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Abstract: There has been strong interest in the fate of relativistic symmetries in some quan-
tum spacetimes, partly because of its possible relevance for high-precision experimental
tests of relativistic properties. However, the main technical results obtained so far concern
the description of suitably deformed relativistic symmetry transformation rules, whereas
the properties of the associated Noether charges, which are crucial for the phenomenology,
are still poorly understood. Here, we tackle this problem focusing on first-quantized par-
ticles described within a Hamiltonian framework and using as a toy model the so-called
“spatial kappa-Minkowski noncommutative spacetime”, where all the relevant conceptual
challenges are present but, as here shown, in technically manageable fashion. We derive
the Noether charges, including the much-debated total momentum charges, and we reveal
a strong link between the properties of these Noether charges and the structure of the laws
of interaction among particles.

Keywords: quantum gravity; quantum spacetime; relativity; Hopf algebras

1. Introduction

The structure of the quantum gravity problem invites us to contemplate the possibility
that spacetime itself might be affected by one form or another of quantization [1-6]. Besides
(some remnant of) the light-cone structure specified by the speed-of-light scale, a quantum
spacetime would inevitably also have additional structure, concerning its quantization,
which in most models is specified in terms of a length scale. There has been strong in-
terest [7-12] in understanding how this additional structure would affect some relevant
spacetime symmetries, an issue which, besides its conceptual appeal, might also bear
some relevance for phenomenology, since some spacetime symmetries can be tested with
very high accuracy. Among the most studied models that fit this profile, there are some
noncommutative spacetimes which are known to require a deformation of spacetime sym-
metries such that the noncommutativity length scale plays the role of second relativistically
invariant scale [13-15], in addition to the speed-of-light scale. The quantum spacetimes
which have been most studied from this perspective are Lie-algebra noncommutative
spacetimes ([xﬂ, xy] = il"fwxp with F,’iv coefficients of length dimension), and in particular,
some authors have argued [16] that certain aspects of the quantum gravity problem could
motivate investigations of the x-Minkowski noncommutative spacetime

[0, xf] = ilx, [x', 2] =0 (1)
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where i,j = 1,2,3 and / is a length scale usually assumed to be of the order of the Planck
length. It is also noteworthy that several studies in 2+1-dimensional quantum gravity (see,
e.g., Ref. [17]) exhibit the possibility to reabsorb the gravitational (topological) degrees of
freedom into a Lie-algebra noncommutativity of the coordinates of particles, of the type
often labeled as “spinning spacetime” [18]:

[xF, xV] = iﬁef;vxp ()

where eﬁw denotes the Levi-Civita tensor.

A description of the symmetries of these quantum spacetimes based on Hopf alge-
bras has been studied extensively, establishing several robust mathematical properties,
but the associated phenomenology has been stagnating because of the limitations of our
understanding of the relationship between deformed spacetime symmetries and conserved
charges in theories describing particles interacting in such quantum spacetimes (It has been
established [19,20] that there is a generalization of the Noether theorem which applies to
free theories formulated in some noncommutative spacetimes; however, a free theory has
no phenomenology and it cannot even provide intuition for how the charges of different
particles should be combined in conservation laws relevant for particle reactions). A key
issue for phenomenology is how the charges of different particles should be combined in
conservation laws relevant for particle reactions, and so far, this was based only on one or
another heuristic “naturalness argument”, guessing what happens when particles interact
relying exclusively on results for free particles.

Here, we attempt to address this long-standing challenge by introducing a novel strat-
egy of analysis. While previous attempts all focused on action/Lagrangian formulations of
theories in noncommutative spacetimes [19-22], here we investigate the Noether charge
issue within a Hamiltonian setup, finding that this provides several advantages. And
our approach is also empowered by using as an illustrative example of Noether charge
analysis in a quantum spacetime the case of the so-called “spatial 2D kappa-Minkowski
noncommutative spacetime”, where all the relevant conceptual challenges are present but,
as shown here, in technically manageable fashion. We exhibit some examples of Hamiltoni-
ans describing two-particle and three-particle interactions for which the Noether charges
can be constructively derived. A key take-home message is that within a given description
of (deformed) relativistic symmetries for the free-particle case, the total charges that are
then conserved when one allows multiparticle interactions depend strongly on the form of
the Hamiltonian, also exposing the weakness of previous “naturalness arguments” used
for guessing the Noether charges.

2. Preliminaries

Before getting to our novel results, we devote this section to a short review of proper-
ties of spatial 2D x-Minkowski and to a general perspective on possible noncommutative
spacetime generalizations of harmonic-oscillator-type Hamiltonians (the type of Hamiltoni-
ans for which, in the following sections, we shall derive Noether charges).

2.1. Spatial 2D x-Minkowski

The most studied variant of x-Minkowski noncommutativity is a case of space/time
noncommutativity (spatial coordinates commute among themselves but do not commute
with the time coordinate), which in the 2D case is characterized by the following commuta-
tor between time and spatial coordinate [23]:

[x0, x1] = itx? 3)
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where / (often rewritten as 1/x) is a length scale usually assumed to be of the order of
the Planck length. It is well established [23-25] that the symmetries of 2D space/time
x-Minkowski noncommutativity are described by the 2D «x-Poincaré Hopf Algebra.

In this study, we follow Ref. [26] by focusing on a scenario with a time coordinate
which is fully commutative and two spatial coordinates governed by x-Minkowski non-
commutativity

[x2,x1] = ilxq . (4)

All the results established in a wide literature on the 2D space/time x-Minkowski of
Equation (3) and its Hopf-algebra symmetries are easily converted into results for our 2D
spatial x-Minkowski of Equation (4) and its Hopf-algebra symmetries, by the replacement
of coordinates x? — ix,, a replacement of noncommutativity parameter £ — i/, and then
replacing the time-translator generator with a suitable generator of translations along the x;
direction, Py — —iP, while the boost generator of 2D space/time x-Minkowski is replaced
by the rotation generator of 2D spatial x-Minkowski, N — —iR. This leads to a description
of the translation and rotation symmetries of 2D spatial x-Minkowski such that

i

4
Sy (1—e ) +io P} 5)

[P, P]=0 [R,P))=—iP; [RDP] 5

which is a deformation of the Euclidean algebra in two dimensions. A central element of
this algebra, which will be a crucial ingredient for the construction of our Hamiltonians, is
given by
4 .
C = 5 sinh?((Py/2) + e P 6)

This is a deformation of the P? + PZ Casimir element of the Euclidean algebra.

We shall introduce interactions among particles within a Hamiltonian setup and be
satisfied showing our results to order ¢2. We note here some commutation relations which
shall be valuable in those Hamiltonian analyses:

[x1,P1] =i [x1,P] =0 [xo,Pi] = —ilPy [x3, 2] =i 7)

[R, xl] = iX2
(8)

. L 14 2
[R, Xz] = —l(X1 — 1P + §X2P1 + EP]X2 + szlpj)% + Z(xlplz + Plle))

which satisfy Jacobi identities.

The nonlinearity of the commutators (5), typical of Hopf-algebra symmetries, produce
the difficulties for Noether charges, which are the main focus of this study. For free particles,
it has been shown [19,20] that the charges associated to P;, P, and R are conserved (but of
course, any nonlinear function of a conserved quantity is also conserved). For interacting
particles, it is unclear which combinations of the charges should be conserved in particle
reactions. In particular, for a process A + B — C + D, it is clear that P{! + P8 = PF + PP is
not an acceptable conservation law because of the nonlinearity of [R, 1] (i.e., P{* + PP =
PF + PP would not be covariant). So it is clear that the total momentum of a system
composed of particles A and B cannot have the component P{* + PE, but it is not clear
which nonlinear combination of the momenta gives the total momentum of a system
(and would be therefore conserved in particle reactions). A popular way to guess the
momentum composition formula is based on the so-called “coproduct” [27-29], which
for our purposes, is sufficient to introduce in terms of the properties of suitably ordered
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products of plane waves; for two plane waves of momenta k and g, one has that, as a result
of the noncommutativity (4),

eiklxl eikzxzeiqlxl eiqzxz _ ei(kd),(q)lx1 ei(kq)Kq)zxz (9)

where

(k®xg)1 = ki + fﬂkzlh 10)
(k®xq)2 =k +q2

In order for these quantities to close the single-particle algebra (5), rotations should also
combine non-linearly:
(Ry ®x Ry) = Ry +e 2R, (11)

Alternative ways for guessing the momentum composition formula have also been
proposed. As an alternative to the “x-coproduct composition law” of Equations (10) and
(11), we shall also consider the “proper-dS composition law”,

Pr=(p" @as p")1 = pi +p7 — Lp2 vl +piP2)+
02
+ 5 [(pap? +ptpd)(p2 +p2) — p1 (p1)* — (1)1
Pr = (p" @as p7)2 = p7 +p3 + Ipi'pi+ (12)
/2
=5 [=pipl(r2 +p2) + P2 (p7)* + ()]
R = (R" @45 RP) = R* + RP
which was motivated using some geometric arguments (one can show that with these

choices of composition laws, momentum space acquires the geometrical structure of de
Sitter space [30]).

2.2. Deformations of Harmonic Oscillator Hamiltonians

Our next task is to introduce the class of Hamiltonians on which we shall focus our
search for Noether charges. Their core ingredient is the harmonic oscillator potential in two
spatial dimensions. We shall consider deformations of the Hamiltonian

1A
+58@" -7 (13)

where ¢ is the coupling constant, the labels A and B refer to the two particles interacting, 7/
(J € {A, B}) are ordinary commutative spatial coordinates, and 7/ are the corresponding
momenta, with standard Heisenberg commutators ([q]]- , p,’ﬂ =il K(Sjk, with J,K € {A, B}
and j, k = 1,2). The total momentum and total angular momentum defined through

P=pA+p® Ry=R{+RE (14)

are conserved charges since they commute with the Hamiltonian, [H{'Z, P] = 0 and
[H#'B, Rg] = 0. Both the total generators {P;, Ry} and the single-particle generators {p/, R} }
close the un-deformed Galilean algebra.

For reasons which shall soon be clear, we also want to test our approach for inter-
actions among more than two particles, and for that purpose, our starting point is the
three-particle Hamiltonian

=A\2 =B\2 =C\2
asc _ (P7) (P°) (7-) 1 4 o 1 4 —co 1 5 _co
HEPC = 20 2=+ 20+ (= 77)2 + 587" = 7 + 583" —79)7 (19)
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This is of interest to us particularly because the interacting potential V3(§4, 7%, 7¢) can be

split into the sum V,(§4,3%) + V2(§4,3%) + Va(g®, §©) with V, having the same functional
form for each pair of particles; in the case studies for which we performed our Noether
charge analyses, this property cannot be maintained in the presence of noncommutativity
of coordinates.

Evidently, the Hamiltonian (15) commutes with the total charges defined as
P =p4+ pP + pC and Ry = R{ + R + R.

A key ingredient of our deformed Hamiltonians will be of course the kinetic term, for
which we adopt the form

C L PL P PPz oPiF3 o P
Hk=s-~—+ = +4 14 14 16
= 2m S om T om T 2m T am T 2am (16)
obtained from the Casimir element C of our Equation (5) (to order £2).
We will look for suitable interaction potentials within some rather broad parameteri-
zations. We parameterize the two-particle case as follows:

IR U
VAR = V(A ) = Sg (¥ = 3802+ g el plx]a + g B piv)exl (17)

where vc%K and ,BZI]]kiH are numerical coefficients and the sum extends both to spatial indices

(lower-case letters) and particle indices (upper-case letters).
Similarly, for the three-particle case, our ansatz is given by

A o 1 R 1 1 .
VABC — v (x4, %8, xC) zig(xA — %82 4 Eg(xB — X2+ Eg(a‘c’c — 724

(18)
~IJK »IJKH
+0g Y & plxlxf + g Y BN plplxf !

where Eél%K and EII]],(IZH are other sets of numerical coefficients and the particle indices run

over {A,B,C}.

3. Charges with Proper-dS Composition

The debate on the alternative ways to combine charges in a x-Minkowski setup has
mainly relied on naturalness arguments based on the properties of free particles in «-
Minkowski. As announced in our opening remarks, we intend to show here that there
is no notion of “naturalness” at stake here; how charges should combine depends on
the form of the laws of interaction among particles (and so evidently goes beyond the
scopes of the description of free particles) and different composition laws can emerge from
different descriptions of the interactions. We shall establish our case relying on Hamiltonian
theories within first-quantized quantum mechanics, where the relevant issues can be seen
in particularly vivid fashion.

We choose as our first task the one of exhibiting a Hamiltonian (within first-quantized
quantum mechanics) which selects uniquely the proper-dS composition law, which we
already reviewed in Equation (12) and we show again here for convenience:

Pr = (p? @asp®)1 = pi +pf — L(pep} + pipd)+

02
+ 5 [pap? +ppS)(p2 +p2) — Pt (1)* = (p1)*p1]

Pr = (p” @as pP)2 = pd +p5 + pi'pi+ (19)
52

= 5 [= PPt (03 + 1) + 12 (1) + (p1)?p5]

R = (R @45 RB) = R + RP
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One can easily verify that P;, P2, R close the algebra (5) up to order £2, which we also
rewrite here for convenience:

20°P3
3

. . 14
(P2, P1]=0 [R,P))=—iPy [RPi|=i(Pa—ItP3+ 57912 + ) (20)
We start by showing that for the case of two particles interacting, there is a Hamiltonian
H#B, deformation of the H§'B of Equation (13), such that [P,H 4B] = 0and [R, H4E] = 0.
As anticipated in Section 2.2, our Hamiltonian H ;ﬁSB will be of the form

HAP = HE + HE + VB (21)

where H is fixed to be that of Equation (16), while Vd’gB must be specified consistently with
Equation (17), for some choice of the parameters that Equation (17) leaves to be determined.

We work partly by reverse engineering; we use [P, H4ABl = 0and [R, H4P] = 0 as
conditions that must be satisfied by the parameters of Equation (17), and then, once we have
such an acceptable Vd‘gB , we show that the resulting Hamiltonian H fSB uniquely selects the
proper-dS charges (19) as its conserved charges.

We find that in particular, the following choice of VE{éB :

VAP =5 =2 20— p (o) + i+
+giatpf + piatad — xfpfed 4 (A0 B)) +
1P (PP (2040 + 6xad — 2()) + aplphafiad — pfpladadt gy
—6pixixzps —2p1 a7 (pa'nd — x3p3) — 2(p8)?((xf')? — x{'xf — (7)) +
+papi s ag — 2p5 paaiaf = 3pyxgaf pf + 2xf' i (pi'af! — piiat+
g — 2l + 2BpR) + o piadpl 4 plpiafad + (4 ¢ B))]

is indeed such that [P, H{ + HE + V/AP] = 0and [R, H{ + HE + ViiF] = 0.

We observe that our V/i8 is symmetric under exchange of the particles (this is not
always the case; see later). Most importantly, we find that indeed the Hamiltonian
H# + HE + V8 uniquely selects the proper-dS charges (19) as its conserved charges.
In order to see this, we start from a general parameterization of the two-particle charges

1 IJK
P =Y i+ b plp) + T plp] ok

I IJK
Pt =Y py+ 0] plp] + 20, plplp (23)
R =Y R 4 0] pIR + EZQDf]JKpfp]IRK

where v,0,¢,I', 0, D are sets of real coefficients and the sum is intended over particle
indices I, J, K (which take values in {A, B}) and over the spatial indices i,j, k. We also
require that no terms with all particle indices equal to each other are present, so that we
recover the definition of single-particle charge when the charges of the other particles
are zero.

By requesting that these charges commute with HZ + HE + V‘%B , the parameters in
Equation (23) are fully fixed, giving indeed the proper-dS charges (19).
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Next, we turn to the corresponding three-particle case, for which the proper-dS com-
position leads to the following formulas for the charges:

Pr=((p" ©as p) @as P = pi’ +p7 +pF = L(p2 (b + p11) + p5 (7 + pi)+
02
+p3 (P7 +p7) + 5 (=20 PP P — (P1)?p1 + 20725 — PV (1)

(PD) (P + pi)* + 205 PP ps + (P + p3) (PEpf + p3pD) +
+ (pd + p5 + pS) (PS5 (P} + p1) + p§ (p3 4+ p3) — (P5)*(pT + p1)))

. (24)
Pr = ((p" Buas pP) ®us p°)2 = pi + s + p5 + L(pEpit + pTpt + ppS)+

02
— 5 (P5 (P +pD)? =P (P5 (P +p1) + (7 — P (P5 — p5))+
+ (P +p5) + (p7 — 1) (=p2pi +pip2))

R = (R* @45 R?) ®45 R© = R* + RP + RC

Evidently, we must find a Hamiltonian H L‘;‘SBC, deformation of the H(‘)“BC of Equation (15),

such that [P, HAPC] = 0 and [R, H/{fC] = 0. As anticipated in Section 2.2, our Hamiltonian
HI;‘SBC will be of the form

H;PC = H + HE + Hg + Vis™© (25)

where H is again fixed to be that of Equation (16), while V;;BC must be specified consis-
tently with Equation (18), for some choice of the parameters that Equation (18) leaves to be
determined.

A natural first guess is that the three-particle potential Vd‘%BC is given (see
Equation (15)) by a combination of our two-particle potentials given in Equation (22),
ie., Vd‘%BC = Vd‘gB + VdBSC + Vféc, but one can easily check that this does not commute
with the three-particle proper-dS charges (24). What does work is adding an extra term:

VisPC = Vik + ViE + VIS + Vil (26)
with
Vis(k) =g7£2 (PSPE(5as — 6 — pCpaiagad — pSpf(xfag — xfxf')+
+pipias (2x5 — 33 —x) — prpaxg (2 —x7) —2papfixing o
+pEpsat (20 —xf' — ) + p{laf piag + af prps g +
+x§pSpiiaf + xf'pft pBxS + gl pa i — pSpiiatad )

One can easily check that the H ‘%BC of Equations (25)-(27) commutes with the proper-dS
charges (24). Most importantly, we find that indeed, our Hamiltonian H{fSBC uniquely
selects the proper-dS charges (24) as its conserved charges. In order to see this, we start
from a general parameterization of the three-particle charges

5 tot I =IJK

P =Y pl + 3] plp] + T plp] Pk

~ fot ~ ~

P =Y py+ 0] plp] + 20 plplpf (28)

R = YR+ p{R) + 2@ plp]RE
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which shares the same properties outlined for the two-particle ansatz (23) (the particle
indices run over {A, B,C} and 4,0, $, T, ©, ® are sets of real coefficients).

We find that by requesting that these charges commute with our H{ + HE + V{18, the

parameters in Equation (28) are fully fixed, giving indeed the proper-dS charges (24).

BC
(%)’
Whereas the potential in the original three-particle Hamiltonian H{;‘BC of Equation (15) was

We leave to future studies the task of exploring the meaning of the extra term Vd‘g

just a sum of two-particle potentials, we found that the potential in its correct “proper-dS

BC
(*
of the three particles and is made of all terms involving simultaneously observables of all

deformation” H L;“SBC must include the extra term VdAs ) which is cubic in the observables
three particles.

Also noteworthy is that for the three-particle case, the proper-dS composition gives
charges which are not symmetric under particle exchange (see (24)) and accordingly, our
Hamiltonian H&L‘SBC is also not symmetric under particle exchange. We do not see any
objective problem with this lack of particle exchange symmetry, but still, it is a bit unsettling.
This made us interested in investigating which charges would be conserved if we adopted
a particle exchange-symmetrized version of our Hamiltonian H :{‘SBC

1

1 Z VT[(ABC)
6 7(A,B,C)

ABC A B C AB BC AC
H = Hi + Hg+ Hg + Vig" + Vs + Vjs + ds(%)

dS(sym) (29)

i.e., the Hamiltonian obtained by summing over all the possible particle permutations,
(ABC), of the extra term.

We then ask for which choices of the parameters of our Equation (28) the Hamiltonian
ABC
HdS(sym)
ABC
HdS(sym)

commutes with the charges parameterized in our Equation (28), and we find that

uniquely selects as its conserved charges the following ones:

P = %[(PA @as PP) Bas P+ p? Bus (PP @us p©) + (p? @uas p°) @us pP1 =
= pi + 7+ 7 — L(pips +pips + pipS + pTpS + PIPS + pips)+

p((pE)* + (1)) + (7 + P5) ()7 — p1 () — PT (1) >+

pr)? = pr (D) + pE(p5)% + i (p2)* + +pTPS P2 + Pipdps +

PP — S (p)? — apf plS + 3 (o1 pBeS + i

pips + pips + piteS + pipd))

PS5 +pipsps )+

(30)

ds
Py

oym) — %[(PA ®as P*) Das P+ p? Das (p° Dus p©) + (p? @uas p°) Bus PPl =
= p3 +p5 +p5 +LpT (P + 1)+ pipt)+
— LGSR + pi)+
— pr (35 (pf +p1) +3pips —4pips —4pspi +3p1p3 )+
+p5B(p?)* +4pipt +3(p1)?) +3(pt — 1) (pips — P2pi))

RdS(sym) _RA +RB +RC

which are indeed symmetric under particle exchange. Moreover, these charges ’Pf S(Sym),

7D;lS(sym), RAS(sym) lose the algebra (5).
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4. Charges with x-Coproduct Composition

We now move on to applying the same strategy of the analysis to the coproduct com-
position law of Equations (10) and (11), which we rewrite here (at order ¢?) for convenience:

52
Pr=(p" &cpP)r =pi +p7 — o3 pi + 5 (p2)?p0
Pr=(p" &cpPla=p5 +p3 (31)

02
R =R @ RP =R+ R® — tpg RP + = (p3)*R",
As performed for the proper-dS case, our first objective is to find a Hamiltonian H/B,
deformation of the H{'P of Equation (13), such that [P, HAP] = 0 and [R, HAP] = 0.
Applying the same strategy as the previous section, we find that the Hamiltonian HAP =
H{ + HE + VAP with

VAB — % [(YA — B2y

1 1 1
20(~pR L+t phed + Jdptad + Lot — ablnt - Jabetat) @

1 1
26 (660 4 3t 00 - )|

is such that indeed, [P, H{ + HE + VAB] = 0 and [R, H{ + HE + VAP] = 0. And we find
that the Hamiltonian H{ + H? + VA8 uniquely selects the x-coproduct charges (31) as its
conserved charges. This is easily shown by starting again from the general charge ansatz
(23) and requiring that they commute with HZ + HE + VAB; this requirement fully fixes all
the parameters in Equation (23), giving indeed the x-coproduct charges (31).

It is noteworthy that the x-coproduct charges (31) are not symmetric under the ex-
change of particles A and B, and accordingly, our Hamiltonian HZB is also not symmetric
(because the potential VKAB of (32) is not symmetric). We found that the analogous issue of
lacking particle exchange symmetry that we encountered in our analysis of the proper-dS
composition law could be “fixed” by resorting to a symmetrized version of the Hamilto-
nian, but for the x-coproduct composition law, this is not the case; if one considers the
symmetrized Hamiltonian

HAB + HBA
AB  _
HK(sym) =— 2 . (33)
then one finds that no choice of the parameters in (23) leads to charges that commute with
H:(;W)_

For the three-particle case, the x-coproduct composition law gives
Pr=(p" @ p® @ pOn = pit + b + 95+ £(—pPps —pE(ps +p3)) +

B(pfy2 1 (34)
+fz<p1 - +2P?(P?+P§)2>

Pr = (p? & p® i p)2 = ps + 15 + 15

R = (R4 @y RP @, RY) = RA + RF 4 RE 4 ¢(—pf (RF) = RS (pg + pf ) ) +

1
+ 2 (ZRC(P? +p8)2+ Z(P?)ZRB>

—_
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Using the same procedure as Section 3, one finds that the Hamiltonian

HPC = HE + HR + Hg + VAP + VPC + vAC + vAILS, (35)

with

ABC C.A, ,ALB_.C.B B.B/.C A
V (P xpxst = x§xft + xftxl — xfxl) + pPaf (xf —x1)>+

85 ( (xfaf —xfaf +afxf') — (p3)? (xfxf' — 2x{'a]) + (36)

+pPaf (piaf — pBal) + pPps (xSt — x{'xf)

+ 13 (preg'ag + Pé‘ﬁﬁ)) :
commutes with P and R. It is noteworthy that the x-coproduct extra term V}(‘?iﬁ, besides
involving terms that depend simultaneously on observables of all three particles, also
involves terms that depend only on two of the particles (and these additional terms cannot
be re-absorbed in a redefinition of the potentials V! since they are different for different
pairs of particles).

Also, in this case, we find that the Hamiltonian HABC of our Equation (35) uniquely
selects the x-coproduct charges (34) as its conserved charges; by requesting that the param-
eterized charges of Equation (28) commute with HABC, the parameters in Equation (28) are
fully fixed, giving indeed the x-coproduct charges (34).

HABC is not symmetric under particle exchange, and its symmetrized version,
1 ABC
ABC A B C
Hx(sym) = HK + HK + HK + 6 Z Vxﬂ( ) ’ (37)

7(A,B,C)

is not a viable alternative since it does not have any conserved charges; there is no choice
of the parameters in Equation (28) such that the parameterized charges of Equation (28)
commute with H48¢

K (sym)’

5. Closing Remarks

Inevitably, the physics community is approaching the challenge of understanding the
deformed relativistic symmetries of some quantum spacetimes from a perspective which is
mainly informed by our experience with special relativity, but a price can be paid when we
unknowingly make inferences based on the linearity of most special-relativistic laws. In
particular, the way in which special relativity governs how free-particle charges combine in
conservation laws applicable when particles interact is completely governed by the linearity
of transformation laws, so that charges inevitably combine linearly. Working within special
relativity, one does not even fully appreciate how the chosen form of interaction could
affect the conservation laws, because the linearity of transformation laws imposes that in all
cases, charges combine linearly, independently of the type of interactions being considered.
This is probably the reason why, before this study, the debate on total charges for quantum
spacetimes had not contemplated a possible role for the interactions, and instead relied on
one or another “naturalness argument” based on the form of the relativistic properties of
free particles.

We showed here, using the toy model of spatial 2D x-Minkowski, that the nonlinearity
of deformed-relativistic transformation laws is such that the correct notion of total charge
depends strongly on how one introduces interactions among particles. We found that,
starting from the same description of free particles, for interacting particles, one can have
at least three different ways for obtaining total charges: the one based on the proper-dS
composition law, the one based on the x-coproduct composition law, and the one obtained
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by symmetrizing the proper-dS composition law. Interestingly, we also found that it is
instead not possible to introduce interactions such that conservation laws are obtained
by symmetrizing the x-coproduct composition law. To our knowledge, ours are the first
results establishing in such a tangible way a tight connection between how one introduces
particle interactions and a suitable notion of conserved total charges. This realization
also raises some interesting conceptual issues, since of course, the way in which particles
interact is fixed by Nature (using which “criteria”?). The Hamiltonians we focused on here
appear to be unpleasantly complex, and it would be surprising (though of course possible)
that Nature would choose such complex ways to describe interactions among particles.
It is legitimate to wonder if some ways to quantize spacetime with deformed spacetime
symmetries could produce simpler descriptions of interactions among particles. If such
an aspect of simplicity was found for a certain scheme of spacetime quantization, it might
provide encouragement for studies of other aspects of that quantum spacetime.

We conjecture that it should also be possible to apply to other Lie-algebra noncom-
mutative spacetimes (see Section 1) the lessons learned here within the spatial 2D spatial
x-Minkowski toy model. Instead, our approach does not apply directly to other types of
spacetime noncommutativity, such as the canonical noncommutativity relevant for string
theory [2,31], but our study raises issues which might also deserve investigation in studies
of other attempted formulations of quantum spacetime.
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