ (f, t) = CIJ (f, t) + ϵinjH̄ inj(f)γIJ,µ(f, t) ¯ . (3.39)µ 

If we substitute the extra term in the likelihood in Eq. (3.36), we get three additional terms, h i� � � �2 −2ϵinjRe P inj) ∗ X inj ϵinj P inj) ∗ ΓinjP inj P inj( ¯ − ( ¯ ¯ + 2ϵϵinjRe P̄∗ Γ(c) ¯ , (3.40)µ µ µ µν ν µ µν ν 

and Γinj ¯where Xµ 
inj 

µν follow the same defnition as Eqs. (3.37) and (3.38), except that H(f) is replaced 
¯by its injected quantity H inj(f) and Γµν 

(c) is the coupled Fisher matrix, defned as 

Γ(c) 
XX H̄(f)H̄ inj(f) 

µν = IJ,µ(f, t) 
T ∆f

γIJ,ν (f, t). (3.41)γ ∗ 
PI (f, t)PJ (f, t)

IJ t,f 

In the article [3], some statistical consistency tests are done, so one can refer there to see the 
validity of this injection method. In the next subsection, instead, we will focus on the model 
selection aspects of this work, which involve injecting a signal and trying to recover it with diferent 
models. 
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3.2.3 Model selection 

Given some observational data, it may be challenging to correctly derive its underlying model. 
For instance, a broken power-law H(f) with similar exponents can easily be mistaken by a simple 
power-law model, especially if the noise is relevant. In this section of the article, we use our Bayesian 
formalism, particularly the Bayes factor explained in Sec. 2.3, to quantitatively compare between 
several models for a given injected signal. 

In order to do these tests, we frst took the noise from the CSD in the LIGO detectors with 
the projected O4 sensitivity. Then, we injected a signal from a certain model M1 following the 
approach in the previous section. Subsequently, we run parameter estimation over the resulting 
CIJ (f, t) using the same model M1 and, in a diferent run, we do the same for a diferent model 
M2, with the same injected signal from M1. Finally, we compute the Bayes factor between both 
models, and repeat the procedure for diferent values of injected parameters. We then plot the 
value of the Bayes factor over a 2-dimensional parameter space by coloring each tile, with each 
color representing a diferent value according to a color scale. This is what we will call a heatmap, 
which is one of the best ways to visualize the distribution of the Bayes factor over the parameter 
space. 

¯Broken power-law versus power-law H(f) model 

The frst case we studied was under which conditions our pipeline was able to distinguish a broken 
¯power-law (BPL) H(f) from a simple power law (PL). The simple power law is modeled as in 

Eq. (3.12), while the broken power law is defned as 

� 
(f/f0)

α1−3 if f < f0HBPL(f) ∝ , (3.42)
(f/f0)

α2−3 if f ≥ f0 

¯which must then be normalized so that HBPL(fref ) = 1. This model has four free parameters: the 
two exponents α1 and α2, the middle frequency f0 and the global amplitude ϵ. We can see an 
example posterior for this model in Fig. 3.1. In order to do this analysis, we injected a BPL model 
with fxed α1 = 2/3 and f0 = 100 Hz, thus exploring the injected (ϵ, α2) parameter space. For 
ϵ, we took a log-uniform prior distribution from 10−12 to 100 = 1, while for α1, α2, a Gaussian 
prior with zero mean and 3.5 standard deviation was chosen. Finally, for f0, we took a uniform 
distribution between 20 and 500 Hz. For Plm, we took a model which follows the sky distribution 
of the Galactic plane, with maximum l of 7. 

In Fig. 3.2, we show the heatmap produced from the Bayes factors, for diferent values of the 
injected parameter space. We can see that higher values of ϵ make it easier to identify the correct 
model with signifcant evidence, where the transition occurs around ϵ ∼ 10−7 − 10−6 the correct 
identifcation. Additionally, the Bayes factor tends to increase for higher values of α2, corresponding 
to a higher overall amplitude signal. Finally, we observe a gap in α2 = 2/3, which is due to it 
coinciding with the fxed value of α1. In this case, both models become completely degenerated 
and none of them are preferred, BBPL ∼ 1.PL 
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Figure 3.1: Example posterior for an injected and recovered broken power-law model, with 
ln BBPL = 417. The recovery is consistent with the injection, indicated by the red markers andPL 
lines. 
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Galactic plane versus isotropic Plm 

Similar to the previous subsection, we did a similar study by comparing diferent Plm models, fxing 
H̄(f) to a power law. We did not introduce any new free parameter in Plm, thus exploring the 
(ϵ, α) parameter space. 

We started by injecting a Galactic plane Plm with maximum l = 7, just as in the previous 
subsection. Then, we tried to recover the parameters with both this model and a purely isotropic 
model, that is, Plm = 0 if l ≠ 0 or m ̸= 0. We obtained the heatmap shown in Fig. 3.3, which 
indicates that the Galactic plane model is correctly recovered at around ϵ = 10−6 in the most 
conservative case, similar to the previous case. This threshold decreases as α increases, given that 
it enhances the signal for high frequencies. For most of the explored parameter space, the pipeline is 
then able to detect the signature of higher-order spatial modes and distinguish it from an isotropic 
background. 
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Figure 3.3: Heatmap showing the Bayes factor for the Galactic plane versus isotropic Plm recovery 
models, for diferent injected values of ϵ and α and an injected Galactic plane Plm model. 

Dipole artifact versus isotropic Plm 

As it is well-known from the CMB, the SGWB is expected to show a dipole anisotropy induced by 
the Doppler shift produced by the observer’s motion with respect to the background rest frame. 
Based on the CMB literature [197, 198], we derived the expression for this anisotropy model in the 
SGWB. The derivation is included in App. B. This subsection was originally part of our preprint 
corresponding to the article [3], but was removed before publication in order to release a second 
article focused on dipole artifacts, accounting also for the time dependence, as it is done in [195]. 
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As a toy model in our article, we consider that the values for the observer’s speed and direction 
are the ones measured by Planck in 2018 [173], that is, v = 369.82 ± 0.11 km/s, l = 264.021 ± 0.011 
deg, b = 48.253 ± 0.005 deg. An example sky map of the dipole artifact produced by these values 
is shown in Fig. 3.4. 

18h 12h 6h

−45◦

0◦

45◦

Figure 3.4: Sky map of the dipole artifact for α = 2/3 and Planck values for the relative speed and 
direction, plotted in a Mollweide projection. The color map represents an arbitrary scale. 

However, this model is not physically realistic for several reasons. First, the velocity derived by 
Planck corresponds to the relative motion of the Solar system with respect to the CMB rest frame 
(solar dipole), while we should also account for the Earth’s orbital motion around the Sun (orbital 
dipole). However, the orbital dipole is time-dependent, so it is more difcult to incorporate to our 
formalism (see [195] for a more detailed analysis) and it is left for future work. Furthermore, the 
main dipole anisotropy for the SGWB may not come from this dipole artifact: the main contri-
bution to the SGWB is expected to come from unresolved CBCs, so the efect of their anisotropic 
distribution in the sky might be dominant over the Doppler shift correction. 

In any case, we injected this signal with a maximum l = 2 and recover with both this model 
and, again, an isotropic model. The recovery with the dipole artifact model assumes fxed Planck 
values, instead of trying to ft them, so the only free parameters are ϵ and α. Hence, we explore 
this parameter space, obtaining Fig. 3.5. 

In Fig. 3.5, we can see that, for α < 4, the threshold at which both models are distinguished is 
higher than in previous cases, being around ϵ ∼ 10−4 . This is consistent with the dipole anisotropy 
being weaker than the isotropic component by a factor 103 , as we can see in the expressions of 
App. B for β = v/c ∼ O(10−3). Additionally, we observe a gap in α = 4, which corresponds to 
the value for which the dipole anisotropy vanishes due to the Lorentz invariance of Ωgw/f

4 . This 
is further discussed in App. B. 

3.2.4 Conclusions 

In the summarized article [3], we developed a parameter estimation formalism for a targeted 
anisotropic stochastic gravitational wave background. Using Bayesian inference, the algorithm 
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Figure 3.5: Heatmap showing the Bayes factor for the dipole artifact Plm model versus the isotropic 
one. 

provides the posterior distribution for a given model of anisotropies, which generalizes the work 
done for isotropic searches. Furthermore, we developed signal injection tools which enhance the 
capabilities of our pipeline. 

We also illustrated the capabilities of the formalism for model selection, with the diference 
¯between models being in either H(f) or Plm. We explored the parameter region where our algorithm 

can distinguish two diferent models, obtaining a structure consistent with our expectations. We 
also computed the general equations for the dipole artifact caused by Doppler shift, detailed in 
App. B, and used them for model selection assuming only a solar dipole, thus neglecting the orbital 
dipole contribution, which we leave for future work. 

Moreover, the article also does some other studies: statistically checking the injection formalism, 
¯optimizing the maximum l which is needed to correctly recover given Plm models, running a search 

for millisecond pulsars and using simulated data to address the prospects with future detectors. 
These topics have been left out of this thesis and we refer to our article [3] for further details. 

We conclude this section by remarking that, in the absence of a detection of a SGWB in the 
LVK frequency band, current eforts in the GW community are focused on the isotropic analysis. 
However, as sensitivity from the detectors increases and we add KAGRA, LIGO-India and next-
generation detectors such as Einstein Telescope and Cosmic Explorer, these works on the SGWB 
anisotropies will become increasingly important. 

With this, we fnish the topic of SGWB anisotropies. In the next chapters, we will delve into 
the topic of primordial black holes (Chapter 4) and compute the SGWB they produce (Chapter 5) 
from their hyperbolic encounters, whose formalism was detailed in Sec. 1.4. 
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Chapter 4 

Primordial black holes 

4.1 Introduction 

Standard, astrophysical black holes (ABH) are generated as remnants of core-collapse supernovae, 
which are produced from massive stars during their last evolutionary stages. On the other hand, 
primordial black holes are theorized to have formed in the early Universe from the collapse of 
overdense regions, thus having a very diferent origin to ABHs, not involving a star precursor. This 
idea was introduced by Yakov Zel’dovich and Igor Novikov [24] in 1967 and was further pursued by 
Stephen Hawking [25] and his student Bernard Carr [26, 27] during the 1970s. During this decade, 
they were already proposed as candidates for dark matter [25, 26, 199], either accounting for all or 
at least part of it, and have not yet been confrmed or ruled out to this day. 

In this chapter, these astronomical objects will be introduced, explaining the mechanisms that 
can generate them and how we can compute the overdensity thresholds they need to be produced. 
Furthermore, diferent clustering and population scenarios will be presented, as well as the merger 
rates we can expect from them. In particular, these rates will be used later in Chapter 5 to explain 
one of our works [2], in which we estimate the SGWB produced by PBHs within both CBCs and 
hyperbolic encounters. 

For Sections 4.2 and 4.4, one of the main references will be the recent review by the LISA 
Cosmology Working group [200], which constitutes a very complete introduction to PBHs and their 
GW signatures. For Section 4.3, we will instead focus on own work based on Ilia Musco’s [201, 202, 
203] and Albert Escrivà’s [204, 205]. 

4.2 PBH generation mechanisms 

Primordial black holes are generated from the collapse of overdensities δ above a certain critical 
threshold δc. If we denote the spectrum of overdensities by P (δ), then the fraction of PBHs at 
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formation is given by Z ∞ 
βf = P (δ)dδ. (4.1) 

δc 

Another useful parameter to characterize the abundance of PBHs is fPBH, defned as the fraction of 
dark matter which is in the form of PBHs. Thus, in order to produce a relevant amount of PBHs, 
it is then necessary to have a large probability to generate such overdense regions. 

There are various mechanisms to produce these overdensities, the most standard of which is 
enhancing the primordial curvature power spectrum during infation. This can be achieved either 
from single-feld infationary models [206, 207, 208, 209, 210], such as critical Higgs infation [211, 
212], or from multi-feld infationary models, such as hybrid infation [213, 214, 215]. Another 
possibility is to enhance just the tail of the spectrum distribution, leaving behind the Gaussianity 
hypothesis and entering into non-Gaussianities [150, 216, 217]. Finally, other possible mechanisms 
for PBH generation include phase transitions [218], scalar feld instabilities [219] or the collapse of 
cosmic strings [220]. 

In this section, we will review the single-feld infation scenario, which is one of the most accepted, 
and briefy comment on non-Gaussianities and one of the scenarios in which they arise, which is 
called quantum difusion. 

4.2.1 Single-feld infation 

From the CMB temperature anisotropies measured by Planck, infation models are very well con-
strained at large scales. However, small scales remain mostly unconstrained, so there is still a 
wide variety of infationary models compatible with observations. The behavior at small scales 
is also of great physical importance, because sufciently large overdensities could have induced a 
gravitational collapse leading to the formation of primordial black holes. 

A relevant production of PBHs requires a considerably large growth of the power spectrum on 
small scales. Therefore, the simplest single-feld slow-roll infationary models do not produce them, 
given that they predict a nearly scale-invariant primordial power spectrum. There are several 
solutions to this problem, including a large positive running of the primordial curvature power 
spectrum [208] or violation of the usual slow-roll conditions [209, 221, 95, 222]. In these models, 
the amount of produced PBHs depends on the model parameters, so generating the correct amount 
of PBHs usually involves some degree of fne-tuning. 

One of the most natural possibilities to produce PBHs is that the infationary potential has an 
infection point, generating a plateau that slows down the infaton. We will next see one of the 
single-feld infation models that can produce one of these points. 

Critical Higgs infation 

Critical Higgs infation [211, 212] is one of the best physically-motivated single-feld models of 
infation which the capability to produce a quasi-infection point. The non-minimally coupled 
Higgs action is given by Z �� � � √ M2 ξ(ϕ) 1 1PlS = d4 x g + ϕ2 R − (∂ϕ)2 − λ(ϕ)ϕ4 , (4.2)

2 2 2 4 
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√ 
where MPl = 1/ 8πG is the Planck mass and, around the critical point ϕ = µ, 

λ(ϕ) ≈ λ0 + bλ ln
2(ϕ/µ), (4.3) 

ξ(ϕ) ≈ ξ0 + bξ ln(ϕ/µ). (4.4) 

It is now necessary to do some redefnitions, so that the new metric is 

gµν = (1 − MPl 
−2ξ(ϕ)ϕ2)gµν , (4.5) 

and the new scalar feld is 

Z r � �� �2 
1 + M−2ξ(ϕ)ϕ2 1 + 6 ξ(ϕ) + 1 ϕξ ′ (ϕ)Pl 2 

φ = dϕ 
1 + M−2ξ(ϕ)ϕ2 

Pl 
. (4.6) 

With these redefnitions, one can show [211, 212, 200] that the efective infationary potential is 

4V0(1 + a ln2 x)x 
V (x) = , (4.7)

(1 + c(1 + b ln x)x2)2 

with 
4 2ϕ λ0µ bλ bξ ξ0µ 

x = , V0 = , a = , b = , c = . (4.8)
µ 4 λ0 ξ0 M2 

Pl 

This potential is approximately constant for large values of x, 

a M4 bλPlV (x) −→ V0 = ≪ M4 (4.9) 
x→∞ (bc)2 4 b2 Pl. 

ξ 

In addition, for some volume of the parameter space (see [211] for details), there is a critical point 
with a secondary plateau, which induces a large peak in the primordial curvature power spectrum. 
This can be seen in Fig. 4.1, which was generated with the parameters indicated in [211], � �2 

λ0 = 2.23 × 10−7 , ξ0 = 7.55,
µ 

= 0.102, bλ = 1.2 × 10−6 , bξ = 11.5, (4.10)
MPl 

which correspond to 
a = 5.38, b = 1.52, c = 0.770. (4.11) 

Within this framework, it is possible to get a large production of PBH while respecting CMB 
constraints for the parameter ranges 

210−9 ≲ λ0 ≲ 8 × 10−7 , 0.5 ≲ ξ0 ≲ 15, 0.05 ≲ x µ 2 ≲ 1.2, 

8 × 10−9 ≲ bλ ≲ 4 × 10−6 , 1 ≲ bξ ≲ 18. (4.12) 

89 



Chapter 4. Primordial black holes 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

V
(x

)/
V

0

Figure 4.1: Higgs potential V (x) defned in Eq. (4.9), with the parameters from Eq. (4.11), as 
indicated in [211]. 

4.2.2 Non-Gaussianities 

As we just discussed, one of the possibilities to generate PBHs is to enhance the primordial curvature 
power spectrum. However, as we saw in the introduction, what determines the PBH formation and 
abundance is the probability that primordial curvature perturbations exceed a certain threshold, 
which is determined by their full PDF, computed from the primordial curvature spectrum. There-
fore, if this distribution is not Gaussian, the particular shape of its tail can also play an important 
role for PBH generation. 

These non-Gaussianities, which were previously mentioned in Sec. 2.5, can arise due to several 
reasons, including quantum difusion [150] and the presence of a stochastic spectator feld [217]. We 
will now briefy comment on the quantum difusion scenario. 

It is expected that small primordial curvature perturbations are well-described by an approx-
imately Gaussian distribution, close to the peak of their PDF. However, PBHs are formed from 
large density perturbations, which involve the tail of the distribution and can thus be far from the 
Gaussian regime. In order to characterize the diferent behaviors, the stochastic infation formal-
ism divides the infaton feld into two components: quantum fuctuations at small scales and an 
efectively classical feld at large scales, where the coarse-graining scale separating both behaviors is 
given by the Hubble horizon. In slow-roll, when the quantum fuctuations cross this horizon, they 
become overdamped, leading to a squeezed state which can be treated as classical noise [216]. The 
large-scale classical feld is then constantly receiving this stochastic noise, which enters the feld 
equations of motion with an amplitude H/2π. This is what is called quantum difusion. 

As a result of quantum difusion, exponential tails arise in the primordial curvature spec-
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trum [150, 216], which then signifcantly deviates from Gaussianity. The shape of such non-
Gaussianities is not properly captured by perturbative parametrizations involving the fNL param-
eter, such as the one described in Sec. 2.5. We can see this in Fig. 4.2, obtained from [150], where 
the power spectrum of overdensities is presented for a Gaussian primordial curvature spectrum, as 
well as for two models involving exponential tails (labelled as “Elliptic2” and “Elliptic4”), efective 
descriptions based on fNL and a lognormal power spectrum. From this fgure, it is clear that the 
diferent descriptions may coincide around the peak, for which a Gaussian description sufces, but 
drastically difer in their tails. This failure to capture the quantum difusion efect with an efective 
fNL description is one of the reasons why, at the end of our conclusions in this Sec. 2.5, we argued 
that a robust formalism to characterize non-Gaussianity is needed to set constraints from GWs in a 
more systematic way. Thus, our work has to be understood under the limitations of our description. 
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Figure 4.2: Normalized power spectrum of overdensity perturbations for a Gaussian primordial 
curvature power spectrum, as well as other distributions from quantum difusion models (Elliptic2 
and Elliptic4), efective descriptions using fNL parameters and a lognormal power spectrum. The 
free parameters of the distributions are set so that the behavior around the peak is similar. Figure 
taken from [150], where we refer to for additional details on these shapes. 

In the next section, we will study the formation mechanism of PBHs, deriving it from basic 
General-Relativistic equations. 

4.3 Collapse of density perturbations 

The problem of when and how overdensities collapse to form black holes has been extensively studied 
since the works by Carr in the 1970s [26, 27], in which he already computed the frst threshold for 
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PBH formation. Using arguments based on Jeans length, he obtained a critical overdensity threshold 
δc so that 

12δc ∼ c ∼ , (4.13)s 3 
where cs is the sound speed of the radiation fuid. There were some other articles at that time, 
mainly by Novikov and Polnarev [223, 224, 225]. Decades later, Choptuik discovered critical collapse 
in 1992 [226], to which a series of articles followed by diferent authors, mainly focused on numerical 
simulations [227, 228, 229, 230]. 

In this section, we will see how to run these numerical simulations, mainly aiming to compute 
the overdensity threshold δc for a Gaussian-profle overdensity in an ideal fuid, assuming spherical 
symmetry. We will do so by referring to the recent works by Ilia Musco [230, 203, 231, 232, 201] 
for the frst subsections, and then refer to the articles by Albert Escrivà [204, 205] for further 
computational details, complementing them with additional equations and fgures obtained from 
own simulations. This will be the frst approach to Numerical Relativity in this thesis, which will 
be covered with more detail for binary black holes in Chapter 6. Finally, we will conclude with 
some remarks on how these thresholds evolve with the thermal history of the Universe. 

During this section, we will work in geometrized units, G = c = 1, which is the most natural 
unit system for numerical simulations. 

4.3.1 The Misner-Sharp formalism 

The main formalism to numerically approach the collapse of overdensities is the Misner-Sharp 
formalism, introduced by Charles Misner and David Sharp in 1964 [233]. We will follow this 
framework starting from the basic equations of GR. First, we take a spherically symmetric metric, 

ds2 = −A2(t, r)dt2 + B2(t, r)dr2 + R2(t, r)dΩ2 . (4.14) 

On the matter side, we assume an ideal fuid with equation of state 

P (t, r) = ωρ(t, r), (4.15) 

with P (t, r) being the pressure fuid and ρ(t, r) its density. Its energy-momentum tensor in a 
µcomoving reference system u = (A−1 , 0, 0, 0) is then � � 

ρ P P P 
T µν µ ν = (P + ρ)u u + Pgµν = diag , , , . (4.16)

A2 B2 R2 R2 sin2 θ 

Nevertheless, we will keep the equations generic without explicitly substituting Eq. (4.15), and then 
particularize for this case. 

From the metric in Eq. (4.14) and the energy-momentum tensor in Eq. (4.16), we can compute 
the Einstein equations (1.46), which take the form 

2Ḃ ˙ Ṙ 2 2B ′ R ′ R 2R ′′ R R ′2 
− 

RR − − + + − 
1

= −8πGρR2 , (4.17)
A2B A2 B3 B2 B2 R2 

˙ ˙RA ′ BR ′ 
+ − Ṙ ′ = 0, (4.18)

A B 
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R2 A ˙ R ′22A ′ R ′ R ˙ 2 ˙RR 2RR ¨ 
− + − + − 1 = 8πGP R2 , (4.19)

AB2 A2 A3 A2 B2 

A ′′ A ′ B ′ A ′ R ′ Ḃ ˙ Ȧ ˙ ˙ Ȧ ˙ ¨ B ′ R ′ R ′′ R B B R R − + − + − + − − + = 8πGP, (4.20)
AB2 AB3 AB2R A2BR A3B A2B A3R A2R B3R B2R 

corresponding to the (0,0), (0,1), (1,1) and (2,2) components of the Einstein equations, respectively. 
In these expressions, we have defned 

∂f ∂f′ ḟ  ≡ , f ≡ . (4.21)
∂t ∂r 

Eqs. (4.17), (4.18), (4.19) and (4.20) constitute four equations of motion, where a ffth one is 
obtained from the equation of state (4.15). These expressions completely determine the temporal 
evolution, given that we have fve variables A, B, R, P and ρ. 

T µνIn addition, we can obtain two extra equations from the energy-momentum conservation ∇µ , 

A ′ ′ P 
+ = 0, (4.22)

A ρ + P 

˙ ˙B R ρ̇ 
+ 2 + = 0. (4.23)

B R ρ + P 
Note that these constraints come from the contracted Bianchi identities, and thus do not introduce 
any independent information to the four Einstein equations. However, they are simpler and thus 
more suitable to work with. Additionally, in numerical simulations, it is also useful to have at least 
one constraint equation for consistency checks in the code. 

In their current form, however, the previous equations are difcult to work with. The only 
exception is Eq. (4.22), which will be the frst equation we are interested in for our simulations. In 
order to get more equations in a suitable form, the Misner-Sharp formalism introduces three new 
variables, U , Γ and M , adding up to a total of eight. We then want to have eight independent 
equations, to which we will add another one, redundant with the other eight, which will serve as a 
check for the accuracy in the computations. 

The new variables U and Γ are the temporal and spatial comoving derivatives of R, 

Ṙ 
U = , (4.24)

A 

R ′ 
Γ = , (4.25)

B 
where U represents the velocity of the fuid and Γ is a generalized Lorentz factor. These two 
equations will be used for the simulations, which, together with Eq. (4.22) and the equation of 
state (4.15), adds up to a total of four. With these defnitions, Eq. (4.18) becomes 

Ṙ ′ = A ′ U + ḂΓ, (4.26) 

which will be used later. The fnal variable we introduce is the mass, 

M = 
R 
(1 + U2 − Γ2). (4.27)

2 
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This is the ffth equation we will use. Using now Eq. (4.26) to simplify Eqs. (4.17) and (4.19), they 
become 

′ M = 4πGρR2R ′ , (4.28) 

Ṁ = −4πGP R2R,˙ (4.29) 

respectively. Equation (4.28) is called the Hamiltonian constraint and it is the one used to check 
numerical accuracy, as well as it shows why the variable M represents a mass. Eq. (4.29), on the 
other hand, is the sixth equation we will use. 

The seventh equation will come from Eq. (4.23), for which we can substitute Ṙ ′ in Eq. (4.26) 
′and U from the radial derivative of Eq. (4.24). With this, we get a time evolution equation for ρ, � �′ U U 

ρ̇ = −A(ρ + P ) + 2 . (4.30)
R ′ R 

We get the eighth and fnal equation by taking the time derivative of U from Eq. (4.24), com-
paring it to Eq. (4.19) and using Eqs. (4.22), (4.25) and (4.27): � �′ 

U̇ = −A 
ΓP 

+ 
M 

+ 4πGPR . (4.31)
B(ρ + P ) R2 

In fact, we can use Eq. (4.25) in this equation to get rid of B, allowing us to work with seven 
variables. The complete set of these equations is called the Misner-Sharp-Hernandez equations [233, 
234, 235]. 

Simplifcations for an ideal fuid 

If we use the equation of state given by Eq. (4.15), we can substitute all instances of P and work 
with six variables instead of seven. In addition, Eq. (4.22) can be integrated analytically: � � 

1+ωA ′ ω ρ ′ ρb(t) 
ω 

+ = 0 ⇒ A(t, r) = , (4.32)
A 1 + ω ρ ρ(t, r) 

where ρb(t) = limr→∞ ρ(t, r), since limr→∞ A(t, r) = 1 for all t. 

To summarize and for clarity, we review and rewrite the simplifed equations that will ultimately 
be used. These can be divided in: 

• Four equations explicitly providing time derivatives, which are Eqs. (4.24), (4.29), (4.30) and 
(4.31). These will be used for the time evolution in the code. Rewritten in a suitable way, 
they are � �′ 

Ṙ = AU, ρ̇ = −A(1 + ω)ρ
U 

+ 2 
U

, (4.33)
R ′ R� � 

ω Γ2 ρ ′ M 
Ṁ = −4πGωAUρR2 , U̇ = −A + + 4πGωρR . (4.34)

1 + ω ρ R ′ R2 
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• Two equations from which one can get A and Γ, which are Eqs. (4.32) and (4.27), respectively. 
These will be used inside each iteration of the time evolution method, in order to compute 
the right-hand sides of the previous equations: 

ω� � 
ρb(t) 1+ω 2M 

A = , Γ2 = 1 + U2 − , (4.35)
ρ(t, r) R 

• The Hamiltonian constraint equation, Eq. (4.28), 

′ M = 4πGρR2R ′ . (4.36) 

We now have the evolution equations for spherically-symmetrical collapse of overdensity pertur-
bations. We thus need the other main element of numerical simulations: the initial conditions. 

4.3.2 Initial conditions 

In order to obtain the initial conditions, we frst consider a background metric similar to the FLRW 
metric but with a curvature profle K(r), 

(R ′ )2 
ds2 = −dt2 + dr2 + a 2(t)r 2dΩ2 , (4.37)

1 − K(r)r2 

where a(t) is the scale factor without considering perturbations. We will also denote by ρb(t), Pb(t) 
the background density and pressure. In particular, note that none of these quantities is space-
dependent. The curvature profle we consider is Gaussian, � 

2 � r 
K(r) = A exp − , (4.38)

2L2 

for a certain length scale L. There are generalizations for arbitrary shape profles, for which one 
can refer to [201]. In this article, the author proves that the threshold for gravitational collapse 
strongly depends on the overdensity profle, so it is important to account for this aspect of the 
initial conditions. Nevertheless, here we focus on Gaussian perturbations as a paradigmatic model. 

The variables we work with are inter-related by the Einstein equations seen in the previous 
subsection, so we need to generate valid initial conditions in order to guarantee a physical scenario 
and a stable simulation. For this purpose, the usual approach is to perturb the metric and hydro-
dynamical variables so that the perturbed quantities satisfy the Einstein equations. The intensity 
of this perturbation will be characterized by the ϵ parameter, defned as the ratio between the 
comoving Hubble length (aH)−1 and the perturbation length scale rk, 

1 1 
ϵ(t) = = , (4.39)

a(t)H(t)rk ȧ(t)rk 

One could think that a natural choice for the length scale rk is simply the L parameter in Eq. (4.38). 
However, we will later see there are more suitable options. In order to generate the initial conditions, 
we will work in the long-wavelength regime, where rk ≫ (aH)−1 and thus ϵ ≪ 1. 
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According to [236, 203, 201], the order O(ϵ) of the metric quantities corresponds to a decaying 
mode that can be neglected. Therefore, following these references, we assume that the leading order 
of the perturbation is O(ϵ2), so the metric and hydrodynamical variables will be perturbed as 

A(t, r) = 1 + ϵ2A,˜ ρ(t, r) = ρb(t)(1 + ϵ2ρ̃) (4.40) 
R ′ 

B(t, r) = p (1 + ϵ2B̃), U(t, r) = H(t)R(t)(1 + ϵ2Ũ), (4.41)
1 − K(r)r2 

R(t, r) = a(t)r(1 + ϵ2R̃), M(t, r) = 
4π

ρb(t)R
3(1 + ϵ2M̃), (4.42)

3 

where the perturbed variables will depend on the position, while ϵ(t) provides the time dependence. 
We can obtain equations for these variables by perturbing the equations of motion, and they can 
be solved analytically within this regime. The results have already been computed in [203, 201], so 
here we just reproduce them: 

ω 1 1 + ω 12 2Ã = − [r 3K(r)] ′ rk, ρ̃ = [r 3K(r)] ′ rk, (4.43)
5 + 3ω r2 5 + 3ω r2 � �′ 

3ω 1 12 2B̃ = r (r 3K(r)) ′ rk, Ũ = − K(r)rk, (4.44)
(1 + 3ω)(5 + 3ω) 3r3 5 + 3ω 

1 3(1 + ω)2 2˜R̃ = − 
n 
r

ω 
2 [r 3K(r)] ′ + K(r) 

o 
rk, M = K(r)rk. (4.45)

(1 + 3ω)(5 + 3ω) 5 + 3ω 

Compaction function, length scales and collapse thresholds 

Before fnishing this section and based on the previous equations, it is convenient to defne a few 
more quantities which will be useful to analyze the output. In particular, it is necessary to properly 
defne when we consider that a black hole has been formed. First, we defne the averaged mass 
excess in a certain volume as Z 

1 R ρ − ρb
δ(t, r) ≡ 4πR2 dR, (4.46)

V 0 ρb 

4where V = πR3 . In the long wavelength approximation, substituting the expressions for ρ in3 
Eqs. (4.40), (4.43) and R in Eq. (4.42), (4.45), we have, at O(ϵ2), Z r3 3(1 + ω)′2 2δ(t, r) = 

r3 dr ′ ϵ2 r ρ̃(t, r) = ϵ2(t)K(r)rk. (4.47)
5 + 3ω0 

From this equation, we can see that the curvature profle K(r) characterizes the initial shape of the 
overdensity, so we will sometimes refer to it as the overdensity profle. 

Now, we defne the formation of a black hole by the condition R = 2(M − Mb), that is, when 
the radius R coincides with the Schwarzschild radius of the excess mass M − Mb contained within 
the spherical volume determined by R. In order to characterize this behavior, it is useful to defne 
the compaction function as 

2[M(t, r) − Mb(t, r)]
C(t, r) = . (4.48)

R(t, r) 
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Therefore, if this function reaches 1 at any instant and radius, then a black hole has been formed 
inside that radius. From the expressions for M and R in Eqs. (4.42), we can write, at O(ϵ2), 

2 
˜C(t, r) = 

8π
ρb(t)a(t)

2 r 2ϵ2(t)M̃(t, r) = H(t)2 a(t)2 r 2ϵ2(t)M̃(t, r) = M(t, r) 
r

, (4.49)23 rk 

where we have used the Friedmann equation for a fat Universe in the second step and the relation 
between ϵ and H in Eq. (4.39). Substituting the expression for M̃ in Eq. (4.45), we get 

3(1 + ω) 2C(t, r) = K(r)r . (4.50)
5 + 3ω 

Aside from characterizing the black hole formation, this function naturally imposes a length scale 
rm, which is given by the position of its local maximum in the long-wavelength regime. Imposing 
the condition C ′ (t, rm) = 0 in Eq. (4.50), we get the expression 

rm
K(rm) + K ′ (rm) = 0, (4.51)

2 

This is arguably the most suitable length scale to work with, given that the interesting behavior 
of our simulation will be around the compaction function peak, as we can later see in Fig. 4.3. 
However, traditionally, another length scale choice r0 has been used, which is imposed by the 
condition ρ̃(t, r0) = 0 in the long-wavelenth regime. Using Eq. (4.43) for the expression of ρ̃, one 
then has 

r0
K(r0) + K ′ (r0) = 0, (4.52)

3 

For the Gaussian profle given by Eq. (4.38), these defnitions imply 
√ √ 

rm = 2L, r0 = 3L. (4.53) 

Finally, in order to defne the thresholds for collapse, one needs a magnitude representing the 
amplitude of the overdensity. The usual criterion is to use δ in Eq. (4.47) in either of these 
scales without its temporal dependence given by ϵ(t). The convention is then to set ϵ(t) = 1, 
which, to linear order, corresponds to the time of horizon crossing: from Eq. (4.39), we have 
rk = [a(tH )H(tH )]

−1 . Note that the diferent choices of length scale correspond to diferent times 
of horizon crossing. Then, the collapse thresholds are usually computed in terms of δ for either of 
these scales at horizon crossing, that is, 

δm ≡ δ(tH,m, rm), δ0 ≡ δ(tH,0, r0), (4.54) 

where the second choice has traditionally been more common. We denote the thresholds on these 
quantities as δc and δ0,c, respectively. For a Gaussian perturbation (4.38), using Eq. (4.47) for δ, 
we get the expressions 

3(1 + ω) 3(1 + ω)−1 2 −3/2 2δm = Ae r , δ0 = Ae r0. (4.55)m5 + 3ω 5 + 3ω 
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4.3.3 Numerical simulations 

With the initial conditions defned in the previous subsection, we are now ready to run our simu-
lations, for which we defne a certain radial interval [0, rmax] in which our variables will be defned. 
In order to guarantee stable simulations, we choose rmax sufciently large and, for each iteration, 
we impose on this point the boundary conditions given by the asymptotic r → ∞ quantities, which 
are taken from the analytical solution to the unperturbed FLRW metric. 

For the time integration, we can take any robust method such as a fourth-order Runge-Kutta, 
although higher-order methods provided by scipy [237] are more stable and easy to use. However, 
contrary to standard diferential equations, Eqs. (4.33) and (4.34) are partial diferential equations 
(PDEs) which involve another layer of complexity: spatial derivatives, which are also related to 
the grid we take in [0, rmax]. Depending on the problem, one can use a uniform grid with a simple 
diferentiation algorithm such as fnite diferences, which locally approximate the grid functions by 
small-order polynomials, for which the derivative can easily be computed. In this case, however, 
diferentiating using this technique on a uniform grid leads to numerical instabilities and the eventual 
crash of the simulation. 

In order to overcome this issue, one option is to use a special grid with adaptive mesh refnement 
(AMR), which is the approach taken in [201], aside from a logarithmic grid. Adaptive mesh refne-
ment is a technique consisting on dynamically (at each iteration) increasing the grid resolution in 
those regions of the space where more accuracy is needed, while keeping a lower resolution for less 
demanding areas. In our case, for instance, at radii close to rmax, the variable derivatives will be 
close to zero, so there is no need to have a high resolution. On the opposite side, closer to r = 0, 
the variables are more subject to change and present higher derivatives, so more grid points will 
be needed to accurately compute them, with the precise areas that demand them changing at each 
iteration (see Fig. 4.3. This idea of adaptive mesh refnement will be further detailed in Chapter 6 
for 3-dimensional and heavier simulations of binary black holes. 

Nevertheless, adaptive mesh refnement is not the only solution to get stable gradients. In the 
next subsection, we focus on another technique which was used in [204, 205]: the Chebyshev spectral 
method. 

Chebyshev spectral method 

The Chebyshev spectral method belongs to one class of numerical algorithms called spectral, or 
sometimes pseudo-spectral methods, which are based on decomposing grid felds using a set of basis 
functions. One of the best references for these algorithms which is focused on Chebyshev spectral 
methods is [238]. The mathematical reason why spectral methods are useful is their convergence 
properties: on the one hand, a fnite diferences method of order n with a uniform grid of N points 
introduces numerical errors of order O((1/N)n), where the order of the method is given by the 
number of neighbour points taken into account to compute the derivatives. On the other hand, 
spectral methods use global basis functions accounting for all the points in their domain, so the 
information from all these points is accounted for when taking a derivative. Thus, spectral methods 
have order N , so their error reduces as O((1/N)N ), which implies an exponential reduction. 

The Chebyshev spectral method is based on the Chebyshev polynomials of the frst kind, defned 

98 



4.3. Collapse of density perturbations 

in the domain [−1, 1] as 
Tn(cos θ) = cos(nθ) (4.56) 

These polynomials naturally impose a set of grid points that one should follow. Given a total 
number of points NCheb + 1, Chebyshev collocation points are � � 

xk = cos 
kπ 

. (4.57)
NCheb 

The advantage of these points is that the Chebyshev polynomials can then be easily evaluated, � � 
nkπ 

Tn(xk) = cos . (4.58)
NCheb 

This procedure is called Chebyshev collocation method. 

The goal is to approximate a general function f(x), defned, for now, in the domain [−1, 1], by 
a polynomial PNCheb (x) of order NCheb which satisfes 

PNCheb (xk) = f(xk) ∀k = 0, . . . , NCheb. (4.59) 

Using as a basis the Chebyshev polynomials, so that 

NX 
(x) = anTn(x), (4.60)PNCheb 

n=0 

the coefcients can be computed as [238] 

NX2/cn f(xk) 
an = Tn(xk), (4.61)

NCheb 
k=0 

ck 

with ck = 2 if k = 0 or k = NCheb and ck = 1 otherwise. 

The previous equations then imply that, given a function f : [−1, 1] → R and a number of points 
NCheb + 1, we can approximate f by 

NX 
PNCheb (x) = Lk(x)f(xk), (4.62) 

k=0 

with 
NX2/ck Tn(xk)

Lk(x) = Tn(x). (4.63)
NCheb n=0 

cn 

Following [204], these functions can also be expressed as 
′ (−1)k+1(1 − x2)T (x)NLk(x) = . (4.64)

ckN2(x − xk) 

We will now see how diferentiation and integration can both be done in a very efcient way 
with this formalism. 
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Diferentiation 

Given the expression (4.62), we can see that obtaining the derivatives of PN (x) is as easy as 
diferentiating the Lk(x) functions. Furthermore, we will only be interested in the derivatives on 
the grid points. We then defne the Chebyshev diferentiation matrix as 

Dij ≡ L ′ j (xi). (4.65) 

From Eq. (4.62), we then have an expression for the derivatives at the grid points, 

NX ′ PN (xi) = Dij PN (xi). (4.66) 
j=0 

This equation implies that, given an array of data, we can obtain its derivative with a simple 
matrix multiplication, where the matrix is independent of the time or the grid function and can be 
computed beforehand. This makes diferentiation at each iteration very fast. Computed explicitly, 
the matrix coefcients are [239] 

ci (−1)i+j 
Dij = , i ̸= j, (4.67)

cj (xi − xj ) 

−xj
Dii = 2 , i ≠ 0, NCheb, (4.68)

2(1 − x )j 

2N2 + 1 ChebD00 = −DNChebNCheb = . (4.69)
6 

In fact, only the non-diagonal terms are relevant, since the ones in the diagonal can be computed 
by using the property 

NChebX 
Dii = − Dij , (4.70) 

j=0 
j ̸=i 

which is actually numerically more stable. This property is immediately derived from Eq. (4.66) 
by using that a polynomial PN (xi) = 1 for all i identically maps to a zero derivative. 

Finally, we must conclude how to apply this theory, specifc for functions defned in the [−1, 1] 
interval, to a real interval [a, b]. In order to do this, if we have a certain function f : [a, b] → R, we 
can map it to a new function defned in [−1, 1] with the transformation 

x − a 
g : [a, b] → [−1, 1], x 7→ g(x) ≡ −1 + 2 . (4.71)

b − a 

Then, we can compute the derivative using Eq. (4.66) and transform back to the original interval. 
In practice, this means that the diferentiation matrix has to be multiplied by the derivative of the 
transformation function g, which is 2/(b − a). Therefore, the only diference is a slight redefnition 
of the diferentiation matrix. 

Using this method and the formalism from previous subsections, we are now able to run nu-
merical simulations for isotropic gravitational collapse. In the next subsection, we will see some 
interesting results from the point of view of primordial black holes. 
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4.3.4 Numerical results 

At the early Universe, the dominating fuid was radiation, which is characterized by an equation of 
state with parameter ω = 1/3. It is then natural to start applying this formalism to simulations in 
a radiation fuid. 

If we use a Gaussian profle for the initial overdensity, as given by Eq. (4.38), we have two 
free parameters a priori: the amplitude A and length scale L. The length scale can preferably be 
replaced by either rm or r0, where we will use rm for the discussion. We also observe that, from 
a simulation with fxed rm = 1, we can recover the behavior of any equivalent (same parameters) 
simulation with a diferent rm, just by doing a simple rescaling. In order to do it, we should realize 
that any function f(r) we obtain from a simulation with rm = 1 is actually representing the quantity 
f(r/rm). The time should also be rescaled, but it will in general be indicated as the ratio with the 
initial time (which is non-zero so that H(t) is well-behaved). 

Then, the only efective parameter is the amplitude A. As we saw in the Subsection 4.3.2, we 
can replace this parameter with either δm or δ0. In any case, we can see two diferent qualitative 
behaviors which are shown in Fig. 4.3: when the initial amplitude is large enough, the compaction 
function tends to increase its peak and ends up producing a black hole when it reaches 1. On 
the other hand, if the overdensity does not exceed a certain threshold, the compaction function 
maximum eventually decays away and does not lead to the formation of a black hole. 
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Figure 4.3: Time evolution of the compaction function C(r) for an initial overdensity of δm = 0.57, 
leading to the formation of a black hole (left), and δm = 0.45, for which the pertubation decays 
away (right). In both cases, a radiation fuid is considered, ω = 1/3. 

We can then numerically compute the threshold in either δm or δ0 by looking for it between a 
minimum and maximum value so that the maximum produces collapse and the minimum does not. 
Then, we can run a simulation with their mean value and, if it produces collapse, it becomes the 
new maximum and, otherwise it becomes the new minimum, in a simple bisection algorithm. For 
a Gaussian overdensity profle in radiation, the thresholds are 

δc ≈ 0.498, δc = 0.453, (4.72) 
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matching existing literature [230, 231, 232, 201, 204, 202]. The mass of the fnal black hole depends 
on the initial overdensity, but it obeys a very simple power law in the regime δm − δc ≲ 10−2 , which 
is called critical collapse [226]. In this case, the mass can be computed as 

mPBH = K(δm − δc)γ MH , (4.73) 

with MH = 1/(2H(tH )) [204, 240] the mass of the cosmological horizon at tH , and where K and γ 
are parameters whose values depend on the equation of state and overdensity profle. In the case 
of a Gaussian perturbation in a radiation fuid, they are approximately [204, 202] 

K ≈ 6, γ ≈ 0.36. (4.74) 

For details of how these parameters, as well as the threshold, change with diferent overdensity 
profles, see [201, 202]. Here, instead, we will focus on the changes with the equation of state 
parameter ω and comment on their consequences for PBH formation. 

4.3.5 Threshold dependence of equation of state 

By varying ω, one can see how the threshold varies. In Fig. 4.4, which reproduces a fgure in [232] 
with own code based on [204], we notice how it starts at zero for ω = 0 and increases as ω grows. 
This has a very clear physical interpretation: as ω increases, by defnition (4.15), the pressure also 
does, which tends to prevent the collapse. Therefore, a more intense gravitational force produced 
by a larger overdensity is required for the collapse to succeed. 
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Figure 4.4: Thresholds δc and δ0,c for δm and δ0, respectively, as functions of the equation of state 
parameter ω. 

From this behavior, we can derive some interesting consequences for primordial black holes 
which have to do with the thermal history of the Universe. 
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Thermal history of the Universe 

At the early Universe, right after the infation period, the Universe was constituted by a pure 
radiation fuid (ω = 1/3). Up to the present day, eventually, matter (ω = 0) started to dominate 
and, fnally, dark energy (ω = −1) became the main contribution to the energy density content of 
the Universe. However, as we know from the thermal history of the Universe, even within radiation 
domination, the equation of state parameter was not always close to 1/3. As the Universe cooled 
down, the diferent particles progressively became non-relativistic, producing abrupt changes in 
the relativistic degrees of freedom, as we can see in the left panel of Fig. 4.5, which should be 
chronologically read from right to left. These changes caused the equation of state parameter to 
drop from 1/3, as we can see in the right panel of the same fgure. 
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Figure 4.5: Relativistic degrees of freedom g∗ (left) and equation of state parameter ω (right) 
evolution with temperature, showing the particles whose decoupling caused the changes. Figures 
taken from [168] and [200]. 

For primordial black holes, these changes in ω directly relate to a higher production of PBH, 
as inferred from the lower overdensity thresholds seen in Fig. 4.4. Additionally, as the Universe 
cooled down, the Hubble parameter H(t) decreased, which translates into larger horizon masses 
1/2H(t) and, via Eq. (4.73), larger PBH masses. Therefore, each of the bumps in ω observed in the 
left panel of Fig. 4.5translates into a larger amount of PBHs being produced with a mass roughly 
corresponding to the Hubble horizon at that time. In practice, these higher productions are seen 
as peaks in the mass spectrum of PBHs, as we can see in both panels of Fig. 4.6. 

With this, we conclude this section, in which we have studied how PBHs are formed more in 
detail and explore the consequences of the change of threshold with the equation of state parameter, 
leading to their peculiar distribution in masses. In the next section, we will briefy review how these 
PBHs are distributed in space, as well as their interactions. 
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Figure 4.6: Left panel: density fraction of PBHs at formation (βf defned in Eq. (4.1)) for the 
diferent PBH masses. Right panel: dark matter fraction of PBHs today. In both cases, two models 
are considered, where the frst one comes from Refs. [241, 242] and the second one corresponds to 
Refs. [243, 244]. Figures taken from [168] and [200]. 

4.4 Merger rates of primordial black holes 

Up to now, we have focused on the formation of isolated primordial black holes. Assuming that 
the density fuctuations are homogeneous, these black holes would be formed randomly, following 
a Poisson-like distribution. In this case, some of them would be generated so close to each other 
so as to decouple from the Universe expansion. Then, the gravitational attraction would dominate 
and drive their dynamics, constituting PBH clusters. 

In particular, PBHs which form very close to another one can either directly merge or form 
PBH binaries, depending on the gravitational infuence of other nearby objects. Black hole binaries 
which are formed shortly after PBHs are formed, before matter-radiation equality, are called early 
binaries, constituting one of the possible channels through which PBHs can form binary black 
holes [245, 246, 247, 248]. 

The other main mechanism for binary formation is that, at late times, PBHs within dense 
clusters dynamically capture another black hole, forming a late binary [249, 250]. These dynamical 
captures are produced when the two black holes interact in a hyperbolic-like encounter and, after 
the energy loss due to their interaction, their remaining kinetic energy is not enough to overcome 
their mutual gravitational pull, ending up being bound to each other. 

There are many works focusing on either of these channels, or both, studying their merger rates. 
It is still not clear which of them should dominate, given that it depends on the mass distribution and 
clustering properties of PBHs [251]. In this thesis, we will focus on the late binary channel, which will 
be used to explain in detail our article on the SGWB produced by hyperbolic encounters of PBHs [2] 
in Chapter 5. For the early binaries, one can instead refer to [200, 246, 247, 252, 253, 254, 255]. 

104 



4.4. Merger rates of primordial black holes 

4.4.1 Merger rates of PBH late binaries 

We consider a hyperbolic-like interaction between two black holes with masses m1 and m2, with 
the orbital elements described in Sec. 1.4. The condition that a BBH forms from a close hyperbolic 

2encounter is that the energy loss due to GW emission exceeds the kinetic energy E∞ = 1/2 µv∞. 
The energy loss by the GW emission is given by Eq. (1.217), with a function of the eccentricity 
f(e) given by Eq. (1.218). Using Eq. (1.205) for the expression of v∞, we can express the distance 
of closest approach rp given by Eq. (1.202) as 

GM 
rp = (e − 1), (4.75)

v2 ∞ 

so that the condition E∞ ≤ |∆E| can be rewritten as [249, 250] 

15 M 2 c5 
G(e) ≥ , (4.76)

16 m1 m2 v5 ∞ 

with  425π (e 2 − 1)−7/2 for e ≈ 1 ,f(e) 4
G(e) ≡ = (4.77)

(e − 1)7/2  37π (e 2 − 1)−3/2 for e ≫ 1 . 
8 

If this condition is satisfed, the two black holes can become bound to each other and form a 
BBH. As explained in Sec. 1.3, they then describe a quasi-elliptic motion in which the energy loss 
makes them progressively closer to each other until, eventually, they merge. However, if this binary 
is located in a dense cluster, it has been shown that a third BH is likely to interact with the BBH 
during its evolution, breaking the binary system and preventing the merger [256, 248, 257]. One 
of the possibilities to get stable binaries in such dense environments is that they are formed at the 
cluster center and, later, they are ejected to the outskirt of the cluster. Such binaries are thus not 
disrupted, so that they eventually merge and emit GWs. We then want to estimate the merger rate 
of these binaries. 

In order to compute the merger rate, we frst write its cross-section σ. From scattering theory, 
we know that � �2

GM 
σ = πb2 = π

v2 (e 2 − 1), (4.78) 
∞ 

where b is the impact parameter defned in Sec. 1.4 that, in the last step, we have substituted in 
terms of v∞ using Eqs. (1.198) and (1.205). We now assume that, in order for the dynamical capture 
to be efective, e ≈ 1, which is the frst case for the defnition of G(e) in Eq. (4.77). Substituting 
(e2 − 1) in Eq. (4.78) using the condition (4.76) under this hypothesis, we obtain the cross-section 
for BBH formation, � �2/7 

G2M10/7(m1 m2)
2/7340π 

σBBH = π 
18/7 . (4.79)

3 c10/7v∞ 

Thus, the formation rate of BBHs per individual event is given by 

τind = n(m)vPBHσ
BBH , (4.80) 
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√ 
where n(m) is the number density of PBHs and vPBH = v∞/ 2 is the PBH velocity. We assume 
a simplifed clustering scenario in which PBHs are clustered in overdense regions, parametrized by 
a local density contrast δloc. If we assume that PBHs constitute all of the dark matter, fPBH = 1, 
we can write the number density as 

ρDM n(m) ≡ δloc , (4.81)
m 

with the mean dark matter energy density ρDM = ΩDMρc, where ΩDM ≃ 0.25 is the density 
parameter for dark matter. 

However, it is more useful to work with the total merger rate per comoving volume. We can 
obtain this rate by multiplying τind by the number of PBHs in the comoving volume. This is similar 
to the previous step but, in this case, we multiply the averaged number density in the Universe, 
n(m)/δloc = ρDM/m, instead of the clustered one n(m). Otherwise, we would obtain the merger 
rate in a given cluster volume, which is not what we are interested on. By taking into account a 
given mass distribution for the PBHs, the total merger rate is then given by [251] 

d2τBBH 1 
σBBH = vPBH n(m1) n(m2) (4.82)

d ln m1 d ln m2 δloc � �2 � �� �−11/7 
M10/7ΩDM δloc v∞≈ 14.8 yr −1Gpc−3h4 f(m1) f(m2) ,70 0.25 108 10 km/s (m1 m2)5/7 

where f(m) is the logarithmic mass function of PBH. To be more conservative, we normalize itR 
such that d(ln m) f(m) = fPBH ≤ 1, thus allowing for PBHs to constitute only a fraction of dark 
matter. Typical values for v∞ are a few tens of km/s and δloc can be taken of order 108 , as in 
Ref. [251]. 

We conclude here our review of primordial black holes, which covered their main properties, 
some formation mechanisms, the numerical computation of their overdensity thresholds, as well 
as how they would impact their mass distribution over the thermal history of the Universe and, 
fnally, their merger rates in the late binary scenario. These areas are enough for the objectives 
of this thesis, but there are many more aspects of these objects which can be covered, such as the 
formation mechanisms we have left unexplained, the behavior of early binaries, the constraints to 
PBH abundance from diferent methods and their detectability prospects. For them, one can refer 
to the review by the LISA Cosmology working group [200] and references therein. 

In the next chapter, we will study an additional aspect of PBHs: how the late binaries contribute 
to the stochastic gravitational wave background, as well as address their detectability. Furthermore, 
we will discuss how the picture changes for hyperbolic encounters, as was studied in our article [2]. 
Additionally, in Chapter 7, we will use the PBH theory introduced in this chapter to derive some 
consequences of the spin induction efect produced during close hyperbolic encounters, as we studied 
in our article [1]. 
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Chapter 5 

SGWBs from close hyperbolic 
encounters of PBHs 

5.1 Introduction 

As we saw in Chapter 4, primordial black holes may have formed in the early Universe from the 
gravitational collapse of overdense regions. These objects have been studied for decades, as they 
may account for all or part of the dark matter in the Universe. 

There is not yet defnite proof of the existence of PBHs, but recently, GW observations of BBH 
mergers are providing rich information on the black hole population [258]. In fact, some analyses 
based on the mass and rate distributions [241, 259, 260, 242, 261, 252, 262] or spin properties [263, 
264] suggest that the observed BBHs could be of primordial origin. 

Another approach to probing PBHs is to look for a SGWB, which can be formed both at the 
PBH formation via scalar-induced GWs [93, 265, 266], as seen in Sec. 2.5, and by the superposition 
of GWs from BBHs [267, 251, 268, 269, 270], as we will study in this chapter. Until now, the LIGO 
and Virgo detectors have been improving the upper limit on the amplitude of SGWBs [28], and 
constraints on PBHs through SGWBs have been discussed [271, 96, 272]. In the future, the upgraded 
version of the LIGO-Virgo-KAGRA detector network [19] (and later with LIGO-India [273]) and 
next-generation GW experiments such as Einstein Telescope (ET) [17], Cosmic Explorer (CE) [18], 
LISA [20], TianQin [21], Taiji [22], DECIGO [23], will allow us to detect SGWBs with greater 
sensitivities for a wide range of frequencies, as we commented during the discussion of Fig. 2.1. 

In this chapter, we will review one of our works [2] in which we propose an important addi-
tional source for SGWBs, which is the one formed by overlapped GW bursts from close hyperbolic 
encounters. Gravitational waves from these unbound interacting systems can be observed by GW 
experiments and have been studied in the literature [274, 275, 67, 68, 54, 53, 276, 55]. In fact, 
the dense environment at the center of PBH clusters can enhance the rate of these events, with an 
eccentricity close to unity [277], leading to strong GW bursts. Furthermore, if the interaction is 
strong enough, they can produce nontrivial dynamics, such as spin induction [1, 278] and subsequent 
mergers [279]. 
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In this work, we made the frst estimation of the SGWB amplitude from CHEs, discussing its 
detectability in future GW experiments and comparing it to the one from BBHs. 

5.2 Stochastic background of GWs 

For SGWBs of point source origin, the GW spectrum can be computed by Z 
1 ∞ N(z) dEGW

ΩGW(f) = dz , (5.1)
ρc 0 1 + z d ln fr 

where fr = (1 + z)f is the emitted GW frequency, which is redshifted with respect to the one we 
measure, and N(z) is the number density of GW events at redshift z, given by 

τ (z)
N(z) = . (5.2)

(1 + z)H(z) 

Here, H(z) is the Hubble parameter and τ (z) is the merger rate per unit time per comoving volume. 
For a broad mass distribution of black holes, the merging rate should be replaced by Z Z 

d2τ 
τ (z) = d(ln m1) d(ln m2) . (5.3)

d ln m1 d ln m2 

5.2.1 Binary BHs 

We frst compute the stochastic gravitational wave background from BBHs. As in Sec. 4.4, we 
assume the late binary scenario which is the one closely related to CHE. Thus, we can directly use 
the merger rate derived in Eq. (4.82). 

For the energy emission, we could take the energy spectrum from Eq. (1.196). However, we 
followed a slightly diferent formalism in [280, 281], which includes the contributions of the inspiral, 
merger, and ringdown parts of the BBH waveform. In the absence of spin and eccentricity, the GW 
energy spectrum takes the form 

dEBBH (πG)2/3m1 m2 
f2/3 = F(fr) , (5.4)rd ln fr 3c2M 1/3 

where F(fr) describes the deviation from the frequency dependence of the inspiral phase fr 
2/3 . It 

is explicitly given by  
(1 + α2u

2)2 for fr < f1, w1fr(1 + ϵ1u + ϵ2u2)2 for f1 ≤ fr < f2,F(fr) = � � �−2 (5.5)�2 7/3 fr −f2 w2fr 1 + 4 for f2 ≤ fr < f3,σ 

where u ≡ (πMGfr/c
3)1/3 , α2 = −323/224+451η/168, η ≡ m1m2/M

2 , ϵ1 = −1.8897, ϵ2 = 1.6557. 
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The transition frequencies and the width are given by {f1, f2, f3, σ} ≡ c3/(πMG)βi with 

β1 = 0.066 + 0.6437η − 0.05822η2 − 7.092η3 , 
β2 = 0.185 + 0.1469η − 0.0249η2 + 2.325η3 , 
β3 = 0.3236 − 0.1331η − 0.2714η2 + 4.922η3 , 
β4 = 0.0925 − 0.4098η + 1.829η2 − 2.87η3 . (5.6) 

The normalization constants w1 and w2 are 

2[1 + α2u1]
2 

= f−1 
1 2w1 

[1 + ϵ1u1 + ϵ2u ]2 , 
1 

−4/3 2 w2 = w1f [1 + ϵ1u2 + ϵ2u2]
2 , (5.7)2 

where ui ≡ (πMGfi/c
3)1/3 = β1/3 .i 

We can see that, for low frequencies, F(fr) ≈ 1, so that Eq. (5.4) reduces to Eq. (1.196). 

Assuming a time-independent merger rate, we can numerically integrate the redshift dependence 
of Eq. (5.1). In particular, the low-frequency tail is characterized by F(fr) = 1, so the redshift 
dependence is integrated as Z ∞ dz 

= 0.76 H−1 , (5.8)0 
0 (1 + z)4/3H(z) 

where H(z) is the Hubble parameter as a function of redshift. In the previous equation, we substi-
tuted the value of the matter energy density parameter ΩM = 0.31. The low-frequency limit of the 
SGWB from BBH is then � �2 � �� �−11/7 � �2/3 

ΩBBH ΩDM δloc v∞ f 
GW (f) ≈ 2.39 × 10−13 h70 

0.25 108 10 km/s Hz Z 
f(m1) f(m2) (m1 + m2)

23/21 
× dm1 dm2 , (5.9)

(m1 m2)5/7 

with mi in solar mass units. 

Furthermore, we can refne the analysis by assuming a redshift-dependent merger rate, τBBH ∝ 
(1+z)β , with exponent 0 < β < 1.28 [272, 248]. In this case, the low-frequency part of the spectrum 
gets enhanced by at most a constant factor 3.9, slightly modifying the shape of the spectrum near 
the peak. However, the slope at low frequencies stays at f2/3 and the cutof at high frequencies 
remains invariant. We will visualize this efect in the next section. 

5.2.2 Close hyperbolic encounters 

In the dense environment at the center of a cluster, a large fraction of BH encounters does not end 
up producing bound systems, instead producing a single scattering event. These encounters have 
been studied much less than BBHs but, in fact, CHEs should be more common at the inner part of 
BH clusters [277]. In addition, they also emit GWs, which should be considered both for individual 
events [54, 53] and for their contributions to the SGWB. 
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If a pair of BHs does not satisfy the condition Eq. (4.76), then the two BHs eventually get 
further away in a close hyperbolic encounter. The cross-section σ is again given by Eq. (4.78), this 
time without the condition in Eq. (4.76) imposed on the eccentricity. Thus, aside from the BH 
masses, we have two free parameters: v∞ and e. Multiplying by the averaged number density (see 
Subsec. 4.4.1 for the discussion on δloc), we obtain the total event rate, 

d2τCHE 1 
= σvPBH n(m1) n(m2)

dm1 dm2 δloc � �2 � � 
ΩDM δloc f(m1) f(m2) M2 e2 − 1 ≈ 25.4 × 10−8 yr −1Gpc−3 h4 . (5.10)70 0.25 108 m1 m2 m1 m2 (v∞/c)3 

Using Eq. (1.205) for v∞, from now on, we substitute this velocity by its expression in terms of 
the semi-major axis a. As for BBHs, we also include the factor (1 + z)β in order to parametrize the 
event rate time dependence. 

The energy spectrum of hyperbolic encounters was shown in Eq. (1.219) using Refs. [68, 53]. 
We also include it here for convenience, 

dECHE G3 2 24π 1mGW dEGW m 2 = ν = ν5Fe(ν) , (5.11)
d ln fr dν 45 a2c5ν0 

where ν ≡ 2πν0 fr, with ν2 ≡ a3/GM , is the dimensionless frequency, and Fe(ν) is such that [54]0 

12F (ν) −2ν ξ(y)ν5Fe(ν) ≃ e ,
π y (1 + y2)2 � �

6F (ν) = ν2 1 − y 2 − 3 ν y3 + 4 y 4 + 9 ν y5 + 6 ν2 y , 
−1ξ(y) = y − tan y , p 

y = e2 − 1 . (5.12) 

In order to integrate the redshift dependence of Eq. (5.1), we defne the following function Z ∞ √ 5/2−β Z ∞π ν5 Fe(ν) H0 ΩM πx0I[y, x0] ≡ dz (1 + z)β ≃ dν ν3/2+β Fe(ν)
12 0 (1 + z)2H(z) 12 x0 � � �5/2−β
2x 1 10 = 2(1 − y 2 + 4y 4) ξ2 Γ − + β, 2x0ξ 
(2ξ)3/2+β y(1 + y2)2 2� � � �� 
+ 3y 3(−1 + 3y 2) ξ Γ 

1
+ β, 2x0ξ +3y 6Γ 

3
+ β, 2x0ξ , (5.13)

2 2 

where Γ is the upper incomplete gamma function and we defne 

x0 ≡ 2πν0f, so that ν = x0(1 + z). (5.14) 

At low frequencies, we fnd that the function follows 

α x ∝ fα , α = min{2, 5/2 − β}. (5.15)0 
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This is one of the key features of the CHE contribution to the SGWB: a measurement of the 
slope of the low-frequency tail would provide information about the redshift dependence of the event 
rate. For BBH, however, this event rate dependence of redshift only shifts the amplitude without 
changing the slope. Since the merger rates of astrophysical and primordial black holes evolve very 
diferently with redshift, this feature of CHEs could help distinguish between them. 

For the subsequent discussion, we focus on the constant event rate case β = 0, so that the 
previous integral simplifes to   

4 3 x0y 6 
1 − y2 + 4y + 

2 −2x0ξ(y)  2 ξ(y) I[y, x0] ≃ 2 x0 e . (5.16)
y (1 + y2)2 

This function peaks at around xpeak ≃ 1/ξ(y) and decays as exp(−2x0ξ(y)) at higher frequencies. 0 
For y ≪ 1, we can use the frst order of the Taylor expansion of ξ(y), which is ξ(y) ≈ y3/3, to 
estimate the peak frequency as � �−3 

� �1/2 � �−3/2y M a 
fpeak ≃ 43 Hz , (5.17)

0.01 200M⊙ 0.1 AU 

which depends on the intrinsic properties of the CHE (M, a, e). Putting all of this together and 
redefning 

22x0 −2x0ξ(y) ˜I[y, x0] = e I[y, x0], (5.18)
y 

so that Ĩ[y, x0] is of order unity at low frequencies, we fnd � �−1/2 � �2 � �� �� �2 � 
ΩCHE ΩM ΩDM δloc a f y � 

GW (f) ≈ 9.81 × 10−13 h70 
0.3 0.25 108 0.1 AU 10Hz 0.01Z 

dm1 dm2 −2x0ξ(y) ˜× f(m1) f(m2) e I[y, x0] . (5.19)
100M⊙ 100M⊙ 

In addition, for the peak frequency in Eq. (5.17), we can approximate � �−1/2 � �2 � �� �−2 
ΩCHE ΩM ΩDM δloc a 

GW (fpeak) ≈ 3.6 × 10−13 h70 
0.3 0.25 108 0.1 AU � �−5y m1 m2 m1 + m2 × . (5.20)

0.01 100M⊙ 100M⊙ 200M⊙ 

For instance, by taking m1 = m2 = 300M⊙, a = 5AU and y = 2 × 10−3 , we fnd ΩGW(fpeak) ≈ 
1.2 × 10−11 at the LIGO frequency band, fpeak ≈ 26 Hz. On the other hand, m1 = m2 = 300M⊙, 
a = 5 × 107AU and y = 10−5 yields ΩGW(fpeak) ≈ 3.9 × 10−14 at the LISA frequency band, 
fpeak ≈ 6.7 mHz. 

Eq. (5.20) shows the intuitively expected behavior that we get larger SGWB amplitudes for larger 
masses, smaller semi-major axes, and smaller y (eccentricity close to unity). These parameter values 
would be distributed on a wide range and, in principle, we should obtain the SGWB spectrum by 
marginalizing over them. Given that we do not know the distributions of the involved parameters, 
for simplicity, we assume log-normal distributions of median m0/a0/y0 and its variance σm/σa/σy. 
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5.2.3 Comparison between BBHs and CHEs 

In Fig. 5.1, we plot some example GW spectra for BBHs and CHEs. In order to get reasonable 
contributions for both the LISA and LIGO frequency bands, we marginalized over mass distributions 
centered at 100 − 300M⊙. However, a more detailed analysis should consider more physically 
motivated mass distributions. As illustrated by Eqs. (5.17) and (5.20), higher masses produce 
greater backgrounds peaking at higher frequencies, while the opposite is true for lower masses. For 
reference, in Fig. 5.1, we also plot the power-law integrated (PI) sensitivity curves of the detectors, 
which show their sensitivity to detect a power-law background after integrating this power law over 
frequency. These PI sensitivity curves are thus very helpful to address the detection of power-law 
like SGWBs, given that they account for the increase of sensitivity obtained from the integration. 
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Figure 5.1: Comparison of the SGWB spectrum originating from BBHs and CHEs, both for β = 0 
(solid lines) and 1.28 (dashed lines). The power-law integrated sensitivity curves of several GW 
detectors are also plotted for a signal-to-noise ratio of 10 and an observation time of 1 year, following 
the formalism in [282]. For the BBH curves, we take m1 = m2 = 100 − 300 M⊙ and v∞ = 30km/s. 
The CHE curves correspond to the same range of masses with a0 = 5AU, y0 = 2 × 10−3 for 
∼ 10Hz, and a0 = 5 · 107AU, y0 = 10−5 for the mHz range. For all cases, we take σa, σy = 0.1, 
σm = 0.5, and fPBH = 1. For a smaller fraction of PBHs, the GW spectral amplitude simply scales 
as ΩGW ∝ f2 

PBH. 

Another thing we can observe in Fig. 5.1 is that the SGWB spectrum from CHEs is steeper than 
the one from BBHs, which is expected from the frequency dependence of Eqs. (5.19) and (5.13). 
In the case of the constant merger rate β = 0, the SGWB spectrum inherits the f2 dependence of 
the spectrum of the individual event at low frequencies, while the individual BBH spectrum does 
the same for the f2/3 dependence. A possible physical interpretation is that a CHE emits a single 
burst of GWs, whereas the ones from a BBH are essentially periodic with increasing frequency. It 
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is, therefore, natural that the BBH case has a broader spectrum in frequency. 

In addition, we can see the diferent behavior of the BBH and CHE tails as the merger rate 
dependence with redshift increases its exponent β. As mentioned before, the change of the BBH 
curves with β is just an overall enhancement up to a factor 3.9, whereas the CHE curves notably 
modify their slopes. This sensitivity of the CHE background to β is very relevant, since the rate 
dependence on redshift is one of the features that distinguish astrophysical from primordial black 
holes [280]. Therefore, a measurement of the tail of the CHE background could provide useful 
information about the relative abundance of both populations. 

For the LIGO frequency range, with modest values of the parameters, we can see in Fig. 5.1 that 
the CHE spectrum can reach ET and CE sensitivities. Although the CHE contribution is below the 
BBH curves, we note that the disruption of the binary system in a dense environment, which could 
lower the GW amplitude, is not taken into account. We should also take into account that some 
BBH events with a large signal can be detected individually and subtracted from the data [283]. 

More restrictive parameters are needed in order to produce a relevant CHE background in the 
LISA frequency band, although the joint observation with TianQin or Taiji could improve the 
sensitivity in these frequencies [284, 285, 286]. This difculty can easily be understood if we rewrite 
Eq. (5.20) in terms of the peak frequency, � �−1/2 � �2 � �� �4/3 

ΩCHE ΩM ΩDM δloc fpeak 
GW (fpeak) ≈ 4.4 × 10−13 h70 

0.3 0.25 108 50 Hz � �1/3� y �−1 m1 m2 m1 + m2 × . (5.21)
0.01 100M⊙ 100M⊙ 200M⊙ 

From this expression, we can see that, for fxed masses and eccentricity, the maximum amplitude 
ΩCHE 4/3

(fpeak) grows with f Therefore, with modest parameters as the CHE curves in the LIGO GW peak. 
range, the amplitude of the background decays signifcantly if we try to translate the curve to the 
LISA range. On the other hand, however, this is a hint that the SGWB from CHE may play an 
important role in higher frequency ranges, such as the ultra-high frequency (MHz-GHz) band for 
which there are good prospects of detection in the future [287] (see Chapter 8 for a more detailed 
discussion on GW detection in diferent frequency bands). 

5.3 Conclusions 

In our article [2], we proposed a new source for stochastic gravitational wave backgrounds, which 
comes from CHEs. We computed the SGWB spectrum from a superposition of GWs from CHE 
events and compared the amplitude with the one from BBHs. We have seen that they have diferent 
frequency dependencies, which would help to distinguish the two diferent origins when detection 
of SGWB is made. Furthermore, as shown in Fig. 5.1, we have found that there exist combinations 
of parameter values that can make the CHE contribution detectable by future GW interferometers, 
especially with ET, CE or ultra-high frequency experiments, and with more difculty in the LISA 
range. 

In addition, we discovered that a change on the event rate dependence on redshift translates 
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into a change of slope for the CHE contribution of the low-frequency tail. This is something that 
does not happen for BBH and opens the possibility to probing the time evolution of the event rate. 

As we have discussed, formations of BBHs and CHEs strongly depend on the clustering nature 
of the PBHs. Current cosmological observations have not yet provided a clear picture of BH 
distribution in the Universe. Detection of SGWB would provide new implications on the BH 
evolution. In addition, we have focused on SGWB from PBHs, but GWs from astrophysical black 
holes would also contribute to the SGWB. Given the fact that the event rate evolves diferently with 
time for ABHs and PBHs, the slope of the tail of the CHE background could serve to disentangle 
both contributions and derive their relative abundance. The combination of other information from 
further investigations, such as spectral shapes [288, 289, 272], anisotropy [290, 291, 194] or popcorn 
features [292, 293], can also help to obtain implications on the origin of BHs. 

As a fnal remark, we assumed a simplifed scenario in which the overdense regions are uniform 
and parametrized by δloc (see Subsec. 4.4.1). However, our work can be extended to incorporate 
a more detailed clustering profle of PBHs. Besides, we could consider more realistic distributions 
of the CHE parameters, such as semi-major axis and eccentricity. In fact, we have observed that 
when we make the log-normal distribution of the parameters wider, the spectral shape changes 
dramatically, and the peak amplitude tends to get enhanced. We leave the detailed analysis for 
future work. 
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Chapter 6 

Numerical Relativity 

The frst gravitational-wave detection in 2015 [7] opened up a new window of observations to the 
Universe. We have seen in previous chapters that compact binary coalescences are the dominant 
events we can observe with current detectors, so it is of key importance to interpret these signals 
correctly. In Section 1.3, we studied the gravitational waves produced by the inspiral of CBCs 
assuming quasi-circular orbits. However, the merger dynamics is highly non-linear and cannot be 
modelled with analytical approximations, so it is necessary to solve Einstein’s equations with more 
precision, resorting to Numerical Relativity. Furthermore, if we relax the assumption of quasi-
circular orbits, there is a huge parameter space which CBCs can occupy, with diferent masses, 
eccentricities and spins (intrinsic parameters), as well as varying orientations and distances to the 
source (extrinsic parameters, which can easily be treated analytically). 

In general, NR simulations are very computationally expensive to run, so they are not useful to 
do parameter estimation of CBCs, for which a lot of GW templates, or waveforms, are required. 
As a result, many approximate models to generate them, or gravitational-wave approximants, have 
been developed in recent years. They can be classifed into several types: 

• Efective one body (EOB) models [294] combine perturbative results, such as the mentioned 
post-Newtonian and post-Minkowskian, together with physically motivated shapes for the 
merger, as well as ringdown models coming from BH perturbation theory. Some state-of-the-
art examples include SEOBNRv5PHM [36] and TEOBResumS [37]. 

• Phenomenological models [295, 296] ft the inspiral, merger and ringdown from EOB models, 
PN approximations and NR, getting a fast waveform generation. Some examples include 
IMRPhenomTPHM [30], IMRPhenomXPHM [31] and IPhenomXO4a [32]. 

• NR surrogates interpolate between waveforms from NR simulations, being the most reliable 
option within their parameter space, but of limited applicability. Some examples include 
NRSur7dq4 [297] and NRHybSur3dq8_CCE [298]. 

These models have a lot of parameters which are calibrated to numerical simulations, so that they 
can reproduce NR accuracy within the parameter space they were calibrated for, while taking just 
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a fraction of a second to generate a GW template, or waveform. However, recent works [299, 300] 
have pointed out that these templates are still insufcient to get an accurate estimation for the 
parameters of the GW signals we receive. Furthermore, the problem will only get worse as the 
sensitivity of GW detectors increases. Therefore, a lot NR simulations are still required to have a 
good, accurate coverage of the full parameter space. 

In this chapter, we will cover some of the basic concepts of Numerical Relativity, as well as use 
an NR software, the Einstein Toolkit [301, 302], to run some simulations and analyze their outputs. 
We will do this both for standard BBHs and for the less studied hyperbolic encounters. 

During this chapter and the next one, related to NR, we will work in geometrized units, G = 
c = 1, as we did in Sec. 4.3. In this case, the unit mass will provide the unit length and time. 
Furthermore, the numerical simulations we will see are invariant under a change of total mass, so 
we will set M = m1 + m2 = 1. Therefore, when interpreting the output, the time and length have 
to be rescaled by M . Thus, the fgures will be plotted in terms of t/M or x/M . 

6.1 Introduction to NR 

The frst attempt to solve Einstein’s equations numerically dates back to an article by Susan Hahn 
and Richard Lindquist in 1964 [303]. In this work, the authors evolve initial data generated by 
Charles Misner [304] to simulate a BBH head-on collision. However, it was not until 2005 when 
the frst BBH with angular momentum was successfully simulated by Pretorius [33], followed soon 
after by the groups at Brownsville [34] and NASA Goddard [35]. The success of these simulations 
was essential to the feld of gravitational waves, given that it was only 10 years later, the LIGO 
detectors received the frst ever detected gravitational wave, GW150914 [7]. The detection and 
analysis of this signal would not have been possible if templates from numerical simulations had 
not yet been ready. 

During this section, we will cover some of the formalisms used in NR and briefy comment on 
some of the issues related to numerical simulations, such as the generation of initial conditions or 
technical details as the AMR, already mentioned in Sec. 4.3. This section will be based on several 
references, such as [305, 306, 301]. 

6.1.1 The 3+1 ADM formalism 

As we saw in Sec. 4.3, within Numerical Relativity, it is important to choose a suitable formalism 
in which the problem can be treated well. In this section, we will not get to the full equations and 
initial conditions as we did in Sec. 4.3, but only give a brief overview of the formalisms which are 
more common in Numerical Relativity and, in particular, for BBH simulations. 

In order to work with the Einstein equations, their covariant four-dimensional form is not suitable 
to describe a temporal evolution. It is then more convenient to split the four-dimensional manifold 
into a time succession of three-dimensional manifolds (slices), which is called foliation. This clear 
separation between the time and spatial components is called 3+1 decomposition, and it is a very 
general framework in which one can defne multiple formalisms. 
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The most extended application of the 3+1 decomposition is the ADM (Arnowitt-Deser-Misner) 
formalism [307], which expresses the spacetime metric as 

ds2 = gµν dx
µdxν = −α2dt2 + γij (dx

i + βidt)(dxj + βj dt), (6.1) 

where α is called lapse, βi is the shift and γij is the spatial metric. Another important quantity is 
the extrinsic curvature, defned as 

Kij ≡ − 
1
(∂t − L⃗ )γij , (6.2)β2α 

where L⃗ is the Lie derivative with respect to the shift vector. With these defnitions, the Einstein β 
equations form a hyperbolic-elliptic system of PDEs which are suitable to work with. Their exact 
form is given in [305, 308, 309], involving some additional defnitions and subtleties which are not 
relevant for the goals of this thesis. 

Another formalism which is commonly used is the BSSN (Baumgarte-Shapiro-Shibata-Nakamura) [310, 
311], which is a variation of ADM. The most relevant modifcation is a conformal transformation 
so that the new metric γ̃ij has unit determinant and the new extrinsic curvature Ãij is traceless. 
One can then defne these quantities from γij and Kij as � � 

1 
γ̃ij = (det γ)−1γij , Ãij = (det γ)−1 Kij − γij γ

klKkl . (6.3)
3 

This formalism has been widely used to simulate BBHs and, in particular, it is the one used in 
all the simulations shown in this chapter and the next one. For the exact equations, one can refer 
to [305, 312]. 

Any of these formalisms provides the Einstein equations in a suitable form. Then, the next step 
is to generate valid initial conditions that can be numerically evolved. 

6.1.2 Initial conditions 

From the classic Keplerian point of view, the initial conditions of a BBH simulation would consist 
on two black holes of certain masses m1 and m2, separated a certain distance d, with certain initial 
momenta p⃗1 and p⃗2 and spins χ⃗1 and χ⃗2, where χ⃗ is each black hole rotation angular momentum 
divided by its mass squared, so that it is dimensionless. The situation is depicted in Fig. 6.1. In 
general, since NR simulations are independent of the total mass M = m1 + m2, only one mass 
parameter is necessary to fully describe these masses: the mass ratio q. In our simulations, we use 
the convention m1 ≥ m2, so, in order for q to adapt to the convention 0 < q ≤ 1, we defne it as 

q ≡ 
m2 

. (6.4)
m1 

Other references, however, use the convention g ≥ 1, so one has to be careful when using concepts 
such as “high” or “low” mass ratios. In addition, in order for the center of mass to stay fxed, it is 
convenient to take symmetric initial momenta, p⃗1 = −p⃗2. 

However, in the context of General Relativity, setting initial conditions means to fll the simu-
lation volume with all the needed variables in GR. In the ADM formalism, this involves setting the 
metric elements in Eq. (6.1), which is not trivial just from the mentioned physical quantities. 
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d
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Figure 6.1: Initial conditions for numerical BBH simulations, where we take m1 ≥ m2 and p⃗1 = −p⃗2. 

Diferent methods to generate initial conditions have been developed over the last decades. The 
frst BBH head-on collision by Hahn and Lindquist [303] used initial data generated by Misner [304]. 
Around the same years, the Brill-Lindquist initial data [313] was also developed, which has been 
used for decades to simulate head-on collisions [314]. The reason that these two types of initial 
value data were used for this purpose is that they represent two initially static black holes without 
spin, so its applicability is very limited. 

One of the most used methods to generate initial data is based on the Bowen-York prescrip-
tion [315], usually referred to as puncture initial data, which extends the Brill-Lindquist solution 
to arbitrary angular momentum and allows for initial spins. This method was further simplifed by 
Brandt and Brügmann [316] and a particularly extended algorithm was proposed in [317], which is 
used in NR softwares such as the Einstein Toolkit [301, 302] or GRChombo [318, 319, 320]. The 
introduction of angular momentum allowed to develop more general BBH simulations, moving on 
from head-on collisions. 

Junk radiation 

The mentioned methods represent physical solutions to the Einstein’s equations which are useful 
to start the numerical evolution. However, these initial conditions do not correspond to the exact 
state of two black holes having evolved from their previous, natural dynamics. The mentioned initial 
solutions are constructed from the hypothesis of conformal fatness, which does not correspond to a 
relaxed state of black holes with certain angular momentum. They are thus unphysically perturbed 
and, after some evolution time, they relax to an equilibrium confguration in which they evolve 
normally. During this relaxation, however, they emit a spurious gravitational-wave burst, which is 
usually referred to as junk radiation [321, 322, 323]. We can see this initial burst in Fig. 6.2, which 
shows the Weyl scalar Ψ4 (directly related to the GWs, as we will see in Subsec. 6.2.3), for the BBH 
simulation described in Sec. 6.2. In the next section, this initial burst can also be seen in Fig. 6.6. 
Therefore, when running an NR simulation, one has to be aware that the initial instants are not 
physical, so they have to be interpreted with caution. 

In order to run our numerical simulations, we need two additional elements: the boundary 
conditions and the grid. For the boundary conditions, one of the options is to impose Sommerfeld 
radiative conditions [324]. These assume that, near the boundary, all the felds behave as outgoing 
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Figure 6.2: Real part of the Weyl scalar Ψ4 defned in Eq. (6.14) in the xy plane for four diferent 
instants of the BBH simulation described in Sec. 6.2. It illustrates the junk radiation (second 
panel) generated when the initial conditions (frst panel) relax to an equilibrium confguration 
(third panel). For reference, the fourth panel shows the physical gravitational waves generated at 
the merger. 

spherical waves. Thus, this completely removes any mode propagating inwards to the center of the 
simulation. For more details on the implementation, see [325]. 

For the grid, BBH numerical simulations have the same accuracy problem as the one discussed for 
the collapse problem in Sec. 4.3: a uniform grid is too computationally expensive for the resolution 
that certain areas require. We comment on this in the next subsection. 

6.1.3 Adaptive mesh refnement 

In a BBH simulation, we usually have a simulation volume whose length is several tens or even 
hundreds times the black holes Schwarzschild radii. This is necessary so that the boundary condi-
tions do not signifcantly impact the main area of interest in the simulation, which is only possible 
if the boundary is sufciently far away. 

On the other hand, the black hole horizons need to be modelled with a high resolution both in 
space and time, so as to accurately capture their dynamics. This resolution should be of order a 
hundredth of the Schwarzschild radii, or better. If this resolution is uniformly kept for the full grid, 
this would imply of order 104 points per side, which would be around 1012 in total. In addition, in 
each of these points, diferent felds are defned, so this would imply of order 1013−14 grid variables 
stored in memory at each time iteration. This is clearly computationally prohibitive. 

In addition, there is no need to have such a resolution in all the simulation volume. At large 
distances from the black holes, there are only gravitational waves which do not need such an accuracy 
to be modelled. Therefore, the usual practice is to implement some adaptive mesh refnement 
structure, which was a term already discussed in Sec. 4.3. These schemes usually consist on several 
grid levels on top of each other. The coarsest level covers the full simulation volume with a moderate 
resolution, both in space and time. The next level covers just a fraction of this volume, where the 
side ratio is sometimes taken to be 1/2 for simplicity and convenience, and the resolution increases 
in a certain factor for which 2 is also a convenient choice. Usually, for the frst refnement levels, 
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it is only necessary to increase the spatial resolution, not the time step, and they are centered on 
the center of the simulation. However, as the refnement levels progress, two grids are required 
per level, each of them centered on one black hole, and they need to be refned both in space and 
time. An AMR scheme for 7 refnement levels is depicted in Fig. 6.3, where we can see how the 
grid centers follow the motion of the black holes, as well as the reduction of covered volume with 
each refnement level. The improvement of spatial resolution can also be seen from the inset plots, 
and the time resolution, which cannot be inferred from the plot, also improves by a factor of 2 
per refnement level, except for the transition from the basic (blue) to the frst refnement level 
(orange), which have identical time steps. 
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Figure 6.3: Adaptive mesh refnement scheme in the xy plane for diferent instants of the BBH 
simulation described in Sec. 6.2. Each color represents a diferent refnement level, for a total of 
seven in both panels. The inset plots show the transition from one refnement level to the following 
one. 

This concludes the introduction to the required elements involved in the successful generation 
of a Numerical-Relativity simulation. There are other important concepts which will be explained, 
but they are more related to the output, and are more clearly understood using a example BBH 
simulation. This is what we will see in the next section. 

6.2 Numerical simulations with the Einstein Toolkit 

Since the frst successful BBH simulation by Pretorius [33], several softwares for Numerical Rela-
tivity have been developed. Some examples include the mentioned Einstein Toolkit [301, 302] and 
GRChombo [318, 319, 320], but also NRPy+ [326, 327], SpEC [328, 329], LaZev [34] or BAM [330], 
among many others. 

In this thesis, we will focus on the Einstein Toolkit, given that it is the software that was used 
in our article [1], which will be explained in Chapter 7. 
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6.2.1 The Einstein Toolkit 

The Einstein Toolkit [301, 302] is a collection of state-of-the-art software components and tools 
devoted to simulate General-Relativistic astrophysical systems. It is open source, with more than 
210 components written in diferent programming languages (C, C++, Fortran, OpenCL, CUDA, 
etc.). The Einstein Toolkit provides regular, tested releases around twice per year, the last of which 
was the “Lisa Meitner” release in December 20231 . In addition, its growing community (>350 
members from >43 countries) provides user support through diferent channels. There are also a 
few articles providing a comprehensive introduction to the toolkit [306, 301, 331]. 

Most of the Einstein Toolkit components use the Cactus Computational Toolkit [332, 333], 
which is the framework providing the modular infrastructure so that all the separate components 
work together correctly. Due to the Cactus name, these components, similar to the packages in 
other programming languages, are named thorns. There are many of these thorns, most of which 
are documented in the Einstein Toolkit website [302], which can be classifed according to their 
diferent roles. We now name a few just to give a general idea, but more comprehensive and 
detailed descriptions are given in [306, 301, 302, 331]. 

• The Carpet thorn [334, 335] provides the AMR grid infrastructure, separating the technical 
part of the simulation from other thorns more related to the simulation physics. This thorn is 
also in charge of splitting the grid functions and arrays among the parallel processes, as well 
as coordinating their communication; modifying the AMR grid when requested (regridding) 
and performing input/output operations in parallel. A newer, more fexible thorn called 
CarpetX, which also aims to provide support for GPUs, is also in development. 
In addition, the Llama [336] code allows for a simulation domain consisting of diferent 
overlapping patches. 

• The PunctureTracker thorn tracks the black hole positions, so that the periodic AMR 
regridding can be done according to their motion. 

• The ADMBase thorn defnes grid functions related to the AMR formalism, while TmunuBase 
does the same for the stress-energy tensor and HydroBase for the hydrodynamical evolution. 

• The TwoPunctures thorn [317] provides initial puncture data, using optimized spectral 
interpolation [337]. It is the main thorn used for BBH initial conditions, but there are other 
options, as well as a variety of thorns developed for initial value data generation for diferent 
types of simulation. 

• The McLachlan code [338, 339, 340] evolves the grid variables in time using the BSSN for-
malism described in Subsec. 6.1.1. It generates the corresponding thorns a using Kranc [341, 
342], a Mathematica application for code generation of PDEs. 

• The NewRad thorn implements the Sommerfeld radiative boundary conditions described in 
Subsec. 6.1.2 [325]. 

Finally, the Simulation Factory, or SimFactory [343], allows to confgure, build, submit and 
manage the simulations in a user-friendly way. It is the tool which connects the user with the 
capabilities of the Einstein Toolkit. 

1https://einsteintoolkit.org/about/releases/ET_2023_11_announcement.html 
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Some other relevant thorns, more related to the output, have not yet been named on purpose. 
They will be introduced in the next subsections with an example BBH simulation. 

Processing and post-processing 

In order for a simulation to run successfully, it mainly needs to store in memory the grid variables, as 
well as the AMR structure and other technical information. From the point of view of a physicist, 
however, nearly all of this raw information is useless as it is. The black hole positions can be 
obtained as direct output due to their relationship with the AMR structure, but their masses, spins 
or the gravitational waves they produce are not relevant for the evolution of the grid variables. 

It is then necessary to process some of this raw information. In the Einstein Toolkit, some of 
this processing is done by the software, simultaneously to the time evolution. Some other, however, 
must be derived from the simulation output by the user, which is what we will call post-processing. 
In the next subsections, we will see how either the NR simulation software or the user can produce 
some physically relevant quantities from the raw simulation output. 

The GW150914 simulation 

During this section, we will explain some of the concepts involved in Numerical Relativity using 
an example BBH simulation. In particular, it is the one provided in the gallery of the Einstein 
Toolkit2 [344], which uses most of the thorns and tools already described [301, 336, 334, 345, 317, 
346, 332, 338, 341, 343]. 

This simulation computes the last orbits of a BBH with parameters similar to the BBH respon-
sible for the frst ever detected gravitational-wave signal: GW150914 [7]. The mass ratio is 0.806, 
while the initial separation is set to d = 10M , the symmetric momentum is p = 0.0953M with 
angle θ = 89.49◦ , and the dimensionless spins are χ1,z = 0.31, χ2,z = −0.46, with their x and y 
components set to zero. In addition, as it could be seen in Fig. 6.3, the main simulation volume has 
a half-side around 61M, but the Llama multiblock infrastructure allows for GW extraction (see 
Subsec. 6.2.3) at radii as high as 500M. 

The GW150914 simulation has already been used to illustrate the junk radiation in Fig. 6.2 and 
the AMR scheme in Fig. 6.3, as well as in Fig. 1.3 in Chapter 1 to illustrate the components of a 
merger. In the next subsections, we will use it to explain other relevant concepts in NR concepts 
and show some of the Einstein Toolkit capabilities. 

6.2.2 Apparent horizons 

In General Relativity, there are several defnition of masses and angular momenta which are useful 
in diferent contexts. Some of them, like the ADM mass and momentum, use global properties of 
the spacetime. In these subsection, however, we will use some local properties near the black holes 
to characterize their masses and spins. 

2https://einsteintoolkit.org/gallery/bbh/index.html 
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First, it is necessary to have a notion of the black hole horizons. In stationary spacetimes, 
such as Schwarzschild’s and Kerr’s, the event horizon is a very useful concept. An event horizon is 
defned as a co-dimension 1 null hypersurface from which neither time-like nor light-like geodesics 
can reach future null infnity [347]. This is a gauge-independent and global property of spacetime 
which is, however, not very practical in a dynamic spacetime. Instead, a useful concept used in 
numerical simulations is the apparent horizon. At each spacetime slice, (the spatial hypersurfaces 
at each time instant, defned in Subsec. 6.1.1), one defnes the apparent horizon of a black hole 
as the outermost trapped surface around its center [348]. Simply speaking, a trapped surface is a 
closed surface formed by a set of points where every light ray points to the interior of the surface. 
Therefore, the outermost of these surfaces marks the boundary between the regions where light 
can escape and where it cannot, that is, a horizon. Apparent horizons are thus a local concept, 
defned at each iteration, which is more useful in practice than the global notion of event horizon. 
On the other hand, apparent horizons are gauge-dependent, since they depend on the spacetime 
slicing. For a more formal discussion on trapped surfaces, see [349], while for the notion of apparent 
horizon, see [350]. 

In the Einstein Toolkit, one of the thorns that looks for these apparent horizons is AHFind-
erDirect [345, 351], while their surface shapes and centroids are stored by SphericalSurface. 
We can see examples of these apparent horizons in Fig. 6.4, both for the GW150914 simulation and 
the second hyperbolic simulation described in the next section. In this fgure, we can see how their 
shapes vary over time, but also how their sizes tend to reduce as they get closer to the other black 
hole. 

Apparent horizons are particularly useful to obtain local measurements of the black holes. In 
particular, from the area A of this surface, the thorn AHFinderDirect provides a measurement 
of the black hole mass as r 

A 
mH = . (6.5)

16π 

In Chapter 7, we will be interested in the black hole spins, so let us see more in detail how this 
measurement can be derived. 

Spin measurements 

Similarly to the mass, one can easily derive a local measurement of black hole spins by using the 
shape of their apparent horizons. We denote the spin by J⃗ , Particularly, we denote by Cp and Ce 
the polar and equatorial horizon circumferences, respectively. Then, the Kerr metric satisfes [278, 
352, 353] p ! 

Cp 1 + 1 − (a/m)2 (a/m)2 
= E − p , (6.6)

Ce π (1 + 1 − (a/m)2)2 

where m is the black hole mass, a/m = |χ⃗| is its dimensionless spin parameter, and E(x) is the 
complete elliptic integral of the second kind, Z 

E(x) = 
π/2 p 

dθ 1 − x sin2 θ. (6.7) 
0 
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Figure 6.4: Apparent horizons (dashed lines) for some iterations of the GW150914 simulation (left 
panel) and for the hyperbolic simulation with θ2 = 3.12◦ described in Sec. 6.3 (right panel), with 
their positions (solid lines) plotted for reference. The blue lines denote the heaviest initial black 
hole, while the orange one denotes the lightest one. In the case of GW150914, the red dotted line 
marks the joint apparent horizon around its formation time, and the green line is also the joint 
horizon, after some relaxation time. 

Thus, one can simply get Cp and Ce for each black hole from the simulation output, and derive 
their spins using Eq. (6.6). 

With the Einstein Toolkit, there is, however, no need to make these computations. The thorn 
QuasiLocalMeasures [346] directly provides measurements for the masses and spins, as well as 
other local quantities. It uses the so-called isolated and dynamic horizon formalisms, which we 
will not cover here and for which one can refer to [346, 354, 355]. Instead, we remark that, due 
to the nature of apparent horizons, these quantities are gauge-dependent. However, at t → ±∞, 
in the absence of gravitational interaction, the asymptotic quantities provide gauge-independent 
information. In particular, the Christodoulou spin in Eq. (6.6) and the ones obtained from the 
isolated and dynamic horizon formalisms coincide. Therefore, in the next sections, even if we plot 
the spin evolution with time during all the simulation, the only relevant quantities are the initial 
and fnal ones. 

In Fig. 6.5, we can see how the parent black holes produce a fnal black hole with a larger 
spin that the sum of the initial spins. This indicates a transfer of the orbital angular momentum. 
Note how the spins remain practically constant during all the evolution, unlike what we will see for 
hyperbolic encounters in Sec. 6.3. 
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Figure 6.5: Spin component on the z axis of the two parent black holes of GW150914 before their 
merger, which is indicated by the dashed vertical line, and of the fnal black hole after the fusion. 

6.2.3 Gravitational-wave extraction 

One of the main reasons to run numerical simulations for BBH is to obtain the gravitational waves 
they produce, in order to use their waveforms for parameter estimation of signals in GW detectors. 
However, the strain amplitude h seen in Chapter 1 is not directly obtainable from the output 
of numerical simulations. Instead, numerical simulations usually provide Weyl scalars, which are 
directly related to them. 

The Weyl scalar 

The Weyl tensor is defned as the trace-free part of the Riemann tensor, [40] 

1 1 
Cµνρσ = Rµνρσ − (gµρRνσ − gµσRνρ − gνρRµσ + gνσ Rµρ) + R(gµρgνσ − gµσgνρ). (6.8)

2 6 

νOn the other hand, in the Newman-Penrose formalism [356], one defnes a null tetrad lµ, n , 
ρ σm , m̄ such that 

µ µ ¯−lµnµ = mµm̄ µ = 1, lµmµ = lµm̄ µ = n mµ = n mµ = 0, (6.9) 

while their norms vanish due to them being null vectors. Based on this tetrad, the following 
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quantities are defned: 

σν lρΨ0 = Cµνρσl
µm m , (6.10) 

ν lρ σΨ1 = Cµνρσl
µn m , (6.11) 

ρ σΨ2 = Cµνρσl
µm ν m̄ n , (6.12) 

σΨ3 = Cµνρσn
µlν n ρ m̄ , (6.13) 

ν σΨ4 = Cµνρσn
µm̄ n ρ m̄ , (6.14) 

which are called the Weyl scalars. 

The last one of these scalars, Ψ4, is used in Numerical Relativity to compute the gravitational 
waves h+ and h×. In order to see the relation between Ψ4 and the gravitational waves, we frst 
assume that the GW is far away from the source, at a certain distance r, and propagating in 
Minkowski spacetime. For simplicity, we frst analyze the situation in which the GW propagates 
in direction z and we use Cartesian coordinates. In addition, in the TT gauge (1.31), we have we 
have h11 = −h22 = h+ and h12 = h×, with all hi3 = 0. Therefore, the non-vanishing components 
of the Riemann tensor in linearized theory, given by Eq. (1.5), are 

1 1¨ ¨ Rtxtx = Rtxxz = −Rtyty = −Rtyyz = − h+, Rtxty = Rtxyz = − h×. (6.15)
2 2 

Furthermore, in vacuum, the Ricci tensor Rµν vanishes, so that the Weyl tensor equals the Riemann 
tensor, Cµνρσ = Rµνρσ. 

In Numerical Relativity, a convenient choice of null tetrad is 

1 1 
lµ µ= √ (1, 0, 0, 1), m = √ (0, −i, 1, 0), (6.16)

2 2 
1 1µ µn = √ (1, 0, 0, −1), m̄ = √ (0, i, 1, 0), (6.17)
2 2 

which satisfy the conditions in Eq. (6.9). Using this tetrad and the non-vanishing components of 
the Riemann tensor in Eq. (6.15), the Ψ4 defned in Eq. (6.14) becomes 

¨ Ψ4 = h+ − ih ¨ ×. (6.18) 

In general, for an arbitrary direction, we can use spherical coordinates and defne the null tetrad 

1 1µlµ = √ (t̂+ r̂), m = √ (ϕ̂ − iθ̂), (6.19)
2 2 
1 1µ µn = √ (t̂+ r̂), m̄ = √ (ϕ̂+ iθ̂), (6.20)
2 2 

where the hat denotes the 4-vector in the corresponding direction. This extends the result in 
Eq. (6.18) for the transversal polarizations of a GW propagating in arbitrary radial direction r̂. 

As a result, from the Ψ4 in a simulation, we can obtain the GW strain by integrating twice, 
′Z Zt t 

′′ h+(t, r) − ih×(t, r) = dt ′ dt ′′ Ψ4(t , r). (6.21) 
−∞ −∞ 
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In a numerical simulation, this integration cannot be done from t → −∞, so one has to defne 
a starting point which does not get too afected by the initial junk radiation described in Sub-
sec. 6.1.2. The usual practice is to do this integral in Fourier space, via a technique called fxed 
frequency integration [357], for which one has to set a minimum allowed frequency, thus getting rid 
of unphysical low frequencies. However, any integration method introduces some degree of numeri-
cal artifacts, which could impact the parameter estimation based on these waveforms. Thus, there 
have recently been some works [358] arguing that parameter estimation should be done directly on 
Ψ4, rather than the strain. In this case, the detector strain would have to be diferentiated twice, 
which introduces less numerical error than integration on the Weyl scalar. 

In any case, in order to obtain the strain amplitude of the GWs in a numerical simulation, it is 
not necessary to do this integration in each grid point. We are interested in measuring the GWs at 
a certain distance r, which is sufciently large so that the distant source limit holds. Then, since h+ 
and h× decay like 1/r (see Eqs. (1.99), (1.100)), we can extrapolate them to an arbitrary distance. 
Furthermore, in the sphere of radius r, we can decompose [359] 

∞ lX X 
h+(t, ⃗r) − ih×(t, ⃗r) = hlm(t, r) −2Ylm(θ, ϕ), (6.22) 

l=2 m=−l 

where −2Ylm(θ, ϕ) are the spin-weighted spherical harmonics of spin weight -2. These are a gener-
alization of standard spherical harmonics (explained in more detail in Subsec. 8.7.1), but with axial 
rotation symmetry for the corresponding spin. In our case, the spin is -2 to refect the quadrupolar 
nature of gravitational waves. For more detailed explanations on spin-weighted spherical harmonics, 
see [360, 361], or [359, 362] for specifc references in the context of GWs. 

Given that gravitational waves are quadrupolar at the leading order, in general, the l = 2 modes 
will clearly dominate. We can see this in Fig. 6.6, where the (2, 2) mode dominates the Weyl scalar 
Ψ4 and, in the case of the strain, this dominance becomes moer obvious. Thus, the Weyl scalar is 
usually obtained only for the frst few multipoles measured at certain specifed radii, which must be 
high enough for the distant source limit to hold, but not so high to be very close to the boundaries. 

In the Einstein Toolkit, the WeylScal4 thorn [306] provides this Weyl scalar Ψ4, whose 2D 
information was used to generate Fig. 6.2. The multipole decomposition at the desired radii is 
handled by the Multipole thorn, thus leaving the Weyl scalar Ψ4 in a more suitable form to 
work with. Furthermore, the kuibit Python package [363] has a lot of utilities to help with the 
post-processing, allowing to easily load any of the simulation output from the Einstein Toolkit, 
including the Weyl scalar multipoles, and integrating them to obtain the GW strain. 

In Fig. 6.6, we can also observe the diferent regimes of a BBH (inspiral, merger and ringdown), 
both in the Weyl scalar and the strain. For the strain, we can see how the h× is dephased π/2 with 
respect to h+ at the inspiral, as we computed explicitly in Subsec. 1.3.3. In addition, we can see 
the initial junk radiation in both plots: as an initial burst in Ψ4 and as an irregular behaviour at 
the beginning of the strain time series. 

6.2.4 Challenges: mass ratios, eccentricity, precession 

These BBH numerical simulations need a large amount of RAM memory to run, so that it is 
only possible to do so in a high-performance-computing (HPC) cluster. In addition, the one for 
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Figure 6.6: Weyl scalar Ψ4 (left) and strain amplitudes for each polarization, h+, h× (right), for 
the GW150914 simulation. These quantities are provided for the multipoles (l, l), 2 ≤ l ≤ 4. 

GW150914, which is not particularly demanding, takes some days to complete, although that 
depends on the cluster specifcities. 

In order to do fner parameter estimation for the real GW signals, it is desirable to run many of 
these simulations, covering the largest possible volume of the parameter space. This includes lower 
mass ratios, considering eccentric BBHs and exploring spins in arbitrary directions. 

Going to lower mass ratios is conceptually very simple, but becomes numerically problematic. 
A lower mass ratio implies that one of the black holes becomes smaller, so it needs higher spatial 
and temporal resolution to correctly capture its behavior with an NR simulation. To achieve such 
resolutions, it is necessary to introduce additional layers to the AMR scheme, which increases the 
computational cost in both RAM memory and simulation time. For very asymmetric systems, one 
can resort to perturbation theory, but NR simulations are still needed until that point. Up to now, 
the mass ratios that have been achieved arrive until q = 0.0078 (1/128) [364]. These simulations 
were done by the group at the Center for Computational Relativity and Gravitation (CCRG) at 
Rochester Institute of Technology (RIT) and are publicly available through their BBH waveform 
catalogs3 [365]. 

On the other hand, eccentric simulations do not pose a numerical challenge, but they are con-
ceptually harder to model. Knowing the initial momenta for an NR simulation to result in a 
quasi-circular trajectory is already complicated [366, 367], so computing the initial conditions for 
a given eccentricity is even more challenging. In addition, in General Relativity, eccentricity varies 
over time, so it is more difcult to measure. Nevertheless, there are diferent expressions to com-
pute the eccentricity from a BBH trajectory [366, 368], so what one can do is trying diferent initial 
confgurations for the NR simulations and measuring the resulting eccentricity with these formulae. 
There are some groups which are already populating the eccentricity parameter space [365, 369], 
as well as some attempts to model these waveforms [370, 371, 372]. Until recently, however, these 
eforts had focused more on quasi-circular orbits, which is reasonable due to the BBH circularization 

3https://ccrg.rit.edu/~RITCatalog 
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phenomenon mentioned in Chapter 1. 

Something similar happens for spins. Due to the orbital dynamics, it is expected that the highest 
spin component for the BHs involved in a BBH comes from the direction parallel to the orbital 
angular momentum. Therefore, many simulations and models focused on correctly capturing the 
behavior of BBHs with spins orthogonal to the orbital plane (z direction), but not so many with x 
and y components. Furthermore, non-zero x and y spin components make the orbital plane precess. 
While this does not add much more complexity to NR simulations, precessing BBH systems are 
more challenging to model analytically. Some references for studies on precessing BBH systems 
include [365, 373, 374]. 

Additionally, in this thesis we have focused on BBHs, but as we saw in Chapter 1, neutron stars 
can also form binary systems with other neutron stars or BHs and generate CBCs. The signals 
that these events produce are very similar to CBCs from BBHs, but the tidal deformability of 
NSs generates some diferences, which are more notorious after the merger (see [375] for a detailed 
study). In addition, neutron stars are more complex to model due to their internal structure, 
unlike BHs. Moreover, aside from CBCs, a pair of compact objects can generate another type of 
interactions, as we saw in previous chapters: hyperbolic encounters. These events also generate 
gravitational waves and can be simulated with NR, as we will see in the next section for a pair of 
black holes. 

6.3 Hyperbolic encounters 

Black hole simulations of hyperbolic encounters are conceptually similar to run to the standard 
simulations of BBH. However, there are certain diferences. 

Hyperbolic encounters do not produce periodic orbits, so the junk radiation must be somehow 
removed before the main part of the interaction. In order to achieve this, the black holes must 
start much more separated than for a BBH. If a typical distance for a BBH was d = 10M , for a 
hyperbolic encounter it should be of order d = 100M . This means that the simulation volume must 
be much larger, in order for the boundaries not to interfere with the simulation. In practice, this 
implies more refnement levels, which make the hyperbolic run more computationally expensive in 
terms of RAM memory. 

On the other hand, hyperbolic interactions are much faster, due to the lack of periodic orbits. 
While a BBH stays for some time in the inspiral phase, the hyperbolic interaction is produced with 
the subsequent separation of the black holes, thus stopping the GW production at a signifcant 
level. Therefore, a hyperbolic simulation is much shorter to run, which saves computation time. 

In order to see some of the diferences, three simulations have been run with slightly diferent 
parameters. Following the set-up of Fig. 6.1, the initial distance is d = 100M , the masses are equal 
(q = 1) and the initial spins are zero in the three cases. The symmetric momenta are p = 0.0953M 
and the angles are θ1 = 4.01◦ , θ2 = 3.12◦ and θ3 = 3.1◦ . 

In Fig. 6.7, the trajectories for these simulations are plotted. In the frst panel, corresponding 
to the more open encounter, we can see how the Keplerian hyperbolic trajectory is now “bent” due 
to the stronger gravitational interaction given by GR. In the second one, this efect is even stronger, 
producing a full orbit before the objects separate again. For this second case, in particular, we can 
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see the BH apparent horizons in Fig. 6.4, right. Finally, the third panel shows a dynamical capture, 
in which the seemingly hyperbolic encounter produced an energy loss as high as to bind the system, 
producing a subsequent merger shortly after. 
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Figure 6.7: Black hole positions for the three hyperbolic simulations described in Sec. 6.3, from the 
most open to the closest one. 

The corresponding GW strains are shown in Fig. 6.8. In the frst panel, we can see the GW 
burst produced by the frst encounter, which consists on essentially one oscillation. The second 
panel shows around three, due to the longer interaction seen in Fig. 6.7, from which we can also see 
the more notorious change of phase. Finally, the third panel shows two bursts, the frst of which is 
very similar to the previous panel, as expected due to the similarity of initial conditions (the only 
diference is the angle, θ2 = 3.12◦ versus θ3 = 3.1◦), and the second one corresponding to the fnal 
merger. It is worth noting that, unlike the CBC from Sec. 6.2, this merger occurs without any long 
inspiral phase, given that all the energy and angular momentum that would be needed to maintain 
the quasi-circular motion has already been radiated away in the frst, hyperbolic-like interaction. 

The gravitational waves produced by hyperbolic encounters can be of similar order to the ones 
produced by CBCs, as we could see in Fig. 6.8. However, their narrower localization in time makes 
them much more challenging to detect, given that one cannot get the sensitivity increase obtained 
in CBCs by integrating over their inspiral for longer periods of time. This is one of the reasons why 
these signals have not been detected yet. Another reason is that, due to their burst-like nature, 
their shapes may be confused with glitches from the detectors [57]. Nevertheless, there are growing 
eforts from diferent groups devoted to the study and detection of these signals [57, 61, 62, 59], so 
it is expected that they will eventually be detected as the sensitivity of the detectors keeps getting 
better. 

Finally, aside from their gravitational waves, hyperbolic encounters show another interesting 
efect. If we plot the black hole spins, similar to Fig. 6.5, we fnd out that close hyperbolic encounters 
induce non-negligible spins on initially non-spinning black holes. We can see this in Fig. 6.9, 
corresponding to the simulation with θ2 = 3.12◦ . 

This spin induction efect was frst reported in [278] and subsequently studied for a broader 
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Figure 6.8: Gravitational-wave strains for the three hyperbolic simulations described in Sec. 6.3, 
from the most open to the closest one. 
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Figure 6.9: Spin component on the z axis for both black holes of the hyperbolic simulation described 
in Sec. 6.3 with θ2 = 3.12◦ . The two curves overlap due to the symmetry of the simulation. 

parameter space, including diferent masses, in our article [1]. In our paper, we also discussed the 
implications this efect has for primordial black holes. In the next chapter, we will see this work in 
detail. 
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Chapter 7 

Spin induction on BHs from CHEs 

7.1 Introduction 

In the third observing run of Advanced LIGO [6] and Advanced Virgo [12], a particular event, 
labeled GW190521, was detected. The estimated progenitor black hole masses were 91 M⊙ and 
67 M⊙ [16], with the probability that at least one of them was in the range 65 − 120 M⊙ was 
99.0% [376]. This is precisely where there should be a gap in the black hole mass distribution, 
due to pair-instability supernovae [377], so this event attracted a lot of attention when it was 
made public. Several explanations were proposed [376], such as a hierarchical merger scenario, or 
that a star with an over-sized hydrogen envelope could give rise to such massive black holes. Other 
possibilities included eccentric mergers, high-mass black hole-disk systems [378] or primordial origin 
for the progenitor black holes [210, 379, 242], which is the scenario we consider in our article. 

The main problem of the primordial explanation is that PBHs are initially generated with low 
spin [380], due to the spherical nature of their collapse, as seen in Sec. 4.3. This motivates the study 
of spin induction mechanisms for PBHs, which would provide a satisfactory explanation for these 
intermediate mass black holes. For instance, in [381], the authors argue that PBHs could explain 
the GW190521 signal if they accrete efciently before the reionization epoch. 

As we saw in Sec. 6.3, one of the options for a non-spinning black hole to acquire spin is to 
interact with another one in a close hyperbolic encounter. A numerical exploration of this efect 
was done in [278], proving that the induced spin could be signifcant and reach at least χ ≈ 0.2 for 
equal masses. 

In this chapter, we explain the article [1] in which we explored this spin induction efect for 
diferent-mass black holes, including a numerical simulation with mass ratio q = 0.1. In addition, 
we studied the trends for varying impact parameter and eccentricity, and also for the change of 
mass ratio. We fnally compare these trends to some analytical expressions, coming from simple 
approaches to this efect based on frame-dragging. 

133 



Chapter 7. Spin induction on BHs from CHEs 

7.2 Grid structure and initial conditions 

In order to simulate black hole hyperbolic encounters in full GR, we used the, at the time, lat-
est version of the Einstein Toolkit software [301, 302], which was the “DeWitt-Morette” release 
(November 2020). Nearly all the thorns and tools mentioned in Sec. 6.2 were used: the Cactus 
Computational Toolkit [332, 333], the AMR grid infrastructure provided by Carpet [334, 335], the 
initial data generation from TwoPunctures [317, 337], McLachlan [338, 342, 340] for the time 
evolution from BSSN formalism, the AHFinderDirect thorn [345, 351] to track the horizons, 
QuasiLocalMeasures [346] for spin measurements and WeylScal4 [306] to obtain the complex 
Weyl scalar Ψ4. 

7.2.1 Equal mass case 

The parameter fles we used, similar to the ones which generated the simulations in Sec. 6.3, were 
based on the ones used in [278]. They are similar to the one given by the BBH example [344] 
studied in Sec. 6.2, but with some key modifcations that allow increasing the initial separation up 
to 100 GM/c2 . For equal masses (m1 = m2 = M/2 ≡ m), this is a separation of 100 Schwarzschild 
radii. 

The initial conditions follow the set-up in Fig. 6.1. For the equal-mass cases, the initial separation 
of d = 100M implies that the black holes are initially located at x = ±50M , y = z = 0. The 
symmetric momenta then guarantee that the center of mass will always lie at the coordinate origin. 

The parameters p/M and θ are related to the impact parameter b and eccentricity e. If the 
initial momenta were instantaneously translated into initial velocities, we could compute the initial 
relative speed measured from the rest frame of one of the black holes V , as well as the distance d ′ 
and angle θ ′ , where we should account for the Lorentz contraction and time dilation. In this case, 
from the equations in Sec. 1.4, we have 

(d ′ /M)V 
b/M = q sin θ ′ . (7.1) 

V 2 − 2 
d ′ /M s p 

e2 − 1 = (d ′ /M)V V 2 − 
2 

sin θ ′ . (7.2)
d ′ /M 

However, the initial momenta take some time to propagate to the metric quantities and, con-
sequently, to the black hole speeds. Therefore, we cannot establish such a direct correspondence 
between the orbital parameters and initial momenta. Nevertheless, we can interpret an increase 
in θ as an enhancement of both the eccentricity and impact parameter, as the previous equations 
show. 

In order to accommodate these initial conditions, the spatial region is increased to the cube 
x, y, z ∈ [−768M, 768M ]. For the AMR structure, each grid uses half-lengths of 0.75 × 2n , for 
n = 0, 1, . . . , 6, 8, 9, 10. The corresponding steps are 2n × ∆xmr, for n = 0, 1, . . . , 9, where ∆xmr is 
the size of the most refned grid. Adopting the notation in [278], we refer to ∆xmr = (1/56)M as 
low, (3/200)M ≈ (1/66.7)M as medium and (3/256)M ≈ (1/85.3)M as high resolutions. 
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The time step is initially determined as the spatial step of the bigger grid times a factor 
dtfac, which we set to 0.05625. Then, this value is divided by a diferent number on each 
refnement level, which is controlled via the time_refinement_factors array, which we set as 
[1, 1, 1, 1, 2, 4, 8, 16, 32, 64]. Thus, the coarsest four grids are updated at the same 
rate and, from then on, any fner grid is updated twice as fast as the previous one. 

Finally, we use two symmetries to speed up the code. First, we use the refection symmetry 
across the z-plane, which is the orbital plane. In addition, for the equal-mass case, the rotating 
symmetry of 180◦ in the z plane with respect to the origin is also present. Both symmetries reduce 
the spatial domain by a factor of 4. 

7.2.2 Changing the mass ratio 

Throughout this work, we mainly used mass ratios in the range 0.7 ≤ q ≤ 1. This range was chosen 
to test how the spin induction varies for diferent mass black holes, but keeping the ratio close to 
1 not to signifcantly alter the grid structure and the analysis of the problem. Some of the issues 
arising for smaller mass ratios will be addressed in Sec. 7.4, while they were also mentioned at the 
end of Sec. 6.2. 

Generalizing the previous set-up for mass ratios of 0.7 ≤ q ≤ 1 implies some changes with respect 
to the equal mass case. First, for a mass ratio of 1, each black hole has half the total mass, which is 
0.5 in code units. The previous resolutions mean that, per Schwarzschild radius (1 in code units), 
we have 1/∆xmr (56, 66.7, 85.3) divisions. However, if we keep the structure for a mass ratio of 
0.7, for instance (Schwarzschild radii of 1.18 and 0.82), the number of divisions per Schwarzschild 
radius is reduced by a factor 1/0.82 ≈ 1.22 for the smaller black hole. 

Therefore, what we did was adding an extra refnement level for the smallest black hole, in order 
for its resolution to be better than for the equal mass case. This makes sure that our results are, 
at least, as good as the equivalent resolution for the q = 1 case. In addition, in order to check that 
this asymmetry in the extra refnement levels does not introduce errors in the simulation, we ran a 
few examples with the extra refnement for the q = 1 case. For the low resolution, the discrepancies 
between both spins and with respect to the non-refned case are less than 1%, which is the typical 
error involved in simulations of this resolution. Another diference from the symmetric case is that 
we must disable the 180◦ rotating symmetry, which essentially doubles the needed computational 
resources. 

Finally, the initial positions are also set to y = z = 0, with the x so that the initial center of 
mass is the coordinate origin. We also set p⃗1 = −p⃗2, as we did for symmetric masses, to try to keep 
the center of mass constant. However, due to the mass diference and the fact that the momentum 
takes some time to stabilize, it is not always satisfed that m1v⃗1 + m2v⃗2 = 0, which implies that 

1the center of mass (m1r⃗1 + m2r⃗2) is not completely fxed and moves a bit from the origin. ThisM 
ofset is found to be more relevant for lower values of q and greater values of the initial momentum, 
as one would expect. In our case, the center of mass is displaced from the origin, at most, around 
5.5M during the strong interaction. This does not compromise the fnal spin measurements, but 
could have an impact on Weyl scalar-related quantities, such as the gravitational wave strain or 
the radiated energy. It is, in any case, another reason to choose being modest with the value of the 
mass ratio. 
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7.3 Numerical results 

We ran some simulations with equal masses, consisting in diferent initial incidence angles θ for the 
four initial momenta (p/M = 0.245, 0.3675, 0.49, 0.75 per black hole) considered in [278]. For each 
case, the smallest angle we considered, θmin, was the one producing the maximum spin-up according 
to [278], which is the boundary between hyperbolic events and dynamical captures (e ≈ 1), as shown 
in Sec. 6.3. 

In addition, for these four momenta and their corresponding maximum spin-up incidence angles 
θ, we ran a series of simulations for 0.7 ≤ q ≤ 1, which is the only parameter we varied in this case. 
In particular, due to the change in mass while fxing the momenta, the smallest black hole is faster 
for q ̸= 1 than in the equal-mass case, with respect to both the center of mass and the other black 
hole. 

The dimensionless spin χ = a/m was computed from the QuasiLocalMeasures thorn, but we 
also double-checked it by comparing it to the Christodoulou spin in Eq. (6.6), to test the consistency. 
We found that both measurements coincide for late times in all cases. 

Before explaining the results, we frst addressed their precision. 

7.3.1 Error analysis 

The diferences between the low, medium and high resolutions for the equal mass case were already 
treated in [278]. We double-checked them for some of the highest values of the incidence angle θ, 
which they do not cover. In particular, the diferences between low and medium resolution up to 
θ = 4◦ are < 0.5% for p/M = 0.49, but for θ = 5.7◦ they rise to ∼ 6%. This is probably due to 
the low induced spin, which begins to be too close to zero (∼ 0.0004) and, therefore, the absolute 
errors involved start to become higher in relative terms. Therefore, the low resolution is enough as 
long as we take the very low spin values with this caution. 

The q < 1 cases are a bit more complex for the error analysis. From running simulations of 
low and medium resolution and both with and without extra refnement level, we saw that the spin 
measurement of the most massive black hole is very robust (< 2% diferences for all cases), but the 
smallest black hole needs, at least, either medium resolution or the extra refnement level not to 
present relevant errors (up to ∼ 9% discrepancies). Therefore, we opted to generate all the results 
both with medium resolution and the extra refnement level. 

In addition, in order to have an idea of the error of these simulations, we ran the q = 0.7, 
p/M = 0.245, 0.75 with high resolution, for which we found maximum diferences of order 0.2%. 
This fact, together with the q = 1 error analysis done in Ref. [278], tells us that the diferences are 
smaller than 0.6%. Therefore, these are the typical errors involved in our simulations with varying 
q. 

Furthermore, we also monitored accuracy test variables such as the Hamiltonian constraint. Due 
to the enormous storage weight of all the 3D values, we only monitored the average and norms. 
The results for the Hamiltonian constraint were values of order 10−6 at most for the 2-norm 1 , 10−8 

1The n-norm is defned by ||A||n = ( 
P |A(i, j, k)|n/N)1/n, with i, j, k the spatial grid indices and N the total 

number of points. 
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for the 1-norm and 10−10 for the average. This is coherent with what was obtained for the cases 
in [278] and better than the results for the BBH gallery example [344], which further reinforces the 
idea that the computations are accurate enough. 

7.3.2 General behavior of the simulations 

Taking a look at the time evolution of the spin in any of the simulations, we can see three separate 
regions. In the frst one, we can observe a spin value of approximately zero for both black holes. This 
is the region where the initial conditions progressively propagate to the metric quantities (the shift 
is initially zero) as the black hole speeds grow and stabilize, while both black holes progressively 
get closer. 

When both black holes are close enough, they begin to strongly interact and we can see a drastic 
change on the spins, as well as some oscillations. During this second period, some of the energy 
and angular momentum are radiated away as gravitational waves. We can see that in Fig. 7.1. The 
strain amplitude was derived from the Weyl scalar on the sphere of radius R = 67.88M and shifted 
to compensate for the propagation time to the detector, ∆t = −R. For this purpose, we used the 
PostCactus post-processing software [382], which was the precursor of kuibit [363]. Both of 
these codes compute the strain from Eq. (6.21) using fxed-frequency integration. 
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Figure 7.1: Strain of the emitted gravitational wave from the l = k = 2 multipole (upper panel) 
and spin evolution (lower) during a hyperbolic encounter with p/M = 0.49, q = 1 and θ = 3.12◦ . 

On the third and fnal region, we can see that there is a constant, non-zero spin: the initially 
non-spinning black holes are now rotating. We measure the fnal spin at t = 250M , which is enough 
for it to have stabilized for all the simulations considered. 
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7.3.3 Equal masses, varying incidence angle 

First, we present the four cases p/M = 0.245, 0.3675, 0.49, 0.75 for q = 1 and diferent values of θ, 
between the maximum spin-up incidence angle and an upper bound θ ≤ 5.73◦ . In order to give an 
idea of these parameters, we ftted an initial part of the trajectory (from t/M = 30 to t/M = 80) 
to a hyperbola. In Table 7.1, we provided the ranges of impact parameters b and eccentricities e for 
the considered cases, as well as the distances of closest approach rp. Note that the latter can reach 
values below 2M , which would correspond to the sum of the Schwarzschild radii of both black holes, 
since the apparent horizons of two interacting, rotating black holes are typically smaller, especially 
when they get close to each other. For these simulations, we get apparent horizon radii of order 
RS /2 before the strong interaction and RS /3 during it, similarly to what can be seen in other 
numerical simulations like the one in Fig. 13 in Ref. [301]. We can also observe this behavior of the 
apparent horizons in Fig. 6.4. 

p/M θ (deg) rp/M b/M e 
0.245 3.47 – 4.58 1.98 – 4.63 6.28 – 8.30 2.15 – 2.71 
0.3675 3.13 – 4.58 1.62 – 4.90 5.72 – 8.37 1.84 – 2.48 
0.490 3.12 – 5.73 1.48 – 6.79 5.78 – 10.6 1.64 – 2.63 
0.750 3.42 – 5.73 1.50 – 6.36 6.61 – 11.0 1.38 – 1.94 

Table 7.1: Ranges of θ considered for each initial momentum, as well as the equivalent minimum 
distances and ftted impact parameters and eccentricities. 

Before comparing the fnal spins in all the cases, we frst show the spin evolution versus the 
time for p/M = 0.49 in Fig. 7.2. We note that the induced spin decreases with growing θ. This 
is expected, since the closest distance between the black holes increases with the incidence angle, 
which makes the encounter weaker. 

For the four considered initial momenta, Fig. 7.3 shows the fnal spins versus θ. In particular, 
one thing we noted is that they are reasonably well ftted by a power law. For the p/M = 0.49 
case, the power law also fts well the other points that are shown in Fig. 4a in [278], where this 
spin variation with the incidence angle was already described. 

The results of the power law fts are given in Table 7.2. These were done by linearly ftting the 
log-log plot, in order to give each point the same importance in terms of relative weight. By doing a 
least square error ftting to a power law, the smaller values of the spin would have had little impact 
on the ft. 

2p/M n θ0 (deg) θmin (deg) r 
0.245 -14.8 2.62 3.47 0.9936 
0.3675 -11.0 2.40 3.13 0.9982 
0.490 -9.0 2.42 3.12 0.9997 
0.750 -7.7 2.79 3.42 0.9989 

Table 7.2: Fitted parameters for Fig. 7.3 to a power law χ = (θ/θ0)
n , as well as θmin for reference 

2and the linear correlation coefcient r for the (log(θ), log(χ)) data to the corresponding linear 
function. 
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Figure 7.2: Spin evolution during a hyperbolic encounter with p/M = 0.49, q = 1 and diferent 
values of θ. 
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Finally, in order to better compare these trends, we show the same results in Fig. 7.4, but now 
with all the curves normalized by the maximum spin-up value and subtracting θmin to the incidence 
angles so that all the curves start from the same point. 
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Figure 7.4: Same as Fig. 7.3, with the curves normalized by the maximum spin-up value and 
subtracting θmin to θ. 

7.3.4 Varying the mass ratio 

We will now see the results for the 0.7 ≤ q < 1 simulations. In Fig. 7.5, we plot the time evolution 
of the spin in simulations of diferent mass ratio, with p/M = 0.49. Note how each black hole 
now gets a diferent spin, where the highest value is obtained for the most massive black hole. It is 
also notorious how the diference between both spins is increased as q gets smaller, as well as the 
increase of the highest spin and decrease of the smallest one with decreasing q. 

A similar behavior is observed for the other values of the initial momentum. The fnal spins 
are shown in Fig. 7.6. They are plotted with respect to the masses to avoid having two points per 
value of the x magnitude, as we would have if we plotted with respect to the mass ratio. Note that 
the pairs of masses that add up to one come from the same simulation. We can see that they adapt 
reasonably well to linear fts. 

In order to better check and visualize how diferent the trend is for the diferent initial momenta, 
we can divide the results by the central value, getting Fig. 7.7. In this case, since the point 
m/M = 0.5, χ(q)/χ(q = 1) = 1 is common for all the cases, we impose that the linear fts must go 
through this point and just ft the slope. 

We can see that the relative increase between the diferent values of q is bigger for the smallest 
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Figure 7.5: Spin evolution during a hyperbolic encounter with p/M = 0.49, θ = 3.12◦ and diferent 
values of q. 
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Figure 7.6: Final spin for hyperbolic encounters with diferent initial momenta and θ corresponding 
to the q = 1 highest spin-up versus the black hole mass, as well as their linear fts. 
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Figure 7.7: Same as Fig. 7.6, where we divided each value of χ by the one corresponding to the 
same initial momentum and q = 1. The points are now open in order to better see the overlapping 
values, and the linear fts now have the restriction to pass through the central, common point. 

values of p/M . In addition, the linear ft is generally good, but for the p/M = 0.245 case is worse 
than for the other cases. The information about the fts in Fig. 7.7 is provided in Table 7.3, as well 
as the spin of the q = 1 cases, which can be used to derive the equivalent slope for the χ vs m/M 
ft. Here, we can see how the slope decreases with increasing p/M . 

2p/M θ (deg) slope r χ(q = 1) 
0.245 3.46 5.7 0.979 0.0186 
0.3675 3.13 4.9 0.997 0.0596 
0.490 3.12 4.0 0.989 0.109 
0.750 3.42 2.8 0.997 0.200 

2Table 7.3: Fitted parameters for Fig. 7.7, with their linear correlation coefcient r and values of 
the central spin. 

7.4 Towards lower mass ratios: the case of q=0.1 

Finally, we ran a simulation with q = 0.1, p/M = 0.49 and θ = θmin ≈ 3.12◦ . In order to compensate 
for the loss of (relative) resolution for the smallest black hole, we added four extra refnement levels 
to its grid. We also decided to fx medium resolution. As a result of this confguration, the 
simulation is much slower than the previous ones. 
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7.4. Towards lower mass ratios: the case of q=0.1 

Unlike the other simulations with p/M = 0.49 and θ = 3.12◦ , which are hyperbolic, this one 
ended up producing a merger. One of the possible explanations is that the small black hole starts 
from a high initial speed, since it has the same momentum as the black holes in other simulations 
but much smaller mass (m ≈ 0.091), which would imply more energy loss until its encounter with 
the heavier black hole. Another possible explanation is a stronger dynamics for q < 1. 

7.4.1 Issues with the Weyl scalar 

One of the issues that arise in this simulation is the fact that the center of mass is displaced with 
respect to the origin. We already saw that the maximum deviation for 0.7 ≤ q < 1 was found to 
be around 5.5M , but, in this case, it is around 24M . This is a problem for the measurements of 
the Weyl scalar, which are taken at spheres centered at the coordinate origin and, in our case, with 
radius r = 67.88M . As a result, computing the strain amplitude of the emitted gravitational wave 
or its radiated power is also complicated. 

This efect has been corrected via a transformation of the Weyl scalar from the sphere centered 
at the origin (S0) to the sphere centered at r⃗CM(t − R/c) (SCM) for each time t. In order to do this 
transformation, one has to: 

• Convert the available Ψ4 multipoles (in our case, up to l = 4) to a scalar feld defned at S0. 

• For each (t, ⃗p(t)), with p⃗(t) ∈ SCM, get the light ray that originated at (t − R/c, ⃗rCM(t − R/c)) 
and passes through p⃗ and take the value rΨ4 when it passes through S0. Then, divide by R 
to get the value of Ψ4 at the desired point. 

• Convert the resulting scalar feld at SCM back into multipoles. 

In practice, we have a grid (t, θ, φ) for SCM and need the equivalent points (θ ′ , φ ′ ) at S0, its 
′radius r with respect to SCM and the time at which the light ray passes through it, t − (r ′ − R)/c. 

The situation is depicted in Fig. 7.8. 

We should note, however, that this correction is far from perfect. First, this assumes that a light 
ray exactly propagates through the coordinate system at speed c = 1, while the space-time curvature 
can slow down this speed. In addition, we have only produced up to the l = 4 multipole, which is 
enough for a sphere centered at the origin but, in this case, the contribution of the multipoles l ≥ 5 
measured at S0 could be non-negligible even for multipoles l ≤ 4 at SCM. 

Correctly measuring the Weyl scalar is important to determine some gravitational wave-related 
quantities, such as its strain amplitude. We show the amplitudes for the modes l = k ≤ 4 in 
Fig. 7.9, with the corresponding time shift of −R, together with the spin evolution. 

7.4.2 The spins 

Even if this simulation ended up in a merger, we can observe the spin evolutions and draw some 
conclusions. First, we see how the spin-induction phenomenon works in the same way as in other 
cases: higher spin is induced on the heaviest black hole. This can be observed in the lower panel of 
Fig. 7.9, which represents the temporal spin evolution. 
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Figure 7.8: All the relevant points and quantities involved in the transformation of the Weyl scalar 
from the sphere S0 to the sphere SCM, for an arbitrary space-time point p3 = (t, ⃗r3), r3 ∈ SCM(t−R). 
The dotted line represents the light ray which passes through the three relevant points pi, i = 1, 2, 3. 
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Figure 7.9: Strain amplitudes of the q = 0.1 simulation for the modes l = k ≤ 4 (upper panel), 
together with the spin evolution (lower), where the frst black hole is the most massive one. The 
dashed, vertical lines separate the periods before and after the merger. 
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7.5. Comparison with analytic expressions 

In Fig. 7.9, we drew two dashed, vertical lines. The frst of them marks the moment when the 
centroids of both apparent horizons are at a distance equal to the sum of their mean radii. This 
means that both black holes are already too close to continue tracking each of them separately. 
The second vertical line marks the moment from which the joint horizon can be followed. 

One of the main conclusions that should be drawn from this simulation is that two initially non-
spinning black holes involved in a hyperbolic encounter that ends in merger can naturally acquire 
a relevant spin while they approach each other. In practice, this means that, if we observe only the 
last oscillations of a merger through its emitted gravitational waves, and estimate their initial spins 
from an inspiral waveform template, we cannot assume that they had this large spin asymptotically 
away from the merger. If they started as a hyperbolic event, they could have acquired their spin as 
they scattered of each other, emitting gravitational waves and becoming a bounded system that 
fnally merged in a few oscillations. 

7.5 Comparison with analytic expressions 

The problem of analytically deriving the induced spins in a close hyperbolic encounter is not trivial. 
In fact, in order to accurately predict the results of our simulations, one would have to get to, at 
least, PPN(4) order [278, 383]. This strong feld interaction cannot defnitely be modelled with 
weak feld approximations, as the minimum separations of order 1–7M in Table 7.1 show. 

Nevertheless, one can take some naive approaches to this question in order to, at least, see 
whether we can qualitatively predict the trends or not. This is what we tried to do in this section 
with the diferent expressions derived in the App. C, namely (C.6) and (C.24), (C.25). 

7.5.1 Trend for varying incidence angle 

First, we study the behavior for varying θ. If we substitute v0 in terms of v∞ using Eq. (1.205), we 
can write 

(e + 1)1/2 
5χ = f × v∞,

(e − 1)5/2 (7.3) 

with f given by 
16 

fring = η 
5 

(7.4) 

for the ring expression (Eq. (C.6)) and by � � 
4 6 p m1

f1.5PN,1 = η + (1 − 1 − 4η) ,
5 5 M 

(7.5) 

� � 
4 6 p m2

f1.5PN,2 = η + (1 + 1 − 4η)
5 5 M 

(7.6) 

for the PPN(1.5) approximation (Eqs. (C.24) and (C.25). 

In order to relate the previous expressions to θ, we can use the expression (7.2). By neglecting 
the Lorentz contraction and since the constants involved are the same for all the cases with fxed 
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√ 
initial momentum, we conclude that sin θ ∝ e2 − 1. Therefore, for low values of θ, we can use√ 
θ ∝ e2 − 1. 

By neglecting the missing factors, we can assume that θ ≪ 1 implies e ≳ 1, which implies 
treating the e + 1 factors as constants. By doing this, we fnd that our equations can explain 
a trend χ ∼ θ−5 . This is not enough to predict the exponents that we observe in the results 
(Table 7.2), but the diference could be easily explained as the missing strong feld interaction that 
we do not take into account, which underestimates the spin for lower θ (lower impact parameter 
and eccentricity). 

7.5.2 Trend for varying mass ratio 

According to the ring expression (C.6), we would not expect diferent fnal spins for both black 
holes of a given simulation. However, the PPN(1.5) expressions (C.24), (C.25) do predict diferent 
spins. In fact, they accurately predict the fact that the greater spin is induced in the most massive 
black hole. 

Another success of the PPN(1.5) approximation is that it predicts that the induced spin on a 
given black hole is directly proportional to its mass. This is what we see in the results, particularly 
in Figs. 7.6 and 7.7. By dividing by the central spin, as in this second fgure, and assuming that 
the relative speed is the same in all the cases, we can cancel out some constants and get a straight 
line with slopes h � �i4 p

2η + 3 1 − 1 − 4η m1, (7.7)
7 h � �i4 p

2η + 3 1 + 1 − 4η m2, (7.8)
7 

for the most and least massive black holes, respectively. For q ∼ 1, both slopes are 1, which 
at least reproduces the order of magnitude of the slopes in Table 7.3, but the diference is clear. 
Again, this can be explained because our approximation does not tackle strong-feld interactions. 

Also, this time, there is another source of error, which is that the numerical constants that we 
pretend to get rid of by dividing by the central spin do not disappear. Since they involve speeds, 
they are diferent for each value of q, which could impact the trends. 

7.6 Conclusions 

Following the work in [278], we showed that it is possible to induce spins in two initially non-
spinning, equal-mass black holes. They are larger for higher initial velocities and smaller values of 
the impact parameter. 

In addition, we studied hyperbolic encounters where the two black holes have diferent masses 
and found that, for a given impact parameter and initial relative velocity, the highest spin is 
induced on the most massive black hole. In particular, we found that the spin induction efect can 
be signifcantly enhanced for the most massive black hole when the mass ratio becomes large. This 
result suggests a viable mechanism for signifcant spin induction in PBHs, contrary to the case of 
gas accretion, where the induced spins cannot acquire large values. 
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7.6. Conclusions 

Furthermore, we were able to qualitatively predict the trends of the spin with varying impact 
angle and mass-ratio with simple weak-feld approximations. However, in order to get more accurate 
predictions of the induced spins, one would have to resort to higher orders of the PPN formalism. 
This is left for future work. 

With our expressions for the induced spins, we might expect more accurate predictions for 
more modest values of the involved parameters (weaker interaction). However, they are difcult to 
generate with the Einstein Toolkit, since the errors involved in low spin measurements are higher in 
relative terms. Also, the interaction times could get signifcantly bigger and we would need larger 
separations, which might be problematic from a technical point of view. Nevertheless, with enough 
computing power and time, these simulations are possible and should be explored in the future. 

Finally, we found that two initially non-spinning black holes involved in a dynamical capture 
with intermediate mass ratio (q ∼ 0.1) can naturally acquire a relevant spin, χ ≃ 0.8, for the 
more massive black hole. This result is relevant for the interpretation of some of the events like 
GW190521 found by LIGO/Virgo, since the progenitors could have started being very massive but 
spinless primordial black holes. 

We note that most of the hyperbolic encounters in dense PBH clusters occur at large impact 
parameters (many times their Schwarzschild radius) and small relative velocities (v0 ≪ c), and 
therefore the induced spin will be negligible for the majority of the black holes in the cluster. 
However, from time to time, a hyperbolic encounter between a large-mass-ratio pair will spin-up 
the more massive PBH to values of χ signifcantly diferent from zero, up to χ ≤ 0.2. This could 
explain why we observe in LVK GW events [264] a distribution of spins peaked around zero with 
dispersion ∆χ ∼ 0.2. A more refned study taking into account the distribution of eccentricities, 
impact parameters and relative velocities in dense PBH clusters [277] should give us a prediction 
for the expected spin distribution depending on the mass and compactness of the cluster. We leave 
this for future work. 
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Chapter 8 

Gravitational wave constraints from 
astrometry 

8.1 The stochastic gravitational wave background in diferent 
frequencies 

Standard gravitational-wave detectors are able to probe frequencies in the Hz-kHz range (LVK [6, 
12, 13], Einstein Telescope [17], Cosmic Explorer [18]). In the future, we will have the space-based 
detector LISA [20] measuring gravitational waves in the mHz range. However, the SGWB spreads 
through all the frequency spectrum, with interesting sources at lower and higher frequencies, as we 
saw in Chapter 2 and particularly in Fig. 2.1. 

One of the most popular methods to constrain the SGWB at low frequencies are pulsar timing 
arrays (PTAs). This method is based on monitoring a series of pulsars and measuring their time 
delays, which are attributed to a stochastic gravitational wave background. Last year, there were 
a series of publications by all the PTA collaborations: the North American Nanohertz Observatory 
for Gravitational Waves (NANOGrav) [8], the Indian Pulsar Timing Array (InPTA) and European 
Pulsar Timing Array (EPTA) [9], and the Parkes Pulsar Timing Array (PPTA) [10], as well as a 
joint analysis by the International Pulsar Timing Array Collaboration (IPTA) [11] some months 
later. In these publications, they claimed evidence of a SGWB, but not yet a detection. 

The SGWB can also be constrained at even lower frequencies, from 10−20 Hz to around 10−16 

Hz, by using polarization measurements from the CMB [109]. In this case, the latest data are 
provided by Planck [384], where one can use the measurements of the B modes to generate the PI 
sensitivity curve for a SGWB [385, 386]. 

Additionally, there is a lot of work being done for high-frequency gravitational waves, where 
sources such as cosmic strings or phase transitions would still be relevant, as well as mergers from 
light primordial black holes. There are diferent experiments being proposed, such as mechanical 
resonators (resonant spheres in the kHz [387, 388], bulk acoustic wave devices in the MHz-GHz [389]) 
or devices based on the inverse Gertsenshtein efect [390], by which photons turn into gravitational 
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waves in the presence of a magnetic feld [391, 392] (also up to the GHz), only to name a few. 
A comprehensive review of this feld, sometimes called Ultra-High Frequency Gravitational Waves 
(UHFGW), is provided in [287]. 

In this chapter, we will focus on the SGWB constraints one can derive from astrometric surveys, 
such as Gaia, which bridge the gap from CMB polarization measurements to PTAs. 

8.2 Introduction to gravitational wave constraints from as-
trometry 

The formalism relating gravitational waves to astrometry was already studied over the past cen-
tury [393, 394, 395, 396, 397, 398, 399, 400] and at the beginning of this one [401, 402, 403]. In 
particular, Gwinn et al. [404] used proper motions from quasars obtained from Very Long Baseline 
Interferometry (VLBI) to set an upper bound ΩGW ≲ 10−1 for 10−17 Hz ≲ f ≲ 10−9 Hz. Later, 
Titov et al. [405] updated this limit to ΩGW ≲ 10−2 . 

Furthermore, since the review by Book and Flanagan [403] in 2010 and the launch of the Gaia 
mission [406] in 2013, the feld was revitalized with more articles, such as the constraints from 
Darling et al. [140] and Aoyama et al. [407], which will be commented extensively and reanalyzed 
in Chapters 9 and 10; as well as more theoretical or mock data-based works [408, 409, 410, 411]. 

The formalism is detailed in the following sections, leading to the expressions we needed for our 
work on astrometric constraints from Gaia DR3 [4]. The main idea is to compute the change in the 
observed sky position n⃗ of a star in the presence of a gravitational wave through the trajectory of 
the light it produces, from its emission at the source (S) to its observation from Earth (O). We will 

′ ′denote this shifted position n⃗ , with the diference being the angular defection δn⃗ ≡ n⃗ − n⃗. The 
situation is depicted in Fig. 8.1. 

GW
p⃗

n⃗

n⃗′
O

S

δn⃗

Figure 8.1: Illustration of the concept of angular defection. In the absence of a GW, the star at 
source S is observed in the direction of the unitary vector n⃗. With the passage of a gravitational 

′ ′ wave, this position is defected to n⃗ (gray), with the angular defection being δn⃗ = n⃗ − n⃗ (red). 
The gravitational wave is represented by its propagation direction p⃗ and plane wavefronts (cyan). 
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8.3. Minkowski spacetime 

The main reference for this part will be Book and Flanagan’s review [403]. Most of the results 
in this reference will be explained, generally with more detail, and some of them will be expanded 
with own results or other references, especially in the fnal sections. 

Following this article, I will frst start by computing the angular defection of a star due to 
the passage of a gravitational wave within a Minkowski background spacetime, which is simpler. 
Then, it can be extended to FLRW spacetimes by means of a conformal transformation. We will 
particularize for the case of distant sources and plane waves and, fnally, compute the relevant 
equations for a SGWB context. These equations will then be decomposed into spherical harmonics, 
which is needed for the data analysis in Chap. 10. 

Throughout these chapters, we will work in geometrized units G = c = 1. 

8.3 Minkowski spacetime 

8.3.1 Unperturbed case 

We consider Minkowski spacetime perturbed by a gravitational wave, which is given by 

ds2 = gµν dx
µdxν = −dt2 + (δij + hij )dx

idxj , (8.1) 

with their non-zero Christofel symbols given by 
1 1 1 

Γk 
0i = ∂0hki, Γ0 

ij = ∂0hij , Γk
ij = [∂j hki + ∂ihkj − ∂khij ]. (8.2)

2 2 2 

Within this spacetime, we study the evolution of a light ray of unperturbed frequency ω0 emitted 
from a source at position x⃗S and observed at the Earth x⃗ = 0 at a certain time t0. In absence 
of a gravitational wave, the worldline of the light ray is given by a straight line with direction of 
propagation −n⃗, with n⃗ ≡ x⃗/|x⃗|. The photon 4-momentum will therefore be 

kµ = ω0(1, −n⃗). (8.3)0 

Throughout this chapter, we will work with the 4-momentum kµ as the tangent vector to the 
corresponding photon worldline. Therefore, 

dxµ(λ)
kµ(λ) = , (8.4)

dλ 
with λ being the afne parameter of the geodesic xµ(λ). This means we can parametrize the 
worldline as 

µx (λ) = (t0, 0⃗) + ω0(λ, −λn⃗), (8.5)0 

where λO = 0 corresponds to the detection on Earth and λS = −|x⃗S |/ω0, to the emission at the 
source. 

In addition, we will use uµ to denote the 4-velocity, 

dxµ 
uµ ≡ , (8.6)

dt 
thus matching the notation in [403]. 
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8.3.2 Perturbed case 

We consider the perturbed trajectory and photon 4-momentum as the sum of two contributions: 

µ µxµ(λ) = x (λ) + x (λ), kµ(λ) = kµ(λ) + kµ(λ) (8.7)0 1 0 1 

From the geodesic equation, 
µd2x 
+ Γµ kβ kγ = 0, (8.8)

dλ2 βγ 

and the fact that Γi = 0 (the non-zero Christofel symbols are given by Eq. (8.2)), we realize that 00 
stationary observers follow geodesics. Therefore, we can consider the source and observer’s spatial 
coordinates to be fxed. 

Given that all the Christofel symbols are frst order in h, in order to stay at frst order in the 
geodesic equation (8.8), we only need the zero-th order of the 4-momentum, which gives 

d2 0 ω2 d2 k ω2x x1 0 i 1 0 i = − n nj ∂0hij , = − [−2n i∂hki + n nj (∂j hki + ∂ihkj − ∂khij )], (8.9)
dλ2 2 dλ2 2 

In order to obtain the full trajectory, we have to integrate these equations from λ = 0 to an 
arbitrary λ. Doing it just once, we get the perturbed 4-momentum, 

ω2 ω2 
0 i j 0 jk1

0(λ) = − n nj Iij (λ) + I0, k (λ) = − n iRij (λ) + J (8.10)1 0 ,2 2 

while integrating twice recovers the trajectory: 

ω2 ω2 
0 0 i j 0 jx1(λ) = − n nj Kij (λ) + I0λ, x (λ) = − n iSij (λ) + J λ, (8.11)1 02 2 

with Z λ Z λ 
Iij (λ) = dλ ′ ∂0hij (λ ′ ), Jijk(λ) = dλ ′ ∂khij (λ ′ ), (8.12) 

0 0 Z λ Z λ 
Kij (λ) = dλ ′ Iij (λ ′ ), Lijk(λ) = dλ ′ Jijk(λ ′ ), (8.13) 

0 0 

Rij (λ) = −2Iij (λ) + n k(Jijk(λ) + Jjki(λ) − Jikj (λ)), (8.14) 

Sij (λ) = −2Kij (λ) + n k(Lijk(λ) + Ljki(λ) − Likj (λ)), (8.15) 

and I0 and Jj being integration constants. 0 
µThere are no extra integration constants when integrating kµ to get x , given that x1(0) = 0. 

This is because the perturbed photon trajectory must include the detection event (t0, 0⃗), which is 
already given by the unperturbed trajectory. Therefore, the perturbation at this instant must be 
zero. This is the most straightforward simplifcation we can make to the equations due to boundary 
conditions, but there are more, as will be detailed next. 
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8.3. Minkowski spacetime 

Boundary conditions 

We impose several boundary conditions to further simplify the previous equations: 

• The perturbed photon trajectory must intersect the source worldline, i.e. there must be a λ̃ 
S , 

j j jwhich at zero-th order is just λS , such that x (λ̃ 
S ) + x (λ̃ 

S ) = xS . Using Eq. (8.11),0 1 

j 0 jxS = −ω0λ̃ 
S n

j − 
ω2 

n iSij (λ̃ 
S ) + J0 λ̃

 
S . (8.16)

2 

We can project this equation perpendicular to n⃗ to get the perpendicular component of J i:0 

ω2 
J i 0 (δik − n i 0⊥ = n k)nj Sjk(λS ), (8.17)

2λS 

where, to frst order, the zero-th order λ̃ 
S = λS can be used due to the Sjk dependence on h. 

• The photon is emitted with unperturbed frequency ω0. This frequency can be computed as 

νω0 = −gµν k
µus , (8.18) 

µwith u the 4-velocity of the source. Given that, in the previous subsection, we assumeds 
that the source had constant position, its 4-velocity is uµ = (1, 0⃗), so we have the equality s 
−gµ0k

µ = ω0. Again, we can approximate that, at the source, λ = λS to get 

ω2 
0 iI0 = n nj Iij (λS ). (8.19)
2 

• The photon geodesic must be null, which gives the constraint gµν k
µkν = 0. Expanding the 

metric and kµ = k0 
µ + k1 

µ, this gives 

hµν k
µk0 

ν + 2ηµν k
µkν = 0. (8.20)0 1 0 

We now substitute kµ and kµ by their expressions in Eqs. (8.3) and (8.10) to get0 1 � � � � 
ω2 ω2 
0 0 jhij (λ)ω0

2 n i nj + 2ω0 n i nj Iij (λ) − I0 + 2ω0n
j n iRij (λ) − J0 = 0 (8.21)

2 2 

If we now use the expression 

dhij 
= ω0∂0hij − ω0n k∂khij , (8.22)

dλ 

one can show that, from the defnition of Iij and Rij in Eqs. (8.12) and (8.14), 

i iω0n nj (Iij (λ) + Rij (λ)) = ω0n nj (−Iij (λ) + n kJijk(λ))Z λ 
i j= n n dλ ′ ω0(−∂0hij (λ ′ ) + n k∂khij (λ ′ )) 

0 
i = n nj [hij (0) − hij (λ)]. (8.23) 
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Substituting this in Eq. (8.21), the terms of Iij and Rij cancel the one with hij (λ), so that 

I0 + niJ
i 1 i = ω0n nj hij (0). (8.24)0 2 

Subtracting from this expression the previous Eq. (8.19), we get the parallel component of 
J0: 

1 ω2 
i 0 i niJ0 

i = ω0n nj hij (0) − n nj Iij (λS ), (8.25)
2 2 

so, together with Eq. (8.17), we have the full expression for J0 
i: 

ω2 ω2 
0 (δik − n i 0 i j 1 i jJ0 

i = n k)nj Sjk(λS ) − n n n kIjk(λS ) + ω0n n n khjk(0) (8.26)
2λS 2 2 

8.3.3 Observed angular defection 

In order to get the angular defection observed from Earth, we must account for two extra perturbed 
quantities. First, we will see how the observed frequency varies and then, how the local frame does. 

Observed frequency and local reference frame 

On the one hand, the observed frequency is given by the same expression as in Eq. (8.18), but now 
at the observer, 

νωobs = −gµν k
µuobs. (8.27) 

νAgain, since the observer coordinates are constant, u = (1, 0⃗). Therefore, substituting theobs 
value of kµ in Eqs. (8.3) and (8.10) and using Eq. (8.19) for the value of I0, 

ω2 
0 iωobs = k0(0) = ω0 + I0 = ω0 + n nj Iij (λS ). (8.28)
2 

On the other hand, even if the observer’s coordinates remain constant, a local vector basis 
defning its proper reference frame may vary in time due to a GW. We account for this efect by 
defning a set of orthonormal basis vectors e⃗ĵ which, unperturbed, coincide with the coordinate 
basis, but are otherwise parallel-transported along the observer’s worldline. Therefore, they satisfy 
ie = δi + δei . In order to extend this basis to the dimension 4 of the spacetime, we defne the 4-ˆ ˆ ˆj j j 

µ µ µvectors eˆ ≡ (0, ⃗eĵ ) and complete the orthonormal set with an additional 4-vector eˆ ≡ u = (1, 0⃗). 
j 0 

To summarize, 
µ µ i 0 e = u = (1, 0⃗), e = δi + δei , e = 0. (8.29)
0̂ ĵ ĵ ĵ ĵ 

We could have also defned a δe0 
j but, as we will see, it can be set to zero with no loss of generality. ˆ 

From the parallel transport equation, 

ν uµ∇µe = 0, (8.30)σ̂ 
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ν νwe get the equations for the 4-vectors. For e = u , the parallel transport equation is automatically 
0̂ 

satisfed. For the spatial 4-vectors, 

β γ γ u α[∂αe + Γβ ] = 0 ⇒ ∂0δe
β + Γβ = 0, (8.31)

ĵ αγ eĵ ĵ 0γ eĵ 

where we have used that uµ = (1, 0⃗). We now recall that, for the Christofel symbols, given in 
βEq. (8.2), the only non-zero ones of the form Γ are those in which both β and γ are spatial.0γ 

Therefore, to frst order, 

∂0δe
i +

1 
hi = 0 ⇒ δei (t) = − 

1 
hi (t, 0⃗) + ωi , (8.32)ˆ ˆ ˆ ˆ ˆj j j j j2 2 

with ω 
j
i a constant matrix. In addition, the fact that Γ0 = 0 implies that, if there were a δe0 

j , itsˆ 0γ ˆ 
time derivative would be zero. Since we want to recover the canonical basis in the absence of a 
gravitational wave, we can safely set the integration constants to zero without loss of generality. 

Therefore, at the detection event, 

1µ = δµ hµe − (0), (8.33)ν̂ ν̂ ν̂2 

where the expression also works for either µ = 0 or ν = 0 due to the defnitions we made, and 
knowing that h0ν = 0 for all ν. 

Angular defection 

Finally, we can compute the observed angular defection. To do that, we take the two diferent 
expressions we have for the 4-momentum of the incoming photon and compute their i-th component 
evaluated at the observation event, λ = 0. On the one hand, we have, from Eqs. (8.3), (8.10), (8.26) 
and the fact that Rij (0) = 0 from its defnition in Eq. (8.14), 

ω2 ω2 
i 0 (δik − n i 0 i j 1 i jki(0) = −ω0n + n k)nj Sjk(λS ) − n n n kIjk(λS ) + ω0n n n khjk(0). (8.34)

2λS 2 2 

On the other hand, we can express the 4-momentum at the observer in terms of the local 
reference frame basis as 

ˆ ˆβ α j µkµ(0) = k e 
β = ωobsu

µ − ωobsn e 
j 
, (8.35)ˆ ˆ 

which is just the local version of the unperturbed photon 4-momentum kµ = ω0(1, −n⃗), with n⃗0 
ˆ ˆi jbeing a unitary vector also in this reference frame, δîĵ n n = 1. 

iFrom the previous equation, we can compute an expression for n which will be useful in the 
0̂next section. We defne n ≡ −1 to unify both terms, and substitute ωobs by its expression in 

δEq. (8.27). We also assume the λ = 0 dependence to be implicit. Contracting with gαδeγ , we getˆ 

δe
ν β̂  α δ ν ˆ γ̂ gαδk

α
γ̂

kα = (gµν k
µuobs)n e ⇒ gαδeγ k

α = (gµν k
µuobs)n β δβ̂ˆ ⇒ n = ν . (8.36)

β̂ ˆ γ gµν kµuobs 
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µGoing back to Eq. (8.35) and substituting ωobs in Eq. (8.28) and e 
j 

in Eq. (8.33), the spatialˆ 
components are � � � � 

ω2
ˆ 10 k jki(0) = − ω0 + n n n δi − hi (0) (8.37)lIkl(λS ) ĵ ĵ2 2 

ˆĵ j ĵAgain, we decompose n = n0 + δn . At this point, we can drop the hats, since the reference 
frame is obvious in all the quantities involved. If we make Eqs. (8.34) and (8.37) equal, the zero-th 
order is simply 

i i−ω0n = −ω0n0, (8.38) 
i iso n = n , as expected. The frst order then provides 0 

ki(0) = 
ω0
2 
(δik − n i n k)nj Sjk(λS ) + 

1 
ω0n i nj n khjk(0) = −ω0δn

i + 
ω0 

nj hi
j (0). (8.39)

2λS 2 2 

We can then easily solve for δni and group the terms like � � 
1
(δik − n i j ω0

δni = n k)n hjk(0) − Sjk(λS ) , (8.40)
2 λS 

with Sjk given by Eq. (8.15). 

8.4 FLRW metric 

Given that the geometry of our Universe is best described by a Friedmann-Lemaître-Robertson-
Walker metric, we would like to reproduce the previous results for this spacetime. Assuming a fat 
curvature parameter, the perturbed FLRW metric is given by 

ds2 = gµν dx
µdxν = a(τ)2{−dτ 2 + [δij + hij (τ, ⃗x)]dxidxj }, (8.41) 

with its non-zero Christofel symbols being 

ȧ 1 ȧ 1 1 
Γµ 
0ν = δν

µ + δµσ ∂0hσν , Γ0 
ij = (δij + hij ) + ∂0hij , Γk

ij = δkl[∂j hli + ∂ihlj − ∂lhij ]. (8.42)
a 2 a 2 2 

The metric in Eq. (8.41) can be re-expressed as 

ds2 = gµν dx
µdxν ≡ a(τ )2 gµν dx

µdxν , (8.43) 

where gµν is a conformally related, unphysical metric which is formally identical to our Minkowski 
spacetime (8.1) in the previous section, 

gµν dx
µdxν = −dτ2 + [δij + hij (τ, ⃗x)]dxidxj . (8.44) 

Therefore, we can establish a correspondence with the previous results, without the need to 
repeat the computations from scratch. We will denote with a bar all the quantities related to the 
metric gµν . 

The main points we need to review, in light of the conformal relation to the Minkowskian case, 
are the following ones: 
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8.4. FLRW metric 

• Again, the observer and source can be assumed stationary, given that these trajectories are 
geodesics of the spacetime. This can be deduced from the fact that Γi = 0 (see Christofel00 
symbols in Eq. (8.42)). 

• We consider a null geodesic xµ(λ) of the spacetime given by gµν , with λ its afne parameter. 
Then, it is known that it will also be a geodesic of the conformally related metric gµν [412], 
with a diferent afne parameter ζ such that 

dζ 1 
= . (8.45)

dλ a(τ(λ))2 

• Based on the previous point, the unperturbed photon trajectory is best parameterized using 
the afne parameter of gµν , like 

iτ(ζ) = τ0 + ω0ζ, x i(ζ) = −ζω0n . (8.46) 

• The 4-momentum and 4-velocity relations are given from the metric (8.41) and Eq. (8.45), 

dxµ 1 dxµ 1 µ dxµ 1 dxµ 1 
kµ µ µ= = = k , u = = = u (8.47)

dλ a2 dζ a2 dt a dτ a 

−1• In order to remain normalized, the unperturbed basis vectors must be rescaled by a . There-
fore, the perturbed ones will be � � 

i e =
1 

δi + δei . (8.48)ˆ ˆ ˆj j ja 
µAgain, since the observer is stationary, u = (1, 0⃗) and, similar to Eq. (8.31), the parallel obs 

transport equation is reduced to 
β β γ∂0e 
j 
+ Γ 

j 
= 0. (8.49)ˆ 0γ eˆ 

Using the corresponding Christofel symbol from Eq. (8.42) and Eq. (8.48), � �� � � � ȧ 1 ȧ 1 1β β β β− δ + δe + ∂0δe + δ + δβk∂0hki δi + δei = 0, (8.50)
ĵ ĵ ĵ i ĵ ĵa2 a a 2 a 

which leads, to frst order, to 
β 1 

δβk∂0h∂0δe 
j 
+ = 0. (8.51)ˆ kĵ2 

As in the Minkowskian case, this proves there is no need for a δe0 
j , given that its null timeˆ 

derivative allows to set it to zero. Similarly, for the spatial indices, we get the same solution 
as in the Minkowskian case, so that � � 

1 1i e = δi − hi , (8.52)ˆ ˆ ˆj j ja 2 

or, in terms of the conformally related metric, 

1i i e
ĵ = e

j . (8.53)ˆ a 
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îUsing these expressions, we can relate the observed position in local coordinates n with the 
equivalent one for gµν . From Eq. (8.36), we substitute the relations for the metrics in Eq. (8.43), 
the 4-momenta and 4-velocities in Eq. (8.47) and the basis vectors in Eq. (8.53). We realize all the 
a(τ ) factors cancel out, so that 

α δe
γ̂ gαδk γ̂ 

n = . (8.54)µ νugµν k obs 

Given that this expression is formally identical to the one for Minkowski spacetime (8.36), we can 
substitute the expression (8.40) but in terms of the quantities related to gµν , including its afne 
parameter ζ instead of λ. As a result, expanding the expression fully, we get � 

1 
(δik − n i j ω0

δni = n k)n hjk(0) − "2 ζS #)Z Z ζ ′ Z Z ζ ′ ζS ζS 
′ l ′ × −2 dζ dζ ′′ ∂0hjk(ζ ′′ ) + n dζ dζ ′′ (∂lhjk(ζ ′′ ) + ∂j hkl(ζ ′′ ) − ∂khjl(ζ ′′ )) . 

0 0 0 0 

(8.55) 

8.5 Further simplifcations 

We can reduce the double integrals by applying some identities. First, we use Eq. (8.22) to transform 
the second term like " #Z Z ζ ′ Z Z ζ ′ 

ik ζS ik ζSs s ζ ′ 
j ′ ′′ (ω0∂0hjk(ζ ′′ )) = j ′ ′′ )| ′′ ω0n ′′ )n dζ dζ n dζ hjk(ζ 0 + dζ l∂lhjk(ζ ,

ζS 0 0 ζS 0 0 

(8.56) 
ik ≡ (δik − niwhere we denote s nk), common to the three terms. The second term we obtained in 

the previous expression exactly cancels the frst and second terms of the third big term in Eq. (8.55), 
which are equal since the j and l indices are interchangeable. Therefore, and using the identity 

′Z Z Zx x x 
dx ′′ f(x ′′ ) = ′ )f(x ′ )dx ′ dx ′ (x − x (8.57) 

0 0 0 

to get rid of the remaining double integral, we get Z Zik ik ζS ik ζSs s ω0s ζS − ζ 
δni = nj hjk(0) + nj dζ[hjk(ζ) − hjk(0)] + dζ nj n l∂khjl(ζ). (8.58)

2 ζS 0 2 0 ζS 

8.5.1 Plane waves and the distant source limit 

Later on, we will be interested in computing the efect of a stochastic gravitational wave background 
on the angular defection spectrum. For this purpose, there are several simplifcations that can be 
made to the previous expressions. First, we will consider a plane wave, given that, for very distant 
sources, we can consider the SGWB to be a superposition of plane waves. Then, we will assume 
that our sources are far enough that we can further simplify our equation. 
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8.5. Further simplifcations 

Even if the more physically meaningful case of those studied is the FLRW metric, it is useful 
to frst study the problem in the Minkowski spacetime. This simplifes the procedure and allows to 
get a better physical and mathematical intuition for what each term stands for. 

Minkowski spacetime 

In a Minkowski spacetime, the wave equation is simply given by 

[∂2 −∇2]hij (t, ⃗x) = 0, (8.59)t 

so that a plane wave with angular frequency Ω propagating in the direction p⃗ is given by 

−iΩ(t−p⃗·x⃗)] −iΩ{t0 +ω0(1+p⃗·⃗hij (t, ⃗x) = Re[Hij e ⇒ hij (λ) = Re[Hij e n)λ}]. (8.60) 

Therefore, if we substitute in Eq. (8.58) (now with λ instead of ζ) since we are in Minkowski 
spacetime, we get, after some heavy simplifcation, ��� h i� i(2 + p⃗ · ⃗n) −iΩω0(1+p⃗·n⃗)λS iδni = Re 1 + 1 − e n 

ω0λS Ω(1 + p⃗ · ⃗n)� i� �h j −iΩt0i p·⃗ i n nkHjke−iΩω0(1+⃗ n)λS+ 1 + 1 − e p
ω0λS Ω(1 + p⃗ · ⃗n) 2(1 + p⃗ · ⃗n)� � 

1 i h i� 
−iΩω0(1+p⃗·n⃗)λS j Hi −iΩt0− + 1 − e n j e . (8.61)

2 ω0λS Ω(1 + p⃗ · ⃗n) 

In this expression, we can observe that the angular defection depends on the value of the 
gravitational wave both on the source and the observer. This is similar to what happens for 
PTA [8, 9, 10]. In that case, the source terms cannot be neglected individually, but they are 
assumed to vanish when averaging over the diferent pulsars. In this case, however, we can get rid 
of the source terms at this point of the formalism. 

For this purpose, we will assume that the source is far away enough, in what is called the distant 
source limit. Mathematically, we suppose that the distance to the source |xS | = ω0|λS | is much 
larger than the gravitational wave wavelength cΩ−1 . In this case, those terms with denominator 
ω0λS Ω(1 + p⃗ · ⃗n) in Eq. (8.61) become negligible and we get � 

j k −iΩt0 
� 

n e 1i i) 
Hjkn Hi j −iΩt0δni = Re (n + p − j n e , (8.62)
2(1 + p⃗ · ⃗n) 2 

where we observe no dependence of the gravitational wave at the source anymore, but just at the 
observer. With this approximation, we limit ourselves to a certain frequency range Ω ≫ c/|xS |. 
However, the simplifcations allow to completely neglect what happens at the source, which would 
otherwise complicate any analysis with real data. We will discuss this more for a work on real data 
in Chapter 10. As a double-check, it can be seen that δn⃗ in Eq. (8.62) is orthogonal to n⃗, which 
will also be used in Subsection 8.6.3. 
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FLRW spacetime 

In the case of a FLRW metric, the wave equation is now given by � �′ a 
∂τ 
2 + 2 ∂τ −∇2 hij (τ, ⃗x) = 0, (8.63)

a 

where the prime denotes derivative with respect to the proper time τ . The solution for a plane 
wave with angular frequency Ω propagating in the direction p⃗ is given by 

′� � aiΩp⃗·x⃗ ′′ ′ hij (τ, ⃗x) = Re Hij e qΩ(τ ) , qΩ + 2 qΩ +Ω2 qΩ = 0. (8.64)
a 

In this case, it is harder to simplify the equations before using the distance source limit. It is easier 
to apply both simplifcations at once. Here, we must also assume that the wavelength a/Ω is much 
smaller than the horizon scale a2/a ′ , not just the distance to the source. Under this assumption, 
ϵ = a ′ /(Ωa) ≪ 1, which makes the term hjk(ζ) oscillate rapidly in the second term of Eq. (8.58), 
making it negligible with respect to the integral of hjk(0). For the third term in Eq. (8.58), the 
integrand oscillates rapidly, which makes the integral be dominated by the contributions near the 
integration limits or, in this case, just ζ = 0 since the integrand vanishes at ζ = ζS . In this regime, 
we can also approximate 

1 −iΩτ qΩ(τ ) ≈ e , (8.65)
a(τ0) 

which can easily be checked that solves Eq. (8.64) under these assumptions. In this case, we recover 
a standard plane wave. In addition, Eq. (8.58) has been left with only constant terms at the origin. 
Therefore, the terms that remain are exactly the same ones as in the Minkowskian case, which, 
operating, leads us to Eq. (8.62) again. 

8.6 Angular defection correlation 

8.6.1 Autocorrelation spectrum 

We now want an expression for the correlation, which is the quantity directly related to the 
stochastic gravitational wave background. We will start by analyzing the case in which the an-

′gular defection in a given direction is correlated with itself, n⃗ = n⃗ . This is later generalized for 
the case of diferent directions in Subsection 8.6.3. Again, for this section, the main reference is 
Book&Flanagan [403], but the computations will be more detailed and presented in a more conve-
nient order for the purpose of this thesis. 

We start by decomposing a generic wave into plane waves with diferent propagation directions 
p⃗ and polarizations A = +, ×, with amplitude hA(p⃗), similar to Eq. (1.36). In this case, in order to 
match the notation in [403], we take the form in which we only have positive frequencies, so that 
we have to include the complex conjugate terms: Z ZX ∞ 

2πif (p⃗·x⃗−t) Ahij (x⃗, t) = df d2Ω hA(f, ⃗p)e eij (p⃗) + c.c. (8.66) 
0A=+,× 
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Substituting this expression into our Eq. (8.62) for the angular defection, we get Z ZX ∞ 
−2πiftRikl(⃗ Aδni(n⃗, t) = df d2Ω hA(f, ⃗p)e n, ⃗p)eij (p⃗) + c.c., (8.67) 

0A=+,× 

with � 
i l � 

Rikl(⃗ 
1 (n + pi)nkn kδiln, ⃗p) = − n (8.68)
2 1 + p⃗ · ⃗n 

As we saw in Sec. 2.1, if hij is Gaussian, stationary and with zero mean, we have 
′ ⟨hA(f, ⃗p)hB (f ′ , ⃗p )⟩ = 0, (8.69) 

3H2 
′ 0 ΩGW(f) ′ ⟨hA(f, ⃗p)h ∗ ′ , ⃗p )⟩ = δ(f − f p, ⃗p ). (8.70)B (f ′ )δAB δ

2(⃗ 
32π3f3 

Taking the correlation between a pair of angular defections δn⃗(n⃗, t) in Eq. (8.67) and using the 
previous Eq. (8.70), we get Z ∞ 3H2 

′ 0 −2πif(t−t )Hij (⃗⟨δni(n⃗, t)δnj (n⃗ , t ′ )⟩ = df ΩGW(f)e 
′ 

n, ⃗n ′ ) + c.c., (8.71) 
0 32π3f3 

with ZX � �∗ 
Hij (⃗ d2Ω Rikl(⃗ A p)Rjrs(⃗ An, ⃗n ′ ) = n, ⃗p)ekl(⃗ n ′ , ⃗p) ers(p⃗) . (8.72) 

A=+,× 

The previous expression is simplifed by using the property X � �∗ A A eij (p⃗) ekl(p⃗) = 2Pijkl, (8.73) 
A=+,× 

where Pijkl is a projection tensor, onto the space of traceless symmetric tensors orthogonal to p⃗. It 
is given by 

2Pijkl = δikδjl + δilδjk − δij δkl + pipj pkpl − δikpj pl − δjlpipk − δilpj pk − δjkpipl + δij pkpl + δklpipj . 
(8.74) 

Therefore, Eq. (8.72) can be simplifed to Z 
Hij (⃗ d2Ω Rikl(⃗ p)Rjrs(⃗n, ⃗n ′ ) = 2 n, ⃗ n ′ , ⃗p)Pklrs. (8.75) 

I now particularize for the case that both n⃗ and t coincide. As mentioned before, the case in 
which the directions are diferent will be studied in Subsection 8.6.3. In this case, one can use 
Eqs. (8.68), (8.74) to show � 

j j1 n + p � 
2RjrsPklrs = 2nknl − δkl + (p⃗ · ⃗n)2(pkpl + δkl) − 4(p⃗ · ⃗n)n(kpl) + pkpl

2 1 + p⃗ · ⃗n n � �oi 
j j j j− 2n(kδ − nj δkl − 2n(kpl)p + pkplnj + (p⃗ · ⃗n) pkplp + δklpj + 2p(kδ ,l) l) 

(8.76) 
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where T(µν) denotes the symmetric part of the tensor Tµν . 

Contracting with the remaining Rikl , we get � 
i j1 � � (n + pi)(n + pj ) 2

2RiklRjrsPklrs = 1 − (p⃗ · ⃗n)2 (1 − (p⃗ · ⃗n) )
4 (1 + p⃗ · ⃗n)2 �

(i (i � � n + p j) � 
δij − p i j � −2 nj) − (p⃗ · ⃗n)p + p , (8.77)

1 + p⃗ · ⃗n 

which, operating a bit, reduces the square bracket just to δij − ninj . Therefore, going back to 
Eq. (8.75), Z 

Hij (⃗ 
1 

n)2](δij − n i j ).n, ⃗n) = d2Ω [1 − (p⃗ · ⃗ n (8.78)
4 

This integral can easily be solved by defning θ as the angle between p⃗ and n⃗. In this case, Z Z �π 
d2Ω [1 − (p⃗ · ⃗n)2] = 2π dθ sin θ(1 − cos 2 θ) = 2π 2 − 

0 

� 
2 
3 

= 
8π 

. 
3 

(8.79) 

Therefore, 
Hij (n⃗, ⃗n) = 

2π 
(δij − n i nj ). 

3 
(8.80) 

Substituting this expression into Eq. (8.71), we get 

⟨δni(n⃗, t)δnj (n⃗, t)⟩ = 
1 

8π2 

Z ∞ H2 
0 idf ΩGW(f)(δij − n nj ),

f3 
0 

(8.81) 

where, given that there were no imaginary numbers involved, the complex conjugate coincides with 
the frst term, adding an extra factor 2. Taking the trace of the previous expression, we get our 
fnal expression for the spectrum of angular defections: Z � �2 

⟨δn⃗ 2⟩ = θ2 =
1 

d ln f
H0 

ΩGW(f), (8.82)rms 4π2 f 

where it is explicitly indicated that this quantity can also be referred to as the root mean square 
angular fuctuation squared, θ2 .rms 

The main interest for this chapter is the obtention of the spectrum of proper motions so, difer-
entiating δn⃗ in Eq. (8.67), a factor 4π2f2 arises in the spectrum which produces the expression Z 

⟨δṅ⃗ 2⟩ = d ln fH0
2ΩGW(f). (8.83) 

Therefore, the quantity over which we are able to place constraints is the right-hand side of 
Eq. (8.83). However, to place constraints over the maximum amplitude of ΩGW(f) in our fre-
quency range, it is usually assumed that ΩGW(f) has a simple functional form which is mostly 
relevant over one order of magnitude in f . To simplify things, one can assume that the amplitude 
of ΩGW(f) is constant in this frequency range, so that the following approximation holds: 

1 
ΩGW ≈ 

H2 ⟨δṅ⃗ 2⟩. (8.84) 
0 

162 



8.6. Angular defection correlation 

Under ideal conditions, one can get a rough estimate of the constraining power of a survey. If 
we consider that a certain mission will detect N sources, homogeneously distributed in the sky and 
all of them observed over a period T with a position resolution ∆θ, the correlated angular motion 
should be of order 

∆θ 
δṅ⃗ ∼ √ . (8.85)

NT 

Using Eq. (8.84), this leads to 
(∆θ)2 

ΩGW ≲ (8.86)
NT 2H0

2 

This expression has been used in the literature [403, 140, 411] to set constraints under idealized 
conditions. However, as we will see in Chapter 10, this does not always hold with real data. 

8.6.2 Frequency validity range 

To complete the previous subsection, the validity regime of the derived equations should also be 
addressed. In order to obtain our fnal expression in Eq. (8.62), we used the distant source limit, 
which is only able to constrain the frequency range to f ≳ c/d, with d the distance to the source. 
In the case of a set of sources, it should apply to all sources, so it should be the distance to the 
closest source. However, to provide a more stable lower frequency bound, the 25th percentile of 
the distance distribution is used, so that, for the lower constrained frequency, at least 75% of the 
sources fall under our assumptions. We denote this distance by d25, which will be used in Chapter 9. 
In principle, one could be more conservative and take the 5th or 10th percentile, so that 95% or 
90% of sources can be used in the lower constrained frequencies. However, 25% is more standard 
in the literature [140], so we will use this value. 

For the lower end of the frequency range, we have the inverse of the observing period, f ≲ 1/T . 
This is a bit counterintuitive, so it merits some discussion. If we were observing a source over 
a period T with a cadence ∆t, in order to characterize a wave, its wavelength would need to ft 
inside the observing period, λ < cT . However, if it fts inside the cadence, the average over high 
frequencies will dilute the signal, so the wavelength should be higher, λ > c∆t. This would produce 
the interval 1/T ≲ f ≲ 1/∆t, as it is used in references such as [413]. 

In our case, nevertheless, we will not be dealing with a time series, but rather, with the averaged 
proper motions over the full observing period. Therefore, we will only have a data point per source, 
so the cadence for the position measurements is all the observing time, δt = T . This provides the 
bound f ≲ 1/δt = 1/T , as explained in the previous paragraph. The bound f ≳ 1/T can however 
be relaxed if we do not need to track the wave oscillation within our observing time. In this case, 
what we will observe is the efect of higher wavelengths, which can locally be approximated to 
behave linearly. This linear time evolution in the tensor metric perturbation still induces spatially 
correlated fuctuations in the proper motions, producing an observational efect which can be used 
to constraint these frequencies. 

As a result, our frequency validity range will be 

c 
≲ f ≲ 

1 
. (8.87)

d25 T 

163 



Chapter 8. Gravitational wave constraints from astrometry 

Going back to Eqs. (8.83) and (8.84), the integrals should also be evaluated in this frequency 
range. In the case of f ≳ T −1 , their efect can be neglected due to rapidly oscillating waves 
averaging out, and frequencies lower than c/d25 are neglected by hypothesis when we assume the 
distant source limit regime. 

In the next subsection, the computation of the angular defection correlation is generalized to 
arbitrary directions, which will be necessary in Sec. 8.7. 

8.6.3 Generalization to diferent directions 

We will now generalize the expression for the angular defection correlation in Eq. (8.81) to arbitrary, 
′non-coincident directions n⃗, n⃗ . The procedure is identical to the one in Subsection 8.6.1, but now 

Hij (⃗ ′ n, ⃗n ′ ) in Eq. (8.72) cannot be simplifed assuming n⃗ = n⃗, which reduces the symmetry of the 
equations. Nevertheless, there are other symmetries we can take advantage of. First, given that δn⃗ 
is orthogonal to n⃗, as stated in Subsection 8.5.1, then Hij (n⃗, ⃗n ′ ) is orthogonal to n⃗ in the index i 

′and to n⃗ in j. Then, it can be decomposed into a tensor basis with the same property. First, we 
defne the vectors 

′ ′ A⃗ = n⃗ × ⃗n , B⃗ = n⃗ × A,⃗ C⃗ = −n⃗ × A,⃗ (8.88) 
′where A⃗ and B⃗ are a basis for the orthogonal space to n⃗, and similarly with A⃗ and C⃗ for n⃗ , as 

′ ′long as n⃗ ̸= n⃗ . Then, the most general 2-tensor orthogonal to n⃗ in the frst index and to n⃗ in the 
second one is then 

Hij (n⃗, ⃗n ′ ) = α(n⃗, ⃗n ′ )AiAj + β(n⃗, ⃗n ′ )AiBj + γ(n⃗, ⃗n ′ )AiCj + σ(n⃗, ⃗n ′ )BiCj . (8.89) 

Then, we notice that Hij in Eq. (8.72) is invariant under rotations, so all the functions can only 
′depend on the angle between n⃗ and n⃗ , which is denoted by Θ. Also, it is invariant under parity 

′ ′change n⃗ 7→ −n⃗, n⃗ 7→ −n⃗ . This transformation leaves A⃗ invariant, but changes the sign of B⃗ and 
C⃗ . Therefore, to preserve this symmetry, the terms depending on AiBj and AiCj must be null, so 
β(n⃗, ⃗n ′ ) = γ(n⃗, ⃗n ′ ) = 0. With these two symmetries, Eq. (8.89) can be simplifed to 

Hij (n⃗, ⃗n ′ ) = α(Θ)AiAj + β(Θ)BiCj . (8.90) 

The coefcients α(Θ) and σ(Θ) can be evaluated by contracting Hij with the basis tensors, 

AiAj H
ij BiCj H

ij= sin4(Θ)α(Θ), = sin4(Θ)σ(Θ). (8.91) 

′Using Eq. (8.75) for the case of diferent n⃗ and n⃗ , we can solve for α(Θ) and σ(Θ): Z 
2 

d2Ω AiRikl(⃗ p)Aj Rjrs(⃗α(Θ) = n, ⃗ n ′ , ⃗p)Pklrs, (8.92)
sin4(Θ) Z 

d2Ω BiRikl(⃗ p)Cj Rjrs(⃗σ(Θ) = 
2 

n, ⃗ n ′ , ⃗p)Pklrs, (8.93)
sin4(Θ) 

Recalling the simplifcations for the coincident directions case in Subsection 8.6.1, there was only a 
relevant scalar product, n⃗ · p⃗. Now, however, there are several of them, so it is convenient to name 

′ ′ ⃗them. Following [403], we defne κ = n⃗ · p⃗, κ ′ = n⃗ · p⃗, λ = n⃗ · ⃗n and µ = A · p⃗, which satisfy 

2 + κ ′2 
µ + λ2 + κ2 = 1 + 2λκκ ′ . (8.94) 
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8.6. Angular defection correlation 

This identity is easy to check for a simple parametrization like the following one: 

′ n⃗ = (0, 0, 1), n⃗ = (0, sin Θ, cos Θ), p⃗ = (sin θ cos ϕ, sin θ sin ϕ, cos θ), (8.95) 

so that 
µ = sin Θ sin θ cos ϕ, κ = cos θ, κ ′ = cos θ cosΘ + sin θ sin ϕ sin Θ, (8.96) 

and with λ = cos Θ by defnition, for any parametrization. Then, the contractions with the Rijk 

defned in Eq. (8.68) can be written as � 
l � � ′s � 

AiRikl(⃗ 
1 k µn 

Aj Rjrs(⃗ 
1 µn′rn, ⃗p) = n − Al , n ′ , ⃗p) = n − As , (8.97)

2 1 + κ 2 1 + κ ′ � � � � 
BiRikl(⃗ 

1 k κ ′ + λ ′l Cj Rjrs(⃗ 
1 ′r κ + λ ′s sn, ⃗p) = n − n l − n , n ′ , ⃗p) = n − n + n . (8.98)

2 1 + κ 2 1 + κ ′ 

In order to get α(Θ) in Eq. (8.92), one has to contract the quantities in Eq. (8.97) with the projection 
tensor Pklrs defned in Eq. (8.74). For this purpose, the necessary contractions are 

k l ′r ′s ′2 2 ′r ′s2Pklrsn n n n = ν2ν − 2µ , 2Pklrsn kAl n n = µ(κκ ′2 − 2λκ ′ + κ), (8.99) 
k l ′rAs kAl ′rAs 2),2Pklrsn n n = µ(κ ′ κ2 − 2λκ + κ ′ ), 2Pklrsn n = (λ − κκ ′ )(1 − λ2 − µ (8.100) 

where ν2 = (1 − κ2), ν ′2 
= (1 − κ ′2). For β(Θ), the necessary contractions are 

k l ′r ′s 2 k ′l ′r ′s 
= ν ′22Pklrsn n n n = ν2ν ′2 − 2µ , 2Pklrsn n n n (λ − κκ ′ ), (8.101) 

k l ′r s k ′l ′r s ′22Pklrsn n n n = ν2(λ − κκ ′ ), 2Pklrsn n n n = ν2ν . (8.102) 

The detailed computations to get the previous equations are very tedious to go through, and are 
therefore not provided step by step. Nevertheless, they are easy to check with standard algebra and 
using the identity given by Eq. (8.94). The same goes for the substitution of the previous equations 
into Eqs. (8.92) and (8.93), which leads to the following expression for α(Θ) and σ(Θ): Z � � 

1 2µ2(λ + κ)(λ + κ ′ )
α(Θ) = −σ(Θ) = d2Ω (λ − κκ ′ )(1 − λ2) − µ 2(1 + λ) + . (8.103)

4 sin4 Θ (1 + κ)(1 + κ ′ ) 

Given that λ = cos Θ does not depend on p⃗, we only need to compute the integrals of µ2 and κκ ′ . For 
this purpose, it is again convenient to take the simple parametrization given by Eqs. (8.95)and (8.96). 
In this case, the second term in κ ′ integrates to 0 over ϕ, so the frst two relevant integrals in 
Eq. (8.103) are Z Z Z Zπ 2π π 

2d2Ω µ = dθ sin θ dϕ(sin Θ sin θ cos ϕ)2 = π sin2 Θ dθ sin3 θ =
4π 

sin2 Θ, (8.104)
30 0 0Z Z π Z 2π Z π 

d2Ω κκ ′ = dθ sin θ dϕ cos 2 θ cosΘ = 2π cos Θ dθ sin θ cos 2 θ =
4π 

cos Θ. (8.105)
30 0 0 

As a result, the frst two terms in Eq. (8.103) can be rewritten as �� � � 
1 4π 4π π cos Θ − 1 

4π − cos Θ sin2 Θ − sin2 Θ(1 + cosΘ) = . (8.106)
4 sin4(Θ) 3 3 3 sin2 Θ 
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For the third term in Eq. (8.103), it is convenient to use a diferent parametrization for n⃗ and 
′ n⃗ , given by � � � � 

Θ Θ Θ Θ′ n⃗ = 0, sin , cos , n⃗ = 0, − sin , cos , p⃗ = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (8.107)
2 2 2 2 

so that 

Θ Θ Θ Θ 
µ = sin Θ sin θ cos ϕ, κ = cos θ cos + sin θ sin ϕ sin , κ ′ = cos θ cos − sin θ sin ϕ sin . 

2 2 2 2 
(8.108) 

With these defnitions, the third term in Eq. (8.103) becomes Z Θ1 (cos Θ + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 
2 2d2Ω sin2 θ cos 2 ϕ 

Θ2 sin2 Θ (1 + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 " 2 2 #Z Θ1 cos2 Θ − 1 + 2 cos θ cos (cos Θ − 1)2= d2Ω sin2 θ cos 2 ϕ 1 + 
Θ2 sin2 Θ (1 + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 " 2 2 #Z 

1 (cos Θ − 1) cos Θ (cos Θ + cos θ)2 2= d2Ω sin2 θ cos 2 ϕ 1 + 2 
Θ2 sin2 Θ (1 + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 " 2 2 #Z Θ Θ1 sin2 Θ cos (cos θ + cos )2 2 2 = d2Ω sin2 θ cos 2 ϕ 1 − 4 . (8.109)
Θ2 sin2 Θ (1 + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 
2 2 

To simplify the previous equation, I frst integrate in ϕ. For this purpose, I will omit the constant 
before the integral in the previous equation, as well as the integral in θ, getting " #Z 2π Θ Θsin2 Θ cos (cos θ + cos )2 2 2dϕ sin2 θ cos 2 ϕ 1 − 4 

Θ 
0 (1 + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 

2 2� �Z 2πΘ Θ sin2 Θ sin2 θ(1 − sin2 ϕ)2=π sin2 θ − 4 cos cos θ + cos dϕ 
Θ2 2 0 (1 + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 " 2 2 #� �Z Θ2πΘ Θ sin2 θ sin2 Θ − (1 + cos θ cos )2 

2 2 =π sin2 θ − 4 cos cos θ + cos dϕ 1 + 
Θ2 2 0 (1 + cos θ cos )2 − (sin θ sin Θ sin ϕ)2 
2 2� �� Z �2πΘ Θ 1 − k2(θ, Θ) 

=π sin2 θ − 4 cos cos θ + cos 2π + dϕ , (8.110)
2 2 0 k2(θ, Θ) − sin2 ϕ 

with 
Θ1 + cos θ cos 2k(θ, Θ) = . (8.111)

sin θ sin Θ 
2 

Evaluating the last integral, Z 2π √ 
Θ1 − k2(θ, Θ) k2 − 1 | cos θ + cos |2dϕ = −2π = −2π . (8.112)
Θ 

0 k2(θ, Θ) − sin2 ϕ k 1 + cos θ cos 2 
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8.6. Angular defection correlation 

Therefore, substituting this equation into Eq. (8.110) and recovering the integral in θ and the 
constant 1/(2 sin2 Θ), we get that the third term in Eq. (8.103) is ( " #)Z π � � Θπ Θ Θ cos θ + cos 2dθ sin θ sin2 θ + 8 cos cos θ + cos − 1 . (8.113)

Θ2 sin2 Θ 0 2 2 1 + cos θ cos 2 

We can integrate Eq. (8.113) by separating the parts independent and dependent on the absolute 
value. For the frst one, without the constant π/(2 sin2 Θ), Z � � ��π Θ Θ 4 Θ 20 

dθ sin θ sin2 θ − 8 cos cos θ + cos = − 16 cos2 = − − 8 cos Θ. (8.114)
2 2 3 2 30 

For the second term in Eq. (8.113), we have to split the integration range into two, depending on 
the condition for the absolute value, cos θ+cos(Θ/2) ≥ 0. Taking into account that θ is defned from 
0 to π and defning Θ between 0 and 2π, the absolute value condition is equivalent to θ ≤ π − Θ/2, 
range in which the absolute value symbols can simply be removed. On the other hand, in the range 
π − Θ/2 < θ(≤ π), a minus sign must be added when removing the absolute value. Given that the 
integral is identical except for a global minus sign, both ranges can be studied simultaneously. For 
this purpose, the notation f(θ)|a,b = f(a) + f(b) − f(c) − f(d) will be introduced. It is also useful c,d 
to note that, for the point separating both intervals, cos(π − Θ/2) = − cos(Θ/2). Therefore, again 
without the constant π/(2 sin2 Θ), the second term in Eq. (8.113) can be computed as Z π � � ΘΘ Θ cos θ + cos 28 cos dθ sin θ cos θ + cos 

Θ2 0 2 1 + cos θ cos 2"Z # � �2Z 
2 
Θ Θ 2 Θπ− π cos θ + cos8 cos 2 2= − dθ sin θ

Θ Θ1 + cos θ cos 
2 
Θ " cos 0 π−2 2"Z # #ZΘ Θ 

sin4 Θπ− π− Θcos Θ 2 2 cos2=8 + dθ sin θ cos θ + +
Θ 

0 π cos cos2 Θ 
2 

2 
Θ1 + cos θ cos2 2 " � �#π−Θ 

2 ,π−Θ 
22 θ cos Θ sin6 Θ cos Θ2=8 − − cos θ − 4 ln 1 + cos cos θ

Θ2 cos sin2 Θ 2 
2 0,π" � �2 !#� � 2 ΘΘ sin6 Θ 1 − cos2 2 2=8 − cos − 1 + 2 cosΘ − 4 ln 

2 sin2 Θ 1 − cos2 Θ � � 2 

1 + cosΘ sin6 Θ Θ2=8 + 16 cosΘ − 32 ln sin2 
2 sin2 Θ 2 � � 

sin6 Θ 
2=4 + 12 cosΘ − 64 ln sin2 Θ 

. (8.115)
sin2 Θ 2 

Summing this term with the one previously computed in Eq. (8.114) and recovering the constant 
π/(2 sin2 Θ), we get that the third term in Eq. (8.103) is � � 

π 4 Θ 32π Θ Θ − + 2 cos2 − ln(sin ) sin6 . (8.116)
sin2 Θ 3 2 sin4 Θ 2 2 
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Finally, summing with the frst two terms in Eq. (8.103) computed in Eq. (8.106), we get the fnal 
result 

α(Θ) = −σ(Θ) = 
π 

(7 cos Θ − 5) − 
3 sin2 Θ 

32π 
sin4 Θ 

ln(sin 
Θ 
) sin6 Θ 

,
2 2 

(8.117) 

where, given that α(Θ) = −β(Θ), Hij in Eq. (8.90) can be expressed in a simpler way as 

Hij (n⃗, ⃗n ′ ) = α(Θ)(AiAj − BiCj ), (8.118) 

which is the fnal result of this section. 

In the next section, we will conclude the chapter by using this result to address the how diferent 
scales contribute to the SGWB efect on proper motions. We will achieve this via a multipole 
decomposition analysis. 

8.7 Multipole decomposition 

In order to set constraints using Eq. (8.84), it is convenient to know how the diferent scales in the 
sky contribute to ⟨δṅ⃗ 2⟩. For this purpose, we do a multipole decomposition analysis by decomposing 
the angular defection using a vector spherical harmonics basis. Before introducing it, we will frst 
review the standard spherical harmonics, which corresponds to the decomposition of a scalar feld. 

8.7.1 Scalar spherical harmonics 

It is widely known that any square-integrable, complex-valued scalar feld f(n⃗) defned in the unit 
sphere can be decomposed as an infnite sum of spherical harmonics, 

X∞ lX 
f(n⃗) = almYlm(n⃗), (8.119) 

l=0 m=−l 

where alm are complex numbers, uniquely defned for each f , and Ylm(n⃗) are the spherical harmon-
ics, defned as s 

2l + 1 (l − m)!
Ylm(n⃗) = (−1)m Plm(sin δ)e imα for m ≥ 0, (8.120)

4π (l + m) 

Ylm(n⃗) = (−1)mY ∗ n) for m < 0, (8.121)lm(⃗ 

with Plm being the associated Legendre polynomials, which can be obtained from the standard 
Legendre polynomials as 

dmPl(x)2)m/2Plm(x) = (1 − x . (8.122)
dxm 

For reference, the frst spherical harmonics (up to l = 2) are provided in Table 8.1. 

For future sections, it is also convenient to recall the Rodrigues formula for the Legendre poly-
nomials [414], which makes them easily obtainable as 

dl 
Pl(x) =

1 
(x 2 − 1)l . (8.123)

2ll! dxl 
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Y00 

q 
1 1 
2 π q 

Y10 
1 3 sin δ2 π 

Y11 

q 
− 1 3 iαcos δ e2 2π 

Y20 

Y21 

Y22 

q
1 5 (3 sin2 δ − 1)4 π q

− 1 15 iαsin δ cos δ e2 2π q 
1 15 2iαcos2 δ e4 2π 

Table 8.1: Spherical harmonics up to l = 2 given by Eq. (8.120). 

The factor (−1)m appearing in Eq. (8.120) is called Condon-Shortley phase [415] and, depending 
on the feld, is either included in the spherical harmonics defnition or in the Legendre polynomial 
defnition (8.122). We use the frst convention, which is the one mostly used in Quantum Mechanics 
and coincides with the main reference we will use for this section, which is Mignard and Klioner [416]. 
With this convention, these polynomials satisfy 

(l − m)!
Pl,−m(x) = (−1)m Plm(x). (8.124)

(l + m)! 

The spherical harmonics are an orthonormal basis for the space of complex-valued scalar felds 
defned in the unit sphere, so that Z 

d2Ω Ylm(n⃗)Yl 
∗ 
′ m ′ (n⃗) = δll′ δmm ′ . (8.125) 

This is a result of the orthogonality of Legendre polynomials, together with the normalization of 
spherical harmonics, Z 1 2 

dx Pl(x)Pl′ (x) = δll′ . (8.126)
2l + 1 −1 

Another property which will be used later is the addition theorem [415, p.53], which states the 
following identity: 

l 
′ ) = 

4π X 
n)Y ∗ ′ ).Pl(n⃗ · ⃗n Ylm(⃗ lm(n⃗ (8.127)

2l + 1 
m=−l 

′In the particular case that n⃗ = n⃗, the identity is known as Unsöld’s theorem [417], 
lX 2l + 1 

Ylm(n⃗)Y ∗ n) = . (8.128)lm(⃗ 
4π 

m=−l 

In addition, if the scalar feld is real-valued, the symmetry of the spherical harmonics in m given 
by Eq. (8.120) can be used to reduce the sum to only non-negative values of m and real coefcients: ! ∞ lX X � �

Re Imf(n⃗) = al0Yl0(n⃗) + 2 almY Re n) − almY Im n) , (8.129)lm (⃗ lm (⃗ 
l=0 m=1 
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Re Imwith a ≡ Re(alm), a ≡ ℑ(alm) and similarly for Y Re(n⃗) and Y Im(n⃗) with Ylm(n⃗). Thelm lm lm lm 
same notation will apply for diferent quantities later on. Additionally, al0 = Re(alm) under the 
hypothesis of f(n⃗) real, given that Ylm(n⃗) are real by defnition (Eq. (8.120)), so there is no need 
to distinguish real and imaginary parts. 

This multipole decomposition is the starting point for all the CMB analysis [418], given that the 
main considered feld is the temperature, which is a scalar. However, in our case, we want to deal 
with the vector feld of proper motions. For this purpose, we need a diferent spherical harmonics 
basis. 

8.7.2 Vector spherical harmonics 

One of the options for our multipole decomposition is to take a spherical harmonics basis for 
each coordinate. However, while this gets the information contained in each multipole right, the 
separation in coordinates does not give a physical meaning to each basis. Instead, we can use the 
so-called spheroidal (or electric) and toroidal (or magnetic) spherical harmonics which are widely 
used in the literature [416, 140]. They are related to the standard spherical harmonics as: � � 

1 1 1 ∂Ylm ∂Ylm 
S⃗lm = p ∇Ylm = p e⃗α + e⃗δ , (8.130)

l(l + 1) l(l + 1) cos δ ∂α ∂δ � � 
1 ∂Ylm 1 ∂Ylm 

T⃗lm = −n⃗ × S⃗lm = p e⃗α − e⃗δ , (8.131)
l(l + 1) ∂δ cos δ ∂α 

where, in order to match the most common notation in the astronomical literature, we used the 
right ascension (RA) α and declination (DEC) δ instead of the usual spherical coordinates θ and 
ϕ. If both coordinate systems share the origin and coordinate axes, they are related as α = ϕ, 
δ = −θ. Another term we will use from the astronomical vocabulary is the word epoch, referring to 
an instant in time. 

The spheroidal spherical harmonics come from a gradient, which means their curl will be zero, 
thus not getting any loop-like behavior. Their equilibrium points, whose number is related to the 
multipole values l and m, are either nodes or saddle points, but not centers. On the contrary, 
the toroidal spherical harmonics have zero divergence but non-zero curl, generating centers. This 
diferent behavior can be seen in Fig. 8.2, explaining the reason for their names. In addition, the 
frst vector spherical harmonics (up to l = 3) are presented in Table 8.2. 

It is immediate to notice that both of them are orthogonal to r⃗, thus being vector felds in the 
tangent space of the unit sphere. It is also obvious that S⃗lm ⊥ T⃗lm. Also, from their defnition, they 
inherit some of the spherical harmonics properties, such as the orthonormality given by Eq. (8.125):Z Z Z 

∗ d2Ω S⃗lmS⃗ 
l 
∗ 
′ m ′ = d2Ω T⃗lmT⃗ 

l 
∗ 
′ m ′ = δll ′ δmm ′ , d2Ω S⃗lmT⃗ 

l ′ m ′ = 0. (8.132) 

They are also a basis for the space of square-integrable, complex-valued vector felds V⃗ (n⃗) 
defned in the tangent space of the unit sphere so, for each of these felds, there exist unique 
complex coefcients slm, tlm such that 

∞ l � �X X 
V⃗ (n⃗) = slmS⃗ 

lm(n⃗) + tlmT⃗ 
lm(n⃗) . (8.133) 

l=0 m=−l 
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~S11
~T11

~S21
~T21

~S32
~T32

~S42
~T42

Figure 8.2: Several vector spherical harmonics. Each row presents the spheroidal (left) and toroidal 
(right) modes for the same multipole indices l and m. 
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Spherical harmonic Amplitude e⃗α e⃗δq 
S⃗10 

1 3 0 cos δ2 2πq
⃗ 1 3 iαS11 4 −i eiα sin δ eπq
⃗ 1 15S20 4 0 sin 2δ2πq
⃗ 1 5 iα iαS21 4 −i sin δ e − cos 2δ eπq
⃗ 1 5 2iα 2iαS22 8 π 2i cos δ e − sin 2δ e q 

1 21S⃗ 
30 0 cos δ(5 sin2 δ − 1)8 πq

⃗ 1 7 iα iαS31 −i(5 sin2 δ − 1) e sin δ(15 sin2 δ − 11) e16 πq
1 35 2iα 2iαS⃗32 i sin 2δ e − cos δ(3 sin2 δ − 1) e8 2πq

⃗ 1 105 3iα 3iα−i cos2 δ e cos2 δ sin δ eS33 16 π q 
cos δ 0T⃗ 

10 
1
2 2

3 
πq

⃗ 1 3 iαT11 sin δ e i eiα 
4 πq
1 15 sin 2δ 0T⃗ 

20 4 2πq
⃗ 1 5 iα iαT21 4 π − cos 2δ e i sin δ e q
⃗ 1 5 2iα 2iαT22 8 π − sin 2δ e −2i cos δ e q
⃗ 1 21T30 cos δ(5 sin2 δ − 1) 08 πq

1 7 iα iαT⃗ 
31 sin δ(15 sin2 δ − 11) e i(5 sin2 δ − 1) e16 πq
⃗ 1 35 2iα 2iα− cos δ(3 sin2 δ − 1) e −i sin 2δ eT32 8 2πq
⃗ 1 105 3iα 3iαT33 16 cos2 δ sin δ e i cos2 δ eπ 

Table 8.2: Vector spherical harmonics up to l = 3 given by Eqs. (8.130), (8.131). 

In addition, Unsöld’s theorem in Eq. (8.128) also holds, 

lX 2l + 1 ⃗ R⃗ ∗ Rlm(n⃗) · lm(n⃗) = . (8.134)
4π 

m=−l 

In the case of a real-valued vector feld, the previous expression can be re-expressed similarly to 
Eq. (8.129): ! ∞ lX X h i 

Re SRe ImSIm Re T Re ImT ImV⃗ (n⃗) = sl0S⃗l0 + tl0T⃗l0 + 2 slm ⃗
 
lm − slm ⃗

 
lm + tlm 

⃗ 
lm − tlm 

⃗ 
lm . (8.135) 

l=0 m=1 

More generally, we will sometimes use the notation rlm to refer to either slm or tlm according to 
the index r, whose value can be either s or t. We then denote either S⃗lm or T⃗lm as R⃗lm depending 
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on the same index. In this case, Eq. (8.135) can be expressed as ! ∞ lX X X h i 
ReRRe ImRImV⃗ (n⃗) = rl0R⃗ 

l0 + 2 rlm 
⃗ 
lm − rlm 

⃗ 
lm . (8.136) 

r=s,t l=0 m=1 

8.7.3 Contributions per mode and multipole 

We are now interested in computing how much the spheroidal and toroidal modes contribute to the 
angular defection spectrum in Eq. (8.82), as well as how these contributions are spread over the 
diferent multipoles l. For this purpose, we can decompose Z ∞X 

[θs + θt⟨δn⃗(n⃗, t)2⟩ = d(ln f) rms,l(f)
2 

rms,l(f)
2]. (8.137) 

l=2 

There might also mixed terms, coming from the correlations of the spheroidal and toroidal modes. 
However, we will later show that they vanish, so we do not defne any θrms,l associated to them, 
and similarly for subsequent notation. 

From Eq. (8.82), we know the frequency dependence of the integrand. We defne a function σ(f) 
(not to be confused with the one defned in Subsection 8.6.3) that accounts for this dependence, 
but is normalized to 1: Z 

ΩGW(f)/f2 
σ(f) = R , so that ⟨δn⃗(n⃗, t)2⟩ = θ2 d(ln f) σ(f). (8.138)rmsd(ln f ′ ) ΩGW(f ′ )/(f ′ )2 

At the same time, we defne gr as the fraction of power which is on the mode r (either spheroidal 
or toroidal), so that gs + gt = 1. Finally, for each mode, we defne αr as the fraction of power which lP∞ 

αris in multipole l, so that = 1. With these defnitions, we get that l=2 l 

θr = θ2 grσ(f)αl
r , (8.139)rms,l(f)

2 
rms 

so that ZX 
⟨δn⃗(⃗ d(ln f) θ2 σ(f)αr

l . (8.140)n, t)2⟩ = rmsgr 
r,l 

During this subsection, we will then want to compute gr and αl
r , as well as prove that the mixed 

terms spheroidal-toroidal and vice versa do not contribute to the angular defection spectrum. 

Multipole decomposition 

For the purposes of this subsections, we must now express the previous equation for ⟨δn⃗(n⃗, t)2⟩ 
given by Eq. (8.82) in terms of correlations of multipole coefcients rlm(t). In this subsection, the 
vector feld we decompose is the angular fuctuation, X 

δn⃗ = rlmR⃗ 
lm, (8.141) 

rlm 
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where, as explained in the previous section, r = s, t, 0 ≤ l < ∞, −l ≤ m ≤ l. Using the 
orthonormality of VSH in Eq. (8.132), the coefcients rlm can be computed as Z � � 

rlm(t) = d2Ω ⃗δn⃗(n⃗, t) · R ∗ n)lm(⃗ , (8.142) 

so that Z Z 
′ ′ ) ∗ ⟩ =⟨rlm(t)rl ′ ′ (tm d2Ω d2Ω ′ R ∗ ′ n)R ′ n ′ )⟨δni(n⃗, t)δnj (n⃗ , t ′ )⟩.lm,i(⃗ l ′ m ′ ,j (⃗ (8.143) 

′Using the expression for ⟨δni(n⃗, t)δnj (n⃗ , t ′ )⟩ in Eq. (8.71), Z ∞3H2 
′ 0 ΩGW(f)⟨rlm(t)rl′ m ′ (t ′ ) ∗ ⟩ = df cos[2πf(t − t ′ )] Crlmr ′ l ′ m ′ , (8.144)

16π3
0 f3 

where Z Z 
d2Ω ′ R ∗ ′ )Hij (⃗Crlmr ′ l ′ m ′ = d2Ω lm,i(n⃗)R ′ l ′ m ′ ,j (n⃗ n, n⃗ ′ ). (8.145) 

Using the defnitions for σ(f) in Eq. (8.138) and θrms in Eq. (8.82), we can rewrite the correlation 
between multipole coefcients as Z ∞3 σ(f)′ ⟨rlm(t)rl ′ m ′ (t ′ ) ∗ ⟩ = df cos[2πf(t − t ′ )]θ2 Crlmr ′ l ′ m ′ . (8.146)rms4π f0 

It is at this point where we can argue why the mixed modes st vanish. By defnition (Eqs. (8.130), 
(8.131)), S⃗ 

lm(n⃗) is invariant under parity change n⃗ 7→ −n⃗, while T⃗ 
lm changes sign. Given that 

Hij (⃗ ′ ′ n, ⃗n ′ ) is invariant under both n⃗ 7→ −n⃗ and n⃗ 7→ −n⃗ , as explained in Subsection 8.6.3, then 
′the st terms will be symmetric in n⃗ and antisymmetric in n⃗ , which implies that the integral over 

d2Ω ′ vanishes. A similar thing occurs for ts terms, so it is only necessary to take care of ss and tt 
correlations. 

Spheroidal-spheroidal and toroidal-toroidal correlations 

From the defnition of the spheroidal VSHs, Eq. (8.130), the correlation coefcients in Eq. (8.145) 
are given by Z Z 

1 
d2Ω d2Ω ′ ∇iY ∗ ′ )Hij (⃗ ′ ),Cslmsl ′ m ′ = lm(n⃗)∇ ′ j Yl ′ m ′ (n⃗ n, n⃗ (8.147)

l(l + 1) 

′where ∇i ≡ ∂/∂(xi), ∇ ′ ≡ ∂/∂(x ′j ) are the usual 3D operators, with n⃗ = x⃗/|x⃗|, n⃗ = x⃗ ′ /|x⃗ ′ |. Thesej 
derivatives are related to the covariant derivative on the unit sphere ∇A as 

r2vi r A∇iv = ∂rv + + ∇Av . (8.148)
r 

Due to the fact that Hij (n⃗, ⃗n ′ ), given by Eq. (8.118), is orthogonal to n⃗ on the frst index, it has no 
radial component for ∇i, and the same thing happens for the one for ∇ ′ j in the second component. 
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Therefore, in both cases, the ∇ operators coincide with the covariant derivatives on the sphere, 
which implies they can be used for integration by parts. As a result, the previous equation can be 
transformed into Z Z 

′ =
1 

d2Ω d2Ω ′ Y ∗ n)Yl ′ ′ (n⃗ ′ )βs(Θ), (8.149)Cslmsl ′ m lm(⃗ m
l(l + 1) 

with 

j [H
ij (⃗βs(Θ) = ∇i∇ ′ n, ⃗n ′ )] = ∇i∇j 

′ {α(Θ)[AiAj − BiCj ]} ≡ ∇i∇ ′ j {α(Θ)T ij }. (8.150) 

We can now decompose βs(Θ) in Legendre polynomials. Using the addition theorem for spherical 
harmonics in Eq. (8.127), it can also be expressed in terms of spherical harmonics: X 

βs(Θ) = βl
sPl(cos Θ) (8.151) 

l X 4π 
= βl

sYlm(n⃗)Y ∗ n ′ ). (8.152)lm(⃗ 
2l + 1 

lm 

Substituting the latter expression into Eq. (8.149), we get 

1 4π 
′ ′Cslmsl ′ m = δll ′ δmm βl

s . (8.153)
l(l + 1) 2l + 1 

The toroidal-toroidal case reduces reduces to the ss case after several steps. For the tt cor-
relations, from the toroidal VSHs defnition in Eq. (8.131), the coefcients in Eq. (8.145) reduce 
to Z Z 

1 � � 
Hij (⃗Ctlmtl ′ m ′ = d2Ω d2Ω ′ (n⃗ ×∇iY ∗ n)) n⃗ ×∇ ′ j Yl ′ m ′ (n⃗ ′ ) n, ⃗n ′ ), (8.154)lm(⃗ 

l(l + 1) 

Again, using integration by parts to transfer the derivatives from the spherical harmonics to the 
rest of the integral, the previous equation reduces to Z Z 

′Ctlmtl ′ m =
1 

d2Ω d2Ω ′ Y ∗ n)Yl ′ m ′ (n⃗ ′ )βt(Θ), (8.155)lm(⃗ 
l(l + 1) 

where, in this case, 
[ϵiklϵjmp ′ βt(Θ) = ∇l∇ ′ p nknmHij ]. (8.156) 

Evaluating the cross products in this equation using n⃗ × A⃗ = B⃗ , n⃗ ′ × A⃗ = −C⃗ , n⃗ × B⃗ = −A⃗, 
′ n⃗ × C⃗ = A, by defnition in Eq. (8.88) we get 

ϵiklϵjmp ′ = ϵiklϵjmp ′ + AlAp) = H lp nkn mHij nkn mα(Θ)(AiAj − BiCj ) = α(Θ)(−BlCp . (8.157) 

Therefore, βt is identical to βs , which means that both modes contribute equally. As a result, 

1 
gs = gt = , (8.158)

2 
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and the Ctlmt′ l′ m ′ are identical to the ones Cslms′l′ m ′ in Eq. (8.153). If we substitute this equation 
into Eq. (8.146), Z ∞ σ(f) 3′ 

′⟨rlm(t)rl ′ ′ (t ′ ) ∗ ⟩ = δrr ′ δll ′ δmm df cos[2πf(t − t ′ )]θ2 βl
r . (8.159)m rms f l(l + 1)(2l + 1) 0 

From this equation, we can relate βr to αl
r . First, we denotel Z ∞ 

′ ⟨rlm(t)rl ′ m ′ (t ′ ) ∗ ⟩ = δrr ′ δll ′ δmm ′ df cos[2πf(t − t ′ )]Srl(f). (8.160) 
0 

Then, using Eq. (8.140), we get the following identity: ZX 
d(ln f)θ2 grσ(f)α

r = ⟨δn⃗(n⃗, t)2⟩rms l 
r,l X X ′ = R⃗ 

lm(n⃗)R⃗ 
l 
′ 
′ m ′ (n⃗) ∗ ⟨rlm(t)rl′ m ′ (t ′ ) ∗ ⟩ 

rlm r m ′ l ′ ′ Z ∞ lX X 
= df |R⃗ 

lm|2Srl(f) 
0rl m=−lZX ∞ 2l + 1 

= df Srl(f), (8.161)
4π0rl 

where the last step uses Unsöld’s theorem for VSH in Eq. (8.134). Therefore, on the one hand, we 
get an explicit expression for Srl(f) in terms of αr

l , 

4π σ(f)
θ2 αr (8.162)Srl(f) = rms gr l . 2l + 1 f 

On the other hand, we get from Eq. (8.159) that 

3 σ(f)
θ2 βr (8.163)Srl(f) = rms l . l(l + 1)(2l + 1) f 

Therefore, making both expressions for Srl(f) equal, we get that 

3 
grα

r = βl
r , (8.164)l 4πl(l + 1) 

where gr = 1/2 for r = s, t as shown before. Thus, it only remains to compute the βr to get thel 
fraction of power at multipole l and mode r, αr

l . 

Computation of βr 

Before getting to the computation of βl
r , we must frst compute βr (for either r = s, t, since they 

are equal, as we just showed) in Eq. (8.150) explicitly, which can be expanded as 

j T ij ).βr(Θ) = [∇i∇ ′ j α(Θ)]T ij + [∇iα(Θ)](∇j 
′ T ij ) + [∇ ′ j α(Θ)](∇iT ij ) + α(Θ)(∇i∇ ′ (8.165) 
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To compute the divergences of T ij , we can frst rewrite it in a more manageable way. For this 
purpose, we can use the following expressions for Ai , Bi and Ci: 

= ϵijk ′ ′i ′i iAi nj nk, Bi = (n⃗ · ⃗n ′ )n i − n , Ci = (n⃗ · ⃗n ′ )n − n , (8.166) 

so that the tensor T ij = AiAj − BiCj is 

T ij = ϵiklϵjrs ′ ′ ′i ′jnknlnrn − ((n⃗ · ⃗n ′ )n i − n )((n⃗ · ⃗n ′ )n − nj ) (8.167)s 

′ ′ ′ ′We can now use the identities ∇inj = δij − ninj , ∇ ′ inj = δij − ninj and ∇inj = ∇inj = 0, 
which can easily be checked from the fact that n⃗ = r⃗/r. With this, after some simplifcations, we 
get 

∇iT ij ′j
j T ij ′i = (1 − 3(n⃗ · ⃗n ′ ))((n⃗ · ⃗n ′ )n − nj ), ∇ ′ = (1 − 3(n⃗ · ⃗n ′ ))((n⃗ · ⃗n ′ )n i − n ), 

(8.168) 
j T ij∇i∇ ′ = −9(n⃗ · ⃗n ′ )2 + 2(n⃗ · ⃗n ′ ) + 3. 

′The gradients of α(Θ) can easily be computed by using that cos(Θ) = n⃗ · n⃗ , which implies 
′ ′ − sin Θ∇iΘ = ni − (n⃗ · ⃗n ′ )ni and − sin Θ∇j 

′ Θ = nj − (n⃗ · ⃗n ′ )nj . Thus, 

′′ ni − (n⃗ · ⃗n ′ )ni nj − (n⃗ · ⃗n ′ )nj∇iα(Θ) = −α ′ (Θ) , ∇j 
′ α(Θ) = −α ′ (Θ) ,

sinΘ sinΘ 
′ ′ ′ ′ ′� 

δij − ninj − ninj + (n⃗ · ⃗n ′ )ninj cos Θ[ni − (n⃗ · ⃗n ′ )ni][nj − (n⃗ · ⃗n ′ )nj ] 
� 

∇i∇ ′ j α(Θ) = −α ′ (Θ) + 
sin Θ sin3 Θ 

′ ′ [ni − (n⃗ · ⃗n ′ )ni][nj − (n⃗ · ⃗n ′ )nj ] 
+ α ′′ (Θ) . (8.169)

sin2 Θ 
′Substituting Eqs. (8.168) and (8.169) into Eq. (8.165), contracting and using n⃗ · n⃗ = cos Θ, each 

of the terms of this equation is, respectively, 

[∇i∇ ′ j α(Θ)]T ij = − sin2 Θα ′′ (Θ) − sin Θα ′ (Θ) (8.170) 

j T ij ) = [∇ ′ [∇iα(Θ)](∇ ′ j α(Θ)](∇iT ij ) = [1 − 3 cos Θ] sin Θα ′ (Θ), (8.171) 

α(Θ)(∇i∇j 
′ T ij ) = [−9(n⃗ · ⃗n ′ )2 + 2(n⃗ · ⃗n ′ ) + 3]α(Θ). (8.172) 

Summing the four of them, we get 

βs(Θ) = [−9 cos2 Θ + 2 cosΘ + 3]α(Θ) + [1 − 6 cos Θ] sin Θα ′ (Θ) − sin2 Θα ′′ (Θ). (8.173) 

Using α(Θ) defned in Eq. (8.117) and its derivatives, we get that the previous expression greatly 
simplifes to � � � � �� 

4π Θ 
βr(Θ) = 4 + (1 − cos Θ) 12 ln sin − 1 . (8.174)

3 2 

8.7.4 Explicit computation of multipole power 

From Eq. (8.174), we need to extract the coefcients of the decomposition in Legendre polynomials 
βl
r , as in Eq. (8.151). For this, we can make use of the orthogonality of Legendre polynomials in 
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Eq. (8.126) to get 

Z 1 2 
βr(Θ)Pl(cos Θ)d(cos Θ) = βl

r . (8.175)
2l + 1 −1 

This integral is computed numerically in Book&Flanagan [403], where they provide the numer-
ical values for αl

r . However, it is possible to solve it analytically and provide a general equation for 
these coefcients. 

In order to solve this integral explicitly, it is convenient to express Eq. (8.174) in terms of 
x ≡ cos θ, and integrate in this variable. In addition, given that P0(x) = 1, the orthogonality of 
Legendre polynomials implies that, for l ≥ 1, the constant terms in Eq. (8.174) will not alter the 
result. Therefore, we can simply ignore them, since the vector spherical harmonics are only defned 
for l ≥ 1. 

We can actually do something similar for the terms proportional to cos Θ for l ≥ 2, given that 
P1(x) = x. For l = 1, it is easy to check that the integral in Eq. (8.175) is zero, so this multipole 
does not contribute. There is a fundamental reason for this, which is the quadrupolar nature of 
gravitational waves. Therefore, applying these rules to Eq. (8.174), we can compute the coefcients 
as Z 11 

βr = (1 − x) ln(1 − x)Pl(x)dx. (8.176)l4π(2l + 1) −1 

In order to solve this integral, we will write these polynomials using the Rodrigues formula in 
Eq. (8.123), and then integrate by parts. When doing so, it is easy to check that all the boundary 
terms vanish. For instance, for the frst step, 

Z 12ll! dl 
βr = dx(1 − x) ln(1 − x) (x 2 − 1)l (8.177)l4π(2l + 1) dxl −1 

dl−1 1 Z 1 dl−1 
= ln(1 − x) (x 2 − 1)l + dx(1 + ln(1 − x)) (x 2 − 1)l . (8.178)

dxl−1 −1 dxl−1 
−1 

Given that (x2 − 1)l is a 2l-th degree polynomial with roots ±1, each one with multiplicity l, then 
its (l − 1)-th derivative will be an (l + 1)-th polynomial with roots ±1 with, at least multiplicity 
1 each. Therefore, when multiplied by (1 − x) ln(1 − x), the limit in either of the bounds x = ±1 
(although the only one that produces a possible indetermination is x = −1) is zero. In subsequent 
iterations of the integration by parts, a ln(1 − x) will appear multiplying the (l − 2)-th derivative 
of (x2 − 1)l and, from there on, an (x − 1)k multiplied by the (l − k − 2)-th derivative of (x2 − 1)l . 
Therefore, the multiplicity of the roots ±1 of the integrated Pl(x) always dominates over the trend 
of the other factor, making all the boundary terms in the subsequent integrations by parts vanish. 
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As a result, we can solve the integral as Z Z 
2ll! 1 dl−1 1 dl−2 

βr = dx(1 + ln(1 − x)) (x 2 − 1)l = dx 
1

(x 2 − 1)l l4π(2l + 1) dxl−1 −1 1 − x dxl−2 −1 Z 1 Z 1(−1)l(l − 2)! 
= . . . = dx (x 2 − 1)ldx = (l − 2)! dx(1 − x)(1 + x)ldx 

(1 − x)l−1 Z 1 � 
2l+1 2l+2 �−1 −1 

= (l − 2)! dx[2(1 + x)l − (1 + x)l+1]dx = (l − 2)! 2 − 
l + 1 l + 2 −1 

(l − 2)! 
2l+2 = . (8.179)

(l + 1)(l + 2) 

Thus, the fnal expression for βr isl 

16π(2l + 1) (l − 2)!
βr = , or βr = 16π(2l + 1) (8.180)l l(l + 2)(l + 1)l(l − 1) (l + 2)! 

Going back to Eq. (8.164), relating αr to βl
r , and using gr = 1/2, we getl � �−1

24(2l + 1) (l − 2)! 2l + 1 l + 2 
αr = or αr = . (8.181)l ll(l + 1) (l + 2)! l(l + 1) 4 

The latter expression is a very compact and exact way to express αr for arbitrary l ≥ 2 and,l 
as far as I know, it is the frst time it has been presented. This is a useful result to compute 
the power in the quadrupole, which, substituting l = 2 in the previous equation, is 5/6, agreeing 
with [403, 404, 140], but it extends to any desired multipole without the need to do any heavy 
computation. 

In fact, in Book&Flanagan [403], they provide a ft to their numerical data from multipoles 
32.34l−4.921l = 2 to l = 11, which is αr = . With our expressions in Eq. (8.181), we can see why l 

this trend is approximately proportional to l−5: for l ≫ 1, we can approximate 

αr ≈ 48l−5 , (8.182)l 

where the exact exponent for the power law is indeed −5, rather than −4.921, and the precise 
coefcient should be 48 rather than 32.34. 

For convenience, I present the frst values of αr in Table 8.3, both the exact fraction andl 
numerical evaluation, up to l = 11 for direct comparison with [403]. 

8.8 Data analysis 

When we have real data, we will be interested in computing how much power we have in each 
multipole, to be able to relate it with the previous expressions. For this purpose, if we have a 
vector feld with coefcients rlm, we can defne its power per multipole l and mode r = s, t as 

lX 
Pl

r = |rlm|2 , (8.183) 
m=−l 
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l αr 
l 

Exact Num. value 
2 5/6 0.833333333 
3 7/60 0.116666667 
4 3/100 0.3 
5 11/1050 0.010476190 
6 13/2940 0.004217687 
7 5/2352 0.002125850 
8 17/15120 0.001124339 
9 19/29700 0.000639731 
10 7/18150 0.000385675 
11 23/94380 0.000243696 

Table 8.3: Exact and numerical values for αr in Eq. (8.181) for the frst multipoles up to l = 11.l 

with the total power per multipole being 

Pl = P s + Pl
t . (8.184)l 

These expressions would be related to the variables in the previous section as 

αr⟨Pl
r⟩ = θ2 

l . (8.185)rms 

In the real-valued case, one can check that Eq. (8.184) turns into 

lX � �
2 Re ImP r 

l = rl0 + 2 (rlm)2 + (rlm)2 . (8.186) 
m=1 

This quantity is a measurement of how much every multipole and mode contributes to the 
second momentum of the vector. Because of the orthogonality properties of the vector spherical 
harmonics (Eq. (8.132)), Z ∞X X 

d2Ω V⃗ (n⃗)V⃗ ∗ (n⃗) = P r . (8.187)l 
r=s,t l=0 

In an idealized case, with infnite resolution and perfect sky coverage, we should address the 
contributions coming from all the diferent scales in the sky. However, at the point our surveys 
are now, the data is still dominated by systematics and likely still far from a detection. Therefore, 
we cannot aim to extract any information from small scales, corresponding to high multipoles. 
Hence, it is best to aim to set constraints from the lowest possible multipole, which, in the case of 
gravitational waves and due to their quadrupolar nature, is the quadrupole. 

Therefore, we will be interested in the total quadrupole power given by Eq. (8.184) with l = 2. As 
we computed in the previous section, Eq. (8.181) shows that the quadrupole power of a gravitational 
wave background is 5/6 of the total, as indicated in other references in the literature [403, 404, 140]. 
Therefore, if we decompose a proper motion feld in vector spherical harmonics like in Eq. (8.135), 
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we can compute its quadrupole power P2 from its coefcients and use Eq. (8.84) to get ΩGW, like 

1 1 6 1 P2
ΩGW ≈ ⟨δṅ⃗ 2⟩ ≈ P2 = 0.000438 h70 

−2 , (8.188)
H2 H2 5 4π (1 µas/yr)2 

0 0 

where we have used H0 = 14.76h70 µas/yr, matching the normalization in Eq. (2.10). The factor 6/5 
is introduced to compensate the mentioned fraction of quadrupole power with respect to the total, 
which is 5/6 (Table 8.3), while the 1/4π comes from the fact that the proper motion spectrum ⟨δṅ⃗ 2⟩ 
should be normalized with respect to the solid angle volume 4π, which is missing in the defnition 
of the quadrupole power, as we can see in Eq. (8.187). In the fnal expression, the factor 0.000438 
matches the one in our article [4], slightly difering with others in the literature as [140] due to 
diferent rounding criteria. 

8.8.1 Statistical signifcance 

We now study the statistical properties of the coefcients rlm and power Pl
r . First, we go through 

the ordinary least squares formalism to get the variance of the coefcients, following [416]. We 
suppose we are trying to ft a generic, real-valued vector feld like the one in Eq. (8.135) to a 

α δdataset of size N of positions r⃗i = (αi, δi), proper motions µ⃗i = (µi , µ ) and associated errorsi 
α δ∆µ⃗i = (∆µi , ∆µ ), i = 1, . . . , N . Then, we aim to minimize the sum of the residuals ρ2 

i , withi � 
α �2 � �2δV α(r⃗i) − µ V δ(r⃗i) − µi iρ2 

i = + . (8.189)α δ∆µi ∆µi 

For a residual of the form  2 X Xyi − aj Xj (xi) , (8.190) 
i j 

for some data points (xi, yi) and basis functions Xj (x), the covariance matrix for the coefcients 
aj is proportional to the inverse of the normal matrix, this being X 

(N)ij = Xi(xk)Xj (xk). (8.191) 
k 

In our case, things are a bit more complicated because the coefcients and base functions appear 
αin both terms in Eq. (8.189). To simplify things, we will assume that ∆µ ≈ ∆µδ ≡ ∆µi. In this i i 

case, our Xj (xi) in Eq. (8.190) are given by R⃗ 
lm(r⃗i)/∆µi (even if they are 2D, they play the exact 

same role), so that the normal matrix would be 

X ⃗ ⃗Rlm(r⃗k) Rlm(r⃗k)
(N)rlm,r ′ l ′ m ′ = . (8.192)

∆µk ∆µk
k 

Now, we assume that the sources are equally distributed in the sky and they have homogeneous 
proper motion errors. This way, we can take the contraction in the previous equation as an average 
over the sky (multiplied by the number of sources) and, due to the orthogonality properties of 
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the vector spherical harmonics, the normal matrix approximately diagonalizes: non-diagonal terms 
Re/Imshould be low compared with the values in the diagonal. Going to the R⃗ basis for the reallm 

vector feld case (8.135), we then fnd out that each diagonal element for rlm is 
2 2

Re/ImN ⃗ N ⃗X Rl0 X Rlm Re/Imfor rl0, 4 for r . (8.193)2 2 lm µ µi ii=0 i=0 

Re/ImHowever, the rl0 do not depend on α, so their average is 1 over this variable. On the contrary, rlm 
have factors cos2(mα) and sin2(mα), which can easily be checked from Eqs. (8.130), (8.131), (8.120), 
thus averaging to 1/2 over α. Therefore, under the mentioned idealized conditions, the normal 

Re/Immatrix diagonal elements for rl0 should be approximately 1/2 of the ones for r . As mentioned lm 
before, the covariance matrix is proportional to the inverse of the normal matrix, so we then have 
the inverse relation between variances: 

1 σ2 
Re Im rl0Var(rlm) ≈ Var(rlm) ≈ Var(rl0) ≡ (8.194)

2 2 

Assuming that these unknowns behave as Gaussian variables, we notice that the power per 
multipole order and mode in Eq. (8.184) is a sum of 2l + 1 squared Gaussians with the same 
variance, given that the factor 2 appearing in the m ≥ 1 can be re-absorbed into the squared√ 
quantity, generating a Gaussian with the same mean multiplied by 2 and the variance multiplied 
by 2. We consider two cases: 

• If we assume that the mean is 0, then P r is the sum of squares of 2l + 1 independent, zero l 
mean Gaussian distributions with the same variance σrl0. By defnition, this is a chi-squared 
distribution of n = 2l + 1 degrees of freedom rescaled by the factor σrl0. Therefore, if we 
rescale each coefcient by their variance, like "� #� �2 l �2 � �2X Re Imrl0 r rlm lm W r = + + , (8.195)l σRe σImσrl0 rlm rlm m=1 

we get a sum of squares of 2l+1 independent, standard Gaussian distributions (zero mean and 
unit width) with the same variance or, in other words, a chi-squared distribution of n = 2l +1 
degrees of freedom, with probability density function 

1 n/2−1 −x/2fχ2 (x) = x e , x ∈ [0, ∞). (8.196)
n 2n/2Γ(n/2) 

This will be our null hypothesis. Physically speaking, the coefcients should have approx-
imately zero mean if our data is pure Gaussian noise and our sources are homogeneously 
distributed in the sky. However, this may not be the case even in the case of noise domina-
tion. We will discuss this issue more in depth in Chapter 10. 

• If the Gaussians do not have zero mean, the result of Eq. (8.195) will be a non-central chi-
squared distribution of n = 2l + 1 degrees of freedom, with probability density function � � − 1 √1 − x+λ x n 

4 2 
2fχ2 (x) = e In/2−1( λx), x ∈ [0, ∞), (8.197)

n,λ 2 λ 
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where λ is the non-centrality parameter, given by the squared sum of the Gaussian means. 
Similarly to the previous case, the power P r would behave as the rescaled version of thel 
distribution for Wl

r . 

If we have the distribution of the coefcients rlm, for example, from the posteriors after running 
an MCMC, it is interesting to test how close we are to the frst case or, more precisely, how likely it 
is to be under the null hypothesis. For this purpose, one could use the mean values of rlm and their 

r
1-sigma uncertainties to compute W from Eq. (8.195). Then, one can compute the probability l r
that a χ2 with n = 2l + 1 degrees of freedom produces a value larger than W l , like Z ∞ 

r r 
P (W r > W l ) = fχ2 (x)dx ≡ Fχ2 (W l ) (8.198)l n nr

W l 

However, it is also possible to discuss this in terms of sigmas of a Gaussian distribution, which 
is something widely used in Physics. For this, we can use the following result [419]: � �1/3 r ! 

χ2 2 2n ∼ N 1 − , (8.199)
n 9n 9n 

to a good degree of approximation increasing with n, with N(µ, σ) the Gaussian distribution of 
mean µ and variance σ2 , as we introduced in Subsec. 2.3.1. We can then evaluate how many sigma 
away our results are from the mean from the following quantity, usually called Z-score [416]: r "� �1/3 � �# 

W r9n 2 
Zr l= − 1 − , (8.200)l 2 n 9n 

In general, the Z-score is given by multipole, which is computed from the previous equation but 
substituting W r by l 

Wl = Wl
s + Wl

t . (8.201) 

It can also be extended for several multipoles by following the same logic of summing at the level 
of Wl. Also, there are diferent criteria for the defnition of W r in Eq. (8.195), one being the onel 
we used and the other, dividing each term by either σ2 or σ2 /2 according to their variance inrl0 rl0 
Eq. (8.194). The second defnition relies on the idealized conditions explained to obtain Eq. (8.194), 
so it is less accurate. However, it can easily be computed as W r = P r/σrl 

2
0, which can sometimes l l 

be more convenient. In any case, we will use the frst defnition throughout the thesis. 

Therefore, the Z-score gives a measurement of how statistically signifcant are our results com-
pared to the pure noise hypothesis. As a result, a high Z-score can potentially hint towards a 
detection, but it may also have other possible explanations, as we will see in Chapter 10. 
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Chapter 9 

The Gaia mission 

9.1 Introduction 

The Gaia mission was launched by ESA in December 2013 [406] and started its science run in 
July 2014. The name “GAIA” was originally an acronym for Global Astrometric Interferometer 
for Astrophysics, but the techniques to be used were changed, making the acronym no longer 
applicable1 . As a result, the name Gaia was kept to refect the continuity of the project, but now 
without its original acronym meaning. Its nominal science mission was scheduled for 5 years, but 
it was extended for 10 [420]. 

The spacecraft is equipped with two telescopes, each of them composed of 3 mirrors. These 
telescopes are used by the three main instruments, called the astrometric, photometric and spec-
troscopic instruments. The astrometric instrument takes photometric data from the telescopes in 
the white, unfltered, white-light photometric G band (where G stands for Gaia), which covers the 
range 330-1050 nm: part of the ultraviolet spectrum, the full visible range and part of the infrared 
spectrum. This high signal-to-noise ratio (SNR) data is then used to derive astrometric information 
such as positions, proper motions, etc. at diferent epochs. The sources are selected performing a 
survey of the sky, instead of using a predefned input catalog as its precursor Hipparcos did [421]. 
The photometric instrument measures the spectral energy distribution of the same sources at the 
same epochs, providing astrophysical information. It does it in two frequency ranges: 330–680 
nm (blue photometer, BP) and 640-1050 nm (red photometer, RP). Finally, the spectroscopic in-
strument, or radial-velocity spectrometer, collects spectra in the range 845–872 nm [420] (Calcium 
triplet region [422]), to produce radial velocities and other astrophysical information on the sources. 

The Gaia collaboration releases their data products progressively: 

• The frst data release, DR1 [423], was published in September 2016 and comprised 1.14 years 
of data. It included astrometric information and G magnitudes. 

• The second data release, DR2 [424], was published in April 2018 and comprised 1.83 years. 

1https://www.esa.int/Science_Exploration/Space_Science/Gaia_overview 
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It expanded over the data products of DR1 by including BP and RP photometry, radial 
velocities and other new astrophysical information. 

• The third data release was divided in two, with an early data release (EDR3) [420] in December 
2020, with only some astrometric and photometric data, comprising 2.84 years of observation. 
Later, in June 2022, the third data release DR3 [425] was published, complementing EDR3 
with a vast amount of information of the same sources, including everything present in DR2, 
source classifcation and redshift determinations. A summary of the quantities present in DR3 
can be consulted in [425] and a comparison with previous data releases in [426]. 

• According to the data release plan [427], DR4 is not expected sooner than the end of 2025. 
It will comprise 5.5 years of data, including epoch data for all sources. The fnal data release, 
DR5, is not expected sooner than the end of 2030 and it will comprise the full observing 
period of around 10 years, containing all collected data. 

In our article [4], we used data from DR3 to set constraints on the SGWB amplitude at low 
frequencies, as will be detailed in Chapter 10. This data release includes data of 1.81 billion sources, 
with 1.47 billion having full astrometric measurements According to the EDR3 main article [420], 
the position uncertainties range from 0.01-0.02 mas for G < 15 to ∼ 1.0 mas at G ≈ 21 mag, with 
the proper motion uncertainties ranging from 0.02 − 0.03 mas/yr for G < 15 to ∼ 1.4 mas/yr at 
G ≈ 21 mag. 

We are interested in working with datasets of quasars, given that they present low intrinsic 
proper motions, so that a relevant fraction of their correlations can be attributed to a SGWB. We 
study how to generate these datasets in the next section. 

9.2 Generating clean datasets 

9.2.1 The QSO candidate sample 

Gaia DR3 does not provide a QSO catalog, but rather, a list of sources called QSO candidates2 . The 
idea of this list was to include all the sources that could reasonably be considered a quasar, even with 
low probability. It therefore focuses on completeness, disregarding its purity. A source is included 
in this list according to selection criteria detailed in [430] and in the Gaia DR3 documentation 
website3 , which we summarize below: 

• The main contribution to this catalog is provided by Gaia Discrete Source Classifer (DSC) [431], 
which classifes sources into fve classes: quasar, galaxy, star, white dwarf, and physical binary 
star. DSC consists of three classifers: Specmod, which uses BP/RP spectra; Allosmod, which 
uses other features such as parallax, proper motions, or color indices, and Combmod, which 
combines the output class probabilities of both of them and assigns a combined probability, 

2After our publication, a catalog named Quaia [428] has been published by an independent team, who use infrared 
data from the WISE (Wide-feld Infrared Survey Explorer) survey [429] to generate a catalog from the QSO candidate 
sample from Gaia. However, this is not an ofcial catalog from Gaia 

3Gaia DR3 online documentation: https://www.cosmos.esa.int/web/gaia-users/archive/gdr3-documentation 
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labeled as classprob_dsc_combmod_quasar. We denote this combined probability as pQSO 
in the following sections. 

A source enters the QSO candidate list if any of the three classifers assign a probability of 
being a quasar above 0.5. In addition, the Gaia Quasar Classifer module (QSOC) [430, 431] 
estimates redshifts of quasars from their BP/RP spectra. All sources having reliable [431] 
estimated redshift also enter the list. 

• All sources classifed as AGN by the Vari module are included. This module uses photometric 
light curves to characterise variability. 

• The Extended Objects (EO) module analyses surface brightness profles of sources to look for 
physical extensions. Quasars analysed by this module are also included. 

• All sources used to defne the Gaia CRF3 (Celestial Reference Frame 3) [432] are included. 
These sources are cross-matched between Gaia and several external quasar catalogs and se-
lected according to specifc quality metrics. 

This sample consists of 6,649,162 sources, of which 6,246,791 have determined proper motions, 
and many of them are very likely not actual quasars. This becomes obvious when we plot the 
proper motions of this sample, which are clearly biased by the local behavior in the Milky Way and 
Magellanic clouds (top left panel of Fig. 9.3. Therefore, we need to clean this sample to generate 
purer datasets suitable to work with. 

HEALPix 

It is useful to plot quantities such as proper motions or the density of sources across the sky. 
To do this, one of the approaches is dividing the sky in a given number of regions of the same 
area and color them according to the average quantity in each region. For this purpose, we used 
HEALPix (Hierarchical Equal Area isoLatitude Pixelization)4, which is one of the most standardized 
algorithms to tessellate the sky and it has a Python implementation named healpy [433, 434]. 
The HEALPix system initially divides the sky in 12 equal-area cells with their centers forming a 
dodecahedron. Then, each extra level of refnement subsequently divides every cell in 4 equal-area 
parts, amounting to 12n2 total cells in the refnement level n. This scheme is illustrated in Fig. 9.1. 
As can be seen in this fgure, the points are distributed in equal-latitude levels, hence the isoLatitude 
in the acronym. 

Given a HEALPix level, each cell is assigned an index. Therefore, we just need to know to 
which cell every source belongs to, and then average the desired quantity (or sum, when plotting 
the number of sources) of all sources in a given cell. This is a way to compress data, which can 
also be used for analysis purposes as proposed in [408]. Here, however, we will only use it for 
visualization purposes. 

All the plots will be shown in Galactic coordinates, so that the horizontal axis is aligned with 
the Galactic plane, and using HEALPix level 8. 

4https://healpix.sourceforge.io 
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Figure 9.1: Illustration of Healpix levels 1 to 4, corresponding to 12, 48, 192 and 768 pixels, 
respectively. Credit: Gorski et al. [434] 

9.2.2 Filtering and masking 

Our frst approach to increase the purity of our dataset was to set a threshold in pQSO. We 
generically refer to this procedure as fltering. A low threshold will leave too many non-QSO 
sources, while a too high threshold may remove too many of the good ones. Therefore, we need to 
fnd a correct balance between these two efects. 

Given that every source i has a probability pQSO,i of being a quasar, we can consider it behaves 
as a Bernoulli distribution. Therefore, its expected value will be pQSO,i. The expected value of the 
joint distribution of all the sources in a sample of size N will give an estimation of its number of 
quasars. If we assume that all the sources are independent, the joint expected value is the sumP 
of each individual expected value, i pQSO,i. Therefore, we can estimate the number of non-QSO P 
sources as N − i pQSO,i. 

As the threshold in pQSO gets more stringent, the resulting dataset will reduce this number of 
estimated non-QSO sources, as well as the number of sources. This is shown in Fig. 9.2. We decide 
to set our threshold to the minimum value that reduces the expected number of non-QSO sources 
to less than 1, as it is also shown in Fig. 9.2. 

Applying this process to the QSO candidate list, the threshold in pQSO was found to be 
0.99999465, reducing the number of sources to 1,154,431. In the top right panel of Fig. 9.3, the 
resulting dataset is shown. We can still very clearly see some contamination in the Galactic plane 
and Magellanic clouds. Therefore, we decided to also apply a mask to this data, which was manually 
created to cover these areas. 

In the bottom left panel in Fig. 9.3, we show the masked QSO candidate dataset, with no 
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Figure 9.2: Reduction of number of sources (left vertical axis) and expected non-QSO objects (right 
vertical axis) with a more stringent threshold, in the fltering process for the QSO candidate list. 
If we denote the quantity plotted in the x axis by k, the threshold is given by 1 − 10k . The point 
where the expected non-QSO sources is 1 corresponds to the x value 5.27, indicated by the dashed, 
vertical line, which gives a threshold of 0.99999465. 

fltering. The number of sources is reduced to 3,240,636. 

In order to generate our fnal dataset, we frst apply the mask and, to the resulting dataset, 
apply the fltering procedure. In the bottom right panel of Fig. 9.3, we show the result after the 
two-step procedure, which consists of 871,441 sources and has a threshold in pQSO of 0.99998701. 
We note that this threshold is much less stringent than the previous one due to the preceding 
masking. 

Even if this cleaning process is far from perfect, the result looks more homogeneous and does not 
show any obvious contamination on visual inspection. We will address the quality of this dataset 
in the next sections. 

9.2.3 Gaia QSO selections 

In addition to our masked dataset, we considered other selections suggested in [430]. This reference 
provides several ways to get higher purity subsamples, of which the ones we used in our article are 
the following ones: 

(i) Astrometric selection: sources are accepted or discarded based on astrometry criteria. All 
the sources in this selection must pass two flters: 
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QSO candidates
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Masking
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Filtering by pQSO
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Masking+filtering
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Figure 9.3: Proper motion module (in mas/yr) skymap for diferent steps. The top left panel shows 
the full QSO candidates dataset, while the others show the resulting skymap after either of the 
steps or both. 
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Figure 9.4: Proper motion module (in mas/yr) skymap for diferent considered datasets. 
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• First step: individual sources with high-quality astrometric solutions and statistically insignif-
icant parallaxes and proper motions are selected. More than 200 million sources match this 
criteria, mostly stars from our galaxy [432]. 

• Second step: samples of sources with near-Gaussian distributions in uncertainty-normalized 
parallaxes and proper motions are selected. 

(ii) Pure selection. This refnes the criteria used to construct the QSO candidates list: 

• All sources from Gaia CRF3 are included. 

• Sources from EO (Extended Objects) are included except for those with close neighbours. 
The previous classifers use lists of quasars identifed by other surveys, so their samples are 
believed to be above 90% pure. On the other hand, the next two classifers use supervised 
machine learning to discover new objects just using Gaia data. 

• From the DSC sample, sources must be assigned the joint label of quasar by the DSC, which 
requires that both Specmod and Allosmod assign probabilities to be above 0.5 of being a 
quasar. This subset is believed to have a purity of 62%, increasing to 79% when the Galactic 
plane (|b| < 11.54 deg) is avoided. 

• Sources from the Vari sample are included, given that they are considered to have a purity 
over 90%. These results already exclude the Galactic plane. 

The astrometric selection has 1,897,754 sources and around 98% purity or better [430]. The 
pure one has 1,942,825 sources and a purity of 96%. Their intersection, which is also considered as 
a separate dataset, has 1,801,255 sources. 

Given the high number of sources and from the pQSO distribution of these datasets, we conclude 
there is still signifcant contamination from non-QSO sources (of order 400,000). Therefore, we 
apply the same fltering procedure as for the masked dataset, setting a threshold in pQSO to reduce 
the expected number of non-QSO sources to one. Details on the thresholds and fnal numbers 
of sources for each dataset are provided in Table 9.1, together with the minimum constrained 
frequency, while skymaps are displayed in Fig. 9.4. 

We can see that the three selections do a good job removing contamination from our galaxy, but 
the pure one does not completely remove the contamination from the Magellanic clouds. We do the 
fts for these three datasets as well as the masked one. However, it is clear that the cleaner dataset 
we have is the intersection between the astrometric and pure selections, followed by the astrometric 
one. Therefore, the latter are the two results which should be considered more rigorous. 

Color-magnitude and color-color diagrams 

In order to test the purity of our fnal datasets, we plotted their color-magnitude and color-color 
diagrams, which are shown in Fig 9.5. These diagrams are widely used in Astrophysics and plot the 
magnitude in some flter against the color index from two flters (color-magnitude), or a given color 
index against a diferent one (color-color). The idea of these diagrams is that, by visual inspection, 
we can see if there are sources which deviate substantially from the general behavior of the majority 
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Dataset N Nz z25 z75 
t25 

(Gyr) 
f25 

(10−18 Hz) 
min(1 − p )QSO

×105 

Masked 871,441 871,438 0.961 2.408 7.52 4.21 1.299 
Pure 816,641 816,640 0.967 2.374 7.54 4.20 1.924 

Astrometric 786,165 786,164 0.977 2.359 7.58 4.18 1.959 
Intersection 773,471 773,470 0.973 2.351 7.57 4.19 2.043 

VLBA 711 657 0.57 1.63 5.50 5.76 -
VLBA+Gaia DR1 508 483 0.63 1.64 5.87 5.40 -
SDSS+Gaia EDR3 401,735 392,993 1.032 2.543 7.80 4.06 -

Table 9.1: The number of sources in each considered dataset, along with the number of sources with 
redshift, the 25th, 50th and 75th percentiles, the time of arrival to the source in the 25th percentile 
and its corresponding frequency. We also provide the thresholds in pQSO for our four main datasets. 

of them. If this is the case, they are likely not to be quasars, so a great number of them can impact 
our results. 

The leftmost areas of the pure dataset diagrams, which are not present in the other datasets, 
confrm it as the most contaminated one. For the masked one, we can observe some outliers around 
G − RP ∼ −2 and G − RP ∼ 5 − 6 (see Sec. 9.1 for the flter defnitions), but they represent a very 
small number compared to the O(800,000) total sources. Finally, the astrometric and intersection 
datasets are clearly the purest, although there are still sources which can be considered outliers at 
low and high values of the color index G − RP . In any case, they are again very few compared to 
the number of sources, so they are unlikely to bias our results. Therefore, we conclude that our 
cleaning process is enough. Additional steps we could have applied include setting thresholds in 
these magnitudes and color indices or in redshift, but based on the plots, we considered them to be 
unnecessary. 

9.3 Other datasets 

Given the similarities of our analysis with the ones done by [140] and [407], we also analyzed their 
datasets to check their results and to test the consistency of our methodology. 

Darling et al. [140] use the VLBA catalog in [435] excluding two sources with very high proper 
motion, which leaves a dataset with 711 sources. This survey monitors radio sources, of which 
the ones considered in [140] are confrmed quasars. We considered the same sources, with the 
proper motions published in [435]. In [140], the authors obtain the proper motions from bootstrap-
resampled time series, instead of taking them directly from [435], but state that the datasets should 
be statistically consistent. 

In addition, Darling et al. consider an additional dataset based on the previous one but only for 
sources which have additional data in Gaia DR1. In this case, the authors consider the combined 
position time series between VLBA and Gaia DR1 and determine the proper motion of each source. 
With this, they obtain 577 sources, but they discard 69 sources due to the high coordinate ofsets 
between both surveys, getting a dataset of 508 sources. We refer to this sample as the VLBA+Gaia 
DR1 dataset. The positions of the sources of the VLBA and VLBA+Gaia DR1 datasets are shown 
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Figure 9.5: Color-magnitude (left) and color-color (right) diagrams for the diferent considered 
datasets, using the G band magnitude and its color indices with respect to the RP and BP bands. 
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in the right panel of Fig. 9.6. 

Finally, Aoyama et al. [407] cross-match the 16th data release of the Sloan Digital Sky Sur-
vey (SDSS) QSO catalog [436] with the astrometric data in Gaia EDR3. We decided to use the 
SDSS+Gaia EDR3 cross-matched data provided by the Gaia collaboration5 , although we tried 
other methods which are detailed in the next section. Regardless, we were not able to get the 
exact number of sources as in [407], obtaining 401,735 with the SDSS+Gaia EDR3 cross-match. In 
addition, we did not apply the same fltering procedure as in previous datasets for consistency with 
the dataset in [407], but in any case, the fltered dataset provides similar results. A skymap of the 
SDSS+Gaia EDR3 dataset is provided in the left panel of Fig. 9.6. 
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Figure 9.6: Proper motion module (in mas/yr) skymap for the SDSS+Gaia EDR3 dataset (left 
panel) and source position for VLBA (blue and red) and VLBA+Gaia DR1 (red) datasets (right 
panel). 

9.4 Queries of astronomical databases 

9.4.1 Gaia archive 

In order to generate the previous datasets, one has to somehow get the data from Gaia. This data 
can be accessed with standard astronomical query tools such as TOPCAT6 [437, 438], but it can 
also be accessed through the Gaia Archive7 . Our queries will be moderately complex, so it is best 
to do them through the Astronomical Data Query Language (ADQL). For instance, to download 
the full QSO candidate dataset, we can do it like 

SELECT * 
FROM gaiadr3.qso_candidates 

It is relevant to note that the capital letters and line jumps do not alter the query. Nevertheless, 
it is useful to write them following some rules for readability. 

5Gaia EDR3 documentation: https://gea.esac.esa.int/archive/documentation/GEDR3/Catalogue_ 
consolidation/chap_crossmatch/sec_crossmatch_externalCat/ssec_crossmatch_sdss.html

6http://www.starlink.ac.uk/topcat/ 
7https://gea.esac.esa.int/archive/ 
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9.4. Queries of astronomical databases 

The list of tables, such as the qso_candidates one, can be checked in the leftmost part of 
the website, grouped by categories. This one, for instance, is under “Gaia Data Release 3/Extra-
galactic”, and has to be accessed with the gaiadr3 before. Once we locate the table, we can also 
check the available quantities, or columns. If we just want some of them instead of the full table, 
we can generate it like 

SELECT classprob_dsc_combmod_quasar AS p_qso, redshift_qsoc AS z 
FROM gaiadr3.qso_candidates 

As shown in this query, one can also choose the name that will appear in the header for each 
variable. 

We also want the positions and proper motions, with their errors. However, this information 
is not in the qso_candidates table, but in the main Gaia DR3 one, called gaia_source and, 
again, under gaiadr3. We therefore need to somehow establish the correspondence between our 
sources of interest, which are the ones in the qso_candidates table, and the same sources in the 
gaia_source table. We can join the information from both catalogs with the JOIN keyword and 
use the source_id column present in both tables to match the sources, with the keyword ON: 

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error, 
gaia.pmdec_error, qso.classprob_dsc_combmod_quasar AS p_qso, 
qso.redshift_qsoc AS z 
FROM gaiadr3.qso_candidates as qso 
JOIN gaiadr3.gaia_source as gaia 

ON gaia.source_id=qso.source_id 
WHERE gaia.pmra IS NOT NULL 
AND gaia.pmdec IS NOT NULL 

In the two last lines, we used the WHERE keyword to add the condition that the proper motions 
must be determined, since we are not interested in the sources without this information. This 
reduces the number of sources from 6,649,162 to 6,246,791, as was mentioned in the previous 
section. The previous query was the one used to generate the QSO candidate dataset we used for 
masking and fltering in the last section. Except for the mask, the masked dataset can be generated 
by imposing the threshold condition, with the extra line 

AND qso.classprob_dsc_combmod_quasar>0.99998701 

In order to generate the astrometric selection that Gaia provides [430], the boolean fag 
astrometric_selection_flag is included as a column in the qso_candidates table. Therefore, 
to generate our astrometric dataset, we just need to include the condition that this fag is true and 
use the threshold indicated in the last section, 

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error, 
gaia.pmdec_error, qso.classprob_dsc_combmod_quasar AS p_qso, 
qso.redshift_qsoc AS z 
FROM gaiadr3.qso_candidates as qso 
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JOIN gaiadr3.gaia_source as gaia 
ON gaia.source_id=qso.source_id 

WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL 
AND qso.astrometric_selection_flag=’true’ 
AND qso.classprob_dsc_combmod_quasar>0.99998044 

The pure selection involves several conditions that Gaia provides in [430]. With our threshold 
in pQSO already applied, we can generate the dataset with the following query: 

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error, 
gaia.pmdec_error, qso.classprob_dsc_combmod_quasar AS p_qso, 
qso.redshift_qsoc AS z 
FROM gaiadr3.qso_candidates as qso 
JOIN gaiadr3.gaia_source as gaia 

ON gaia.source_id=qso.source_id 
WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL 
AND (qso.gaia_crf_source=’true’ OR qso.host_galaxy_flag<6 
OR qso.classlabel_dsc_joint=’quasar’ OR qso.vari_best_class_name=’AGN’) 
AND qso.classprob_dsc_combmod_quasar>0.9999808 

Finally, the intersection dataset can be generated combining the conditions from the previous 
two tables, setting the pQSO threshold accordingly: 

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error, 
gaia.pmdec_error, qso.classprob_dsc_combmod_quasar AS p_qso, 
qso.redshift_qsoc AS z 
FROM gaiadr3.qso_candidates as qso 
JOIN gaiadr3.gaia_source as gaia 

ON gaia.source_id=qso.source_id 
WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL 
AND qso.astrometric_selection_flag=’true’ 
AND (qso.gaia_crf_source=’true’ OR qso.host_galaxy_flag<6 
OR qso.classlabel_dsc_joint=’quasar’ OR qso.vari_best_class_name=’AGN’) 
AND gaia.classprob_dsc_combmod_quasar>0.9999796 

9.4.2 Cross-matching catalogs 

Generating the dataset based on Aoyama et al. [407] is a bit more complicated, since it involves 
another catalog. They considered the 16th data release of the SDSS quasar catalog [436] and 
cross-match with Gaia to obtain the proper motions of as many SDSS quasars as possible. We 
did not manage to reproduce the number of sources they claim, among other things, because the 
number of sources of the SDSS QSO catalog is 750,414, while they quote 817,402. As a result, some 
discrepancy between our fnal datasets is expected. In any case, we tried our best to recreate their 
dataset by following two diferent methods. 
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Custom cross-match 

In order to get the correspondence between the SDSS catalog and Gaia, one of the options would 
be to generate the cross-match ourselves. For this purpose, we download the coordinates of all 
the sources in the SDSS catalog. Then, in the Gaia Archive, we upload this table, that we denote 
as sdss_coords and select the option to cross-match it with another table, which will be the 
gaia_source from EDR3. The reason to choose EDR3 over DR3 is that DR3 was not released at 
the time of Aoyama et al. paper, but in principle they should be equivalent. The only thing that 
should diference DR3 from EDR3 are the additional tables, not changes to the existing ones. 

We provide 0.5 arcsec as the maximum radius allowed for the cross-match, which is the one used 
in [407], and the website generates a new table, which we will call xmatch, with three columns: the 
Gaia object identifer, the cross-matched identifers in our SDSS catalog and the angular separation 
between their coordinates. Since the SDSS catalog was a user-uploaded table, their identifers are 
just the line number of the corresponding source, and they are labeled sdss_coords_oid. With 
this method, the cross-matched sources are 489,392. We can then obtain their proper motions and 
remove the sources which do not have any with the following query: 

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error, 
gaia.pmdec_error 
FROM user_sjaraba.sdss_coords AS sdss_coords, 
gaiaedr3.gaia_source AS gaia, user_sjaraba.xmatch AS xmatch 
WHERE (xmatch.sdss_coords_sdss_coords_oid = sdss_coords.sdss_coords_oid 
AND xmatch.gaia_source_source_id = gaia.source_id) 
AND gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL 

In this query, we also showcase an alternative to the use of JOIN and ON to combine tables, just 
using FROM and WHERE. They are completely equivalent. 

The resulting table has 402,334 sources, which does not quite match the 400,894 in [407], but is 
close enough. In any case, we decided to use another method to cross-match the sources. 

Cross-match provided by Gaia 

In addition to the cross-match tools of the Gaia Archive, Gaia DR3 provides some tables cross-
correlating Gaia sources to other catalogs. One of these catalogs is SDSS DR13 [439], which may lack 
some data which is present in DR16, but we considered it good enough. There are several of these 
tables per catalog, among which there is one including all the good neighbours (which may include 
duplicates), defned as “nearby objects in the external catalogue whose position is compatible (within 
position errors) with the Gaia target”, and one indicating only the best neighbours, which only takes 
the best of the good neighbours, according to “the ratio between two opposite models/hypotheses: 
the counterpart candidate is a match or it is found by chance”. We use the latter to avoid duplicates. 
With this, we upload a table with the identifers of the SDSS DR16 quasar catalog, which we denote 
as sdss_qso, so that we can generate our table as 

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error, 
gaia.pmdec_error 
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FROM user_sjaraba.sdss_qso as sdss 
JOIN gaiaedr3.sdssdr13_best_neighbour as gaia_xmatch 

ON sdss.col__objid=gaia_xmatch.original_ext_source_id 
JOIN gaiaedr3.gaia_source as gaia 

ON gaia_xmatch.source_id=gaia.source_id 
WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL 

The result consists of 401,735 sources, which, again, do not exactly match neither the 400,894 
in [407] nor the 402,334 from our previous method, but the numbers are really close. 

It is important to note that some of these sources, both in the previous case and this one, may 
not even belong to the QSO candidate sample. This is because we have not used this information, 
given that it was only released in DR3. If we use it, we can check there are 935 of these sources using 
this second method, from which we cannot therefore extract quantities like pQSO or the redshift. 

9.4.3 VLBA-based datasets 

The datasets used by Darling et al. [140] are based on VLBA, so we cannot fnd them using the Gaia 
Archive, as we have been doing until now. However, we can use the Table Access Protocol (TAP) 
via the interface we prefer, such as TOPCAT [437, 438] or some Python packages, for instance. 
With this, we can access the astronomical databases, including the one from Gaia we have been 
using until now, but this time not limited to it. 

First, we look for the VLBA dataset. In [140], the authors state that their catalog is based on 
the one in [435]. The proper motions in [140] are obtained from bootstrap-resampled time series, 
but the authors confrm that these values should be statistically consistent with those in [435], so 
we take the proper motions directly from this source. In order to fnd this dataset, we can look 
for it using the TAP from TOPCAT and searching for the names of the authors. The dataset we 
look for appears with the title of the article [435], and is labeled as “J/ApJS/233/3/table6”. We 
can do similar queries to the previous cases in Gaia, only that the columns are denoted diferently. 
In addition, in this case, all the sources have proper motions, but in [140], they reject those having 
proper motions higher than 1 mas/yr. We therefore impose the same condition, taking into account 
that the proper motion units are given in µas/yr, unlike in the Gaia database: 

SELECT RAJ2000, DEJ2000, pmRA, pmDE, e_pmRA, e_pmDE, z 
FROM "J/ApJS/233/3/table6" 
WHERE pmRA*pmRA+pmDE*pmDE<1000000 

With this, we recover the 711 sources mentioned in [140]. The second dataset they used is given 
by a cross-match with Gaia DR1, which initially produces 577 sources and can be found labelled 
as “J/ApJ/861/113/table7”. However, when the diference between the proper motions of a given 
source in either of the coordinates is higher than 3 sigma, the authors decide to exclude it for their 
analysis. Given that they provide these ofsets in sigma units, it is straightforward to write the 
query to generate the dataset: 

SELECT RAJ2000, DEJ2000, "pmRA-2", "pmDE-2", "e_pmRA-2", "e_pmDE-2" 
FROM "J/ApJ/861/113/table7" 
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WHERE dpmRA<3 AND dpmDE<3 

With this query, we recover the 508 sources mentioned in [140]. The quantities pmRA-1 and 
pmDE-1 provide the proper motions from VLBA, while the ones labeled as pmRA-2 and pmDE-2 
include the contribution from Gaia DR1. Therefore, we take the latter. The redshift information is 
not included in this table, but it can be obtained from the previous one by matching the sources, 
either by coordinates or identifer. A quick way to obtain the table with the redshift is the following 
one: 

SELECT vlba_gaia.RAJ2000, vlba_gaia.DEJ2000, vlba_gaia."pmRA-2", 
vlba_gaia."pmDE-2", vlba_gaia."e_pmRA-2", vlba_gaia."e_pmDE-2", vlba.z 
FROM "J/ApJ/861/113/table7" as vlba_gaia 
JOIN "J/ApJS/233/3/table6" as vlba 

ON vlba.Name=vlba_gaia.Name 
WHERE vlba_gaia.dpmRA<3 AND vlba_gaia.dpmDE<3 
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SGWB constraints from Gaia DR3 

10.1 Introduction 

The constraining potential of the Gaia mission has been a topic of discussion from before its launch 
in 2013. In [403], the authors estimated its constraining power to ΩGW ≲ 10−6 based on Eq. (8.86) 
with N ≈ 106 sources, an angular resolution ∆θ ∼ 10 µas and an observing period T ≈ 1 year. 
There were also more optimistic works like [411] in which it was claimed that, by the end of the 
mission, Gaia could get to ΩGW ≲ 10−8 , by assuming N ≈ 109 , ∆θ = 1 mas and T = 20 years. 
On the opposite side, a prediction based on mock data from a quasar catalog relaxed this limit to 
ΩGW ≲ 6 × 10−4 [140], which better matches our results. 

In this chapter, I will explain our article [4] in which we set constraints using real Gaia data, 
from its third data release. The topic is interesting as a follow-up of the mentioned works, but it 
is also physically meaningful from the perspective of the possible sources which would contribute 
to the constrained frequencies (10−18 − 10−8 Hz). On the astrophysical side, super massive BBH 
would be the main source in this range [440, 441], but also cosmological sources would leave an 
imprint, such as cosmic strings [442, 443], phase transitions [444, 445] and PBHs [93, 81, 281]. The 
advantage of this frequency band is that it partly overlaps with the PTA range [446, 8, 9, 385], 
which has a better constraining power. Therefore, the sources detected from PTA will likely be 
found with astrometry much later, which will help better characterizing them. However, since the 
overlap is only partial, as was already discussed in Chap. 8, other diferent sources can also be found 
in the wider frequency range, whenever the sensitivity allows for it. 

In Chap. 8, we have already explained the main formalism and part of our methodology. In 
Chap. 9, we have also detailed the datasets we used in the article. Therefore, all that remains is to 
explain the rest of our methodology before showing and discussing the results. 
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10.2 Data analysis 

10.2.1 Likelihood 

In our article [4], following [447], we use a slightly diferent likelihood than the standard, Gaussian 
one which is widely used and was explained in Subsec. 2.3.1. The reason is that the least-squares 
method is very sensitive to outliers, which can then bias the result signifcantly. This was good 
enough for the analyses of Chapters 2 and 3 but, despite our cleaning eforts, there might still be 
some outliers in our datasets. Therefore, we take the conservative approach of assuming that the 
experimental uncertainties are only trustworthy as lower bounds of the real one. This does not 
necessarily mean we do not trust the uncertainties derived by the Gaia collaboration, but rather, 
that there might be non-negligible intrinsic proper motions in some cases which may bias our results 
if we are not cautious enough. Following [448], we present the reasoning for a single 1-dimensional 
data point and then extend it for an arbitrary number of 2D points, as it is the case for proper 
motion data. 

We denote our data point by D, which has an associated error σ0 > 0. The value of our model 
will be given by M(p), where p is a parameter of arbitrary dimension of the model function M . We 
consider the real error σ to be modelled by a random distribution in the domain σ ≥ σ0. One of 
the simplest models we can assume is a power law proportional to σ−2 , which is the frst integer 
order for which the integral to infnity converges. Therefore, after normalization, 

σ0
P (σ|σ0) = 

σ2 , σ ∈ [σ0, ∞). (10.1) 

We will therefore have to marginalize over this probability in order to get our likelihood, Z ∞ 
P (D|M, σ0, p) = P (D|M, σ, p)P (σ|σ0)dσ. (10.2) 

σ0 

Substituting a Gaussian likelihood for P (D|M, σ, p), using the change of variable u = 1/σ and 
denoting R ≡ (D − M(p))/σ0 for brevity, we get Z Z∞ 1/σ0σ0 1 − 1 ( D−M(p) σ0 − 1 (σ0Ru)2 

P (D|M, σ0, p) = 
σ2 √ e 2 σ )

2 

dσ = √ ue 2 du (10.3) 
σ0 2πσ 2π 0 � �1/σ0 

" 
−R2/2 

# 
1 1 1 1 − e− 1 (σ0Ru)2 

2= √ − e = √ . (10.4)
R2 R22πσ0 0 2πσ0 

If we extend this result to a 1D dataset of size N , we would get N independent distributions 
for σi, dependent on their corresponding σ0,i, that would be marginalized with N integrals similar 
to the one-point case. Given that the likelihood is an exponential of the sum of residuals, we can 
divide it in separate factors which are integrated independently, obtaining a product of factors of 
the form in Eq. (10.4). Therefore, the log-likelihood would be " # 

n −ρ2X i /21 − e 
ln L = const. + ln , (10.5)

ρ2 
ii=1 
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where, for a 2D dataset as one consisting of proper motions, the residual ρi can be computed as in 
Eq. (8.189). 

If there are signifcant outliers, a likelihood like the one in Eq. (10.5) can drastically improve the 
ft. This can be observed in Fig. 10.1, which shows the diference of behaviors between the least-
squares and permissive ft approaches for a well-behaved case and one with signifcant outliers. 
However, even if the likelihood in Eq. (10.5) recovers the least-squares solution for a well-behaved 
case, it also broadens its posteriors, around a factor 50% according to [448]. In fact, one can easily 
check that, for small ρi, one recovers X ρ2 

iln L ≈ const. − , (10.6)
4 

i=1 
√ 

which corresponds to the Gaussian likelihood with errors multiplied by 2. This broadening of the 
posteriors is expected from the assumption on the experimental errors in Eq. (10.1). In the end, 
it is up to the analyst to decide whether this behavior is compensated by the improvement of the 
outlier exclusion or not, which will depend on the nature of the dataset. In our case, we decide to 
use it, both to be more conservative with our constraints and to match the existing literature [140]. 
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Figure 10.1: Diference of behaviors of the usual, least-squares method and the permissive ft given 
by the likelihood in Eq. (10.5). The left panel shows a well-behaved case, where both approaches 
coincide. The right panel shows a case with some outliers that bias the least-squares method, which 
do not signifcantly impact the permissive ft approach. 

10.2.2 Parameter estimation 

Using Eq. (10.5), we run our parameter estimation with the emcee sampler [131], which does an 
MCMC over the data. We jointly ft the dipole and quadrupole with the decomposition in the 
form (8.135), which makes a total of n = 16 parameters. For all of them, we set uniform priors in 
the [−100, 100] µas/yr range, and we use 10n = 160 walkers. In order to confrm the convergence, 
we compute the autocorrelation times [133] and run the MCMCs for at least a hundred times the 
shorter autocorrelation time, which was usually around 20,000 iterations. 
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From the posteriors, we derive the 95% credible level upper bound for ΩGW, as well as compute 
its Z-score from Eq. (8.200) to address its statistical signifcance. Also, we plot the diference 
distributions discussed in Subsec. 8.8.1 in Fig. 10.2, for the astrometric dataset. 
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Figure 10.2: Posterior distribution for the quadrupole power P2 for the astrometric dataset, with 
the corresponding chi-square and non-centered chi-square distributions superimposed. 

In addition, we also compute the Bayes factors by assuming Gaussian posteriors, which is a 
good approximation in this case, following the formalism explained in Subsec. 2.3.3. From these 
posteriors, we get the maximum likelihood L12 and covariance matrix Σ12. As our null hypothesis, 
we suppose an only-dipole case and use for the likelihood L1 the one computed from the dipole 
of our maximum likelihood estimate. As covariance matrix, we use the (l = 1, l = 1) submatrix 
Σ1 ⊂ Σ12. From Eq. (2.81), the Bayes factor can be computed as 

√ !n12−n1 � �1/2 

B12 L12 2π det(Σ12) 
1 ≈ L1 

, (10.7)
2L det(Σ1) 

where L is the posterior half-width, L = 100 µas/yr. 

We run this procedure over all the datasets described in Chapter 9. The one based on Gaia 
DR3 that we trust for our fnal constraints is the intersection one, but we also derive the con-
straints for the other three as control cases, to check that our constraints are robust under dataset 
choice. In addition, we also run them for the additional datasets described in this chapter: VLBA, 
VLBA+Gaia DR1 and SDSS+Gaia DR3. For all the datasets, the minimum frequencies were indi-
cated in Table 9.1, while the maximum ones are given by the inverse of the observing period. For 
the Gaia DR3-based cases, this frequency is fmax ≈ 1.1 × 10−8 Hz (T = 2.84 years), while for the 
VLBA-based cases, it is fmax ≈ 1.4 × 10−9 (T = 22.2 years). 

204 



10.3. Results 

10.3 Results 

The main results of our article are presented in Table 10.1, which shows the ftted total power of 
the quadrupole moment, Z scores for l = 2 (Z2), Bayes factors B12 between the dipole+quadrupole 1 
and only dipole hypotheses, the best-ft ΩGW value corresponding to the quadrupole power, and 
the 95% upper bound on ΩGW. 

√ 
Dataset P2 (µas/yr) Z2 ln B12 

1 h2 
70ΩGW h2 

70Ω
up (95%)GW 

Masked 
Pure 

Astrometric 
Intersection 

12.51(1.81) 
23.15(2.01) 
10.13(1.73) 
9.53(1.73) 

4.19 
10.21 
3.10 
2.68 

-17.2 
34.4 
-23.2 
-23.5 

0.069(0.021) 
0.235(0.040) 
0.045(0.017) 
0.040(0.017) 

0.114 
0.295 
0.089 
0.087 

VLBA 
VLBA+Gaia DR1 
SDSS+Gaia EDR3 

2.73(1.23) 
5.30(1.36) 

52.48(10.88) 

-1.93 
0.57 
4.70 

-42.3 
-14.7 
69.6 

0.0033(0.0056) 
0.0123(0.0077) 

1.21(0.54) 

0.024 
0.034 
2.43 

Table 10.1: The total quadrupole power obtained from the dipole+quadrupole fts, together with 
the Z score corresponding to the quadrupole, the Bayes factor between the dipole+quadrupole and 
only dipole hypotheses, and the ΩGW estimations (best-ft and 95% CL upper limit values). The 
values correspond to the maximum likelihood estimates and the 1-sigma errors are provided in 
brackets. 

In addition, the ftted multipole coefcients for our four main datasets are presented in Ta-
ble 10.2, as well as the vector feld for the intersection dataset in Fig. 10.3. In App. D, I also 
include the corner plots showing the posterior distribution of the multipole coefcients, as well as 
the posteriors of ΩGW for all datasets. We also show the full correlation matrices for all runs. 

10 as/yr
0 2Proper motion module (mas/yr)

Figure 10.3: Fitted vector feld skymap for the intersection dataset. 
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Masked Pure Astrometric Intersection 
s10 -39.92(1.92) -4.40(1.89) -5.72(1.89) -4.79(1.88) 
Res11 11.92(1.49) 4.64(1.44) 0.31(1.46) 0.18(1.44) 
Ims11 3.74(1.45) -6.02(1.42) -8.86(1.43) -9.06(1.42) 
t10 -14.01(2.09) -5.81(2.04) -0.31(2.04) -0.20(2.06) 
tRe 
11 -14.19(1.44) -6.48(1.39) -1.57(1.38) -1.60(1.41) 
tIm 
11p 5.91(1.33) 9.96(1.29) 3.74(1.30) 3.41(1.31) 
Pp 1 
P√ 1 

s 

t 
43.65(1.91) 
25.86(2.12) 

11.60(1.70) 
17.78(1.96) 

13.78(1.88) 
5.75(1.80) 

13.68(1.74) 
5.32(1.82) 

P1 50.74(2.13) 21.23(1.99) 14.93(1.95) 14.68(1.94) 
s20 3.84(1.88) -8.65(1.81) -5.79(1.81) -5.15(1.82) 
Res21 -0.85(1.28) -8.33(1.24) 2.29(1.24) 2.10(1.24) 
Ims21 5.16(1.37) -0.91(1.33) 1.85(1.33) 1.91(1.34) 
Res22 2.15(1.40) 4.49(1.37) -0.65(1.38) -0.50(1.37) 
Ims22 1.77(1.41) 5.29(1.38) 2.63(1.37) 2.01(1.38) 
t20 5.25(1.98) -1.69(1.94) 3.63(1.93) 3.74(1.95) 
tRe 
21 -1.09(1.39) 3.40(1.36) -0.29(1.35) 0.72(1.36) 
tIm 
21 3.59(1.43) -6.74(1.41) 1.72(1.41) 1.84(1.41) 
tRe 
22 -1.59(1.32) -7.16(1.29) -2.56(1.29) -2.82(1.29) 
tIm 
22p -2.33(1.34) -1.52(1.31) 1.52(1.30) 0.97(1.31) 
Pp 2 
P√ 2 

s 

t 
9.21(1.86) 
8.46(2.02) 

17.65(1.97) 
14.97(2.25) 

8.10(1.63) 
6.08(1.80) 

7.15(1.70) 
6.28(2.01) 

P2 12.51(1.81) 23.15(2.01) 10.13(1.73) 9.53(1.73) 

Table 10.2: Fitted multipole coefcients, in µas/yr, for the four main considered datasets. The 
values correspond to the maximum likelihood estimates and the 1-sigma errors are provided in 
brackets. 

We frst take a look at the statistical signifcance of our results. Most of the datasets show 
Z-scores above 2.5, which can be interpreted as sigma deviations (see Sec. 8.8.1). This means 
there is more than just pure isotropic Gaussian noise in them, but does not necessarily imply a 
detection. Indeed, these numbers can be explained by biases in the datasets, such as contamination 
of intrinsic proper motions. This point is reinforced by the fact that our pure dataset, which is the 
most contaminated one, especially by the Magellanic clouds, has the highest Z score. 

The Bayes factors can be interpreted in a similar way. In general, they disfavour the quadrupole 
detection, except for the pure dataset and the SDSS+Gaia EDR3, in which cases the quadrupole 
arises from the contamination and inhomogeneity of the datasets. In fact, the SDSS+Gaia EDR3 
case shows strong dipole-quadrupole correlations, as can be seen in Appendix D (Fig. D.4), which 
makes the Bayes factor computation unreliable. Furthermore, for this dataset, if we take as null 
hypothesis the lack of any signal, the log-Bayes factor turns negative, reinforcing the idea of a 
non-detection. 

Having established that we do not get any detection, we now turn our attention to the upper 
bounds. For the Gaia DR3-based datasets, our fnal upper bound is the one set for the intersection 
dataset, h2 The rest of the cases behave as70ΩGW ≲ 0.087 for 4.2 × 10−18 Hz ≲ f ≲ 1.1 × 10−8 Hz. 
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expected: the upper bound based on the astrometric dataset is very similar, due to its similarity 
with the intersection dataset; the one derived from the masked dataset is within 30%, which was 
expected from the slightly lower purity; and the pure dataset sets a considerably higher constraint 
due to its contamination, but still within a factor 4. Therefore, we conclude that our results are 
robust under the choice of dataset, which means that our constraint of 0.087 is not likely to be 
lowered by using the same algorithm with a diferent dataset based on Gaia DR3 alone. 

Another thing we notice from the results in table 10.2 is that the power in the toroidal dipole is, 
in general, less than the 1/4 of the one in the spheroidal dipole. While, for the higher multipoles, it 
is expected that both have a similar value if they come from a gravitational wave background (see 
Subsec. 8.7.3), a high toroidal dipole indicates a spurious rotation. The fact that toroidal dipoles are 
related to rotations is given by their defnition, and illustrated by the T⃗11 vector spherical harmonic 
in Fig. 8.2. Having the toroidal dipole under control is a good indication of the purity of our data. 
Again, the pure dataset breaks this trend due to its contamination. 

With respect to the VLBA and VLBA+Gaia DR1 datasets, we get h2 
70ΩGW ≲ 0.024 for 5.76 × 

10−18 Hz ≲ f ≲ 1.4 × 10−9 and h2 , respectively. 70ΩGW ≲ 0.034 for 5.40 × 10−18 Hz ≲ f ≲ 1.4 × 10−9 

These are more pessimistic results than the ones in [140], also for the Z-scores, due to a diferent 
implementation of the likelihood (10.5) which underestimated the errors on their side [447], as well 
as our simultaneous ft to the dipole and quadrupole, which they did it separately. Still, they stand 
as the best astrometric constraints to date. 

For the SDSS+Gaia EDR3 dataset, we did not manage to reproduce the results in [407]. Given 
its poor sky coverage shown in Fig. 9.4 and the high correlations seen in Figs. D.3 and D.4, such 
a signifcantly higher upper bound is to be expected. For an only-quadrupole ft, this constraint is 
reduced to h2 

70ΩGW ≲ 0.40, which is much more reasonable, but it does not make sense to ignore 
the dipole with this method and, in any case, it is much higher than the results of order 10−4 they 
claim. This is likely explained by the narrow prior range they choose, although there could be other 
factors explained by the diferent methodology. 

To conclude this section, we should discuss why the derived constraints from Gaia DR3 are still 
worse than those from VLBA. As discussed in Subsec. 8.6.1, we can use Eq. (8.86) to roughly get 
an expected upper bound for a mission with resolution ∆θ, observing time T and number of sources 
N . As we are working with proper motion, we can assume that the mean uncertainty in proper 
motion is roughly given by ∆µ ∼ ∆θ/T and rewrite 

2∆µ
ΩGW ≲ . (10.8)

NH0
2 

Our Gaia DR3-based datasets have around 1000 times more sources, which is good for a con-
straint, but the uncertainties in proper motions are larger than in VLBA (⟨∆µ⟩ ≈ 670 µas/yr versus 
20 µas/yr), compensating this efect. In addition, Eq. (10.8) assumes that all sources have a rms√ 
proper motion of order ∆µ/ N , which is not true neither for the Gaia DR3-based datasets nor 
for the VLBA datasets. Furthermore, the real numbers difer more from this hypothesis as the 
number of sources increases and the sky coverage is less isotropic. Both reasons make the Gaia 
DR3 datasets perform a bit worse overall. 
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10.4 Future prospects 

From Gaia DR3, we have obtained the upper bound for the SGWB amplitude h2 
70ΩGW ≲ 0.087 for 

4.2 × 10−18 Hz ≲ f ≲ 1.1 × 10−8 Hz. This is worse than the ones obtained for the VLBA-based 
datasets in [140], which we reanalyzed to obtain h2 ≲ 0.024 for 5.76 × 10−18 ≲70ΩGW Hz ≲ f 
1.4 × 10−9 for the VLBA dataset. As has been commented, part of the worse performance from 
Gaia comes from its worse resolution, which partly derives from its lower observing period (2.84 
years for Gaia DR3 versus 22.2 years for VLBA). 

Future Gaia releases will use longer observing periods, increasing the SNR and reducing the 
uncertainty in proper motions. According to [425, 449], the coordinate and parallax resolution√ 
increases proportionally to T , expecting improvement factors of 1.4 and 1.9 for Gaia DR4 (5.5 
years) and DR5 (10 years), respectively. Furthermore, the proper motions increase their resolu-
tion proportionally to T 3/2 , which means improvement factors of 2.7 and 6.6 for DR4 and DR5, 
respectively. Also, ΩGW decreases with the error in proper motion squared, which translates into a 
decrease proportional to T 3 , or a 7.2 and 44 improvement factors for DR4 and DR5, respectively. 
Extrapolating our current constraints, this would imply constraints of order ΩGW ≲ 0.012 and 
0.0020 for DR4 and DR5, respectively, with the maximum constrained frequencies being lowered 
a bit, since they are given by T −1 . In addition, the number of sources will likely increase, which 
means we will likely be able to get to 10−4 in the fnal data release. 

Also, the next data releases will include the full time series of each source. This will allow to 
make more sophisticated analyses and, particularly, to constrain the f ≳ 1/T ≈ 3.2 × 10−9 Hz 
range, as discussed in Subsec. 8.6.2. 

Once Gaia fnishes releasing their data, the hopes to further refne these constraints will be set in 
future generation astrometric missions such as Theia [450, 451]. In [411], it is proposed that Theia 
will improve the proper motion resolution in a factor 60 and observe 100 times more sources. Using 
our Eq. (10.8) and our predictions for Gaia DR5, this would imply a constraint of order 10−10 . 

As detailed in the introduction, achieving better sensitivities is the key to constrain stochastic 
backgrounds such as super massive black hole binaries, cosmic strings, phase transitions and pri-
mordial black holes. This feld will likely follow behind what happens in the PTA range, but it is 
nevertheless absolutely important to keep updating the astrometric constraints, frst, for confrma-
tion of these signals and, more importantly, to look for extra signals in the wider frequency range 
that neither CMB nor PTAs can reach. 
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Conclusions 

The feld of Gravitational Waves is living a revolution from their frst detection almost a decade 
ago. As a physicist, this is one of the most exciting areas to which one can contribute from a wide 
variety of topics and methodologies: theoretical predictions, data analysis or numerical simulations 
are some of the options which we explored in this thesis. The fast improvements in GW detection 
sensitivity, as well as the new frequency windows that new missions will probe, imply an increasingly 
overwhelming amount of observational data of great relevance to Astrophysics and Cosmology. From 
the point of view of Theoretical Physics, gravitational waves present a unique opportunity to make 
predictions which can be confronted with data in only a matter of years, which will surely make 
our understanding of the Universe drastically progress in the coming decades, similarly to how the 
CMB did over the last half century. 

In this thesis, we have studied several aspects related to gravitational waves, in the areas of 
Stochastic Gravitational Wave Backgrounds, Primordial Black Holes, Numerical Relativity and 
Astrometry. In Chapter 1, we started with a broad introduction to GW theory, covering the main 
ideas of energy radiation and GW production, and applying the formalism to two-body systems, 
from the points of view of CBCs and hyperbolic encounters. 

We continued our approach to GWs by delving into SGWBs in Chapter 2, including an intro-
duction to parameter estimation and concluding with a review of current constraints and with a 
work [5] in which we constrained the SIGW background assuming non-Gaussianities. In Chapter 3, 
we relaxed the isotropic SGWB assumption to study the formalism for its anisotropies, concluding 
with a work [3] which developed a spherical-harmonic decomposition formalism and applied it to 
several test cases of interest. 

In Chapter 4, we incorporated PBHs to the thesis, which would be relevant in subsequent 
chapters. The introduction to their formation mechanisms was followed by a detailed explanation 
on how to compute the overdensity thresholds required for the PBH collapse. This was done with 
a numerical approach, which served as a frst contact with Numerical Relativity, with some of the 
concepts introduced in this section reappearing in the NR chapters. Finally, we presented the two 
main scenarios for BBH production, together with the merger rate in the late binary approach, 
which connects to the next chapter. 

In Chapter 5, we computed the PBH contribution to the SGWB from their close hyperbolic 
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interactions, as we did in the article [2]. For reference, we applied the same procedure to the 
PBH contribution from BBHs, and compared both components. We discovered that introducing 
a redshift-dependent event rate leads to signifcant changes in the shape of the CHE contribution, 
while the BBH component is only enhanced slightly. From this fact, we concluded that a good 
characterization of the CHE background would lead to signifcant fndings on the PBH clustering 
across the Universe, as well as their relative abundance with respect to ABHs. However, the 
detection prospects are more pessimistic than for the standard BBH component, although this 
would depend on the exact properties of PBH clusters. 

In Chapter 6, we turned our attention to Numerical Relativity, with a brief introduction to 
the feld and a broader presentation of the used software, the Einstein Toolkit, as well as some 
of the issues that arise in these simulations. The chapter concluded with a practical overview of 
the Einstein Toolkit capacities, both from a BBH simulation and three runs for black hole CHEs, 
showing some of the outputs that can be derived from them. 

In Chapter 7, our article on spin induction from BH CHEs [1] was presented, in which we used 
NR simulations to characterize this efect. We studied how two initially non-spinnning black holes 
acquire signifcant spins after their interaction in a CHE, and explored the parameter space of 
initial momenta, incidence angles and mass ratios. In addition, we addressed some of the technical 
difculties to extend these studies to lower mass ratios, illustrating it with a simulation of q = 0.1. 
From this study, we concluded that this efect is a viable mechanism for PBHs to acquire spins, 
which could explain GW signals generated by intermediate-mass BHs with relevant spins, such as 
GW190521. 

We arrived to the fnal topic in Chapter 8, where we saw a broad introduction on how to use 
astrometric measurements to set constraints on the SGWB amplitude. These upper bounds are 
imposed on the frequency range below the nHz, where no other probe has access to. Therefore, 
systematic and rigorous work on this topic is required to obtain the maximum information possible 
from the SGWB in all frequencies. As the chapter came to the end, we shifted from the theoretical 
formalism to more practical considerations which are necessary to bear in mind for a data analysis 
work on this topic. 

In Chapter 9, we gave an overview of the Gaia mission, including how to obtain some of the 
data, how to clean it according to diferent criteria and showing the necessary queries in ADQL. 
Finally, in Chapter 10, we used the datasets obtained in the previous chapter to set constraints to 
the SGWB amplitude, following our article [4]. Aside from setting constraints using Gaia data, we 
updated existing constraints from VLBA, as well as outlined the future prospects we expect from 
subsequent data releases of Gaia. 

This thesis provides an overview of some of the diferent research areas available to the Grav-
itational Wave feld. In doing so, it highlights my contributions to these areas during the four 
years of my PhD, as well as suggests some possible avenues that could be pursued in the future. 
Nevertheless, the feld of Gravitational Waves is immersed in a constant evolution due to its drastic 
progress, which comes from the increasing amount of observations due to the improvements in de-
tector sensitivity, the reports of evidences of SGWB from PTAs and the addition of new detectors 
in the short (KAGRA, LIGO-India) and medium (LISA, ET, CE) term, only to name a few. The 
future of gravitational waves is as uncertain as exciting, ofering a unique framework for physicists 
to contribute to the scientifc progress and promising to revolutionize our understanding of the 
Universe in the coming decades. 
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Conclusiones 

El campo de las Ondas Gravitacionales está viviendo una revolución desde su primera detección 
hace casi una década. Como físico, esta es una de las áreas más apasionantes en las que se puede 
contribuir desde una amplia variedad de temas y metodologías: predicciones teóricas, análisis de 
datos o simulaciones numéricas son algunas de las opciones que exploramos en esta tesis. Las 
rápidas mejoras en la sensibilidad de detección de GWs, así como las nuevas ventanas de frecuencia 
que explorarán las nuevas misiones, implican una cantidad cada vez más abrumadora de datos 
observacionales de gran relevancia para la Astrofísica y la Cosmología. Desde el punto de vista de la 
Física Teórica, las ondas gravitacionales presentan una oportunidad única para realizar predicciones 
que puedan ser contrastadas con datos en solo cuestión de años, lo que seguramente hará que nuestra 
comprensión del Universo avance drásticamente en las próximas décadas, de manera similar a la 
revolución que ha causado el CMB durante el último medio siglo. 

En esta tesis hemos estudiado varios aspectos relacionados con las ondas gravitacionales, en las 
áreas de Fondos Estocásticos de Ondas Gravitacionales, Agujeros Negros Primordiales, Relatividad 
Numérica y Astrometría. En el Capítulo 1, comenzamos con una amplia introducción a la teoría de 
GW, cubriendo las ideas principales de la radiación de energía y producción de GWs, y aplicando 
el formalismo a sistemas de dos cuerpos, desde el punto de vista de los CBCs y los encuentros 
hiperbólicos. 

Continuamos nuestra aproximación a los GWs profundizando en el SGWB en el Capítulo 2, 
incluyendo una introducción a la estimación de parámetros y concluyendo con una revisión de los 
límites observacionales actuales y con un trabajo [5] en el que ponemos límites al fondo de ondas 
gravitacionales inducidas por escalares asumiendo no-Gaussianidades. En el Capítulo 3, relajamos el 
la suposición de isotropía en el SGWB para estudiar el formalismo de sus anisotropías, concluyendo 
con un trabajo [3] en el que desarrollamos un formalismo de descomposición en armónicos esféricos 
y lo aplicamos a varios casos de prueba de interés. 

En el Capítulo 4, incorporamos PBHs a la tesis, dada su relevancia en capítulos posteriores. 
La introducción a sus mecanismos de formación ha continuado con una explicación detallada sobre 
cómo calcular los valores límite para la sobredensidad necesaria para producir el colapso de un 
PBH. Esto se ha hecho con un enfoque numérico, que ha servido como un primer contacto con 
la Relatividad Numérica, reapareciendo algunos de los conceptos introducidos en esta sección en 
los capítulos de NR. Finalmente, presentamos los dos escenarios principales para la producción de 
BBH, junto con los ritmos de fusión para la hipótesis de binarias tardías, lo cual conecta con el 
siguiente capítulo. 

En el Capítulo 5, hemos calculado la contribución de los PBHs al SGWB a partir de sus inter-
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acciones hiperbólicas cercanas, tal como lo hicimos en el artículo [2]. Como referencia, aplicamos el 
mismo procedimiento a la contribución de PBH de BBH y comparamos ambos componentes. En-
contramos que la introducción de una tasa de eventos dependiente del corrimiento al rojo conduce 
a cambios signifcativos en la forma de la contribución de CHE, mientras que la componente BBH 
solo aumenta ligeramente. De ello concluimos que una buena caracterización del fondo de CHE 
conduciría a hallazgos signifcativos sobre las agrupaciones de PBH en todo el Universo, así como 
su abundancia relativa con respecto de los ABH. Sin embargo, las perspectivas de detección son 
más pesimistas que para la componente usual de BBHs, aunque esto dependería de las propiedades 
exactas de estas agrupaciones de PBHs. 

En el Capítulo 6, centramos nuestra atención en la Relatividad Numérica, con una breve in-
troducción al campo y una presentación más amplia del software utilizado, el Einstein Toolkit, así 
como algunos de los problemas que surgen en estas simulaciones. El capítulo concluye con una 
descripción práctica de las capacidades del Einstein Toolkit, tanto de una simulación BBH como 
de tres ejemplos para CHEs de agujeros negros, mostrando algunos de los resultados que se pueden 
obtener de ellos. 

En el Capítulo 7, se ha presentado nuestro artículo sobre la inducción de espín a partir de CHEs 
de BHs [1], en el que utilizamos simulaciones de NR para caracterizar este efecto. Estudiamos 
cómo dos agujeros negros que inicialmente no giraban adquieren espines signifcativos después de su 
interacción en un CHE, y exploramos el espacio de parámetros de los momentos iniciales, ángulos 
de incidencia y cociente de masas. Además, abordamos algunas de las difcultades técnicas que 
surgen al extender estos estudios a cocientes de masa más bajos, ilustrándolo con una simulación 
con q = 0.1. A partir de este estudio, llegamos a la conclusión de que este efecto es un mecanismo 
viable para que los PBHs adquieran espines, lo que podría explicar las señales de GW generadas 
por BHs de masa intermedia con espines relevantes, como GW190521. 

Llegamos al tema fnal en el Capítulo 8, donde hemos visto una amplia introducción sobre 
cómo usar mediciones astrométricas para establecer límites sobre la amplitud del SGWB. Estos 
límites superiores se imponen en el rango de frecuencia por debajo de los nHz, al que ningún otro 
experimento tiene acceso. Por lo tanto, se requiere un trabajo sistemático y riguroso en este tema 
para obtener la máxima información posible del SGWB en todas las frecuencias. Al llegar al fnal 
del capítulo, pasamos del formalismo teórico a consideraciones más prácticas que es necesario tener 
en cuenta para realizar análisis de datos sobre este tema. 

En el Capítulo 9, se proporciona una descripción general de la misión Gaia, incluyendo cómo 
obtener algunos de los datos, cómo limpiarlos según diferentes criterios y mostrando las consultas 
necesarias en lenguaje ADQL. Finalmente, en el Capítulo 10, utilizamos los datos obtenidos en el 
capítulo anterior para obtener límites sobre la amplitud del SGWB, siguiendo nuestro artículo [4]. 
Además de establecer estos límites utilizando los datos de Gaia, actualizamos las restricciones 
existentes a partir de VLBA y describimos las perspectivas futuras que esperamos de las siguientes 
publicaciones de datos de Gaia. 

Esta tesis proporciona una descripción general de algunas de las diferentes áreas de investigación 
disponibles para el campo de las ondas gravitacionales. Al hacerlo, se destacan mis contribuciones 
a estas áreas durante los cuatro años de mi doctorado, además de sugerir algunas posibles vías que 
se podrían explorar en el futuro. Sin embargo, el campo de las Ondas Gravitacionales está inmerso 
en una constante evolución debido a su drástico progreso, que proviene del creciente número de 
observaciones debido a las mejoras en la sensibilidad de los detectores, los informes de evidencias 
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de SGWB por parte de los PTAs y la incorporación de nuevos detectores en el corto (KAGRA, 
LIGO-India) y el medio plazo (LISA, ET, CE), solo por nombrar algunas causas. El futuro de las 
ondas gravitacionales es tan incierto como apasionante, que ofrece un marco único para que los 
físicos contribuyan al progreso científco y promete revolucionar nuestra comprensión del Universo 
en las próximas décadas. 
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Appendix A 

Scalar-induced gravitational wave 
formalism 

In this appendix chapter, we will briefy review the scalar-induced gravitational wave theory which 
was necessary for our article [5], explained in Sect. 2.5. This chapter is mainly taken from this 
article, whose formalism is based on [154, 153, 152]. 

We start from the perturbed metric in the conformal Newtonian gauge, which can be written as � � � � 
1 

ds2 = a(τ )2 −(1 + 2Φ(τ, ⃗x))dτ2 + (1 − 2Φ(τ, ⃗x))δij + hij dxi dxj , (A.1)
2 

where τ represents the conformal time, Φ(τ, ⃗x) is the curvature perturbation in the Newtonian 
gauge and hij is the transverse traceless tensor perturbation described in Chapter 1. We neglect 
vector perturbations and the scalar anisotropic stress. 

As we saw in Chapter 1, hij can be expanded in Fourier modes as Z 
k·x⃗ Ad3⃗hij (τ, ⃗x) = 

X 
kei

⃗ 
eij (k⃗)hA(τ, ⃗k), (A.2) 

A=+,× 

A A A ′ 
δAA ′ 

where we take the eij (k⃗) basis tensors to be normalized as eij eij = . Note that there is a 
factor 2 of diference with the defnition in Eq. (1.35). In addition, unlike in the rest of the thesis, 
we will not use a tilde to express Fourier-space quantities, to make the notation simpler. 

We start by reviewing the SIGW theory for the Gaussian case. 

A.1 Scalar induced gravitational waves 

At the second order, the Fourier modes of a gravitational wave follow the equation of motion 

h ′′ A(τ, ⃗k) + 2HhA 
′ (τ, k⃗) + k2hA(τ, k⃗) = 4SA(τ, ⃗k) , (A.3) 
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Appendix A. Scalar-induced gravitational wave formalism 

where the prime denotes derivative with respect to τ , H = a(τ )H(τ) is the conformal Hubble 
parameter and SA(τ, ⃗k) is a source term. In terms of the primordial curvature perturbation ζ, this 
source term can be expressed as Z � �d3q⃗

SA(τ, ⃗k) = QA(k⃗, ⃗q)f k⃗ − q⃗ , q, τ ζ(q⃗)ζ(k⃗ − q⃗), (A.4)
(2π)3 

where QA(k⃗, ⃗q) is a projection factor given by 
A i jQA(k⃗, ⃗q) = eij (k⃗)q q , (A.5) 

A A ′ 
= δAA ′ 

where the polarization basis tensors are normalized, in this formalism, as eij eij , so there is 
a factor 2 of diference with respect to our defnitions in Eq. (1.35). 

Here, we set k⃗ to be in the z direction. The source factor f(p, q, τ) appearing in Eq. (A.4), 
assuming radiation domination, is given by � � 

dϕ(pτ) dϕ(qτ ) dϕ(qτ) dϕ(pτ)
f(p, q, τ) = 3ϕ(pτ )ϕ(qτ) + + ϕ(pτ ) + ϕ(qτ ) , (A.6)

d ln(pτ) d ln(qτ ) d ln(qτ) d ln(pτ ) 

where ϕ(x) is the linear transfer function between Φ in the Newtonian gauge and ζ 

Φ(τ, ⃗k) = ϕ(kτ)ζ(k⃗). (A.7) 

In this work, we consider adiabatic scalar perturbations, so that, in the radiation-dominated era, !√ 
2 9 sin(x/ 3) √ 

ϕ(x) = − √ − cos(x/ 3) . (A.8)
3 x2 x/ 3 

For isocurvature perturbations, this transfer function changes (see e.g. [452]). 

Then, the equation of motion (A.3) can be solved using a Green’s function, similar to the 
discussion for Eq. (1.19) in Chapter 1, so that Z τ 

hA(τ, k⃗) = 
4 

τG⃗ τ)a(˜ τ ,⃗ (A.9)d˜ (τ, ˜ τ )SA(˜ k),ka(τ) 

with the Green’s function given by 

sin k(τ − τ̃)
Gk⃗(τ, τ̃) = . (A.10)

k 
Substituting Eq. (A.4) into Eq. (A.9), the two-point estimator for the induced gravitational waves 
is Z 

d3q⃗1 d3q⃗2⟨hA(τ, ⃗k1)hA′ (τ, k⃗2)⟩ = QA1 (k⃗
 
1, ⃗q1)QA2 (k⃗

 
2, ⃗q2) (A.11)

(2π)3 (2π)3 � � � � 
× Ik k⃗1 − q⃗1 , q1, τ Ik k⃗2 − q⃗2 , q2, τ (A.12) 

× ⟨ζ(q⃗1)ζ(k⃗1 − q⃗1)ζ(q⃗2)ζ(k⃗2 − q⃗2)⟩, (A.13) 

with the kernel function given by Z τ a(τ̃ )
Ik(p, q, τ) = 4 d˜ (τ, ˜ f(p, q, τ̃). (A.14)τ G⃗ τ )k a(τ ) 
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A.2. Gravitational waves induced by non-Gaussian curvature perturbations 

A.2 Gravitational waves induced by non-Gaussian curvature 
perturbations 

Let us now consider the scalar-induced gravitational wave formalism with non-Gaussian primor-
dial curvature perturbations. As explained in Sec. 2.5, we consider a quadratic local-type non-
Gaussianity parametrized as Eq. (2.83), while the Gaussian curvature perturbation has a monochro-
matic spectrum given by Eq. (2.85). 

We now have to substitute the non-Gaussian parametrization of ζ given by Eq. (2.83) into the 
two-point function in Eq. (A.9). In order to do so, we frst defne a dimensionless power spectrum 
PAA ′ (τ, k) as 

2π2 
⟨hA(τ, ⃗k)hA′ (τ, ⃗k)⟩ ≡ (2π)3δ3(k⃗ + ⃗k ′ ) 

k3 PAA′ (τ, k). (A.15) 

This power spectrum PAA ′ (τ, k) will be the sum of seven components, 

7X 
PAA′ (τ, k) = P(n)

(τ, k)δAA′ , (A.16)AA 
n=1 

which can be computed as [154, 153] 

(1) ⃗P (τ, k) = 2 IAA(τ, k⃗ | q⃗, ⃗q | q⃗, k − q⃗), (A.17)AA 

(2) ⃗P (τ, k) = 22 (2!FNL)
2IAA(τ, ⃗k | q⃗1, ⃗q2 | q⃗2, k − q⃗2, ⃗q1 − q⃗2), (A.18)AA 

(3)P (τ, k) = 22 (2!FNL)
2IAA(τ, ⃗k | q⃗1, ⃗q2 | q⃗1, ⃗q2, k⃗ − q⃗1 − q⃗2), (A.19)AA 

(4) (2!FNL)
2 

P (τ, k) = 22 IAA(τ, ⃗k | q⃗1, ⃗q1 | k⃗ − q⃗1, ⃗q2, ⃗q1 − q⃗2), (A.20)AA 2! 

(5) (2!FNL)
4 

P (τ, k) = 2 IAA(τ, k⃗ | q⃗1, ⃗q1 | q⃗1 − ⃗k + q⃗3, ⃗q3, ⃗q2, ⃗q2 − q⃗1), (A.21)AA (2!)2 

(6)P (τ, k) = 2 (2!FNL)
4IAA(τ, k⃗ | q⃗1, ⃗q2 | q⃗1 − q⃗3, ⃗q2 − q⃗3, ⃗q3, ⃗q3 − ⃗k), (A.22)AA 

(7)P (τ, k) = (2!FNL)
4IAA(τ, ⃗k | q⃗1, ⃗q2 | q⃗1 − ⃗k + q⃗2 − q⃗3, ⃗q1 − q⃗3, ⃗q2 − q⃗3, ⃗q3) , (A.23)AA 

with Z 
k3 d3⃗ d3⃗q1 q2⃗IAA ′ (τ, ⃗k | q⃗1, ⃗q2 | k⃗1, k2, · · · ) = · · · QA(k⃗, ⃗q1)QA ′ (k⃗, ⃗q2) (A.24)
2π2 (2π)3 (2π)3 � � � � 
× Ik k⃗ − q⃗1 , q1, τ Ik k⃗ − q⃗2 , q2, τ Pg(k1)Pg(k2) . . . , 

with the power spectrum Pg(k) of the Gaussian curvature perturbation ζg defned in Eq. (2.84), 
which takes the form of Eq. (2.85) in the monochromatic case. 

Here, we can see that the constant parameters Ag and FNL can be taken out from the integrals 
(1) (2,3,4)in IAA′ . As a result, the order of each contribution is P = O(F 0 A2), P = O(F 2 A3),AA NL g AA NL g 
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(5,6,7)and P = O(F 4 A4). These are the seven terms which were referred to in Sec. 2.5 and were AA NL g 
(2,3,4) (5,6,7)reduced to three due to the common parameter dependence of P and P .AA AA 

We must now convert this result into an energy density parameter ΩGW(f). Given that f ∝ k 
via Eq. (2.86), the energy density parameter can be computed as � �2 X1 dρGW 1 k 

ΩGW(τ, k) ≡ = PAA′ (τ, k) , (A.25)
ρc d ln k 48 H(τ) 

A,A ′ =+,× 

where the overline denotes oscillation average. In the radiation-dominated era, the source term 
of GW given by Eq. (A.4) becomes negligible soon after the curvature perturbation re-enters the 
horizon, so that scalar-induced gravitational waves behave as the radiation without the source. If 
we denote the energy density parameter in the subhorizon limit during the RD era as ΩRD (k), thenGW 
the present density parameter can be described as [453] � �4/3∗ g ∗(τi) gs,0 

ΩRDΩGW(τ0, k) = Ωr,0 (A.26)∗ GW(k) ,∗ g g (τi)0 s 

∗where the subscript “0" denotes the present value, Ωr is the radiation density parameter, g and 
∗ g represent the efective number of relativistic degrees of freedom contributing to the energy and s 

entropy densities, respectively, and τi is the conformal time when the SIGW start to behave as 
∗radiation. Here, we assume g ∗(τi) = g (τi) = 106.75, which corresponds to the epoch in which the s 

relevant scales for LVK band re-entered the horizon. For a more detailed description of numerically 
computing ΩRD (k), one can refer to [154, 153]. To conclude the computation, one would have toGW 
convert the scale k to frequency with the relation given by Eq. (2.86). 

Eq. (A.26) is the fnal expression we used in our article [5], summarized in Sect. 2.5. We can 
see its shape for diferent FNL values in Fig. 2.5. 
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Appendix B 

Derivation of dipole artifact due to 
Doppler shift 

In this appendix chapter, I include the derivation of the dipole artifact caused in a SGWB by the 
Doppler shift due to the observer’s relative motion, included in the article [3]. This is based on 
similar derivations for the CMB [197, 198]. 

We denote by S a rest frame in which the SGWB is isotropic, and by S ′ the observer’s system, 
which is traveling at a constant relative speed v = βc with respect to S. The parameters of S ′ 
will be denoted with a prime. Both θ = 0 and θ ′ = 0 are defned so that they point towards the 
direction of motion, so it will be necessary to rotate the fnal result to align it with the Earth’s 
rotation axis. 

The Lorentz transformation between θ and θ ′ is then 
cos θ + β 

cos θ ′ = . (B.1)
1 + β cos θ 

Then, for a gravitational wave signal coming from θ in S, the observed gravitational wave frequency 
′ f relates to the emitted one f as p

1 + β cos θ 1 − β2 
′ f = p f = f. (B.2)

1 − β2 1 − β cos θ ′ 

This equation difers from the standard expressions for the Doppler shift by a minus sign, β 7→ −β, 
due to the diferent setup. We now write the series expansion of Eq. (B.2) in β up to the second 
order, � �′ f 12 θ ′ = 1 + β cos θ ′ + β2 cos − + O(β3). (B.3)

f 2 
The term with cos2 θ ′ implies that this order of approximation leads to multipoles l ≤ 2, so the 
Doppler efect is not a pure dipole, as it is commonly assumed. 

In order to compute the angular distribution of the SGWB observed in S ′ , we look for an 
expression for Ω ′ (f ′ , θ ′ ) in terms of Ωgw(f ′ , θ), with the same frequency in both cases. The GW gw 
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Appendix B. Derivation of dipole artifact due to Doppler shift 

energy density can be computed as the number density of gravitational quanta times the energy 
of each of them, which is proportional to the frequency. Similar to Eq. (1) in [197], we defne a 

−1spectral number density n(f, θ), with units of m sr−1Hz−1 . Then, the energy density satisfes 

dρgw ∝ f × n(f, θ), (B.4)
df d2Ω 

which can be understood as an energy fux or intensity. According to Eq. (7) in [197], which reads 
n(f ′ , θ ′ ) = n(f)(f ′ /f)2 , then the defnition of Ωgw(f, ⃗n) in Eq. (3.3) and the previous Eq. (B.4) 
imply � �4′ f 

Ω ′ gw(f ′ , θ ′ ) = Ωgw(f, θ). (B.5)
f 

From now on, we omit the angular dependence notation for brevity. Substituting Eq. (B.3) into 
Eq. (B.5), we get � �4′Ω ′ (f ′ ) f � � gw 

+ β2 = ≈ 1 + 4β cos θ ′ 10 cos2 θ ′ − 2 . (B.6)
Ωgw(f) f 

We now make another series expansion to relate Ωgw(f) to Ωgw(f ′ ), � � �� 
β2 

′ Ωgw(f) ≈ Ωgw f 1 − β cos θ ′ + 
2� � � � 

≈ Ωgw(f ′ ) 1 + α −β cos θ ′ + 
β2 

+ 
A
β2 cos 2 θ ′ , (B.7)

2 2 

where 
f ∂Ωgw f2 ∂2Ωgw

α = , A = . (B.8)
Ωgw ∂f Ωgw ∂f2 

′The expressions appearing in this equation for α and A should use f instead of f . However, since 
the diference is a constant factor, as shown in Eq. (B.3), the results are identical in either case. In 
particular, if Ωgw ∝ fm , then α = m (hence the notation) and A = α(α − 1). 

Therefore, we can therefore compute Ω ′ gw(f ′ , θ ′ ) in terms of Ωgw(f ′ ) by substituting Eq. (B.7) 
into Eq. (B.6) up to O(β2), so that � � � � �� 

A α 
Ω ′ (f ′ , θ ′ ) = Ωgw(f ′ ) 1 + β cos θ ′ (4 − α) + β2 cos 2 θ ′ 10 − 4α + + − 2 . (B.9)gw 2 2 

In particular, when α = 4, it follows that A = 12 and the above equation reduces to Ω ′ (f ′ , θ ′ ) = gw 
Ωgw(f ′ ). This is due to the Lorentz invariance of Ωgw(f)/f

4 , and explains the dip observed in 
Fig. 3.5. 

Using the spherical harmonics in Table 8.1 for the standard spherical coordinates (θ, ϕ) instead 
of (α, δ), r r 

1 3 
Y00(θ, ϕ) = , Y10(θ, ϕ) = cos θ, (B.10)

4π 4π r � � 
5 3 1 

Y20(θ, ϕ) = cos 2 θ − , (B.11)
4π 2 2 
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we can derive the Plm coefcients from Eq. (B.9): � � ��√4 5 1 P00 = 1 + β2 − µ + A 4π, (B.12)
3 6 6 r 
4π P10 = β(4 − µ) , (B.13)
3� � r 

A 2 4π P20 = β2 10 − 4µ + , (B.14)
2 3 5 

with the rest of Pℓm = 0. Given that the dipole points to the θ = 0 direction by hypothesis, only the 
Pl0 are non-zero. However, as indicated at the beginning of this chapter, the actual implementation 
requires a rotation to make the dipole direction correspond to the direction of the relative motion 
shown in Fig. 3.4, which we take from Planck’s measurements. This populates the other Plm(m ̸= 0) 
components. 
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Appendix C 

Analytic estimate of the induced 
spins 

In this appendix chapter, analytic expressions for the induced spins are derived using frame drag-
ging. Nevertheless, in order to get an accurate estimations, one would have to resort to the fourth 
order of the post-Newtonian formalism [278, 383]. The derived expressions are therefore only valid 
as a simple qualitative approach. 

For this purpose, the main idea is to interpret the precession vectors from frame dragging as 
the angular speeds which are induced on the corresponding inertial frames. 

C.1 Ring approximation 

From the rest frame of a black hole, a close encounter with another one with a certain mass m is 
just a point mass current following a certain trajectory r⃗(t), which is exactly a hyperbola in the 
Keplerian limit. This situation is analogous to a black hole located at the center of a massive ring 
of mass m, with a time-varying radius following the equation R(t) = |r⃗(t)| and rotating so that the 
speed of each of its points matches the velocity that the point mass would have. To simplify things, 
we take a stationary situation in which R and ω are constant, with their values corresponding to 
the point of closest approach. 

First, we consider a thin ring of certain mass m1 and radius R, which rotates around its axis at 
a certain angular speed ω. From the PPN(1.5) formalism, the rotation angular momentum of the 
central black hole undergoes a certain precession given by the vector 

2 
Ω⃗ = 

r3 J⃗
 
1, (C.1) 

where J⃗1 is the angular momentum of the ring. This expression is the same one as for the precession 
of the orbital angular momentum of a test particle orbiting a rotating black hole, an efect which 
is known as Lense-Thirring precession [454]. 
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Appendix C. Analytic estimate of the induced spins 

For a thin ring, the moment of inertia with respect to the center is just I = m1R
2 . Therefore, 

2 2 2m1
Ω⃗ = J⃗  

1 = m1R
2ω⃗ = ω,⃗ (C.2)

r3 R3 R 

which relates the angular speed of the ring with that of the induced inertial frame at its center. 
The same relation between Ω⃗ and ω⃗ can be obtained from the equations in [455] in the thin-ring 
approximation. 

We now compute the dimensionless spin that would correspond to a black hole of certain mass 
m2 located at the center of the ring. For this purpose, we assume that the frame-dragging speed Ω is 
completely transferred to the central black hole, which rotates with this angular speed. Taking the 
black hole as a solid sphere whose radius coincides with its Schwarzschild radius RS,2, its moment 
of inertia is 

2 2 8 3I2 = m2R
2 = m2(2m2)

2 = m2. (C.3)S,25 5 5 

With this, we can get the dimensionless spin, 

a J I2Ω 16 m1m2
χ = = = = ω. (C.4)2 2m2 m m 5 R2 2 

Finally, we want to extrapolate this result to the hyperbolic motion of a black hole of mass m1 
around a black hole of mass m2. For this purpose, we express ω and R in terms of two parameters 
which characterize the hyperbolic motion: the velocity at the point of closest approach, v0, and the 
eccentricity of the orbit, e. 

First of all, we take the radius of the ring, R, to be the distance between both black holes at the 
moment of closest approach. As we saw in Eq. (1.202), this distance is given in hyperbolic motion 
by R = a(e − 1), where a is the semi-major axis of the hyperbola and must not be confused with 
the dimensionless spin a. 

Second, when we substitute the ring by a black hole, we keep the same angular momentum. 
Therefore, 

Lring = LBH ⇒ m2R
2ω = m2Rv0 ⇒ ω = v0/R. (C.5) 

Using the expression for v0 in terms of a given by Eq. (1.205), we can substitute the ω in 
Eq. (C.5) into the expression for χ in Eq. (C.4) to get 

16 m1m2 16 m1m2 16 m1m2 1 5χ = v0 = v0 = v0 . (C.6)
5 R2 5 a2(e − 1)2 5 M2 (e + 1)2 

For the particular case m1 = m2, the previous expression is just 

4 1 5χ = v0 . (C.7)
5 (e + 1)2 

For the approach in the next section, it is useful to note that, in order to convert from Ω to χ, 
we have just multiplied by a factor 

χ I 8 
= = m2. (C.8)2Ω m 52 
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C.2. Mass current 

C.2 Mass current 

Another possible approach to compute the spin is introducing a mass m1 current at a position r⃗̃  
with speed v⃗̃. We start by writing the angular velocity of an inertial frame within the gravitational 
potentials ϕ and g⃗, which can be taken from the equation (9.6.12) in Ref. [456], 

Ω⃗ = − 
1 ∇× ⃗g − 

3 
v⃗ ×∇ϕ. (C.9)

2 2 

The second term corresponds to the de Sitter efect, coming from the gravitoelectric part of the 
potential. If we assume that the mass current is symmetrically distributed within a ring, then the 
potential ϕ at the center is constant and we can safely ignore this component. 

Therefore, we just have to compute g⃗, which can be done with the expression Z 
ρ(r⃗′ )v⃗(r⃗′ )

d3 ⃗ ′ g⃗ = −4G r . (C.10)
|r⃗ − r⃗′| 

We will now substitute ρ and v⃗ by the ones corresponding to a point mass current at position 
r⃗̃(φ), where φ is an angular variable that parametrizes the trajectory. Distributing this mass within 
a ring at the same distance does not have an efect over the frst term in (C.9), which is a vector 
parallel to the symmetry axis. We would just do the integration at a later stage. Z 

m1δ
3(r⃗′ − ⃗r̃(φ))v⃗̃(φ) 4Gm1 v⃗̃(φ)

d3 ⃗ ′ g⃗ = −4G r = − . (C.11)
|r⃗ − r⃗′| |r⃗ − ⃗r̃(φ)| 

We now use Eq. (C.9), frst noting that ! ! 
∇ × 

⃗̃v(φ) 
|r⃗ − ⃗r̃(φ)| 

= −⃗̃v(φ) × ∇ · 1 
|r⃗ − ⃗r̃(φ)| 

r⃗ − ⃗r̃(φ) 
= ⃗̃v(φ) × , 

|r⃗ − ⃗r̃(φ)|3 
(C.12) 

where the frst equality comes from the vector identity ∇× (fa⃗) = (∇f) × ⃗a + f(∇× ⃗a), where in 
this case the second term is zero. 

Taking this into account, we can use Eq. (C.9) to get ! 
⃗ r − ⃗ṽ(φ) ⃗ r̃(φ)

Ω⃗ = 2m1∇× = 2m1 v⃗̃(φ) × . (C.13)
|r⃗ − ⃗r̃(φ)| |r⃗ − ⃗r̃(φ)|3 

We can get rid of the r⃗ by staying at the coordinate origin, r⃗ = 0, and thus get (dropping the 
tildes and the φ dependence) 

r⃗ × ⃗v 
Ω⃗ = 2m1 

r3 . (C.14) 

Now, we use several equations from hyperbolic motion, namely 

r = a(e cosh(E) − 1), r⃗ × ⃗v = a(e − 1)v0, (C.15) 
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where the second expression comes from angular momentum conservation and E is the eccentric 
anomaly, related to the true anomaly by [48, 49] � � � � 

2 φ − φ0 e + 1 E 
tan = tanh2 . (C.16)

2 e − 1 2 

As a result, 

(e − 1)v0 2m1 1 (e − 1)3 
5Ω⃗ = 2m1 = v (C.17)

a2(e cosh(E) − 1)3 M2 (e cosh(E) − 1)3 (e + 1)2 0 . 

If we impose E = 0, corresponding to the point of closest approach, φ = φ0, and compute χ, 
we get 

8 1 16 12m1 5 m1m2 5χ = m2 
M2 v0 = v0 , (C.18)

5 (e + 1)2 5 M2 (e + 1)2 

which is, remarkably, the same expression we have obtained for the ring case, Eq. (C.6). 

C.3 From spin-orbit equations at PPN(1.5) 

Alternatively to the previous approaches, we can use some equations from [457]. In this reference, 
the spins of two black holes in hyperbolic motion both follow precession dynamics given by the 
vectors 

ˆ 5/3p 2k ξ et − 1 
Ω⃗i = δi, (C.19)

M (et cosh(E) − 1)3 

for i = 1, 2, where k̂ is the unit vector perpendicular to the orbital angular momentum and 

η 3 p
ξ = Mn, δ1,2 = + (1   1 − 4η), (C.20)

2 4 

η = m1m2/M
2 , m1 ≥ m2, (C.21) 

with n being the mean motion of the hyperbolic orbit and E its eccentric anomaly. Both et and n 
are deviations of the keplerian case, taken at PPN(1.5) order. In our case, we will take them as if 
they were the exact Newtonian values: n = n, et = e. In standard hyperbolic motion, n is given by 

2 3the expression n a = M . 

If we now substitute these expressions, we get 
√ √ 

1 (M/a)5/2 e2 − 1 1 e2 − 1 (e − 1)5/2 
Ωi = δi = δiv 5 

0M (e cosh(E) − 1)3 M (e cosh(E) − 1)3 (e + 1)5/2 

1 1 (e − 1)3 
5 = δiv0 , (C.22)

M (e cosh(E) − 1)3 (e + 1)2 

which is somewhat similar to the expression (C.17). The diference is a factor 

M 
δi. (C.23)

2mi 
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C.4. Diferences between expressions 

We can now compute the dimensionless spins, which in this case we have to split into two 
separate expressions. We also evaluate at E = 0: � � �� 4 6 p m1 1 5χ1 = η + 1 − 1 − 4η v0 , (C.24)

5 5 M (e + 1)2 � � p �� 4 6 m2 1 5χ2 = η + 1 + 1 − 4η v0 . (C.25)
5 5 M (e + 1)2 

The comparison with the ring expression is difcult, due to factors dependent on the masses 
that were not present before. However, for the case m1 = m2, both spins are equal and we get 

7 1 5χ = v0 , (C.26)
10 (e + 1)2 

which is formally identical to the ring case but with a factor 7/8 diference. 

C.4 Diferences between expressions 

In order to better understand the diferences between the three expressions (C.6), (C.24) and (C.25), 
5we can plot the factors f that appear in these expressions before the v0 /(e + 1)2 , which are given 

by Eqs. (C.6), (C.24) and (C.25). These values are shown in Fig. C.1. 

We have also plotted the asymptotic values to which each curve tends to for q → 0. These can 
easily be found from the expressions of each factor in the limit q ≪ 1, 

16 12 
fring, f1.5PN,1 → q, f1.5PN,2 → q. (C.27)

5 5 

Interestingly, for the PPN(1.5) approximation, the induced spin on the most massive black hole 
approaches the same trend as that of the ring. Also, in the PPN(1.5) case, the highest spin is 
induced on the most massive black hole. 

Fig. C.1 also shows that the order of magnitude of the computed spins is essentially the same, 
independent of the method that we use. In particular, the maximum diference between the diferent 
cases is a factor 4/3. 
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10 2 10 1 100

q = m2/m1 (m2 m1)

10 1

f Ring
1.5PN, 1
1.5PN, 2
16/5 q
12/5 q
4/5
7/10

Figure C.1: Factor f versus mass ratio q = m2/m1 (m2 ≤ m1). The trends for q → 0, 1 are also 
provided for each curve. 
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Appendix D 

Corner plots for SGWB constraints 
from Gaia DR3 

This appendix chapter includes complementary plots for Chapter 10. Figs. D.1-D.3 show the 
marginalized 1 and 2-dimensional posterior distributions for the multipole coefcients rlm of the 
VSH decomposition of the proper motion feld, as well as the derived posterior distribution for 
ΩGW. I Fig. D.4, the covariance matrices from our analysis are also shown. 

229 



Appendix D. Corner plots for SGWB constraints from Gaia DR3 

35 9

s10

5
0

tI
m

22

5
0

tR
e

22

5

5

tI
m

21

0
5

tR
e

21

0

10

t 2
0

0
5

s
Im 22

0
5

s
R
e

2
2

0
5

s
Im 21

10

0

s
R
e

21

10
0

s 2
0

5
10

tI
m

11

10

0

tR
e

11

10
0

t 1
0

10
0

s
Im 11

0

10

s
R
e

11

0 10
sRe11

5 5
sIm11

15 0
t10

15 5
tRe11

5 10
t Im11

5 5
s20

8 0
sRe21

0 5
sIm21

0 5
sRe22

0 5
sIm22

0 10
t20

0 5
tRe21

5 5
t Im21

5 0
tRe22

5 0
t Im22

0.1 0.2 0.3
h 2

70ΩGW

Masked
Pure
Astrometric
Intersection

Figure D.1: Posteriors for the masked, pure, astrometric and intersection datasets. The results of 
the intersection and astrometric datasets considerably overlap. 

230 



5 0

s10

0
3

tI
m

22

3

0

tR
e

22

2.5
0.0
2.5

tI
m

21

4

0

tR
e

21

4

0

t 2
0

0
2

s
Im 22

2
0

s
R
e

22

2.5
0.0
2.5

s
Im 21

0

4

s
R
e

21

0
5

s 2
0

4
0

tI
m

11

0

4

tR
e

11

3
0

t 1
0

5

0

s
Im 1
1

0
3

s
R
e

1
1

0 3
sRe11

5 0
sIm11

3 0
t10

0 4
tRe11

4 0
t Im11

0 5
s20

0 4
sRe21

2 2
sIm21

2 0
sRe22

0 3
sIm22

3 0
t20

4 0
tRe21

2 2
t Im21

3 0
tRe22

0 3
t Im22

0.01 0.02 0.03 0.04
h 2

70ΩGW

VLBA
VLBA+GAIA DR1

Figure D.2: Posteriors for the VLBA and VLBA+Gaia DR1 datasets. 

231 



Appendix D. Corner plots for SGWB constraints from Gaia DR3 

10 10

s10

10

0

tI
m

22

0

10

tR
e

22

10

10

tI
m

2
1

40

20

tR
e

2
1

20
40

t 2
0

0
10

s
Im 22

10
0

s
R
e

22

10

30

s
Im 21

10

10

s
R
e

21

10

10

s 2
0

25
0

25

tI
m

11

30
60

tR
e

11

20
0

t 1
0

70
40

s
Im 11

0
30

s
R
e

11

0 30
sRe11

60 20
sIm11

22 2
t10

30 60
tRe11

20 20
t Im11

10 10

s20

10 10
sRe21

10 30
sIm21

8 0
sRe22

0 10
sIm22

20 40
t20

40 20
tRe21

10 10
t Im21

0 10
tRe22

10 0
t Im22

1 2 3 4
h 2

70ΩGW

SDSS+Gaia EDR3

Figure D.3: Posteriors for the SDSS+Gaia EDR3 dataset. 

232 



0 1 0 1 0 1 2 0 1 2

0
1
0
1
0
1
2
0
1
2

s1m

t1m

s2m

t2m

s1m t1m s2m t2m

Masked

2.5 0.0 2.5

0 1 0 1 0 1 2 0 1 2
s1m t1m s2m t2m

Pure

2.5 0.0 2.5

0 1 0 1 0 1 2 0 1 2
s1m t1m s2m t2m

Astrometric

2.5 0.0 2.5

0 1 0 1 0 1 2 0 1 2
s1m t1m s2m t2m

Intersection

2.5 0.0 2.5

0 1 0 1 0 1 2 0 1 2

0
1
0
1
0
1
2
0
1
2

s1m

t1m

s2m

t2m

s1m t1m s2m t2m

VLBA

2 0 2

0 1 0 1 0 1 2 0 1 2
s1m t1m s2m t2m

VLBA+Gaia DR1

2 0 2

0 1 0 1 0 1 2 0 1 2
s1m t1m s2m t2m

SDSS+Gaia EDR3

100 0 100

Figure D.4: Covariance matrices for all the considered datasets, with units (µas/yr)2 . 

233 



List of Figures 

1.1 Efect of the polarizations plus (+) and cross (×) on a circle consisting of test masses. 13 

1.2 Illustration of the distances involved in Eqs. (1.86) and (1.87), where x⃗ is the dis-
′ tance from the source to the observer and x⃗ is an internal distance of the source 

distribution. In the limit in which the distance from the source to the observer is 
′much larger than the internal distances, |x⃗| ≫ |x⃗ ′ |, we can see how x⃗ − x⃗ ≈ x⃗. . . . 21 

1.3 Gravitational-wave strain (left) and black hole trajectories (right) during a CBC, 
showing the inspiral, merger and ringdown in diferent colors. . . . . . . . . . . . . . 24 

1.4 Ellipse with its relevant points, distances and angle. C indicates the center of the 
ellipse, while F indicates the focus which is taken as the origin of the coordinate 
system, while the other focus would be in the symmetric position. P indicates a 
generic point in the ellipse with radial coordinate r and phase φ. The semimajor and 
semiminor axes a and b are also shown, as well as the distance c from the center to 
the focus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

1.5 Left branch of a hyperbola with its relevant points, distances and angles. C indicates 
the center of the hyperbola, A is the branch vertex and F its focus, which is taken as 
the origin of the coordinate system. P indicates a generic point in the left branch with 
radial coordinate r and phase φ. The semimajor axis a is also shown, representing 
the distance from the center to the vertex, as well as the distance c from the center to 
the focus. The dash-dotted lines represent the asymptotes of the hyperbola, while φ0 
is the angle they form with the major axis. Finally, the impact parameter b indicates 
the distance from the focus to the asymptotes. . . . . . . . . . . . . . . . . . . . . . 39 

235 



List of Figures 

2.1 SGWB spectra for several cosmological models (colored solid curves) compared to 
current upper limits (shaded in gray) and expected sensitivities of future experiments 
(black dashed lines), taken from [98]. The fgure includes signals from infation (R2 

infation [76]) along with their modifcation by a stif equation of state [77], but one 
should note that the amplitude and spectral behavior of these signals heavily de-
pend on the model parameters. The GW spectrum of cosmic string loops [78, 79] is 
also presented, as well as the electroweak phase transition [80]. Current constraints 
include the Advanced-LIGO O3 upper limit [28], constraints based on Big Bang 
nucleosynthesis and CMB observations [99], pulsar timing, the astrometric measure-
ments by Gaia explained in Chapter 10, CMB temperature and polarization obser-
vations [100], and pulsar timing arrays [11]. Future expected sensitivities include 
the fnal sensitivity of Advanced-LIGO [101], ET [102], DECIGO [23], LISA [103], 
SKA [104], and LiteBIRD [105]. An observing period of 3 years is assumed for in-
terferometer experiments and 20 years for SKA. The blue-shaded band indicates the 
expected amplitude of the SGWB due to the cosmic population of CBCs, based on 
the observed individual events in the O3 catalog [106], while the expected spectral 
amplitude is extrapolated to the LISA frequency band assuming the f2/3 dependence 
of the inspiral phase (Eq. (1.196)). However, the lower frequencies could be modifed 
by the efects of eccentricity and precession at the time of binary formation [107, 108]. 44 

2.2 Example of a Monte Carlo method for the computation of π. N denotes the number 
2 2of points, while Nin is the number of them inside the radius x + y = 1 (black 

line). The exact value of π is given by 4Acircle/Asquare, so an approximation is given 
by 4Nin/N . For each realization, we can see the number of used points and their 
approximation of π, which statistically gets better as N increases. . . . . . . . . . . 58 

2.3 Gaussian PDF illustrating the 1-sigma (blue), 2-sigma (orange+blue) and 3-sigma 
(green+orange+blue) regions, covering the 68%, 95% and 99.7% of the total central 
probability, respectively. The dashed, vertical line also marks the 95% credible-level 
upper bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

2.4 Corner plot for the parameter estimation run by LVK with a Gaussian prior for α 
and log-uniform prior for Ωα, denoted here by Ωref . Figure taken from [28]. . . . . . 66 

2.5 ΩGW(f) spectrum for diferent FNL values, with Ag = 0.001. . . . . . . . . . . . . . . 67 

2.6 Posterior distributions for the combined SIGW and CBC search, where the blue 
and light blue contours correspond to the 68 and 95% CL regions, respectively. For 
reference, we plot the red line corresponding to F 2 Ag = 1, which is the boundary NL 
where the non-Gaussian terms start to dominate over the Gaussian contribution 
in the Ωgw(f) power spectrum (Eq. (2.87)). The orange line corresponds to the 
asymptotic behavior at large FNL values, following FNLAg = 0.380. . . . . . . . . . . 69 

2.7 Posterior 95% CL contours for Ag − k∗, obtained from the fxed FNL runs. The 95% 
CL region corresponds to the area under these curves. . . . . . . . . . . . . . . . . . 70 

236 



List of Figures 

2.8 Posterior 95% CL contours for Ag −FNL plane (solid lines), obtained from the fxed k∗ 
runs. The dashed lines represent the asymptotic behavior for large non-Gaussianity 
(orange) and the red one marks the boundary where non-Gaussian term start to 
dominate over the Gaussian contribution in Ωgw(f), similar to the lines in Fig. 2.6. 
Dotted lines correspond to analytically derived relations between FNL and Ag which 
show the limit at which PBHs make up 100% of the dark matter, showing small 
diferences between diferent values of k∗. . . . . . . . . . . . . . . . . . . . . . . . . 71 

3.1 Example posterior for an injected and recovered broken power-law model, with 
ln BBPL = 417. The recovery is consistent with the injection, indicated by the redPL 
markers and lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

¯3.2 Heatmap showing the Bayes factor for the broken power-law versus power-law H(f) 
recovery models, for diferent injected values of ϵ and α2 with f0 = 100 Hz and 
α1 = 2/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

3.3 Heatmap showing the Bayes factor for the Galactic plane versus isotropic Plm recov-
ery models, for diferent injected values of ϵ and α and an injected Galactic plane 
Plm model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

3.4 Sky map of the dipole artifact for α = 2/3 and Planck values for the relative speed and 
direction, plotted in a Mollweide projection. The color map represents an arbitrary 
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

3.5 Heatmap showing the Bayes factor for the dipole artifact Plm model versus the 
isotropic one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

4.1 Higgs potential V (x) defned in Eq. (4.9), with the parameters from Eq. (4.11), as 
indicated in [211]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

4.2 Normalized power spectrum of overdensity perturbations for a Gaussian primordial 
curvature power spectrum, as well as other distributions from quantum difusion 
models (Elliptic2 and Elliptic4), efective descriptions using fNL parameters and a 
lognormal power spectrum. The free parameters of the distributions are set so that 
the behavior around the peak is similar. Figure taken from [150], where we refer to 
for additional details on these shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

4.3 Time evolution of the compaction function C(r) for an initial overdensity of δm = 
0.57, leading to the formation of a black hole (left), and δm = 0.45, for which the 
pertubation decays away (right). In both cases, a radiation fuid is considered, ω = 1/3.101 

4.4 Thresholds δc and δ0,c for δm and δ0, respectively, as functions of the equation of 
state parameter ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

4.5 Relativistic degrees of freedom g∗ (left) and equation of state parameter ω (right) evo-
lution with temperature, showing the particles whose decoupling caused the changes. 
Figures taken from [168] and [200]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

237 



List of Figures 

4.6 Left panel: density fraction of PBHs at formation (βf defned in Eq. (4.1)) for the 
diferent PBH masses. Right panel: dark matter fraction of PBHs today. In both 
cases, two models are considered, where the frst one comes from Refs. [241, 242] and 
the second one corresponds to Refs. [243, 244]. Figures taken from [168] and [200]. . 104 

5.1 Comparison of the SGWB spectrum originating from BBHs and CHEs, both for 
β = 0 (solid lines) and 1.28 (dashed lines). The power-law integrated sensitivity 
curves of several GW detectors are also plotted for a signal-to-noise ratio of 10 and 
an observation time of 1 year, following the formalism in [282]. For the BBH curves, 
we take m1 = m2 = 100 − 300 M⊙ and v∞ = 30km/s. The CHE curves correspond 
to the same range of masses with a0 = 5AU, y0 = 2 × 10−3 for ∼ 10Hz, and 
a0 = 5 · 107AU, y0 = 10−5 for the mHz range. For all cases, we take σa, σy = 0.1, 
σm = 0.5, and fPBH = 1. For a smaller fraction of PBHs, the GW spectral amplitude 
simply scales as ΩGW ∝ f2 112 PBH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.1 Initial conditions for numerical BBH simulations, where we take m1 ≥ m2 and p⃗1 = 
−p⃗2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

6.2 Real part of the Weyl scalar Ψ4 defned in Eq. (6.14) in the xy plane for four dif-
ferent instants of the BBH simulation described in Sec. 6.2. It illustrates the junk 
radiation (second panel) generated when the initial conditions (frst panel) relax to 
an equilibrium confguration (third panel). For reference, the fourth panel shows the 
physical gravitational waves generated at the merger. . . . . . . . . . . . . . . . . . . 119 

6.3 Adaptive mesh refnement scheme in the xy plane for diferent instants of the BBH 
simulation described in Sec. 6.2. Each color represents a diferent refnement level, 
for a total of seven in both panels. The inset plots show the transition from one 
refnement level to the following one. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

6.4 Apparent horizons (dashed lines) for some iterations of the GW150914 simulation 
(left panel) and for the hyperbolic simulation with θ2 = 3.12◦ described in Sec. 6.3 
(right panel), with their positions (solid lines) plotted for reference. The blue lines 
denote the heaviest initial black hole, while the orange one denotes the lightest one. 
In the case of GW150914, the red dotted line marks the joint apparent horizon around 
its formation time, and the green line is also the joint horizon, after some relaxation 
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 

6.5 Spin component on the z axis of the two parent black holes of GW150914 before 
their merger, which is indicated by the dashed vertical line, and of the fnal black 
hole after the fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

6.6 Weyl scalar Ψ4 (left) and strain amplitudes for each polarization, h+, h× (right), for 
the GW150914 simulation. These quantities are provided for the multipoles (l, l), 
2 ≤ l ≤ 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

6.7 Black hole positions for the three hyperbolic simulations described in Sec. 6.3, from 
the most open to the closest one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

6.8 Gravitational-wave strains for the three hyperbolic simulations described in Sec. 6.3, 
from the most open to the closest one. . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

238 



List of Figures 

6.9 Spin component on the z axis for both black holes of the hyperbolic simulation 
described in Sec. 6.3 with θ2 = 3.12◦ . The two curves overlap due to the symmetry 
of the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

7.1 Strain of the emitted gravitational wave from the l = k = 2 multipole (upper panel) 
and spin evolution (lower) during a hyperbolic encounter with p/M = 0.49, q = 1 
and θ = 3.12◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 

7.2 Spin evolution during a hyperbolic encounter with p/M = 0.49, q = 1 and diferent 
values of θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 

7.3 Final spin for hyperbolic encounters with diferent momenta and q = 1 versus θ, as 
well as their ft to a power law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 

7.4 Same as Fig. 7.3, with the curves normalized by the maximum spin-up value and 
subtracting θmin to θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 

7.5 Spin evolution during a hyperbolic encounter with p/M = 0.49, θ = 3.12◦ and 
diferent values of q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

7.6 Final spin for hyperbolic encounters with diferent initial momenta and θ correspond-
ing to the q = 1 highest spin-up versus the black hole mass, as well as their linear 
fts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

7.7 Same as Fig. 7.6, where we divided each value of χ by the one corresponding to the 
same initial momentum and q = 1. The points are now open in order to better see 
the overlapping values, and the linear fts now have the restriction to pass through 
the central, common point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

7.8 All the relevant points and quantities involved in the transformation of the Weyl 
scalar from the sphere S0 to the sphere SCM, for an arbitrary space-time point 
p3 = (t, ⃗r3), r3 ∈ SCM(t − R). The dotted line represents the light ray which passes 
through the three relevant points pi, i = 1, 2, 3. . . . . . . . . . . . . . . . . . . . . . 144 

7.9 Strain amplitudes of the q = 0.1 simulation for the modes l = k ≤ 4 (upper panel), 
together with the spin evolution (lower), where the frst black hole is the most massive 
one. The dashed, vertical lines separate the periods before and after the merger. . . 144 

8.1 Illustration of the concept of angular defection. In the absence of a GW, the star at 
source S is observed in the direction of the unitary vector n⃗. With the passage of a 

′gravitational wave, this position is defected to n⃗ (gray), with the angular defection 
′being δn⃗ = n⃗ − n⃗ (red). The gravitational wave is represented by its propagation 

direction p⃗ and plane wavefronts (cyan). . . . . . . . . . . . . . . . . . . . . . . . . . 150 

8.2 Several vector spherical harmonics. Each row presents the spheroidal (left) and 
toroidal (right) modes for the same multipole indices l and m. . . . . . . . . . . . . . 171 

9.1 Illustration of Healpix levels 1 to 4, corresponding to 12, 48, 192 and 768 pixels, 
respectively. Credit: Gorski et al. [434] . . . . . . . . . . . . . . . . . . . . . . . . . . 188 

239 



List of Figures 

9.2 Reduction of number of sources (left vertical axis) and expected non-QSO objects 
(right vertical axis) with a more stringent threshold, in the fltering process for the 
QSO candidate list. If we denote the quantity plotted in the x axis by k, the threshold 
is given by 1 − 10k . The point where the expected non-QSO sources is 1 corresponds 
to the x value 5.27, indicated by the dashed, vertical line, which gives a threshold of 
0.99999465. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

9.3 Proper motion module (in mas/yr) skymap for diferent steps. The top left panel 
shows the full QSO candidates dataset, while the others show the resulting skymap 
after either of the steps or both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 

9.4 Proper motion module (in mas/yr) skymap for diferent considered datasets. . . . . 190 

9.5 Color-magnitude (left) and color-color (right) diagrams for the diferent considered 
datasets, using the G band magnitude and its color indices with respect to the RP 
and BP bands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

9.6 Proper motion module (in mas/yr) skymap for the SDSS+Gaia EDR3 dataset (left 
panel) and source position for VLBA (blue and red) and VLBA+Gaia DR1 (red) 
datasets (right panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

10.1 Diference of behaviors of the usual, least-squares method and the permissive ft given 
by the likelihood in Eq. (10.5). The left panel shows a well-behaved case, where both 
approaches coincide. The right panel shows a case with some outliers that bias the 
least-squares method, which do not signifcantly impact the permissive ft approach. 203 

10.2 Posterior distribution for the quadrupole power P2 for the astrometric dataset, with 
the corresponding chi-square and non-centered chi-square distributions superimposed. 204 

10.3 Fitted vector feld skymap for the intersection dataset. . . . . . . . . . . . . . . . . . 205 

C.1 Factor f versus mass ratio q = m2/m1 (m2 ≤ m1). The trends for q → 0, 1 are also 
provided for each curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 

D.1 Posteriors for the masked, pure, astrometric and intersection datasets. The results 
of the intersection and astrometric datasets considerably overlap. . . . . . . . . . . . 230 

D.2 Posteriors for the VLBA and VLBA+Gaia DR1 datasets. . . . . . . . . . . . . . . . 231 

D.3 Posteriors for the SDSS+Gaia EDR3 dataset. . . . . . . . . . . . . . . . . . . . . . . 232 

D.4 Covariance matrices for all the considered datasets, with units (µas/yr)2 . . . . . . . 233 

240 



List of Tables 

2.1 Broadband estimates Ω̂α given by Eq. (2.65), for a power-law Ωgw of exponent α 
and reference frequency fref = 25 Hz. A separate estimate is provided for O1 [139], 
O2 [122] and O3 [28] LVK data, in this last case separated by baseline, together with 
the joint O1+O2+O3 estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

2.2 95% credible-level upper bounds for the amplitude Ωα of a power-law Ωgw(f) of 
exponent α and reference frequency fref = 25 Hz. A separate estimate is provided for 
uniform and log-uniform priors and for the diferent datasets, consisting on O1 [139], 
O1+O2 [122] and O1+O2+O3 [28] LVK data. Three fxed-α cases are provided, as 
well as one with free α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

2.3 Prior distributions used for the parameter estimation. . . . . . . . . . . . . . . . . . 68 

7.1 Ranges of θ considered for each initial momentum, as well as the equivalent minimum 
distances and ftted impact parameters and eccentricities. . . . . . . . . . . . . . . . 138 

7.2 Fitted parameters for Fig. 7.3 to a power law χ = (θ/θ0)
n , as well as θmin for 

reference and the linear correlation coefcient r2 for the (log(θ), log(χ)) data to the 
corresponding linear function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 

7.3 Fitted parameters for Fig. 7.7, with their linear correlation coefcient r2 and values 
of the central spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

8.1 Spherical harmonics up to l = 2 given by Eq. (8.120). . . . . . . . . . . . . . . . . . 169 

8.2 Vector spherical harmonics up to l = 3 given by Eqs. (8.130), (8.131). . . . . . . . . 172 

8.3 Exact and numerical values for αr in Eq. (8.181) for the frst multipoles up to l = 11. 180l 

9.1 The number of sources in each considered dataset, along with the number of sources 
with redshift, the 25th, 50th and 75th percentiles, the time of arrival to the source in 
the 25th percentile and its corresponding frequency. We also provide the thresholds 
in pQSO for our four main datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 

241 



List of Tables 

10.1 The total quadrupole power obtained from the dipole+quadrupole fts, together 
with the Z score corresponding to the quadrupole, the Bayes factor between the 
dipole+quadrupole and only dipole hypotheses, and the ΩGW estimations (best-ft 
and 95% CL upper limit values). The values correspond to the maximum likelihood 
estimates and the 1-sigma errors are provided in brackets. . . . . . . . . . . . . . . . 205 

10.2 Fitted multipole coefcients, in µas/yr, for the four main considered datasets. The 
values correspond to the maximum likelihood estimates and the 1-sigma errors are 
provided in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 

242 



Bibliography 

[1] S. Jaraba and J. García-Bellido, Black hole induced spins from hyperbolic encounters in 
dense clusters, Phys. Dark Univ. 34 (2021) 100882 [2106.01436]. 

[2] J. García-Bellido, S. Jaraba and S. Kuroyanagi, The stochastic gravitational wave 
background from close hyperbolic encounters of primordial black holes in dense clusters, 
Phys. Dark Univ. 36 (2022) 101009 [2109.11376]. 

[3] L. Tsukada, S. Jaraba, D. Agarwal and E. Floden, Bayesian parameter estimation for 
targeted anisotropic gravitational-wave background, Phys. Rev. D 107 (2023) 023024 
[2208.14421]. 

[4] S. Jaraba, J. García-Bellido, S. Kuroyanagi, S. Ferraiuolo and M. Braglia, Stochastic 
gravitational wave background constraints from Gaia DR3 astrometry, Mon. Not. Roy. 
Astron. Soc. 524 (2023) 3609–3622 [2304.06350]. 

[5] R. Inui, S. Jaraba, S. Kuroyanagi and S. Yokoyama, Constraints on Non-Gaussian 
primordial curvature perturbation from the LIGO-Virgo-KAGRA third observing run, 
2311.05423. 

[6] LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 
[1411.4547]. 

[7] LIGO Scientific, Virgo collaboration, Observation of Gravitational Waves from a 
Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [1602.03837]. 

[8] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a 
Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [2306.16213]. 

[9] EPTA collaboration, The second data release from the European Pulsar Timing Array - I. 
The dataset and timing analysis, Astron. Astrophys. 678 (2023) A48 [2306.16224]. 

[10] D. J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes 
Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [2306.16215]. 

[11] International Pulsar Timing Array collaboration, Comparing recent PTA results on 
the nanohertz stochastic gravitational wave background, 2309.00693. 

[12] VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational 
wave detector, Class. Quant. Grav. 32 (2015) 024001 [1408.3978]. 

243 

https://doi.org/10.1016/j.dark.2021.100882
https://arxiv.org/abs/2106.01436
https://doi.org/10.1016/j.dark.2022.101009
https://arxiv.org/abs/2109.11376
https://doi.org/10.1103/PhysRevD.107.023024
https://arxiv.org/abs/2208.14421
https://doi.org/10.1093/mnras/stad2141
https://doi.org/10.1093/mnras/stad2141
https://arxiv.org/abs/2304.06350
https://arxiv.org/abs/2311.05423
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.3847/2041-8213/acdac6
https://arxiv.org/abs/2306.16213
https://doi.org/10.1051/0004-6361/202346841
https://arxiv.org/abs/2306.16224
https://doi.org/10.3847/2041-8213/acdd02
https://arxiv.org/abs/2306.16215
https://arxiv.org/abs/2309.00693
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978


Bibliography 

[13] KAGRA collaboration, Overview of KAGRA: Detector design and construction history, 
PTEP 2021 (2021) 05A101 [2005.05574]. 

[14] KAGRA, VIRGO, LIGO Scientific collaboration, GWTC-3: Compact Binary 
Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing 
Run, Phys. Rev. X 13 (2023) 041039 [2111.03606]. 

[15] LIGO Scientific, Virgo collaboration, GW170817: Observation of Gravitational Waves 
from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [1710.05832]. 

[16] LIGO Scientific, Virgo collaboration, GW190521: A Binary Black Hole Merger with a 
Total Mass of 150M⊙, Phys. Rev. Lett. 125 (2020) 101102 [2009.01075]. 

[17] M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave 
observatory, Class. Quant. Grav. 27 (2010) 194002. 

[18] D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy 
beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [1907.04833]. 

[19] KAGRA, LIGO Scientific, VIRGO collaboration, Prospects for Observing and 
Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and 
KAGRA, Living Rev. Rel. 21 (2018) 3 [1304.0670]. 

[20] LISA collaboration, Laser Interferometer Space Antenna, 1702.00786. 

[21] TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. 
Grav. 33 (2016) 035010 [1512.02076]. 

[22] W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the 
nature of gravity, Natl. Sci. Rev. 4 (2017) 685–686. 

[23] S. Kawamura et al., Current status of space gravitational wave antenna DECIGO and 
B-DECIGO, PTEP 2021 (2021) 05A105 [2006.13545]. 

[24] Y. B. Zel’dovich and I. D. Novikov, The Hypothesis of Cores Retarded during Expansion and 
the Hot Cosmological Model, Sov. Astron. 10 (1967) 602. 

[25] S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 
152 (1971) 75. 

[26] B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. Roy. Astron. 
Soc. 168 (1974) 399–415. 

[27] B. J. Carr, The Primordial black hole mass spectrum, Astrophys. J. 201 (1975) 1–19. 

[28] KAGRA, Virgo, LIGO Scientific collaboration, Upper limits on the isotropic 
gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing 
run, Phys. Rev. D 104 (2021) 022004 [2101.12130]. 

[29] T. Regimbau, The astrophysical gravitational wave stochastic background, Res. Astron. 
Astrophys. 11 (2011) 369–390 [1101.2762]. 

244 

https://doi.org/10.1093/ptep/ptaa125
https://arxiv.org/abs/2005.05574
https://doi.org/10.1103/PhysRevX.13.041039
https://arxiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://doi.org/10.1103/PhysRevLett.125.101102
https://arxiv.org/abs/2009.01075
https://doi.org/10.1088/0264-9381/27/19/194002
https://arxiv.org/abs/1907.04833
https://doi.org/10.1007/s41114-018-0012-9
https://arxiv.org/abs/1304.0670
https://arxiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://arxiv.org/abs/1512.02076
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1093/ptep/ptab019
https://arxiv.org/abs/2006.13545
https://doi.org/10.1086/153853
https://doi.org/10.1103/PhysRevD.104.022004
https://arxiv.org/abs/2101.12130
https://doi.org/10.1088/1674-4527/11/4/001
https://doi.org/10.1088/1674-4527/11/4/001
https://arxiv.org/abs/1101.2762


Bibliography 

[30] H. Estellés, M. Colleoni, C. García-Quirós, S. Husa, D. Keitel, M. Mateu-Lucena et al., New 
twists in compact binary waveform modeling: A fast time-domain model for precession, 
Phys. Rev. D 105 (2022) 084040 [2105.05872]. 

[31] G. Pratten et al., Computationally efcient models for the dominant and subdominant 
harmonic modes of precessing binary black holes, Phys. Rev. D 103 (2021) 104056 
[2004.06503]. 

[32] J. E. Thompson, E. Hamilton, L. London, S. Ghosh, P. Kolitsidou, C. Hoy et al., 
PhenomXO4a: a phenomenological gravitational-wave model for precessing black-hole 
binaries with higher multipoles and asymmetries, Phys. Rev. D 109 (2024) 063012 
[2312.10025]. 

[33] F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95 (2005) 121101 
[gr-qc/0507014]. 

[34] M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Accurate evolutions of 
orbiting black-hole binaries without excision, Phys. Rev. Lett. 96 (2006) 111101 
[gr-qc/0511048]. 

[35] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz and J. van Meter, Gravitational wave 
extraction from an inspiraling confguration of merging black holes, Phys. Rev. Lett. 96 
(2006) 111102 [gr-qc/0511103]. 

[36] A. Ramos-Buades, A. Buonanno, H. Estellés, M. Khalil, D. P. Mihaylov, S. Ossokine et al., 
Next generation of accurate and efcient multipolar precessing-spin efective-one-body 
waveforms for binary black holes, Phys. Rev. D 108 (2023) 124037 [2303.18046]. 

[37] A. Nagar, P. Rettegno, R. Gamba, S. Albanesi, A. Albertini and S. Bernuzzi, Analytic 
systematics in next generation of efective-one-body gravitational waveform models for future 
observations, Phys. Rev. D 108 (2023) 124018 [2304.09662]. 

[38] L. D. Landau and E. M. Lifschitz, The Classical Theory of Fields, vol. 2 of Course of 
Theoretical Physics. Pergamon Press, Oxford, 1975. 

[39] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford University 
Press, 2007, 10.1093/acprof:oso/9780198570745.001.0001. 

[40] M. Maggiore, Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Oxford University 
Press, 3, 2018. 

[41] L. Bianchi, Sui simboli a quattro indici e sulla curvatura di Riemann, Rend. Acc. Naz. 
Lincei 11 (1902) 3–7. 

[42] J. Stewart, Calculus: early transcendentals. Brooks/Cole, Cengage Learning, 2012. 

[43] S. Chandrasekhar, The Post-Newtonian Equations of Hydrodynamics in General Relativity., 
Astrophys. J. 142 (1965) 1488–1512. 

[44] T. Damour, Gravitational scattering, post-Minkowskian approximation and Efective 
One-Body theory, Phys. Rev. D 94 (2016) 104015 [1609.00354]. 

245 

https://doi.org/10.1103/PhysRevD.105.084040
https://arxiv.org/abs/2105.05872
https://doi.org/10.1103/PhysRevD.103.104056
https://arxiv.org/abs/2004.06503
https://doi.org/10.1103/PhysRevD.109.063012
https://arxiv.org/abs/2312.10025
https://doi.org/10.1103/PhysRevLett.95.121101
https://arxiv.org/abs/gr-qc/0507014
https://doi.org/10.1103/PhysRevLett.96.111101
https://arxiv.org/abs/gr-qc/0511048
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111102
https://arxiv.org/abs/gr-qc/0511103
https://doi.org/10.1103/PhysRevD.108.124037
https://arxiv.org/abs/2303.18046
https://doi.org/10.1103/PhysRevD.108.124018
https://arxiv.org/abs/2304.09662
https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
https://doi.org/10.1086/148432
https://doi.org/10.1103/PhysRevD.94.104015
https://arxiv.org/abs/1609.00354


Bibliography 

[45] L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling 
Compact Binaries, Living Rev. Rel. 17 (2014) 2 [1310.1528]. 

[46] E. Hamilton, L. London and M. Hannam, Ringdown frequencies in black holes formed from 
precessing black-hole binaries, Phys. Rev. D 107 (2023) 104035 [2301.06558]. 

[47] E. W. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes, 
Proc. Roy. Soc. Lond. A 402 (1985) 285–298. 

[48] M. Capderou, Satellites: Orbits and Missions. Springer, 2005. 

[49] O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications. Springer 
Verlag Berlin, 2000. 

[50] P. C. Peters and J. Mathews, Gravitational radiation from point masses in a Keplerian 
orbit, Phys. Rev. 131 (1963) 435–439. 

[51] P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136 
(1964) B1224–B1232. 

[52] R. Courant and D. Hilbert, Methods of mathematical physics, vol. I. New York: Interscience 
Publishers, 1953. 

[53] J. Garcia-Bellido and S. Nesseris, Gravitational wave bursts from Primordial Black Hole 
hyperbolic encounters, Phys. Dark Univ. 18 (2017) 123–126 [1706.02111]. 

[54] J. García-Bellido and S. Nesseris, Gravitational wave energy emission and detection rates of 
Primordial Black Hole hyperbolic encounters, Phys. Dark Univ. 21 (2018) 61–69 
[1711.09702]. 

[55] S. Mukherjee, S. Mitra and S. Chatterjee, Gravitational wave observatories may be able to 
detect hyperbolic encounters of black holes, Mon. Not. Roy. Astron. Soc. 508 (2021) 
5064–5073 [2010.00916]. 

[56] R. Gamba, M. Breschi, G. Carullo, S. Albanesi, P. Rettegno, S. Bernuzzi et al., GW190521 
as a dynamical capture of two nonspinning black holes, Nature Astron. 7 (2023) 11–17 
[2106.05575]. 

[57] G. Morrás, J. García-Bellido and S. Nesseris, Search for black hole hyperbolic encounters 
with gravitational wave detectors, Phys. Dark Univ. 35 (2022) 100932 [2110.08000]. 

[58] A. Chowdhuri, R. K. Singh, K. Kangsabanik and A. Bhattacharyya, Gravitational radiation 
from hyperbolic encounters in the presence of dark matter, 2306.11787. 

[59] M. Caldarola, S. Kuroyanagi, S. Nesseris and J. Garcia-Bellido, Efects of orbital precession 
on hyperbolic encounters, Phys. Rev. D 109 (2024) 064001 [2307.00915]. 

[60] A. Roskill, M. Caldarola, S. Kuroyanagi and S. Nesseris, Mass octupole and current 
quadrupole corrections to gravitational wave emission from close hyperbolic encounters, 
2310.07439. 

246 

https://doi.org/10.12942/lrr-2014-2
https://arxiv.org/abs/1310.1528
https://doi.org/10.1103/PhysRevD.107.104035
https://arxiv.org/abs/2301.06558
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1016/j.dark.2017.10.002
https://arxiv.org/abs/1706.02111
https://doi.org/10.1016/j.dark.2018.06.001
https://arxiv.org/abs/1711.09702
https://doi.org/10.1093/mnras/stab2721
https://doi.org/10.1093/mnras/stab2721
https://arxiv.org/abs/2010.00916
https://doi.org/10.1038/s41550-022-01813-w
https://arxiv.org/abs/2106.05575
https://doi.org/10.1016/j.dark.2021.100932
https://arxiv.org/abs/2110.08000
https://arxiv.org/abs/2306.11787
https://doi.org/10.1103/PhysRevD.109.064001
https://arxiv.org/abs/2307.00915
https://arxiv.org/abs/2310.07439


Bibliography 

[61] S. Bini, S. Tiwari, Y. Xu, L. Smith, M. Ebersold, G. Principe et al., Search for hyperbolic 
encounters of compact objects in the third LIGO-Virgo-KAGRA observing run, Phys. Rev. D 
109 (2024) 042009 [2311.06630]. 

[62] M. Kerachian, S. Mukherjee, G. Lukes-Gerakopoulos and S. Mitra, Detectability of 
stochastic gravitational wave background from weakly hyperbolic encounters, Astron. 
Astrophys. 684 (2024) A17 [2311.16634]. 

[63] M. Teuscher, A. Barrau and K. Martineau, Elementary considerations on gravitational 
waves from hyperbolic encounters, 2402.10706. 

[64] A. Barrau, J. García-Bellido, K. Martineau and M. Teuscher, Prospects for detection of ultra 
high frequency gravitational waves from hyperbolic encounters with resonant cavities, 
2404.08379. 

[65] J. García-Bellido and S. Clesse, Constraints from microlensing experiments on clustered 
primordial black holes, Phys. Dark Univ. 19 (2018) 144–148 [1710.04694]. 

[66] M. S. Turner, Detectability of infation produced gravitational waves, Phys. Rev. D 55 
(1997) R435–R439 [astro-ph/9607066]. 

[67] S. Capozziello, M. De Laurentis, F. De Paolis, G. Ingrosso and A. Nucita, Gravitational 
waves from hyperbolic encounters, Mod. Phys. Lett. A 23 (2008) 99–107 [0801.0122]. 

[68] L. De Vittori, P. Jetzer and A. Klein, Gravitational wave energy spectrum of hyperbolic 
encounters, Phys. Rev. D 86 (2012) 044017 [1207.5359]. 

[69] M. Turner, Gravitational radiation from point-masses in unbound orbits: Newtonian results., 
Astrophys. J. 216 (1977) 610-619. 

[70] K. Crocker, T. Prestegard, V. Mandic, T. Regimbau, K. Olive and E. Vangioni, Systematic 
study of the stochastic gravitational-wave background due to stellar core collapse, Phys. Rev. 
D 95 (2017) 063015 [1701.02638]. 

[71] M. Arimoto et al., Gravitational Wave Physics and Astronomy in the nascent era, 
2104.02445. 

[72] S. Marassi, R. Schneider and V. Ferrari, Gravitational wave backgrounds and the cosmic 
transition from Population III to Population II stars, Mon. Not. Roy. Astron. Soc. 398 
(2009) 293 [0906.0461]. 

[73] B. Allen and J. D. Romano, Detecting a stochastic background of gravitational radiation: 
Signal processing strategies and sensitivities, Phys. Rev. D 59 (1999) 102001 
[gr-qc/9710117]. 

[74] M. R. Adams and N. J. Cornish, Detecting a Stochastic Gravitational Wave Background in 
the presence of a Galactic Foreground and Instrument Noise, Phys. Rev. D 89 (2014) 
022001 [1307.4116]. 

[75] P. Amaro-Seoane et al., Low-frequency gravitational-wave science with eLISA/NGO, Class. 
Quant. Grav. 29 (2012) 124016 [1202.0839]. 

247 

https://doi.org/10.1103/PhysRevD.109.042009
https://doi.org/10.1103/PhysRevD.109.042009
https://arxiv.org/abs/2311.06630
https://doi.org/10.1051/0004-6361/202348747
https://doi.org/10.1051/0004-6361/202348747
https://arxiv.org/abs/2311.16634
https://arxiv.org/abs/2402.10706
https://arxiv.org/abs/2404.08379
https://doi.org/10.1016/j.dark.2018.01.001
https://arxiv.org/abs/1710.04694
https://doi.org/10.1103/PhysRevD.55.R435
https://doi.org/10.1103/PhysRevD.55.R435
https://arxiv.org/abs/astro-ph/9607066
https://doi.org/10.1142/S0217732308026236
https://arxiv.org/abs/0801.0122
https://doi.org/10.1103/PhysRevD.86.044017
https://arxiv.org/abs/1207.5359
https://doi.org/10.1086/155501
https://doi.org/10.1103/PhysRevD.95.063015
https://doi.org/10.1103/PhysRevD.95.063015
https://arxiv.org/abs/1701.02638
https://arxiv.org/abs/2104.02445
https://doi.org/10.1111/j.1365-2966.2009.15120.x
https://doi.org/10.1111/j.1365-2966.2009.15120.x
https://arxiv.org/abs/0906.0461
https://doi.org/10.1103/PhysRevD.59.102001
https://arxiv.org/abs/gr-qc/9710117
https://doi.org/10.1103/PhysRevD.89.022001
https://doi.org/10.1103/PhysRevD.89.022001
https://arxiv.org/abs/1307.4116
https://doi.org/10.1088/0264-9381/29/12/124016
https://doi.org/10.1088/0264-9381/29/12/124016
https://arxiv.org/abs/1202.0839


Bibliography 

[76] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. 
Lett. B 91 (1980) 99–102. 

[77] M. Giovannini, Gravitational waves constraints on postinfationary phases stifer than 
radiation, Phys. Rev. D 58 (1998) 083504 [hep-ph/9806329]. 

[78] T. Damour and A. Vilenkin, Gravitational wave bursts from cosmic strings, Phys. Rev. Lett. 
85 (2000) 3761–3764 [gr-qc/0004075]. 

[79] T. Damour and A. Vilenkin, Gravitational wave bursts from cusps and kinks on cosmic 
strings, Phys. Rev. D 64 (2001) 064008 [gr-qc/0104026]. 

[80] A. Kosowsky and M. S. Turner, Gravitational radiation from colliding vacuum bubbles: 
envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372–4391 
[astro-ph/9211004]. 

[81] J. Garcia-Bellido, M. Peloso and C. Unal, Gravitational Wave signatures of infationary 
models from Primordial Black Hole Dark Matter, JCAP 09 (2017) 013 [1707.02441]. 

[82] A. Linde, S. Mooij and E. Pajer, Gauge feld production in supergravity infation: Local 
non-Gaussianity and primordial black holes, Phys. Rev. D 87 (2013) 103506 [1212.1693]. 

[83] E. Bugaev and P. Klimai, Axion infation with gauge feld production and primordial black 
holes, Phys. Rev. D 90 (2014) 103501 [1312.7435]. 

[84] V. Domcke, F. Muia, M. Pieroni and L. T. Witkowski, PBH dark matter from axion 
infation, JCAP 07 (2017) 048 [1704.03464]. 

[85] J. Garcia-Bellido, M. Peloso and C. Unal, Gravitational waves at interferometer scales and 
primordial black holes in axion infation, JCAP 12 (2016) 031 [1610.03763]. 

[86] O. Özsoy and Z. Lalak, Primordial black holes as dark matter and gravitational waves from 
bumpy axion infation, JCAP 01 (2021) 040 [2008.07549]. 

[87] O. Özsoy, Synthetic Gravitational Waves from a Rolling Axion Monodromy, JCAP 04 
(2021) 040 [2005.10280]. 

[88] C. T. Byrnes, P. S. Cole and S. P. Patil, Steepest growth of the power spectrum and 
primordial black holes, JCAP 06 (2019) 028 [1811.11158]. 

[89] T. Nakama, Stochastic gravitational waves associated with primordial black holes formed 
during an early matter era, Phys. Rev. D 101 (2020) 063519. 

[90] C. Ünal, E. D. Kovetz and S. P. Patil, Multimessenger probes of infationary fuctuations 
and primordial black holes, Phys. Rev. D 103 (2021) 063519 [2008.11184]. 

[91] K. N. Ananda, C. Clarkson and D. Wands, The Cosmological gravitational wave background 
from primordial density perturbations, Phys. Rev. D 75 (2007) 123518 [gr-qc/0612013]. 

[92] D. Baumann, P. J. Steinhardt, K. Takahashi and K. Ichiki, Gravitational Wave Spectrum 
Induced by Primordial Scalar Perturbations, Phys. Rev. D 76 (2007) 084019 
[hep-th/0703290]. 

248 

https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.58.083504
https://arxiv.org/abs/hep-ph/9806329
https://doi.org/10.1103/PhysRevLett.85.3761
https://doi.org/10.1103/PhysRevLett.85.3761
https://arxiv.org/abs/gr-qc/0004075
https://doi.org/10.1103/PhysRevD.64.064008
https://arxiv.org/abs/gr-qc/0104026
https://doi.org/10.1103/PhysRevD.47.4372
https://arxiv.org/abs/astro-ph/9211004
https://doi.org/10.1088/1475-7516/2017/09/013
https://arxiv.org/abs/1707.02441
https://doi.org/10.1103/PhysRevD.87.103506
https://arxiv.org/abs/1212.1693
https://doi.org/10.1103/PhysRevD.90.103501
https://arxiv.org/abs/1312.7435
https://doi.org/10.1088/1475-7516/2017/07/048
https://arxiv.org/abs/1704.03464
https://doi.org/10.1088/1475-7516/2016/12/031
https://arxiv.org/abs/1610.03763
https://doi.org/10.1088/1475-7516/2021/01/040
https://arxiv.org/abs/2008.07549
https://doi.org/10.1088/1475-7516/2021/04/040
https://doi.org/10.1088/1475-7516/2021/04/040
https://arxiv.org/abs/2005.10280
https://doi.org/10.1088/1475-7516/2019/06/028
https://arxiv.org/abs/1811.11158
https://doi.org/10.1103/PhysRevD.101.063519
https://doi.org/10.1103/PhysRevD.103.063519
https://arxiv.org/abs/2008.11184
https://doi.org/10.1103/PhysRevD.75.123518
https://arxiv.org/abs/gr-qc/0612013
https://doi.org/10.1103/PhysRevD.76.084019
https://arxiv.org/abs/hep-th/0703290


Bibliography 

[93] R. Saito and J. Yokoyama, Gravitational wave background as a probe of the primordial black 
hole abundance, Phys. Rev. Lett. 102 (2009) 161101 [0812.4339]. 

[94] G. Domènech, Scalar Induced Gravitational Waves Review, Universe 7 (2021) 398 
[2109.01398]. 

[95] K. Inomata and T. Nakama, Gravitational waves induced by scalar perturbations as probes 
of the small-scale primordial spectrum, Phys. Rev. D 99 (2019) 043511 [1812.00674]. 

[96] S. J. Kapadia, K. Lal Pandey, T. Suyama, S. Kandhasamy and P. Ajith, Search for the 
Stochastic Gravitational-wave Background Induced by Primordial Curvature Perturbations in 
LIGO’s Second Observing Run, Astrophys. J. Lett. 910 (2021) L4 [2009.05514]. 

[97] A. Romero-Rodriguez, M. Martinez, O. Pujolàs, M. Sakellariadou and V. Vaskonen, Search 
for a Scalar Induced Stochastic Gravitational Wave Background in the Third LIGO-Virgo 
Observing Run, Phys. Rev. Lett. 128 (2022) 051301 [2107.11660]. 

[98] A. Romero-Rodriguez and S. Kuroyanagi, LVK constraints on PBHs from stochastic 
gravitational wave background searches, 2024. 

[99] T.-H. Yeh, J. Shelton, K. A. Olive and B. D. Fields, Probing physics beyond the standard 
model: limits from BBN and the CMB independently and combined, JCAP 10 (2022) 046 
[2207.13133]. 

[100] BICEP, Keck collaboration, Improved Constraints on Primordial Gravitational Waves 
using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, 
Phys. Rev. Lett. 127 (2021) 151301 [2110.00483]. 

[101] LIGO Scientific, Virgo collaboration, GW150914: Implications for the stochastic 
gravitational wave background from binary black holes, Phys. Rev. Lett. 116 (2016) 131102 
[1602.03847]. 

[102] LIGO Scientific collaboration, Exploring the Sensitivity of Next Generation Gravitational 
Wave Detectors, Class. Quant. Grav. 34 (2017) 044001 [1607.08697]. 

[103] M. Colpi et al., LISA Defnition Study Report, 2402.07571. 

[104] P. E. Dewdney, P. J. Hall, R. T. Schilizzi and T. J. L. W. Lazio, The Square Kilometre 
Array, in Proceedings of the IEEE, vol. 97, pp. 1482–1496, 8, 2009, DOI. 

[105] LiteBIRD collaboration, LiteBIRD: JAXA’s new strategic L-class mission for all-sky 
surveys of cosmic microwave background polarization, Proc. SPIE Int. Soc. Opt. Eng. 11443 
(2020) 114432F [2101.12449]. 

[106] KAGRA, VIRGO, LIGO Scientific collaboration, Population of Merging Compact 
Binaries Inferred Using Gravitational Waves through GWTC-3, Phys. Rev. X 13 (2023) 
011048 [2111.03634]. 

[107] D. J. D’Orazio and J. Samsing, Black Hole Mergers From Globular Clusters Observable by 
LISA II: Resolved Eccentric Sources and the Gravitational Wave Background, Mon. Not. 
Roy. Astron. Soc. 481 (2018) 4775–4785 [1805.06194]. 

249 

https://doi.org/10.1103/PhysRevLett.102.161101
https://arxiv.org/abs/0812.4339
https://doi.org/10.3390/universe7110398
https://arxiv.org/abs/2109.01398
https://doi.org/10.1103/PhysRevD.99.043511
https://arxiv.org/abs/1812.00674
https://doi.org/10.3847/2041-8213/abe86e
https://arxiv.org/abs/2009.05514
https://doi.org/10.1103/PhysRevLett.128.051301
https://arxiv.org/abs/2107.11660
https://doi.org/10.1088/1475-7516/2022/10/046
https://arxiv.org/abs/2207.13133
https://doi.org/10.1103/PhysRevLett.127.151301
https://arxiv.org/abs/2110.00483
https://doi.org/10.1103/PhysRevLett.116.131102
https://arxiv.org/abs/1602.03847
https://doi.org/10.1088/1361-6382/aa51f4
https://arxiv.org/abs/1607.08697
https://arxiv.org/abs/2402.07571
https://doi.org/10.1109/JPROC.2009.2021005
https://doi.org/10.1117/12.2563050
https://doi.org/10.1117/12.2563050
https://arxiv.org/abs/2101.12449
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://doi.org/10.1093/mnras/sty2568
https://doi.org/10.1093/mnras/sty2568
https://arxiv.org/abs/1805.06194


Bibliography 

[108] Y. Zhao and Y. Lu, Stochastic Gravitational Wave Background and Eccentric Stellar 
Compact Binaries, Mon. Not. Roy. Astron. Soc. 500 (2020) 1421–1436 [2009.01436]. 

[109] A. I. Renzini, B. Goncharov, A. C. Jenkins and P. M. Meyers, Stochastic 
Gravitational-Wave Backgrounds: Current Detection Eforts and Future Prospects, Galaxies 
10 (2022) 34 [2202.00178]. 

[110] A. I. Renzini et al., pygwb: A Python-based Library for Gravitational-wave Background 
Searches, Astrophys. J. 952 (2023) 25 [2303.15696]. 

[111] E. Thrane, S. Ballmer, J. D. Romano, S. Mitra, D. Talukder, S. Bose et al., Probing the 
anisotropies of a stochastic gravitational-wave background using a network of ground-based 
laser interferometers, Phys. Rev. D 80 (2009) 122002 [0910.0858]. 

[112] J. D. Romano and N. J. Cornish, Detection methods for stochastic gravitational-wave 
backgrounds: a unifed treatment, Living Rev. Rel. 20 (2017) 2 [1608.06889]. 

[113] M. Rouaud, Probability, statistics and estimation, Propagation of uncertainties 191 (2013) 
1110. 

[114] J. L. Cook and L. Sorbo, Particle production during infation and gravitational waves 
detectable by ground-based interferometers, Phys. Rev. D 85 (2012) 023534 [1109.0022]. 

[115] B. F. Schutz, Networks of gravitational wave detectors and three fgures of merit, Class. 
Quant. Grav. 28 (2011) 125023 [1102.5421]. 

[116] LIGO Scientific, VIRGO collaboration, Searching for stochastic gravitational waves 
using data from the two colocated LIGO Hanford detectors, Phys. Rev. D 91 (2015) 022003 
[1410.6211]. 

[117] P. M. Meyers, K. Martinovic, N. Christensen and M. Sakellariadou, Detecting a stochastic 
gravitational-wave background in the presence of correlated magnetic noise, Phys. Rev. D 
102 (2020) 102005 [2008.00789]. 

[118] I. Kowalska-Leszczynska et al., Globally coherent short duration magnetic feld transients 
and their efect on ground based gravitational-wave detectors, Class. Quant. Grav. 34 (2017) 
074002 [1612.01102]. 

[119] M. W. Coughlin et al., Measurement and subtraction of Schumann resonances at 
gravitational-wave interferometers, Phys. Rev. D 97 (2018) 102007 [1802.00885]. 

[120] E. Thrane, N. Christensen and R. Schofeld, Correlated magnetic noise in global networks of 
gravitational-wave interferometers: observations and implications, Phys. Rev. D 87 (2013) 
123009 [1303.2613]. 

[121] E. Thrane, N. Christensen, R. M. S. Schofeld and A. Efer, Correlated noise in networks of 
gravitational-wave detectors: subtraction and mitigation, Phys. Rev. D 90 (2014) 023013 
[1406.2367]. 

[122] LIGO Scientific, Virgo collaboration, Search for the isotropic stochastic background 
using data from Advanced LIGO’s second observing run, Phys. Rev. D 100 (2019) 061101 
[1903.02886]. 

250 

https://doi.org/10.1093/mnras/staa2707
https://arxiv.org/abs/2009.01436
https://doi.org/10.3390/galaxies10010034
https://doi.org/10.3390/galaxies10010034
https://arxiv.org/abs/2202.00178
https://doi.org/10.3847/1538-4357/acd775
https://arxiv.org/abs/2303.15696
https://doi.org/10.1103/PhysRevD.80.122002
https://arxiv.org/abs/0910.0858
https://doi.org/10.1007/s41114-017-0004-1
https://arxiv.org/abs/1608.06889
https://doi.org/10.1103/PhysRevD.85.023534
https://arxiv.org/abs/1109.0022
https://doi.org/10.1088/0264-9381/28/12/125023
https://doi.org/10.1088/0264-9381/28/12/125023
https://arxiv.org/abs/1102.5421
https://doi.org/10.1103/PhysRevD.91.022003
https://arxiv.org/abs/1410.6211
https://doi.org/10.1103/PhysRevD.102.102005
https://doi.org/10.1103/PhysRevD.102.102005
https://arxiv.org/abs/2008.00789
https://doi.org/10.1088/1361-6382/aa60eb
https://doi.org/10.1088/1361-6382/aa60eb
https://arxiv.org/abs/1612.01102
https://doi.org/10.1103/PhysRevD.97.102007
https://arxiv.org/abs/1802.00885
https://doi.org/10.1103/PhysRevD.87.123009
https://doi.org/10.1103/PhysRevD.87.123009
https://arxiv.org/abs/1303.2613
https://doi.org/10.1103/PhysRevD.90.023013
https://arxiv.org/abs/1406.2367
https://doi.org/10.1103/PhysRevD.100.061101
https://arxiv.org/abs/1903.02886


Bibliography 

[123] D. R. Cox, Principles of Statistical Inference. Cambridge University Press, 2006. 

[124] G. Ashton et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave 
astronomy, Astrophys. J. Suppl. 241 (2019) 27 [1811.02042]. 

[125] R. E. Kass and A. E. Raftery, Bayes factors, Journal of the American Statistical Association 
90 (1995) 773-795. 

[126] E. Thrane and C. Talbot, An introduction to Bayesian inference in gravitational-wave 
astronomy: parameter estimation, model selection, and hierarchical models, Publ. Astron. 
Soc. Austral. 36 (2019) e010 [1809.02293]. 

[127] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of 
state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087–1092. 

[128] W. K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their 
Applications, Biometrika 57 (1970) 97–109. 

[129] N. Metropolis and S. Ulam, The monte carlo method, Journal of the American Statistical 
Association 44 (1949) 335–341. 

[130] N. Metropolis, The Beginning of the Monte Carlo Method, in Los Alamos Science Special 
Issue, vol. 15, pp. 125–130, 1987. 

[131] D. Foreman-Mackey, D. W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer, 
Publ. Astron. Soc. Pac. 125 (2013) 306–312 [1202.3665]. 

[132] A.-P. Oriol, A. Virgile, C. Colin, D. Larry, F. C. J., K. Maxim et al., Pymc: A modern and 
comprehensive probabilistic programming framework in python, PeerJ Computer Science 9 
(2023) e1516. 

[133] J. Goodman and J. Weare, Ensemble samplers with afne invariance, Communications in 
Applied Mathematics and Computational Science 5 (2010) 65-80. 

[134] J. Skilling, Nested Sampling, AIP Conf. Proc. 735 (2004) 395. 

[135] J. Buchner, A. Georgakakis, K. Nandra, L. Hsu, C. Rangel, M. Brightman et al., X-ray 
spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and 
catalogue, Astron. Astrophys. 564 (2014) A125 [1402.0004]. 

[136] W. J. Handley, M. P. Hobson and A. N. Lasenby, PolyChord: nested sampling for 
cosmology, Mon. Not. Roy. Astron. Soc. 450 (2015) L61–L65 [1502.01856]. 

[137] W. J. Handley, M. P. Hobson and A. N. Lasenby, polychord: next-generation nested 
sampling, Mon. Not. Roy. Astron. Soc. 453 (2015) 4385–4399 [1506.00171]. 

[138] J. S. Speagle, dynesty: a dynamic nested sampling package for estimating Bayesian 
posteriors and evidences, Mon. Not. Roy. Astron. Soc. 493 (2020) 3132–3158 [1904.02180]. 

[139] LIGO Scientific, Virgo collaboration, Upper Limits on the Stochastic 
Gravitational-Wave Background from Advanced LIGO’s First Observing Run, Phys. Rev. 
Lett. 118 (2017) 121101 [1612.02029]. 

251 

https://doi.org/10.3847/1538-4365/ab06fc
https://arxiv.org/abs/1811.02042
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1017/pasa.2019.2
https://doi.org/10.1017/pasa.2019.2
https://arxiv.org/abs/1809.02293
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1086/670067
https://arxiv.org/abs/1202.3665
https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1063/1.1835238
https://doi.org/10.1051/0004-6361/201322971
https://arxiv.org/abs/1402.0004
https://doi.org/10.1093/mnrasl/slv047
https://arxiv.org/abs/1502.01856
https://doi.org/10.1093/mnras/stv1911
https://arxiv.org/abs/1506.00171
https://doi.org/10.1093/mnras/staa278
https://arxiv.org/abs/1904.02180
https://doi.org/10.1103/PhysRevLett.118.121101
https://doi.org/10.1103/PhysRevLett.118.121101
https://arxiv.org/abs/1612.02029


Bibliography 

[140] J. Darling, A. E. Truebenbach and J. Paine, Astrometric Limits on the Stochastic 
Gravitational Wave Background, Astrophys. J. 861 (2018) 113 [1804.06986]. 

[141] “Note about sigmas in corner python package documentation.” 
https://corner.readthedocs.io/en/latest/pages/sigmas/. 

[142] J. García-Bellido, An analytical approach to Bayesian evidence computation, Universe 9 
(2023) 118 [2301.13783]. 

[143] J. T. Whelan, E. L. Robinson, J. D. Romano and E. H. Thrane, Treatment of Calibration 
Uncertainty in Multi-Baseline Cross-Correlation Searches for Gravitational Waves, J. Phys. 
Conf. Ser. 484 (2014) 012027 [1205.3112]. 

[144] A. A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the 
universe, JETP Lett. 30 (1979) 682–685. 

[145] A. Matas, I. Dvorkin, T. Regimbau, and A. Romero. 
https://dcc.ligo.org/T2000512/public, 2021. 

[146] LIGO Scientific collaboration, Searching for a Stochastic Background of Gravitational 
Waves with LIGO, Astrophys. J. 659 (2007) 918–930 [astro-ph/0608606]. 

[147] https://pypi.org/project/pygwb. 

[148] J. M. Ezquiaga and J. García-Bellido, Quantum difusion beyond slow-roll: implications for 
primordial black-hole production, JCAP 08 (2018) 018 [1805.06731]. 

[149] J. M. Ezquiaga, J. García-Bellido and V. Vennin, The exponential tail of infationary 
fuctuations: consequences for primordial black holes, JCAP 03 (2020) 029 [1912.05399]. 

[150] J. M. Ezquiaga, J. García-Bellido and V. Vennin, Massive Galaxy Clusters Like El Gordo 
Hint at Primordial Quantum Difusion, Phys. Rev. Lett. 130 (2023) 121003 [2207.06317]. 

[151] M. Biagetti, G. Franciolini, A. Kehagias and A. Riotto, Primordial Black Holes from 
Infation and Quantum Difusion, JCAP 07 (2018) 032 [1804.07124]. 

[152] K. Kohri and T. Terada, Semianalytic calculation of gravitational wave spectrum nonlinearly 
induced from primordial curvature perturbations, Phys. Rev. D 97 (2018) 123532 
[1804.08577]. 

[153] K. T. Abe, R. Inui, Y. Tada and S. Yokoyama, Primordial black holes and gravitational 
waves induced by exponential-tailed perturbations, JCAP 05 (2023) 044 [2209.13891]. 

[154] P. Adshead, K. D. Lozanov and Z. J. Weiner, Non-Gaussianity and the induced gravitational 
wave background, JCAP 10 (2021) 080 [2105.01659]. 

[155] R.-g. Cai, S. Pi and M. Sasaki, Gravitational Waves Induced by non-Gaussian Scalar 
Perturbations, Phys. Rev. Lett. 122 (2019) 201101 [1810.11000]. 

[156] C. Unal, Imprints of Primordial Non-Gaussianity on Gravitational Wave Spectrum, Phys. 
Rev. D 99 (2019) 041301 [1811.09151]. 

252 

https://doi.org/10.3847/1538-4357/aac772
https://arxiv.org/abs/1804.06986
https://corner.readthedocs.io/en/latest/pages/sigmas/
https://doi.org/10.3390/universe9030118
https://doi.org/10.3390/universe9030118
https://arxiv.org/abs/2301.13783
https://doi.org/10.1088/1742-6596/484/1/012027
https://doi.org/10.1088/1742-6596/484/1/012027
https://arxiv.org/abs/1205.3112
https://dcc.ligo.org/T2000512/public
https://doi.org/10.1086/511329
https://arxiv.org/abs/astro-ph/0608606
https://pypi.org/project/pygwb
https://doi.org/10.1088/1475-7516/2018/08/018
https://arxiv.org/abs/1805.06731
https://doi.org/10.1088/1475-7516/2020/03/029
https://arxiv.org/abs/1912.05399
https://doi.org/10.1103/PhysRevLett.130.121003
https://arxiv.org/abs/2207.06317
https://doi.org/10.1088/1475-7516/2018/07/032
https://arxiv.org/abs/1804.07124
https://doi.org/10.1103/PhysRevD.97.123532
https://arxiv.org/abs/1804.08577
https://doi.org/10.1088/1475-7516/2023/05/044
https://arxiv.org/abs/2209.13891
https://doi.org/10.1088/1475-7516/2021/10/080
https://arxiv.org/abs/2105.01659
https://doi.org/10.1103/PhysRevLett.122.201101
https://arxiv.org/abs/1810.11000
https://doi.org/10.1103/PhysRevD.99.041301
https://doi.org/10.1103/PhysRevD.99.041301
https://arxiv.org/abs/1811.09151


Bibliography 

[157] LIGO Scientific, Virgo collaboration, Open data from the frst and second observing 
runs of Advanced LIGO and Advanced Virgo, SoftwareX 13 (2021) 100658 [1912.11716]. 

[158] KAGRA, VIRGO, LIGO Scientific collaboration, Open Data from the Third Observing 
Run of LIGO, Virgo, KAGRA, and GEO, Astrophys. J. Suppl. 267 (2023) 29 [2302.03676]. 

[159] J. M. Bardeen, J. R. Bond, N. Kaiser and A. S. Szalay, The Statistics of Peaks of Gaussian 
Random Fields, Astrophys. J. 304 (1986) 15–61. 

[160] C.-M. Yoo, T. Harada, J. Garriga and K. Kohri, Primordial black hole abundance from 
random Gaussian curvature perturbations and a local density threshold, PTEP 2018 (2018) 
123E01 [1805.03946]. 

[161] C.-M. Yoo, J.-O. Gong and S. Yokoyama, Abundance of primordial black holes with local 
non-Gaussianity in peak theory, JCAP 09 (2019) 033 [1906.06790]. 

[162] N. Kitajima, Y. Tada, S. Yokoyama and C.-M. Yoo, Primordial black holes in peak theory 
with a non-Gaussian tail, JCAP 10 (2021) 053 [2109.00791]. 

[163] Y.-F. Cai, X. Chen, M. H. Namjoo, M. Sasaki, D.-G. Wang and Z. Wang, Revisiting 
non-Gaussianity from non-attractor infation models, JCAP 05 (2018) 012 [1712.09998]. 

[164] V. Atal, J. Cid, A. Escrivà and J. Garriga, PBH in single feld infation: the efect of shape 
dispersion and non-Gaussianities, JCAP 05 (2020) 022 [1908.11357]. 

[165] H. V. Ragavendra, Accounting for scalar non-Gaussianity in secondary gravitational waves, 
Phys. Rev. D 105 (2022) 063533 [2108.04193]. 

[166] S. Pi and M. Sasaki, Primordial Black Hole Formation in Non-Minimal Curvaton Scenario, 
2112.12680. 

[167] Y.-F. Cai, X.-H. Ma, M. Sasaki, D.-G. Wang and Z. Zhou, One small step for an infaton, 
one giant leap for infation: A novel non-Gaussian tail and primordial black holes, Phys. 
Lett. B 834 (2022) 137461 [2112.13836]. 

[168] LISA Cosmology Working Group collaboration, Cosmology with the Laser 
Interferometer Space Antenna, Living Rev. Rel. 26 (2023) 5 [2204.05434]. 

[169] S. Pi and M. Sasaki, Logarithmic Duality of the Curvature Perturbation, Phys. Rev. Lett. 
131 (2023) 011002 [2211.13932]. 

[170] LIGO Scientific collaboration, Directional limits on persistent gravitational waves using 
LIGO S5 science data, Phys. Rev. Lett. 107 (2011) 271102 [1109.1809]. 

[171] KAGRA, Virgo, LIGO Scientific collaboration, All-sky, all-frequency directional search 
for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s frst three 
observing runs, Phys. Rev. D 105 (2022) 122001 [2110.09834]. 

[172] LIGO Scientific collaboration, Analysis of frst LIGO science data for stochastic 
gravitational waves, Phys. Rev. D 69 (2004) 122004 [gr-qc/0312088]. 

253 

https://doi.org/10.1016/j.softx.2021.100658
https://arxiv.org/abs/1912.11716
https://doi.org/10.3847/1538-4365/acdc9f
https://arxiv.org/abs/2302.03676
https://doi.org/10.1086/164143
https://doi.org/10.1093/ptep/pty120
https://doi.org/10.1093/ptep/pty120
https://arxiv.org/abs/1805.03946
https://doi.org/10.1088/1475-7516/2019/09/033
https://arxiv.org/abs/1906.06790
https://doi.org/10.1088/1475-7516/2021/10/053
https://arxiv.org/abs/2109.00791
https://doi.org/10.1088/1475-7516/2018/05/012
https://arxiv.org/abs/1712.09998
https://doi.org/10.1088/1475-7516/2020/05/022
https://arxiv.org/abs/1908.11357
https://doi.org/10.1103/PhysRevD.105.063533
https://arxiv.org/abs/2108.04193
https://arxiv.org/abs/2112.12680
https://doi.org/10.1016/j.physletb.2022.137461
https://doi.org/10.1016/j.physletb.2022.137461
https://arxiv.org/abs/2112.13836
https://doi.org/10.1007/s41114-023-00045-2
https://arxiv.org/abs/2204.05434
https://doi.org/10.1103/PhysRevLett.131.011002
https://doi.org/10.1103/PhysRevLett.131.011002
https://arxiv.org/abs/2211.13932
https://doi.org/10.1103/PhysRevLett.107.271102
https://arxiv.org/abs/1109.1809
https://doi.org/10.1103/PhysRevD.105.122001
https://arxiv.org/abs/2110.09834
https://doi.org/10.1103/PhysRevD.69.122004
https://arxiv.org/abs/gr-qc/0312088


Bibliography 

[173] Planck collaboration, Planck 2018 results. I. Overview and the cosmological legacy of 
Planck, Astron. Astrophys. 641 (2020) A1 [1807.06205]. 

[174] Planck collaboration, Planck 2018 results. VII. Isotropy and Statistics of the CMB, 
Astron. Astrophys. 641 (2020) A7 [1906.02552]. 

[175] S. W. Ballmer, A Radiometer for stochastic gravitational waves, Class. Quant. Grav. 23 
(2006) S179–S186 [gr-qc/0510096]. 

[176] S. Ballmer, LIGO interferometer operating at design sensitivity with application to 
gravitational radiometry, Ph.D. thesis, Massachusetts Institute of Technology, 2006. 

[177] S. Mitra, S. Dhurandhar, T. Souradeep, A. Lazzarini, V. Mandic, S. Bose et al., 
Gravitational wave radiometry: Mapping a stochastic gravitational wave background, Phys. 
Rev. D 77 (2008) 042002 [0708.2728]. 

[178] B. Allen and A. C. Ottewill, Detection of anisotropies in the gravitational wave stochastic 
background, Phys. Rev. D 56 (1997) 545–563 [gr-qc/9607068]. 

[179] C. R. Contaldi, Anisotropies of gravitational wave backgrounds: A line of sight approach, 
Physics Letters B 771 (2017) 9-12 [1609.08168]. 

[180] A. C. Jenkins, R. O’Shaughnessy, M. Sakellariadou and D. Wysocki, Anisotropies in the 
astrophysical gravitational-wave background: The impact of black hole distributions, Phys. 
Rev. Lett. 122 (2019) 111101 [1810.13435]. 

[181] A. C. Jenkins and M. Sakellariadou, Shot noise in the astrophysical gravitational-wave 
background, Phys. Rev. D 100 (2019) 063508 [1902.07719]. 

[182] A. C. Jenkins, J. D. Romano and M. Sakellariadou, Estimating the angular power spectrum 
of the gravitational-wave background in the presence of shot noise, Phys. Rev. D 100 (2019) 
083501 [1907.06642]. 

[183] D. Bertacca, A. Ricciardone, N. Bellomo, A. C. Jenkins, S. Matarrese, A. Raccanelli et al., 
Projection efects on the observed angular spectrum of the astrophysical stochastic 
gravitational wave background, Phys. Rev. D 101 (2020) 103513 [1909.11627]. 

[184] G. Cusin, C. Pitrou and J.-P. Uzan, Anisotropy of the astrophysical gravitational wave 
background: Analytic expression of the angular power spectrum and correlation with 
cosmological observations, Phys. Rev. D 96 (2017) 103019 [1704.06184]. 

[185] G. Cusin, C. Pitrou and J.-P. Uzan, The signal of the gravitational wave background and the 
angular correlation of its energy density, Phys. Rev. D97 (2018) 123527 [1711.11345]. 

[186] G. Cusin, I. Dvorkin, C. Pitrou and J.-P. Uzan, First predictions of the angular power 
spectrum of the astrophysical gravitational wave background, Phys. Rev. Lett. 120 (2018) 
231101 [1803.03236]. 

[187] G. Cusin, I. Dvorkin, C. Pitrou and J.-P. Uzan, Properties of the stochastic astrophysical 
gravitational wave background: astrophysical sources dependencies, Phys. Rev. D 100 (2019) 
063004 [1904.07797]. 

254 

https://doi.org/10.1051/0004-6361/201833880
https://arxiv.org/abs/1807.06205
https://doi.org/10.1051/0004-6361/201935201
https://arxiv.org/abs/1906.02552
https://doi.org/10.1088/0264-9381/23/8/S23
https://doi.org/10.1088/0264-9381/23/8/S23
https://arxiv.org/abs/gr-qc/0510096
https://doi.org/10.1103/PhysRevD.77.042002
https://doi.org/10.1103/PhysRevD.77.042002
https://arxiv.org/abs/0708.2728
https://doi.org/10.1103/PhysRevD.56.545
https://arxiv.org/abs/gr-qc/9607068
https://doi.org/10.1016/j.physletb.2017.05.020
https://arxiv.org/abs/1609.08168
https://doi.org/10.1103/PhysRevLett.122.111101
https://doi.org/10.1103/PhysRevLett.122.111101
https://arxiv.org/abs/1810.13435
https://doi.org/10.1103/PhysRevD.100.063508
https://arxiv.org/abs/1902.07719
https://doi.org/10.1103/PhysRevD.100.083501
https://doi.org/10.1103/PhysRevD.100.083501
https://arxiv.org/abs/1907.06642
https://doi.org/10.1103/PhysRevD.101.103513
https://arxiv.org/abs/1909.11627
https://doi.org/10.1103/PhysRevD.96.103019
https://arxiv.org/abs/1704.06184
https://doi.org/10.1103/PhysRevD.97.123527
https://arxiv.org/abs/1711.11345
https://doi.org/10.1103/PhysRevLett.120.231101
https://doi.org/10.1103/PhysRevLett.120.231101
https://arxiv.org/abs/1803.03236
https://doi.org/10.1103/PhysRevD.100.063004
https://doi.org/10.1103/PhysRevD.100.063004
https://arxiv.org/abs/1904.07797


Bibliography 

[188] C. Pitrou, G. Cusin and J.-P. Uzan, Unifed view of anisotropies in the astrophysical 
gravitational-wave background, Phys. Rev. D 101 (2020) 081301 [1910.04645]. 

[189] G. Cañas Herrera, O. Contigiani and V. Vardanyan, Cross-correlation of the astrophysical 
gravitational-wave background with galaxy clustering, Phys. Rev. D 102 (2020) 043513 
[1910.08353]. 

[190] M. Geller, A. Hook, R. Sundrum and Y. Tsai, Primordial Anisotropies in the Gravitational 
Wave Background from Cosmological Phase Transitions, Phys. Rev. Lett. 121 (2018) 201303 
[1803.10780]. 

[191] LIGO Scientific Collaboration and Virgo Collaboration collaboration, An upper 
limit on the stochastic gravitational-wave background of cosmological origin, Nature 460 
(2009) 990-994. 

[192] LIGO Scientific, Virgo collaboration, Directional Limits on Persistent Gravitational 
Waves from Advanced LIGO’s First Observing Run, Phys. Rev. Lett. 118 (2017) 121102 
[1612.02030]. 

[193] LIGO Scientific, Virgo collaboration, Directional limits on persistent gravitational 
waves using data from Advanced LIGO’s frst two observing runs, Phys. Rev. D 100 (2019) 
062001 [1903.08844]. 

[194] KAGRA, Virgo, LIGO Scientific collaboration, Search for anisotropic 
gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s frst 
three observing runs, Phys. Rev. D 104 (2021) 022005 [2103.08520]. 

[195] A. K.-W. Chung, A. C. Jenkins, J. D. Romano and M. Sakellariadou, Targeted search for 
the kinematic dipole of the gravitational-wave background, Phys. Rev. D 106 (2022) 082005 
[2208.01330]. 

[196] D. Agarwal, J. Suresh, V. Mandic, A. Matas and T. Regimbau, Targeted search for the 
stochastic gravitational-wave background from the galactic millisecond pulsar population, 
Phys. Rev. D 106 (2022) 043019 [2204.08378]. 

[197] P. J. E. Peebles and D. T. Wilkinson, Comment on the Anisotropy of the Primeval Fireball, 
Phys. Rev. 174 (1968) 2168–2168. 

[198] A. Kogut et al., Dipole anisotropy in the COBE DMR frst year sky maps, Astrophys. J. 419 
(1993) 1 [astro-ph/9312056]. 

[199] G. F. Chapline, Cosmological efects of primordial black holes, Nature 253 (1975) 251–252. 

[200] LISA Cosmology Working Group collaboration, Primordial black holes and their 
gravitational-wave signatures, 2310.19857. 

[201] I. Musco, Threshold for primordial black holes: Dependence on the shape of the cosmological 
perturbations, Phys. Rev. D 100 (2019) 123524 [1809.02127]. 

[202] I. Musco, V. De Luca, G. Franciolini and A. Riotto, Threshold for primordial black holes. II. 
A simple analytic prescription, Phys. Rev. D 103 (2021) 063538 [2011.03014]. 

255 

https://doi.org/10.1103/PhysRevD.101.081301
https://arxiv.org/abs/1910.04645
https://doi.org/10.1103/PhysRevD.102.043513
https://arxiv.org/abs/1910.08353
https://doi.org/10.1103/PhysRevLett.121.201303
https://arxiv.org/abs/1803.10780
https://doi.org/10.1038/nature08278
https://doi.org/10.1038/nature08278
https://doi.org/10.1103/PhysRevLett.118.121102
https://arxiv.org/abs/1612.02030
https://doi.org/10.1103/PhysRevD.100.062001
https://doi.org/10.1103/PhysRevD.100.062001
https://arxiv.org/abs/1903.08844
https://doi.org/10.1103/PhysRevD.104.022005
https://arxiv.org/abs/2103.08520
https://doi.org/10.1103/PhysRevD.106.082005
https://arxiv.org/abs/2208.01330
https://doi.org/10.1103/PhysRevD.106.043019
https://arxiv.org/abs/2204.08378
https://doi.org/10.1103/PhysRev.174.2168
https://doi.org/10.1086/173453
https://doi.org/10.1086/173453
https://arxiv.org/abs/astro-ph/9312056
https://doi.org/10.1038/253251a0
https://arxiv.org/abs/2310.19857
https://doi.org/10.1103/PhysRevD.100.123524
https://arxiv.org/abs/1809.02127
https://doi.org/10.1103/PhysRevD.103.063538
https://arxiv.org/abs/2011.03014


Bibliography 

[203] A. G. Polnarev and I. Musco, Curvature profles as initial conditions for primordial black 
hole formation, Class. Quant. Grav. 24 (2007) 1405–1432 [gr-qc/0605122]. 

[204] A. Escrivà, Simulation of primordial black hole formation using pseudo-spectral methods, 
Phys. Dark Univ. 27 (2020) 100466 [1907.13065]. 

[205] A. Escrivà, C. Germani and R. K. Sheth, Universal threshold for primordial black hole 
formation, Phys. Rev. D 101 (2020) 044022 [1907.13311]. 

[206] A. Dolgov and J. Silk, Baryon isocurvature fuctuations at small scales and baryonic dark 
matter, Phys. Rev. D 47 (1993) 4244–4255. 

[207] B. J. Carr and J. E. Lidsey, Primordial black holes and generalized constraints on chaotic 
infation, Phys. Rev. D 48 (1993) 543–553. 

[208] B. J. Carr, J. H. Gilbert and J. E. Lidsey, Black hole relics and infation: Limits on blue 
perturbation spectra, Phys. Rev. D 50 (1994) 4853–4867 [astro-ph/9405027]. 

[209] P. Ivanov, P. Naselsky and I. Novikov, Infation and primordial black holes as dark matter, 
Phys. Rev. D 50 (1994) 7173–7178. 

[210] J. Garcia-Bellido, A. D. Linde and D. Wands, Density perturbations and black hole 
formation in hybrid infation, Phys. Rev. D 54 (1996) 6040–6058 [astro-ph/9605094]. 

[211] J. M. Ezquiaga, J. Garcia-Bellido and E. Ruiz Morales, Primordial Black Hole production in 
Critical Higgs Infation, Phys. Lett. B 776 (2018) 345–349 [1705.04861]. 

[212] J. García-Bellido, Massive Primordial Black Holes as Dark Matter and their detection with 
Gravitational Waves, J. Phys. Conf. Ser. 840 (2017) 012032 [1702.08275]. 

[213] A. D. Linde, Hybrid infation, Phys. Rev. D 49 (1994) 748–754 [astro-ph/9307002]. 

[214] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, False vacuum 
infation with Einstein gravity, Phys. Rev. D 49 (1994) 6410–6433 [astro-ph/9401011]. 

[215] S. Clesse and J. García-Bellido, Massive Primordial Black Holes from Hybrid Infation as 
Dark Matter and the seeds of Galaxies, Phys. Rev. D 92 (2015) 023524 [1501.07565]. 

[216] V. Vennin and D. Wands, Quantum difusion and large primordial perturbations from 
infation, 2402.12672. 

[217] B. Carr, S. Clesse and J. García-Bellido, Primordial black holes from the QCD epoch: 
Linking dark matter, baryogenesis and anthropic selection, Mon. Not. Roy. Astron. Soc. 501 
(2021) 1426–1439 [1904.02129]. 

[218] K. Jedamzik, Primordial black hole formation during the QCD epoch, Phys. Rev. D 55 
(1997) 5871–5875 [astro-ph/9605152]. 

[219] M. Khlopov, B. A. Malomed and I. B. Zeldovich, Gravitational instability of scalar felds 
and formation of primordial black holes, Mon. Not. Roy. Astron. Soc. 215 (1985) 575–589. 

[220] A. Polnarev and R. Zembowicz, Formation of Primordial Black Holes by Cosmic Strings, 
Phys. Rev. D 43 (1991) 1106–1109. 

256 

https://doi.org/10.1088/0264-9381/24/6/003
https://arxiv.org/abs/gr-qc/0605122
https://doi.org/10.1016/j.dark.2020.100466
https://arxiv.org/abs/1907.13065
https://doi.org/10.1103/PhysRevD.101.044022
https://arxiv.org/abs/1907.13311
https://doi.org/10.1103/PhysRevD.47.4244
https://doi.org/10.1103/PhysRevD.48.543
https://doi.org/10.1103/PhysRevD.50.4853
https://arxiv.org/abs/astro-ph/9405027
https://doi.org/10.1103/PhysRevD.50.7173
https://doi.org/10.1103/PhysRevD.54.6040
https://arxiv.org/abs/astro-ph/9605094
https://doi.org/10.1016/j.physletb.2017.11.039
https://arxiv.org/abs/1705.04861
https://doi.org/10.1088/1742-6596/840/1/012032
https://arxiv.org/abs/1702.08275
https://doi.org/10.1103/PhysRevD.49.748
https://arxiv.org/abs/astro-ph/9307002
https://doi.org/10.1103/PhysRevD.49.6410
https://arxiv.org/abs/astro-ph/9401011
https://doi.org/10.1103/PhysRevD.92.023524
https://arxiv.org/abs/1501.07565
https://arxiv.org/abs/2402.12672
https://doi.org/10.1093/mnras/staa3726
https://doi.org/10.1093/mnras/staa3726
https://arxiv.org/abs/1904.02129
https://doi.org/10.1103/PhysRevD.55.R5871
https://doi.org/10.1103/PhysRevD.55.R5871
https://arxiv.org/abs/astro-ph/9605152
https://doi.org/10.1103/PhysRevD.43.1106


Bibliography 

[221] J. Garcia-Bellido and E. Ruiz Morales, Primordial black holes from single feld models of 
infation, Phys. Dark Univ. 18 (2017) 47–54 [1702.03901]. 

[222] K. Inomata, M. Braglia, X. Chen and S. Renaux-Petel, Questions on calculation of 
primordial power spectrum with large spikes: the resonance model case, JCAP 04 (2023) 011 
[2211.02586]. 

[223] D. K. Nadezhin, I. D. Novikov and A. G. Polnarev, The hydrodynamics of primordial black 
hole formation, Sov. Astron. 22 (1978) 129-138. 

[224] G. V. Bicknell and R. N. Henriksen, Formation of primordial black holes., Astrophys. J. 232 
(1979) 670-682. 

[225] I. D. Novikov and A. G. Polnarev, The Hydrodynamics of Primordial Black Hole Formation 
- Dependence on the Equation of State, Sov. Astron. 24 (1980) 147-151. 

[226] M. W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar feld, 
Phys. Rev. Lett. 70 (1993) 9–12. 

[227] K. Jedamzik and J. C. Niemeyer, Primordial black hole formation during frst order phase 
transitions, Phys. Rev. D 59 (1999) 124014 [astro-ph/9901293]. 

[228] M. Shibata and M. Sasaki, Black hole formation in the Friedmann universe: Formulation 
and computation in numerical relativity, Phys. Rev. D 60 (1999) 084002 [gr-qc/9905064]. 

[229] I. Hawke and J. M. Stewart, The dynamics of primordial black hole formation, Class. 
Quant. Grav. 19 (2002) 3687–3707. 

[230] I. Musco, J. C. Miller and L. Rezzolla, Computations of primordial black hole formation, 
Class. Quant. Grav. 22 (2005) 1405–1424 [gr-qc/0412063]. 

[231] I. Musco, J. C. Miller and A. G. Polnarev, Primordial black hole formation in the radiative 
era: Investigation of the critical nature of the collapse, Class. Quant. Grav. 26 (2009) 
235001 [0811.1452]. 

[232] I. Musco and J. C. Miller, Primordial black hole formation in the early universe: critical 
behaviour and self-similarity, Class. Quant. Grav. 30 (2013) 145009 [1201.2379]. 

[233] C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically symmetric 
gravitational collapse, Phys. Rev. 136 (1964) B571–B576. 

[234] W. C. Hernandez and C. W. Misner, Observer Time as a Coordinate in Relativistic 
Spherical Hydrodynamics, Astrophys. J. 143 (1966) 452. 

[235] M. M. May and R. H. White, Hydrodynamic Calculations of General-Relativistic Collapse, 
Phys. Rev. 141 (1966) 1232–1241. 

[236] D. H. Lyth, K. A. Malik and M. Sasaki, A General proof of the conservation of the 
curvature perturbation, JCAP 05 (2005) 004 [astro-ph/0411220]. 

[237] P. Virtanen et al., SciPy 1.0–Fundamental Algorithms for Scientifc Computing in Python, 
Nature Meth. 17 (2020) 261 [1907.10121]. 

257 

https://doi.org/10.1016/j.dark.2017.09.007
https://arxiv.org/abs/1702.03901
https://doi.org/10.1088/1475-7516/2023/04/011
https://arxiv.org/abs/2211.02586
https://doi.org/10.1086/157325
https://doi.org/10.1086/157325
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevD.59.124014
https://arxiv.org/abs/astro-ph/9901293
https://doi.org/10.1103/PhysRevD.60.084002
https://arxiv.org/abs/gr-qc/9905064
https://doi.org/10.1088/0264-9381/19/14/310
https://doi.org/10.1088/0264-9381/19/14/310
https://doi.org/10.1088/0264-9381/22/7/013
https://arxiv.org/abs/gr-qc/0412063
https://doi.org/10.1088/0264-9381/26/23/235001
https://doi.org/10.1088/0264-9381/26/23/235001
https://arxiv.org/abs/0811.1452
https://doi.org/10.1088/0264-9381/30/14/145009
https://arxiv.org/abs/1201.2379
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1086/148525
https://doi.org/10.1103/PhysRev.141.1232
https://doi.org/10.1088/1475-7516/2005/05/004
https://arxiv.org/abs/astro-ph/0411220
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/1907.10121


Bibliography 

[238] J. P. Boyd, Chebyshev and Fourier Spectral Methods. Dover, 2000. 

[239] L. N. Trefethen, Spectral Methods in MATLAB. SIAM, 2000. 

[240] I. Musco, K. Jedamzik and S. Young, Primordial black hole formation during the QCD 
phase transition: Threshold, mass distribution, and abundance, Phys. Rev. D 109 (2024) 
083506 [2303.07980]. 

[241] B. Carr, S. Clesse, J. García-Bellido and F. Kühnel, Cosmic conundra explained by thermal 
history and primordial black holes, Phys. Dark Univ. 31 (2021) 100755 [1906.08217]. 

[242] S. Clesse and J. Garcia-Bellido, GW190425, GW190521 and GW190814: Three candidate 
mergers of primordial black holes from the QCD epoch, Phys. Dark Univ. 38 (2022) 101111 
[2007.06481]. 

[243] V. De Luca, G. Franciolini and A. Riotto, NANOGrav Data Hints at Primordial Black 
Holes as Dark Matter, Phys. Rev. Lett. 126 (2021) 041303 [2009.08268]. 

[244] C. T. Byrnes, M. Hindmarsh, S. Young and M. R. S. Hawkins, Primordial black holes with 
an accurate QCD equation of state, JCAP 08 (2018) 041 [1801.06138]. 

[245] S. Clesse and J. García-Bellido, The clustering of massive Primordial Black Holes as Dark 
Matter: measuring their mass distribution with Advanced LIGO, Phys. Dark Univ. 15 
(2017) 142–147 [1603.05234]. 

[246] T. Nakamura, M. Sasaki, T. Tanaka and K. S. Thorne, Gravitational waves from coalescing 
black hole MACHO binaries, Astrophys. J. Lett. 487 (1997) L139–L142 [astro-ph/9708060]. 

[247] M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Primordial Black Hole Scenario for the 
Gravitational-Wave Event GW150914, Phys. Rev. Lett. 117 (2016) 061101 [1603.08338]. 

[248] M. Raidal, C. Spethmann, V. Vaskonen and H. Veermäe, Formation and Evolution of 
Primordial Black Hole Binaries in the Early Universe, JCAP 02 (2019) 018 [1812.01930]. 

[249] S. S. G.D. Quinlan, Dynamical evolution of dense clusters of compact stars, Astrophys. J. 
343 (1989) 725-749. 

[250] H. Mouri and Y. Taniguchi, Runaway merging of black holes: analytical constraint on the 
timescale, Astrophys. J. Lett. 566 (2002) L17–L20 [astro-ph/0201102]. 

[251] S. Clesse and J. García-Bellido, Detecting the gravitational wave background from primordial 
black hole dark matter, Phys. Dark Univ. 18 (2017) 105-114 [1610.08479]. 

[252] G. Hütsi, M. Raidal, V. Vaskonen and H. Veermäe, Two populations of LIGO-Virgo black 
holes, JCAP 03 (2021) 068 [2012.02786]. 

[253] V. De Luca, G. Franciolini, P. Pani and A. Riotto, Primordial Black Holes Confront 
LIGO/Virgo data: Current situation, JCAP 06 (2020) 044 [2005.05641]. 

[254] Y. Ali-Haïmoud, E. D. Kovetz and M. Kamionkowski, Merger rate of primordial black-hole 
binaries, Phys. Rev. D 96 (2017) 123523 [1709.06576]. 

258 

https://doi.org/10.1103/PhysRevD.109.083506
https://doi.org/10.1103/PhysRevD.109.083506
https://arxiv.org/abs/2303.07980
https://doi.org/10.1016/j.dark.2020.100755
https://arxiv.org/abs/1906.08217
https://doi.org/10.1016/j.dark.2022.101111
https://arxiv.org/abs/2007.06481
https://doi.org/10.1103/PhysRevLett.126.041303
https://arxiv.org/abs/2009.08268
https://doi.org/10.1088/1475-7516/2018/08/041
https://arxiv.org/abs/1801.06138
https://doi.org/10.1016/j.dark.2016.10.002
https://doi.org/10.1016/j.dark.2016.10.002
https://arxiv.org/abs/1603.05234
https://doi.org/10.1086/310886
https://arxiv.org/abs/astro-ph/9708060
https://doi.org/10.1103/PhysRevLett.117.061101
https://arxiv.org/abs/1603.08338
https://doi.org/10.1088/1475-7516/2019/02/018
https://arxiv.org/abs/1812.01930
https://doi.org/10.1086/167745
https://doi.org/10.1086/167745
https://doi.org/10.1086/339472
https://arxiv.org/abs/astro-ph/0201102
https://doi.org/10.1016/j.dark.2017.10.001
https://arxiv.org/abs/1610.08479
https://doi.org/10.1088/1475-7516/2021/03/068
https://arxiv.org/abs/2012.02786
https://doi.org/10.1088/1475-7516/2020/06/044
https://arxiv.org/abs/2005.05641
https://doi.org/10.1103/PhysRevD.96.123523
https://arxiv.org/abs/1709.06576


Bibliography 

[255] B. Kocsis, T. Suyama, T. Tanaka and S. Yokoyama, Hidden universality in the merger rate 
distribution in the primordial black hole scenario, Astrophys. J. 854 (2018) 41 [1709.09007]. 

[256] Y. N. Eroshenko, Gravitational waves from primordial black holes collisions in binary 
systems, J. Phys. Conf. Ser. 1051 (2018) 012010 [1604.04932]. 

[257] V. Vaskonen and H. Veermäe, Lower bound on the primordial black hole merger rate, Phys. 
Rev. D 101 (2020) 043015 [1908.09752]. 

[258] LIGO Scientific, Virgo collaboration, GWTC-2: Compact Binary Coalescences 
Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. 
X 11 (2021) 021053 [2010.14527]. 

[259] K. Jedamzik, Primordial Black Hole Dark Matter and the LIGO/Virgo observations, JCAP 
09 (2020) 022 [2006.11172]. 

[260] K. Jedamzik, Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger 
Rates, Phys. Rev. Lett. 126 (2021) 051302 [2007.03565]. 

[261] A. Hall, A. D. Gow and C. T. Byrnes, Bayesian analysis of LIGO-Virgo mergers: Primordial 
vs. astrophysical black hole populations, Phys. Rev. D 102 (2020) 123524 [2008.13704]. 

[262] G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng, K. W. K. Wong, E. Berti et al., 
Searching for a subpopulation of primordial black holes in LIGO-Virgo gravitational-wave 
data, Phys. Rev. D 105 (2022) 083526 [2105.03349]. 

[263] N. Fernandez and S. Profumo, Unraveling the origin of black holes from efective spin 
measurements with LIGO-Virgo, JCAP 08 (2019) 022 [1905.13019]. 

[264] J. García-Bellido, J. F. Nuño Siles and E. Ruiz Morales, Bayesian analysis of the spin 
distribution of LIGO/Virgo black holes, Phys. Dark Univ. 31 (2021) 100791 [2010.13811]. 

[265] E. Bugaev and P. Klimai, Induced gravitational wave background and primordial black holes, 
Phys. Rev. D 81 (2010) 023517 [0908.0664]. 

[266] R. Saito and J. Yokoyama, Gravitational-Wave Constraints on the Abundance of Primordial 
Black Holes, Prog. Theor. Phys. 123 (2010) 867–886 [0912.5317]. 

[267] V. Mandic, S. Bird and I. Cholis, Stochastic Gravitational-Wave Background due to 
Primordial Binary Black Hole Mergers, Phys. Rev. Lett. 117 (2016) 201102 [1608.06699]. 

[268] M. Raidal, V. Vaskonen and H. Veermäe, Gravitational Waves from Primordial Black Hole 
Mergers, JCAP 09 (2017) 037 [1707.01480]. 

[269] Z.-C. Chen, F. Huang and Q.-G. Huang, Stochastic Gravitational-wave Background from 
Binary Black Holes and Binary Neutron Stars and Implications for LISA, Astrophys. J. 871 
(2019) 97 [1809.10360]. 

[270] S. Wang, T. Terada and K. Kohri, Prospective constraints on the primordial black hole 
abundance from the stochastic gravitational-wave backgrounds produced by coalescing events 
and curvature perturbations, Phys. Rev. D 99 (2019) 103531 [1903.05924]. 

259 

https://doi.org/10.3847/1538-4357/aaa7f4
https://arxiv.org/abs/1709.09007
https://doi.org/10.1088/1742-6596/1051/1/012010
https://arxiv.org/abs/1604.04932
https://doi.org/10.1103/PhysRevD.101.043015
https://doi.org/10.1103/PhysRevD.101.043015
https://arxiv.org/abs/1908.09752
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
https://arxiv.org/abs/2010.14527
https://doi.org/10.1088/1475-7516/2020/09/022
https://doi.org/10.1088/1475-7516/2020/09/022
https://arxiv.org/abs/2006.11172
https://doi.org/10.1103/PhysRevLett.126.051302
https://arxiv.org/abs/2007.03565
https://doi.org/10.1103/PhysRevD.102.123524
https://arxiv.org/abs/2008.13704
https://doi.org/10.1103/PhysRevD.105.083526
https://arxiv.org/abs/2105.03349
https://doi.org/10.1088/1475-7516/2019/08/022
https://arxiv.org/abs/1905.13019
https://doi.org/10.1016/j.dark.2021.100791
https://arxiv.org/abs/2010.13811
https://doi.org/10.1103/PhysRevD.81.023517
https://arxiv.org/abs/0908.0664
https://doi.org/10.1143/PTP.126.351
https://arxiv.org/abs/0912.5317
https://doi.org/10.1103/PhysRevLett.117.201102
https://arxiv.org/abs/1608.06699
https://doi.org/10.1088/1475-7516/2017/09/037
https://arxiv.org/abs/1707.01480
https://doi.org/10.3847/1538-4357/aaf581
https://doi.org/10.3847/1538-4357/aaf581
https://arxiv.org/abs/1809.10360
https://doi.org/10.1103/PhysRevD.99.103531
https://arxiv.org/abs/1903.05924


Bibliography 

[271] S. Wang, Y.-F. Wang, Q.-G. Huang and T. G. F. Li, Constraints on the Primordial Black 
Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic 
Gravitational-Wave Background, Phys. Rev. Lett. 120 (2018) 191102 [1610.08725]. 

[272] S. Mukherjee and J. Silk, Can we distinguish astrophysical from primordial black holes via 
the stochastic gravitational wave background?, Mon. Not. Roy. Astron. Soc. 506 (2021) 
3977–3985 [2105.11139]. 

[273] M. Saleem et al., The science case for LIGO-India, Class. Quant. Grav. 39 (2022) 025004 
[2105.01716]. 

[274] B. Kocsis, M. E. Gaspar and S. Marka, Detection rate estimates of gravity-waves emitted 
during parabolic encounters of stellar black holes in globular clusters, Astrophys. J. 648 
(2006) 411–429 [astro-ph/0603441]. 

[275] R. M. O’Leary, B. Kocsis and A. Loeb, Gravitational waves from scattering of stellar-mass 
black holes in galactic nuclei, Mon. Not. Roy. Astron. Soc. 395 (2009) 2127–2146 
[0807.2638]. 

[276] M. Gröbner, P. Jetzer, M. Haney, S. Tiwari and W. Ishibashi, A note on the gravitational 
wave energy spectrum of parabolic and hyperbolic encounters, Class. Quant. Grav. 37 (2020) 
067002 [2001.05187]. 

[277] M. Trashorras, J. García-Bellido and S. Nesseris, The clustering dynamics of primordial 
black boles in N -body simulations, Universe 7 (2021) 18 [2006.15018]. 

[278] P. E. Nelson, Z. B. Etienne, S. T. McWilliams and V. Nguyen, Induced Spins from 
Scattering Experiments of Initially Nonspinning Black Holes, Phys. Rev. D 100 (2019) 
124045 [1909.08621]. 

[279] J. Healy, J. Levin and D. Shoemaker, Zoom-Whirl Orbits in Black Hole Binaries, Phys. Rev. 
Lett. 103 (2009) 131101 [0907.0671]. 

[280] P. Ajith et al., Inspiral-merger-ringdown waveforms for black-hole binaries with 
non-precessing spins, Phys. Rev. Lett. 106 (2011) 241101 [0909.2867]. 

[281] M. Braglia, J. Garcia-Bellido and S. Kuroyanagi, Testing Primordial Black Holes with 
multi-band observations of the stochastic gravitational wave background, JCAP 12 (2021) 
012 [2110.07488]. 

[282] E. Thrane and J. D. Romano, Sensitivity curves for searches for gravitational-wave 
backgrounds, Phys. Rev. D 88 (2013) 124032 [1310.5300]. 

[283] T. Regimbau, M. Evans, N. Christensen, E. Katsavounidis, B. Sathyaprakash and S. Vitale, 
Digging deeper: Observing primordial gravitational waves below the binary black hole 
produced stochastic background, Phys. Rev. Lett. 118 (2017) 151105 [1611.08943]. 

[284] Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J.-d. Zhang and J. Mei, Science with the 
TianQin Observatory: Preliminary Results on Stochastic Gravitational-Wave Background, 
2107.08643. 

260 

https://doi.org/10.1103/PhysRevLett.120.191102
https://arxiv.org/abs/1610.08725
https://doi.org/10.1093/mnras/stab1932
https://doi.org/10.1093/mnras/stab1932
https://arxiv.org/abs/2105.11139
https://doi.org/10.1088/1361-6382/ac3b99
https://arxiv.org/abs/2105.01716
https://doi.org/10.1086/505641
https://doi.org/10.1086/505641
https://arxiv.org/abs/astro-ph/0603441
https://doi.org/10.1111/j.1365-2966.2009.14653.x
https://arxiv.org/abs/0807.2638
https://doi.org/10.1088/1361-6382/ab6be2
https://doi.org/10.1088/1361-6382/ab6be2
https://arxiv.org/abs/2001.05187
https://doi.org/10.3390/universe7010018
https://arxiv.org/abs/2006.15018
https://doi.org/10.1103/PhysRevD.100.124045
https://doi.org/10.1103/PhysRevD.100.124045
https://arxiv.org/abs/1909.08621
https://doi.org/10.1103/PhysRevLett.103.131101
https://doi.org/10.1103/PhysRevLett.103.131101
https://arxiv.org/abs/0907.0671
https://doi.org/10.1103/PhysRevLett.106.241101
https://arxiv.org/abs/0909.2867
https://doi.org/10.1088/1475-7516/2021/12/012
https://doi.org/10.1088/1475-7516/2021/12/012
https://arxiv.org/abs/2110.07488
https://doi.org/10.1103/PhysRevD.88.124032
https://arxiv.org/abs/1310.5300
https://doi.org/10.1103/PhysRevLett.118.151105
https://arxiv.org/abs/1611.08943
https://arxiv.org/abs/2107.08643


Bibliography 

[285] G. Wang, W.-T. Ni, W.-B. Han, P. Xu and Z. Luo, Alternative LISA-TAIJI networks, Phys. 
Rev. D 104 (2021) 024012 [2105.00746]. 

[286] G. Wang and W.-B. Han, Alternative LISA-TAIJI networks: detectability to isotropic 
stochastic gravitational wave background, 2108.11151. 

[287] N. Aggarwal et al., Challenges and opportunities of gravitational-wave searches at MHz to 
GHz frequencies, Living Rev. Rel. 24 (2021) 4 [2011.12414]. 

[288] S. Kuroyanagi, T. Chiba and T. Takahashi, Probing the Universe through the Stochastic 
Gravitational Wave Background, JCAP 11 (2018) 038 [1807.00786]. 

[289] C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini, M. Peloso, M. Pieroni et al., 
Reconstructing the spectral shape of a stochastic gravitational wave background with LISA, 
JCAP 11 (2019) 017 [1906.09244]. 

[290] G. Cusin, I. Dvorkin, C. Pitrou and J.-P. Uzan, Stochastic gravitational wave background 
anisotropies in the mHz band: astrophysical dependencies, Mon. Not. Roy. Astron. Soc. 493 
(2020) L1–L5 [1904.07757]. 

[291] C. R. Contaldi, M. Pieroni, A. I. Renzini, G. Cusin, N. Karnesis, M. Peloso et al., Maximum 
likelihood map-making with the Laser Interferometer Space Antenna, Phys. Rev. D 102 
(2020) 043502 [2006.03313]. 

[292] S. Mukherjee and J. Silk, Time-dependence of the astrophysical stochastic gravitational wave 
background, Mon. Not. Roy. Astron. Soc. 491 (2020) 4690–4701 [1912.07657]. 

[293] R. J. E. Smith, C. Talbot, F. Hernandez Vivanco and E. Thrane, Inferring the population 
properties of binary black holes from unresolved gravitational waves, Mon. Not. Roy. Astron. 
Soc. 496 (2020) 3281–3290 [2004.09700]. 

[294] A. Buonanno and T. Damour, Efective one-body approach to general relativistic two-body 
dynamics, Phys. Rev. D 59 (1999) 084006 [gr-qc/9811091]. 

[295] Y. Pan, A. Buonanno, J. G. Baker, J. Centrella, B. J. Kelly, S. T. McWilliams et al., A 
Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: 
Nonspinning case, Phys. Rev. D 77 (2008) 024014 [0704.1964]. 

[296] P. Ajith et al., Phenomenological template family for black-hole coalescence waveforms, 
Class. Quant. Grav. 24 (2007) S689–S700 [0704.3764]. 

[297] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D. Gerosa, L. C. Stein et al., Surrogate 
models for precessing binary black hole simulations with unequal masses, Phys. Rev. 
Research. 1 (2019) 033015 [1905.09300]. 

[298] J. Yoo et al., Numerical relativity surrogate model with memory efects and post-Newtonian 
hybridization, Phys. Rev. D 108 (2023) 064027 [2306.03148]. 

[299] A. Dhani, S. Völkel, A. Buonanno, H. Estelles, J. Gair, H. P. Pfeifer et al., Systematic 
Biases in Estimating the Properties of Black Holes Due to Inaccurate Gravitational-Wave 
Models, 2404.05811. 

261 

https://doi.org/10.1103/PhysRevD.104.024012
https://doi.org/10.1103/PhysRevD.104.024012
https://arxiv.org/abs/2105.00746
https://arxiv.org/abs/2108.11151
https://doi.org/10.1007/s41114-021-00032-5
https://arxiv.org/abs/2011.12414
https://doi.org/10.1088/1475-7516/2018/11/038
https://arxiv.org/abs/1807.00786
https://doi.org/10.1088/1475-7516/2019/11/017
https://arxiv.org/abs/1906.09244
https://doi.org/10.1093/mnrasl/slz182
https://doi.org/10.1093/mnrasl/slz182
https://arxiv.org/abs/1904.07757
https://doi.org/10.1103/PhysRevD.102.043502
https://doi.org/10.1103/PhysRevD.102.043502
https://arxiv.org/abs/2006.03313
https://doi.org/10.1093/mnras/stz3226
https://arxiv.org/abs/1912.07657
https://doi.org/10.1093/mnras/staa1642
https://doi.org/10.1093/mnras/staa1642
https://arxiv.org/abs/2004.09700
https://doi.org/10.1103/PhysRevD.59.084006
https://arxiv.org/abs/gr-qc/9811091
https://doi.org/10.1103/PhysRevD.77.024014
https://arxiv.org/abs/0704.1964
https://doi.org/10.1088/0264-9381/24/19/S31
https://arxiv.org/abs/0704.3764
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevResearch.1.033015
https://arxiv.org/abs/1905.09300
https://doi.org/10.1103/PhysRevD.108.064027
https://arxiv.org/abs/2306.03148
https://arxiv.org/abs/2404.05811


Bibliography 

[300] V. Kapil, L. Reali, R. Cotesta and E. Berti, Systematic bias from waveform modeling for 
binary black hole populations in next-generation gravitational wave detectors, 2404.00090. 

[301] F. Lofer et al., The Einstein Toolkit: A Community Computational Infrastructure for 
Relativistic Astrophysics, Class. Quant. Grav. 29 (2012) 115001 [1111.3344]. 

[302] “The Einstein Toolkit.” https://einsteintoolkit.org. 

[303] S. G. Hahn and R. W. Lindquist, The two-body problem in geometrodynamics, Annals of 
Physics 29 (1964) 304-331. 

[304] C. W. Misner and J. A. Wheeler, Classical physics as geometry: Gravitation, 
electromagnetism, unquantized charge, and mass as properties of curved empty space, Annals 
Phys. 2 (1957) 525–603. 

[305] C. Palenzuela, Introduction to Numerical Relativity, Front. Astron. Space Sci. 7 (2020) 58 
[2008.12931]. 

[306] M. Zilhão and F. Löfer, An Introduction to the Einstein Toolkit, Int. J. Mod. Phys. A 28 
(2013) 1340014 [1305.5299]. 

[307] R. L. Arnowitt, S. Deser and C. W. Misner, The Dynamics of general relativity, Gen. Rel. 
Grav. 40 (2008) 1997–2027 [gr-qc/0405109]. 

[308] L. Witten and J. E. Romain, Gravitation: An introduction to current research, Physics 
Today 16 (1963) 70-72. 

[309] J. W. York, Jr., Kinematics and Dynamics of General Relativity, in Workshop on Sources of 
Gravitational Radiation, pp. 83–126, 1978. 

[310] M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: 
Harmonic slicing case, Phys. Rev. D 52 (1995) 5428–5444. 

[311] T. W. Baumgarte and S. L. Shapiro, On the numerical integration of Einstein’s feld 
equations, Phys. Rev. D 59 (1998) 024007 [gr-qc/9810065]. 

[312] M. Bezares, C. Palenzuela and C. Bona, Final fate of compact boson star mergers, Phys. 
Rev. D 95 (2017) 124005 [1705.01071]. 

[313] D. R. Brill and R. W. Lindquist, Interaction energy in geometrostatics, Phys. Rev. 131 
(1963) 471–476. 

[314] A. M. Abrahams and R. H. Price, Black hole collisions from Brill-Lindquist initial data: 
Predictions of perturbation theory, Phys. Rev. D 53 (1996) 1972–1976 [gr-qc/9509020]. 

[315] J. M. Bowen and J. W. York, Jr., Time asymmetric initial data for black holes and black 
hole collisions, Phys. Rev. D 21 (1980) 2047–2056. 

[316] S. Brandt and B. Bruegmann, A Simple construction of initial data for multiple black holes, 
Phys. Rev. Lett. 78 (1997) 3606–3609 [gr-qc/9703066]. 

[317] M. Ansorg, B. Bruegmann and W. Tichy, A Single-domain spectral method for black hole 
puncture data, Phys. Rev. D 70 (2004) 064011 [gr-qc/0404056]. 

262 

https://arxiv.org/abs/2404.00090
https://doi.org/10.1088/0264-9381/29/11/115001
https://arxiv.org/abs/1111.3344
https://einsteintoolkit.org
https://doi.org/10.1016/0003-4916(64)90223-4
https://doi.org/10.1016/0003-4916(64)90223-4
https://doi.org/10.1016/0003-4916(57)90049-0
https://doi.org/10.1016/0003-4916(57)90049-0
https://doi.org/10.3389/fspas.2020.00058
https://arxiv.org/abs/2008.12931
https://doi.org/10.1142/S0217751X13400149
https://doi.org/10.1142/S0217751X13400149
https://arxiv.org/abs/1305.5299
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1007/s10714-008-0661-1
https://arxiv.org/abs/gr-qc/0405109
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.59.024007
https://arxiv.org/abs/gr-qc/9810065
https://doi.org/10.1103/PhysRevD.95.124005
https://doi.org/10.1103/PhysRevD.95.124005
https://arxiv.org/abs/1705.01071
https://doi.org/10.1103/PhysRev.131.471
https://doi.org/10.1103/PhysRev.131.471
https://doi.org/10.1103/PhysRevD.53.1972
https://arxiv.org/abs/gr-qc/9509020
https://doi.org/10.1103/PhysRevD.21.2047
https://doi.org/10.1103/PhysRevLett.78.3606
https://arxiv.org/abs/gr-qc/9703066
https://doi.org/10.1103/PhysRevD.70.064011
https://arxiv.org/abs/gr-qc/0404056


Bibliography 

[318] K. Clough, P. Figueras, H. Finkel, M. Kunesch, E. A. Lim and S. Tunyasuvunakool, 
GRChombo : Numerical Relativity with Adaptive Mesh Refnement, Class. Quant. Grav. 32 
(2015) 245011 [1503.03436]. 

[319] T. Andrade et al., GRChombo: An adaptable numerical relativity code for fundamental 
physics, J. Open Source Softw. 6 (2021) 3703 [2201.03458]. 

[320] “GRChombo.” https://www.grchombo.org. 

[321] G. Lovelace, Reducing spurious gravitational radiation in binary-black-hole simulations by 
using conformally curved initial data, Class. Quant. Grav. 26 (2009) 114002 [0812.3132]. 

[322] V. Varma, M. A. Scheel and H. P. Pfeifer, Comparison of binary black hole initial data sets, 
Phys. Rev. D 98 (2018) 104011 [1808.08228]. 

[323] K. Higginbotham, B. Khamesra, J. P. McInerney, K. Jani, D. M. Shoemaker and P. Laguna, 
Coping with spurious radiation in binary black hole simulations, Phys. Rev. D 100 (2019) 
081501 [1907.00027]. 

[324] A. Sommerfeld, Die greensche funktion der schwingungslgleichung., Jahresbericht der 
Deutschen Mathematiker-Vereinigung 21 (1912) 309-352. 

[325] M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D. Pollney, E. Seidel et al., Gauge 
conditions for long term numerical black hole evolutions without excision, Phys. Rev. D 67 
(2003) 084023 [gr-qc/0206072]. 

[326] I. Ruchlin, Z. B. Etienne and T. W. Baumgarte, SENR/NRPy+: Numerical Relativity in 
Singular Curvilinear Coordinate Systems, Phys. Rev. D 97 (2018) 064036 [1712.07658]. 

[327] “NRPy+.” https://nrpyplus.net. 

[328] M. D. Duez, F. Foucart, L. E. Kidder, H. P. Pfeifer, M. A. Scheel and S. A. Teukolsky, 
Evolving black hole-neutron star binaries in general relativity using pseudospectral and fnite 
diference methods, Phys. Rev. D 78 (2008) 104015 [0809.0002]. 

[329] “The Spectral Einstein Code.” https://www.black-holes.org/code/SpEC.html. 

[330] B. Bruegmann, J. A. Gonzalez, M. Hannam, S. Husa, U. Sperhake and W. Tichy, Calibration 
of Moving Puncture Simulations, Phys. Rev. D 77 (2008) 024027 [gr-qc/0610128]. 

[331] N. Choustikov, The Einstein Toolkit: A Student’s Guide, 2011.13314. 

[332] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel et al., The Cactus 
framework and toolkit: Design and applications, in Vector and Parallel Processing – 
VECPAR’2002, 5th International Conference, Lecture Notes in Computer Science, (Berlin), 
Springer, 2003, http://edoc.mpg.de/3341. 

[333] “Cactus Computational Toolkit.” http://www.cactuscode.org/. 

[334] E. Schnetter, S. H. Hawley and I. Hawke, Evolutions in 3-D numerical relativity using fxed 
mesh refnement, Class. Quantum Grav. 21 (2004) 1465-1488 [arXiv:gr-qc/0310042]. 

263 

https://doi.org/10.1088/0264-9381/32/24/245011
https://doi.org/10.1088/0264-9381/32/24/245011
https://arxiv.org/abs/1503.03436
https://doi.org/10.21105/joss.03703
https://arxiv.org/abs/2201.03458
https://www.grchombo.org
https://doi.org/10.1088/0264-9381/26/11/114002
https://arxiv.org/abs/0812.3132
https://doi.org/10.1103/PhysRevD.98.104011
https://arxiv.org/abs/1808.08228
https://doi.org/10.1103/PhysRevD.100.081501
https://doi.org/10.1103/PhysRevD.100.081501
https://arxiv.org/abs/1907.00027
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1103/PhysRevD.67.084023
https://arxiv.org/abs/gr-qc/0206072
https://doi.org/10.1103/PhysRevD.97.064036
https://arxiv.org/abs/1712.07658
https://nrpyplus.net
https://doi.org/10.1103/PhysRevD.78.104015
https://arxiv.org/abs/0809.0002
https://www.black-holes.org/code/SpEC.html
https://doi.org/10.1103/PhysRevD.77.024027
https://arxiv.org/abs/gr-qc/0610128
https://arxiv.org/abs/2011.13314
http://edoc.mpg.de/3341
http://www.cactuscode.org/
https://doi.org/10.1088/0264-9381/21/6/014
https://arxiv.org/abs/arXiv:gr-qc/0310042


Bibliography 

[335] Carpet: Adaptive Mesh Refnement for the Cactus Framework. 

[336] D. Pollney, C. Reisswig, E. Schnetter, N. Dorband and P. Diener, High accuracy binary black 
hole simulations with an extended wave zone, Phys. Rev. D83 (2011) 044045 [0910.3803]. 

[337] V. Paschalidis, Z. B. Etienne, R. Gold and S. L. Shapiro, An efcient spectral interpolation 
routine for the TwoPunctures code, 1304.0457. 

[338] J. D. Brown, P. Diener, O. Sarbach, E. Schnetter and M. Tiglio, Turduckening black holes: 
An Analytical and computational study, Phys. Rev. D 79 (2009) 044023 [0809.3533]. 

[339] C. Reisswig, C. D. Ott, U. Sperhake and E. Schnetter, Gravitational Wave Extraction in 
Simulations of Rotating Stellar Core Collapse, Phys. Rev. D 83 (2011) 064008 [1012.0595]. 

[340] “McLachlan, a public BSSN code.” http://www.cct.lsu.edu/~eschnett/McLachlan/. 

[341] S. Husa, I. Hinder and C. Lechner, Kranc: a Mathematica application to generate numerical 
codes for tensorial evolution equations, Comput. Phys. Commun. 174 (2006) 983-1004 
[arXiv:gr-qc/0404023]. 

[342] “Kranc assembles numerical code.” http://kranccode.org/. 

[343] M. Thomas and E. Schnetter, Simulation factory: Taming application confguration and 
workfow on high-end resources, in Grid Computing (GRID), 2010 11th IEEE/ACM 
International Conference on, pp. 369 –378, oct., 2010, DOI [arXiv:1008.4571 [cs.DC]]. 

[344] B. Wardell, I. Hinder and E. Bentivegna, Simulation of GW150914 binary black hole merger 
using the Einstein Toolkit, Sept., 2016. 10.5281/zenodo.155394. 

[345] J. Thornburg, A Fast apparent horizon fnder for three-dimensional Cartesian grids in 
numerical relativity, Class. Quant. Grav. 21 (2004) 743–766 [gr-qc/0306056]. 

[346] O. Dreyer, B. Krishnan, D. Shoemaker and E. Schnetter, Introduction to isolated horizons 
in numerical relativity, Phys. Rev. D 67 (2003) 024018 [arXiv:gr-qc/0206008]. 

[347] W. Rindler, Visual Horizons in World Models, Mon. Not. Roy. Astron. Soc. 116 (1956) 
662–677. 

[348] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge 
Monographs on Mathematical Physics. Cambridge University Press, 2, 2023, 
10.1017/9781009253161. 

[349] J. M. M. Senovilla, Trapped surfaces, Int. J. Mod. Phys. D 20 (2011) 2139 [1107.1344]. 

[350] E. Altas and B. Tekin, Basics of Apparent horizons in black hole physics, J. Phys. Conf. 
Ser. 2191 (2022) 012002 [2108.05119]. 

[351] J. Thornburg, Finding apparent horizons in numerical relativity, Phys. Rev. D 54 (1996) 
4899–4918 [gr-qc/9508014]. 

[352] M. Alcubierre et al., Dynamical evolution of quasi-circular binary black hole data, Phys. 
Rev. D 72 (2005) 044004 [gr-qc/0411149]. 

264 

https://doi.org/10.1103/PhysRevD.83.044045
https://arxiv.org/abs/0910.3803
https://arxiv.org/abs/1304.0457
https://doi.org/10.1103/PhysRevD.79.044023
https://arxiv.org/abs/0809.3533
https://doi.org/10.1103/PhysRevD.83.064008
https://arxiv.org/abs/1012.0595
http://www.cct.lsu.edu/~eschnett/McLachlan/
https://arxiv.org/abs/arXiv:gr-qc/0404023
http://kranccode.org/
https://doi.org/10.1109/GRID.2010.5698010
https://arxiv.org/abs/arXiv:1008.4571 [cs.DC]
https://doi.org/10.1088/0264-9381/21/2/026
https://arxiv.org/abs/gr-qc/0306056
https://doi.org/10.1103/PhysRevD.67.024018
https://arxiv.org/abs/arXiv:gr-qc/0206008
https://doi.org/10.1093/mnras/116.6.662
https://doi.org/10.1093/mnras/116.6.662
https://doi.org/10.1017/9781009253161
https://doi.org/10.1142/S0218271811020354
https://arxiv.org/abs/1107.1344
https://doi.org/10.1088/1742-6596/2191/1/012002
https://doi.org/10.1088/1742-6596/2191/1/012002
https://arxiv.org/abs/2108.05119
https://doi.org/10.1103/PhysRevD.54.4899
https://doi.org/10.1103/PhysRevD.54.4899
https://arxiv.org/abs/gr-qc/9508014
https://doi.org/10.1103/PhysRevD.72.044004
https://doi.org/10.1103/PhysRevD.72.044004
https://arxiv.org/abs/gr-qc/0411149


Bibliography 

[353] D. Christodoulou, Reversible and irreversible transforations in black hole physics, Phys. Rev. 
Lett. 25 (1970) 1596–1597. 

[354] E. Schnetter, B. Krishnan and F. Beyer, Introduction to dynamical horizons in numerical 
relativity, Phys. Rev. D 74 (2006) 024028 [gr-qc/0604015]. 

[355] L. B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review 
Article, Living Rev. Rel. 7 (2004) 4. 

[356] E. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin 
coefcients, J. Math. Phys. 3 (1962) 566–578. 

[357] C. Reisswig and D. Pollney, Notes on the integration of numerical relativity waveforms, 
Class. Quant. Grav. 28 (2011) 195015 [1006.1632]. 

[358] J. Calderon Bustillo, I. C. F. Wong, N. Sanchis-Gual, S. H. W. Leong, A. Torres-Forne, 
K. Chandra et al., Gravitational-Wave Parameter Inference with the Newman-Penrose 
Scalar, Phys. Rev. X 13 (2023) 041048 [2205.15029]. 

[359] E. T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys. 7 
(1966) 863–870. 

[360] J. J. G. Scanio, Spin-weighted spherical harmonics and electromagnetic multipole 
expansions, American Journal of Physics 45 (1977) 173-178. 

[361] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich and E. C. G. Sudarshan, 
Spin-s Spherical Harmonics and ð, Journal of Mathematical Physics 8 (1967) 2155-2161. 

[362] K. S. Thorne, Multipole Expansions of Gravitational Radiation, Rev. Mod. Phys. 52 (1980) 
299–339. 

[363] G. Bozzola, kuibit: Analyzing Einstein Toolkit simulations with Python, J. Open Source 
Softw. 6 (2021) 3099 [2104.06376]. 

[364] C. O. Lousto and J. Healy, Exploring the Small Mass Ratio Binary Black Hole Merger via 
Zeno’s Dichotomy Approach, Phys. Rev. Lett. 125 (2020) 191102 [2006.04818]. 

[365] J. Healy and C. O. Lousto, Fourth RIT binary black hole simulations catalog: Extension to 
eccentric orbits, Phys. Rev. D 105 (2022) 124010 [2202.00018]. 

[366] J. Healy, C. O. Lousto, H. Nakano and Y. Zlochower, Post-Newtonian Quasicircular Initial 
Orbits for Numerical Relativity, Class. Quant. Grav. 34 (2017) 145011 [1702.00872]. 

[367] S. Habib, A. Ramos-Buades, E. A. Huerta, S. Husa, R. Haas and Z. Etienne, Initial Data 
and Eccentricity Reduction Toolkit for Binary Black Hole Numerical Relativity Waveforms, 
Class. Quant. Grav. 38 (2021) 125007 [2011.08878]. 

[368] M. A. Shaikh, V. Varma, H. P. Pfeifer, A. Ramos-Buades and M. van de Meent, Defning 
eccentricity for gravitational wave astronomy, Phys. Rev. D 108 (2023) 104007 
[2302.11257]. 

265 

https://doi.org/10.1103/PhysRevLett.25.1596
https://doi.org/10.1103/PhysRevLett.25.1596
https://doi.org/10.1103/PhysRevD.74.024028
https://arxiv.org/abs/gr-qc/0604015
https://doi.org/10.12942/lrr-2004-4
https://doi.org/10.1063/1.1724257
https://doi.org/10.1088/0264-9381/28/19/195015
https://arxiv.org/abs/1006.1632
https://doi.org/10.1103/PhysRevX.13.041048
https://arxiv.org/abs/2205.15029
https://doi.org/10.1063/1.1931221
https://doi.org/10.1063/1.1931221
https://doi.org/10.1119/1.10649
https://doi.org/10.1063/1.1705135
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.21105/joss.03099
https://doi.org/10.21105/joss.03099
https://arxiv.org/abs/2104.06376
https://doi.org/10.1103/PhysRevLett.125.191102
https://arxiv.org/abs/2006.04818
https://doi.org/10.1103/PhysRevD.105.124010
https://arxiv.org/abs/2202.00018
https://doi.org/10.1088/1361-6382/aa7929
https://arxiv.org/abs/1702.00872
https://doi.org/10.1088/1361-6382/abe691
https://arxiv.org/abs/2011.08878
https://doi.org/10.1103/PhysRevD.108.104007
https://arxiv.org/abs/2302.11257


Bibliography 

[369] T. Islam, V. Varma, J. Lodman, S. E. Field, G. Khanna, M. A. Scheel et al., Eccentric 
binary black hole surrogate models for the gravitational waveform and remnant properties: 
comparable mass, nonspinning case, Phys. Rev. D 103 (2021) 064022 [2101.11798]. 

[370] A. Nagar et al., Time-domain efective-one-body gravitational waveforms for coalescing 
compact binaries with nonprecessing spins, tides and self-spin efects, Phys. Rev. D 98 
(2018) 104052 [1806.01772]. 

[371] A. Nagar and S. Albanesi, Toward a gravitational self-force-informed efective-one-body 
waveform model for nonprecessing, eccentric, large-mass-ratio inspirals, Phys. Rev. D 106 
(2022) 064049 [2207.14002]. 

[372] X. Liu, Z. Cao and Z.-H. Zhu, A higher-multipole gravitational waveform model for an 
eccentric binary black holes based on the efective-one-body-numerical-relativity formalism, 
Class. Quant. Grav. 39 (2022) 035009 [2102.08614]. 

[373] H. Yu, J. Roulet, T. Venumadhav, B. Zackay and M. Zaldarriaga, Accurate and efcient 
waveform model for precessing binary black holes, Phys. Rev. D 108 (2023) 064059 
[2306.08774]. 

[374] S. Schmidt et al., Searching for gravitational-wave signals from precessing black hole binaries 
with the GstLAL pipeline, 2403.17186. 

[375] T. Dietrich, T. Hinderer and A. Samajdar, Interpreting Binary Neutron Star Mergers: 
Describing the Binary Neutron Star Dynamics, Modelling Gravitational Waveforms, and 
Analyzing Detections, Gen. Rel. Grav. 53 (2021) 27 [2004.02527]. 

[376] LIGO Scientific, Virgo collaboration, Properties and Astrophysical Implications of the 
150 M⊙ Binary Black Hole Merger GW190521, Astrophys. J. Lett. 900 (2020) L13 
[2009.01190]. 

[377] R. Farmer, M. Renzo, S. E. de Mink, P. Marchant and S. Justham, Mind the gap: The 
location of the lower edge of the pair instability supernovae black hole mass gap, Astrophys. 
J. 887 (2019) 53 [1910.12874]. 

[378] M. Shibata, K. Kiuchi, S. Fujibayashi and Y. Sekiguchi, Alternative possibility of 
GW190521: Gravitational waves from high-mass black hole-disk systems, Phys. Rev. D 103 
(2021) 063037 [2101.05440]. 

[379] S. Clesse and J. García-Bellido, Seven Hints for Primordial Black Hole Dark Matter, Phys. 
Dark Univ. 22 (2018) 137-146 [1711.10458]. 

[380] T. Chiba and S. Yokoyama, Spin Distribution of Primordial Black Holes, PTEP 2017 
(2017) 083E01 [1704.06573]. 

[381] V. De Luca, V. Desjacques, G. Franciolini, P. Pani and A. Riotto, GW190521 Mass Gap 
Event and the Primordial Black Hole Scenario, Phys. Rev. Lett. 126 (2021) 051101 
[2009.01728]. 

[382] W. Kastaun, “PyCactus tools.” https://github.com/wokast/PyCactus. 

266 

https://doi.org/10.1103/PhysRevD.103.064022
https://arxiv.org/abs/2101.11798
https://doi.org/10.1103/PhysRevD.98.104052
https://doi.org/10.1103/PhysRevD.98.104052
https://arxiv.org/abs/1806.01772
https://doi.org/10.1103/PhysRevD.106.064049
https://doi.org/10.1103/PhysRevD.106.064049
https://arxiv.org/abs/2207.14002
https://doi.org/10.1088/1361-6382/ac4119
https://arxiv.org/abs/2102.08614
https://doi.org/10.1103/PhysRevD.108.064059
https://arxiv.org/abs/2306.08774
https://arxiv.org/abs/2403.17186
https://doi.org/10.1007/s10714-020-02751-6
https://arxiv.org/abs/2004.02527
https://doi.org/10.3847/2041-8213/aba493
https://arxiv.org/abs/2009.01190
https://doi.org/10.3847/1538-4357/ab518b
https://doi.org/10.3847/1538-4357/ab518b
https://arxiv.org/abs/1910.12874
https://doi.org/10.1103/PhysRevD.103.063037
https://doi.org/10.1103/PhysRevD.103.063037
https://arxiv.org/abs/2101.05440
https://doi.org/10.1016/j.dark.2018.08.004
https://doi.org/10.1016/j.dark.2018.08.004
https://arxiv.org/abs/1711.10458
https://doi.org/10.1093/ptep/ptx087
https://doi.org/10.1093/ptep/ptx087
https://arxiv.org/abs/1704.06573
https://doi.org/10.1103/PhysRevLett.126.051101
https://arxiv.org/abs/2009.01728
https://github.com/wokast/PyCactus


Bibliography 

[383] E. Poisson and M. Sasaki, Gravitational radiation from a particle in circular orbit around a 
black hole. 5: Black hole absorption and tail corrections, Phys. Rev. D 51 (1995) 5753–5767 
[gr-qc/9412027]. 

[384] Planck collaboration, Planck 2018 results. X. Constraints on infation, Astron. Astrophys. 
641 (2020) A10 [1807.06211]. 

[385] P. D. Lasky et al., Gravitational-wave cosmology across 29 decades in frequency, Phys. Rev. 
X 6 (2016) 011035 [1511.05994]. 

[386] T. Namikawa, S. Saga, D. Yamauchi and A. Taruya, CMB Constraints on the Stochastic 
Gravitational-Wave Background at Mpc scales, Phys. Rev. D 100 (2019) 021303 
[1904.02115]. 

[387] R. L. Forward, Multidirectional, multipolarization antennas for scalar and tensor 
gravitational radiation, Gen. Rel. Grav. 2 (1971) 149–159. 

[388] O. D. Aguiar, The Past, Present and Future of the Resonant-Mass Gravitational Wave 
Detectors, Res. Astron. Astrophys. 11 (2011) 1–42 [1009.1138]. 

[389] M. Goryachev and M. E. Tobar, Gravitational Wave Detection with High Frequency Phonon 
Trapping Acoustic Cavities, Phys. Rev. D 90 (2014) 102005 [1410.2334]. 

[390] M. Gertsenshtein, Wave resonance of light and gravitional waves, Sov Phys JETP 14 (1962) 
84–85. 

[391] D. Boccaletti, V. De Sabbata, P. Fortini and C. Gualdi, Conversion of photons into 
gravitons and vice versa in a static electromagnetic feld, Nuovo Cim. B 70 (1970) 129–146. 

[392] A. Füzfa, Electromagnetic Gravitational Waves Antennas for Directional Emission and 
Reception, 1702.06052. 

[393] E. V. Linder, Relativistic scattering coherence, Phys. Rev. D 34 (1986) 1759. 

[394] E. V. Linder, Clustering Correlations and Limits on Cosmological Gravitational Waves, 
Astrophys. J. 328 (1988) 77. 

[395] V. B. Braginsky, N. S. Kardashev, I. D. Novikov and A. G. Polnarev, Propagation of 
electromagnetic radiation in a random feld of gravitational waves and space radio 
interferometry, Nuovo Cim. B 105 (1990) 1141–1158. 

[396] R. Fakir, Gravity wave watching, Astrophys. J. 426 (1994) 74–78 [gr-qc/9304003]. 

[397] E. E. Flanagan, The Sensitivity of the laser interferometer gravitational wave observatory 
(LIGO) to a stochastic background, and its dependence on the detector orientations, Phys. 
Rev. D 48 (1993) 2389–2407 [astro-ph/9305029]. 

[398] T. Pyne, C. R. Gwinn, M. Birkinshaw, T. M. Eubanks and D. N. Matsakis, Gravitational 
radiation and very long baseline interferometry, Astrophys. J. 465 (1996) 566–577 
[astro-ph/9507030]. 

267 

https://doi.org/10.1103/PhysRevD.51.5753
https://arxiv.org/abs/gr-qc/9412027
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://doi.org/10.1103/PhysRevX.6.011035
https://doi.org/10.1103/PhysRevX.6.011035
https://arxiv.org/abs/1511.05994
https://doi.org/10.1103/PhysRevD.100.021303
https://arxiv.org/abs/1904.02115
https://doi.org/10.1007/BF02450446
https://doi.org/10.1088/1674-4527/11/1/001
https://arxiv.org/abs/1009.1138
https://doi.org/10.1103/PhysRevD.90.102005
https://arxiv.org/abs/1410.2334
https://doi.org/10.1007/BF02710177
https://arxiv.org/abs/1702.06052
https://doi.org/10.1103/PhysRevD.34.1759
https://doi.org/10.1086/166269
https://doi.org/10.1086/174040
https://arxiv.org/abs/gr-qc/9304003
https://doi.org/10.1103/PhysRevD.48.2389
https://doi.org/10.1103/PhysRevD.48.2389
https://arxiv.org/abs/astro-ph/9305029
https://doi.org/10.1086/177443
https://arxiv.org/abs/astro-ph/9507030


Bibliography 

[399] N. Kaiser and A. H. Jafe, Bending of light by gravity waves, Astrophys. J. 484 (1997) 
545–554 [astro-ph/9609043]. 

[400] T. Damour and G. Esposito-Farese, Light defection by gravitational waves from localized 
sources, Phys. Rev. D 58 (1998) 044003 [gr-qc/9802019]. 

[401] A. H. Jafe, Observing gravitational radiation with QSO proper motions and the SKA, New 
Astron. Rev. 48 (2004) 1483–1485 [astro-ph/0409637]. 

[402] B. F. Schutz, Astrometric and timing efects of gravitational waves, IAU Symp. 261 (2010) 
234–239. 

[403] L. G. Book and E. E. Flanagan, Astrometric Efects of a Stochastic Gravitational Wave 
Background, Phys. Rev. D 83 (2011) 024024 [1009.4192]. 

[404] C. R. Gwinn, T. M. Eubanks, T. Pyne, M. Birkinshaw and D. N. Matsakis, Quasar proper 
motions and low frequency gravitational waves, Astrophys. J. 485 (1997) 87–91 
[astro-ph/9610086]. 

[405] O. Titov, S. B. Lambert and A. M. Gontier, VLBI measurement of the secular aberration 
drift, Astron. Astrophys. 529 (2011) A91 [1009.3698]. 

[406] Gaia collaboration, The Gaia Mission, Astron. Astrophys. 595 (2016) A1 [1609.04153]. 

[407] S. Aoyama, D. Yamauchi, M. Shiraishi and M. Ouchi, Gaia 400,894 QSO constraint on the 
energy density of low-frequency gravitational waves, 2105.04039. 

[408] C. J. Moore, D. P. Mihaylov, A. Lasenby and G. Gilmore, Astrometric Search Method for 
Individually Resolvable Gravitational Wave Sources with Gaia, Phys. Rev. Lett. 119 (2017) 
261102 [1707.06239]. 

[409] D. P. Mihaylov, C. J. Moore, J. R. Gair, A. Lasenby and G. Gilmore, Astrometric Efects of 
Gravitational Wave Backgrounds with non-Einsteinian Polarizations, Phys. Rev. D 97 
(2018) 124058 [1804.00660]. 

[410] D. P. Mihaylov, C. J. Moore, J. Gair, A. Lasenby and G. Gilmore, Astrometric efects of 
gravitational wave backgrounds with nonluminal propagation speeds, Phys. Rev. D 101 
(2020) 024038 [1911.10356]. 

[411] J. García-Bellido, H. Murayama and G. White, Exploring the early Universe with Gaia and 
Theia, JCAP 12 (2021) 023 [2104.04778]. 

[412] R. M. Wald, General Relativity. Chicago Univ. Pr., Chicago, USA, 1984, 
10.7208/chicago/9780226870373.001.0001. 

[413] D. Blas and A. C. Jenkins, Detecting stochastic gravitational waves with binary resonance, 
Phys. Rev. D 105 (2022) 064021 [2107.04063]. 

[414] R. Olinde, De l’attraction des spheroides, Correspondence sur l’École Imperiale 
Polytechnique 3 (1816) 361–385. 

268 

https://doi.org/10.1086/304357
https://doi.org/10.1086/304357
https://arxiv.org/abs/astro-ph/9609043
https://doi.org/10.1103/PhysRevD.58.044003
https://arxiv.org/abs/gr-qc/9802019
https://doi.org/10.1016/j.newar.2004.09.018
https://doi.org/10.1016/j.newar.2004.09.018
https://arxiv.org/abs/astro-ph/0409637
https://doi.org/10.1017/S1743921309990457
https://doi.org/10.1017/S1743921309990457
https://doi.org/10.1103/PhysRevD.83.024024
https://arxiv.org/abs/1009.4192
https://doi.org/10.1086/304424
https://arxiv.org/abs/astro-ph/9610086
https://doi.org/10.1051/0004-6361/201015718
https://arxiv.org/abs/1009.3698
https://doi.org/10.1051/0004-6361/201629272
https://arxiv.org/abs/1609.04153
https://arxiv.org/abs/2105.04039
https://doi.org/10.1103/PhysRevLett.119.261102
https://doi.org/10.1103/PhysRevLett.119.261102
https://arxiv.org/abs/1707.06239
https://doi.org/10.1103/PhysRevD.97.124058
https://doi.org/10.1103/PhysRevD.97.124058
https://arxiv.org/abs/1804.00660
https://doi.org/10.1103/PhysRevD.101.024038
https://doi.org/10.1103/PhysRevD.101.024038
https://arxiv.org/abs/1911.10356
https://doi.org/10.1088/1475-7516/2021/12/023
https://arxiv.org/abs/2104.04778
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1103/PhysRevD.105.064021
https://arxiv.org/abs/2107.04063


Bibliography 

[415] E. Condon and G. Shortley, The Theory of Atomic Spectra, Cambridge Univ.Pr.209. 
Cambridge University Press, 1935. 

[416] F. Mignard and S. Klioner, Analysis of astrometric catalogues with vector spherical 
harmonics, Astron. Astrophys. 547 (2012) A59 [1207.0025]. 

[417] A. Unsöld, Beiträge zur quantenmechanik der atome, Annalen der Physik 387 (1927) 
355-393. 

[418] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. 
Astrophys. 641 (2020) A6 [1807.06209]. 

[419] E. B. Wilson and M. M. Hilferty, The Distribution of Chi-Square, Proc. of the National 
Academy of Sciences of the United States of America 17 (1931) 684-688. 

[420] Gaia collaboration, Gaia early data release 3 - summary of the contents and survey 
properties, Astron. Astrophys. 649 (2021) A1 [2012.01533]. 

[421] C. Turon, M. Creze, D. Egret, A. Gomez, M. Grenon, H. Jahreiß et al., Version 2 of the 
HIPPARCOS input catalogue, Bulletin d’information du Centre de données astronomiques 
de Strasbourg 43 (1993) 5–6. 

[422] M. Cropper, D. Katz, P. Sartoretti, T. Prusti, J. De Bruijne, F. Chassat et al., Gaia data 
release 2-gaia radial velocity spectrometer, Astronomy & Astrophysics 616 (2018) A5. 

[423] Gaia collaboration, Gaia Data Release 1: Summary of the astrometric, photometric, and 
survey properties, Astron. Astrophys. 595 (2016) A2 [1609.04172]. 

[424] Gaia collaboration, Gaia Data Release 2: Summary of the contents and survey properties, 
Astron. Astrophys. 616 (2018) A1 [1804.09365]. 

[425] Gaia collaboration, Gaia Data Release 3: Summary of the content and survey properties, 
Astron. Astrophys. 674 (2023) A1 [2208.00211]. 

[426] “Gaia data release 3 documentation.” https://www.cosmos.esa.int/web/gaia/dr3. 

[427] “Gaia data release scenario.” https://www.cosmos.esa.int/web/gaia/release. 

[428] K. Storey-Fisher, D. W. Hogg, H.-W. Rix, A.-C. Eilers, G. Fabbian, M. R. Blanton et al., 
Quaia, the Gaia-unWISE Quasar Catalog: An All-sky Spectroscopic Quasar Sample, 
Astrophys. J. 964 (2024) 69 [2306.17749]. 

[429] D. Lang, unwise: Unblurred coadds of the wise imaging, The Astronomical Journal 147 
(2014) 108. 

[430] Gaia collaboration, Gaia Data Release 3 - The extragalactic content, Astron. Astrophys. 
674 (2023) A41 [2206.05681]. 

[431] L. Delchambre et al., Gaia Data Release 3 - Apsis. III. Non-stellar content and source 
classifcation, Astron. Astrophys. 674 (2023) A31 [2206.06710]. 

[432] Gaia collaboration, Gaia Early Data Release 3 - The celestial reference frame 
(Gaia-CRF3), Astron. Astrophys. 667 (2022) A148 [2204.12574]. 

269 

https://doi.org/10.1051/0004-6361/201219927
https://arxiv.org/abs/1207.0025
https://doi.org/https://doi.org/10.1002/andp.19273870304
https://doi.org/https://doi.org/10.1002/andp.19273870304
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1073/pnas.17.12.684
https://doi.org/10.1073/pnas.17.12.684
https://doi.org/10.1051/0004-6361/202039657
https://arxiv.org/abs/2012.01533
https://doi.org/10.1051/0004-6361/201629512
https://arxiv.org/abs/1609.04172
https://doi.org/10.1051/0004-6361/201833051
https://arxiv.org/abs/1804.09365
https://doi.org/10.1051/0004-6361/202243940
https://arxiv.org/abs/2208.00211
https://www.cosmos.esa.int/web/gaia/dr3
https://www.cosmos.esa.int/web/gaia/release
https://doi.org/10.3847/1538-4357/ad1328
https://arxiv.org/abs/2306.17749
https://doi.org/10.1088/0004-6256/147/5/108
https://doi.org/10.1088/0004-6256/147/5/108
https://doi.org/10.1051/0004-6361/202243232
https://doi.org/10.1051/0004-6361/202243232
https://arxiv.org/abs/2206.05681
https://doi.org/10.1051/0004-6361/202243423
https://arxiv.org/abs/2206.06710
https://doi.org/10.1051/0004-6361/202243483
https://arxiv.org/abs/2204.12574


Bibliography 

[433] A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E. Hivon et al., healpy: equal area 
pixelization and spherical harmonics transforms for data on the sphere in Python, Journal of 
Open Source Software 4 (2019) 1298. 

[434] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke et al., 
HEALPix - A Framework for high resolution discretization, and fast analysis of data 
distributed on the sphere, Astrophys. J. 622 (2005) 759–771 [astro-ph/0409513]. 

[435] A. E. Truebenbach and J. Darling, The VLBA Extragalactic Proper Motion Catalog and a 
Measurement of the Secular Aberration Drift, Astrophys. J. Suppl. 233 (2017) 3 
[1710.02099]. 

[436] B. W. Lyke et al., The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release, 
Astrophys. J. Suppl. 250 (2020) 8 [2007.09001]. 

[437] M. B. Taylor, TOPCAT & STIL: Starlink Table/VOTable Processing Software, in 
Astronomical Data Analysis Software and Systems XIV, P. Shopbell, M. Britton and 
R. Ebert, eds., vol. 347 of Astronomical Society of the Pacifc Conference Series, p. 29, Dec., 
2005. 

[438] M. B. Taylor, STILTS - A Package for Command-Line Processing of Tabular Data, in 
Astronomical Data Analysis Software and Systems XV, C. Gabriel, C. Arviset, D. Ponz and 
S. Enrique, eds., vol. 351 of Astronomical Society of the Pacifc Conference Series, p. 666, 
July, 2006. 

[439] eBOSS collaboration, The 13th Data Release of the Sloan Digital Sky Survey: First 
Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point 
Observatory, Astrophys. J. Suppl. 233 (2017) 25 [1608.02013]. 

[440] A. Sesana, A. Vecchio and C. N. Colacino, The stochastic gravitational-wave background 
from massive black hole binary systems: implications for observations with Pulsar Timing 
Arrays, Mon. Not. Roy. Astron. Soc. 390 (2008) 192 [0804.4476]. 

[441] S. Burke-Spolaor et al., The Astrophysics of Nanohertz Gravitational Waves, Astron. 
Astrophys. Rev. 27 (2019) 5 [1811.08826]. 

[442] J. J. Blanco-Pillado, K. D. Olum and X. Siemens, New limits on cosmic strings from 
gravitational wave observation, Phys. Lett. B 778 (2018) 392–396 [1709.02434]. 

[443] Y. Matsui and S. Kuroyanagi, Gravitational wave background from kink-kink collisions on 
infnite cosmic strings, Phys. Rev. D 100 (2019) 123515 [1902.09120]. 

[444] C. Caprini, R. Durrer and X. Siemens, Detection of gravitational waves from the QCD phase 
transition with pulsar timing arrays, Phys. Rev. D 82 (2010) 063511 [1007.1218]. 

[445] A. Brandenburg, E. Clarke, Y. He and T. Kahniashvili, Can we observe the QCD phase 
transition-generated gravitational waves through pulsar timing arrays?, Phys. Rev. D 104 
(2021) 043513 [2102.12428]. 

[446] NANOGrav collaboration, The NANOGrav 12.5 yr Data Set: Search for an Isotropic 
Stochastic Gravitational-wave Background, Astrophys. J. Lett. 905 (2020) L34 [2009.04496]. 

270 

https://doi.org/10.21105/joss.01298
https://doi.org/10.21105/joss.01298
https://doi.org/10.1086/427976
https://arxiv.org/abs/astro-ph/0409513
https://doi.org/10.3847/1538-4365/aa9026
https://arxiv.org/abs/1710.02099
https://doi.org/10.3847/1538-4365/aba623
https://arxiv.org/abs/2007.09001
https://doi.org/10.3847/1538-4365/aa8992
https://arxiv.org/abs/1608.02013
https://doi.org/10.1111/j.1365-2966.2008.13682.x
https://arxiv.org/abs/0804.4476
https://doi.org/10.1007/s00159-019-0115-7
https://doi.org/10.1007/s00159-019-0115-7
https://arxiv.org/abs/1811.08826
https://doi.org/10.1016/j.physletb.2018.01.050
https://arxiv.org/abs/1709.02434
https://doi.org/10.1103/PhysRevD.100.123515
https://arxiv.org/abs/1902.09120
https://doi.org/10.1103/PhysRevD.82.063511
https://arxiv.org/abs/1007.1218
https://doi.org/10.1103/PhysRevD.104.043513
https://doi.org/10.1103/PhysRevD.104.043513
https://arxiv.org/abs/2102.12428
https://doi.org/10.3847/2041-8213/abd401
https://arxiv.org/abs/2009.04496


Bibliography 

[447] J. Darling. personal communication, 2023. 

[448] D. S. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial. Oxford University Press, 
2 ed., 2006. 

[449] A. G. Brown, Microarcsecond astrometry: Science highlights from gaia, Annual Review of 
Astronomy and Astrophysics 59 (2021) 59-115 [2102.11712]. 

[450] Theia collaboration, Theia: Faint objects in motion or the new astrometry frontier, 
1707.01348. 

[451] F. Malbet et al., Theia : science cases and mission profles for high precision astrometry in 
the future, in SPIE Astronomical Telescopes + Instrumentation 2022, 7, 2022, 2207.12540. 

[452] G. Domènech, S. Passaglia and S. Renaux-Petel, Gravitational waves from dark matter 
isocurvature, JCAP 03 (2022) 023 [2112.10163]. 

[453] K. Ando, K. Inomata and M. Kawasaki, Primordial black holes and uncertainties in the 
choice of the window function, Phys. Rev. D 97 (2018) 103528 [1802.06393]. 

[454] J. Lense and H. Thirring, Ueber den Einfuss der Eigenrotation der Zentralkoerper auf die 
Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Phys. Z. 19 
(1918) 156–163. 

[455] S. Horatschek and D. Petrof, Uniformly Rotating Homogeneous Rings in post-Newtonian 
Gravity, Mon. Not. Roy. Astron. Soc. 408 (2010) 1749 [1005.0294]. 

[456] S. Weinberg, Gravitation and Cosmology. Principles and applications of the General Theory 
of Relativity. John Wiley & Sons, Inc., 1972. 

[457] L. De Vittori, A. Gopakumar, A. Gupta and P. Jetzer, Gravitational waves from spinning 
compact binaries in hyperbolic orbits, Phys. Rev. D 90 (2014) 124066 [1410.6311]. 

271 

https://doi.org/10.1146/annurev-astro-112320-035628
https://doi.org/10.1146/annurev-astro-112320-035628
https://arxiv.org/abs/2102.11712
https://arxiv.org/abs/1707.01348
https://arxiv.org/abs/2207.12540
https://doi.org/10.1088/1475-7516/2022/03/023
https://arxiv.org/abs/2112.10163
https://doi.org/10.1103/PhysRevD.97.103528
https://arxiv.org/abs/1802.06393
https://doi.org/10.1111/j.1365-2966.2010.17241.x
https://arxiv.org/abs/1005.0294
https://doi.org/10.1103/PhysRevD.90.124066
https://arxiv.org/abs/1410.6311

	Abstract
	Resumen
	Introduction
	Introducción
	Gravitational wave theory
	Gravitational wave formalism
	Linearized theory
	The harmonic gauge
	The transverse traceless gauge
	Plane waves
	Projection to TT gauge

	Generalization to curved backgrounds
	Propagation of gravitational waves
	Energy of a gravitational wave
	Quadrupole formulae

	Gravitational waves from a bound two-body system
	Keplerian dynamics
	Radiated power
	Gravitational waves and energy loss
	Energy spectrum

	Hyperbolic encounters
	Keplerian dynamics
	Radiated power


	Stochastic gravitational wave backgrounds
	Stochastic gravitational wave background formalism
	Detection of gravitational waves
	Detector pattern functions
	SGWB data analysis

	Introduction to Bayesian inference
	The likelihood
	Sampling methods
	Post-processing techniques
	Parameter estimation of isotropic SGWB

	Constraints from LVK
	Constraints to non-Gaussianities from O3 data
	Introduction
	The model
	Data analysis
	Conclusions


	SGWB anisotropies
	Formalism for anisotropic SGWB
	Basis decomposition
	Anisotropic SGWB data analysis

	Bayesian PE for targeted anisotropic GWB
	Introduction
	The formalism
	Model selection
	Conclusions


	Primordial black holes
	Introduction
	PBH generation mechanisms
	Single-field inflation
	Non-Gaussianities

	Collapse of density perturbations
	The Misner-Sharp formalism
	Initial conditions
	Numerical simulations
	Numerical results
	Threshold dependence of equation of state

	Merger rates of primordial black holes
	Merger rates of PBH late binaries


	SGWBs from close hyperbolic encounters of PBHs
	Introduction
	Stochastic background of GWs
	Binary BHs
	Close hyperbolic encounters
	Comparison between BBHs and CHEs

	Conclusions

	Numerical Relativity
	Introduction to NR
	The 3+1 ADM formalism
	Initial conditions
	Adaptive mesh refinement

	Numerical simulations with the Einstein Toolkit
	The Einstein Toolkit
	Apparent horizons
	Gravitational-wave extraction
	Challenges: mass ratios, eccentricity, precession

	Hyperbolic encounters

	Spin induction on BHs from CHEs
	Introduction
	Grid structure and initial conditions
	Equal mass case
	Changing the mass ratio

	Numerical results
	Error analysis
	General behavior of the simulations
	Equal masses, varying incidence angle
	Varying the mass ratio

	Towards lower mass ratios: the case of q=0.1
	Issues with the Weyl scalar
	The spins

	Comparison with analytic expressions
	Trend for varying incidence angle
	Trend for varying mass ratio

	Conclusions

	Gravitational wave constraints from astrometry
	The stochastic gravitational wave background in different frequencies
	Introduction to gravitational wave constraints from astrometry
	Minkowski spacetime
	Unperturbed case
	Perturbed case
	Observed angular deflection

	FLRW metric
	Further simplifications
	Plane waves and the distant source limit

	Angular deflection correlation
	Autocorrelation spectrum
	Frequency validity range
	Generalization to different directions

	Multipole decomposition
	Scalar spherical harmonics
	Vector spherical harmonics
	Contributions per mode and multipole
	Explicit computation of multipole power

	Data analysis
	Statistical significance


	The Gaia mission
	Introduction
	Generating clean datasets
	The QSO candidate sample
	Filtering and masking
	Gaia QSO selections

	Other datasets
	Queries of astronomical databases
	Gaia archive
	Cross-matching catalogs
	VLBA-based datasets


	SGWB constraints from Gaia DR3
	Introduction
	Data analysis
	Likelihood
	Parameter estimation

	Results
	Future prospects

	Conclusions
	Conclusiones
	Scalar-induced gravitational wave formalism
	Scalar induced gravitational waves
	Gravitational waves induced by non-Gaussian curvature perturbations

	Derivation of dipole artifact due to Doppler shift
	Analytic estimate of the induced spins
	Ring approximation
	Mass current
	From spin-orbit equations at PPN(1.5)
	Differences between expressions

	Corner plots for SGWB constraints from Gaia DR3
	List of Figures
	List of Tables
	Bibliography



