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Abstract

The field of gravitational waves has made a huge progress over the last decade, especially since
their first detection by LIGO in September 2015. Throughout this thesis, I will give an overview of
some of the research lines where this progress is more tangible, all of them related in some way to
the stochastic gravitational wave background or primordial black holes.

First, gravitational waves and stochastic gravitational wave backgrounds will be introduced,
covering the standard formalisms, equations and data analysis tools, together with some works on
anisotropies and constraints on theoretical models involving non-Gaussianities.

Then, we will study some of the phenomena related to hyperbolic encounters and primordial
black holes, which are two of the areas that are progressively getting more attention as the number of
detected gravitational-wave signals increases. In particular, hyperbolic encounters will be analyzed
using Numerical Relativity, which is a key tool for the interpretation of these signals and, in this
case, will be used to study the effect of spin induction in black holes.

Finally, the thesis will delve into the topic of stochastic gravitational wave backgrounds in
different frequency ranges. After a brief overview, we will study how to set constraints for this
background using astrometric data from astronomical surveys such as Gaia. This will illustrate
that there is much more to gravitational waves than the work within the usual gravitational wave
detectors, providing complementary information which is otherwise inaccessible. The thesis will
ultimately conclude with some final remarks.
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Resumen

El campo de las ondas gravitacionales ha experimentado un enorme progreso durante la dltima
década, especialmente desde su primera detecciéon por LIGO en septiembre de 2015. A lo largo
de esta tesis, daré una visiéon general sobre algunas de las lineas de investigacién en las que este
progreso es més tangible, todas ellas relacionadas de alguna manera con el fondo estocastico de
ondas gravitacionales o los agujeros negros primordiales.

En primer lugar, se introduciran las ondas gravitacionales y los fondos estocasticos de ondas
gravitacionales, desarrollando los formalismos usuales, ecuaciones y herramientas para el analisis
de datos, junto con algunos trabajos sobre anisotropias e imposiciéon de limites en modelos tedricos
que involucran no-Gaussianidades.

A continuacion, estudiaremos algunos de los fenémenos relacionados con los encuentros hiper-
bolicos y los agujeros negros primordiales, que son dos de las areas que progresivamente estan
recibiendo mas atenciéon a medida que aumenta el nimero de senales de ondas gravitacionales de-
tectadas. En particular, los encuentros hiperbolicos se analizaran utilizando Relatividad Numérica,
que es una herramienta clave para la interpretacion de estas senales y, en este caso, se utilizaré para
estudiar el efecto de la induccién de espin en los agujeros negros.

Finalmente, la tesis desarrollara el estudio de los fondos estocésticos de ondas gravitacionales en
diferentes rangos de frecuencia. Después de una breve descripciéon general, veremos cémo establecer
limites sobre dicho fondo utilizando datos astrométricos de misiones astronémicas como Gaia. Esto
servird para ilustrar que las ondas gravitacionales abarcan mucho méas que el trabajo relacionado con
los detectores de ondas gravitacionales habituales, proporcionando informaciéon complementaria que
seria de otro modo inaccesible. La tesis finalmente concluird con algunas observaciones adicionales.
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Introduction

Over the last decade, the field of gravitational waves (GW) has seen an astonishing evolution, from
their first detection in 2015 by LIGO [6, 7] to the recent hints of a stochastic gravitational wave
background (SGWB) from pulsar timing arrays (PTAs) [8, 9, 10, 11] in 2023. Just to mention some
of the recent developments, new ground-based detectors have joined the observations (Virgo [12],
KAGRA [13]), more than 90 signals from compact binary coalescences (CBCs) have officially been
detected [14], the neutron star merger GW170817 has been observed jointly in GW and electromag-
netic (EM) radiation [15], a merger between two black holes of masses 91 and 67 solar masses has
been observed (GW190521) [16], standing as the most energetic astrophysical event ever observed,
etc.

Next-generation detectors have also been proposed, where the ground-based ones, such as Ein-
stein Telescope (ET) [17] and Cosmic Explorer (CE) [18], will dig drastically deeper into the Hz-kHz
frequency band that LIGO-Virgo-KAGRA (LVK) [19] is already observing. Furthermore, the space
missions (LISA [20], TianQin [21], Taiji [22], DECIGO [23]) will open up a new frequency band
around the mHz, which will provide invaluable information we do not currently have access to.

All of this collaborative effort is expected to prove extremely fruitful for science in the com-
ing decades. We anticipate more joint detections in GW and EM radiation, entering the era of
multimessenger astronomy; a larger number of observations by orders of magnitude, due to the
progressive increase in sensitivity and especially after LISA starts observing; long observations in
mHz pointing to later observations in the LVK range (and in EM radiation) of the same sources,
etc.

One of the possibilities is that small (under a solar mass) black holes (BHs) are detected, thus
confirming the long theorized primordial black holes (PBHs) [24, 25, 26, 27|, generated in the
early universe without a star precursor. The overwhelming amount of signals will also allow to do
black hole population analyses, constraining the abundance of these primordial black holes. This
is especially relevant given that they are one of the candidates to be dark matter (DM), so these
observations will potentially confirm them as one of the contributions to DM or rule them out, in
any case providing invaluable evidence for one of the greatest problems in contemporary Physics.

Particularly interesting is the case of stochastic gravitational wave backgrounds, which could
potentially play the role that the cosmic microwave background (CMB) has been playing in the last
decades. A SGWB detection would, presumably, first consist on an astrophysical foreground from
a superposition of CBC signals [28, 29, 30, 31, 32], but once technology is able to overcome that, we
should be able to see the imprint of cosmological contributions. The data analysis of cosmological
sources is assumed to be much more challenging, but the physical information we can gain from it

1
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goes beyond recombination, thus providing unique cosmological insights of the moments closer to
the CMB that no other messenger can deliver.

Together with the advancements on the experimental side, one of the key fields that had to be
developed to properly analyze gravitational waves was Numerical Relativity (NR). It was not until
2005 that a successful numerical simulation of a binary black hole (BBH) merger was produced [33,

, 35]. Since then, a lot of progress has been done on the analytic side and there are now various
waveform models which can reproduce a real signal with a very high accuracy in a fraction of a
second [36, 37]. In any case, Numerical Relativity is still relevant to calibrate them and test them,
despite the heavy computational cost that these simulations have.

During this thesis, I will provide an overview of several of these fields: stochastic gravitational
wave backgrounds, primordial black holes, hyperbolic encounters, numerical relativity and other
probes of the SGWB in different frequency ranges.

The thesis is structured as follows. We will start by introducing the topic of gravitational waves
in Chapter 1, continuing in Chapter 2 with the theory and data analysis formalism for an isotropic
stochastic gravitational-wave background, and for its anisotropies in Chapter 3, presenting two of
my works in this regard. In Chapter 4, I will give a brief introduction to primordial black holes,
which will lead to a work on the SGWB produced by clustered PBH within hyperbolic encounters
in Chapter 5. In Chapter 6, we will delve into Numerical Relativity from different perspectives:
the critical collapse of a PBH and the more standard, binary black hole simulations, both from
a CBC point of view and for hyperbolic encounters, concluding with our work on black hole spin
induction within these interactions in Chapter 7. In Chapter 8, I will give a brief introduction
to other probes of SGWB in different frequency ranges and develop the formalism relating this
background to astrometric measurements, following with an overview of the Gaia mission and
practical considerations to work with its data in Chapter 9 and concluding in Chapter 10 with our
work constraining the SGWB amplitude below the nHz with Gaia data. Finally, I will outline some
conclusions to this thesis in Chapter 11.



Introducciéon

Durante la tltima década, el campo de las ondas gravitacionales (GW) ha experimentado una sor-
prendente evolucion, desde su primera deteccion en 2015 por LIGO [6, 7] hasta los recientes indicios
de un fondo estocastico de ondas gravitacionales (SGWB) por parte de las matrices de medicion
temporal de pulsares (pulsar timing arrays, PTAs) [8, 9, 10, 11] en 2023. Solo por mencionar al-
gunos de los desarrollos recientes, nuevos detectores terrestres se han sumado a las observaciones
(Virgo [12], KAGRA [13]), se han detectado oficialmente mas de 90 sefiales de coalescencias de
binarias compactas (CBCs) [14], se ha detectado la fusion de estrellas de neutrones GW170817 ob-
servada conjuntamente en GW y radiacion electromagnética (EM) [15], se ha observado una fusion
entre dos agujeros negros de masas 91 y 67 masas solares (GW190521) [16], situandose como el
evento astrofisico més energético que se ha observado, etc.

También se han propuesto detectores de proxima generaciéon, donde los terrestres, como el
Einstein Telescope (ET) [17] y Cosmic Explorer (CE) [18], profundizaran significativamente en la
banda de frecuencia Hz-kHz que LIGO-Virgo-KAGRA (LVK) [19] ya esta observando. Ademas, las
misiones espaciales (LISA [20], TianQin [21], Taiji [22], DECIGO [23]) abriran un nueva banda de
frecuencia alrededor de los mHz, que proporcionara una valiosa informacion a la que actualmente
no tenemos acceso.

Se prevé que todo este esfuerzo colaborativo resulte extremadamente fructifero para la ciencia
en las proximas décadas. Se esperan més detecciones conjuntas en GW y radiaciéon EM, entrando
en la era de la astronomia multimensajero; un dréstico aumento en el ntimero de observaciones
debido a la mejora progresiva de la sensibilidad y especialmente después de que LISA comience a
observar; observaciones largas en mHz que indiquen observaciones posteriores en el rango de LVK
(v en radiacion EM) de las mismas fuentes, etc.

Una de las posibilidades es que se detecten agujeros negros (BH) pequenios (menores que una
masa solar), confirmando asf los llamados agujeros negros primordiales (PBH) que han sido teoriza-
dos durante mucho tiempo [24, 25, 26, 27], generados en el universo temprano sin una estrella
precursora. La abrumadora cantidad de senales también permitira realizar anéalisis de la poblacién
de agujeros negros, lo que pondra limites observacionales a la abundancia de estos PBHs. Esto
es especialmente relevante dado que son uno de los candidatos a materia oscura (DM), por lo que
estas observaciones potencialmente los confirmaréan como, al menos, parte de la DM, o bien los
descartaran, proporcionando, en cualquier caso, una valiosa informacién sobre uno de los mayores
problemas de la Fisica contemporanea.

Particularmente interesante es el caso de los fondos estocésticos de ondas gravitacionales, que
podrian, potencialmente, desempenar el papel que ha ocupado el fondo césmico de microondas
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(CMB) en las ultimas décadas. Una deteccion de SGWB, en principio, consistirfa primero en una
sefial astrofisica proveniente de una superposicion de sefiales de CBCs [28, 29, 30, 31, 32]. Sin
embargo, una vez que la tecnologia sea capaz de indagar més alla de dicha senal, deberfamos poder
ver la huella de las contribuciones cosmoldgicas. Se asume que el anélisis de datos para estas fuentes
cosmologicas serda mucho méas desafiante, pero la informacion fisica que podemos obtener de ellas
va més alla de la recombinacién, proporcionando asf un conocimiento cosmolégico tnico sobre los
momentos mas cercanos al CMB que ningin otro mensajero puede ofrecer.

Junto con los avances en el lado experimental, uno de los campos clave que hubo que desarrollar
para analizar adecuadamente las ondas gravitacionales fue la Relatividad Numeérica (NR). No fue
hasta 2005 cuando se produjo una simulacién numérica exitosa de una fusion de una binaria de
agujeros negros (BBH) [33, 34, 35]. Desde entonces, se ha avanzado mucho en los desarrollos
analiticos y actualmente existen multiples modelos que pueden reproducir una senal real con una
precision muy alta en una fraccion de segundo [36, 37]. En cualquier caso, la Relatividad Numeérica
sigue siendo relevante para calibrarlos y ponerlos a prueba, a pesar del alto coste computacional
que tienen estas simulaciones.

A lo largo de esta tesis, proporcionaré una visiéon general de varios de estos campos: fondos
estocasticos de ondas gravitacionales, agujeros negros primordiales, encuentros hiperbdlicos, rela-
tividad numérica y otras maneras de caracterizar el SGWB en diferentes rangos de frecuencia.

La tesis se estructura de la siguiente manera. Comenzaremos introduciendo el tema de las
ondas gravitacionales en el Capitulo 1, continuando en el Capitulo 2 con la teoria y el formalismo
del anélisis de datos para un SGWB isotropico, y para sus anisotropias en el Capitulo 3, presentando
dos de mis trabajos al respecto. En el Capitulo 4, daré una breve introduccion a los agujeros negros
primordiales, lo que conducira a un trabajo sobre el SGWB producido por encuentros hiperbdlicos
de PBHs en camulos en el Capitulo 5. En el Capitulo 6, profundizaremos en la Relatividad Numérica
desde diferentes perspectivas: el colapso critico de un PBH y las simulaciones de binarias de agujeros
negros, tanto desde el punto de vista de CBCs como para encuentros hiperbdlicos, y concluyendo
con nuestro trabajo sobre la inducciéon de espin de agujeros negros en estas interacciones en el
Capitulo 7. En el Capitulo 8, daré una breve introducciéon a otros métodos para caracterizar el
SGWRB en diferentes rangos de frecuencia y desarrollaré el formalismo que relaciona estos fondos con
mediciones astrométricas, siguiendo con una descripcion general de la misién Gaia y consideraciones
practicas para el manejo de sus datos en el Capitulo 9 y concluyendo en el Capitulo 10 con nuestro
trabajo en el que utilizamos datos de Gaia para imponer limites a la amplitud del SGWB por debajo
de los nHz. Finalmente, concluiremos con algunas observaciones sobre la tesis en el Capitulo 11.



Notation

In the context of General Relativity, we use the signature convention (-4+-++). We denote
ot = (2 %), 2°=ct, (0.1)
with ¢ the speed of light. We will use Greek indices for either time or space coordinates (u = 0,1, 2, 3)
and Latin indices to denote space coordinates (i = 1,2, 3).
We will also use Einstein’s summation convention over repeated indices, so that

3

3
a,bt = Z a b, ab’ = Z(ibi(z agb; = a'd’), (0.2)
n=0

i=1

where the latter conventions for both spatial indices either raised or lowered only applies in the
context of a Minkowskian metric. This is possible because, with our signature convention, 7;; = d;;,
so that a; = m;;a/ = a'. This cannot be done for g = 0, for which lowering or raising indices
generates an extra minus sign.

The convention for the Christoffel symbols will be

1
F'IIJLP = 59“0 (al/gop + 5,3901/ - 8(rgup) . (03)

The Riemann tensor is then defined as

Rfypo = 0TV, — 0,TH + T8 T T T2 (0.4)

ap™ vo aoct vp*

The Ricci tensor is defined as the contraction of the first and third indices of the Riemann
tensor,
R, = R 1av, (0.5)

and, finaly, the Ricci scalar is the contraction of the Ricci tensor,

R = g'u'VRHV. (06)

The convention for the n-dimensional Fourier transform of a certain function f : R® — R will

be
fa) = /ﬂ( oy FE 0.7
5
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while the inverse Fourier transform is then given by

fk) = /ﬂ( d"xf (k)e~ =,

Then, for a function of time, the signature convention implies

£(t) = /( % Fapes

and, conversely,

fw)

matching the Landau-Lifshitz notation |

In addition, the Dirac delta satisfies

so that, in one dimension,

= /CO dtf(t)e™?,
|-

(0.9)

(0.10)

(0.11)

(0.12)



Chapter 1

Gravitational wave theory

In this first chapter of the thesis, it is necessary that we start by reviewing the most important
aspects of Gravitational Wave theory. Despite the existence of much more complete introductions
to the field in the scientific literature, it is more convenient to present here the needed theory and
equations in a suitable way for the purposes of this thesis. In addition, even for a reader who is
familiar with the topic, it is useful to review the basic concepts so that the ideas presented later in
the thesis will become more clear to follow. All of this will also contribute to the thesis being more
self-contained, which was one of the main intentions during the writing process, and it is the same
philosophy which guided the rest of the chapters of this thesis.

In any case, this chapter does not mean to be a complete and thorough introduction to Gravi-
tational Wave theory. Whenever possible, all equations will be properly derived and justified, but
this is not always feasible when aiming for a reasonable extension of the thesis. Therefore, in some
occasions, we will simply refer to other sources providing a more complete picture for the treated
topic. In the first sections of this chapter, in particular, the main reference for consultation will be
Michele Maggiore’s books on Gravitational waves [39, 40], which provide an excellent introduction
to the field.

1.1 Gravitational wave formalism

Gravitational waves can be studied as the tensor perturbations h,, of a background metric. In the
context of Cosmology, arguably the most important metric is the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric, which has a line element

dr?
2 _ v _ 2 2 2 702
dS = guydﬂj#dl‘ = —dt +G(t) <1_k’r2 +1r dQ ) < (11)
where Q denotes the solid angle, dQ? = df? + sin® fd?.

Despite its simplicity, the FLRW metric is harder to work with than the Minkowski metric, with
line element o
d82 = ’r]l“/dx#dl‘y = —dtQ + 6ijd$7'd$]. (12)

7



Chapter 1. Gravitational wave theory

As a result, it is usually a good idea to get familiar with gravitational waves within a Minkowski
background metric, and then generalize to curved spacetimes as FLRW. In this case, we can add a
small perturbation h,, to a Minkowski background, so that

Guv = Nuv + hum |hyy| < 1. (13)

This perturbation is usually called GW strain amplitude, or simply GW strain, due to the effect it
produces on matter and, in particular, in the arm lengths of GW detectors, as we will see.

The concept of “small perturbation” is frame-dependent, given that a coordinate transformation
alters the metric and can increase the value of its components. More precisely, the rigorous state-
ment of the previous equation is that there exists a reference system in which |h,,| < 1 holds in
a sufficiently large region of space. By choosing a reference frame, however, we are breaking one
of the symmetries of General Relativity: the invariance under coordinate transformations. In the
next subsections, we will continue making some choices regarding the reference system and gauge
to reduce the non-physical degrees of freedom of the equations, until only the physically relevant
information remains.

1.1.1 Linearized theory

Given that we consider h,, to be very small, we will compute the equations of motion to linear
order, in a formalism which is called linearized theory. This means that we can raise and lower
indices of quantities related to h,, with the Minkowski metric 7,,. As a result, Christoffel symbols
in Eq. (0.3) can be obtained, to first order, as

1
Lo =5 (Ovhop + Ophoy — Oshuy) . (1.4)

Similarly, given that the Christoffel symbols are first order in h,,, the Riemann tensor in
Eq. (0.4) can be computed as the sum of just the first two terms:

1
Ryvpo = 92 (9p0vhpuo + 06 0phup — 0p0uhue — 050, hy,) - (1.5)

The Ricci tensor is then
1
R;w = 5 (8p8uhpy + 8payhpp - Dh;u/ - 8M8Vh) ) (16)

with O = 0,0” the D’Alembertian operator and where we define h as the contraction of h,,,
h = n""h,,. Finally, the Ricci scalar is

R =0°0%h,, — Oh. (1.7)

In order to express Einstein’s field equations,

1 871G
R;U/ - igMVR = CTT;UM (18)
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with G the universal gravitation constant and T+" the stress-energy tensor, we compute the Einstein
tensor as

1 1 ,
G = Ry = 595 R = 5 (0°0uhp, + 0°0uhyp = Oy — 0,0,k — 0, (0707 — OB)), - (19)

which, for convenience, can be rewritten as
1 o 1 o 1
G = 5 00y |kpv — 577fwh + 070y | hup — §nuph

1 1
- |:/<lw — 277W,h] — N 0007 ,(pg — anah:| < (1.10)

Thus, we can naturally define

— 1
h;u/ = h;u/ - Enﬂuhv (111)
so that, using Eq. (1.10), the Einstein equations in Eq. (1.8) can be expressed as
_ _ — — 167G
Dy + 000 By — 00T, — 0, By = ——n T (1.12)
c

In the next subsection, we will simplify this equation by choosing a specific coordinate system.

1.1.2 The harmonic gauge

Even if we chose a reference system so that |h,,| < 1, there is still some symmetry under the

following transformation:
ot e 2 4 (), (1.13)

where |0,€,| < |hu| < 1. Using the tensor transformation rule for g,, under a coordinate change,

oxP 0x°
(%) = 575 57 9po (), (1.14)

we get that, under the transformation in Eq. (1.13),
hlw(x) = h;w((ﬂ/) = huv(a:) - (a,ufu + 81/5#)' (1.15)

Therefore, if |0,§,| < 1 as we had imposed, then the condition |h,, | < 1 still holds. This symmetry
is usually referred to as residual gauge freedom.

We can use this freedom to impose the condition
0" hy, =0, (1.16)

which is usually called the harmonic gauge, also named the Lorentz, Hilbert or De Donder gauge.
The metric h,, transforms as

huu(gj) — E;w(x/) = h;w(w) - (aufu + augu - n/wapfp)v (1~17)

9



Chapter 1. Gravitational wave theory

so its contracted derivative transforms as

0 Ry > (0" h) = 0"y — .. (1.18)

Thus, if 8”h,, (z) = f.(z) for a certain tensor function f,(z) which is not identically zero, we
can make a coordinate change like Eq. (1.13) with a &, which satisfies

08 (z) = fulz), (1.19)

so that, according to Eq. (1.18), then (0h,,)" = 0 in the new coordinate system. It is known that
an equation of the form of Eq. (1.19) always has solutions, given that there exist Green’s functions
of the D’Alembertian operator, meaning

OG(x —y) = 6*(z — y), (1.20)

with y another point with coordinates independent of z and §*(x —y) the 4-dimensional Dirac delta
function. For any given Green’s function of the D’Alembertian, it is then immediate to show that
a solution of Eq. (1.19) is given by

£ulz) = /<d4yG(wy)fu(y)- (1.21)

Thus, it is always possible to choose a coordinate system in which the harmonic condition (1.16)
holds. In this case, the second to fourth terms in Eq. (1.12) vanish, and we get the simpler expression

— B 167G

sy =~ T (1.22)

It is worth noting that the harmonic condition (1.16) gives four independent equations. Given
that a 4-dimensional metric has 10 independent components due to the symmetry, the harmonic
gauge restricts the remaining degrees of freedom to just 6. In the next subsection, we will see how
they can be reduced to just 2 outside a source, in vacuum.

1.1.3 The transverse traceless gauge

The previous Equation (1.22) shows the dynamics of a perturbation h,, in any context, with
a generic stress-energy tensor 7,,,. However, for the propagation of gravitational waves, we are
interested in what happens in vacuum, outside any source. In this case, the stress-energy momentum

vanishes and Eq. (1.22) is reduced to
Oy = 0. (1.23)

Given that the D’Alembertian is given by
1
O =n"0,0, = =0, + V?, (1.24)
c

with V = (0,,09y,0,), Eq. (1.23) is a standard wave equation with propagation speed ¢, which
means that gravitational waves propagate at the speed of light.

10



1.1.  Gravitational wave formalism

Because the right-hand side in Eq. (1.23) is now zero, then there is some extra gauge freedom,

so that the condition 9”h,,, = 0 does not completely determine the gauge. Indeed, an additional
transformation of the form of Eq. (1.13) will preserve the condition 9" h,,,, = 0 as long as it satisfies

0¢, =0, (1.25)

something which can be deduced from Eq. (1.19). In addition, the extra term arising from this

coordinate change in h,,,,, shown in Eq. (1.17), has a zero D’Alembertian under the condition (1.25),

D(augz/ + 81/€u - nuyapfp) - 07 (126)

due to the fact that the derivatives commute. This means that, under a coordinate change of the
form (1.13) with the condition (1.25), the metric will satisfy the Einstein equation in the form (1.23).
Then, we have the freedom to choose these functions &,, to impose 4 independent conditions on EW
via Eq. (1.17).

The first of the conditions we will impose is the traceless condition, that is

h=0. (1.27)

From its definition in Eq. (1.11), the previous equation implies EW = hyy,. Thus, we can forget
about the bars from now on.

The three remaining conditions will be used to impose the transversality conditions,
hio = 0. (1.28)
Under these equations, the harmonic condition (1.16) for p = 0 simplifies to
°hoo = 0, (1.29)

which means hgy is constant in time. This static contribution corresponds to the gravitational
potential of the source. However, since we are studying gravitational waves, which correspond to
the time-dependent part of the metric, we can safely ignore the static contribution and write

hoo = 0. (1.30)

All the conditions we imposed up to now, including also the harmonic condition (1.16) for spatial
indices, define the transverse-traceless (TT) gauge:

hoy =0, hi=0, &hy=0. (1.31)

In this gauge, we have used four extra conditions over the 6 degrees of freedom that we had
from the harmonic gauge. Therefore, only 2 degrees of freedom remain.

In the next subsection, we will use this gauge to get the plane wave solutions to Eq. (1.23) in a
physically meaningful form.

11



Chapter 1. Gravitational wave theory

1.1.4 Plane waves

Given that the Einstein equations in the harmonic gauge take the form of a D’Alembert equa-
tion (1.23), they admit plane wave solutions. In the TT gauge, the time components h, vanish, so
any metric is fully characterized by its spatial components. Thus, a plane wave solution takes the
form

hij(z) = Aij(k)e*»", (1.32)

where k is the wave vector carrying information of the direction of propagation 7 = k / \/;|, wave-
length \ = 27T/|E\ and, using the propagation speed ¢, also its frequency w = C|E|; Ajj (/2) is the
amplitude, which depends on k, and k¥ = (w/e, E) is the wave 4-vector, which is a light-like 4-vector
by definition.

In order to better study these plane waves, we fix the propagation direction to be the z axis.
We now use the conditions defining the TT gauge in Eq. (1.31) to simplify the previous equation.

First, the condition d'h;; = 0 implies n'h;; = 0. In this case, since we take 7 = (0,0,1),
then the three A;3 in Eq. (1.32) vanish. With this constraint, the transversality condition remains
A1 + Azg = 0, so we can define hy = Ay; = —Ags. Taking into account the metric symmetry,
the only remaining component is A2, which we define as hy. Thus, Eq. (1.32) can be written in
matrix form as

hy he O\ [
hij (t, Z) = hx —h+ 0 ezw(t—z/c). (133)
0 0 0

This equation clearly exposes the two remaining degrees df freedom of the TT gauge, mentioned
in the previous subsection. The subindices + and X denote the “plus” and “cross” polarizations.
They have these names because of the effect they produce on test masses, which can be observed
in Fig. 1.1.

In this case, where 77 = 2, the basis tensors for these modes are given by

Cap = ((1) Ol)AQ’ Cop = <(1) é)g (1.34)

where a,b = 1,2, given that the rest of the components are zero. More generally, for an arbitrary
direction of propagation 77, these basis tensors can be expressed as

er () = wiuy — vivg,  e5(7) = uv; + viuy, (1.35)
with «, ¢ unitary vectors orthogonal to each other and to the propagation direction 7.

Since the solution of Eq. (1.23) can be expressed as a superposition of plane waves, and given
the previous definitions under the TT gauge, the most general solution of Eq. (1.23) is

[ee]
hij(t,2) = > /0 df / d*Qha(f,i)els (e 2™ E=TT) 4 e (1.36)
A=+

where the negative frequencies are unphysical and are therefore not included. However, in order to
avoid adding the complex conjugate term, a common “trick” is to define, for negative frequencies,

BA(_fv i) = EZ(fv ), (1.37)

12
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t=%5 wt=7 wt=2

.00 0o
SANIOXY,

Figure 1.1: Effect of the polarizations plus (+) and cross (x) on a circle consisting of test masses.

where the notation * denotes complex conjugate. In this case, the complex conjugate term can
be included into the first integral occupying the negative frequencies, so that Eq. (1.36) can be
rewritten as

A=+

hij(t, &) = Z( / df / d*Qha(f,7)ef (f)e 2™ =75/ 4 e e, (1.38)

1.1.5 Projection to TT gauge

Related to the T'T gauge, it is convenient to introduce a special tensor which will be used later.
First, we define the projection tensor onto the plane orthogonal to the direction 7i:

This is a projector (P, Py; = P;j), it is symmetric and transverse (n'P;;(7i) = 0), and it has a trace
0% P;; = 2. Based on it, we construct the following projection tensor:

) 1
Nij ki () = PPy — ipijpkb (1.40)

This is again a projector (AijxiAgi,mn = Aijmn), transverse in its projected indices (n’A;ju =
ninj,kl = 0), traceless in the first and second pair of indices (Jiinj,kl = 5“AiMl = 0) and
invariant under the change (¢,j) < (k,l). Substituting Eq. (1.39) into Eq. (1.40), we get the
explicit expression

. 1
Aij ki () =005, — §5ij5kl — njndik — Ninkoj

1
4z

2(nkn15ij —l—nmjékl —&—nmjnknl). (141)

13



Chapter 1. Gravitational wave theory

Then, for a certain plane wave hy, in the harmonic gauge (1.16) propagating in the direction 7
which is not necessarily in the TT gauge, the projected metric with spatial components

hiT = Nij il (1.42)

being the rest of them null, is a plane wave in the TT gauge. As just mentioned, the resulting metric
is transverse, traceless and, if it was previously in the harmonic gauge (1.16) and a solution of the
Einstein equations (1.23), then the projection does not spoil these conditions, as it also happens
with the symmetry.

In general, the transverse-traceless projection of any symmetric tensor S;; will be given by

ST = Aij ki Sk (1.43)

1.2 Generalization to curved backgrounds

We now want to generalize the previous results for plane gravitational waves to an arbitrary back-
ground. Among other things, this is necessary to see how gravitational waves curve the spacetime.
For this purpose, we decompose the metric as

G () =G (@) + hyw (), Gy = O(1),  |hyw| <1, (1.44)

where taking the background metric as O(1) is something we can always do in a region of spacetime
under a change of coordinates, if necessary. However, since both terms are now dependent on x
(unlike the background Minkowskian case), it is more subtle to argue how to decompose the metric
into these two terms. In a general situation, this is not possible, but there is a natural way to divide
the metric whenever there is a clear separation of either length scales or frequencies. If we denote
the background length scale as Lp, then it is possible to clearly separate small perturbations if
their wavelength A is much smaller than Lp. Similarly, it is possible to disentangle a perturbation
in the frequency spectrum if its frequency f is much higher than the one of the background, fp.
To summarize, we need either

A< Lg or f[f> fg, (1.45)

where A is the reduced wavelength A = \/(27), which represents the physical scale associated to
the wavelength A. From now on, we will discuss only in terms of either A or f, depending on what
is more convenient for each argumentation. Both situations are analogous due to the fact that
f oc A1, but it may be more clear to use one or the other in different contexts.

Now, we need to rewrite the Einstein equations up to second order in h, where h is loosely used
as a synonym of h,, with any indices. First, we rewrite Eq. (1.8) as

8rG 1
Ry = ! (wa - 2g/wT) < (1.46)

Now, we need to separate this equation into its low and high-frequency parts. For this purpose,
first we decompose the Ricci tensor up to O(h?). To avoid the explicit computations and just

14



1.2. Generalization to curved backgrounds

illustrate the general procedure, we define E;w as the part of the Ricci tensor dependent only on

G, (the zero-th order in h) and R,(f,z the i-th order in h. Thus, up to second order, we have

Ry = B+ RO + R, (1.47)
By construction, the term Euu is only dependent on low frequencies and R,(}V) , on high ones, given
that it is linear on h. However, the second order term Rff,,) depends on both, since it is quadratic
on h, and two high wave vectors ki, ko can combine to give a low one if ks ~ —k;. Then, EW will

only appear in the low-frequency part of Eq. (1.46) and R,(},,) in the high-frequency one, while RLQZ,)
will appear in both. Thus, the low-frequency part of Eq. (1.46) can be written as

— 81G 1
Rl“/ = _<R£l,21/)> + C4 <T,LLV - igﬂuT% (148)

where () denotes temporal average over many 1/f, but much less than 1/fp or, for the discussion
in terms of A, spatial average over many A, but much less than one L. From now on, we denote

T/,Ll/ = <T,u1/>- (149)

In practice, if T}, comes from a macroscopic matter distribution, it will have a long wavelength, so
that the trace of T' = g1, will satisfy

1 1. =
<TH’V — 59MVT> = T/'“’ — §gNVT' (1.50)

Notice that, if T}, had a high-frequency component, there could be terms in g,, T combining high
frequencies in g,,, and T so that the result is a low frequency, as argued before. Thus, the previous
Eq. (1.50) would not hold with the definition (1.49), and then Eq. (1.50) would have to be imposed

as a definition, as it is done in [39]. This is less natural, but applies for a wider range of contexts.
Next, we also define
ct 1
oy = — R? _ 5 R® 1.51
H 871G < uv 9 gm/ ) ’ ( )

with R = EWR,?,,), so that its trace satisfies

4
c
t ="Vt = Ry, 1.52
§ vt = oo () (1.52)
With these definitions, we can express the term —(R,(L2V)> in Eq. (1.48) as
8rG 1
20\ _
_<RELV)> - C4 (tuu - 2guyt> ( (153)

so that Eq. (1.48) can be rewritten, with the previous definitions, as

— 8rG 1_ 8rG 1. =
RMV = C4 ((MJ - Qgpl/t> 6 C4 (flﬂ/ - QQNVT) < (154)
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Recast in the usual form of the Einstein equations, we get

— 1. — 871G —
Ruv = 50 R = — (T + - (1.55)

In this form, we can see ¢, as an effective energy-momentum tensor coming from the perturbation
huw, and quadratic in this field. This equation very clearly showcases how a gravitational wave
can act as a source to curve spacetime through ¢,,,, similar to the behavior of a usual matter field
through its energy-momentum tensor 7}, .

In fact, we can get a conservation rule from Eq. (1.55). Due to the contracted Bianchi identi-
ties [41],

1
VPRPH = §VNR’ (156)

where V,, denotes covariant derivative, then, the left-hand side of Eq. (1.55) vanishes under con-
traction with the covariant derivative with respect to g,,, which we denote by V,. Then, the
right-hand side of Eq. (1.55), which leaves

V(T + ) = 0. (1.57)

The previous expression implies that the energy-momentum tensor TW is not conserved any-
more, but rather, its sum with ¢,,. This illustrates how both matter and gravitational waves
exchange energy and momentum, given that these are the quantities to remain invariant. In ad-
dition, outside the source, TW, and for the limit of large distances, the background metric is
approximately flat again and the covariant derivative reduces to the ordinary one. Thus, in this
regime, we get the conservation law

oMt = 0. (1.58)

In Subsec. 1.2.2, we will better study the properties of ¢,, to characterize the energy that
gravitational waves carry, as well as their energy flux. This will be needed in later chapters of the
thesis. However, before that, it is worth commenting on the other equation we have ignored in this
process, which is the high-frequency version of Eq. (1.48).

1.2.1 Propagation of gravitational waves

As discussed before, the background Ricci tensor R, will not appear in the high-frequency part
of Eq. (1.46), due to it being purely low-frequency. However, bel,,)7 which is purely high-frequency,
will appear, as well as the corresponding component of bez,,) . Thus, we get the equation

High  §7G 1 High
RELlD) = ( El,2u)> + CT (T,LLV - 29;WT> 5 (159)

where the “High” superscript denotes the projection on the high frequencies, similarly to how the

averages ( ) acted before for low frequencies. The main quantity to be computed here is the first
order of the Ricci tensor, which is

1 /f—fp— e — o
RY) =3 (v”v,thyp + VY hyy — VIV s — VHVZ,h) , (1.60)
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1.2. Generalization to curved backgrounds

with ﬁu the covariant derivative with respect to g,,. We can see it is exactly the same as the one
we obtained in linearized theory, Eq. (1.6), only with covariant derivatives instead of ordinary ones.

Studying the behavior of Eq. (1.54) in vacuum, 7T),, = 0, the spacetime curvature is determined
by the gravitational wave perturbation, that is,

R, ~ (0h)%. (1.61)

We now recall that Lp is the typical scale of g, so that Ry, ~ 9%g,, ~ 1/L% (since g, ~ 1).
On the other hand, A is the typical scale for h, so Oh ~ h/A. Then, Eq. (1.61) implies

h~ A =e (< 1). (1.62)
Lp

In this case, according to Eq. (1.60) and setting Lp ~ 1 for simplicity, the leading order in Rf},j)

is 02h ~ h/A% ~ 1/e. Similarly, one can compute Rfﬁ,) to check that its dominant order is 92h% ~
h%/X% ~ 1 [39]. Thus, the leading order of Eq. (1.59) consists on the dominant order of R,(},j

being null. Defining again EW as in Eq. (1.11) and using the harmonic gauge in Eq. (1.16), we get
again the wave equation (1.23), recovering the results of linearized theory for gravitational wave
propagation.

If, instead, we allow for a non-zero energy-momentum tensor, then the curvature is determined
by it, dominating the gravitational wave contribution,

A
h < —. 1.63
< I, (1.63)

This time, we can stay at leading order in h and truncate the expansion in A/Lp at the next-to-
leading order. In this case, Eq. (1.59) is simply R,(}l,) = 0. By having a look at the form R/(}y) in
Eq. (1.60), we can simplify this equation with a similar gauge condition as the harmonic gauge in

Eq. (1.16), only that with covariant derivatives instead of ordinary ones,
YV hy =0, (1.64)
Thus, the high-frequency Einstein equation (1.59) takes the final form
V¥ hyu =0, (1.65)

again, completely analogous to Eq. (1.23) but with covariant derivatives. This generalizes the
propagation of gravitational waves to a curved background for either of the conditions (1.45).

1.2.2 Energy of a gravitational wave

In order to properly study how gravitational waves interact with the background spacetime, which
is a dynamics given by Eq. (1.55), we must study the behavior of the ¢, tensor. Given its definition
in Eq. (1.51), it is first necessary to compute the second-order of the Ricci tensor, R,(fy To simplify
the analysis, we will study the energy and momentum of the gravitational waves at large distances

from the source, which is how we detect them. This means we can go back to Minkowski spacetime.
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Chapter 1. Gravitational wave theory

In addition, one can apply several simplifications to the second-order Ricci tensor, involving gauge
freedom reduction arguments similar to those in Sec. 1.1 which include setting the harmonic gauge
condition (1.16), as well as arguments based on integration by parts inside the spatial or temporal
averages in Eq. (1.51) (see the discussion in [39] for the full details). In this case, one can show that

ma

1
<R(2)> = *Z<aﬂhaﬁauha5>a (1.66)

whose trace vanishes using Oh,,,, = 0. Then, ¢, takes the form

C4

tuw 32wa<a“ha5‘9”h ). (1.67)

In Eq. (1.55), the tensor t¢,, plays the role of a usual energy-momentum tensor. Thus, the
properties of a gravitational wave can be inferred from its components. On the one hand, the

t% component provides the energy density. From the Eq. (1.67), t° takes a particularly simple
expression in the TT gauge (1.31):
dE 00 ¢ rrirr
— =t = h:" h:"), 1.68
YV 525G\ M (1.68)

or, in terms of the polarization amplitudes hy and hy,

dE 400 _ 2

By =t = 16ﬂG<hi +h2). (1.69)
On the other hand, the momentum flux in the direction k per unit time and surface can be
obtained from the t°* component:
dpP* o S Tk TT
PAd = = _327rG<hij 0"h;j ). (1.70)

The main situation for physical interest is considering that the source is at the origin and the
observer is very far away at a certain distance r. In this context, we want to compute how much
momentum flux the gravitational wave carries away through the sphere of radius r. Then, we
can write the surface element as d?>A = r2d2(), so that the total temporal momentum flux in the
direction k£ which goes through the sphere of radius r can be written as

i — 40k CS 2 2 1 TT qk 1, TT
APt _jor ¢ QAT I'Ty. 1.71
a ! 327G /(d (hij” 0%his") (1.71)

In order to obtain the energy flux in the same situation, we can use the time derivative of the
expression for the energy density in terms of % (1.68):

1 dE
cd3V dt

where in the second step we have used the conservation law for t** in Eq. (1.58). Using Stokes’
theorem [12] and considering V' the volume inside a sphere of radius r, we get

e _ . / Vot = —¢ /(dQAnktOk, (1.73)

= 0pt" = —0,t°%, (1.72)

dt
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1.2. Generalization to curved backgrounds

where A is the boundary of the volume V, i.e. the spherical surface of radius r, and n* is the
orthogonal unit vector to it in the outward direction, which means it is the radial unit vector 7.
Then, using Eq. (1.67) in the TT gauge,

dE c?

— == °hTTH, AT, 1.74
7 9. \0 hij Orhig") (1.74)

If our gravitational wave is propagating radially outward, we can assume the functional form

1 r
W) = g (1) (1.75)
for certain functions f;;. As a result,
1 r 1 1 r 1 r

Ophiyt = — 3t (t - E) SO fis(t —r/e) = =5 fij (t - E) — 20 (t - E) : (1.76)

Assuming large distances, we can neglect the first term, so that arh};-T ~ 8Oh?jT, which, using
Eq. (1.74), implies t°7 = t°. Thus, Eq. (1.74) can be rewritten as

dE Ar? 20y/;, TTjTT
or, in terms of the polarization amplitudes hy and hy,
dFE c3r? . .

Then, in order to obtain the total flux of energy through d?A = r2d?Q} for all time, one would have
to integrate the previous expression from ¢t — —oo to t — oo. In this case, we can first do this
integral, which makes the averages ( ) unnecessary. Then, going back to the differential form per
surface unit, we can write

dE c3 e . .
= | de (). 1.79
2A 167TG/_OO ++ (179)
We can now Fourier-decompose each of the polarizations, like
hy x(t) = / dfhy e 2™t (1.80)
(oo}

so that the previous equation can be rewritten as

dE w3 - -
48 _ 42/( af 12 (1P + 1) (1.81)

Using the parity symmetry f +— —f, we can only integrate in positive frequencies, by multiplying
the integral by a factor of 2. Then, we can write the energy flux per unit surface and unit frequency

as
dE 7ed ~ ~
zag = s (el +1haP), (1.82)

with the convention that dE/df is only defined for positive frequencies, giving the total energy
when integrated over this range. Then, using again d?>A = r2d*(), we can integrate to get
dE 7w 5, ~ ~
&I 0 1y (1) + e (£)2) 1.83
e r /( s (PP + V(1) (1.83)
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Chapter 1. Gravitational wave theory

1.2.3 Quadrupole formulae

The equations in the previous subsection relate the GW strain to the radiated energy. However,
in order to know how much energy is emitted by a given physical system, we must relate these
quantities to the source configuration, that is, to its energy-momentum tensor. Eq. (1.22) precisely
relates these quantities, so in this subsection, we will solve it and derive important equations from
its solution.

For this purpose, we first notice that Eq. (1.22) is formally identical to the the one obtained
in Electromagnetism, so we can use the same procedure to solve it. First, we use that a Green’s
function for the D’Alembertian is given by

5t — |7 — &) /c)

Gz —12')=— — (1.84)
Arr|Z — o
where the argument of the delta is usually called retarded time,
=
R ity (1.85)
c
Then, applying this Green’s function to Eq. (1.22), we get
— 4G 3 T (tr, @)
As a result, the Fourier transform of h,, satisfies
= ~ 4G eilt=] —
hNV(OJ,LL‘) = CT /<d3x/MTHV(W7x/)' (187)

For large distances from the source, we can assume that the distances involved at the source
given by |Z'| are negligible with respect to |Z|. Then, we can approximate |Z — @'| ~ |Z| = r (see
Fig. 1.2), so that the previous equation is

~ . 4G eiwr . ~ .
Ry (w, T) = S /(d%:'TW(w, 7). (1.88)
From the harmonic gauge condition (1.16) applied to ﬁuw 8ﬂﬁw =0, we get
~0v 1 v
h =-——0;h , (1.89)
w

1

~17
so, for v = j, the spatial components h  provide the mixed components A and, for v = 0, these
~00

ones provide A . Thus, it is only necessary to compute the spatial components from Eq. (1.88).
Using the conservation of the energy-momentum tensor d,7#” = 0 within linearized theory, we can
operate the integral as

/dgmfij(w,f) = /<d3a? O (x*TH7) —/dgacxiakfkj

= [ dzz'o,T% = % <d3ac T (1.90)

20



1.2. Generalization to curved backgrounds

'
‘ 77 Observer

Figure 1.2: Illustration of the distances involved in Eqgs. (1.86) and (1.87), where & is the distance
from the source to the observer and #’ is an internal distance of the source distribution. In the limit
in which the distance from the source to the observer is much larger than the internal distances,
|Z| > ||, we can see how & — &/ ~ I

where the second step uses that the surface integral vanishes at infinity. Then, using the symmetry
of the energy-momentum tensor, we can get the symmetric part of the previous equation to write

/d?’mfij(w’f) _w /(d% (T 4 27 07) — ;‘Z/(dsx {al(xixjijl) _xixjaljﬂm}

2¢
) . . ~ 2 . .o~
- % /d% 2 9T = _;"? /(d% 2z T, (1.91)
We can then define the quantity
o Tt @)
p(t, ) = Q= (1.92)

which has dimensions of mass density and it is, in fact, the rest mass density at the leading order
in v/c. This is inferred from the fact that p is the energy density divided by ¢?. Then, we define
the quadrupole moment of p as

I'i(t) = /<d3a? x'ad p(t, T) (1.93)
Going back to Eq. (1.88), we get

~ . 2G(JJ2 eiwr N
hij(w, &) = ——; Lij(w), (1.94)
c r
so taking the inverse Fourier transform,
. 2G .
hij(t,l’) = EL’]‘(tr)v (195)

which is the so-called quadrupole formula for the gravitational wave amplitude, first derived by
Einstein in 1918.

We usually want to express this equation in the transverse-traceless gauge. Therefore, since
1;; has a certain trace I = 6" 1;;, it is sometimes more convenient to use the reduced quadrupole
moment, which is a traceless quantity:

QUi(t) = I (t) — %6”[(7&) — [ @ p(t, ) ((ﬂ - ;7‘26”) ( (1.96)
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Chapter 1. Gravitational wave theory

Thus, in the TT gauge, we can express Eq. (1.95) as

. 24 ..
hit(t, &) = = (), (1.97)

In practical terms, however, it is usually easier to compute the quadrupole moments I;; in
Eq. (1.93). It is therefore useful to compute the previous equation (1.97) in terms of the I;;
components. If we assume that the gravitational wave is propagating in the direction 77 = Z, then
it is easy to check that, applying the projector to the TT gauge in Eq. (1.40), we get

B B (Ih - I12)/2 ) f12" 0
QiTjT = Nij il = Lo —(I11 — I2)/2 0. (1.98)
0 0 0

In this tensor, we can clearly see the amplitudes of the plus and cross polarizations. Thus, substi-
tuting it in Eq. (1.97), we can get the gravitational wave amplitudes for each mode:

. G - .

h+(t,x) = E(In — Igg)(tr), (199)
. 2G

hoc (,7) = 7 Tra(8)- (1.100)

By assuming that the gravitational wave propagates in direction 77 = Z, we are not losing generality,
since we can always apply a rotation so that this assumption is true, and then rotate back to
recover the original reference system. However, there are cases in which it is easier to compute the
quadrupole momenta in certain preferred axes, so it is useful to obtain Egs. (1.99) and (1.100) for
an arbitrary propagation direction.

In order to do this, we start from the quadrupole momentum tensor I;; in its natural reference
system S, with the additional hypothesis that the mass distribution is approximately flat in the z
coordinate, so that I;3 = 0 for all 4. This is to simplify the equations, given that during this thesis,
all the systems considered will satisfy this assumption. We want to characterize a gravitational
wave propagating in the direction 7 = (sin 6 cos ¢, sin 6 sin ¢, cos 6), so we define a rotated reference
system S’ such that its axis 2’ aligns with this direction. Note that there is still some freedom to
define the reference system, given that a generic rotated reference system is characterized by three
Euler angles: 6 around the y axis, ¢ around the z axis and a third rotation around the z’ axis
determines the final orientation of the ' and 3’ axes. This third rotation would have the effect of
shifting a fraction of the amplitude of one polarization to the other one, and vice versa, which is
exactly the freedom we have when choosing the basis vectors @ and ¢ that define the polarization
basis tensors ej'j and eixj in Eq. (1.35). Thus, since this is a question of definition rather than a
physical effect, we do not consider it here and ignore this third rotation, so that our rotated system
is characterized by the rotation matrix

cos¢p —sing 0 cosf 0 sind
R(0,0) = S('nqﬁ cosgp 0 0 1 0 |. (1.101)

0 0 1 sind 0 cosf
This rotation transforms the coordinates of S’ to the coordinates of .S, like
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1.2. Generalization to curved backgrounds

similar to how we obtain 7 = (sin 6 cos ¢,sinfsin ¢, cosf) from 2’ = (0,0,1). The polarization
tensor undergoes the same transformation, so that

Iij = R RjuIy, (1.103)

or, in matrix form,

I=RI'R" = I =R"IR, (1.104)

where we have used that rotations satisfy R~' = RT. We can then use the second equation to
obtain the quadrupole momentum tensor I, in the reference system .5’,

I}, = (I11 cos? ¢ + I sin? ¢) cos® @ + I cos? fsin(2¢), (1.105)
Iy — 1T

I, = % cos 0sin(2¢) + 12 cos 0 cos(26), (1.106)

Iy = Iy sin? ¢ 4 Iyp cos? ¢ — I1o sin(26). (1.107)

In this system S’, the 2’ axis and the direction of propagation of the gravitational wave coincide,
so that Egs. (1.99) and (1.100) hold. Thus, we can simply substitute the previous expressions for
Ilfj to get the expressions for h4 and hy as functions of I;;,

hy(t,z) = % ['11(0052 0 cos® ¢ — sin? ¢) + Iy(cos? sin® ¢ — cos® ¢)

4+ sin(26) (1 + cos? 0) (1.108)
G

hy(t,7) = - |:(f22 — I11) cos sin(2¢) + 2115 cos 6 cos(26) |, (1.109)
ctr
where the quantities at the right-hand side must be evaluated at ¢,. Note that these expressions

do not exactly match the ones in [39] due to the different choice of coordinates for 7.

To finish this section, we will compute the radiated power. For this purpose, we can substitute
Eq. (1.97) into Eq. (1.77) to get

G v P oo P
P = A2Q(Q, t)Q,: (t)). 1.110
n /( (GG ) (1110)

In order to get this power from an arbitrary gauge, we can use the projection tensor Ajj (1)
defined in Eq. (1.40) and apply Eq. (1.43) to Q;;. In this case, Eq. (1.110) implies

G ..

P = /(dQQAij’kl(ﬁ)<Qij<tT>.Q.kl(tr»a (1.111)

where the only dependence on the direction is in A;; 5;(7). Therefore, using its explicit expression
in Eq. (1.41), we get

/(dzﬂ Aij it () Q45 (1) @45 (8r) = %(115ik5jl — 40356kt + 603 )(Q 1 (t) Q gy (£1))
= 8§<Qij(tr)cjij(tr)>' (1.112)

23



Chapter 1. Gravitational wave theory

Then, substituting back into Eq. (1.111), we get
G

T 56

(Qij(tr) Q5 (tr)), (1.113)

which is also called quadrupole formula for the radiated power, and was also derived by Einstein in
1918.

1.3 Gravitational waves from a bound two-body system

According to the first Kepler law, bound celestial bodies move following elliptical orbits around each
other, in which the focus is located at the center of mass. In General Relativity, this is not true due to
the energy emission in the form of gravitational waves. This energy loss causes the masses to become
progressively closer to each other, in an inward spiral usually called inspiral. When they get too
close, if both objects are massive enough, the two masses start merging into a common, final mass
which suffers some oscillations until it stabilizes, in a final phase called ringdown. An example of
trajectory is shown in the right panel of Fig. 1.3, while the three mentioned stages (inspiral, merger,
ringdown) can clearly be distinguished from the qualitative behavior of the emitted gravitational
waves shown in the left panel. These plots have been obtained from the numerical simulation in
Sec. 6.2, to which one can refer for details on the plotted variables.

0.4+
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g 0.3 1 Merger -=-- hy N 44 Merger ---- BH2
S (. — Ringdown ;ll e Ringdown
LN . : I 2
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Figure 1.3: Gravitational-wave strain (left) and black hole trajectories (right) during a CBC, show-
ing the inspiral, merger and ringdown in different colors.

The case of greatest interest for Astrophysics and Cosmology is that one in which both objects
are compact, which is a term used to refer to neutron stars (NS) and black holes, due to the
tremendous amount of energy they release within these interactions. The bound two-body systems
they form can thus be binary black holes (BBHs), when both objects are black holes; binary neutron
stars (BNS), if they are instead two neutron stars, and neutron star-black hole binaries (NSBH,
or sometimes BHNS, binaries). The joint phenomenon of their inspiral, merger and ringdown is
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1.3.  Gravitational waves from a bound two-body system

called compact binary coalescence (CBC), and it represents the main source of gravitational-wave
emission that we are able to detect with current GW detectors.

In general, the inspiral part of a CBC can be analytically treated, given that the distance
from both masses is still large enough. This means that the interaction is still very similar to the
Keplerian one, and it can be studied just by incorporating a first-order correction coming from
the relativistic energy loss. This is exactly what we will do in this section, computing how much
gravitational radiation these two-body systems emit, and how this affects to the evolution of their
properties with time. As the masses get closer to each other, however, these approximations stop
being valid and one has to resort to next-order corrections, following either post-Newtonian (PN,
expansion in 1/¢) [13] or post-Minkowskian (PM, expansion in G) [14] approximations. For the
post-Newtonian formalism, it is common to denote the expansion as PPN(n), or nPN, where PPN
stands for parameterized post-Newtonian [15] and the n indicates the perturbative order. Refer
to [45] for a very complete review on these approximations.

The ringdown can also be analytically modelled by using perturbation theory and studying the
quasi-normal modes (QNMs) of black holes [46, 47]. However, at the stage of the merger, the
dynamics is highly non-linear and no analytical approximation works accurately. One has then to
resort to Numerical Relativity, which is further explained in Chapter 6.

For now, let us study the inspiral behavior by computing the power radiated by these two-body
systems. We will do so by first reviewing the dynamics in the Keplerian case.

1.3.1 Keplerian dynamics

In order to study the elliptic motion of a two-body system, we should first define the geometrical
elements of an ellipse, which are depicted in Fig. 1.4. In this figure, the relevant distances are the
semi-major axis a, the semi-minor axis b and the distance ¢ from the center of the ellipse to any of
its foci. The ellipse is defined as the closed curve whose points satisfy that the sum of distances to
the two foci is constant. From the points in the major (horizontal) axis, we have that this distance
is 2a, while for the ones in the minor (vertical) axis, we get that it is also 2v/b2 + ¢2. Thus, ¢ can
be computed from a and b as

c= V¢ -2 (1.114)

Another important parameter is the eccentricity, defined as the ratio between ¢ and a, so that
c b\ >
e=—= - () , or b=ay1—e2 (1.115)
a

This parameter is defined in the range [0, 1) and characterizes the similarity of the ellipse with a
circumference, which corresponds to the case e = 0. For e — 1, the ellipse would tend to a parabola,
and beyond that, e > 1, the trajectory would be a hyperbola, with some parameters having to be
redefined. We will study the hyperbolic case in Sec. 1.4.

An ellipse of fixed center and axis direction is fully characterized by two of these parameters,
which are usually the semi-major axis a and eccentricity e. If we fix the center to be the right-most
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Chapter 1. Gravitational wave theory

Figure 1.4: Ellipse with its relevant points, distances and angle. C' indicates the center of the ellipse,
while F' indicates the focus which is taken as the origin of the coordinate system, while the other
focus would be in the symmetric position. P indicates a generic point in the ellipse with radial
coordinate r and phase ¢. The semimajor and semiminor axes a and b are also shown, as well as
the distance ¢ from the center to the focus.

focus, the cartesian coordinates of the ellipse satisfy the equation
2
(z +c)? (y) 2
—_— =) =1 1.116
() + (3 (1116)

If we define a set of polar coordinates with the same center, related to the previous x and y with
the usual equations,

x =rcosp (1.117)
y=rsing ’ '
then we can use Eq. (1.116) to derive the relation
1— 2
po =€) (1.118)
1+ ecosy
In Celestial Mechanics [48, 49], the parameter ¢ is called true anomaly and it is usually denoted
by v. Then, the periapsis and apoapsis are given by the maximum and minimum values of the
denominator, cos ¢y = 1 and cos ¢ = —1, respectively, so that
rp=a(l—e), ro=a(l+e). (1.119)

When considering an ellipse in the context of an orbital trajectory, we have to introduce time,
speed and other physical quantities to the picture, including the masses of the objects m; and ms.
As we know, we can treat the two-body problem as an effective one-body problem in the reference
system of the center of mass, in which a particle of mass

mimsa

_ 7 1.120
. ( )
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1.3.  Gravitational waves from a bound two-body system

which is called reduced mass, experiences a gravitational acceleration given by the universal gravi-
tational law,

GM
r2
where M = mj + mg is the total mass. We can also write the conserved quantities, which are the

orbital angular momentum L = L, and the energy FE, given by

L

7, (1.121)

1 GuM
L=ufxd, E=-m?- 212, (1.122)
2 r
or, using the expression for the velocity in polar coordinates, v = 77 4+ 1@,
1 GuM
L=u?p, E= §,u(7'°2 +r2p?) — ity (1.123)
r

We can find explicit expressions for L and E in terms of the orbital parameters using the fact
that they are conserved quantities. For this purpose, we evaluate them from Eq. (1.122) at the
periapsis and apoapsis, and make the expressions at both points equal due to their conservation.
At these points, the speed is perpendicular to the vector radius, so that

r 1+e
Ly=L, = Wrpv,=urqvs = Up= —0g=——0,, (1.124)
Tp 1—e
where in the last step we have used the explicit expressions for r at the periapsis and apoapsis in
Eq. (1.119). Repeating the process for the energy, we get
1 o GuM 1 5 GuM

E,=FE, = iuvp " M "

(g>2_11:2iM<(ie_1ie><:> ”3:GTM;Z~ (1.125)

Substituting this expression into the angular momentum and energy for the aphelion, we get

2
a

=

GuM
L =puy/EMa(l—e?), E=-— 5 . (1.126)
a
Conversely, we can get the orbital parameters from the conserved quantities as
GuM 9 2EL?
il 1= 1.127
2B ¢ G223 (1.127)

In particular, the fact that the expressions for the energy in Egs. (1.122) and (1.126) are equal
provides an easy way to compute the velocity,

v? = GM (i - i) ( (1.128)

In Celestial Mechanics [48, 49], this expression is called the vis-viva equation.
Finally, the period of motion is given by Kepler’s third law,
_ 472

T2 = a3,
oM

(1.129)
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1.3.2 Radiated power

We can now study the bound two-body problem in General Relativity by incorporating the energy
loss arising from Einstein’s equations. This energy loss is given by Eq. (1.113), which involves the
reduced quadrupole moment @);; defined in Eq. (1.96). To simplify the computations, it is better to
start from the quadrupole moment I;; defined in Eq. (1.93), and then compute @Q;; by subtracting
1/3 of the trace. From Egs. (1.117) and assuming that the bodies are point masses, I;; takes the
form

cos? sinpcose 0 201 _ 2\2 cos? sinpcosy 0
2 [ ) pa(l—e . .2
Ij; = pr® | sippcos e sin® 0 :m Sjn ¢ €os ¥ sin® 0], (1.130)
0 0 1 N 0 0 1

where we have used Eq. (1.118) so that this expression only depends on . In order to take the
temporal derivatives, we can use the expression of ¢ from the angular momentum in Eq. (1.122)

L GM

i 3(1_62)3(1—|—ecosg0)2, (1.131)

where we have used the expressions for L and 7 in Eqgs. (1.126) and (1.118), respectively. Then, the
third derivatives of the relevant matrix elements in Eq. (1.130) are

G3 M3

I, =2u m(l + e cos p)?[2sin(2¢p) + 3esin ¢ cos? ¢, (1.132)

Tas = 20 [— M (1 4 e.cos )2—2sin(29) — e sin (1 + 3cos? )] (1.133)
20 =24 P €cos sin(2¢) — esing cos” )], .

G3M3 9 2

I10=2u 5 _62)5(1+ecos<p) [—2 cos(2¢) + e cos (1 — 3 cos® p)]. (1.134)

Instead of computing directly Q” = I” —0;j T /3, it is easier to simplify the contraction as

Qi Qi = Iijfij*§I2: I?lJr I§2+21?275(111+ T 55)? (1.135)
8G3 2M3 .
= Taf’(’uli—e?ﬁ(l + ecos @)4[12(1 + ecos <p)2 + e2sin? ©]. (1.136)

Using this expression in Eq. (1.113), we get to the result

8G*  p2M? '
RET m((l + ecos ) [12(1 + ecos ¢)? + €* sin? ]). (1.137)

We still have to do the time average over several periods, represented by the angle brackets ( ).
For convenience, we will denote the argument of the average as P(p). Then, the radiated power is

T 2m
P:%AdW@:%A %m@. (1.138)
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1.3.  Gravitational waves from a bound two-body system

Having a look at the expression of ¢ in Eq. (1.131) and at the period in Eq. (1.129), we can notice
that multiplying them gets rid of most of the constants:

(1+ecosyp)?

o1 =2m A= (1.139)
Then, we can substitute this into Eq. (1.138), together with P(p) in Eq. (1.137), to get
P = 14555; a5(f2—]\§)7/2 /O27T dip (14 ecos ©)?[12(1 + ecos )2 + e? sin” ]
- 1§; a5(1M 2_]\;3)7/2 (96 +202¢* + 37¢"). (1.140)
This is the known expression for the radiated power first derived by Peters and Mathews [50], which
is usually presented as
P = %ﬂe), (1.141)
where
f(e) = ﬁ <1 + Se“' + ;’ge‘*) ( (1.142)

This function f(e) represents the enhancement due to the eccentricity, given that, for the circular
case, ¢ = 0 implies f(e) = 1, and Eq. (1.141) can be written changing a to R, representing the
constant orbital radius.

1.3.3 Gravitational waves and energy loss

In the previous subsection, we arrived to an expression for the power radiated by a bound two-body
system. We will continue this study by computing how this energy loss translates into gravitational
waves, as well as how much time it takes the system to merge. Throughout this section, in order
to match the notation in Subsec. 1.2.3, we denote the distance from the observer to the CBC
(sometimes simply called source) by r, which must not be confused with the radial coordinate in
Eq. (1.118).

We start by computing the gravitational wave amplitudes. First, from Eq. (1.130) for I;; and
using Eq. (1.131) for ¢ again, we compute the derivatives of the quadrupole momenta,

= 2GuM .
ST ) ? 1.14
11 a(l—c2) [cos(2¢) + ecos” ¢], (1.143)
2GuM ) ,

Ta(l-e) ? ! 1.144
2= 0 [cos(2¢) 4 ecos p(1 + cos™ @) + €], ( )
> 2GuM | . )

T et L+ cos™el. 1.14
12 (1= e?) [sin(2¢) + e(1 4 cos” ] (1.145)
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Chapter 1. Gravitational wave theory

Then, using Eqgs. (1.108) and (1.109),

G*uM
hy(t) = —Wﬂ_&(l + cos? 0){ cos(2p — 2¢)
) 9
[% + %(5 cos(p — 2¢) + cos(3p — 2(;5)} (
.2
+e2 K)s@qﬁ) + 1?20529} }( (1.146)
G2
hx (t) = —W% cos { SID(QSO - Q(b)
+ e[5sin(p — 2¢) + sin(3p — 2¢)] (1.147)

— 2¢? sin(2¢)},<

where we must recall that the right-hand side quantities should be evaluated in the retarded time
t, in Eq. (1.85).

From now on, we will focus on the circular case, e = 1, due to the complexity of the equations.
For more details on the elliptic case, see [51, 39]. In General Relativity, due to the energy loss,
the radius of the trajectory R gets progressively smaller, so these trajectories receive the name of
quasi-circular orbits. Furthermore, BBHs tend to reduce their eccentricity over time, in a phe-
nomenon called circularization [51, 39]. Therefore, quasi-circular orbits are expected to be much
more common than eccentric ones, so we are not losing much generality. In this case, the previous
expressions greatly simplify:

4G? M 1 + cos? 0

hy(t) = R 5 cos(2¢ — 2¢), (1.148)
2

hy (t) = —% cos Osin(2p — 2¢). (1.149)
c*r

Furthermore, in the quasi-circular case, to first order, the trajectory can be parametrized as ¢(t) =
wot, with wy the angular frequency corresponding to the period in Eq. (1.129) for a = T,

21 M

T R3
The angular frequency of the gravitational wave, however, doubles this number, given that it is 2¢
what appears in the argument of the trigonometric functions. Thus, we define the gravitational
wave frequency as

Wo

wew = 2wp and, correspondingly, few =2fy = “o. (1.151)
i
Particularly useful are the expressions relating fe and R,
M am \'?
gw

where the last expression is particularly useful to get rid of R in favour of fs,. This is precisely
what we do in Eqgs. (1.148) and (1.149). Moreover, we can choose the initial setting of the system
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1.3.  Gravitational waves from a bound two-body system

to be at phase 7, so that the corresponding trigonometric functions change sign and we can get rid
of the global minus sign. With these changes, Eqs. (1.148) and (1.149) are now

_Ap (G 5/3 MT fow 2131 4 cos2 0
hy(t) = - <¢32> ( . 5 cos(27 fawtr — 2¢), (1.153)
4 53/ ar 2/3
hy(t) = TM (g) (FCngV) €08 0 sin(27 fowt, — 2¢). (1.154)

The amplitude dependence on the mass here is very important: if a gravitational wave is observed
with a certain frequency fg at a certain distance r, from its amplitude we can derive a mass-related
quantity. So that it has units of mass, this quantity, called chirp mass, is defined as

3B 3/
M, = p?oMm?5 = —L 2 1.155
M (ml + m2)1/5 ’ ( )
so that the previous equations can be rewritten as

4 (GM, 5/3 T fow 2/31+00529

hy(t) = - ( > ) ( - ) 5 cos(27 fewtr — 2¢), (1.156)
1 /GM, 5/3 . 2/3

hoc (8) = ~ ( E ) (”fcg ) €08 0 $in (27 fawt, — 2¢). (1.157)

In a typical case, we will not know the distance r at which this event was produced. Thus, the
chirp mass will be degenerate with the distance.

Then, from Eq. (1.77), we can compute the radiated power per unit angle as
apP c3r?
2Q 167G

so that, substituting Egs. (1.156) and (1.157), we get

(h% + h2), (1.158)

AP 2¢% [ @ Morfuy \ 23
0= < =3 £ > 9(9), (1.159)
with )
1 20
g(0) = (—FCQOS) + cos? 6. (1.160)
Integrating over the solid angle,
1
/(dQQg(G) = %, (1.161)
so that 10/3
326 [ GM T fow
pP= e ( =3 £ > . (1.162)

Using the definition of fg, it is easy to check that this expression matches the one obtained for
the elliptic case in Eq. (1.141) for e = 1.
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Chapter 1. Gravitational wave theory

Now, from Eq. (1.126), we have that the energy of the system is

1
E =~ (G*MIx*f2 e (1.163)

gw

To first order, its negative (energy loss) time derivative is given by the radiated power in Eq. (1.162).
Making both expressions equal,

f:giw G2M057T2 1/3 _ 3205 GMcﬂ'fgw 10/3 (1 164)
3 Jaw 5G c3 ’ '
we can find an expression for the frequency time variation to first order,
.96 GM N\
fgw = 37'['8/3 (C?’C> glv%]/g (1165)

Integrating, its solution is given by

5 1 \Y®/am.\ %8
few(t) = <2560_t> ( = ) , (1.166)

with C' an arbitrary function. Analyzing this expression, we can see it has a divergence precisely
at time ¢t = C. Physically speaking, the fact that the frequency fg is inversely proportional to a
power of the orbital radius, fgw o R73/2 (Eq. (1.152)) means that, as time passes, the frequency
gets higher as the orbital radius gets smaller. Therefore, the instant at which f,w — 0o corresponds
to R — 0. Thus, we denote this time by a1, the time of coalescence, or merger. To be precise, both
times should be the corresponding retarded times but, given the definition in Eq. (1.85) and the fact
that the distance to the source is assumed to be the same at both times, then tcoar —tr = tcoal —¢.
If we denote 7 = t.oa1 — t, which is the time to coalescence, we can express the previous equation as

few(T) = i( > 1)3/8 (GMC)S/S. (1.167)

256 7 c3

In an observational context, this means that, if we are able to detect a gravitational wave of a
certain frequency and somehow determine its distance (so that the chirp mass is not degenerate
with it), we can compute the time to coalescence as

5 (GM\ ? _
72256< = ) (7 faw) ~5/3. (1.168)

We can express this equation in terms of more practical units. Using ¢ = 2.998 x 10% km/s and
2G Mg /c? = 2.95 km, we get

5/3 8/3
8.71M@> (100 Hz> 7 (1.169)

Mc fgw
where a chirp mass of 8.71 M, corresponds to two equal masses of 10M. Of course, in a real event,

we will not observe a divergence at this point. What happens is that our approximation to first
order is not valid anymore, entering in a regime of strong gravity in which, first, post-Newtonian

7%82ms<
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1.3.  Gravitational waves from a bound two-body system

approximations to higher orders have to be used and, later, even these approximations fail and one
has to resort to Numerical Relativity. We will see more on NR in Chapter 6.

As a result of the changes in frequency, the waveforms in Eqgs. (1.156) and (1.157) will vary over
time. Assuming a null global phase at the initial moment for simplicity, we can compute the new
phase as an integral over time,

O(t) = /(dt’wgw(t’), (1.170)

which coincides with the Keplerian case for a constant wgy,. Using Eq. (1.167), we get that

3/8 —-5/8 ¢ _5/8 —5/8
5 GM, 8t 5G M,
- _ c d, = —9 [ ¢ 5/8 1 @ 1.171
q)(T) 2 (256) ( 3 ) 5 + $o 2 ( 3 ) T + @, ( 7 )

where the minus sign comes from the definition 7 = tcoa — t and &y = ®(7 = 0) is the phase
corresponding to the instant of coalescence. We cannot set it ®y to zero since we already imposed
®(t = 0) = 0. Substituting this ®(7) in Egs. (1.156) and (1.157) as well as fgw(7) from Eq. (1.167),

we get
GMN\"* /5 \* 1+ cos20 Ar\/8
— ———  cos | —2 P 1.172
() &) () o 1)

1\ 5/ 1/4 3 \5/8
GC2 C) (2) cos fsin | —2 <5é]7\—/[ ) + @ (1.173)

1.3.4 Energy spectrum

S|
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>
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To finish this section, we are interested in the energy spectrum in frequency for the circular orbits.
This is a key quantity to compute the stochastic gravitational wave background from astrophysical
events. In Chapter 2, we will see the main formalism for SGWBs and, in Chapter 5, we will compute
the contribution from these CBCs, as well as from hyperbolic encounters (see Sec. 1.4).

Stationary phase integration

In order to get the energy spectrum, we first need the Fourier transforms of Egs. (1.172) and (1.173).
We follow a similar procedure to the one in Maggiore’s book [39], which is based on an integration
technique called stationary phase integration [52]. The main idea is that, if we have an integral like

I(f) = /( dtA(t)e'Prit=* Wl (1.174)

then, the main contribution to the integral will be given by the point(s) that make the first derivative
of the phase ¢(t) = 27 ft — ®(¢) vanish. We call these points stationary points.

Otherwise, in a certain point ¢; such that (b'(tl) = 0, the first order in the Taylor expansion will
dominate the time evolution, ¢(t) ~ ¢(t1) + ¢(t1)(t — t1) and the integral will be dominated by
the oscillatory behavior of a factor of the form e** for a certain constant k. The integral will then
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Chapter 1. Gravitational wave theory

rapidly oscillate, with a higher frequency as it goes away from a stationary point, so that, if In A(¢)
varies slower than the phase, the contributions from 27 ft — ®(t) € [2nm, (2n + 1)7] will (at least
partially) compensate the ones from 27 ft — ®(t) € [(2n+ 1)7, (2n + 2)7]. This oscillatory behavior
is the reason why the Fourier transform of 1, given by the Cauchy principal value or the integral
of e=?™ft over the real numbers for ¢, is 6(f), which is zero for all frequencies except for the one
(f = 0) that makes the exponential non-oscillatory.

For simplicity, we will assume there is just one stationary point, which we denote by t.. We
can then Taylor-expand the exponential phase around ¢, up to order (¢ — t,)?, thus neglecting the
contributions to third order. The third-order contributions and beyond only start to be relevant
far away from t,, for which we assume that the oscillatory suppression already dominates, so we
can safely ignore them. Thus,

(1) ~ 2 ft. — B(t,) — %é(t*)(t )2 (1.175)

Assuming that the function log A(t) varies slower than ¢(t) around ¢,., we can approximate the
integral as

I(f) ~ A(t,)el2rft-—2(t)] /( dte™ 210 (E)(1=t)", (1.176)
oo

We can now use

/ dre™™ =1 = / dte™ 2 i) (E=t)? - ‘..271- = [.27T e~ /4 (L.177)
o . id(t) | )

so that our integral is
2 .
I(f) ~ At.), | E (j et/ (1.178)

Fourier transform of polarization amplitudes

Using the stationary phase integration method described above, we will compute the Fourier trans-
form of hy and hy in Egs. (1.172) and (1.173). Following our criterion in Subsec. 1.1.4 (Eq. (1.38)),
we will only consider positive frequencies. Starting by h,, its Fourier transform is given by

he(h) = [ dthaemr

1 /GM. N4 5 144 29 :
= / dt — 5 +cos cos ®(t,)e* it (1.179)
o) r c C(tcoal,r - tr) 2

with ® defined in Eq. (1.170), so that ®(t,) = wgy(t.). In this equation, the distinction between
t and t, is now important. In previous equations, given that hy(t) only depends on the difference
T = teoal,r — tr = teoal,r — tr, We could use either ¢ or ¢, indistinctly as long as the coalescence time
was the corresponding non-retarded or retarded version. Now, however, the integrand has an extra
factor dependent on ¢, to which this simplification cannot be applied. Additionally, the integral
range should not be the full real numbers, but there should be a cutoff at the time of coalescence.
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1.3.  Gravitational waves from a bound two-body system

Otherwise, the integrand will diverge. However, due to the integration method we will use, which
approximates the integral by an expression in terms of local quantities, this will not be a problem.

For simplicity, we define

Ay - (GMC)5/4 (C(t 5 n))m 1+ cos2 (1.180)

)
02 coal,r — 2

so that Eq. (1.179) can be rewritten as

hay (f) :emeT/C/( dt,. A(t,) cos ®(t,)e2 /'t (1.181)

2mifr/c 2mifr/c

where the extra factor e compensates the e factor inside the integral that has been
reabsorbed to express the exponential in terms of ¢,.. Now that everything is expressed in terms of
t,, we drop the index to simplify the equations, but we should keep in mind that the ¢ from now
on has to be understood as a t,., until we finish the integration and recover the notation. Thus, we
can write Eq. (1.181) as

~ 1 . ) . .
h+(f) _ 5e27r1f7‘/c /( th(t) [eﬁb(t) + e*ﬁb(t) eQTrzft7 (1182)

where we have expressed the cosine as a sum of imaginary exponentials. Of these two terms, the
first one has a phase without stationary points: since ®(t) = wgy(t) > 0 and we are considering
only positive frequencies, then the time derivative of this phase is wgw(t) + 27 f, which is positive for
all times. Thus, this term will rapidly oscillate and can be neglected over the second one, which will
have stationary points that dominate the integral. This second term has a phase with stationary
point ¢, such that

Wew (ts) =27 f. (1.183)

We also have that In A(t) varies slower than the phase, given that it is a power law of exponent —1/4,
so we are under the conditions to apply Eq. (1.178). Accounting for the extra factor e%ifT/C/Q, we

get
~ 1 2r _ x
h+(f) ~ 2A(t*)\/%€z[2wf(t*+r/c) (t.)—m/4] (1184)

At this point, we can get back to the discussion on the subscript for ¢,.. Both A and ® only depend
on 7, so we can work with this variable regardless of whether it is defined with both the usual and
coalescence time in their retarded forms or not. The only place where this distinction matters is in
the phase, where t, should be interpreted as retarded. Moreover, we can get rid of this quantity in
favour of f using Eq. (1.183). For this purpose, we can use the expression for fg(¢) in Eq. (1.167),

so that
15 1\*®ram\"""® 5 (GMN\ TP e
fﬂ(%ﬁn) < g ) - 7*256( . ) (nf) 2 (1.185)

where ¢, is computed as tcoalr — T«, given that it refers to a retarded time. Conveniently, the
extra factor —r/c in tcoa1r Will cancel out with the +r/c of the phase shown in Eq. (1.184), so the
final expression will not depend on any retarded quantity. For ®(t,), we use that it is the integral
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with respect to ¢ of wgy as shown in Eq. (1.170). Since wgy o 773/8 and we already defined the
integration constant as ®q, we have

8 1 /aMN\ "2
<I>(t*):—527rf7'*+<1>0:—27rf32< % ) (nf) %3 + @, (1.186)

which, aside from the global phase ®q, is identical to the term coming from 2x ft, but with a
different numerical factor. As a result, the final phase in Eq. (1.184) is

T 3 [(GM, —5/3
\I’+(f) = QTI'ftcoal — dg — Z + m ( 3 7Tf> . (1187)

To compute <'I'>(t*), we can use that it is the derivative with respect to ¢ of w,y and, again, that

Wew O T73/8, 50 that
. 32 GM. :
b0 = 20 g% (G o

@f

while for A(t,), we can simply substitute 7, in Eq. (1.185) into the expression for A(t,) in Eq. (1.180):

At = ¢ <GMC) (wf)Q/BlLOSM. (1.189)

r c3 2

—5/6
) LAY A (1.188)

Multiplying the two last equations by 1/2, we get the amplitude in Eq. (1.184),

1 5 ¢ @M 561 4 cos? 6
7% 4T\ . (1.190)

Then, the Fourier transform of the plus polarization is finally

~ 1 5c (@M, 561 4 cos2 0 ei¥+()
hy(f) = 23\ 217 <kc3 ) 5 776 (1.191)

with the phase ¥ defined in Eq. (1.187).

Similarly, one can go through the same procedure to find hy. Aside from the different factors
in the definition of A(t,) coming from the different prefactors in Eqgs. (1.172) and (1.173), the main
difference is that the trigonometric function dependent on ® is now a sine instead of a cosine. Thus,
at the step (1.182), the negative exponential term, which is the only relevant one, would have an
extra —1/i =i = e'™/2 factor. This translates into an additional global phase 7/2, but the rest of
the computation is identical. Thus, we would get to the equation

. 1 [5e¢ M\ /° e (f)

with U, = U, + 7/2, that is,

r 3 (GM, \
v =2 alr — @ -+ — . 1.1
X (f) 7"-ftC()oxl,r o+ 4 + 128 ( 03 Wf) ( 93)
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Computation of energy spectrum

Having computed the polarization amplitudes (1.191) and (1.192), we can use Eq. (1.83) to get

dE 5 1
Af 20~ 873G

(GM,)*? [~134(6), (1.194)

with the same g(0) as the one defined in Eq. (1.160). Using that its integral over the solid angle is

167/5, as stated in Eq. (1.161), then the energy spectrum is finally
dE 7T2/3 5/3
— == (GM, —1/3 1.195
= g GM (1195)

which is more commonly used as the energy derivative per logarithmic frequency bin,

dE w2/3

dinf) ~ 3G

(GM,)*? f2/3. (1.196)

The reason to use the frequency logarithm is that it is more natural when discussing in terms of
different orders of magnitude. Furthermore, In f is a dimensionless quantity, so the spectrum per
logarithmic frequency bin has units of energy. In addition, it will also appear in this form when
computing the SGWB from CBCs and hyperbolic encounters, as we will see in Chapter 5.

Before finishing this section, we should recall that these equations are only valid as a first ap-
proach. We have been using Keplerian expressions for the relations between the orbital parameters,
masses, etc., and computed the quadrupole radiated power using them but, in General Relativity,
this radiated energy would have an impact on the spacetime geometry, which would, in turn, alter
the GW energy again. This kind of effect is usually called backreaction. To be precise, one would
have to take into account the variation of the orbital parameters with time, which is linked to the
energy loss. This inter-dependence makes this problem difficult to treat, so that post-Newtonian
approximations or Numerical Relativity have to be used. Nevertheless, when both masses are still
far from merging, this first-approach approximation is usually precise enough. The problem arises
close to the merger and, of course, during it and the ringdown.

In the next section, we will study what happens when the two bodies are not bound, but they
have enough energy to escape from each other.

1.4 Hyperbolic encounters

In the Keplerian regime, it is known that the two-body problem describes a conical curve trajectory,
which can either be an ellipse (e < 1, circumference if e = 0) if both masses are bound, as studied
in the previous section, or a hyperbola (e > 1) if their kinetic energy is enough to overcome the
gravitational pull. Between both cases, there is the parabolic limit for which e = 1, but this is more
a theoretical limit than a practical case.

The gravitational wave theory is better developed for the elliptic case given its practical appli-
cation: because their interaction is strong during a lot of orbits, the integrated sensitivity over time
for this events is much larger. A hyperbolic interaction generates an energy burst when both masses
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are closest to each other, but it disappears shortly after. In addition, the merger between two black
holes or neutron stars generates a tremendous amount of energy, which is not really comparable to
the one that they can release due to a hyperbolic interaction.

Thus, it is no wonder that elliptic orbits, particularly CBCs, attract the main attention of
scientists. Nevertheless, hyperbolic encounters should also be there and, when they are close enough
(close hyperbolic encounters, CHEs), produce a non-negligible amount of energy, which should be
detectable with either current or future detectors depending on the specifics of the black hole and
neutron star populations. Over the last years, the number of articles on hyperbolic encounters

has increased [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], a growth we contributed to with our
articles [1, 2]. It is therefore useful to make the analogous computations to the elliptic/circular
case.

1.4.1 Keplerian dynamics

Again, we start by recalling the relevant equations of the hyperbolic motion within the Newtonian
regime. As we can see in Fig. 1.5, the semi-major axis a represents the distance from the center
of the hyperbola to its vertex, similar to the elliptic case. As in the elliptic case, ¢ is the distance
from the center to the focus and its ratio with a is the eccentricity,

e =

(1.197)

c
o
One can also define a “semi-minor axis” b which, as we can see in Fig. 1.5, it is related to a and

e as
V=c-a> = b=aVer-1 (1.198)

similarly to Eq. (1.115). This parameter measures the distance from the focus to the asymptote.
In Physics, this is a relevant quantity in any scattering problem and it is more commonly referred
to as impact parameter. As a particle tends to go towards ¢t — oo, the impact parameter represents
the projection of the vector radius over the orthogonal axis to its velocity. Therefore, the angular
momentum can be expressed as

L = pbvueo, (1.199)

with v, the limit of the particle speed at an infinite time.

Similarly to Eq. (1.118), the orbital radius is now given by

B a(e? —1)

_ 1.200
1+ecosy’ ( )

where the denominator is now only defined for 1+ ecos¢ > 0 (or < 0, but not both due to the
discontinuity at 0), so that

1
¢ € (—0,%0), ¢ = arccos <—€> ( (1.201)

where we take the arccosine image to range from 0 to . This angle g is also shown in Fig. 1.5.
In Physics, most references [54, 65, 66, 67, 68] take a rotated reference system with an angle g,
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Figure 1.5: Left branch of a hyperbola with its relevant points, distances and angles. C indicates
the center of the hyperbola, A is the branch vertex and F' its focus, which is taken as the origin
of the coordinate system. P indicates a generic point in the left branch with radial coordinate r
and phase ¢. The semimajor axis a is also shown, representing the distance from the center to
the vertex, as well as the distance c from the center to the focus. The dash-dotted lines represent
the asymptotes of the hyperbola, while ¢, is the angle they form with the major axis. Finally, the
impact parameter b indicates the distance from the focus to the asymptotes.

so that one of the asymptote is at the = axis, showing that the particle originally has a horizontal
velocity, which is then bent due to the interaction. Nevertheless, I decided to keep this orientation,
more standard in Mathematics, due to its better analogy with the elliptic case and the better
explainability of its geometrical elements.

The periapsis is given by the value that maximizes the denominator, which is ¢ = 0, so that
rp =ale — 1), (1.202)
while there is no apoapsis, since the distance can be arbitrarily large since the denominator can be
arbitrarily close to zero.

We now turn our attention to speeds. We denote vy the speed at the periapsis. On the one
hand, the angular momentum at infinity is given by pbvs, (Eq. (1.199)) and, for the one at the
periapsis, the speed and vector radius are orthogonal. The fact that both are equal indicates

+1
b = ale — Dvg = vy = 1 Voos (1.203)
where we have used the equation for the periapsis radius in Eq. (1.202) and the expression of b from
a and e in Eq. (1.198).
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On the other hand, the gravitational energy vanishes at infinity. Making the energies at infinity
and at the periapsis equal, we get

1, 15 GM e+1 o 2GM 9 GM
2 = 2 T - - =" = = — 1.204
9 = 3% ale —1) e—1 < ale—1) Yoo a ’ ( )
so the velocities at infinity and the periapsis are, respectively,
GM 1GM
Voo = A ——, Vo= + —_— (1.205)
a -1 a
Then, the angular momentum and energy can be computed as
M GM
L=ub =pu\/GMa(e? -1), E= g (1.206)
a a

From the expression of the energy (which is positive, unlike in the elliptic case), we can again
compute an expression for the velocity (vis-viva equation) using the fact that it is a conserved

quantity,
2 1
vt =GM ( + > (1.207)
roa
As we can see, most of the expressions are essentially equal to the elliptic ones, only that with
a — —a. In practice, this can better be noticed in that all the factors 1 — e which appeared before

in the elliptic case now appear as e — 1, being positive in either of the cases.

1.4.2 Radiated power

The radiated power can be obtained very similarly to the elliptic case. First, the quadrupole
moment is

cos’¢p  sinpcosp 0 9/ 2 2 cos’¢p  sinpcosp 0
o= 2 | & 2 _ua(e—l) . ) 2
ij = pre | dingcos g sin® ¢ 0] =+——75 |dinpcosyp sin” ¢ 0 (1.208)
0 o 1) (tecosy) 0 0 1

which is very similar to the elliptic one, Eq. (1.130), but with 1 —e + e — 1. From the conservation
of angular momentum, we can also get an expression for ¢ similar to (1.131),

. L GM 5

o= e = 32 1) (14 ecosy)”. (1.209)
We need this expression to compute the third derivative of the quadrupole moment in Eq. (1.208),
which are

G3M3

T =2u (1 + ecos ¢)?[2sin(2¢) + 3esin ¢ cos® ¢, (1.210)

G3 M3

Ta0=2p e (1 + ecos )?[~2sin(2p) — esin (1 + 3cos? )], (1.211)

G3 M3
I5=2u T (1 + ecosp)?[~2cos(2¢) + ecos (1 — 3cos? )] (1.212)
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1.4. Hyperbolic encounters

Using the expression for QU Cjij in terms of I” in Eq. (1.135), we get

eeees e e 1 R} e BERY) R} 1 ... eee
Qi Qi = Iij[ij_gl =17+ I22+2[12_§(111+ T 55)?
RYes 273
= TMG + ecos ) [12(1 + ecos p)? + e? sin? ¢], (1.213)

so that, substituting this expression in Eq. (1.113), we get to the result

8G4 2M3
P(p) = "

= @m(l + ecos ) [12(1 + ecos )2 + e sin? ¢, (1.214)

which exactly matches the one for the elliptic case in Eq. (1.137) except for the mentioned change
in eccentricity. With the corresponding variable changes, it also matches other expressions in the
literature [66], also when shown as functions of g [67, 68].

Finally, in the elliptic case, we computed the power averaged in a period. In a hyperbolic orbit,
there is no periodicity, so what we can do instead is computing the energy loss in the full orbit. For
this purpose, we have to integrate over time or, equivalently, over ¢ if we divide by ¢ in Eq. (1.209),
using the chain rule. In this case, the integral range goes from ¢ — —( to ¢ — ¢q, corresponding
to the past and future infinity, respectively, as explained in the previous subsection. We will denote
o = arccos(—1/e) Thus,

AE:/mdtP(ap)Z/ ' d—pr(tp)

_ 8GT/2 [ 2MO/2
15¢5 a7/2(e2 — 1)7/2

0
/( dip (14 ecos ©)?[12(1 + ecos )2 + e sin” ). (1.215)
¥o

Solving this integral yields the result

2G7/2 2 MO/ [

_ 2 2 4
AE =" pLriTE 1(602 + 673¢2) + 3(96 + 292¢? + 37¢ )¢0] (1.216)

where the second term matches the expression for the elliptic case (1.141) except for the mentioned
changes in the eccentricity and the presence of ¢9. Using the relation between ry, and a in Eq. (1.202),
this expression is usually presented in the literature [54, 69, 68, 2] as

Ap _ 8C72 mim3M?
1565 7’7/2
P

f(e) (1.217)

with

f(e) = ﬁ {24 arccos (i) ((+ gez + 3264) Ve -1 (% + 6172362” . (1.218)

which also matches similar expressions in the literature as functions of g [68, 67].

We will use this equation later in Chapter 5. In this chapter, we compute the stochastic gravi-
tational wave backgrounds that these hyperbolic encounters produce under certain hypotheses. In
the next section, these stochastic gravitational wave backgrounds will be introduced.
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Chapter 1. Gravitational wave theory

In order to compute the gravitational wave backgrounds from hyperbolic encounters, as in
the circular case, we also need their energy spectrum, similar to Eq. (1.196) but for a hyperbolic
trajectory. The computation in that case was somewhat tedious despite being in the simplified case
of circular motion. In the elliptic case or, in this case, the hyperbolic, the computation is even
harder, so we just indicate the equation here and refer to [54, 68] for the derivation. Expressed as
in our article [2],

dE dE  4m G3m?m3

i L 9 O 1.219
d(ln f) Var T 15 a2y | (), ( )

with v = 271y f, Vg being a constant that makes v dimensionless,

a3

A STVA

(1.220)

and with F,(v) a function of frequency and eccentricity that can be approximated at low eccentric-
ities as [54]

y=vVf-1. (1.221)

Taking the numerical constants (12)7r) and the leading order of the frequency (v?) outside F.(v),
we can rewrite Eq. (1.219) in a more comparable way to the circular case,

dE  64r% (GM)*/?u? ,
dnf) 158G al/? f79¢(f), (1.222)

where g.(f) = 1/y at the leading order in f and y. This expression is somewhat differently to the
one for the circular case in Eq. (1.196), mainly due to its frequency dependence. The hyperbolic
case goes like f2 and the circular one, as f2/3. In Chapter 5, we will see why this difference in the
frequency dependence, coming from the different behaviors of the orbits, is something which will
be of great observational interest, given that it allows to clearly distinguish both types of signal.
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Chapter 2

Stochastic gravitational wave
backgrounds

In the previous chapter, we have studied the general formalism for gravitational waves and focused
on signals coming from 2-body interactions. In this chapter, we will instead focus on another type
of signal which gives name to the title of the thesis: the stochastic gravitational wave background.
This is a background signal consisting of the superposition of gravitational waves, which should be
below the signals we observe with the current detectors, similar to the role of the cosmic microwave
background for electromagnetic radiation.

There are a lot of sources which generate a stochastic gravitational wave background, usually
classified in two types: astrophysical or cosmological.

The astrophysical signals are the ones which undoubtedly exist, constituted by the superposition
of weak gravitational waves coming from CBCs or other astrophysical sources. Those signals with
a high enough amplitude stand out above the background and noise and we can observe them with
current or future detectors. However, similar to these ones, there should be many more with smaller
amplitudes which fall below the noise and, even with very precise detectors, the fact that they are so
many would make it impossible to resolve them. Thus, this superposition of unresolved, incoherent
gravitational waves will constitute one of the contributions to the SGWB. In fact, it is expected to
be the dominant one, at least at LVK-like frequencies [28, 29].

In addition to the contribution from CBCs, there are other astrophysical sources such as hyper-
bolic encounters (see Chapter 5), supernovae [70, 71, 72, 73] or Galactic binaries [74, 75].

The cosmological signals are more difficult to be detected, given that they usually have smaller

amplitudes. Some examples include inflation [76, 77], cosmic strings [78, 79] or phase transitions [30],
as Fig. 2.1 shows, as well as axion-gauge inflation [31, 82, 83, 84, 85, 86, 87] and scalar-induced
gravitational waves [38, 89, 90, 91, 92, 93, 94, 95, 96, 97] (see also Sec. 2.5). In this figure, we can

also see that the cosmological sources spread over all the frequency spectrum, which is also true for
the astrophysical ones. In Chapter 10, we will elaborate a bit more on the different constraining
methods.
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Chapter 2. Stochastic gravitational wave backgrounds
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Figure 2.1: SGWB spectra for several cosmological models (colored solid curves) compared to
current upper limits (shaded in gray) and expected sensitivities of future experiments (black dashed
lines), taken from [08]. The figure includes signals from inflation (R? inflation [76]) along with
their modification by a stiff equation of state [77], but one should note that the amplitude and
spectral behavior of these signals heavily depend on the model parameters. The GW spectrum
of cosmic string loops |78, 79] is also presented, as well as the electroweak phase transition [30].
Current constraints include the Advanced-LIGO O3 upper limit [28], constraints based on Big Bang
nucleosynthesis and CMB observations [99], pulsar timing, the astrometric measurements by Gaia
explained in Chapter 10, CMB temperature and polarization observations [100], and pulsar timing
arrays [11]. Future expected sensitivities include the final sensitivity of Advanced-LIGO [101],
ET [102], DECIGO [23], LISA [103], SKA [104], and LiteBIRD [105]. An observing period of
3 years is assumed for interferometer experiments and 20 years for SKA. The blue-shaded band
indicates the expected amplitude of the SGWB due to the cosmic population of CBCs, based
on the observed individual events in the O3 catalog [106], while the expected spectral amplitude
is extrapolated to the LISA frequency band assuming the f2/3 dependence of the inspiral phase
(Eq. (1.196)). However, the lower frequencies could be modified by the effects of eccentricity and
precession at the time of binary formation [107, 108].

We will begin this chapter by computing the general equations to work with a SGWB, where
some useful references include [39, , , , |
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2.1. Stochastic gravitational wave background formalism

2.1 Stochastic gravitational wave background formalism

We start from the general decomposition of a gravitational wave in different propagation directions,
frequencies and polarizations in Eq. (1.38), which we rewrite here for convenience:

hz’j( df dZQh ( ) —2mif(t— ﬁ:f:‘/c) (21)
- Sl

The word stochastic is used to describe the fact that the amplitudes h A(f,7) are random vari-
ables. Therefore, we can characterize them by their ensemble averages, for which we use temporal
averages, similarly to other fields in Cosmology. Statistically speaking, under the assumptions which
we will discuss below, the quantity in Eq. (2.1) averages out to zero, so the one-point correlator
(ha(f,7)) is also zero for all frequencies.

We are therefore interested in characterizing the correlators (h* (f,@)ha: (f', 7). If we assume
that the background is Gaussian, these are the only useful correlators, given that any other N-point
correlator can be reduced to it. This assumption is justified by the Central Limit Theorem [113]
for unresolved sources, but it fails for other sources such as axion-gauge inflation [31, 82, 83, 84,

, 86, 87]. For simplicity in the exposition, however, we will keep this assumption, as well as
make other ones which are standard in SGWB theory. These can generally be relaxed and obtain
different formalisms, such as assuming the presence of anisotropies. Nevertheless, we follow these
assumptions as a first step, for simplicity:

e Stationarity: we assume that the correlators will only depend on time differences ¢ — ', but
not on the absolute values of time. This means that, even if the background has a certain
time dependence, it is only local rather than something on larger time scales. In practice, this
is needed so that we can assume (h* (f, @)ha (f', 7)) < 6(f — f').

e No polarization: we assume that the background is unpolarized, so that
(B(f,)ha(f, 7)) o< daa. Again, some sources such as axion-gauge inflation do
not satisfy this, producing a chiral background [114].

e Isotropy: similarly to the CMB, we assume the background is statistically isotropic at first
order, so that (h*(f,@)ha(f',7')) o< 62(i,7'), which is a Dirac delta over the two-sphere,

62(,7') = 6(¢p — ¢')6(cos § — cos ). (2.2)

Of course, just as the CMB, the real background will have anisotropies. For the treatment of
an anisotropic SGWB, see Chapter 3.

Under these assumptions, the two-point correlator can be expressed as

%

S, i, 7’ 1

s ihacl s ) = o7 — 5 0 L), (2.3
for a certain function Sy (f) which is called power spectral density (PSD). The factor 1/2 is chosen
to be there when the frequency integral covers the full real numbers, while it should be removed
if we integrate just the positive range f > 0. Additionally, the 47 is a normalization factor which
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Chapter 2. Stochastic gravitational wave backgrounds

compensates for the one arising from the integral over the spheres for 7 and 7i’. Using this expression
for the second correlator of h;; in Eq. (2.1), we get

(hay (8, YR (1, 7)) = 4 /( A (). (2.4)

where the factor 4 comes from the contraction of the polarization tensors defined in Eq. (1.35):

e;;-ejj = |a)* + |7)* = 2, efjeX = 2|i]?|v)* = = Z(efjef} =4. (2.5)
A=,

We also note that this is the step where we lose the position dependence. In Eq. (2.4), both
hi;j(t, &) depend on the position only through their exponentials. Given that one of them must be
conjugate, both exponentials cancel out and the result is position-independent, as a background
should be.

From Eq. (1.68), we also know that the energy density of gravitational waves is related to the
strain amplitude as

TT TT
paw = o= (WETRET). (2.6)

Substituting h;; in Eq. (2.1) into this equation, we get

df (2 £)2Sh (f 2G /(dfoSh (2.7)

In Cosmology, the common practice is to indicate these densities with the density parameter,

Pgw = 8 G

Paw
Qo = —, (2.8)
T pe
where p, is the critical density, defined as
3c2H?
c = 5 2.9
pe= o= (2.9)

with Hy the Hubble constant. Throughout this thesis, we will, in general, use its normalization

Ho =70 h70 km/s/Mpc. (210)

Given that the contributions to the density come from different frequencies spread over several
orders of magnitude,

d(ln f)’

we are interested in the energy density parameter as a function of frequency, so we define

Pew = /[ d(in f)-2Ps (2.11)

1 dpgw
ng(f)* ;d(hff)’

(2.12)
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2.2. Detection of gravitational waves

where the dependence indication (f) will mark if we are referring to the first definition (2.8) or the
second one (2.12), in an abuse of notation which is common practice in the literature. By definition,
both are then related as

QW=L(Mmﬁ%Mﬂ- (213)

From the expression for pg,, as a function of S;,(f) in Eq. (2.7) and Eq. (2.11), we get

dpgw wc?

T = 56 (214)

so that, from the definition of Qg (f) in Eq. (2.12) and the critical density p. in Eq. (2.9), we have

_ 472

= TI{gf35h(f). (2.15)

Qgw (f)

2.2 Detection of gravitational waves

Up until now, we have studied gravitational waves in space, but at the end of this chapter and
the next one, we want to do data analysis with actual data. Thus, we first need to know how the
picture changes when we get the observational data with a detector.

Cuwrrent gravitational-wave detectors like LIGO [6], Virgo [12] or KAGRA [13] consist on a
Michelson interferometer with two orthogonal arms. In the future, detectors like LISA [20] and
Cosmic Explorer [18] will have different configurations, while it is still unclear whether Einstein

Telescope [17] will have a similar design to the current detectors or not. If a gravitational wave
goes through a detector, propagating orthogonally to the plane defined by its arms, their lengths
are contracted or expanded according to the wave polarization, following the patterns in Fig. 1.1.
This tiny length change makes the optical path of both arms differ, so that these slight variations
of the system configuration can be detected through interferometry.

In this section, we will see how the detector’s response changes for a general orientation and
how we can apply the output signal to derive the properties of a stochastic gravitational wave
background. Useful references for the first Subsec. 2.2.1 include [39, , |, while for the data
analysis part in Subsec. 2.2.2; one can refer to [73, , 28, , , |-

2.2.1 Detector pattern functions

Whenever a gravitational wave goes through a detector, which we will denote with an index I, the
output signal it will produce cannot be the gravitational wave itself, which is a tensor. For now, we
will assume there is no noise and the detector is perfectly able to react to all frequencies equally,
with zero loss. Then, its output signal will be given by

hi(t) = DY hij(t), (2.16)

where D?j is the detector tensor, characterizing the effect that a gravitational wave with a given
propagation direction and polarization will have in the detector, due to its orientation and geometry.
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Chapter 2. Stochastic gravitational wave backgrounds

We consider a gravitational wave propagating in direction 7 given by (6, ¢) with frequency f and
arbitrary polarization,

hij(t) = > (ha(t)es (i), (2.17)

A=+,

where we drop the spatial dependence for now, assuming that all the detector can be assigned
roughly the same position & = 0. Then, the output signal in Eq. (2.16) can be expressed as

Bi(t) = hy (FF (6, 0) + ho (D F (0, 9), (2.18)
where we have defined the detector pattern functions, or antenna patterns FIA(ﬁ), as

Ff(it) = DY e} (). (2.19)

We can characterize them by first studying a simpler case, which is the one in which the gravi-
tational wave propagates in the orthogonal direction to the detector plane. In this case, if we define
the polarization h, so that its base directions coincide with the arms, the detector will be fully
able to measure hy, but it will not react to the polarization hy. Thus, the response function in
this case is F;" = 1, F;* = 0. In other words, for a detector whose base directions are @ and 9, the
detection tensor is given by

Dy = % ((uj —vh?), (2.20)
so that F1+ = Déjefj = 647, with the definitions in Eq. (1.35). By knowing this, we can compute
the response function for an arbitrary direction with an auxiliary rotated reference system, similar
to how we did in Subsec. 1.2.3.

Again, the reference system S’ will be defined by the rotation in Eq. (1.101), where the prop-
agation direction 7 of our gravitational wave will coincide with Z’. Once again, we could define a
third rotation around 7 which alters the polarization definitions, but we disregard this degree of
freedom. In S’, since the wave propagates in the direction 2, then h;; is simply

/ Wy o B0
W=k, B, 0] . (2.21)
() 0 0/,

We now have to evaluate how this perturbation is observed in .S, for which we apply Eq. (1.104).
Note that, while in that case, we wanted to get I’ from I, now we want the opposite: obtaining h;;
from hgﬁ so we use the first equation in Eq. (1.104) rather than the second. Additionally, from that
equation we will obtain h;; in an arbitrary gauge, for which we will then need to project to the TT
gauge. This projection means setting all h;3 components to zero and subtracting the trace, so that

1
hy=hlt = 5(h11 — h12). (2.22)

Thus, it is enough to compute hq; and hoo from Eq. (1.104), which gives

hi1 = K, (cos® 0 cos® ¢ — sin® @) — ', cos 0sin(2¢), (2.23)
oo = W, (cos® Osin? ¢ — cos® ¢) + R, cos Osin(2¢), (2.24)
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2.2. Detection of gravitational waves

where the second sign of both equations differs from [39] due to the different definitions for ¢, where
a transformation ¢ — —¢ converts from one system to the other. Therefore, the plus polarization
(which, as we saw, is the only one that the detector lets pass) is

1 1
hy = 5(hll —hy2) = ihﬁ‘_(l + cos? 0) cos(2¢) — b/, cos Osin(26), (2.25)

where the minus sign can actually be absorbed by redefining ¢ — —¢. From this equation and
Eq. (2.18), we can read the antenna patterns as the coefficients for A/, and A/,

F(0,¢) = %(1 + cos? 0) cos(2¢), (2.26)
F[(0,¢) = — cos0sin(2¢). (2.27)
We can see from this equation that the detector maximally detects gravitational waves in some
directions and polarizations, while it completely misses them in other cases. In particular, for h,
the signals have maximal amplitude (either positive or negative) when 6 = 0,7 (¢ in this case
represents the extra rotation we disregard) and the detector is blind to them for ¢ = /4 + nw/2,
which is also true for hy in the particular case # = 7/2. These blind spots are completely reasonable
when one takes into account the effect outlined in Fig. 1.1, given that they coincide with a null
effect on both arms or the exact same, non-null effect on both of them, so that the difference in
optical length between them is null.

Finally, we should note that the antenna patterns just characterize the signal the detector
observes due to its relative position and configuration. However, even neglecting the noise, its
output signal will not be directly given by this h;(t), which is going through a complex system that
produces the output. This process will be more sensitive to certain frequencies and not to others at
all, which is something that is characterized by a transfer function T'(f). Therefore, as a function
of frequency, the output we will observe is given by

R (f) = T(f)hs(f), (2.28)

plus, of course, the noise going into the detector from any possible source able to cause a displace-
ment on the interferometer arms.

2.2.2 SGWB data analysis

For a SGWB, the picture outlined in Sec. 2.1 changes in the context of a detector. We have seen
how a detector measures a gravitational wave propagating in direction 7 with frequency f is given
by Eq. (2.18). Thus, the decomposition in Eq. (2.1) for a generic gravitational wave is now

hi(t)= ) ( / T / d*Qha(f, ) Ff (f)e 2 T80, (2.29)
A=+, x V7

where Z7 is the position of the I detector. The main change with respect to Eq. (2.1) is that, under
the contraction with the detector tensor D;;, the polarization basis tensors e%(fi) must be replaced
by the detector pattern functions Fz(77).
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Chapter 2. Stochastic gravitational wave backgrounds

However, there is one more important change when dealing with real data: noise. In particular,
in a gravitational-wave detector, the output is mostly dominated by noise. Therefore, if we divide
the detector signal s;(t) as the sum of the gravitational wave strain h;(¢) and a noise component
nr (t)l,

si(t) = hi(t) +nr(t), (ni(t)nr(t)) > (hi()hi(t)), (2.30)

then the noise will dominate the signal two-point correlator. We call this regime the weak-signal
limit. In order to avoid this, what we do is correlating the signal obtained by two different detectors,
where we will denote the second one by J # I. The idea is that the noise is completely uncorrelated
between two different detectors, as well as uncorrelated from any of the GW signals h;. In practice,
there are some sources of noise which are correlated, the most relevant of which are the Schumann
resonances in the Earth’s magnetic field, caused by lightning strikes and covering thousands of

kilometers [118, , , , ]. Nevertheless, for simplicity in the explanation, we will keep the
assumption of no correlation between detectors, while we refer to [112] for additional information
on correlated sources and to [118, , , ] for more details of Schumann resonances. Under

this assumption, the following approximation holds:
(s1()ss(t)) = (hr(O)hs () + (hr()ns (@) + (nr()hs (b)) + (nr(t)na (b)) = (hr(t)hs (1)), (2.31)

so we will use (s7(t)s;(t)) and (h;(t)h;(t)) interchangeably.
When correlating different detectors, Eq. (2.3) still holds, since it only depends on h 4, but the
A

e;; contraction in Eq. (2.5) must now be replaced by the contraction between the detector pattern
functions F7' (7). Thus, Eq. (2.4) now takes the form

(51(1)35(0) = 7 Z( /0 a / d*Q F{ (i) F3 () Sp(f)e*m T @ =E0/0. - (2.32)

47
A=+,

When we were correlating a signal with itself, this exponential factor dependent on the position
did not appear, since both positions were the same and the factor cancelled out. Now, however,
this factor cannot be simplified. Related to it, it is useful to define the so-called overlap reduction
function (ORF) as

5 - - mi it (&1 —Ts) /e
W)= 3 [EQEA@EN @S, (eIt (2.33)
A=+,x

where the normalization factor 5/(87) is chosen so that the self-ORF ~;;(f) = 1. This factor can
easily be computed by using the explicit form of F{! in Egs. (2.26) and (2.27), so that

/dQQ [(F)? + (F))?] C / d9/ i d¢sin 0 [i(l + cos? 0)? cos?(2¢) + cos? §sin?(2¢)

4 8w
AT %4—3] %5. (2.34)

1In this thesis, we keep the name strain for h in the context of a detector, while its sum with the noise is called
signal. However, in other texts, signal is used to refer to the real signal coming from GW, as opposed to the noise,
while strain is used for its sum with the noise. In any case, any possible confusion is cleared up with the variable
names s, h and n, such that s = h +n (Eq. (2.30)).
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2.2. Detection of gravitational waves

Therefore, Eq. (2.32) can now be written as

(sr(t) /( df v (f)Sn(f)- (2.35)

Additionally, using the relation between Sj,(f) and Qg in Eq. (2.15), we get

(05 (0) = S22 /( s et (2.36)

We usually work with time segments of duration 7', so that, for the time segment centered in ¢,

we define
T/2
Y}J /( dt S[ (t) (237)
T/2

In this text, we will assume these time segments do not overlap, that is, that the distance between
one center ¢t and the following one is exactly T. In the real analysis by LVK, these centers are
separated by T'/2, so their first half completely overlaps with the last half of the previous segment,
and similarly for the second half with the next segment. For details of how to deal with this analysis,
see [110].

Using Eq. (2.36), we obtain that the expected value for Y7;(t) in Eq. (2.37) is

t+T /2 2
sy = [ aetsi o) =105 [ a2

_7 /( 0F 1101 S0 () (). (2.38)

where we have defined

3H?
So(f) = —=9 2.39
O(f) 107_(_2']@3, ( )
matching the notation in [110]. This way, Y7s(¢) constitutes an unbiased estimator for the right-

hand side quantity in Eq. (2.38).

We now divide the integral frequency range into a discrete range of frequencies with resolution
Af, in order to get an estimate for Qg (f) in each of these frequencies. This is called the narrow-
band analysis. In order to be coherent with the resolutions, we note that 7" imposes a minimum
characterized frequency, fumin = 1/T. Therefore, we must choose T and Af so that they satisfy
TAf>T x1/T = 1. In LVK, we usually work with 7' = 192 s, which corresponds to a frequency
of 0.0052 Hz, while the typical resolution is 1/32 ~ 0.031 Hz. Thus, TAf = 6 > 1, so the analysis
is coherent.

For the narrowband analysis, we have to take Eq. (2.38) and divide into frequency bins. For
this purpose, if is useful to go to Fourier space, but note that the time integration only goes from
t —T/2 tot+T/2. Thus, we define the short-time Fourier transform of s;(t) over a period T as

T/2
51(f,1) /(m dt'sp(t')e>m I (2.40)
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where the ¢ does not indicate a real dependence, but rather, it can be thought of as a tag which
points to the time segment of length T that has been used to compute §;(f,¢).

Short-time Fourier transforms essentially behave as usual Fourier transforms with some proper-
ties slightly changed. One of them is the associated Dirac delta function, which is now

T
or(f—f) = /(m e 21 — Tsine[xT(f — f')], (2.41)

with sinc(z) = sin(z)/x for x # 0 and sinc(0) = 1 for continuity in all real numbers. In particular,
we notice that d7(0) = T, which is a finite value. As T — oo, we would recover the standard Dirac
delta function, just as the short-time Fourier transform tends to the standard one.

This way, Y7;(¢) in Eq. (2.37) can be expressed as

Yot / daf / af’ /.Gf 2mU=I 53 (£, )55(f,1)

- / daf / df'r(f — £)55(F 0551 1) (2.42)

~ [ wsitrosi ~2 ( 053 (£,8)3(£. 1), (2.43)

where the d7(f — f’) has been used as a standard Dirac delta. If we discretize in frequency bins of
resolution Af, using Eq. (2.43), Eq. (2.38) can be expressed as

2AfZ §i(f.1)3(f.1) TAfZ(U aw (f)- (2.44)

Making the contributions per frequency bin at both sides equal and solving for Qg (f), we get its
narrowband estimate for each time segment and baseline,

T y(f)Se(f) 7

where the hat denotes estimator and we take the real part to avoid complex-valued estimators.

QU T(f,t) = (2.45)

Based on this equation, we define the cross-spectral deunsity (CSD) [73, , , 28, | Cry as
CIJ(f7 ) 78[(.]07 ) J(f7t)7 (246)
so that Eq. (2.45) can finally be expressed as
Re[Crs(f,1)]
QLI (f. 1) = ——22 = 2.47
wlit) = Y15 (f)So(f) ( )

It is also important to get an associated error for these estimates. We first start by estimating the
variance for Y J(t), in the form of Eq. (2.43). Given that its mean involves a two-point correlator,
the variance o3 ;;(t) = (Y7.7(t)*) — (Y7(t))* will involve four-point correlators. In the weak-signal
limit, given by the condition (h?) < (n?), there will be terms in which the signal from a detector
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combines with itself, getting that (s?) a2 (n?). Thus, these terms will dominate the ones proportional
to h?, particularly (Y7;(t))?, so that we can assume o3 ;;(t) = (Y7;(t)?). We can also substitute
all sy by the noise ny, so that

021 (t) ~ / ar / af’ /( ar / A" 6 (f — £)r(f" — ) (2.48)

< (ap(f,t) s (f,0) ir(f7, ) 25 (f7, 1))

Assuming that the noise is uncorrelated between different detectors, we can express

(ap(f6)na(f'6) n(f7,6) 05 (", 1) = (A7 (f, L) (R (f7 ) 7y (1))
f" )> (g (f' ) 7y (S, 1))
1) (7 J(f tynr(f",1))
~(n (f,t)ﬁ,(th)) (s (f' ) 25 (f", 1)) (2.49)

Substituting this into Eq. (2.48) and integrating over f’ and f’ using the delta functions,

o2t /( daf /( A3 ) (7 0) (s (.8 w5 (7). (2.50)

At this point, similar to Eq. (2.3), we define the one-sided power spectral density Pr(f) as

~
~—

h
<

(D) () = 500F = FIPHE) (= {5e(F) 507, (251)

where the tilde indicates a standard Fourier transform in this case, and the last equality is a
consequence of the weak-signal limit. The short-time Fourier transforms satisfy a similar relation,

(ir (£, (' 0)) = 5607 = £ i), (252)

where these P;(f) can be estimated for each time segment as

PL(f8) = i ()31 (), (25

similar to how we did for Qg (f) in Eq. (2.47). From the previous expression, we can see that
Pr(f,t) is actually just Cry(f,t) in Eq. (2.46) for the particular case I = J. Now, substituting
Eq. (2.52) into Eq. (2.50), we get

A=t [~ 4 /( UG~ PIPDPAS) = 1 [ s OP(P)

— 00

- /( AfPi(f)Ps(f (2.54)

where we have used one of the §r(f — f”) as a standard delta function, for the integration in f”,
and the other one has been evaluated at zero. This expression coincides with the expression in [73],
and we can see that this result, which is an expected value, is independent of ¢. In order to get our

93



Chapter 2. Stochastic gravitational wave backgrounds

estimate for (732/,['], we only have to add the time dependence due to estimating Pr(f) and P;(f)

via Eq. (2.53). Thus,
-2 /( P OPIS 1), (2.55)

which satisfies (53, ;;(t)) = 0% ;;(t). This is the final expression we were looking for in the case of
Yis(t).

For the narrowband estimator for Qg (f), first we write, from Eq. (2.38) and the discretization
in later equations,

Yig(t TAfZ(IJ N (1), (2.56)
Therefore, its variance satisfies
ov.1y = (Yr(t)*) = T*(Af) ZZ 171 (F)So(H)vrs (F)So(F ) Qe (£, 0L (1))

T*(Af)? Z u(f)%(f)((ﬂ”(f, t)%)
!

=T(AF)* 1S5 (Fot s (f), (2.57)
f

where we denote the variance of the QévJv( [, t) estimate by o?,(f). If we now make this equation
equal to the discretized version of Eq. (2.54),

2AN?D AL(NSS(Hots(f AfZC (2.58)
f

we get, solving for U?J (f),

L P(f)Ps(f)

2
oi;(f) = , 2.59
V)= SR, (NS0 (259)
which coincides with the expressions in the literature [116, , ]. Thus, the corresponding
estimate is
L P/, fit
2 (f.8) = SIULEMEL (2.60)

2TAf ’Y[J(f)SQ(f) 7
which is our final result for the narrow-band analysis.

With this formalism, we have an independent estimator for Qg (f) per time segment, which is
useful to see their variability and address possible problems. In particular, this helps to remove
the worst-quality time segments, improving the quality of a combined estimator for all time data.
The estimation of these variances is therefore essential, given that they can be used to weigh how
much each time segment should contribute. The usual criterion is to do an inverse-noise-weighted
average, like

S (ft)or} (f,1)
\E(‘TU fit) 7

54

Q) = (2.61)
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with the estimated uncertainty given by

o1,(f) = Z(ﬁ(ﬁ t)) : (2.62)

t

These estimates for {1, and ¢ are used to do parameter estimation and model selection, as we
will see in Secs. 2.4 and 2.5, as well as in Chapter 3. Before going into these topics, however, there
is another type of estimate we can build with the ones defined up to now.

If we applied a similar average for Qé{v( f) and its variance over frequency, we would get a joint
estimate for the amplitude of a flat Qg (f). We can generalize this idea for a power-law functional
form for Qg (f),

Qew (f) = Qa0 (fif)a’ (2.63)

where Q, = Quw(f = fref) for a certain reference frequency frer. If we define

= (L), (264)

then, an estimator for {2, is given by

orr _ S Bt (DA (NS ()
© S ER(Da ()

which is called broad-band estimator. In additdon, the associated uncertainty can be estimated as

(2.65)

-1

52 1) = %%@mwﬁq> : (2.66)
f

In fact, similar estimators can be used for the amplitudes of arbitrary Hes(f) (not necessarily
given by Eq. (2.63)), as long as they have no other free parameter than a global amplitude.

We also note that all the estimates depend on the baseline IJ that we are using. When we have
several baselines, the broadband estimators in Eqgs. (2.65) and Eq. (2.66) have the same definition
with an additional sum over the baselines.

In the next section, we will see an introduction to Bayesian inference, which, together with the
narrowband and broadband formalisms, will then be used in Sections 2.4 and 2.5, as well as in
Chapter 3, to get constraints on models from gravitational-wave data.

2.3 Introduction to Bayesian inference

Whenever we have some data and we want to extract its physical information, we usually assume
it follows some model M with certain parameters 6. Under this hypothesis, the main task is then
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Chapter 2. Stochastic gravitational wave backgrounds

inferring the values of these parameters from the data, a procedure that is usually called parameter
estimation.

There are many ways to do parameter estimation using statistical tools, including frequentist
and Bayesian methods (see [123] for further details on the topic). In this thesis, I will focus on the
latter, which are the most used in the field of Gravitational Waves [28, , 14, 8].

The main idea of Bayesian inference is that the parameters are random variables with some
unknown distribution we aim to determine. For this purpose, we use our data D. It is also
necessary to assume some a priori distribution for 8, or prior P(f) (sometimes denoted (), as a
starting point, where P denotes probability. Then, using Bayes’ theorem, we can get the probability
distribution for our parameters conditioned to the data, or posterior distribution P(§|D, M),

P(D|6, M)P(f)

P(AID. M) = S,

(2.67)
where P(D|0, M) measures how likely it is to obtain the data with the model M for a given set of
parameters 6. Due to this definition, this quantity is usually called likelihood, which we will denote
by £(8) throughout the thesis. Additionally, P(D|M) is the total probability to obtain the data
given the model M. Due to the law of total probability, it is marginalization of the numerator over
all parameter space. It is usually called the model evidence and denoted by Z,

Z(M) = P(D|M) :/dé’P(Dw",M)P(eT) - /(dé’ﬁ(é)w(e). (2.68)

When we have two different models M; and Ms for the same problem, the evidence can be used
to decide which one of them is favoured by the data. The natural tool to see which of them is more

likely is the odds ratio,
oM _ PUMLD)  P(D|M:)n (M)
My — - ) (2.69)
P(M3|D)  P(D|Mz)m(Ms)
where in the second step we have used Bayes’ theorem (2.67) applied to models rather than param-
eters. If we assume that none of the models is preferred, so that w(M;) = 7w(Ms), then the odds

ratio reduces to the Bayes factor,

. P(DIMy)  Z(M)
M = P(D|My) ~ Z(My)’ (2.70)

which is just the ratio of evidences defined in Eq. (2.68). It is commonly agreed that the evidence
in favour of M; is strong for B%; 2> 10 and conclusive for B%; > 100 [125], although the exact
numbers and statements may vary in different references. Using these statistical tools to distinguish
between two models, one of which is preferred by the data, is called model selection.

With the formalism defined, all that remains is to choose a suitable likelihood and characterize
the numerator of Eq. (2.67) in a sufficiently large area of the parameter space, which is a procedure
called sampling.

2.3.1 The likelihood

Suppose we have a set of points {x;}, i = 1,..., N, where we measure the value of the quantity
y with certain experimental errors o;. According to our model M, y is given by a function f
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2.8. Introduction to Bayesian inference

depending on some parameters 5, so that y = f(=, 5) Thus, we should expect a value close enough
to p; = f(w,0) for each i, where the measurement of how close it is depends on the error scale o;.
Then, for a single measurement i, we can approximate the expected probability distribution of y;

by a Gaussian with mean u; = f(z;,6) and width o;, y; ~ N (1, 0;), so that its probability density

function (PDF) is
2
7 1 L (yi — i
P(y:|0, M) = Nz exp l—2 ( p ) ] . (2.71)

If all the measurements are independent, their joint PDF is the product of all the individual PDFs.
If the Gaussian hypothesis holds for all points, then the joint probability for ¥ = (y1,...yn) is
given by

. 1 N 1N (s — i\
P(gj|6,M):W 1:[10> exp [_QZCJZQ‘“) K (2.72)

i=1

This is the standard Gaussian likelihood used in the majority of parameter estimations. However,
as we will see in Chapter 10, there are other likelihoods which are also acceptable under different
hypotheses. For the first chapters, however, we will always use Gaussian likelihoods.

The Gaussian likelihood has a quadratic exponential dependence on the model, which implicitly
appears in the u; terms. As we know, exponentials are very sensitive to changes in their exponents,
so it is more natural to work with the logarithm of the likelihood to avoid this issue. In this case,
the products appearing in Eq. (2.72) can now be expressed as sums.

In general, the samplers which will characterize the product of the likelihood and priors (the nu-
merator in Eq. (2.67)) will only care about the shape of this function and disregard its normalization
constant. Therefore, from Eq. (2.72), it is enough to know that

L o exp [—; XN: (T)Q] ( (2.73)

i=1
or, in terms of the log-likelihood,

N

1 yi — i\’
Inf = —3 Z <) + const. (2.74)

o
i=1 v

2.3.2 Sampling methods

In order to evaluate the shape of the posterior in Eq. (2.67), it is necessary to evaluate the likelihood
and prior at a large region of the parameter space. For a problem with moderate or high dimen-
sionality, it is not possible to explore the parameter space with a uniform grid or similar “brute
force” methods. Thus, we need a more sophisticated algorithm that helps us with this exploration,
which is what we call a sampler.

There are two main families of sampler which are widely used: Markov chain Monte Carlo
(MCMC) sampling and nested sampling, both of which are based on some random process which
explores the parameter space based on where the likelihood is higher. We will briefly comment on
both methods, where a good review can be consulted in [120].
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Chapter 2. Stochastic gravitational wave backgrounds

Markov chain Monte Carlo sampling

MCMC sampling was first introduced in 1953 in an article by Nicholas C. Metropolis and other
collaborators [127] and extended by Wilfred K. Hastings [128]. Broadly speaking, a Monte Carlo
method is an algorithm that aims to obtain a numerical result through repeated random sampling.
The most paradigmatic example is obtaining the area of a circle by randomly sampling points in
the circumscribed square, and then multiplying the fraction of samples inside the circle by the
area of the square (see Fig. 2.2). This family of methods was first developed by Metropolis and
his collaborator Stanislaw Ulam in 1949 [129]. Metropolis decided to name this method after the
Monte Carlo casino in Monaco, where Ulam’s uncle used to go to gamble [130].

N =100, N =1000, N =10000,
4Nin/N = 3.320 4Nin/N = 3.092 4N;,/N = 3.140

_o [} o.. ,'. o . T
0.8 o ° . A % : 4 (..'
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> o ° . °
»
0.4 ..o .. o ©
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0.2 . ° T4
v 2 oo .
0.0 =2 T .| |‘. J . ; I - -
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Figure 2.2: Example of a Monte Carlo method for the computation of 7. N denotes the number of
points, while Ny, is the number of them inside the radius 22 +y? = 1 (black line). The exact value
of 7 is given by 4Aircle /Asquare, so an approximation is given by 4Nj,/N. For each realization, we
can see the number of used points and their approximation of 7, which statistically gets better as
N increases.

There are many implementations of MCMCs in different programming languages. Here, I will
focus on Python, for which some of the most popular ones are EMCEE [131] or PYMC [132].

The idea of MCMC sampling is to have a certain number of walkers, which can be thought of as
particles occupying a different position at each iteration. Each walker starts at a random position
at the parameter space and moves randomly through it according to some rules, evaluating the
likelihood and prior at each new point. Because, at each iteration, the following point is selecting
only based on the present state, disregarding the previous ones, the final set of points for each
walker is said to be a Markov chain, completing the other half of the method’s name.

The term MCMC is, subsequently, naming a family of different methods based on the same
concept. I will describe here the rules for the original Metropolis algorithm, but there are many
more possibilities. If we have a function f(x) proportional to the desired PDF, such as the numerator
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2.8. Introduction to Bayesian inference

of Eq. (2.67), the rules can be summarized in the following steps:

e First, each walker is initialized by choosing a random position x; within the parameter space.
Additionally, some proposal function g(z|y) must be chosen from which to draw subsequent
points. In the original article by Metropolis et al. [127], this function was a uniform distri-
bution over a circular shape centered on y, but one can also choose a Gaussian distribution
centered on this point. In general, the formalism attributed to Metropolis used a symmetric
(in x,y) proposal function, and Hastings extended the formalism to more generic proposal
functions [128].

e For each iteration at position z;, a candidate z’ is proposed by randomly sampling the proposal
distribution g(z’|z;). Then, the acceptance ratio is defined as

_ f@)
o f@) (279)

where we notice here the irrelevance of a possible normalization constant in f(x). Then, a
random number u is generated uniformly in the interval [0,1], so that

+ If u < «, the candidate is accepted, so that x;;1 = x;. In particular, this is always
satisfied if f(2’) > f(=x;).

— If u > a, the candidate is rejected, so that x;41 = z;.

With these rules, the algorithm will tend to find the points of maximum probability, but still
sampling the nearby area with a certain probability, dropping more as f decreases. After a sufficient
time of iterations, the sampled points should reach an equilibrium distribution which coincides with
the distribution of f(x).

This algorithm has some drawbacks, of which we mention three of them. First, the points of
nearby iterations of a certain chain are correlated, so, to correct for this behavior, it is necessary
to take the points of a chain only every Nini, iterations. For this purpose, a useful quantity is
the autocorrelation time 7; [133], which measures how many iterations have to pass until a point
“forgets” where it started. This quantity is chain-dependent, so it is usually good to set a common
autocorrelation time as 7 = max; 7;. Then, we can thin our distribution by this quantity, Nipin = 7
(even half of it is enough, Nipin = 7/2), which means taking only the iterations every Ny, steps.

Another problem of this method is that the first iterations do not follow the final distribution
so, once sampled, it is necessary to get rid of them, in a procedure called burn-in, which consists
on removing the first Ny, iterations. A good number is usually around 2 or 3 times 7. Finally,
the MCMC does not have a natural stopping criterion, so the user has to impose one. The usual
practice is to stop the MCMC after 50 — 100 autocorrelation times.

We will apply this method in Chapter 10. For now, let us see the other main family of samplers.

Nested sampling

Nested sampling is an alternative to MCMC which was proposed in 2004 by John Skilling [134].
This method is designed to compute the evidence and generates posterior samples as a byproduct.
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The idea of nested sampling is populating the parameter space by drawing a certain number
of so-called live points from the prior distribution. Then, at each iteration ¢, the point with the
lowest likelihood L; is removed and saved as a sample point with a certain assigned prior volume
w;, adding its contribution L;w; to the evidence. The point is then substituted by a new one with
a higher likelihood, possibly found with some MCMC steps.

The algorithm is continuously moving towards higher likelihood areas. At each iteration, if
we assume that all the remaining prior volume has a likelihood equal to the maximum likelihood
live point, we get an upper bound for the evidence. This quantity can then be used to impose a
termination condition, so that the algorithm stops when the current computed evidence reaches
a certain fraction of the upper bound. In practice, this is given by the quantity (AlnZ); =
In Z; max — In Z;, where Z; max denotes the evidence upper bound at iteration ¢ and Z;, the actual
computed number. What this is saying is that, at most, In Z will be able to increase by (Aln Z);,
so at some small value, which is usually around 0.1, it is pointless to continue the sampling since
the evidence is already very precisely characterized: it is usually several orders of magnitude higher.

A variation of these methods is given by the dynamic nested sampling, in which the number
of samples in different regions is dynamically adjusted to maximize accuracy. Examples of imple-
mentation of nested sampling in Python include PYMULTINEST [135] and POLYCHORD [136, 137],
while for dynamic nested sampling there is the DYNESTY package [138], which is the state-of-the-art
sampler in areas like gravitational-wave physics and other branches of Astrophysics and Cosmology.

In the next sections, we will see some applications of these techniques to real gravitational-wave
data.

2.3.3 Post-processing techniques
Contours, credible regions and upper bounds

In these analyses based on parameter estimation, the output is an n-dimensional posterior distribu-
tion. If we want to give an estimate for a certain parameter, the usual procedure is to marginalize
over the rest of the parameters and provide some central value and estimated uncertainty. The
central value can be the mean, the median or the value that maximizes the likelihood, which is
called mazimum likelihood estimate (MLE).

For the uncertainty, one takes the marginalized posterior distribution to determine the central
interval that encloses some fraction of the total probability, which is called credible interval, as
opposed as in frequentist analysis, where they are called confidence intervals. Here, “central” means
there is exactly half of the remaining probability below it, and half above it. For a Gaussian
distribution of mean p and width o, the total probability enclosed between p — o and p + o is
0.68, so, by analogy, any central interval enclosing 68% of the total probability is called I-sigma
region, and its half-width is called I-sigma uncertainty, or 1-sigma error. Similarly, the 2-sigma
region encloses 95% of the total probability, while the 3-sigma region covers 99.7%. These regions
are illustrated in Fig. 2.3. It is thus common to provide the 1-sigma (or n-sigma) error as an
uncertainty estimation.

However, there might be cases in which we do not aim to provide a final value of a parameter. In
the case of a SGWB analysis, this background has not yet been detected, so it is still soon to derive
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its value, which is dominated by uncertainties. Instead, it is better to provide an upper bound,
indicating that the SGWB amplitude is very likely to be under that value. In this case, one can
take the corresponding posterior distribution and find the point below which the probability is 95%,
thus labeled 95% credible-level (CL) upper bound (see Fig. 2.3). One can also provide upper bounds
with different credible levels, but 95% is a standard widely used in the literature [139, 28, 97, 140].

95%1
-]
0.4

0.3

= 014
5

Figure 2.3: Gaussian PDF illustrating the 1-sigma (blue), 2-sigma (orange-+blue) and 3-sigma
(green+orange+blue) regions, covering the 68%, 95% and 99.7% of the total central probability,
respectively. The dashed, vertical line also marks the 95% credible-level upper bound.

In addition, it is often useful to look at 2D posteriors, marginalized over all the parameters
except for two of them. In this case, one can also define credible regions, which, in analogy with the
1D case, are usually plotted at 68% and 95% credible levels. Some authors refer to them as 1-sigma
and 2-sigma regions, which is somewhat confusing: in 2D, a multivariate Gaussian with covariance
matrix ol, with T the identity matrix, encloses 39% probability inside the radius |Z| = o and 0.86%
inside |Z| = 20. Thus, it is preferable to simply call them 68% and 95% CL regions, to avoid the
ambiguity. See the CORNER Python package documentation [141] for a more detailed discussion.

These credible level regions are marked by a closed curve enclosing, called contour. Some
examples of 2D contours, which are usually plotted together with the marginalized 1D posteriors
in a joint figure called corner plot, can be seen in Figs. 2.4, 2.6, 3.1 and D.1-D.3.

In Section 2.5 and Chapter 10, we will use these concepts to set upper bounds to some SGWB-
related quantities. Before that, let us see one more useful post-processing technique for MCMC.

61



Chapter 2. Stochastic gravitational wave backgrounds

Evidence estimate for Gaussian posteriors

Even if both MCMC and nested sampling are used for parameter estimation, there are some dif-
ferences between them that make either one or the other better suited for each problem. Nested
sampling has the advantage that it computes the evidence of the model, while MCMC, in general,
does not.

When the algorithm only provides the posterior samples, and does not give any estimate of the
model evidence, it can be difficult to compute it in a precise way. As defined in Eq. (2.68), the
evidence computation involves an integral in an n-dimensional space, which can be computationally
expensive to estimate accurately.

Nevertheless, under some hypotheses, it is possible to obtain analytic estimates. This is the
case if the posterior distribution approximately follows a multivariate Gaussian distribution, which
is usually the case for large datasets due to the Central Limit Theorem [113]. In particular, this
assumption holds in our article [4], explained in detail in Chapter 10. If this is the case, we only
need the posterior covariance matrix > and the maximum likelihood £ to compute the evidence,
using the approach described in [142].

With the notations introduced at the beginning of the section, the multivariate Gaussian pos-
terior hypothesis implies that

L(6)7(6) ~ C exp (;(5 — BN - ﬁ)) ( (2.76)

where p is the mean of the distribution, 3 its covariance matrix and C' a certain unknown constant.
We should keep in mind that this is not a proper distribution because it is not normalized (the
normalization comes from dividing by the evidence in Eq. (2.67)), so C is not a normalization
constant. In order to compute it, we realize that L(f)7 (@) = C. Here, we introduce the additional
assumption that the priors are uniform, so that 7r(§) = 1/V for any g € V, where V is the prior
volume. Therefore,

L(O)m(0) ~ @ exp (-é(@l A S (- ﬁ)) < (2.77)

As a result, the evidence is just its integral,

Z= /(ﬁ(*)w(é')de“z @ /‘(exp <<;(é' AR S (- ﬁ)) <§. (2.78)

In order to make this integral simpler, we now make a third assumption, which that the distribution
of our posteriors has a low value at the edge of the prior volume. This way, the probability outside
V can be approximated by zero, so that the previous integral can be computed in the full R™, with
n the dimension of the parameter space. Knowing that the result of this integral is

/ _exp ({;(9" SR o (- ﬁ)) <9" = (2m)"/? det (%) /2, (2.79)

we finally have

Z= /ﬂ( L(0)w(9)db ~ £() (2m)"/2 det($) /2. (2.80)
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Finally, if we compare two different models M; and M, with equal prior probabilities, their
Bayes factor in Eq. (2.70) will be given by

L1 (i) Vo _ det(21)\'/?
BM1 ~ 2 or (n1—n2)/2 ) 2.81
Ma ,62(/12) Vl( ) det(Eg) ( )

2.3.4 Parameter estimation of isotropic SGWB
Applying the theory from Sec. 2.2, we can now compare the data to a given model for Qg (f). For

this purpose, we take a Gaussian likelihood and use the estimators Qé{v(f) in Eq. (2.61) with its
variance 67,(f) in Eq. (2.62), so that

A 2
o=y % ( Qgf) - Aunwf)) | (282)

o
77 1J

where the factor A;; accounts for the calibration uncertainty in each baseline. Following the ap-
proach in [143], this factor is modeled as a Gaussian distribution with mean 1 and variance €7,
and then marginalized analytically before running the parameter estimation [110]. If we denote the
calibration uncertainty of each detector I by €, then the variance for A\;; can be estimated as the
quadratic sum, 6% J= 6% + 63. See [5, 28, , | for the exact numbers used in each work.

Additionally, the frequency range we consider for parameter estimation is usually from 20 to
1726 Hz. Outside this range, the detectors still take data, but their sensitivity starts being too low
to be useful for any analysis.

2.4 Constraints from LVK

The LVK collaboration analyzes the data from their detectors (LIGO, Virgo, KAGRA) and produces
estimates and upper bounds for the stochastic gravitational wave background after every observing
run. These works which look for the SGWB are usually called searches. We are currently immersed
in the fourth observing run of GW detectors (O4), so the most results are those from O3 [28],
produced in 2021. During this third observing run, the KAGRA detector sensitivity was not
enough to produce these estimates, similar to what happened with Virgo for O1 [139] and 02 [122].
Therefore, there are three baselines used for the analysis: HL, HV and HV, where H stands for
LIGO Hanford, L for LIGO Livingstone and V for Virgo.

The estimates provided in [28] can be classified in two types: broadband estimates like the ones
defined in Egs. (2.65) and (2.66) and others derived from the posteriors of a Bayesian analysis using
the formalism of Sec. 2.3. In any of the cases, when a power-law Qg (f) (Eq. (2.63)) is considered,
they work with three scenarios:

e o = 0. This corresponds to a flat Qg (f) spectrum, which arises for cosmic strings [78, 79].
R? inflation [76] or slow-roll inflation [114], as can be seen in Fig. 2.1.

e o = 2/3. This corresponds to the frequency dependence of the inspiral of CBCs, as can be
seen in Eq. (1.196) and is computed more in detail in Chapter 5.
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0./10°°
o 03
01 02 i v v 01+02+03
0 44 4+ 59 224+ 22 —214+8.2 | 2294+ 98 —134 £ 63 1.1+75
2/3 | 35+44 20+ 16 —-3.44+6.1 | 145460 —82 £+ 40 —0.24+5.6
3 3.7+6.5 | 3.5+28 | —1.3+0.9 91+41 | —494+3.1 —0.6 0.8

Table 2.1: Broadband estimates {2, given by Eq. (2.65), for a power-law gy, of exponent a and
reference frequency fres = 25 Hz. A separate estimate is provided for O1 [139], O2 [122] and O3 [28]
LVK data, in this last case separated by baseline, together with the joint O1+02+03 estimates.

e o = 3. This corresponds to a flat strain spectrum Sy (f), as seen in the relation between
Qg and Sy, (f) in Eq. (2.15). It approximately describes some astrophysical sources such as
supernovae [70, 71, 72, 73].

For each of these power-law indices, they obtain the broadband estimates as in Eq. (2.65) for
a reference frequency of fi.f = 25 Hz. They do this separately for each baseline, and also provide
a combined estimate with the three of them for O3 together with the HL baseline for O1 and O2,
which was the only one available in those observing runs. The results are summarized in Table 2.1,
together with the O1 and O2 results for reference. We can see how the combined estimates get
lower with each observing run.

In addition, the LVK collaboration uses the narrowband estimates in Eqgs. (2.61) and (2.62)
to do parameter estimation with the likelihood in Eq. (2.82). For this purpose, they consider a
power-law Qg (f) with the three fixed indices o = 0,2/3, 3 mentioned above, but also one with free
«. They do two runs for each case: in one of them, the prior for 2, is uniform, where the lower and
upper ends are large enough so the posterior does not have any support there. In the other case,
a log-uniform prior is taken (meaning a uniform prior in log (2, ), where the upper end satisfies the
same criterion as for the uniform case and the lower end is taken to be Q, = 10713, For the cases
of free a, a Gaussian prior is chosen for this exponent, with zero mean and standard deviation 3.5.

For each of these runs, upper bounds are provided in Table 2.2. Additionally, the corner plot
for the case of variable a and log-uniform prior for €2, is shown in Fig. 2.4. We can see how the
upper bounds progressively get reduced with each observing run.

In the article [28], there are also other models considered, but the goal of this section was just
to give a brief overview of the state of the art in LVK, so the power-law models are enough for this
purpose.

In addition to the formalism that has been explained here, the LVK collaboration does some data
quality checks and additional modifications to the data: high-pass filtering, glitch removing through
a technique called gating [145], removing time segments for which o estimates are too different from
its neighbours (delta-sigma cut [146]), etc. I will not cover them in this thesis, so one can refer
to [28, 110] for more details. They are also integrated in standard tools like PYGWB [147, 110]. In
the next subsection, we will see a similar parameter estimation work which we did in a recent article
using this Python package, where the model is more complicated than the power laws considered
here.

64



2.5. Constraints to non-Gaussianities from 03 data

QP (95%) /1079

Q Uniform prior || Log-uniform prior

01| 02|03 01|02 03
0 170 | 60 | 17 || 64 | 35 5.8

2/3 || 130 | 48 | 12 || 51 | 30 3.4
3 17 | 79 | 13| 6.7 |51 ] 0.39

Free || 250 | 110 | 27 || 55 | 34 6.6

Table 2.2: 95% credible-level upper bounds for the amplitude €, of a power-law Qg (f) of exponent
« and reference frequency frof = 25 Hz. A separate estimate is provided for uniform and log-uniform
priors and for the different datasets, consisting on O1 [139], O1+02 [122] and O1+02+03 [28] LVK
data. Three fixed-« cases are provided, as well as one with free a.

2.5 Constraints to non-Gaussianities from O3 data

In this section, I summarize the content of our article [5], in which we set constraints to a non-
Gaussian, scalar-induced gravitational wave background. My main contribution to this work was
the data analysis part, so this section will be focused on this aspect of the article.

2.5.1 Introduction

As we have seen at the beginning of this chapter, particularly in Fig. 2.1, there are a lot of sources,
both astrophysical and cosmological, which can generate a stochastic gravitational wave background
through different mechanisms. In particular, large curvature fluctuations generated during inflation
produce one of these contributions, at the second perturbative order. This is called the scalar-
induced gravitational wave (SIGW) background.

This is a very interesting source due to two reasons: first, it allows to test and characterize
existing inflation models through gravitational waves at LVK frequencies [91, 92, 93, 94, 95, 96, 97],
which correspond to much smaller scales than those probed by CMB observations. The second
reason is that it relates to the formation of primordial black holes (PBHs), a topic which will be
explained in more detail in Chapter 4. If these PBHs exist and constitute a relevant fraction of dark
matter, the primordial curvature perturbations must be large enough to produce them, causing a
strong contribution for the SIGW background. Thus, from the constraints of this contribution, one
can better characterize the PBH scenario, which is getting increasing attention by the scientific
community as more GW signals are detected.

Previous works have set constraints to this background from LVK O2 [96] and O3 [97] data.
However, these articles assumed a Gaussian distribution for the primordial curvature perturbations,
while other works argue that such a shape cannot be assumed, and the so-called non-Gaussianities
are important [148, , , , 81, 85]. We elaborate more on the topic of non-Gaussianities in
Subsec. 4.2.2. In our work [5], we set constraints to a non-Gaussian SIGW background, assuming
a simple Fyj, parametrization [152, , ].
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Figure 2.4: Corner plot for the parameter estimation run by LVK with a Gaussian prior for o and
log-uniform prior for Q,, denoted here by Q.. Figure taken from [28].

2.5.2 The model

The formalism to model a scalar-induced gravitational wave and, moreover, with non-Gaussianities,
is not very related to the topic of this thesis and, therefore, it is only explained in detailed in
App. A. What I will explain here are the strictly necessary elements to understand the data analysis
component of the article.

We denote by ¢ the primordial curvature perturbation in uniform energy density slices on super-
horizon scales, which is a standard quantity in inflation theory. Its Gaussian component will be

denoted by ;. Following references like [155, , 154], we study the simplest and well-studied type
of non-Gaussianity, which is local and quadratic,
(F) = G(@) + PG (@), (2.83)

where Fyr, is called non-linearity parameter. One of its key properties is its power spectrum, which,
for the Gaussian part, we denote by P, (k), so that

(Co(R)Co(R) = (2m)* 6% (K + k') Py (k). (2.84)
We consider a monochromatic power spectrum, which is expressed as

272

P,(k)= FAgé(ln k—Ink.,), (2.85)
where A, is its amplitude and k, is a scale parameter. This scale in k will determine another scale
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2.5. Constraints to non-Gaussianities from O3 data

in frequency through the relation

k k
J=5r=2 (1.67 % 1016 Mpc_l) (’Z' (2:86)

The frequency scale f, corresponding to by k, will determine the position of a peak in the Qg (f)
spectrum, as we can see in Fig. 2.5.

As we can see in App. A, our model for SIGW will be proportional to f? times seven terms with
different dependence on the A, and Fyi, parameters:

e The first contribution is the Gaussian part, which is proportional to A?y' We will denote this
contribution as A2Q(f/f.).

e The next three terms correspond to the leading-order non-Gaussian correction. They are
proportional to Fg A3, and we will denote the sum of these three terms as Fy A>Qne,1(f/ f+)-

e The final three terms are the next-order correction, proportional to F1<11LA3~ We will denote
their sum by Fyy AjQna.2(f/ f+)-

In order to have an intuition for the effect of the Fyy, parameter, we can have a look at Fig. 2.5,
where we plot the SIGW contribution to Qaw (f) for a fixed value of A,.

107%5
E — FNLIO.l
107 — Fu=10
; — FNL:30
10710; = [y =100
= —11
U -
S 10
107124
107134
1072 107! 10 10t

f1 1

Figure 2.5: Qaw/(/f) spectrum for different Fyy, values, with A, = 0.001.
Finally, we also consider the contribution from CBCs. The reason is that they are expected

to be the dominant contribution in LVK frequencies [28, 29], so ignoring it will provide biased
results. At the point we are now, with no detection of a SGWB, accounting for this effect may
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not be crucial, but it will become more relevant with subsequent observing runs, as data gets a
progressively stricter constraining power. Similar to other works [28, 97], we just model the inspiral
part with a power-law of exponent 2/3 and reference frequency fref = 25 Hz.

Therefore, our model can be expressed as

2/3
ng(f) = A?;Qg (f) F131LA§QNG,1 (f) Ff]LAéch;,Q ( f) + QcBe ( / ) . (2.87)
f* f* f* fref

Note that, while fief is degenerate with Qcpc and thus can be fixed without loss of generality, f.
is not degenerate with the other parameters, due to the more complicated frequency dependence of
Qg, Oneg,1 and Oneg,2. Therefore, it will also be a free parameter. As a result, our model has four
free parameters: Ay, fi, Fni and cpc, where we use k., for the parameter estimation instead of

[

2.5.3 Data analysis

We run a similar parameter estimation as in the previous section, using the likelihood in Eq. (2.82).

These runs are done through the PYGwB [147, 110] Python package, which relies on BILBY [124] for
parameter estimation, using data from the first three observing runs of LVK [139, , ]
To sample the parameter space, we use the DYNESTY [138] sampler, with the default dlogz =0.1

convergence criterion and a large number of live points (of order 100,000) to get smoother posteriors.
This dlogz parameter corresponds to the AlnZ for nested sampling explained in Subsec. 2.3.2.
Additionally, the priors for each parameter are indicated in Table 2.3.

Parameters Prior
Qs Log-uniform[10~1°, 1077]
A, Log-uniform[10~3-°, 107]
FnL Log-uniform[10~1, 107]
k./Mpc™ ' | Log-uniform[101° 1018]

Table 2.3: Prior distributions used for the parameter estimation.

First, we run the parameter estimation for the four free parameters with the priors in Tab. 2.3,
showing the posterior distributions in the corner plot of Fig. 2.6. We add two lines to the Fy, — A,
subplot: the orange one marks the asymptotic behavior of the 95% CL contour, where the third term
in Eq. (2.87), proportional to FNLAé, dominates. This line follows the equation Fni,A4 =~ 0.380.
The second, red line, roughly corresponds to the boundary where non-Gaussianities start to be
comparable to the Gaussian contribution. For this line, we assumed €2, and Qng,1 are similar in
magnitude, so that the first and second terms in Eq. (2.87) are comparable when A2 ~ Fg; A2,
or F%; A, ~ 1. Thus, the transition between Gaussian and non-Gaussian for the 95% CL contour
occurs at its intersection with the red line, which is at Fny, ~ 3.55. We quote this transition value
as one of our results, but one should keep in mind that this number not only depends on the data,
but it is also prior and credible-level dependent.

From the A, — k. subplot, we can also derive that, at 95% credible level, A, < 0.015 for the
best-constrained scale, k, ~ 2.04 x 10'® Mpc. However, this constraint marginalizes over Fyr,
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Figure 2.6: Posterior distributions for the combined SIGW and CBC search, where the blue and
light blue contours correspond to the 68 and 95% CL regions, respectively. For reference, we plot
the red line corresponding to Fig; A, = 1, which is the boundary where the non-Gaussian terms
start to dominate over the Gaussian contribution in the Qg (f) power spectrum (Eq. (2.87)). The
orange line corresponds to the asymptotic behavior at large Fii, values, following Fir, A4 = 0.380.
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and A,, which mixes all contributions of different Fyp, and it is thus complicated to understand
its effect. For this purpose, we did some 3-parameter runs with fixed Fyp,, while the rest of the
parameters keep their priors from Table 2.3. From their posteriors, we take the 95% CL curves in
the Ay — k. plane and show all of them together in Fig. 2.7. We can see that the constraints on A,
become tighter as Fyp, increases, given that a larger Fyp, enhances the overall SGWB amplitude.
It is also worth noting that the shape of these curves varies with Fyp,, but in any case, similar k,
produce a minimum in all of them, corresponding to the best constrained frequencies in LVK data.
Additionally, our curve for Fyr, = 0 should recover the Gaussian case studied in [97], which we find
to be the case, except for some small differences due to our choice of priors and narrower primordial
power spectrum Py (k) (2.85). Hence, both of our works are consistent.

10! — =0
] =1
] N, =10
100,E m— [y, = 100
] ——
4 L — e
10_2*§ /
10_37 NS L T
1016 1017 1018
k./Mpc~!

Figure 2.7: Posterior 95% CL contours for Ay — k., obtained from the fixed Fyi, runs. The 95%
CL region corresponds to the area under these curves.

Finally, we also examined the effect of the scale k. on the Fii, — A4 constraints. Similarly to
the previous case, we now fixed the scale parameter k, and did 3-parameter runs with the rest of
the priors corresponding to the ones in Table 2.3. In Fig. 2.8, we show the 95% CL contours for
Fxi — A, for k. = 10%, 10165 and 107 Mpc. One of the main changes with respect to the 4-
parameter case is that the asymptotic behavior for large Fii, keeps the same trend Fnp, A4 =const.,
but the constant gets tighter. This is expected, since a parameter estimation run with less free
parameters is usually more constraining. There is also small variability between different scales
and, in particular, the constraint at k., = 10'6-> Mpc is slightly stronger, given that it corresponds
to the case where the peak in Q4 (f) is located at the most sensitive range of the LVK detectors:

0.115  (k./Mpc™! = 10'9)
FnpAg = (0100 (ko /Mpc™' = 10165) (2.88)
112 (k./Mpe™! = 10'7).
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20 log k./Mpc™! = 16
g log k./Mpc™! = 16.5
E log k,/Mpc™t = 17
T Fydg =1
2 1.04 };'NLAg:().llf)
& ] T~<
9 4
0 ]
ke ]
0y
-1.0

Figure 2.8: Posterior 95% CL contours for A, — Fr, plane (solid lines), obtained from the fixed £,
runs. The dashed lines represent the asymptotic behavior for large non-Gaussianity (orange) and
the red one marks the boundary where non-Gaussian term start to dominate over the Gaussian
contribution in Qg (f), similar to the lines in Fig. 2.6. Dotted lines correspond to analytically
derived relations between Fii, and A, which show the limit at which PBHs make up 100% of the
dark matter, showing small differences between different values of k..

We can see another, more obvious difference in Fig. 2.8 for low values of Fxi, and high Ay, in
which the contour for A, is almost independent of Fyp, for k, = 107165 and 10717 Mpc, while
there is a clear correlation with Fyp, for k, = 10716 Mpc. The reason is that, below the dashed,
red line, the non-Gaussian contributions are subdominant with respect to the Gaussian one. Also,
as we can see in Fig. 2.5, the non-Gaussian contributions are more relevant for f > f,. In this case,
given the subdominance of the non-Gaussian contributions, only k., = 10716 Mpc manages to make
some difference by generating a relevant non-Gaussian contributions on LVK sensitive frequencies,
which explains the difference of behavior with the other scales. Finally, the dotted lines represent
the limit at which PBHs would constitute all the dark matter (fpgy = 1, see Chapter 4). They
were computed using peak theory [159, | to estimate PBH abundance, while for generalizations
for non-Gaussianity, we refer to [161, ]. We can see that, for now, the constraints coming from
gravitational waves are less stringent than those imposed by overproduction of PBHs.

2.5.4 Conclusions

In this work, we derived constraints for non-Gaussian primordial curvature perturbations using the
most recent gravitational-wave data from LVK (01-03). This was done via the SIGW induced by
second-order cosmological perturbations, which constitutes a unique probe for inflation at much
smaller scales than those constrained by CMB measurements. Our model takes into account both
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this SIGW contribution and the standard background coming from CBC inspirals.

From our 4-parameter run shown in Fig. 2.6, we derived an upper bound A, < 0.015 for
k, = 2.04 x 10'6 Mpc at 95% credible level. In addition, we observed that the influence of non-
Gaussianities on Qgw(f) becomes non-negligible when Fyr, ~ 3.55. Given that marginalized con-
straints inevitably depend on the range of priors, we have also run similar analyses with either the
Fx1, parameter or the peak scale k, fixed (Figs. 2.7 and 2.8). Although the current constraints
are weaker than those imposed by overproduction of PBHs, Fig. 2.8 shows that, by refining these
constraints with new measurements, gravitational waves will eventually be able to place meaningful
constraints on the PBH production. In particular, it is expected that much stronger constraints
are imposed by third-generation GW detectors such as the Einstein Telescope [17] and Cosmic
Explorer [18].

Finally, we have assumed a quadratic, local non-Gaussianity, which represents the simplest
parametrization. However, it is known that non-Gaussian tails can vary significantly depending
on the mechanisms which generate these large curvature perturbations [35, 81, , , , ,

, , , , ]. One of the main theoretical challenges is developing a computing method
for the SIGW spectrum which is able to handle arbitrary shapes of non-Gaussianity. Once such a
robust framework is developed, we will be able to provide more valuable observational constraints
for primordial curvature perturbations. This task is becoming increasingly important due to the
anticipated increase in observational opportunities with gravitational waves.
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SGWDB anisotropies

In the previous chapter, we have worked under three assumptions for the SGWB: that it is station-
ary, unpolarized and isotropic. In the absence of a detection, the assumption of isotropy is the most
reasonable approach: similar to the CMB, we expect that this assumption is satisfied to first order.
However, we also know from the CMB that anisotropies carry a tremendous amount of information
which is inaccessible via the isotropic component. Hence, once we detect the isotropic component
of the SGWB, the next goal will be to characterize its anisotropies.

Simultaneous to the isotropic searches, there have also been directional searches looking for
these anisotropies, going as far back as to, at least, the analysis of the fifth science run (S5) of
LIGO [170] in 2011, while the most recent results are those from O3 [171]. On the other hand,
isotropic searches have been performed from LIGO’s first science run (S1), with the first analysis
being released in 2003 [172].

In this chapter, we will study the formalism for an anisotropic SGWB, based mainly on [111, 112],
in Sec. 3.1. In Sec. 3.2, we will see a data analysis work on the SGWB anisotropies [3], to which I
contributed mainly in the code optimization and model selection analysis.

3.1 Formalism for anisotropic SGWB

In Section 2.1, we saw the formalism for an isotropic SGWB. We will follow a similar approach,
changing and introducing new notation where necessary. For this purpose, we start from the two-
point estimator Eq. (2.3), for which we defined an angle-independent function called PSD, Sp,(f).
Now, we aim to follow a similar procedure but introducing an angular dependence, so we define a
function P(f,7) such that

- s . 1 L .

(ha(fsi)ha (f', 7)) = 20(F = f1)0% (7, 7)0 4 P(f,7). (3.1)
Besides the introduction of an angular dependence, note the differences with respect to Eq. (2.3):
the normalization factor 47 for the solid angle integration is missing, and the 1/2 factor has been

replaced by 1/4. This is to match the notation of [L11], which will be the main reference we will
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follow for this chapter, as well as our article [3]. Tt is also common to denote the angular dependence
by € instead of 77, but we will stick to the latter to match our notation from previous sections.

We can then go forward in our isotropic formalism in Sec. 2.1 by substituting Sy, (f) — 27P(f, 77),
as long as an integration over the solid angle has not been made. Otherwise, one can substitute
Sh(f) — (1/2) x fC2Q P(f,7). Then, from Eq. (2.15), we get

7T2 E
0unlf) = 3t [[e2P(7) (32)

Similar to what was done for Qg in Eq. (2.8) and Qgw(f) in Eq. (2.12), which have different
definitions, it is common practice to define, in another slight abuse of notation,

1 dp
Q )= ——8% .
so that, from Eq. (3.2), we have
o 2n? .
ng(ﬁ i) = @Jﬁp(ﬁ ). (3.4)

We must now go through the formalism for detected gravitational waves in Sec. 2.2. We first
decompose the signal as in Eq. (2.29) with one key difference: in the isotropic case, the Earth’s
rotation was irrelevant, given that one can always do the analysis in the Earth’s reference system
and, even if the background rotates, the isotropic component will remain invariant. Now, we want to
characterize the background anisotropies, so a rotation will make them change in time. Therefore,
we consider a static reference frame in which it is the Earth what rotates, and not the background,
so the detector’s position will be time-dependent. In practice, the analyses in the literature account
for the Earth rotation, which is the clearly dominant effect, but not for the Earth’s motion around
the Sun or the Solar System local motion. These subdominant effects can be modeled as time-
dependent anisotropies inducing a dipole, similar to the case of the CMB [173, ]. We will talk
more about this in Subsec. 3.2.3.

In any case, for now, we will suppose that the background is time-independent, but the detector’s
position x;(t) is not. Whenever it is necessary, we will assume that our detector is ground-based,
so that its position is periodic over time, with a period corresponding to an Earth’s sidereal day (a
standard day is measured with respect to the Sun, not the background). Thus, Eq. (2.29) can now
be replaced by

A=+,

hi(t) = Y /( af / QA (f,7)F{A (7, t)e 2 210/, (3.5)
We can now correlate the signals of different detectors and get the equivalent equation to Eq. (2.32),
1 . -
(s1(t)ss () =5 > /( df / PQF{ (71, ) F7 (71, t)P(f, i)e?™ T EO=Fs(0/e) - (3.6)
A=+,

If we now short-Fourier transform the left-hand side, similar to what was done in Sec. 2.2 but
without yet relating these quantities to Qguw(f), we get

T = = =\ 27 fi- (T (t)—& c
2551055, 1)) = }j( [ EQEM ORGP A0S0, (3
A=+,
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where, as usual, the factor 2 on the left-hand side comes from redefining the frequency integration
range from the real to the positive numbers. Given that the right-hand side now depends on time,
the expected value of the left-hand side must not be understood as a time average, but an average
over many equivalent times, where the concept of “equivalent” is given by the Earth rotation.
Therefore, two times are equivalent if their difference is an integer multiple of a sidereal day.

We now define the quantity
1 o -
Y, ft) =5 > (Ff‘(ﬁ, t)F7 (7, t) e /T @O =2 0)fe), (3.8)

2
A=+,

which has the same role as the overlap reduction function in Eq. (2.33): accounting for the relative
position of the two detectors and absorbing other factors which are not relevant in the analysis.
In the isotropic case, and substituting the detector positions by their static versions, this function
would be related to the ORF ~;(f) as

wilf) =1 [[E2G 5.0, (39)

Using Eq. (3.8) and going back to the definition of the cross-spectral density Cy;(f,t), we can
rewrite Eq. (3.7) as

(Crs(f,0)) = /(dsz 1, £ 0YP (£ 7). (3.10)

In general, it is assumed that the angular and frequency dependences can be factorized,
P(f,7) =PR)H(f), (3.11)

where H(f) is normalized so that, for a reference frequency fier, H(frer) = 1. In particular, this
means that, when considering a power-law model, there is no global amplitude in H(f),

H(f) = (f/fret)* ™, (3.12)

where the exponent is usually set to a — 3 so that, from Eq. (3.4), Qgw(f, ) is proportional to f¢.

This factorization is standard in the literature and does not imply much loss of generality for
small enough frequency bands [111, ]. In any case, a similar formalism would apply if we
considered a coupled dependence of the frequency and sky distribution, although some notations
and simplifications would have to be modified. For simplicity and in order to follow the most
standard approach, we will keep this assumption during this chapter. Thus, Eq. (3.10) can be
rewritten as

(Cra(f.0) = H(f) /(dmmm, JLA)P(). (313)
3.1.1 Basis decomposition
We now decompose the angular dependence in some basis, starting by the angular dependence of

Qgw (f, 1), encoded in P(7). For this purpose, we need an orthonormal basis for the sphere e, (i),
so that it should satisfy the property

/(dQQ e (M)ey (1) = by (3.14)
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Then, we can decompose P(7) as
P<ﬁ) = Pueu(ﬁ)a (3.15)
where, in this chapter, we also sum over repeated Greek indices, since they are related to an

arbitrary spherical base, not to spacetime tensors in GR. Using the basis orthonormality property
in Eq. (3.14), the coefficients can be obtained from P(7) as

P, = /(m P(it)e;, (7). (3.16)

The two most standard basis choices are:

e A pixel basis, so that the index p is the pixel position. The decomposition in Eq. (3.15) can
then be expressed as

P(it) = Prd (i1, ). (3.17)

This is the preferred choice to look for gravitational-wave point sources, in what is called
radiometer analysis [175, , |

e A spherical harmonics basis, so that the index u divides into the two multipole indices [, m.
If we denote the spherical harmonics by Yi,, (), the decomposition in Eq. (3.15) can be
expressed as

P (i) = Pim Yim (1), (3.18)

where we consider the dipole direction of this basis to be aligned with the Earth’s rotation axis.
This is the preferred choice to look for a diffuse background, dominated by low multipoles.

In this chapter, we will focus on the spherical harmonics basis. Since they will be extensively
used in Chapters 8, 9 and 10, there is a detailed introduction to them in Sec. 8.7. For this chapter,
we do not need to make use of any property aside from the orthonormality, so it is not necessary
to introduce them in detail at this point.

If we decompose P(77) as in Eq. (3.15), we should express 77 (7, f, t) in a similar basis. For this
purpose, we decompose it as

Y (7, £, 1) = yrau(f, e, (7), (3.19)
where the coeflicients can be obtained as
auf8) = (90000, Fot)en (7). (3.20)

Note that these definitions differ from Egs. (3.15) and (3.16) by a complex conjugation, following
the notation in [178, , 3]. The reason to have opposite definitions becomes obvious when we
substitute both 7 (7, f,t) given by Eq. (3.19) and P(#7) given by Eq. (3.15) into Eq. (3.13):

(Crs(f,1))

H(f) /(dn (Vs (£ )R () (P (i)

Dviaplf )P /(dme:(ﬁ)@(ﬁ)

(f)’VIJ»#(f’ t)Puépu
(f)’YIJ,u(f7 t)P/La (321)

|
=

Il
T
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so that the basis will not appear in the subsequent analysis.

The spherical harmonics basis has several advantages with respect to the pixel basis. In partic-
ular, for an isotropic background, using that Yoo = 1/v/47, Eq. (3.2) for Qgy(f) in terms of P(f, ),
Eq. (3.11) for the factorization of P(f,7) in terms of H(f) and P (i), and the spherical harmonics
decomposition of P(7) in Eq. (3.15) imply

7T2 —
Qew (f) = ;Hgf?’H(f)\/Epom (3.22)

from which we can derive the isotropic component from the anisotropic analysis. In addition,
Eq. (3.9) for the relation of the ORF ~;;(f) with the anisotropic ~;;(f,7), together with its
decomposition in Eq. (3.19), implies

Y (f) = (3.23)

\/%WI.J,oo(fa t)

for any ¢. Furthermore, in the anisotropic case, the time dependence of v, (f,t) in the spherical
harmonics basis is especially simple. The spherical harmonics with multipole coefficient m show an
angular periodicity 27/m in ¢ so, in the context of a rotation ¢ = 2xt/T, they have a temporal
periodicity of T'/m. Therefore, we can write

t
= 2rim——————— .24
i F0) = 31200y (i day)( (3:24)

3.1.2 Anisotropic SGWB data analysis

In the isotropic analysis in Subsec. 2.2.2, we defined our likelihood from the ng( f,t) estimators in
Eq. (2.61) and its variance in Eq. (2.62). In the anisotropic analysis, instead of using this estimator,
the common practice is to use the cross-correlated spectra Cp;(f,t) and make use of the identity
in Eq. (3.21). Going through a similar procedure as the one in Subsec. 2.2.2, one can show that its

variance 18 [ ) ’ 9 Pr(f,t)P;(f,t)
- A (3.25)

Then, using Eq. (3.21), the equivalent likelihood to the one in Eq. (2.82), is

0= TAf|Cry(f,t) = H(f)v15,u(f, 1) Pul?
mt= ZJZ; B (F DR .0) ’ (3:26)

Expanding the square of this equation, we get
TAf|C )2
O L — Z Z fICr(f, 1)

LIRS DL | 9Re[P* X, ] — P*T,, Py, 3.97
R, PIf, Pth) [,u, N] pne M ( )

where we defined

ZZ(IJ}J f’ WCIJ(f7t)a (328)
1J tf
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A TAfH?(f)
L, = ) =715 (f, 1). 3.29
n ;;(U,M(f )PI(f,t)PJ(f,t)WJ’ (f,t) (3.29)

If H(f) is given by a power law with a fixed exponent, meaning we do not consider it as a
free parameter, then the likelihood in Eq. (3.27) is quadratic in the coefficients. This makes it
straightforward to derive the maximum likelihood estimate: one can find the local extrema by
taking the partial derivatives with respect to P, and making them equal to zero. In this case, the
maximum likelihood estimates for the P, are given by

75# = (Fil)qul/- (330)

Due to this equation, X, is usually called “dirty” map, as it represents the sky distribution of
the gravitational wave background as seen through the beam matrix of the two detectors, I',,,.
Then, the estimator 75M in Eq. (3.30) is named “clean” map, showing the real sky distribution of the
gravitational waves. In addition, in the weak-signal approximation, the dirty map variance is given

by [111]
' (XuX7) = (X )(X7) =~ Ty, (3.31)

v

so that, for the clean map, we have

(PPl — (Pu)(P)) =~ (Fl)iy : (3.32)

Given that this is a matrix whose inverse is the covariance matrix of the parameters, I',,,, is called
Fisher information matriz.

Aside from requiring fixing the power-law exponent, the estimate 75u has another, more impor-
tant problem: the invertibility of I',,,. Similar to how we saw that the detector is blind to certain
directions in Subsec. 2.2.1, the Fisher matrix has some eigenvalues close to zero, which make it
close to singular and thus difficult to invert numerically. One possible solution is regularizing it by
manually imposing a minimum eigenvalue. A reasonable criterion used in the literature [111, |
is to keep the 2/3 largest eigenvalues, denoting the smallest one of them by Apmin, and then set the
smallest 1/3 eigenvalues to this Apin. This, however, introduces some bias in the results.

On the contrary, doing Bayesian inference over the likelihood defined in Eq. (3.27) does not
present this problem, while it also allows to have a variable exponent in the power law or more
generic models for H(f). In our article [3], explained in the next section, we follow this statistical
approach.

3.2 Bayesian PE for targeted anisotropic GWB

3.2.1 Introduction

From the introduction of Chapter 2, we know there are many theoretical models which predict
stochastic gravitational wave background contributions, spreading over a wide range of frequencies.
Some of the main features we can use to distinguish between them are their amplitude and spectral
shape, as studied previously. However, some of these sources also predict anisotropic angular
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distributions [179, , , , , , , , , , , |, so we can use these
signatures to further characterize these signals and differentiate them better.

Most articles on the SGWB focus on its isotropic component [191, , , 28, 2]. However,
there are also directional searches which look for anisotropies [170, , , , |, mostly by
computing the maximum likelihood estimates described in the previous sections. Finally, there
a few which do targeted (assuming an a priori model) searches [195, ], either by following a

Bayesian approach or other statistical methods, but they are not so numerous as the previous ones.

In our article [3], we introduced a parameter estimation formalism based on the Bayesian frame-
work. In addition to parameter estimation, we describe how to easily inject signals on the data
and do different tests over them. In this thesis, I will focus on the formalism and model selection
aspects of the article, the latter being the main part I contributed to.

3.2.2 The formalism

We start from the formalism explained in Sec. 3.1 with the choice of a spherical harmonics basis.
In our article, we work with P, coefficients normalized by Pyg, such that

P = —=. (3.33)

Therefore, we need an additional parameter which is able to change the global amplitude of the
background. We denote this parameter by €, so that the decomposition in Eq. (3.11) is now

Pim (f) = eH(f)Pun.- (3.34)

Therefore, for the isotropic case, Eq. (3.22) is now
272 3 =
Qew(f) = 3?]0 H(f)V4re. (3.35)
0

In order to explain the data analysis formalism, e will use € with this normalization. However, for

3
3H2 ref

density parameter Qg (fref), given that it is much more natural to interpret the results with this
normalization.

With these changes, the likelihood in Eq. (3.27) now takes the form

TAf|CIJ fv )|2 5% % D
2InL=-) Y BGOB 0 T 2eRe[P;X,] — PPy, (3.36)
1J t,f ’

the real data analysis, we normalize ¢ by 1/(2% ) so that it coincides with the isotropic energy

where X, and I, have the same definitions as in Egs. (3.28) and (3.29), which we copy here again
for better clarity in the next subsection:

- ;;(fJ,M(f, t)}mcu(f, t), (3.37)

_ . TAf H?(f)
Ly = ; %;(u,u(fa t)mwu,u(fv t). (3.38)
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Likelihood evaluation optimization

In general, the likelihood evaluation in Eq. (3.36) involves some products and multipole index
contractions followed by a sum in frequency, another one in time and finally, in baseline, with the
consequent computational cost. If we want our implementation to be generic, all these steps are
unavoidable, but in practice, there are many cases in which we can skip some of these steps.

First of all, the first term in Eq. (3.36) can be computed in advance, so that, in practice, it
behaves as a constant in each likelihood evaluation. In addition, if neither H(f) nor 75# depend
on time, the sum in this variable can be done beforehand. Moreover, whenever we have a known
anisotropy distribution for which we do not want to estimate any parameter, then the Py, appearing
in the second and third terms in Eq. (3.36) can be contracted with the corresponding 7, (f,t) in
advance.

Thus, in this last ideal case, in each likelihood evaluation and for each baseline, it is only nec-
essary to evaluate H(f), which may be parameter-dependent, multiply by precomputed quantities
and by the global amplitude e, integrate in frequency and sum the three contributions. Assum-
ing that the frequencies are the same for all the baselines, we can also do the sum in baselines
in advance. However, in general, the analyses in our article have only used one baseline, so this
additional modification would not have made any difference.

This precomputation formalism can also be extended for parameter-dependent Py, as long as
they can be decomposed as a sum of a few terms with parameter-dependent coefficients. This will
be the case for the dipole artifact caused by Doppler effect introduced in the next subsection.

Signal injection

If we want a signal to be added to our data, from Eq. (3.21), we know that the cross-spectra
Crs(f,t) have to be modified like

Cry(£.1) = Cry(f.t) + ™ H™ (F)yesu(f. )P, (3.39)
If we substitute the extra term in the likelihood in Eq. (3.36), we get three additional terms,

—26MiRe [Py XM — (™) (P THIPI 4 2ee™Re [ﬁ;rﬁ,}ﬁ;“i} : (3.40)

where X’ijlj and F;f,j follow the same definition as Eqs. (3.37) and (3.38), except that H ( f) is replaced
by its injected quantity H™(f) and Fff,,) is the coupled Fisher matrix, defined as

i) = Z Z C;J,u(f, t) TAT AT ) Yrau(f:1). (3.41)

17 tf Pr(f,t)Ps(f,t)

In the article [3], some statistical consistency tests are done, so one can refer there to see the
validity of this injection method. In the next subsection, instead, we will focus on the model
selection aspects of this work, which involve injecting a signal and trying to recover it with different
models.
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3.2.3 Model selection

Given some observational data, it may be challenging to correctly derive its underlying model.
For instance, a broken power-law H(f) with similar exponents can easily be mistaken by a simple
power-law model, especially if the noise is relevant. In this section of the article, we use our Bayesian
formalism, particularly the Bayes factor explained in Sec. 2.3, to quantitatively compare between
several models for a given injected signal.

In order to do these tests, we first took the noise from the CSD in the LIGO detectors with
the projected O4 sensitivity. Then, we injected a signal from a certain model M; following the
approach in the previous section. Subsequently, we run parameter estimation over the resulting
Crs(f,t) using the same model M; and, in a different run, we do the same for a different model
Ms, with the same injected signal from M;. Finally, we compute the Bayes factor between both
models, and repeat the procedure for different values of injected parameters. We then plot the
value of the Bayes factor over a 2-dimensional parameter space by coloring each tile, with each
color representing a different value according to a color scale. This is what we will call a heatmap,
which is one of the best ways to visualize the distribution of the Bayes factor over the parameter
space.

Broken power-law versus power-law H(f) model

The first case we studied was under which conditions our pipeline was able to distinguish a broken

power-law (BPL) H(f) from a simple power law (PL). The simple power law is modeled as in
Eq. (3.12), while the broken power law is defined as

ot {(J5 1455

which must then be normalized so that Hppr,(fref) = 1. This model has four free parameters: the
two exponents a; and as, the middle frequency fy and the global amplitude e. We can see an
example posterior for this model in Fig. 3.1. In order to do this analysis, we injected a BPL model
with fixed a1 = 2/3 and fy = 100 Hz, thus exploring the injected (e, ) parameter space. For
€, we took a log-uniform prior distribution from 107'2 to 10° = 1, while for a1, as, a Gaussian
prior with zero mean and 3.5 standard deviation was chosen. Finally, for fy, we took a uniform
distribution between 20 and 500 Hz. For Pj,,, we took a model which follows the sky distribution
of the Galactic plane, with maximum [ of 7.

In Fig. 3.2, we show the heatmap produced from the Bayes factors, for different values of the
injected parameter space. We can see that higher values of € make it easier to identify the correct
model with significant evidence, where the transition occurs around ¢ ~ 10~7 — 1075 the correct
identification. Additionally, the Bayes factor tends to increase for higher values of as, corresponding
to a higher overall amplitude signal. Finally, we observe a gap in as = 2/3, which is due to it
coinciding with the fixed value of . In this case, both models become completely degenerated
and none of them are preferred, BEFL ~ 1.
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QEX Q“b \c} (,)‘1) %'b S th
logyg € Jo aq a2
Figure 3.1: Example posterior for an injected and recovered broken power-law model, with
In BEEL = 417. The recovery is consistent with the injection, indicated by the red markers and

lines.
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Figure 3.2: Heatmap showing the Bayes factor for the broken power-law versus power-law H(f)
recovery models, for different injected values of € and as with fo = 100 Hz and ay = 2/3.
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Galactic plane versus isotropic Py,

Similar to the previous subsection, we did a similar study by comparing different P, models, fixing

H(f) to a power law. We did not introduce any new free parameter in Py, thus exploring the
(e, ) parameter space.

We started by injecting a Galactic plane Pp,, with maximum [ = 7, just as in the previous
subsection. Then, we tried to recover the parameters with both this model and a purely isotropic
model, that is, Py, = 0 if [ # 0 or m # 0. We obtained the heatmap shown in Fig. 3.3, which
indicates that the Galactic plane model is correctly recovered at around € = 107% in the most
conservative case, similar to the previous case. This threshold decreases as « increases, given that
it enhances the signal for high frequencies. For most of the explored parameter space, the pipeline is
then able to detect the signature of higher-order spatial modes and distinguish it from an isotropic
background.

100
80

_ 60 @g
40 =
20
0

logyg €

Figure 3.3: Heatmap showing the Bayes factor for the Galactic plane versus isotropic Py, recovery
models, for different injected values of € and « and an injected Galactic plane P, model.

Dipole artifact versus isotropic P,

As it is well-known from the CMB, the SGWB is expected to show a dipole anisotropy induced by
the Doppler shift produced by the observer’s motion with respect to the background rest frame.

Based on the CMB literature [197, |, we derived the expression for this anisotropy model in the
SGWRB. The derivation is included in App. B. This subsection was originally part of our preprint
corresponding to the article [3], but was removed before publication in order to release a second

article focused on dipole artifacts, accounting also for the time dependence, as it is done in [195].
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As a toy model in our article, we consider that the values for the observer’s speed and direction
are the ones measured by Planck in 2018 [173], that is, v = 369.82+0.11 km/s, | = 264.021 +0.011
deg, b = 48.253 + 0.005 deg. An example sky map of the dipole artifact produced by these values
is shown in Fig. 3.4.

OO

—45°

Figure 3.4: Sky map of the dipole artifact for « = 2/3 and Planck values for the relative speed and
direction, plotted in a Mollweide projection. The color map represents an arbitrary scale.

However, this model is not physically realistic for several reasons. First, the velocity derived by
Planck corresponds to the relative motion of the Solar system with respect to the CMB rest frame
(solar dipole), while we should also account for the Earth’s orbital motion around the Sun (orbital
dipole). However, the orbital dipole is time-dependent, so it is more difficult to incorporate to our
formalism (see [195] for a more detailed analysis) and it is left for future work. Furthermore, the
main dipole anisotropy for the SGWB may not come from this dipole artifact: the main contri-
bution to the SGWB is expected to come from unresolved CBCs, so the effect of their anisotropic
distribution in the sky might be dominant over the Doppler shift correction.

In any case, we injected this signal with a maximum [ = 2 and recover with both this model
and, again, an isotropic model. The recovery with the dipole artifact model assumes fixed Planck
values, instead of trying to fit them, so the only free parameters are ¢ and «. Hence, we explore
this parameter space, obtaining Fig. 3.5.

In Fig. 3.5, we can see that, for a < 4, the threshold at which both models are distinguished is
higher than in previous cases, being around e ~ 10~4. This is consistent with the dipole anisotropy
being weaker than the isotropic component by a factor 103, as we can see in the expressions of
App. B for B = v/c ~ O(1073). Additionally, we observe a gap in a = 4, which corresponds to
the value for which the dipole anisotropy vanishes due to the Lorentz invariance of Qg /f*. This
is further discussed in App. B.

3.2.4 Conclusions

In the summarized article [3], we developed a parameter estimation formalism for a targeted
anisotropic stochastic gravitational wave background. Using Bayesian inference, the algorithm

84



3.2.  Bayesian PE for targeted anisotropic GWB

100

80

60 gg
3 Re)

40 S

20

0

logyg €

Figure 3.5: Heatmap showing the Bayes factor for the dipole artifact P;,, model versus the isotropic
one.

provides the posterior distribution for a given model of anisotropies, which generalizes the work
done for isotropic searches. Furthermore, we developed signal injection tools which enhance the
capabilities of our pipeline.

We also illustrated the capabilities of the formalism for model selection, with the difference
between models being in either H(f) or Py,,. We explored the parameter region where our algorithm
can distinguish two different models, obtaining a structure consistent with our expectations. We
also computed the general equations for the dipole artifact caused by Doppler shift, detailed in
App. B, and used them for model selection assuming only a solar dipole, thus neglecting the orbital
dipole contribution, which we leave for future work.

Moreover, the article also does some other studies: statistically checking the injection formalism,
optimizing the maximum [ which is needed to correctly recover given Pj,,, models, running a search
for millisecond pulsars and using simulated data to address the prospects with future detectors.
These topics have been left out of this thesis and we refer to our article [3] for further details.

We conclude this section by remarking that, in the absence of a detection of a SGWB in the
LVK frequency band, current efforts in the GW community are focused on the isotropic analysis.
However, as sensitivity from the detectors increases and we add KAGRA, LIGO-India and next-
generation detectors such as Einstein Telescope and Cosmic Explorer, these works on the SGWB
anisotropies will become increasingly important.

With this, we finish the topic of SGWB anisotropies. In the next chapters, we will delve into
the topic of primordial black holes (Chapter 4) and compute the SGWB they produce (Chapter 5)
from their hyperbolic encounters, whose formalism was detailed in Sec. 1.4.
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Primordial black holes

4.1 Introduction

Standard, astrophysical black holes (ABH) are generated as remnants of core-collapse supernovae,
which are produced from massive stars during their last evolutionary stages. On the other hand,
primordial black holes are theorized to have formed in the early Universe from the collapse of
overdense regions, thus having a very different origin to ABHs, not involving a star precursor. This
idea was introduced by Yakov Zel’dovich and Igor Novikov [24] in 1967 and was further pursued by
Stephen Hawking [25] and his student Bernard Carr [26, 27] during the 1970s. During this decade,
they were already proposed as candidates for dark matter [25, 26, |, either accounting for all or
at least part of it, and have not yet been confirmed or ruled out to this day.

In this chapter, these astronomical objects will be introduced, explaining the mechanisms that
can generate them and how we can compute the overdensity thresholds they need to be produced.
Furthermore, different clustering and population scenarios will be presented, as well as the merger
rates we can expect from them. In particular, these rates will be used later in Chapter 5 to explain
one of our works [2], in which we estimate the SGWB produced by PBHs within both CBCs and
hyperbolic encounters.

For Sections 4.2 and 4.4, one of the main references will be the recent review by the LISA
Cosmology Working group [200], which constitutes a very complete introduction to PBHs and their
GW signatures. For Section 4.3, we will instead focus on own work based on Ilia Musco’s [201, ,

| and Albert Escriva’s [204, 205].

4.2 PBH generation mechanisms

Primordial black holes are generated from the collapse of overdensities § above a certain critical
threshold d.. If we denote the spectrum of overdensities by P(d), then the fraction of PBHs at
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formation is given by
8 = / P(8)do. (4.1)

Another useful parameter to characterize the abundance of PBHs is fpgy, defined as the fraction of
dark matter which is in the form of PBHs. Thus, in order to produce a relevant amount of PBHs,
it is then necessary to have a large probability to generate such overdense regions.

There are various mechanisms to produce these overdensities, the most standard of which is
enhancing the primordial curvature power spectrum during inflation. This can be achieved either
from single-field inflationary models [2006, , , , |, such as critical Higgs inflation [211,

|, or from multi-field inflationary models, such as hybrid inflation [213, , |. Another
possibility is to enhance just the tail of the spectrum distribution, leaving behind the Gaussianity
hypothesis and entering into non-Gaussianities [150, , |. Finally, other possible mechanisms
for PBH generation include phase transitions [218], scalar field instabilities [219] or the collapse of
cosmic strings [220].

In this section, we will review the single-field inflation scenario, which is one of the most accepted,
and briefly comment on non-Gaussianities and one of the scenarios in which they arise, which is
called quantum diffusion.

4.2.1 Single-field inflation

From the CMB temperature anisotropies measured by Planck, inflation models are very well con-
strained at large scales. However, small scales remain mostly unconstrained, so there is still a
wide variety of inflationary models compatible with observations. The behavior at small scales
is also of great physical importance, because sufficiently large overdensities could have induced a
gravitational collapse leading to the formation of primordial black holes.

A relevant production of PBHs requires a considerably large growth of the power spectrum on
small scales. Therefore, the simplest single-field slow-roll inflationary models do not produce them,
given that they predict a nearly scale-invariant primordial power spectrum. There are several
solutions to this problem, including a large positive running of the primordial curvature power
spectrum [208] or violation of the usual slow-roll conditions [209, , 95, |]. In these models,
the amount of produced PBHs depends on the model parameters, so generating the correct amount
of PBHs usually involves some degree of fine-tuning.

One of the most natural possibilities to produce PBHs is that the inflationary potential has an
inflection point, generating a plateau that slows down the inflaton. We will next see one of the
single-field inflation models that can produce one of these points.

Critical Higgs inflation
Critical Higgs inflation [211, | is one of the best physically-motivated single-field models of

inflation which the capability to produce a quasi-inflection point. The non-minimally coupled
Higgs action is given by

s [ataya| (M2 +£00) é— 3007 = 10)0 ( (12)
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where Mp) = 1/+/87(G is the Planck mass and, around the critical point ¢ = p,

A(9) = Ao + baIn®(¢/p), (4.3)
£(@) = &o + be In(o/p). (4.4)

It is now necessary to do some redefinitions, so that the new metric is

guy = (1 - M1;12§(¢)¢2)9HV7 (45)

and the new scalar field is

1+ My €(o)o?

<d¢\/(+MP1€ o [+ (7(¢>)+;¢>£'(¢))2). o

With these redefinitions, one can show [211, , | that the effective inflationary potential is

Vo(14 aln®z)zt

Viz) = 4.7
() (14 ¢(1+blnz)x2)2’ (47)
with
) Aopt bx be Eop?
z=-—, W= , a=—, b=—=, c¢c= . 4.8
W =y o T g M, (4.8)
This potential is approximately constant for large values of x,
a MPI b)\
Vix) = Vo(bc)2 = b2 < Mg, (4.9)
In addition, for some volume of the parameter space (see [211] for details), there is a critical point
with a secondary plateau, which induces a large peak in the primordial curvature power spectrum.
This can be seen in Fig. 4.1, which was generated with the parameters indicated in [211],
2
X =223x1077, & =17.55, (J) =0.102, by=12x10"% b =115, (4.10)
Pl
which correspond to
a=538, b=152, ¢=0.770. (4.11)

Within this framework, it is possible to get a large production of PBH while respecting CMB
constraints for the parameter ranges

1079 <X <8x1077, 05<6 <15, 005 < 2?p?<1.2,
8x1072<by S4x107% 158 <18 (4.12)
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Figure 4.1: Higgs potential V(z) defined in Eq. (4.9), with the parameters from Eq. (4.11), as
indicated in [211].

4.2.2 Non-Gaussianities

As we just discussed, one of the possibilities to generate PBHs is to enhance the primordial curvature
power spectrum. However, as we saw in the introduction, what determines the PBH formation and
abundance is the probability that primordial curvature perturbations exceed a certain threshold,
which is determined by their full PDF, computed from the primordial curvature spectrum. There-
fore, if this distribution is not Gaussian, the particular shape of its tail can also play an important
role for PBH generation.

These non-Gaussianities, which were previously mentioned in Sec. 2.5, can arise due to several
reasons, including quantum diffusion [150] and the presence of a stochastic spectator field [217]. We
will now briefly comment on the quantum diffusion scenario.

It is expected that small primordial curvature perturbations are well-described by an approx-
imately Gaussian distribution, close to the peak of their PDF. However, PBHs are formed from
large density perturbations, which involve the tail of the distribution and can thus be far from the
Gaussian regime. In order to characterize the different behaviors, the stochastic inflation formal-
ism divides the inflaton field into two components: quantum fluctuations at small scales and an
effectively classical field at large scales, where the coarse-graining scale separating both behaviors is
given by the Hubble horizon. In slow-roll, when the quantum fluctuations cross this horizon, they
become overdamped, leading to a squeezed state which can be treated as classical noise [216]. The
large-scale classical field is then constantly receiving this stochastic noise, which enters the field
equations of motion with an amplitude H/27. This is what is called quantum diffusion.

As a result of quantum diffusion, exponential tails arise in the primordial curvature spec-
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trum [150, |, which then significantly deviates from Gaussianity. The shape of such non-
Gaussianities is not properly captured by perturbative parametrizations involving the fyr, param-
eter, such as the one described in Sec. 2.5. We can see this in Fig. 4.2, obtained from [150], where
the power spectrum of overdensities is presented for a Gaussian primordial curvature spectrum, as
well as for two models involving exponential tails (labelled as “Elliptic2” and “Elliptic4”), effective
descriptions based on fxr, and a lognormal power spectrum. From this figure, it is clear that the
different descriptions may coincide around the peak, for which a Gaussian description suffices, but
drastically differ in their tails. This failure to capture the quantum diffusion effect with an effective
fn1 description is one of the reasons why, at the end of our conclusions in this Sec. 2.5, we argued
that a robust formalism to characterize non-Gaussianity is needed to set constraints from GWs in a
more systematic way. Thus, our work has to be understood under the limitations of our description.
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Figure 4.2: Normalized power spectrum of overdensity perturbations for a Gaussian primordial
curvature power spectrum, as well as other distributions from quantum diffusion models (Elliptic2
and Elliptic4), effective descriptions using fni, parameters and a lognormal power spectrum. The
free parameters of the distributions are set so that the behavior around the peak is similar. Figure
taken from [150], where we refer to for additional details on these shapes.

In the next section, we will study the formation mechanism of PBHs, deriving it from basic
General-Relativistic equations.

4.3 Collapse of density perturbations

The problem of when and how overdensities collapse to form black holes has been extensively studied
since the works by Carr in the 1970s [26, 27], in which he already computed the first threshold for
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PBH formation. Using arguments based on Jeans length, he obtained a critical overdensity threshold

0. so that
1
8o ~ 2~ 2, 4.13
CS 3 ( )
where ¢4 is the sound speed of the radiation fluid. There were some other articles at that time,
mainly by Novikov and Polnarev [223, , |. Decades later, Choptuik discovered critical collapse
in 1992 [226], to which a series of articles followed by different authors, mainly focused on numerical

simulations [227, 228, 229, 230].

In this section, we will see how to run these numerical simulations, mainly aiming to compute
the overdensity threshold ¢, for a Gaussian-profile overdensity in an ideal fluid, assuming spherical
symmetry. We will do so by referring to the recent works by Ilia Musco [230, , , , |
for the first subsections, and then refer to the articles by Albert Escriva [204, | for further
computational details, complementing them with additional equations and figures obtained from
own simulations. This will be the first approach to Numerical Relativity in this thesis, which will
be covered with more detail for binary black holes in Chapter 6. Finally, we will conclude with
some remarks on how these thresholds evolve with the thermal history of the Universe.

During this section, we will work in geometrized units, G = ¢ = 1, which is the most natural
unit system for numerical simulations.

4.3.1 The Misner-Sharp formalism

The main formalism to numerically approach the collapse of overdensities is the Misner-Sharp
formalism, introduced by Charles Misner and David Sharp in 1964 [233]. We will follow this
framework starting from the basic equations of GR. First, we take a spherically symmetric metric,

ds® = —A%(t,7)dt* + B*(t,r)dr® + R2(t,r)dQ>. (4.14)

On the matter side, we assume an ideal fluid with equation of state
P(t,r) = wp(t,r), (4.15)

with P(t,r) being the pressure fluid and p(¢,7) its density. Its energy-momentum tensor in a
comoving reference system u* = (A~1,0,0,0) is then

) S m o (p PP P
T“ :(P-Fp)uﬂ’u +Pg# :dlag <A2"B27-R27-R2811129>< (4.16)

Nevertheless, we will keep the equations generic without explicitly substituting Eq. (4.15), and then
particularize for this case.

From the metric in Eq. (4.14) and the energy-momentum tensor in Eq. (4.16), we can compute
the Einstein equations (1.46), which take the form

2BRR R? 2B'R'R 2R'"R R? 1
~XE @ B T m tm g SOk (417)
RA’” BR .
1 + 5 — R =0, (4.18)
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2A'R'R R*> 2ARR 2RR R”
- - — — 1=8rGPR? 4.1
152 1 + VE Ve + 2 8tGPR*, (4.19)
A" AB AR BR N AB B N AR R BFR LR
AB? AB3  AB?R A2BR A®*B A?B AR AR B3R B2R
corresponding to the (0,0), (0,1), (1,1) and (2,2) components of the Einstein equations, respectively.
In these expressions, we have defined

= 87GP, (4.20)

f f

£

=5 (4.21)

Egs. (4.17), (4.18), (4.19) and (4.20) constitute four equations of motion, where a fifth one is
obtained from the equation of state (4.15). These expressions completely determine the temporal
evolution, given that we have five variables A, B, R, P and p.

In addition, we can obtain two extra equations from the energy-momentum conservation V , T,
A P’
—+
A p+P

=0, (4.22)

B _R o
— 42—+ ——=0. 4.2
B+ R p+P 0 (4.23)

Note that these constraints come from the contracted Bianchi identities, and thus do not introduce
any independent information to the four Einstein equations. However, they are simpler and thus
more suitable to work with. Additionally, in numerical simulations, it is also useful to have at least
one constraint equation for consistency checks in the code.

In their current form, however, the previous equations are difficult to work with. The only
exception is Eq. (4.22), which will be the first equation we are interested in for our simulations. In
order to get more equations in a suitable form, the Misner-Sharp formalism introduces three new
variables, U, I' and M, adding up to a total of eight. We then want to have eight independent
equations, to which we will add another one, redundant with the other eight, which will serve as a
check for the accuracy in the computations.

The new variables U and I' are the temporal and spatial comoving derivatives of R,

U= %, (4.24)
/
= %, (4.25)

where U represents the velocity of the fluid and T' is a generalized Lorentz factor. These two
equations will be used for the simulations, which, together with Eq. (4.22) and the equation of
state (4.15), adds up to a total of four. With these definitions, Eq. (4.18) becomes

R = A'U + BT, (4.26)
which will be used later. The final variable we introduce is the mass,

M = §(1 +U? —T?). (4.27)
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This is the fifth equation we will use. Using now Eq. (4.26) to simplify Egs. (4.17) and (4.19), they
become
M’ = 4rGpR*R/, (4.28)

M = —4nGPR?R, (4.29)

respectively. Equation (4.28) is called the Hamiltonian constraint and it is the one used to check
numerical accuracy, as well as it shows why the variable M represents a mass. Eq. (4.29), on the
other hand, is the sixth equation we will use.

The seventh equation will come from Eq. (4.23), for which we can substitute R’ in Eq. (4.26)
and U’ from the radial derivative of Eq. (4.24). With this, we get a time evolution equation for p,

p=—Alp+P) (Z + 2%) . (4.30)

We get the eighth and final equation by taking the time derivative of U from Eq. (4.24), com-
paring it to Eq. (4.19) and using Eqgs. (4.22), (4.25) and (4.27):

LP M ) . (4.31)

J=-Al—" + = +47GP
U <B(p+P)+R2+ TGPR

In fact, we can use Eq. (4.25) in this equation to get rid of B, allowing us to work with seven
variables. The complete set of these equations is called the Misner-Sharp-Hernandez equations [233,

) ]'

Simplifications for an ideal fluid

If we use the equation of state given by Eq. (4.15), we can substitute all instances of P and work
with six variables instead of seven. In addition, Eq. (4.22) can be integrated analytically:

A w o () =
AVt The, =0 7 Aln= (mm)(’ 4:32)

where pp(t) = lim, o p(t,7), since lim, o, A(¢,r) =1 for all ¢.

To summarize and for clarity, we review and rewrite the simplified equations that will ultimately
be used. These can be divided in:

e Four equations explicitly providing time derivatives, which are Eqgs. (4.24), (4.29), (4.30) and
(4.31). These will be used for the time evolution in the code. Rewritten in a suitable way,

they are
. . U’ U
R = AU, p=—-Al+w)p <R’+2R)’ (4.33)
. . Iy M
M = —4nGwAU pR? A2 2y 4.34
TGwAUpR?, U (1+wa’+R2+ wGwa)( (4.34)
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e Two equations from which one can get A and T, which are Eqgs. (4.32) and (4.27), respectively.
These will be used inside each iteration of the time evolution method, in order to compute
the right-hand sides of the previous equations:

_ pu(1) & 2 2_%
A_<p(t,r)>(’ I'“"=1+U 7 (4.35)

e The Hamiltonian constraint equation, Eq. (4.28),

M’ = 4rGpR*R/. (4.36)

We now have the evolution equations for spherically-symmetrical collapse of overdensity pertur-
bations. We thus need the other main element of numerical simulations: the initial conditions.

4.3.2 Initial conditions

In order to obtain the initial conditions, we first consider a background metric similar to the FLRW
metric but with a curvature profile K (r),

ds? =~ + — IV g2 | 2yrg02 (437)
1—K(r)r? '

where a(t) is the scale factor without considering perturbations. We will also denote by py(t), Py(t)
the background density and pressure. In particular, note that none of these quantities is space-
dependent. The curvature profile we consider is Gaussian,

o ({2 ws

for a certain length scale L. There are generalizations for arbitrary shape profiles, for which one
can refer to [201]. In this article, the author proves that the threshold for gravitational collapse
strongly depends on the overdensity profile, so it is important to account for this aspect of the
initial conditions. Nevertheless, here we focus on Gaussian perturbations as a paradigmatic model.

The variables we work with are inter-related by the Einstein equations seen in the previous
subsection, so we need to generate valid initial conditions in order to guarantee a physical scenario
and a stable simulation. For this purpose, the usual approach is to perturb the metric and hydro-
dynamical variables so that the perturbed quantities satisfy the Einstein equations. The intensity
of this perturbation will be characterized by the e parameter, defined as the ratio between the
comoving Hubble length (aH)~! and the perturbation length scale 7y,

1 1

O = OHOm ~ (4.39)

One could think that a natural choice for the length scale 7y, is simply the L parameter in Eq. (4.38).
However, we will later see there are more suitable options. In order to generate the initial conditions,
we will work in the long-wavelength regime, where 71 > (aH)~! and thus € < 1.
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According to [236, , |, the order O(e) of the metric quantities corresponds to a decaying
mode that can be neglected. Therefore, following these references, we assume that the leading order
of the perturbation is O(e?), so the metric and hydrodynamical variables will be perturbed as

At,r) =1+ €A, p(t,r) = pp(t)(1 + €*p) (4.40)
B(t,r) = —]j((r)rz(l +¢2B), U(t,r) = HE)R(t)(1+ €0), (4.41)
R(t,r) = a(the(1 + 2R), Mt r) = %pb(t)R3(1 +0), (4.42)

where the perturbed variables will depend on the position, while €(¢) provides the time dependence.
We can obtain equations for these variables by perturbing the equations of motion, and they can
be solved analytically within this regime. The results have already been computed in [203, ], so
here we just reproduce them:

A= 2 SPKONE, p= S PROE, (443)
- 3w 1 , ! 2 e 1 2

B= 061w {?M(TgK(r)) ] Tk U=—g3. K0, (449
R=-f7 3w)1(5 +30) {%[r%(”]/ +E)} (’% M= %K(r)r’%' (4.45)

Compaction function, length scales and collapse thresholds

Before finishing this section and based on the previous equations, it is convenient to define a few
more quantities which will be useful to analyze the output. In particular, it is necessary to properly
define when we consider that a black hole has been formed. First, we define the averaged mass
excess in a certain volume as

Pb

S(t,r) = % /( AnR2 L= g, (4.46)

where V = %ﬂ'RB. In the long wavelength approximation, substituting the expressions for p in
Eqgs. (4.40), (4.43) and R in Eq. (4.42), (4.45), we have, at O(e?),

5(t,r) = % /( dr' (¢, r) = %EQ(t)K(T)T% (4.47)

From this equation, we can see that the curvature profile K (r) characterizes the initial shape of the
overdensity, so we will sometimes refer to it as the overdensity profile.

Now, we define the formation of a black hole by the condition R = 2(M — M), that is, when
the radius R coincides with the Schwarzschild radius of the excess mass M — Mj contained within
the spherical volume determined by R. In order to characterize this behavior, it is useful to define
the compaction function as
2[M(t,r) — My(t,7)]

R(t,r) '

Cltr) = (4.48)
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Therefore, if this function reaches 1 at any instant and radius, then a black hole has been formed
inside that radius. From the expressions for M and R in Eqgs. (4.42), we can write, at O(€?),

2

C(t,r) = 8§pb<t>a<t>2r2£<t)M<t,T> = H(t)*a(t)*r*e*(t)M (t,r) = M(t, )T%

(4.49)
where we have used the Friedmann equation for a flat Universe in the second step and the relation
between € and H in Eq. (4.39). Substituting the expression for M in Eq. (4.45), we get

3(1+w)

C(t,r) = 5130

K(r)r?. (4.50)

Aside from characterizing the black hole formation, this function naturally imposes a length scale
Tm, which is given by the position of its local maximum in the long-wavelength regime. Imposing
the condition C’(t,7,,) = 0 in Eq. (4.50), we get the expression

K(rm) + %”K'(rm) =0, (4.51)

This is arguably the most suitable length scale to work with, given that the interesting behavior
of our simulation will be around the compaction function peak, as we can later see in Fig. 4.3.
However, traditionally, another length scale choice ry has been used, which is imposed by the
condition p(t,rg) = 0 in the long-wavelenth regime. Using Eq. (4.43) for the expression of p, one
then has

K(ro) + %K’(ro) -0, (4.52)

For the Gaussian profile given by Eq. (4.38), these definitions imply

TTVL = \/ilj7 7‘0 = \/§L (4.53)

Finally, in order to define the thresholds for collapse, one needs a magnitude representing the
amplitude of the overdensity. The usual criterion is to use ¢ in Eq. (4.47) in either of these
scales without its temporal dependence given by e(t). The convention is then to set e(t) = 1,
which, to linear order, corresponds to the time of horizon crossing: from Eq. (4.39), we have
ri, = [a(tg)H (tg)]~!. Note that the different choices of length scale correspond to different times
of horizon crossing. Then, the collapse thresholds are usually computed in terms of § for either of
these scales at horizon crossing, that is,

5m = (S(tH’mﬂ“m), (50 = 6(tH,0,7“0), (454)

where the second choice has traditionally been more common. We denote the thresholds on these
quantities as . and dg , respectively. For a Gaussian perturbation (4.38), using Eq. (4.47) for 4,
we get the expressions

3(14+w)
5+ 3w

3(1 4+ w)

Om =
5+ 3w

Ae lr2 | 5y = Ae=3/%2, (4.55)
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4.3.3 Numerical simulations

With the initial conditions defined in the previous subsection, we are now ready to run our simu-
lations, for which we define a certain radial interval [0, 7max] in which our variables will be defined.
In order to guarantee stable simulations, we choose 7.« sufficiently large and, for each iteration,
we impose on this point the boundary conditions given by the asymptotic 7 — oo quantities, which
are taken from the analytical solution to the unperturbed FLRW metric.

For the time integration, we can take any robust method such as a fourth-order Runge-Kutta,
although higher-order methods provided by SCIPY [237] are more stable and easy to use. However,
contrary to standard differential equations, Eqgs. (4.33) and (4.34) are partial differential equations
(PDEs) which involve another layer of complexity: spatial derivatives, which are also related to
the grid we take in [0, "max]. Depending on the problem, one can use a uniform grid with a simple
differentiation algorithm such as finite differences, which locally approximate the grid functions by
small-order polynomials, for which the derivative can easily be computed. In this case, however,
differentiating using this technique on a uniform grid leads to numerical instabilities and the eventual
crash of the simulation.

In order to overcome this issue, one option is to use a special grid with adaptive mesh refinement
(AMR), which is the approach taken in [201], aside from a logarithmic grid. Adaptive mesh refine-
ment is a technique consisting on dynamically (at each iteration) increasing the grid resolution in
those regions of the space where more accuracy is needed, while keeping a lower resolution for less
demanding areas. In our case, for instance, at radii close to ryax, the variable derivatives will be
close to zero, so there is no need to have a high resolution. On the opposite side, closer to r = 0,
the variables are more subject to change and present higher derivatives, so more grid points will
be needed to accurately compute them, with the precise areas that demand them changing at each
iteration (see Fig. 4.3. This idea of adaptive mesh refinement will be further detailed in Chapter 6
for 3-dimensional and heavier simulations of binary black holes.

Nevertheless, adaptive mesh refinement is not the only solution to get stable gradients. In the
next subsection, we focus on another technique which was used in [204, 205]: the Chebyshev spectral
method.

Chebyshev spectral method

The Chebyshev spectral method belongs to one class of numerical algorithms called spectral, or
sometimes pseudo-spectral methods, which are based on decomposing grid fields using a set of basis
functions. One of the best references for these algorithms which is focused on Chebyshev spectral
methods is [238]. The mathematical reason why spectral methods are useful is their convergence
properties: on the one hand, a finite differences method of order n with a uniform grid of N points
introduces numerical errors of order O((1/N)™), where the order of the method is given by the
number of neighbour points taken into account to compute the derivatives. On the other hand,
spectral methods use global basis functions accounting for all the points in their domain, so the
information from all these points is accounted for when taking a derivative. Thus, spectral methods
have order N, so their error reduces as O((1/N)™), which implies an exponential reduction.

The Chebyshev spectral method is based on the Chebyshev polynomials of the first kind, defined
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in the domain [—1,1] as
T, (cos 0) = cos(nb) (4.56)

These polynomials naturally impose a set of grid points that one should follow. Given a total
number of points Nconep + 1, Chebyshev collocation points are

7k = cos <&) ( (457)

The advantage of these points is that the Chebyshev polynomials can then be easily evaluated,

T, (1) :cos< nim )( (4.58)

Cheb
This procedure is called Chebyshev collocation method.

The goal is to approximate a general function f(z), defined, for now, in the domain [—1, 1], by
a polynomial Py, (z) of order Ncpep which satisfies

Prnepon (xk) = f(l‘k) Vk=0,..., Ncheb- (4.59)

Using as a basis the Chebyshev polynomials, so that

N
PNeyen (z) = Z <nTn(x)7 (4.60)
n=0
the coefficients can be computed as [235]
N
2/cn f(@k)
an = Th(vk), 4.61
Ncheb kZ:o Ch (@) (4.61)

with ¢, =2 if k =0 or £k = Ncnep and ¢ = 1 otherwise.

The previous equations then imply that, given a function f : [-1,1] — R and a number of points
Ncheb + 1, we can approximate f by

N
PNChcb (1‘) = Z k(m)f(xk)v (462)
k=0
with
2k o= Th(ak)
Li(x) = n T,(x). 4.63
o) = e 3 ) (463)
Following [204], these functions can also be expressed as

(=DM - 2?) Ty (@)
kN2 (x — xp) '

Ly(z) = (4.64)

We will now see how differentiation and integration can both be done in a very efficient way
with this formalism.
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Differentiation

Given the expression (4.62), we can see that obtaining the derivatives of Py(x) is as easy as
differentiating the Ly (x) functions. Furthermore, we will only be interested in the derivatives on
the grid points. We then define the Chebyshev differentiation matriz as

From Eq. (4.62), we then have an expression for the derivatives at the grid points,
N
Py (z;) = Z <7ijPN(3fi)- (4.66)
§=0

This equation implies that, given an array of data, we can obtain its derivative with a simple
matrix multiplication, where the matrix is independent of the time or the grid function and can be
computed beforehand. This makes differentiation at each iteration very fast. Computed explicitly,
the matrix coefficients are [239]

¢ (_1)i+j

D;; = . i, 4.67
s
Dii = 7‘], { 7& 07 NCheb7 (468)
2(1 —a3)
2NE, ., + 1
Do = _DNChchChcb = %' (4'69)

In fact, only the non-diagonal terms are relevant, since the ones in the diagonal can be computed
by using the property
Ncheb

Di; = — Z D, (4.70)
j=0
J#i

which is actually numerically more stable. This property is immediately derived from Eq. (4.66)

by using that a polynomial Py(x;) =1 for all ¢ identically maps to a zero derivative.

Finally, we must conclude how to apply this theory, specific for functions defined in the [—1, 1]
interval, to a real interval [a, b]. In order to do this, if we have a certain function f : [a,b] = R, we
can map it to a new function defined in [—1, 1] with the transformation

Tr—a

b—a’

g:la,b) = [-1,1], z—glx)=-1+2 (4.71)
Then, we can compute the derivative using Eq. (4.66) and transform back to the original interval.
In practice, this means that the differentiation matrix has to be multiplied by the derivative of the
transformation function g, which is 2/(b — a). Therefore, the only difference is a slight redefinition
of the differentiation matrix.

Using this method and the formalism from previous subsections, we are now able to run nu-
merical simulations for isotropic gravitational collapse. In the next subsection, we will see some
interesting results from the point of view of primordial black holes.

100



4.3. Collapse of density perturbations

4.3.4 Numerical results

At the early Universe, the dominating fluid was radiation, which is characterized by an equation of
state with parameter w = 1/3. It is then natural to start applying this formalism to simulations in
a radiation fluid.

If we use a Gaussian profile for the initial overdensity, as given by Eq. (4.38), we have two
free parameters a priori: the amplitude A and length scale L. The length scale can preferably be
replaced by either r,, or ro, where we will use 7, for the discussion. We also observe that, from
a simulation with fixed 7, = 1, we can recover the behavior of any equivalent (same parameters)
simulation with a different r,,, just by doing a simple rescaling. In order to do it, we should realize
that any function f(r) we obtain from a simulation with r,,, = 1 is actually representing the quantity
f(r/rm). The time should also be rescaled, but it will in general be indicated as the ratio with the
initial time (which is non-zero so that H(t) is well-behaved).

Then, the only effective parameter is the amplitude A. As we saw in the Subsection 4.3.2, we
can replace this parameter with either §,, or dg. In any case, we can see two different qualitative
behaviors which are shown in Fig. 4.3: when the initial amplitude is large enough, the compaction
function tends to increase its peak and ends up producing a black hole when it reaches 1. On
the other hand, if the overdensity does not exceed a certain threshold, the compaction function
maximum eventually decays away and does not lead to the formation of a black hole.

1.04 tito=1 tito=1
t/to =52 0.4 t/to = 363
0.8 t/ity=176 t/to = 1380
: t/to = 407 t/to = 3052
t/to =703 034 t/to = 5380
0.6
Q Q
0.2
0.4
024 0.1
0.0 0.0
T T T T
0 4 6 7 0 4 6

Figure 4.3: Time evolution of the compaction function C(r) for an initial overdensity of d,, = 0.57,
leading to the formation of a black hole (left), and J,, = 0.45, for which the pertubation decays
away (right). In both cases, a radiation fluid is considered, w = 1/3.

We can then numerically compute the threshold in either 6,, or dg by looking for it between a
minimum and maximum value so that the maximum produces collapse and the minimum does not.
Then, we can run a simulation with their mean value and, if it produces collapse, it becomes the
new maximum and, otherwise it becomes the new minimum, in a simple bisection algorithm. For
a Gaussian overdensity profile in radiation, the thresholds are

S0~ 0.498, 6§, = 0.453, (4.72)
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matching existing literature [230, , , , , |. The mass of the final black hole depends
on the initial overdensity, but it obeys a very simple power law in the regime §,, — 6. < 1072, which
is called critical collapse [226]. In this case, the mass can be computed as
MpBH = ]C(5m - 50)7MH, (4.73)
with My = 1/(2H (tg)) [204, 240] the mass of the cosmological horizon at ¢y, and where IC and ~
are parameters whose values depend on the equation of state and overdensity profile. In the case
of a Gaussian perturbation in a radiation fluid, they are approximately [204, |
K=~6, ~~0.36. (4.74)

For details of how these parameters, as well as the threshold, change with different overdensity
profiles, see [201, |. Here, instead, we will focus on the changes with the equation of state
parameter w and comment on their consequences for PBH formation.

4.3.5 Threshold dependence of equation of state

By varying w, one can see how the threshold varies. In Fig. 4.4, which reproduces a figure in [232]
with own code based on [204], we notice how it starts at zero for w = 0 and increases as w grows.
This has a very clear physical interpretation: as w increases, by definition (4.15), the pressure also
does, which tends to prevent the collapse. Therefore, a more intense gravitational force produced
by a larger overdensity is required for the collapse to succeed.

0.6 1

0.1 1 50,(:
o

0.0 -4 . : :
0.0 0.2 0.4 0.6

Figure 4.4: Thresholds 6. and &g . for ,,, and o, respectively, as functions of the equation of state

parameter w.

From this behavior, we can derive some interesting consequences for primordial black holes
which have to do with the thermal history of the Universe.
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Thermal history of the Universe

At the early Universe, right after the inflation period, the Universe was constituted by a pure
radiation fluid (w = 1/3). Up to the present day, eventually, matter (w = 0) started to dominate
and, finally, dark energy (w = —1) became the main contribution to the energy density content of
the Universe. However, as we know from the thermal history of the Universe, even within radiation
domination, the equation of state parameter was not always close to 1/3. As the Universe cooled
down, the different particles progressively became non-relativistic, producing abrupt changes in
the relativistic degrees of freedom, as we can see in the left panel of Fig. 4.5, which should be
chronologically read from right to left. These changes caused the equation of state parameter to
drop from 1/3, as we can see in the right panel of the same figure.

100+

80+
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40
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T [MeV] T [MeV]

Figure 4.5: Relativistic degrees of freedom g, (left) and equation of state parameter w (right)
evolution with temperature, showing the particles whose decoupling caused the changes. Figures
taken from [168] and [200].

For primordial black holes, these changes in w directly relate to a higher production of PBH,
as inferred from the lower overdensity thresholds seen in Fig. 4.4. Additionally, as the Universe
cooled down, the Hubble parameter H(t) decreased, which translates into larger horizon masses
1/2H (t) and, via Eq. (4.73), larger PBH masses. Therefore, each of the bumps in w observed in the
left panel of Fig. 4.5translates into a larger amount of PBHs being produced with a mass roughly
corresponding to the Hubble horizon at that time. In practice, these higher productions are seen
as peaks in the mass spectrum of PBHs, as we can see in both panels of Fig. 4.6.

With this, we conclude this section, in which we have studied how PBHs are formed more in
detail and explore the consequences of the change of threshold with the equation of state parameter,
leading to their peculiar distribution in masses. In the next section, we will briefly review how these
PBHs are distributed in space, as well as their interactions.

103



Chapter 4. Primordial black holes

107 PBH denstiy distribution at formation PBH density distribution today
—— Model 1: ns=0.97 (Carr 2019) 100 4
—— Model 2: ns=1 (De Luca 2020)
-9
10 102
10114 1074
3 g
zﬁ < 10-6
10—13
108
10715
1071 Model 1: n, = 0.97 (Carr 2019)
—— Model 2: ns =1 (De Luca 2020)
107 T T T T T T T T 10712 T T T T T T T T
10713 107 1077 107 107! 102 10° 108 10713 107 1077 1074 107! 10? 10° 108
mesulMo ] MpgulM o ]

Figure 4.6: Left panel: density fraction of PBHs at formation (3¢ defined in Eq. (4.1)) for the
different PBH masses. Right panel: dark matter fraction of PBHs today. In both cases, two models
are considered, where the first one comes from Refs. [241, | and the second one corresponds to
Refs. [243, 244]. Figures taken from [168] and [200].

4.4 Merger rates of primordial black holes

Up to now, we have focused on the formation of isolated primordial black holes. Assuming that
the density fluctuations are homogeneous, these black holes would be formed randomly, following
a Poisson-like distribution. In this case, some of them would be generated so close to each other
so as to decouple from the Universe expansion. Then, the gravitational attraction would dominate
and drive their dynamics, constituting PBH clusters.

In particular, PBHs which form very close to another one can either directly merge or form
PBH binaries, depending on the gravitational influence of other nearby objects. Black hole binaries
which are formed shortly after PBHs are formed, before matter-radiation equality, are called early
binaries, constituting one of the possible channels through which PBHs can form binary black
holes [245, , , ]

The other main mechanism for binary formation is that, at late times, PBHs within dense
clusters dynamically capture another black hole, forming a late binary [249, |. These dynamical
captures are produced when the two black holes interact in a hyperbolic-like encounter and, after
the energy loss due to their interaction, their remaining kinetic energy is not enough to overcome
their mutual gravitational pull, ending up being bound to each other.

There are many works focusing on either of these channels, or both, studying their merger rates.
It is still not clear which of them should dominate, given that it depends on the mass distribution and
clustering properties of PBHs [251]. In this thesis, we will focus on the late binary channel, which will
be used to explain in detail our article on the SGWB produced by hyperbolic encounters of PBHs [2]
in Chapter 5. For the early binaries, one can instead refer to [

) ) ) ) 3 ) ]'
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4.4. Merger rates of primordial black holes

4.4.1 Merger rates of PBH late binaries

We consider a hyperbolic-like interaction between two black holes with masses m; and ms, with
the orbital elements described in Sec. 1.4. The condition that a BBH forms from a close hyperbolic
encounter is that the energy loss due to GW emission exceeds the kinetic energy Eo, = 1/2 uv?..
The energy loss by the GW emission is given by Eq. (1.217), with a function of the eccentricity
f(e) given by Eq. (1.218). Using Eq. (1.205) for the expression of v, we can express the distance
of closest approach r, given by Eq. (1.202) as

rp=—5—(e—1), (4.75)

so that the condition E,, < |AE| can be rewritten as [249, 250]

15 M?
> — 4.76
Gle) 2 16 my mg v3, (4.76)
with 495
f(e) 471-(62—1)_7/2 fore~1,
= ———7F = 4.
Ge) (e —1)7/2 o -3/2 7)
3 (e =1) fore>1.

If this condition is satisfied, the two black holes can become bound to each other and form a
BBH. As explained in Sec. 1.3, they then describe a quasi-elliptic motion in which the energy loss
makes them progressively closer to each other until, eventually, they merge. However, if this binary
is located in a dense cluster, it has been shown that a third BH is likely to interact with the BBH
during its evolution, breaking the binary system and preventing the merger [256, , |]. One
of the possibilities to get stable binaries in such dense environments is that they are formed at the
cluster center and, later, they are ejected to the outskirt of the cluster. Such binaries are thus not
disrupted, so that they eventually merge and emit GWs. We then want to estimate the merger rate
of these binaries.

In order to compute the merger rate, we first write its cross-section o. From scattering theory,

we know that )
GM

oo

where b is the impact parameter defined in Sec. 1.4 that, in the last step, we have substituted in
terms of vy, using Egs. (1.198) and (1.205). We now assume that, in order for the dynamical capture
to be effective, e ~ 1, which is the first case for the definition of G(e) in Eq. (4.77). Substituting
(€2 — 1) in Eq. (4.78) using the condition (4.76) under this hypothesis, we obtain the cross-section
for BBH formation,

s (3407 \ 2T GEMO/T (my my)?/
o =7 (4.79)
3 10/718/7
Thus, the formation rate of BBHs per individual event is given by
Tina = n(m)vppuo” ", (4.80)
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where n(m) is the number density of PBHs and vppn = voo/ V2 is the PBH velocity. We assume
a simplified clustering scenario in which PBHs are clustered in overdense regions, parametrized by
a local density contrast §o.. If we assume that PBHs constitute all of the dark matter, fpgy = 1,
we can write the number density as

n(m) = 510(: pr,]?nM ) (481)

with the mean dark matter energy density ppy = Sbmpe, where Qpy =~ 0.25 is the density
parameter for dark matter.

However, it is more useful to work with the total merger rate per comoving volume. We can
obtain this rate by multiplying 7i,q by the number of PBHs in the comoving volume. This is similar
to the previous step but, in this case, we multiply the averaged number density in the Universe,
n(m)/6oe = Ppym/m, instead of the clustered one n(m). Otherwise, we would obtain the merger
rate in a given cluster volume, which is not what we are interested on. By taking into account a
given mass distribution for the PBHs, the total merger rate is then given by [251]

J2,BBH R

dinmydlnmy G 4.82
dinmydlinmg O . TR n(mi) n(ms) (4.82)

O 2 5 v —11/7 M10/7
~ 14. —1 —374 DM loc oo
ByrGpe i ( 025 ) \ 105 ) \ {0 km/s flma) f(ma) o7

where f(m) is the logarithmic mass function of PBH. To be more conservative, we normalize it
such that [fA(Inm) f(m) = feea < 1, thus allowing for PBHs to constitute only a fraction of dark
matter. Typical values for vy, are a few tens of km/s and dj,. can be taken of order 10%, as in
Ref. [251].

We conclude here our review of primordial black holes, which covered their main properties,
some formation mechanisms, the numerical computation of their overdensity thresholds, as well
as how they would impact their mass distribution over the thermal history of the Universe and,
finally, their merger rates in the late binary scenario. These areas are enough for the objectives
of this thesis, but there are many more aspects of these objects which can be covered, such as the
formation mechanisms we have left unexplained, the behavior of early binaries, the constraints to
PBH abundance from different methods and their detectability prospects. For them, one can refer
to the review by the LISA Cosmology working group [200] and references therein.

In the next chapter, we will study an additional aspect of PBHs: how the late binaries contribute
to the stochastic gravitational wave background, as well as address their detectability. Furthermore,
we will discuss how the picture changes for hyperbolic encounters, as was studied in our article [2].
Additionally, in Chapter 7, we will use the PBH theory introduced in this chapter to derive some
consequences of the spin induction effect produced during close hyperbolic encounters, as we studied
in our article [1].
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Chapter 5

SGWBs from close hyperbolic
encounters of PBHs

5.1 Introduction

As we saw in Chapter 4, primordial black holes may have formed in the early Universe from the
gravitational collapse of overdense regions. These objects have been studied for decades, as they
may account for all or part of the dark matter in the Universe.

There is not yet definite proof of the existence of PBHs, but recently, GW observations of BBH
mergers are providing rich information on the black hole population [258]. In fact, some analyses
based on the mass and rate distributions [241, , , , , , ] or spin properties [263,

| suggest that the observed BBHs could be of primordial origin.

Another approach to probing PBHs is to look for a SGWB, which can be formed both at the
PBH formation via scalar-induced GWs [93, , |, as seen in Sec. 2.5, and by the superposition
of GWs from BBHs [267, , , , |, as we will study in this chapter. Until now, the LIGO
and Virgo detectors have been improving the upper limit on the amplitude of SGWBs [28], and
constraints on PBHs through SGWBs have been discussed [271, 96, ]. In the future, the upgraded
version of the LIGO-Virgo-KAGRA detector network [19] (and later with LIGO-India [273]) and
next-generation GW experiments such as Einstein Telescope (ET) [17], Cosmic Explorer (CE) [18],
LISA [20], TianQin [21], Taiji [22], DECIGO [23], will allow us to detect SGWBs with greater
sensitivities for a wide range of frequencies, as we commented during the discussion of Fig. 2.1.

In this chapter, we will review one of our works [2] in which we propose an important addi-
tional source for SGWBs, which is the one formed by overlapped GW bursts from close hyperbolic
encounters. Gravitational waves from these unbound interacting systems can be observed by GW
experiments and have been studied in the literature [274, , 67, 68, 54, 53, , H5]. In fact,
the dense environment at the center of PBH clusters can enhance the rate of these events, with an
eccentricity close to unity [277], leading to strong GW bursts. Furthermore, if the interaction is
strong enough, they can produce nontrivial dynamics, such as spin induction [1, ] and subsequent
mergers [279].
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Chapter 5. SGWBs from close hyperbolic encounters of PBHs

In this work, we made the first estimation of the SGWB amplitude from CHEs, discussing its
detectability in future GW experiments and comparing it to the one from BBHs.

5.2 Stochastic background of GWs

For SGWBs of point source origin, the GW spectrum can be computed by

N(z) dE
Qaw(f) = plc/(dz lfi dh?X’ (5.1)

where f,. = (14 2)f is the emitted GW frequency, which is redshifted with respect to the one we
measure, and N(z) is the number density of GW events at redshift z, given by

N(z) = (1;(% (5.2)

Here, H(z) is the Hubble parameter and 7(z) is the merger rate per unit time per comoving volume.
For a broad mass distribution of black holes, the merging rate should be replaced by

7(2) = //(d(lnml) d(lnmg) m . (5.3)

5.2.1 Binary BHs

We first compute the stochastic gravitational wave background from BBHs. As in Sec. 4.4, we
assume the late binary scenario which is the one closely related to CHE. Thus, we can directly use
the merger rate derived in Eq. (4.82).

For the energy emission, we could take the energy spectrum from Eq. (1.196). However, we
followed a slightly different formalism in [280), ], which includes the contributions of the inspiral,
merger, and ringdown parts of the BBH waveform. In the absence of spin and eccentricity, the GW
energy spectrum takes the form

dEBBH  (7G)?/3my msy

ang = saans 0 T, (5:4)

where F(f,) describes the deviation from the frequency dependence of the inspiral phase ff 31t

is explicitly given by

(14 agu?)? for f. < fi,
1fr(1+ equ + eau?)? for f1 < fr < fo,

L f7/3 <1+4(%)2>‘2 (5.5)

or f2 S f?" < f3a
where u = (ﬂ'MGfr/cB)l/g’, ay = —323/224+451n/168, n = myma/M?, ¢ = —1.8897, € = 1.6557.

‘F(fr) =

=
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5.2.  Stochastic background of GWs

The transition frequencies and the width are given by {f1, f2, f3,0} = ¢3/(* M G)j3; with

B1 = 0.066 + 0.6437n — 0.058221% — 7.0927,

By = 0.185 + 0.14697 — 0.02497% + 2.3251°,

B3 = 0.3236 — 0.1331n — 0.2714n> + 4.9227%,

Bs = 0.0925 — 0.40987 + 1.829n% — 2.87n°. (5.6)

The normalization constants w; and wq are

o1 [T+ aouf]?
w1 _fl [1+€1’U/1+62U%]2,
Wy = wlf;4/3[1 + €1U2 + 62U§]2, (57)

where u; = (TMGf;/c3)/3 = 52_1/3.
We can see that, for low frequencies, F(f,.) &~ 1, so that Eq. (5.4) reduces to Eq. (1.196).

Assuming a time-independent merger rate, we can numerically integrate the redshift dependence
of Eq. (5.1). In particular, the low-frequency tail is characterized by F(f.) = 1, so the redshift

dependence is integrated as
dz 1
— = 0.7T6H, 5.8
[( (1 + 27H(2) 0 (58)

where H(z) is the Hubble parameter as a function of redshift. In the previous equation, we substi-
tuted the value of the matter energy density parameter {2y = 0.31. The low-frequency limit of the
SGWB from BBH is then

q 2 /s v —11/7 f 2/3
BBH £y —13 oo o - Hz
Qaw (f) =239 x 107 hyo (0.25> (108> <W> <HZ>
) 3

mi mo ) (M1 mao /21
x/(imldmgf( f((ml)fnz); = (5.9)

with m; in solar mass units.

Furthermore, we can refine the analysis by assuming a redshift-dependent merger rate, 72BH

(1+2)8, with exponent 0 < 3 < 1.28 [272, 248]. In this case, the low-frequency part of the spectrum
gets enhanced by at most a constant factor 3.9, slightly modifying the shape of the spectrum near
the peak. However, the slope at low frequencies stays at f2/3 and the cutoff at high frequencies
remains invariant. We will visualize this effect in the next section.

5.2.2 Close hyperbolic encounters

In the dense environment at the center of a cluster, a large fraction of BH encounters does not end
up producing bound systems, instead producing a single scattering event. These encounters have
been studied much less than BBHs but, in fact, CHEs should be more common at the inner part of
BH clusters [277]. In addition, they also emit GWs, which should be considered both for individual
events [54, 53] and for their contributions to the SGWB.
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Chapter 5. SGWBs from close hyperbolic encounters of PBHs

If a pair of BHs does not satisfy the condition Eq. (4.76), then the two BHs eventually get
further away in a close hyperbolic encounter. The cross-section o is again given by Eq. (4.78), this
time without the condition in Eq. (4.76) imposed on the eccentricity. Thus, aside from the BH
masses, we have two free parameters: vy, and e. Multiplying by the averaged number density (see
Subsec. 4.4.1 for the discussion on d..), we obtain the total event rate,

27 CHE 1
= —ovppg n(mi) n(ms)

dm1 dm2 510(:
Qom \” ( Sloc f(mi) f(mg) M> e —1
0.25 108 kml ma mima (Veo/C)3

~ 25.4 x 1078 yr~'Gpc™? h1, ( (5.10)

Using Eq. (1.205) for v, from now on, we substitute this velocity by its expression in terms of
the semi-major axis a. As for BBHs, we also include the factor (14 2)” in order to parametrize the
event rate time dependence.

The energy spectrum of hyperbolic encounters was shown in Eq. (1.219) using Refs. [68, 53].
We also include it here for convenience,

dEGYF  dEgw  4m GPmim}

dln f, T 45 a2y

VP F.(v), (5.11)

where v = 27vyg f,, with 13 = a®/GM, is the dimensionless frequency, and F,(v) is such that [5]
12F(V) 6_21/&(21)

Ty (1+y?)? ’

Fv)=v?(1—y*=3vy* +4y" +9vy° + 61°°%) ,

E(y) =y —tan"'y,

VP F,(v) ~

Y= f(i -1 (5.12)
In order to integrate the redshift dependence of Eq. (5.1), we define the following function

o V5 F,(v) Hov/QuM s 7rx(5)/2_’6 37248
Iy, xo] :m/(dz (0 + 2)2H(2) (1+42) _m/ﬁdyy F.(v)

— 235(5)/2_6 1 1 LAy 2T 1 9
T(26)3/248 y(1 4 y2)2 [( -y +4y)¢ <2+5> 5505)

+3y3 (=1 +3y%)¢T ( + 8, 2x0§> +34°T <E+ B, 2x0§>] ( (5.13)

where T" is the upper incomplete gamma function and we define

xo = 2w f, sothat v =xo(1+ 2). (5.14)

At low frequencies, we find that the function follows
xg x f¢ a=min{2,5/2 — 5}. (5.15)
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5.2.  Stochastic background of GWs

This is one of the key features of the CHE contribution to the SGWB: a measurement of the
slope of the low-frequency tail would provide information about the redshift dependence of the event
rate. For BBH, however, this event rate dependence of redshift only shifts the amplitude without
changing the slope. Since the merger rates of astrophysical and primordial black holes evolve very
differently with redshift, this feature of CHEs could help distinguish between them.

For the subsequent discussion, we focus on the constant event rate case S = 0, so that the
previous integral simplifies to

3z 6
( y(1+12)? \

Iy, o] ~ 222 e~ 220¢W) (5.16)

This function peaks at around xgeak ~ 1/¢(y) and decays as exp(—2z£(y)) at higher frequencies.

For y < 1, we can use the first order of the Taylor expansion of £(y), which is £(y) ~ y3/3, to
estimate the peak frequency as

=511 (20 () (o)™ o

which depends on the intrinsic properties of the CHE (M, a, e). Putting all of this together and
redefining

228 _oeot() 7
Iy, xo] = 76 Iy, xo), (5.18)

so that T [y, xo] is of order unity at low frequencies, we find

o et (55)  (55) (5) () () ()
aw (f) =9. 0\ 0.3 0.25 108 Q’l ) \ Tom Q-Ol (

x / < 2 (s f(ma) 20 Ty, o] (5:19)

100Mg 100M g
In addition, for the peak frequency in Eq. (5.17), we can approximate

QEEE(foear) 3.6 x 10713 A M 2 9om\ ( floc ( a )72
GW \Jpeak) ~ 9. 70 03 o5 08 e

x( Y )*5 m mo M1+ M
0.01 100Mg 100Mg 200Mg

(5.20)

For instance, by taking m; = mg = 300M,, a = 5AU and y = 2 x 1072, we find Qaw (fpeak) =
1.2 x 10~ at the LIGO frequency band, fpeak = 26 Hz. On the other hand, m; = mg = 300M,
a =5x107AU and y = 107° yields Qcw(fpeak) &~ 3.9 x 107 at the LISA frequency band,
fpeak =~ 6.7 mHz.

Eq. (5.20) shows the intuitively expected behavior that we get larger SGWB amplitudes for larger
masses, smaller semi-major axes, and smaller y (eccentricity close to unity). These parameter values
would be distributed on a wide range and, in principle, we should obtain the SGWB spectrum by
marginalizing over them. Given that we do not know the distributions of the involved parameters,
for simplicity, we assume log-normal distributions of median mg/ao/yo and its variance o, /0, /0y.
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Chapter 5. SGWBs from close hyperbolic encounters of PBHs

5.2.3 Comparison between BBHs and CHEs

In Fig. 5.1, we plot some example GW spectra for BBHs and CHEs. In order to get reasonable
contributions for both the LISA and LIGO frequency bands, we marginalized over mass distributions
centered at 100 — 300M,. However, a more detailed analysis should consider more physically
motivated mass distributions. As illustrated by Egs. (5.17) and (5.20), higher masses produce
greater backgrounds peaking at higher frequencies, while the opposite is true for lower masses. For
reference, in Fig. 5.1, we also plot the power-law integrated (PI) sensitivity curves of the detectors,
which show their sensitivity to detect a power-law background after integrating this power law over
frequency. These PI sensitivity curves are thus very helpful to address the detection of power-law
like SGWBES, given that they account for the increase of sensitivity obtained from the integration.
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Figure 5.1: Comparison of the SGWB spectrum originating from BBHs and CHEs, both for 5 =0
(solid lines) and 1.28 (dashed lines). The power-law integrated sensitivity curves of several GW
detectors are also plotted for a signal-to-noise ratio of 10 and an observation time of 1 year, following
the formalism in [282]. For the BBH curves, we take my = mz = 100 — 300 Mg and v = 30km/s.
The CHE curves correspond to the same range of masses with ay = 5AU, yg = 2 x 1073 for
~ 10Hz, and ag = 5 - 107AU, yo = 107 for the mHz range. For all cases, we take Oa,0y = 0.1,
om = 0.5, and fppy = 1. For a smaller fraction of PBHs, the GW spectral amplitude simply scales
as Qaw X fEpy-

Another thing we can observe in Fig. 5.1 is that the SGWB spectrum from CHEs is steeper than
the one from BBHs, which is expected from the frequency dependence of Egs. (5.19) and (5.13).
In the case of the constant merger rate 3 = 0, the SGWB spectrum inherits the 2 dependence of
the spectrum of the individual event at low frequencies, while the individual BBH spectrum does
the same for the f2/3 dependence. A possible physical interpretation is that a CHE emits a single
burst of GWs, whereas the ones from a BBH are essentially periodic with increasing frequency. It
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is, therefore, natural that the BBH case has a broader spectrum in frequency.

In addition, we can see the different behavior of the BBH and CHE tails as the merger rate
dependence with redshift increases its exponent S. As mentioned before, the change of the BBH
curves with 3 is just an overall enhancement up to a factor 3.9, whereas the CHE curves notably
modify their slopes. This sensitivity of the CHE background to § is very relevant, since the rate
dependence on redshift is one of the features that distinguish astrophysical from primordial black
holes [280]. Therefore, a measurement of the tail of the CHE background could provide useful
information about the relative abundance of both populations.

For the LIGO frequency range, with modest values of the parameters, we can see in Fig. 5.1 that
the CHE spectrum can reach ET and CE sensitivities. Although the CHE contribution is below the
BBH curves, we note that the disruption of the binary system in a dense environment, which could
lower the GW amplitude, is not taken into account. We should also take into account that some
BBH events with a large signal can be detected individually and subtracted from the data [283].

More restrictive parameters are needed in order to produce a relevant CHE background in the
LISA frequency band, although the joint observation with TianQin or Taiji could improve the
sensitivity in these frequencies [284, , |. This difficulty can easily be understood if we rewrite
Eq. (5.20) in terms of the peak frequency,

O\ 12 7q 2 /5 4/3
QCHE onk) 4.4 10—13 h SEM DM loc peak
Gw (fpear) x 0\ 03 025 ) \10° ) \ k0 Hz

1 1/3
% (/y ) my mo my + me (5.21)
Q.(n 100My 100My \ 200M ‘ '
From this expression, we can see that, for fixed masses and eccentricity, the maximum amplitude

QEHE(foeak) grows with fﬁg ,j’k. Therefore, with modest parameters as the CHE curves in the LIGO

range, the amplitude of the background decays significantly if we try to translate the curve to the
LISA range. On the other hand, however, this is a hint that the SGWB from CHE may play an
important role in higher frequency ranges, such as the ultra-high frequency (MHz-GHz) band for
which there are good prospects of detection in the future [287] (see Chapter 8 for a more detailed
discussion on GW detection in different frequency bands).

5.3 Conclusions

In our article [2], we proposed a new source for stochastic gravitational wave backgrounds, which
comes from CHEs. We computed the SGWB spectrum from a superposition of GWs from CHE
events and compared the amplitude with the one from BBHs. We have seen that they have different
frequency dependencies, which would help to distinguish the two different origins when detection
of SGWB is made. Furthermore, as shown in Fig. 5.1, we have found that there exist combinations
of parameter values that can make the CHE contribution detectable by future GW interferometers,
especially with ET, CE or ultra-high frequency experiments, and with more difficulty in the LISA
range.

In addition, we discovered that a change on the event rate dependence on redshift translates
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into a change of slope for the CHE contribution of the low-frequency tail. This is something that
does not happen for BBH and opens the possibility to probing the time evolution of the event rate.

As we have discussed, formations of BBHs and CHEs strongly depend on the clustering nature
of the PBHs. Current cosmological observations have not yet provided a clear picture of BH
distribution in the Universe. Detection of SGWB would provide new implications on the BH
evolution. In addition, we have focused on SGWB from PBHs, but GWs from astrophysical black
holes would also contribute to the SGWB. Given the fact that the event rate evolves differently with
time for ABHs and PBHs, the slope of the tail of the CHE background could serve to disentangle
both contributions and derive their relative abundance. The combination of other information from
further investigations, such as spectral shapes [288, , 272], anisotropy [290, , 194] or popcorn
features [292, |, can also help to obtain implications on the origin of BHs.

As a final remark, we assumed a simplified scenario in which the overdense regions are uniform
and parametrized by 0j. (see Subsec. 4.4.1). However, our work can be extended to incorporate
a more detailed clustering profile of PBHs. Besides, we could consider more realistic distributions
of the CHE parameters, such as semi-major axis and eccentricity. In fact, we have observed that
when we make the log-normal distribution of the parameters wider, the spectral shape changes
dramatically, and the peak amplitude tends to get enhanced. We leave the detailed analysis for
future work.
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Chapter 6

Numerical Relativity

The first gravitational-wave detection in 2015 [7] opened up a new window of observations to the
Universe. We have seen in previous chapters that compact binary coalescences are the dominant
events we can observe with current detectors, so it is of key importance to interpret these signals
correctly. In Section 1.3, we studied the gravitational waves produced by the inspiral of CBCs
assuming quasi-circular orbits. However, the merger dynamics is highly non-linear and cannot be
modelled with analytical approximations, so it is necessary to solve Einstein’s equations with more
precision, resorting to Numerical Relativity. Furthermore, if we relax the assumption of quasi-
circular orbits, there is a huge parameter space which CBCs can occupy, with different masses,
eccentricities and spins (intrinsic parameters), as well as varying orientations and distances to the
source (extrinsic parameters, which can easily be treated analytically).

In general, NR simulations are very computationally expensive to run, so they are not useful to
do parameter estimation of CBCs, for which a lot of GW templates, or waveforms, are required.
As a result, many approximate models to generate them, or gravitational-wave approximants, have
been developed in recent years. They can be classified into several types:

e Effective one body (EOB) models [294] combine perturbative results, such as the mentioned
post-Newtonian and post-Minkowskian, together with physically motivated shapes for the
merger, as well as ringdown models coming from BH perturbation theory. Some state-of-the-
art examples include SEOBNRv5PHM [36] and TEOBRESUMS [37].

e Phenomenological models [295, 296] fit the inspiral, merger and ringdown from EOB models,
PN approximations and NR, getting a fast waveform generation. Some examples include
IMRPHENOMTPHM [30], IMRPHENOMXPHM [31] and IPHENOMXO4A [32].

e NR surrogates interpolate between waveforms from NR simulations, being the most reliable
option within their parameter space, but of limited applicability. Some examples include
NRSUR7DQ4 [297] and NRHYBSUR3DQ8 CCE [293].

These models have a lot of parameters which are calibrated to numerical simulations, so that they
can reproduce NR accuracy within the parameter space they were calibrated for, while taking just
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a fraction of a second to generate a GW template, or waveform. However, recent works [299, |
have pointed out that these templates are still insufficient to get an accurate estimation for the
parameters of the GW signals we receive. Furthermore, the problem will only get worse as the
sensitivity of GW detectors increases. Therefore, a lot NR simulations are still required to have a
good, accurate coverage of the full parameter space.

In this chapter, we will cover some of the basic concepts of Numerical Relativity, as well as use
an NR software, the Einstein Toolkit [301, 302], to run some simulations and analyze their outputs.
We will do this both for standard BBHs and for the less studied hyperbolic encounters.

During this chapter and the next one, related to NR, we will work in geometrized units, G =
¢ = 1, as we did in Sec. 4.3. In this case, the unit mass will provide the unit length and time.
Furthermore, the numerical simulations we will see are invariant under a change of total mass, so
we will set M = mq + mo = 1. Therefore, when interpreting the output, the time and length have
to be rescaled by M. Thus, the figures will be plotted in terms of t/M or /M.

6.1 Introduction to NR

The first attempt to solve Einstein’s equations numerically dates back to an article by Susan Hahn
and Richard Lindquist in 1964 [303]. In this work, the authors evolve initial data generated by
Charles Misner [304] to simulate a BBH head-on collision. However, it was not until 2005 when
the first BBH with angular momentum was successfully simulated by Pretorius [33], followed soon
after by the groups at Brownsville [34] and NASA Goddard [35]. The success of these simulations
was essential to the field of gravitational waves, given that it was only 10 years later, the LIGO
detectors received the first ever detected gravitational wave, GW150914 [7]. The detection and
analysis of this signal would not have been possible if templates from numerical simulations had
not yet been ready.

During this section, we will cover some of the formalisms used in NR and briefly comment on
some of the issues related to numerical simulations, such as the generation of initial conditions or
technical details as the AMR, already mentioned in Sec. 4.3. This section will be based on several
references, such as [305, , ].

6.1.1 The 3+1 ADM formalism

As we saw in Sec. 4.3, within Numerical Relativity, it is important to choose a suitable formalism
in which the problem can be treated well. In this section, we will not get to the full equations and
initial conditions as we did in Sec. 4.3, but only give a brief overview of the formalisms which are
more common in Numerical Relativity and, in particular, for BBH simulations.

In order to work with the Einstein equations, their covariant four-dimensional form is not suitable
to describe a temporal evolution. It is then more convenient to split the four-dimensional manifold
into a time succession of three-dimensional manifolds (slices), which is called foliation. This clear
separation between the time and spatial components is called 3+1 decomposition, and it is a very
general framework in which one can define multiple formalisms.
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The most extended application of the 3+1 decomposition is the ADM (Arnowitt-Deser-Misner)
formalism [307], which expresses the spacetime metric as

ds? = g datda” = —a?dt® + ~;;(da’ + B'dt)(da’ + B dt), (6.1)

where « is called lapse, B° is the shift and ~;; is the spatial metric. Another important quantity is
the extrinsic curvature, defined as

1
2
where £ 7 is the Lie derivative with respect to the shift vector. With these definitions, the Einstein
equations form a hyperbolic-elliptic system of PDEs which are suitable to work with. Their exact

form is given in [305, , ], involving some additional definitions and subtleties which are not
relevant for the goals of this thesis.

Kij = =5~ (0 — L)) (6.2)

Another formalism which is commonly used is the BSSN (Baumgarte-Shapiro-Shibata-Nakamura) [310,
|, which is a variation of ADM. The most relevant modification is a conformal transformation

so that the new metric 4;; has unit determinant and the new extrinsic curvature flij is traceless.

One can then define these quantities from v;; and Kj; as

- _ ~ _ 1
Yij = (dety) 1yij, Ay = (dety) ™! (Kij - 3%‘ﬂlekl> ( (6.3)

This formalism has been widely used to simulate BBHs and, in particular, it is the one used in
all the simulations shown in this chapter and the next one. For the exact equations, one can refer
to [305, 312].

Any of these formalisms provides the Einstein equations in a suitable form. Then, the next step
is to generate valid initial conditions that can be numerically evolved.

6.1.2 Initial conditions

From the classic Keplerian point of view, the initial conditions of a BBH simulation would consist
on two black holes of certain masses m; and mo, separated a certain distance d, with certain initial
momenta p; and p3 and spins ¥; and Y2, where Y is each black hole rotation angular momentum
divided by its mass squared, so that it is dimensionless. The situation is depicted in Fig. 6.1. In
general, since NR simulations are independent of the total mass M = mj + ms, only one mass
parameter is necessary to fully describe these masses: the mass ratio ¢. In our simulations, we use
the convention mj; > mg, so, in order for ¢ to adapt to the convention 0 < g < 1, we define it as

qg= —. (6.4)

Other references, however, use the convention g > 1, so one has to be careful when using concepts
such as “high” or “low” mass ratios. In addition, in order for the center of mass to stay fixed, it is
convenient to take symmetric initial momenta, p| = —ps.

However, in the context of General Relativity, setting initial conditions means to fill the simu-
lation volume with all the needed variables in GR. In the ADM formalism, this involves setting the
metric elements in Eq. (6.1), which is not trivial just from the mentioned physical quantities.
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p1
X2 0
d
m 0 -
2 X1
p2
Figure 6.1: Initial conditions for numerical BBH simulations, where we take m; > ms and p; = —ps.

Different methods to generate initial conditions have been developed over the last decades. The

first BBH head-on collision by Hahn and Lindquist [303] used initial data generated by Misner [304].
Around the same years, the Brill-Lindquist initial data [313] was also developed, which has been
used for decades to simulate head-on collisions [314]. The reason that these two types of initial

value data were used for this purpose is that they represent two initially static black holes without
spin, so its applicability is very limited.

One of the most used methods to generate initial data is based on the Bowen-York prescrip-
tion [315], usually referred to as puncture initial data, which extends the Brill-Lindquist solution
to arbitrary angular momentum and allows for initial spins. This method was further simplified by
Brandt and Briigmann [316] and a particularly extended algorithm was proposed in [317], which is
used in NR softwares such as the Einstein Toolkit [301, 302] or GRChombo [318, , 320]. The
introduction of angular momentum allowed to develop more general BBH simulations, moving on
from head-on collisions.

Junk radiation

The mentioned methods represent physical solutions to the Einstein’s equations which are useful
to start the numerical evolution. However, these initial conditions do not correspond to the exact
state of two black holes having evolved from their previous, natural dynamics. The mentioned initial
solutions are constructed from the hypothesis of conformal flatness, which does not correspond to a
relaxed state of black holes with certain angular momentum. They are thus unphysically perturbed
and, after some evolution time, they relax to an equilibrium configuration in which they evolve
normally. During this relaxation, however, they emit a spurious gravitational-wave burst, which is
usually referred to as junk radiation [321, , |. We can see this initial burst in Fig. 6.2, which
shows the Weyl scalar W, (directly related to the GWs, as we will see in Subsec. 6.2.3), for the BBH
simulation described in Sec. 6.2. In the next section, this initial burst can also be seen in Fig. 6.6.
Therefore, when running an NR simulation, one has to be aware that the initial instants are not
physical, so they have to be interpreted with caution.

In order to run our numerical simulations, we need two additional elements: the boundary
conditions and the grid. For the boundary conditions, one of the options is to impose Sommerfeld
radiative conditions [324]. These assume that, near the boundary, all the fields behave as outgoing
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Figure 6.2: Real part of the Weyl scalar ¥, defined in Eq. (6.14) in the xy plane for four different
instants of the BBH simulation described in Sec. 6.2. It illustrates the junk radiation (second
panel) generated when the initial conditions (first panel) relax to an equilibrium configuration
(third panel). For reference, the fourth panel shows the physical gravitational waves generated at
the merger.

spherical waves. Thus, this completely removes any mode propagating inwards to the center of the
simulation. For more details on the implementation, see [325].

For the grid, BBH numerical simulations have the same accuracy problem as the one discussed for
the collapse problem in Sec. 4.3: a uniform grid is too computationally expensive for the resolution
that certain areas require. We comment on this in the next subsection.

6.1.3 Adaptive mesh refinement

In a BBH simulation, we usually have a simulation volume whose length is several tens or even
hundreds times the black holes Schwarzschild radii. This is necessary so that the boundary condi-
tions do not significantly impact the main area of interest in the simulation, which is only possible
if the boundary is sufficiently far away.

On the other hand, the black hole horizons need to be modelled with a high resolution both in
space and time, so as to accurately capture their dynamics. This resolution should be of order a
hundredth of the Schwarzschild radii, or better. If this resolution is uniformly kept for the full grid,
this would imply of order 10* points per side, which would be around 10'? in total. In addition, in
each of these points, different fields are defined, so this would imply of order 10'3~!* grid variables
stored in memory at each time iteration. This is clearly computationally prohibitive.

In addition, there is no need to have such a resolution in all the simulation volume. At large
distances from the black holes, there are only gravitational waves which do not need such an accuracy
to be modelled. Therefore, the usual practice is to implement some adaptive mesh refinement
structure, which was a term already discussed in Sec. 4.3. These schemes usually consist on several
grid levels on top of each other. The coarsest level covers the full simulation volume with a moderate
resolution, both in space and time. The next level covers just a fraction of this volume, where the
side ratio is sometimes taken to be 1/2 for simplicity and convenience, and the resolution increases
in a certain factor for which 2 is also a convenient choice. Usually, for the first refinement levels,
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it is only necessary to increase the spatial resolution, not the time step, and they are centered on
the center of the simulation. However, as the refinement levels progress, two grids are required
per level, each of them centered on one black hole, and they need to be refined both in space and
time. An AMR scheme for 7 refinement levels is depicted in Fig. 6.3, where we can see how the
grid centers follow the motion of the black holes, as well as the reduction of covered volume with
each refinement level. The improvement of spatial resolution can also be seen from the inset plots,
and the time resolution, which cannot be inferred from the plot, also improves by a factor of 2
per refinement level, except for the transition from the basic (blue) to the first refinement level
(orange), which have identical time steps.

t/M 300

0 t/M

y/M
y/M

-60 -40 -20 O 20 40 60 -60 —40 -20 O 20 40 60
X/IM X/M

Figure 6.3: Adaptive mesh refinement scheme in the xy plane for different instants of the BBH
simulation described in Sec. 6.2. Each color represents a different refinement level, for a total of
seven in both panels. The inset plots show the transition from one refinement level to the following
one.

This concludes the introduction to the required elements involved in the successful generation
of a Numerical-Relativity simulation. There are other important concepts which will be explained,
but they are more related to the output, and are more clearly understood using a example BBH
simulation. This is what we will see in the next section.

6.2 Numerical simulations with the Einstein Toolkit

Since the first successful BBH simulation by Pretorius [33], several softwares for Numerical Rela-
tivity have been developed. Some examples include the mentioned Einstein Toolkit [301, 302] and
GRChombo [318, 319, 320], but also NRPy—+ [326, 327], SpEC [328, 329], LaZev [34] or BAM [330],
among many others.

In this thesis, we will focus on the Einstein Toolkit, given that it is the software that was used
in our article [1], which will be explained in Chapter 7.
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6.2.1 The Einstein Toolkit

The Einstein Toolkit [301, | is a collection of state-of-the-art software components and tools
devoted to simulate General-Relativistic astrophysical systems. It is open source, with more than
210 components written in different programming languages (C, C++, Fortran, OpenCL, CUDA,
etc.). The Einstein Toolkit provides regular, tested releases around twice per year, the last of which
was the “Lisa Meitner” release in December 2023'. In addition, its growing community (>350
members from >43 countries) provides user support through different channels. There are also a
few articles providing a comprehensive introduction to the toolkit [300, , |.

Most of the Einstein Toolkit components use the CAcTUs Computational Toolkit [332, 1,
which is the framework providing the modular infrastructure so that all the separate components
work together correctly. Due to the Cactus name, these components, similar to the packages in
other programming languages, are named thorns. There are many of these thorns, most of which
are documented in the Einstein Toolkit website [302], which can be classified according to their
different roles. We now name a few just to give a general idea, but more comprehensive and
detailed descriptions are given in [300, , , |

e The CARPET thorn [334, | provides the AMR grid infrastructure, separating the technical
part of the simulation from other thorns more related to the simulation physics. This thorn is
also in charge of splitting the grid functions and arrays among the parallel processes, as well
as coordinating their communication; modifying the AMR grid when requested (regridding)
and performing input/output operations in parallel. A newer, more flexible thorn called
CARPETX, which also aims to provide support for GPUs, is also in development.

In addition, the LLAMA [3306] code allows for a simulation domain consisting of different
overlapping patches.

e The PUNCTURETRACKER thorn tracks the black hole positions, so that the periodic AMR
regridding can be done according to their motion.

e The ADMBASE thorn defines grid functions related to the AMR formalism, while TMUNUBASE
does the same for the stress-energy tensor and HYDROBASE for the hydrodynamical evolution.

e The TWOPUNCTURES thorn [317] provides initial puncture data, using optimized spectral
interpolation [337]. It is the main thorn used for BBH initial conditions, but there are other
options, as well as a variety of thorns developed for initial value data generation for different
types of simulation.

e The MCLACHLAN code [338, , 340] evolves the grid variables in time using the BSSN for-
malism described in Subsec. 6.1.1. It generates the corresponding thorns a using KRANC [341,
|, a Mathematica application for code generation of PDEs.

e The NEWRAD thorn implements the Sommerfeld radiative boundary conditions described in
Subsec. 6.1.2 [325].

Finally, the Simulation Factory, or SimFactory [343], allows to configure, build, submit and
manage the simulations in a user-friendly way. It is the tool which connects the user with the
capabilities of the Einstein Toolkit.

Thttps://einsteintoolkit.org/about/releases/ET_2023_11_announcement.html
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Some other relevant thorns, more related to the output, have not yet been named on purpose.
They will be introduced in the next subsections with an example BBH simulation.

Processing and post-processing

In order for a simulation to run successfully, it mainly needs to store in memory the grid variables, as
well as the AMR structure and other technical information. From the point of view of a physicist,
however, nearly all of this raw information is useless as it is. The black hole positions can be
obtained as direct output due to their relationship with the AMR structure, but their masses, spins
or the gravitational waves they produce are not relevant for the evolution of the grid variables.

It is then necessary to process some of this raw information. In the Einstein Toolkit, some of
this processing is done by the software, simultaneously to the time evolution. Some other, however,
must be derived from the simulation output by the user, which is what we will call post-processing.
In the next subsections, we will see how either the NR simulation software or the user can produce
some physically relevant quantities from the raw simulation output.

The GW150914 simulation

During this section, we will explain some of the concepts involved in Numerical Relativity using
an example BBH simulation. In particular, it is the one provided in the gallery of the Einstein
Toolkit? [344], which uses most of the thorns and tools already described [301, , , , ,

) ) i 9 ]

This simulation computes the last orbits of a BBH with parameters similar to the BBH respon-
sible for the first ever detected gravitational-wave signal: GW150914 [7]. The mass ratio is 0.806,
while the initial separation is set to d = 10M, the symmetric momentum is p = 0.0953M with
angle 0 = 89.49°, and the dimensionless spins are x1,. = 0.31, x2,. = —0.46, with their z and y
components set to zero. In addition, as it could be seen in Fig. 6.3, the main simulation volume has
a half-side around 61M, but the LLAMA multiblock infrastructure allows for GW extraction (see
Subsec. 6.2.3) at radii as high as 500M.

The GW150914 simulation has already been used to illustrate the junk radiation in Fig. 6.2 and
the AMR scheme in Fig. 6.3, as well as in Fig. 1.3 in Chapter 1 to illustrate the components of a
merger. In the next subsections, we will use it to explain other relevant concepts in NR concepts
and show some of the Einstein Toolkit capabilities.

6.2.2 Apparent horizons

In General Relativity, there are several definition of masses and angular momenta which are useful
in different contexts. Some of them, like the ADM mass and momentum, use global properties of
the spacetime. In these subsection, however, we will use some local properties near the black holes
to characterize their masses and spins.

%https://einsteintoolkit.org/gallery/bbh/index.html
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First, it is necessary to have a notion of the black hole horizons. In stationary spacetimes,
such as Schwarzschild’s and Kerr’s, the event horizon is a very useful concept. An event horizon is
defined as a co-dimension 1 null hypersurface from which neither time-like nor light-like geodesics
can reach future null infinity [347]. This is a gauge-independent and global property of spacetime
which is, however, not very practical in a dynamic spacetime. Instead, a useful concept used in
numerical simulations is the apparent horizon. At each spacetime slice, (the spatial hypersurfaces
at each time instant, defined in Subsec. 6.1.1), one defines the apparent horizon of a black hole
as the outermost trapped surface around its center [348]. Simply speaking, a trapped surface is a
closed surface formed by a set of points where every light ray points to the interior of the surface.
Therefore, the outermost of these surfaces marks the boundary between the regions where light
can escape and where it cannot, that is, a horizon. Apparent horizons are thus a local concept,
defined at each iteration, which is more useful in practice than the global notion of event horizon.
On the other hand, apparent horizons are gauge-dependent, since they depend on the spacetime
slicing. For a more formal discussion on trapped surfaces, see [349], while for the notion of apparent
horizon, see [350].

In the Einstein Toolkit, one of the thorns that looks for these apparent horizons is AHFIND-
ERDIRECT [345, |, while their surface shapes and centroids are stored by SPHERICALSURFACE.
We can see examples of these apparent horizons in Fig. 6.4, both for the GW150914 simulation and
the second hyperbolic simulation described in the next section. In this figure, we can see how their
shapes vary over time, but also how their sizes tend to reduce as they get closer to the other black
hole.

Apparent horizons are particularly useful to obtain local measurements of the black holes. In
particular, from the area A of this surface, the thorn AHFINDERDIRECT provides a measurement
of the black hole mass as

A

. (6.5)

myg =

In Chapter 7, we will be interested in the black hole spins, so let us see more in detail how this
measurement can be derived.

Spin measurements

Similarly to the mass, one can easily derive a local measurement of black hole spins by using the
shape of their apparent horizons. We denote the spin by J, Particularly, we denote by C, and C,
the polar and equatorial horizon circumferences, respectively. Then, the Kerr metric satisfies [278,

, 353]
C, _ 1+ /11— (a/m)QE (a/m)? ) < (6.6)

Ce (1+ 1~ (a/m)?)>?

Ce

where m is the black hole mass, a/m = |x] is its dimensioNess spin parameter, and E(z) is the
complete elliptic integral of the second kind,

E(z) = /(/2 d0\/1( — xsin’ 6. (6.7)
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Figure 6.4: Apparent horizons (dashed lines) for some iterations of the GW150914 simulation (left
panel) and for the hyperbolic simulation with 5 = 3.12° described in Sec. 6.3 (right panel), with
their positions (solid lines) plotted for reference. The blue lines denote the heaviest initial black
hole, while the orange one denotes the lightest one. In the case of GW150914, the red dotted line
marks the joint apparent horizon around its formation time, and the green line is also the joint
horizon, after some relaxation time.

Thus, one can simply get C, and C. for each black hole from the simulation output, and derive
their spins using Eq. (6.6).

With the Einstein Toolkit, there is, however, no need to make these computations. The thorn
QUASILOCALMEASURES [346] directly provides measurements for the masses and spins, as well as
other local quantities. It uses the so-called isolated and dynamic horizon formalisms, which we
will not cover here and for which one can refer to [346, 354, 355]. Instead, we remark that, due
to the nature of apparent horizons, these quantities are gauge-dependent. However, at ¢ — +o0o,
in the absence of gravitational interaction, the asymptotic quantities provide gauge-independent
information. In particular, the Christodoulou spin in Eq. (6.6) and the ones obtained from the
isolated and dynamic horizon formalisms coincide. Therefore, in the next sections, even if we plot
the spin evolution with time during all the simulation, the only relevant quantities are the initial
and final ones.

In Fig. 6.5, we can see how the parent black holes produce a final black hole with a larger
spin that the sum of the initial spins. This indicates a transfer of the orbital angular momentum.
Note how the spins remain practically constant during all the evolution, unlike what we will see for
hyperbolic encounters in Sec. 6.3.

124



6.2. Numerical simulations with the Einstein Toolkit

_ 1
089 __ BH1 !
0.6 BH 2 !
—— Final BH '
0.4 i
J
[}
1
Q 0.2 E
1
0.0 i
i
—0.2- i
i
—0.4- !
1
T T T T . T
0 200 400 600 800 1000

tIM

Figure 6.5: Spin component on the z axis of the two parent black holes of GW150914 before their
merger, which is indicated by the dashed vertical line, and of the final black hole after the fusion.

6.2.3 Gravitational-wave extraction

One of the main reasons to run numerical simulations for BBH is to obtain the gravitational waves
they produce, in order to use their waveforms for parameter estimation of signals in GW detectors.
However, the strain amplitude h seen in Chapter 1 is not directly obtainable from the output
of numerical simulations. Instead, numerical simulations usually provide Weyl scalars, which are
directly related to them.

The Weyl scalar

The Weyl tensor is defined as the trace-free part of the Riemann tensor, [10]

1 1
Cul/pa = Ruupa - §(gupRua - guoRup - ngRMO' + gVO'R,LLp) + éR(gupgua - gMO’gl/p)' (68)
On the other hand, in the Newman-Penrose formalism [356], one defines a null tetrad I*, n",

mP, m? such that
—ltn, =mhtm, =1, "m, =1"m, =n"m, =n'm, =0, (6.9)
while their norms vanish due to them being null vectors. Based on this tetrad, the following
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quantities are defined:

Vg = Crupel'm”1Pm?, (6.10)
Uy = Cuupol'n”1Pm?, (6.11)
Wy = Cpppeltm”mn?, (6.12)
U3 = Cpypent1"n’m?, (6.13)
Uy = Chppontm’n’m?, (6.14)

which are called the Weyl scalars.

The last one of these scalars, Wy, is used in Numerical Relativity to compute the gravitational
waves hy and hy. In order to see the relation between W, and the gravitational waves, we first
assume that the GW is far away from the source, at a certain distance r, and propagating in
Minkowski spacetime. For simplicity, we first analyze the situation in which the GW propagates
in direction z and we use Cartesian coordinates. In addition, in the TT gauge (1.31), we have we

have h1; = —hos = hy and his = hy, with all h;3 = 0. Therefore, the non-vanishing components
of the Riemann tensor in linearized theory, given by Eq. (1.5), are
1. 1.
thtm = thzz = *Rtyty = *Rtyyz = 7§h+’ Rtxty = thyz = *ihx (615)

Furthermore, in vacuum, the Ricci tensor R, vanishes, so that the Weyl tensor equals the Riemann
tensor, Cpupe = Ruvpo-

In Numerical Relativity, a convenient choice of null tetrad is

1 1

" = —=(1,0,0,1), mt = —=(0,—i,1,0), 6.16
75! ) 7t ) (6.16)
1 1

nt = —=(1,0,0,—-1), ' = —(0,4,1,0), (6.17)

V2 V2

which satisfy the conditions in Eq. (6.9). Using this tetrad and the non-vanishing components of
the Riemann tensor in Eq. (6.15), the ¥y defined in Eq. (6.14) becomes

Wy = hy —ihy. (6.18)

In general, for an arbitrary direction, we can use spherical coordinates and define the null tetrad

w_ Lo 7 m/L:LA_iA
= \/§<t+ )7 \/§(¢ 9), (619)
P u_ Lg

where the hat denotes the 4-vector in the corresponding direction. This extends the result in
Eq. (6.18) for the transversal polarizations of a GW propagating in arbitrary radial direction 7.

As a result, from the Uy in a simulation, we can obtain the GW strain by integrating twice,
t t’
hy(t,r) —ihy(t,r) = / dt'/ dt" Wy(t",r). (6.21)
— 00 — 00
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In a numerical simulation, this integration cannot be done from ¢ — —o0, so one has to define
a starting point which does not get too affected by the initial junk radiation described in Sub-
sec. 6.1.2. The usual practice is to do this integral in Fourier space, via a technique called fized
frequency integration [357], for which one has to set a minimum allowed frequency, thus getting rid
of unphysical low frequencies. However, any integration method introduces some degree of numeri-
cal artifacts, which could impact the parameter estimation based on these waveforms. Thus, there
have recently been some works [358] arguing that parameter estimation should be done directly on
Wy, rather than the strain. In this case, the detector strain would have to be differentiated twice,
which introduces less numerical error than integration on the Weyl scalar.

In any case, in order to obtain the strain amplitude of the GWs in a numerical simulation, it is
not necessary to do this integration in each grid point. We are interested in measuring the GWs at
a certain distance r, which is sufficiently large so that the distant source limit holds. Then, since h
and hy decay like 1/r (see Egs. (1.99), (1.100)), we can extrapolate them to an arbitrary distance.
Furthermore, in the sphere of radius r, we can decompose [359]

=2 m=—

oo l
h+ (tv F) —ihx (tv F) = Z Z (hlm (t’ T) —2mm(ev ¢)7 (622)

where _2Y},,,(0, ¢) are the spin-weighted spherical harmonics of spin weight -2. These are a gener-
alization of standard spherical harmonics (explained in more detail in Subsec. 8.7.1), but with axial
rotation symmetry for the corresponding spin. In our case, the spin is -2 to reflect the quadrupolar
nature of gravitational waves. For more detailed explanations on spin-weighted spherical harmonics,
see [360, 361], or [359, 362] for specific references in the context of GWs.

Given that gravitational waves are quadrupolar at the leading order, in general, the [ = 2 modes
will clearly dominate. We can see this in Fig. 6.6, where the (2,2) mode dominates the Weyl scalar
W, and, in the case of the strain, this dominance becomes moer obvious. Thus, the Weyl scalar is
usually obtained only for the first few multipoles measured at certain specified radii, which must be
high enough for the distant source limit to hold, but not so high to be very close to the boundaries.

In the Einstein Toolkit, the WEYLSCAL4 thorn [306] provides this Weyl scalar ¥4, whose 2D
information was used to generate Fig. 6.2. The multipole decomposition at the desired radii is
handled by the MULTIPOLE thorn, thus leaving the Weyl scalar ¥4 in a more suitable form to
work with. Furthermore, the KUIBIT Python package [363] has a lot of utilities to help with the
post-processing, allowing to easily load any of the simulation output from the Einstein Toolkit,
including the Weyl scalar multipoles, and integrating them to obtain the GW strain.

In Fig. 6.6, we can also observe the different regimes of a BBH (inspiral, merger and ringdown),
both in the Weyl scalar and the strain. For the strain, we can see how the hy is dephased /2 with
respect to hy at the inspiral, as we computed explicitly in Subsec. 1.3.3. In addition, we can see
the initial junk radiation in both plots: as an initial burst in ¥4 and as an irregular behaviour at
the beginning of the strain time series.

6.2.4 Challenges: mass ratios, eccentricity, precession

These BBH numerical simulations need a large amount of RAM memory to run, so that it is
only possible to do so in a high-performance-computing (HPC) cluster. In addition, the one for
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Figure 6.6: Weyl scalar Uy (left) and strain amplitudes for each polarization, hy, hy (right), for
the GW150914 simulation. These quantities are provided for the multipoles (,1), 2 <1 < 4.

GW150914, which is not particularly demanding, takes some days to complete, although that
depends on the cluster specificities.

In order to do finer parameter estimation for the real GW signals, it is desirable to run many of
these simulations, covering the largest possible volume of the parameter space. This includes lower
mass ratios, considering eccentric BBHs and exploring spins in arbitrary directions.

Going to lower mass ratios is conceptually very simple, but becomes numerically problematic.
A lower mass ratio implies that one of the black holes becomes smaller, so it needs higher spatial
and temporal resolution to correctly capture its behavior with an NR simulation. To achieve such
resolutions, it is necessary to introduce additional layers to the AMR scheme, which increases the
computational cost in both RAM memory and simulation time. For very asymmetric systems, one
can resort to perturbation theory, but NR simulations are still needed until that point. Up to now,
the mass ratios that have been achieved arrive until ¢ = 0.0078 (1/128) [364]. These simulations
were done by the group at the Center for Computational Relativity and Gravitation (CCRG) at
Rochester Institute of Technology (RIT) and are publicly available through their BBH waveform
catalogs® [367].

On the other hand, eccentric simulations do not pose a numerical challenge, but they are con-
ceptually harder to model. Knowing the initial momenta for an NR simulation to result in a
quasi-circular trajectory is already complicated [366, 367], so computing the initial conditions for
a given eccentricity is even more challenging. In addition, in General Relativity, eccentricity varies
over time, so it is more difficult to measure. Nevertheless, there are different expressions to com-
pute the eccentricity from a BBH trajectory [366, 368], so what one can do is trying different initial
configurations for the NR simulations and measuring the resulting eccentricity with these formulae.
There are some groups which are already populating the eccentricity parameter space [365, 369],
as well as some attempts to model these waveforms [370, 371, 372]. Until recently, however, these
efforts had focused more on quasi-circular orbits, which is reasonable due to the BBH circularization

Shttps://ccrg.rit.edu/"RITCatalog
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phenomenon mentioned in Chapter 1.

Something similar happens for spins. Due to the orbital dynamics, it is expected that the highest
spin component for the BHs involved in a BBH comes from the direction parallel to the orbital
angular momentum. Therefore, many simulations and models focused on correctly capturing the
behavior of BBHs with spins orthogonal to the orbital plane (z direction), but not so many with z
and y components. Furthermore, non-zero x and y spin components make the orbital plane precess.
While this does not add much more complexity to NR simulations, precessing BBH systems are
more challenging to model analytically. Some references for studies on precessing BBH systems
include [365, 373, 374].

Additionally, in this thesis we have focused on BBHs, but as we saw in Chapter 1, neutron stars
can also form binary systems with other neutron stars or BHs and generate CBCs. The signals
that these events produce are very similar to CBCs from BBHs, but the tidal deformability of
NSs generates some differences, which are more notorious after the merger (see [375] for a detailed
study). In addition, neutron stars are more complex to model due to their internal structure,
unlike BHs. Moreover, aside from CBCs, a pair of compact objects can generate another type of
interactions, as we saw in previous chapters: hyperbolic encounters. These events also generate
gravitational waves and can be simulated with NR, as we will see in the next section for a pair of
black holes.

6.3 Hyperbolic encounters

Black hole simulations of hyperbolic encounters are conceptually similar to run to the standard
simulations of BBH. However, there are certain differences.

Hyperbolic encounters do not produce periodic orbits, so the junk radiation must be somehow
removed before the main part of the interaction. In order to achieve this, the black holes must
start much more separated than for a BBH. If a typical distance for a BBH was d = 10M, for a
hyperbolic encounter it should be of order d = 100M. This means that the simulation volume must
be much larger, in order for the boundaries not to interfere with the simulation. In practice, this
implies more refinement levels, which make the hyperbolic run more computationally expensive in
terms of RAM memory.

On the other hand, hyperbolic interactions are much faster, due to the lack of periodic orbits.
While a BBH stays for some time in the inspiral phase, the hyperbolic interaction is produced with
the subsequent separation of the black holes, thus stopping the GW production at a significant
level. Therefore, a hyperbolic simulation is much shorter to run, which saves computation time.

In order to see some of the differences, three simulations have been run with slightly different
parameters. Following the set-up of Fig. 6.1, the initial distance is d = 100M, the masses are equal
(¢ = 1) and the initial spins are zero in the three cases. The symmetric momenta are p = 0.0953 M
and the angles are §; = 4.01°, 65 = 3.12° and 63 = 3.1°.

In Fig. 6.7, the trajectories for these simulations are plotted. In the first panel, corresponding
to the more open encounter, we can see how the Keplerian hyperbolic trajectory is now “bent” due
to the stronger gravitational interaction given by GR. In the second one, this effect is even stronger,
producing a full orbit before the objects separate again. For this second case, in particular, we can
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see the BH apparent horizons in Fig. 6.4, right. Finally, the third panel shows a dynamical capture,
in which the seemingly hyperbolic encounter produced an energy loss as high as to bind the system,
producing a subsequent merger shortly after.
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Figure 6.7: Black hole positions for the three hyperbolic simulations described in Sec. 6.3, from the
most open to the closest one.

The corresponding GW strains are shown in Fig. 6.8. In the first panel, we can see the GW
burst produced by the first encounter, which consists on essentially one oscillation. The second
panel shows around three, due to the longer interaction seen in Fig. 6.7, from which we can also see
the more notorious change of phase. Finally, the third panel shows two bursts, the first of which is
very similar to the previous panel, as expected due to the similarity of initial conditions (the only
difference is the angle, 5 = 3.12° versus 63 = 3.1°), and the second one corresponding to the final
merger. It is worth noting that, unlike the CBC from Sec. 6.2, this merger occurs without any long
inspiral phase, given that all the energy and angular momentum that would be needed to maintain
the quasi-circular motion has already been radiated away in the first, hyperbolic-like interaction.

The gravitational waves produced by hyperbolic encounters can be of similar order to the ones
produced by CBCs, as we could see in Fig. 6.8. However, their narrower localization in time makes
them much more challenging to detect, given that one cannot get the sensitivity increase obtained
in CBCs by integrating over their inspiral for longer periods of time. This is one of the reasons why
these signals have not been detected yet. Another reason is that, due to their burst-like nature,
their shapes may be confused with glitches from the detectors [57]. Nevertheless, there are growing
efforts from different groups devoted to the study and detection of these signals [57, 61, 62, 59], so
it is expected that they will eventually be detected as the sensitivity of the detectors keeps getting
better.

Finally, aside from their gravitational waves, hyperbolic encounters show another interesting
effect. If we plot the black hole spins, similar to Fig. 6.5, we find out that close hyperbolic encounters
induce non-negligible spins on initially non-spinning black holes. We can see this in Fig. 6.9,
corresponding to the simulation with ; = 3.12°.

This spin induction effect was first reported in [278] and subsequently studied for a broader
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Figure 6.8: Gravitational-wave strains for the three hyperbolic simulations described in Sec. 6.3,
from the most open to the closest one.
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Figure 6.9: Spin component on the z axis for both black holes of the hyperbolic simulation described
in Sec. 6.3 with 6, = 3.12°. The two curves overlap due to the symmetry of the simulation.

parameter space, including different masses, in our article [I]. In our paper, we also discussed the
implications this effect has for primordial black holes. In the next chapter, we will see this work in

detail.
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Spin induction on BHs from CHEs

7.1 Introduction

In the third observing run of Advanced LIGO [6] and Advanced Virgo [12], a particular event,
labeled GW190521, was detected. The estimated progenitor black hole masses were 91 Mg and
67 Mg [16], with the probability that at least one of them was in the range 65 — 120 Mg was
99.0% [376]. This is precisely where there should be a gap in the black hole mass distribution,
due to pair-instability supernovae [377], so this event attracted a lot of attention when it was
made public. Several explanations were proposed [376], such as a hierarchical merger scenario, or
that a star with an over-sized hydrogen envelope could give rise to such massive black holes. Other
possibilities included eccentric mergers, high-mass black hole-disk systems [378] or primordial origin
for the progenitor black holes [210, , |, which is the scenario we consider in our article.

The main problem of the primordial explanation is that PBHs are initially generated with low
spin [380], due to the spherical nature of their collapse, as seen in Sec. 4.3. This motivates the study
of spin induction mechanisms for PBHs, which would provide a satisfactory explanation for these
intermediate mass black holes. For instance, in [381], the authors argue that PBHs could explain
the GW190521 signal if they accrete efficiently before the reionization epoch.

As we saw in Sec. 6.3, one of the options for a non-spinning black hole to acquire spin is to
interact with another one in a close hyperbolic encounter. A numerical exploration of this effect
was done in [278], proving that the induced spin could be significant and reach at least x ~ 0.2 for
equal masses.

In this chapter, we explain the article [1| in which we explored this spin induction effect for
different-mass black holes, including a numerical simulation with mass ratio ¢ = 0.1. In addition,
we studied the trends for varying impact parameter and eccentricity, and also for the change of
mass ratio. We finally compare these trends to some analytical expressions, coming from simple
approaches to this effect based on frame-dragging.
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7.2 Grid structure and initial conditions

In order to simulate black hole hyperbolic encounters in full GR, we used the, at the time, lat-
est version of the Einstein Toolkit software [301, |, which was the “DeWitt-Morette” release
(November 2020). Nearly all the thorns and tools mentioned in Sec. 6.2 were used: the Cactus
Computational Toolkit [332, 333], the AMR grid infrastructure provided by CARPET [334, 335], the
initial data generation from TWOPUNCTURES [317, |, MCLACHLAN [338, , | for the time
evolution from BSSN formalism, the AHFINDERDIRECT thorn [345, | to track the horizons,
QUASILOCALMEASURES [346] for spin measurements and WEYLSCAL4 [306] to obtain the complex
Weyl scalar Wy.

7.2.1 Equal mass case

The parameter files we used, similar to the ones which generated the simulations in Sec. 6.3, were
based on the ones used in [278]. They are similar to the one given by the BBH example [344]
studied in Sec. 6.2, but with some key modifications that allow increasing the initial separation up
to 100 GM/c?. For equal masses (mj = ma = M/2 = m), this is a separation of 100 Schwarzschild
radii.

The initial conditions follow the set-up in Fig. 6.1. For the equal-mass cases, the initial separation
of d = 100M implies that the black holes are initially located at * = £50M, y = z = 0. The
symmetric momenta then guarantee that the center of mass will always lie at the coordinate origin.

The parameters p/M and 6 are related to the impact parameter b and eccentricity e. If the
initial momenta were instantaneously translated into initial velocities, we could compute the initial
relative speed measured from the rest frame of one of the black holes V, as well as the distance d’
and angle #’, where we should account for the Lorentz contraction and time dilation. In this case,
from the equations in Sec. 1.4, we have

MV

V f —1=(d/M)V,| (2 - ﬁ sin@’. (7.2)

However, the initial momenta take some time to propagate to the metric quantities and, con-
sequently, to the black hole speeds. Therefore, we cannot establish such a direct correspondence
between the orbital parameters and initial momenta. Nevertheless, we can interpret an increase
in # as an enhancement of both the eccentricity and impact parameter, as the previous equations
show.

sin@'. (7.1)

In order to accommodate these initial conditions, the spatial region is increased to the cube
x,y,z € [—768M,768M]. For the AMR structure, each grid uses half-lengths of 0.75 x 2", for
n=0,1,...,6,8,9,10. The corresponding steps are 2" X Ax,,,, for n =10,1,...,9, where Az,,, is
the size of the most refined grid. Adopting the notation in [278], we refer to Az, = (1/56)M as
low, (3/200)M =~ (1/66.7)M as medium and (3/256)M = (1/85.3)M as high resolutions.
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The time step is initially determined as the spatial step of the bigger grid times a factor
dtfac, which we set to 0.05625. Then, this value is divided by a different number on each
refinement level, which is controlled via the time_refinement_factors array, which we set as
(1, 1, 1, 1, 2, 4, 8, 16, 32, 64]. Thus, the coarsest four grids are updated at the same
rate and, from then on, any finer grid is updated twice as fast as the previous one.

Finally, we use two symmetries to speed up the code. First, we use the reflection symmetry
across the z-plane, which is the orbital plane. In addition, for the equal-mass case, the rotating
symmetry of 180° in the z plane with respect to the origin is also present. Both symmetries reduce
the spatial domain by a factor of 4.

7.2.2 Changing the mass ratio

Throughout this work, we mainly used mass ratios in the range 0.7 < ¢ < 1. This range was chosen
to test how the spin induction varies for different mass black holes, but keeping the ratio close to
1 not to significantly alter the grid structure and the analysis of the problem. Some of the issues
arising for smaller mass ratios will be addressed in Sec. 7.4, while they were also mentioned at the
end of Sec. 6.2.

Generalizing the previous set-up for mass ratios of 0.7 < ¢ < 1 implies some changes with respect
to the equal mass case. First, for a mass ratio of 1, each black hole has half the total mass, which is
0.5 in code units. The previous resolutions mean that, per Schwarzschild radius (1 in code units),
we have 1/Ax,,, (56, 66.7, 85.3) divisions. However, if we keep the structure for a mass ratio of
0.7, for instance (Schwarzschild radii of 1.18 and 0.82), the number of divisions per Schwarzschild
radius is reduced by a factor 1/0.82 &~ 1.22 for the smaller black hole.

Therefore, what we did was adding an extra refinement level for the smallest black hole, in order
for its resolution to be better than for the equal mass case. This makes sure that our results are,
at least, as good as the equivalent resolution for the ¢ = 1 case. In addition, in order to check that
this asymmetry in the extra refinement levels does not introduce errors in the simulation, we ran a
few examples with the extra refinement for the ¢ = 1 case. For the low resolution, the discrepancies
between both spins and with respect to the non-refined case are less than 1%, which is the typical
error involved in simulations of this resolution. Another difference from the symmetric case is that
we must disable the 180° rotating symmetry, which essentially doubles the needed computational
resources.

Finally, the initial positions are also set to y = z = 0, with the x so that the initial center of
mass is the coordinate origin. We also set p; = —p5, as we did for symmetric masses, to try to keep
the center of mass constant. However, due to the mass difference and the fact that the momentum
takes some time to stabilize, it is not always satisfied that miv; + movo = 0, which implies that
the center of mass ﬁ(mlﬁ + ma7s) is not completely fixed and moves a bit from the origin. This
offset is found to be more relevant for lower values of ¢ and greater values of the initial momentum,
as one would expect. In our case, the center of mass is displaced from the origin, at most, around
5.5M during the strong interaction. This does not compromise the final spin measurements, but
could have an impact on Weyl scalar-related quantities, such as the gravitational wave strain or
the radiated energy. It is, in any case, another reason to choose being modest with the value of the
mass ratio.
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7.3 Numerical results

We ran some simulations with equal masses, consisting in different initial incidence angles 6 for the
four initial momenta (p/M = 0.245,0.3675,0.49,0.75 per black hole) considered in [278]. For each
case, the smallest angle we considered, 6,i,, was the one producing the maximum spin-up according
to [278], which is the boundary between hyperbolic events and dynamical captures (e & 1), as shown
in Sec. 6.3.

In addition, for these four momenta and their corresponding maximum spin-up incidence angles
0, we ran a series of simulations for 0.7 < ¢ < 1, which is the only parameter we varied in this case.
In particular, due to the change in mass while fixing the momenta, the smallest black hole is faster
for ¢ # 1 than in the equal-mass case, with respect to both the center of mass and the other black
hole.

The dimensionless spin x = a/m was computed from the QUASILOCALMEASURES thorn, but we
also double-checked it by comparing it to the Christodoulou spin in Eq. (6.6), to test the consistency.
We found that both measurements coincide for late times in all cases.

Before explaining the results, we first addressed their precision.

7.3.1 Error analysis

The differences between the low, medium and high resolutions for the equal mass case were already
treated in [278]. We double-checked them for some of the highest values of the incidence angle 6,
which they do not cover. In particular, the differences between low and medium resolution up to
0 = 4° are < 0.5% for p/M = 0.49, but for § = 5.7° they rise to ~ 6%. This is probably due to
the low induced spin, which begins to be too close to zero (~ 0.0004) and, therefore, the absolute
errors involved start to become higher in relative terms. Therefore, the low resolution is enough as
long as we take the very low spin values with this caution.

The ¢ < 1 cases are a bit more complex for the error analysis. From running simulations of
low and medium resolution and both with and without extra refinement level, we saw that the spin
measurement of the most massive black hole is very robust (< 2% differences for all cases), but the
smallest black hole needs, at least, either medium resolution or the extra refinement level not to
present relevant errors (up to ~ 9% discrepancies). Therefore, we opted to generate all the results
both with medium resolution and the extra refinement level.

In addition, in order to have an idea of the error of these simulations, we ran the ¢ = 0.7,
p/M = 0.245,0.75 with high resolution, for which we found maximum differences of order 0.2%.
This fact, together with the ¢ = 1 error analysis done in Ref. [278], tells us that the differences are
smaller than 0.6%. Therefore, these are the typical errors involved in our simulations with varying
q.

Furthermore, we also monitored accuracy test variables such as the Hamiltonian constraint. Due
to the enormous storage weight of all the 3D values, we only monitored the average and norms.
The results for the Hamiltonian constraint were values of order 10~% at most for the 2-norm !, 108

1The n-norm is defined by ||A||ln = (32|A(, 4, k)|™/N)Y/™, with 4,5,k the spatial grid indices and N the total
number of points.
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for the 1-norm and 10719 for the average. This is coherent with what was obtained for the cases
in [278] and better than the results for the BBH gallery example [344], which further reinforces the
idea that the computations are accurate enough.

7.3.2 (General behavior of the simulations

Taking a look at the time evolution of the spin in any of the simulations, we can see three separate
regions. In the first one, we can observe a spin value of approximately zero for both black holes. This
is the region where the initial conditions progressively propagate to the metric quantities (the shift
is initially zero) as the black hole speeds grow and stabilize, while both black holes progressively
get closer.

When both black holes are close enough, they begin to strongly interact and we can see a drastic
change on the spins, as well as some oscillations. During this second period, some of the energy
and angular momentum are radiated away as gravitational waves. We can see that in Fig. 7.1. The
strain amplitude was derived from the Weyl scalar on the sphere of radius R = 67.88M and shifted
to compensate for the propagation time to the detector, At = —R. For this purpose, we used the
PosTCACTUS post-processing software [332], which was the precursor of KUIBIT [363]. Both of
these codes compute the strain from Eq. (6.21) using fixed-frequency integration.
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Figure 7.1: Strain of the emitted gravitational wave from the [ = k = 2 multipole (upper panel)
and spin evolution (lower) during a hyperbolic encounter with p/M = 0.49, ¢ =1 and 6 = 3.12°.

On the third and final region, we can see that there is a constant, non-zero spin: the initially
non-spinning black holes are now rotating. We measure the final spin at ¢ = 2500, which is enough
for it to have stabilized for all the simulations considered.
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7.3.3 Equal masses, varying incidence angle

First, we present the four cases p/M = 0.245, 0.3675, 0.49, 0.75 for ¢ = 1 and different values of 6,
between the maximum spin-up incidence angle and an upper bound 6 < 5.73°. In order to give an
idea of these parameters, we fitted an initial part of the trajectory (from ¢/M = 30 to ¢t/M = 80)
to a hyperbola. In Table 7.1, we provided the ranges of impact parameters b and eccentricities e for
the considered cases, as well as the distances of closest approach r,. Note that the latter can reach
values below 2M , which would correspond to the sum of the Schwarzschild radii of both black holes,
since the apparent horizons of two interacting, rotating black holes are typically smaller, especially
when they get close to each other. For these simulations, we get apparent horizon radii of order
Rs/2 before the strong interaction and Rg/3 during it, similarly to what can be seen in other
numerical simulations like the one in Fig. 13 in Ref. [301]. We can also observe this behavior of the
apparent horizons in Fig. 6.4.

p/M 0 (deg) rp/M b/M e

0.245 347458 198 -4.63 6.28 -8.30 2.15-2.71
0.3675 3.13 -4.58 1.62-4.90 5.72-8.37 1.84 248
0.490 3.12-573 148-6.79 578 -10.6 1.64-2.63
0.750 3.42-5.73 150-6.36 6.61-11.0 1.38-1.94

Table 7.1: Ranges of 6 considered for each initial momentum, as well as the equivalent minimum
distances and fitted impact parameters and eccentricities.

Before comparing the final spins in all the cases, we first show the spin evolution versus the
time for p/M = 0.49 in Fig. 7.2. We note that the induced spin decreases with growing 6. This
is expected, since the closest distance between the black holes increases with the incidence angle,
which makes the encounter weaker.

For the four considered initial momenta, Fig. 7.3 shows the final spins versus . In particular,
one thing we noted is that they are reasonably well fitted by a power law. For the p/M = 0.49
case, the power law also fits well the other points that are shown in Fig. 4a in [278], where this
spin variation with the incidence angle was already described.

The results of the power law fits are given in Table 7.2. These were done by linearly fitting the
log-log plot, in order to give each point the same importance in terms of relative weight. By doing a
least square error fitting to a power law, the smaller values of the spin would have had little impact
on the fit.

p/M n 0o (deg)  Omin (deg) r2

0.245 -14.8 2.62 3.47 0.9936
0.3675 -11.0 2.40 3.13 0.9982
0.490 -9.0 2.42 3.12 0.9997
0.750  -7.7 2.79 3.42 0.9989

Table 7.2: Fitted parameters for Fig. 7.3 to a power law x = (0/60)™, as well as O, for reference
and the linear correlation coefficient 72 for the (log(f), log(x)) data to the corresponding linear
function.
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Figure 7.2: Spin evolution during a hyperbolic encounter with p/M = 0.49, ¢ = 1 and different
values of 6.
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Figure 7.3: Final spin for hyperbolic encounters with different momenta and ¢ = 1 versus 6, as well
as their fit to a power law.
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Finally, in order to better compare these trends, we show the same results in Fig. 7.4, but now
with all the curves normalized by the maximum spin-up value and subtracting 0,,;, to the incidence
angles so that all the curves start from the same point.
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Figure 7.4: Same as Fig. 7.3, with the curves normalized by the maximum spin-up value and
subtracting €,;, to 6.

7.3.4 Varying the mass ratio

We will now see the results for the 0.7 < ¢ < 1 simulations. In Fig. 7.5, we plot the time evolution
of the spin in simulations of different mass ratio, with p/M = 0.49. Note how each black hole
now gets a different spin, where the highest value is obtained for the most massive black hole. It is
also notorious how the difference between both spins is increased as ¢ gets smaller, as well as the
increase of the highest spin and decrease of the smallest one with decreasing q.

A similar behavior is observed for the other values of the initial momentum. The final spins
are shown in Fig. 7.6. They are plotted with respect to the masses to avoid having two points per
value of the z magnitude, as we would have if we plotted with respect to the mass ratio. Note that
the pairs of masses that add up to one come from the same simulation. We can see that they adapt
reasonably well to linear fits.

In order to better check and visualize how different the trend is for the different initial momenta,
we can divide the results by the central value, getting Fig. 7.7. In this case, since the point
m/M = 0.5, x(q)/x(¢g =1) =1 is common for all the cases, we impose that the linear fits must go
through this point and just fit the slope.

We can see that the relative increase between the different values of ¢ is bigger for the smallest
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Figure 7.5: Spin evolution during a hyperbolic encounter with p/M = 0.49, § = 3.12° and different

values of q.
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Figure 7.6: Final spin for hyperbolic encounters with different initial momenta and € corresponding
to the ¢ = 1 highest spin-up versus the black hole mass, as well as their linear fits.

141



Chapter 7. Spin induction on BHs from CHEs
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Figure 7.7: Same as Fig. 7.6, where we divided each value of x by the one corresponding to the
same initial momentum and ¢ = 1. The points are now open in order to better see the overlapping
values, and the linear fits now have the restriction to pass through the central, common point.

values of p/M. In addition, the linear fit is generally good, but for the p/M = 0.245 case is worse
than for the other cases. The information about the fits in Fig. 7.7 is provided in Table 7.3, as well
as the spin of the ¢ = 1 cases, which can be used to derive the equivalent slope for the x vs m/M
fit. Here, we can see how the slope decreases with increasing p/M.

p/M 6 (deg) slope r? x(g=1)
0.245 3.46 5.7 0.979 0.0186
0.3675 3.13 4.9 0.997 0.0596
0.490 3.12 4.0 0.989 0.109
0.750 3.42 2.8 0.997 0.200

Table 7.3: Fitted parameters for Fig. 7.7, with their linear correlation coefficient 72 and values of
the central spin.

7.4 Towards lower mass ratios: the case of q=0.1

Finally, we ran a simulation with ¢ = 0.1, p/M = 0.49 and 6 = 0y,;, =~ 3.12°. In order to compensate
for the loss of (relative) resolution for the smallest black hole, we added four extra refinement levels
to its grid. We also decided to fix medium resolution. As a result of this configuration, the
simulation is much slower than the previous ones.
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7.4. Towards lower mass ratios: the case of q=0.1

Unlike the other simulations with p/M = 0.49 and 6 = 3.12°, which are hyperbolic, this one
ended up producing a merger. One of the possible explanations is that the small black hole starts
from a high initial speed, since it has the same momentum as the black holes in other simulations
but much smaller mass (m = 0.091), which would imply more energy loss until its encounter with
the heavier black hole. Another possible explanation is a stronger dynamics for g < 1.

7.4.1 Issues with the Weyl scalar

One of the issues that arise in this simulation is the fact that the center of mass is displaced with
respect to the origin. We already saw that the maximum deviation for 0.7 < g < 1 was found to
be around 5.5M, but, in this case, it is around 24M. This is a problem for the measurements of
the Weyl scalar, which are taken at spheres centered at the coordinate origin and, in our case, with
radius r = 67.88M. As a result, computing the strain amplitude of the emitted gravitational wave
or its radiated power is also complicated.

This effect has been corrected via a transformation of the Weyl scalar from the sphere centered
at the origin (Sp) to the sphere centered at Fom(t — R/¢) (Scm) for each time ¢. In order to do this
transformation, one has to:

e Convert the available ¥4 multipoles (in our case, up to I = 4) to a scalar field defined at Sp.

e For each (¢, p(t)), with p(t) € Scm, get the light ray that originated at (¢t — R/c, Fom(t — R/c))
and passes through p and take the value r¥, when it passes through Sy. Then, divide by R
to get the value of W, at the desired point.

e Convert the resulting scalar field at Scy back into multipoles.

In practice, we have a grid (¢, 6, ) for Scm and need the equivalent points (0, ¢') at Sy, its
radius r’ with respect to Scm and the time at which the light ray passes through it, ¢t — (' — R)/c.
The situation is depicted in Fig. 7.8.

We should note, however, that this correction is far from perfect. First, this assumes that a light
ray exactly propagates through the coordinate system at speed ¢ = 1, while the space-time curvature
can slow down this speed. In addition, we have only produced up to the [ = 4 multipole, which is
enough for a sphere centered at the origin but, in this case, the contribution of the multipoles [ > 5
measured at Sy could be non-negligible even for multipoles | < 4 at Scu-

Correctly measuring the Weyl scalar is important to determine some gravitational wave-related
quantities, such as its strain amplitude. We show the amplitudes for the modes [ = k£ < 4 in
Fig. 7.9, with the corresponding time shift of —R, together with the spin evolution.

7.4.2 The spins

Even if this simulation ended up in a merger, we can observe the spin evolutions and draw some
conclusions. First, we see how the spin-induction phenomenon works in the same way as in other
cases: higher spin is induced on the heaviest black hole. This can be observed in the lower panel of
Fig. 7.9, which represents the temporal spin evolution.
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Figure 7.8: All the relevant points and quantities involved in the transformation of the Weyl scalar
from the sphere Sy to the sphere Scn, for an arbitrary space-time point p3 = (¢,73), r3 € Scm(t—R).
The dotted line represents the light ray which passes through the three relevant points p;, ¢« = 1, 2, 3.
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Figure 7.9: Strain amplitudes of the ¢ = 0.1 simulation for the modes | = k < 4 (upper panel),

together with the spin evolution (lower), where the first black hole is the most massive one. The
dashed, vertical lines separate the periods before and after the merger.
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7.5. Comparison with analytic expressions

In Fig. 7.9, we drew two dashed, vertical lines. The first of them marks the moment when the
centroids of both apparent horizons are at a distance equal to the sum of their mean radii. This
means that both black holes are already too close to continue tracking each of them separately.
The second vertical line marks the moment from which the joint horizon can be followed.

One of the main conclusions that should be drawn from this simulation is that two initially non-
spinning black holes involved in a hyperbolic encounter that ends in merger can naturally acquire
a relevant spin while they approach each other. In practice, this means that, if we observe only the
last oscillations of a merger through its emitted gravitational waves, and estimate their initial spins
from an inspiral waveform template, we cannot assume that they had this large spin asymptotically
away from the merger. If they started as a hyperbolic event, they could have acquired their spin as
they scattered off each other, emitting gravitational waves and becoming a bounded system that
finally merged in a few oscillations.

7.5 Comparison with analytic expressions

The problem of analytically deriving the induced spins in a close hyperbolic encounter is not trivial.
In fact, in order to accurately predict the results of our simulations, one would have to get to, at
least, PPN(4) order [278, ]. This strong field interaction cannot definitely be modelled with
weak field approximations, as the minimum separations of order 1-7M in Table 7.1 show.

Nevertheless, one can take some naive approaches to this question in order to, at least, see
whether we can qualitatively predict the trends or not. This is what we tried to do in this section
with the different expressions derived in the App. C, namely (C.6) and (C.24), (C.25).

7.5.1 Trend for varying incidence angle

First, we study the behavior for varying 6. If we substitute vg in terms of vy, using Eq. (1.205), we
can write

(e+1)'? 5
X = f X mvm, (73)
with f given by
16
fring = 377 (74)

for the ring expression (Eq. (C.6)) and by

JispN1 = [gn + §<1 —V1- 417)} % (7.5)

fispn2 = {gn + g(l +4/1 - 477)} % (7.6)

for the PPN(1.5) approximation (Egs. (C.24) and (C.25).

In order to relate the previous expressions to 8, we can use the expression (7.2). By neglecting
the Lorentz contraction and since the constants involved are the same for all the cases with fixed
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initial momentum, we conclude that sinf o ve2 — 1. Therefore, for low values of #, we can use

0 x e —1.

By neglecting the missing factors, we can assume that § < 1 implies e = 1, which implies
treating the e 4+ 1 factors as constants. By doing this, we find that our equations can explain
a trend xy ~ 675, This is not enough to predict the exponents that we observe in the results
(Table 7.2), but the difference could be easily explained as the missing strong field interaction that
we do not take into account, which underestimates the spin for lower § (lower impact parameter

and eccentricity).

7.5.2 Trend for varying mass ratio

According to the ring expression (C.6), we would not expect different final spins for both black
holes of a given simulation. However, the PPN(1.5) expressions (C.24), (C.25) do predict different
spins. In fact, they accurately predict the fact that the greater spin is induced in the most massive
black hole.

Another success of the PPN(1.5) approximation is that it predicts that the induced spin on a
given black hole is directly proportional to its mass. This is what we see in the results, particularly
in Figs. 7.6 and 7.7. By dividing by the central spin, as in this second figure, and assuming that
the relative speed is the same in all the cases, we can cancel out some constants and get a straight

line with slopes
; [277+3( —M)]ml, (7.7)

4

= [2774—3( + 1—477)} mo, (7.8)
for the most and least massive black holes, respectively. For g ~ 1, both slopes are 1, which

at least reproduces the order of magnitude of the slopes in Table 7.3, but the difference is clear.

Again, this can be explained because our approximation does not tackle strong-field interactions.

Also, this time, there is another source of error, which is that the numerical constants that we
pretend to get rid of by dividing by the central spin do not disappear. Since they involve speeds,
they are different for each value of ¢, which could impact the trends.

7.6 Conclusions

Following the work in [278], we showed that it is possible to induce spins in two initially non-
spinning, equal-mass black holes. They are larger for higher initial velocities and smaller values of
the impact parameter.

In addition, we studied hyperbolic encounters where the two black holes have different masses
and found that, for a given impact parameter and initial relative velocity, the highest spin is
induced on the most massive black hole. In particular, we found that the spin induction effect can
be significantly enhanced for the most massive black hole when the mass ratio becomes large. This
result suggests a viable mechanism for significant spin induction in PBHs, contrary to the case of
gas accretion, where the induced spins cannot acquire large values.
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Furthermore, we were able to qualitatively predict the trends of the spin with varying impact
angle and mass-ratio with simple weak-field approximations. However, in order to get more accurate
predictions of the induced spins, one would have to resort to higher orders of the PPN formalism.
This is left for future work.

With our expressions for the induced spins, we might expect more accurate predictions for
more modest values of the involved parameters (weaker interaction). However, they are difficult to
generate with the Einstein Toolkit, since the errors involved in low spin measurements are higher in
relative terms. Also, the interaction times could get significantly bigger and we would need larger
separations, which might be problematic from a technical point of view. Nevertheless, with enough
computing power and time, these simulations are possible and should be explored in the future.

Finally, we found that two initially non-spinning black holes involved in a dynamical capture
with intermediate mass ratio (¢ ~ 0.1) can naturally acquire a relevant spin, x ~ 0.8, for the
more massive black hole. This result is relevant for the interpretation of some of the events like
GW190521 found by LIGO/Virgo, since the progenitors could have started being very massive but
spinless primordial black holes.

We note that most of the hyperbolic encounters in dense PBH clusters occur at large impact
parameters (many times their Schwarzschild radius) and small relative velocities (vo < ¢), and
therefore the induced spin will be negligible for the majority of the black holes in the cluster.
However, from time to time, a hyperbolic encounter between a large-mass-ratio pair will spin-up
the more massive PBH to values of y significantly different from zero, up to x < 0.2. This could
explain why we observe in LVK GW events [264] a distribution of spins peaked around zero with
dispersion Ay ~ 0.2. A more refined study taking into account the distribution of eccentricities,
impact parameters and relative velocities in dense PBH clusters [277] should give us a prediction
for the expected spin distribution depending on the mass and compactness of the cluster. We leave
this for future work.
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Chapter 8

Gravitational wave constraints from
astrometry

8.1 The stochastic gravitational wave background in different
frequencies

Standard gravitational-wave detectors are able to probe frequencies in the Hz-kHz range (LVK [6,

, 13], Einstein Telescope [17], Cosmic Explorer [18]). In the future, we will have the space-based
detector LISA [20] measuring gravitational waves in the mHz range. However, the SGWB spreads
through all the frequency spectrum, with interesting sources at lower and higher frequencies, as we
saw in Chapter 2 and particularly in Fig. 2.1.

One of the most popular methods to constrain the SGWB at low frequencies are pulsar timing
arrays (PTAs). This method is based on monitoring a series of pulsars and measuring their time
delays, which are attributed to a stochastic gravitational wave background. Last year, there were
a series of publications by all the PTA collaborations: the North American Nanohertz Observatory
for Gravitational Waves (NANOGrav) [8], the Indian Pulsar Timing Array (InPTA) and European
Pulsar Timing Array (EPTA) [9], and the Parkes Pulsar Timing Array (PPTA) [10], as well as a
joint analysis by the International Pulsar Timing Array Collaboration (IPTA) [11] some months
later. In these publications, they claimed evidence of a SGWB, but not yet a detection.

The SGWB can also be constrained at even lower frequencies, from 10~2° Hz to around 1016

Hz, by using polarization measurements from the CMB [109]. In this case, the latest data are
provided by Planck [384], where one can use the measurements of the B modes to generate the PI
sensitivity curve for a SGWB [385, 380].

Additionally, there is a lot of work being done for high-frequency gravitational waves, where
sources such as cosmic strings or phase transitions would still be relevant, as well as mergers from
light primordial black holes. There are different experiments being proposed, such as mechanical
resonators (resonant spheres in the kHz [387, 388], bulk acoustic wave devices in the MHz-GHz [389])
or devices based on the inverse Gertsenshtein effect [390], by which photons turn into gravitational
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waves in the presence of a magnetic field [391, | (also up to the GHz), only to name a few.
A comprehensive review of this field, sometimes called Ultra-High Frequency Gravitational Waves
(UHFGW), is provided in [287].

In this chapter, we will focus on the SGWB constraints one can derive from astrometric surveys,
such as Gaia, which bridge the gap from CMB polarization measurements to PTAs.

8.2 Introduction to gravitational wave constraints from as-
trometry

The formalism relating gravitational waves to astrometry was already studied over the past cen-
tury [393, , , , , , , | and at the beginning of this one [101, , ]. In
particular, Gwinn et al. [404] used proper motions from quasars obtained from Very Long Baseline
Interferometry (VLBI) to set an upper bound Qqw < 107! for 10717 Hz < f < 10~° Hz. Later,
Titov et al. [105] updated this limit to Qgw < 1072.

Furthermore, since the review by Book and Flanagan [103] in 2010 and the launch of the Gaia
mission [106] in 2013, the field was revitalized with more articles, such as the constraints from
Darling et al. [140] and Aoyama et al. [407], which will be commented extensively and reanalyzed
in Chapters 9 and 10; as well as more theoretical or mock data-based works [108, , , ].

The formalism is detailed in the following sections, leading to the expressions we needed for our
work on astrometric constraints from Gaia DR3 [4]. The main idea is to compute the change in the
observed sky position 7 of a star in the presence of a gravitational wave through the trajectory of
the light it produces, from its emission at the source (S) to its observation from Earth (O). We will
denote this shifted position 7/, with the difference being the angular deflection 61 = i’ — ©i. The
situation is depicted in Fig. 8.1.

~ e ©
— T

Figure 8.1: Illustration of the concept of angular deflection. In the absence of a GW, the star at
source S is observed in the direction of the unitary vector . With the passage of a gravitational
wave, this position is deflected to 7’ (gray), with the angular deflection being 67 = 71/ — 7@ (red).
The gravitational wave is represented by its propagation direction p’and plane wavefronts (cyan).
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8.8. Minkowski spacetime

The main reference for this part will be Book and Flanagan’s review [103]. Most of the results
in this reference will be explained, generally with more detail, and some of them will be expanded
with own results or other references, especially in the final sections.

Following this article, I will first start by computing the angular deflection of a star due to
the passage of a gravitational wave within a Minkowski background spacetime, which is simpler.
Then, it can be extended to FLRW spacetimes by means of a conformal transformation. We will
particularize for the case of distant sources and plane waves and, finally, compute the relevant
equations for a SGWB context. These equations will then be decomposed into spherical harmonics,
which is needed for the data analysis in Chap. 10.

Throughout these chapters, we will work in geometrized units G = ¢ = 1.

8.3 Minkowski spacetime

8.3.1 Unperturbed case

We consider Minkowski spacetime perturbed by a gravitational wave, which is given by

ds? = g datda” = —dt* + (8;5 + hi;)da'da? (8.1)
with their non-zero Christoffel symbols given by
1 1 1
].—‘}51 = iaohki, F?j = anhij, Fi-cj = 5[5’]}%1 -+ Glhkj - 8kh”] (82)

Within this spacetime, we study the evolution of a light ray of unperturbed frequency wy emitted
from a source at position Zg and observed at the Earth © = 0 at a certain time ty. In absence
of a gravitational wave, the worldline of the light ray is given by a straight line with direction of
propagation —i, with 7 = Z/|Z|. The photon 4-momentum will therefore be

kb = wo(1, —). (8.3)
Throughout this chapter, we will work with the 4-momentum k* as the tangent vector to the
corresponding photon worldline. Therefore,
dzt(N)
EF(N) =
o ="

with A being the affine parameter of the geodesic x#(\). This means we can parametrize the
worldline as

(8.4)

‘Tg()‘) = (to, 6) + w0(>‘ﬂ —Aﬁ), (85)

where Ao = 0 corresponds to the detection on Earth and Ag = —|Zs|/wp, to the emission at the
source.
In addition, we will use u* to denote the 4-velocity,
dx*
ut = —, 8.6
o (8.6)

thus matching the notation in [403].
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8.3.2 Perturbed case

We consider the perturbed trajectory and photon 4-momentum as the sum of two contributions:

at(A) = ag(N) + 27 (N),  EHN) = kG (A) + k(N (8.7)

From the geodesic equation,
R
d\2
and the fact that ['j; = 0 (the non-zero Christoffel symbols are given by Eq. (8.2)), we realize that

stationary observers follow geodesics. Therefore, we can consider the source and observer’s spatial
coordinates to be fixed.

I Kk =0, (8.8)

Given that all the Christoffel symbols are first order in h, in order to stay at first order in the
geodesic equation (8.8), we only need the zero-th order of the 4-momentum, which gives

d2$(1) = wOn ’I’Ljao ijs d2$lf = _ig
dX? 2 dX? 2

[—2n'Ohy; + n'n? (Ojhg; + O;ihi; — Okhij)], (8.9)

In order to obtain the full trajectory, we have to integrate these equations from A = 0 to an
arbitrary A. Doing it just once, we get the perturbed 4-momentum,

K\ = f%nwzj@) +1I, KO = f%anij(A) + L (8.10)

while integrating twice recovers the trajectory:

2 . 2 .
22 = _%ninj/cij(x) F TN, () = _%nzsﬁ(x) + A, (8.11)

with

Zi;(A) = /( dXNdohij(X'),  Tijr(A) = /( dXN Ohij(N'), (8.12)
i ( /( d)\/I” Lijk(A /( ax Tijk (A (8.13)

Rij(A) = =2Z;;(N) + 0" (Tije (V) + Tjki(A) = Ting(N), (8.14)
Sij(A) = =2ICij (A) + 1" (Liji(A) + Lji(A) — Li; (V) (8.15)
and Iy and Jg being integration constants.

There are no extra integration constants when integrating k* to get z*, given that x1(0) = 0.
This is because the perturbed photon trajectory must include the detection event (%o, 6), which is
already given by the unperturbed trajectory. Therefore, the perturbation at this instant must be
zero. This is the most straightforward simplification we can make to the equations due to boundary
conditions, but there are more, as will be detailed next.
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Boundary conditions
We impose several boundary conditions to further simplify the previous equations:

e The perturbed photon trajectory must intersect the source worldline, i.e. there must be a As,
which at zero-th order is just Ag, such that zj(As) + 2](As) = z%. Using Eq. (8.11),
. ~ . wQ . ~ .
vl = —woAsn? — gnzsijus) + J s (8.16)
We can project this equation perpendicular to 7i to get the perpendicular component of J¢:

w

s (6% — ninF)nd S (\s), (8.17)

i
JOJ__

where, to first order, the zero-th order 5\5 = Ag can be used due to the S, dependence on h.

e The photon is emitted with unperturbed frequency wgy. This frequency can be computed as
wo = —gwk”UZ7 (818)
with u# the 4-velocity of the source. Given that, in the previous subsection, we assumed
that the source had constant position, its 4-velocity is u# = (1,0), so we have the equality
—guok* = wp. Again, we can approximate that, at the source, A = Ag to get

wZ o
Iy = %nzndij ()\5). (8.19)

e The photon geodesic must be null, which gives the constraint g,, k*k” = 0. Expanding the
metric and k* = kf + kI', this gives
hu ki kg + 20,k kg = 0. (8.20)

We now substitute kf and k{" by their expressions in Eqgs. (8.3) and (8.10) to get
o 2 T2 _
hi(Nwan'nd + 2w {‘énlnizj(x) - 10} + 2won? {;n’Rij()\) - Jg} 6 0 (8.21)

If we now use the expression
dh;;
dA
one can show that, from the definition of Z;; and R;; in Egs. (8.12) and (8.14),

= wodohi; — won*Okhij, (8.22)

won'n? (Z;;(A) + Rij(A) = won'n? (—=Zi;(A) + n*Tijr(N))
= n'n’ / dNwo(=0hij(N) +n*oRhi;(\))

= n'nd hiy(0) — his (V)] (8.23)
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Substituting this in Eq. (8.21), the terms of Z;; and R;; cancel the one with h;;()), so that
IO + nlJé = 56«1077/1%]}%]‘ (0) (824)

Subtracting from this expression the previous Eq. (8.19), we get the parallel component of

J()I
2

n,Jé = iwon’njhij (0) - %n’njL'j()\S), (825)
so, together with Eq. (8.17), we have the full expression for Jg:

2

2
ﬂ((5““ —n'n")n? S (\s) — O;—OnlnjnkIjk()\g) + iwonznjnkhjk(O) (8.26)

Jb =
07 2)\g

8.3.3 Observed angular deflection

In order to get the angular deflection observed from Earth, we must account for two extra perturbed
quantities. First, we will see how the observed frequency varies and then, how the local frame does.

Observed frequency and local reference frame

On the one hand, the observed frequency is given by the same expression as in Eq. (8.18), but now
at the observer,

Wobs = — Gkt (8.27)

Again, since the observer coordinates are constant, u?, . = (1,6). Therefore, substituting the
value of k* in Egs. (8.3) and (8.10) and using Eq. (8.19) for the value of Iy,

2 . .
Wopbs = k2(0) = wo + Iy = wo + %nznﬂzﬁ(xs). (8.28)

On the other hand, even if the observer’s coordinates remain constant, a local vector basis
defining its proper reference frame may vary in time due to a GW. We account for this effect by
defining a set of orthonormal basis vectors é'j. which, unperturbed, coincide with the coordinate
basis, but are otherwise parallel-transported along the observer’s worldline. Therefore, they satisfy

e;; = 5; + (56;. In order to extend this basis to the dimension 4 of the spacetime, we define the 4-

vectors e;‘ = (0,¢;) and complete the orthonormal set with an additional 4-vector e = u" = (1, 0).

To summarize,
B— oyt = (1.0 i 5 i 0 —
ey = u' = (1,0), e; =0: + e}, e =0. (8.29)
We could have also defined a (5650_ but, as we will see, it can be set to zero with no loss of generality.

From the parallel transport equation,
utVes =0, (8.30)
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we get the equations for the 4-vectors. For eg =u”, the parallel transport equation is automatically
satisfied. For the spatial 4-vectors,

a B B N — B By —
u [8(!63 + Favej] =0 = 80(563 + FO'vej =0, (8.31)
where we have used that u# = (1,6). We now recall that, for the Christoffel symbols, given in

Eq. (8.2), the only non-zero ones of the form I‘g7 are those in which both 5 and « are spatial.
Therefore, to first order,

7 1 7 % 1 % o %

with w; a constant matrix. In addition, the fact that ng = 0 implies that, if there were a de?, its

time derivative would be zero. Since we want to recover the canonical basis in the absence of a
gravitational wave, we can safely set the integration constants to zero without loss of generality.

Therefore, at the detection event,

14

1
ch = 8 — 3hi(0), (8.33)

where the expression also works for either y = 0 or v = 0 due to the definitions we made, and
knowing that hg, = 0 for all v.

Angular deflection

Finally, we can compute the observed angular deflection. To do that, we take the two different
expressions we have for the 4-momentum of the incoming photon and compute their i-th component
evaluated at the observation event, A = 0. On the one hand, we have, from Egs. (8.3), (8.10), (8.26)
and the fact that R;;(0) = 0 from its definition in Eq. (8.14),

2 2
k(0) = —won’ + 2“;795(5“6 — nin®)nd S (As) — %nln]nkIjk(/\s) + Swon'n/nthy(0).  (8:34)

On the other hand, we can express the 4-momentum at the observer in terms of the local
reference frame basis as ) )
kﬂ(o) = k‘ﬂeg = Wobst!" — wobsnjega (835)

which is just the local version of the unperturbed photon 4-momentum kjj = wo(1, —7), with 7
being a unitary vector also in this reference frame, (5;jeninj =1.

From the previous equation, we can compute an expression for n’ which will be useful in the
next section. We define n’ = —1 to unify both terms, and substitute weps by its expression in
Eq. (8.27). We also assume the A = 0 dependence to be implicit. Contracting with gm;eéy, we get

§
- s 5 N gwsk‘aeA
LY — (gﬂuk”ugbs)nﬂeg = gmse;yko‘ — (gﬂuk”ugbs)nﬁ(sé,y = nl = m (8.36)
4 obs
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Chapter 8. Gravitational wave constraints from astrometry

Going back to Eq. (8.35) and substituting weps in Eq. (8.28) and 65 in Eq. (8.33), the spatial
components are
) 2 R R
k‘l(O) = — <<0 + Léonknlzkl(/\s)> n? ((5; — 2h§(0)> ( (837)

Again, we decompose n/ = né + dn?. At this point, we can drop the hats, since the reference
frame is obvious in all the quantities involved. If we make Eqgs. (8.34) and (8.37) equal, the zero-th
order is simply

—won® = —wony, (8.38)

so nf = n', as expected. The first order then provides

2

E'(0) s

(6% = n'n*)n Sju(As) + Jwon'n/n*hyi(0) = —wodn' + %njh;(O). (8.39)

We can then easily solve for én’ and group the terms like
i Lok i kY, J wo
on' = 5(6 —n'n")n’ < h;i(0) — )\—Sj (As) (8.40)
s

with Sj; given by Eq. (8.15).

8.4 FLRW metric

Given that the geometry of our Universe is best described by a Friedmann-Lemaitre-Robertson-
Walker metric, we would like to reproduce the previous results for this spacetime. Assuming a flat
curvature parameter, the perturbed FLRW metric is given by

ds® = Gupdxtde” = a(T)Q{—dT2 + [0 + hyj (T, i")]dxidxj}, (8.41)

with its non-zero Christoffel symbols being
i a m 1 no 0 a 1 k 1 kl
Ty = =04 + 50" 00how, T = —(0ij +hig) + 500hsj, Ty = 50" [0hus + Oiluy — Aihg). (8.42)

The metric in Eq. (8.41) can be re-expressed as
ds® = g datda” = a(T)ngdx“d:L"’, (8.43)

where g, is a conformally related, unphysical metric which is formally identical to our Minkowski
spacetime (8.1) in the previous section,

G datda” = —dr® + [6;; + hij (1, @) da’da’ . (8.44)

Therefore, we can establish a correspondence with the previous results, without the need to
repeat the computations from scratch. We will denote with a bar all the quantities related to the
metric g,,,,.

The main points we need to review, in light of the conformal relation to the Minkowskian case,
are the following ones:
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8.4. FLRW metric

Again, the observer and source can be assumed stationary, given that these trajectories are
geodesics of the spacetime. This can be deduced from the fact that I'f; = 0 (see Christoffel
symbols in Eq. (8.42)).

We consider a null geodesic «#(X) of the spacetime given by g,,,, with A its affine parameter.
Then, it is known that it will also be a geodesic of the conformally related metric g, [112],
with a different affine parameter ¢ such that

i 1

D= O (8.45)

Based on the previous point, the unperturbed photon trajectory is best parameterized using
the affine parameter of g,,,,, like

7(¢) = 70 +wo¢, ='(¢) = —Cwon'. (8.46)

The 4-momentum and 4-velocity relations are given from the metric (8.41) and Eq. (8.45),

kuzdx“_ldx“_lfu u

dxt  1ldzt 1_
DoEd e YT T ad — (847

In order to remain normalized, the unperturbed basis vectors must be rescaled by a='. There-
fore, the perturbed ones will be

eé. = é ((5; + (56;) (8.48)

Again, since the observer is stationary, ul, = = (1,6) and, similar to Eq. (8.31), the parallel

transport equation is reduced to
aoef + ngeg =0. (8.49)

Using the corresponding Christoffel symbol from Eq. (8.42) and Eq. (8.48),

Cap o\l faps Legra o, N1 oo
. (53 —|—563) 6 ~0de! + (aai + 507 dohu ) ~ (55 +563) 6 0, (8.50)
which leads, to first order, to
1
aocsef + §5ﬁk80hk3 =0. (8.51)

As in the Minkowskian case, this proves there is no need for a §e?, given that its null time

derivative allows to set it to zero. Similarly, for the spatial indices, we get the same solution
as in the Minkowskian case, so that

@ 1 % 1 %

or, in terms of the conformally related metric,

L= —€. 8.53
e ae ( )



Chapter 8. Gravitational wave constraints from astrometry

Using these expressions, we can relate the observed position in local coordinates n' with the
equivalent one for g,,,,. From Eq. (8.36), we substitute the relations for the metrics in Eq. (8.43),
the 4-momenta and 4-velocities in Eq. (8.47) and the basis vectors in Eq. (8.53). We realize all the
a(T) factors cancel out, so that

. Gask @
= Ja87 & (8.54)

_ H_y
g,uu k Uobs

Given that this expression is formally identical to the one for Minkowski spacetime (8.36), we can
substitute the expression (8.40) but in terms of the quantities related to G, including its affine
parameter ¢ instead of A\. As a result, expanding the expression fully, we get

1 , 4
on' = 5(5”C - n’nk)n7 { i6(0) — g
(s ! Cs !
x [—2/0 d¢’ /(( dCHaOhjk(CH)“‘nl/o d¢’ /( d¢" (Ouhr(¢") + D (") —8/ghjl(<”)>‘| }

(8.55)

8.5 Further simplifications

We can reduce the double integrals by applying some identities. First, we use Eq. (8.22) to transform
the second term like

/

ik Qs ! ik rCs ’
w /0 ac /( 4 (wod(C) = /O i’ [hjk@”)lé + /( dc”wonlalhmc”)],

(8.56)
where we denote s?* = (§°* — nin*), common to the three terms. The second term we obtained in
the previous expression exactly cancels the first and second terms of the third big term in Eq. (8.55),
which are equal since the j and [ indices are interchangeable. Therefore, and using the identity

/0JJ dx’ /(/ dz" f(z") = /Ow da'(z — 2') f(2) (8.57)

to get rid of the remaining double integral, we get

' ik ik Cs ik (s .
(;nz:%n]hjk(o) +STS"] /O dthk(g)_hjk(())]ﬂo; /0 dccsc—scnﬂnlakhﬂ(o. (8.58)

8.5.1 Plane waves and the distant source limit

Later on, we will be interested in computing the effect of a stochastic gravitational wave background
on the angular deflection spectrum. For this purpose, there are several simplifications that can be
made to the previous expressions. First, we will consider a plane wave, given that, for very distant
sources, we can consider the SGWB to be a superposition of plane waves. Then, we will assume
that our sources are far enough that we can further simplify our equation.
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8.5. Further simplifications

Even if the more physically meaningful case of those studied is the FLRW metric, it is useful
to first study the problem in the Minkowski spacetime. This simplifies the procedure and allows to
get a better physical and mathematical intuition for what each term stands for.

Minkowski spacetime
In a Minkowski spacetime, the wave equation is simply given by

[8152 - VQ]hij (ta f) = 07 (859)
so that a plane wave with angular frequency ) propagating in the direction p'is given by

hij (t, f) = Re[/Hije_iQ(t_ﬁ'f)] = hij ()\) = Re[’Hij6_19{t0+w0(1+ﬁﬁ)>\}]. (860)

Therefore, if we substitute in Eq. (8.58) (now with A instead of ¢) since we are in Minkowski
spacetime, we get, after some heavy simplification,

, (24 p i) iOwe (15
ont = R, _ 1Quwo (14+p- 1) A s
e [({<+ wo/\SQ(l 5 7) [ ¢ }
+ + 77,Qw0(1+p n)>\Sj| p,L njnkij;efiQtO
woAs Y 1—|—p ) 21+ p-7)

1 7zQw (14p R)As jqyi ,—iQt
_Jz 0 . 0 .61
{ +wo)\SQ 1+p-7) ( ] Hje (8.61)

In this expression, we can observe that the angular deflection depends on the value of the
gravitational wave both on the source and the observer. This is similar to what happens for
PTA [8, 9, 10]. In that case, the source terms cannot be neglected individually, but they are
assumed to vanish when averaging over the different pulsars. In this case, however, we can get rid
of the source terms at this point of the formalism.

For this purpose, we will assume that the source is far away enough, in what is called the distant
source limit. Mathematically, we suppose that the distance to the source |xg| = wg|\g| is much
larger than the gravitational wave wavelength ¢Q2~!. In this case, those terms with denominator
woAsQ(1+ P 7i) in Eq. (8.61) become negligible and we get

. . J Qo S
on' = Re [fﬁ D )H;]zglff_,) - ;’H}nje’m“} ( (8.62)

p-n

where we observe no dependence of the gravitational wave at the source anymore, but just at the
observer. With this approximation, we limit ourselves to a certain frequency range Q > c¢/|zg|.
However, the simplifications allow to completely neglect what happens at the source, which would
otherwise complicate any analysis with real data. We will discuss this more for a work on real data
in Chapter 10. As a double-check, it can be seen that 67 in Eq. (8.62) is orthogonal to 7, which
will also be used in Subsection 8.6.3.
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Chapter 8. Gravitational wave constraints from astrometry

FLRW spacetime

In the case of a FLRW metric, the wave equation is now given by
a/
02 +2—0; — V2| hyj(1,%) = 0, (8.63)
a

where the prime denotes derivative with respect to the proper time 7. The solution for a plane
wave with angular frequency §) propagating in the direction p'is given by

) At Cl/
hij(T,Z) = Re [Hijemp‘“qg(r)} qé, + 2Eq§) + Q%gq = 0. (8.64)

In this case, it is harder to simplify the equations before using the distance source limit. It is easier
to apply both simplifications at once. Here, we must also assume that the wavelength a/€ is much
smaller than the horizon scale a?/a’, not just the distance to the source. Under this assumption,
e = a’/(Qa) < 1, which makes the term h;;(¢) oscillate rapidly in the second term of Eq. (8.58),
making it negligible with respect to the integral of h;,(0). For the third term in Eq. (8.58), the
integrand oscillates rapidly, which makes the integral be dominated by the contributions near the
integration limits or, in this case, just ( = 0 since the integrand vanishes at ( = (s. In this regime,
we can also approximate .
~ —iQT

ga(T) ~ a(m)e , (8.65)
which can easily be checked that solves Eq. (8.64) under these assumptions. In this case, we recover
a standard plane wave. In addition, Eq. (8.58) has been left with only constant terms at the origin.
Therefore, the terms that remain are exactly the same ones as in the Minkowskian case, which,
operating, leads us to Eq. (8.62) again.

8.6 Angular deflection correlation

8.6.1 Autocorrelation spectrum

We now want an expression for the correlation, which is the quantity directly related to the
stochastic gravitational wave background. We will start by analyzing the case in which the an-
gular deflection in a given direction is correlated with itself, 7 = 7i’. This is later generalized for
the case of different directions in Subsection 8.6.3. Again, for this section, the main reference is
Book&Flanagan [103], but the computations will be more detailed and presented in a more conve-
nient order for the purpose of this thesis.

We start by decomposing a generic wave into plane waves with different propagation directions
P and polarizations A = +, x, with amplitude h 4(p), similar to Eq. (1.36). In this case, in order to
match the notation in [403], we take the form in which we only have positive frequencies, so that
we have to include the complex conjugate terms:

A=+,

hij (T, t) = Z(/Om df / d*Qha(f,9)e*™ I PTD el () + c.c. (8.66)
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8.6. Angular deflection correlation

Substituting this expression into our Eq. (8.62) for the angular deflection, we get

on' (i, t) = A; ( /0 b df / d*Qha(f,p)e > R* (i, pless (B) + c.c., (8.67)
with . . ok
RM(7, ) = 5 { nl—:pﬁ).nﬁn _ nk(sil:| ( (8.68)
As we saw in Sec. 2.1, if h;; is Gaussian, stationary and with zero mean, we have
(ha(f.p)hB(f',0")) =0, (8.69)
3H3Qcw (f)

(ha(f.P)hp(f',0")) = 5(f = f1)0and*(7,0"). (8.70)

3273 f3

Taking the correlation between a pair of angular deflections 7 (77, t) in Eq. (8.67) and using the
previous Eq. (8.70), we get

3H? , N
(' (7, £)on? (7i /( 32w 3(}3 w(f)e 2 = i (7 @) + c.c., (8.71)
with
19 (7, 1) = Z(/ PR (. Pey (YR (7. 5) (efs(P)) (8.72)
A=+,
The previous expression is simplified by using the property
Z(eiAj(ﬁ) (efz(ﬁ))* = 2P, (8.73)
A=+,

where P;j;,; is a projection tensor, onto the space of traceless symmetric tensors orthogonal to p. It
is given by

2P;jk1 = 0ix0j1 + 0i10jk — 030kt + DiDjPrPL — OikDiD1 — O5PiPk — OutPjPk — OkPiP1 + 0iiPrDl + OrkiPiD;-
(8.74)
Therefore, Eq. (8.72) can be simplified to

HY9 (7)) =2 /<d2Q R R, PYRI™ (1, §) Phirs. (8.75)

I now particularize for the case that both 7 and t coincide. As mentioned before, the case in
which the directions are different will be studied in Subsection 8.6.3. In this case, one can use
Egs. (8.68), (8.74) to show

N =
S

2RI Pyyys = { 7. {iﬂkm — 8+ (7 1) (prp1 + Ok1) — 4P - A)nepy) + Drpr

{ ﬂ(k5lj) =17 — 2ngpyp’ + prpin? + (P 1) (lCcplpj + brp’ + QP(kCS{)) H
(8.76)
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Chapter 8. Gravitational wave constraints from astrometry

where 7{,,,) denotes the symmetric part of the tensor 7),,.
Contracting with the remaining R**!, we get

(' +p") (0’ + 1)
(1+p- )2

—2m (n] —(P'W)PJ) (7 —p'") [, (8.77)

1- (7 7)%

2R™RI™ Pryps i (1—(7-i)?)

which, operating a bit, reduces the square bracket just to §% — nin/. Therefore, going back to
Eq. (8.75),

HY (7, 77) = i/sz [1— (- 7)2)(6% —nind). (8.78)

This integral can easily be solved by defining 6 as the angle between p and 7. In this case,
2 8T
d“Q[1 — ] =27 [[ dfsinf(1 — cos? ) = 27 2— = 5 (8.79)

.. 2 .. .
H (71, 71) = l((sw — nind). (8.80)

Therefore,

Substituting this expression into Eq. (8.71), we get

(6n' (7, t)on? (7t =32 /( deO Qaw (f)(69 —n'nd), (8.81)

where, given that there were no imaginary numbers involved, the complex conjugate coincides with
the first term, adding an extra factor 2. Taking the trace of the previous expression, we get our
final expression for the spectrum of angular deflections:

f

where it is explicitly indicated that this quantity can also be referred to as the root mean square
angular fluctuation squared, 62,

2
(07 = e = 13 <d1 af (220 fcw(s) (5.52)

The main interest for this chapter is the obtention of the spectrum of proper motions so, differ-
entiating 67 in Eq. (8.67), a factor 472 f? arises in the spectrum which produces the expression

(6i1%) = /(dln FH2Qaw(f). (8.83)

Therefore, the quantity over which we are able to place constraints is the right-hand side of
Eq. (8.83). However, to place constraints over the maximum amplitude of Qgw(f) in our fre-
quency range, it is usually assumed that Qgw(f) has a simple functional form which is mostly
relevant over one order of magnitude in f. To simplify things, one can assume that the amplitude
of Qaw(f) is constant in this frequency range, so that the following approximation holds:

1
9] ~ 72 .84
GW ~ 5 (073%). (8.84)
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8.6. Angular deflection correlation

Under ideal conditions, one can get a rough estimate of the constraining power of a survey. If
we consider that a certain mission will detect IV sources, homogeneously distributed in the sky and
all of them observed over a period T with a position resolution A#, the correlated angular motion

should be of order

. A
5~ ——. 8.85
e (8.85)

Using Eq. (8.84), this leads to
(A0)

Qow < ——27
W~ NT?H?

(8.86)

This expression has been used in the literature [403, , | to set constraints under idealized
conditions. However, as we will see in Chapter 10, this does not always hold with real data.

8.6.2 Frequency validity range

To complete the previous subsection, the validity regime of the derived equations should also be
addressed. In order to obtain our final expression in Eq. (8.62), we used the distant source limit,
which is only able to constrain the frequency range to f 2 ¢/d, with d the distance to the source.
In the case of a set of sources, it should apply to all sources, so it should be the distance to the
closest source. However, to provide a more stable lower frequency bound, the 25th percentile of
the distance distribution is used, so that, for the lower constrained frequency, at least 75% of the
sources fall under our assumptions. We denote this distance by dos, which will be used in Chapter 9.
In principle, one could be more conservative and take the 5th or 10th percentile, so that 95% or
90% of sources can be used in the lower constrained frequencies. However, 25% is more standard
in the literature [140], so we will use this value.

For the lower end of the frequency range, we have the inverse of the observing period, f < 1/7.
This is a bit counterintuitive, so it merits some discussion. If we were observing a source over
a period T with a cadence At, in order to characterize a wave, its wavelength would need to fit
inside the observing period, A < ¢I'. However, if it fits inside the cadence, the average over high
frequencies will dilute the signal, so the wavelength should be higher, A > cAt. This would produce
the interval 1/T < f < 1/At, as it is used in references such as [413].

In our case, nevertheless, we will not be dealing with a time series, but rather, with the averaged
proper motions over the full observing period. Therefore, we will only have a data point per source,
so the cadence for the position measurements is all the observing time, ¢ = T. This provides the
bound f < 1/5t = 1/T, as explained in the previous paragraph. The bound f 2 1/T can however
be relaxed if we do not need to track the wave oscillation within our observing time. In this case,
what we will observe is the effect of higher wavelengths, which can locally be approximated to
behave linearly. This linear time evolution in the tensor metric perturbation still induces spatially
correlated fluctuations in the proper motions, producing an observational effect which can be used
to constraint these frequencies.

As a result, our frequency validity range will be

c 1

< < _
SIS (8.87)
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Chapter 8. Gravitational wave constraints from astrometry

Going back to Egs. (8.83) and (8.84), the integrals should also be evaluated in this frequency
range. In the case of f > T~1, their effect can be neglected due to rapidly oscillating waves
averaging out, and frequencies lower than ¢/dss are neglected by hypothesis when we assume the
distant source limit regime.

In the next subsection, the computation of the angular deflection correlation is generalized to
arbitrary directions, which will be necessary in Sec. 8.7.

8.6.3 Generalization to different directions

We will now generalize the expression for the angular deflection correlation in Eq. (8.81) to arbitrary,
non-coincident directions 7, 71’. The procedure is identical to the one in Subsection 8.6.1, but now
H (i, 7') in Eq. (8.72) cannot be simplified assuming 7’ = 7, which reduces the symmetry of the
equations. Nevertheless, there are other symmetries we can take advantage of. First, given that é77
is orthogonal to 7, as stated in Subsection 8.5.1, then H%(7i,7’) is orthogonal to 7 in the index i
and to 77’ in j. Then, it can be decomposed into a tensor basis with the same property. First, we
define the vectors

A=ixi', B=iaxA, C=-ixA, (8.88)
where A and B are a basis for the orthogonal space to 77, and similarly with A and C for @ , as
long as 71 # 7i’. Then, the most general 2-tensor orthogonal to 7 in the first index and to 7’ in the

second one is then
HY(7,7) = a(it, 7)) A' AV + B(A, 7 )A' BT + (i, 7 )A'CY + o (i, 7 )B'CY. (8.89)
Then, we notice that H in Eq. (8.72) is invariant under rotations, so all the functions can only
depend on the angle between 7 and 7, which is denoted by ©. Also, it is invariant under parity
change 7 — —7, i’ — —n’. This transformation leaves A invariant, but changes the sign of B and

C. Therefore, to preserve this symmetry, the terms depending on A’BJ and A'CY must be null, so
B, i) = (i, n’) = 0. With these two symmetries, Eq. (8.89) can be simplified to

HY(i1,7') = a(©)A' A7 + 3(©)BCY. (8.90)

The coefficients «(0) and o(0) can be evaluated by contracting H* with the basis tensors,

A;AjHY =5sin*(©)a(0), B,C;HY =sin*(0)0(0). (8.91)

Using Eq. (8.75) for the case of different 7 and #’, we can solve for (©) and o(©):

2 i = TS (=

@) = sin4(@) /d2Q Ailel(n,ﬁ)AjRj (nlvmpkl'r57 (8.92)
2 i = TS (=

= sin!(©) / d*Q BiR™ (71, p)CR" (', ) Pty (8.93)

Recalling the simplifications for the coincident directions case in Subsection 8.6.1, there was only a
relevant scalar product, 7 - p. Now, however, there are several of them, so it is convenient to name
them. Following [403], we define k =7 -p, ' =7’ -p, A\=17 -7 and p = A - P, which satisfy

pr AR K2 =1+ 2 kK. (8.94)
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8.6. Angular deflection correlation

This identity is easy to check for a simple parametrization like the following one:
7= (0,0,1), 7@’ =(0,sin®,cosO), P = (sinfcos¢,sinfsing,cosh), (8.95)

so that
i =sinOsinfcosp, k=-cosl, K = cosfcos®O 4+ sinfsin¢sinO, (8.96)

and with A = cos © by definition, for any parametrization. Then, the contractions with the R%*
defined in Eq. (8.68) can be written as

1 Eunl 1, fin’®
ikl _ = _ 47l jrs il — Zn/ _AS

2"
k 1 T s
B;R™ (7 ,m_ ( R M)( CRJTS(*’,@*)_5 ! (—K+)\n’ +n>< (8.98)

1+/{ 1+ K

In order to get a(0) in Eq. (8.92), one has to contract the quantities in Eq. (8.97) with the projection

tensor Py, defined in Eq. (8.74). For this purpose, the necessary contractions are
2PursnFnln’ ' = v2/% — 242, 2P Al n'® = (k> — 2XK + ), (8.99)
2Py sn®nin'" A® = u(k'K% — 20k + K'), 2Py sn® Aln'" AS = (X — kK'Y (1 — A2 — 4i?), (8.100)

where 12 = (1 — k2), /> = (1 — &’%). For 3(©), the necessary contractions are

2Pyrsn*nin’ n'* = 120/? — 202, OPpyren®n'n/n'® = V'2()\ — kK'), (8.101)

2Prsn*nin’ n® = v3(\ — kK'), 2P enfn'tn' "0t = 122, (8.102)

The detailed computations to get the previous equations are very tedious to go through, and are
therefore not provided step by step. Nevertheless, they are easy to check with standard algebra and
using the identity given by Eq. (8.94). The same goes for the substitution of the previous equations
into Eqs. (8.92) and (8.93), which leads to the following expression for a(©) and o(©):

/dQQ K/\ — e )(1— A2) — 12(1+ A) + 2u(2(/\+f£)(/\+n’)] < (8.103)

a(®) = —-0(0) =

4sin* © 1+ &)1+«

Given that A = cos © does not depend on 5, we only need to compute the integrals of 2 and rx’. For
this purpose, it is again convenient to take the simple parametrization given by Egs. (8.95)and (8.96).
In this case, the second term in k' integrates to 0 over ¢, so the first two relevant integrals in
Eq. (8.103) are

/dQQ;f:/ dﬂsinﬁ/ d¢(sin © sin 0 cos ¢)* zﬂ'sin2@/ df sin® 0* 3 " sin? O, (8.104)
0 0

T 4
/dQQfm’ = /( dHSine/ dpcos® 0 cos © = 271'0059/( dfsin ) cos® 6 = gcos@ (8.105)

As a result, the first two terms in Eq. (8.103) can be rewritten as

1 4m .9 4m mecosO —1
45T4(9) sz - 3) <os@sm 0 — 3 sin? ©(1 +cos@)] % 3 a0 (8.106)
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For the third term in Eq. (8.103), it is convenient to use a different parametrization for 7 and
7', given by

= <0,sin§7cos (;)), i = ((—sin(;),cos 2)( P'= (sinf cos ¢, sin @ sin ¢, cosf)  (8.107)
so that
] O O (S}
1 = sin © sin 0 cos ¢, n:cosecosi—&—sin@sind)sing, /{’:cosﬂcos——sinﬁsinqﬁsinE.

(8.108)
With these definitions, the third term in Eq. (8.103) becomes

2sin? @ (14 cosfcos £)2 — (sinfsin £ sin ¢)2

_ 1 /d2Q in?  cos? 6 [ N cos?© — 1+ 2cosfcos 9 (cos© — 1)
2sin? @ (14 cosfcos )2 — (sinfsin % sin ¢)?2

: /(sz sin® 0 cos? ¢ <+ 2 (08O — 1) cos §(cos  + cos 6) ]

T 25?20 (14 cosfcos £)2 — (sin@sin $ sin ¢)?

i - 20 ) )
_ 1 /dQQ sin?0cos? b | { — 4 sin® 2 cos € (cosf + cos T) .
2sin? © (14 cos@cos £)2 — (sin@sin & sin ¢)?

1 /(dQQ in® 0 cos? (cos © + cosf cos £)? — (sinfsin £ sin ¢)?

(8.109)

To simplify the previous equation, I first integrate in ¢. For this purpose, I will omit the constant
before the integral in the previous equation, as well as the integral in 0, getting

20 ) [C]

/ ﬂd¢sin290082¢ 1-4 i ic(;sg(cos.ﬁJrC.OSg).
(1 +cosfcos 5 )? — (sinfsin 35 sin ¢)?

2

20 2 -2
e < Y < 9 1_ 4
:wsin29—4cos@<059+cos@)/ do o 2(:111 ( - bm. (]2 -
2 2 (14 cosfcos 3 )2 — (sinfsin 5 sin ¢)?

™ 2 Osi 20 _ 1 0 012
_rsin 0 — 4cos O < 0s 0 + cos @) / dg |{+—2 0 2 ( +.COS 'cog 2.)
2 2 (14 cos@cos 3)? — (sinfsin 3 sin ¢)?

) S} S} 4 1—- k20,0
=TT Sln2 9 — 4COS 5 ((<059 + COS 2) |:<7T + /( d¢k2(0’@))(81n)2¢:| 5 (8110)

with
1 _|_ ~ 9 3 Q
k(0,0) = — %2 (8.111)
sin 0 sin 5
Evaluating the last integral,
T 1—Kk2(0 B2 1 9 <}
/ do——F0.0) V1 —wam%l. (8.112)
( k2(0,©) — sin® ¢ k 1+ cosfcos 5

166



8.6. Angular deflection correlation

Therefore, substituting this equation into Eq. (8.110) and recovering the integral in 6 and the
constant 1/(2sin? ©), we get that the third term in Eq. (8.103) is

™ ) ) cosf + cos &
— dfsin b { qin? 0 — 0 ) —3 1. A1
526 /( sin {%n + 8cos 5 (COS + cos 2>({1+COSHCOS§ ]} (8.113)

We can integrate Eq. (8.113) by separating the parts independent and dependent on the absolute
value. For the first one, without the constant 7/(2sin? 9),

T 4 2
/ df sin 0 1112978(:059 cos0+cos9 = *716C0829 = 7—078(:08@. (8.114)
o 2 2 3 2 3

For the second term in Eq. (8.113), we have to split the integration range into two, depending on
the condition for the absolute value, cos §+cos(©/2) > 0. Taking into account that 6 is defined from
0 to w and defining © between 0 and 27, the absolute value condition is equivalent to § < 7 —0/2,
range in which the absolute value symbols can simply be removed. On the other hand, in the range
m—0/2 < 0(< ), a minus sign must be added when removing the absolute value. Given that the
integral is identical except for a global minus sign, both ranges can be studied simultaneously. For
this purpose, the notation f(9)|g_’db = f(a) + f(b) — f(c) — f(d) will be introduced. It is also useful
to note that, for the point separating both intervals, cos(m — ©/2) = — cos(0/2). Therefore, again
without the constant 7/(2sin? ©), the second term in Eq. (8.113) can be computed as

0 €]
80052/( df sin 0 (cos9+cos 9> cos 0 + cos 2@

2 + cosfcos 5

T—£ S) 2 9\2

9 cosd (€]
8@ [/ P) K ] 081 0((768 ) COS COS 2)
COSs b} 0 _%

\ 1+cos€cos%
[ or_© a_©
2 2
=8 /((' +/ é@sin@

S sin? € cos &
<<ost9+cose+ é 5 5
51
29 (S} sin® € ©
=8 {co; —%cosﬂfll 2 ln<<+cos20039

cos 3  cos? + cos f cos 3

[S] ]
-5, T

cos 5 sin’ @
0,m
[ S sin® € 1—cos? & 2
=8 <C082 - — 1) 2cos© — 451.112 2 In ( 2@)
2 sin” © 1 —cos? 5
1+ cos© sin® £ . 20
*8T + 16 cos© — 32 70 In | sin 3
2 66
= S
—4+12c050 — 642 In (sin2 2) ( (8.115)
sin

Summing this term with the one previously computed in Eq. (8.114) and recovering the constant
7/(2sin? ©), we get that the third term in Eq. (8.103) is

T 4 (S) 32w . O, . 406
7o (—3 + 2 cos? 2) < 16 In(sin 5) sin® 5 (8.116)
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Chapter 8. Gravitational wave constraints from astrometry

Finally, summing with the first two terms in Eq. (8.103) computed in Eq. (8.106), we get the final
result

T 327 . 6. . .06
O[(@) = 70’(@) = m(? COS@ — 5) — m IH(SIH 5) Sln6 5, (8117)
where, given that a(0) = —(0), HY in Eq. (8.90) can be expressed in a simpler way as
HY (i, i) = a(0)(A'AT — B'CY), (8.118)

which is the final result of this section.

In the next section, we will conclude the chapter by using this result to address the how different
scales contribute to the SGWB effect on proper motions. We will achieve this via a multipole
decomposition analysis.

8.7 Multipole decomposition

In order to set constraints using Eq. (8.84), it is convenient to know how the different scales in the
sky contribute to <6ﬁ2>. For this purpose, we do a multipole decomposition analysis by decomposing
the angular deflection using a vector spherical harmonics basis. Before introducing it, we will first
review the standard spherical harmonics, which corresponds to the decomposition of a scalar field.

8.7.1 Scalar spherical harmonics

It is widely known that any square-integrable, complex-valued scalar field f(77) defined in the unit
sphere can be decomposed as an infinite sum of spherical harmonics,

oo l
f(ﬁ) = Z Z(alm}/lm(ﬁ)a (8119)

=0 m=—

where a;,,, are complex numbers, uniquely defined for each f, and Y},,(77) are the spherical harmon-

ics, defined as
/%l +1(—m)! . ;
7)) =(—1)™ -—_— me f > 12
Yim () = (1) I (Tm) Py (sind)e or m > 0, (8.120)

Yim () = (=1)™Y,;, () for m < 0, (8.121)

with P, being the associated Legendre polynomials, which can be obtained from the standard

Legendre polynomials as

P (z) = (1 - xz)m/z%. (8.122)

For reference, the first spherical harmonics (up to | = 2) are provided in Table 8.1.

For future sections, it is also convenient to recall the Rodrigues formula for the Legendre poly-

nomials [414], which makes them easily obtainable as
Ld o,
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8.7. Multipole decomposition

1
Yoo 3 \/?
L \n
Yl(] 3 sih
Y -1 0s 6 e
11 2 -

Yo | /2@ - 1)
Y1 —5,/%5 sin d cos 6 e**
Yoo i, / %ﬁ cos? § e¥'@

Table 8.1: Spherical harmonics up to [ = 2 given by Eq. (8.120).

The factor (—1)™ appearing in Eq. (8.120) is called Condon-Shortley phase [415] and, depending
on the field, is either included in the spherical harmonics definition or in the Legendre polynomial
definition (8.122). We use the first convention, which is the one mostly used in Quantum Mechanics
and coincides with the main reference we will use for this section, which is Mignard and Klioner [116].
With this convention, these polynomials satisfy

Pim(@) = (~1)" mle< ) (8.124)

The spherical harmonics are an orthonormal basis for the space of complex-valued scalar fields
defined in the unit sphere, so that

/ G2 Vi ()Y (77) = 0106 (8.125)

This is a result of the orthogonality of Legendre polynomials, together with the normalization of
spherical harmonics,

2
/(1 dx B(I)H/(iﬂ) = 2 T 15”/. (8126)

Another property which will be used later is the addition theorem [115, p.53], which states the
following identity:

Py - ) 2z+1 Z Vi (1) Yii, (7). (8.127)

m=—
In the particular case that 7’ = 7, the identity is known as Unsold’s theorem [117],
l

Z(Yzmmmmﬁ) -2+ (3.128)

m=—

In addition, if the scalar field is real-valued, the symmetry of the spherical harmonics in m given
by Eq. (8.120) can be used to reduce the sum to only non-negative values of m and real coefficients:

oo l
FR)=>" anYl(d) +2> [f‘n‘mi‘ﬂ i) — apm Y (7 )])( (8.129)
=0 m=1
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Chapter 8. Gravitational wave constraints from astrometry

with a}* = Re(aim), @ = S(ay,) and similarly for YR°(7) and V'™ (7) with Y}, (7). The
same notation will apply for different quantities later on. Additionally, a;o = Re(a;,) under the
hypothesis of f(77) real, given that Y,,(7) are real by definition (Eq. (8.120)), so there is no need
to distinguish real and imaginary parts.

This multipole decomposition is the starting point for all the CMB analysis [118], given that the
main considered field is the temperature, which is a scalar. However, in our case, we want to deal
with the vector field of proper motions. For this purpose, we need a different spherical harmonics
basis.

8.7.2 Vector spherical harmonics

One of the options for our multipole decomposition is to take a spherical harmonics basis for
each coordinate. However, while this gets the information contained in each multipole right, the
separation in coordinates does not give a physical meaning to each basis. Instead, we can use the
so-called spheroidal (or electric) and toroidal (or magnetic) spherical harmonics which are widely
used in the literature [416, |. They are related to the standard spherical harmonics as:

Sim L Wimg | OVim *} ( (8.130)

-1 vy, :
I(1+1) I(1+1) 0085 Oa a5 °
" o ( Y, 1 9y
T = =7 S = a lméa i é};} ( (8.131)

cosd Ou

where, in order to match the most cominon notation in the astronomical literature, we used the
right ascension (RA) a and declination (DEC) § instead of the usual spherical coordinates 6 and
¢. If both coordinate systems share the origin and coordinate axes, they are related as a = ¢,
0 = —0. Another term we will use from the astronomical vocabulary is the word epoch, referring to
an instant in time.

The spheroidal spherical harmonics come from a gradient, which means their curl will be zero,
thus not getting any loop-like behavior. Their equilibrium points, whose number is related to the
multipole values [ and m, are either nodes or saddle points, but not centers. On the contrary,
the toroidal spherical harmonics have zero divergence but non-zero curl, generating centers. This
different behavior can be seen in Fig. 8.2, explaining the reason for their names. In addition, the
first vector spherical harmonics (up to I = 3) are presented in Table 8.2.

It is immediate to notice that both of them are orthogonal to 7, thus being vector fields in the
tangent space of the unit sphere. It is also obvious that Sy, L Tj,,,. Also, from their definition, they
inherit some of the spherical harmonics properties, such as the orthonormality given by Eq. (8.125):

/ ?Q S S5, = /(dQQ Tim T = 11 o » /(dQQ Sim T = 0. (8.132)

They are also a basis for the space of square-integrable, complex-valued vector fields V(ﬁ)
defined in the tangent space of the unit sphere so, for each of these fields, there exist unique
complex coefficients sy, t;m, such that

l

Z > ((Slmslm )+ tim Tom (7 ))- (8.133)

=0 m=—
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Figure 8.2: Several vector spherical harmonics. Each row presents the spheroidal (left) and toroidal
(right) modes for the same multipole indices [ and m.
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Spherical harmonic ~ Amplitude €n €s
g 1
S1o 51/ 3~ 0 cos 0
S11 i X —jete sin § et
o 1 /15 .
So0 iV on 0 sin 26
Sa1 i\/% —isin§ et — cos 26 et
S9o %\/% 2i cos § e2*® — sin 26 e%i@
S30 % 1 0 cosd(5 sin?§ — 1)
J 1 7 . 2 1o : 2 i
Sa1 TRTAS —i(bsin“d —1)e sind(15sin”d — 11) e
S3o 1,/ isin 28 e2t —cos §(3sin?§ — 1) 2@
Ss3 1—16 % —icos? § e cos? ¢ sin § €37
T10 % p cos 0 0
Ti1 i X sin 6 '@ iete
il 1 /15 :
Too iV o sin 20 0

b1 L./5 — cos 26 €' isind e

T 411 751— 2§ et § et
T %\/% — sin 26 %@ —2i cos § e2i
Tso %,/Qﬂ—l cos §(5sin® 6 — 1) 0
al 1 7 : 102 i : 102 i
151 E\/; sind(15sin“d — 11)e i(5sin“d —1)e
T30 1,2 —cos 6(3sin? 6 — 1) 2@ —isin 20 %@
T33 1—16 %5 cos? § sin § 3 icos? § e3t

Table 8.2: Vector spherical harmonics up to [ = 3 given by Eqgs. (8.130), (8.131).

In addition, Uns6ld’s theorem in Eq. (8.128) also holds,

l

> (ﬁlmm) B = 2 (8134)

m=—

In the case of a real-valued vector field, the previous expression can be re-expressed similarly to
Eq. (8.129):

oo l
V(i) = Z s10510 + tioTio + 2 Z [(ﬁ Site _ glm Glm 4 yRepRe _yIm lﬂﬂ ( (8.135)
=0 m=1

More generally, we will sometimes use the notation ry,, to refer to elther Sim OT tipy, according to
the index r, whose value can be either s or . We then denote either Slm or Tlm as le depending
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8.7. Multipole decomposition

on the same index. In this case, Eq. (8.135) can be expressed as

oo l
Vi)y=>"3" rofw+2) [r(“,,‘iR}j‘ﬁ - r}gR}g;} ( (8.136)
m=1

r=s,t =0

8.7.3 Contributions per mode and multipole

We are now interested in computing how much the spheroidal and toroidal modes contribute to the
angular deflection spectrum in Eq. (8.82), as well as how these contributions are spread over the
different multipoles [. For this purpose, we can decompose

oo

(811, 1)?) = /(d(lnf) Zﬁfms,w ot (), (8.137)

=2

There might also mixed terms, coming from the correlations of the spheroidal and toroidal modes.
However, we will later show that they vanish, so we do not define any 6, associated to them,
and similarly for subsequent notation.

From Eq. (8.82), we know the frequency dependence of the integrand. We define a function o (f)
(not to be confused with the one defined in Subsection 8.6.3) that accounts for this dependence,
but is normalized to 1:

Qaw(f)/f?
(In f') Qaw () /(f)?

o(f) = ; so that  (67(7, 1)2) = 62 /(d(m £ a(f). (8.138)

At the same time, we define g, as the fraction of power which is on the mode r (either spheroidal
or toroidal), so that g +¢¢ = 1. Finally, for each mode, we define o] as the fraction of power which
is in multipole [, so that Y ;°, o = 1. With these definitions, we get that

tsit () = Oonsgro (fag, (8.139)

so that
(67, 1)%) = >_ (| d(in f)63.9:0(f)ay- (8.140)
1l

During this subsection, we will then want to compute g, and «of, as well as prove that the mixed
terms spheroidal-toroidal and vice versa do not contribute to the angular deflection spectrum.

Multipole decomposition

For the purposes of this subsections, we must now express the previous equation for (57 (i, t)?)
given by Eq. (8.82) in terms of correlations of multipole coeflicients ry,, (¢). In this subsection, the
vector field we decompose is the angular fluctuation,

57t = Z(lm}?lm, (8.141)

rim
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where, as explained in the previous section, r = s,¢, 0 < | < oo, =l < m < [. Using the
orthonormality of VSH in Eq. (8.132), the coefficients 7, can be computed as

Pi () = /(dm ((ﬁ(ﬁ t) - ﬁl*m(ﬁ)) < (8.142)

so that
(T (E) 7100 ( ( /dZQ’ R}, (D) Ry 5 (78) (00 (7, )00 (i, 1)), (8.143)
Using the expression for (dn’(i,t)on? (i, t')) in Eq. (8.71),
(P ()71 = o /( df cos[2m f (t )] f3 Crimr'lU'm/ » (8.144)

where

rlmr’l’m’ /d2 /<d2Q/ lez Rl’m’ ( I)H”(ﬁaﬁ/) (8145)

Using the definitions for o(f) in Eq. (8.138) and 6,5 in Eq. (8.82), we can rewrite the correlation
between multipole coefficients as

<7"lm (t)?"l// / /[ df COS 27Tf t— t )] rms (ff) Crlmr’l’m/- (8146)

It is at this point where we can argue why the mixed modes st vanish. By definition (Egs. (8.130),
(8.131)), Sim () is invariant under parity change 7 — —, while T, changes sign. Given that
H (i1, 7') is invariant under both 7 — —ii and 7’ — —7’, as explained in Subsection 8.6.3, then
the st terms will be symmetric in 7 and antisymmetric in 7', which implies that the integral over
d?Q) vanishes. A similar thing occurs for ts terms, so it is only necessary to take care of ss and tt
correlations.

Spheroidal-spheroidal and toroidal-toroidal correlations

From the definition of the spheroidal VSHs, Eq. (8.130), the correlation coefficients in Eq. (8.145)
are given by

1 2 2 S\ r7if (= =
Comrm = i3y | 4 (d Y VY5 () Yo () HY G, 7). (8.147)

where V; = 9/0(x;), V/; = 0/d(x"7) are the usual 3D operators, with 7 = #/|Z|, i’ = &' /|&’|. These
derivatives are related to the covariant derivative on the unit sphere V4 as

. 207"
Vo' = 8,0 + % + Vv, (8.148)

Due to the fact that H% (i, 7i’), given by Eq. (8.118), is orthogonal to 7 on the first index, it has no
radial component for V;, and the same thing happens for the one for V;- in the second component.
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8.7. Multipole decomposition

Therefore, in both cases, the V operators coincide with the covariant derivatives on the sphere,
which implies they can be used for integration by parts. As a result, the previous equation can be
transformed into

Catmstrm’ = ﬁ / d*Q /(dm’ Y (7)Y () 55 (©), (8.149)
with
B*(©) = Vi V5[HY (i1, ii)] = Vi Vi{a(O)[A'A) — B'CY]} = V;Vi{a(©)T"}. (8.150)

We can now decompose 5°(0) in Legendre polynomials. Using the addition theorem for spherical
harmonics in Eq. (8.127), it can also be expressed in terms of spherical harmonics:

B*(©) = Zést(COS 0) (8.151)
Z Y (7)Y, (7). (8.152)

Substituting the latter expression into Eq. (8.149), we get

L A7 g (8.153)

C’SWLS’WL’:(S ’5mm’77
st i (l+1)20+1"7"

The toroidal-toroidal case reduces reduces to the ss case after several steps. For the ¢t cor-
relations, from the toroidal VSHs definition in Eq. (8.131), the coeflicients in Eq. (8.145) reduce
to

Cotmttrm: = 1(1%1) / d*Q /<d2Q’ (71 x VY5, (1)) (71 X V5 Yy () @Y (1,7, (8.154)

Again, using integration by parts to transfer the derivatives from the spherical harmonics to the
rest of the integral, the previous equation reduces to

1
Cotmtrm = [ & ey @i s e©). (8.155)
1(1+1)
where, in this case, -
Bt(@) = VZV;,[e’klejmpnkn;nHij]. (8156)
Evaluating the cross products in this equation using 77 X A= é, i x A= —6, iix B = —/Y,

i’ x C = A, by definition in Eq. (8.88) we get
eMedmPyn/  Hij = e e™Pnyn’,,a(0)(A;A; — BiC;) = a(0)(—=B'CP + A'AP) = H'P.  (8.157)
Therefore, 8¢ is identical to 3%, which means that both modes contribute equally. As a result,
1
9 =9t = 5 (8.158)
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and the Cymeirme are identical to the ones Cypmsms in Eq. (8.153). If we substitute this equation
into Eq. (8.146),

Br. (8.159)

(P (7t (E)7) = O Gu-domme /( A cosf2m (¢ = )]fr ;f) l(l+1):z2l+ 1)

From this equation, we can relate ] to . First, we denote

<rlm (t)?";/m/ (t/)*> = 6W/5ll/5mm/ /[ df COS[27Tf(t - t/)]S,«l(f). (8160)

Then, using Eq. (8.140), we get the following identity:
Z d(In f)07,s9-0(f)af = (97i(7i,1)%)
=3 > (R () Bl () (rim ()7 (F)")

rilm r'l’!m

l
/( @y Cﬁlmﬁsrl(f)

fL ha 1Srz(f) (8.161)

where the last step uses Unsold’s theorem for VSH in Eq. (8.134). Therefore, on the one hand, we
get an explicit expression for S,;(f) in terms of o],

4m 2 U(f) r

Srl(f) = 20+ 1 rmsTgTal' (8162)
On the other hand, we get from Eq. (8.159) that
3 o(f) o
Sy = 8.163
Therefore, making both expressions for S,;(f) equal, we get that
3
gray = anl(l+ 1)ﬁ17 (8.164)

where g, = 1/2 for r = s,t as shown before. Thus, it only remains to compute the 5] to get the
fraction of power at multipole [ and mode r, «;.

Computation of g”

Before getting to the computation of 37, we must first compute 5" (for either r = s,¢, since they
are equal, as we just showed) in Eq. (8.150) explicitly, which can be expanded as

B(0) = [V;Via(O)|TY + [V;a(O)(VTY) + [V;a(©)(ViTY) + a(©)(V,V/TV).  (8.165)
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To compute the divergences of T%, we can first rewrite it in a more manageable way. For this
purpose, we can use the following expressions for A*, B* and C*:
Al = édbnin), B = (ii-i)n' — n'', C'= (-7 —nl (8.166)
so that the tensor T% = A?AJ — B'CY is

T =M™ pnin,nl, — (7 - @)n' — 0/ (7 7 )n" —nt) (8.167)

We can now use the identities V;n; = d;; — nin;, V;n; = 0;j — n;n; and Vm;- = Vin; =0,
which can easily be checked from the fact that @ = 7/r. With this, after some simplifications, we
get

VT = (1= 3(7 - @) (7 - ' )n” —nd), V9 = (1= 3(i- ) (7 - i)' —n'"),

g (8.168)
ViV = —9(ii - ii')* + 2(ii - ') + 3.

The gradients of a(O) can easily be computed by using that cos(®©) = 7 - 7', which implies
—sinOV,;0 = n} — (i - i')n; and —sin OV;0 = n; — (i1 - i’)n};. Thus,
n} — (i - )n; , oy n; — (7 - 1')n
sin © » Vja(®) = —ai(®) sin © ’
§ij — ninj — niny + (7 - @)nn;  cosOng — (7 - i )ng][ng — (7 - 7")nj]
. + -

\ sin © sin” ©

[ni — (i - )il [y — (72 - )]
sin? ©

Substituting Egs. (8.168) and (8.169) into Eq. (8.165), contracting and using 7 - 77/ = cos ©, each
of the terms of this equation is, respectively,

Va(©) = —a/(0)

V,V,a(0) = —a'(0) {

+a"(0) (8.169)

[ViV(©)]T” = —sin® ©a(©) — sin ©a’(0) (8.170)
[Via(©)](V5TY) = [Va(©)](ViT) = [1 — 3cos O] sin O (O), (8.171)
a(©) (Vi VT9) = [=9(ii - i')* + 2(ii - ii’) + 3]o(©). (8.172)
Summing the four of them, we get
B%(0) = [~9cos? O + 2cos O + 3]a(0) + [1 — 6cos O] sin O’ (6) — sin? O’ (O). (8.173)

Using () defined in Eq. (8.117) and its derivatives, we get that the previous expression greatly

simplifies to
§(©) =" <<(+ (1 - cos®) {12111 (s(n (;)) - 1}) ( (8.174)

8.7.4 Explicit computation of multipole power

From Eq. (8.174), we need to extract the coefficients of the decomposition in Legendre polynomials
B7, as in Eq. (8.151). For this, we can make use of the orthogonality of Legendre polynomials in
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Eq. (8.126) to get

/(1 B7(0)P,(cos ©)d(cos ©) = ZZLHBZT (8.175)

This integral is computed numerically in Book&Flanagan [103], where they provide the numer-
ical values for a. However, it is possible to solve it analytically and provide a general equation for
these coefficients.

In order to solve this integral explicitly, it is convenient to express Eq. (8.174) in terms of
x = cosf, and integrate in this variable. In addition, given that Py(z) = 1, the orthogonality of
Legendre polynomials implies that, for [ > 1, the constant terms in Eq. (8.174) will not alter the
result. Therefore, we can simply ignore them, since the vector spherical harmonics are only defined
for I > 1.

We can actually do something similar for the terms proportional to cos© for [ > 2, given that
Py(z) = 2. For [ =1, it is easy to check that the integral in Eq. (8.175) is zero, so this multipole
does not contribute. There is a fundamental reason for this, which is the quadrupolar nature of
gravitational waves. Therefore, applying these rules to Eq. (8.174), we can compute the coefficients
as

1 T
FRCTRR /( (1 —2)In(l — z) P (z)dz. (8.176)

In order to solve this integral, we will write these polynomials using the Rodrigues formula in
Eq. (8.123), and then integrate by parts. When doing so, it is easy to check that all the boundary
terms vanish. For instance, for the first step,

20 da o,
T /da:l—xln( 7)o (@ 1) (8.177)

dlfl 1 dlfl

Given that (22 — 1)! is a 2I-th degree polynomial with roots 4-1, each one with multiplicity [, then
its (I — 1)-th derivative will be an (I 4+ 1)-th polynomial with roots +1 with, at least multiplicity
1 each. Therefore, when multiplied by (1 — z)In(1 — x), the limit in either of the bounds x = +1
(although the only one that produces a possible indetermination is z = —1) is zero. In subsequent
iterations of the integration by parts, a In(1 — ) will appear multiplying the (I — 2)-th derivative
of (x2 — 1) and, from there on, an (z — 1)¥ multiplied by the (I — k — 2)-th derivative of (2 — 1).
Therefore, the multiplicity of the roots +1 of the integrated P,(x) always dominates over the trend
of the other factor, making all the boundary terms in the subsequent integrations by parts vanish.
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As a result, we can solve the integral as
211! ! d=1 1 d-2
——f = dr(l1+In(l —2))—— 2—1l=/d77 2_ 1)
4 (2] + l)ﬁl /_1 @(1+In( 33))dxl*1 (@ ) 1 Tz dzi2 (@ )

=...= /(1 dac(zll)l(:i;%)!(x2 —)ldz = (1 - 2)!/(1 dr(1 —z)(1 + z)ldx

. 141 2l+1 2l+2

—(1—2)! 201 —a R R .

(=2t [[ dol2(1+0) = (14 2)"* iz = (12 {:(Hl l+2]

(=2 .

S Gl LV ) 8.179

G+ D0+2) (8.179)

Thus, the final expression for 3] is
167(21 + 1 - 2)!

gr = 16m2+1) or B = 16m(21+1)L=2) (8.180)

I+2)1+ 1)1 —-1) (I+2)!
Going back to Eq. (8.164), relating o] to ], and using g, = 1/2, we get

. 24020+ 1) (1 2)! . 24+1 (1427}
A Tr ey R () R A T Iy A ! (8.181)

The latter expression is a very compact and exact way to express « for arbitrary [ > 2 and,
as far as I know, it is the first time it has been presented. This is a useful result to compute
the power in the quadrupole, which, substituting [ = 2 in the previous equation, is 5/6, agreeing
with [103, , |, but it extends to any desired multipole without the need to do any heavy
computation.

In fact, in Book&Flanagan [103], they provide a fit to their numerical data from multipoles
[ =2 tol =11, which is o = 32.3417%921. With our expressions in Eq. (8.181), we can see why
this trend is approximately proportional to {~®: for [ > 1, we can approximate

af ~ 48177, (8.182)

where the exact exponent for the power law is indeed —5, rather than —4.921, and the precise
coefficient should be 48 rather than 32.34.

For convenience, I present the first values of «; in Table 8.3, both the exact fraction and
numerical evaluation, up to I = 11 for direct comparison with [103].

8.8 Data analysis

When we have real data, we will be interested in computing how much power we have in each
multipole, to be able to relate it with the previous expressions. For this purpose, if we have a
vector field with coefficients 7;,,, we can define its power per multipole [ and mode r = s,t as

l

Pl = Z(sz|27 (8.183)

m=—
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1 o

Exact Num. value
2 5/6 0.833333333
3 7/60 0.116666667
4 3/100 0.3
5 | 11/1050 | 0.010476190
6 | 13/2940 | 0.004217687
7 5/2352 | 0.002125850
8 | 17/15120 | 0.001124339
9 | 19/29700 | 0.000639731
10 7/18150 | 0.000385675
11 | 23/94380 | 0.000243696

Table 8.3: Exact and numerical values for o] in Eq. (8.181) for the first multipoles up to [ = 11.

with the total power per multipole being
P =P+ P (8.184)
These expressions would be related to the variables in the previous section as

(P)y =62 .af. (8.185)

rms

In the real-valued case, one can check that Eq. (8.184) turns into

~

Pl =ri+2) ((&2)2 +(rm)?) - (8.186)

This quantity is a measurement of how much every multipole and mode contributes to the
second momentum of the vector. Because of the orthogonality properties of the vector spherical

harmonics (Eq. (8.132)),
/(dm Vv =3 ZC’P (8.187)

r=s,t [=0

In an idealized case, with infinite resolution and perfect sky coverage, we should address the
contributions coming from all the different scales in the sky. However, at the point our surveys
are now, the data is still dominated by systematics and likely still far from a detection. Therefore,
we cannot aim to extract any information from small scales, corresponding to high multipoles.
Hence, it is best to aim to set constraints from the lowest possible multipole, which, in the case of
gravitational waves and due to their quadrupolar nature, is the quadrupole.

Therefore, we will be interested in the total quadrupole power given by Eq. (8.184) with I = 2. As
we computed in the previous section, Eq. (8.181) shows that the quadrupole power of a gravitational
wave background is 5/6 of the total, as indicated in other references in the literature [103, , |
Therefore, if we decompose a proper motion field in vector spherical harmonics like in Eq. (8.135),
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we can compute its quadrupole power P from its coefficients and use Eq. (8.84) to get Qaw, like

1. 161 Py _
— (67i%) ~ —5 ~ — Py = 0.000438 ———— =2 1
H02< i) 775 P2 = V00038 s e (8.188)

QGW ~
where we have used Hy = 14.76h7o pas/yr, matching the normalization in Eq. (2.10). The factor 6/5
is introduced to compensate the mentioned fraction of quadrupole power with respect to the total,
which is 5/6 (Table 8.3), while the 1/4m comes from the fact that the proper motion spectrum (§72)
should be normalized with respect to the solid angle volume 47, which is missing in the definition
of the quadrupole power, as we can see in Eq. (8.187). In the final expression, the factor 0.000438
matches the one in our article [4], slightly differing with others in the literature as [140] due to
different rounding criteria.

8.8.1 Statistical significance

We now study the statistical properties of the coeflicients 7, and power P;". First, we go through
the ordinary least squares formalism to get the variance of the coefficients, following [416]. We
suppose we are trying to fit a generic, real-valued vector field like the one in Eq. (8.135) to a
dataset of size N of positions 7; = (ay,d;), proper motions ji; = (u$, u!) and associated errors
Ajl; = (Apg, A,u?), i=1,...,N. Then, we aim to minimize the sum of the residuals p?, with

oz a\ 2 O (= 5\ 2
2 _ (75) — VOo(Ty) — g
pi = ( Ao ) + (N? . (8.189)

For a residual of the form )

Z yi—Z%‘Xj(fUi) (O (8.190)

for some data points (z;,y;) and basis functions X,;(x), the covariance matrix for the coefficients
a; is proportional to the inverse of the normal matrix, this being

(N)ij = ZCi(mk)Xj(xk)- (8.191)
k

In our case, things are a bit more complicated because the coefficients and base functions appear
in both terms in Eq. (8.189). To simplify things, we will assume that Au$ ~ Apl = Ap,. In this
case, our X;(z;) in Eq. (8.190) are given by Ry (7)) Aps (even if they are 2D, they play the exact
same role), so that the normal matrix would be

Rim (7i) Rim ()
N 1 Nim! = ﬁ . 8192
( )T’mfr m zk:kA,uk A,Lbk ( )
Now, we assume that the sources are equally distributed in the sky and they have homogeneous
proper motion errors. This way, we can take the contraction in the previous equation as an average
over the sky (multiplied by the number of sources) and, due to the orthogonality properties of
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the vector spherical harmonics, the normal matrix approximately diagonalizes: non-diagonal terms

should be low compared with the values in the diagonal. Going to the R'}jz/ ™ Pasis for the real

vector field case (8.135), we then find out that each diagonal element for ry,, is

N Ry ’ N Rﬁiﬂm ’
Z ﬁ for 7y, 4 Z 5 for rlp:s/lm. (8.193)
izo| Hi i=0 Hi

However, the ;5 do not depend on «, so their average is 1 over this variable. On the contrary, rlp;s/ fm

have factors cos?(ma) and sin? (ma), which can easily be checked from Egs. (8.130), (8.131), (8.120),

thus averaging to 1/2 over . Therefore, under the mentioned idealized conditions, the normal
matrix diagonal elements for ;9 should be approximately 1/2 of the ones for rlP:;/ m " Ag mentioned
before, the covariance matrix is proportional to the inverse of the normal matrix, so we then have

the inverse relation between variances:

Var(r) = Irio (8.194)

Var(rlp;,f) ~ Var(rﬁg) ~ 5

N

Assuming that these unknowns behave as Gaussian variables, we notice that the power per
multipole order and mode in Eq. (8.184) is a sum of 2] + 1 squared Gaussians with the same
variance, given that the factor 2 appearing in the m > 1 can be re-absorbed into the squared
quantity, generating a Gaussian with the same mean multiplied by /2 and the variance multiplied
by 2. We consider two cases:

o If we assume that the mean is 0, then P is the sum of squares of 2l + 1 independent, zero
mean Gaussian distributions with the same variance o,.9. By definition, this is a chi-squared
distribution of n = 2] + 1 degrees of freedom rescaled by the factor o,;9. Therefore, if we
rescale each coefficient by their variance, like

. 2 l Re \ 2 TIm 2
r 10 ( ilm Im
Wr = + + ( ) R 8.195
! (UTIO ) n@zz:l ( Eﬁn ) 071"?;71 ] ( )

we get a sum of squares of 2l+1 independent, standard Gaussian distributions (zero mean and
unit width) with the same variance or, in other words, a chi-squared distribution of n = 21+ 1
degrees of freedom, with probability density function

1 - —T
fyz (@) = mm"/2 Lem2/2 ) 2 €[0,00). (8.196)

This will be our null hypothesis. Physically speaking, the coefficients should have approx-
imately zero mean if our data is pure Gaussian noise and our sources are homogeneously
distributed in the sky. However, this may not be the case even in the case of noise domina-
tion. We will discuss this issue more in depth in Chapter 10.

e If the Gaussians do not have zero mean, the result of Eq. (8.195) will be a non-central chi-
squared distribution of n = 20 + 1 degrees of freedom, with probability density function

1 etr /z\ %3
fo @ =5 (5)[ " LpalVha), we o), (8.197)
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where A is the non-centrality parameter, given by the squared sum of the Gaussian means.
Similarly to the previous case, the power P would behave as the rescaled version of the
distribution for W}

If we have the distribution of the coefficients r;,,, for example, from the posteriors after running
an MCMC, it is interesting to test how close we are to the first case or, more precisely, how likely it
is to be under the null hypothesis. For this purpose, one could use the mean values of 7}, and their
1-sigma uncertainties to compute er from Eq. (8.195). Then, one can compute the probability
that a x2 with n = 2] 4+ 1 degrees of freedom produces a value larger than Wf, like

P(W] >W,) = /§ fre(x)dz = Fya (W) (8.198)

However, it is also possible to discuss this in terms of sigmas of a Gaussian distribution, which
is something widely used in Physics. For this, we can use the following result [419]:

2\ 1/3
Xn 2 /2
Xn) o UN 1- == 1
( n ) 9n’ 9n> ( (8.199)

to a good degree of approximation increasing with n, with N(u,o) the Gaussian distribution of
mean 4 and variance o2, as we introduced in Subsec. 2.3.1. We can then evaluate how many sigma
away our results are from the mean from the following quantity, usually called Z-score [116]:

()3

In general, the Z-score is given by multipole, which is computed from the previous equation but
substituting W} by
W, =W/ + W/ (8.201)

It can also be extended for several multipoles by following the same logic of summing at the level
of W;. Also, there are different criteria for the definition of W} in Eq. (8.195), one being the one
we used and the other, dividing each term by either 0%, or ¢%,/2 according to their variance in
Eq. (8.194). The second definition relies on the idealized conditions explained to obtain Eq. (8.194),
so it is less accurate. However, it can easily be computed as W] = P["/ O’?lo, which can sometimes
be more convenient. In any case, we will use the first definition throughout the thesis.

Therefore, the Z-score gives a measurement of how statistically significant are our results com-
pared to the pure noise hypothesis. As a result, a high Z-score can potentially hint towards a
detection, but it may also have other possible explanations, as we will see in Chapter 10.
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Chapter 9

The Gala mission

9.1 Introduction

The Gaia mission was launched by ESA in December 2013 [106] and started its science run in
July 2014. The name “GAIA” was originally an acronym for Global Astrometric Interferometer
for Astrophysics, but the techniques to be used were changed, making the acronym no longer
applicable!. As a result, the name Gaia was kept to reflect the continuity of the project, but now
without its original acronym meaning. Its nominal science mission was scheduled for 5 years, but
it was extended for 10 [420].

The spacecraft is equipped with two telescopes, each of them composed of 3 mirrors. These
telescopes are used by the three main instruments, called the astrometric, photometric and spec-
troscopic instruments. The astrometric instrument takes photometric data from the telescopes in
the white, unfiltered, white-light photometric G band (where G stands for Gaia), which covers the
range 330-1050 nm: part of the ultraviolet spectrum, the full visible range and part of the infrared
spectrum. This high signal-to-noise ratio (SNR) data is then used to derive astrometric information
such as positions, proper motions, etc. at different epochs. The sources are selected performing a
survey of the sky, instead of using a predefined input catalog as its precursor Hipparcos did [421].
The photometric instrument measures the spectral energy distribution of the same sources at the
same epochs, providing astrophysical information. It does it in two frequency ranges: 330-680
nm (blue photometer, BP) and 640-1050 nm (red photometer, RP). Finally, the spectroscopic in-
strument, or radial-velocity spectrometer, collects spectra in the range 845-872 nm [120] (Calcium
triplet region [422]), to produce radial velocities and other astrophysical information on the sources.

The Gaia collaboration releases their data products progressively:

e The first data release, DR1 [423], was published in September 2016 and comprised 1.14 years
of data. It included astrometric information and G magnitudes.

e The second data release, DR2 [424], was published in April 2018 and comprised 1.83 years.

Ihttps://www.esa.int/Science_Exploration/Space_Science/Gaia_overview

185


https://www.esa.int/Science_Exploration/Space_Science/Gaia_overview

Chapter 9. The Gaia mission

It expanded over the data products of DR1 by including BP and RP photometry, radial
velocities and other new astrophysical information.

e The third data release was divided in two, with an early data release (EDR3) [120] in December
2020, with only some astrometric and photometric data, comprising 2.84 years of observation.
Later, in June 2022, the third data release DR3 [425] was published, complementing EDR3
with a vast amount of information of the same sources, including everything present in DR2,
source classification and redshift determinations. A summary of the quantities present in DR3
can be consulted in [425] and a comparison with previous data releases in [420].

e According to the data release plan [127], DR4 is not expected sooner than the end of 2025.
It will comprise 5.5 years of data, including epoch data for all sources. The final data release,
DR5, is not expected sooner than the end of 2030 and it will comprise the full observing
period of around 10 years, containing all collected data.

In our article [1], we used data from DR3 to set constraints on the SGWB amplitude at low
frequencies, as will be detailed in Chapter 10. This data release includes data of 1.81 billion sources,
with 1.47 billion having full astrometric measurements According to the EDR3 main article [120],
the position uncertainties range from 0.01-0.02 mas for G < 15 to ~ 1.0 mas at G =~ 21 mag, with
the proper motion uncertainties ranging from 0.02 — 0.03 mas/yr for G < 15 to ~ 1.4 mas/yr at
G =~ 21 mag.

We are interested in working with datasets of quasars, given that they present low intrinsic
proper motions, so that a relevant fraction of their correlations can be attributed to a SGWB. We
study how to generate these datasets in the next section.

9.2 Generating clean datasets

9.2.1 The QSO candidate sample

Gaia DR3 does not provide a QSO catalog, but rather, a list of sources called QSO candidates®. The
idea of this list was to include all the sources that could reasonably be considered a quasar, even with
low probability. It therefore focuses on completeness, disregarding its purity. A source is included
in this list according to selection criteria detailed in [130] and in the Gaia DR3 documentation
website3, which we summarize below:

e The main contribution to this catalog is provided by Gaia Discrete Source Classifier (DSC) [431],
which classifies sources into five classes: quasar, galaxy, star, white dwarf, and physical binary
star. DSC consists of three classifiers: Specmod, which uses BP/RP spectra; Allosmod, which
uses other features such as parallax, proper motions, or color indices, and Combmod, which
combines the output class probabilities of both of them and assigns a combined probability,

2 After our publication, a catalog named Quaia [428] has been published by an independent team, who use infrared
data from the WISE (Wide-field Infrared Survey Explorer) survey [129] to generate a catalog from the QSO candidate
sample from Gaia. However, this is not an official catalog from Gaia

3Gaia DR3 online documentation: https://www.cosmos.esa.int/web/gaia-users/archive/gdr3-documentation
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labeled as classprob_dsc_combmod_quasar. We denote this combined probability as pqso
in the following sections.

A source enters the QSO candidate list if any of the three classifiers assign a probability of
being a quasar above 0.5. In addition, the Gaia Quasar Classifier module (QSOC) [430, ]
estimates redshifts of quasars from their BP/RP spectra. All sources having reliable [131]
estimated redshift also enter the list.

e All sources classified as AGN by the Vari module are included. This module uses photometric
light curves to characterise variability.

e The Extended Objects (EO) module analyses surface brightness profiles of sources to look for
physical extensions. Quasars analysed by this module are also included.

o All sources used to define the Gaia CRF3 (Celestial Reference Frame 3) [132] are included.
These sources are cross-matched between Gaia and several external quasar catalogs and se-
lected according to specific quality metrics.

This sample consists of 6,649,162 sources, of which 6,246,791 have determined proper motions,
and many of them are very likely not actual quasars. This becomes obvious when we plot the
proper motions of this sample, which are clearly biased by the local behavior in the Milky Way and
Magellanic clouds (top left panel of Fig. 9.3. Therefore, we need to clean this sample to generate
purer datasets suitable to work with.

HEALPix

It is useful to plot quantities such as proper motions or the density of sources across the sky.
To do this, one of the approaches is dividing the sky in a given number of regions of the same
area and color them according to the average quantity in each region. For this purpose, we used
HEALPix (Hierarchical Equal Area isoLatitude Pixelization)?, which is one of the most standardized
algorithms to tessellate the sky and it has a Python implementation named healpy [433, ].
The HEALPix system initially divides the sky in 12 equal-area cells with their centers forming a
dodecahedron. Then, each extra level of refinement subsequently divides every cell in 4 equal-area
parts, amounting to 12n? total cells in the refinement level n. This scheme is illustrated in Fig. 9.1.
As can be seen in this figure, the points are distributed in equal-latitude levels, hence the isoLatitude
in the acronym.

Given a HEALPix level, each cell is assigned an index. Therefore, we just need to know to
which cell every source belongs to, and then average the desired quantity (or sum, when plotting
the number of sources) of all sources in a given cell. This is a way to compress data, which can
also be used for analysis purposes as proposed in [108]. Here, however, we will only use it for
visualization purposes.

All the plots will be shown in Galactic coordinates, so that the horizontal axis is aligned with
the Galactic plane, and using HEALPix level 8.

4https://healpix.sourceforge.io
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Figure 9.1: Tllustration of Healpix levels 1 to 4, corresponding to 12, 48, 192 and 768 pixels,
respectively. Credit: Gorski et al. [134]

9.2.2 Filtering and masking

Our first approach to increase the purity of our dataset was to set a threshold in pgso. We
generically refer to this procedure as filtering. A low threshold will leave too many non-QSO
sources, while a too high threshold may remove too many of the good ones. Therefore, we need to
find a correct balance between these two effects.

Given that every source ¢ has a probability pqso,; of being a quasar, we can consider it behaves
as a Bernoulli distribution. Therefore, its expected value will be pgso ;. The expected value of the
joint distribution of all the sources in a sample of size N will give an estimation of its number of
quasars. If we assume that all the sources are independent, the joint expected value is the sum
of each individual expected value, Y .Mqso,i. Therefore, we can estimate the number of non-QSO
sources as N — > ./Mqs0,i-

As the thresholl in pgso gets more stringent, the resulting dataset will reduce this number of
estimated non-QSO sources, as well as the number of sources. This is shown in Fig. 9.2. We decide
to set our threshold to the minimum value that reduces the expected number of non-QSO sources
to less than 1, as it is also shown in Fig. 9.2.

Applying this process to the QSO candidate list, the threshold in pgso was found to be
0.99999465, reducing the number of sources to 1,154,431. In the top right panel of Fig. 9.3, the
resulting dataset is shown. We can still very clearly see some contamination in the Galactic plane
and Magellanic clouds. Therefore, we decided to also apply a mask to this data, which was manually
created to cover these areas.

In the bottom left panel in Fig. 9.3, we show the masked QSO candidate dataset, with no
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x10°

Number of sources

—logyo(1 — PQso,thresh.)

Figure 9.2: Reduction of number of sources (left vertical axis) and expected non-QSO objects (right
vertical axis) with a more stringent threshold, in the filtering process for the QSO candidate list.
If we denote the quantity plotted in the x axis by k, the threshold is given by 1 — 10¥. The point
where the expected non-QSO sources is 1 corresponds to the x value 5.27, indicated by the dashed,
vertical line, which gives a threshold of 0.99999465.

filtering. The number of sources is reduced to 3,240,636.

In order to generate our final dataset, we first apply the mask and, to the resulting dataset,
apply the filtering procedure. In the bottom right panel of Fig. 9.3, we show the result after the
two-step procedure, which consists of 871,441 sources and has a threshold in pggo of 0.99998701.
We note that this threshold is much less stringent than the previous one due to the preceding
masking.

Even if this cleaning process is far from perfect, the result looks more homogeneous and does not
show any obvious contamination on visual inspection. We will address the quality of this dataset
in the next sections.

9.2.3 Gaia QSO selections

In addition to our masked dataset, we considered other selections suggested in [430]. This reference
provides several ways to get higher purity subsamples, of which the ones we used in our article are
the following ones:

(i) Astrometric selection: sources are accepted or discarded based on astrometry criteria. All
the sources in this selection must pass two filters:

189



Chapter 9. The Gaia mission

QSO candidates Masking

Filtering by pgso Masking+filtering

Figure 9.3: Proper motion module (in mas/yr) skymap for different steps. The top left panel shows
the full QSO candidates dataset, while the others show the resulting skymap after either of the
steps or both.

Pure Astrometric

Intersection

Figure 9.4: Proper motion module (in mas/yr) skymap for different considered datasets.
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e First step: individual sources with high-quality astrometric solutions and statistically insignif-
icant parallaxes and proper motions are selected. More than 200 million sources match this
criteria, mostly stars from our galaxy [432].

e Second step: samples of sources with near-Gaussian distributions in uncertainty-normalized
parallaxes and proper motions are selected.

(ii) Pure selection. This refines the criteria used to construct the QSO candidates list:

o All sources from Gaia CRF3 are included.

e Sources from EO (Extended Objects) are included except for those with close neighbours.

The previous classifiers use lists of quasars identified by other surveys, so their samples are
believed to be above 90% pure. On the other hand, the next two classifiers use supervised
machine learning to discover new objects just using Gaia data.

e From the DSC sample, sources must be assigned the joint label of quasar by the DSC, which
requires that both Specmod and Allosmod assign probabilities to be above 0.5 of being a
quasar. This subset is believed to have a purity of 62%, increasing to 79% when the Galactic
plane (]b] < 11.54 deg) is avoided.

e Sources from the Vari sample are included, given that they are considered to have a purity
over 90%. These results already exclude the Galactic plane.

The astrometric selection has 1,897,754 sources and around 98% purity or better [430]. The
pure one has 1,942,825 sources and a purity of 96%. Their intersection, which is also considered as
a separate dataset, has 1,801,255 sources.

Given the high number of sources and from the pgso distribution of these datasets, we conclude
there is still significant contamination from non-QSO sources (of order 400,000). Therefore, we
apply the same filtering procedure as for the masked dataset, setting a threshold in pgso to reduce
the expected number of non-QSO sources to one. Details on the thresholds and final numbers
of sources for each dataset are provided in Table 9.1, together with the minimum constrained
frequency, while skymaps are displayed in Fig. 9.4.

We can see that the three selections do a good job removing contamination from our galaxy, but
the pure one does not completely remove the contamination from the Magellanic clouds. We do the
fits for these three datasets as well as the masked one. However, it is clear that the cleaner dataset
we have is the intersection between the astrometric and pure selections, followed by the astrometric
one. Therefore, the latter are the two results which should be considered more rigorous.

Color-magnitude and color-color diagrams

In order to test the purity of our final datasets, we plotted their color-magnitude and color-color
diagrams, which are shown in Fig 9.5. These diagrams are widely used in Astrophysics and plot the
magnitude in some filter against the color index from two filters (color-magnitude), or a given color
index against a different one (color-color). The idea of these diagrams is that, by visual inspection,
we can see if there are sources which deviate substantially from the general behavior of the majority
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Dataset N N, Z25 275 (éz;r> (10—fl285 Hz) a « ]190 50)

Masked 871,441 | 871,438 | 0.961 | 2.408 | 7.52 4.21 1.299

Pure 816,641 | 816,640 | 0.967 | 2.374 | 7.54 4.20 1.924

Astrometric 786,165 | 786,164 | 0.977 | 2.359 | 7.58 4.18 1.959

Intersection 773,471 | 773,470 | 0.973 | 2.351 | 7.57 4.19 2.043
VLBA 711 657 0.57 1.63 5.50 5.76 -
VLBA+Gaia DR1 508 483 0.63 1.64 5.87 5.40 -
SDSS+Gaia EDR3 | 401,735 | 392,993 | 1.032 | 2.543 | 7.80 4.06 -

Table 9.1: The number of sources in each considered dataset, along with the number of sources with
redshift, the 25th, 50th and 75th percentiles, the time of arrival to the source in the 25th percentile
and its corresponding frequency. We also provide the thresholds in pgso for our four main datasets.

of them. If this is the case, they are likely not to be quasars, so a great number of them can impact
our results.

The leftmost areas of the pure dataset diagrams, which are not present in the other datasets,
confirm it as the most contaminated one. For the masked one, we can observe some outliers around
G—RP ~ —2and G— RP ~ 5—6 (see Sec. 9.1 for the filter definitions), but they represent a very
small number compared to the O(800,000) total sources. Finally, the astrometric and intersection
datasets are clearly the purest, although there are still sources which can be considered outliers at
low and high values of the color index G — RP. In any case, they are again very few compared to
the number of sources, so they are unlikely to bias our results. Therefore, we conclude that our
cleaning process is enough. Additional steps we could have applied include setting thresholds in
these magnitudes and color indices or in redshift, but based on the plots, we considered them to be
unnecessary.

9.3 Other datasets

Given the similarities of our analysis with the ones done by [140] and [107], we also analyzed their
datasets to check their results and to test the consistency of our methodology.

Darling et al. [140] use the VLBA catalog in [135] excluding two sources with very high proper
motion, which leaves a dataset with 711 sources. This survey monitors radio sources, of which
the ones considered in [140] are confirmed quasars. We considered the same sources, with the
proper motions published in [435]. In [140], the authors obtain the proper motions from bootstrap-
resampled time series, instead of taking them directly from [135], but state that the datasets should
be statistically consistent.

In addition, Darling et al. consider an additional dataset based on the previous one but only for
sources which have additional data in Gaia DR1. In this case, the authors consider the combined
position time series between VLBA and Gaia DR1 and determine the proper motion of each source.
With this, they obtain 577 sources, but they discard 69 sources due to the high coordinate offsets
between both surveys, getting a dataset of 508 sources. We refer to this sample as the VLBA+Gaia
DRI dataset. The positions of the sources of the VLBA and VLBA+Gaia DR1 datasets are shown

192



9.8. Other datasets
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Figure 9.5: Color-magnitude (left) and color-color (right) diagrams for the different considered
datasets, using the G band magnitude and its color indices with respect to the RP and BP bands.
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in the right panel of Fig. 9.6.

Finally, Aoyama et al. [107] cross-match the 16th data release of the Sloan Digital Sky Sur-
vey (SDSS) QSO catalog [436] with the astrometric data in Gaia EDR3. We decided to use the
SDSS+Gaia EDR3 cross-matched data provided by the Gaia collaboration®, although we tried
other methods which are detailed in the next section. Regardless, we were not able to get the
exact number of sources as in [107], obtaining 401,735 with the SDSS+Gaia EDR3 cross-match. In
addition, we did not apply the same filtering procedure as in previous datasets for consistency with
the dataset in [107], but in any case, the filtered dataset provides similar results. A skymap of the
SDSS+Gaia EDR3 dataset is provided in the left panel of Fig. 9.6.

SDSS+Gaia EDR3 e VLBA ® VLBA+Gaia DR1

Figure 9.6: Proper motion module (in mas/yr) skymap for the SDSS+Gaia EDR3 dataset (left
panel) and source position for VLBA (blue and red) and VLBA+Gaia DR1 (red) datasets (right
panel).

9.4 Queries of astronomical databases

9.4.1 Gaia archive

In order to generate the previous datasets, one has to somehow get the data from Gaia. This data
can be accessed with standard astronomical query tools such as TOPCAT® [437, 438], but it can
also be accessed through the Gaia Archive”. Qur queries will be moderately complex, so it is best
to do them through the Astronomical Data Query Language (ADQL). For instance, to download
the full QSO candidate dataset, we can do it like

SELECT *
FROM gaiadr3.gso_candidates

It is relevant to note that the capital letters and line jumps do not alter the query. Nevertheless,
it is useful to write them following some rules for readability.

5Gaia  EDR3  documentation: https://gea.esac.esa.int/archive/documentation/GEDR3/Catalogue_
consolidation/chap_crossmatch/sec_crossmatch_externalCat/ssec_crossmatch_sdss.html

Shttp://www.starlink.ac.uk/topcat/

"https://gea.esac.esa.int/archive/
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9.4. Queries of astronomical databases

The list of tables, such as the gso_candidates one, can be checked in the leftmost part of
the website, grouped by categories. This one, for instance, is under “Gaia Data Release 3/Extra-
galactic”, and has to be accessed with the gaiadr3 before. Once we locate the table, we can also
check the available quantities, or columns. If we just want some of them instead of the full table,
we can generate it like

SELECT classprob_dsc_combmod_quasar AS p_qgso, redshift_qgsoc AS z
FROM gaiadr3.qgso_candidates

As shown in this query, one can also choose the name that will appear in the header for each
variable.

We also want the positions and proper motions, with their errors. However, this information
is not in the gso_candidates table, but in the main Gaia DR3 one, called gaia_source and,
again, under gaiadr3. We therefore need to somehow establish the correspondence between our
sources of interest, which are the ones in the qso_candidates table, and the same sources in the
gaia_source table. We can join the information from both catalogs with the JOIN keyword and
use the source_id column present in both tables to match the sources, with the keyword ON:

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error,
gaia.pmdec_error, gso.classprob_dsc_combmod_quasar AS p_gso,
gso.redshift_gsoc AS z
FROM gaiadr3.qgso_candidates as gso
JOIN gaiadr3.gaia_source as gaia
ON gaia.source_id=gso.source_id
WHERE gaia.pmra IS NOT NULL
AND gaia.pmdec IS NOT NULL

In the two last lines, we used the WHERE keyword to add the condition that the proper motions
must be determined, since we are not interested in the sources without this information. This
reduces the number of sources from 6,649,162 to 6,246,791, as was mentioned in the previous
section. The previous query was the one used to generate the QSO candidate dataset we used for
masking and filtering in the last section. Except for the mask, the masked dataset can be generated
by imposing the threshold condition, with the extra line

AND gso.classprob_dsc_combmod_quasar>0.99998701

In order to generate the astrometric selection that Gaia provides [430], the boolean flag
astrometric_selection_flag is included as a column in the qso_candidates table. Therefore,
to generate our astrometric dataset, we just need to include the condition that this flag is true and
use the threshold indicated in the last section,

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error,
gaia.pmdec_error, gso.classprob_dsc_combmod_quasar AS p_gso,
gso.redshift_gsoc AS z

FROM gaiadr3.qgso_candidates as gso
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JOIN gaiadr3.gaia_source as gaia
ON gaia.source_id=gso.source_id
WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL
AND gso.astrometric_selection_flag=’true’
AND gso.classprob_dsc_combmod_quasar>0.99998044

The pure selection involves several conditions that Gaia provides in [130]. With our threshold
in pqso already applied, we can generate the dataset with the following query:

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error,
gaia.pmdec_error, gso.classprob_dsc_combmod_quasar AS p_gso,
gso.redshift_gsoc AS z
FROM gaiadr3.gso_candidates as gso
JOIN gaiadr3.gaia_source as gaia

ON gaia.source_id=gso.source_id
WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL
AND (gso.gaia_crf_source=’true’ OR gso.host_galaxy_flag<6
OR gso.classlabel_dsc_joint=’quasar’ OR gso.vari_best_class_name=’AGN’)
AND gso.classprob_dsc_combmod_quasar>0.9999808

Finally, the intersection dataset can be generated combining the conditions from the previous
two tables, setting the pqso threshold accordingly:

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error,
gaia.pmdec_error, gso.classprob_dsc_combmod_quasar AS p_gso,
gso.redshift_gsoc AS z
FROM gaiadr3.qgso_candidates as gso
JOIN gaiadr3.gaia_source as gaia
ON gaia.source_id=gso.source_id
WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL
AND gso.astrometric_selection_flag=’true’
AND (gso.gaia_crf_source=’true’ OR gso.host_galaxy_flag<6
OR gso.classlabel_dsc_joint=’quasar’ OR gso.vari_best_class_name=’AGN’)
AND gaia.classprob_dsc_combmod_quasar>0.9999796

9.4.2 Cross-matching catalogs

Generating the dataset based on Aoyama et al. [107] is a bit more complicated, since it involves
another catalog. They considered the 16th data release of the SDSS quasar catalog [430] and
cross-match with Gaia to obtain the proper motions of as many SDSS quasars as possible. We
did not manage to reproduce the number of sources they claim, among other things, because the
number of sources of the SDSS QSO catalog is 750,414, while they quote 817,402. As a result, some
discrepancy between our final datasets is expected. In any case, we tried our best to recreate their
dataset by following two different methods.
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Custom cross-match

In order to get the correspondence between the SDSS catalog and Gaia, one of the options would
be to generate the cross-match ourselves. For this purpose, we download the coordinates of all
the sources in the SDSS catalog. Then, in the Gaia Archive, we upload this table, that we denote
as sdss_coords and select the option to cross-match it with another table, which will be the
gaia_source from EDR3. The reason to choose EDR3 over DR3 is that DR3 was not released at
the time of Aoyama et al. paper, but in principle they should be equivalent. The only thing that
should difference DR3 from EDR3 are the additional tables, not changes to the existing ones.

We provide 0.5 arcsec as the maximum radius allowed for the cross-match, which is the one used
in [407], and the website generates a new table, which we will call xmatch, with three columns: the
Gaia object identifier, the cross-matched identifiers in our SDSS catalog and the angular separation
between their coordinates. Since the SDSS catalog was a user-uploaded table, their identifiers are
just the line number of the corresponding source, and they are labeled sdss_coords_oid. With
this method, the cross-matched sources are 489,392. We can then obtain their proper motions and
remove the sources which do not have any with the following query:

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error,
gaia.pmdec_error

FROM user_sjaraba.sdss_coords AS sdss_coords,

gaiaedr3.gaia_source AS gaia, user_sjaraba.xmatch AS xmatch

WHERE (xmatch.sdss_coords_sdss_coords_oid = sdss_coords.sdss_coords_oid
AND xmatch.gaia_source_source_id = gaia.source_id)

AND gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL

In this query, we also showcase an alternative to the use of JOIN and ON to combine tables, just
using FROM and WHERE. They are completely equivalent.

The resulting table has 402,334 sources, which does not quite match the 400,894 in [107], but is
close enough. In any case, we decided to use another method to cross-match the sources.

Cross-match provided by Gaia

In addition to the cross-match tools of the Gaia Archive, Gaia DR3 provides some tables cross-
correlating Gaia sources to other catalogs. One of these catalogs is SDSS DR13 [439], which may lack
some data which is present in DR16, but we considered it good enough. There are several of these
tables per catalog, among which there is one including all the good neighbours (which may include
duplicates), defined as “nearby objects in the external catalogue whose position is compatible (within
position errors) with the Gaia target”, and one indicating only the best neighbours, which only takes
the best of the good neighbours, according to “the ratio between two opposite models/hypotheses:
the counterpart candidate is a match or it is found by chance”. We use the latter to avoid duplicates.
With this, we upload a table with the identifiers of the SDSS DR16 quasar catalog, which we denote
as sdss_gso, so that we can generate our table as

SELECT gaia.ra, gaia.dec, gaia.pmra, gaia.pmdec, gaia.pmra_error,
gaia.pmdec_error
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FROM user_sjaraba.sdss_gso as sdss
JOIN gaiaedr3.sdssdrl3_best_neighbour as gaia_xmatch
ON sdss.col__objid=gaia_xmatch.original_ext_source_id
JOIN gaiaedr3.gaia_source as gaia
ON gaia_xmatch.source_id=gaia.source_id
WHERE gaia.pmra IS NOT NULL AND gaia.pmdec IS NOT NULL

The result consists of 401,735 sources, which, again, do not exactly match neither the 400,894
in [407] nor the 402,334 from our previous method, but the numbers are really close.

It is important to note that some of these sources, both in the previous case and this one, may
not even belong to the QSO candidate sample. This is because we have not used this information,
given that it was only released in DR3. If we use it, we can check there are 935 of these sources using
this second method, from which we cannot therefore extract quantities like pggo or the redshift.

9.4.3 VLBA-based datasets

The datasets used by Darling et al. [140] are based on VLBA, so we cannot find them using the Gaia
Archive, as we have been doing until now. However, we can use the Table Access Protocol (TAP)
via the interface we prefer, such as TOPCAT [437, | or some Python packages, for instance.
With this, we can access the astronomical databases, including the one from Gaia we have been
using until now, but this time not limited to it.

First, we look for the VLBA dataset. In [140], the authors state that their catalog is based on
the one in [435]. The proper motions in [140] are obtained from bootstrap-resampled time series,
but the authors confirm that these values should be statistically consistent with those in [135], so
we take the proper motions directly from this source. In order to find this dataset, we can look
for it using the TAP from TOPCAT and searching for the names of the authors. The dataset we
look for appears with the title of the article [135], and is labeled as “J/ApJS/233/3/table6”. We
can do similar queries to the previous cases in Gaia, only that the columns are denoted differently.
In addition, in this case, all the sources have proper motions, but in [140], they reject those having
proper motions higher than 1 mas/yr. We therefore impose the same condition, taking into account
that the proper motion units are given in pas/yr, unlike in the Gaia database:

SELECT RAJ2000, DEJ2000, pmRA, pmDE, e_pmRA, e_pmDE, z
FROM "J/ApJS/233/3/table6"
WHERE pmRA*pmRA+pmDE*pmDE<1000000

With this, we recover the 711 sources mentioned in [140]. The second dataset they used is given
by a cross-match with Gaia DR1, which initially produces 577 sources and can be found labelled
as “J/ApJ/861/113/table?”. However, when the difference between the proper motions of a given
source in either of the coordinates is higher than 3 sigma, the authors decide to exclude it for their
analysis. Given that they provide these offsets in sigma units, it is straightforward to write the
query to generate the dataset:

SELECT RAJ2000, DEJ2000, "pmRA-2", "pmDE-2", "e_pmRA-2", "e_pmDE-2"
FROM "J/ApJ/861/113/tableT"
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WHERE dpmRA<3 AND dpmDE<3

With this query, we recover the 508 sources mentioned in [140]. The quantities pmRA-1 and
pmDE-1 provide the proper motions from VLBA, while the ones labeled as pmRA-2 and pmDE-2
include the contribution from Gaia DR1. Therefore, we take the latter. The redshift information is
not included in this table, but it can be obtained from the previous one by matching the sources,
either by coordinates or identifier. A quick way to obtain the table with the redshift is the following
one:

SELECT vlba_gaia.RAJ2000, vlba_gaia.DEJ2000, vlba_gaia."pmRA-2",
vlba_gaia."pmDE-2", vlba_gaia."e_pmRA-2", vlba_gaia."e_pmDE-2", vlba.z
FROM "J/ApJ/861/113/table7" as vlba_gaia
JOIN "J/ApJS/233/3/table6" as vlba

ON vlba.Name=vlba_gaia.Name
WHERE vlba_gaia.dpmRA<3 AND vlba_gaia.dpmDE<3
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SGWRB constraints from Gaia DR3

10.1 Introduction

The constraining potential of the Gaia mission has been a topic of discussion from before its launch
in 2013. In [103], the authors estimated its constraining power to Qgw < 1076 based on Eq. (8.86)
with N ~ 10° sources, an angular resolution Af ~ 10 pas and an observing period T ~ 1 year.
There were also more optimistic works like [111] in which it was claimed that, by the end of the
mission, Gaia could get to Qgw < 1078, by assuming N =~ 10, A§ = 1 mas and T = 20 years.
On the opposite side, a prediction based on mock data from a quasar catalog relaxed this limit to
Qaw <6 x 1074 [140], which better matches our results.

In this chapter, I will explain our article [4] in which we set constraints using real Gaia data,
from its third data release. The topic is interesting as a follow-up of the mentioned works, but it
is also physically meaningful from the perspective of the possible sources which would contribute
to the constrained frequencies (107'® — 108 Hz). On the astrophysical side, super massive BBH
would be the main source in this range [440, |, but also cosmological sources would leave an
imprint, such as cosmic strings [112, 443], phase transitions [144, 445] and PBHs [93, 81, 281]. The
advantage of this frequency band is that it partly overlaps with the PTA range [116, &, ],
which has a better constraining power. Therefore, the sources detected from PTA will hkely be
found with astrometry much later, which will help better characterizing them. However, since the
overlap is only partial, as was already discussed in Chap. 8, other different sources can also be found
in the wider frequency range, whenever the sensitivity allows for it.

In Chap. 8, we have already explained the main formalism and part of our methodology. In
Chap. 9, we have also detailed the datasets we used in the article. Therefore, all that remains is to
explain the rest of our methodology before showing and discussing the results.
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10.2 Data analysis

10.2.1 Likelihood

In our article [4], following [447], we use a slightly different likelihood than the standard, Gaussian
one which is widely used and was explained in Subsec. 2.3.1. The reason is that the least-squares
method is very sensitive to outliers, which can then bias the result significantly. This was good
enough for the analyses of Chapters 2 and 3 but, despite our cleaning efforts, there might still be
some outliers in our datasets. Therefore, we take the conservative approach of assuming that the
experimental uncertainties are only trustworthy as lower bounds of the real one. This does not
necessarily mean we do not trust the uncertainties derived by the Gaia collaboration, but rather,
that there might be non-negligible intrinsic proper motions in some cases which may bias our results
if we are not cautious enough. Following [1418], we present the reasoning for a single 1-dimensional
data point and then extend it for an arbitrary number of 2D points, as it is the case for proper
motion data.

We denote our data point by D, which has an associated error oy > 0. The value of our model
will be given by M (p), where p is a parameter of arbitrary dimension of the model function M. We
consider the real error o to be modelled by a random distribution in the domain ¢ > 0. One of
the simplest models we can assume is a power law proportional to ¢ =2, which is the first integer
order for which the integral to infinity converges. Therefore, after normalization,

g0

P(o|op) = o € [0g,0). (10.1)

o2’

We will therefore have to marginalize over this probability in order to get our likelihood,
P(DIM, 00, p) = /( P(D|M, 0, p) P(c]ov)do. (10.2)
0

Substituting a Gaussian likelihood for P(D|M,o,p), using the change of variable u = 1/0 and
denoting R = (D — M (p))/oo for brevity, we get
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If we extend this result to a 1D dataset of size N, we would get N independent distributions
for o;, dependent on their corresponding oy ;, that would be marginalized with N integrals similar
to the one-point case. Given that the likelihood is an exponential of the sum of residuals, we can
divide it in separate factors which are integrated independently, obtaining a product of factors of
the form in Eq. (10.4). Therefore, the log-likelihood would be

n _ e Fi/2
In £ = const. + E (n [1621 ( (10.5)
Pi

=1
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where, for a 2D dataset as one consisting of proper motions, the residual p; can be computed as in
Eq. (8.189).

If there are significant outliers, a likelihood like the one in Eq. (10.5) can drastically improve the
fit. This can be observed in Fig. 10.1, which shows the difference of behaviors between the least-
squares and permissive fit approaches for a well-behaved case and one with significant outliers.
However, even if the likelihood in Eq. (10.5) recovers the least-squares solution for a well-behaved
case, it also broadens its posteriors, around a factor 50% according to [148]. In fact, one can easily
check that, for small p;, one recovers

2
In £ ~ const. — Z %, (10.6)
i=1

which corresponds to the Gaussian likelihood with errors multiplied by v/2. This broadening of the
posteriors is expected from the assumption on the experimental errors in Eq. (10.1). In the end,
it is up to the analyst to decide whether this behavior is compensated by the improvement of the
outlier exclusion or not, which will depend on the nature of the dataset. In our case, we decide to
use it, both to be more conservative with our constraints and to match the existing literature [140].

i Least squares ¢ ¢ Least squares
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Figure 10.1: Difference of behaviors of the usual, least-squares method and the permissive fit given
by the likelihood in Eq. (10.5). The left panel shows a well-behaved case, where both approaches
coincide. The right panel shows a case with some outliers that bias the least-squares method, which
do not significantly impact the permissive fit approach.

10.2.2 Parameter estimation

Using Eq. (10.5), we run our parameter estimation with the emcee sampler [131], which does an
MCMC over the data. We jointly fit the dipole and quadrupole with the decomposition in the
form (8.135), which makes a total of n = 16 parameters. For all of them, we set uniform priors in
the [—100, 100] pas/yr range, and we use 10n = 160 walkers. In order to confirm the convergence,
we compute the autocorrelation times [133] and run the MCMCs for at least a hundred times the
shorter autocorrelation time, which was usually around 20,000 iterations.
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From the posteriors, we derive the 95% credible level upper bound for Qaw, as well as compute
its Z-score from Eq. (8.200) to address its statistical significance. Also, we plot the difference
distributions discussed in Subsec. 8.8.1 in Fig. 10.2, for the astrometric dataset.
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Figure 10.2: Posterior distribution for the quadrupole power P» for the astrometric dataset, with
the corresponding chi-square and non-centered chi-square distributions superimposed.

In addition, we also compute the Bayes factors by assuming Gaussian posteriors, which is a
good approximation in this case, following the formalism explained in Subsec. 2.3.3. From these
posteriors, we get the maximum likelihood L£15 and covariance matrix Y15. As our null hypothesis,
we suppose an only-dipole case and use for the likelihood £; the one computed from the dipole
of our maximum likelihood estimate. As covariance matrix, we use the (I = 1,{ = 1) submatrix
31 C ¥12. From Eq. (2.81), the Bayes factor can be computed as

Bi% =~ (10.7)

@ \/ﬂ niz—ni det(212) 1/2
;Cl 2L det(El) ’

where L is the posterior half-width, L = 100 pas/yr.

We run this procedure over all the datasets described in Chapter 9. The one based on Gaia
DR3 that we trust for our final constraints is the intersection one, but we also derive the con-
straints for the other three as control cases, to check that our constraints are robust under dataset
choice. In addition, we also run them for the additional datasets described in this chapter: VLBA,
VLBA+Gaia DR1 and SDSS+Gaia DR3. For all the datasets, the minimum frequencies were indi-
cated in Table 9.1, while the maximum ones are given by the inverse of the observing period. For
the Gaia DR3-based cases, this frequency is fuax &~ 1.1 x 1078 Hz (T = 2.84 years), while for the
VLBA-based cases, it is fmax ~ 1.4 x 1072 (T = 22.2 years).
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10.3 Results

The main results of our article are presented in Table 10.1, which shows the fitted total power of
the quadrupole moment, Z scores for [ = 2 (Z3), Bayes factors Bi? between the dipole+quadrupole
and only dipole hypotheses, the best-fit Qgw value corresponding to the quadrupole power, and
the 95% upper bound on Qaw.

Dataset VP (pas/yr) | Zy | InBi? h2,Qcw h2,Qchy (95%)
Masked 1251(1.81) | 4.19 | -17.2 | 0.069(0.021) 0.114
Pure 23.15(2.01) 10.21 | 34.4 0.235(0.040) 0.295
Astrometric 10.13(1.73) 3.10 | -23.2 0.045(0.017) 0.089
Intersection 9.53(1.73) 2.68 | -23.5 | 0.040(0.017) 0.087
VLBA 2.73(1.23) -1.93 | -42.3 | 0.0033(0.0056) 0.024
VLBA-+Gaia DR1 5.30(1.36) 0.57 | -14.7 | 0.0123(0.0077) 0.034
SDSS+Gaia EDR3 | 52.48(10.88) 4.70 69.6 1.21(0.54) 2.43

Table 10.1: The total quadrupole power obtained from the dipole+quadrupole fits, together with
the Z score corresponding to the quadrupole, the Bayes factor between the dipole+quadrupole and
only dipole hypotheses, and the Qgw estimations (best-fit and 95% CL upper limit values). The
values correspond to the maximum likelihood estimates and the 1-sigma errors are provided in
brackets.

In addition, the fitted multipole coefficients for our four main datasets are presented in Ta-
ble 10.2, as well as the vector field for the intersection dataset in Fig. 10.3. In App. D, I also
include the corner plots showing the posterior distribution of the multipole coefficients, as well as
the posteriors of Qgw for all datasets. We also show the full correlation matrices for all runs.

<<<<<

10 pas/yr

0 Proper motion module (mas/yr) 2

Figure 10.3: Fitted vector field skymap for the intersection dataset.
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Masked Pure Astrometric | Intersection
s10 | -39.92(1.92) | -4.40(1.89) | -5.72(1.89) -4.79(1.88)
she 11.92(1.49) | 4.64(1.44) 0.31(1.46) 0.18(1.44)
sim 3.74(1.45) -6.02(1.42) | -8.86(1.43) -9.06(1.42)
t1o -14.01(2.09) | -5.81(2.04) | -0.31(2.04) -0.20(2.06)
t{‘f -14.19(1.44) | -6.48(1.39) | -1.57(1.38) -1.60(1.41)
tIf{‘ 5.91(1.33) 9.96(1.29) 3.74(1.30) 3.41(1.31)
\/PTS 43.65(1.91) | 11.60(1.70) | 13.78(1.88) | 13.68(1.74)
\/PTf 25.86(2.12) | 17.78(1.96) 5.75(1.80) 5.32(1.82)
VP | 50.74(2.13) | 21.23(1.99) | 14.93(1.95) | 14.68(1.94)
$20 3.84(1.88) -8.65(1.81) | -5.79(1.81) -5.15(1.82)
ngf -0.85(1.28) | -8.33(1.24) 2.29(1.24) 2.10(1.24)
st | 5.16(1.37) | -0.91(1.33) | 1.85(1.33) 1.91(1.34)
she 2.15(1.40) 4.49(1.37) -0.65(1.38) -0.50(1.37)
sha 1.77(1.41) 5.29(1.38) 2.63(1.37) 2.01(1.38)
tao 5.25(1.98) -1.69(1.94) 3.63(1.93) 3.74(1.95)
t?f -1.09(1.39) 3.40(1.36) -0.29(1.35) 0.72(1.36)
tlgf 3.59(1.43) -6.74(1.41) 1.72(1.41) 1.84(1.41)
tQR; -1.59(1.32) | -7.16(1.29) | -2.56(1.29) -2.82(1.29)
thm -2.33(1.34) | -1.52(1.31) 1.52(1.30) 0.97(1.31)

\/P>25 9.21(1.86) 17.65(1.97) 8.10(1.63) 7.15(1.70)
P} 8.46(2.02) 14.97(2.25) 6.08(1.80) 6.28(2.01)
VP | 12.51(1.81) | 23.15(2.01) | 10.13(1.73) 9.53(1.73)

Table 10.2: Fitted multipole coefficients, in pas/yr, for the four main considered datasets. The
values correspond to the maximum likelihood estimates and the 1-sigma errors are provided in
brackets.

We first take a look at the statistical significance of our results. Most of the datasets show
Z-scores above 2.5, which can be interpreted as sigma deviations (see Sec. 8.8.1). This means
there is more than just pure isotropic Gaussian noise in them, but does not necessarily imply a
detection. Indeed, these numbers can be explained by biases in the datasets, such as contamination
of intrinsic proper motions. This point is reinforced by the fact that our pure dataset, which is the
most contaminated one, especially by the Magellanic clouds, has the highest Z score.

The Bayes factors can be interpreted in a similar way. In general, they disfavour the quadrupole
detection, except for the pure dataset and the SDSS+Gaia EDR3, in which cases the quadrupole
arises from the contamination and inhomogeneity of the datasets. In fact, the SDSS+Gaia EDR3
case shows strong dipole-quadrupole correlations, as can be seen in Appendix D (Fig. D.4), which
makes the Bayes factor computation unreliable. Furthermore, for this dataset, if we take as null
hypothesis the lack of any signal, the log-Bayes factor turns negative, reinforcing the idea of a
non-detection.

Having established that we do not get any detection, we now turn our attention to the upper
bounds. For the Gaia DR3-based datasets, our final upper bound is the one set for the intersection
dataset, h2,Qgw < 0.087 for 4.2 x 107 Hz < f < 1.1 x 1078 Hz. The rest of the cases behave as
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expected: the upper bound based on the astrometric dataset is very similar, due to its similarity
with the intersection dataset; the one derived from the masked dataset is within 30%, which was
expected from the slightly lower purity; and the pure dataset sets a considerably higher constraint
due to its contamination, but still within a factor 4. Therefore, we conclude that our results are
robust under the choice of dataset, which means that our constraint of 0.087 is not likely to be
lowered by using the same algorithm with a different dataset based on Gaia DR3 alone.

Another thing we notice from the results in table 10.2 is that the power in the toroidal dipole is,
in general, less than the 1/4 of the one in the spheroidal dipole. While, for the higher multipoles, it
is expected that both have a similar value if they come from a gravitational wave background (see
Subsec. 8.7.3), a high toroidal dipole indicates a spurious rotation. The fact that toroidal dipoles are
related to rotations is given by their definition, and illustrated by the T1 vector spherical harmonic
in Fig. 8.2. Having the toroidal dipole under control is a good indication of the purity of our data.
Again, the pure dataset breaks this trend due to its contamination.

With respect to the VLBA and VLBA+Gaia DR1 datasets, we get h2,Qaw < 0.024 for 5.76 x
107¥ Hz < f <1.4x107% and A2 Qaw < 0.034 for 5.40 x 10718 Hz < f < 1.4 x 1077, respectively.
These are more pessimistic results than the ones in [140], also for the Z-scores, due to a different
implementation of the likelihood (10.5) which underestimated the errors on their side [117], as well
as our simultaneous fit to the dipole and quadrupole, which they did it separately. Still, they stand
as the best astrometric constraints to date.

For the SDSS+Gaia EDR3 dataset, we did not manage to reproduce the results in [107]. Given
its poor sky coverage shown in Fig. 9.4 and the high correlations seen in Figs. D.3 and D.4, such
a significantly higher upper bound is to be expected. For an only-quadrupole fit, this constraint is
reduced to h2,Qcw < 0.40, which is much more reasonable, but it does not make sense to ignore
the dipole with this method and, in any case, it is much higher than the results of order 10~* they
claim. This is likely explained by the narrow prior range they choose, although there could be other
factors explained by the different methodology.

To conclude this section, we should discuss why the derived constraints from Gaia DR3 are still
worse than those from VLBA. As discussed in Subsec. 8.6.1, we can use Eq. (8.86) to roughly get
an expected upper bound for a mission with resolution Af, observing time T and number of sources
N. As we are working with proper motion, we can assume that the mean uncertainty in proper
motion is roughly given by Au ~ A#/T and rewrite

Ap?

Q < —.
GW J NHg

(10.8)

Our Gaia DR3-based datasets have around 1000 times more sources, which is good for a con-
straint, but the uncertainties in proper motions are larger than in VLBA ({(Apu) = 670 pas/yr versus
20 pas/yr), compensating this effect. In addition, Eq. (10.8) assumes that all sources have a rms
proper motion of order Ap/v/N, which is not true neither for the Gaia DR3-based datasets nor
for the VLBA datasets. Furthermore, the real numbers differ more from this hypothesis as the
number of sources increases and the sky coverage is less isotropic. Both reasons make the Gaia
DR3 datasets perform a bit worse overall.
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10.4 Future prospects

From Gaia DR3, we have obtained the upper bound for the SGWB amplitude hZ,Qcw < 0.087 for
42 x 10718 Hz < f < 1.1 x 1078 Hz. This is worse than the ones obtained for the VLBA-based
datasets in [110], which we reanalyzed to obtain h%,Qgw < 0.024 for 5.76 x 10718 Hz < f <
1.4 x 107° for the VLBA dataset. As has been commented, part of the worse performance from
Gaia comes from its worse resolution, which partly derives from its lower observing period (2.84

years for Gaia DR3 versus 22.2 years for VLBA).

Future Gaia releases will use longer observing periods, increasing the SNR and reducing the
uncertainty in proper motions. According to [425, |, the coordinate and parallax resolution
increases proportionally to /T, expecting improvement factors of 1.4 and 1.9 for Gaia DR4 (5.5
years) and DR5 (10 years), respectively. Furthermore, the proper motions increase their resolu-
tion proportionally to 73/2, which means improvement factors of 2.7 and 6.6 for DR4 and DR5,
respectively. Also, Qgw decreases with the error in proper motion squared, which translates into a
decrease proportional to T, or a 7.2 and 44 improvement factors for DR4 and DRS5, respectively.
Extrapolating our current constraints, this would imply constraints of order Qgw < 0.012 and
0.0020 for DR4 and DRS5, respectively, with the maximum constrained frequencies being lowered
a bit, since they are given by T~!. In addition, the number of sources will likely increase, which
means we will likely be able to get to 10™* in the final data release.

Also, the next data releases will include the full time series of each source. This will allow to
make more sophisticated analyses and, particularly, to constrain the f > 1/T ~ 3.2 x 1072 Hz
range, as discussed in Subsec. 8.6.2.

Once Gaia finishes releasing their data, the hopes to further refine these constraints will be set in
future generation astrometric missions such as Theia [450, 451]. In [411], it is proposed that Theia
will improve the proper motion resolution in a factor 60 and observe 100 times more sources. Using
our Eq. (10.8) and our predictions for Gaia DR5, this would imply a constraint of order 10710,

As detailed in the introduction, achieving better sensitivities is the key to constrain stochastic
backgrounds such as super massive black hole binaries, cosmic strings, phase transitions and pri-
mordial black holes. This field will likely follow behind what happens in the PTA range, but it is
nevertheless absolutely important to keep updating the astrometric constraints, first, for confirma-
tion of these signals and, more importantly, to look for extra signals in the wider frequency range
that neither CMB nor PTAs can reach.
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The field of Gravitational Waves is living a revolution from their first detection almost a decade
ago. As a physicist, this is one of the most exciting areas to which one can contribute from a wide
variety of topics and methodologies: theoretical predictions, data analysis or numerical simulations
are some of the options which we explored in this thesis. The fast improvements in GW detection
sensitivity, as well as the new frequency windows that new missions will probe, imply an increasingly
overwhelming amount of observational data of great relevance to Astrophysics and Cosmology. From
the point of view of Theoretical Physics, gravitational waves present a unique opportunity to make
predictions which can be confronted with data in only a matter of years, which will surely make
our understanding of the Universe drastically progress in the coming decades, similarly to how the
CMB did over the last half century.

In this thesis, we have studied several aspects related to gravitational waves, in the areas of
Stochastic Gravitational Wave Backgrounds, Primordial Black Holes, Numerical Relativity and
Astrometry. In Chapter 1, we started with a broad introduction to GW theory, covering the main
ideas of energy radiation and GW production, and applying the formalism to two-body systems,
from the points of view of CBCs and hyperbolic encounters.

We continued our approach to GWs by delving into SGWBs in Chapter 2, including an intro-
duction to parameter estimation and concluding with a review of current constraints and with a
work [5] in which we constrained the SIGW background assuming non-Gaussianities. In Chapter 3,
we relaxed the isotropic SGWB assumption to study the formalism for its anisotropies, concluding
with a work [3] which developed a spherical-harmonic decomposition formalism and applied it to
several test cases of interest.

In Chapter 4, we incorporated PBHs to the thesis, which would be relevant in subsequent
chapters. The introduction to their formation mechanisms was followed by a detailed explanation
on how to compute the overdensity thresholds required for the PBH collapse. This was done with
a numerical approach, which served as a first contact with Numerical Relativity, with some of the
concepts introduced in this section reappearing in the NR chapters. Finally, we presented the two
main scenarios for BBH production, together with the merger rate in the late binary approach,
which connects to the next chapter.

In Chapter 5, we computed the PBH contribution to the SGWB from their close hyperbolic
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interactions, as we did in the article [2]. For reference, we applied the same procedure to the
PBH contribution from BBHs, and compared both components. We discovered that introducing
a redshift-dependent event rate leads to significant changes in the shape of the CHE contribution,
while the BBH component is only enhanced slightly. From this fact, we concluded that a good
characterization of the CHE background would lead to significant findings on the PBH clustering
across the Universe, as well as their relative abundance with respect to ABHs. However, the
detection prospects are more pessimistic than for the standard BBH component, although this
would depend on the exact properties of PBH clusters.

In Chapter 6, we turned our attention to Numerical Relativity, with a brief introduction to
the field and a broader presentation of the used software, the Einstein Toolkit, as well as some
of the issues that arise in these simulations. The chapter concluded with a practical overview of
the Einstein Toolkit capacities, both from a BBH simulation and three runs for black hole CHEs,
showing some of the outputs that can be derived from them.

In Chapter 7, our article on spin induction from BH CHEs [1] was presented, in which we used
NR simulations to characterize this effect. We studied how two initially non-spinnning black holes
acquire significant spins after their interaction in a CHE, and explored the parameter space of
initial momenta, incidence angles and mass ratios. In addition, we addressed some of the technical
difficulties to extend these studies to lower mass ratios, illustrating it with a simulation of ¢ = 0.1.
From this study, we concluded that this effect is a viable mechanism for PBHs to acquire spins,
which could explain GW signals generated by intermediate-mass BHs with relevant spins, such as
GW190521.

We arrived to the final topic in Chapter 8, where we saw a broad introduction on how to use
astrometric measurements to set constraints on the SGWB amplitude. These upper bounds are
imposed on the frequency range below the nHz, where no other probe has access to. Therefore,
systematic and rigorous work on this topic is required to obtain the maximum information possible
from the SGWB in all frequencies. As the chapter came to the end, we shifted from the theoretical
formalism to more practical considerations which are necessary to bear in mind for a data analysis
work on this topic.

In Chapter 9, we gave an overview of the Gaia mission, including how to obtain some of the
data, how to clean it according to different criteria and showing the necessary queries in ADQL.
Finally, in Chapter 10, we used the datasets obtained in the previous chapter to set constraints to
the SGWB amplitude, following our article [4]. Aside from setting constraints using Gaia data, we
updated existing constraints from VLBA, as well as outlined the future prospects we expect from
subsequent data releases of Gaia.

This thesis provides an overview of some of the different research areas available to the Grav-
itational Wave field. In doing so, it highlights my contributions to these areas during the four
years of my PhD, as well as suggests some possible avenues that could be pursued in the future.
Nevertheless, the field of Gravitational Waves is immersed in a constant evolution due to its drastic
progress, which comes from the increasing amount of observations due to the improvements in de-
tector sensitivity, the reports of evidences of SGWB from PTAs and the addition of new detectors
in the short (KAGRA, LIGO-India) and medium (LISA, ET, CE) term, only to name a few. The
future of gravitational waves is as uncertain as exciting, offering a unique framework for physicists
to contribute to the scientific progress and promising to revolutionize our understanding of the
Universe in the coming decades.
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Conclusiones

El campo de las Ondas Gravitacionales esté viviendo una revolucion desde su primera deteccion
hace casi una década. Como fisico, esta es una de las dreas més apasionantes en las que se puede
contribuir desde una amplia variedad de temas y metodologias: predicciones teéricas, analisis de
datos o simulaciones numeéricas son algunas de las opciones que exploramos en esta tesis. Las
rapidas mejoras en la sensibilidad de deteccién de GWs, asi como las nuevas ventanas de frecuencia
que exploraran las nuevas misiones, implican una cantidad cada vez mas abrumadora de datos
observacionales de gran relevancia para la Astrofisica y la Cosmologia. Desde el punto de vista de la
Fisica Teorica, las ondas gravitacionales presentan una oportunidad tinica para realizar predicciones
que puedan ser contrastadas con datos en solo cuestiéon de anos, lo que seguramente hara que nuestra
comprensién del Universo avance dréasticamente en las proximas décadas, de manera similar a la
revolucion que ha causado el CMB durante el dltimo medio siglo.

En esta tesis hemos estudiado varios aspectos relacionados con las ondas gravitacionales, en las
areas de Fondos Estocasticos de Ondas Gravitacionales, Agujeros Negros Primordiales, Relatividad
Numeérica y Astrometria. En el Capitulo 1, comenzamos con una amplia introduccion a la teoria de
GW, cubriendo las ideas principales de la radiacién de energia y produccion de GWs, y aplicando
el formalismo a sistemas de dos cuerpos, desde el punto de vista de los CBCs y los encuentros
hiperboélicos.

Continuamos nuestra aproximacion a los GWs profundizando en el SGWB en el Capitulo 2,
incluyendo una introduccién a la estimaciéon de parametros y concluyendo con una revision de los
limites observacionales actuales y con un trabajo [5] en el que ponemos limites al fondo de ondas
gravitacionales inducidas por escalares asumiendo no-Gaussianidades. En el Capitulo 3, relajamos el
la suposiciéon de isotropia en el SGWB para estudiar el formalismo de sus anisotropias, concluyendo
con un trabajo [3] en el que desarrollamos un formalismo de descomposicién en armoénicos esféricos
y lo aplicamos a varios casos de prueba de interés.

En el Capitulo 4, incorporamos PBHs a la tesis, dada su relevancia en capitulos posteriores.
La introduccién a sus mecanismos de formacién ha continuado con una explicacion detallada sobre
como calcular los valores limite para la sobredensidad necesaria para producir el colapso de un
PBH. Esto se ha hecho con un enfoque numeérico, que ha servido como un primer contacto con
la Relatividad Numeérica, reapareciendo algunos de los conceptos introducidos en esta seccién en
los capitulos de NR. Finalmente, presentamos los dos escenarios principales para la produccion de
BBH, junto con los ritmos de fusiéon para la hipdtesis de binarias tardias, lo cual conecta con el
siguiente capitulo.

En el Capitulo 5, hemos calculado la contribuciéon de los PBHs al SGWB a partir de sus inter-

211



Chapter 11. Conclusions

acciones hiperbolicas cercanas, tal como lo hicimos en el articulo [2]. Como referencia, aplicamos el
mismo procedimiento a la contribucion de PBH de BBH y comparamos ambos componentes. En-
contramos que la introduccién de una tasa de eventos dependiente del corrimiento al rojo conduce
a cambios significativos en la forma de la contribucién de CHE, mientras que la componente BBH
solo aumenta ligeramente. De ello concluimos que una buena caracterizacion del fondo de CHE
conduciria a hallazgos significativos sobre las agrupaciones de PBH en todo el Universo, asi como
su abundancia relativa con respecto de los ABH. Sin embargo, las perspectivas de deteccién son
mas pesimistas que para la componente usual de BBHs, aunque esto dependeria de las propiedades
exactas de estas agrupaciones de PBHs.

En el Capitulo 6, centramos nuestra atenciéon en la Relatividad Numérica, con una breve in-
troduccion al campo y una presentacion més amplia del software utilizado, el Einstein Toolkit, asi
como algunos de los problemas que surgen en estas simulaciones. El capitulo concluye con una
descripcién practica de las capacidades del Einstein Toolkit, tanto de una simulacion BBH como
de tres ejemplos para CHEs de agujeros negros, mostrando algunos de los resultados que se pueden
obtener de ellos.

En el Capitulo 7, se ha presentado nuestro articulo sobre la induccién de espin a partir de CHEs
de BHs [1], en el que utilizamos simulaciones de NR para caracterizar este efecto. Estudiamos
como dos agujeros negros que inicialmente no giraban adquieren espines significativos después de su
interaccion en un CHE, y exploramos el espacio de parametros de los momentos iniciales, dngulos
de incidencia y cociente de masas. Ademas, abordamos algunas de las dificultades técnicas que
surgen al extender estos estudios a cocientes de masa mas bajos, ilustrandolo con una simulacién
con ¢ = 0.1. A partir de este estudio, llegamos a la conclusiéon de que este efecto es un mecanismo
viable para que los PBHs adquieran espines, lo que podria explicar las senales de GW generadas
por BHs de masa intermedia con espines relevantes, como GW190521.

Llegamos al tema final en el Capitulo 8, donde hemos visto una amplia introduccién sobre
como usar mediciones astrométricas para establecer limites sobre la amplitud del SGWB. Estos
limites superiores se imponen en el rango de frecuencia por debajo de los nHz, al que ningan otro
experimento tiene acceso. Por lo tanto, se requiere un trabajo sistematico y riguroso en este tema
para obtener la maxima informacion posible del SGWB en todas las frecuencias. Al llegar al final
del capitulo, pasamos del formalismo teoérico a consideraciones més practicas que es necesario tener
en cuenta para realizar analisis de datos sobre este tema.

En el Capitulo 9, se proporciona una descripcién general de la misiéon Gaia, incluyendo cémo
obtener algunos de los datos, como limpiarlos segun diferentes criterios y mostrando las consultas
necesarias en lenguaje ADQL. Finalmente, en el Capitulo 10, utilizamos los datos obtenidos en el
capitulo anterior para obtener limites sobre la amplitud del SGWB, siguiendo nuestro articulo [4].
Ademés de establecer estos limites utilizando los datos de Gaia, actualizamos las restricciones
existentes a partir de VLBA y describimos las perspectivas futuras que esperamos de las siguientes
publicaciones de datos de Gaia.

Esta tesis proporciona una descripcién general de algunas de las diferentes areas de investigacion
disponibles para el campo de las ondas gravitacionales. Al hacerlo, se destacan mis contribuciones
a estas areas durante los cuatro anos de mi doctorado, ademas de sugerir algunas posibles vias que
se podrian explorar en el futuro. Sin embargo, el campo de las Ondas Gravitacionales esta inmerso
en una constante evolucién debido a su dréastico progreso, que proviene del creciente nimero de
observaciones debido a las mejoras en la sensibilidad de los detectores, los informes de evidencias
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de SGWB por parte de los PTAs y la incorporacion de nuevos detectores en el corto (KAGRA,
LIGO-India) y el medio plazo (LISA, ET, CE), solo por nombrar algunas causas. El futuro de las
ondas gravitacionales es tan incierto como apasionante, que ofrece un marco tnico para que los
fisicos contribuyan al progreso cientifico y promete revolucionar nuestra comprension del Universo
en las proximas décadas.
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Appendix A

Scalar-induced gravitational wave
formalism

In this appendix chapter, we will briefly review the scalar-induced gravitational wave theory which
was necessary for our article [5], explained in Sect. 2.5. This chapter is mainly taken from this
article, whose formalism is based on [154, , |

We start from the perturbed metric in the conformal Newtonian gauge, which can be written as
1 . .
ds®* = a(1)? | —(1 + 29(r,))dr* + ((1 —2®(7,))0;; + 2hij> dx* dxj] < (A1)

where 7 represents the conformal time, ®(7,Z) is the curvature perturbation in the Newtonian
gauge and h;; is the transverse traceless tensor perturbation described in Chapter 1. We neglect
vector perturbations and the scalar anisotropic stress.

As we saw in Chapter 1, h;; can be expanded in Fourier modes as
hij(1,%) = Z(/(dggeig'fef}(ﬁ)h,q(ﬁ k), (A.2)
A=+,

where we take the e%(lg) basis tensors to be normalized as e;‘;e{;/ = 644" Note that there is a

factor 2 of difference with the definition in Eq. (1.35). In addition, unlike in the rest of the thesis,
we will not use a tilde to express Fourier-space quantities, to make the notation simpler.

We start by reviewing the SIGW theory for the Gaussian case.

A.1 Scalar induced gravitational waves

At the second order, the Fourier modes of a gravitational wave follow the equation of motion

Wi(r, k) + 21 (7, k) + k2 ha(r, k) = 4S4(7, k) , (A.3)
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where the prime denotes derivative with respect to 7, H = a(7)H(7) is the conformal Hubble

parameter and S4(T, E) is a source term. In terms of the primordial curvature perturbation ¢, this
source term can be expressed as

3 . . -
Salr,B) = /(é’ﬁ‘)g@m,@f (F-7.07) @ -a. (A4)

where Q A(E, q) is a projection factor given by

Qa(k,q) = efs(k)d'q’, (A.5)

’ ’ .
AeA” = §447 50 there is

where the polarization basis tensors are normalized, in this formalism, as e;;e;;

a factor 2 of difference with respect to our definitions in Eq. (1.35).

Here, we set k to be in the z direction. The source factor f(p,q,7) appearing in Eq. (A.4),
assuming radiation domination, is given by

do(pr) do(qr) N <¢( - do(qr) n do(pT) ¢)(q7‘)> ( (A.6)

f(p,q,7) = 36(p7)¢(q7) +

dIn(pt) dIn(g7) dln(gr) = dln(pr)
where ¢(z) is the linear transfer function between ® in the Newtonian gauge and ¢

(1, k) = d(kr)¢(F). (A7)
In this work, we consider adiabatic scalar perturbations, so that, in the radiation-dominated era,

o(z) = —;% w - cos(x/\/§)> . (A.8)

For isocurvature perturbations, this transfer function changes (see e.g. [452]).

Then, the equation of motion (A.3) can be solved using a Green’s function, similar to the
discussion for Eq. (1.19) in Chapter 1, so that

4 o
() = = /( 4G (7, 7)a(7)S A (7 F), (A.9)
T
with the Green’s function given by
sink(r —7)
k

Substituting Eq. (A.4) into Eq. (A.9), the two-point estimator for the induced gravitational waves
is

GE(T, 7~') = (A.IO)

. . 3> 13> N o

(ha(r, E)has(r, o)) = /<g7f;3(§7f;c2,41<kl,q-a>@m<kz,qa> (A11)
ka<<1—§1 thT)Ik(fz—(Tz 7Q2,T)< (A.12)
X (@Y (F1 — @)@ (k2 — @), (A.13)

with the kernel function given by

Li(prq,7) = 4 /( 07 G, %)ng(n 0.7). (A.14)
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A.2 Gravitational waves induced by non-Gaussian curvature
perturbations

Let us now consider the scalar-induced gravitational wave formalism with non-Gaussian primor-
dial curvature perturbations. As explained in Sec. 2.5, we consider a quadratic local-type non-
Gaussianity parametrized as Eq. (2.83), while the Gaussian curvature perturbation has a monochro-
matic spectrum given by Eq. (2.85).

We now have to substitute the non-Gaussian parametrization of ¢ given by Eq. (2.83) into the
two-point function in Eq. (A.9). In order to do so, we first define a dimensionless power spectrum
Paa(r,k) as

(ha(T, K)hoa (T, K)) = (2m)368% (k + )—PAA,(T k). (A.15)

This power spectrum P44/ (7, k) will be the sum of seven components,

7

Paa (1, k) Z(D T, k)oaur, (A.16)

which can be computed as [151, 153]

,P,(éll,zl(Tak):2IAA(T7E‘(Z§‘(ZE_®7 (A17)

Poa(t k) 2PNL)*Zan(1, k| G, @ | Gos K — q‘* T — ), (A.18)

P (k) = 22 (QUFNL)*Tan (T, B | G, @2 | G2, @oo K — G2 — @), (A.19)

21
77(4)( k) = 22 %IAA(T k¢, q | k=G, ¢ di — @ )s (A.20)
2'F 4 g - = — T - = = = pvg

7’@1(7, k) =2 WIAA(T7k |G, 0 | 4 — k4 35,35, 32, G2 — q1), (A.21)
P (T, k) = 2 (2FN0) Tan (K | G, @ | @1 — @, G0 — G5, G5, @ — K), (A.22)
PO ) = QUPNL) Tan(, k| G, @ | @1 — F+ @ — @50 G — @5 B — @5, 35) (A.23)

with

- L oo /413 d3q1 d3 N
Taa (k| q1,@ | krska, o) =222 Jl @n) 2y - Qalk, 7)Qu (k. 3) (A.24)

)
ka( - @ ,(h,T)Ik( G2 G2, T )

with the power spectrum P, (k) of the Gaussian curvature perturbation ¢, defined in Eq. (2.84),
which takes the form of Eq. (2.85) in the monochromatic case.

Here, we can see that the constant parameters A, and Fir, can be taken out from the integrals
in Zaa. As a result, the order of each contribution is P} = O(FRLA2), P = = O(FgLAY),
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and 731(451;‘6’7) = O(FypA;). These are the seven terms which were referred to in Sec. 2.5 and were

reduced to three due to the common parameter dependence of 77512;‘3’4) and P1(45/’16’7).

We must now convert this result into an energy density parameter Qgw(f). Given that f o k
via Eq. (2.86), the energy density parameter can be computed as

_ ldpew 1 E\? —
Qv () = - S — L (0 e (A.25)

where the overline denotes oscillation average. In the radiation-dominated era, the source term
of GW given by Eq. (A.4) becomes negligible soon after the curvature perturbation re-enters the
horizon, so that scalar-induced gravitational waves behave as the radiation without the source. If
we denote the energy density parameter in the subhorizon limit during the RD era as Q8% (k), then

the present density parameter can be described as [453]
* * 4/3
9" (1) ( 9sp RD
QGW T ,k =0 , - <) Q k 5 A.26
(r0.h) = o 20 (205 ) O k) (4.20)

where the subscript “0" denotes the present value, €2, is the radiation density parameter, g* and
g% represent the effective number of relativistic degrees of freedom contributing to the energy and
entropy densities, respectively, and 7; is the conformal time when the SIGW start to behave as
radiation. Here, we assume ¢*(7;) = g% (7;) = 106.75, which corresponds to the epoch in which the
relevant scales for LVK band re-entered the horizon. For a more detailed description of numerically
computing Q82 (k), one can refer to [154, ]. To conclude the computation, one would have to
convert the scale k to frequency with the relation given by Eq. (2.86).

Eq. (A.26) is the final expression we used in our article [5], summarized in Sect. 2.5. We can
see its shape for different Fyp, values in Fig. 2.5.
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Appendix B

Derivation of dipole artifact due to
Doppler shift

In this appendix chapter, I include the derivation of the dipole artifact caused in a SGWB by the
Doppler shift due to the observer’s relative motion, included in the article [3]. This is based on
similar derivations for the CMB [197, 198].

We denote by S a rest frame in which the SGWB is isotropic, and by S’ the observer’s system,
which is traveling at a constant relative speed v = fc¢ with respect to S. The parameters of S’
will be denoted with a prime. Both 6 = 0 and 6’ = 0 are defined so that they point towards the
direction of motion, so it will be necessary to rotate the final result to align it with the Earth’s
rotation axis.

The Lorentz transformation between 6 and 8’ is then

cosf+ [

50 = ————.
cos 1+ Bcosf

(B.1)
Then, for a gravitational wave signal coming from € in S, the observed gravitational wave frequency
/' relates to the emitted one [ as

JI—F

f= 1— Bcost I (B.2)

= 14 Bcos

— B2
This equation differs from the standard expressions for the Doppler shift by a minus sign, 8 — —3,
due to the different setup. We now write the series expansion of Eq. (B.2) in 8 up to the second
order,
f/

T 1+ Beost + 32 <0082 0 — ;) +0(8%). (B.3)

The term with cos? 6’ implies that this order of approximation leads to multipoles | < 2, so the
Doppler effect is not a pure dipole, as it is commonly assumed.

In order to compute the angular distribution of the SGWB observed in S’, we look for an
expression for Q. (f',0') in terms of Qg (f’,0), with the same frequency in both cases. The GW
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energy density can be computed as the number density of gravitational quanta times the energy
of each of them, which is proportional to the frequency. Similar to Eq. (1) in [197], we define a
spectral number density n(f,#), with units of m~'sr~'Hz~*. Then, the energy density satisfies

dpgw

df d?Q
which can be understood as an energy flux or intensity. According to Eq. (7) in [197], which reads
n(f,0") = n(f)(f'/f)?, then the definition of Quyw(f,7) in Eq. (3.3) and the previous Eq. (B.4)
imply

o f x n(f,0), (B.4)

QU (1,0) = (?)4%(]“, 0). (B5)

From now on, we omit the angular dependence notation for brevity. Substituting Eq. (B.3) into
Eq. (B.5), we get

Qo) (N / )
Qggw(f) = <f> ~1+4Bcosd + 2 (10 cos® 0 —2)( (B.6)

We now make another series expansion to relate Qgyw (f) to Qgw (f7),

Quw (f) = Qg (f’ K— Beost + B;D (Z
~ Qg (f) {1 + a ((5 cos 0’ + 62) + 362 cos? 9’} < (B.7)

AR O v L

where

Qow Of Qow 0f%2
The expressions appearing in this equation for o and A should use f’ instead of f. However, since
the difference is a constant factor, as shown in Eq. (B.3), the results are identical in either case. In
particular, if Qg o< f™, then a = m (hence the notation) and A = a(a — 1).

(B.8)

Therefore, we can therefore compute €2, (f',0") in terms of Qg (f’) by substituting Eq. (B.7)
into Eq. (B.6) up to O(?), so that

Qg (f,0") = Qgu (f') {(4— Beost (4 —a) + B2 [cos2 o’ <() —da+ ?) + % — 2} } < (B.9)

In particular, when a = 4, it follows that A = 12 and the above equation reduces to Qg (f',0') =
Qgw(f’). This is due to the Lorentz invariance of Qg (f)/f*, and explains the dip observed in
Fig. 3.5.

Using the spherical harmonics in Table 8.1 for the standard spherical coordinates (6, ¢) instead
of (o, 9),

) Y10(07 ¢) = COs 03 (B]'O)

1
4
Y20(0, ¢) = % (Ecos2 6 — ;) ( (B.11)



we can derive the Py, coefficients from Eq. (B.9):
Poo = (1 + 2 { ——u+ A]) VA, (B.12)

Pio = (4 — p) (B.13)

Pao = 5 ((0 i+ ‘;‘) g\/g (B.14)

with the rest of Py, = 0. Given that the dipole points to the § = 0 direction by hypothesis, only the
Pio are non-zero. However, as indicated at the beginning of this chapter, the actual implementation
requires a rotation to make the dipole direction correspond to the direction of the relative motion

shown in Fig. 3.4, which we take from Planck’s measurements. This populates the other Py, (m # 0)
components.
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Appendix C

Analytic estimate of the induced
Spins

In this appendix chapter, analytic expressions for the induced spins are derived using frame drag-
ging. Nevertheless, in order to get an accurate estimations, one would have to resort to the fourth
order of the post-Newtonian formalism [278, |. The derived expressions are therefore only valid
as a simple qualitative approach.

For this purpose, the main idea is to interpret the precession vectors from frame dragging as
the angular speeds which are induced on the corresponding inertial frames.

C.1 Ring approximation

From the rest frame of a black hole, a close encounter with another one with a certain mass m is
just a point mass current following a certain trajectory 7(t), which is exactly a hyperbola in the
Keplerian limit. This situation is analogous to a black hole located at the center of a massive ring
of mass m, with a time-varying radius following the equation R(t) = |7(¢)| and rotating so that the
speed of each of its points matches the velocity that the point mass would have. To simplify things,
we take a stationary situation in which R and w are constant, with their values corresponding to
the point of closest approach.

First, we consider a thin ring of certain mass m, and radius R, which rotates around its axis at
a certain angular speed w. From the PPN(1.5) formalism, the rotation angular momentum of the
central black hole undergoes a certain precession given by the vector

) (C.1)

where fl is the angular momentum of the ring. This expression is the same one as for the precession
of the orbital angular momentum of a test particle orbiting a rotating black hole, an effect which
is known as Lense-Thirring precession [454].
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For a thin ring, the moment of inertia with respect to the center is just I = m; R2. Therefore,

=~ 2 o 2 9.  2mg

Q= 1"73(]1 = 7m1R w = ?w, (C2)
which relates the angular speed of the ring with that of the induced inertial frame at its center.
The same relation between 2 and & can be obtained from the equations in [455] in the thin-ring

approximation.

We now compute the dimensionless spin that would correspond to a black hole of certain mass
my located at the center of the ring. For this purpose, we assume that the frame-dragging speed €2 is
completely transferred to the central black hole, which rotates with this angular speed. Taking the
black hole as a solid sphere whose radius coincides with its Schwarzschild radius Rg 2, its moment
of inertia is 5 5 8

= 2, = —ma(2my)? = gm‘;’ (C.3)

With this, we can get the dimensionless spin,

a J L 16 myme
= — w

XS T mE T mE T 5 R

(C.4)

Finally, we want to extrapolate this result to the hyperbolic motion of a black hole of mass m;
around a black hole of mass mso. For this purpose, we express w and R in terms of two parameters
which characterize the hyperbolic motion: the velocity at the point of closest approach, vy, and the
eccentricity of the orbit, e.

First of all, we take the radius of the ring, R, to be the distance between both black holes at the
moment of closest approach. As we saw in Eq. (1.202), this distance is given in hyperbolic motion
by R = a(e — 1), where a is the semi-major axis of the hyperbola and must not be confused with
the dimensionless spin a.

Second, when we substitute the ring by a black hole, we keep the same angular momentum.
Therefore,
Lring = Lpu = ngQw = moRug = W= ’U()/R. (C5)

Using the expression for vy in terms of a given by Eq. (1.205), we can substitute the w in
Eq. (C.5) into the expression for x in Eq. (C.4) to get

- 16 mimso - 16 mimso - 16 mi1mso 1 5

X TR TS @120 T 5 M (er 12 (C6)

For the particular case m; = mo, the previous expression is just

4 1

For the approach in the next section, it is useful to note that, in order to convert from Q to ¥,
we have just multiplied by a factor

= —5 = —Mao. (CS)
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C.2 Mass current

Another possible approach to compute the spin is introducing a mass m; current at a position 7
with speed v. We start by writing the angular velocity of an inertial frame within the gravitational
potentials ¢ and g, which can be taken from the equation (9.6.12) in Ref. [456],

O=-—-Vxg— g x V. (C.9)

The second term corresponds to the de Sitter effect, coming from the gravitoelectric part of the
potential. If we assume that the mass current is symmetrically distributed within a ring, then the
potential ¢ at the center is constant and we can safely ignore this component.

Therefore, we just have to compute ¢, which can be done with the expression

= —4G /<d3 7:/

We will now substitute p and ¥ by the ones corresponding to a point mass current at position
?((p), where ¢ is an angular variable that parametrizes the trajectory. Distributing this mass within
a ring at the same distance does not have an effect over the first term in (C.9), which is a vector
parallel to the symmetry axis. We would just do the integration at a later stage.

(C.10)

)3 (r7)
e

-

r—r

We now use Eq. (C.9), first noting that

V x f@) % —0(p) X V- H{) %5(@ X m, (C.12)

where the first equality comes from the vector identity V x (fd) = (Vf) x @+ f(V x @), where in
this case the second term is zero.

Taking this into account, we can use Eq. (C.9) to get

5(@)

Q =2mV x . |> % 2m15(p) x |;___7:(90) (C.13)

We can get rid of the 7 by staying at the coordinate origin, ¥ = 0, and thus get (dropping the
tildes and the ¢ dependence)

= 7 XU
Q=2my 3 (C.14)
Now, we use several equations from hyperbolic motion, namely
r = a(ecosh(E) — 1), 7 x U= a(e — 1)vo, (C.15)
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where the second expression comes from angular momentum conservation and F is the eccentric
anomaly, related to the true anomaly by [18, 19]

o (£52) v (2) "

& = om (e —1)vg _2m 1 (e—1)3
! a?(ecosh(E) —1)3  M? (ecosh(E) —1)3 (e + 1)

As a result,

v (C.17)

If we impose F = 0, corresponding to the point of closest approach, ¢ = g, and compute Y,

we get
8 2m1 1 5 16 mims 1 5

_° I — C.18
XA 1120 T 5 M2 (et 12 (C.18)

which is, remarkably, the same expression we have obtained for the ring case, Eq. (C.6).

C.3 From spin-orbit equations at PPN(1.5)

Alternatively to the previous approaches, we can use some equations from [457]. In this reference,

the spins of two black holes in hyperbolic motion both follow precession dynamics given by the

vectors . 53
- & B -1
Q= k& L 5, (C.19)
M (e cosh(]_'() —1)3

for i = 1,2, where k is the unit vector perpendicular to the orbital angular momentum and

€= M, 512_,+ S0 ¢ /T=a), (C.20)

n=mimo/M?, mi > my, (C.21)

with 7 being the mean motion of the hyperbolic orbit and E its eccentric anomaly. Both e; and @
are deviations of the keplerian case, taken at PPN(1.5) order. In our case, we will take them as if
they were the exact Newtonian values: @ = n, e; = e. In standard hyperbolic motion, n is given by
the expression n%a® = M.

If we now substitute these expressions, we get
1 (M/a)*2V/e? - I, _ 1 e2—1  (e—1)%?
M (ecosh(E) —1)3 " M (ecosh(E) — 1)3 (e + 1)5/2
1 1 (e—1)3
M (ecosh(E) —1)3 (e +1)?

1

Qi = (;Z'Ug

8 (C.22)

which is somewhat similar to the expression (C.17). The difference is a factor

M
5. 2
T (C.23)
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We can now compute the dimensionless spins, which in this case we have to split into two
separate expressions. We also evaluate at £ = 0:

X1 = [gﬁ + g ((— @)} %(6_:1)2”8’ (C.24)

X2 = [€n+ g (1 + \/!(— 477)} %(6_&1)21}8. (C.25)

The comparison with the ring expression is difficult, due to factors dependent on the masses
that were not present before. However, for the case m; = mo, both spins are equal and we get
7 1 5

XZ 0 e+ (20

which is formally identical to the ring case but with a factor 7/8 difference.

C.4 Differences between expressions

In order to better understand the differences between the three expressions (C.6), (C.24) and (C.25),
we can plot the factors f that appear in these expressions before the v5/(e + 1)2, which are given
by Egs. (C.6), (C.24) and (C.25). These values are shown in Fig. C.1.

We have also plotted the asymptotic values to which each curve tends to for ¢ — 0. These can
easily be found from the expressions of each factor in the limit ¢ < 1,

12

16
fring, f1.5PN1 — gq, fisPN2 — ECL (C.27)

Interestingly, for the PPN(1.5) approximation, the induced spin on the most massive black hole
approaches the same trend as that of the ring. Also, in the PPN(1.5) case, the highest spin is
induced on the most massive black hole.

Fig. C.1 also shows that the order of magnitude of the computed spins is essentially the same,
independent of the method that we use. In particular, the maximum difference between the different
cases is a factor 4/3.
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102 1071 100
q=mz/my (M =my)

Figure C.1: Factor f versus mass ratio ¢ = ma/my (ma < mq). The trends for ¢ — 0,1 are also
provided for each curve.
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Appendix D

Corner plots for SGWB constraints
from Gaia DR3

This appendix chapter includes complementary plots for Chapter 10. Figs. D.1-D.3 show the
marginalized 1 and 2-dimensional posterior distributions for the multipole coefficients 7, of the
VSH decomposition of the proper motion field, as well as the derived posterior distribution for
Qaw. I Fig. D.4, the covariance matrices from our analysis are also shown.
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Figure D.1: Posteriors for the masked, pure, astrometric and intersection datasets. The results of
the intersection and astrometric datasets considerably overlap.
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Figure D.2: Posteriors for the VLBA and VLBA+Gaia DR1 datasets.
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Figure D.3: Posteriors for the SDSS+Gaia EDR3 dataset.
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