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Abstract: There has been strong interest in the fate of relativistic symmetries in some quan-

tum spacetimes, partly because of its possible relevance for high-precision experimental

tests of relativistic properties. However, the main technical results obtained so far concern

the description of suitably deformed relativistic symmetry transformation rules, whereas

the properties of the associated Noether charges, which are crucial for the phenomenology,

are still poorly understood. Here, we tackle this problem focusing on first-quantized par-

ticles described within a Hamiltonian framework and using as a toy model the so-called

“spatial kappa-Minkowski noncommutative spacetime”, where all the relevant conceptual

challenges are present but, as here shown, in technically manageable fashion. We derive

the Noether charges, including the much-debated total momentum charges, and we reveal

a strong link between the properties of these Noether charges and the structure of the laws

of interaction among particles.

Keywords: quantum gravity; quantum spacetime; relativity; Hopf algebras

1. Introduction

The structure of the quantum gravity problem invites us to contemplate the possibility

that spacetime itself might be affected by one form or another of quantization [1–6]. Besides

(some remnant of) the light-cone structure specified by the speed-of-light scale, a quantum

spacetime would inevitably also have additional structure, concerning its quantization,

which in most models is specified in terms of a length scale. There has been strong in-

terest [7–12] in understanding how this additional structure would affect some relevant

spacetime symmetries, an issue which, besides its conceptual appeal, might also bear

some relevance for phenomenology, since some spacetime symmetries can be tested with

very high accuracy. Among the most studied models that fit this profile, there are some

noncommutative spacetimes which are known to require a deformation of spacetime sym-

metries such that the noncommutativity length scale plays the role of second relativistically

invariant scale [13–15], in addition to the speed-of-light scale. The quantum spacetimes

which have been most studied from this perspective are Lie-algebra noncommutative

spacetimes ([xµ, xν] = iΓ
ρ
µνxρ with Γ

ρ
µν coefficients of length dimension), and in particular,

some authors have argued [16] that certain aspects of the quantum gravity problem could

motivate investigations of the κ-Minkowski noncommutative spacetime

[x0, xi] = iℓxi, [xi, xj] = 0 (1)
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where i, j = 1, 2, 3 and ℓ is a length scale usually assumed to be of the order of the Planck

length. It is also noteworthy that several studies in 2+1-dimensional quantum gravity (see,

e.g., Ref. [17]) exhibit the possibility to reabsorb the gravitational (topological) degrees of

freedom into a Lie-algebra noncommutativity of the coordinates of particles, of the type

often labeled as “spinning spacetime” [18]:

[xµ, xν] = iℓϵ
µν
ρ xρ (2)

where ϵ
µν
ρ denotes the Levi-Civita tensor.

A description of the symmetries of these quantum spacetimes based on Hopf alge-

bras has been studied extensively, establishing several robust mathematical properties,

but the associated phenomenology has been stagnating because of the limitations of our

understanding of the relationship between deformed spacetime symmetries and conserved

charges in theories describing particles interacting in such quantum spacetimes (It has been

established [19,20] that there is a generalization of the Noether theorem which applies to

free theories formulated in some noncommutative spacetimes; however, a free theory has

no phenomenology and it cannot even provide intuition for how the charges of different

particles should be combined in conservation laws relevant for particle reactions). A key

issue for phenomenology is how the charges of different particles should be combined in

conservation laws relevant for particle reactions, and so far, this was based only on one or

another heuristic “naturalness argument”, guessing what happens when particles interact

relying exclusively on results for free particles.

Here, we attempt to address this long-standing challenge by introducing a novel strat-

egy of analysis. While previous attempts all focused on action/Lagrangian formulations of

theories in noncommutative spacetimes [19–22], here we investigate the Noether charge

issue within a Hamiltonian setup, finding that this provides several advantages. And

our approach is also empowered by using as an illustrative example of Noether charge

analysis in a quantum spacetime the case of the so-called “spatial 2D kappa-Minkowski

noncommutative spacetime”, where all the relevant conceptual challenges are present but,

as shown here, in technically manageable fashion. We exhibit some examples of Hamiltoni-

ans describing two-particle and three-particle interactions for which the Noether charges

can be constructively derived. A key take-home message is that within a given description

of (deformed) relativistic symmetries for the free-particle case, the total charges that are

then conserved when one allows multiparticle interactions depend strongly on the form of

the Hamiltonian, also exposing the weakness of previous “naturalness arguments” used

for guessing the Noether charges.

2. Preliminaries

Before getting to our novel results, we devote this section to a short review of proper-

ties of spatial 2D κ-Minkowski and to a general perspective on possible noncommutative

spacetime generalizations of harmonic-oscillator-type Hamiltonians (the type of Hamiltoni-

ans for which, in the following sections, we shall derive Noether charges).

2.1. Spatial 2D κ-Minkowski

The most studied variant of κ-Minkowski noncommutativity is a case of space/time

noncommutativity (spatial coordinates commute among themselves but do not commute

with the time coordinate), which in the 2D case is characterized by the following commuta-

tor between time and spatial coordinate [23]:

[x0, x1] = iℓx1 (3)
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where ℓ (often rewritten as 1/κ) is a length scale usually assumed to be of the order of

the Planck length. It is well established [23–25] that the symmetries of 2D space/time

κ-Minkowski noncommutativity are described by the 2D κ-Poincaré Hopf Algebra.

In this study, we follow Ref. [26] by focusing on a scenario with a time coordinate

which is fully commutative and two spatial coordinates governed by κ-Minkowski non-

commutativity

[x2, x1] = iℓx1 . (4)

All the results established in a wide literature on the 2D space/time κ-Minkowski of

Equation (3) and its Hopf-algebra symmetries are easily converted into results for our 2D

spatial κ-Minkowski of Equation (4) and its Hopf-algebra symmetries, by the replacement

of coordinates x0 → ix2, a replacement of noncommutativity parameter ℓ → iℓ, and then

replacing the time-translator generator with a suitable generator of translations along the x2

direction, P0 → −iP2 while the boost generator of 2D space/time κ-Minkowski is replaced

by the rotation generator of 2D spatial κ-Minkowski, N → −iR. This leads to a description

of the translation and rotation symmetries of 2D spatial κ-Minkowski such that

[P2, P1] = 0 [R, P2] = −iP1 [R, P1] =
i

2ℓ
(1 − e−2ℓP2) + i

ℓ

2
P2

1 (5)

which is a deformation of the Euclidean algebra in two dimensions. A central element of

this algebra, which will be a crucial ingredient for the construction of our Hamiltonians, is

given by

C =
4

ℓ2
sinh2(ℓP2/2) + eℓP2 P2

1 (6)

This is a deformation of the P2
1 + P2

2 Casimir element of the Euclidean algebra.

We shall introduce interactions among particles within a Hamiltonian setup and be

satisfied showing our results to order ℓ2. We note here some commutation relations which

shall be valuable in those Hamiltonian analyses:

[x1, P1] = i [x1, P2] = 0 [x2, P1] = −iℓP1 [x2, P2] = i (7)

[R, x1] = ix2

[R, x2] = −i
(

x1 − ℓx1P2 +
ℓ

2
x2P1 +

ℓ

2
P1x2 + ℓ

2x1P2
2 +

ℓ2

4
(x1P2

1 + P2
1 x1)

)

(8)

which satisfy Jacobi identities.

The nonlinearity of the commutators (5), typical of Hopf-algebra symmetries, produce

the difficulties for Noether charges, which are the main focus of this study. For free particles,

it has been shown [19,20] that the charges associated to P1, P2 and R are conserved (but of

course, any nonlinear function of a conserved quantity is also conserved). For interacting

particles, it is unclear which combinations of the charges should be conserved in particle

reactions. In particular, for a process A + B → C + D, it is clear that PA
1 + PB

1 = PC
1 + PD

1 is

not an acceptable conservation law because of the nonlinearity of [R, P1] (i.e., PA
1 + PB

1 =

PC
1 + PD

1 would not be covariant). So it is clear that the total momentum of a system

composed of particles A and B cannot have the component PA
1 + PB

1 , but it is not clear

which nonlinear combination of the momenta gives the total momentum of a system

(and would be therefore conserved in particle reactions). A popular way to guess the

momentum composition formula is based on the so-called “coproduct” [27–29], which

for our purposes, is sufficient to introduce in terms of the properties of suitably ordered
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products of plane waves; for two plane waves of momenta k and q, one has that, as a result

of the noncommutativity (4),

eik1x1
eik2x2

eiq1x1
eiq2x2

= ei(k⊕κq)1x1
ei(k⊕κq)2x2

(9)

where
(k ⊕κ q)1 = k1 + e−ℓk2 q1

(k ⊕κ q)2 = k2 + q2

(10)

In order for these quantities to close the single-particle algebra (5), rotations should also

combine non-linearly:

(Rk ⊕κ Rq) = Rk + e−ℓk2 Rq (11)

Alternative ways for guessing the momentum composition formula have also been

proposed. As an alternative to the “κ-coproduct composition law” of Equations (10) and

(11), we shall also consider the “proper-dS composition law”,

P1 = (pA ⊕dS pB)1 = pA
1 + pB

1 − ℓ(pA
2 pB

1 + pA
1 pB

2 )+

+
ℓ2

2

[

(pA
2 pB

1 + pA
1 pB

2 )(pA
2 + pB

2 )− pA
1 (pB

1 )
2 − (pA

1 )
2 pB

1

]

P2 = (pA ⊕dS pB)2 = pA
2 + pB

2 + ℓpA
1 pB

1 +

−
ℓ2

2

[

− pB
1 pA

1 (pB
2 + pA

2 ) + pA
2 (pB

1 )
2 + (pA

1 )
2 pB

2

]

R = (RA ⊕dS RB) = RA + RB

(12)

which was motivated using some geometric arguments (one can show that with these

choices of composition laws, momentum space acquires the geometrical structure of de

Sitter space [30]).

2.2. Deformations of Harmonic Oscillator Hamiltonians

Our next task is to introduce the class of Hamiltonians on which we shall focus our

search for Noether charges. Their core ingredient is the harmonic oscillator potential in two

spatial dimensions. We shall consider deformations of the Hamiltonian

HAB
0 =

( p⃗A)2

2m
+

( p⃗B)2

2m
+

1

2
g(⃗qA − q⃗B)2 (13)

where g is the coupling constant, the labels A and B refer to the two particles interacting, q⃗J

(J ∈ {A, B}) are ordinary commutative spatial coordinates, and p⃗J are the corresponding

momenta, with standard Heisenberg commutators ([qJ
j , pK

k ] = i δJKδjk, with J, K ∈ {A, B}

and j, k = 1, 2). The total momentum and total angular momentum defined through

P⃗ = p⃗A + p⃗B R0 = RA
0 + RB

0 (14)

are conserved charges since they commute with the Hamiltonian, [HAB
0 , P⃗] = 0 and

[HAB
0 , R0] = 0. Both the total generators {Pi, R0} and the single-particle generators {pI

i , RI
0}

close the un-deformed Galilean algebra.

For reasons which shall soon be clear, we also want to test our approach for inter-

actions among more than two particles, and for that purpose, our starting point is the

three-particle Hamiltonian

HABC
0 =

( p⃗A)2

2m
+

( p⃗B)2

2m
+

( p⃗C)2

2m
+

1

2
g(⃗qA − q⃗B)2 +

1

2
g(⃗qA − q⃗C)2 +

1

2
g(⃗qB − q⃗C)2 (15)
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This is of interest to us particularly because the interacting potential V3 (⃗q
A, q⃗B, q⃗C) can be

split into the sum V2 (⃗q
A, q⃗B) + V2 (⃗q

A, q⃗C) + V2 (⃗q
B, q⃗C) with V2 having the same functional

form for each pair of particles; in the case studies for which we performed our Noether

charge analyses, this property cannot be maintained in the presence of noncommutativity

of coordinates.

Evidently, the Hamiltonian (15) commutes with the total charges defined as

P⃗ = p⃗A + p⃗B + p⃗C and R0 = RA
0 + RB

0 + RC
0 .

A key ingredient of our deformed Hamiltonians will be of course the kinetic term, for

which we adopt the form

HK ≡
C

2m
≈

p2
1

2m
+

p2
2

2m
+ ℓ

p2
1 p2

2m
+ ℓ

2 p2
1 p2

2

4m
+ ℓ

2 p4
2

24m
(16)

obtained from the Casimir element C of our Equation (5) (to order ℓ2).

We will look for suitable interaction potentials within some rather broad parameteri-

zations. We parameterize the two-particle case as follows:

VAB = V(x⃗A, x⃗B) =
1

2
g(x⃗A − x⃗B)2 + ℓg ∑ α

I JK
ijk pI

i x J
j xK

k + ℓ
2g ∑ β

I JKH
ijkh pI

i pJ
j xK

k xH
h (17)

where α
I JK
ijk and β

I JKH
ijkh are numerical coefficients and the sum extends both to spatial indices

(lower-case letters) and particle indices (upper-case letters).

Similarly, for the three-particle case, our ansatz is given by

VABC = V(x⃗A, x⃗B, x⃗C) =
1

2
g(x⃗A − x⃗B)2 +

1

2
g(x⃗B − x⃗C)2 +

1

2
g(x⃗C − x⃗A)2+

+ℓg ∑ α̃
I JK
ijk pI

i x J
j xK

k + ℓ
2g ∑ β̃

I JKH
ijkh pI

i pJ
j xK

k xH
h

(18)

where α̃
I JK
ijk and β̃

I JKH
ijkh are other sets of numerical coefficients and the particle indices run

over {A, B, C}.

3. Charges with Proper-dS Composition

The debate on the alternative ways to combine charges in a κ-Minkowski setup has

mainly relied on naturalness arguments based on the properties of free particles in κ-

Minkowski. As announced in our opening remarks, we intend to show here that there

is no notion of “naturalness” at stake here; how charges should combine depends on

the form of the laws of interaction among particles (and so evidently goes beyond the

scopes of the description of free particles) and different composition laws can emerge from

different descriptions of the interactions. We shall establish our case relying on Hamiltonian

theories within first-quantized quantum mechanics, where the relevant issues can be seen

in particularly vivid fashion.

We choose as our first task the one of exhibiting a Hamiltonian (within first-quantized

quantum mechanics) which selects uniquely the proper-dS composition law, which we

already reviewed in Equation (12) and we show again here for convenience:

P1 = (pA ⊕dS pB)1 = pA
1 + pB

1 − ℓ(pA
2 pB

1 + pA
1 pB

2 )+

+
ℓ2

2

[

(pA
2 pB

1 + pA
1 pB

2 )(pA
2 + pB

2 )− pA
1 (pB

1 )
2 − (pA

1 )
2 pB

1

]

P2 = (pA ⊕dS pB)2 = pA
2 + pB

2 + ℓpA
1 pB

1 +

−
ℓ2

2

[

− pB
1 pA

1 (pB
2 + pA

2 ) + pA
2 (pB

1 )
2 + (pA

1 )
2 pB

2

]

R = (RA ⊕dS RB) = RA + RB

(19)
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One can easily verify that P1 , P2 , R close the algebra (5) up to order ℓ2, which we also

rewrite here for convenience:

[P2,P1] = 0 [R,P2] = −iP1 [R,P1] = i(P2 − ℓP2
2 +

ℓ

2
P2

1 +
2ℓ2P3

2

3
) (20)

We start by showing that for the case of two particles interacting, there is a Hamiltonian

HAB
dS , deformation of the HAB

0 of Equation (13), such that [P⃗ , HAB
dS ] = 0 and [R, HAB

dS ] = 0.

As anticipated in Section 2.2, our Hamiltonian HAB
dS will be of the form

HAB
dS = HA

K + HB
K + VAB

dS (21)

where HK is fixed to be that of Equation (16), while VAB
dS must be specified consistently with

Equation (17), for some choice of the parameters that Equation (17) leaves to be determined.

We work partly by reverse engineering; we use [P⃗ , HAB
dS ] = 0 and [R, HAB

dS ] = 0 as

conditions that must be satisfied by the parameters of Equation (17), and then, once we have

such an acceptable VAB
dS , we show that the resulting Hamiltonian HAB

dS uniquely selects the

proper-dS charges (19) as its conserved charges.

We find that in particular, the following choice of VAB
dS :

VAB
dS =

g

2

[

(x⃗A − x⃗B)2 + 2ℓ
(

− pA
2 (xA

1 )
2 +

1

2
pA

1 xA
1 xA

2 +

+
1

2
xA

2 xA
1 pA

1 + pA
2 xA

1 xB
1 − xA

2 pA
1 xB

1 + (A ↔ B)
)

+

+
1

2
ℓ

2
(

(pB
1 )

2(−2(xA
2 )

2 + 6xA
2 xB

2 − 2(xB
2 )

2) + 4pB
1 pB

2 xA
1 xA

2 − pA
1 pB

1 xA
2 xB

2 +

−6pB
1 xA

1 xB
2 pB

2 − 2pB
1 xB

1 (pA
2 xA

2 − xB
2 pB

2 )− 2(pB
2 )

2((xA
1 )

2 − xA
1 xB

1 − (xB
1 )

2)+

+pB
2 pA

1 xA
2 xB

1 − 2pB
2 pA

2 xA
1 xB

1 − 3pB
2 xA

2 xB
1 pB

1 + 2xA
1 pA

1 (pA
1 xA

1 − pA
1 xB

1 +

+pA
2 xA

2 −
3

2
pA

2 xB
2 +

3

2
xB

2 pB
2 ) + xA

2 pA
2 xB

1 pB
1 + pB

1 pA
2 xA

1 xB
2 + (A ↔ B)

)]

(22)

is indeed such that [P⃗ , HA
K + HB

K + VAB
dS ] = 0 and [R, HA

K + HB
K + VAB

dS ] = 0.

We observe that our VAB
dS is symmetric under exchange of the particles (this is not

always the case; see later). Most importantly, we find that indeed the Hamiltonian

HA
K + HB

K + VAB
dS uniquely selects the proper-dS charges (19) as its conserved charges.

In order to see this, we start from a general parameterization of the two-particle charges

Ptot
1 = ∑ pI

1 + ℓγ
I J
ij pI

i pJ
j + ℓ

2Γ
I JK
ijk pI

i pJ
j pK

k

Ptot
2 = ∑ pI

2 + ℓθ
I J
ij pI

i pJ
j + ℓ

2Θ
I JK
ijk pI

i pJ
j pK

k

Rtot = ∑ RI + ℓϕ
I J
i pI

i RJ + ℓ
2Φ

I JK
ij pI

i pJ
j RK

(23)

where γ, θ, ϕ, Γ, Θ, Φ are sets of real coefficients and the sum is intended over particle

indices I, J, K (which take values in {A, B}) and over the spatial indices i, j, k. We also

require that no terms with all particle indices equal to each other are present, so that we

recover the definition of single-particle charge when the charges of the other particles

are zero.

By requesting that these charges commute with HA
K + HB

K + VAB
dS , the parameters in

Equation (23) are fully fixed, giving indeed the proper-dS charges (19).
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Next, we turn to the corresponding three-particle case, for which the proper-dS com-

position leads to the following formulas for the charges:

P̃1 = ((pA ⊕dS pB)⊕dS pC)1 = pA
1 + pB

1 + pC
1 − ℓ

(

pB
2 (pC

1 + pA
1 ) + pC

2 (pB
1 + pA

1 )+

+ pA
2 (pC

1 + pB
1 )
)

+
ℓ2

2

(

−2pA
1 pB

1 pC
1 − (pB

1 )
2 pA

1 + 2pA
1 pB

2 pC
2 − pB

1 (pA
1 )

2+

− (pC
1 )(pB

1 + pA
1 )

2 + 2pC
2 pB

1 pA
2 + (pB

2 + pA
2 )(pB

2 pA
1 + pA

2 pB
1 )+

+ (pA
2 + pB

2 + pC
2 )(pC

2 (pB
1 + pA

1 ) + pC
1 (pA

2 + pB
2 )− (pC

1 )
2(pB

1 + pA
1 ))
)

P̃2 = ((pA ⊕dS pB)⊕dS pC)2 = pA
2 + pB

2 + pC
2 + ℓ

(

pB
1 pA

1 + pC
1 pB

1 + pA
1 pC

1

)

+

−
ℓ2

2

(

pC
2 (pA

1 + pB
1 )

2 − pC
1 (pC

2 (pB
1 + pA

1 ) + (pB
1 − pA

1 )(pB
2 − pA

2 ))+

+ (pC
1 )

2(pB
2 + pA

2 ) + (pB
1 − pA

1 )(−pB
2 pA

1 + pB
1 pA

2 )
)

R̃ = (RA ⊕dS RB)⊕dS RC = RA + RB + RC

(24)

Evidently, we must find a Hamiltonian HABC
dS , deformation of the HABC

0 of Equation (15),

such that [ ⃗̃P , HABC
dS ] = 0 and [R̃, HABC

dS ] = 0. As anticipated in Section 2.2, our Hamiltonian

HABC
dS will be of the form

HABC
dS = HA

K + HB
K + HC

K + VABC
dS (25)

where HK is again fixed to be that of Equation (16), while VABC
dS must be specified consis-

tently with Equation (18), for some choice of the parameters that Equation (18) leaves to be

determined.

A natural first guess is that the three-particle potential V ABC
dS is given (see

Equation (15)) by a combination of our two-particle potentials given in Equation (22),

i.e., V ABC
dS = V AB

dS + VBC
dS + V AC

dS , but one can easily check that this does not commute

with the three-particle proper-dS charges (24). What does work is adding an extra term:

VABC
dS = VAB

dS + VBC
dS + VAC

dS + VABC
dS(⋆) (26)

with

VABC
dS(⋆) =

gℓ2

2

(

pC
1 pB

2 (xC
1 xA

2 − xC
2 xA

1 )− pC
1 pA

2 xC
2 xB

1 − pC
2 pB

1 (xC
1 xA

2 − xC
2 xA

1 )+

+ pB
1 pA

1 xC
2 (2xC

2 − xA
2 − xB

2 )− pB
1 pA

2 xC
2 (2xC

1 − xB
1 )− 2pB

2 pA
1 xC

1 xC
2 +

+ pB
2 pA

2 xC
1 (2xC

1 − xA
1 − xB

1 ) + pA
1 xC

1 pB
2 xB

2 + xC
1 pC

1 pA
2 xB

2 +

+ xC
2 pC

2 pA
1 xB

1 + xA
1 pA

1 pB
2 xC

2 + xA
2 pA

2 pB
1 xC

1 − pC
2 pA

1 xC
1 xB

2

)

(27)

One can easily check that the HABC
dS of Equations (25)–(27) commutes with the proper-dS

charges (24). Most importantly, we find that indeed, our Hamiltonian HABC
dS uniquely

selects the proper-dS charges (24) as its conserved charges. In order to see this, we start

from a general parameterization of the three-particle charges

P̃1
tot

= ∑ pI
1 + ℓγ̃

I J
ij pI

i pJ
j + ℓ

2Γ̃
I JK
ijk pI

i pJ
j pK

k

P̃2
tot

= ∑ pI
2 + ℓθ̃

I J
ij pI

i pJ
j + ℓ

2Θ̃
I JK
ijk pI

i pJ
j pK

k

R̃tot = ∑ RI + ℓϕ̃
I J
i pI

i RJ + ℓ
2Φ̃

I JK
ij pI

i pJ
j RK

(28)
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which shares the same properties outlined for the two-particle ansatz (23) (the particle

indices run over {A, B, C} and γ̃, θ̃, ϕ̃, Γ̃, Θ̃, Φ̃ are sets of real coefficients).

We find that by requesting that these charges commute with our HA
K + HB

K + VAB
dS , the

parameters in Equation (28) are fully fixed, giving indeed the proper-dS charges (24).

We leave to future studies the task of exploring the meaning of the extra term VABC
dS(⋆)

.

Whereas the potential in the original three-particle Hamiltonian HABC
0 of Equation (15) was

just a sum of two-particle potentials, we found that the potential in its correct “proper-dS

deformation” HABC
dS must include the extra term VABC

dS(⋆)
, which is cubic in the observables

of the three particles and is made of all terms involving simultaneously observables of all

three particles.

Also noteworthy is that for the three-particle case, the proper-dS composition gives

charges which are not symmetric under particle exchange (see (24)) and accordingly, our

Hamiltonian HABC
dS is also not symmetric under particle exchange. We do not see any

objective problem with this lack of particle exchange symmetry, but still, it is a bit unsettling.

This made us interested in investigating which charges would be conserved if we adopted

a particle exchange-symmetrized version of our Hamiltonian HABC
dS

HABC
dS(sym) = HA

K + HB
K + HC

K + VAB
dS + VBC

dS + VAC
dS +

1

6 ∑
π(A,B,C)

V
π(ABC)
dS(⋆)

(29)

i.e., the Hamiltonian obtained by summing over all the possible particle permutations,

π(ABC), of the extra term.

We then ask for which choices of the parameters of our Equation (28) the Hamiltonian

HABC
dS(sym)

commutes with the charges parameterized in our Equation (28), and we find that

HABC
dS(sym)

uniquely selects as its conserved charges the following ones:

P
dS(sym)
1 =

1

3
[(pA ⊕dS pB)⊕dS pC + pA ⊕dS (pB ⊕dS pC) + (pA ⊕dS pC)⊕dS pB]1 =

= pA
1 + pB

1 + pC
1 − ℓ

(

pA
1 pB

2 + pB
1 pA

2 + pA
1 pC

2 + pC
1 pA

2 + pB
1 pC

2 + pC
1 pB

2

)

+

+
ℓ2

2

(

pA
1 ((pB

2 )
2 + (pC

2 )
2) + (pB

1 + pC
1 )(pA

2 )
2 − pA

1 (pB
1 )

2 − pB
1 (pA

1 )
2+

− pC
1 (pB

1 )
2 − pB

1 (pC
1 )

2 + pB
1 (pC

2 )
2 + pC

1 (pB
2 )

2 ++pC
1 pC

2 pB
2 + pB

1 pB
2 pC

2 +

− pA
1 (pC

1 )
2 − pC

1 (pA
1 )

2 − 4pA
1 pB

1 pC
1 +

8

3
(pA

1 pB
2 pC

2 + pB
1 pA

2 pC
2 + pC

1 pB
2 pA

2 )+

+ pA
2 (pC

1 pC
2 + pB

1 pC
2 + pA

1 pC
2 + pA

1 pB
2 )
)

P
dS(sym)
2 =

1

3
[(pA ⊕dS pB)⊕dS pC + pA ⊕dS (pB ⊕dS pC) + (pA ⊕dS pC)⊕dS pB]2 =

= pA
2 + pB

2 + pC
2 + ℓ(pC

1 (pB
1 + pA

1 ) + pB
1 pA

1 )+

−
1

6
ℓ

2(3(pC
1 )

2(pB
2 + pA

2 )+

− pC
1 (3pC

2 (pB
1 + pA

1 ) + 3pB
1 pB

2 − 4pB
1 pA

2 − 4pB
2 pA

1 + 3pA
1 pA

2 )+

+ pC
2 (3(pB

1 )
2 + 4pB

1 pA
1 + 3(pA

1 )
2) + 3(pB

1 − pA
1 )(pB

1 pA
2 − pB

2 pA
1 ))

RdS(sym) = RA + RB + RC

(30)

which are indeed symmetric under particle exchange. Moreover, these charges P
dS(sym)
1 ,

P
dS(sym)
2 , RdS(sym) close the algebra (5).
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4. Charges with κ-Coproduct Composition

We now move on to applying the same strategy of the analysis to the coproduct com-

position law of Equations (10) and (11), which we rewrite here (at order ℓ2) for convenience:

P1 = (pA ⊕κ pB)1 = pA
1 + pB

1 − ℓpA
2 pB

1 +
ℓ2

2
(pA

2 )
2 pB

1

P2 = (pA ⊕κ pB)2 = pA
2 + pB

2

R = RA ⊕κ RB = RA + RB − ℓpA
2 RB +

ℓ2

2
(pA

2 )
2RB ,

(31)

As performed for the proper-dS case, our first objective is to find a Hamiltonian HAB
κ ,

deformation of the HAB
0 of Equation (13), such that [P⃗ , HAB

κ ] = 0 and [R, HAB
κ ] = 0.

Applying the same strategy as the previous section, we find that the Hamiltonian HAB
κ =

HA
K + HB

K + VAB
κ with

VAB
κ =

g

2

[

(x⃗A − x⃗B)2+

2ℓ

(

−pA
2 (xA

1 )
2 + xA

1 pA
2 xB

1 +
1

2
xA

2 pA
1 xA

1 +
1

2
xA

2 xA
1 pA

1 − xB
2 pA

1 xA
1 −

1

2
xB

2 pA
1 xA

1

)

2ℓ2

(

(pA
2 )

2(xA
1 )

2 +
1

2
xA

1 (pA
1 )

2xA
1 −

1

2
xA

1 (pA
2 )

2xB
1

)

]

(32)

is such that indeed, [P⃗ , HA
K + HB

K + VAB
κ ] = 0 and [R, HA

K + HB
K + VAB

κ ] = 0. And we find

that the Hamiltonian HA
K + HB

K + VAB
κ uniquely selects the κ-coproduct charges (31) as its

conserved charges. This is easily shown by starting again from the general charge ansatz

(23) and requiring that they commute with HA
K + HB

K + VAB
κ ; this requirement fully fixes all

the parameters in Equation (23), giving indeed the κ-coproduct charges (31).

It is noteworthy that the κ-coproduct charges (31) are not symmetric under the ex-

change of particles A and B, and accordingly, our Hamiltonian HAB
κ is also not symmetric

(because the potential VAB
κ of (32) is not symmetric). We found that the analogous issue of

lacking particle exchange symmetry that we encountered in our analysis of the proper-dS

composition law could be “fixed” by resorting to a symmetrized version of the Hamilto-

nian, but for the κ-coproduct composition law, this is not the case; if one considers the

symmetrized Hamiltonian

HAB
κ(sym) =

HAB
κ + HBA

κ

2
(33)

then one finds that no choice of the parameters in (23) leads to charges that commute with

H
κ(sym)
AB .

For the three-particle case, the κ-coproduct composition law gives

P̃1 = (pA ⊕κ pB ⊕κ pC)1 = pA
1 + pB

1 + pC
1 + ℓ

(

−pB
1 pA

2 − pC
1 (pA

2 + pB
2 )
)

+

+ ℓ
2

(

pB
1 (pA

2 )
2

2
+

1

2
pC

1 (pA
2 + pB

2 )
2

)

(34)

P̃2 = (pA ⊕κ pB ⊕κ pC)2 = pA
2 + pB

2 + pC
2

R̃ = (RA ⊕κ RB ⊕κ RC) = RA + RB + RC + ℓ

(

−pA
2

(

RB
)

− RC
(

pA
2 + pB

2

))

+

+ ℓ
2

(

1

2
RC
(

pA
2 + pB

2

)

2 +
1

2
(pA

2 )
2RB

)
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Using the same procedure as Section 3, one finds that the Hamiltonian

HABC
κ = HA

K + HB
K + HC

K + VAB
κ + VBC

κ + VAC
κ + VABC

κ(⋆) , (35)

with

VABC
κ(⋆) =gℓ

(

pB
1 (xC

1 xA
2 − xC

2 xA
1 + xA

1 xB
2 − xC

1 xB
2 ) + pB

2 xB
1 (xC

1 − xA
1 )
)

+

+g
ℓ2

2

(

(pB
1 )

2(xC
1 xA

1 − xB
1 xC

1 + xB
1 xA

1 )− (pB
2 )

2(xC
1 xA

1 − 2xA
1 xB

1 )+

+pB
1 xC

1 (pA
1 xA

1 − pB
2 xB

2 ) + pB
1 pA

2 (xC
2 xA

1 − xA
1 xB

2 ) + pB
2 (pB

1 xA
1 xC

2 + pA
2 xA

1 xB
1 )

)

,

(36)

commutes with ⃗̃P and R̃. It is noteworthy that the κ-coproduct extra term VABC
κ(⋆)

, besides

involving terms that depend simultaneously on observables of all three particles, also

involves terms that depend only on two of the particles (and these additional terms cannot

be re-absorbed in a redefinition of the potentials Ṽ I J
κ since they are different for different

pairs of particles).

Also, in this case, we find that the Hamiltonian HABC
κ of our Equation (35) uniquely

selects the κ-coproduct charges (34) as its conserved charges; by requesting that the param-

eterized charges of Equation (28) commute with HABC
κ , the parameters in Equation (28) are

fully fixed, giving indeed the κ-coproduct charges (34).

HABC
κ is not symmetric under particle exchange, and its symmetrized version,

HABC
κ(sym) = HA

K + HB
K + HC

K +
1

6 ∑
π(A,B,C)

V
π(ABC)
κ , (37)

is not a viable alternative since it does not have any conserved charges; there is no choice

of the parameters in Equation (28) such that the parameterized charges of Equation (28)

commute with HABC
κ(sym)

.

5. Closing Remarks

Inevitably, the physics community is approaching the challenge of understanding the

deformed relativistic symmetries of some quantum spacetimes from a perspective which is

mainly informed by our experience with special relativity, but a price can be paid when we

unknowingly make inferences based on the linearity of most special-relativistic laws. In

particular, the way in which special relativity governs how free-particle charges combine in

conservation laws applicable when particles interact is completely governed by the linearity

of transformation laws, so that charges inevitably combine linearly. Working within special

relativity, one does not even fully appreciate how the chosen form of interaction could

affect the conservation laws, because the linearity of transformation laws imposes that in all

cases, charges combine linearly, independently of the type of interactions being considered.

This is probably the reason why, before this study, the debate on total charges for quantum

spacetimes had not contemplated a possible role for the interactions, and instead relied on

one or another “naturalness argument” based on the form of the relativistic properties of

free particles.

We showed here, using the toy model of spatial 2D κ-Minkowski, that the nonlinearity

of deformed-relativistic transformation laws is such that the correct notion of total charge

depends strongly on how one introduces interactions among particles. We found that,

starting from the same description of free particles, for interacting particles, one can have

at least three different ways for obtaining total charges: the one based on the proper-dS

composition law, the one based on the κ-coproduct composition law, and the one obtained
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by symmetrizing the proper-dS composition law. Interestingly, we also found that it is

instead not possible to introduce interactions such that conservation laws are obtained

by symmetrizing the κ-coproduct composition law. To our knowledge, ours are the first

results establishing in such a tangible way a tight connection between how one introduces

particle interactions and a suitable notion of conserved total charges. This realization

also raises some interesting conceptual issues, since of course, the way in which particles

interact is fixed by Nature (using which “criteria”?). The Hamiltonians we focused on here

appear to be unpleasantly complex, and it would be surprising (though of course possible)

that Nature would choose such complex ways to describe interactions among particles.

It is legitimate to wonder if some ways to quantize spacetime with deformed spacetime

symmetries could produce simpler descriptions of interactions among particles. If such

an aspect of simplicity was found for a certain scheme of spacetime quantization, it might

provide encouragement for studies of other aspects of that quantum spacetime.

We conjecture that it should also be possible to apply to other Lie-algebra noncom-

mutative spacetimes (see Section 1) the lessons learned here within the spatial 2D spatial

κ-Minkowski toy model. Instead, our approach does not apply directly to other types of

spacetime noncommutativity, such as the canonical noncommutativity relevant for string

theory [2,31], but our study raises issues which might also deserve investigation in studies

of other attempted formulations of quantum spacetime.
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