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Anotácia

Techniky spracovania signálov pre systémy priečnej stabilizácie zväzku
v hadrónových urýchľovačoch

Systémy priečnej stabilizácie zväzku sú vitálne pre hadrónové urýchľovače
pracujúce s vysokou intenzitou zväzku.

Dôležitá súčasť takéhoto systému je výkonná jednotka digitálneho spra-
covania signálu. Súčasné číslicové technológie umožňujú implementáciu
veľmi pokročilých algoritmov a analytických techník pre extrakciu dôležitých
parametrov urýchľovača, alebo samotného spätnoväzobného systému.

Výskum sa bude zaoberať možnosťami extrakcie parametrov spätnoväzob-
ného systému na základe matematických formalizmov teórie signálov a sús-
tav s použitím aktívneho vybudenia obiehajúceho zväzku týmto systémom
a len s použitím informácie získanej z tohoto systému. Minimálne skúmané
parametre pre optimálnu prevádzku systému sú fáza a oneskorenie v uza-
vretej spätnoväzobnej slučke (vrátane zväzku). Súčasné techniky postavené
na meraniach externými prístrojmi sú časovo veľmi náročné, poškodzujú
obiehajúci zväzok a nedosahujú požadovanú presnosť.

Druhým cieľom výskumu je navrhnúť a implementovať metódy extrakcie krit-
ických parametrov urýchľovača (parameter "tune" a časová konštanta útlmu
oscilácií pre každý jednotlivý bunch) s použitím nedeštruktívnych manipulácií
so zväzkom bez vytvárania strát častíc a degradácie kvality zväzku. Znalosť
týchto parametrov je dôležitá pre dosiahnutie stability obiehajúceho zväzku
a spoľahlivej prevádzky urýchľovača, ale v súčasnosti tieto parametre nie sú
jednoducho, alebo vôbec dostupné.
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Abstract

Signal processing techniques for transverse feedback systems in
hadron accelerators

Transverse feedback systems are essential for stable operation of all hadron
accelerators with high intensity beams.

An important component of such a system is a powerful digital signal pro-
cessing unit. Current digital technology allows implementation of very ad-
vanced algorithms and analysis techniques to extract key parameters of the
accelerator and the feedback itself.

The traditional techniques based on external instruments are time consum-
ing, destructive to the beam and do not provide required precision. The
research will aim at possibilities of feedback parameter extraction and per-
formance optimization using only active manipulations of the beam by the
transverse feedback system itself and analysis of data acquired from it. Based
on formalisms of signals and systems theory, the minimum required parame-
ters will be the closed loop phase and delay. These are essential for optimum
feedback operation.

The second aim of the research will be to study and implement methods
to extract vital accelerator parameters (e.g. the bunch by bunch machine
tune and the damping time) using active manipulations of the beam by the
transverse feedback system itself without degradation of the beam parame-
ters. Accurate knowledge of these parameters is essential for ensuring beam
stability and the reliable operation of the accelerator.

Easy access to these parameters is important for automated TFB setting up,
performance monitoring, or efficient troubleshooting. This kind of informa-
tion was not accessible until now.
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Introduction

The European Organization for Nuclear Research (CERN) was founded in 1954. It
is a particle physics laboratory situated at the border between Switzerland and France,
where it operates a chain of particle accelerators in order to investigate the constituents of
matter. The largest of these accelerators is the Large Hadron Collider (LHC) [4] depicted
in Figure 1. With its circumference of 27 km it is the most powerful particle accelerator
ever built [4] (at the time of writing). In the LHC two beams made up of protons or ions
are accelerated to energies reaching 6.8TeV and collide at four interaction points. Highly
sophisticated particle detectors installed at these interaction points detect the fragments
of the collisions and analyse their trajectories. The outcomes of these experiments are
expected to give new insights in many fields of modern high energy physics and lead to
a better understanding of the laws of nature.

Figure 1: CERN and the LHC.
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INTRODUCTION

Transverse Feedback systems (TFB) are an essential part of each high energy circular
particle accelerator, regardless if proton [5–7], heavy ion [8, 9], electron-positron storage
ring [10, 11] or a synchrotron light source [12, 13] to name only few.

Their task is to stabilize high intensity beams by suppressing any transverse instabili-
ties driven by machine impedance [14, 15], reduce transverse motion induced by external
perturbations [16, 17], or preserve emittance of the injected beam by rapid damping of
injection oscillation transients [18, 19].

Working on these systems requires broad interdisciplinary skills and knowledge, for
example, beam dynamics, analogue electronics, digital electronics, Radio Frequency (RF)
engineering, high voltage systems, vacuum systems, high intensity beam interaction with
the machine to name only few.

With the arrival of very powerful programmable digital electronics more than two
decades ago, the data and signal processing hardware is no longer the limiting factor
to the complexity of implemented algorithms and digital signal treatment. This opened
completely new possibilities for transverse feedback systems in accelerators. The damp-
ing or stabilizing function of the transverse feedback is no longer the only service these
systems are expected to provide. The TFBs are used now for example, for beam clean-
ing [20–22], real time transverse activity monitoring and instability detection [23] as well
as beam transfer function measurement [24]. Transverse feedback can be a source of
controlled machine impedance, allowing for special measurements such as direct Landau
damping strength measurement [25], impedance measurement of individual accelerator
components (e.g. low-impedance collimators) by means of high precision tune shift de-
tection techniques [26] or impedance measurements of insertion devices in light sources
by the grow-damp method [27]. With full-resolution beam position data now avail-
able in digital form [28], the focus has shifted beyond the core feedback functionality
(which remains necessary) toward added-value services aimed at enhancing accelerator
performance and operation.

Engineers working on transverse feedback systems need to thoroughly understand
digital signal processing techniques to be able to identify their potential for TFBs, and
the data provided by them. With modern digital technology, it is possible to extract
the key parameters of the accelerator and the TFB itself from the TFB internal data
streams. Such work involves also system design and digital signal processing which are
subject of this thesis.
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Chapter 1

Current state of the problem

1.1 TFB principle of operation

In Figure 1.1 the key components of a transverse feedback system are outlined.
At the injection point where the beam is received from a previous accelerator using a
transfer line, there are transverse oscillations launched around the target orbit due to
imperfections in this process.

The beam position is measured every turn by one or more position monitors composed
of a coupling device to the beam (pick-up) and signal conditioning electronics [29, 30].
This combination is often referred to as a beam position monitor or a beam position
measurement module (BPM).

A correction signal is then calculated based on the position data and transformed to
the point in the accelerator where the transverse kicker is located such that the overall
phase in the feedback loop is negative and the loop is stabilizing the beam. In the early
days, the calculation of feedback signals was fully analog, using filters and delay lines,
often hundreds of meters [5, 31], or even a few kilometers long [32]. The time alignment
of the processing chain delay Tsignal to the beam time-of-flight Tbeam between the position
monitors and the transverse kicker is a crucial factor for the transverse feedback to work
correctly. Fixed cable delays are not compatible with accelerating beams, so complicated
tricks needed to be implemented to cope with a decreasing time-of-flight delay Tbeam
during the energy ramp [33].

If multiple beam position monitors can be installed in the machine with an ideal 90°
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Beam transfer line
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Figure 1.1: Principle blocks of a transverse feedback system in a circular particle accelerator.

betatron phase advance between them, the required feedback phase can be obtained by
(analog) vector combination of the two (or more) position signals creating a “virtual
pick-up”[34].

The correction signals are finally amplified and fed to kickers which deflect the beam
and close the feedback. When a lower deflection voltage and high bandwidth is needed,
typically terminated strip-line kickers and solid state amplifiers are used (e.g. [35]). If
a high deflection is needed e.g. for highly relativistic beams, high power tetrode based
amplifiers feeding unterminated E-field kickers are often used (e.g. [36]).

The availability of the first fast analog to digital converters and digital memories im-
mediately allowed for the replacement of the bulky fixed cable delay lines and introduced
the possibility for the TFB to follow the accelerating cycle. For example, at CERN’s
Super Proton Synchrotron, these efforts date back to the beginning of the 1980s [37–
39]. With advancements in digital technology in the 1990s the next natural step was to
introduce full digital signal processing with digital filtering [40].

In hadron machines, bunch length is comparable with the length of the RF bucket.
In smaller synchrotrons, this is typically hundreds of nanoseconds. Digital low-level RF
systems therefore can sample the passing bunch at many points and can easily detect
an intra-bunch motion. If such a TFB is equipped with pickups and deflectors with
sufficient bandwidth, an intra-bunch feedback can be realized to stabilize the head-tail
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motion. A great example of upgrade of a regular "mode-0 only" transverse feedback to a
64-slice intra-bunch feedback is the J-PARC’s Main Ring TFB project [41]. Bunch length
in the largest synchrotrons is typically nanoseconds, but modern multi giga-sample per
second digital systems and GHz bandwidth amplifiers and kickers allow us to also realize
intra-bunch feedbacks capable of stabilizing head-tail motion of such short bunches [42].

Today’s digital technology offers virtually unlimited resources for advanced signal
processing and data storage.

1.2 TFB technology, key parameters, and their de-
termination

Key TFB parameters are the closed loop gain, feedback phase and loop delay. Their
adjustment and monitoring is essential for correct feedback operation. However, for
machines like the LHC, only the correct operation of the TFB is not enough, we must
achieve optimal (and beyond) operation [43, 44].

Transverse feedback systems were introduced in the early days as a remedy against
resistive-wall transverse beam instabilities (due to the increasing beam intensity). Back
at the time, the engineers had identified which were the key parameters of the TFB
and they designed procedures to adjust them [10, 12, 32, 45–48]. Nevertheless, they
did not have the means to directly measure, or determine these parameters. The TFB
setting-up involved a lot of indirect methods, observation of beam losses while scanning
parameters, finding the loop stability limit by monitoring the transmission, and some
"educated guesswork" or gut feelings.

Loop delay settings, for example, are an important factor contributing to the phase
margin of transverse feedback systems [10]. In particular, the loop delay is directly
related to the usable bandwidth of a TFB, that is, the maximum frequency fmax. The
phase shift ∆φ introduced by delay mismatch ∆T at a given frequency, is described by
the formula

∆φ = 360◦∆Tf. (1.1)

Considering a feedback system which is designated for and operated up to 100MHz,
as for the CERN Proton Synchrotron Booster (PSB) [49], one obtains from (1.1) a
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1. CURRENT STATE OF THE PROBLEM

maximum allowed delay error of 0.25 ns to not exceed an acceptable phase error of 10◦.
This means that all delays contributing to the control loop, such as cable connections,
RF amplifier components, or signal and filter processing delays, must be known and
adjusted with a high degree of accuracy, otherwise the anticipated TFB performance
might not be reachable.

As an added complication, continuous adjustments of a TFB’s loop delay are re-
quired within the acceleration cycle, to compensate for the propagation delay changes
as particles are getting faster. This problem was addressed as early as in the 1960s. First
TFB control loops were built which used switchable coaxial delays for automatic delay
compensation [50–53] as the beam was accelerated. The implementation in 1977 was
based on hard-wired Emitter Coupled Logic (ECL) gates, and allowed variable delays
of 2.7 ns discrete step size, and a 9-bit digital control word [51]. The same technology
was exploited for the PSB [48], and further improved for a step resolution of 1 ns. This
implied that the tolerance of the delay adjustment had to be further improved to better
than a fraction of a nanosecond in order to reach the target bandwidth.

At the time, having had no other means to evaluate the overall loop delay, each
individual component of the TFB signal chain needed to be measured. Its group delay
and other electrical parameters were entered into a table. The total loop delay was
worked out manually. The example in Table 1.1 shows the evaluation of the TFB closed
loop delay in the four PSB rings. Each row contains data about one system element,
evaluated for both planes. These listed values had to be determined to within a fraction
of a nanosecond since the table was used to calculate the final values for the fixed and
variable delays to be programmed into the hardware. This method relied on systematic
and accurate measurements of each and every contributing delay and other system
parameters, making it quite labour intensive and prone to all sorts of errors. This is
what we call the "Spread-sheet method", which was used for many years.

Later methods of measuring the loop phase and delay involved external instruments
such a Vector Network Analyser (VNA). A VNA is an active device that measures
complex transfer functions of a system. The instrument injects a sinusoidal excitation
and measures the frequency response in a complex format. The VNA can be used
as a standard RF instrument to measure transfer functions of individual RF devices
(TFB building blocks, like amplifiers, cables, or filters), or an overall transfer function
of the entire TFB system including the beam. As an example, Figure 1.2 shows two
measurements of a circulating beam in the CERN Super Proton Synchrotron (SPS)
accelerator using a classical VNA to estimate the feedback parameter settings of an active
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R1H R1V R2H R2V R3H R3V R4H R4V
PU 4L5 − − − − − − − −

3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

Head Amplifier 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

100.4 100.5 98 98.1 94.1 94.1 101.6 101.6

PP BAT 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

8 8 8 8 8 8 8 8

BOSS (out 1) 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5

16 16 16 16 16 16 16 16

DSPU Tfix 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5

10 10 10 10 10 10 10 10

SP2T 11 11 11.5 11.5 11.5 11.5 11 11

16 16 16 16 16 16 16 16

4W Driver 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5

10 10 10 10 10 10 10 10

800 W amplifier 36 36 36 36 36 36 36 36

10 10 10 10 10 10 10 10

PP BAT 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

117.2 117.1 123.5 123.4 138.7 138.6 145.1 144.9

Kicker 3L1 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

125.4 125.6 126.4 127.5 138.2 138 150.1 148.9

PP BAT 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

10 10 10 10 10 10 10 10

Power Atten. 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Tfix 381.9 381.9 386.3 386.3 397.6 397.5 411.0 410.8

TDSPU 425 425 425 425 425 425 425 425

Tbeam-min 489.9 489.9 489.9 489.9 489.9 489.9 489.9 489.9

Tbeam-max 1491.1 1491.1 1491.1 1491.1 1491.1 1491.1 1491.1 1491.13

VarDelMax 1109.2 1109.2 1104.8 1104.8 1093.5 1093.6 1080.1 1080.3
VarDelMin 108.0 108.0 103.6 103.6 92.3 92.4 78.9 79.1

Table 1.1: Calculation of Coarse and Fine delays for PSB TFB. Values are expressed in nanosec-
onds.

transverse feedback. The measurements presented were made in the early ∼2000’s, and
the method has not evolved much since then.

Measuring the system transfer function through the beam provides a basis for evaluat-
ing TFB parameters and performance, but many problems remain. The beam circulating
in the machine must already be stable without the feedback, which is not always the
case. In cycling machines, the beam circulates for only a few seconds (as little as 500ms
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1. CURRENT STATE OF THE PROBLEM

(a) Horizontal plane @20MHz (b) Vertical plane @20MHz

Figure 1.2: Use of a VNA to measure the beam transfer function with active TFB1.

in the injector chain, up to 14 s in the larger synchrotrons). In the PSB, the time re-
quired for a meaningful measurement is at least 100ms. As the PSB cycle does not
include a period when the machine is not accelerating (so-called flat top), it required
preparation of a special magnetic cycle dedicated for TFB VNA measurements [1]. The
creation of a dedicated machine cycle means additional work for the operators to config-
ure, adjust, and verify the accelerator and all necessary components – time-consuming
and cost-intensive tasks.

Another problem arises from the noise floor of the VNA instrument and its dynamic
range. To obtain only remotely usable readings, many circulating bunches must be ex-
cited in order to obtain a sufficiently high return signal for the VNA. However, transverse
feedbacks are essential for stable accelerator operation and TFBs are one of the first sys-
tems to be set-up. Large machines like the LHC are typically not able to handle more
than a few circulating bunches at this stage. In case of the LHC, this is typically 5 to 8
individual bunches (out of 3564 possible) of very low intensity (< 1/10 of maximum).
A train of nominal intensity bunches is unstable without a fully functional TFB. The use
of a VNA to measure the TFB parameters is therefore extremely delicate at this point
in time.

The use of the VNA technique in the LHC suffers from another problem - the LHC
is the largest particle accelerator ever built. With a circumference of 27 km, one turn
takes 88.9 µs at almost the speed of light. The circulating bunches must be evenly
spaced around the machine circumference to provide the VNA with regular repetitive
response signals, otherwise it cannot measure anything useful within the frequency point
measurement window. Increasing the measurement time does not help, since prolonged

1Taken from [4], section 14.3.2 on page 100. The images are reproduced in their original quality
as provided in the publication.
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Figure 1.3: Adjustment of loop delay and feedback phase in the PSB using a VNA [1]. Left: the
resonant lobes overlap but do not point towards 180°. Right: both resonant lobes
deviate evenly from the target value (180°).

exposure of the beam to the VNA excitation causes it to oscillate in the lattice, rapidly
increasing its transverse emittance, and quickly losing the beam at the collimators.

VNA measurements are typically destructive to the beam, very time consuming, and
do not provide the required accuracy. The interpretation of the results is not easy because
the VNA measures not only the TFB but the entire accelerator. For example, the VNA
method was used to set-up and validate the TFB in the PSB accelerator (see Figure 1.3,
showing incorrect loop delay setting and incorrect feedback phase configuration). If
the system was already in a reasonable state (e.g. the beam position monitor gain was
adjusted, and the coarse cable delays were reasonably trimmed), setting it up for one
beam type easily took a whole day. The VNA method, with many minor improvements
is used at the LHC, but it still takes a full 8 hour shift to set up and validate the TFB
performance here. With operating costs of 42’000e per hour1 and extremely scarce
machine time, this is definitely not ideal.

In the CERN PS Booster, after the VNA measurements with dedicated cycles, also the
phase scan measurements were performed, to validate the TFB system performace [1].
The TFB was set in closed loop mode and for a given accelerator tune the feedback
phase was scanned over the entire range from 0 to 360 degrees. The beam transmission
was measured over the plateau. Phase scans allowed identification of an optimal loop

1Assuming 1.1 billion CHF allocated resources for 2009-2012, 9 months of LHC operation per year,
and an exchange rate of 1CHF=1e.
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(a) Phase scan before adjusting time delay.
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(b) Phase scan after adjusting time delay.

Figure 1.4: Evaluation of PSB beam transmission as a function of TFB feedback phase. Left:
initial setting. Right: after loop delay adjustment with the VNA.

gain as well as evaluation of the feedback phase margin. An example of the performance
insight obtained is shown in Fig. 1.4. In this example, the loop phase was scanned
before and after the loop delay optimisation. It visually illustrates how incorrect delay
(and its contribution to the phase error, see (1.1)) can result in reduced phase margin
and hence sub-optimal performance of the TFB system, as assessed by measuring and
evaluating beam transmission. It is worth noting that one measurement point is one
machine cycle, so it is an extremely time-consuming validation process. An important
point to note here is that if there is no transmission (as for example in Fig. 1.4 where
the value along the y-axis dropped below 100% for certain TFB Phase settings), the
beam will be lost in the machine. This inevitably increases the radiation exposure of the
accelerator components, which should always be kept as low as possible.

Since the tune in the PSB is dynamically changed during the cycle, the digital TFB
system was designed with the ability to program the feedback phase along the cycle.
Depending on the accuracy of the pre-calculated function, this guarantees optimal per-
formance at any point in the cycle. Phase scans were repeated for several horizontal
tunes spanning the current PSB operation working range, from QH = 4.10 to 4.40. This
step made it possible to validate the correctness of the phase mapping as a function
of the tune in the hardware. Excellent agreement between the measurements and the
simulation was observed (see Fig. 1.5), however it took several hours of machine time
to obtain all the data for this graph.

We can use modern signal processing techniques and methods to quickly and accu-
rately measure the overall TFB performance. This allows us to optimize the TFB system,
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Figure 1.5: PSB transmission measurement as a function of machine tune and TFB phase setting.
The white trace corresponds to the mapped horizontal tune as a function of the phase.

compensate for hardware imperfections, dynamically reconfigure the TFB performance
through the machine cycle, provide individually tailored TFBs for different bunches, or
sub-sets of bunches in the fill, and many more.

There is a strong need to research and introduce novel methods that will allow the
TFBs to be set up in an accurate, scientific, fast, and efficient way. Novel methods, which
will ideally not rely on any external instruments, but should fully utilize the potential of
the TFB’s digital signal processing hardware. Topics of this thesis.

1.3 Analogue and digital signal processing for TFBs

The TFBs act as a closed-loop feedback systems, taking the measurement of the
instantaneous beam position as input and feeding a kicker that acts on the transverse
momentum. The measured quantity (position) and the actuator action (momentum)
are not of the same kind, so a conversion from position to correction kick requires some
transformation. Historically, this has been achieved through various techniques [10, 32,
46, 54–56]. The sensors had to be positioned in the accelerator lattice such that the
total phase shift between the sensor and the kicker provided the position to momentum
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conversion. However, this is not always possible. In [32, 57], one solution to this utilized
two independent position sensors spaced 90◦ apart in the lattice. Their output signals
formed in-phase and quadrature components that could be combined in an analogue
domain to provide the desired vector rotation. Beneficial to this, the actuator position
in the lattice is no longer constrained to a favourable phase advance position, which
relaxes some machine design constraints.

With the introduction of the first generation digital technology, it became possible
to use very simple digital filters to process the sensor data. In 1984, the three pioneers
at CERN, Bossart, Lambert and Louwerse introduced a very simple digital finite impulse
response filter made out of hard-wired ECL gates, multipliers and adders. The filter
was tested in the SPS [53, 58]. The demonstrator worked, but the idea was ahead
of the available 8-bit technology – the resolution was not sufficient for operation in the
accelerator [59]. Years later, an improved logic was implemented in a Field Programmable
Gate Array (FPGA) [60]. The digital system made it possible to overcome some of the
limitations of earlier analogue technology, such as temperature dependence, immunity
to noise and interference, non-linearities, dynamic parameter reconfiguration, loss-less
data transmission over long distances, and others.

State-of-the-art particle accelerators require state-of-the-art transverse feedback sys-
tems. With machines like the LHC and its injectors, machine optics change on the fly,
TFB performance is critical, and feedbacks are operated at the stability limit defined
by processing delay and the gain/phase margins. There is a strong need for research
and adoption of novel signal processing methods that make it possible to extend the
tune acceptance range, minimize processing delay to allow for higher gains or margins,
design signal processing methods that allow dynamical reconfiguration as the machine
accelerates the beam through the cycle. Topics that this thesis will cover.

1.4 Extraction of valuable machine parameters from
TFB data

Modern TFBs are based on powerful digital technology. The system has digital
information available about the bunch by bunch, turn by turn beam position for all
bunches and a history of turns, all from several independent sensors distributed in the
machine (in LHC four sensors per beam per plane, 16 in total). In addition, the digital
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1.4 Extraction of valuable machine parameters from TFB data

systems can synthesize virtually any signal to excite the beam using the same deflectors
already used for the transverse feedback functionality.

Fully digital transverse feedback systems are a game changer. Suddenly, extremely
valuable information about the accelerator and the circulating beam could be made avail-
able to the machine operators and accelerator scientists. Availability of the bunch by
bunch and turn by turn position information opens completely new possibilities for the ex-
traction and monitoring of machine parameters. Thanks to powerful, modern computing
systems, these can even be extracted in real-time. With a good understanding of signal
processing theory and techniques and the availability of powerful technology, we can go
even further. Get the real-time data from the TFB, process it by computation-intensive
algorithms and use it for various real-time feedbacks in the machine. As an example,
the available data was used to demonstrate the proof-of-principle direct measurement of
the Landau damping strength in LHC [25].

Tune is a critical machine parameter, precise knowledge of which is essential for
accelerator operation. In high-intensity machines, where collective effects play an impor-
tant role, the tune is not only a function of the magnetic lattice, but also of the beam
intensity, the machine impedance, and the interaction between the beams via the wake
fields. The LHC can accelerate up to 2808 bunches distributed in 3564 possible posi-
tions. Typically, the beam circulates in a form of tightly spaced bunch trains. Up to 288
bunches per train can be injected into the LHC. Additional tune shift is introduced by
the beam itself, with a different value for each individual bunch in the train. The effect
can be caused by beam-beam effects (so called Pacman bunches)[61, 62], by machine
impedance [63, 64] or by electron cloud [65]. In order to operate machines like the LHC,
it becomes important to measure the bunch by bunch tune, something unprecedented
until now. The problem is even more difficult since the measurement must be accurate
to a resolution of at least 10−3, preferably 10−4.

Tune measurement, in a regime of strong damping by an active transverse feedback
system is a challenge even for the regular LHC tune measurement system called BBQ [66,
67]. Due to the analogue way of measuring the tune by the BBQ system, it is not
possible to measure the tune for individual circulating bunches. With some gating in
the RF domain, an average tune value can be obtained for a group of consecutive
bunches [68]. However, measuring bunch by bunch tune values by traditional RF methods
is unattainable. The TFB has digital information about the transverse position of each
bunch, so using the TFB data to measure and extract the tune is an attractive idea.
Similar to the BBQ, even digital bunch by bunch tune measurement in a strong damping
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1. CURRENT STATE OF THE PROBLEM

regime is very challenging, especially for FFT based algorithms (e.g. SUSSIX [69]), or
curve fitting tools. There is a strong interest in researching and developing novel methods
that allow extracting bunch by bunch tune information in real-time with a resolution of
10−3 or better. Topics that this thesis will address.

1.5 TFB status monitoring

An important aspect of TFB operation is constant monitoring of the system status.
A well-known wisdom says: complex systems break in complex ways. When operating
machines such as the LHC or its injectors, complex problems are the order of the day.
Typically, it is not immediately apparent what the root cause of the emerging or already
existing problem is. In such situations the operations group contacts the equipment
experts with a request to verify that their system is functioning well. Answering the
famous operator’s question Is the damper damping? is more difficult than it might
seem.

There is a strong interest in exploring and introducing a simple, well-defined parame-
ter, a single number, or defining a simple method (that can be automated), which makes
it possible to answer this question – Yes, the TFB is functioning well, and the damper
is damping. A subject that is addressed by this thesis.
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Chapter 2

Research objectives

In line with the analysis of the current state of the problem and the work motivation,
the research objectives for this thesis are stated as follows:

Objective #1:

Identify and describe relevant parameters affecting the transverse feedback perfor-
mance, such as: loop gain, feedback phase, delay, processing noise.

Research and propose signal processing techniques and analysis algorithms that al-
low evaluating and quantifying the identified parameters. The method should also be
applicable to automatic performance verification while the machine is operated with
beam.

Objective #2:

Investigate and define methods to measure and set up the key feedback parameters
represented by open and closed loop gain, feedback phase, loop delay. The method
should be fast (in order of machine turns) and preferably not destructive to the beam.
The results should be accurate and easy to objectively interpret. The results should be
usable directly for automated transverse feedback setting-up.

Research and propose required signal processing techniques and analysis algorithms to
perform the TFB set-up, using exclusively the TFB system without external instruments
and available observables within.
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2. RESEARCH OBJECTIVES

Objective #3:

Research and propose methods and required signal processing techniques to extract
vital accelerator parameters in real-time, from observables available within the transverse
feedback system, at least bunch-by-bunch machine tune, damping time, injection errors,
or injection kicker waveform. Investigate the feasibility of these measurements from the
injection transients (or active excitation) and from passive observation of the circulating
beam.

Objective #4:

Investigate the computational complexity of the proposed methods and signal pro-
cessing techniques and evaluate how they could be realized for the respective accelerator
(e.g. real-time processing in TFB FPGA, real-time processing in high-performance com-
puting system, suitable only for offline processing).

Objective #5:

Research and propose advanced signal processing techniques to obtain a transverse
feedback system that is more robust to variations in machine parameters, especially larger
tune acceptance. Focus on FIR methods capable to compensate frequency dependent
phase variations.
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Chapter 3

Background - Introduction to beam
dynamics

3.1 Basis of charged particle acceleration

Both electrons and protons are elementary particles with a property charge – when
subjected to an electric field or a time-varying magnetic field they experience a force,
resulting in a change of their initial momentum, denoted as p⃗,

dp⃗

dt
= q

(
E⃗ + v⃗ × B⃗

)
. (3.1)

This equation is known as the Lorentz’s force [70–72]. As can be seen, the electric
field E⃗ deflects a charge q in the direction of the field, while a magnetic field B⃗ acts
perpendicular to the particle’s velocity v⃗.

The force from the magnetic field has the advantage that it scales with the speed of
the particle. For accelerators that operate close to the speed of light, this means a ben-
efit by a factor of ≈ 3×108. Therefore, in a circular particle accelerator, magnetic fields
keep the charged particles on their trajectories around the machine and for one com-
plete revolution, while electrical fields change their momentum in either the longitudinal
direction, i.e. azimuthal, or in a transverse plane (horizontal/radial or vertical).

According to the cross product in (3.1) the vertical bending fields cause a horizontal
deflection force. This is exploited by rewriting (3.1) in cylindrical coordinates, to formu-
late an equation for the radial motion. As a simplified condition for a circular orbit, one
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3. BACKGROUND - INTRODUCTION TO BEAM DYNAMICS

could assume that the Lorentz force acting on a particle with mass m is equal to the
centrifugal force, i.e.

qvB =
mv2

ρ
. (3.2)

Rearranging the last equation results in

Bρ =
p

q , (3.3)

what is known as the “momentum rigidity”: If the momentum p is increased by an
accelerating electric field, then the magnetic field B must increase by the same factor
in order to keep the radius of curvature ρ constant. In the LHC, for example, the
particles are injected with momentum 450GeV/c and are accelerated to 6.8TeV/c.
Correspondingly, the magnetic field is ramped up during the injection from B = 0.53T

to the peak field of B = 8T.

reference 

trajectory

x

y
s

Figure 3.1: Moving reference coordinate system.

The coordinate system in Figure 3.1 represents a moving frame, it follows a reference
particle around the design orbit. The coordinate axes x and y denote the horizontal
and vertical planes, whereas small deviations from the reference orbit in s are denoted
longitudinal direction.

The motion of particles requires a transverse focusing force to keep the trajectories
of many particles close to the ideal orbit. With a Taylor expansion of the B-field in (3.3)
such that

By (x) = By0 +
dBy

dx
x+

1

2!

d2By

dx2
x2 +

1

3!

d3By

dx3
x3 . . . (3.4)

then each term of the magnetic rigidity can be assigned to a local bending curvature as
a function of transverse position:
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3.1 Basis of charged particle acceleration

q
p
By (x) =

1

ρ
+ kx+

1

2!
mx2 +

1

3!
ox3 + . . . (3.5)

The first term in (3.4) has a uniform field along the transverse coordinate, equivalent
to a constant bending radius ρ of the particle trajectory in (3.5). This field is generated
by a magnet with two poles, hence the generating magnet is called dipole.

The second term represents a restoring force on a particle trajectory. Since it depends
linearly on the deviation from the design orbit, the resulting force is proportional to the
displacement x. The sign of the normalised field gradient k determines whether the
effect is focusing or defocusing. A magnet with four poles (quadruploe) that is tilted
by π/4 along the longitudinal axis generates the corresponding linear field pattern. The
arrangement of the magnetic poles implies that a quadrupole has the opposite focusing
property in the orthogonal plane. For example, if the magnet is focusing in the horizontal
plane then it has a defocusing effect in the vertical plane.

To continue the multipoles expansion, which corresponds to the terms in the Taylor
series (3.4), a sextupole produces a quadratic gradient field, octupoles have a cubic field
function of the position, and so on. These higher order terms in (3.5) are characterised
by normalised gradients m, o, and act as non-linear forces onto a transverse particle
displacement. Here, sextupoles are used to control chromatic effects, called chromaticity
(see below), while octupoles compensate for fringe field errors or other higher order
geometric aberrations.

Figure 3.2: Different magnet types, from left to right: dipole, quadrupole, sextupole.

Particle accelerator physicists utilize the different types of magnets outlined in Fig-
ure 3.2 to design the guidance field of the moving charges in the accelerator. The pattern
of the sequentially arranged magnets is refereed to as the lattice or simply as optics,
since the magnets modify the particle beams in a similar way to how optical lenses affect
rays of light.

As stated in (3.1), the force originating from the electric field accelerates in the same
direction as the electric field component. Figure 3.3 outlines two dedicated applications
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3. BACKGROUND - INTRODUCTION TO BEAM DYNAMICS

charge q

E

cavity resonator

(a) Longitudinal acceleration in cavity structures.

charge q E

transverse electric 

field deflector

𝜃 

+𝑈k 

-𝑈k 

(b) Transverse acceleration in a transverse deflectors.

Figure 3.3: Principle applications of external electric fields in particle accelerators.

that utilize the electric field in particle accelerators: resonant cavities and transverse
electric field deflectors.

Resonant structures like cavities are commonly used to generate the longitudinal
electric field component to accelerate the particles. Thereby, the voltage experienced
by a particle over one turn simply is the integrated electric field around the accelerator
circumference,

∆V = −
∫
Esds. (3.6)

The RF cavities make the largest contribution to this voltage, but other effects also
occur, which are summarized in Section 3.4.

In general, the voltage in a cavity resonator oscillates at a precisely controlled fre-
quency, known as the radio or RF frequency fRF , which is an integer multiple (also
known as the harmonic number) h of the revolution frequency fREV , such that

fRF = hfREV . (3.7)

Here the revolution frequency follows as the reciprocal of the time of flight TREV of a
particle with speed v, for a complete revolution around an accelerator with circumference
C,

TREV =
1

fREV
=
C

v
. (3.8)
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3.1 Basis of charged particle acceleration

With the voltage in the cavity modulated,

Vcav(t) = V0 sin(2πfRF t), (3.9)

the resulting RF field creates islands of stable longitudinal oscillations, as illustrated
in Figure 3.4 [72].

Vcav (t)

BA C

B

A

C

B

B

C

C

separatrix

𝛥𝑝 

𝜋 -𝜋 𝜙 

𝑡/𝑇𝑅𝐹 

𝑘 𝑘 + 1 

Figure 3.4: Longitudinal particle motion in a stationary RF bucket

Let’s take the example of particle A crossing the RF cavity at exactly the time when
Vcav = 0, i.e. there is no voltage in the cavity. Particle A therefore experiences no
accelerating voltage. Assuming that the initial momentum does not change when the
particle is not in the cavity, then after every revolution in the machine this particle will
continue to arrive at exactly the same moment where Vcav = 0. Such a (hypothetical)
particle does not oscillate in longitudinal direction, it has a reference momentum p0 and
always passes through the cavity with the synchronous phase denoted as ϕs.

On the other hand, particle B which lags behind particle A, experiences a positive
voltage as it passes through the cavity, and therefore is accelerated. The additional
energy speeds up the particle over several turns until both particles A and B arrive in
the cavity at the same time. But their energy is now different, as can be seen in the
longitudinal phase space in Figure 3.4 (bottom plot). Due to the higher energy, particle
B now overtakes particle A, which means that after several turns there is a negative
voltage in the cavity each time B passes. Eventually the particle slows down and the
process repeats itself with particle B falling back due to its lower energy compared to
particle A - it oscillates in longitudinal direction at the synchrotron frequency fs.
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3. BACKGROUND - INTRODUCTION TO BEAM DYNAMICS

More distant particles such as C, which only enter the cavity at or after the peak
voltage V0 has been reached, are still accelerated, but their oscillation patterns are
no longer described by a simple harmonic motion. The limit of stability is called the
/emph(separatrix). It forms the so called RF bucket. Without external perturbations
the particles inside these buckets perform stable oscillations, so-called synchrotron oscil-
lations; they are captured by the RF field, so to speak. These captured particles form a
so-called bunch, the maximum temporal extend of which is defined by the RF period

TRF =
1

fREV
. (3.10)

According to (3.7), there are h identical buckets distributed over the entire circum-
ference in a machine at any time. Not all buckets necessarily have to be filled. The
filling of buckets with particles is defined by a predetermined filling pattern which varies
depending on the type of particles and intended use.

As sketched in Figure 3.3 (b), the second application of the electric field to accelerate
particles is transverse deflection, commonly used to precisely influence the direction of
motion of a particle — this process is generally known as kick. The simplified model
presented can be viewed as a capacitor with parallel plates of mechanical length Lk and
distance dk apart. Both plates are charged with a voltage Uk, resulting in a transverse
electric field strength in between of

E =
Uk

dk
. (3.11)

Assuming a static deflector voltage, then the obtained deflection kick angle θkick is
determined by comparing the longitudinal momentum p of the particle with the perpen-
dicular momentum generated by the transverse electric field,

tan (θkick) =
p⊥
p

=
ELk
v

. (3.12)

As can be seen from equations (3.11) and (3.12), longer kicker structures as well
as reduced spacing increase the deflection angle. On the other hand, increased particle
momentum proportionally reduces deflection capacity — a particle beam becomes more
rigid with higher momentum, an effect that can be compensated for by proportionally
increasing the deflection voltage.
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3.2 Single particle dynamics

The illustration in Figure 3.4 shows the case of a stationary RF bucket with ϕs = 0.
In this configuration, the B-field is also constant and bunches are stored in the bucket
for a certain time.

This situation is particularly useful once a machine has reached the end of accelera-
tion, to transfer bunches to the next larger synchrotron. To achieve this, the accelerators
concerned are brought to the same energy level and one ore more bunches are then ex-
tracted by the smaller machine with a slow or fast extraction mechanism into a transfer
line, which transports them to the receiving machine [71]. In order to inject these into
empty RF buckets without disturbing the already circulating beam, fast injection kickers
are required.

Extraction 

kicker Injection 

kicker

Transfer line

Figure 3.5: Beam transfer between synchrotrons.

In the transfer process of particle accelerators, several imperfections can arise that
affect the overall beam quality. Variations in extraction and injection kicker timings
can lead to substantial transverse oscillations, disrupting the intended beam trajectory.
Additionally, precise steering in the transfer line is crucial to ensure a smooth transition of
the beam from one accelerator to another. Orbit bumps, which are implemented during
the transfer process, can inadvertently cause oscillations in the receiving machine, further
complicating the injection dynamics.

3.2 Single particle dynamics

The restoring forces of the lattice described in the previous section repel a particle
that deviates from the designed, i.e. equilibrium orbit, to oscillate around it [73].

Since the oscillation amplitude is generally considered to be small with respect to the
reference orbit, a linearized betatron motion model can be obtained by neglecting higher-
order non-linear fields in (3.4) within an accelerator structure. With this assumption,
the lattice consists of only two types of magnets: strong dipole magnets, which bend
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3. BACKGROUND - INTRODUCTION TO BEAM DYNAMICS

the trajectory for a complete turn, and quadrupole magnets to linearly focus displaced
particles (see Figure 3.6). The resulting linear betatron motion is described in the
reference frame with a second-order differential equation of motion

Figure 3.6: A basic lattice consisting of dipole magnets and focusing/defocusing quadrupole mag-
nets that built a FODO cell.

x′′ +Kx(s)x = 0, (3.13)

where Kx(s) is the magnetic focusing function in the horizontal plane. A general solution
for (3.13) is readily available through the Mathieu-Hill Equation of charged particle
trajectories in a magnetic guidance field,

x(s) = A
√
β(s) cos (ψ(s) + ϕ) . (3.14)

This equation is commonly referred to as betatron oscillation and describes the
solution of a particle’s trajectory in one plane. The two constants of integration A and
ϕ are determined by initial conditions. The amplitude function, or simply β-function, is
fully characterised by the magnetic guidance fields of the lattice and is periodic around
the circumference of the machine, C, such that
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3.2 Single particle dynamics

β(s+ C) = β(s) . (3.15)

The phase advance ψ(s) in (3.14) between any two points with longitudinal coordi-
nates s1 and s2 in the lattice results from the integral over the inverse β-function

ψ21 =

∫ s2

s1

dσ

β(σ)
. (3.16)

The above equation states that for a known β-function of the accelerator, the phase
advance between any two points around the machine circumference can be directly
expressed using (3.16).

Within one machine revolution, each particle exhibits Q oscillations, commonly known
as machine tune. The tune is a dimensionless unit, which is generally > 1 for strong
focusing circular machines. For example, for the LHC, the horizontal tune is given as
Qh = 64.28, and the vertical plane Qh = 59.32 [4]. For stability reasons, the tune has
to be a non-integer number, expressed as

Q = Qi + Qf , (3.17)

where Qf is the fractional tune and Qi is an integer. Consequently, a single particle has
a phase advance of

ψC =

∮
C

dσ

β (σ)
= 2πQ ≡ 2πQf (3.18)

after one full machine revolution.

Observing the oscillation amplitude x of a single particle at a fixed azimuth position
s0 over subsequent turns and plotting it against its first derivative x′ = dx/ds gives the
transverse phase space plot (see Figure 3.7). The shape of the resulting ellipse is fully
defined by the β-function (its property follows from the accelerator design), and the area
of the ellipse – also called emittance – follows from the particle’s initial conditions.

Liouville showed that for linear optics the area in phase space, i.e. the area of the
ellipse, remains constant as a particle travels around the accelerator and that it is com-
pletely defined by the lattice properties of the magnetic guidance field. Figure 3.8
sketches the phase space plot of a single particle as observed at different longitudinal
coordinates.
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3. BACKGROUND - INTRODUCTION TO BEAM DYNAMICS

Figure 3.7: Transverse phase space plot

Figure 3.8: Phase space ellipses for different longitudinal coordinates.

3.3 Beam of bunched particles

The lattice is designed for a particle with reference momentum p0 which is the
nominal momentum of the synchronous particle following the reference orbit (see also
Section 3.1). Any particle with momentum p slightly deviating from p0,

∆p = p− p0, (3.19)

undergoes a different deflection in the lattice and therefore follows a different closed
orbit. The restoring force for the momentum deviation in (3.19) is provided by the RF
fields in longitudinal direction applied through cavity structures (see Section 3.1). The
movement in the longitudinal plane is defined around the synchronous particle (with
respect to the cavity voltage), and it is much slower than the betatron oscillations.

An important parameter of every circular accelerator is called chromaticiy ξ. It is
generated by the lattice itself,
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3.4 Collective effects

ξ =
1

4π

∮
K(s) β(s) ds, (3.20)

where the main contribution comes from the strong focusing gradients in the magnetic
guidance field. Particles captured in the RF bucket experience a tune spread ∆Q/Q due
to momentum spread, a consequence of the quadrupole focusing strength dependence,
which is inversely proportional to momentum (see Equations (3.4) and (3.5)). A small
spread in momentum ∆p/p causes a spread in tune proportional to chromaticity,

∆Q
Q

= ξ
∆p

p
. (3.21)

In circular accelerators, the chromaticity is usually overcompensated, namely ξ is
carefully adjusted to always be slightly positive. This is to avoid negative chromaticity
values that could cause instabilities known as head-tail instability.

3.4 Collective effects

In addition to the external magnetic guidance field of the magnets and the electric ac-
celeration fields of the RF cavities, each charged particle creates its own electromagnetic
(EM) fields. These self-induced EM fields affect other particles due to their interac-
tion with the surrounding environment, called the space charge effect. This effect has
an increased importance when it comes to generating high-intensity beams (threshold
behaviour).

A distinction is made between coherent and incoherent transverse collective effects.
In the first case, the beam centroid (the weighted average of the positions of all particles
in the beam) is affected, observable as transverse motion: betatron tune shift, possi-
bly becoming unstable as the number of particles increases above a certain threshold
(single/multi bunch, strong head-tail);

Incoherent collective effects are not visible by beam position monitors because the
beam centroid is not affected, but they result in emittance growth, halo/tail formation,
slow particle losses, reflecting poor beam lifetime.

Another classification is made on single bunch and multi bunch effects:

1. Single bunch effects
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3. BACKGROUND - INTRODUCTION TO BEAM DYNAMICS

• space charge [74]

• resistive wall instability [75, 76]

2. multi-bunch effects [77]

• coupled bunch modes [78, 79], betatron oscillations are coupled through
magnetic fields

• mode structure

• Machine impedance/Wake fields [80–85]

• Instabilities [86, 87]

• Landau damping [88, 89]

• Radiation damping [90]

These effects require to study a system of many particles, with kinetic models based
on distribution functions ψ(x, y, s, x′, y′, δ):

N =

∫ ∞

−∞
ψ(x, y, s, x′, y′, δ)dxdx′dydy′dsdδ. (3.22)

The mean position of an ensemble of N particles follows from the particle distribution
by evaluating

< x >=
1

N

∫ ∞

−∞
xψ(x, y, s, x′, y′, δ)dxdx′dydy′dsdδ. (3.23)

Equivalently, the standard deviation from the distribution is given as,

σ2
x =

1

N

∫ ∞

−∞
(x− < x >)2ψ(x, y, s, x′, y′, δ)dxdx′dydy′dsdδ. (3.24)

Longitudinal collective effects are: energy loss, synchronous phase shift, bunch
lengthening, instabilities (negative mass instability, single or coupled bunch instabilities,
microwave instability)
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Chapter 4

Methods

To investigate the methods and techniques necessary to achieve Objective #1, a com-
prehensive system model must first be created [12, 91]. This chapter begins by breaking
down the TFB into individual blocks, for which we develop detailed mathematical mod-
els. These models will be analyzed to determine their contributions to the overall TFB
function, assess key parameters, identify which TFB blocks can be simplified or omitted
for analysis, and define the critical blocks and parameters needed to meet the objective.

Building upon this foundational modeling, key system parameters associated with the
TFB will be identified and elaborated upon within the context of controls engineering,
aligning with Objective #1.

Additionally, this chapter will discuss methods for reconstructing the transverse phase
space, introducing new algorithms for both spatial and temporal analysis. These methods
will provide valuable insights into the system’s dynamics. The exploration of transverse
phase space reconstruction represents a significant contribution of this thesis, as it is
essential for fulfilling Objectives #2 and #3, thereby enhancing the understanding of
the field.

Subsequently, the focus will shift to the extraction of TFB parameters, including
gain, phase, and delay, alongside accelerator parameters such as bunch-by-bunch tune
and damping time. This extraction is made possible by the data obtained from the
reconstructed transverse phase space. The sensitivity of the algorithm to noise will also
be evaluated as part of Objective #1, outlining further requirements for the data quality
of the available observables from the TFB.

Finally, this chapter will conclude with an assessment of the computational complexity
associated with the methodologies, in line with Objective #4.
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4. METHODS

4.1 System modeling

The aim is to obtain a simplified representation of the overall TFB system and all
of its components. The simplified model makes it possible to derive stability constraints
and to identify a controller that ensures that the dynamic system and the overall system
function in a stable manner.

Figure 4.1 illustrates the situation in a concise block diagram. Considering the use
of an embedded digital controller suggests the introduction of two domains, one of
which is the continuous-time domain covering analogue systems and the beam model
in the Laplace domain. On the other hand, all operations performed digitally are best
represented in the z-domain, or equivalently, the discrete-time domain. Transitions
between domains are included in the sensor block and the actuator block, respectively.

Digital,

discrete-time,

z-domain

Analog,

continuous-time,

s-domain

x[n]

x(t)

y[n]

y(t)

Controller

HC (e
jw)

Actuator

HA (jW)

Beam

G(s)

Sensor

HS (jW)

Figure 4.1: Feedback loop

The digital controller calculates the necessary control signal from the sensor input
and feeds the actuator that manipulates the beam. Ideally, the sensor does not change
the information that it collects. It exhibits a constant gain within the frequency band
of interest, along with a constant signal delay that is independent of frequency. The
transverse beam motions x (t) are monitored in such a way that the sensor’s output
represents the position of each individual bunch, and is readily converted into a discrete-
time sequence x [n]. This data stream is fed into the digital controller to calculate a
correction signal y [n]. The actuator, in turn, converts the information into a continuous-
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4.1 System modeling

time deflection signal y (t), which acts back on the beam. Just like the ideal sensor, the
ideal actuator also has a constant gain and a linear phase over the desired frequency
range.

In the following it is shown that the beam model G(s) can also be modeled as a
discrete-time system G(z), a notation best suited to signal processing techniques. This
is based on the assumption that the sensor and the actuator can be simplified to a pure
continues-to-discrete and discrete-to-continuous converter – this will be addressed in the
following sections.

4.1.1 Beam representation in z-domain

Although the beam is essentially an ensemble of discrete particles, its ‘macroscopic
properties’—or directly observable phenomena—are best described in the continuous-
time domain. However, the beam moves close to the speed of light, while observa-
tions, for example with beam position monitors, are stationary (ignoring ground move-
ments). Those position monitors basically ‘sample’ the passing beam, and thus generate
a discrete-time representation. Therefore, the parameters of interest are optimally de-
scribed using the concept of discrete-time signal processing.

Starting with the equation of motion from equation (3.14),

x(s) = A
√
β(s) cos (ψ(s) + ϕ) . (4.1)

Here β(s) is the optics β-function, a location-dependent parameter that accounts
for the magnetic guidance field at a longitudinal coordinate s. The magnetic field also
defines the oscillation phase, ψ(s). Initial conditions are given by the peak oscillation
amplitude A and an initial phase ϕ. In the following notations a dependence on the
longitudinal coordinate s is omitted for simplicity.

The first derivative of (4.1) with respect to the longitudinal coordinate follows directly
as

dx

ds
≡ x′(s) = −A 1√

β
[α cos (ψ + ϕ) + sin (ψ + ϕ)] . (4.2)

Here x′ is the slope of the particle trajectory along the longitudinal direction. The
parameter α is another Twiss optics function describing the magnetic lattice.
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The equations (4.1) and (4.2) describe the particle motion through the magnetic
guidance field. Rewriting them as a vector, x̃, one gets,

x̃ =

(
x
x′

)
. (4.3)

The dependency of the Twiss parameters can be eliminated by applying a linear
transformation. The linear operator, denoted as Λ, is a function of the azimuthal location
s that maps the vector x̃ to the state vector x:

x̃ Λ(s)→ x, (4.4)

This mapping provides a representation of a state vector that is independent of local
amplitude functions. With the operator of the form

Λ (s) =
1√
β

(
1 0
−α −1

)
, (4.5)

the state vector therefore simplifies to

x = A

(
cos (ψ + ϕ)
sin (ψ + ϕ)

)
. (4.6)

Considering the trigonometric form of (4.6), this suggests introducing a complex
notation for representing x in two-dimensional space. Equivalently to,

x = A (cosψ + j sinψ) = Aejψ, (4.7)

where the initial conditions of the transverse oscillations, the oscillation amplitude A and
the initial phase ϕ, have been combined in a complex phase vector (phasor1),

A = |A| ejϕ. (4.8)

If the complex oscillation amplitude at a location s1 is known, i.e.

x1 = Aejψ1 , (4.9)

then the oscillation condition at any other point s2 follows from
1Throughout this book a phasor shall refer to a complex constant, i.e. C = |C| ejϕ.
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x2 = Aejψ2 = Aej(ψ1+Φ21). (4.10)

Here the machine-dependent phase advance Φ21 between the two locations, s1 and s2

has already been found in Chapter 3. It is given by the definite integral

Φ21 =

∫ s2

s1

dσ

β(σ)
, (4.11)

which rewrites with (3.16) to the difference in phase advances

Φ21 = ψ(s2)− ψ(s1) . (4.12)

The values for the phase advances can be obtained directly from optics simulations
or extracted from dedicated measurements.

Since a particle exhibits an exact number of Q oscillations during a complete turn,
it follows from (3.18) for the phase advance over one turn,

Φ21 = 2πQ. (4.13)

Inserting (4.13) into (4.10) and including the constant phase value ψ1 in the initial
phase leads to a representation for the state vector and the n-th turn,

x[n] = Aej2πQn n ≥ 0. (4.14)

The previous equation describes a discrete-time complex exponential sequence. It
represents the sampled transverse beam oscillations observed at a single location and for
every turn.

Since the absolute value of the complex exponential function in (4.14) is unity, the
sequence is stable in magnitude, and its initial oscillation amplitude |A| is preserved
(see Figure 4.2).

A more general form of this sequence is described in [92, Chapter x, Equation(y.z)]
as

x[n] = Aαnu[n] , (4.15)

where A is a phasor (see (4.8)) and with a complex base, α,
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Figure 4.2: A transverse displacement (blue) converts into slope (red) with a phase lag of π/2.

α = |α| ejω0 . (4.16)

In (4.15) the unit step sequence u[n] follows from

u[n] =

{
1, n ≥ 0

0, n < 0
(4.17)

to take into account that no oscillations exist for n < 0.

The equivalent first-order difference equation of (4.15) is given by the recursion
formula

x[n] = αx[n− 1] n > 0. (4.18)

Introducing the z-transform [92], defined by the Z {·}-operator1,

Z {x[n]} =
∞∑

n=−∞

x[n] z−n = X(z) . (4.19)

and applying it to (4.15) yields

X(z) = Z {x[n]} = A

∞∑
n=0

|α|n ejω0nz−n. (4.20)

The preceding equation requires the definition of a region of convergence (ROC) for
which the sum is finite, i.e. the sequence is absolute summable. The necessary condition
is therefore

1Here the bilateral transform has been chosen, which eventually leads to the unilateral z-transform
when the signals are causal.
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∞∑
n=0

∣∣αz−1
∣∣n <∞. (4.21)

This inequality is only fulfilled for values of |z| > |α|. If one restricts the evaluation
of (4.20) to the region of convergence, it follows with the general solution of a power
series that the infinite sum can be expressed in closed form as

X(z) = A
1

1− αz−1
|z| > |α| . (4.22)

The properties of this remarkable compact equation will be explored in more detail
below. The rational function has a single pole at z = α (see Figure 4.3), which cor-
responds to the fact that the time sequence is complex-valued: the convention used in
(4.7) and (4.3) attributes the real part of x[n] as the transverse displacement and the
imaginary part as the slope.

�e

�m z�plane

|z|>0.8

1

Figure 4.3: Pole-zero plot and ROC for (4.22) in the complex z-plane. The function has a single
pole, denoted by ’×’, and a zero at the origin, denoted by ’◦’. The dotted circle
represents the unit circle, z = ejω.

The amplitude value A in (4.22) is a linear scaling factor, while α characterizes the
behaviour of the oscillation. The value of |A| defines the magnitude of the oscillation
amplitude for n = 0. The complex factor e jϕ determines the initial ratio between
displacement versus slope. For example, a phase value of ϕ = 0 starts the oscillations
with maximum displacement. On the other hand, if the angle is equal to ϕ = π/2, then
the trajectory has no offset, but is maximally inclined.

35



4. METHODS

Since |α|n in (4.20) is an exponential sequence, it is the base value |α| that defines
the resulting sequence. That is, if |α| > 1 then the sequence values increase as n
increases. If 0 < |α| < 1, then the sequence values decrease with increasing n. The
oscillation remains stable in the case |α| = 1.

The oscillation frequency is determined by the argument of α, which is defined as
ω0 in (4.16). Analogously to (4.14), it is a complex exponential sequence that oscillates
with frequency ω0 = 2πQ as n increases.

The sequence x[n] completely describes the transverse state for each sample n. The
state variables x and x′ thereby are represented by the real and imaginary parts. The
beam propagates through the magnetic guidance field of the accelerator, which applies
focusing forces to prevent the beam from diverging. This in turn causes an oscillation
that continuously converts transverse displacement into slope and vice versa (i.e. the
trajectories of a free-running undamped system are circles). The previous derivation
showed that the single pole in the z-plane characterises a complex sequence x[n]. If the
roots of the denominator in (4.22) consisted of a pair of conjugate complex poles, then
the resulting sequence would be real-valued, i.e. the imaginary part would always be
zero. However, the transverse position still oscillates which is obviously a non-physical
behaviour.

Furthermore, transverse deflecting devices act solely on the slope of a particle’s
trajectory (trajectories must be continuous at all times; a stepwise displacement at
an infinitesimal short longitudinal distance requires either infinite energy—or transverse
teleportation). Accordingly, all manipulations that also represent a physical meaning
must be made for the imaginary part only.

A note on the convention of the principal coordinate system (see Chapter 3, page 18),
a positive displacement commutes into a negative slope (positive angular frequency in
clockwise direction). However, by defining a linear mapping as in (4.5), the direction of
rotation also changes. This leads to the conclusion that – for the signal processing part
– a positive displacement commutes to a positive slope. This conforms to the general
convention in signal processing and engineering that a positive angular frequency rotates
in counter-clockwise direction.

With the above, and to get an input-output relationship for a simplified beam model,
let us now revisit the rational function X(z) in (4.22). It has a single complex-valued pole
at z = α, which corresponds to the fact that the sequence x[n] is also complex-valued.
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It represents the simplest form of an Infinite Impulse Response filter (IIR), as outlined
in Figure 4.4. Thereby, the convention used for Eq. (4.3) attributes the real part of x[n]
as transverse displacement, y = ℜ{x}, and the imaginary part as the trajectory’s slope.
Accordingly, in Figure 4.4 the beam position monitor (or pick-up) extracts transverse
displacement as y[n] = ℜ{x[n]}.

The action of a kicker only changes the particle’s slope. Consequently, in Fig. 4.4
the real-valued input sequence θ[n] is first multiplied by the imaginary unit j =

√
−1

and subsequently added to the complex-valued sequence x[n].

KICKER PICK-UP

𝜃 𝑛  

j

𝓏−1 

ℜ{⋅} 
𝑦[𝑛] 

𝑥[𝑛] 

𝛼 

𝐺 𝓏 =
𝑌(𝓏)

Θ(𝓏)
 

Figure 4.4: Simple beam model in z-domain.

The overall beam transfer function G(z) can therefore be expressed as

G(z) =
Y (z)

Θ(z)
= j

1

2

(
1

1− αz−1
− 1

1− α∗z−1

)
. (4.23)

Here, α and α∗ are the two conjugate complex poles of G(z). It is worth noting that
the second pole seen at the output, Y (z) = G(z)X(z), is the result of the pick-up and
its ability to only detect transverse position.

Equation (4.23) can be expanded and rewritten as

G(z) =
r sinω0 z

−1

1− 2r cosω0 z−1 + r2 z−2
, (4.24)

which makes it evident that due to the term z−1 in the numerator the output sequence is
readily delayed by one sample, corresponding to the fact that a response to a transverse
deflection at a particular longitudinal position is visible only after one turn.

In Eq. (4.24) the parameter r determines whether the oscillation at frequency ω0 is
stable (|r| < 1), steady (|r| = 1), or unstable (|r| > 1).
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Taking into account an arbitrary phase shift ϕPU between the kicker and the pick-up,
i.e. by extending the pick-up output such that y[n] = ℜ{x[n] · ejϕPU} one obtains more
generally as beam transfer function

G(z, ϕPU) =
r sin(ω0 + ϕPU) z

−1 − r2 sinϕPU z
−2

1− 2r cosω0 z−1 + r2 z−2
. (4.25)

As can be seen from Eq. (4.25) the introduction of a betatron phase advance ϕPU
between pick-up and kicker has no impact on the position of the poles (the denominator
is unaltered). In fact the required phase shift is established solely by an additional zero
in the numerator, moving on the real axis of the z-plane as the phase angle changes.

4.1.2 Sensor model

This section is about identifying an analytical model for a transfer function between the
transverse beam position as input to a sensor and the generated output. The transverse
feedback systems of the LHC and the SPS are designed to measure bunch-by-bunch
transverse displacements and damp oscillatory movements by means of fast electric field
kickers. In order to detect the time-varying beam position the signals of individual
bunches are processed in analog and digital [2, 93], generating one position reading per
bunch per turn.

The design criterion for position signal processing is to have one position reading per
bunch, that is, one sample spaced every Ts.

Independent treatment of bunches does require no cross-talk between adjacent bunches,
a parameter known as inter-symbol interference (ISI). This restriction limits the continuous-
time response of the sensor’s analog system, g(t), to zero at adjacent sampling points,
i.e.,

g(kTs) = 0; ∀k ∈ R∗. (4.26)

If this condition is fulfilled then each bunch position can be treated independently by
the feedback control as there is no coupling term added in the analog processing chain.
At this point it is worth noting that the time limit on the impulse response, as required
by (4.26), implies that the frequency response of the entire analog system must extend
beyond the sample repetition rate fs = 1/Ts.

In the following we analytically evaluate the performance of the sensor’s beam posi-
tion signal processing scheme for normalized longitudinal bunch profiles λ(t) and trans-
verse oscillation patterns x(t) as test inputs (see Figure 4.5).
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Figure 4.5: Evaluation of the TFB sensor performance.

For comparison, the true motion of the center-of-charges x̄, given as

x̄ =

∫
x(t)λ(t) dt, (4.27)

for different excitation frequencies is tested against the digital representation of the beam
normalized transverse position x[n], as calculated by the LHC TFB beam position sensor.

The block diagram in Figure 4.6 outlines the signal processing chain of the LHC
beam position measurement hardware. Beam-induced signals in a pickup go through an
analog processing chain before being synchronously converted to digital in analog-to-
digital-converters (ADC). An FPGA calculates a normalized position for each individual
bunch from the data streams. This value is independent of the intensity per bunch or
the longitudinal bunch shape.

Figure 4.6: LHC beam position hardware signal processing scheme for Run I and Run II (taken
from [2]).
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x   transverse offset

VA(t)

VB(t)

charge q

l(t)

Figure 4.7: BPM coupler type pick-up with constant coupling.

Analog processing scheme

The electromagnetic field generated by a circulating bunch with normalized longitudinal
profile λ(t) and total charge q interfaces with a stripline type beam position monitor
(BPM), thereby inducing a signal into two opposing electrodes (denoted A and B),
whose amplitude depends on the transverse position x(t) with respect to the vacuum
chamber, and the pick-up geometry dx (linear approximation for small amplitudes).
See Figure 4.7 for a simplified graphical representation. The mechanical design of the
stripline electrodes achieves a characteristic impedance of 50Ω and no matching network
is needed. The BPM output voltage follows from,

VA,B(t) = ZT

t∫
−∞

(
1± x(τ)

dx

)
· qλ(τ) · hBPM(t− τ) dτ, (4.28)

with ZT as the transfer impedance, and hBPM(t) the impulse response of the BPM.

Since the BPM for the configuration of the LHC TFB is short-circuited at the down-
stream end of the electrode, the beam signal induced at the upstream end is eventually
completely reflected. The reverse signal returns after the roundtrip time T0 = 2L/c

with negative polarity at the upstream port. The resulting impulse response of the BPM
(assuming v = c) therefore follows as

hBPM(t) = δ

(
t+

T0
2

)
− δ

(
t− T0

2

)
. (4.29)

Here, δ(t) denotes the Dirac-Delta distribution which has the well-known properties,
δ(t) = 0 for t ̸= 0, and

∫
t
δ(τ)dτ = 1.
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Note that (4.28) denotes a convolution integral of the longitudinal bunch profile with
the pick-up response. The position information is encoded in the signal amplitude, which
is AM modulated, with a strong common signal.

The peak voltages of the two electrodes can easily reach up to 400V in the LHC
for full intensity beam. This voltage is sufficient to transmit signals from the beam line
in the underground tunnel to the surface electronics using low-loss coaxial transmission
lines of identical length. The transmission line attenuates the raw pick-up signals to
levels acceptable to the hybrid and adds a dispersion to the pulse response, represented
by hCOAX(t).

The first element at the surface is a 180◦ hybrid. It combines the transmitted signals
V̄A and V̄B into a sum signal Σ, which is common to both pickup electrodes, and it
generates the difference or ∆-signal. The sum signal represents the longitudinal profile
of the beam, i.e. the bunch shape and the number of charges, while the delta signal
contains additional information about the transverse position.

Assuming an ideal hybrid, i.e. no crosstalk between the outputs, then

VΣ(t) =
1√
2

[
V̄A(t) + V̄B(t)

]
, (4.30)

V∆(t) =
1√
2

[
V̄A(t)− V̄B(t)

]
. (4.31)

A special type of bandpass filter, called a comb filter, shapes both the sum and the
delta signal in the time domain into a well-defined wavelet [2]. The filter response is
designed for a time-limited rectangular window of less than 25 ns, shorter than the nom-
inal bunch spacing, to ensure no mixing between adjacent bunch signals. These filters
have a center frequency of 400.8MHz, which corresponds to the LHC RF frequency.

The bandpass filter output (denoted with a tilde), applied for the Σ signal in (4.30)
by inserting Eq. (4.28), results from

ṼΣ(t) = qλ(t) ∗ hPU(t), (4.32)

where
hPU(t) =

√
2ZT · hBPM(t) ∗ hCOAX(t) ∗ hBP(t). (4.33)

Equation (4.33) represents the cascade or convolution (here and hereafter referred
to with asterisk notation) of impulse responses in the time domain, including the beam
transfer impedance, the signal gain by

√
2 in the hybrid, and passive linear elements that

shape the response in time and frequency domain.
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Figure 4.8: Bandpass filter response

Similarly, the ∆ signal output follows from Eq. (4.31) in combination with Eq. (4.28)
as,

Ṽ∆(t) =

(
x(t)

dx
· qλ(t)

)
∗ hPU(t). (4.34)

These equations (4.32) and (4.34) describe the underlying formalism in the time
domain, the effects of which are visible in the frequency domain. Namely, the convolution
in the time domain leads to a multiplication in the frequency domain, or

ṼΣ(jω) = qΛ(jω) ·HPU(jω). (4.35)

On the other hand, multiplication in the time domain as within (4.34) leads to a
convolution in frequency domain. Therefore,

Ṽ∆(jω) =

(
X(jω)

dx
∗ qΛ(jω)

)
·HPU(jω). (4.36)

For the case of a sinusoidal excitation with X(jω) = δ(±ωx), the previous equation
states that a transverse oscillation causes a shift in the spectrum of the longitudinal
bunch profile to the carrier frequencies at ±ωx,

Ṽ∆(jω) =
1

dx
qΛ [j(ω ± ωx)] ·HPU(jω). (4.37)

As shown in Figure 4.6, the Beam Position Module uses a set of mixers to demodulate
the bandpass filtered signals into in-phase and quadrature components (I/Q pairs for ∆
and Σ). This is followed by optimized Gaussian low-pass filters, which suppress image
frequencies and shape the system response to minimize output ripples.
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Figure 4.9: Frequency response of hPU(t) · c(t) and lowpass filter hLP(t).

The baseband response of the in-phase component, which has even symmetry, is
obtained by multiplying by c(t) = cos(ωLOt). In contrast, the quadrature component,
which has odd symmetry, is obtained by multiplying by s(t) = sin(ωLOt).

Therefore, from (4.32) we get for the Σ-signal after low-pass filtering:

IΣ(t) = kΣ [qλ(t) · c(t)] ∗ g(t),

QΣ(t) = kΣ [qλ(t) · s(t)] ∗ g(t),
(4.38)

where signal level adjustments and other coefficients are combined into a single scalar,
kΣ, and with

g(t) = [hPU(t) · c(t)] ∗ hLP(t). (4.39)

Equation (4.39) states that the response function of (4.33) is demodulated into base-
band and then lowpass filtered by hLP(t). A graphical representation of this relationship
in frequency domain is shown in Figure 4.9.

At this point it is worth noting that the shape of the baseband response of (4.38)
is completely defined by g(t) and only its amplitude is a function of the demodulated
longitudinal profile.

An assessment of the sensor response function g(t) in both the time and frequency
domains is presented in Figure 4.10.

Similarly, I/Q demodulation of the bandpass filtered ∆ signal provided by (4.34)
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(a) Baseband impulse response g(t).
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(b) Baseband transmission response G(jω).

Figure 4.10: Sensor response function. Left: time domain. Right: frequency domain.

gives the following:

I∆(t) = k∆

{(
x(t)

dx
· qλ(t)

)
· c(t)

}
∗ g(t),

Q∆(t) = k∆

{(
x(t)

dx
· qλ(t)

)
· s(t)

}
∗ g(t).

(4.40)

Here the order of multiplication is important: (1) transverse position modulation
x(t), (2) demodulation with c(t) or s(t).

Similar to the baseband response defined in (4.38), the shape of the baseband re-
sponse in (4.40) is determined solely by g(t). However, in this case, the amplitude also
depends on the excitation frequency and the longitudinal profile.

Digital position calculation

A total of twelve beam-synchronously clocked analogue to digital converters sample the
I/Q pairs and provide a digitized sample per bunch and signal[93].

The normalized bunch position is given by taking the ratio of the ∆-signal to the
Σ-signal, XN = ∆/Σ, which is independent of the intensity per-bunch. A more elegant
way was found by expanding the ratio mathematically with the conjugate complex Σ∗,

XN =
∆

Σ

Σ∗

Σ∗ =
∆ · Σ∗

|Σ|2
. (4.41)
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By introducing the two phasors, ∆ = A · ejα and Σ = B · ejβ,

∆ = A cosα + jA sinα
.
= I∆ + jQ∆,

Σ = B cos β + jB sin β
.
= IΣ + jQΣ,

(4.42)

we rewrite (4.41) in I/Q components provided by the sampling,

XN =
I∆IΣ +Q∆QΣ

IΣ
2 +QΣ

2 + j
Q∆IΣ − I∆QΣ

IΣ
2 +QΣ

2 . (4.43)

For perfect alignment of the two phasors (i.e. α − β = 0), the first term maxi-
mizes in (4.43). Only the real part of XN is used as position input in the TFB, while
the imaginary part provides an indication of head-tail activities and asymmetries in the
longitudinal bunch profile.

Simulation Model

Due to the sampling of the continuous-time signals, where only one value is selected,
it can be shown that the convolutions in (4.38) and (4.40) can be simplified to definite
integrals. Consequently, the described analytical model can be further refined into a
more practical implementation that is essentially independent of hardware parameters:

1. The time-varying transverse position signal across a bunch and the longitudinal
beam profile are multiplied by two fixed frequency signals in quadrature,

c(t) = cos (ω0t) ,

s(t) = sin (ω0t) ,
(4.44)

where ω0/(2π) = 400.8MHz for the case of the LHC TFB.

2. The longitudinal profile is demodulated to the baseband as

ÎΣ(t) =

∫
c(t)λ(t) dt,

Q̂Σ(t) =

∫
s(t)λ(t) dt.

(4.45)

3. With the delta signal, the longitudinal profile is first modulated with the position
signal and then demodulated into baseband, as indicated by

Î∆(t) =

∫
c(t)x(t)λ(t) dt,

Q̂∆(t) =

∫
s(t)x(t)λ(t) dt.

(4.46)
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4. Finally, the normalization algorithm implemented in the LHC TFB follows from,

xN =
Î∆ÎΣ + Q̂∆Q̂Σ(
ÎΣ

)2

+
(
Q̂Σ

)2 . (4.47)

Numerical Simulation

Figure 4.11(a) presents the numerical input of the bunch length simulation, based on
the work by Salvant et al. (Ref. [94]. In this study, the first notch in the spectrum was
observed at approximately 1.5GHz. This profile is modulated with an even-symmetric
excitation up to 3GHz.

In Figure 4.11(b), the blue curve represents the result from (4.47), while the red
curve indicates the true movement of the center-of-charges as described by (4.27). It is
evident that the damper’s sensitivity to symmetrical intra-bunch motion depends on the
longitudinal beam spectrum. This sensitivity extends well beyond the highest betatron
frequency of coupled bunch oscillations up to 20MHz, with the first notch appearing at
around 1.9GHz due to the demodulation process.

In Figure 4.11(c), we evaluate the imaginary part of (4.43) for odd-symmetrical
excitation (green). In the anti-symmetric case, the normalization algorithm detects no
oscillation amplitude (blue), which confirms that the center-of-charges is not moving
and, therefore, that odd modes are not visible to the damper.

As a result of the analytical model described above, we derived a practical set of equa-
tions in (4.44)-(4.47) that characterize the sensitivity of the bunch-by-bunch sensors used
in the LHC and SPS TFB to intra-bunch motion. Numerical simulations revealed that
the current beam position signal processing actually detects even-symmetric intra-bunch
movements beyond 20MHz, for which the TFB applies corrective measures in baseband
(up to 20 MHz) through feedback control. However, if only one value is available per
bunch, the information about the excitation frequency is lost. These equations should
be used for particle tracking simulations to accurately model the actual behaviour of the
bunch-by-bunch LHC and SPS TFB.

An important observation from equations (4.44)-(4.47) is that they not depend on
hardware parameters, except for the demodulation frequency, provided the hardware has
been properly commissioned. Additionally, the numerical simulations (see Figure 4.11(b))
indicate that the sensor’s sensitivity corresponds to the true movement of the centre-of-
charges up to the highest coupled bunch oscillation frequency. For the overall system
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Figure 4.11: Numerical results obtained from simulation.
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evaluation, this confirms the validity of our previous assumption and we can simplify the
contribution of the sensor to the overall system transfer function:

HS(jΩ) ≡ HS(z) = 1. (4.48)

4.1.3 Actuator model

In this section, we simplify the actuator model, demonstrating that it can be regarded
as transparent in the overall system evaluation, with no influence on the assessment of
the closed-loop dynamics.

The actuator converts the output sequence y [n], produced by the controller, into the
deflector signal y (t), which is utilized to manipulate the transverse beam momentum.
The signal chain, beginning at at the output of the embedded controller, is illustrated
in Figure 4.12.

Figure 4.12: Feedback actuator

To achieve the desired performance, two digitally implemented FIR filters, designated
as Hph(ejω) and Hga(ejω), are employed for phase linearisation and to compensate
for the amplitude droop introduced by the zero-order hold in the digital-to-continuous
conversion process. The latter filter also serves as a digital lowpass filter, effectively
limiting the maximum output frequency. To further reduce the requirements for the
analog reconstruction filter, the data is oversampled, with an oversampling factor of
L = 3 for both the LHC TFB and the SPS damper.

The convention of an ideal discrete-to-continuous-time (D/C) converter models the
behaviour of the digital-to-analog converter utilized in the hardware implementation.

The analog reconstruction filterHr(jΩ) contraints the continuous-time signal Y
(
ejΩT

)
to its representation within the baseband. The signal subsequently drives the final stage,
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which consists of a power amplifier connected to either a horizontal or vertical deflector
(kicker).

The individual elements depicted in Figure 4.12 will be discussed in greater detail in
the following sections. The explanations will be presented in reverse order, starting from
the right-hand side block, to emphasise the effects of the analog elements in the chain
and their interaction with digital signal processing.

Let the overall actuator response be denoted as hA(t). The discrete corrector values
y [n] are related to the continous-time deflection signal y (t) through the well-known
convolution sum, expressed as follows:

y(t) = kA

∞∑
n=−∞

y [n]hA(t− TA − nTout) . (4.49)

In this context, kA represents a conversion parameter, while TA denotes a constant
inherent delay time of the system, which will be omitted in the subsequent discussion
for simplicity. The output values are generated at the sample rate of the discrete-to-
continuous-time converter, Tout, thereby linking the n-th sequence value to the actuator
response at the time instances t = nTout. To ensure that there is no interference
between consecutive symbols, the actuator’s impulse response must satisfy the following
condition:

hA(nTb) =

{
1 n = 0

0 n ̸= 0
(4.50)

The zero crossings at the locations of neighbouring bunches prevent energy transfer
that could lead to unwanted bunch coupling. This criterion is valid only when the
longitudinal bunch dimension is small compared to the bunch spacing. In other words,
the signal level should not change significantly during a bunch passage, which can be
expressed as TRF << Tb. This condition is analogous to representing the bunches as
macro particles with negligible temporal length (TRF ≈ 0 s).

Any response function that satisfies (4.50) will exhibit no inter-symbol interference.
The set of such functions can be obtained by sampling (multiplying) (4.50) with a pulse
train of Dirac delta functions, δ (t), at equidistant bunch positions, kTb,

hA(t)
∞∑

k=−∞

δ (t− kTb) = δ (t) (4.51)
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The Fourier transformation of both sides ultimately yields the necessary condition
for the ideal actuator transfer function, HA(jΩ):

1

Tb

∞∑
k=−∞

HA(j (Ω− kΩb)) = 1 (4.52)

As can be seen, (4.52) does not necessarily imply that the actuator must be bandlim-
ited. However, it does require that the sum of the contributions from the overlapping
parts of the sidebands—periodic with a centre frequency of kΩb due to the modulation
with the sequence values y [n]—remains constant across all frequencies. By rewriting
(4.52) and separating the complex components, we obtain:

1

Tb

∞∑
k=−∞

Re{HA(j (Ω− kΩb))} = 1 (4.53)

1

Tb

∞∑
k=−∞

Im{HA(j (Ω− kΩb))} = 0 (4.54)

These equations necessitate that the actuator’s transfer function be real-valued (aside
from a linear phase due to constant delay), which implies that hA(t) exhibits even
symmetry about the origin. Assuming that the actuator transfer function is bandlimited
to frequencies Ω ≤ Ωb (which anticipates the reasonable requirement of having an
economically realizable solution) allows some general statements to be made about the
ideal transfer function.

First, since the band limitation implies no gain at the bunch frequency and above,
the gain must be provided at DC, i.e. HA(0) = 1. Second, the transfer function at half
the bunch frequency will be superimposed with a shifted version of itself, thus fixing its
value at HA(jΩb) = 0.5. Rewriting (4.52) points out that the sidebands complement
each other to produce a flat frequency response (see Figure 4.13)

HA(j (Ωb − Ω)) = 1−HA(jΩ) (4.55)

The narrowest bandwidth solution for the actuator transfer function would be an
ideal rectangular frequency characteristic:

HA(jΩ) =


1 |Ω| < Ωb/2

1/2 |Ω| = Ωb/2

0 otherwise

(4.56)
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This results in the well-known sinc-function for the impulse response. Any other
transfer function that satisfies (4.55), or more generally (4.52), will deviate from the
sinc pulse in time domain but will maintain the same equidistant zero crossings at the
bunch locations. This observation will be further utilized to define the necessary gain
and phase equalizer filters.

Figure 4.13: Transfer function of ideal actuator.

In summary, the simplification of the actuator model to a transparent block, as
expressed in (4.73), allows us to streamline our analysis of the overall system dynamics.
By treating the actuator as a non-contributing element in the closed-loop evaluation,
we can simplify the mathematical treatment of the system’s behavior under various
operating conditions.

The subsequent subsections will delve deeper into the individual components of the
actuator model, including the digital filters, the analog reconstruction process, and their
respective roles in ensuring optimal performance of the feedback control system.

LHC and SPS power amplifier and deflector

The electrostatic deflector is a stretched parallel-plate capacitor through which the beam
passes through at its centre. The electric field that builds up between the charged
electrodes is perpendicular to the average beam trajectory, resulting in a Coulomb Force
that accelerates the bunch transversely.

This type of kicker deflects the beam through the electric field. The orientation of
the plates determines the operating plane, which can be either horizontal or vertical.
The deflector plates are Lk long and are connected to the amplifier at their midpoint.
With a kicker aperture dk, a total deflection angle of

θkick =
Lk
dk

(
E

q

)−1

Uk (4.57)

51



4. METHODS

can be achieved by supplying a voltage Uk. Here, the longitudinal beam energy E is
expressed in electron volts.

Figure 4.14: Simplified electrical circuit model of the power amplifier and deflector.

Broadband tetrode amplifiers provide the necessary drive currents to charge or dis-
charge the deflector electrodes to the desired deflection voltage Uk. These amplifiers
are installed beneath the damper-kicker structure in the accelerator tunnel. Each ampli-
fier consists of two tetrodes1, which form a push-pull stage, with one tetrode supplying
one deflector plate (see Figure 4.14). The RF tubes are operated in class AB mode to
minimize crossover distortion for small input signal amplitudes.

A sufficiently large RF drive signal on Input A or Input B will alternately block the
tetrodes, resulting in a deflector voltage, Uk, that is maximally measured between the
two kicker electrodes. This voltage is defined by the drawn anode current, IA, and the
voltage drop at the anode resistance, RA. Several high voltage power converters supply
the amplifiers with a regulated DC-voltage UHV , a screen grid voltage Ug2, and a control
grid voltage Ug1. The RF input signal is superimposed on the control grid voltage,
thereby modulating the current flow in the tetrode.

The tetrode functions as a voltage-controlled current source with output impedance
RA. It operates on a reactive load impedance, specifically the total capacitance of the
kicker electrode CK, which allows for a large output voltage at low frequency, where it is
essential for injection damping. However, as frequency increases, the capacitance shunts

1LHC TFB: RS-2048-CJ (Siemens design) or RS-2048-CJC (Thales design)
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the impedance, thereby reducing the available kick strength at higher frequency. An
equivalent circuit is illustrated in Figure 4.15, neglecting the overall gain of the amplifier
between the input and the output voltages.

V1

RA
V2

CK

Figure 4.15: Equivalent circuit of power amplifier and kicker

As can be seen from Figure 4.15, the capacitor, in conjunction with the anode
resistance, forms a first-order low-pass filter [95] with cutoff frequency of Ωd. Transfer
function measurements of the power systems performed in 2008 showed good agreement
up to 10MHz with the theoretical response of a first order low pass,

Hd(jΩ) = =
1

1 + jΩ/Ωd

. (4.58)

Figure 4.16 illustrates the magnitude and phase response of (4.58) for the case of the
LHC TFB, featuring a 3 dB cutoff frequency Ωd/2π at 1MHz and a nominal voltage of
Vmax ± 7.5 kV. As observed, the transfer function exhibits a distinctly non-linear phase
response.
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Figure 4.16: LHC power amplifier and deflector frequency response

Between 10MHz and 20MHz the actual power amplifiers exhibit more gain than
suggested by the 1-pole roll- off [95]. Nonetheless they represent the main limitation in
bandwidth in the system.
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Reconstruction filter

The reconstruction filter is an important component in the digital signal processing
systems of both the LHC Transverse Feedback (TFB) and the SPS damper. Its primary
function is to convert the discrete-time signals generated by the digital processing units
back into a continuous-time signal that can drive the actuator effectively.

In an ideal scenario, the frequency response of the reconstruction filter, denoted as
Hr(jΩ), can be characterized by the following piecewise function:

|Hr(jΩ)| =

{
T |Ω| < ΩN

0 |Ω| > ΩN

(4.59)

Here, T represents the gain of the filter within the passband, and ΩN is the Nyquist
frequency, which is half of the sampling frequency. This ideal response indicates that
the filter allows all frequencies below ΩN to pass through without attenuation while
completely attenuating frequencies above this threshold. This characteristic is important
for preventing aliasing and ensuring that the reconstructed signal accurately represents
the original continuous-time signal.

The digital signal processing system for both the LHC TFB and the SPS damper
operate at a sampling frequency of 120.24MHz. To facilitate the reconstruction pro-
cess, an analog reconstruction low-pass filter is integrated into the signal chain. The
specific filter used in this application is a Mini Circuits SCLF-27, which features a cut-off
frequency of 27MHz.

While the reconstruction filter does play a role in shaping the output signal, it is im-
portant to note that the power amplifier in the system has a first-order cut-off frequency
of 1MHz. This means that the power amplifier will significantly limit the bandwidth
of the output signal, making the reconstruction filter’s role less critical in terms of fre-
quency response. The SCLF-27 filter primarily serves to smooth the output signal and
mitigate any potential high-frequency noise that may arise from the digital processing,
but its impact is somewhat overshadowed by the characteristics of the power amplifier.

Discrete-to-continuous-time (D/C) converter

The Discrete-to-Continuous-Time (D/C) converter is a critical component in the signal
processing chain, responsible for transforming discrete digital signals into continuous
analog signals that can be utilized by the actuator. This conversion process is essential for
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ensuring that the control signals generated by the digital processing units can effectively
manipulate the beam dynamics in the accelerator.

The D/C converter model is illustrated in Figure 4.17. The primary function of the
D/C converter is to reconstruct a continuous-time signal from a sequence of discrete
samples. This is achieved through a process known as zero-order hold (ZOH), which
maintains each sample value constant over a specified time interval until the next sample
is available.

Figure 4.17: Discrete-to-continuous-time converter

The output of the D/C converter can be expressed mathematically as follows:

ỹi [n] = X̂yi [n] (4.60)

Here, ỹi [n] represents the scaled discrete signal, and X̂ is a scaling factor that adjusts
the amplitude of the signal as needed.

The continuous-time output signal yDA(t) generated by the D/C converter is given
by:

yDA(t) =
∞∑

n=−∞

ỹi [n]h0(t− nT/L) (4.61)

In this equation, h0(t) is the impulse response of the zero-order hold, which is defined
as:

h0(t) =

{
1 0 < t < T

0 otherwise
(4.62)

The zero-order hold effectively holds each sample value constant for a duration of
T , creating a staircase-like waveform that approximates the original continuous signal.
The output signal can then be expressed as:
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yDA(t) = X̂
∞∑

n=−∞

yi [n]h0(t− nT/L) (4.63)

To analyze the behavior of the D/C converter in the frequency domain, we apply
the Fourier transformation to the impulse response h0(t). The corresponding transfer
functions H0(jΩ) is obtained by considering the scaled sampling period T ′ = T/L,

H0(jΩ) =
T

L

sin(ΩT/(2L))

ΩT/(2L)
e−jΩT/(2L) . (4.64)

This transfer function characterizes the frequency response of the zero-order hold,
illustrating how the D/C converter affects the signal across different frequencies. The
sinc function component in the transfer function indicates that the D/C converter intro-
duces a low-pass filtering effect, which limits the bandwidth of the output signal. This
is an important consideration, as it can impact the overall performance of the feedback
control system.

Upsampling and gain equalization

In the context of TFBs, data is typically sampled at the bunch repetition frequency,
which is 40MHz in both the SPS and the LHC. However, advancements in modern digital
electronics, including ADCs, FPGAs, and DACs, have enabled the support of significantly
higher data rates. By leveraging upsampling and digital pre-distortion techniques, we
can unlock valuable new functionalities that can enhance the performance and flexibility
of the actuator. These signal processing techniques enable us to adjust the frequency
response of the actuator to meet operational requirements.

Upsampling is a critical process that involves increasing the sampling rate of the input
signal by an integer factor L. This is achieved through lowpass interpolation filtering,
which smooths the signal and prevents aliasing (see Figure 4.18). The upsampling
process effectively allows for a higher sampling rate, thereby enabling the introduction
of low-pass filters with cut-off frequencies near the input sampling frequency. Without
upsampling, the implementation of such filters would not be feasible, as the original
sampling rate would limit the frequency response that could be accurately represented.

The relationship between the input signal ye [n] and the upsampled signal yg [n] can
be expressed as:
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Figure 4.18: Upsamling and lowpass filtering

ye[n] =
∞∑

k=−∞

yg[k]δ(n− kL), (4.65)

where δ(n) is the Dirac delta function, and L the upsampling factor. This relationship
indicates that the upsampled signal is constructed by inserting L−1 zeros between each
sample of the original signal.

The discrete convolution sum between an input signal ye [n] and a finite impulse
response (FIR) filter with response function hlp [n] results in the output yi [n]:

yi [n] =
N−1∑
k=0

ye [n]hlp(n− k) (4.66)

where N denotes the number of filter coefficients used to describe the filter response
hlp [n]. This convolution effectively smooths the upsampled signal, ensuring that the
transition between samples is gradual and does not introduce high-frequency artifacts.

The lowpass filter compensates for the effects of the zero-order hold (ZOH) that
occurs during the digital-to-analog conversion process. The transfer function of the
lowpass filter can be defined as:

Hlp(ejω) =
{
LH̃r |ω| < π/L

0 |ω| < π/L
(4.67)

where H̃r is the reconstruction filter defined as:

H̃r =
ω/2

sin(ω/2)
(4.68)

and ω = ΩT ′ = ΩT/L. This filter ensures that the frequency components of the
upsampled signal are preserved while attenuating frequencies above the Nyquist limit,
thus preventing aliasing.
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Gain Equalization is an essential aspect of the actuator’s functionality that en-
hances its operational flexibility. By employing digital pre-distortion techniques, we can
adjust the frequency response of the actuator to meet specific operational requirements.
This capability is particularly beneficial in scenarios where the actuator can operate in
two distinct modes: a "low" bandwidth mode, which provides full kick strength, and
an "extended" bandwidth mode, which simulates an ideal bunch-by-bunch transverse
feedback.

In the "low" bandwidth mode, the actuator delivers maximum kick strength, mak-
ing it suitable for applications that require robust damping performance. Conversely, the
"extended" bandwidth mode allows for finer control and responsiveness, effectively simu-
lating an ideal feedback mechanism that can address the dynamics of individual bunches.
This dual-mode operation enables tailored control of the beam dynamics, enhancing the
overall stability and performance of the system.

Furthermore, the ability to switch between these modes dynamically is crucial during
critical phases of beam operation, such as the squeeze phase, where precise control of the
beam parameters is necessary. During this phase, the TFB can be switched to a "quiet,"
low-noise mode when the beams are brought into collisions, minimizing disturbances and
ensuring optimal performance.

Digital phase compensation

In the context of transverse feedback systems, the power amplifier and kicker form a low-
pass type circuit, as illustrated in Figures 4.14 and 4.15. The dominant pole frequency
of this combination is typically much lower than the bunch repetition frequency. This
disparity can lead to significant phase shifts in the feedback loop, which can adversely
affect the stability and performance of the system. Therefore, it is essentail to implement
phase compensation to ensure stable feedback loop operation.

Digital signal processing provides a robust framework for compensating the phase
deviation introduced by the power amplifier and the deflector, denoted as Hd in (4.58).
By chaining the deflector with a phase compensation filter Hph, we can achieve an overall
transfer function that exhibits a linear phase response with a defined group delay Tph.
This relationship can be expressed mathematically as:

Hph(ejω)Hd(jΩ) = |Hd(jΩ)|e−ΩTph . (4.69)
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This equation indicates that while the magnitude of Hd remains invariant and is not
altered by the phase equalizer, the phase response is adjusted to achieve the desirec
linearity. Consequently, the magnitude of the phase equalizer is defined to be,

|Hph(ejω)| ≡ 1. (4.70)

The evaluation of the arguments in (4.69) leads to the required phase term that is
to be provided by the equalizer,

∠Hph(ejω) = −∠Hd(jΩ)− ΩTph. (4.71)

By substituting Ω = ω/T , we can derive the sampled representation of the phase
compensation filter from the continuous-time response Hd:

∠Hph(ejω) = −∠Hd(jω/T )− ωTph/T. (4.72)

This equation provides a clear pathway for determining the necessary phase adjust-
ment required from the phase compensation filter. The evaluation of this equation for
the power system response ultimately leads to the calculation of filter coefficients that
will be utilized in the phase compensation filter.

It is important to note that achieving a continuous phase response across the entire
frequency spectrum can present challenges, particularly at the Nyquist frequency ω = π.
This phenomenon is reminiscent of the Gibbs phenomenon, where discontinuities in the
phase response can lead to oscillations and artifacts in the output signal. Careful design
of the phase compensation filter is therefore crucial to mitigate these effects and ensure
a smooth transition in the phase response, thereby enhancing the overall stability and
performance of the feedback control system.

Filter Coefficients from Experimental Data

The shaping of the time domain response of the actuator is critical for ensuring effective
control of individual bunches within the transverse feedback system. This section dis-
cusses the measurement techniques employed, the response characteristics without dig-
ital correction, and the implementation of digital equalization, ultimately demonstrating
the actuator’s capability to treat bunches independently.
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To accurately assess the performance of the actuator, a capacitively coupled pick-up
is utilized to directly sense the voltage on the kicker. This setup is electrically terminated
in 50Ω, forming a high-pass filter with a bandwidth of approximately 500MHz. The
signals are measured in the time domain using an oscilloscope, and the raw signals are
subsequently differentiated. To ensure accurate representation, all measured responses
are corrected through integration of the raw signals.

In initial tests, both the digital phase equalizer and the digital pulse shaping filter
were disabled. The expected response, illustrated by the green curve in Figure 4.19, is
characterized by a step-up followed by an exponential decay, governed by the time con-
stant of the power amplifier-kicker low-pass system. However, the measured response
(blue curve) deviates from this expectation, primarily due to a peak in group delay intro-
duced by the analog reconstruction filter following the DAC. The red curve represents
the measured response after applying digital corrections, highlighting the improvements
achieved through digital processing.

Figure 4.19: Actuator impulse response comparison: ideal (green), measured without correction
(blue), and with digital phase correction (red).

In standard bandwidth operation, a digital phase equalizer compensates for the phase
changes with frequency, achieving an ideal 1-pole roll-off at 1MHz. This compensation
allows the system to operate effectively up to 20MHz, accommodating the maximum
coupled bunch mode oscillation frequency associated with 25 ns bunch spacing. A digital
low-pass filter begins to roll off at approximately 15MHz, ensuring that the overall
measured response (red curve in Figure 4.19) remains symmetric. This symmetry is
a direct result of the linear phase response, which yields frequency-independent group
delay—an essential characteristic for damping all frequencies of interest.

The operational capabilities of the 200W driver amplifier are limited to a maximum
bandwidth of 25MHz. This constraint prompted the development of a digital pulse
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shaping filter, which is specifically designed to approximate the ideal actuator transfer
function illustrated in Figure 4.13.

The filter systematically tapers in magnitude, beginning at 15MHz, reaching a gain
of 0.5 at 20MHz, and ultimately dropping to zero at 25MHz. The ideal time domain
impulse response, represented by the red curve, is compared with the measured response,
depicted by the blue curve, in Figure 4.20.

Although there remains potential for further enhancement—particularly in aligning
zero crossings of the measured response with bunch crossings—the configurations out-
lined herein are designated as “extended bandwidth” settings. In this mode, which
leverages both digital phase and gain equalizer filters, the actuator works like an ideal
feedback system. It effectively affects individual bunches while having little effect on
bunches next to them.

Figure 4.20: Actuator impulse response comparison: ideal (green), measured without correction
(blue), and with digital phase correction (red).

The analytical modeling and experimental data of the actuator confirm its capability
to treat bunches independently. The detailed modeling and thorough analysis have pro-
vided significant insights into the actuator’s performance within the transverse feedback
system. The hardware implementation has demonstrated its ability to manage indi-
vidual bunches with minimal inter-symbol interference, ensuring accurate control and
stabilization of the beam dynamics.

In summary, we demonstrate that the actuator model can be simplified to:

HA(jΩ) ≡ HA(z) = 1. (4.73)

This simplification indicates that, for the overall system evaluation, we can assume
that this block is transparent and does not contribute to the closed-loop evaluations.

61



4. METHODS

4.1.4 TFB controller

In transverse feedback systems, a phase adjustment is typically necessary to convert
a beam position signal from a pick-up into a momentum correction signal used by a
transverse kicker [10, 32, 46, 54–56]. In larger synchrotrons, pick-ups and kickers can
often be positioned such that the betatron phase advance between them allows the signal
to be directly applied for feedback without further phase adjustments. However, these
optimal locations are not always available for installing a dedicated monitor, and the
required phase advance may change in machines with cycle-dependent optics.

The following analysis aims on identifying potential solutions for transverse feedback
phase adjustments using short finite impulse response (FIR) digital filters and one or
more pick-ups.

The ultimate goal could be stated as follows: determine the slope of a particle’s
trajectory at the position of the kicker, to be able to counteract oscillations by correcting
its trajectory (i.e. the transverse momentum py) on a turn-by-turn basis.

Given that — at the time of writing — there is no technique known which allows
to directly measure transverse momentum, it requires an indirect method to obtain the
slope via position measurements.

By recalling that a pick-up measures the real part (see Figure 4.4) it becomes obvious
that if the sequence is phase rotated, by −90◦ or −j, then the corresponding slope is
returned as position, yp, seen by the pick-up:

yp = ℜ{−jx} = ℜ{−jy + y′} = y′ . (4.74)

This procedure allows for two possible interpretations to realize the phase rotation:
(a) Spatial phase shift, and (b) Temporal phase shift.

Spatial phase shift

Technically speaking, equation (4.74) means nothing else than to physically place a
pick-up at betatron phase advance −90◦ with respect to the kicker. This is the simplest
form of a transverse feedback. The correct phase shift required between the position
measurement and application of the correction kick can be obtained by integration into
properly selected positions in the accelerator lattice. However, such a scheme makes the
optics design, TFB and accelerator operation complicated as there is no flexibility in any
of the parameters.
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Figure 4.21: TFB signal processing using two pickups spaced exactly by π/2 (or close to) betatron
phase advance. Sampling is once per turn per bunch passage, the structure is
implemented for every individual bunch.

The problem can be overcome by using two beam pickups, which are conveniently
placed in the lattice to have an ideal π/2 betatron phase advance between them. The
two orthogonal components can be used to rotate the measured position vector by any
phase by simple multiplication as illustrated in Fig. 4.21, often referenced to as Pick-up
Vector Sum:

yk[n] = p1[n]b1 + p2[n]b2 = p1[n] cosφ+ p2[n] sinφ , (4.75)

where φ is the required phase rotation angle.

For the combination of two pick-up signals that have a phase advance different than
90◦ a more general solution has been already formulated in Ref. [56], as Pick-up Vector
Sum. As detailed therein, the two pick-up mixing coefficients follow from

b1,2 = −1

2

(
cos(∆ϕQkm)

cos(∆ϕ/2)
∓ sin(∆ϕQkm)

sin(∆ϕ/2)

)
, (4.76)

where ∆ϕ = ϕ2 − ϕ1 describes the phase advance between the two pick-ups, and with

∆ϕQkm = −3πQf + ϕk −
ϕ2 + ϕ1

2
. (4.77)

The fractional tune is denoted as Qf , and ϕ1, ϕ2, and ϕk are the betatron phase
advances at pick-up and kicker locations with respect to some fixed reference. Equa-
tion (4.77) is readily taking into account a one-turn delay and the phase shift of the
notch filter.

Temporal phase shift

During one complete revolution a particle exhibits a precise number of oscillations, thus
if the fractional tune Qf is 0.25 then a phase rotation of 90◦ is achieved between
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consecutive turns. By reconsidering (4.74) we can exploit this as

yp[n] = ℜ{jx[n− 1]} = −y′[n− 1] , (4.78)

which states that the position yp at turn n represents the negative slope, −y′, of the
previous turn, n− 1.

In reality, a fractional tune close to the quarter integer resonance is usually not very
practical.

Using more complex digital filters, a TFB can be realized with a single pickup placed
at any location in the lattice. The correction kick would be calculated from data acquired
from one location, but over a number of turns. The Hilbert transform, which provides
two orthogonal vector components—commonly referred to in signal processing as the in-
phase I and quadrature Q—is typically used, followed by a phase rotation. The scheme is
often referred to as a Hilbert phase-shifter. A typical TFB architecture (for one pickup)
using this principle with the Hilbert transform realized by a finite impulse response (FIR)
filter is depicted in Fig. 4.22. The method is not limited to one pickup only. Any number
of pickups can be processed in parallel and the resulting correction kick is obtained as a
sum of individual pickup contributions. The Transverse Feedback System in the Large
Hadron Collider is typically operated in this mode using 4 pickups per beam per plane.

p
1
[n

]

b-3

K
ic

k
er

B
P

M
1

yk[n]

f1 fk

b-1 b1 b3

z
-1

z
-1

z
-1

z
-1

z
-1

z
-1

real (I)

imag. (Q)

co
s 
j

notch

si
n
 j

beam

Figure 4.22: Typical signal processing for single pickup feedback using Hilbert phase shifter (7-
taps). Sampling is once per turn per bunch passage, the structure is implemented
for every individual bunch.

Using the Hilbert transformer coefficients [96] and phase rotation terms, the FIR
filter coefficients will be:

bn =
2

πn
sinφ for n odd

= 0 for n even
= cosφ for n=0 ,

(4.79)
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where φ is the required phase rotation angle between pickup and kicker:

φ = ϕk − ϕ1 +Q (τHilbert + τNotch + τOther) . (4.80)

Q is tune, ϕ1 and ϕk are the betatron phase advances at pick-up and kicker locations
with respect to some fixed reference, τHilbert is group delay (in turns) of the used Hilbert
filter (in the example of Fig. 4.22, τHilbert = 3), τNotch is group delay (in turns) of the
used notch filter (in this example τNotch = 0.5) and τOther is other hardware or algorithm
specific processing delay (in turns).

The frequency response of the Hilbert phase-shifter must be taken into account when
using this method. Short filters exhibit a non-negligible ripple in the response that can
be detrimental for certain values of fractional tune. Longer filters have a flatter response,
but introduce more delay into the feedback loop. Operating close to integer, or half-
integer tunes is practically impossible. As multiple samples from a number of consecutive
turns are used for every correction kick calculation, pickup measurement noise is partly
reduced.

The longer processing delay of the Hilbert phase-shifter method with respect to the
Vector sum method limits the maximum feedback loop gain, the tune acceptance range is
also narrower. Nevertheless, the Hilbert phase-shifter method is very popular in modern
digital TFBs as it provides flexibility, it is easy to follow machine parameter evolution
during the accelerating cycle (tune, optics change) and if multiple pickups are used it
also provides an operational redundancy, as such a TFB can run with a single pickup
only.

New mathematical models and methods for phase adjustments will be discussed in
more detail in section 5.4.

TFB signal processing in the Large Hadron Collider

A simplified block diagram of the digital signal processing of the LHC transverse feedback
is shown in Fig. 4.23. The TFBs for each beam (1/2) and each plane (H/V) use four
pickups located in the arcs around the former interaction point 4 (IP4), and their tetrode
power amplifiers and deflectors are located in the LHC radio-frequency zone at IP4. Due
to the TFB complexity, technical functionality is split into two modules. Beam position
measurement is realized by a dedicated, very low noise beam position measurement
module (BPM) providing a 1 Gbps datastream of one position sample per bunch per
pickup passage (one data point every 25 ns) [97]. The BPM module interfaces to the
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RF signals from the pickups, adjusts the input gain to optimally measure bunches of
all intensities used in LHC (from 1× 109 to 4× 1011 charges per bunch) and performs
position normalization with respect to bunch intensity.
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Figure 4.23: Simplified block diagram of the LHC transverse feedback signal processing. Two
redundant signal processing units drive four sets of power amplifiers and kickers.
Adjustment of parameters shown in color is critical for TFB performance.

Four digital streams of normalized beam positions are sent over fiber optic links
to the digital signal processing module. In this module, the streams from all pickups
are synchronized, and a notch filter is applied to suppress the closed orbit information.
With a beam synchronous sampling clock, the notch filter also suppresses all other static
signals, errors and imperfections seen by the beam position module and extracts only
the oscillatory component relevant for TFB operation. Therefore, beam synchronous
sampling and the notch filter relaxes already very demanding requirements for BPM
electronics.

The LHC TFB has both previously mentioned signal processing schemes imple-
mented: one Hilbert phase-shifter for each pickup controlled by a real-time function,
Vector sum mode for pairs of pickups controlled by a real-time function, and an FIR
filter with programmable coefficients for any other operational mode (e.g. the Komppula
filters). The standard mode of LHC TFB operation is phase-shifter mode for each pickup,
as it is compatible with fast damping times (10-15 turns) and it can follow the dynamic
LHC optics in real time (filter coefficients are recalculated and updated approximately
every 12 turns). Four pickups per beam per plane provide quadruple redundancy.

The LHC TFB signal processing supports four independent feedback loops (“activity
masks” in Fig. 4.23), where groups of bunches (within one turn) can be in real time
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4.2 TFB Parameter Identification

assigned to loops with different dynamics, or other feedback features. Separate loops are
used for example to treat the main LHC physics beam differently to the group of non-
colliding, so called witness bunches which are needed for accelerator operation. Bunches
can have strong damping of injection oscillations and then be handed over to a regular
loop with lower gain.

The signal synthesis blocks generate signals for beam cleaning, white, or colored noise
for controlled emittance blow-up, or AC-dipole like excitation for optics measurements.
Signals can be injected into any of the four feedback channels. Each of the four outputs
has individual pre-distortion filters to shape the signals and compensate the power system
transfer function. Signals can be generated with a large bandwidth to, for example,
manipulate single bunches within a 25 ns spaced bunch train, or provide an “ideal”
bunch by bunch damper. Reduced bandwidth provides high strength kicks e.g. to use
the TFB as AC-dipole excitation to probe dynamic aperture, or to generate a sustained
1MW beam losses on primary collimators for the purpose of a magnet quench test.

4.2 TFB Parameter Identification

In the field of controls engineering, the relationship between the closed-loop transfer
function and the open-loop transfer function is well established. This relationship can
be expressed as a function of frequency ω:

CL (ω) =
OL (ω)

1 +OL (ω)
. (4.81)

In the context of a transverse feedback system, the open-loop transfer function is
defined as:

OL (s) = GHS(s)HC(s)HA(s) . (4.82)

Here, OL (s) represents the combined transfer function of the beam, represented as G,
along with the sensor, controller and actuator [98, 99].

For the system to maintain closed-loop stability, it is essential that the denominator
of Equation (4.81) does not equal zero. This leads us to the stability criterion, which
must be satisfied:
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GHS(s)HC(s)HA(s) < (−1). (4.83)

To describe the overall feedback system more comprehensively, we can express it in
the following form, incorporating findings from Equations (4.48) and(4.73):

HS(s)HC(s)HA(s) = K · ej(sT+ϕPK). (4.84)

By substituting Equation (4.84) into the stability criterion outlined in Equation (4.83),
we derive the conditions necesarry for stability:

|G| ·K < 1 (4.85)

arg{G}+ ωT + ϕPK = −π ± tol. (4.86)

The key parameters that significantly influence the gain and phase margins, and
consequently the overall stability of the feedback loop, include the loop gain K, the
feedback phase ϕPK , and the total loop delay ωT . Knowing the actual values of these
parameters throughout the machine cycle, and making precise adjustments are essential
for optimizing the performance of the TFB. In the context of this thesis, these parameters
will be systematically evaluated in the following as a part of the objectives #2 and #3.

4.3 Transverse phase space reconstruction

The following section aims in defining signal processing techniques and analysis al-
gorithms which will allow to evaluate and quantify the parameters identified in Objective
#2 and #3, from observables available within the transverse feedback system.

The LHC transverse feedback system provides bunch by bunch, turn by turn, normal-
ized and digitized beam position signals from up to four pick-ups per plane and for each
beam. Together with already existing powerful computer-based observation systems, this
data can be used to reconstruct in real-time the transverse phase space coordinates of
the centre-of-charges, for each individual bunch. Such information is extremely valuable
for machine operation, or transverse instability diagnostics.
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4.3 Transverse phase space reconstruction

This section introduces methods of combining four position signals for such analysis
in the presence of noise and with active transverse feedback.

One considerably useful representation of transverse motion is the use of phase space
coordinates, readily described in Ref. [100] as an analytic signal x[n], expressed as,

x[n] = y[n] + jy′[n]. (4.87)

Here, the transverse normalized phase space coordinates y[n] and y′[n] represent
normalized position data respectively the corresponding normalized slope values at turn
index n.

For the analytic evaluation, we implicitly assume that the beam is centred in the
pick-ups and we observe betatron oscillations, i.e. (y)2 + (y′)2 = const. Furthermore,
for our assessment, we shall use a damped, complex-valued harmonic oscillator as beam
model, which provides for the kth beam position monitor at the nth turn the phase space
coordinates as follows,

xk[n] = A0e
−jϕk

(
α · e−jω0

)n
. (4.88)

Here, A0 and ϕk are initial conditions, α accounts for an amplitude decay and ω0 =

2πQf represents the angular frequency at the fractional betatron tune Qf .

In order to satisfy Eq. (4.87), and by acknowledging that the ADT Beam Position
Monitors readily provide normalized readings, we are looking for indirect methods to
obtain slope samples from beam position measurements.

In the following, we evaluate two methods for combining beam position data of
four LHC pick-ups, identified as a spatial and a temporal phase shift in Section 4.3,
Ref. [101]. The first combines the information of several beam position monitors based
on their longitudinal distribution in the accelerator, the later relies on processing the
history of recorded beam position data using filter kernels.

4.3.1 Spatial method

This method relates the data measured by two or more independent beam position
monitors at different longitudinal azimuths. Fig. 4.24 outlines the case for N = 2 signal
sources. For this method, the beam position monitors should have a betatron phase
advance ideally between 60o < (ϕ2 − ϕ1) < 120o.
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Figure 4.24: Spatial phase space reconstruction: in-phase term yI [n] and quadrature component
yQ[n] calculated from vectorial rotation and combination of two beam position se-
quences x1[n] and x2[n].

For the case of the LHC ADT, the data provided by individual beam position monitors
yk[n] are meticulously time-aligned during setting-up, with index n corresponding to the
same bunch data at the same turn. Therefore, using the “Pick-up Vector Sum” algorithm
from Equation (4.76) it can be shown that, choosing appropriate mixing coefficients a11
and a12, the position signal yI [n] in Fig. 4.24 of a virtual beam position monitor can be
constructed, such that

yI [n] = a11y1[n] + a12y2[n]. (4.89)

Equivalently, applying the same approach of pick-up signal mixing, and by taking
into account an additional 90o phase advance compared to the virtual beam position
used for Eq. (4.89), we obtain the representation of the slope, yQ[n], described as

yQ[n] = a21y1[n] + a22y2[n]. (4.90)

The pair of Eq. (4.89) and (4.90) represent Cartesian coordinates, describing the
reconstructed phase space for an arbitrary longitudinal position. It is a convenient prac-
tice to chose the ADT kicker position as reference for the phase space reconstruction.
By using the same longitudinal reference this technique is further expandable for using
multiple beam position monitors – four in the case of the LHC ADT – as shown in
Fig. 4.25.
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Figure 4.25: Spatial combination of four beam position streams.

We therefore obtain an analytic signal xS[n] = yI [n] + jyQ[n] as the reconstructed
normalized transverse phase space based on a scalar combination of real-valued position
sequences, yk[n], using

xS[n] = h0[n] ∗
∑
k

(a1k + ja2k) · yk[n]. (4.91)

The asterisk operator (∗) represents the discrete-time convolution of the weighted
BPM signals with an additional finite impulse response (FIR) filter of impulse response
h0[n], allowing shaping of the input noise. When no filter is used, this method has zero
group delay and therefore it is suitable for applications requiring low latency.

4.3.2 Temporal method

Referring to Equation (4.78) [100], this reconstruction method obtains the slope signal
as the 90o phase rotated version of the position data utilizing digital filters.

In order to reconstruct the analytic signal in Eq. (4.87) we are looking for a solu-
tion that allows to transform a sequence of position samples, y[n], into a sequence of
corresponding slope samples, i.e.

y′[n] = L{y[n]} . (4.92)
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Thereby, the operation denoted by L{·} in Eq. (4.92) is commonly known as Hilbert
transform and is explained for example in Ref. [92].

A more practical approach can be found by noticing that y′[n] is the 90◦ phase-
rotated version of y[n]. This phase shift can be generated by simple means of digital
filtering — as it is already been done in the feedback phase controller [101].

Figure 4.26: Phase space reconstruction using two digital filters.

Figure 4.26 shows how the phase space is reconstructed by means of two individual
digital filters. The two branches with filter kernels hI [n] for the in-phase component,
and hQ[n] for the quadrature component generate two quadrature output signals, named
yI [n] and yQ[n], which can be combined to a final analytic signal, representing a recon-
struction of the transverse phase space,

c[n] = yI [n] + jyQ[n] = y[n] ∗ (hI + jhQ) . (4.93)

As an intermittent research result, elaborate filter kernels including DC suppression
were defined, tuned for the fractional tunes of the particular plane, to attenuate out-of-
band signals. Examples of filter kernels for fractional tunes used in the LHC transverse
feedback systems are listed in Table 4.1. With only five coefficients these filters are
usable with possible damping times of 10 turns or less.

Table 4.1: Filter kernels LHC.

(a) Horizontal, Qf = 0.275

hI [n] hQ[n]

-0.1837 +0.0447
-0.1224 -0.4922
+0.6122 +0.0000
-0.1224 +0.4922
-0.1837 -0.0447

(b) Vertical, Qf = 0.31

hI [n] hQ[n]

-0.1322 +0.1136
-0.1983 -0.4542
+0.6612 +0.0000
-0.1983 +0.4542
-0.1322 -0.1136

As outlined in Fig. 4.27, bunch-by-bunch data yk[n] provided from individual Beam
Position Monitors passes through a pair of matched filter kernels, denoted as hI [n] as
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hQ[n]. The filters’ even and odd symmetric impulse responses generate in-phase (I) and
quadrature output signals (Q), which can be combined afterwards thanks to an identical
group delay.
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Figure 4.27: Temporal phase space reconstruction using matched digital filters hI [n] and hQ[n]

on the input data stream yk[n] of four Beam Position Monitors.

It is worth noting that the calculated FIR filter output pairs readily represent phase
space coordinates at the longitudinal position of the corresponding monitor. Therefore,
to aggregate four pick-ups to an arbitrary longitudinal reference location, the individual
output vectors need to be aligned before summing their contributions. This is done by
a vector rotation, ϕk, towards a common longitudinal position (e.g. to the location of
the ADT kicker).

The analytic signal xT [n] = yI [n] + jyQ[n] obtained from the temporal method can
therefore be described as,

xT [n] =
∑
k

(
yk[n] ∗ (hI [n] + jhQ[n]) e

jϕk
)
. (4.94)

With a short 5 taps kernel length, these filters are tuned to exhibit nominal trans-
mission at the fractional tune for the corresponding plane, rendering them applicable for
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a tune range exceeding ±0.02 around the target tune [100].

The suggested methods in Section 4.3 are both valid candidates for reconstructing
the transverse phase space in real-time. With the spatial method being attractive for
the analysis of fast beam transients, for example during injection transients and with
5 turns damping time, both methods profit from the suppression of out-of-band noise
using filter kernels which improves the SNR (see also Section 4.6).

Potentially, more elaborate filter response functions can be designed to lower the
SNR even further, for instance by processing the beam position data of 100 to 1000
turns.

4.4 TFB parameter extraction

We describe a method for feedback parameter extraction, as required by Objective
#1. This method is based on transverse excitations generated by the kicker of a TFB. It
involves reconstructing the transverse phase space using digital filters for each individual
pick-up, as detailed in Section 4.3. The analysis is conducted entirely in the time domain,
without any conversion to the frequency domain.

For our analysis we recall 4.87, an analytic signal x[n] which describes the evolution
of a particle in normalized transverse phase space coordinates

x[n] = A0 e
−jϕ0

(
α · e−jω0

)n
. (4.95)

For simplicity we assumed that the particle motion is dominated by active damping
(see also Ref. [102]), thus reducing the analysis to linear optic effects of the magnetic
guidance field and exponential amplitude decay. Equation (4.95) describes a damped
harmonic oscillation at turn index n, with angular frequency ω0 and a decay factor, α,
and with initial amplitude and phase denoted as A0 resp. ϕ0. Note that the negative
exponents preserve the direction of rotation in normalized phase coordinates (positive
phase 7→ clockwise; downstream).

In order to extract essential parameters of a transverse feedback system from bunch-
by-bunch beam data we shall consider the case of a beam in a steady state — any
transients have settled — which has been excited transversely by the TFB for less than
one turn (illustrated in Fig. 4.28).
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Figure 4.28: Transverse phase space plot (normalized) at the position of a pick-up. A transverse
deflection commutes from the location of the kicker to the coordinates of the pick-up
by a fixed phase angle (denoted as ϕ0), with subsequent turns advancing in phase
by the fractional tune (∆φ = 2πQ).

4.4.1 TFB gain

We define the transverse activity, A[n], as the magnitude of the vector x[n],

A[n] = abs{x[n]} , (4.96)

which is a measure of the instantaneous oscillation amplitude in the normalized transverse
phase space.

From Eq. (4.95) it follows that,

A[n] = A0α
n , (4.97)

with the magnitude A0 defined by the initial excitation amplitude of the transverse
deflection at turn n = 0. If A[n] decreases over time then the transverse activity is
considered to be damped, whereas growing values provide an indication of transverse
instability.

By noting that the change in amplitude per turn in Eq. (4.97) is constant and defined
by the decay factor α ≡ e−1/τd , we can derive the decay time τd from the transverse
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activity. This is done by comparing two time instances, n1 and n2, using the following
equation:

τd = (n2 − n1)

(
log

A[n1]

A[n2]

)−1

. (4.98)

In control systems, the damping time τd is inversely related to the product of the
damping ratio ζ and the natural frequency ωn, expressed as τd = 1

ζωn
. This relationship is

fundamental in understanding how feedback influences system dynamics, particularly in
terms of response speed and stability [103]. For weak internal damping, this relationship
can be further simplified to τd = 2

K
, where K is the feedback gain.

Rearranging this equation allows us to express the feedback gain as a function of
damping time:

K =
2

τd
. (4.99)

For a detailed analysis of the effect of damping feedback on a second-order system,
we refer to Appendix A, where we derive the relationship discussed.

4.4.2 TFB phase

As shown in Fig. 4.28, in the very same turn when the kick (π/2 or +j) has been applied,
i.e. n = 0, the betatron phase advance between kicker and pick-up effectively transforms
the transverse deflection in normalized coordinates, thus leading for the initial condition
of Eq. (4.95),

ϕ0 =
π

2
− arg{x[0]} . (4.100)

More generally, according to Eq. (4.108) we notice that any subsequent beam oscil-
lations recorded by the pick-up will advance by the fractional tune. We can therefore
determine also for later turns an initial phase, ψ[n], from the argument of the analytic
signal by including a linear phase term,

ψ[n]
.
=
π

2
− arg

{
x[n] · ej2πQ·n} . (4.101)

From this we instantly obtain the phase advance between the kicker and the pick-up
by averaging over M consecutive turns,

ζ =
1

M

M−1∑
k=0

ψ[k] . (4.102)
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4.4.3 TFB delay

For the stability of a TFB it is essential that kick signals are well aligned with the time
of arrival of the bunches. In the following we derive a method which aims on quantifying
the kicker delay offset.

We now consider the case of a kick signal which is modulated in amplitude over one
turn. Thereby, a sinusoidal kick waveform with M periods per machine turn is sampled
by a bunch with index k depending on the time of arrival at the location of the kicker.
The resulting bunch oscillation magnitude, described as,

Ak = A0 · cos
(
2πM

h
· k + 2πM · η

)
, (4.103)

is then recorded as betatron oscillation decay at a downstream pick-up. Here, the
harmonic number h represents the maximum number of buckets per turn, and a delay
offset factor, η = ∆T/TRev, defined as the ratio between the kicker delay offset, ∆T ,
and the revolution period, TRev.

If this kick exercise is repeated with two phase-shifted versions of the modulation
signal in quadrature, denoted as AI and AQ, we can reconstruct an IQ-footprint of the
traversing bunches at the kicker as,

χ[k, n] = AI [k, n] + jAQ[k, n] . (4.104)

As can be easily verified, bunches are equally distributed around a circle with constant
radius. Therefore, unwinding the phase response of Eq. (4.104) by taking into account
a linear position-dependent phase term,

ρ[n] = arg
{
χ[k, n] · e−2πMk/h

}
, (4.105)

and averaging over populated bunches and N turns results in,

θ =
1

N

N−1∑
m=0

ρ[m]
.
= 2πM · η . (4.106)

Since η = ∆T/TRev it follows for the delay offset:

∆T =
θ

2πM
· TRev . (4.107)

It is worth noting that the offset factor in Eq. (4.103) is weighted by M , thus
increasing the sensitivity to delay offsets. Ultimately, if M = h then the resulting phase
in Eq. (4.105) depends solely on the delay offset factor.
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4.5 Accelerator parameter extraction

Objective #3 calls for investigation and proposal of methods and required signal
processing techniques to extract vital accelerator parameters from observables available
within the transverse feedback system. The parameters of interest would be bunch-
by-bunch machine tune and damping time. The data or results should be preferably
available in real time or immediately after injection.

4.5.1 Bunch-by-bunch tune

The single-turn excitation transients described in Section 4.4 provides us sufficiently large
oscillation amplitudes for a duration of several of turns (typically 5 - 100, depending on
the requested feedback gain), to extract the turn-by-tune.

By rewriting Eq. (4.95) as recurrence formula we obtain the coordinates for consec-
utive turns by evaluating

x[n] = x[n− 1] · αe−jω0 . (4.108)

As can be seen, after a turn the sequence has advanced in phase by ∆φ = ω0 ≡ 2πQ.
Therefore, by taking the ratio over two consecutive turns we can express the per-turn or
instantaneous fractional tune, Q[n], as

Q[n] =
1

2π
arg

{
x[n− 1]

x[n]

}
. (4.109)

It is worth noting that Eq. (4.109) allows for correctly characterizing the fractional
tune to be below or above the half-integer resonance.

4.5.2 Damping time

Equation 4.98 already describes the bunch-by-bunch damping time, which can be ex-
tracted from transverse activity data.

4.6 Sensitivity to noise
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In this section we analyse the expected performance of the transverse phase space
reconstruction methods introduced in section 4.3 in the presence of noise.

We model the inherent noise from each Beam Position Monitor as an independent
additive white Gaussian noise process, e[n] (e[n] = 0, noise power e2[n] = σ2

e), which is
added to the desired noise-free position signal, yp[n],

y[n] = yp[n] + e[n]. (4.110)

The convolution in Eq. (4.91) and Eq. (4.94) with selective FIR filters lets signals
close to the target tune pass unaltered in amplitude, but shapes the noise power for out-
of-band signals. For the example of the in-phase filter (equivalent for the quadrature
component), the noise power follows from,

σ2
I = σ2

e

∑
m

|hI [m]|2 . (4.111)

The overall noise contribution is further reduced by the superposition of N = 4 Beam
Position Monitors, leading to a final RMS noise amplitude,

σA = σe

√
σIσQ
N

. (4.112)

It can be shown that the activity defined in Eq. (4.96) with noise present according
to Eq. (4.110) follows the well known Rice probability distribution. The expected RMS
amplitude noise follows the RMS input noise, reduced by filtering and by the combination
of 4 BPMs. For example, in the case the filter kernels listed in Table 4.1 are used for
the temporal method, then the expected total process gain is 9.2 dB.

The measurement noise also affects the observable fractional tune (Eq. (4.109)) from
the reconstructed phase space data xT [n], with the RMS phase noise given as,

φrms = atan
σA
A0

(4.113)

At this point it is worth noting that, for large amplitudes A[n] >> 10σA, the re-
constructed values for amplitude and phase exhibit measurement noise following the
assumed normal distribution (standard deviations σA respectively φrms), however, due
to the filtering their spectral density is no longer white.
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Furthermore, for A[n] << 10σA the observed phase vector resembles a uniform dis-
tribution, with an arbitrary phase value between [−π, π], providing no useful information
on the fractional tune. Numerical simulations using Eq. (4.88) and a BPM noise floor of
σe = 0.219µm (taken from [93]) indicate that a minimum signal to noise ratio (SNR)
of 20 log10(A[n]/σe) ≥ 30 dB is required to obtain an RMS tune variation of σQ better
than 10−3.
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Figure 4.29: Fractional tune from reconstructed transverse phase space using 4 LHC BPMs using
the temporal method.

This value is confirmed by measurements of LHC injection transients, shown in
Fig. 4.29 as an example, where the turn-by-turn fractional tune of one individual bunch
is reconstructed from 4 LHC BPMs using the method described by Eq. (4.94). The red
trace indicates the 16-turns moving average of the instantaneous fractional tune QT [n]

(in gray), and with the RMS tune error depicted in black. Between 2000 and 2500 turns
after injection the oscillation amplitude has decayed to an SNR of approx. 30 dB, and
the measured RMS tune variation σQ = 1.1 · 10−3, which is in excellent agreement with
the numerical prediction.

4.7 Computational complexity
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In order to be useful, it is important to investigates the computational complexity
of the proposed methods and the signal processing techniques, as laid out in objective
#4, with a focus on evaluating how the algorithms could be realized based on real-
time processing in Field Programmable Gate Arrays (FPGA), real-time processing in
high-performance computing system, or offline processing.

During the LHC Long Shutdown II the LHC transverse feedback system (ADT) [104]
was subject to an upgrade of its Beam Position Monitor (BPM) hardware, aiming for an
improvement of the system’s noise floor [93]. New low-noise beam position hardware is
now available for LHC Run III, providing independent processing of 16 dedicated pick-
ups. This allows for a total of four beam position streams per plane and per beam,
representing the transverse centre-of-charges of each individual bunch.

This data is available in real-time to the LHC Transverse Feedback system for damp-
ing and stabilizing the beam, as well as to the computer-based observation system
ADTObsBox. The LHC transverse feedback system is powered by Xilinx Artix 7 FP-
GAs (XC7A200T-1FFG1156C) providing 740, 48-bit DSP blocks and a total of 13140
kB of fast RAM. Apart of the mandatory TFB signal processing, the FPGA allows to
implement a simple version of fast transverse instability detection, or few simple FFT
algorithms.

The ADTObsBox [105, 106] is a very powerful computer system capable of recording
and processing all digital data streams from the 16-available pick-ups and 4 digital signal
processing units at full data rate (bunch-by-bunch or 40Msps, with 16 bit resolution),
totaling to 20Gbit/s. The system for instance combines the data in real-time and
extracts valuable metrics of the ADT performance (e.g. transverse activity) or the beam
itself (bunch-by-bunch fractional tune).

The ADTObsBox system deployed in LHC contains three servers - real time process-
ing server, data storage and buffer server, and a development server.

The real time processing machine is optimized for processing data in real time and
providing a high level information like transverse instability detection, spectrum anal-
ysis for slow ground motion measurements, tune extraction, damping time extraction.
The hardware configuration is: up to 96 processing threads (cores), 768GB RAM,
0.165Tflops/s. The system can be extended by installing GPUs, providing additional
computing power up to 880Tflops/s. Current server load is approximately 20% contin-
uous.
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The data storage and buffer server is optimized for recording data and making them
available for on the fly analysis (not real time in terms of machine turns, but also not
off-line) and permanently saving the data to a non-volatile storage. Data are catalogued
for example as injection transient, post mortem data, or various on-demand data. All are
used for long term accelerator performance analysis (e.g. all injection for the last year).
Special feature of this system, till now something unheard of, is a 24-hour long, bunch
by bunch, turn by turn circular buffer. If anything goes wrong in the machine, users
are able to retrieve the full rate position data of the event from all TFB pickups for an
analysis. If the algorithm is very computationally intensive, beam data from this server
can be used for an offline analysis on a different machine. The hardware configuration
is: up to 96 processing threads (cores), 192 GB RAM, 150 TB of disk storage capa-
ble of simultaneous read/write and continuous writing at 20 Gbps. Computing power
0.165 Tflops/s. Current server load is approximately 27% continuous.

The third, development server is used to test and evaluate new methods and algo-
rithms. The hardware configuration is: up to 96 processing threads (cores), 384 GB
RAM, 0.165 Tflops/s. The system can be extended by installing GPUs, providing ad-
ditional computing power up to 880 Tflops/s. Current server load is approximately 2%
continuous.
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Chapter 5

Results

In this chapter, we present the results of our research, which aims to verify and validate
the methods outlined in Chapter 4.

To address Objective #1, we implement a brief transverse excitation of a bunch
using the TFB kicker, which results in controlled beam oscillations. In the subsequent
section, we employ numerical simulations and particle tracking code to assess whether
this method is detrimental to the beam.

The Measurements section focuses on analysing results obtained from real beam data
collected during the LHC 2024 commissioning. The data, recorded with the assistance of
the TFB observation systems, is utilized for a comprehensive verification of the described
methods. This is followed by detailed measurements aimed at evaluating the sensitivity
of each method to variations in parameters. Objective #2 involves the evaluation of TFB
parameters, while Objective #3 pertains to accelerator parameters. Both objectives are
thoroughly analysed in the context of the LHC TFB, with results presented from data
collected during the regular machine start-up.

The subsequent section addresses Objective #4, demonstrating the practical appli-
cation of the proposed methods. We detail the real-time extraction of transverse activity
for each individual bunch, a metric introduced by this study that has become increas-
ingly significant for machine operation. We also elucidate how the LHC operations group
accesses these results in a real-world implementation.

Finally, the concluding section of this chapter is dedicated to advanced signal pro-
cessing techniques and digital filter design. Here, we present our findings related to
Objective #5, which focuses on enhancing the robustness of transverse feedback sys-
tems in the context of tune variations.
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5.1 Numerical simulations

In Section 4.6 of the Methods chapter we highlighted the need for a minimum oscil-
lation amplitude to effectively analyze and extract transverse feedback and accelerator
parameters. To achieve this, it is crucial to excite the beam in a short and controlled
manner, which helps to avoid beam losses and maintain beam quality, in particular by
minimizing transverse emittance blow-up. In the following, we present the results of
numerical simulations conducted to address the objective #1. These simulations inves-
tigate the effects of a short tranverse excitation on beam size in the presence of a strong
transverse feedback system.

The simplified approach exploited in Section 4.1.1 describes the tracking of the centre
of gravity of a bunch. A bunch is represented as a single macro particle that performs
betatron oscillations as it travels along the magnetic guidance field. It is assumed that
the machine has a linear optic and it’s lattice is decoupled, hence, the betatron motion
identified by (3.14) essentially describes the particle’s trajectory in two degree of freedom.

In a perfectly linear machine, a single particle starting on a trajectory offset from the
closed orbit will continue to exercise transverse oscillations, and a distribution of particles
injected will maintain its r.m.s. size. The centre of gravity will continue to oscillate with
constant amplitude about the closed orbit.

In a real machine, however, any non-linearities in the lattice will eventually lead
to decoherence. Using the above macro particle model, in the absence of an active
transverse damping term the oscillation amplitude reduction is based on the assumption
of an exponential decay of the coherent oscillations, described by

dx

dt
= − 1

τdec
x (t) (5.1)

At this point it is worth noting that, taking into account a tune spread of many par-
ticles, the decaying of the oscillation with the spiralling movement of particles in phase
space is rather poorly described by an exponential law for the decay of the centre of
mass motion. The exponential decay described by (5.1) imposes a maximum reduction
in oscillation amplitude at the very first turns, while according to the analytical expres-
sions [3] the dependence with time follows a power law −(t/T0)

2 for the first few turns.
T0 = 88.9µs denotes the revolution time. The decoherence becomes only visible when
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5.1 Numerical simulations

the outer regions of the bunches have sufficiently drifted away from the centre and start
to deform the transverse bunch distribution. This is illustrated in Fig. 5.1.
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Figure 5.1: An injection error of ∆X ′
n = 1.5 σ leads to a turn by turn filamentation of a bunch

(blue, initial beam size ϵ0); an amplitude dependent tune spread of the individual
particles is assumed. Filamentation after 750 turns is shown in red for µ = 10−4,
Q′ = 2, and (∆p/p)rms = 0.44 × 10−3. Without active damping the emittance
increases to ϵ/ϵ0 = 2.125.

Therefore, in the absence of an active transverse damping term and to evaluate the
transverse beam size, a more accurate description needs to take into account the exact
nature of the filamentation process and require a multi-particle simulation.

Without feedback, analytical formulas have been derived for the decoherence by
chromaticity and octupoles [3, 107]. In the case of chromaticity alone and under the
assumption of constant synchrotron frequency, full recoherence occurs after one syn-
chrotron period. In practice, octupoles and the fact that the synchrotron frequency
itself depends on momentum prevents complete recoherence.

In general, the dependence of the machine tune Q on amplitude can be expanded
into a power series

Q =
∞∑
k=0

akr
k (5.2)

with r > 0 representing the amplitude of oscillation. k = 0 represents the central
tune in this model and k = 2 the octupolar term with a quadratic dependence of tune
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with amplitude. Sextupoles in a location with dispersion provide a change of tune with
momentum. However, when the beam is centred, sextupoles do not provide a tune
change with betatron amplitude. In the present simulation we combine the decoherence
effects caused by octupoles and chromaticity with the active damping by the feedback.
Other sources of decoherence are not considered.

When defining the parameters of the LHC transverse feedback system it has been
assumed that all oscillations would be damped during the initial decoherence and any
effect of re-coherence has not been taken into consideration. Note that the damping
time aimed for is of the order of 1/4 of the synchrotron period.

As in the derivation for the analytical expressions [3] it is assumed that distributions
in transverse and longitudinal phase space are not correlated, i.e. particles are initially se-
lected to have randomly distributed transverse and longitudinal phase space coordinates.
Gaussian distributions are used for both planes, longitudinal and transverse. Detailed
analytical expressions for the decoherence of coherently kicked particles can be found in
[3, 107]. The parameters for the tune shift are identify as a0 = Qβ, a1 = 0, and a2 = µ

in (5.2) and the average Q on turn k becomes

Q[k] = Qβ − µ(r[k])2 +Q′δ[k] (5.3)

δ[k] is the turn dependent longitudinal relative momentum deviation from the syn-
chronous particle.

Fig. 5.2 compares different assumptions for the parameters of Eq. (5.3). The numeri-
cal results agree with analytical formulas in [3, 107] for the combined case of decoherence
due to a quadratic tune change with amplitude (octupoles) and linear tune change with
momentum via chromaticity.

The results presented in Figure 5.2 are promising for our Objective #1. The green
curve indicates that, in the absence of active damping, filamentation caused by the tune
spread occurs at a relatively slow rate—slower than the damping times for which the
LHC TFB is designed. During the first 100 turns, there is almost no slope and minimal
decay in the oscillation amplitude. This is advantageous when considering the blue trace,
which illustrates the exponential decay described by (5.1). The effect of chromaticity,
represented by the red trace, shows a pattern of recoherence after each synchrotron
period. With actual damping times of 10 turns, the TFB action will significantly reduce
the oscillation amplitude before the first decay modulation due to chromaticity occurs.
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Figure 5.2: The centre of gravity motion (envelope) of a filamenting bunch without active damp-
ing shows different decaying characteristics. A first approximation describes an expo-
nential decaying amplitude (blue, dash-dotted) with parameter τdc = 750 turns. The
green curve (dashed) accounts for a detuning proportional to r2, e.g. octupolar fields,
with µ = 10−4. In case of a non-zero value for the chromaticity and non-vanishing
momentum spread the decay is modulated by recoherence (red, solid). Analytical
expressions were used [3].

In references [108, 109], we have numerically quantified that the residual emittance
increase after a full-scale excitation is indeed very small when active transverse feedback
is applied.

5.2 Measurements

In this section, measurements obtained from real beam data during the LHC 2024
run will be utilized to verify and confirm the described methods in Sections 4.3, 4.4 and
4.5, as well as to identify areas for improvement. By comparing the actual data with the
expected results, any discrepancies will be highlighted.

5.2.1 Method verification

During the regular machine start-up following the year-end technical stop (YETS 2023/24),
the LHC was carefully prepared with circulating beams as part of the transverse feedback
commissioning process. This preparation aimed to ensure the proper functioning of all
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TFB components and to optimize performance for the upcoming run.

As part of this effort, measurements were taken with both beams filled with 12
witness bunches and two batches of 72 bunches. Witness bunches are strategically
placed in specific bucket locations with intentionally reduced TFB gain. This setup is
crucial because it allows the LHC tune measurement system (BBQ) to reliably detect
the machine’s tune, even in the presence of a strong transverse feedback system and its
highly sensitive beam position monitors.

The two sets of 72 nominal bunch trains were each configured with standard TFB
gain to achieve nominal damping times. Importantly, all TFB settings were carried over
from the previous 2023 run, facilitating a seamless transition into the 2024 operational
phase. The settings were not guaranteed to be the most optimal nevertheless. By
default, the TFB was active during injection and the flat bottom plateau to preserve the
beam’s transverse emittance.

Phase space reconstruction method

For the analysis, experimental data was collected in April 2024 from the eight ADT
processing modules, with two systems per plane and per beam. The dataset includes
information from four pick-ups. Figure 5.3 displays the data acquired by the ADT
observation system, where each color represents raw data from a single pick-up, labeled
Q7 to Q10, corresponding to the quadrupole magnets where they are installed.

The data points indicate the normalized transverse position information recorded by
the associated beam position monitor (see Section 4.1.2). At the system’s sampling rate
of 40MSPS (or 25 ns per sample point), the equivalent record length of the x-axis is
approximately 13.1ms. The y-axis is represented in 16-bit encoded signed binary codes,
allowing for a value range of [−32 768, 32 767], corresponding to a transverse beam
movement in the TFB pickups of ±1.5mm (±1.7σ at injection energy and ±6.8σ at
flat top).

Notably, based on the data in Figure 5.3, the mean beam position of pick-up Q7
(blue trace) is not well centered, unlike the other three pick-ups. A well-centered beam
in the pick-up is crucial to avoid potential saturation issues with the ADCs during large
transverse beam excursions, which may occur for example during the setting-up phase
of the injection system.
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Upon carefully inspecting the raw traces, one can observe a low-amplitude oscillation,
or ‘wiggle’, present during the first 60 turns. This is active short, controlled excitation at
the beginning of the record, generated by the ADT controller and applied to the beam
using the ADT kicker.

Figure 5.3: Raw data from four pick-ups captured by the ADT observation system, totaling
524 288 samples per data stream.

A detailed snapshot of this excitation is shown in Figure 5.4. The green trace
represents the transverse positions recorded during the first three turns. At turn number
2, the ADT triggers a precisely timed single turn excitation (orange trace), which lasts
exactly one turn, or 3564 samples. As shown, the excitation amplitude drops to zero
before the position data of turn 3 is recorded.

Time synchronization with the circulating beam is important, to ensure that the
response is truly representing an impulse response function. Additionally, periodic wave-
forms are intentionally selected, like the cosine excitation pattern shown with N = 1

(number of oscillation periods per turn), to ensure that the mean excitation voltage is
zero. The applied excitation waveform discharges the kicker to zero voltage within the
same turn when applied, thus the AC coupling of the ADT power system does not pose
a problem.

In this demonstration, we observe that for the selected cosine excitation with N = 1,
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the deflection voltage for the circulating bunches in the machine remains nearly at full
scale. This is also shown in Figure 5.5.

Figure 5.4: First 3 turns of pick-up data with cosine excitation pattern (N=1) applied during the
second turn.

Since unpopulated bunches with zero intensity do not provide position readings, the
recorded data retrieved from the ADT observation system primarily consists of zero
values. Out of 3564 buckets, there are 12 + 2 × 72 = 156 populated bunches. This
means that less than 5% of the recorded 524 288 samples contains actual information.

To better visualize and process the data, we first reorganize the vector of continuous
readings into a two-dimensional format with dimensions turns×buckets. In our example,
this would result in a matrix of size 147× 3564, with some unused samples at the end.
However, in the current implementation of the ADT observation system, the record
does not start with bucket 0, which means we need to drop some samples also at the
beginning. As a result, the matrix shape becomes 146× 3564.

Next, we focus only on the buckets that contain bunches with an intensity above a
preset threshold value. This refinement alters the matrix dimensions to turns×bunches,
which, for the purpose of this demonstration, evaluates to 146× 156 per pick-up. With
this setup, we can visualize the time evolution of each individual bunch on a turn-by-
turn basis, as illustrated in Figure 5.6 for the data from one pick-up and 156 bunches.
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Figure 5.5: Detailed view of bunch pattern during the second turn: first 12 bunches, followed by
a gap, then 2x 72 bunches. Excitation frequency N=1 is shown.

As shown, the applied one-turn excitation causes all bunches to oscillate coherently
lower than 0.05 σ, while the TFB action subsequently dampens this oscillation over
approximately 20 to 60 turns.

Each of these bunch-by-bunch traces is now analyzed according to Eq. (4.93), and the
results are utilized to reconstruct the transverse phase space plots. Figure 5.7 presents
the application of the two reconstruction filter kernels detailed in Section 4.3, Table 4.1.
Notably, in comparison to Figure 5.6, both traces demonstrate a zero mean position.
This outcome is a direct result of the notch filter implemented in the FIR filter kernels,
which effectively mitigates unwanted frequency components.

However, during the initial turns, the I and Q components exhibit significant excur-
sions. These excursions can be attributed to transient effects introduced by the FIR
filters themselves. To enhance the clarity of the oscillation patterns, we shift the plots
to commence after the filter transients have sufficiently decayed. This adjustment is
illustrated in Figure 5.8. As a result, we can discern the intricate oscillation patterns of
each bunch, with a peak oscillation amplitude reaching approximately 400 codes.

The filtered one-dimensional turn-by-turn input data is now prepared for visualization
as a two-dimensional transverse phase space plot, as shown in Figure 5.9. As anticipated,
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Figure 5.6: Analyzing single pick-up data: Bunch-by-bunch turn-by-turn position over 146 turns.
Baseline offset is due to the beam not centered in this pickup and slightly drifting.
The excitation amplitude is very low, 1000 codes on vertical axis corresponds to 0.05σ

movement.

Figure 5.7: Visualizing I and Q components from individually filtered bunch-by-bunch data. Filter
filling transient is clearly visible.
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Figure 5.8: Filtered I and Q components plotted after the decay of filter transients.

the feedback action plays a crucial role in the dynamics of the system, resulting in the
reconstructed traces exhibiting a pronounced spiraling behaviour toward the center over
consecutive turns. This spiraling effect indicates the system’s stabilization process, where
the feedback effectively reduces deviations from the desired trajectory (closed orbit). We
are particularly interested in analyzing these traces, as they contain valuable information
about the feedback system, its performance, and specific parameters that influence the
accelerator operation.
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Figure 5.9: Transverse phase space plot reconstructed using single pick-up data and I/Q filtering.

Figure 5.10: Transverse phase space analysis: amplitude (top) and corresponding phase plots
(bottom).
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Transverse Activity and Damping Time

Figure 5.11 illustrates exemplary how a single bunch oscillates over time after a single-
turn transverse excitation is applied (shown by the green trace). By using the recon-
structed phase space as input data, Equation (4.96) quantifies the transverse activity in
terms of instantaneous oscillation amplitude, or envelope (represented by the blue and
orange traces). The shape of the oscillation envelope is a key indicator of how well the
TFB system is controlling the oscillations. It directly reflects the effectiveness of the
feedback action, providing important information about the system’s performance. An
optimally designed and well-configured TFB system should quickly dampen oscillations,
resulting in a rapid decay of amplitude. On the other hand, if the transverse activity
shows prolonged oscillations or a slow decay, it may indicate that the TFB system is not
functioning as intended.

Figure 5.11: Transverse betatron oscillation decay post excitation kick, with envelope signals from
digital signal processing.

We further extend our analysis to include all 156 bunches. The left plot of Figure
5.12 evaluates the transverse activity over time for Witness bunches (blue traces) and
Main bunches (red traces). A visual inspection of this figure reveals two clearly separated
clusters, indicating different damping regimes. This behaviour is expected, as we have
Witness bunches experiencing a lower TFB gain compared to Main bunches. While the
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red traces overlap well, the blue traces exhibit some scatter. This variation results from
the initial oscillation amplitude, as can been seen in the right-hand plot of Figure 5.12.
Despite the cosine excitation function with N = 1 being requested to start at bunch
position 0, the effective kick voltage seen by the beam cannot respond instantaneously
due to power and bandwidth limitations in the actuator component. Consequently, the
first 12 bunches display the charging behaviour of the kicker and amplifier system, with
bunch 0 receiving the lowest deflection kick.

To mitigate this issue, one could adjust the synchronization window of the excitation
pattern to start before bucket 0, allowing sufficient time for the kicker to charge up to
the nominal voltage. However, this adjustment must not affect the mean voltage sent
to the power system, and each bunch must be kicked only once.

Figure 5.12: Comparison of oscillation amplitude decay over time (left plot) and peak oscillation
amplitudes per bunch at turn 6 (right plot) for bunches 1 to 12 (blue traces) and two
trains of 72 bunches (red traces). Movement of 400 codes corresponds to 0.02σ.

Using the previously derived transverse activity per bunch, Equation (4.98) defines
the decay factor, also known as the damping time. Figure 5.13 displays two black dashed
curves overlaid on the left plot, representing the estimated damping times for bunches
10 and 200, based on an exponential decay model. The decay time constant for all
bunches can be obtained from the right graph.
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Figure 5.13: Oscillation amplitude decay over time (left plot) and exponential decay time esti-
mation per bunch (right plot). The black dashed lines represent exponential decay
curves for bunches 10 and 200, with time constants and peak amplitudes derived
from the estimates.

The estimation model clearly distinguishes between the two damping regimes, with
damping times for the Witness region estimated to be between 25 and 30 turns, while
the Main bunches are damped at approximately 10 turns.

Referring to the first-order difference equation (4.18) in Section 4.1.1, we have:

x[n] = αx[n− 1] n > 0.

This recursion formula defines the observed beam position at turn n in relation to the
position at the preceding turn. From this equation, one can readily deduce that for
any non-zero value of α, the sequence will either grow or decay exponentially1. This
behaviour aligns with our expectations for a pure P-controller, where the corrective action
is proportional to the error input.

Regular monitoring of system performance is essential to proactively identify feed-
back issues. This capability is now achievable, thanks to the signal processing method
introduced in this thesis.

It is important to note that proper selection of samples from the excitation transient
is critical to obtain correct results. Digital filters used to reconstruct the phase space

1An exception occurs when α = 1, which results in a steady oscillation that preserves the amplitude.
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need a certain number of samples to fill, until the result is valid and these need to be
discarded. Equally at the decay side, only samples with sufficient signal to noise ratio
should be used for reconstruction. Typically, two time constants worth of good data is
necessary to measure the damping time with useful accuracy. If the damping time is
very short (for example 10 turns like in LHC) we need either an ultra-low noise BPM, or
increased excitation amplitude. Alternatively, where available, multiple pickups at π/2
phase advance can be used to reconstruct the phase space (section 4.3.1) without losing
precious samples in the filter filling transient.

Tune Estimation

In this section, we continue to utilize the reconstructed phase space as input data, as was
done in the previous section, and shift our focus to the evaluation of the argument of the
phase space. Figure 5.10 provides a comparative analysis: the upper graph depicts the
previously described transverse activity, while the lower graph presents the corresponding
phase.

As outlined in Section 4.6, the comparison of the two graphs underlines that, in the
presence of noise, the extracted phase data deteriorates as the initial oscillation amplitude
decays. When the amplitude of a complex-valued sequence drops below the noise floor,
the phase reading becomes unreliable and susceptible to distortion. In this regime,
noise dominates the measurement, resulting in phase jitter and random fluctuations that
do no longer accurately represent the original signal’s phase. Consequently, any phase
information extracted may be incorrect, which compromises the quality of parameter
extraction.

For Main bunches (indicated by red traces), an oscillation amplitude of 100 codes
or higher (out of a full scale ±32 768 codes, i.e. 0.005σ) yields a satisfactory phase
reading just before turn number 15. A similar observation holds true for the Witness
bunches (blue traces). The slower decay in oscillation amplitude until approximately turn
40 implies a better SNR for an extended time, during which the quality of the phase
reading is also higher.

In our quest to extract accelerator parameters from the pre-processed beam position
data, we focus on the delta phase value between consecutive turns. This relationship is
derived in Section 4.5.1, where we introduced the instantaneous fractional tune in Equa-
tion (4.109). The results of our analysis are presented Figure 5.14, which illustrates the
evolution of the bunch-by-bunch fractional tune for each individual bunch. Calculating
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the difference between two phase readings can amplify the effects of measurement noise
at certain frequencies. As noted earlier, the fractional tune readings for red traces are
quite reliable before turn number 15, while the blue traces provide good quality readings
up to turn 40.

Figure 5.14: Bunch-by-bunch tune estimation from reconstructed transverse phase space. In
presence of measurement noise and 0.02σ excitation, 15 and 40 turns of usable data
are available for main (red) and witness (blue) bunches.

We can take advantage of this by averaging multiple readings over consecutive turns.
This approach further minimizes the impact of random noise, leading to a more reliable
estimate with enhanced precision for the resulting parameter reading. In the following
Figure 5.15, the fractional tune for each bunch is plotted based on data averaged over
10 turns using the arithmetic mean.

Maintaining the same color coding, the blue dots represent the estimated fractional
tune calculated for the Witness bunches. As a reminder, these bunches are intentionally
treated by the TFB with a lower feedback gain, allowing the LHC’s tune feedback system
to effectively extract the fractional tune for the entire machine from these 12 bunches.
As can be seen in the figure, the accelerator’s tune has been well adjusted to the nominal
operation value in the vertical plane, which is 0.295 at injection.

The method proposed in this thesis significantly enhances the ability to extract the
fractional tune, which is now possible also for the 2×72 Main bunches (represented by
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Figure 5.15: Bunch-by-bunch tune data plotted with turn-by-turn data averaged over 10 turns.

red dots). The new signal processing algorithm allows accelerator physicists to visualize
features along the bunch trains in a fast, simple and non-destructive manner. Notably,
the initial bunches of each 72-bunch train are observed to be close to the set-point
value of 0.295, while the bunches located at the end of the train exhibit a tune shift
of approximately 0.002. In the context of the LHC, the high beam intensity leads to
substantial collective effects, such as impedance and wakefields, which influence beam
dynamics (see Section 3.4). As a result, the position of the bunches within the train
starts playing a role, with the dynamics of the initial bunches differing from those of the
final bunches, thereby causing variations in the fractional tune.

Recommended Feedback Phase

In Figure 5.10, we examine the phase space, where the phase is wrapped within the
range [180◦, 180◦]. The beam oscillations recorded by the pick-up advance the phase
by the fractional tune with each turn, as shown in Figure 5.14. To account for this
effect, we apply a compensation, the results of which are illustrated in the left plot of
Figure 5.16. This compensation is described by Equation (4.101) in Section 4.4.2, and
we also incorporate the bunch-by-bunch fractional tunes identified in Figure 5.15.

By averaging multiple readings over consecutive turns we enhance the precision of
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our measurements. The phase advance between kicker and pick-up, measured for each
bunch, is shown in the left graph of Figure 5.15. This data was averaged choosing
M = 10 turns in Equation (4.102). The color coding is consistent with previous graphs,
where blue denotes Witness bunches and red is used for Main bunches.

Figure 5.16: Unfolded phase from reconstructed transverse phase space on the left, with phase
advance between kicker and pick-up shown on the right using averaged turn-by-turn
data over 10 turns.

With the phase advance between the kicker and pick-up extracted from our mea-
surements, we can now determine the recommended TFB phase setting for the pick-up
that recorded this measurement. The feedback phase is influenced by both processing
delay and group delay, each expressed in terms of the number of turns.

The processing delay refers to the time required for the system to process the signal,
which is typically equivalent to a one-turn delay. In contrast, the group delay is defined
by the phase rotation algorithm, specifically the time in turns needed to compute the
correction based on data from previous turns. Additionally, we must take into account
the phase shift introduced by the notch filter, the phase rotation necessary to convert
position data to slope, and a 180◦ phase shift to generate a damping correction signal.

By accounting for all these factors in the context of the LHC TFB, we derive the
recommended transverse feedback phase, which is the optimal setting for using this
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pick-up, as illustrated in Figure 5.17. In this graph, the black horizontal dashed line
represents the current phase setting, which aligns closely with the recommended phase
for this system.

Figure 5.17: Recommended transverse feedback phase using single-turn excitation and beam po-
sition data of one pick-up.

In a later step, we can profit from having several bunches generating phase readings,
allowing us to derive additional statistics from this data.

A careful examination of the graph presented in Figure 5.17 reveals that the derived
recommended phase is not entirely constant; rather, it varies with the the position of
the bunches in the trains. This variability is not unexpected, as our investigations have
shown that collective effects cause fluctuations in the fractional tune, and therefore
would require a slightly different feedback phase. In light of this, it would be beneficial
to consider integrating this tune dependence into the signal processing hardware as part
of an upgrade scenario. This integration would involve modulating the feedback phase
within a turn based on the bucket position of the bunches. This idea seems feasible, as
it builds on extending the existing FPGA gateware with the proposed functionality.

Furthermore, it is essential that this feature is adjustable to accurately reflect the
actual bunch intensity and filling pattern. To automate this in a practical application,
a parameterized model could be employed to calculate the expected tune shift for each
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bunch based on its intensity—a variable that is recorded by every beam position monitor
and made available as an output signal (see Section 4.1.2).

Building on this concept, if the TFB signal processing allows for modulation of the
bunch-by-bunch feedback phase, and if a parameterized model of expected tune shift
per bunch intensity is developed, then the TFB could be utilized to actively counter-
act this tune dependence by deliberately adding a reactive component to the feedback
phase. If successfully, this approach could lead to improved performance in accelerators,
potentially enabling accelerator physicists to establish a constant tune that remains inde-
pendent of collective effects. This proposal opens avenues for further research, such as
exploring the specifics of the parameterized model, testing its effectiveness in real-world
scenarios, and analyzing the implications of the findings.

Multiple Excitations, All Pick-Ups

To verify the signal processing methods introduced in Chapter 4, we evaluated a dataset
generated by a single-turn transverse cosine excitation withN = 1. As demonstrated, the
oscillation amplitude produced by this excitation pattern aligns well with the given filling
pattern of 12 Witness bunches followed by two trains of 72 Main bunches. The harmonic
wavelet used has no DC component, and its low frequency is advantageous for the
LHC’s tube-based power amplifier and its capacitive deflector load (see Section 4.1.3).
This configuration generates a sufficiently large beam deflection angle during a one-turn
excitation.

In order to ensure the effectiveness of our parameter extraction method across various
filling patterns, including those with distributed single bunches or multiple batches, we
anticipate the need for different excitation patterns. We utilize both sinusiodal and cosine
excitation functions, which are DC neutral, and their crest values are phase-align with
the zero-crossing of their trigonometric counterpart. By conducting two independent
measurements using sinusoidal and cosine excitations, we can generate sufficiently large
beam oscillation amplitudes for any given filling pattern.

In Figure 5.18, we compare raw pick-up position data (top row) for the two excitation
patterns (bottom row). The graphs illustrate that the waveforms are synchronized,
meaning the phases of the two excitation signals are time-aligned to begin at the start
of a new turn (the asterisk marks the start of a new turn).

Each measurement is conducted over a duration of 13.1ms, during which position
data from all four pick-ups are recorded simultaneously. From the two excitation mea-
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Figure 5.18: Comparison of position data and excitation waveforms.

Figure 5.19: Reconstructed oscillation amplitudes per bunch.
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surements, we obtain a total of eight datasets (two for each pick-up), which are utilized
to reconstruct the transverse phase space. This reconstruction enables us to extract and
compare the peak oscillation amplitudes for each bunch, as illustrated in Figure 5.19.
It is evident that the sinusoidal excitation does not provide additional insights into the
first 12 Witness bunches, as reflected by the observed low oscillation amplitudes. For
the later trains, the deflection voltage increases rapidly, resulting in peak oscillation am-
plitudes that exceeding 100 codes. This amplitude threshold was identified empirically
as providing useful data for phase and fractional tune evaluations (see Figure 5.10 on
page 98).

By utilizing the additional data obtained from two distinct measurements, we are
now able to integrate these datasets to extract the target parameters. The results of
our data analysis are presented in Figures 5.20, 5.21, and 5.22. In these figures, each
dot represents the estimated value for an individual bunch, with colors corresponding to
an specific pick-ups.

The tune estimations for most pick-ups are generally consistent (see Figure 5.20);
however, pick-up Q8 (green) appears to slightly overestimate its value.

Figure 5.21 illustrates the recommended feedback phase, with the dashed lines rep-
resenting the current TFB phase set-points for comparison. The results show a notable
degree of agreement with the reference data.

The bunch-by-bunch damping time is presented in Figure 5.22. A comparison of the
data from each pick-up indicates a strong agreement across the measurements.

Loop delay measurement method

Ensuring the stability of a Transverse Feedback system requires precise alignment of the
kick signal with the arrival times of the bunches. In this section, we will outline the
method introduced in Section 4.4.3, which was developed to quantify the kicker delay
offset using TFB measurement data.

In Figure 5.18, we introduced multiple excitation signals that exhibit trigonometric
properties, forming quadrature signals. We exploit this to construct an IQ-footprint of
the traversing bunches at the kicker, as described in Equation (4.104).

The sketch in Figure 5.23 illustrates the relationship between the measured bunch
positions at turn n (blue dots), generated by the two excitation patterns with period
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Figure 5.20: Extracted fractional tune per pick-up per bunch.

Figure 5.21: Recommended feedback phase per pick-up.
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Figure 5.22: Estimated damping time per pick-up per bunch.

M = 1 (dashed lines), in Cartesian coordinates. The top graph represents cosine exci-
tation data, the right graph shows sine excitation data, and the central plot displays the
projected outcomes.

As shown, the projection of these two signals encodes the time-dependence of each
bunch index k as an angular position in the new coordinate system. This relationship
becomes even clearer when visualized on a polar grid, as illustrated in Figure 5.24. In this
plot, each dot represents the result for one bunch based on two orthogonal excitation
measurements. Dots of the same colour indicate data obtained from the same turn,
and it is evident that these data points have approximately the same distance from the
center.

Equation (4.105) suggests incorporating a linear bunch-index-dependent phase term,
which allows us to unwind this phase response and align the results. As shown in Figure
5.25, this alignment produces a straight line. The parameter of interest, the delay offset
∆T , is defined by the orientation, or the phase θ, of this line (see Equation 4.106).

In Figure 5.26, we demonstrate the process of averaging over populated bunches.
The dots in this figure represent the mean values of bunch position data at turn n, with
colours indicating different pick-ups. To estimate the delay offsets, we fit straight lines
through these data points. Additionally, the black dashed rays illustrate the delay error
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Figure 5.23: Projection of measured bunch position signals.
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Figure 5.24: Polar grid project of bunch position signals.

associated with the TFB coarse delay, expressed in terms of the number of buckets.

Figure 5.26 identifies two key issues with this analysis. First, the straight lines
produced by the fits do not align with the center of the graph, which is a significant
concern, as the model does not predict such an offset term. Second, although less
obvious, the mean values of the bunch position data are scattered around these straight
lines. These observations highlight the need for a careful examination of the recorded
input data, as shown in Figure 5.27.

This figure demonstrates that while the mean position has been successfully sub-
tracted, a slow baseline trend has caused the entire curve to appear offset. As a result,
the pre-excitation position, which is at code 100, does not align with the horizontal axis.
In examining the outcomes of this graph, the incorrect pre-excitation position contributes
to the first issue, while the slow baseline trend accounts for the second issue.

It is essential to address these discrepancies by making adjustments to the baseline
trend. The blue curve in Figure 5.26 includes a padding of 50 values at the beginning,
which allows for the use of a configurable algorithm to estimate the baseline trend
estimation, represented by the red curve.

Figure 5.28 illustrates the difference between the recorded position data (shown as a
dashed blue trace without padding) and detrended data, which is obtained by subtracting
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Figure 5.25: Polar grid projection of bunch position signals with bunch-index dependent phase
subtraction aligning results as a line.

Figure 5.26: Delay data analysis.
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Figure 5.27: Position data with excitation. Average subtracted; 50 values padded. Red curve
indicates baseline trend.

the estimated baseline (represented by the black trace).

With this additional processing step, the data for Figure 5.26 can now be adjusted
for baseline trends, and the corrected results are plotted in Figure 5.29. The data fits
calculated for all pick-ups now align, and based on the obtained phase, we can conclude
that the TFB system analysed during this demonstration does not have a significant
error in its coarse delay setting.

The coarse delay serves as a fundamental parameter in the TFB’s digital signal
processing, enabling the storage of per-bunch correction data for retrieval after a specified
time interval, referred to as the one-turn delay. This functionality is realized through
a First-in First-Out (FIFO) architecture implemented in the FPGA, which operates at
three times the bunch rate, specifically at 120MSPS. Consequently, each increment in
the coarse delay setting corresponds to a discrete time delay change of 8.33 ns. The
FIFO is designed to be sufficiently large to store an entire turn of data, amounting to
3564× 3 = 10 692 values.

To further enhance measurement resolution—illustrated by the grid spacing in Fig-
ure 5.29, which is defined as 500 ticks—we can manipulate the excitation parameter M .
This adjustment leads to an increased sensitivity to delay offsets, a relationship that is
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Figure 5.28: Comparison between recorded position data (without padding) and detrended data
after subtracting the estimated baseline.

Figure 5.29: Delay analysis after data baseline correction.
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formally expressed in Equation (4.107).

Figure 5.30: Comparison of position data and excitation waveforms for M = 400. The asterisk
denotes the start of a new turn.

In Figure 5.30, we compare the sampled position data for the witness bunches and
two trains from four pick-ups, along with two excitation waveforms for N = 400. At
this frequency fExc =M/TRev ≈ 4.5MHz, the crest values of the sinusoidal and cosine
deflections signals alternate within the trains, allowing for increased temporal resolution
with the presented algorithm.

The value for M = 400 was selected for practical reasons. In contrast, the theoretical
maximum value of M = 3564 would require the system to generate a waveform at
40MHz, a frequency that exceeds the design specification of the power system. A
Transverse Feedback system must be designed to operate at frequencies up to half the
bunch spacing, which is 20MHz for the LHC TFB. This choice M = 3564/2 would
enable a properly time-aligned system to deflect every bunch in an alternating pattern
during the cosine excitation, while leaving all bunches unaffected during the sinusiodal
excitation, owing to zero crossings of the waveform. A clear disadvantage of this choice
would be that, by design, half of the measurements would not provide any additional
data - the new information is the absence of data.

When considering the applied kick pattern, a more reasonable value for M would be
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M = 3564/4 = 891. This choice would enable a properly time-aligned system to deflect
two out of four bunches while leaving every other bunch unaffected.

Figure 5.31: Reconstructed oscillation amplitudes per bunch for M = 400, with each dot repre-
senting data from one pick-up for two excitations, totaling eight amplitude readings
per bunch.

The selection of M = 400 represents a trade-off between the previously mentioned
value of M = 891 and the first-order low-pass characteristics of the power system,
which exhibits a 3 dB roll-off at 1MHz. With the resulting excitation frequency set at
5MHz, this configuration allows for a suitably effective kick. The performance of this
setup is further illustrated by the reconstructed peak oscillation amplitudes shown in
Figure 5.31, which indicate that peak oscillations amplitudes exceeding 100 codes are
achieved, while certain bunches within the trains remain close to zero excitation. These
results demonstrate that the chosen value of M = 400 effectively balances the need
for selective bunch deflection while remaining within the operational limits of the power
system.

For the delay analysis, each of the two recorded datasets is first baseline-corrected
and the results are subsequently plotted in Figure 5.32.

As illustrated in the graph, the grid spacing is now defined as 1 tick, which aligns
with our expectation, given that we have refined our measurement sensitivity by a factor
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Figure 5.32: Delay analysis for M = 400, with rays indicating the delay error in the TFB coarse
delay.

of M = 400 compared to Figure 5.29, where M = 1. This enhanced resolution facil-
itates straightforward determination of the correct coarse delay setting. For example,
in Figure 5.33, the coarse delay was deliberately reduced by 5 ticks, a change that is
accurately captured by the signal processing results.

Furthermore, with additional refinement of the graphical representation of the grid
spacing, the fine-delay parameter can be adjusted with sub-nanosecond precision. The
analysis results presented in Figure 5.34 reflect the modified fine delay setting for this
measurement.

5.2.2 Sensitivity analysis of the proposed methods

In the preceding sections, the working principles of the newly introduced methods have
been evaluated and demonstrated through comprehensive step-by-step analysis of the
measurement results. Build on this foundation, the next critical step is to assess the
sensitivity of these methods to variations in key parameters. This section presents a series
of detailed measurements in which various parameter settings have been systematically
scanned. The objective is to confirm the robustness and reliability of the analysis method,
ensuring effective performance under different conditions. By highlighting the sensitivity
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Figure 5.33: TFB coarse delay setting reduced from nominal 10 490 to 10 485; M = 400.

Figure 5.34: TFB fine delay setting increased by 6 8ns; M = 400.
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of the proposed methods, this analysis will provide valuable insights into their practical
applicability and potential limitations.

The Transverse Feedback phase scan of a single DSPU, as depicted in Figure 5.35,
utilizes the novel parameter extraction method to indirectly measure and extract the
recommended TFB phase. The graph presents a comparison between the delta phase
and the recommended phase, with both parameters adjusted to the same setpoint value.
This analysis is conducted across four different pick-up locations, facilitating a thorough
examination of the phase characteristics within the system. By employing this extraction
method, the necessary TFB phase information can be derived from straightforward, rapid,
and non-destructive measurements. The results illustrated in the figure demonstrate a
strong correlation between the parameter scan and the outcomes obtained from the
novel extraction method. This alignment indicates that the proposed method accurately
reflects the parameter scan, effectively capturing the underlying phase characteristics.
Such consistency not only validates the reliability of the extraction technique but also
reinforces its potential for accurately measuring and analyzing TFB phase information
in practical applications.

Figure 5.35: TFB phase scan of a single DSPU: Delta phase compared to recommended feedback
phase, both adjusted by the same setpoint value, for four pick-ups.

For the study illustrated in Figure 5.36, we conducted a coarse delay scan of a single
Digital Signal Processing Unit to evaluate the novel delay extraction method. This scan
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involved adjusting the delay settings by ±5 slots around the designated setpoint, allowing
for a comprehensive assessment of the method’s response. The results were analyzed
for algorithm-derived delay changes at the four pick-up locations. By comparing the
adjusted delay settings with the changes evaluated by the algorithm, we aimed to validate
the effectiveness of the extraction method and its capability to accurately capture the
dynamics of the delay adjustments. The proposed method effectively captured the delay
changes, as evidenced by the results presented in Figure 5.36. This alignment confirms
that the method accurately measures and reflects the underlying delay characteristics.

Figure 5.36: Coarse delay scan of a single DSPU: Delay settings adjusted by +/- 5 slots around
the setpoint vs the algorithm-evaluated delay changes for four pick-ups.

In the fine delay scan of a single DSPU shown in Figure 5.37, the delay chip setting
was systematically adjusted from 0 to 10 nanoseconds in increments of 1 nanosecond.
This approach allowed for a detailed examination of the relationship between the applied
delay settings and the corresponding algorithm-derived recommended delay values. In the
graph, the results of this scan for each pick-up are visually represented by colored dots,
with a straight black dashed line indicating the targeted linear relationship between the
delay settings in nanoseconds and the recommended values provided by the algorithm.

The results obtained from the fine delay scan demonstrate a linear relationship that
correlates well with the manually adjusted delay values. This linearity indicates that
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the delay extraction method effectively captures the intended adjustments made to the
delay chip. However, a notable discrepancy in the slope of the relationship suggests
that there may be imperfections inherent in the delay chip itself. These imperfections
could arise from various factors, such as manufacturing tolerances, component aging,
or environmental influences, which may affect the precision of the delay settings. As a
result, while the overall trend remains linear, the deviation in slope highlights the need
for further investigation into the characteristics of the delay chip.

Figure 5.37: Fine delay scan of a single DSPU: Delay chip stepped from 0 to 10 ns in 1 ns in-
crements, compared to algorithm-derived recommended delay settings. The straight
black dashed line outlines the linear relationship between the delay chip in nanosec-
onds and the recommended settings.

Figure 5.38 presents an adjusted plot that incorporates the delay chip correction
factor, derived from the specifications outlined in the manufacturer’s data sheet. This
correction factor is essential for refining the accuracy of the delay settings, as it accounts
for known deviations and imperfections associated with the delay chip. By applying this
correction, we aim to enhance the alignment between the measured delay values and the
recommended settings provided by the algorithm. The adjusted plot not only illustrates
the impact of the correction factor on the overall delay response but also serves to
validate the effectiveness of the delay extraction method in capturing the true dynamics
of the system.
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Figure 5.38: Adjusted plot with delay chip correction factor based on specifications from the
manufacturers data sheet.
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5.2.3 TFB parameter measurement results

Following our detailed examination of the analysis algorithm and its sensitivity to param-
eter variations, this section applies the novel methods introduced for extracting essential
TFB to evaluate the current performance of the system and identify potential areas for
optimization. Specifically, we will analyse closed loop gain, feedback phase, and loop
delay across the two distinct TFB gain regions, referred to as Main gain and Witness
gain, as previously described.

Each plot presents a comparative analysis of results obtained for each pick-up, beam,
module, and plane, with data from each each pick-up distinctly color-coded for clarity.
In every graph, we present the mean value derived from a series of measurements,
accompanied with the corresponding Root Mean Square (RMS) values, which are also
color-coded to align with the respective pick-ups. The black lines indicate the minimum
and maximum values of the data samples, providing insights into the measurement spread
and highlighting any outliers. Through this analysis, we will discuss the performance of
each DSPU system, explore potential causes for deviations from nominal behavior, and
identify opportunities for optimization. In all graphs the first module of Beam 2, vertical
plane was offline and could not be used for data evaluations.

Figure 5.39: Comparison of ADT closed loop feedback gain, measured for Main Gain bunches
and excitation M=1.
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Figure 5.39 presents a comparison of the closed-loop feedback gain measured for
Main bunches with excitation set to M = 1. The plots indicate that all modules for
Beam 1 are operating within a gain range of 0.1 to 0.2, which is consistent with the
performance observed for the second DSPU module for Beam 2 in the vertical plane.
Notably, the majority of the pick-ups exhibit relatively small scatter in the Root Mean
Square (RMS) values and peak excursions, suggesting that the obtained results are close
to the true values. However, an outlier is observed in the horizontal pick-up Q8 for Beam
1, which displays a significantly larger RMS scatter and substantial peak excursions in the
measurements. Given that data from this pick-up is shared between the two concerned
DSPUs, the similar results observed in these measurements imply that the issue may be
related to the Beam Position Module of this pick-up or its settings.

Furthermore, a clear deviation from the nominal gain parameter is evident for both
horizontal modules of Beam 2, with mean values approximately in the range of 0.3 to
0.4, accompanied by a considerably larger scatter as indicated by the RMS values. A
careful examination reveals that both modules exhibit similar measurement data for the
same pick-ups. It is important to note that these data are obtained through indepen-
dent measurements conducted by each DSPU individually, suggesting that the observed
phenomena may be related to a common factor affecting both modules.

Additionally, it is noteworthy that the loop gain is typically set by the operations
group to achieve a target damping time. This indicates that these value were intentionally
configured to a higher-than-usual setting. Further analysis is required to fully understand
the underlying causes of these deviations and their implications for system performance.

Figure 5.40 illustrates the closed-loop feedback gain measured for Witness Gain
bunches with excitation set to M = 1. Overall, the loop gain for these bunches is lower,
typically in the order of 0.05, with the exception of Beam 2 horizontal, where the mea-
sured gain ranges between 0.07 and 0.08. Notably, the horizontal pick-up Q8 for Beam
1 exhibits a similar signature to that observed in the Main Gain analysis, characterized
by large peak excursions and a comparably increased RMS spread. This consistency in
behavior across different gain settings raises concerns regarding the performance of this
pick-up.

Further investigations are warranted for both the Q8 pick-up in Beam 1 and the
horizontal module of Beam 2 to determine the underlying causes of these anomalies and
to assess their impact on overall system performance.
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Figure 5.40: Comparison of ADT closed loop feedback gain, measured for Witness Gain bunches
and excitation M=1.

Figure 5.41: ADT feedback phase error analysis, measured for excitation M=1.
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Figure 5.41 presents the analysis of the ADT feedback phase error measured for ex-
citation set to M = 1. The graphs illustrate the phase error for each pick-up, comparing
the current set point to the recommended phase setting determined by the signal pro-
cessing algorithm. For the TFB systems operating Beam 1, there is overall very good
agreement, with phase errors not exceeding 10 degrees and an RMS spread of only 5
degrees. However, an exception is noted for the horizontal pick-up Q8 of Beam 1, which
exhibits a significant RMS spread of nearly 20 degrees and a phase error exceeding 10
degrees for module 2.

In the case of Beam 2, the typical candidates for concern are both horizontal modules.
The data for pick-up Q7 indicates a phase error of 15 degrees, while the other three
pick-ups show phase errors closer to 40 degrees. The latter measurements display an
RMS spread of more than 20 degrees, suggesting potential issues with the data quality
of the measured input.

Conversely, DSPU Ver2M2B2 demonstrates satisfactory phase settings, with all four
pick-ups exhibiting phase errors of less than 5 degrees, and a standard deviation of around
5 degrees.

Figure 5.42: ADT fine delay error. Excitation pattern M=400.

Figure 5.42 illustrates the fine delay error in nanoseconds for each TFB system, with
the excitation pattern set to M = 400. It is important to note that the delay error is
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related to the kicker timing, so individual measurements for each pick-up are combined
to form the overall result.

for Beam 1, the delay errors are within acceptable limits, not exceeding 2 ns. Three
out of four pick-ups show errors better than 1 ns, and one pick-up has nearly zero delay
error. However, the standard deviation, as well as the minimum and maximum errors, are
around 1 ns, indicating that the measurement distribution may not conform a Gaussian
profile.

Interestingly, both modules in Beam 2 Horizontal show remarkably high data quality,
with RMS values well below 0.25 ns. The delay setting for DSPU HorM1B2 is nearly
optimal, while HorM2B2 has a delay error of 6.3 ns, which is significantly off target. It is
important to remember that a delay error leads to a phase error. For the highest coupled
bunch mode of 20MHz in the LHC, this corresponds to 360◦ × 20MHz × 1 ns, or 7.2
degrees per nanosecond. Consequently, the delay error for HorM2B2 results in a phase
error of 45 degrees at 20MHz. This significant phase error could lead to challenges,
particularly when the TFB is required to counteract coupled bunch oscillations. If one
module is not properly adjusted, it will attempt to dampen these oscillations but may
divide its action into two components: resistive and reactive. The reactive component
could inadvertently shift the fractional tune of the already oscillating bunches

In this context, we have two redundant TFB modules operating on the same beam,
both aiming to stabilize it. However, with differing system settings and parameters, these
modules may compete with one another. Ideally, the performance of a well-adjusted
module could help compensate for some imperfections in the other module. Overall,
while the combined function of both modules may still provide damping, it is likely to
be less effective than a system configured with optimal settings.
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5.2.4 Accelerator parameter measurement results

In this section, we extend the analysis of TFB parameters previously conducted by em-
ploying the signal processing techniques outlined in the methods chapter to extract vital
accelerator parameters from measurements. The focus will be on two key parameters:
bunch-by-bunch damping time and bunch-by-bunch fractional tune, both of which are
vital for assessing the performance and stability of the accelerator.

In line with the previous section, we will provide a detailed analysis for both Witness
bunches and Main bunches, adhering to the same formatting conventions to ensure
clarity and coherence throughout the measurement results.

It is important to note that data for the DSPU Beam 2 Vertical Module 1 is un-
available, as this module was offline during the measurement period and could not be
utilized. The subsequent discussion will present the extracted parameters and explore
their implications for the overall performance and stability of the accelerator system.

Figure 5.43: Comparison of damping time parameter for Main bunches, excitation M=1.

Figure 5.43 presents a comparison of the damping time parameter for Main bunches
with excitation set to N = 1. The data for Beam 1 indicates that the Main bunches are
consistently damped within approximately 15 to 20 turns, based on the assumption that
the oscillation amplitude follows an exponential decay. The damping time measurements
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for all modules were conducted with one module operating in open loop and the other
in closed loop mode.

Among the recorded measurement samples, pick-up Q8 of Beam 1 in the horizontal
plane exhibits a siginficantly larger standard deviation compared to the other pick-ups.
This is consistent with our previous observations, suggesting that the greater variability
may be due to data quality issues of the Beam Position Module.

In contrast, the two horizontal modules of Beam 2 demonstrate notably higher per-
formance, achieving damping times below 10 turns. In this regime, the TFB exerts a
strong influence on the beam; however, it is important to note that such strong damping
can lead to overdamping, which is generally undesirable. Overdamping may adversely
affect beam stability and overall performance, making it imperative to evaluate the time
evolution of the oscillation amplitude.

Figure 5.44: Comparison of accelerator damping time parameter for Witness bunches, excitation
N=1.

Figure 5.44 presents a comparison of the accelerator damping time parameter for
Witness bunches with excitation set to M = 1. The damping times for the Witness
bunches are observed to be in the range of approximately 40 to 50 turns. This analysis
indicates that the damping times for Witness bunches are notably longer compared to
those of the Main bunches, which is an expected and intentional behavior. This extended
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damping time facilitates the LHC’s BBQ system in accurately detecting the fractional
tune in the presence of a strong transverse feedback system.

However, an exception is noted in the horizontal plane of Beam 2, where both
modules exhibit significantly shorter damping times, close to 25 turns.

Figure 5.45: Evaluation of accelerator fractional tune parameter for Witness bunches (excitation
M=1).

Figure 5.45 presents the evaluation of the accelerator fractional tune parameter for
Witness bunches with excitation set to N = 1. The results obtained from this analysis
highlight the effectiveness of the novel algorithm employed to measure the fractional tune
using only a limited number of turns of observation data. Notably, the measurements
exhibit very little scatter, with RMS values well below 0.001, demonstrating remarkable
precision in detecting the fractional tune.

The reduced TFB gain for these bunches further enhances the measurement results,
allowing for more accurate readings. The machine appears to be correctly adjusted for
the nominal fractional tune values, which are 0.275 in the horizontal plane and 0.295 in
the vertical plane. This alignment with the expected values underscores the algorithm’s
capability to accurately capture the fractional tune.

Figure 5.46 presents the evaluation of the accelerator fractional tune parameter for
Main bunches with excitation set to M = 1. Consistent with the results obtained for
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Figure 5.46: Evaluation of accelerator fractional tune parameter for Main bunches (excitation
M=1).

the Witness bunches, a distinct separation between the horizontal and vertical tunes is
observed. The measured tune values for these high-intensity trains indicate a positive
tune shift of approximately 0.005 when compared to the values recorded in the low gain
region. Furthermore, the RMS values of 2.5× 10−3 confirm the good resolution of the
measurements.

The mean fractional tune values extracted from four different pick-up datasets per
DSPU are closely aligned, which is desirable since these pick-ups are intended to mea-
sure the same property of the beam independently and at different locations within the
machine. However, an exception is noted in Beam 2 in the horizontal plane, where
three out of four pick-ups report similar mean values, with a significant tune shift to
0.287, while the expected value, as indicated by the Witness bunches, is 0.275. The
fourth pick-up, Q7, displays a notable deviation, with a delta value of -0.005, leading
to a tune estimation closer to 0.282. This atypical data raises concerns, as all pick-up
acquisitions are triggered by the same excitation pulse, and the betatron tune oscillations
(the number of oscillations per turn) for this beam are expected to be consistent across
measurements.

The irregularity observed in pick-up Q7 of Beam 2 in the horizontal plane is supported
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by two independent measurements from DSPU module 1 and DSPU module 2. One
possible explanation for this discrepancy may be a misconfiguration of the corresponding
beam position module. Therefore, further investigations into the DSPUs for Beam 2
and their associated Beam Position Modules in horizontal are recommended to address
these anomalies.

5.3 Extraction of vital accelerator parameters in real
time

The reconstructed phase space of the circulating beam allows to extract in real
time the transverse activity of each individual bunch. Of large interest for the machine
operation is the oscillation amplitude and its evolution over time. After the method was
introduced [100] a very primitive proof of principle application (shown in Figure 5.47)
was presented to the LHC operations group.

The demonstrator quickly became an operational tool, where a detailed transverse
activity of the beam can be observed through the whole cycle. This method and the
resulting tool actually changed the view on how the LHC should be operated. Some of
the transverse instabilities at particular points in the machine cycle, which were originally
expected by the accelerator and beam physics group have not developed. And at the
same time, an increased transverse activity had been observed where it was not expected
at all, triggering investigation on the possible sources and mitigations.

Figure 5.48 shows a detail of transverse activity for one 48-bunch train circulating in
the slots 1570 to 1618. The actual transverse oscillation amplitude is in order of 1 µm,
but an excess of 40 µm was recorded as a consequence of the injection kicker waveform
leakage to the turn.

Figure 5.49 shows a peak activity of all bunches during one full LHC machine cycle.
The injection started at around 8:20, the energy ramp around 8:50, the top energy was
reached shortly after 9:00. The two beams were put into collisions shortly after, this
is where the transverse activity diminishes due to the stabilizing effect of the colliding
beams.

Figure 5.50 shows another application, used operationally in the LHC control centre.
The plots show bunch by bunch damping time and tune, extracted from the injection
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Figure 5.47: Display application for real time transverse activity monitor used in LHC

Figure 5.48: Detail of a real time transverse activity for one 48-bunch long bunch train
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Figure 5.49: Overall transverse activity through one LHC fill.

oscillation transient. It provides a quick check if the TFB is operating properly (Is the
damper damping? question). The application is extremely useful at the LHC restart
after a long technical stop, or a shutdown. Provided the LHC TFB pickups are properly
set-up, what is usually the case, the operators will instantly get the tune value of the
virgin machine which was just powered up, from the very first few turns the beam will
make in the LHC. The beam does not even need to be captured yet, it is sufficient if
it makes as few, as 3-5 turns before it debunches and the tune value can be measured
by the TFB. The operators immediately have the initial tune value and quickly calculate
and apply the tune correction. The next injection is already very close to the nominal.
This saves hours of precious machine time at every start up.

5.4 Digital filter design to reduce tune dependence

In this section, we present the findings related to Objective #5, which focuses on the
development of advanced signal processing techniques aimed at enhancing the robustness
of transverse feedback systems in the context of tune variations. Our emphasis is on
Finite Impulse Response methods, specifically tailored to address the challenges posed
by frequency-dependent phase variations.

As any regulation loop, the TFB signal processing chain is constrained by the accuracy
of external parameters like the phase margin, gain margin, and stability of the loop delay.
In an accelerator, those parameters are often changing with the machine parameters, like
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Figure 5.50: Display application showing extracted machine parameters (tune) and transverse
feedback parameters (damping time) in LHC

tune variation or hardware changes like tetrode burn out and aging. Aim of the objective
#5 is to design a new signal processing scheme, or filters, which will reduce dependence
of the TFB performance on external parameters variations. The priority is to relax
the tune dependence. The LHC, when in collisions, is operated with a large bunch by
bunch tune spread. The feedback must be able to treat all bunches equally to prevent
unwanted selective emittance growth, or trigger an onset of transverse instability for
certain bunches.

As presented in [101], the introduced beam model of transverse oscillations in equa-
tion (4.25) allows numerical evaluation of the analytic expressions for the described phase
adjustment possibilities. We use root locus plots to study the evolution of the beam’s
closed-loop poles at selected frequencies, ω0 = 2πQf , and as a function of the feedback
gain.

Considering equation (4.78) for the use with arbitrary fractional tunes: the same
Pick-up Vector Sum algorithm 4.76 as for the two pick-up case can be applied for a
single pick-up at subsequent turns, as outlined in Fig. 5.51. In this case we define
ϕ1 = 0 and ϕ2 = 2πQf , to be used with Eq. (4.76) respectively Eq. (4.77).

Figure 5.51 suggests that by considering a notch filter using h[n] = [1,−1] the phase
shift between yk[n] and p[n] can be carried out by a short FIR, with the filter coefficients
resulting from

yk[n] = b1p[n] + (b2 − b1)p[n− 1]− b2p[n− 2] . (5.4)
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Figure 5.51: Block diagram of temporal phase shift.

With only three taps and including a notch for DC-orbit suppression Eq. (5.4) de-
scribes the shortest possible digital filter. The design has two parameters, the fractional
tune Qf and a free parameter ϕk which allows for direct phase adjustment.

Optionally, improved noise suppression can be achieved with zeros added at z = ±1,
which can be absorbed into the notch filter, h[n], including an extra phase term, ∆ϑ =

−πQf into Eq. (4.77) for every additional tap the notch filter is extended.

The three plots in Fig. 5.52 detail a portion of the upper right quarter of the complex
z-plane. As an example closed-loop pole trajectories for the SPS vertical plane are shown,
assuming a fractional tune of Qf = 0.18 and variations of up to ±0.04 (blue,solid).
Their origin is at the unit circle (black, bold solid) for zero loop gain (corresponding
to the undamped open loop response). By increasing the feedback gain the damping
time reduces gradually until the trajectories cross the circle at |z| = 0.95 (red, dashed)
which is the design value of the SPS TFB corresponding to 20 turns. For as long as a
trajectory points towards the origin of the z-plane (black, dash-dotted lines) it will follow
the desired closed loop negative feedback of −180◦.

Figure 5.52(a) shows the beam response for a standard FIR Hilbert phase filter, using
seven taps for the case of the SPS TFB. As can be seen this filter is working perfectly
fine at the target tune of 0.18, however, the feedback phase appears to be sensitive to
tune variations, with the active feedback adversely pushing the tune further away the
more its value deviates from the desired value. This effect is attributed to the constant
group delay of the FIR filter causing the feedback phase to be optimum only for a single
frequency and to roll off quickly for long filters.

The shortest possible digital filter including a notch for DC-orbit suppression will only
include three taps. The design has two parameters, the fractional tune Qf and a free
parameter ϕk which allows for direct phase adjustment. Shortening the FIR filter length
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(a) Standard Hilbert phase shifter.
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(b) Short 3-tap FIR filter.
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(c) Group delay compensated.

Figure 5.52: Root locus plots, fractional tune Qf = 0.18± 0.04
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to only 3 taps, has a positive effect on tune variations, as can be seen by inspecting
Fig. 5.52(b), with the closed loop response remaining stable over a larger range of tune
values.

By anticipating that the group delay — a measure for linearity of the phase —
introduced by a filter lowers the stable phase margin of a closed loop system we made
an attempt to compensate this effect by introducing an additional pair of conjugate
complex zeros, c1,2 = ζe±jωd , at the desired tune frequency, ωd = 2πQf , which adds
negative group delay as a function of the magnitude, ζ. The group delay as specified in
Ref. [92] follows for a direct-form FIR transfer function as

τ(ω) = −
M∑
k=1

|ck|2 −ℜ{cke−jω}
1 + |ck|2 − 2ℜ{cke−jω}

. (5.5)

By taking into account the secondary phase term resulting from these zeros the
overall group delay was compensated to τ(ω) = 0 at the design tune, ω = ωd. Note
that a system having zero group delay is able to transmit the signal’s envelop without
delay. Figure 5.52(c) shows that the loop stability is ultimately improved by carefully
compensating the group delay of the digital filter. With its flat phase response around
the design tune this filter is robust against changes of the fractional tune in the order of
±22%. This filter was tested in the SPS TFB by changing the machine’s fractional tune
and performing beam transfer function measurements. The results listed in Table 5.1
confirm the theory of negative feedback over the same range of fractional tunes.

Table 5.1: Measured loop response vs. tune.

Tune 0.14 0.16 0.18 0.20 0.22

Phase −167◦ −179◦ −182◦ −182◦ −187◦

New FIR phase shift filters have been designed and analysed for the SPS TFB based
on a simple beam model in z-domain and with root locus plots, to assess their closed loop
performance with beam and in presence of active feedback. The obtained results were
found to be in good agreement with measurements carried out in the SPS. Limitations
on system gain [110], the performance in the presence of noise [111, 112], and the ability
to reject disturbances are subject of further studies.

The shortest digital filter described has only 3-taps, including DC suppression by
a notch filter (for other realisations of short phase shift filters see for example [113–
118]). Moreover, the tune sensitivity was further compensated with an additional pair
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of conjugate complex zeros, effectively lowering the filter’s group delay to zero at the
fractional tune. Compensation of tune-dependent phase variations were reported also in
Ref. [119].

The described digital filters are reasonable candidates for replacing the Hilbert phase
shifter currently in use in the transverse feedback system of the SPS, mostly due to their
favourable response over a larger range of tune values.
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Chapter 6

Discussion and Conclusion

This chapter summarizes the main findings of the study on signal processing tech-
niques for transverse feedback systems in hadron accelerators. It interprets their signifi-
cance, discusses implications, acknowledges limitations, and offers concluding consider-
ations on the overall impact of the study.

6.1 Introduction

The effective operation of transverse feedback (TFB) systems is critical for maintain-
ing the stability and performance of particle accelerators. A recurring inquiry from the
operations group has been: Does the TFB work as intended? This study aims to provide
means to quickly answer this question by defining methodologies to extract important
TFB and the accelerator parameters using exclusively the observables available in the
TFB system.

By developing robust signal processing techniques and analysis algorithms, this re-
search aims to create a comprehensive theoretical framework, supported by experimental
data, that accurately evaluates the performance of TFBs. The goal is to develop prac-
tical methods that enable real-time measurement of TFB parameters during accelerator
operations.

Traditional feedback parameters extraction techniques often rely on external instru-
ments, which can be time-consuming and compromise beam stability or accuracy. In
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contrast, this research explores the potential for feedback parameter extraction and per-
formance optimization through active beam manipulation using only the TFB system.
The study examines various factors that affect TFB performance, including loop gain,
feedback phase, delay, and processing noise, and proposes methods for quantifying these
parameters to enhance real-time verification of TFB performance.

Furthermore, the research investigates the extraction of key accelerator parameters,
such as bunch-by-bunch machine tune and damping time, from observable quantities
within the TFB system. This approach addresses operational concerns while contributing
to a deeper understanding of the TFB’s impact on the overall accelerator performance.

The following sections discuss the implications of these findings and highlight their
importance for the operations group and the further development of TFB systems in
particle accelerators.

6.2 Key findings

This study provided several important insights into signal processing techniques for
transverse feedback systems in hadron accelerators. The advances made in this research
are summarized below and divided into individual findings that improve the verification
and optimization of TFB performance:

Finding #1: The simplified z-domain beam model enables the application of digital
signal processing methods in beam dynamics.

This research demonstrates that the development of a simplified beam model in the
z-domain represents a significant advance in the application of digital signal processing
methods within this area. This model simplifies the analysis of beam dynamics and im-
proves the applicability of sophisticated signal processing techniques, thereby facilitating
real-time performance verification of TFB systems.

Finding #2: The analytical sensor model enables the practical implementation of real-
istic LHC TFB behaviour in particle tracking code.

This research demonstrates the significant importance of developing an analytical
model that describes the relationship between the transverse beam position and the
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generated output. It enables the realistic implementation of the transverse feedback
behavior of the LHC and SPS in particle tracking codes. This is crucial for investigating
beam stability and ensuring low emittance bunches in high-energy physics experiments.

Finding #3: Analytical modeling of the sensor and actuator confirmed their ability to
process bunches independently.

This research demonstrates that a thorough analysis of the beam position sensor and
actuator provides important insights into their performance. The hardware implemen-
tation has demonstrated its ability to treat bunches independently, thereby minimizing
inter-symbol interference and ensuring accurate measurement and control of individual
bunches.

Finding #4: Novel methods for real-time reconstruction of transverse phase space
coordinates for individual bunches.

This research demonstrates advances in the understanding and application of phase
adjustments in beam position signal processing. The proposed interpretations of spatial
and temporal phase shifts create a robust framework for converting beam position signals
into transverse phase space coordinates, thus enabling effective real-time performance
monitoring.

Finding #5: Definition of new signal processing methods for measuring key feedback
parameters.

This research demonstrates the development of a comprehensive method for extract-
ing feedback parameters, thus fulfilling the need for practical measurement techniques in
accelerator operation. By exploiting single-turn transverse excitations generated by the
kicker of a transverse feedback system, real-time monitoring and adjustments become
possible.

Finding #6: Advanced signal processing techniques for extracting vital accelerator
parameters.

This research demonstrates that innovative methods for extracting vital accelerator
parameters from observables within the transverse feedback system have been estab-
lished. The ability to measure machine tune and damping time in real-time, bunch-by-
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bunch, significantly improves operational capability and contributes to a deeper under-
standing of the TFB’s impact on accelerator performance.

Finding #7: Transverse phase space reconstruction methods require signal-to-noise
ratio (SNR) of at least 30 dB to resolve tune variations of better than 10−3.

This research demonstrates that noise management is critical for accurate measure-
ments and real-time performance verification, as the effectiveness of transverse phase
space reconstruction methods decreases in noisy environments.

Finding #8: The ADTObsBox system is equipped with advanced computational capa-
bilities and efficient algorithms to support real-time data processing and high-performance
analysis.

This research demonstrates the need to implement efficient algorithms that can oper-
ate in real-time processing environments to improve the verification of TFB performance.

Finding #9: The influence of short transverse excitations on beam size is negligible
when a strong transverse feedback system is present.

This research demonstrates that numerical simulations indicate minimal to no in-
crease in transverse emittance at the current damping time of the LHC TFB. This
enables routine measurements without compromising beam quality.

Overall, these results represent a significant contribution to the understanding and
performance of transverse feedback systems in particle accelerators. They highlight
both methodological advances and their practical implications for improving accelerator
operations in real-world environments.

6.3 Interpretation of findings and significance of ob-
tained results

The results of this study have important implications for the field of transverse feed-
back systems in particle accelerators. A key advance is the introduction of a simplified
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beam model in the z-domain. This model improves the application of digital signal pro-
cessing methods and facilitates access to advanced techniques for real-time performance
verification of TFB systems. By more efficiently analyzing beam dynamics, it facilitates
the use of sophisticated control engineering tools.

Another important insight comes from the development of an analytical model for
LHC and SPS transverse feedback behavior. This model enables realistic implementa-
tions in particle tracking codes, which are crucial for studying beam stability and main-
taining low emittance bunches. The ability of the sensor and actuator to treat bunches
independently with minimal interference ensures accurate measurement and control, a
vital achievement for high-energy accelerators.

Furthermore, the novel methods for real-time reconstruction of transverse phase
space coordinates provide immediate insights into beam behavior. This enables opera-
tors to make informed decisions for performance optimization and mitigation of potential
instabilities, thus significantly increasing the operational efficiency of particle accelera-
tors.

A significant contribution of this study is the introduction of the concept of transverse
activity, a novel metric that measures the instantaneous oscillation amplitude of the
beam. This quantity not only facilitates the derivation of decay rates and TFB gain from
transverse activity but also provides immediate diagnostics for transverse instabilities.
Such instabilities can significantly impact the performance and safety of accelerator
operations, making this diagnostic capability particularly valuable.

Based on this, we have introduced a method for calculating the TFB phase advance
between the kicker and the pick-up following a single transverse kick. This method al-
lows for immediate and non-destructive analysis of TFB phase settings, which is crucial
for real-time monitoring and optimization of transverse feedbacks in accelerator environ-
ments.

Furthermore, we have presented a new technique for quantifying the kicker delay
offset using TFB measurement data. By employing modulated kick data in quadrature,
we constructed an IQ-footprint of the traversing bunches, allowing for the extraction of
the delay offset. Our findings demonstrate accurate measurements of the TFB delay
with sub-nanosecond precision. This level of accuracy is essential for fine-tuning TFB
systems and ensuring optimal performance.

Furthermore, the ability to measure machine tune and damping time in real time on
a bunch-by-bunch basis represents a significant advance in accelerator technology. This
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granularity enables a more detailed understanding of accelerator performance and can
lead to improved stability through adaptive control mechanisms.

Of particular note are insights into the signal-to-noise ratio requirements for captur-
ing a transverse oscillation amplitude. The requirement of a minimum SNR of 30 dB to
resolve tune variations underscores the importance of noise management in beam diag-
nostics. These findings are crucial for the development of future measurement systems
and emphasizes the need for robust signal processing techniques that operate effectively
even in challenging environments.

The conclusion that short transverse excitations in the presence of a strong TFB
system have a negligible impact on beam size suggests that routine measurements can
be performed without compromising beam quality. This finding supports the integration
of regular evaluations into operational protocols and enables proactive monitoring of
TFB performance.

Using these novel techniques, a full set of measurements to characterize the TFB
system in CERN’s LHC, comprising of 16 pick-ups and 8 signal processing units, takes
less than a minute. The proposed techniques allow us not only to shorten the TFB
commissioning time from several shifts to less than a minute but also regular, fully
automated checks of TFB system can now be performed in case of suspected suboptimal
performance, saving significant amounts of precious machine time.

In summary, these results underscore the potential for significant advances in the
development and operation of transverse feedback systems. They pave the way for future
research and improvements in this technology and contribute to improved performance
and stability of particle accelerators.

6.4 Limitations of the study

Although this study presents significant advances in signal processing for transverse
feedback systems in hadron accelerators, several limitations must be noted. A key limi-
tation concerns the beam model simplifications. While advantageous for the application
of digital signal processing methods, the simplified z-domain beam model may not fully
capture the complexities of real beam dynamics. Certain nonlinear effects and interac-
tions that occur in high-energy environments may not be fully captured, limiting the
model’s applicability in all operational scenarios.
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Furthermore, the analytical sensor model is based on specific assumptions regarding
the behavior of the LHC and SPS transverse feedback systems. Variations in operating
conditions or hardware configurations may affect the model’s accuracy and applicability
in different scenarios. While the study identifies a minimum signal-to-noise ratio require-
ment for effective phase space reconstruction, it does not comprehensively analyze the
influence of other noise sources or the resulting noise density function. Future studies
should consider a wider range of noise factors to increase the robustness of the results.

The scope of experimental validation represents another important limitation. Al-
though numerical simulations were performed to support the results, further experimen-
tal studies are needed to confirm the applicability of the proposed methods in different
accelerator environments. This will allow a more comprehensive evaluation of their per-
formance under different operating conditions. The results are primarily based on the
LHC and SPS systems. While the techniques may be applicable to other accelerators,
their effectiveness in different contexts or configurations still needs to be thoroughly
investigated. Future research should investigate the generalizability of these methods to
different accelerator types. The methods developed in this study may also face chal-
lenges when scaling up to larger or more complex accelerator systems with distributed
TFB systems, necessitating further research to evaluate their scalability and adaptability
for future projects.

In summary, while the study provides valuable insights into signal processing tech-
niques for transverse feedback systems, these limitations underscore the need for contin-
ued research and validation to improve the applicability and robustness of the results.

6.5 Future research directions

Based on the results and limitations of this study, several research approaches can be
identified to further development of signal processing techniques for transverse feedback
systems in hadron accelerators:

An important focus is on improving modeling techniques. Future research should
focus on developing more comprehensive beam models that account for nonlinear effects
and complex interactions within the beam dynamics. The inclusion of advanced sim-
ulation techniques, such as machine learning algorithms or Kalman filters [120], could
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improve the accuracy of predictions and enhance the understanding of beam-feedback
interactions under different conditions.

In this study, we investigated and developed methods and signal processing techniques
for extracting important accelerator parameters from observables within the transverse
feedback system. Relevant parameters were the bunch-by-bunch machine tune and
damping time, both of which are critical for optimizing accelerator performance and
stability.

We successfully developed and implemented a novel method for measuring the frac-
tional tune on a bunch-by-bunch basis within the LHC’s transverse feedback system. This
represents a significant advance, as previous implementations were limited to measuring
the machine tune without considering the granularity of individual bunches.

The current LHC tune detection system (BBQ) primarily relies on witness bunches
to perform machine tune measurements. Our method improves on individual bunch
measurements by enabling real-time monitoring of the fractional tune of all bunches,
thus enabling a more detailed understanding of the accelerator’s performance in real-
time.

The ability to measure machine tune and damping time of individual bunches in real
time has important implications for optimizing of accelerator operations. By applying
signal processing techniques, we identified patterns in the transverse feedback phase
that correlate with changes in the machine’s fractional tune. We proposed integration
of an adjustable bunch-by-bunch tune into the signal processing hardware, representing
a promising upgrade scenario for the current TFB system. By modulating the feed-
back phase based on the bucket position, the system can adapt to real-time conditions,
potentially leading to improved stability and performance.

Particularly significant is the proposal to use a parameterized model to calculate
expected tune shifts based on bunch intensity. This approach not only automates the
process but also ensures that the feedback system responds to fluctuations in beam con-
ditions, which is crucial for maintaining optimal accelerator performance. The proposed
integration of feedback phase modulation based on bunch intensity and filling patterns
has the potential to revolutionize accelerator operations. By actively counteracting tune
dependency, accelerator physicists could achieve a more stable and consistent operating
environment.

The results of this study open up diverse possibilities for future research. Investigating
the potential for real-time adjustments of the feedback phase, refining the specifics of

146



6.6 Conclusions

the parameterized model, testing its effectiveness in real-world scenarios, and analyzing
the broader implications of these findings for accelerator physics are crucial next steps
toward significant advances in accelerator technology.

Another important area for future research is experimental validation. Comprehensive
experimental validation of the proposed methods is essential to ensure their applicability.
Future studies should aim to implement the developed techniques in real-world acceler-
ator environments such as the LHC or other facilities to evaluate their performance and
reliability in practice. These practical tests will provide valuable feedback and strengthen
the credibility of the results. Investigating the applicability of the developed methods in
different accelerator environments, such as the PS or PSB, will broaden the impact of
this research. Comparative studies could provide insights into the versatility and adapt-
ability of the techniques across various systems. The development of adaptive control
mechanisms could utilize real-time data from the proposed signal processing methods
to implement feedback loops that adjust system parameters based on instantaneous
measurements, thus improving the stability and performance of particle accelerators.

The establishment of long-term monitoring systems leveraging the results of this
study could improve operational protocols in particle accelerators. Research could focus
on developing diagnostic tools that enable continuous assessment of beam stability and
TFB performance, thus enabling proactive maintenance and optimization. Finally, fos-
tering interdisciplinary collaboration between physicists, engineers, and data scientists
will be vital for advancing the field. Joint efforts can lead to innovative solutions and the
development of cutting-edge technologies that enhance the performance and capabilites
of transverse feedback systems.

In summary, these future research directions highlight the opportunities for further
advances in signal processing techniques for transverse feedback systems. By addressing
the identified areas, researchers can contribute to the continuous improvement of particle
accelerator technology and its applications in high-energy physics.

6.6 Conclusions

This study made significant contributions to the field of transverse feedback systems
in particle accelerators, particularly in the context of hadron accelerators. By developing
innovative signal processing techniques and analytical models, we have improved the
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understanding and application of transverse feedback systems. This research addresses
critical questions about their performance and functionality, paving the way for improved
accelerator operation.

One of the most important findings of this study is the introduction of a simplified
beam model in the z-domain, which facilitates the application of digital signal processing
methods in beam dynamics. This advance not only simplifies the analysis of beam
behavior but also improves the integration of sophisticated techniques into real-time
systems, thus increasing operational efficiency.

Furthermore, the development of an analytical sensor model enabled the realistic
implementation of transverse feedback behavior in particle tracking codes, which is es-
sential for investigating beam stability in high-energy physics experiments. The ability
to treat bunches independently, as confirmed by our analytical modeling of sensors and
actuators, underscores the robustness of the TFB system and its optimization potential.

The novel methods for real-time reconstruction of transverse phase-space coordi-
nates represent a significant advance in operational capabilities. By enabling immediate
diagnostics and adjustments, these methods enable operators to increase performance
and effectively minimize instabilities.

Furthermore, the comprehensive approach to measuring key feedback parameters and
vital accelerator parameters opens new avenues for research and operational improve-
ments. The results suggest that real-time monitoring and adaptive control mechanisms
can be implemented to optimize accelerator performance, thus ensuring stability and
efficient operation. The focus of the work is on finding a simple, well-defined parameter
or method that provides clear answers to operational questions, such as: Is the damper
damping? The research presented here contributes to this goal by developing methods
that provide the positive answer, Yes, the TFB is functioning properly and the damper is
damping. These practical insight are crucial for the operations group, enabling informed
decision-making and ensuring optimal performance in complex accelerator environments.

In summary, this research not only addresses the operational aspects of TFB systems
but also contributes to a deeper understanding of their impact on accelerator perfor-
mance. The presented methods and insights lay the foundation for future advances in
TFB technology and its applications in particle accelerators. Future research should focus
on the broader applicability of the developed models and techniques in different acceler-
ator environments. Investigating the integration of these methods into existing feedback
systems, as well as exploring their potential for real-time adjustments, will be crucial for
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the further development of this research area. By further refining and expanding these
insights, we can further improve the performance and reliability of particle accelerators
and ultimately contribute to the advancement of high-energy physics research.
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Appendix A

Damping Time and Feedback Gain

In control systems, the behavior of a second-order system can be characterized by its
transfer function. For a standard second-order system, the transfer function is given by:

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(A.1)

where ωn represents the natural frequency of the system, and ζ denotes the damping
ratio, which indicates how oscillations in a system decay after a disturbance.

To enhance the damping characteristics of the system, we introduce a damping
feedback with gain K. This feedback modifies the system’s dynamics, resulting in a new
transfer function expressed as:

G′(s) =
ω2
n

s2 + (2ζ +K)ωns+ ω2
n

(A.2)

In this modified transfer function, the term K effectively increases the damping ratio,
thereby influencing the system’s response to inputs. The new damping ratio, denoted
as ζ ′, can be formulated as:

ζ ′ = ζ +
K

2ωn
(A.3)

For our analysis, we assume that the internal damping of the system is weak, which
implies that the original damping ratio ζ is very small (i.e., ζ ≈ 0). Under this assump-
tion, we can simplify the expression for the new damping ratio to:

ζ ′ ≈ K

2ωn
(A.4)
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A. DAMPING TIME AND FEEDBACK GAIN

The damping time, denoted as τd, is a critical parameter that describes how quickly
the system responds to disturbances [103]. It is related to the damping ratio by the
following relationship:

τd =
1

ζ ′ωn
(A.5)

Substituting for ζ ′ gives the relationship between damping time and feedback gain:

τd =
2

K
(A.6)
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