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Abstract

Arithmetical, geometrical, and categorical forays into particle physics

JOSEPH STANLEY SMITH

This Thesis will focus on three different forays into particle physics using pure
mathematics.

Our first foray studies anomaly free gauge algebras. Using geometric methods, we
reproduce a solution given to the anomaly cancellation conditions associated with a pure
u(1)-gauge theory in Costa et al. [Phys. Rev. Lett.123 (2019) 151601]|. Using similar
techniques, the general solution to the anomaly cancellation conditions associated with
a u(1l)-extension of the Standard Model gauge algebra when the chiral fermion content
is that of the Standard Model plus three singlets, is found for the first time. For
the same Standard Model set up, a computational approach is used to catalogue all
semisimple extensions.

The second foray studies quantum mechanics in magnetic backgrounds. For such
problems, it is known that a global lagrangian need not exist, and even if it does, it
may shift by a total derivative under the action of the symmetry group. These two
facts pose an obstruction to the standard techniques of harmonic analysis. We show
that these obstructions can be overcome by passing to a redundant description with
the particle moving on a U(1)-principal bundle of the original configuration space, and
the symmetry replaced with an associated U(1)-central extension. We demonstrate
the power of this technique using a series of examples.

For the final foray we look at the inverse Higgs phenomenon which is important for
the study of Goldstone bosons. We take holonomic constraints as our starting point
giving them a categoric construction. The dual of this construction leads to a new type
of constraint we call a coholonomic constraint. Coholonomic constraints like holonomic
ones, are equivalent to unconstrained systems. We show that every instance of the
inverse Higgs phenomenon in the literature can be treated as a coholonomic constraint,
or a slight generalisation thereof we call a comeronomic constraint. In this framework,
the essential Goldstone bosons of the inverse Higgs phenomenon correspond to the

degrees of freedom of the unconstrained system.
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Chapter 1

Introduction

The current state of particle physics has at its heart the Standard Model (SM) containing
every interaction (bar gravity) and particle we know to exist with some degree of
confidence. However, some experimental results disagree with the predictions of the
SM indicating its incompleteness. These include the recent (at the time of writing)
B-anomaly results in the quantity Ry from the LHCb experiment [3] and the muon
g — 2 results from Fermilab [6].

Several complementary approaches attempt to aid in the understanding of why there
are discrepancies between the SM and experiments. These aids include model building
techniques and effective field theory methods. In this Thesis, we take another approach;
the modus operandi being to study a facet of particle physics (directly or indirectly
related to the SM) formally using techniques from (pure) mathematics. The critic may
ask why such an approach is useful? The reason is simple; understanding concepts
formally allows one to identify assumptions made, identify possible generalisations, and
derive new results aiding model building or more generic phenomenological studies.
Furthermore, the use of pure mathematics here allows new, currently unexplored,
perspectives to be found.

In order to make three different forays into particle physics within the context of the
above modus operandi, four areas of mathematics will be used within this Thesis. These
areas of mathematics are group theory, differential geometry, arithmetic geometry and
category theory.

The reader should not be surprised by the presence of group theory, as it is very
much intertwined with the study of particle physics. After all, a particle in the SM
is just a field living in an irreducible representation of the SM gauge group. The
same gauge group determines what is and is not forbidden in Gell-Mann’s totalitarian

principle; ‘Everything not forbidden is compulsory’. Examples from the Author’s
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work excluded from this Thesis and demonstrating traditional uses of group theory in
particle physics are [59, 49].

Also, the reader may not be surprised by our inclusion of differential geometry,
which has a similar intertwining with particle physics as group theory. For instance,
the formal way to study a gauge theory is using a principle bundle over the space-time
of the theory. Different connections of this principal bundle correspond to different
values of the gauge field, and the concept of gauge symmetry (or more properly ‘gauge
redundancy’) results from different choices of sections of this principle bundle. Thus,
if we study gauge theories properly we need to use differential geometry. Our use of
differential geometry will, however, go beyond its use for gauge theories.

The presence of arithmetic geometry and category theory may however surprise
(and mildly annoy) the reader, which are both more usually restricted to the ivory
towers of pure mathematicians and beyond the usual particle physicists curriculum.
The despondent reader is reassured that many benefits arise from their use. Arithmetic
geometry concerns itself with finding rational solutions to polynomial equations, and
is related to number theory and algebraic geometry (the more generic study of zeros
of polynomials). Whereas category theory concerns itself with objects (e.g. sets) and
morphisms between these objects (e.g. functions) and the properties thereof.

As previously stated, these four branches of mathematics will be used to make
three different forays into particle physics. The first foray uses group theory and
arithmetic geometry specifically utilising techniques in projective (algebraic) geometry
to consider anomaly free extensions of gauge theories. (The last part of this first foray
will also use some non-technical category theory.) The second foray uses group theory
plus differential geometry to solve quantum mechanical problems in the presence of
magnetic backgrounds. The third foray also uses group theory, in addition to differential
geometry, and category theory to study constraints in quantum field theories with
specific emphasis on the inverse Higgs phenomenon. The three forays and the areas of
mathematics they relate to are given in Fig. 1.1.

Let us introduce the three forays in more detail:

1.1 Anomaly free algebras

When considering a gauge theory, there are two bits of data of particular interest;
the gauge algebra and the representations of particles under this gauge algebra. It
is a requirement that the gauge theory is invariant under gauge transformations. If

the theory is gravitational, it must also be invariant under orientation preserving
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Fig. 1.1 The forays into particle physics in this Thesis, and their different uses of
mathematics.

diffeomorphisms and the local Lorentz symmetry. Specifically it is the quantum
partition function that must be invariant under such transformations. Roughly, if the
fermionic path integral ‘measure’ shifts under these transformations, and this shift is
not counteracted by another mechanism, it is said that we have an ‘anomaly’ in the
theory.

Anomalies in a theory can be split into two classes: global and local. In this Thesis,
we only consider gauge algebras, and not their underlying gauge groups. Statements
about global anomalies generically rely on the full gauge group, and thus will not be
discussed here (see [57]). Local anomalies can be studied using index theorems in
topology, and are related to the famous triangle diagrams [26] (see also [121, 33]). It
is widely accepted that a (4d) theory is free of local anomalies if for every X in the
image of the gauge algebra fermionic representation, X and X? are traceless. These
conditions will be called the anomaly cancellation conditions (ACCs).!

The simplest possible gauge theory to ask for anomaly cancellation is a pure u(1)-

theory. If there are n-Weyl fermions, all taken as left-handed and with charges z;, then

!Even if the ACCs are not satisfied, it is possible that the theory is absent of local anomalies via
different mechanisms, for example, the Green-Schwartz mechanism [84]. Throughout we will assume
anomaly free means the ACCs are satisfied.
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the ACCs are

> =0, (1.1)
=1
zf’ = 0. (1.2)

=1

The assumption of compactness, so that our gauge group is U (1), implies commensurate
charges, z;’s i.e. rational ratios of each other. (When referring to u(1)-gauge theories
compactness will be assumed.)

Solutions to the ACCs for a pure u(1)-gauge theory were first found in Ref. [51].
Our first step (which is derived from [17]) in this Thesis is to provide a geometric
interpretation to this solution, using techniques from arithmetic geometry.? This
geometric interpretation allows the full solution to be written down with ease, and
similar solutions to be found.?

By using arithmetic geometry we can also tackle more complicated gauge theories.
Extensions of the SM gauge algebra by u(1) are perhaps the most interesting from the
point of view of phenomenology.

These are phenomenologically interesting since such a u(1) may be related to a
gauged, spontaneously broken U(1) subgroup. This leads to a massive SM-neutral
spin-1 particle corresponding to a Z’. Models with Z’s have been studied exhaustively
in the literature: to explain dark matter [130, 120, 11, 127, 126, 128, 8, 129], the
anomalous magnetic moment of the muon [91], axions [29] or leptogenesis [47], proton
stabilisation [44], supersymmetry breaking [95|, fermion masses and mixing (via the
Froggatt-Nielsen mechanism) |75], and, most recently |78, 39, 41, 24, 40, 54, 53, 27, 11,
55, 45, 85, 25, 70, 48, 30, 35, 36, 100, 21, 22, 142, 46, 69, 77, 32, 5, 31, 20, 13, 9, 64,
79, 96, 12, 65, 10, 23, 42|, apparent lepton family non-universality (FNU) in certain
rare neutral current B-meson decays [1, 2, 93].

The study of u(1) extensions of the SM are also of interest since more generic
extensions tend to have u(1) extensions as subalgebras.

To consider the ACCs, we take 3 SM families of quarks and leptons, together
with 3 right-handed neutrinos, whose charges we label Q;, U;, D;, L;, E;, N; respectively,
with ¢ € {1,2,3}. We consider this to be the most plausible scenario with regard to

2 Arithmetic geometry has previously been applied to anomaly equations in [109], which showed
that for the SM hypercharge ACCs, the assumption of commensurate charges means that gauge
anomaly cancellation implies gravitational anomaly cancellation.

3Further developments related to u(1) anomaly cancellation can be found in [52, 63].
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aesthetics and observation (e.g. the fit to neutrino oscillation data). The ACCs become

3

0="> (6Q; +3U; +3D; +2L; + E; + N;), (1.3a)
=1
3
0=> (3Qi+ Ly, (1.3b)
=1
3
0=> (2Q;+ Ui+ D), (1.3c)
=1
3
0="(Q +8U; +2D; +3L; + 6E;), (1.3d)
=1
3
0=> (@ -2} +D} - L} + E), (1.3¢)
=1
3
0="> (6QF+3U}+ 3D} +2L} + E + N?). (1.3f)

=1

where Q;,U;, D;, L;, E;, N; are all commensurate assuming the compactness of the
gauge group.

A numerical scan of the solutions to these equations was given in [14] up to a
maximum charge of 10. But, before our paper [16] (the subject of the second part of
our first foray), no generic solution to these equations was known.

The holy grail is to find all anomaly free extensions of the SM for a fixed fermionic
particle content. Without assumptions, like the restriction to u(1)-extensions above,
however, this task seems unsurmountable. Instead of considering u(1)-extensions, one
may consider semisimple extensions. Finding all of these is a feasible task, not least
because, up to a physical equivalence, the list of such extensions is guaranteed to be
finite. The simple ratios of the SM hypercharge also hints at the phenomenological
relevance of such extensions.

The third and final part of our first foray (based on [19]) is concerned with the
above problem. To be specific, let sm be the SM gauge algebra, and 7 : sm — su(48)
the embedding of the SM into su(48) via the fermion representation. We will find all
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commuting diagrams of the form

/ ’ & (1.4)
sm ! > su(48

)

up to some notion of physical equivalence (to be defined). Here g is semisimple, and «
and 8 are embeddings of Lie algebras. Physically g would correspond to a GUT (or
more properly a PUT, for petite unified theory). The map « tells us how the SM fits
into the GUT and £ tells us how the GUT acts on the fermionic particle content. The
embedding f is taken to be anomaly free. We will show that are 340 such diagrams

which we find with a computer program, 26 of which were maximal and 6 minimal.

1.2 Quantum mechanics in magnetic backgrounds

Consider a particle moving on a smooth, connected, manifold M in the presence of
some background magnetic field. Suppose furthermore that the dynamics is invariant
under some, connected, Lie group G of global symmetries acting smoothly on M.

The study of the quantum mechanics of such a system, the subject of our second
foray, which is based on [58], is complicated by two well-known facts. The first
complication is that it is, in general, not possible to write down a term in the lagrangian
representing the magnetic field that is valid globally on M. Instead, the best that
one can do is to cover M by overlapping patches and to use multiple lagrangians,
each of which is valid only locally on some patch. The most famous example, due to
Dirac [61] and solved by Tamm [141] (see also [151, 150]), is given by the motion of
an electrically-charged particle in the presence of a magnetic monopole, but we will
see that there exists an example that is arguably even simpler (and certainly more
prevalent in everyday life!), given by the motion of a rigid body which happens to be a
fermion.

This latter example is interesting for another reason, which is that it shows that
our set-up includes systems in which there is no apparent magnetic field, but rather a
vector potential is being used to encode a global topological effect — spin, in the case
at hand — in a manifestly local way. Thus, we will be able to write a local term in
the lagrangian that accounts for the extra factor of —1 that the state of the fermion

acquires when it undergoes a complete rotation, rather than arbitrarily assigning it by
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hand, as is usually done. This is desirable, given our prejudice that physics should be
local.

The second complication is that the corresponding lagrangian (or lagrangians) will
not be invariant under the action of G, but rather will shift by a total derivative.
Perhaps the simplest example, made famous by Landau [106], is given by the motion
of a particle in a plane in the presence of a uniform magnetic field, where there is no
choice of gauge such that the lagrangian is invariant under translations in more than
one direction.

At the classical level, neither of these complications causes any problems, since they
disappear once we pass from the lagrangian to the classical equations of motion. Indeed,
the equations of motion are both globally valid and invariant (or rather covariant)
under G. Thus, we can attempt to solve for the classical dynamics using our usual
arsenal of techniques. But this is not the case at the quantum level. There, our usual
technique is to convert the hamiltonian into an operator on L?(M) and to exploit
the conserved charges corresponding to G to solve, at least partially, the resulting
Schrodinger equation. Here though, we do not have a unique hamiltonian, but rather
several; even if we did have a unique hamiltonian, we would, in general, find that the
naive operators corresponding to the conserved charges of G' do not commute with it.
The last problem is often remedied by redefining the conserved charges, but then one
finds that the new charges do not form a Lie algebra, unless we add further charges.

These two complications are apparently unrelated, at least as we have presented
them. But they are related in the sense that neither could occur in the first place,
were it not for a basic tenet of quantum mechanics, namely that physical states are
represented by rays in a Hilbert space. Thus, the overall phase of a vector in a Hilbert
space is not physical. This is what makes it possible, ultimately, to resolve the apparent
paradox that, at a point in M where two patches overlap, we have multiple, distinct
lagrangians, but each of them gives rise to the same physics. Similarly, it allows us to
absorb extra phases that arise from boundary contributions in the path integral under
a G transformation, when the lagrangian is not strictly invariant.

In this foray we show that, by exploiting this basic property, one can formulate
and solve (or at least, attempt to solve) such quantum systems in a unified way, using
methods from harmonic analysis. In a nutshell, the idea is as follows. A magnetic field
defines a connection on a U(1)-principal bundle P over M. From G (which acts on M),
we can construct a central extension G of G' by U(1) (which depends on the connection
and on P, and which acts on P). We reformulate the original dynamical system on M

in terms of an equivalent system (with a redundant degree of freedom) of a particle



8 Introduction

moving on P. This reformulation allows us to circumvent both of the complications
discussed above: not only do we have a unique, globally-valid, local lagrangian on P,
but also the Hilbert space carries a bona fide representation of G (in contrast to the
original theory, in which the Hilbert space carries a projective representation of GG
which commutes with the hamiltonain, corresponding to the fact that a quantum state
is represented by a ray in a Hilbert space). As a result, we can attempt a solution
using harmonic analysis, with respect to the group G.

It should be remarked that neither the formulation nor the method of solution that
we describe here can really be considered new. The formulation via central extensions
has appeared in a number of places in the literature, mainly with applications to
symplectic geometry and geometric quantisation (see e.g., [113, 144|) and the use of
harmonic analysis to solve quantum systems in the absence of magnetic fields (and
hence without the complications described above) was described in [87]. What is
new, we hope, is the synthesis of these ideas, which leads to a uniform approach to
solving quantum-mechanical systems, including cases with magnetic fields (a type of
topological interaction due to its independence from the worldvolume metric) or other
non-trivial topological terms.*

The methods we present are most powerful in cases where GG acts transitively on
M (meaning that any point in M can be reached from any other via the action of G)
corresponding to a special case (0 + 1 spacetime dimensions) of the usual non-linear
sigma model of quantum field theory on a homogeneous space G/H. The constraint
that G acts transitively is a strong one; it implies, in particular, that any potential term
in the lagrangian must be a constant. We thus have a ‘free’ particle, in the sense that,
in the absence of the magnetic field (and ignoring possible higher-derivative terms),
the classical trajectories are given by the geodesics of some G-invariant metric. Despite
the strong restrictions, one finds that a large class of interesting quantum mechanical
models fall into this class and can be solved in this way. Examples discussed in the
sequel include the systems considered by Landau (which, in contrast with Landau,
we solve by keeping a transitive group of symmetries - either translations or the full
Euclidean group - manifest) and Dirac (where we constrain the particle to move on
the surface of a sphere, so that the rotation group acts transitively).

In cases where G does not act transitively, the methods typically provide only a

partial solution, in that they allow us to reduce the Schrédinger equation to one on

4We remark in passing that some of the systems we study are superintegrable, offering a comple-
mentary way of understanding their exact solvability.
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the space of orbits of GG. But even here we find interesting examples where a complete

solution is possible.

1.3 The inverse Higgs phenomenon

In our third foray, which is based on [88], we want to describe constraints in field
theories with symmetry in a general way, using the language of differential geometry.
Of particular interest is the special case in which the symmetry group acts transitively
on the space carrying the fields. This includes theories of Goldstone bosons exhibiting
the so-called ‘inverse Higgs phenomenon’, in which the presence of constraints involving
derivatives of the fields implies that Goldstone’s theorem no longer holds, leading to
richer possibilities for dynamics [94]. Such constraints are generic, due to the simple
fact that no symmetry can act transitively on the fields and their derivatives, once we
include enough derivatives.

A well-known example of the inverse Higgs phenomenon are the phonons occurring
in crystalline media. Here, we can roughly think of the breaking pattern as breaking
nine symmetry generators; the rotations and translations of the crystal, and space-time
boosts. Thus from Goldstones theorem, we would expect nine Goldstone bosons, but
in actual fact we only have three. This is due to the fact that we can write invariant
equations (or ‘constraints’) which express the Goldstone bosons of the rotations and
boosts, in terms of the derivatives of the three Goldstone bosons of translations. This
removes the rotation, and boost Goldstone bosons from consideration, leaving only
three essential Goldstone bosons - the phonons. This removal of Goldstone bosons is
an instance of the ‘inverse Higgs phenomenon’.

Another example of this phenomenon is the non-relativistic particle in which both
position and velocity are a prior: treated as separate Goldstone bosons. The symmetry
group then allows you to relate the Goldstone bosons of velocity to the derivatives of
the Goldstone bosons of position (in the usual way). This example of the inverse Higgs
phenomenon allows you to derive the kinetic energy of a non-relativistic particle via a
topological term.

Our main motivation for the foray is not the pursuit of generality for its own sake,
but rather to show that many of the apparently ad hoc constructions existing in the
literature on the inverse Higgs phenomenon are, in fact, very natural, when viewed
with a sufficient level of abstraction. Doing so also makes it easier to see which of the
various assumptions made are necessary for physical consistency and which are merely

convenient.
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Perhaps the most important insight we obtain is the following: In the special case
where the symmetry acts transitively, any constraint is necessarily nonholonomic. Such
constraints are notoriously difficult to deal with in general, even in classical mechanics
(an infamous example being the motion of a bicycle). By suitably reformulating the
more familiar notion of a holonomic constraint in our framework, we will see that there
exists a special class of nonholonomic constraints that are dual (in the sense of category
theory) to holonomic constraints, which we thus call coholonomic constraints. The
duality is somewhat fiddly at the level of the aforementioned ‘space carrying the fields’
(which is, mathematically, a fibred manifold), but it reduces to the following simple
statement at the level of the kinematic degrees of freedom of the physical theory: a
system with a holonomic constraint is equivalent to an unconstrained system defined
on a subobject, while a system with a coholonomic constraint is equivalent to an
unconstrained system defined on a quotient object. The first part of the statement
(which is, mathematically, a theorem about sheaves) corresponds, at an elementary level,
to the notion of ‘solving the constraint to eliminate redundant degrees of freedom’, while
its dual corresponds to the familiar notion that one can consider just ‘essential Goldstone
bosons’. Because theories constrained in such ways are kinematically equivalent to
unconstrained ones, no new issues of physical consistency arise and no new difficulties
are encountered in formulating and studying dynamics (unlike for bicycle motion).

Remarkably, it turns out that every example of the inverse Higgs phenomenon that
we have been able to find in the literature involves the dual of either a holonomic
constraint or, in just a few cases, of a slight generalisation thereof, which we call
(co)meronomic constraints. Systems with (co)meronomic constraints are not obviously
equivalent to unconstrained systems and so we must worry about issues of physical
consistency. Here, we content ourselves with establishing just two basic consistency
properties enjoyed by such constrained systems, namely that they satisfy basic locality
requirements and that local degrees of freedom exist at every spacetime point (in the
language of sheaf theory, we require that the degrees of freedom form a sheaf whose
stalks are not empty).

To describe the other features of our approach, it is perhaps easiest to sketch
the basic ingredients. Our foray will begin by describing constraints in field theories
without regard to symmetry. Rather than using local coordinates, as in the physics
literature, we use a coordinate free approach, which not only allows us to take global
considerations into account, but also clarifies exactly which mathematical structures

are being made use of.
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In the most basic examples of field theories, the fields are smooth maps from some
‘spacetime’ manifold to some ‘target’ manifold, so the ‘space carrying the fields’ can
be taken to be simply the product of the two manifolds. We generalise by replacing
this product by a fibred manifold. Fibred manifolds are the most general objects that
(locally) admit smooth sections, which can serve as the local degrees of freedom (i.e.
the ‘fields’ of the field theory). Fibred manifolds generalise the more familiar notion of
fibre bundles, in that over each point in spacetime there is a well-defined fibre. But
unlike fibre bundles, the fibres over different points in spacetime may not even have
the same homotopy type, let alone diffeomorphism class, so there is no meaningful
notion, even locally, of a ‘target space’.

Fibred manifolds form a category and we will see that many of the constructions
required for dynamics are conveniently understood using the language of category
theory. For example, there is a functor — the rth-jet functor — which sends a fibred
manifold to its rth-jet manifold, which is itself a fibred manifold encoding the notion
of the derivatives of sections of order up to r, in a coordinate-free way. Consistent
dynamical constraints may be described as certain subobjects of the jet manifold,
and we show how holonomic and meronomic constraints (and their duals) can be
understood in this way. Consistency, for us, amounts to insisting that the sections that
are compatible with the constraint form a sheaf (such that locality is obeyed) whose
stalks are non-empty (meaning that local degrees of freedom exist at every point in
spacetime).

We then introduce the notion of symmetry, via a Lie group action on the fibred
manifold. A great deal of simplification arises in the special case where the action is
transitive and equivariant with respect to the projection onto spacetime, which we call
a fibrewise action (an example is the galilean symmetry of a non-relativistic particle).
In such a case, both the fibred manifold and its jet manifolds take the form of fibre
bundles associated to the L-principal bundle G — G//L, for Lie groups L C G. The
category of such bundles (called homogeneous bundles in the mathematical literature)
is equivalent to the category of manifolds equipped with an action of the group L.
This simple statement extends and makes rigorous the physicist’s vague notion (put
forward in [50, 43]) that ‘in studying sigma models based on a target space G/L, L
invariance implies GG invariance’. It also shows that some constructions used in the
literature on sigma models, such as connections and vielbeins, are unnecessary. We
describe a number of examples with group actions of this type.

More generally, it is an unavoidable fact that starting from a group action on a

fibred manifold, in general only a partial group action is induced on its jet manifolds
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(the Poincaré symmetry of a relativistic particle is an example). It therefore makes
sense to work with partial group actions from the off in the general case, which we
do. Though the resulting mathematics is technically rather cumbersome, the results
are conceptually straightforward, thanks to the category-theoretic nature of our earlier
constructions. We also discuss a number of examples with partial group actions.

This foray will be purely at the level of kinematics; in particular, we do not discuss
how dynamics can be specified in the form of an action (in the physics sense of the word).
In all examples we study, this is, however, straightforward: the action is determined by
choosing a differential form on the constraint manifold (which is a submanifold of the
rth jet manifold) whose degree coincides with the dimension of the spacetime manifold.
The action is then evaluated on a section (i.e. a field) by pulling back the differential
form along the section and integrating over spacetime. One complication is that many
such forms yield actions that are trivial in the sense that they are either identically
zero or do not contribute to the equations of motion. In the presence of symmetry, this
makes the classification of invariant dynamical theories tricky, because the set of such
theories includes those whose action is not invariant under the group transformations,

but rather shifts by such a trivial action.

1.4 Thesis layout

Before delving into the finer details of each of the different forays, Chapter 2 will
introduce some of the more elementary mathematical constructions used in this Thesis.
This Chapter may be skipped without loss of continuity.

Chapters 3, 4 and 5 are related to our first foray, and are respectively extracted
from the papers [17, 16, 19]. The first of these Chapters will look at a geometric
solution to the ACCs of a pure u(1)-gauge theory. Associated with this Chapter is
Appendix A. Here we will prove a theorem stated in the text, as well as providing an
alternative solution to the ACCs for the case with an even number of Weyl fermions.
Chapter 4 contains the first ever solution to the ACCs associated with u(1)-extensions
of the SM, with three right handed neutrinos. Chapter 5 is slightly distinct from the
other two dedicated to this foray. Here we will find, using a brute force approach, all
anomaly free semisimple extensions of the SM contained in su(48). Appendix B will
look at the more formal aspects of this search.

The second foray will be restricted to a single Chapter, Chapter 6. Here we will

discuss quantum mechanics in magnetic backgrounds. This Chapter is extracted from
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the paper [58|. Part of our discussion will use harmonic analysis, the rudiments of
which we describe in Appendix C.

The third foray is again restricted to a single Chapter, Chapter 7, and is extracted
from the paper [88]. We will discuss in this Chapter how category theory can be used
to form constraints dual to holonomic ones, and how these, after a slight generalisation,
contain every example of the inverse Higgs phenomenon we could find. This Chapter
is the heaviest mathematically, thus we will do two things to ease the burden on
the reader: Firstly, we will adopt the mathematical ‘Theorem’, ‘Lemma’, ‘Definition’
format. Elsewhere in this Thesis, bar one exception in Chapter 3, theorems, lemmas
and definitions have been placed within the flow of the main text. The second thing
we have done to ease the burden, is to place many of the more involved proofs into
Appendix D.

After completing all our forays, this Thesis will conclude in Chapter 8, where we
will review what has been discussed in this Thesis. We will also discuss possible future
directions of study.

Throughout this Thesis, when a term is first introduced it will be placed in talics.
All such definitions appear in the index of this Thesis, with reference to the page of
first introduction. A word that may cause specific confusion throughout this Thesis is
‘geometry’. This is due to its presence in both the algebric and differential guise. It is
hoped it will be clear from context which one we are referring to, but as a general rule;
‘eeometry’ in Chapters 3 and 4 will refer to algebraic geometry, whilst elsewhere to

differential geometry.






Chapter 2
Mathematical prerequisites

This Chapter contains basic descriptions of the mathematical prerequisites for this
Thesis.

We start in §2.1 by explaining the algebraic concepts including a definition of
projective spaces which will be used in Chapters 3 and 4. In §2.2 we look at Lie
algebras, going into detail defining root systems and studying embeddings. A detailed
understanding of these points is not so important for the rest of this Thesis, but are
included for completeness and as an aid to Chapter 5. The next Section, §2.3, will look
at ideas in topology and differential geometry relevant to Chapters 6 and 7. The last
Section of this Chapter, §2.4, is devoted to category theory. This is of primary use in
Chapter 7 although it underlies many of the concepts used in this Thesis.

2.1 Algebra

The material in this Section forms the foundation for many definitions which follow.

Perhaps the proper place to start is by defining a set. We content ourselves with a
rough definition: A set is a collection of objects, where repetitions do not occur and
order does not matter.

We start our more formal definitions with that of a field. Common fields include:
the rational numbers, QQ; the real numbers, R; and the complex numbers, C. Formally,
a field is a set [, with two operators, addition + : F x F — F and multiplication
- F x F — F such that:

1. (F,+) forms an abelian group,

2. (F\{0},-) forms an abelian group where 0 is the identity of (F,+),



16 Mathematical prerequisites

3.a-(b+c¢)=(b+c)-a=a-b+a-cforallabcel.

A wector space over a field F consists of a set V' and two operators, addition
+:V xV =V, and scalar multiplication F x V' — V', such that:

1. (V,+) is an abelian group,
2. a(U+ W) = av+ aw for all a € F, and ¢, @ € T,

3. (a+b)v

av+ bv for all a,b € F, and v € V,
4. (ab)v = a(bV) for all a,b € F, and v € V,
5. 1¥ =¥ for all ¥ € V where 1 is the identity of the group (F/{0},-).

An affine space over a vector space V' is a set A, and a operator +: A x V — V,
such that

1. a4+ 0=a for all @ € A where 0 is the identity of (V,+),
2. (a+?v)+W=a+ (V+ ) for all a € A and ¥,W € V,
3. themap V — A: ¥+ a+ ¥ is a bijection for all a € A.

Intuitively, affine spaces can be thought of as vector spaces where one forgets about
the zero vector.

Given a field F, the space F" can be given the structure of a vector space over
F. The projective space PF"1 (note the change in superscript) is defined to be the
set of all lines through the origin of F”. Formally, if 0 is the zero vector in F”, then
PF"~! = (F*\{0})/ ~, where ~ is the equivalence relation defined by the condition
that v; ~ vy with v, v, € F" if and only if a A € F exists such that o, = Atvh. We will

be most interested in the projective space PQ"~! for some n.

2.2 Lie algebras

We now introduce the basics of the theory of Lie algebras. Suitable, more detailed,
sources for the material in this Section include [66, 60, 110, 152, 132, 97, 76|, which
form the main references for the material here.

A Lie algebra is a pair (g, [-,-]) of a vector space g and an anti-symmetric, bilinear

operator (called the Lie bracket) [-,-] : g X g — g satisfying the Jacobi identity.



2.2 Lie algebras 17

A Lie algebra is simple if and only if it has no non-trivial ideals. A Lie algebra is
semisimple if and only if it is the direct sum of simple ideals. A Lie algebra is reductive
if and only if it is the direct sum of a semisimple Lie algebra and an abelian Lie algebra.
We have that

simple semisimple reductive
C

C
algebras algebras algebras

As an example, both su(2) and su(3) are simple. The algebra su(2)®su(3) is semisimple
but not simple. The algebra su(2) ® su(3) @ u(1) is reductive but not semisimple. We
will use the phrase non-simple to refer to a Lie algebra which is semisimple but not
simple.

A Lie algebra is said to be compact if it is the Lie algebra of a compact group. The
main effect of this is to change the representations we allow for the Lie algebra.

A Cartan subalgebra, b, of g is a self-normalising nilpotent subalgebra. The Cartan
subalgebra is not generically unique, however, if g is defined on an algebraically closed
field of characteristic 0, then for any two Cartan subalgebras h; and by of g, there
exists an inner automorphism (which we shall shortly define formally) u such that
u(h1) = ba (see e.g. [60, Th. 3.5.1]). From here out, we consider all our algebras to be

complexified, and therefore over the algebraically closed field C of characteristic 0.

2.2.1 Root systems

We now introduce the notion of a root system, in an abstract sense, and then will
return to Lie algebras with root systems at our disposal. Given a real vector space E
with inner product (-, -), a (crystallographic) root system is a set of non-zero vectors,

®, in F satisfying the following conditions:
1. the vectors in ® span F,
2. if a € ®, and k € R, then ka € ® if and only if k = +1,

3. for « € @, defining s, : K — FE : f+— [ — 2%&, then ® is closed under the

action of s,,
4. for a, 5 € ® then 2(a, B)/(a, @) € Z.

Two root systems, ® in £/ and &' in E’ are said to be isomorphic, if there exists a linear
transformation ¢ : E — E’ such that 2(¢(«), #(5))/(d(a), d()) = 2(a, B)/(c, ).
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A root system is said to be irreducible if it can be written as the orthogonal disjoint
union of two other root systems ®,, ®5. Explicitly, an orthogonal disjoint union is a
union ®; Uy with &1 NPy = () and (o, f) = 0 for all « € ®; and 5 € Ps.

Associated with the root system ® are the orthogonal transformations of E, we
denoted s, above. The subgroup of all orthogonal transformations of £ generated by
the s,’s for all a € ® is called the Weyl group.

A subset @ of ® is called a set of positive roots if it satisfies the following conditions:
1. for each o € ® exactly one of the pair {a, —a} is in &7,
2. ifa,f €T and a+ S € ® then o+ 5 € 7.

Given a ® there are many ®*, but they are all related by the action of the Weyl group.
A root a € @t is called a simple root if there does not exist a 3,y € ®* such that
a = [+ 7. The set of simple roots will be denoted A. The set of vectors A forms a
basis of E.

Given A, one can define its Dynkin diagram as the graph with a node for each
a € A, and

A(a, B)?
(o, @)(B, B)

edges between the node specified by «, 5 € A. If (5,8) > (a,a) we direct the edge
from a to 8. Two root systems are isomorphic if and only if they have identical Dynkin

(2.1)

diagrams. Fig. 2.1 shows the classification of Dynkin diagrams of irreducible root
systems.

Each root system has a corresponding dual root system. For a € ® let o¥ =
2a/(a, ). The dual root system ®V is formed by the set of elements o¥. The set,
®Y is indeed a root system of the inner product space E. The set (7)Y is a set of
positive roots, and AY the corresponding set of simple roots. Since, AV forms a basis
of E, we can form a basis {(a",-)} of E* (the dual of E). The dual of this basis, is
again a (different) basis of E, which we denote A. The elements of A are called the
fundamental weights. The weight lattice is then defined to be

A:{ZaiwiEElaiEZ,wiEA}. (22)

Given a root system ® a subsystem is a subset I' C ® satisfying the following two

conditions:
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A, (su(n+ 1))

Fig. 2.1 The complete classification of Dynkin diagrams, and consequently Lie algebras.

1. if « € I then —a €T,
2. ifa,fel’,and a+ [ € @, then a+ g €T
Lastly we define a II-system which is a subset of vectors II C @, such that

1. the vectors in II are linearly independent,

2. if o, 5 €11, then a — 5 ¢ .

2.2.2 Lie algebras and root systems

Returning to Lie algebras. Given a Lie algebra g, and a Cartan subalgebra, b, a root is
an element « € h* (the dual of ) such that there exists an X € g with ad, X = a(h)X
for all h € h. We denote the set of roots as ®(g, h), and E(g, h) the vector space over R
spanned by the vectors ®(g, b). If g is semisimple we can endow E(g, ) with an inner
product so that ®(g, h) is a root system in E(g, b). This inner product is defined via
the killing form, which is the map k: gx g — C: (X,Y) — tr(ady - ady). Specifically,
for every A € E(g,h), there exists a unique hy € b such that x(hy, h) = A(h) for all
h € b (see e.g. [97]). The inner product is then defined by (-,-) : E(g,h) x E(g,h) —
R : (A1, A2) = K(hy, hyy)-
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Different choices of Cartan subalgebras of g lead to isomorphic root systems.
Furthermore, two complex semisimple Lie algebras with isomorphic root systems are
themselves isomorphic. A semisimple algebra is simple if and only if its root system is
irreducible. These facts alone, and the classification of the Dynkin diagrams in Fig. 2.1,
allows for a classification of semisimple Lie algebras. The simple Lie algebra associated

with each Dynkin diagram is included in Fig. 2.1.

2.2.3 Embeddings

We now turn to embeddings of Lie algebras. An embedding of the Lie algebra g¢’, into
g is an injective map compatible with the Lie brackets. An embedding is called an
isomorphism if it is also a surjection. An embedding is called an automorphism if g’ = g.
The group of automorphisms of g is denoted Aut(g). The subgroup, Int(g) C Aut(g),
of inner automorphisms is that generated by exp(ady), where X € g such that adx
is nilpotent (see e.g. [38]). The group Out(g) = Aut(g)/Int(g) is called the group of
outer automorphisms.

Two embeddings f, : ¢’ — g and f, : ¢’ — g are said to be equivalent if a u € Int(g)
exists such that f; = uo fo. If g’ and g are semisimple, with chosen Cartan subalgebras
h" and b, then for any f : g — g, an equivalent one exists such that f(h") C h. This
allows us to define f* : b* — h™ : A — Ao f. If A is the weight lattice associated
with (g, ) (which is independent of possible other choices) and A’ is the weight lattice
associated with (g’,b’), then f*(A) € A’. We denote the corresponding function
Af : A — A. The function Af written in a basis of fundamental weights, is called
the projection matriz. (We will, where appropriate, extend the action of Af to the
corresponding Euclidian spaces).

If f is an automorphism, then we get Af : A — A, but in addition Af(P) = & for
the corresponding root system (if it preserves the Cartan subalgebra). The function
Af is then an automorphism of the root system ®. Taking the automorphisms of ®
and taking the quotient with respect to the Weyl group we are left with O(g), the
group of graph automorphisms of the Dynkin diagram corresponding to g. We then

have a short exact sequence
1 —— Int(g) —— Aut(g) — O(g) — 1 (2.3)

which, furthermore splits. Thus Out(g) = O(g), and an automorphism f € Aut(g)
which fixes b is inner if and only if its Af is in the Weyl group. The elements of O(g)
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will sometimes be called ‘the outer automorphisms’ (although we admit that this is an
abuse of terminology).

If two embeddings f; : ¢’ — g and f; : ¢ — g branch every representation of g
in the same way, they are called linearly equivalent. Two representations are linearly
equivalent if and only if Af; and Afs differ by the Weyl group |66, Theorem. 1.1].
Unfortunately, linear equivalence is in general coarser then equivalence. However, for
the classical Lie algebras the linear equivalence f; and f, implies the existence of an
automorphism relating f; and f,. This is not the case for exceptional Lie algebras [116].
Nevertheless, we content ourselves with working with projection matrices (as it is all
we will need in the sequel).

We now turn to maximal embeddings. An embedding f : g’ — g of semisimple
algebras is said to be mazimal if there is no two embeddings (but not isomorphisms) of
semisimple algebras f; : g' — ¢”, and f5 : g” — g such that f = f5 0 f;. Once maximal
embeddings are found generic embeddings can then be found via a recursive approach.

If g = su(2) then there is a single maximal embedding f : ) — su(2). If g is
non-simple with a decomposition into simple algebras €, g; the maximal embeddings

are of two types |66, Th 15.1]. The first type of maximal embedding is of the form

=P aPoPu. F=Pupu-fiPu. (2.4)

k<i k>t k<i k>i

where ¢ : g — g, is the natural inclusion, and f; : g, — g is a maximal embedding of

simple algebras (which we will discuss shortly). The second type is of the form

v=Po F=PuPli+iofy)Pu (2.5)

kj k<i k>

where f;; : g; — g; is an isomorphism.

For a simple Lie algebra g, a reqular maximal embedding, f : g’ — g is one for
which, up to an equivalence, [h, f(g')] C f(g'), where b is a Cartan subalgebra of g.

All maximal regular embeddings may be constructed as follows: Letting A denote
the set of simple roots of g, we define a partial ordering on ® defined by A\; > A,
if Ay = Ay = > ca ko with k, > 0 Vo € A. The simple algebra g has a unique
maximal root with respect to this ordering, which we call § [132]. We form all sets
AU{=0}/{a} for a € A and A/{a} for « € A. Denoting one of these sets A, then A’
forms a Il-system of ®. A subset I' is then formed by taking all integer combinations

of elements in A’ such that the result is in ®. The subsystem I' is itself a root system,
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and defines a semisimple subalgebra, which is g’. The projection matrix Af can be
determined from the embedding of I" into .

Non-regular maximal embeddings are called S-embeddings. They can be split
into simple and non-simple S-embeddings. For the exceptional algebras these can
be determined explicitly. The simple S-embeddings for the classical algebras are
associated with irreducible representations. Generically (there are some exceptions), a
d-dimensional irreducible representation (irrep) ¢’ of g’ defines a maximal S-subalgebra
of: su(d) if it does not possess a bilinear invariant; so(d) if it possesses a symmetric
bilinear invariant; and sp(d) if it possesses a anti-symmetric bilinear invariant. In these

cases the weights, w;, of the defining representation of g project under Af into those,
wi, defined by ¢'. Thus we have

Af owe) = wi, (2.6)

for some permutation o € S;. Some choices of permutations will not be valid, for
example they would imply Afw; # —Af(—wy), violating the linearity on Af. Those
which are consistent are related by automorphisms. Using Eq. 2.6 and psudoinverses
of matrices, one can determine Af (as done in |71, 72|).

Lastly we come to non-simple S-subalgebras for the classical algebras. The classifi-
cation of these algebras is much simpler than in other cases and is given in [67, Th.
1.3 & 1.4]. They are related to certain embeddings of the defining representations of
e.g. Sp(2s) x Sp(2t) into SO(2st). In a similar way to Eq. 2.6 the explicit matrices
Af can be found.

2.3 Topology and differential geometry

We now move onto the mathematical prerequisites relating to topology and differential
geometry. The main references for this Section are [119, 118, 101, 122].

A topological space is a set T with a family of subsets 7 such that!
1. T € 7 and () € 7 where () is the empty set,
2. any union of subsets in 7 is also into 7,

3. any intersection of finitely many subsets in 7 is in 7.

!Topology is used implicitly in particle physics, for example when one ‘adds a point at infinity’,
they are really adding a point to the set underlying a topological space, and specifying new open
subsets that contain it.
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The subsets in 7 are called the open subsets, and their complements in 7" are called
the closed subsets. Given two topological spaces T and 7', a map f : T — T’ is
called continuous, if for every open X C T the subset f~'(X) is open in T. A
homeomorphism is a continuous bijection with a continuous inverse.

A (smooth) manifold is a topological space M, with a family of pairs {(U;, ¢;)},
where U; is open in M, and |J,;U; = M. The quantity ¢; is a map from U; to an
open subset V; C R” for fixed n, which is a homeomorphism. For any ¢, 7 such that
U;NU; # 0 then ¢; o ¢;1 acting on ¢;(U; NU;) is infinitely differentiable, in the usual
sense on R”. The family {(U;, ¢;)} is called an atlas, and each member (U;, ¢;) is called
a chart. Two atlases on the same topological space are said to be equivalent, and
thought of as defining the same manifold, if their union is also a smooth atlas. The
equivalence class of atlases defined by this relation is called the smooth structure on M.

A smooth map between two manifolds M and M’ is a map f : M — M’, such
that for any suitable choice of charts ¢; on M and ¢; on M’, ¢ o f o ¢; ' is infinitely
differentiable.

Let (U;, ¢;) be a chart containing the point p. This chart defines local coordinates
around p, which we will denote x*. Let v(¢) : R — M be a smooth map (such a map

is called a curve). Then

da*(y(t)) ' 9 (2.7)

dt » oz

is called the tangent vector of (t) at p. The set of all possible tangent vectors at p
is the tangent space at p and denoted T),(M ). The set T,,(M) has the structure of a
vector space. Given a map f: M — M', the map T,,f : T,M — Ty, M’ is defined by

00 O, st D 29

dt , OxH dt , oxh’

Elements of the dual vector space T;(M) are called differential forms. Anti-
symmetric tensors made up of r differential forms are called the r-forms.

We now look at different (smooth) maps between manifolds. A submersion is a
map f: M — M’ such that T, f is a surjection for all p € M. An immersion is map
f: M — M’ such that T,f is an injection for all p € M. An embedding is a map
f: M — M’ which is an injective immersion and a homeomorphism onto its image.
The image of an embedding is called a embedded submanifold (or submanifold for
short).
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A fibred manifold consists of two manifolds, the total space Y, a base space X and a
surjective submersion 7 : Y — X. The inverse image 7~ !(x) for any point in z € X is
an embedded submanifold of Y. It is called the fibre of the fibred manifold at x. For a
fibre manifold, the submanifolds 7#~1(z) at distinct x need not be of the same homotopy
type, or diffeomorphism class. A fibre bundle is a special type of fibred manifold. For
a fibre bundle with typical fibre F, for every z € X there exists a neighbourhood U
with x € U C X and a diffeomorphism 6 : 771(U) — U x F with 7w 0 07 *(m, f) = m.
In a fibre bundle, every fibre is manifestly diffeomorphic (recall our discussion in §1.3,
where we related this to a target space).

Given a fibre bundle over X, we can equip X with an open covering {U;} and a
collection of {6;}, where each 6; is a diffeomorphism between 7! (U;) and U; x F as
above. This is called a local trivialisation. On double intersections of the open sets
in the cover, one may have transition functions, t;; : U; N U; — G, to some group G,
known as the structure group. There is a left-action of G on the fibre F' defined such
that Hjl(m, f)=0"(m,t;(m)f).

For either a fibred manifold or a fibre bundle, a local section isamap o : U — Y
where U is open in X and 7o ¢ is the identity on U. A global section is a local section
for U = X. Given a local trivialisation on a fibre bundle, a global section may be
described by a series of maps s; : U; — F' such that s; = t;;s;.

A specific type of fibre bundle is a principal bundle. In a principal bundle the
structure group G is a Lie group, which as a manifold, is diffeomorphic to the typical
fibre F'. In addition, the Lie group G has a right action, which we will denote R, on
P such that m o R, = 7 which acts both freely and transitively on each fibre.

On a principal bundle 7 : P — X, we can define a principal connection 1-form (or
simply connection for short). This is a 1-form on P with value in the Lie algebra, g, of

the Lie group G. A connection must satisfy the following conditions

A(X?) = X,
. (2.9)
RjA = Ad,-1 A,
where X is in the Lie algebra g, and the vector field X# on P is defined by
# d
X7 f(p) = 2 f (Rewx - p) (2.10)

t=0

forpe Pand f: P — R.
Given a connection, a horizontal lift of a curve v : [0,27] — M is a curve vy :

[0,27] — P such that v = 7 o 4y, and the tangent vector at each point p € Im(vy),
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which we call V), satisfies A(Y,) = 0. In other words, 73, is horizontal with respect to
the connection. A horizontal lift of a curve is unique, up to specifying the start point
in the fibre above (0).

Using a horizontal lift we can define the holonomy. The holonomy of a loop
v :[0,27] — M is defined as the element g € G such that

Y (2m) = Ry (0). (2.11)

Let 4 : [0,27] — P be an arbitrary loop which projects down to « under w. The
horizontal lift is related to ¥ by

Yhi = R(efifg’y*A) °7. (2.12)

Using Eq. 2.11 and Eq. 2.12, one finds that the holonomy of v (with respect to the

. . 2T ok
connection A) is equal to e~?Jo” 74,

2.4 Category Theory

We finally come to category theory. Suitable, introductory, references for this material
are [134, 146].

A category C is a collection of objects and morphisms between those objects satisfying
a series of axioms. Namely, for each object C there is an identity morphism id¢ : C' — C
and we can compose any morphism from C' with any morphism to C', subject to the
rules that composition is associative and that pre- or post-composing a morphism with
the identity morphism returns the original morphism. Examples based on previous
discussions are the category Set, whose objects are sets and whose morphisms are
functions; the category Top, whose objects are topological spaces and whose morphisms
are continuous maps; and the category Man, whose objects are smooth manifolds and
whose morphisms are smooth maps.

Given a pair of categories C,C’, a functor F' : C — C' is a mapping of each object C'
in C to an object F(C) in C' and a mapping of each morphism f: C — C'inCtoa
morphism F(f): F(C) — F(C) in C' that preserves identities and composition. We
have, for instance, functors Man — Top and Top — Set that simply forget the extra
structure.

Given a category C, its opposite category C°P has the same objects as C, but all
morphisms have their sources and targets swapped. A functor from C°P to C’ is often

called a contravariant functor from C to C'.
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Given a pair of functors F, F’ : C — C', a natural transformation n : F = F' is, for
every object C' in C a morphism 7 : F(C) — F'(C), such that, for every morphism
f:C — C, the diagram

F(C) = F'(C)
F(f) (2.13)
F(C) —— F'(C)
commutes. A natural isomorphism is a natural transformation for which each morphism
Nc is an isomorphism in C'.

An equivalence of categories C,C’ is a pair of functors F': C — C" and F’ : C' — C,
such that there exist natural isomorphisms between F” o F' and the identity functor on
C and between F o F” and the identity functor on C'.

We now want to introduce the notion of a limit. To do so, we first need to define
diagrams and cones. A diagram D in the category C is a collection of objects {D;};er
and morphisms {g, : D; = D, },er between them.> A cone of D is a tuple (C, { fi}ier)
containing an object C' and morphisms f; : C' = D;, such that for each g, : D; = D;

the diagram (which really is a diagram, in the sense of our definition)

C
y \f: (2.14)
Di Ja > Dj

commutes.® A limit of D is a cone (C, {f;}icr) of D that is universal in the sense that
any other cone (C’, { f/}icr) of D factors through it via a unique mediating morphism
u: C" — C. In other words, f/ = f;ou for all ¢ € I. A limit need not exist for a given
diagram, but if it does it is guaranteed to be unique up to unique isomorphism. It is
therefore common to abuse terminology and talk about ‘the’ limit of a diagram, and
we will do so too.

For example, a pullback is the limit of the diagram

Dy 2 Dy +2— D, . (2.15)

It exists in Top and the limiting object C'is given by the set D X p, Dq := {(dy,ds) €
Dy x Ds|g1(dy) = g2(d2) € Dy}, with the subspace topology, and the maps f; » given by

2Equivalently, a diagram is a functor from an indexing category to C.

3The fact that this diagram commutes means that to uniquely specify a cone, we do not need to
specify all morphisms f;, since some can be deduced. In what follows, we shall only write down those
morphisms which can not be deduced from commutative diagrams.
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the restrictions to Dy x p, Do of the projections Dy x Dy =% D; . It does not exist, in
general, in Man or related categories. It does, however, exist in Man when one morphism,
go say, is either a surjective submersion or an open embedding, in which case f; enjoys
the same property.

A special case of a pullback is an inverse image, in which one morphism, g, say,
is a monomorphism (roughly equivalent to an injection). In Set, this is the usual
inverse image and so it is common to denote the limiting object by g;*(D,), with
the other data often left implicit. As for a general pullback, the inverse image is not
guaranteed to exist in Man or related categories. Though, it does exist in Man in the
special case where g, is not just a monomorphism but is an open embedding. Another
case where it exists is the limit of Y > X < %, where Y is a fibred manifold and
x . x — X is the inclusion of a point at x € X. Here x is a monomorphism, but is not
an open embedding, but the limit nevertheless exists because the map 7 is a surjective
submersion, the limiting object being precisely the manifold given by the fibre 771 (x)
which we introduced in §2.3.

As another example, the equaliser is the limit of the diagram

g2
Dy ? Dy . (2.16)

Equalisers always exist in Top, but like pullbacks may not exist in Man or its cousins.

2.4.1 Presheaves, sheaves and étalé spaces

Let Ox be the category whose objects are the open subsets of the topological space X,
and whose morphisms are inclusions. A functor I' : OF — Set is called a presheaf.
The category whose objects are these functors and whose morphisms are natural
transformations between them is called the category of presheaves.

A sheaf is a presheaf, I', satisfying the following conditions:

1. if {U;} is an open cover of U, and a,b € I'(U) such that I'iy, y(a) = iy, v (b) for

every inclusion ¢y, 7 : U; = U, then a = b,

2. if there exists a; € I'(U;) such that on U; N U; # () we have Ly, v, (a;) =

Lwy,nu,0,(aj), then an a € I'(U) exists such that 'y, (a) = a;.

The category formed with sheaves as objects, and natural transformations between
them as morphisms, is called the category of sheaves.
Related to sheaves are étalé spaces. These are founded in topology and so a pure

classifier would have put them in §2.3. An étalé space over a topological space X is
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a pair (E,p) of a topological space E and a local homeomorphism p : E — X. An
étalé morphism between two étalé spaces (E,p) and (E',p’), is a map f: F — E’ such
that p’ o f = p. The category of étalé spaces, has étalé spaces as objects and étalé
morphisms as morphisms. The category of sheaves and the category of étalé spaces are

equivalent categories.



Chapter 3

Solving the anomaly equations pure

u(1)-gauge theory

Our first foray is concerned with the study of anomaly free gauge theories and extensions
thereof. A pure u(1)-gauge theory is the simplest example where one can study
anomalies. This can, alternatively, be thought of as a theory where the particles
involved are assumed to carry no other gauge representations (e.g. in a dark sector).
The task of solving the ACCs (Egs. 1.1) associated with such a theory using techniques
well established in geometry, is the topic of this Chapter and the first part in this
three-part foray into anomaly free gauge theories.

We start in §3.1 by explaining a solution to these ACCs given in [51]. In §3.2, we
give a geometric reformulation of this solution, in the process, generalising a number
theoretic result of Mordell to dimensions higher than three. We conclude in §3.3.

There is one potential inconvenience in our parameterisation, in that there are special
solutions generated differently from others, which we circumvent in Appendix A.1. We
present a different form of the general solution for an even number of Weyl fermions in
Appendix A.2.

3.1 The CDF solution

The local anomaly cancellation equations for a u(1)-gauge theory with n left-handed
chiral fermions of charge z;, which may be taken to be integers (by an appropriate

rescaling, and by assumption of compactness of the gauge group), are given in Eq. 1.1,
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and are repeated here for convenience

3

2% =0, (3.1)
=1
Z =0 (32)

1

1

The first of these, Eq. 3.1, comes from a one-loop triangle diagram with two external
gravitons and one external u(1)-gauge boson [68|, whilst Eq. 3.2 comes from the
similar diagram with three external u(1)-gauge bosons [7, 28, 37, 89, 82|. Although
written for left-handed chiral fermions, these equations are general for a theory with
both left-handed and right-handed chiral fermions since we can charge conjugate any
right-handed representation, reversing the sign of its charge and giving a left-handed
representation. Eq. 3.2 is a cubic diophantine equation in n variables; since it is not yet
known how to solve a generic such equation even in 2 variables (corresponding to an
elliptic curve [90]), one might expect that finding the general solution to Eqs. 3.1-3.2 is
a difficult problem. However, a paper by Costa, Dobrescu and Fox (CDF) [51] managed
to do so, in the following way.

CDF observed that given two integer solutions

z:= (x1,...,z,) and Y= (Y15 Un), (3:3)

of Eq. 3.1, and Eq. 3.2, a third could be constructed from a ‘merger’ operation, which
they denoted ‘@’

TPy = (Z mf) z— <Z 963%) y. (3.4)

Some solutions to Eq. 3.1 and Eq. 3.2 are easy to find, having for each charge
z; another charge z; = —z;. Using solutions of this form, which we call vector-like
solutions, and the merger CDF showed that one can construct chiral sets of charges,
namely those where z; + z; # 0 for all ¢ and j. They then showed (via rather lengthy
algebra) that any solution can be constructed from these chiral sets of charges by
permutation of charges or concatenation with each other or with vector-like solutions.

For n even the specific mergers they considered were

(I, kyy ook, =l =k, ooy —km) @ (0,0, 00, .oy lny =11y oo =), (3.5)
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where m =n/2 — 1> 2 and k;,l; € Z, i € {1,...,m}. Whilst for n odd they were
(0,1, ..o ke, =K1, ooy —kma1) ® (L - oy by k1, 0, =1, ooy =Ly — K1), (3.6)

where m = (n — 3)/2 > 1. CDF showed that if one wants to avoid zero charges or
vector-like copies of charges then conditions have to be applied to k;’s and [;’s.

In this Chapter, we show that the ingenious methods of CDF have a simple
geometric interpretation, corresponding to elementary constructions long known to
number theorists [117|. Viewing them in this context allows a fully general solution
to be written down in one fell swoop. The geometric interpretation allows us to give
a variety of other, qualitatively similar, parameterisations of the general solution, as
well as a qualitatively different form of the general solution for even n. It also allows
us to show that to generate all solutions from CDF’s parameterisation only requires

permutations and not the other operations.

3.2 Geometric Method

By way of motivation, consider the n = 6 solution (0, —9,7, —1,8, —5) to Eq. 3.1, and
Eq. 3.2. The only way to get this solution using the method outlined in CDF is by
permutation. Our geometric solution will, on the other hand, be able to generate such
solutions without resorting to permutations.! The reasoning behind this, as we shall
see later, lies in our use of a geometrical approach, namely that of projective geometry
over the field Q of rational numbers.

Within the projective space PF"~! over a field F (as defined in §2.1) we can define
d-planes. By a d-plane (for d < n — 1) we mean a d-dimensional projective subspace of
PF*~! which can be written as

=1

where [ag @ -+ @ ageq] € PF? parameterise the d-plane and p; € PF"~! are fixed. A
1-plane, for example, is just a (projective) line, homeomorphic to a circle.

To motivate the use of projective space on physical grounds, we note that the Lie
algebra u(1) is isomorphic to R. Given our assumption of compactness, this implies
that our charges z; are not only real-valued, but also commensurate, meaning that if

z; # 0, then z;/z; is rational for all 7. We can scale every z; by a single real parameter

'Though, as we indicate, utilising permutations can be useful.
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without changing the physics, as long as the coupling constant is also appropriately
scaled. This, along with the fact that the z;’s are commensurate, allows us to undertake
a scaling such that all charges are rational, viz. z; € Q.2 It also tells us that we should
think of the set of all charges as living in projective space, specifically PQ" ! and
indeed, Eq. 3.1, and Eq. 3.2, being homogeneous, define loci therein.

It is convenient for us to eliminate z, in our equations from the cubic equation in
Eq. 3.2 to get

3 Z— <"Z_1 zz) = 0. (3.8)

This equation is homogenous, meaning it is well defined on our equivalence classes
in PQ"2, and as such it defines a cubic hypersurface (given it is co-dimension 1) of
PQ" 2. In order to make progress in solving this equation, we review some geometric

methods used in diophantine analysis.

3.2.1 The method of chords

Consider a homogenous cubic in n-variables, with rational coefficients, defining a locus
in Q™. Let a and b be two points in Q" on the locus. A result from antiquity® tells us
that a chord between a and b will intersect the surface at a third point in Q™. One can
understand this result as follows, let L(t) = a 4 t(b — a) be the chord joining a and
b. Points both lying on this chord and in the cubic surface must satisfy the equation
kt(t — 1)(t — tg) = 0 where k,ty € Q. This result comes from considering the cubic
along the chord and noting that a cubic has one or three (possibly degenerate) real
roots. Hence within Q", there is a third point of intersection, corresponding to ¢t = t,
and given by L(tg). We note that this result is equally valid in projective space, PQ".
We will call this construction the ‘method of chords’.

Further, a rather more recent (though equally elementary) result of Mordell [117]
states that all rational points in a cubic surface in PQ? can be constructed from chords
in this way, starting from a projective line, L, and a point, p ¢ L that both lie in
the surface. It follows from the realisation that in fact any point in PQ? (ergo any
point on the cubic) is on a chord from p; to a point in L. As we will see, this result

generalises in a straightforward way to PQ", but there is no analogous result in Q™. In

2In the end, we can scale them all so they are integer, as we previously claimed. But working with
the field Q, rather than the ring Z, allows us to do geometry.

3The result certainly goes back at least to Fermat and Newton in the 17th century and may go
back even further to Diophantus in the 3rd century. A historical account is given in [140].
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Q? for example, the analogous result would have to involve two skew lines, L; and L.
However, points forming a plane with L, which is parallel to L; will be missed. In PQ?,
there is no concept of parallel lines — pairs of lines are either disjoint or intersecting —
and indeed the aforementioned points all lie on a chord connecting a point on L to p.

This simple observation, when generalised to higher n, underlies the fact that the
point (0,—9,7, —1,8, —5) is missing from CDFs n = 6 parameterisation, but is included
when we work in projective space, as we will discuss in detail in §3.2.4.

Before actually using any of these results, we note that our general method will not
work in the cases for n = 1, and n = 2. This is because for n = 1 and n = 2 it would
require a notion of a (—1)-plane! Part of the discussion, namely that in Appendix A.1,
is also valid only for n > 4. Happily, the solutions to the n = 1, 2,3 cases can be found
directly, allowing us to restrict our general discussion to n > 4. Namely for n = 1 the
solution is z; = 0. For n = 2, Eq. 3.8 results in no effective constraint (one obtains
that the left-hand side is identically zero for any z;) and so the solution of Eq. 3.1, 3.2
is the point [z : 2] = [1 : —1] € PQ. As a result of Fermat’s last theorem, we have
three solutions forn =3: [1:0: —1],[0:1: —1] and [1: —1:0]. Egs. 3.1 and 3.2
are invariant under permutations of the z; and so these three solutions are all in one
equivalence class under such permutations.

We now consider higher n where the results above are more useful. For illustrative

purposes, we will start with a rather explicit discussion of the case n = 4.

3.2.2 Application for n =4

Let us consider the cubic anomaly-free surface in PQ?,
Bt —(n+ntzn)d=0, (3.9)

corresponding to the n = 4 case of our problem, where we remember that z, =
—(21+ 29+ z3) from the gravitational mixed anomaly constraint. Using Mordell’s result
within this surface we take the line I'y = [k; : ko : —kq] and the point I'y = [0: 13 : —14]
in PQ?, which are easily seen to lie on the cubic. Using the overall scaling of projective
space, we could rescale such that [; = 1. At this stage, however, we refrain from
doing so, preferring a slightly redundant parameterisation in order to stay closer to
our analysis of the higher n cases below. We then construct a line passing through a
generic point on each of I'y and I'y as Ly = aqlky @ ko, : —k1] + ao[0 : [; : —1;], where
k12,11 € Q. The homogeneous parameter [ : ap] € PQ! parameterises L;, which

must intersect the cubic surface at a third point, assuming that L, is not wholly in the
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cubic surface. On substituting the chord into Eq. 3.9 we obtain the constraint on oy

and oy at intersections of the line and the cubic surface:
—3(]€1 - k?g)ll()zl()ég [(k)l + ]{52)041 + llag] = 0. (310)

If L, were entirely in the cubic surface, the left-hand side would have evaluated to zero
independently of the values of a; or as. The third point of intersection is specified by

setting the square bracket in Eq. 3.10 to zero, i.e.
[Oél . 042] = Ul . —(kl -+ kg)], (311>

a rational point.

Now consider an arbitrary point [a; : as : a3] € PQ? not in T'y. We can define a
line between this point and one on T'y: Ly = 510 : Iy : —l1] + S2fay : as : az]. Tt can
be seen that this line intersects I'y at [51 : f2] = [as — a1 : [;]. This, combined with
Eq. 3.11, tells us that every such rational solution to the cubic equation can be found
by considering lines between points on I'y and I';. What we have done here is apply

Mordell’s result to solve the n = 4 case of our problem.

3.2.3 Arbitrary n >4

To consider arbitrary values of n > 4 we must generalise Mordell’s result to an arbitrary
cubic hypersurface X in PQ" 2. The generalisation is immediate and gives the following
Theorem: Let I'1, 'y C X be disjoint planes of dimensions dy, ds = m, := (n — 3)/2,
if n is odd and of dimensions d; = m, := (n —2)/2 and dy = m, — 1 if n is even. Every
rational point p € PQ"™2 (ergo every p € X) lies on a chord joining a point in 'y to a
point in I's.
Proof: The result is obvious if p € I'y. If p ¢ I'y, then p and I'y define a (dy + 1)-plane,
which intersects I'; in a point p'. The line through p and p' intersects I'y in a point p?,
yielding a chord. [l
In the case of interest, the (projective) line L = ayp! + aop? through p'? with
homogeneous parameter [a; : as] € PQ! intersects the cubic hypersurface X defined

by (3.8) when

n—1

n—1 2
Baas Y (upiP! + aopP) =0, P = (pf)* — (Zp?> |
j=1

i=1
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Thus, along with the points p"? (corresponding to as; = 0) we get either a third

rational point on X at

n—1 n—1
o o] = | > piPP=> PP, (3.12)
i=1 i=1

or, if the terms on the right-hand side both vanish, we have that every rational point
on L is on X. Lines which lie in X may be regarded as slightly awkward to deal with.
Happily, it is possible, as we show in Appendix A.1, to find every solution on such
a line by a permutation of the coordinates of a solution arising as the unique third
point of intersection on a line not lying in X. A comparison of (3.12) with (3.4) shows
that the ‘merger’ operation is really nothing but the finding of the third rational point
starting from two others.

To get a fully general solution, we just need to find suitable I'y, I's. To wit,

TS=1[ki: ik, ko1 s =k o0 =k, |
Lo=100:0y il s =l =, |

[y =Tlki it kgt =kt 0 —k1]

['5 = [lg I Y O B |y RIS _lmo‘i‘l]' <3'13>

These planes are disjoint (only meeting at the origin, which is not in PQ"~?2), so by

the Theorem they yield all rational solutions of (3.1).

3.2.4 Comparison with CDF

The parameterisations of CDF| in contrast to ours, have k,, 41 = —l; and l,,, 11 = k1.
We have already discussed that CDF’s solution misses the point (0,—9,7,—1,8, —5),
for n = 6 and that for them this has to be found by permuting another solution, for
example that generated with ky = 14, ky = 2, [} = —18, [, = —9 after scaling. In
our parameterisation (0, —9,7,—1,8,—5) can be obtained directly with, for example,
ks=0,k =3, ks =—2,1; =1, and I, = —1 in (3.13), giving p' = [3,—-2,0, —3,2] and
p?=1[0:1:—1:—1:1] and the correct third point of intersection.

It is easy to see why CDF’s parameterisation misses this point; they cannot set
k3 to zero and [; not. Viewing things in the affine space Q°, the geometric nature of

such missed points becomes manifest. The planes for n = 6 in (3.13) can be seen as
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corresponding to

05 = (k1 ko, 1, —ky, —ks) (3.14)
05 = (0,01,1y, —11, 1) (3.15)

in Q°. The 3 —d plane defined by I'§ and the point (—9,7, —1,8, —5) does not intercept
the 2 — d plane fﬁ, which is the same reason why Mordell’s result fails to catch all the
points in Q3. CDF go halfway to allowing such points, but by fixing k3 = I; they don’t
quite catch them all.

We can be more specific and ask: given the planes in (3.13) where we force
km.+1 = =l and [,,,+1 = k1 to retrieve CDF’s solution, what points don’t lie on lines
between them? It is easy to see that for even n this would require either k,, 1 or {1 to
be zero and for odd n either [,,,+1 or ky, but not both. Thus, for the point [a; : - - : ;)]

to not lie on such a line, we need, for even n,
a1 +--+ap_1=0o0ra +a, =0, (3.16)
or, for odd n,
a4+ ap—1 =00r apyi2 =0. (3.17)

For a non-zero solution we can always rearrange the charges so that none of these
conditions are satisfied.

The only other points CDF miss are those where the line between the two planes
in (3.13) lies within X. For example for n = 4 setting ky = ki gives a line L which lies

in X. As an explicit example, consider k; 2,{; = 1. This line is given by
L=o[l1:1:=1]+ag[0:1:—1]. (3.18)

For CDF, points on this line correspond to solutions of the form (A, —A, B, —B) for
A, B € Z. However, CDF’s n = 4 parameterisation

(=B(ky + 1), —ky2(ky + 1), k2 (ks + 1), Bk + 1)) (3.19)

can never land on such solutions. Nevertheless, CDF’s parameterisation can get these
by permutations, for the same reason that the parameterisation given here can, as we

discuss in Appendix A.l.
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The above two points not only show when CDF’s parameterisation fails to reach a
specific point but also proves that their parameterisation produces every point up to

permutations.

3.3 Closing remarks

The pioneering work of CDF finds solutions to the local u(1) anomaly cancellation
constraints. This allows the construction of the general solution, provided one allows
permutations. Our geometric method provides the general solution directly without
having to perform additional steps. The geometric method also explains how some
of the otherwise obscure features of CDF’s construction (particularly the ‘merging’
procedure of two solutions) come about. Due to an immediate generalisation of a
theorem by Mordell, the geometric method is guaranteed to find all rational solutions
for a fixed number of charges n. Therefore (after clearing all denominators), it finds all
integer solutions.

Two further remarks are in order. Firstly, as we have seen, our parameterisation of
the general solution is somewhat distasteful, in that occasionally the chord L joining
points on I'y o lies in X, and so yields not one, but infinitely many solutions. Another
way to find these solutions is to permute the coordinates z; of solutions arising as the
unique third intersection of a line L which is not in X, as shown in Appendix A.1.
Secondly, in the case where n is even, a completely different, and arguably even
simpler, construction of a general solution is possible. Indeed, in such cases, the cubic
hypersurface has double points, where both the left-hand side of (3.8) and its partial
derivatives vanish (e.g. the rational point [+1: —1:4+1:—1:...:+1:—1:41]). A
line through such a double point intersects the cubic in one other rational point (or
the line lies entirely in X) and thus all solutions can be obtained by constructing all
lines through just a single double point, as it were. This is worked through explicitly
in Appendix A.2; and is related to the method used in the next Chapter.






Chapter 4

(Gauge rank extensions of the

standard model

In the previous Chapter we gave a geometric solution to the anomaly equations of
a pure u(1)-gauge theory. In this Chapter we move onto the second part of our first
foray, which is to solve for the first time the anomaly equations associated with a
u(1)-extension of the SM gauge algebra. These solutions inform models where the
rank of the SM is increased, since the extra u(1) may be a sub-algebra of some larger
additional gauge extension, as well as future phenomenological Z’ studies.

The layout of this Chapter is as follows: Firstly in §4.1 we will reintroduce the
ACCs associated with this theory. In §4.2, we give a sketch of our solution. The details
of the solution, as well as the solution itself will be given in §4.3. We give the closing

remarks in §4.4.

4.1 The anomaly cancellation conditions

We introduced the ACCs associated with a u(1) extension of the gauge algebra of the
SM in Eq. 1.3. They take the form of homogeneous polynomial equations, which are

repeated below

3
0="> (6Q; +3U; +3D; +2L; + E; + N;), (4.1a)
i=1
3
0=> (3Qi+Li). (4.1b)

i=1
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3

0= Z (2@1 + UZ + Dz) y (41C)
=1
3
0=> (Qi +8Ui+2D; +3L; + 6E;), (4.1d)
=1
3
0=> (@ -2U7+ D} - L} + E7), (4.1¢)
=1
3
0="> (6Q¢+3U]+3D} +2L? + E} + N}) . (4.1f)
=1

Here Q;,U;, D;, L;, E;, N;, with ¢ € {1,2,3}, are respectively the charges of 3 SM
families of quarks and leptons, together with 3 right-handed neutrinos. We have taken
all fermions to be left-handed which can be achieved via charge conjugation. We will
assume that the charges are commensurate, corresponding to the expectation that the
gauge group is compact, and have assumed that there are three right-handed neutrinos,
to fit aesthetically with neutrino oscillation data. We note that we can solve for the
non-commensurate case, and for other (odd) numbers of neutrinos, which we discuss
briefly in the closing remarks.

Finding any solutions to diophantine equations (or even establishing their existence
or otherwise) is, in general, a notoriously difficult problem in number theory (very
roughly, the state of the art is a single cubic in 3 unknowns). Surprisingly, we will see
that one can, in fact, find all solutions to Eqs. 4.1a-4.1f.

4.2 Sketch of the solution

The keys to solving Eqs. 4.1a-4.1f are twofold. The first is to convert it to a problem
in geometry by observing that one can equivalently seek rational solutions (since any
integer solution trivially defines a rational solution and since, by clearing denominators,
every rational solution defines an integer solution). The rational numbers form a field,
allowing one to carry out division and hence various basic geometrical constructions.
The 18 charges appearing in Eqgs. 4.1a-4.1f then form coordinates for the affine space
Q. In fact, given that scaling all charges by a common multiple leads to the same
physics (as we have remarked, the scaling can be absorbed in a redefinition of the gauge
coupling), it is convenient to consider not the charges themselves, but the equivalence
classes under such a scaling, which define the projective space PQ!" (whose points,

in this Chapter, we sometimes call rational points for emphasis). The homogeneous
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Q1 Q2 Q3\Uy Uy Us|Dy Dy D3| Ly Ly Lg|Ey Ey E3| Ny Ny Nj
Af/0 0 10 0 40 0 20 0 -3/0 0 6|0 0 0
Bf{1 1 11 -1-1{-1 -1 -1(-3 -3 -3/3 3 3|3 3 3
ci-1t o 1{-1t 0 1}{-1 0 1}|-1 0 1}{-1 0 1[0 0 O
Table 4.1 Sample solutions of Eqs. 4.1a-4.1f. Point A corresponds to the ‘Third Family
Hypercharge Model’ [9], while B is the combination of baryon minus lepton number.

polynomials Eqs. 4.1a-4.1f define a projective variety in PQ!7 whose points, which we
call rational solutions, we seek.

The second key to solving the problem is that it is easy enough to find some
rational solutions, (e.g. by means of a numerical scan [14]); 3 such points, A, B, and
C, are defined in Table 4.1. These can be used as the starting point for geometric
constructions, similar to in the last Chapter. To give an example, consider just the
quadratic (Eq. 4.1e) and suppose we know one rational point on the quadratic, C' say.
Ignoring degenerate cases for now, a line L through C intersects the quadratic at 1
other rational point R and moreover every rational point on the quadratic (indeed
every point in the ambient space!) lies on a line through C'. Thus, by parameterising
all such lines, all rational points on the quadratic may be found. !

To solve the full set of Eqgs. 4.1a-4.1f will require a more elaborate construction, as
follows. Firstly, we note that the 4 linear equations 4.1a-4.1d simply define a projective
subspace of PQ!'7 isomorphic to PQ', to which we restrict our attention in what
follows. Secondly, we exploit the fact that B is a singular point (namely a point at
which the underlying variety in real space is not a smooth manifold). In fact it is
unique (up to the addition of a multiple of the hypercharge) ? among such points in
that it is a double point of both the quadratic (Eq. 4.1e) and the cubic (Eq. 4.1f).
Particle physics cognoscenti will instantly recognise point B as the combination of
baryon number minus lepton number. (As we describe in [15], which studies how such
singular points arise in gauge theories in general, this turns out to be no surprise.)

The utility of the point B is the following. Since it is a double point of the cubic,
lines through it will have similar properties to the lines through the (regular) point C
of the quadratic that we have already discussed: generically, a line M through B will

intersect the cubic in at 1 other rational point, X say, and moreover every rational

!These arguments are standard ones in elementary number theory [117], but skeptical readers will
hopefully be convinced by the explicit discussion that follows.

2 If one were to add multiples of hypercharge to any solution, one would obtain another solution.
This redundancy could be removed, resulting in the projective dimension of the variety being one
fewer.



42 Gauge rank extensions of the standard model

point on the cubic (indeed every point in the ambient space) will lie on a line through
B.3

Now let us consider the cubic and the quadratic in tandem. If B were merely a
regular point of the quadratic, we would face the difficulty that the point X on the
cubic would not normally lie on the quadratic. But because B is also a double point of
the quadratic, we are guaranteed that the line either lies entirely in the quadratic, or
has no point in the quadratic other than B. On its own, this fact is not particularly
useful, since it is the latter type of line which is generic (consider, e.g., the variety
in PQ? defined using coordinates (z,y, 2) € Q* by zy = 0, which has a double point
at (0,0,1)). What is needed is a construction which generically spits out lines of
the former type. But this is easy: we use the original construction of rational points
R of the quadratic, and then consider, for each such R, the line M joining B to R.
Generically, R is distinct from B, in which case the line lies entirely in the quadratic
(since it has a point on the quadratic, viz. R, which is not B, every point on it must
be on the quadratic) and by finding the line’s other intersection with the cubic, we get
a new rational solution. A moment’s consideration shows that all rational solutions of
Eqgs. 4.1a-4.1f can be obtained in this way.

In summary, we have the following construction, which is shown schematically in
Fig. 4.1. Starting from a rational point on the quadratic (we take C', but almost any
point on the quadratic distinct from B would do), we construct the line L joining C' to
an arbitrary point S in PQ'3. This line generically hits the quadratic at a point R and
the line M joining R to the singular point B (which lies in the quadratic) generically
hits the cubic at a point X, which is a solution of Eqs. 4.1a-4.1f. Varying the position

of the point S generates all solutions, so S € PQ' parameterises the space of solutions.

Before delving into the nitty-gritty of the parameterisation, a couple of remarks
are in order. One is that we must, at some point, deal with the non-generic cases.
In the construction of solutions to the quadratic, we may find that the line L either
lies entirely in the quadratic, or is tangent to it at ', meaning no further solution is
obtained. The same situation may arise for the line M. As we will see, they do not
cause any serious headaches. The other remark is that our parameterisation of the
general solution via points S € PQ' is clearly redundant. For example, many points
S will specify the same line L. As we shall discuss, these redundancies could easily be

removed, but would result in uglier formulee.

3This observation goes back at least to Fermat and probably all the way to the diophantine
school [140].
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Fig. 4.1 Sketch of the geometric construction. S is any point in the space PQ'3 defined
by the linear anomaly cancellation equations, C' is any point in PQ' satisfying the
quadratic equation, and B is the double point of both the quadratic and the cubic
equation. L is the line C'S, which generically intersects the quadratic at R. M is the
line BR which lies in the quadratic and generically intersects the cubic at X, yielding
a solution to all anomaly cancellation equations.

4.3 Nitty-gritty of the solution

Given 3 points P, P’, P" in PQ'" whose homogeneous coordinates are

(QianvDiaLivNiin)v (Q;aU;aDgaL;7E;aN,)v and (Q” U// D” L” E” N”) (42)

)

respectively, it will be useful to define

3
g(P,P") = (QQ; = 2UiU{ + D;D{' —L;L{ + E:E/), (4.3)

i=1
and
3
e(P, P P") = (6QiQiQ)" +3U:U/U" + 3D:D/' D"
1=1
+2L;L'L" + E;E/E;" + N;N;/N;"). (4.4)

Now, to find the point R, we take a general point on the line SC', parameterised
using homogeneous coordinates as L = aC + (5, where «, § € Q, and substitute into

Eq. 4.1e, yielding

B(24(C, S)a + q(S, $)8) = 0. (4.5)
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Cancelling the factor of 8 (which appears because the point C' is a solution) the general

solution to this equation is
R = q(S, S)C — 2q(C, S)S + 5q(3,5),05q(075),0(a0 + bS), (4.6)

where the Kronecker deltas (defined as d,, =1 if x = y and §, , = OVz # y) encode
the cases where the line lies entirely within the quadratic, with a,b € QQ being arbitrary
parameters.

To find the point X, we repeat the procedure, substituting the parameterisation
M = eR + vB, where ¢,y € Q, into the cubic Eq. 4.1f, yielding

€(3¢(B, R, R)y + ¢(R, R, R)e) = 0. (4.7)

Cancelling the factor of €* (which reflects the fact that B is a double point of the cubic)
yields

X = C(R, R, R)B — BC(B, R, R)R + 5c(B,R,R),050(R,R,R),O(TB + tR), (48)

with r, ¢t € Q being arbitrary parameters.

Denoting by Sg, the value of @);, etc., at the point S; the restriction of S to the
sub-space PQ' defined by the linear equations Eqs. 4.1a-4.1d can be achieved by fixing
Sqs, Sus, St, and Sk, by the relations

Y

3
1
SQs = 9 [_QSQ1 —25q, + Z(SDz + Sn,)

=1

3
SUs = SUl + SUQ + Z(QSDi + SNz) )
=1
1 3
Sy = =5 | 251, + 250, + 32(&% +Sv,) 1,

3
Sk, = —Sp, — Sp, + Y _ (35D, +25N,). (4.9)

i=1
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Our solution is then given in terms of the 18 parameters *

SQ17 SQ27 SUla SU27 SDla SDQ) SD37 SL17 SL27 SEU SE27 SNl) SN27 SN37 a, b7 r, te @7 (410)

where the algebraic parameterisation of the solution is as in Eq. 4.8 and R is defined
in Eq. 4.6. All that remains to write the parameterisation explicitly is to substitute

the charges of B and C from Table 4.1. The rational solution X is then given by

Q=T —-X+ASgy,,
Q2 =T+ ASq,,

Qs =T+ X+ ASg,,
Uy =-T—-%X4+ASy,
Uy =—-I+ ASy,,

Us = —I' + X + ASy,,
Dy =-T - +ASp,
Dy = —T'+ ASp,,

D3 = -T'+ ¥+ ASp,,
Ly =-3=X+AS,,
Ly = —=3I'+ ASy,,

Ls = —=3I' + X + ASp,,
Ey, =3I =X+ ASg,,

Ey, =31+ ASg,,

E3 =31+ X + ASg,,

Ny =3I+ ASy,,

Ny =3I + ASh,,

N3 =3I + AShs, (4.11)

4 A comment on the parameter count is in order. Generically, since we start with 18 affine
parameters and have 6 equations, we might expect the solution to have only 12 affine parameters.
The 4 parameters a, b, r,t appear only in degenerate cases. Furthermore, one can show that it suffices
to restrict to points S corresponding to vectors orthogonal to both B and C, which brings us down to
the expected number. We refrain from doing so, since it complicates the (already baroque) formulee.
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where
I' = c(R, R, R) + 76¢(B,R,R),00c(R, R, R) 05
¥ = (=3¢(B, R, R) + t0c(B,r,R).00c(r,R,R),0)(q(S, S) + adyg(s,5),004(C,9).0);
A= (—30(3, R, R) + téc(B,R,R),O(Sc(R,R,R),O)(_QQ(Oy S) + b5q(575)705q(c75)70). (4.12)

This solution is provided in the ancillary directory of the arXiv preprint of the paper [16]
in the form of a Mathematica notebook.

One way to check that the above parameterisation captures all solutions is to show
that it can be inverted, in the following way. For a known solution 7" an inverse is a
set of the 18 parameters in Eq. 4.10 which return 7" when substituted into Eq. 4.11.
One choice of parameters which achieves thisis S =T and, a =0, b =1, r =0 and
t =1 (a, b, r and t are only needed when T corresponds to one of the exceptional
cases). This inverse has been successfully checked on the 21549920 solutions obtained
by a scan in [14], which includes all integral solutions (up to permutations) with a

maximum absolute charge up to 10.

4.4 Closing Remarks

The general solution Eq. 4.11 to Eqs. 4.1a-4.1f is presented for the first time. It was
found by exploiting the presence of a singular point, namely the one corresponding
to baryon minus lepton number, which is unique (up to the addition of a multiple of
the hypercharge) in that it is a double point of both the quadratic (Eq. 4.1e) and the
cubic (Eq. 4.1f). As such, one cannot expect the method to be of general applicability
in studying anomaly cancellation in gauge theories. But it nevertheless generalises to
some situations that may be of phenomenological interest. A first generalisation is to
consider an arbitrary number n of right-handed neutrinos (RHN). Here, it turns out
that our method can be applied provided that n is odd and n # 1, with the charges of
the extra neutrinos at the required singular point being given by No; = +3, No;j1q = —3,
for i > 2. It also generalises to an odd number of SM families with an odd number of
RHN equal to or exceeding the number of families, though this is probably of lesser
phenomenological interest.

Other cases require other methods, but are not without hope. In Ref. 18], for
example, a related but different method was used (following the material in the last

Chapter) to find a complete solution of the 1 SM family case (with an arbitrary number
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of RHN) along with a number of existence results for 3 families with a variety of
numbers of RHN.

Our solution generalises to real charges, corresponding to the case where the gauge
group is not compact. The only change in our solution method would be changing
rationals to reals everywhere, and as a consequence all parameters in Eq. 4.11 should
be taken as real. Unlike in the one-family SM with floating real hypercharges where
anomaly cancellation enforces them to be commensurate [147| here solutions exist with
non-commensurate charges, for example let every SM field’s charge be equal to its
hypercharge and Ny = v/3, N, =0, N3 = —/3.






Chapter 5

Semisimple extensions of the
Standard Model

The previous two Chapters considered ACCs related to u(1) algebras. In Chapter 3 we
looked at a pure u(1)-gauge theory. In Chapter 4 we looked at u(1)-extensions of the
SM. In this Chapter, as the third part of our first foray, we will find all anomaly free
semisimple extensions of the SM for a fixed fermionic particle content. We use a brute
force approach using a computer.

We will start in §5.1 with a discussion of the motivation and results. In §5.2 we will
give the background theory, and in §5.3 describe the computation. Closing remarks
will be given in §5.4.

Appendix B gives a more formal discussion of the program outlined in this Chapter,

using the mathematical language introduced in §2.2.

5.1 Motivation and results

In searching for theories of physics beyond the Standard Model (SM), it is of interest
to ask how the gauge Lie algebra sm := su(3) @ su(2) @ u(1) could be extended to a
larger Lie algebra g D sm. To give a useful answer to this question requires us to make
some plausible assumptions, not least because there are, a priori, infinitely many such
algebras, and because the question is anyway meaningless if we do not specify how g
acts on the physical degrees of freedom.

The list of possible g becomes not only finite, but also can be determined explicitly
with the help of a computer, once we specify that g is semisimple, as is indicated by
the fact that ratios of hypercharges are simple fractions and by the fact that gauge
couplings appear to unify, and that g acts by a unitary (respectively orthogonal)
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representation on some given complex (respectively real) matter fields, so as to preserve
the lagrangian kinetic terms. (Strictly speaking, to get a finite list we must discard the
largest summand of g that acts trivially on the matter, which is anyway of no interest,
and identify algebras that lead to equivalent physical theories, as we discuss below.)
The list may be further curtailed by insisting that g be free of local anomalies (global
anomalies require us to specify the gauge group, in general, and will not concern us
here) with respect to fermionic matter, so that it can be gauged.! Such a list can serve
as a vade mecum for model builders.

In this Chapter, we find all such g in the case where the matter fields are taken to
be the 3 generations of quarks and leptons of the SM along with 3 sm-singlet fermions
(invoked to give neutrinos their observed masses), bringing the total number of Weyl
fermions to 48. A valid g is then given by an anomaly-free semisimple algebra that
contains sm and is contained in s1(48). Two such algebras will lead to physical theories
that are equivalent if they are related by an inner automorphism of su(48), since such
an automorphism can be effected by a linear change of variables of the fermion fields,
which leaves the path integral invariant. They will also lead to equivalent theories if
they are related by an outer automorphism of g, since applying such a transformation
does not change the image of g in su(48).2

Although we study just one example, the methods we use can be generalised at
whim. For example, one could easily include the scalar Higgs fields of the SM (in which
case one secks all g containing sm and contained in su(48) @ so(4)) or indeed with n
additional fermions and m additional scalars (in which case the containing algebra is
su(48 +n) @ so(4+ m)).

To illustrate the results we obtain, it is useful to begin with the simpler case with
just a single generation of quarks and leptons together with a single sm-singlet fermion.
Here we already know that there are at least 3 possibilities, corresponding to the
unification algebras ps := su(4) @ su(2)®? (i.e. su(4) @ su(2) @ su(2)) [133], su(5) [81],
and s0(10) [74, 80] (which are all subalgebras of su(16); without the extra sm-singlet,
we have just su(5) C su(15)); the ‘new result’ with just a single generation, then, is

that there are, perhaps unsurprisingly, no other possibilities.?

'Tf we discard the requirement that g be semisimple, the list becomes infinite, even if we add only
a single anomaly-free u(1), as Ref. [16] shows.

2 Algebras related by other automorphisms are also likely to give identical theories, although we
will not explore this point in more detail here.

3In each case there is a single non-trivial outer automorphism of g, so without this equivalence we
would find 6 possibilities, corresponding to the fact that one could assign the fermions to carry either
of the inequivalent 16-dimensional spinor representations of s0(10), say.



5.1 Motivation and results 51

Things become more interesting with more generations, because of the possibility
of interplay between gauge and flavour symmetries. With two generations, for example,
there are 45 possible algebras, up to equivalence. Some of these are easily guessed,
such as the algebra s0(10) @ su(2), with the right hand factor acting as a flavour
symmetry mixing the 2 generations, along with s0(10) & su(5), with each summand
acting non-trivially only on a single generation. But there also exist possibilities that
are less easy to guess and which are interesting in that they mix up flavour and gauge
symmetries in an essential way. One of these has algebra su(8) & su(2)®?, which
generalises with N generations to su(4N) & su(2)®?. This construction relies on the
obvious embedding su(4) @ su(N) C su(4N), showing that it provides a generalisation
of the usual Pati-Salam symmetry ps for N = 1 containing an su(/N) flavour symmetry.
Thus, whereas in the usual Pati-Salam setup lepton number is interpreted as the fourth
colour, here flavour is to be interpreted as the remaining 4N — 4 colours!

A qualitatively different generalisation of the Pati-Salam model with two generations
can be obtained as follows. Since the fermion fields in the one-generation version form
two irreducible representations, there is a possible su(2)®? flavour symmetry when
we go to two generations, giving the algebra su(4) @ su(2)® with the 32 fermion
fields arranging themselves into the representation (4,2,2,1,1)® (4,1,1,2,2). This is
anomaly free because su(2) has no anomalous representations. Noting that su(2)%? &
s50(4) C so(5) = sp(4) and that the defining representation of sp(4) restricts to the
(2,2) of su(2)%2, it follows that this can be enlarged even further to su(4) @ sp(4)®2,
again leading to an essential mixing of flavour symmetry with sm.

Since this last construction relies on ‘accidental” isomorphisms of low-dimensional Lie
algebras, we do not expect it to generalise to N > 2 generations. Two qualitatively new
algebras do appear, however. One uses the embeddings su(16N) D su(4) ®sp(2N)%? C
su(4) @ (so(N) @ sp(2))®? along with the isomorphism sp(2) = su(2) to produce an
algebra containing ps along with an so(N)®? flavour symmetry. The other uses the
embeddings su(16V) D su(4)®sp(2N)PBso(2N) C su(4)dso(N)Dsp(2)Pso(2)Bso(N),
to produce an algebra containing not ps, but rather its subalgebra su(4)®su(2)®so(2) D
sm, which is not only not semisimple, but is also not left-right symmetric. Again we find
a flavour symmetry isomorphic to so(N)®2 but now embedded differently in the SM
flavour symmetry. These constructions rely on the embeddings s0(2) ©so(N) C s0(2N)
and sp(2) @ so(N) C sp(2NV). Note that in these examples, flavour symmetry is unified
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with the electroweak symmetry rather than with the strong symmetry, and in a variety
of ways.4

The upshot is that with 3 generations we get many more algebras (340, up to
equivalence) but all of them can be regarded as variations on the themes already
described. This shows that the model building possibilities are in fact extremely
limited, unless we include additional fermion fields. Nevertheless, we find a small
number of interesting possibilities which mix gauge and flavour symmetries in an
essential way. In particular, if such symmetries are gauged, the corresponding gauge
bosons can change both flavour and colour/electroweak charges of matter fields.

The algebras organise themselves into 26 (respectively 6) equivalence classes of
semisimple anomaly free algebras that are maximal (respectively minimal) with respect
to inclusion (note that su(48) is not anomaly free, and su(3) @ su(2) @& u(1) is not
semisimple, so these definitions are cromulent). We list these in Table 5.1. The full list

of 340 algebras can be found in a supplementary file to [19].

5.2 Theory

We now describe the mathematical formulation of the problem. Because of the need to
track automorphisms, this is most easily done using the language of category theory.
A suitable category has objects, labelled (g, «, 5, 7), given by commuting diagrams of

/ ’ K (5.1)

sm ! > su(48)

the form

where g is a semisimple Lie algebra, and «, (5, 7 are embeddings, i.e. injective maps
that preserve Lie brackets. A morphism, labelled (j, 1), from (g, o/, 5',7) to (g, @, 5,7)

is then a commuting diagram of the form

sm — ¢ > su(48) (5.2)
17

id 7

sm i > su(48)

4For an even number of generations, we also have an embedding su(16N) D su(4) @ so(2N)®2? >
su(4) @ (sp(2) ® sp(N))®?, using the embedding sp(2) @ sp(N) C s0(2N).
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where j is an embedding and 7 is an inner automorphism. We call a morphism (j,7) an
equivalence if j is an isomorphism (i.e. if j also surjects). We say such a diagram 5.1
is maximal (resp. minimal) if the only morphisms out of (resp. into) it are equivalences.
Roughly speaking, (g, «, 3,7) is maximal if there is no larger semisimple algebra
containing g and contained within su(48), such that the embeddings are consistent (as
per the diagram above). It is minimal, if no smaller semisimple algebra containing the
sm and contained within g with consistent embeddings, exists. For example, the usual
su(5) GUT is minimal, but the s0(10) GUT is not since it contains the su(5) GUT.
Our goal is then to find all inequivalent diagrams (g, «, 3, ) for which + corresponds
to a SM embedding. To do so, we choose Cartan subalgebras of each algebra appearing
in diagram 5.1, which we denote by, h and bhyg for sm, g and su(48) respectively. Up
to equivalence, we choose «, 3, and = such that these get embedded into one another.

Equivalently we can seek a pair of diagrams

/ g X / ’ % (5.3)
(2) 2 > su(48) u(1) £ s B

where v = p @ p corresponds to a SM embedding, « = k @ R, and | on the right hand

su(3) @ su

)

side denotes the obvious restriction map. One has to take care to ensure that the

image of k and k commute.

5.3 Computation

In rough terms, our approach to the computation is as follows. The first step is to
evaluate all embeddings 5. Up to inner automorphisms of su(48) these are, of course,
inequivalent representations of semisimple Lie algebras of dimension 48 and so can be
found using standard representation theory techniques. We keep only those which are
anomaly free. For every g for which a [ exists, we then find all embeddings s up to
outer automorphisms using the theory of maximal embeddings. We then find all x and
[ such that there exists a p equivalent to the SM, which form the left-hand diagram in
Eq. 5.3. For a given diagram, we then determine if compatible £ and p exist (taking
account of possible inner-automorphisms which may need to be applied). By finding
all embeddings j : g’ — g for algebras which appear in our final list, the program then

checks which are maximal and which are minimal.
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The program itself uses projection matrices rather than embeddings. Projection
matrices describe how the weights project from one algebra to the other. For a given
g, the projection matrices corresponding to potentially allowed x’s can be found using
the theory of maximal embeddings [112, 67, 66, 110, 152]. (We use the Mathematica
program LieART [71, 72| to generate the maximal projection matrices themselves).

The output of the program (provided in a supplementary file to [19]) consists of the
highest weights of the representation specified by 8 and the projection matrix of the
embedding k, to which we have appended a final row specifying & (to wit, acting on
the weights of g, this row returns the corresponding 1(1) C sm charges). It is explicitly
demonstrated in Appendix B, that our list of outputs catalogues the equivalence classes
described in §5.2.

This approach results in a number of practical issues when it comes to carrying out
the computation, which we now describe, along with their resolutions, in rough order
of importance.

(i) Since su(2) has anomaly-free irreducible representations of every dimension,
there are many possible anomaly-free embeddings of ideals of g made up of su(2)s
in su(48). For example, there are O(10°) for g = su(2) and O(107) for g = su(2)%2.
We reduce this by first finding all possible § for g without an su(2) ideal and then
requiring that they contain su(3) C sm (here we use the fact that the restriction of
to su(3) has to map trivially into any su(2) ideal of g). To these g we add all possible
ideals made up of su(2)s and retest to see if a full x exists.

(11) Even after ignoring ideals made up of su(2)s, there are still O(10°) anomaly
free embeddings of g. We determine these in a bottom-up fashion by first finding the
O(10%) anomaly-free representations of dimension 48 of the O(10?) possible simple g
(e.g. 5@ 10 plus 33 singlets of su(5)) and then using these to find all anomaly-free
representations of possible semisimple g of dimension 48. Here, we use the fact that a
representation of a semisimple algebra is anomaly-free iff. its restriction to any simple

ideal is anomaly-free. For example, the representations of su(4) @ sp(4) given by
1. (4,4) ® (4,1)%p(1,1)%16
2. (4,4) ® (4,1)%®(1,1)%16
3. (4,1)% @ (4,1)% @ (1,4)%

are anomaly-free because they all reduce to the 4%* ®4°" of su(4) and the 4% of sp(4)
(plus the appropriate number of singlets). This bottom-up method is also used later to

find all representations when ideals made up of su(2)s are included.
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Maximal
Algebra | Fermion representations corresponding to

1 50(10) ®su(2) | (16,3)

2 50(10)®3 | (16,1,1) ® (1,16,1) ® (1,1,16)

3 50(10)22 @ su(2) | (16,1,1) @ (1,186,2)

4 su(4) @sp(6)®2 | (4,6,1) @ (4,1,6)

5 su(4)®2 @sp(6) | (4,6,1) D (4,1,6)

6 su(12) ®su(2)®? | (12,2,1) @ (12,1, 2)

7 su(4) ®sp(4)92 @ s0(10) | (4,4,1,1) B (4,1,4,1) §(1,1,1,16)

8 su(5) ®su(2)® | (5,3,1,1) ® (10,1,3,1) ®(1,1,1,2) @ (1,1,1,1)

9 su(5) @ su(2)®3 | (5,3,1,1) @ (10,1,3,1) & (1,1,1,3)

10 su(5) ®su(2)® | (5,1,1,1)® (5,2,1,1) ® (10,1,3,1) ® (1,1,1,2) & (1,1,1,1)

11 su(5) osu(2)® | (5,1,1,1)® (5,2,1,1) ® (10,1,3,1) & (1,1,1,3)

12 su(5) ®su(2)®3 | (10,1,1,1)® (5,3,1,1) ©(10,1,2,1) & (1,1,1,2) & (1,1,1,1)

13 su(5) ®su(2)® | (10,1,1,1)® (5,3,1,1) @ (10,1,2,1) ® (1,1, 1, 3)

14 su(5)92 @ s0(10) ® su(2) | (5,1,1,1) @ (10,1,1,1) $(1,5,1,1) € (1,10,1,1) & (1,1,16,1)
®(1,1,1,2)

15 su(3)® osu(2) | (5,1,1,1)®(10,1,1,1) & (1,5,1,1) ©(1,10,1,1) ©(1,1,5,1)
®(1,1,10,1) & (1,1,1,3)

16 s5u(8) @ s0(10) @ su(2)®2 | (1,16,1,1) @ (8,1,2,1) ® (8,1,1,2)

17 | su(4) @ sp(4) ® s0(10) @ su(2)®? | (4,4,1,1,1) @ (1,1,16,1,1) ® (4,1,1,2,2)

18 | su(4) @ sp(4) ® s0(10) @ su(2)®? | (4,4,1,1,1) @ (1,1,16,1,1) ® (4,1,1,2,2)

19 su(4) @ sp(6) @ su(2)®? | (4,6,1,1,1) D (4,1,2,2,1)® (4,1,1,1,2)

20 su(4) ®sp(6) dsu(2)® | (4,6,1,1,1) P (4,1,2,2,1) d (4,1,1,1,2)

21 su(4)92 osu(2)®3 | (4,6,1,1,1) @ (4,1,2,2,1) ® (4,1,1,1,2)

22 su(5) ®s0(10) ®su(2)®3 | (1,16,1,1,1) @ (5,1,2,1,1) ¢ (10,1,1,2,1) & (1,1,1,1, 2)

23 su(5)92 o su(2)® | (1,5,1,1,1) @ (1,10,1,1,1) @ (5,1,2,1,1) © (10,1,1,2,1)
®(1,1,1,1,2) ® (1,1,1,1,1)

24 su(5)92 @ su(2)®® | (1,5,1,1,1) @ (1,10,1,1,1) @ (5,1,2,1,1) © (10,1,1,2,1)
®(1,1,1,1,3)

25 su(4) @ s0(10) @ su(2)® | (1,16,1,1,1,1) & (4,1,2,2,1,1) @ (4,1,1,1,2,2)

26 su(4)®2 @ sp(4)9? o su(2)9? | (4,1,4,1,1,1)® (4,1,1,4,1,1) ® (1,4,1,1,2,1) & (1,4,1,1,1,2)

Minimal

27 su(5) | (5)%° @ (10)%3 @ (1)93

28 su(4) ®su(2)®? | (4,2,1)93 @ (4,1,2)93

29 su(4)®2 osu(2) | (4,6,1) @ (4,1,2)93

30 su(4) @ su(5) @ su(2)®? | (1,5,1,1)92 9 (1,10,1,1)92 ¢ (4,1,2,1) ® (4,1,1,2) & (1,1,1,1)92

31 su(4) @ su(5) @su(2)®? | (1,5,1,1) @ (1,10,1,1) & (4,1,2,1)92 3 (4,1,1,2)92 ¢ (1,1,1,1)

32 su(4)93 @ su(2)9? | (4,1,1,2,1) @ (1,4,1,2,1) $(1,1,4,2,1) ¢ (4,1,1,1,2) & (1,4,1,1,2)
®(1,1,4,1,2)

Table 5.1 All maximal and minimal anomaly-free algebras for exactly 3 generations of
SM fermions plus 3 right-handed neutrinos.
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(i4i) Finding the possible representations of semisimple algebras above requires
considering a large number of permutations of a list (as do other steps in the calculation,
e.g. finding x from maximal embeddings). For example, to find the anomaly-free
representations 1-3 above requires consideration of around 500 different permutations.
The computation is greatly expedited by the use of an algorithm that determines which
permutations can be skipped based on previous cases.

Two more minor improvements are as follows: (iv) the fact that one can discard (
whose corresponding representation has a non-trivial part of dimension fewer than 45
(or 36 before we include su(2) ideals), since these cannot lead to a valid a; (v) in a
similar vein, no « exists for those [ whose corresponding representations have more
than 3 vanishing weights, or weights in negative pairs, since such weights must be
associated with sm-singlets of which there are just 3.

The program took less than an hour to run on a personal computer. As such,

model-builders should find it easy to adapt it to other cases of interest.’

5.4 Closing Remarks

We have produced, for the first time, a definitive list of semisimple Lie algebras
that contain the SM Lie algebra, are free of local anomalies, and act by a unitary
representation on SM fermions plus 3 singlet neutrinos. Such extensions can mix flavour,
colour, and electroweak symmetries in non-trivial ways. There are 340 physically-
inequivalent algebras in total; whilst these are provided in a supplementary file to [19],
the minimal and maximal ones are listed in Table 5.1. No exceptional Lie algebras
appear, since they require fermions beyond those in the SM plus 3 singlet neutrinos.
Many of the symmetries listed are semi-familiar, being variations on the theme of
well-known unification and flavour symmetries. A few of the symmetries in our
catalogue have the novel feature of combining unification and flavour symmetries in an
essential way, motivating their further study. For example, we have su(12) @ su(2)®?
su(8) @ su(2)®?) su(4) @ sp(6)™2, su(4) @ sp(6) @ s0(6), and su(4) & sp(4)2.6
Adding additional matter fields changes the list, but is straightforward to carry out,
in principle. An interesting example to investigate would be to add a Dirac fermion in
the same representation as the Higgs boson, since it constitutes a viable candidate for

weakly-interacting thermal relic dark matter.

5The programs and instructions on their use can be found in the ancillary information attached to
the arXiv preprint version of the paper [19].

5The su(12) & su(2) & su(2) example appeared in a machine-learning scan of a subset of Type ITA
orientifolds on T°/(Zy x Zy) with intersecting D6-branes [108]



Chapter 6

Quantum mechanics in magnetic

backgrounds

The previous three Chapters were related to the study of anomaly free algebras and
our first foray. In this Chapter we study our second foray, which we introduced in §1.2.
The aim is to overcome the two obstructions to using harmonic analysis in solving
quantum mechanics problems with ‘magnetic backgrounds’ (corresponding to a type of
topological terms). The two obstructions are the fact it may not be possible to write
down a globally defined lagrangian and, even when it is, the lagrangian may shift by a
total derivative under the action of the symmetry group. The method to overcome
these obstructions uses principal bundles and central extensions.

The pertinent mathematical definitions for this Chapter were introduced in §2.3.
We start this Chapter by illustrating the ideas with elementary (but incomplete)
discussions of the examples of planar motion in a uniform magnetic field (§6.1.1) and
of rigid body rotation (§6.1.2). These examples are particularly transparent because,
for the former, the principal bundle is (topologically) trivial, meaning that the effects
come from the magnetic field, while for the latter, the magnetic field vanishes (though
the vector potential does not) so all effects arise from the topology of the bundle.

After this, in §6.2, we give full mathematical details of the method. We then
complete the discussion of rigid body rotation (§6.3.1) and give a series of other
examples which illustrate the method: the Dirac monopole (§6.3.2), a charged particle
in the electromagnetic field of a dyon (§6.3.3), a repeat of Landau levels on a plane
(but using the full Euclidean group (§6.3.4)), motion on the Heisenberg group manifold
(§6.3.5), and motion in a uniform magnetic field with a mass that varies with position
(§6.3.6). All the examples considered in this Chapter are summarised in Table 6.1. Our

conclusions are presented in §6.4. Appendix C contains a discussion of the rudiments
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of harmonic analysis in the presence of constraints, which is used throughout this
Chapter.

6.1 Prototypes

6.1.1 Planar motion in a uniform magnetic field

Our first example is one made famous by Landau, in which a particle moves in the
xy-plane with a uniform magnetic field B € R in the z-direction. In this example,
the subtleties are entirely due to the presence of the magnetic field. In particular,
no matter what gauge is chosen, the usual lagrangian shifts by a non-vanishing total
derivative under the action of the symmetry group, which for the purposes of the
present discussion we take to be translations in R%2. As a result, the usual quantum
hamiltonian does not commute with the momenta and one cannot solve via a Fourier
transform (which corresponds to harmonic analysis with respect to the group R?).

To circumvent this we write the action, contributing to the action phase ¢, as

1 1
S = /dt (51,2 + 53;2 —5— Byx') , (6.1)

with an additional degree of freedom s € R, with s ~ s+ 27, which shall be redundant.
The advantage of doing so is that, unlike the lagrangian without s, which shifts by a
total derivative proportional to Bz under a translation in y, the lagrangian in Eq. 6.1
is genuinely invariant under a central extension by U(1) of the translation group. Note
that we have chosen to work in the Landau gauge here, although our method, as we
shall soon discuss in detail, is independent of gauge choice.

This central extension is the Heisenberg group, Hb, defined as the equivalence
classes of (z,y,s) € R® under the equivalence relation s ~ s + 27, with multiplication
law

[y ) [y, )] = [(@+ 2"y +y, s+ — By'a)], (6.2)

and corresponding to R? x S1 as a manifold. Notice that the group R? of translations
appears not as a subgroup of Hb, but rather as the quotient group of Hb with respect
to the central U(1) subgroup {[(0,0,s)]}. Thus we have a homomorphism Hb — R?
given explicitly by [(z,y, s)] — (x,y), whose kernel is the central U(1). Notice that
our definition of the group multiplication law depends on B € R, reflecting the fact
that even though the groups with distinct values of B are isomorphic as groups, they

are not isomorphic as central extensions.
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Given Eq. 6.1, the momentum p4 conjugate to s satisfies the constraint p; +1 = 0.

We take care of this in the usual way, by forming the total hamiltonian (see e.g. [92])

1 1
H=3(p:+ By)® + Py + o) (ps +1), (6.3)

with p, and p, being the momenta conjugate to x and y respectively, and with v(t)
being a Lagrange multiplier. Upon quantising (something we will later define formally),

we obtain the hamiltonian operator

.1/ .0 2192 0
=g (g m0) g (i) (o4

which has a natural action on the space of square integrable functions on the Heisenberg
group, L?(Hb). The physical Hilbert space H must take account of the constraint (or,
equivalently, the redundancy in our description), so we define it to be not L?(Hb), but

rather the subspace

H = {\I/(x,y,s) € L*(Hb) ’(—i% + 1) U(z,y,s) = o} : (6.5)

Note that this subspace of L?(Hb) is closed under the action of the Heisenberg group
and under the action of H, implying that it is also closed under time evolution.

We then want to solve the time-independent Schrodinger equation (from hereon ‘SE’)
HVU = EV. To solve the SE, we decompose V¥ into unitary irreducible representations
(henceforth ‘unirreps’) of Hb:!

B
Wey.s) = [ drdti w50 0), (6:6)
T
where r,t € R are real numbers. Here,
™ (r,tz,y, s) = eF@ I B5(r 4y — 1), k/B € Z, (6.7)

which denote the matrix elements of the infinite-dimensional unirreps of Hb, which act
on the vector space L?(R, dt). The fact that only the unirrep with k¥ = B appears in
the decomposition in Eq. 6.6, follows from enforcing the constraint in Eq. 6.5, as we

show in Appendix C.

1To say we are ‘decomposing ¥ into unirreps of Hb’ is a slight abuse of terminology; what we
mean, precisely, is discussed in §6.2.1.
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Notice that with this decomposition ¥(x,y, s) may not be square integrable (as the
matrix elements of 72 themselves are not). As such, once we have found our ‘solutions’
to the SE with this decomposition we must check that they are square integrable (or
more generally the limit of a Weyl sequence). This subtlety will be omitted here due
to the familiar form our final solutions will take.

Substituting the decomposition in Eq. 6.6 into the SE, and using the constraint to

eliminate the Lagrange multiplier, yields

|B| 1 . 0 2 . 107 i i(Bxr—s) ) —
o drdt 5\ 5, + By 23,7 E | f(r,t)e o(r+y—1t)=0. (6.8)

After some straightforward manipulation, this reduces to

1 1 0?
B _____F =0. .
(2 - ) frt) =0 (6.9)
This differential equation, which we recognise as the SE for the simple harmonic

oscillator, has the solutions
J.1) = Hy (VIBI) e 19 2g(r), B = [B](n+1/2), (6.10)

where H,(x) are the Hermite polynomials and ¢(r) is an arbitrary function of . The

corresponding eigenfunctions are thus
B .
U, (x,y,s) = ‘2—’ /drdtHn ( |B|t> e 1BIES2 g ()i B =) 5 (r 44y — 1), (6.11)
s

We can of course eliminate our redundant degree of freedom, by setting s = 0 for
example, to obtain corresponding wavefunctions living in L?(R?) (more precisely, the
wavefunction is described by a section of a Hermitian line bundle). In the above
expression g(r) accounts for the degeneracy in the Landau levels. On choosing g(r) =
d(r —a/B) for « € R (and setting s = 0) we arrive at familiar solutions to this system,

of the form
Wyalw,y) = € H, (VIBl(y + o/ B)) e 3 o/ 27, (6.12)

Now let us recap what we have achieved. Certainly, our result for the spectrum
is not new; nor are our observations regarding the momentum generators. Rather,
what is new is the observation that we can reformulate the problem via a redundant
description, in which a central extension of G by U(1) acts on the configuration space

of that redundant description, in a way that allows us to solve for the spectrum using
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methods of harmonic analysis. While this may seem like overkill, it is important to
realise that Landau’s original method of solution [106] only works for this specific
system of a particle on R? in a magnetic background, and moreover works only in a
particular gauge (the ‘Landau gauge’). It is not at all clear how such an approach could
be generalised to other target spaces (or gauges). In contrast, as we shall soon see in
§6.2, using harmonic analysis on a central extension can be generalised to any group G
acting on any target space manifold M, since it exploits the underlying group-theoretic

structure of the system.

6.1.2 Bosonic versus fermionic rigid bodies

Our second prototypical example illustrates the approach in a case where one cannot
form a globally-defined lagrangian without extending the configuration space by a
redundant degree of freedom. This prototype also provides an example where the
relation to magnetic fields is not immediately apparent.

To wit, we consider the quantum mechanics of a rigid body in three space dimensions,
whose configuration space is SO(3), with dynamics invariant under the rotation group.
Evidently, such a rigid body could be either a boson or a fermion (it could, for example,
be a composite made up of either an even or odd number of electrons and protons).
If it is a fermion, then its wavefunction should acquire a factor of —1 when the body
undergoes a complete rotation about some axis and we expect, on general physical
grounds, that we can represent this effect via a local lagrangian term. To see how it can
be done, we first note that the term should be both SO(3) invariant and topological.
It is thus reasonable to guess that it can be written in terms of a magnetic field, or
more precisely, a connection on some U (1)-principal bundle over SO(3).? Confirmation
that this is indeed the case comes from the fact that (up to equivalence), there are
just two U(1)-principal bundles over SO(3) (to see this, note that such bundles are
classified by the first Chern class, which is a cohomology class in H2(SO(3),Z) = Z/2).
Thus we have the trivial bundle SO(3) x U(1) and a non-trivial bundle, which we
may take to be U(2), the group of 2 x 2 unitary matrices. Clearly, these are not
only U(1)-principal bundles, but also they have the structure of central extensions of
SO(3) by U(1), which we need for our construction. The trivial bundle admits the zero

2For those readers unfamiliar with principal bundles, we note that a technical understanding
should not be necessary to follow the discussion in this Section. Nonetheless, since the notion of a
principal bundle shall be central to the general formalism which we shall set out in §6.2, we provide a
more-or-less self-contained introduction to the relevant concepts in § 2.3.
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connection and describes the boson, while the non-trivial bundle admits a non-zero
(but nevertheless flat) connection, which accounts for the fermionic phase.

Let us now see this more clearly by means of an explicit construction. An element
U € U(2) projects down to an element O € SO(3) by projecting out its (U(1)-valued)
overall phase. We parameterise a matrix U € U(2) by

| et 2c05(0/2) eI ¥=9)/25in(0)/2)
U — oix , (6.13)
—eiV=9/25in(0/2) e 1WF9)/2 cos(0/2)

where 6 € [0, 7], ¢ € [0,27), ¥ € [0,47) and x € [0,27) with the equivalence relation
0,0,9,x) ~ (0,0,% + 27, x + 7). Now, consider the curve 7/(t) in U(2) defined by

V() = | e, (6.14)

and define the curve y(t) to be the projection of 7/(t) to SO(3), which one might think
of as the particle worldline in the original configuration space. The curve +/(t) is a
horizontal lift of v(¢) with respect to the connection, which in our coordinates can be
represented by A = dy. For our purposes here, this simply means that the tangent
vector X, to the curve 7/(¢) satisfies A(X,/) =0, i.e. it has no component in the y
direction.

Notice that in U(2) we have 4'(0) = I and +'(7) = —1I, and that these two points,
while distinct in U(2), both project to the identity in SO(3). The relative phase of 7
between 4/(0) and +/() is called the holonomy of v(¢). This implies that the rigid body
is in this case a fermion, because the loop (¢) in SO(3) corresponds to a 27w-rotation
about the z-axis in R3. If we had instead equipped the rigid body with the trivial
choice of bundle SO(3) x U(1), instead of U(2), then the phase returns to zero upon
traversing any closed loop in SO(3), thus corresponding to a boson.

This fermionic versus bosonic nature is furthermore manifest in the differing repre-
sentation theory of the Lie groups U(2) and SO(3) x U(1). This shall be important
when we solve for the spectrum of this quantum mechanical system in §6.3.1. While
the unirreps of SO(3) x U(1) are all odd-dimensional (as we would expect for the
integral angular momentum eigenstates of a bosonic rigid body), U(2) also contains

unirreps of even dimension (for example, the defining 2-d representation), leading to
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the possibility of eigenstates with half-integral angular momentum, which is exactly
what we expect for a fermionic rigid body, via the spin-statistics theorem.

For our purposes, it will be useful to consider a different path 4(¢) in U(2) that
also projects down to v in SO(3), defined by

() = , telo,n]. (6.15)

While this path 7 is not a horizontal lift of the worldline v, it nonetheless still
projects down to ~, but is now a closed loop in U(2) with the property that the
exponential of the integral over 7 of the connection A = dy is equal to the holonomy;,
viz. e 34 = =i’ = _1. This means that we can represent the holonomy (which
is the contribution to the action phase from the topological term) in terms of a local
action, namely the integral of the connection over an appropriately chosen loop 7.
Given the existence of the horizontal lift, the fact that U(1) is connected means such a
loop always exists. As we might expect from the fact that there is a redundancy in our
description, the choice of loop is, however, not unique. Nevertheless, the integral is of
course independent of this choice.

The upshot is that this topological phase, which results in fermionic statistics of the
rigid body, can be obtained from the integral of a lagrangian (the connection) on the
principal bundle, here U(2), which is both globally-defined and manifestly local. Due
to the topological twisting of the bundle, there is no corresponding globally-defined
lagrangian on the original configuration space, here SO(3).

In this Section we have discussed two quantum mechanical prototypes, which are
at first sight very different from a physical perspective. What both examples have in
common is the possibility of a topological term in the action phase. In our first example
of quantum mechanics on the plane (§6.1.1), this topological term corresponded to
the familiar coupling of our particle to a magnetic field transverse to the plane of
motion. We saw that, in order to identify a symmetry group that commutes with
the hamiltonian, it was necessary to pass to an equivalent description on an extended
space, with that symmetry group being the Heisenberg group. We then saw how one
could obtain the Landau level spectrum by using harmonic analysis on the Heisenberg
group, a method that works in any gauge. In contrast, in our second example of a rigid
body (in this subsection), the topological term corresponded to a vanishing magnetic
field, but we nonetheless saw that the term can have interesting effects, in this case

leading to either fermionic or bosonic character of the rigid body.
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Mathematically, both examples admit a common description: the topological term
in the action phase is the holonomy of a connection on a U(1)-principal bundle P
over the configuration space M. Such a topological term may not correspond to any
globally-defined lagrangian on M (as in §6.1.2), or may not be invariant under the
action of the group G which acts on M (as in §6.1.1); or, indeed, both (interconnected)
issues may arise. Having demonstrated in our two prototypes that these problems can
be remedied by passing to an equivalent description on an extended space (namely,
the principal bundle P) with an action by a central extension of G, we are now ready

to explain the general formalism.

6.2 Formalism

We shall consider quantum mechanics of a point particle whose configuration space is
a smooth, connected manifold M. This can be described by an action whose degrees
of freedom are maps ¢ from the 1-dimensional worldline, 3, to the target space M, viz.
¢ : 2% — M. We consider the smooth action a : G x M — M of a connected Lie group
G on M, which shall define the (global) symmetries of the system. Since, in the path
integral approach to quantum mechanics, it is only the relative action phase between
pairs of worldlines that is physical, we are free are to consider only worldlines which

are closed, without loss of generality.

6.2.1 Quantum mechanics in magnetic backgrounds

We will now define the dynamics of the particle on M by specifying a G-invariant action
phase, ¢3¢}, defined on all closed worldlines, or equivalently on all piecewise-smooth
loops in M.

The action consists of two pieces (ignoring potential and higher-derivative terms).
The first piece is the kinetic term, constructed out of a G-invariant metric on M. The
second piece in the action couples the (electrically charged) particle to a background
magnetic field. This is a topological term in the action phase (in the sense that it does
not require the metric), equal to the holonomy of a connection A on a U(1)-principal
bundle P over M (see §2.3), evaluated over the loop ¢. It is shown in [56] that for this
term in the action phase to be invariant under the action « of the Lie group G, we
require that the contraction of each vector field X generating o with the curvature

2-form w is an exact 1-form. That is, we require

Lxw = de VX e g, (616)
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where each fx is a globally-defined function (equivalently, a 0-form) on M, and ¢y
denotes the contraction of a differential form and a vector field (the details don’t concern
us). This condition, which we shall refer to as the Manton condition, is necessary
for the G-invariance of the topological term evaluated on all piecewise-smooth loops
in M (provided that G is connected, as we are assuming). This Manton condition
is analogous to the moment map formula for a group action to be hamiltonian with
respect to a given symplectic structure. The difference here, mathematically, is that
the field strength w need not be a non-degenerate 2-form.

It will be of use later, when we end up constructing an equivalent action on P,
to specify a local trivialisation of P over a suitable set of coordinate charts {U,} on
M. We let s, € [0,27) be the U(1)-phase in this local trivialisation and define the
transition functions t,3 = ¢'sa=38)  Technically speaking, we need two coordinate
charts on P, denote them V, 1 (so # ) and V, 2 (s, # 0), for each U,, to cover the
St fibre. In what follows, we will often gloss over this technicality; from hereon, s,
should be assumed to be written locally in one of these coordinate charts, which we
shall denote collectively by V,, to avoid drowning in a sea of indices. Following this
ethos, we will also tend to drop the a subscript on s, when we turn to solving the
examples in §6.3.

Our objective is to solve the SE corresponding to this G-invariant quantum me-
chanics, which we shall ultimately achieve by passing to a central extension of G by
U(1), and using harmonic analysis on that central extension.

To motivate our method, we shall first review how harmonic analysis can be used
to solve the corresponding (time-independent) SE in the absence of the magnetic
background, by exploiting the group-theoretic structure of the system [87]. Solving
the SE amounts to finding the spectrum of an appropriate hamiltonian operator H ,
which in this case can be quantised as the Laplace-Beltrami operator corresponding
to the choice of G-invariant metric on M, on an appropriate Hilbert space. In the
absence of a magnetic field, the Hilbert space can be taken to be L?*(M). We can
endow this Hilbert space with a highly reducible, unitary representation of GG, namely

the left-regular representation defined by
p(g)¥(m) := ¥(a,~1m) for m € M, g € G, and ¥ € L*(M). (6.17)

The action of p allows us to decompose the vector space L?(M) into a direct sum (or,
more generally, a direct integral) of vector spaces V!, such that the restriction of p to
each VM yield a unirrep of G, which we label by its equivalence class A € A. Each

unirrep may, of course, appear more than once in the decomposition of L?(M) and
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so we index these by t € T*. We will fix a basis for each vector space V*, which we
A

T

denote by e, where r € R* indexes the (possibly infinite-dimensional) basis, which
does not depend on ¢.

In our examples we often specify the operator in the unirrep A by its form in the
chosen basis, which we denote 7*(s, ¢), where s and ¢ index the basis. In many cases,
as in §6.1.1, it will transpire that we can set e = 7*(r,¢). In other instances were
this is not the case, one can nonetheless infer a suitable form for the eM from (s, q).

It is then a consequence of Schur’s lemma that if

A

Hp(g) f(m) = p(9)H f(m), (6.18)

then the operator H will be diagonal in both A and r, and can only mix e} in the
index ¢t and not r or A, i.e. it only mixes between equivalent unirreps. In most cases
this simplifies the SE by reducing the number of different types of partial derivatives
present, often resulting in a family of ordinary differential equations (ODEs) [87].

6.2.2 An equivalent action with manifest symmetry and local-
ity

Interestingly, coupling our particle on M to a magnetic background, in the manner

described in §6.2.1, may prevent one from constructing a local hamiltonian that satisfies

Eq. 6.18. As elucidated by our pair of prototypes in §6.1, there are two obstructions to

this method.

Firstly, as demonstrated by our prototypical example (§6.1.2), it may not be
possible to form a globally-valid lagrangian on M. Secondly, as demonstrated by our
prototypical example (§6.1.1), even when the construction of a globally-valid lagrangian
is possible (i.e. when w, the magnetic field strength, is the exterior derivative of a
globally-defined 1-form), the lagrangian may vary by a total derivative under the action
of G. This means that Eq. 6.18 will fail to hold, and the hamiltonian will not act only
between equivalent unirreps of G.

It is possible to overcome both these problems by considering an equivalent dynamics
on the principal bundle 7 : P — M, instead of on M, as we shall now explain.

The topological term, which is just the holonomy of the connection A on P, can be

written as the integral of A over any loop ¢ in P which projects down to our original
loop ¢ on M, i.e. one that satisfies To¢ = ¢ (see §2.3). Pulling back A to the worldline
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using gz;, we obtain on a patch V, of P

A= (3a(t) + Ay (2"(1)) 2°(1)) dt, (6.19)

where #(t) := 2'(m o ¢(t)) denote local coordinates in M (with i = 1,...,dim M),
Sa(t) = 5a(@(t)), $a = dss/dt &c, and Al = dsq + Aaudx’ is the connection
restricted to the patch V. Given that we can also pull back the metric, and thus the
kinetic term, from M to P, we can ‘lift’ our original definition of the action from M to

the principal bundle P. The contribution to the action from a local patch V,, is then

S[e)

L= / dt {gii'd? — 50 — Anyi'}, (6.20)

where g;;dz'dz? will henceforth denote the pullback of the metric to P.

As we have anticipated, this reformulation of the dynamics on P has two important
virtues. Firstly, there is a globally-defined lagrangian 1-form on P for the topological
term, namely the connection A. Secondly, this lagrangian is strictly invariant under
the Lie group central extension G of G' by U(1), defined to be the set

G={(g9,9) € GxAut(P,A) |mTop=q,07}, (6.21)

endowed with the group action (g,¢) - (¢',¢") = (99', ¢ 0 ¢') [123, 144], which as a
manifold is the pullback bundle of # : P — M by the orbit map ¢, : G — M,
g — g-m, for any m € M [123]. Here, Aut(P, A) denotes the group of principal bundle
automorphisms of P (i.e. diffeomorphisms which commute with the right action of
the structure group on P) which preserve A, i.e. for ¢ € Aut(P, A) we have p*A = A.

There is a short exact sequence

0 —— U(l) — @ —— G > 0, (6.22)

with the subgroup Im(r) central in G, thus exhibiting G as a central extension of G
by U(1). Here ¢ : U(1) 3 € — (id, Raw) € G, where R, € Aut(P, A) indicates the
right action of U(1) on the bundle P, and 7’ : G> (9,¢) — g € G. This group has a
natural action on the principal bundle P, which we denote by & : G x P — P, defined
by & gpp = @(p), for p € P.

The price to pay for these two virtues is that we have introduced a redundancy

(which locally comes in the form of an extra coordinate s,) into our description. We
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must account for this redundancy with an appropriate definition of the Hilbert space,

to which we turn in the next Subsection.

6.2.3 Quantisation

Equipped with this reformulation of the dynamics on P, and the extended Lie group
G, we are now in a position to construct a local hamiltonian operator and solve for its
spectrum by decomposing into unirreps of G.

To do this, we first form the classical hamiltonian by taking the Legendre transform
of the lagrangian, defined on the ‘extended phase space’ T*P. At this stage the
redundancy in our description becomes apparent, with the momentum p;, conjugate
to the (local) fibre coordinate s, being constant, viz. ps, + 1 =0, as we saw in §6.1.1.

We can enforce this constraint by quantising the so-called ‘total hamiltonian’
1 i
Hly, = 5(0i + Aai)g” (0 + Aay) + v(t)(Psa +1), (6.23)

where p; is the momentum conjugate to the coordinate z°, and v(t) is an arbitrary
function of ¢ which plays the role of a Lagrange multiplier. This hamiltonian is naturally
quantised as the magnetic analogue of the Laplace-Beltrami operator, in which the

covariant derivative V on M is replaced by V + A, giving

HVQ 1( \/_aszr )”(—z%+A )—I—v(t)(—z%—i—l) (6.24)

which is a Hermitian operator acting on the Hilbert space

H= {\DELQ(P,,&)’(—Zai—l—l)\IJ:Oon Va} (6.25)
Sa

where locally the measure is given by fi = \/g dsdz'...dz". The Hilbert space H is
isomorphic to the space of square integrable sections on the hermitian line bundle
associated with P with respect to the measure p = /g dz' ... dz™ [143, 150].

6.2.4 Method of solution: harmonic analysis on central exten-
sions
Because the local hamiltonian commutes with the left regular representation of G,

we expect to be able to use harmonic analysis on G (when it exists!) to solve for
the spectrum of Eq. 6.24. The Hilbert space H is endowed with the left-regular
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representation p of G, under which a wavefunction ¥ € H transforms as
H@)¥(p) = U(ap)  VpEP GeC (6.26)

We use harmonic analysis to decompose this representation into unirreps of G, in
analogy with how we decomposed into unirreps of G in the absence of a magnetic
background, above. Thus, let e (p € P) now denote a basis for this decomposition,

which schematically takes the form
=% / O D) A DM (p) € LA(P, i) (6.27)
A

for an appropriate measure p(\, 7, t). Note that the basis functions may not be square
integrable; if this is not the case one may check that the solutions are the limit of an
appropriate Weyl sequence (see e.g. [87]). In the presence of the magnetic background,
we have passed to a redundant formulation of the dynamics on P, and the crucial
difference is that we must now account for this redundancy when using harmonic
analysis. It turns out (see Appendix C) that this redundancy can often be accounted
for by restricting the decomposition in Eq. 6.27 to the subspace of unirreps which satisfy
the constraint (—id, + 1)eM(p) = 0, which we can moreover equip with an appropriate
completeness relation. In the examples that follow in §6.3, this decomposition into a
restricted subspace of unirreps will serve as our starting point for harmonic analysis.

Then, exactly as above, the fact that the hamiltonian commutes with the left-regular
representation (of G, not G) means that the action of H will only mix equivalent
representations (that is, it can mix between different values of the ¢ index, but not the
r index or A label). Thus, the SE will be simplified, often to a family of ODEs, as we
shall see explicitly in a plethora of examples in the following Section.

It is important to acknowledge that performing harmonic analysis in the manner
we have described, for the general setup of interest in which a (possibly non-compact)
general Lie group acts non-transitively on the underlying manifold, is far from being a
solved problem in mathematics. For example, it is not known under what conditions
the integrals denoted in Eq. 6.27 actually exist, and whether the functions f*(r,t) can
be extracted from W by appropriate integral transform methods. Thus, much of what
has been said should be taken with a degree of caution. Fortunately, in the examples
that we consider in §6.3, all of the required properties follow from properties of the
usual Fourier transform, and in all cases the method that we have outlined in this

Section works satisfactorily.
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6.3 Examples

In §6.1.1 and §6.1.2 we explained the use of our method for planar motion in a magnetic
field, then pointed out the existence of a topological term for the quantum mechanical
rigid body, and explained how this term can endow the rigid body with fermionic
statistics. We will start this Section where §6.1.2 left off, by solving for the spectrum
of this fermionic rigid body using harmonic analysis on the group U(2). After this
we will look at a series of other examples where our method is of use. Some of these
are well known systems, e.g. charged particle motion in the field of a Dirac monopole,
whilst others are new, e.g. the motion of a particle on the Heisenberg manifold. The

results of all the examples considered in this Chapter are summarised in Table 6.1.
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6.3.1 Back to the rigid body

We resume the example discussed in §6.1.2. On a local coordinate patch on P = U(2),

we define a U(2)-invariant action incorporating a kinetic term by

1. 1. 1/7. . 2
S = /dt (592 + 58 sin? 0 + <¢ + deos 0) - s) . (6.28)
The total hamiltonian on this patch is
L, 2 | 2
=3Pt 57, (05 + Py, — 2cos 0 pypy) + v(t)(ps + 1), (6.29)

which we quantise as the operator

go__ L 0 (. ,0y 1 82+82_2982
= T 2smho0 \""00) T 2520 \av? | a¢r “ Voo
)
1) (—%H), (6.30)

acting on wavefunctions (6, ¢,1,s) € L*(U(2)) satisfying (—i% + 1) U = 0. The
unirreps whose matrix elements satisfy this condition when considered as functions on
U(2), are given by

(0, 6,0,8) = €7D, (0, 6,0), (6.31)

where j is a positive half-integer, m, m’ € {—j,—j +1,...,j}, and Df;l,m is a Wigner

D-matrix, defined (in our local coordinates) by

; - m)l(G —m)! V2 / /
Dt 00) = ((LEEETZI0E) ™ sin(o/2) Geosl/2)

( _ /’ + /) iy .
P  (cos B)e” ™ Ve (6.32)
These are matrix elements of an unirrep of U(2) and, as was the case in §6.1.1, transform
in the corresponding conjugate representation when the left-regular representation is

applied. The Wigner D-matrices satisfy the completeness relation

SO Y 00,06 Diu(6.0,0)

m/€Z+1/2 meZ+1/2 j=max(|m|,|m’|)

= 9: () — )02 (¥ — Y )d(cos @ — cos '), (6.33)
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where 0o, (- -+ ) represents a Dirac delta comb with periodicity 27, and the sum over j
is over half-integers.

Following the formalism set out in §6.2, we decompose ¥ into a basis {e™ } for

L*(U(2)), which in this case can be chosen to be e/;™ =7, the matrix elements of

unirreps of U(2) introduced above, giving us

- Y Y Y Tetn 000, 63

m/€Z+1/2 meZ+1/2 j=max(|m|,|m'|)

with inverse
Tim = / d (cos(0')) dy'de) (D3, (0, ¢ ¢")e™) W(0, ¢, ¢, 5). (6.35)

The SE then reduces to

SRS 2j8j;1 {j(jgl)_E}eisD;,m(9,¢,¢)fiym:O’

m/€Z+1/2 meZ+1/2 j=max(|m|,|m’|)
(6.36)

yielding the energy levels
j L. . .
E ., = 5 (j+1), for j half-integer. (6.37)
The corresponding wavefunctions, on our local coordinate patch, can be written

U, (0,6,0,8) =e DI, (0,6,9). (6.38)

Setting the fibre coordinate s to zero defines, a section on the hermitian line bundle
associated with the principal bundle U(2), in other words a physical wavefunction. On
traversing a double intersection of coordinate charts on SO(3), the above expression
for the section will shift by a transition function.

We note in passing that on setting s = 0 the U(2) representations appearing in
this decomposition reduce to representations of SU(2). This occurs due to a well-
known happy accident, namely that the projective representations of a Lie group G
(here SO(3)) whose second Lie algebra cohomology vanishes (as is the case for every
semisimple Lie group) in fact correspond to bona fide representations of the universal
cover of G (here SU(2)). That is, under these conditions, familiar to most physicists,
we may decompose the Hilbert space into unirreps of the universal cover of G, without

technically needing to pass to a central extension. It is, however, important to point
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out that even in an example such as this, one cannot write down a local action for the

topological term on the universal cover SU(2), but must pass to the central extension,

U(2).

6.3.2 The Dirac monopole

Here we consider the G = SU(2)-invariant dynamics of a particle moving on the
2-sphere. We may embed M = S? in R?, parametrised by the standard spherical
coordinates (6 ~ 0 + 7, ¢ ~ ¢ + 2m). We cover S? with two charts U, and U_, which
exclude the South and North poles respectively. At the centre sits a magnetic monopole
of charge g € Z. This background magnetic field specifies a particular U(1)-principal

bundle P, over S? with connection A, which we may write in our coordinates as

s

Aly, =dsy — 5 (1 —cost)de 6.39)

N QDo

Al, =ds_ —=(—=1—cosf)do,
where s1 denotes a local coordinate in the U(1) fibre. This can be conveniently written
as
1 g
A= idx + 5 cos 0do, (6.40)

where %X =5y — 5S¢ on Uy and %X = s_+ 3¢ on U_. The transition functions over a

trivialisation on {U,,U_} are specified via the choice
(p,e?) € Uy x U(1) = (p,e®e9?) € U_ x U(1). (6.41)

For general g, this bundle P, is in fact the lens space L(g, 1), which is a particular
quotient of S® by a Z/gZ action. When g = 1, the bundle is simply P, = S3, described
via the Hopf fibration and when g = 2, the bundle is simply RP3.3

As was the case in the previous example, it is here not possible to write down a
global 1-form lagrangian on S2. Rather, as was first demonstrated by Wu & Yang
[151], one must write the action on S? as a sum of line integrals on different charts,
together with the insertion of 0-forms (the transition functions) evaluated at points in
double intersections of charts. Thus, it is not possible to use the usual hamiltonian

formalism to solve for the spectrum of the corresponding quantum mechanics problem.

3The lens spaces L(g, 1) make another appearance in physics as the possible vacuum manifolds for
the electroweak interaction [86].
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Following our formalism, we should instead reformulate the problem by writing down
an equivalent, globally-defined lagrangian on the U(1)-principal bundle P, = L(g, 1)

defined above. The action is
S—/dt 1(6.2—|—s.in29¢2) —EX—gcoseé : (6.42)
2 2 2

This lagrangian is invariant under G' = SU(2) x U(1), the unique (up to Lie group
isomorphisms) U(1)-central extension of SU(2), with uniqueness following from the
fact that SU(2) is a simple and simply-connected Lie group [144]. We parametrise an
clement § € G by

ei(w+¢)/2 COSQ 'L(Q/" ¢)/ Sln— ]
? 2, @02 e SUE@)x U(1).  (6.43)

Qe
|

_ei("l}_(ﬁ)/Q sin g e_i(w+¢)/2 CcoS g
The corresponding total hamiltonian is
2 1 g 1
H= 3Po + oy <p¢ + = cos 9) +o(t) | py + 5) (6.44)

which when quantised gives

: L 9 4 1 9 g ? o 1
H=—5moom (Sln‘)ag)+zsin29 (— @—¢+—0089> ()(—Z&‘F ) (6.45)

where the Hilbert space H is the subspace of square integrable functions on L(g, 1) for

which the last term in Eq. 6.45 vanishes.

We now wish to solve for the spectrum of this hamiltonian using harmonic analysis
on the Lie group G = SU(2) x U(1). Matrix elements of unirreps of SU(2) x U(1)
which are annihilated by the constraint —i% + %) 7TZn7m, = 0 are given by

(0,0, x) = 9 DI L (0.6,1)). (6.46)

Here Dfn,m = e‘im'¢_im¢dirl,m(9) are the same Wigner D-matrices as defined in Eq. 6.32,
and the matrices df}um(@) are conventionally referred to as ‘Wigner d-matrices’. The
subspace of these unirreps with m’ = ¢g/2 do not depend on the coordinate 1, and
provide a suitable basis for decomposing square-integrable functions on the lens space
L(g,1). We denote these basis functions by e4/*(6, ¢, y) = mg/2( ,$,1, %), which

satisfy the constraint condition and which transform as unirreps of SU(2) x U(1). This
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subspace of H carries the completeness relation

S B s dre.en)
m+g/2€Z j=max(|m|,g/2)

= e 0XD25, (¢ — ¢)d(cos O — cos @), (6.47)

which allows us to decompose any wavefunction in W € H into unirreps as follows

—i - 2041 5 img g
\I](ev (b’ X) =e€ x/2 Z Z ?fgle (bdf;/Q,m(e)? (648>
m+g/2€Z j=max(|ml|,g/2)
where
fl = / d(cos0)dg e TN, (00, ¢, X). (6.49)
If we now substitute the decomposition in Eq. 6.48 into the SE, after simplification,
we get
24, /2 im
S S HE QU g ) e, ) =0
m+g/2€Z j=max(|m|,g/2)
(6.50)
Thus the solution to the SE is
j —ix/2—imao 3j j 1 . .
Ul (0,6,x) = e NI, (0), B =c(4P 4 -0 (651)

Notice that the eigenstates are labeled by two quantum numbers j and m, but that for
a given j the eigenstates with different values of m are degenerate in energy due to the
rotational invariance of the problem.

To write our solution in terms of a section on a hermitian line bundle associated
with P, we set s; = 0 on U} and s_ = 0 on U_, corresponding to x = —g¢ and

X = g¢ respectively. This yields

W, (0, 0) =eBomedl (0),

. Lo (6.52)
W, _(0,¢) = e 207m0d) , (6),

These solutions agree with the solutions of Wu and Yang [150], who solved this system

by considering local hamiltonians on U, and U_ separately.
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6.3.3 Charged particle orbiting a dyon

In the previous Section we found the spectrum of an electrically charged particle in
the presence of a magnetic monopole. Within our formalism, it is straightforward to
generalise this to study an electrically charged particle in the background field of a
dyon, and use harmonic analysis to reduce the corresponding SE to an ODE.

The required modification is to include an r-dependent kinetic term, where r is
the radial distance from a dyon located at the origin, together with an r-dependent

potential term, in the action in Eq. 6.42. We have

S = /dt{ (7’ + 1%0% 4+ 1% sin 6¢2> g—l)(—gcosﬁé}. (6.53)
2 ro 2 2

where ¢ is the electric charge of the dyon, and g € Z is the (quantised) magnetic charge
of the dyon as before. The original configuration space M of the system is R, x S2,
whilst this action is written on the U(1)-principal bundle P, , = Ry x L(g, 1) where
L(g,1) is the lens space as in §6.3.2. This action is invariant under a non-transitive

action of SU(2) x U(1), as defined in the previous Section.
The quantised total hamiltonian corresponding to the action in Eq. 6.53 is given by

oo L0 (p ) L0 (g0 L (09
o 2r20r 87" 2sin 6 00 sin 00 2r2sin% @ 3@25
q o 1
+;—i—v(t)( Z&-f- ) (6.54)

which acts on the physical Hilbert space. The decomposition of a wavefunction
U(r,0,¢,x) in this Hilbert space is completely analogous to the decomposition in
Eq. 6.48, however this time the f7 , which were previously constants, should be replaced
with functions f7 (r). On substituting this decomposition into the SE, we arrive at the

following differential equation for fJ (r),

(—%%( aar) 1 47 +4j—g )+g—E) fn(r) =0. (6.55)

The bounded solutions to this ODE were derived in [34], giving the spectrum
e

B, = —— 1
2(n+a)?

., n € Ny, (6.56)

where a = 1 <1 +((25+1)* = 92)1/2>.
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6.3.4 Planar motion in a uniform magnetic field (take two)

In §6.1.1 we solved for the spectrum of a particle on R? in the presence of a uniform
magnetic field perpendicular to the plane, by considering the group R? of translations in
the plane, and passing to its central extension, the Heisenberg group Hb. Of course, the
symmetry group of this system is larger than R?, because both the kinetic term and the
magnetic coupling are invariant not just under translations, but also under rotations.
Thus, in this Section, we revisit this problem (and solve it again) using a different
implementation of our general method, by instead considering the particle as living on
the quotient space M = ISO(2)/S0O(2) = R?, with G = ISO(2) being the Euclidean
group in two dimensions. Thus, our solution here shall involve the representation
theory of a central extension of G = ISO(2), which will be a four-dimensional group,
rather than the representation theory of Hb which was used in §6.1.1.

As usual, we formulate the action on a U(1)-principal bundle P over the target
space M =1SO(2)/SO(2) = R?. Using coordinates (z,y, s), where (z,y) € R? provide
global coordinates on the base space, and s denotes a local coordinate in the U(1) fibre,

the action is

B Lo o . Oh.  Oh. .
S—/(2(x +9y)—$ 5 8yy Byt ) dt, (6.57)

where h(z,y) is an arbitrary smooth function of x and y, which corresponds to a choice
of gauge for the magnetic vector potential. Note that in all the examples in this Chapter,
there is a choice of gauge made in writing down the magnetic vector potential which
appears in the action. While different choices of gauge will in general result in different
central extensions G, gauge-equivalent vector potentials nonetheless correspond to
central extensions which are isomorphic as Lie groups. In this sense, the choice of
gauge has little affect on the representation theory used in our calculations. For this
example, we have chosen to make this gauge-dependence (or, rather, independence)
explicit, by formulating the action in a general gauge from the outset.

As usual, the lagrangian is not invariant under the isometry group G = ISO(2), but
rather it shifts by a total derivative under the translation subgroup. The lagrangian is,
however, genuinely invariant under a U(1)-central extension of ISO(2), which we will

denote by I/S\(/)(2), which is a four-dimensional group defined by

{eg.a.e){a g et ={g+acosg +gsing, g +gcos —&sing,
B
St €6+ & — 5 ((Gcos g+ sin g, — (§cos8, — & sin€)E)) b (6.58)



6.3 Examples 79

This group acts on the principal bundle P via

_ B .
Qe g e (2,Y,8) = {%", ) ((zcos& +ysin&)E,

. B B
~(yeong, —osing)€) + (= Fa' ) + (i) h(e )} (659
where 2’ = £ +xzcos&, +ysing, and y' = £ +ycos, — xsing,.

The corresponding total hamiltonian is

1 Oh 1

2 2
oh

which we quantise as the Hermitian operator

.1/ .9 0h 1/ 8 0h\? 0
iy (g 80) +3 (Gt ay) 0 (Ggr1)- o

The Hilbert space H is the subspace of square integrable functions on the bundle P
which are annihilated by the constraint (—i% + 1) = 0. We shall now solve the SE
for this system by decomposing this Hilbert space into unirreps of the group I/§(/)(2)
defined above. We start from the following unirreps [115]

1
, z . '\2 ; ~1( &y |BI(€2+€7)
A —i(Sgn(B)n+A+8)e, —ies [ TV Sgn(B)(m—n)t sy IBIEx+Ey)
ﬂmZn(Sany»écags) =€ i(Sen(B)n+Ato)e e © <—) el gn(B)(m—n)tan (590)6 1

m!
(—i\/éi +&

172\ ™"
> ) p(Fere). oo

2

1
; 5 ; A 1Sgn m—n)tan—1 (&% |B|(f%+f§)
T (o gy €0y &) = € OBBITENIEe it (%) oiSn(B)(m—n) tan? () PG+
‘ BIY? nom o /|B
(ﬂM§+g o (Ge+). oo
where A € Z, myn € Ny, 6 = 1 if B > 0 and & = 0 otherwise, and L= are

2
the associated Laguerre polynomials. A set of functions in the Hilbert space which

transform under these representations can be inferred by comparing the multiplication
rule in ISO(2) with the group action on the principal bundle P. We thus obtain the
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following basis of functions on P:

1

. l , _ 24e2
edom| o (x,y,8) = o—i(sthtFay) <£> ’ oiSen(B)(m—n) tan 1(g)€,4'3‘<52+5y>

/2 4 g2
(—z z T &y

1
. I\ 2 . _ 2., .2
620’m|m§n(x;y,3) _ 671<s+h+§xy) (ﬁ) 6zSgn(B)(mfn)tan 1(%)6—7@‘@4'% )

n!
B2\ Bl, ,

1/2\ M
- ) g (Fe+a). oo

2

(—i\/xQ + 12

where \g = —Sgn(B) — 4. When acted on by the left regular representation of IfS\(/)(Z)
these functions transform under the unirrep corresponding to the conjugate of the
A = Ao unirrep defined in Egs. 6.62, 6.63 above. We know it is sufficient to consider

only these unirreps since they satisfy a completeness relation given by

15|

oo 2 (e @y ) e @,y 5) = e 6w =)oy — o). (6.66)

m,n

Thus, we can decompose a wavefunction in our Hilbert space into unirreps of IfS\(/)(Z) as
U(x,y,s) = 1B Z o™ (2, Y, 8) frnms (6.67)
2m £~ " ’

where the inverse transform is given by

fmn = /dxdy(ezo’m(x/,y’,s’))*\I/(x,y,s). (6.68)

After substituting the decomposition in Eq. 6.67 into the SE, we obtain
@Z(|B|(n+1/2) — E)eX™(2,y8) frun =0 (6.69)
2m £ " Y5)Jmgn = T '

Thus, we arrive at the familiar Landau level spectrum

Em,n = ‘B’(n + 1/2)7 \Ijm,n = 67);07m(x7y7 3)7 (670)
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Ao,m

Ao oives us a suitable set of eigenfunctions on R2.

where setting s =0 in e

6.3.5 Quantum mechanics on the Heisenberg group

In this Section, we turn to a new example not previously considered in the literature,
of particle motion on the Heisenberg group. We equip M = Hb with a left-invariant
metric, and thus take G = Hb also. We shall couple the particle to a background
magnetic field, corresponding to an Hb-invariant closed 2-form on Hb, for which the
magnetic vector potential which appears in the lagrangian shifts by a total derivative
under the action of the group Hb on itself.

While a version of the Heisenberg group appeared in §6.1.1 (as the central extension
of the translation group R?), for our purposes in this Section we shall redefine the
Heisenberg group to be the set of triples (z,y, z) € R? equipped with multiplication
law

(@ y, ) (vyy,2) = (e + 2" y+ o, 2+ 2"+ ya'). (6.71)

To avoid any possible confusion, we emphasise that in this Section the Heisenberg
group is taken as the original configuration space of our particle dynamics, which we
shall reformulate as an equivalent dynamics on a central extension of the Heisenberg
group. This central extension will be a four-dimensional Lie group which we shall
denote Hb.

Before we proceed with writing down the action for this system (and eventually
solving for the spectrum using harmonic analysis on ﬁf)), we first pause to offer a
few words of motivation for considering this system, since it does not correspond
to any physical quantum mechanics system (although there are indirect links to
the anharmonic oscillator, see e.g. [99]). In any case, our motivation is entirely
mathematical. Firstly, we wanted a new example where the central extension of
Lie groups 0 — U(1) — G — G is non-trivial, i.e. G is not just a direct product,
and moreover that it corresponds to a non-trivial central extension of Lie algebras
0 - R — g — g. The requirement that a Lie algebra g admits a non-trivial central
extension requires, by a theorem of Whitehead [149, 148|, that the Lie algebra g cannot
be semisimple. Of course, abelian Lie groups provide a source of such non-trivial central
extensions, because their Lie algebra cohomology is in a sense maximal (noting that the
second Lie algebra cohomology of g is isomorphic to the group of inequivalent (up to Lie
algebra isomorphisms) central extensions of g). However, we sought a more interesting
example where the original group G is non-abelian. To that end, non-abelian nilpotent

Lie groups provide a richer source of suitable central extensions, because the second Lie
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algebra cohomology of any nilpotent g is at least two-dimensional [62]. The Heisenberg
Lie algebra, and the corresponding Lie group Hb, provides the simplest such example.

Since we are taking the Heisenberg group to be topologically just R3, we can cover
the target space with a single patch and write the lagrangian using globally-defined

coordinates (z,y, z). The action on Hb, including the topological term, is

S = /dt (% (&% + 92+ (2 —29)?) — i + %2y> . (6.72)
The kinetic term corresponds to a left-Hb-invariant metric on Hb, as mentioned above,
and we have chosen a normalisation for the (real-valued) coefficient of the topological
term —xz + %23;.4 This topological term in the lagrangian shifts by a total derivative
under the group action in Eq. 6.71. Following our now-familiar procedure, we thus
reformulate the action on a U(1)-principal bundle P over Hb, on which s provides a

local coordinate in the fibre. The action on P is written

2
S:/dt (% (3':2+y2—|—(73—:1:y')2)—S—:UZ—#—%Q), (6.73)

where the only difference is the § term. By adding this redundant degree of freedom to
the action it becomes strictly invariant under the U(1)-central extension of Hb defined

by the multiplication law

56/2
(mlvy/a Z/a S,) ' (xvya Z, S) = (’ZE + 17,7?/ + y/7 z+ Z, + y$,7 s+ sl - ZZIZ'/ - y?) ) (674)

which we denote by G = Hb.
The total hamiltonian corresponding to the action in Eq. 6.72 is given by

1

1 1 2 ?
He gttt al g (-G 4ebta) 400641, 67)

which quantises to

+1 ,8+ 2+1 0 :1:2+ .8+ 2
2002 2\ '8z " 2 Zay 2 T\ T T

+ (1) (—z% + 1) . (6.76)

4Note that this is not the most general Hb-invariant topological term we can write down.
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acting on the Hilbert space of square integrable functions on Hb that are annihilated
by (—iZ +1).

Because the group Hb defined in Eq. 6.74 has a nilpotent Lie algebra, its representa-
tion theory can be found via Kirillov’s orbit method [98]. The unirrep matrix elements
that we are interested in, which in this case are functions on IZIT), are infinite-dimensional,
given by

wl(r t;x,y,2,8) =0(t —r — x)ei(_s+2T+%yr2)+q/2y, (6.77)

which satisfy the completeness relation

dqdrdt X —i(s—s' / / /
/ 26(12T)2 (ﬂ-q(T? t; xla yla Z,a 5/)) 7Tq(7’, t; x,Y, %, 8) =e io=s )(5(1’ - )5(y -y )5(2 -z )
s
(6.78)

We thus decompose a wavefunction into unirreps using these functions as our basis

elements, e?'(x,y, z,8) = 74(r, t; x,y, 2, s), giving us

dqdrdt
¥y = [ G @ ), (6.19)
where
fo(r,t) = /dx’dy’dz' (e2'(a',y,2',8)) (2! y, 2, 5. (6.80)
Using this decomposition, and the expression in Eq. 6.76 for the hamiltonian, the SE
reduces to
— ;/dqdrdt e (x,y, 2, 8)
4(2m)3 e
02 f,(r,t) 1
(# +2Efy(rt) = § (£ + q)> +4t%) fy(r,t) | =0. (6.81)

The ODE in the parentheses coincides with the SE for an anharmonic oscillator.
This differential equation can be solved order-by-order in perturbation theory (in the
parameter ¢), as is discussed in numerous sources, for example [114]. If the SE of this
problem could be solved using other means, this decomposition would allow one to

study the eigenstates of the anharmonic oscillator.

6.3.6 Trapped particle in a magnetic field

Our last example will demonstrate our method in a case where the group action
a: G x M — M is non-transitive (we saw another such non-transitive example, that of

a particle orbiting a dyon, in §6.3.3). In particular, we will consider particle dynamics
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on M = R3, invariant under the action of a subgroup G = R? C R? corresponding to
translations in x and y. We will begin this Section by formulating the problem, and
introducing the necessary representation theory, to describe a generic such action. We
will then consider a special case, in which the components of the inverse metric on R3
vary quadratically in the z direction. This corresponds, physically, to a z-dependent
effective mass. In this special case, we shall find that the solutions to the SE become
localised (or ‘trapped’) around the z = 0 plane.

Consider the action
S— /dt ( D+ ay(2)iP + a.(2)22) + V() — By — yf'(z>z> (682)

for a particle moving on R®. Here a,(z), a,(2), a.(z), V(z), and f(z) are (for now)
arbitrary smooth functions of z, with a,(2), a,(2), and a,(z) necessarily non-vanishing.
This action is quasi-invariant under the non-transitive action of translations in x and
y, but is not invariant under translations in the z direction. We thus consider an
equivalent action on a U(1)-principal bundle over R?, which has to be the trivial one,
P =13 x U(1), with coordinates (z,y, z,s ~ s + 27). The action is given by

S = /dt (% (az(2)@* + ay(2)9” + a.(2)2*) + V() — § — Byi — yf’(z)z) , (6.83)

which is strictly invariant under G' = Hb, the Heisenberg group (the unique U(1)-central
extension of R? up to isomorphism), which in this Section we parametrise by (s, ¢y, (),
with its group action on the bundle R?* x U(1) defined by

G(e e © (T4, 2,8) = (T + Gy + (2,8 + G — G (B + f(2))). (6.84)
The total hamiltonian corresponding to the above action is given by

(p. + By)’+ (p: +yf'(2))*+V (2)+v(t)(ps+1), (6.85)

2
2ay(z)py+ 2a,(2)

which we quantise as the operator

=g (- aaac+3y>2 PR *ﬁz)(‘%wwyw(z)

+o(t) (—z% + 1) (6.86)
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We decompose a wavefunction into unirreps of Hb, exactly as in §6.1.1. The difference

in this non-transitive case is that the coefficients of the unirreps will depend on z, wviz.

2
¥(ap.5,5) = T / drdteP (. y, s) f(r,t: ), (6.87)

where as before
eBl(x,y,s) = P55 (r +y — ). (6.88)

This however, now transforms under the unirrep of Hb defined by

B (r, 4G, e &) = (exp (i (2)¢y) e2(Coy Gy G6)) (6.89)

which takes account of the transformation of s which is not the same as (,, as was the

case in our previous examples. This can be seen from

p((Chr € QL)) - P06 (r +y — 1)
— B =il BALHG B+ (4 y — ¢ — ),

:/ﬁq(z@@wﬂw95@+<<-m)awmﬂ5@+y—o.(6%)

Upon this decomposition, the SE reduces to the following partial differential
equation (PDE)

<32t2 0? +(—z‘<9z+(zf—7~)f’(z))2

2a,(2)  2a,(2) 2a.(2) + V(Z)> f(rit;2) = Ef(r,t;z). (6.91)

Even in this case where G acts non-transitively on M, we see that using harmonic
analysis (on a central extension) has removed derivatives with respect to the two
variables x and y, and replaced them with derivatives with respect to the single variable
t, which labels distinct copies of the unirrep in Eq. 6.89 that appears in the Hilbert
space.

As a specific example where this PDE can be solved analytically, we take f'(z) = 0,
V(z) =0, a,(z) = 1, and a,(z) = ay(2) = (a + 2*)~! with a € R;. That is, we do
not consider the addition of a z-dependent potential, but we do consider a (specific)
z-dependent metric on R3. This equation admits solutions by separation of variables,
viz. f(r,t;z) = f(r,t)g(z), after which f(r,t) is found to satisfy a simple harmonic

oscillator equation (with quantum number n € Z) analogous to Eq. 6.9. Likewise, g(z)
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is then found to satisfy

(-3 am0(e) + 1Bl + 11200 )0+ ) = Eg(2), neZ (692)

2022
which is simply the harmonic oscillator equation again. As such the z-dependence may

be written in the form
g(2) = H,, ((yB\(zn IR z) eVIBlCnHD22 e g (6.93)

We can obtain an expression for the eigenstates by inverting the decomposition in
Eq. 6.87 and setting s = 0, to obtain functions on R3. Following a similar procedure

to that in §6.1.1, we arrive at the eigenstates

\Pm’nva(x7y7z>
= Hm ((|B‘(2n + 1))1/4 Z> e~V |B|(2n+1)z2/2€iaan( /’B‘(y + Q/B))e_@(y—i_a/B)Q’
(6.94)

where a € R. The energy levels depend only on the two quantum numbers n and m,

both in Z, and are given by

Emne=+V|B|(2n+1)(m+1/2) + a|B|(n+1/2). (6.95)

Thus, interestingly, the eigenstates for this system appear to be trapped in the z-

direction (even though naively one may expect the opposite).

6.4 Closing remarks

We have formulated the quantum mechanics of a particle moving on a manifold M,
with dynamics invariant under the action of a Lie group G, in the presence of a
background magnetic field. The coupling to a magnetic background, which is included
via a topological term in the action, defines a U(1)-principal bundle P over M with
connection. We suggest that such dynamics should be recast using an equivalent action
on this principal bundle P, for two reasons. Firstly, a globally-defined lagrangian is
guaranteed to exist only on P, but not on M itself. Secondly, even if a lagrangian were
to be defined (locally) on M, this lagrangian would not in general be invariant under
the action of GG; rather, due to the presence of the topological term, it might shift by

a total derivative. Once reformulated on P, we have shown that the lagrangian will
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be strictly invariant, not under G, but under a larger symmetry group G, which is
a U(1)-central extension of G. We show how to construct this central extension G,
which is a bona fide symmetry group of the system, in the general case.

We have discussed a plethora of examples in which these two (related) complications
arise in coupling a particle to a magnetic background, and in every case show explicitly
how reformulating the dynamics on the principal bundle P remedies the issues. To
highlight just one example, we have revisited the seemingly humble problem of quan-
tising a rotating rigid body in three dimensions, a system that is familiar from every
undergraduate quantum mechanics course, which is equivalent to particle motion on
the configuration space SO(3). What is perhaps less familiar, and which is of interest
to us in this Chapter, is that there is in fact a topological term in this theory. This
topological term, whose existence stems from the non-vanishing cohomology group
H?(SO(3),Z) = Z/2, can only be written as a globally-defined term in the lagrangian
if we pass to a principal bundle over SO(3). There are two choices of such a bundle,
both of which are isomorphic to central extensions of SO(3); the bundle is either U(2),
or SO(3) x U(1). We show that the former choice corresponds to a term in the action
phase that evaluates to —1 upon traversing closed loops in the configuration space,
and thus has the affect of ascribing fermionic character to the rigid body.

The second main feature of this Chapter is the introduction of a new method for
solving the Schrédinger equation for such quantum mechanical systems with magnetic
backgrounds. Our method exploits the group-theoretic structure of the problem, by
decomposing the Hilbert space into unitary irreducible representations of the central
extension G. The method is thus very general; indeed, we show that it is a suitable
match for the generality of the problem which we are attempting to solve. Because
the Hilbert space carries a bona fide representation of the group G (but not the
group G, in which the Hilbert space carries only a projective representation), we
expect that such a decomposition should yield a solution for the spectrum of the
corresponding hamiltonian. In the example of the fermionic rigid body mentioned
above, we immediately see the appearance of spin—% representations in the spectrum
by decomposing into representations of G=U (2), thus exhibiting the non-trivial
connection between topological terms in the action and representation theory.

We proceed to illustrate in all our examples how methods from harmonic analysis
can be used to decompose the Hilbert space into representations of a central extension
G, and in all cases this decomposition is found to be fruitful, typically reducing the
SE to a family of ODEs whose solutions might be known. Our chosen examples range

over some much-loved problems in quantum mechanics, including that of a particle
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moving on a plane in a uniform perpendicular magnetic field, a charged particle moving
in the field of a magnetic monopole, and a charged particle moving in the field of a
dyon. This last example illustrates the virtues of our method even in cases where the
group G acts non-transitively on M, in reducing the problem to one on the space of
orbits of G. We also study some new examples, including a particle moving on the
Heisenberg group in the presence of a magnetic background, for which the Schrodinger
equation is found to reduce, after decomposing into irreducible representations of a
central extension of the Heisenberg group, to that of an anharmonic oscillator.

We anticipate that there are many more quantum mechanics problems which can
be described by dynamics on a manifold with invariance under a Lie group action, and
a coupling to a magnetic field, because this setup is a very general one. For example,
the cases where M = R" or SO(n) appear ubiquitously in physics and chemistry, and
one might describe more realistic molecular systems moving in magnetic fields, for
example, by using a perturbative analysis around these simple cases. Another possible
source of examples, of interest to condensed matter physicists and particle theorists,
might be provided by quantum field theories admitting instanton solutions, in which
great insight can be gained by solving for quantum mechanics on the instanton moduli
space. Since such theories typically also contain topological terms in the action, the
method of solution we have outlined in this Chapter, in which we first construct the
bona fide symmetry group using central extensions and then bring to bear the heavy
machinery of harmonic analysis, would be applicable.

Finally, we observe that all the quantum mechanical problems studied in this
Chapter have had topological terms that are linear in time derivatives. This is not,
however, the only possibility for lagrangians which are quasi-invariant under the action
of a symmetry Lie group G. For an example where this is not the case, consider a
free non-relativistic particle. This can be described in terms of motion in space which
has a transitive action by the Galileo group, but is such that the lagrangian is not
invariant, but shifts by a total derivative under a boost. It turns out that the familiar
kinetic term for such a non-relativistic free particle, viz. %mi"?, which is quadratic in
time derivatives rather than linear, is nonetheless the result of a topological term in
the action. To formulate and solve this example using the methods employed here,
likely requires the use of so-called ‘inverse Higgs phenomenon’. The inverse Higgs
phenomenon, although not in the context outlined here, is the subject of the next
Chapter.



Chapter 7

Inverse Higgs phenomena as duals of

holonomic constraints

We have now studied two different forays into particle physics using techniques from
mathematics. The previous forays were related to anomaly free gauge algebras and
quantum mechanics problems in magnetic backgrounds. We will now proceed to our
third and final foray. We will study constraints and symmetries in quantum field theory.
This will lead us to formal definitions of new constraints which encapsulate the inverse
Higgs phenomenon, as presented in the literature. The main mathematical techniques
used in this Chapter are derived from category theory (see §2.4) and differential
geometry (see §2.3).

The layout of this Chapter is as follows: In §7.1 we give the motivation of what is
needed for our approach and why. In §7.2 we will give a more formal discussion of the
categoric constructions needed. Then, in §7.3 we will categorically define holonomic
constraints, showing they have a dual we call coholonomic constraints. We will define
in a similar manor (co)meronomic constraints.

We first introduce symmetry in §7.4 where we consider a transitive symmetry group
that maps equivariantly down to the space time. In this case a simplification arises due
to the use of homogenous bundles. In this Section we will also make connection with
the inverse Higgs phenomenon literature, showing that many examples there can be
treated formally in terms of coholonomic and comeronomic constraints. We will deal
with more generic symmetries in §7.5. We will need the somewhat technical theory of
partial group actions. Two examples where partial group actions are needed will be
given, corresponding to a (1 + 1)-d non-relativistic particle and a string in a plane. We

will conclude in §7.6.
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This Chapter is more mathematically involved than those that proceed it in
this Thesis. Thus, as an aid to the reader we will use theorem-like environments.
Furthermore, many of the more involved mathematical proofs in this Chapter have

been relegated to Appendix D.

7.1 Motivating ideas

Since the required mathematical machinery for this Chapter goes somewhat beyond
the usual physicist’s curriculum, we begin by describing in an informal way what it is,
and why it is needed. More formal descriptions are in what follows and Chapter 2.

Since physics is based upon local measurements in spacetime, it is natural to work
using explicit local coordinates x* in spacetime. But since the specific choice of such
coordinates is made at the observer’s whim, the physics itself should not depend upon
the choice. Coupled with the desire to be able to describe spacetimes that are not
contractible, we are naturally led to the concept of a spacetime manifold X, which
should moreover have a smooth structure so that we can define a dynamical action
involving derivatives. (In what follows, almost everything will be taken to be smooth,
so we omit reference to it unless there is a risk of confusion.)

A manifold comes naturally equipped with open sets and it is perhaps helpful to
visualise these as ‘laboratories without walls’ in which observers can carry out their local
measurements. The ‘without walls’ condition, or more precisely the condition that a set
be open, ensures that observers whose laboratories intersect can compare measurements
without having to worry about annoyances such as boundary conditions, éc.

Now that we have our mathematical model of spacetime, we may consider the
degrees of freedom, or fields, of a field theory living on it. In the approach using explicit
local coordinates, these take the form of maps z# — y*(z*), but there are several
reasons why, in the approach using manifolds, we should not simply replace this by a
map from X to some other manifold representing an internal or ‘target’ space. One is
that there are known examples in physics, namely gauge theories, where this is not
the case (there, the matter fields are instead sections of a fibre bundle). A second
reason is that this construction amounts to the assertion that the internal spaces at
each spacetime point can be canonically identified with one another, which seems
inconsistent with the general expectation that physics should not feature ‘action at a
distance’. A third reason is that this structure is anyway not preserved once we take

derivatives into account, as we shall see below.
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We instead take the fields of a field theory (at least in the unconstrained case) to
be local sections of a fibred manifold (see §2.3). Recall, that a fibred manifold consists
of a pair of manifolds, X — the base — and Y — the total space — together with a
surjective submersion 7 : Y — X and a local section is a smooth map a: U — Y on
some open subset U C X which is a right inverse to .}

A fibred manifold is perhaps best viewed as a generalisation of the more familiar
notion of a fibre bundle (also defined in §2.3). Indeed, just as for a fibre bundle, the
inverse image 7 '(z) of a point x € X in the base is itself a manifold, which we call
the fibre at x. As previously mentioned, unlike a fibre bundle, the fibres over different
points generically don’t have the same homotopy type or diffeomorphism class.? Since
we interpret the fibre in physics as the internal space over the spacetime point x, we
see that fibred manifolds allow for dramatically different field theories than those we
are used to.

Nevertheless, such theories are compatible with the usual consistency requirements
that we impose on physical theories. Indeed, just as for a fibre bundle, the fact that
« is a right inverse to m guarantees that the sections collectively form a sheaf on X
and so satisfy basic locality requirements. Most of these conditions (i.e. those for a
presheaf) seem almost too obvious to mention;® for example, we require that sections
(i.e. fields) defined on an open set (i.e. in a laboratory) restrict to fields defined on
an open subset (i.e. in a smaller laboratory contained in the original one). But one
— the sheaf condition — is not so trivial: it requires that given sections agreeing on
the intersection of some collection of open sets, there exists a unique section on the
union of that collection. It is thus a necessary precondition on kinematics for different
observers to be able to compare measurements.

Moreover, just as for fibre bundles, the fact that 7 : Y — X is a surjective submer-
sion guarantees that a local section exists in some neighbourhood of every point of X.
Because of the presheaf condition, local sections will then exist on all subneighourhoods
and we interpret this as capturing the physically-reasonable requirement that local
degrees of freedom should exist in a sufficiently small neighbourhood of each spacetime
point.

In fact, a stronger statement is possible: a fibred manifold admits a local section
not just at every point in X, but through every point in Y. Indeed, it is possible to

choose adapted coordinates (z*,y®) in a neighbourhood of every point of Y such that

!Suitable references are [107, 102, 138, 137, 131].

2An example is given by Y = R? — {0}, and X = R, with the projection onto the first factor. The
fibre at x = 0 does not have the same homotopy type as elsewhere.

3The details are given in §2.4.1.
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7 restricts to (z#,y*) — x*, whose sections are equivalent to functions x# — y*(z*).
This brings us back to our starting point, showing that fibred manifolds give us a
global, coordinate-free notion of (unconstrained) fields that is compatible with locality.

The introduction of constraints will require us to reexamine this picture. Indeed, a
constraint will restrict us to a subset of the local sections, namely those that satisfy the
constraint. We will need to check that our basic physical requirements are still satisfied
and this will require heavy use of the theory of sheaves (see §2.4.1). In particular, we
need to ensure that locality is preserved, i.e. that the sections still form a sheaf, since
the existence part of the sheaf condition is no longer obviously satisfied. Moreover, it
is also obviously the case that sections will no longer exist through every point of Y
(consider the case of a holonomic constraint, part of the data of which is a submanifold
of Y') and so we will need to ensure that local sections exist at least at every point of
X, as we required before. This is equivalent to the requirement that the stalks (to be
defined shortly) of the sheaf are non-empty.

Mostly, we will not actually work with sheaves, but rather with the equivalent
notion of étalé spaces, since they simplify the discussion of stalks as well as group
actions. An étalé space can be given a physical motivation as follows. Imagine an
observer at z € X, whose laboratory is arbitrarily small. Such an observer will not be
able to distinguish local sections a: U — Y, and §:V — Y, for U,V > z, if there is
an open subset W with x € W C U NV, such that oo vy = 80 vy, where iy and
tw,v, are the inclusion maps. Thus, the observer is sensitive only to the equivalence
class [a], of local sections, where [a], = [5], if & and § agree in the way just described.
An equivalence class at x is called a germ at x and the set of such germs is called the
stalk at x. The étalé space (I'Y, 'm) is then defined as follows. The topological space
['Y is, as a set, the disjoint union over z € X of the stalks, equipped with the unique
topology making the map I'n : T'Y — X : [a], — x into a local homeomorphism.* In
physics terms, the étalé space encodes the totality of information available to observers
with arbitrarily small laboratories.

Evidently, the germs making up the points of 'Y remember all the derivatives (in
some adapted coordinates) of local sections so contain at least enough information to
allow us to define constraints involving any finite number of derivatives (as well as an

action to any finite order in some effective field theory expansion).”> But the topological

4 in this topology, given U € X and a local section a: U — Y, the set {[a],|z € U} C T'Y is open
and the set of such open sets obtained by varying U and « forms a basis for the topology.

°In fact they contain more information, as the following example shows: let Y = R? and X =R,
with the standard projection. Then a(z) = (z,e=1/") for # # 0 and «(0) = 0, has the same Taylor
expansion as f(z) = 0 at = 0 but [a]g # [B]o-
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space I'Y is not even Hausdorff in general, so cannot be given a smooth structure. To
apply the full power of differential geometry to the discussion of constraints, we need
to recover such a structure. This can be done by defining coarser equivalence classes,
denoted jla, with j7a = j7 5 if and only if the derivatives of o and 5 (computed in some
adapted coordinates, the choice of which does not affect the result) agree up to and
including the rth order. The set of all equivalence classes jra for all x € X is denoted
J"Y . The set J"Y can be given a smooth structure making it into a manifold, called the
rth-jet manifold, and making the map 7" : J"Y — X : jl o — z a surjective submersion
(an observation which is vital for our discussion). If (z*,y*) are adapted coordinates on
Y, and locally « : z# — (z,y%(z*)), J'Y admits induced coordinates, which for J'Y
take the form (z*,y?,y;;) such that jyo corresponds to the point (x#,y*(z*),d,y*(z#)),
with an obvious generalisation to J™>'Y". It is these induced coordinates that physicists
use to write down lagrangians, but the approach using jet bundles has the advantage
of being coordinate free. We remark that, even if one starts from a fibred manifold
in the form of a product Y = F' x X, the jet manifold need not take the form of a
product J'Y = F’ x X. This shows, as we vaguely alluded to earlier, that even for
physical theories whose degrees of freedom are maps from spacetime to a target, one

must pass to the more general fibred manifold picture once derivatives are included.

7.2 Categorical constructions

The categories Set, Man, and Top that we saw in §2.4 will play only a supporting role
in our story. The main character will be a category of fibred manifolds over a fixed

base, which we now define.

Definition 7.2.1. Given a smooth base manifold X, let Fibyx denote the category of
fibred manifolds over X, whose objects are fibred manifolds (Y, ), where Y is a smooth
manifold and 7™ :' Y — X is a smooth surjective submersion. A morphism, called a
fibred morphism, between objects (Y, ) and (Y',7') is a smooth map f:Y — Y’ such
that @’ o f = 7.

We will omit the adjective smooth in what follows, unless there is a risk of confusion.
Along with Fiby, we will need a variety of other categories, defined as follows.
Let Ox be the category whose objects are open subsets of X, and whose morphisms
are the inclusions of subsets. We then have the usual category Prey of presheaves
on X given by the functor category Set®X , together with its full subcategory Shex

of sheaves on X whose objects are those presheaves satisfying the sheaf condition.
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Finally, we need the category Etay of étalé spaces on X, as introduced in §2.4.1, an
object of which is an étalé space (F,p), consisting of a topological space E and a local
homeomorphism p : £ — X, and a morphism of which, called an étalé morphism is
a continuous map f : F — E’ such that p’ o f = p. There is a functor Prex — Etay
whose restriction to Shey forms, together with the functor which sends an étalé space
to its sheaf of sections, an equivalence of categories (see e.g. [146]). Thus we are free
to work either with Shey, or Etayx and we will see that the latter is mainly convenient
for our purposes.

Having introduced the necessary categories, we now consider functors between
them. In §7.1 we saw how to construct both an étalé space and the rth jet manifolds,
using the local sections of a fibred manifold. Unsurprisingly, these constructions are

functorial.

Definition 7.2.2. The local sections functor I' : Fiby — Etax sends a fibred manifold
(Y, ) to the étalé space (I'Y,I'r) and sends a fibred morphism f:Y — Y’ to the étalé
morphism T'f : TY = TY": [a], — [f o ..

Definition 7.2.3. The rth-jet functor J" : Fibxy — Fibyx sends a fibred manifold
(Y,7) to (JY,7") and sends a fibred morphism f:Y — Y to J'f : JY — JY':
Jrev = Jp(f o).

The functors I and J" are well-behaved with respect to special classes of morphisms,

as the following two theorems show.

Lemma 7.2.4. The functor I' sends an injection to an open topological embedding,

but does not necessarily send surjections to surjections. (Proof: Appendiz D.1)

Lemma 7.2.5. The functor J" preserves submersions, surjective submersions, im-
mersions, injective immersions, and embeddings, but does not necessarily preserve

surjections or injections. (Proof: Appendiz D.1)

Finally we introduce two sets of natural transformations involving I and J", obtained
either by forgetting the derivatives of sections or by prolonging sections to higher-jet

manifolds.

Definition 7.2.6. Forr > [ > 0, the forget derivatives map is the natural transfor-
mation J" = J' defined on (Y, ) by the surjective submersion (in fact, affine bundle
map for | >r—1) 7™ JY = JY : jraw jla.

Definition 7.2.7. For r > 0, the prolong sections map s the natural transformation
I'=TJ" defined on (Y,7m) by 77 : TY = T'JY : [, — [j"al., where [a], is the germ

at x of the local section o on U > x.
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7.3 Constraints

7.3.1 Holonomic and higher-degree constraints

In the physicist’s world of local coordinates (z#,y®), a holonomic constraint is usually
defined as a set of smooth relations of the form f(z#,y*) = 0. The inadequacy of this
definition can easily be seen by considering examples from classical mechanics in the
plane (so 7 : ¥ — X is the map R® — R : (2%, y',94?) — 2°), such as y'y? = 0 or
(y")? + (y')? + (2°)2 — 1 = 0. Ills of the kind observed in the first example can be
cured by insisting that a holonomic constraint be an embedded submanifold Z of Y
and those in the second example by insisting that Z itself be a fibred manifold over X,
embedded in Y via a fibred morphism [103, 105, 104]. Thus we make the following

Definition 7.3.1.1. A fibred submanifold (resp. open fibred submanifold) of a fibred
manifold (Y, ) is a fibred manifold (Z,() together with a fibred morphism vz : Z —'Y
that is an embedding (resp. open embedding).

A holonomic constraint as defined in [103, 105, 104] then amounts to a choice of
fibred submanifold of (Y, 7) and we will use this as a working definition for now (later
we will make an equivalent definition that appears rather perverse, but turns out to be
much more useful for finding more general constraints). The local degrees of freedom
of the field theory can then obviously be taken to be the local sections of (Z, (). Since
these form a sheaf whose stalks are non-empty (since ( is a surjective submersion), we
obtain a theory which is consistent with locality and in which local degrees of freedom
exist.

At some level, this corresponds to the physicist’s notion that holonomic constraints
are easily dealt with, because one can simply eliminate redundant degrees of freedom.
But it is important to note that our working definition of a holonomic constraint is much
more than just a coordinate independent reformulation of the usual physicist’s notion.
Not only does it remove pathological examples such as those already discussed, but it
also includes constraints which would be considered nonholonomic by the physicist,
in that they cannot be expressed locally in terms of relations f(z#,y*) = 0. For
example, in classical mechanics in the plane, our working definition includes the fibred
submanifold defined by (y')* + (y*)? > 1.

Now let us turn our attention to constraints which are nonholonomic in the sense
that they include derivatives of order » > 0 and below of the fields, in local coordinates.
An obvious guess is to consider a fibred submanifold not of (Y, 7) = (J°Y,7%), but
rather of (J"Y,7n"). Denoting the fibred morphism embedding by ¢t : Q@ — J"Y, the
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degrees of freedom of the field theory would then correspond to the local sections
of (Y, 7) whose prolongation to J"Y lies in 1p(Q)) C J"Y. We now encounter two
potential difficulties. One is that it is not obvious, a priori, that the constraint is
consistent with locality, in that the degrees of freedom form a sheaf. Even if they
do, it is not obvious that degrees of freedom exist at every spacetime point in X, or
in other words that the stalks of the sheaf are not empty. In fact, it will turn out
that the first condition is automatically satisfied, but this will require some work to
show, so let us return to it shortly. The second condition is not automatcially satisfied,
as the following counterexample from classical mechanics in the plane shows. The
first jet manifold there is given by (J'Y,7!) = (R®, (2%, y', v%, g, v2) — 2); letting
(Q,v) = (R, (2% y', y)) — 2°) with g : (2° ¢, y5) — (2% 4,0, y5,1), we see that
there are no local sections at all!

Now let us return to the first condition. The statement that the degrees of freedom

form a sheaf is equivalent to the following

Theorem 7.3.1.2. The pull-back of I'ig : T'Q — T'J"Y, and j" : TY — T'J"Y in Etax
exists and we denote it by (E9,p®?). (Proof: Appendiz D.3)

These considerations motivate the following

Definition 7.3.1.3. A consistent constraint of order r on the fibred manifold (Y, ) is
a subfibred manifold Q C J'Y such that the stalks of the pullback E9, whose existence

was shown in the previous theorem, are non-empty.

The difficulty with nonholonomic constraints, at least those defined by a submanifold
@ C J"Y, thus reside in establishing that the stalks are non-empty. The rest of this
Section will be devoted to finding ways in which this can be achieved.

To do so, it is useful to re-examine the notion of a holonomic constraint, our
working definition of which identifies it with a consistent constraint of order 0. The
following argument shows, however, that we are also free to regard it as a consistent
constraint of any order r. Firstly, Lemma 7.2.5 has shown that the functor J" sends a
subfibred manifold 1z : Z — Y to a subfibred manifold J" vz : J"Z — J"Y. Moreover,
the resulting étalé spaces (E@,p%) are isomorphic (to (I'Z,T¢)) for all r, so define
consistent constraints of order r that lead to field theories with equivalent degrees of
freedom.

The notion of different constraints leading to theories that are physically the same,

in the sense of having equivalent degrees of freedom, leads us to make the following

Definition 7.3.1.4. Consistent constraints (of any order) are kinematically equivalent

iof their corresponding étalé spaces are isomorphic.
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Going further, let us make the following, apparently rather perverse, definition of a

holonomic constraint.

Definition 7.3.1.5. A holonomic constraint of degree r for (Z,Q) is a limit in Fibx
of the diagram
gz ey gy

Cr,ol N lﬂr,o (7.1)

Z ——— Y

where (Z,() is a fibred submanifold of (Y, ) with embedding 1z and the fibred morphism

Q is such that the lower triangle commutes.

The definition is perverse for more than one reason. Firstly, the requirement that
the lower triangle commutes evidently shows that given (Z,t7) there exists a unique
map 2, namely ¢z 0("™?, so there is no data associated to €. Secondly, the fact that the
square commutes shows that the limiting object is (uniquely isomorphic to) (J"Z, ("),
with the fibred morphism to J"Z in the diagram being the identity and with all other
fibred morphism being fixed by the commutativity of the diagram. Nevertheless, it
is clear that our new definition is equivalent to our old working definition, in that it
yields a kinematically equivalent constraint.

The beauty (if it can be called that) of our new definition is that it admits a

non-trivial dual, to which we now turn.

7.3.2 Coholonomic constraints
We begin with a preliminary definition that is the dual of 7.3.1.1.

Definition 7.3.2.1. A fibred quotient of the fibred manifold (Y, 7) is a fibred manifold
(Z,C) together with a fibred morphism 77 : Y — Z that is a surjective submersion.

Dualising our new definition of a holonomic constraint, we have the following

Definition 7.3.2.2. A coholonomic constraint of degree r for (Z,Q) is a limit in Fibx
of the diagram
oy 22 g
l y lc (7.2)

where (Z,() is a fibred quotient of (Y, ) whose surjective submersion is T, and the

fibred morphism §2 is such that the lower triangle commutes.
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A number of remarks are now in order. Firstly, we remark that our ‘dual’ construc-
tion is not obtained by dualising everything. Rather, we simply replace the notion of a
fibred submanifold, namely a fibred manifold together with a fibred morphism from it
to (Y, m) that is an embedding, by the dual notion of a fibred quotient. We have not
changed the direction of the map 2, and nor have we replaced the limit by a colimit.

Secondly, we remark that the map €2, which now takes the form of a lift of ¢"°
through 7, no longer necessarily exists; nor, if it does, is it necessarily unique. As we
shall see, this opens the door to a rather rich notion of a constraint, which will capture,
in particular, the essence of the inverse Higgs phenomenon.

Thirdly, we remark that if we were to remove the datum of the map €2 from the
definition, we would not obtain anything interesting. The limit in that case is simply
J"Y | so we recover the unconstrained field theory on Y.

A fourth remark is that it is not obvious that the limit we have defined exists. In

fact we have the following

Proposition 7.3.2.3. The limit of Diagram 7.2 exists; denoting it by ((Q,v),{tg :
Q — J'Y}), 1o is an embedding. (Proof: Appendiz D.3)

Because () is embedded, we are furthermore guaranteed, by Theorem 7.3.1.2 above,
that the degrees of freedom form a sheaf, so are consistent with locality. But in fact

much more is true.

Theorem 7.3.2.4. The étalé space (E?, p®) for a coholonomic constraint of degree r
for (Z,Q) is isomorphic to (I'Z,T'C). (Proof: Appendiz D.3)

So not only are coholonomic constraints of degree r for (Z,2) consistent constraints,
but, just as for holonomic constraints, we find that they are kinematically equivalent
to the unconstrained theory on the fibred manifold Z. Comparing with the physics
literature, we see that our theorem corresponds to the notion of ‘essential Goldstone
bosons’. Indeed, these are to be interpreted precisely as the local description in adapted
coordinates of the local sections of ( : 7 — X.

Moreover, our theorem shows that, even though we started from a definition
of coholonomic constraint which was not the exact categorical dual of a holonomic
constraint, we end up with a duality at the level of field theories which is satisfyingly
precise: a holonomic constraint is kinematically equivalent to an unconstrained theory
on a fibred submanifold, while a coholonomic constraint is kinematically equivalent to

an unconstrained theory on a fibred quotient.
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7.3.3 Meronomic constraints

To describe all of the examples of the inverse Higgs phenomenon in the literature within
our formalism requires us to slightly generalise the notion of coholonomic constraints.
This is most conveniently done by first generalising holonomic constraints and then
dualising as before.

Locally, meronomic constraints look like holonomic constraints and so we call them
meronomic constraints (from the greek for ‘part’ and ‘law’, in much the same way that
holonomic is from ‘whole’ and ‘law’). Compared with holonomic constraints, we have

an extra datum in the form of an open fibred submanifold of J"Y".

Definition 7.3.3.1. A meronomic constraint of degree r for (Z, R,$2) is a limit in

R
gy Iz ey (7.3)

S — 'Y
Lz

Fibx of the diagram

where (Z,() is a fibred submanifold of (Y, ) with embedding vz, (R, p) is an open fibred
submanifold of (J"Z,(") with open embedding g, and the fibred morphism € is such

that the diagram commutes.

Just as for holonomic constraints, the datum of the map €2 adds nothing here, since
it must equal ¢tz o (" o 1, but is present so that we obtain something more general
when we dualise.”

Completely analogously to a holonomic constraint, the limit in the definition exists
and is given by ((R, p), {id : R — R}), up to unique isomorphism.

The fact that ¢ty is an open embedding is what makes a meronomic constraint locally
look like a holonomic constraint. Due to this, the étalé space (E%, p?) is guaranteed
to have non-empty stalks, since, roughly, for any x € X there will be a local section of
Z, 8 with J"f(x) lying in the open set R, we can then just restrict the domain of 5 so
that J" 3 lies wholly in R. [J"f3], then defines a point in (p%)~1(z).

We recover the special case of a holonomic constraint by choosing tg to be an

isomorphism.

6 Amusingly, if we dualise without the map €2, we obtain not a trivial unconstrained theory (as
we did in the holonomic case), but rather a class of constraints that are equivalent to a subclass of
meronomic constraints. This fact is proven and made use of in Theorem 7.3.4.2.
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7.3.4 Comeronomic constraints

Turning the handle, we now obtain the dual notion corresponding to a meronomic
constraint, which is relevant for certain physical examples of the inverse Higgs phe-

nomenon.

Definition 7.3.4.1. A comeronomic constraint of degree r for (Z, R,)) is a limit in

R
V lLR
gy I 7 (7.4)

Y —— 7
TZ

Fiby of the diagram

where (Z,C) is a fibred quotient of (Y, ) whose surjective submersion is Tz, (R, p) is an
open fibred submanifold of (J"Z,(") with open embedding g, and the fibred morphism

Q is such that the diagram commutes.

Proposition 7.3.4.2. The limit of the Diagram 7.4 exists, denoting it by ((Q,v),{tq :
Q— JY, fg 1 Q) — R}), then vg is an embedding. (Proof: Appendiz D.3)

As with holonomic constraints and meronomic constraints, a coholonomic constraint
is a special instance of a comeronomic constraint, corresponding to the case where tg
is an isomorphism.

For a holonomic constraint we had that the étalé space (E9,p%?) was isomorphic to

(I'Z,T¢). For comeronomic constraints we have the following

Theorem 7.3.4.3. The étalé space (E9,p®) associated with a comeronomic constraint
is isomorphic to the étalé space (ET, pft) associated with the embedding of R into J"Z.
(Proof: Appendiz D.3)

For the same reason that meronomic constraints lead to non-empty stalks and
hence consistent constraints, the stalks of (E%,p®) will be non-empty and, due to
the isomorphism, so will those of (E?,p¥). Even more importantly, we learn that a
comeronomic constraint is kinematically equivalent to a meronomic constraint on the

fibred quotient (Z, ().



7.3 Constraints 101

Knife edge

~

Fig. 7.1 The Chaplygin sleigh

7.3.5 An example from classical mechanics: the Chaplygin

sleigh

Here we give an example of a comeronomic constraint in classical mechanics, showing
that, despite their abstract definition, they occur in remarkably simple examples. The
example is based on the famous example of a Chaplygin sleigh, with the minor tweak
that we forbid the sleigh from being translationally at rest, thus deleting a single point
from the space of possible translational velocities of the sleigh.

Recall that a Chaplygin sleigh is a rigid body sliding in the plane, with motion that
is frictionless apart from a ‘knife edge’ at a point on the object that prevents motion
at that point perpendicular to the edge of the knife, as in Fig. 7.1.

The fibred manifold Y over R is thus R? x S! with local adapted coordinates
(t,x,y,0) representing the time, position of the knife edge in the plane, and orientation
of the sleigh, and with fibering map (¢, z,y,0) — t. The jet bundle J'Y is thus
R3 x S! x R? with local adapted coordinates (¢, x,y, 0, z¢, y, 0;). To describe the system
as a comeronomic constraint, we start with the fibred quotient of Y obtained by
projecting out the S*, which admits global coordinates (¢, z,y) and consider the open
fibred submanifold R of J'Z = {(t,z,y, x:,y:)} obtained by deleting the points with
x; = y; = 0 (enforcing the constraint that the sleigh is not allowed to be translationally
at rest). This allows us to define a fibred morphism 2 : R — Y which acts as the
identity on (t,,y) but sends (z;, 1) to the point (z;/\/22 + y2,y://xZ + y2) on the
unit circle S' C R2?. This has precisely the effect of enforcing the constraint that the
sleigh may not move perpendicularly to the knife edge at the knife edge.

As above, this theory is kinematically equivalent to a theory with a meronomic

constraint defined by R embedded into Z; the explicit isomorphism takes the stalk
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whose section is defined by t — (¢, z(t),y(t),0(t)), (where z(t), y(t) and 0(t) are
required to satisfy the constraint), to the stalk defined by the section t — (¢, z(t), y(t))
in B

7.4 Fibrewise group actions and homogeneous bun-
dles

Having described the consistent constraints that appear in theories featuring the inverse
Higgs phenomenon, we now discuss the role played by symmetry, in the form of a Lie
group GG acting smoothly on Y. Things simplify greatly in the case where GG also acts
on X such that the fibering map 7 : Y — X is G-equivariant, for the simple reason
that a well-defined group action is then induced on each r-jet manifold J"Y, and this
action is such that the maps 7™ are G-equivariant. We call such an action a fibrewise
group action. For more general GG actions on Y, one induces at best a partial group
action on J"Y and we will defer the somewhat technical study of this situation to the
next Section.

When the G action is fibrewise, it is possible to define a number of subgroups of G
that are familiar to physicists (it is important to remark that none of these subgroups
are defined in the case of more general group actions). For each x € X we define the
internal symmetry group at x, as the stabiliser G, of x € X. The internal symmetry
group G'x can then be defined as N,G,; equivalently, Gx is the subgroup of G that
acts trivially on X. Gx is a normal subgroup of GG, and we can define the spacetime
symmetry group as the group G/Gx.

Of most interest to us (since we are interested in theories of Goldstone bosons) is
the case where G acts, in addition, transitively on Y, such that Y is diffeomorphic
to G/K for some Lie subgroup K C (. Because 7 is surjective and G-equivariant,
it follows that G also acts transitively on X, so we have that X is diffeomorphic to
G/H for some Lie subgroup H C G such that H O K. Moreover, the fibred manifold
7w Y — X is isomorphic (in Fibx) to G/K — G/H, which has the structure of a
fibre bundle with fibre H/K associated to the H-principal bundle G — G/H. This,
along with the corresponding jet manifolds, is an example of a homogeneous bundle
and the theory of such bundles can be brought to bear.

To give a simple example that allows us to make contact with the typical situation
encountered in physical theories, suppose that G = A x B for some Lie groups A
and B, and let K C Band H = A x K, so that K C H C G as required. Recalling
that Y = G/K = A x B/K and X =2 G/H = B/K, we have that the internal
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symmetry group at bK € X is A X Kpi, where K, is the subgroup of K given by
{k € K|kbK = bK}. If K is, say, the Lorentz group and B the Poincaré group, we
have that Gx = A and G/Gx = B. In other words, the internal symmetry is A and
the spacetime symmetry is B. We stress that this simple result will not obtain in more
general situations, even when the G action is fibrewise.

We now wish to go further and discuss the group actions that are induced on
jet manifolds and their interplay with coholonomic and comeronomic constraints. A
first observation is that, even if we start with a transitive group action on Y, for
sufficiently large r the group action induced on J"Y will not be transitive. Indeed,
since a manifold with a transitive action of G is diffeomorphic to a homogeneous space
of G, the dimension of such a manifold is bounded above by the dimension of G. But
the dimension of J"Y increases without bound with r. It it is this simple fact that both
allows for, and exhibits the generic nature of, the inverse Higgs phenomenon: once we
include enough derivatives in a field theory, G cannot act transitively and subsets of the
orbits G can be used to define non-trivial constraints that are nevertheless compatible
with the action of G. Since they necessarily involve derivatives (G acts transitively
on Y = J% so there are no constraints that are compatible with the G action) the
constraints are necessarily nonholonomic, according to the usual definition, leading to
possible problems with consistency. But all constraints in the literature on the inverse
Higgs phenomenon turn out to be either coholonomic or comeronomic, so consistency
is guaranteed.

To explore this in more detail requires us to first review the theory of homogeneous
bundles based on the principal L-bundle G — G/L, for L C G. The key observation
here is that these form a category and that that category is equivalent to the category
of manifolds with an L action. This equivalence of categories is a rigorous statement
of the physicist’s vague notion that, in sigma models, G invariance follows from L
invariance alone.

Some of the discussion in this Section requires results extending the results of
the previous Section to the case where a group acts. The proofs of these results are
subsumed into the proofs for the more general case of a partial group action, given in
the next Section and Appendix D.

7.4.1 The category of homogeneous bundles

We now review the theory of homogeneous bundles. For more details, see e.g. [145].
Let G be a Lie group, and L a Lie subgroup of G. A homogeneous bundle over the
homogeneous space G /L is a triple (Y, m, ) consisting of a smooth manifold Y equipped
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with a smooth action ) : G x Y — Y of G and a smooth bundle map = : Y — G/L
that is equivariant with respect to ) and the usual action £ : G x G/L — G/L of G
given by L, : ¢'L — g¢'L.

The homogeneous bundles over G/L form the objects of a category, which we now
define.

Definition 7.4.1.1. Let HBung,;, be the category whose objects are homogeneous
bundles over the homogeneous space G /L, and whose morphisms from (Y, 7, )) to
(Y', ", ") are smooth maps f .Y —Y" such that 7' o f =7 and Y, o f = f o), for
all g € G.

The category HBung/, is equivalent to the category defined as follows.

Definition 7.4.1.2. Let L-Man be the category whose objects are pairs (M, M), con-
sisting of a smooth manifold M equipped with a smooth action M : L x M — M of
L, which we call an L-manifold, and whose morphisms between (M, M) and (M', M")
are smooth maps f: M — M’ such that Mjo f = f oM, for alll € L, which we call

L-maps.

We will not give the functors defining this equivalence, which we denote by

A

I : HBung/, — L-Man and II: L-Man — HBung/p,

explicitly (the reader is directed to [145] for an explicit form), but simply record the

following lemma.

Lemma 7.4.1.3. The functors I and I1 send open embeddings to open embeddings.
(Proof: Follows manifestly from the definitions of 11, I1, and the quotient and subspace
topologies. )

7.4.2 Constructing constraints

To specify a comeronomic constraint with fibrewise group actions requires the following
data:

1. a fibred manifold (Y, ), a fibred quotient (Z, () of (Y, 7), an open fibred sub-
manifold (R, p) of (J"Z,("), and a suitable fibred morphism 2 : R — Y (as per
the definition with no group acting given in 7.3.4.1);

2. fibrewise group actions ), Z, and R of G on Y, Z, and R such that: the surjective

submersion 74 : Y — Z is equivariant with respect to the actions ) and Z; the
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open embedding (i : R — J"Z is equivariant with respect to the action R and
the action J"Z of G on J"Z induced by Z; 7 the fibred morphism € is equivariant
with respect to R and ).

Specifying this data becomes simpler in the case of most physical interest, namely

when G acts transitively on Y, where we have the following

Theorem 7.4.2.1. Let a comeronomic constraint be defined by a diagram as in 7.4,
where all objects have a G-action and all morphisms are G-equivariant, and let G act
transitively on' Y. Then Z = G/L for some L C G and all objects and morphisms in

the diagram lie in the subcategory HBung/p,.

Thus we can describe everything in terms of homogeneous bundles or, via the

equivalence of categories, in terms of manifolds with an L-action.

Proof. The maps 77 and 7 are required to be G-equivariant, so it follows that G also
acts transitively on Z and X, so we can write Y = G/K, X 2 G/H, and Z = G/L,
with K C L C H C G. Moreover, the maps 77 and ( are G-equivariant bundle maps
and so we have that (Y, 77) and (Z,() define objects in HBung,;, whose typical fibres
are the L-manifolds given by L/K and a point, respectively. Further, since the map
(" is a G-equivariant bundle map, we have that (J"Z, (") also defines an object in
HBung/ .

Now consider the open fibred submanifold R in J"Z. Because GG acts transitively on
7, the equivariant map (" o .z must be a bundle map. The argument goes as follows.
Because GG acts transitively, the map must be a surjection and because both ¢"° and
Lr are submersions, it must also be a submersion. But then the same arguments given
in [145] to derive the equivalence of categories between homogeneous bundles and L
manifolds show that the map is isomorphic to a bundle map. (In particular, it is clear
that the fibres of the fibred manifold are all diffeomorphic to one another, since any
one can be reached from another by a diffeomorphism corresponding to some g € G.)
So (R,("? o up) also defines an object in HBung, . All the morphisms in Diagram 7.4
are equivariant by assumption and commutativity of the diagram ensures that they

define morphisms in HBung/z. O

So we can carry the discussion over to L-Man, where Z is represented by a point and
Y is represented by the homogeneous space L/K. Suppose that R is represented by the

L-manifold IIR. For generic r, an explicit description of J"Z — Z as an L-manifold is

"In adapted local coordinates, this action can be deduced using the chain rule; §7.5 gives a formal
definition.
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somewhat unpleasant; we content ourselves with giving a description for » = 1 where,
since J'Z — Z is an affine bundle, we obtain an affine space with an action of L. This
covers all examples in the literature, bar one, corresponding to the Galileid [124], where

one needs r = 2.

Proposition 7.4.2.2. For a fibred manifold Z = G/L — X = G/H, a typical fibre of
the affine bundle J'Z — Z is given by the L-affine space A(g/b, /1) over Hom(g/h, h/1)
of linear sections of the linear map g/l — g/b, where g denotes the Lie algebra of
G, &c.; the action of L is by pre- or post-composition with the actions on g/, and
b/l induced by the adjoint action of L C G on g. (Proof: Follows from [138, Lemma

4.1.3].)
In all, we have the following

Theorem 7.4.2.3. When G acts transitively on'Y |, the required data for a comeronomic

constraint of order 1 can be specified by

1. a chain of inclusions of 4 Lie groups, K C L C H C G, which define Y, Z, X in
Diagram 7.4;

2. an open L-submanifold IIR of A(g/bh, g/1), which defines (R,tg);
3. an L-map 1IQ) : IR — L/K, which defines (0.

One checks that by Lemma 7.4.1.3 we get an open embedding ¢ if and only if we
start from an open embedding in L-Man and that the fibred morphism 2 is such that
the diagram commutes.

We now go on to describe a number of examples.

7.4.3 Examples

We will now list examples of inverse Higgs phenomena taken from the literature 83,
125, 124]. For each of the examples, we will specify all the data indicated in the
previous Subsection required to specify a comeronomic constraint. In cases where the

constraint is in fact coholonomic, we will simply not mention ITR.

Example 7.4.3.1 (1-d Non-relativistic point particle). We have that G = Gal(0+1, 1),
which corresponds to the Heisenberg group. We label a set of Lie algebra generators
of G as {T,X,V} with [V,T] = X, and all other commutators zero. The other Lie
groups involved correspond to H = R? = {exp(zX + vV)}, L = R = {exp(vV)},
and K = {id}. The space A(g/h,g/l) has elements given by maps of the form
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fa(cT +8) = ¢T + caX + [. The element exp(v'V) € L acts on f, as f, — farw. The
map IIQ : f, = exp(aV) € L/K is a valid L-map.

Example 7.4.3.2 (3-d Non-relativistic point particle). Now consider the 3-d version of
the previous example. We take as P the time translation generator, C; (I = 1,2,3) the
spatial translations, By the boosts, and J; the rotations, closely following the notation
of [83]. The symmetry group corresponds to G = SGal(0+ 1,3) = {etPer'Crev'Bref' /1)
The other groups take the form H = R3 x ISOT(3) = {e*'“1ev' Bref' 1} [ = R3 x
SO(3) = {e""Pre?" 1Y and K = SO(3) = {e"/1}. The affine space A(g/h,g/l) has
elements given by f,i(cP +b§) = cP + ca’C; + . Under the action of eV Bref'Ji ¢ [
ar — (7<) a; + v;. The map IIQ : f,r — e V'K is an L-map.

Example 7.4.3.3 ((1 + 1)-d, N = 1 Galileon). The symmetry group here is G =
SGal(1+1,1). The group G has Lie algebra generators { Py, P, K1 }, which generate the
(1 + 1)-d Poincaré subalgebra and {B°, B*, C'}, which have the non-zero commutators
[B*,P,| =n*,C, Ky, B°] = —B!, and [K}, B'| = —B°. We can then write the group G
as {e™"TuexCeruB"enk1) “the group H as {eXCerrB" K1} the group L as {errB" 1}
and the group K as {e™"%1}. The affine space A(g/h,g/l) has elements given by
fa,(¢"P, +b) = c*P, + c*a,C + [. Under the action of e’P"e"f1 € L. denoting
A(n') = €71, we get a, — A2 (n)a, +b,. The map 11 : f,, — 5" K is an L-map.

Example 7.4.3.4 ((3+ 1)-d, N =1 Galileon). We now repeat the previous example
in the (3 4+ 1)-d case, so that G = SGal(3 4+ 1,1). The group G has the Lie algebra
generators, { P,, K;, J;} which generate the (34 1)-d Poincaré subalgebra, and { B, P, }
which have the non-zero commutators [P, B*| = —n,*C, [K;, B"] = —B', [K;, BY] =

—,B°, and [J;, BY] = —¢;5B*. We can then write the Lie groups involved as
G = {e"FrexCebuB! ' Kigh' Ty [ — [XCpbuB"en' Kigh' /iy [, — febuB" on'Kig'Ji} - and
K = {e"Kie?7i} which, except for the addition of a rotation, have an identical

form to the (1 4+ 1)-d case. Analogous to what we found above, the affine space
A(g/b, g/l) has elements given by f,, (¢"P, +b) = c*P, + c*a,C + . Under the action
of ethB" en" Kigh"Ji ¢ [, denoting A’ = 7" Kie?" i we get ay = ('), a, + b, exactly as

above. Again, a valid L-map is IIQ : f,, — e*P"K.

Example 7.4.3.5 ((1+1)-d Type-1 Superfluid). Here G is the product of the (1+1)-d
Poincaré group and U(1). The group G has the Lie algebra generators { Py, Pi, K1}
which generate the Poincaré subalgebra and () which generates the subalgebra associated
with U(1). We can write G as G = {e®"re?@em™1} for € {0,1}. The relevant
subgroups correspond to H = {e’@em 1} [ = {1} and K = {id}. The space
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A(g/b, g/l) has elements given by fo, (cuP, +b) = ¢ P, 4 ca,Q + L. In a similar way
to the Galileon example above, under the action of A(n') = ¢"%1 € L, we have that
a, — NS (1)ay.

We define the open subset I1R as the set of f,, with a, future time-like. A valid
choice in L-map is then I : f, + exp (— arctanh Z—;Kl)

Example 7.4.3.6 ((3 + 1)-d Type-I Superfluid). Turning to the (3 + 1)-d version of
the previous example, our group is now the product of the (3 4 1)-d Poincaré group
and a U(1). The Lie algebra generators of the (3 4 1)-d Poincaré¢ Lie subalgebra, as
before, take the form {P,, K;, J;}. The generator of the U(1) Lie algebra is (). We
can write the relevant Lie groups as G = {e®PhefQen Kigl' i} H = {e9Qen Kigh' )i}
L= {e”iKieeiJi}, and K = {e(’i‘]i}. The affine space A(g/bh, g/l) has elements given by
fa, (" Py +1) = P, + ca,Q + [. Under the action of A’ € L, a, — N Va,.

We again need to restrict to an open subset of A(g/h,g/l), IIR. We define IIR
by the condition of a future time-like a,, the action ITR is that induced by this
embedding. The map II€2 then takes the form f,, — exp (I%'\ arctanh ('(%) (aiKi)>,
where |d| = \/m. One can demonstrate the equivariant property of I1{2 using

a slightly technical prescription relying on Thomas-Wigner rotations and related ideas.

Example 7.4.3.7 ((3 4+ 1)-d Solid). Our last example from the literature corresponds
to the (3 4+ 1)-d Solid. Here G is the product of the (3 + 1)-d Poincaré group and
the 3-d Euclidean group, ISO*(3). The generators of the Poincaré subalgebra take
the form {P;, K;, J;} and those of the ISO*(3) subalgebra the form {Q;, Q;}. Here, Q;
correspond to the translations and Q; the rotations. We can write the groups involved as
G = {" Prer'Qied'Qien' Kigh i} | [ = {ep'Qied'Qign'Kigh' i) [, = {¢9'Qien'Kigl' i} and
K= {e(’i(‘]i*Qi)}. The affine space A(g/h,g/!) has elements given by fu; (¢"F, +bh) =
P, + c“aLQi + [. The group L is the product of the Lorentz group and SO(3) and
we can write an element of L as (A’, R’) € L. The L-action on A(g/h, g/!) then takes
the form af, R'jiA’V“ai.

Following [125], we define S* = e***ala3a?, and N;* = (Ag)",al,, where

1 151\ | o
Asg =exp | — arctanh [ — | (S"K;) |, 7.5
s o o (1) (50 73)

analogous to the above. We define the open subset IIR of A(g/bh,g/l) by requiring
S to be future time-like and by requiring det(N) > 0. The map IIQ2 then takes Jai,
to (Ag, VNTNN-1)K. Again, one can show the equivariant property of II€) using

Thomas-Wigner rotations.
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7.5 Partial actions and constraints

7.5.1 Formalities

When the group action is not fibrewise, we need to consider partial actions. Since we
will need to consider partial actions in both the topological and smooth contexts we
give definitions for both, as follows [4, 136].

Definition 7.5.1.1. A partial action of the topological (resp. Lie) group G on the
topological space (resp. manifold) Y is a pair Y = ({Y,}eea, {Vy}gec) such that:

1. for all g € G, Y, are topological spaces (resp. manifolds) that are open topological
embeddings (resp. open smooth embeddings), embedded in'Y via maps %, : Y, —
Y, Y, : Y,-1 = Y, are homeomorphisms (resp. diffeomorphisms) with inverse
V-1 = yg—l, andY, =Y ;

2. the setUy = {(g9,y) € GxY | g€ G,y € Y1} is an open subset of G x Y and
the map Y : Uy — Y : (g,y) — V,(y) is continuous (resp. smooth);

3. the action of YV, 4, extends that of V,, o Yy acting on (ygl)—l(Yg;l).

When Y, =Y for all g € G, we return to the usual definition of a continuous (resp.
smooth) group action. We used these global actions in §7.4. We next generalise the
definitions of the categories Fiby and Etay in §7.2 to form new categories with a

partial action present.

Definition 7.5.1.2. For a Lie group G, the category G-Fibx is defined to be the
category whose objects are triples (Y, m,)), where (Y, ) is a fibred manifold over X and
Y = {Y,}ea, {Vy}gec) is a partial action of G on'Y, and whose morphisms between
(Y,m,Y) and (Y',7',Y'), are fibred morphisms f:Y —Y' for which f(Y,) C Y, and

for which the diagram

ng—l L} Y/—l
g

ygl ly; (7.6)

Y, —— Y

commutes, for all g € G.

Definition 7.5.1.3. For a topological group G, the category G-Etax is defined to be
the category whose objects are triples (E, p,E) where (E, p) is an étalé space over X and
E = {E}gea: {1y} geq) is a partial action of G on E, and whose morphisms between
(E,p, &) and (E',p',E') are étalé morphisms f : E — E' which satisfy f(E,) C B, and

the analogous commutative diagram to 7.6.
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We now let G be a Lie group, corresponding to the symmetry group of our system.
The corresponding category of étalé spaces is G%-Etay, where the topological group
G is the group G equipped with the discrete topology. Our functors I' and J” can
then be modified to account for partial actions as follows.®

Definition 7.5.1.4. The equivariant local sections functor I' : G-Fiby — G?-Etay
takes (Y, m,Y) to ('Y, I'm,I'Y), with T'Y := ({I'Yy},eqe, {LVy}geqe) and

I'Y, .= {[8l. € TY | B(z) € Y, Vo € dom(f3), 7 0 Yy-1 0 3 is an open embedding},
(7.7)

LY, : Ty = TY, < [Bly = Y, 0 80 by ba, o0 (7.8)

where hy g is the map defined by moYy 03, but with its codomain restricted to be its image.
The functor T takes the morphism f:Y —Y' to f:TY = TY' :[a], = [f o al,.
Definition 7.5.1.5. The equivariant rth-jet functor J" : G-Fiby — G-Fibx takes
(Y’ T, y) to (‘]TY’ 7TT7 Jr)))} with er = <{‘]r}/9}9€G7 {erg}geG’) and

JYy={jip € JY | B(x) €Y, Ve € dom(f),moY,-1 00 is an open embedding},
(7.9)
TV, Ty = Yy 1B G (¥ 0 B0 b (7.10)

where again, hy g is the map defined by woY, 03, but with its codomain restricted to its
image. The functor J" takes the morphism f:Y — Y to J'f : JY = JY': jla
Jo(f o).

The functors I' and J" preserve the same properties listed in Lemmas 7.2.4 and

7.2.5. In addition, we have the following

Lemma 7.5.1.6. Say a morphism between (Z,(, Z) and (Y,m,)) in G-Fiby is an
embedding of partial actions if the underlying fibred morphism « : Z — Y is an
embedding such that Z, = 1=1(Y,) for all g € G, along with the analogous statement

for G-Etax. The functors J" and I" preserve embeddings of partial actions. (Proof:
Appendiz D.2)

Returning to natural transformations, we have the following

Proposition 7.5.1.7. The maps 7™ : J'Y — J'Y form a natural transformation of
functors G-Fibx — G-Fiby. The maps j" : 'Y — I'J"Y form a natural transforma-
tion in of functors G-Fibx — G%-Etax. (Proof: Appendiz D.2)

8The proof that these functors are well defined is given in Appendix D.2.
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We now go on to constraints, which we express by a single Theorem:

Theorem 7.5.1.8. The results given in §7.3 hold with the categories Fiby and Etax
replaced with G-Fiby and G?-Etay, with the functors replaced by their corresponding
equivariant versions defined in 7.5.1.4 and 7.5.1.5, and with ‘embeddings’ replaced with
‘embeddings of partial actions’. (Proof: Appendiz D.3)

7.5.2 Examples

We now examine three physical examples using the framework of partial actions.

Example 7.5.2.1 ((1 + 1)-d Type-I superfluid). As a warm up, we re-examine the
Type-I superfluid in Example 7.4.3.5. Here all our group actions will in fact be global.
The symmetry group, G, corresponds to the product of U(1) and the (1+ 1)-d Poincaré
group. A general element of this group will be specified by (z/*,1/,60") € R?* x S1. With
X = R?, we first specify the fibred quotient in G-Fiby given by the fibred manifolds

(Y, m,Y) = (R® x S, (a#,1,0) = 2", ({Y }yec,
{Vy 1 (2",m,0) = (@™ + A" ()2",n+ 10,0+ 6) }eea)),
(Z,¢,2) = (R* x S, (a*,0) = 2", {Z}4ec,
{Z,:(2",0) = (@™ + AN, ()", 0 +0)}gec))- (7.11)

and the surjective submersion 77 : Y — Z : (z#,n,0) — (x*,0). The first jet manifolds
of Y and Z are

(J'Y, 7', J'Y) = (R® x §* x R, (2", 1,0, n,,0,) — 2",

<{J1Y}g€Gv {leg P » Thas eu) = (e 7/\M”(77')m, AJ(WI)QV)}QGG»?
(J'Z, ¢ J'2) = (R* x S' x R?, (2",0,0,,) — z*,

<{JIZ}96G7 {JIZQ : ( o a‘gu) = ( o aAuV(n/)‘gu)}geG))- (7'12)

We want to form a comeronomic constraint, so introduce another fibred manifold

(R,p,R) = (R* x S* x R?, (2,0, 21, 29) — 2",

{R}gec: {Ry : (2,0, 21, 22) = (A, ()2 + 2,0 + 0, 21 + 17, 22) }gec)),
(7.13)
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with the open embedding of partial actions
i R— J'Z : (2,0, 21, 25) — (2*, 0, cosh z1€%2, — sinh z;67). (7.14)

Physically R manifests the condition of restricting to 6, (as introduced in the defi-
nition of J'Z) that are future time-like vectors. We then can choose Q : R — Y :

(x#,0, 21, 29) +— (2, z1,0). This choice gives

(Q7 v, Q) = (Rz X Sl X R47 (x/i7 97 21, 22, 77#) = xlﬁ7 ({Q}9€G7 {QQ}QEG))v (715)

where Q, is as suggested by the notation. A point in E9 considered as a subspace
of I'Z is of the form [z — (z#, —arctanh(d0(x")/0p0(x*)), 0(x")))]n, for future
time-like 0,0. Under the isomophrism of étalé spaces this gets mapped to the point

[zF — (2, 0(z"))] in BT considered as a subspace of T'Z.

Example 7.5.2.2 ((1 + 1)-d relativistic particle). Here the symmetry group G is the
(141)-d Poincaré group, an element of which we specify by (z'*,7') € R3, for u € {0,1}.
We have X = R, and the fibred quotient in G-Fibx defined by

(Y, 7))
- (Rg’ (xﬂv 77) = xO) ({Y}96G7 {yg : (IM’ 77) = (ZL‘/“ + Auu(n,)xl/a n + n/)}gEG>)’
(2,¢,2) = (R?, (a") = 2°, ({Z}gec {24 1 2# = 2 + A, (0)2" }gea)- (7.16)

and the surjective submersion 75 : Y — Z : (z#,n) — x*. The corresponding first jet

manifolds are
(JYY, 7t JY) =
(RS, (2", n, g, m0) — 2°, <{{(:v“,n>$é,no) | A% (') # A% ()2} gec {leg :

Al () +A11(77/)x(1] "
(77’) +A01(77’)xé’ Aoo(n/) i A()l(n/>x(1)) }geG>>’ (717)

("'71'17770)H<"'7 0
0 AO()
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and

(J'2,¢',J'2) = (R?’, (a1, 2g) = 2°, ({{(ﬂf“,xé) | A% (1) # A% ()20} }gear,

(2 (- S0ERED) )

(7.18)

Notice that although the group action on Y and Z is the global one, the action on J'Y
and J1Z is strictly partial. We then choose Q : J'Z — Y : (z#, z}) — (2", arctanh z}),

which leads to the coholonomic constraint

(Q,v, Q) = (R®, (2", 25, m0) — 27,
({{(2% g, m0) | A%(0') # A% () w0} }gea {Qotoea)) (7.19)

where Q, is as suggested by notation. The manifold @ is embedded into J'Y via
Lot (2, zd,mo) — (x#, arctanh zl, 28, m0). An element of E9, as a subspace of 'Y, is
[29 > (20, 21 (%), arctanh 9pz' (2°))],0, under the isomorphism of étalé spaces, this gets

mapped into [2° — (2°, 2*(2°))],0 in T'Z.

Example 7.5.2.3 (String in a plane). This follows the same pattern as the (1 + 1)-d
relativistic particle discussed above. It was previously studied in [111], and in fact the
mathematical set-up coincides with a system studied as an example in [131] in the
context of symmetries of differential equations. Here G is the Euclidean group in 2-d,
a general element of which we label by (z/,1/,0") € R? x S1. We have X = R, and the
fibred quotient in G-Fibx given by

(Y, m,Y) = (R? x %, (2,y,0) =z, ({Y }4eq,

{Vy: (2,9,0) = (2" + xcos0 +ysinb',y +ycostd —xsinbd’, 0+ 0)}eq)),
(2.¢,2) = (R* x §', (2,9) = @, ({Z}geq

{Z,: (x,y) — (" +xcost +ysind,y +ycosd —xsintd)},eq)).  (7.20)
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and the surjective submersion 77 : Y — Z : (z,y,60) — (z,y). The corresponding first

jet manifolds are
(levaﬂ_lajly) = <R2 X Sl X RQv(xayu eayxagx) =,

({{(l’, Y, 97 Yz, 91) ’ COS 9/ 7& —Yz sin 9/}}9€G7

inf + y, cos & 0,
le :(...’yw’QI)H(.._’SIH : . ’ : . )} ),
{ g cost — y,sin¢" cost —y,sinb' ) | .

and

(J'Z, ¢ T 2) = (Rg, (2,9, yz) — T, (H(rc,y,yx) | cos 0 # —y,sinb'}}eq,

in@ + y, cos@’
T2y () = ( S : ,)} . (7.21)
{ 7 cost) —y,sind' ) ) g

Forming the coholonomic constraint associated with Q : (z,y,y,) — (z,y, arctany,),

we get

(Q,v,Q) = (RY, (2,y, Y, ) = 2*,
({{(I,y, Y, Oz) | cos 0 # —y, sin 0/}}96G’ {Qg}geG}))7 (7'22)

where, as above, Q, is as suggested by the notation. The embedding of ) into
JYY is given by g : (2,Yy, Yz, 0.) — (z,y,arctany,, y,, 0,). A typical element of E?,
as a subspace of I'Y, is of the form [z — (z,y(x),arctan 0,y(z))],, which maps to

[ — (z,y(x))]; in ['Z under the isomorphism of étalé spaces.

7.6 Closing remarks

In this Chapter we studied constraints in quantum field theories in the presence of
symmetries. We used both category theory and differential geometry (in particular the
theory of jet manifolds) to achieve this.

We showed how a holonomic constraint can be treated as the limit of a diagram
within category theory. This, rather redundant description, had the benefit of permit-

ting a categoric dual, which was also a type of constraint which we called coholonomic.



7.6 Closing remarks 115

Due to their kinematical equivalence to unconstrained systems, coholonomic constraints
obey the most basic physical requirements as the constrained fields form a sheaf with
non-empty stalks.

A slight generalisation of holonomic constraints was then developed, which we
called meronomic constraints. These were defined by open embeddings into holonomic
constraints. They, as such, locally look like holonomic constraints and obey our
basic physical requirements. They also permit a categoric dual, which we termed
comeronomic constraints which are kinematically equivalent to particularly simple
types of meronomic constraints.

We started our initial discussion in the absence of symmetries. When it came to
adding symmetries, two different routes were taken. Firstly, in the simple case where we
have transitive group actions on certain spaces, our theory reduces to a much simpler
one in the category of homogenous bundles. More generically, however, one must resort
to the use of partial actions. Despite their arguable complexity, partial group actions
were required for some naively simple systems, for example the relativistic particle.

The main result of this Chapter is that every instance of the inverse Higgs phe-
nomenon we could find in the literature could be treated as either a coholonomic or
comeronomic constraint. The kinematic equivalences for coholonomic and comeronomic
constraints correspond to the reduction to systems of essential Goldstone bosons. Going
forward, it is hoped that this result will be of use in the study and classification of
the inverse Higgs phenomenon. It is also hoped that related ideas can be studied
in a manor similar to the one we have presented in this Chapter. This would allow

interrelationships between phenomenon to be seen in a more rigorous way.






Chapter 8
Conclusion

This Thesis started with a discussion of the current state of particle physics and the
approach we would take to help drive it forward. This approach was based on the use
of areas of (pure) mathematics to solve problems in particle physics.

It is hoped that the three forays in this Thesis have helped to convince the reader
that taking such an approach is both useful and fruitful. However, this approach cannot
sit in isolation, since many of the ideas presented in this Thesis will only be brought to
their full fruition after more direct phenomenological studies.

In our first foray we looked at anomaly free gauge algebras. In particular, Chapter 3
looked at the anomaly cancelation conditions for a pure u(1)-gauge theory. Here we
used planes in a projective space to give a geometric interpretation to the solution
first presented in [51]. Chapter 4 looked at the anomaly cancelation conditions for
u(1)-extensions of the SM with 3 right-handed neutrinos. We solved these cancelation
conditions for the first time, again using a geometric approach, this time based around
the special properties of the point corresponding to baryon number minus lepton
number. Chapter 5 focused on semisimple extensions of the SM. We discussed a
computational method which allowed all such extensions to be found for fixed fermionic
particle content, which we again took to be the SM particle content plus 3 right-handed
neutrinos. We found that there were 340 extensions. The gauge algebras studied in
each of these three parts may be used in model building endeavours, and exhaustive
studies of anomaly free gauge algebras, for example, related to proton decay.

Our second foray, the focus of Chapter 6, concerned quantum mechanical problems
in magnetic backgrounds. Quantum mechanical problems are usually solved using
harmonic analysis (a generalisation of the Fourier transform). However, in the presence
of a magnetic field (a type of topological term), harmonic analysis may not work. This

is for two reasons: Firstly it may not be possible to write down a globally defined
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lagrangian. Secondly, the lagrangian may shift by a total derivative under the action
of the symmetry group meaning that the conserved charges do not commute with the
hamiltonian, and the simplification which occurs as a result of harmonic analysis is
not present. Both these obstructions can be overcome in the same brushstroke, by
simultaneously considering the dynamics on the U(1)-principle bundle defined by the
magnetic field, and replacing the original symmetry group with a related U(1)-central
extension. The method deployed in this foray seems a promising approach for use in
real world applications, both in particle physics, and, for example, condensed matter
physics and chemistry.

Our last foray, Chapter 7, was related to the inverse Higgs phenomenon. We
formulated the usual notion of a holonomic constraint as the limit of a diagram
in category theory. We then showed that this definition had a categorical dual
forming what we call a coholonomic constraint which, like holonomic constraints, are
kinematically equivalent to unconstrained systems (which should be compared with
essential Goldstone bosons). A small generalisation was then made to meronomic
and comeronomic constraints both of which obeyed our basic physical requirements.
With the help of homogenous bundles, which provided a simplification when certain
transitive group actions were present, we showed that every instance of the inverse Higgs
phenomenon can be considered as an instance of a coholonomic or a comeronomic
constraint. It is hoped that our new framework for considering the inverse Higgs
phenomenon will lead to new phenomenological examples of the phenomenon, as well
as drive forward theoretical developments in this area.

The three forays in this Thesis are of course only examples of the modus operand:
of formal mathematical explorations into particle physics. They are, however, examples
which despite there specificity, can be used as the bedrock for further similar studies
of the same vein. One may, for example, wish to combine forays 2 and 3 to study
quantum mechanics problems in the presence of the inverse Higgs phenomenon. One

may also wish to develop further the use of jet manifolds in particle physics.
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Appendix A

Additional material for Chapter 3

A.1 Any solution via permutations

Here, we give a proof of the statement that any solution in Chapter 3 sitting on a line
in X between the d-planes defined in Eq. 3.13 can be found by the permutation of
the coordinates of a solution which is on a line not in X. The proof of this statement
follows similar reasoning to the proof regarding permutations of solutions in [51]. We

must distinguish between n odd and even, so we do them each in turn.

A.1.1 Evenn >4

We redefine variables such that

T = 21, for i =1,
xizzi+zme+i7 fori:2,---,me+1,
Yi = Zi + Zmo+144s fori=1,---,m,.

The d-planes in Eq. 3.13 are defined in our new variables by y; = 0 for I'{ and z; =0
for I'S. Consider a point p = [x; : y;] ¢ I'{ UTS. There is a unique line

L, = ap' + Bp’,

through p, p' € T'S and p? € T'S. Under the permutation ¢° : 2, 11 <> Zom,+1, ONLY Y.

changes and

Lgey) = ap' + Bo°(p°).
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A necessary condition for L, to be in X is that

—3YmeLmet1 <2 sz + xme+1> +.o..=0&

=1

2me+1
—3(2m. + 2omo+1) (Zmet1 + Z2mot1) | 2 g 2i = Zmet1 — Z2me+1 |+ =0,

=1

where the dots indicate terms which are independent of y,,, .

Thus if L, is in X, for a solution p with coordinates permuted such that

2me+1
’Zme‘i’l‘ # ’Z2me+1‘ and Zme+1 + Z2me+1 - Z Zi # 07
=1

then Lge(y) will not be in X. The only case where this cannot be done is where all |z

are equal, but such solutions already occur in I'{ after permutations of the z;.

A1.2 Oddn>4

Here,

Ti = Zmo+1 for i =1,
Ti = Zi—1 + Zmo+1+is fori=2,--- ,m,+1,
yi:Zi+Zmo+1+i7 fOI'?::L"' ,mo—i—l.

Again, I'{ is simply defined by y; = 0 and I'} is defined by z; = 0. Similar to the even

n case, we take a point p = [x; : y;] € I'{ UT9. There is again a unique line
» = ap' + Bp’,
through p, where p' € T'Y and p? € T'S. Taking ¢° : 21 <> 2,12, only To changes, where

Loy = a¢®(p") + Bp*.
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A necessary condition for L, to be in X is then

mo+1
—3T211 (2 Z zi+y1> +---=0%&
=2
2mo+2
—3(21 + Zmo+3)(21 + Zmo+2) (2 Z Zi — 21— Zm0+2> 4.0 = ()’
=1

where now the dots indicate terms which are independent xs.

If L, is in X for a solution p with coordinates permuted such that

2meo+2

21] # |2mgt2] and 21+ zm 0 —2 Y 2 0,

=1

then Lgo(,) will not be in X. We may use this construction for all solutions and n odd.

A.2 Alternative solution for n-even

For even n, the cubic Eq. 3.8 has double points; that is points where all of the partial
derivatives of the left-hand side vanish, as well as the left-hand side itself. An example

of such a double point is
d=[+1:=1:41:—=1:...:+41:—-1:+1] € PQ" 2 (A1)

So for e.g. n =6, we have [+1: —1:+1:—1:+1].

Consider a line through our double point d, L = v,d + vor, for r € PQ"~? a fixed
point and [y; : 7»] specifying the position along the line. Any point in PQ" 2 lies on
such a line, and further every such line is either in the hypersurface X (defined by
Eq. 3.8) or passes through that hypersurface at exactly one other point.

This other point of intersection can be found by substituting L into Eq. 3.8:

n—1 n—1 n—1 2
V2 (371 Z d; R; 4+ 7o Z riRZ) =0, R;:= 7’? - <Z rj> . (A.2)
i=1 i=1 j=1
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Either 75 = 0 (the original point d), the left hand side is zero independently of 4, and
72 (corresponding to L being in X)) or

n—1 n—1
[’71 . ’}/2] = Z’I‘ZRZ . _3Zdsz s (A?))
=1 i=1

giving the second point of intersection. As such we can see that the lines L can be
used to find all solutions to Eq. 3.8 parameterised by r;, and if L is in X by [y; : 72).

Continuing our example, for n = 6, we have that Eq. A.2 becomes

3v(rf —r3+ 15 —ri4ri— (r+ratrs+ra+75)°)
Fy (P S i — (r s+ 415)3) =0 (A.4)

implying the second point of intersection is at

o] =[0 43+ s i s = (s +rs)°)
c=3(r? — 13 + 7‘§ — 24 7‘% — (ry 4+ 1+ 13+ 1y +15)2)]. (A.5)



Appendix B

Formalities of Chapter 5

In this Appendix we will look into the ideas of Chapter 5 in more detail. In particular,
we will specify the equivalence classes produced by the computer program, and show
that there exists a bijective map between these and the equivalence classes given in
the theory section.

We start by reviewing some basic results and definitions.

B.1 Basic results and definitions

Idempotents: Let g be a semisimple Lie algebra, and by a Cartan subalgebra thereof.
Associated with this set up we have the Euclidian space E(g, h,). For each A\ € E(g, b,),

we have an associated hy € by, the set of all such hy forms the idempotent of b,.

Theorem B.1.1. If . : ¢ — g is an embedding of semisimple Lie algebras, which
embeds the Cartan subalgebra by of g' into by of g then «(X) is in the idempotent of b,
if and only if X is in the idempotent of by

Proof. The embedding ¢ : g’ — g defines a map Av: E(g, by) — E(g’, bhy). From this
we can define Act : E(g’,hy) — E(g,b,) such that

(AN, X) = (A AL(N)) VA€ B(g,by), N € E(g', by). (B.1)

It is easy to see that for h), within the idempotent of hy then ¢(h),) = hr,t(ry, Which
is in the idempotent of hy. This proves the if part.

For the only if part, note that any h' € E(g', by ) can be written as h' = hy, +ihy,.
From the linearity of ¢, this maps to the idempotent of b, if and only if L(h/\IQ) = 0.
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Since ¢ is an injection, we must have that hy, = 0 and therefore h' = hy,. No element

outside of by can map under ¢ into hy. This proves the only if part. O]

Cartan embeddings: Consider an embedding « : s ® u(l) — g for s and g
semisimple. We call such an embedding a Cartan embedding if there exists a Cartan
subalgebra b, of 5 and one b, of g such that a(hs @ u(1)) C by, and that there exists a
non-zero X € u(1) such that a(X) is in the idempotent of h;. We will call such an X
a Cartan element of u(1). If i : g — ¢’ is an embedding of semisimple Lie algebras and
« is a Cartan embedding, then it is clear that i o a is also a Cartan embedding.

For a given Cartan embedding o and a chosen Cartan element X we define the
map o : E(g,by) = E(s,bs) X R:v— (Aa|(v),a(X)v), where Ac| is the projection
matrix formed by restricting « to s.

As a generalisation of Theorem 1.1. of [66] we have

Theorem B.1.2. Let ay and as be two Cartan embeddings so that we can choose the
same b and by for both. Assume further that they are related by oy = j o ay for some
inner automorphism j (this then implies we can choose the same Cartan element X ).

Then (a1)% = ()% ow for some element w in the Weyl group of g.

Simply laced algebras: Let g be a semisimple Lie algebra for which we choose
a Cartan subalgebra b, and a set of simple roots A(g,bh,). The algebra g is said to
be simply laced if all its roots are of the same length. The algebra g then has a basis
{hs, }ricatny) and {E5}icq (g, Which have the commutators [73, 135, 139

[Py, byl =0

[, B3] = (X, ) Ex

[E5, E_5] = —hs
[Es, Ex] = (“1)POE i A 4 X, € ©(g),
[E5,, E5,] =0, otherwise (B.2)

where B(Ay, A;) is a bilinear form on E(g, h,) such that on the simple roots B(\;, \;)
is 0if 7 < 7, is %(Ai,/\j) if i = j and is (\;, \;) otherwise. The space spanned by
{h3,}rieatb,) 18 bg. Throughout this Appendix, the convention above has been used.
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The Standard Model embedding: To be explicit, we write down a valid em-

bedding =, of sm into su(48) here

2 =5
A0y = 37 (Rl + 20800 + B + D
q=0 i=0
2
V) = D7 () + 2 ) + Zhii;i,
qzo
(BB =3 (B2 v B2 irnien) + Z o
V(Ej:ug)) - ZO <Ejtu((f38-l)—6q+)\4+6q) + iu((;\li)k(iq+>\5+6q)> o — iu)ilisi’
2
(Esiu((j’l)ﬂg)) = - <Eiu((fieq+A2+6q+A3+6q+A4+6q) iu((;liﬁq+>\3+6q+>\4+6q+x5+6q)
Z Eﬁu(}ilf9+3l+>\20+3l)
2
) = 3 (WG + I+ R + Z G
qzo
B = 3 (B, + B, + B, ) + Z B,
= g+ 378 — 4wy + Z ~18 + 2d)h3)
q=1 u=0 d=0
6
+ (=3RS 4 Z —18 + 6e)h5 ™
=0

Note that v is a Cartan embedding with respect to the obvious Cartan subalgebras, and

with hy as a Cartan element (one could say hx is defined by this, up to a constant).
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B.2 Theory

Let D, be the set of all pairs of embeddings («, ) such that for our v above, there
exists an inner automorphism 4 of su(48) with!

g
/ N (B.4)
sm © > su(48

)

commuting.
Theorem B.2.1. Fvery a is a Cartan embedding, and hx is a Cartan element.

Define on D, the equivalence relation that (o, 8) ~ (o/, ') if and only if (o/, ') =
(Ooa, joBoO™1) for some inner automorphism j of 5u(48) and a general automorphism
O of g. Let D := D,/ ~.

B.3 The output of the computer program

For each non-isomorphic semisimple Lie algebra we fix a Cartan subalgebra by. For
su(3) @ su(2) and su(48) it is fixed by that implicitly used in the definition of v. Let
A(g’ — g) denote the set of projection matrices corresponding to embeddings from g’
to g which preserve the corresponding Cartan subalgebras.

Let I' :== (U, (A(su(3) ®5u(2) — g) x Hyx A(g — su(48))) where §; is the idempotent
of hy. Define Sy C I' to be all those elements (M, v, N) such that there exists a w € Wys
(the Weyl group of su(48)) such that

/ b NG (B5)

A(su(3) ®su(2)) x R « A(48)

’Y;;X ow

commutes where A(48) is the set of weights of the fundamental representation of
su(48).

We define on Sy the equivalence relation that (M, v, N) ~y (M’,2', N') if and only
if for each n < 48 dimensional representation ¢ of g (taken to map the relevant Cartan
subalgebras into one another) a wy € W) exists such that M o Apowy, = M' o Ag
and, furthermore, a w € Wyyus) exists such that N ow = N’. We let 51 := S/ ~.

IThe introduction of this inner automorphism is not strictly needed, however, we find it convenient.
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We now define an equivalence relation on 57, given by the condition that
(M, v, N)|y ~ [(M',0", N')]y (B.6)
if and only if there is an automorphism o € O(g), such that
[(Moo,voo,07 o N)|, =[(M,v,N). (B.7)

We let Sy := 51/ ~s.

The program outputs Ss.

Let us define another equivalence relation on Sy, to match more closely that on D.
We say (M,v, N) ~ (M,v, N) if and only if (M’,v',N') = (M’ c0,v00,07' o M ow)
for a w € Wyyus) and a root system automorphism o of ®(g, b,). Let S = Sy/ ~.

Theorem B.3.1. The space S = S;.

Proof. Follows from the explicit M’s appearing in our list and Theorems 1.1 and 1.3
of [66]. ]

B.4 The index map

The claim is that the space S catalogues D. Put more formally, there is a bijection
between the sets S and D, which we will call the index map. Before defining our

bijection we note the following theorem

Theorem B.4.1. Each [(«, )] € D has a representative (ao, 5,) which maps the
algebra Boys)meuz) @ U(1) into by and by into Hays).

We then define our index map as
R:D = S:[(a, B)] = [(a, ABo)] (B.8)

where Af is the projection matrix of 5. Here we are dropping an implicit hy on o,

which should be assumed throughout.
Theorem B.4.2. The map R is well defined.

Proof. Let (s, 3,) and (O o a,,j 0 8, 0 O71) be two valid representatives of [(a, 3)].
Split O into ¢ o O where ¢ is an inner automorphism and O preserves by Then using

the latter representative we have ((v o a)* o AO,AO~'A(j o §)) for some new inner
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automorphism j. Furthermore, (1o a)" = a* ow for some w € Wy, and likewise for
A(jop)=ABow for aw € W,. It is easy to then see that using either (a., 3,) and
(O oy, jo B, 0071 gives the same image under R. ]

Theorem B.4.3. The map R is surjective.

Proof. The ethos of the proof is to take a (M, v, N) for each [(M, v, N)| in our list and
show that there exists an «, and [ such that R([(a, 8)]) = [(M,v, N)]. We only need
to do this for the minimal algebras. The non-minimal ones follow suit by composing
with a valid embedding from a minimal case.

The existence of a 8 with the correct properties is guaranteed, thus we focus on «.

We start with algebra 27 in our list, corresponding to the well-known algebra su(5).
Each simple root for each simple ideal will be labelled by JA;, using standard ordering
as specified by the Dynkin diagrams. A valid « (in that it returns the M and v in our
list, and is well-defined) is given by

a(h™) = h37, a(hy™) =m0, a(BLY) = BXY a(EY)) = B,
su(3) _ su(b)
O‘(Ei(,\lJrAz)) = Ei()\4+)\5)’
oz(hi“f”) =, a(Ej:f)) = B3,
a(h') = 3h5® 1 6h3 4 4h3 4 2p30 (B.Y)

For algebra 28 in our list, which we label su(4) & suz(2) @ sug(2), a valid « is given
by

a(h3 ) = h ) a(hi®) = n3W | a(BXY) = —EXY, a(BRY) = B2,
O‘(Eiu((i)Jr)\g)) = Eiu(()ilg)Jr)\l)’
a(h3®) = n3 @ o(BY) = B3,

a(RV) = —h3@ — 2n® — 3R 4 3p3® 0 (B.10)

For algebra 29, which we label by su(4) @ sug(4)sur(2), a valid « is

a(hn™) = h3Y, a(hy™) =m0, a(BEY) = BYY. a(BY)) = BLY,
a(Esu(3) ) _ Esu(4)

:I:()\1+)\2) :|:(>\2+)\1)’
a(h®) =m0 (B = B3P,

9 3

Oé(hu(l)) :hsu(4 +2h5u( +3h5u(4)+ hsuR )+3h5uR(4)+ hsuR(4). (Bll)
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For both algebras 30 and 31 corresponding to su(4) @ su(5) & sur(2) ® sug(2) a valid

o 18

a(hi‘i(?’)) _ hsu(4) + hsu(5) (hi‘;(?’)) _ hf\ti(ﬂt) + hit;(5)

a(ELY) = —E, n Eiij, o ERD) = BN + B,

Q(Ef((i)ﬂz)) = Ei“((fz“l) + Ej:(()\z+>\5)

a(h®) = h® 4 hi‘i“% a(BY) = B P 4+ B,

a(h* @) = —p3W —opg® 3@ 4 gpge® 4 3p3O) 4 e
+4h"§;(5) +2h5®, (B.12)

Lastly, for algebra 32 in our list, which we write as su(4) ® suy(4) @ susz(4) ® sup(2) ®
sug(2), a valid « is

(4 3 i i
Z hsu ( ) 5u( Z hsu ’ i/\l Z chuA2 ’
5u(3) 5u1(4) 5u(3) s (
:I:)\Q Z E:I:)\l ’ :I:()\1+/\2) Z E:l:()\2+>\1)7
a(h ) = hi‘iL@), a(Ei”/\(f)) = Eiufl(m,
0 i 4 q 4
a(RV) = 3" (=h3W —ops® — 3p @y 4 3pe® 0 (B3)

)

Theorem B.4.4. The map R is injective.

Proof. The ethos of this proof is as follows: If [(a, £)] maps to [(M,v, N)| under R,
then there exists an (a., 3,) € [(a, )] such that Aa,| = M and A5, = N. We work
with such a representative of [(«, 3)]. We then show that any other (al,.) with
Adl| = M and AB, = N is in the same equivalence class as (a., 55).

This has to be done for each case individually. To illustrate the proof, we take the

example of s0(10). Here there are two choices of a,(hx) which are given by

(3 6 400 2>, (—3 —6 —8 —6 —3>' (B.14)
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Choose o, to be

oo ?) = WM (™) = W3, o (EY) = B,
ao(Esu(?;)) . Eso(lO) &O<E5u(3) ) _ Eso(lO)

o /T AN 0 £(A1+A2) E£(A3+As5)?
ao(h?) = 1™, ae(B1Y) = BT,
ao(h*V) = 4h$1 4+ 6h0Y 4 a0 4 2p0) (B.15)

Define the inner automorphisms (which respectively can be interpreted as an action of
the Weyl group and a translation) for A € ® and a € C\{0}

ta(a) :=exp (a adE)) exp (é adE_,\) exp (a adE)),
T,\(a) = t,\(a)t,\(l). (Blﬁ)

Letting A= A1+ 2X2 +2X3 4+ Ay + A5, then every other choice of a, which has Aa,| = M
can be reached by the subgroup of inner automorphisms generated by [66, Thm. 4.2].

<T/\3 (a)7T)\5(b)7T/\1 (C)’ tﬂ(l) | a,b,c € C\{O}> (B17)

The first two generators change how the embedding « acts on su(3), the third how it
acts on su(2), and the last generator swaps between the two a,(hy)’s.

Furthermore, any AfS defines a unique  up to inner automorphism [66, No. 1].
This is enough to prove our statement above. All other algebras work in a similar
fashion.

To show that this holds for g with a su(8) or su(12) ideal at a purely algebraic level,

is fairly involved. We write a set of inner automorphisms that will work for su(8) with

01007100
M=[1001000]-: (B.18)

000O0O0O0©O0

The generators of the inner automorphisms are

<T>\2 (51)7 T/\5 (52)7 eXp(ﬁ?) adE)\3+)\4+>\5)7 eXp(ﬁ4 adE—/\3—>\4—)\5)7
T>\1 (71>’ T)\4<72)76Xp(’73 adE,\2+)\3+,\4),eXp(74 adE—>x2—>x3—>\4) | ﬁi?% € C\{0}> (Blg)
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B.5 Maximal and minimal algebras

We say that [(M',v', N')] € S related to g’ embeds into [(M,v, N)] € S related to g
if and only if there exists a (non-isomorphic) K € A(g’ — g) and a w € Wyg such
that (M’ o K,v' o K, N' ow) = (M,v, K o N). Likewise, we say [(/, #')] € D related
to g’ embeds into [(«, B)] related to g if and only if there exists a (non-isomorphic)
embedding k : ¢ — g and an inner automorphisms i : su(48) — su(48) such that
(kod/;iof") = (a, Bok). It is easy to show that both these definitions are independent

of representatives.

Theorem B.5.1. We have that [(o/,3")] € D embeds into [(«, B)] € D if and only if
R([(/,B")]) € S embeds into R([(a, B)]) € S.

Proof. For the if part, suppose [(M’,v', N')] embeds into [(M,v, N)| through K. Let
o’ be an embedding that projects down to (M',v"), a one that projects to (M, v) and
k one that projects to K. Then koo’ and o must be related by at most an inner
automorphism (seen explicitly from our list), which we include in k such that koo = a.
Let /' be an embedding that projects down to N’ and 3 one that projects down to N.
Then " and ok are related by an inner automorphism 7 on su(48) so that io 8’ = fok.
Since (a, 8) and (¢, #) must also be in D,, this proves the if statement.

For the only if part, let (ko o', 0i) = (o, 0k). Then k = jo k where j is
an inner automorphism of g and k preserves Cartan subalgebras. Then (ko o/)* =
(jokod) = (koa) ow = (a/)* o Akow. Let K = A(j' o k) where j' is an inner
automorphism preserving Cartan subalgebras with Aj’ = w. For [ parts, we then have
that A(Bo k) = K o Af ow'. Furthermore, A(i o ') = A ow”. From this we see that
the conditions for [((«/)*, AB")] to embed into [(a*, A)] are satisfied. O






Appendix C

Rudiments of harmonic analysis with

constraints

In this Appendix we will review, by way of an example, the form of harmonic analysis
used throughout Chapter 6. The example we will use is that of planar motion in a
magnetic field, as discussed in §6.1.1.

In all the examples in Chapter 6, we decompose the left-regular representation of
G, which recall is a central extension by U(1) of the original group G (constructed
in §6.2), into unirreps of G. In our prototypical example, we have G = M = R? and
G = Hb, and the left-regular representation of Hb is defined by

(@) - Wlay,s) = (e —a'y—y/ s — s — Be'y + Byw).  (C.1)

for U(x,y,s) € H, where the Hilbert space H was defined in Eq. 6.5.
In this example we first decompose a general ¥(z,y, s) € L*(Hb) into unirreps of
Hb, following [87]:

U(z,y,s Z/drdt—w rt;x,y,8)g"(r,t) € L*(Hb), (C.2)

where recall the unirreps 7* are

™ (rtz,y, s) = eF@ I B5(r 4y — 1), k/B € Z, (C.3)

which transform under the left-regular representation as

p((@',y,8) 7P (r,t;2,y,s) = /WB(q,T; 2y, P (gt y, s)dg, (C.4)
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i.e. in the unirrep 7~2. The inverse transform is

gt (r,t) = /dwdyds (Wk(r,t;x,y,s))* U(z,y,s). (C.5)

These unirreps satisfy the Schur orthogonality relation

472

/d:ndyds (ﬂk(r,t;x,y,s))*wkl(r',t';x,y, s)=—0

wwo(r =10t —1). (C.6)
R 55

Enforcing the constraint (—ids + 1)\@ = 0, and using the orthogonality relation in
Eq. C.6, immediately implies g*(r,t) = 0, Vk # B. We can then write

B
U(z,y,s) = /drdt|2—7r|7rB(r,t;x,y, s)f(r,t) € H, (C.7)

thus recovering the decomposition in Eq. 6.6, where g*(r,t) = 27?5%’1]“(7“, t), and the

inverse of this decomposition is given by
f(rt) = /d:c’dy’ (WB(r,t;x’,y’, 5’))>k V(2 y,s). (C.8)

In other words, we may restrict our decomposition to those unirreps which satisfy the
constraint. This restricted subspace of unirreps (which satisfy the constraint) inherits

the following completeness relation

B * o
/drdt|2—| (7B t;2 y, 8)) 7P (r ey, s) = e 5 (x — 2)o(y — y). (C.9)
T

It seems plausible that, under suitably general assumptions, one may decompose a
general state U € H into a basis of unirreps of G which satisfy the constraint, following
a similar procedure to that used in this example. We have indeed found this to be the
case in all examples considered, as can be verified on a case-by-case basis by obtaining

a completeness relation on the Hilbert space H, analogous to Eq. C.9.



Appendix D

Proofs for Chapter 7

D.1 Proofs for §7.2

Throughout this Appendix we let (Y, 7) and (Z, () be fibred manifolds in Fiby, and f

a morphism in this category.

Proof of Lemma 7.2.4

Injections: Let f : Z — Y be an injection. Recalling that T'f[a], = T'f[5], <
[foal, = [f o fla, then there is a & € [a], and a 3 € [8], such that foa = fof, but
since f is an injection this implies & = f so [a], = [B],. Thus if f is an injection, so is
['f. But I'f is an open map, as can be seen from its explicit form, and the topology on
the étalé spaces, and an injective open map is a topological embedding, thus I'f is a

topological embedding.

Counterexample for surjections: Let X = R and (Y, 7) = (R?, (z,y) — ), and let
f:Y =Y :(x,y)— (z,9°), which is a surjection. Let o : x — (z,2), then [a],—g is

not in the image of I'f, since 2/ is not smooth at the origin.

Proof of Lemma 7.2.5

Submersions: Let f :Y — Z be a submersion. Then around every y € Y there
is a neighbourhood U, which has coordinates (z*,2%,y*) such that f(U,) (a sub-
mersion is open) has coordinates (z*,z%) with f : (z*, 2% y%) — (2*,2"). The open
subset (779)71(U,) then has coordinates (x,, 2",y 2%, v¢), for multi-indices I, whist
(¢"")~1(f(U,)) has coordinates (z,, 2", z%), where J" f : (x,, 2", y*, 24, y}) — (x#, 2, 25).

This map is clearly also a submersion.
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Surjective submersions: Let f :Y — Z be a surjective submersion. This follows
directly from the case of a submersion, by noting that every point z € Z sits in a

neighbourhood f(U,) as constructed above.

Embeddings: Let f : Z — Y be an embedding. For every f(z) there is a neighbourhood
of Y, Uy(»), which has coordinates (z#, 2%, y"), such that f~'(Up(.)) has coordinates
(x#, 2%) with f : (2, 2%) — (a#,2%,0). In the corresponding induced coordinates,
JUf o (at 2% 27) = (a#, 29,0, 2¢,0). Since J”f in these coordinates maps an open
subset to an open subset in the induced topology of its image, it is manifestly an
immersion in these coordinates, and since it injectively maps the fibre above (z#, 2%)

to the fibre above (z#, 2%, 0), it is an embedding.

Immersions: An immersion is equivalent to a local embedding, and thus this follows

from the above.

Injective tmmersions: Let f : Z — Y be an injective immersion. For every z € Z
there is a neighbourhood V., such that there is a neighbourhood around f(z), Uy,
and coordinates on these neighbourhoods with f : (z,,2%) — (2, 2%, y* = 0). Using
the induced coordinates on (¢")~*(V.) and (7"°) "N (Up(,)), we get J"f : (x,, 2, 2})
(z,,2",0,2%,0). Each of these coordinates covers its respective fibers of e.g. J"Z — Z
and, since the map between Z and Y is an injection, we can see that J” f is an injection.

The form of J” f in these local coordinates also indicates that it is an immersion.

Counterexamples for injections and surjections: Let X = R and (Y, 7) = (R?, (x,y) —
z),andlet f: Y — Y : (z,y) — (x,9%), which is a bijection. We have J'f : (2,9, y,) —
(z,9°, 3y,y?), which is neither surjective (since e.g. (z,0,1) is not in the image) nor
injective (since e.g. J'f((z,0,1)) = J'f((x,0,2))).

D.2 Proofs for §7.5

Throughout this Appendix, (Y, 7,)) is an object in G-Fiby. Further, the statement
that, e.g., 5], € I'Y, will be understood to imply that we are taking 5 to have a small

enough domain that it satisfies the conditions in the definition of I'Y,, and similarly
for 57 3.
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Proof that 7.5.1.4 and 7.5.1.5 are well defined

We must show that the partial actions in the definitions of I' and J" are indeed partial
actions and I and J" yield bona fide morphisms in the codomain. We deal with them
in turn.

The partial action 'Y : We check that the list of properties in Def. 7.5.1.1 hold for
ry.

1. From their definition, I'Y, are open in I'Y". The maps I'), are manifestly open

maps.

We now want to show that I'Y, and I'V,-1 are mutually inverse. Since both 'Y
and I'),-1 are open, this will also show not only that they are both continuous,
but also that the image of I'),, say, really is I'Y,. Let [8], € I'Y,-1, and
B’ =Yy0B0h, . Then

To Yy oﬁ’zﬂoygfloygoﬁoh;l :Woﬁoh;é:h;é. (D.1)

Hence, 7o Y,-1 o " is an open embedding and have h,-1 5 = hg‘}; Acting on
6]z € T'Y,—1 with TY,-1 o 'Y, we get

Fygf1 © Fyg([ﬁ]w) = D}g*1 0 Y0 fo h;é © hgﬁ]h;}gohgﬁ(x) = [ﬁ]xa (D.Q)

so I'V,-1 and I'Y, are indeed mutually inverse.

Next we turn our attention to the case when g = e (the identity of ). Looking
at the definition of I'Y,, for g = e, for any local section f(z) € Y. =Y, and
mo Y. o3 =1iyx, which is an open embedding, thus I'Y, =I'Y. For each 8 € )},
he s = idy, and thus, from its definition, I'), is indeed the identity on I'Y.

2. The condition that I'Uy is open, and that T'Y is continuous, follows trivially from
the fact we chose the discrete topology on G (recall that I' : G-Fibyx — G%Etay).

If we had not done so, then generically ') would not be continuous.

3. For an arbitrary point, [], € (Fygl)_l(FY:qz—l), we can take §: U — Y such that
B(z) € (V)71 (Y1). For such a 3, we have that 70 Yy 4,08 =m0V 0V, 00,
the left hand side of which, given the form of 5, must be an open embedding, and
therefore the right hand side must be too. This tells us that (F))gl)_l(FYj%—l) C
['Y(4,9,)-1- From their explict actions, it can then be seen that the action of
'Yy, 4, extends the action of I'Y,, followed by I'Y,, .
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The partial action J"Y: As for I'Y we follow the list given in Def. 7.5.1.1, but now

the proof is somewhat more involved, since we must check smoothness in addition.

1. Firstly we need to show that J"Y, are open. Let (z,y% y7) be some induced
coordinates of U C J'Y, so that #'%(U) € Y,. Let (2'*,y"*) be some adapted
coordinates of the image of 71%(U) under ), (which can be made to exist by
making U small enough). Then the condition on whether a point (2#,y?,y;;) is
in (J"Y,) can be expressed in terms of the Jacobian function defined locally on
U by

0 0
jac : p — det(D, (" 0 Y, o 7r1’0)|(xu7ya7yz)) where D, = Do + Y, oy (D.3)

The points in U N J'Y, correspond to those in jac™* (R — {0}) which is open, since
R — {0} is open and jac is continuous. The union of all such open subsets for all
U is J'Y,, which is therefore open in J'Y. For generic r, J'Y, = (")~} (J'Y})

7,0

are open for all g € G since 7" is continuous.

We now need to show the smoothness of J"}),. In our local coordinates above,
for (z#,y*,y2) € UN J'Y, we define the matrix

M,# = D,(z"" 0 Y, 0 7T1’0)|(x#7y“7y5)7 (D.4)

which is essentially the Jacobian matrix, which given our definition of J"); is
invertible on this space. To determine the smoothness of J')), we can look at its
value in the induced coordinates associated with (z*,4*) on J'Y, (z/*, 9, Y-
The smoothness in the coordinates z'* and y"* follows directly from that of Y.

For y we have
Y o I Vg(ah y yp) = (M), Dy 0 Vg o 1) |om o, (D.5)

which is indeed smooth. For generic r, the smoothness of J"), follows from the
smoothness of J*--- J'Y,, noting that J"Y is embedded, via an embedding of
partial actions, into J1--- J'Y (for r, J'’s) and one can pick out the appropriate

coordinates to show smoothness.

The property that J"Y, and J"),-1 are mutually inverse follows in the same way
as for I'Y, and I'Y,-1.
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2. The argument that J'Uy is open and J"Y is smooth follows in exactly the same
way as our arguments showing that J"Y, are open and that J")), is smooth. In

effect it follows from the smoothness of Y and the (locally defined) Jacobian.

3. The property that J"Y,, 4, extends the combined action of J"Y, and J"},,,

follows in the same way as for I'.

Target morphisms of I' and J": We want to show, for f a morphism in G-Fiby,
that I'f is a morphism in G%-Etax and that J" f is a morphism in G-Fibx. We show it
for T'f, noting that for J” f the proof works analogously. Let (Y, 7,)) and (Y, 7', ))
be two objects in G-Fibx and f : Y — Y’ be a morphism between these two objects.
We need to show that I'f interacts with our partial actions correctly (the other required
properties hold trivially). Thus, let [5], € T'Y,. We need that I'f[f], = [f o ], € T'Y}.
Since f is a morphism in G-Fibx, we have f o 3(x) € Y, for all x € U. Then

w’oy;,lofoﬁzwlofoyg_1oﬁzﬂoyg_loﬁ. (D.6)

Thus we have that 7’ o yg_l o f o3 is an open embedding and have hy-1 to5 = hy-1 5.
This means that I'f(I'Y,) C I'Y,. We now need to check that I'f obeys the commuting
diagram 7.6. So letting, [3], € I'Y,-1, (for convenience we have swapped g and g™ '),

we have

TfolY[Ble =[foYyoBoh gl =[VyofoBoh, s =TVyolf[fl..  (D.7)

This shows that I'f is indeed a morphism in G%Etayx. As mentioned, the analogous

arguments apply for J" f.

Proof of Lemma 7.5.1.6

We want to show that I' and J” preserve embeddings of partial actions, in accordance
with Lemma 7.5.1.6. Let us do this for I'; noting that the proof for J" is analogous.
Let ¢ : Q — Y be an embedding of partial actions, meaning that it is an embedding
and that Q, = .~ !(Y,). We want to show that I'Q, = (I't) "' (I'Y,). Let [8]. € T'Y,,
such that Teg[B], = [B]. for some [], € TQ. We, first, want to show that [], € T'Q,.
Since 'y is an injection, [f], is the unique element mapping into [§],. Explicitly we
let 3 =10 f3, meaning that ¢ o f(z) € Y, for all z € U. Thus B(z) € @y, since ¢ is an
embedding of partial actions. Finally, we use that hy-15="hy .5 to show that h, . 5
must be an open embedding. From this we can deduce that [3], € I'Q,, and hence

that Q, = ¢ 71(Y,).
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Proof of Proposition 7.5.1.7

The only non-trivial thing to check here is that the claimed morphisms j” are indeed
morphisms.

For j7 : TY — I'J"Y : [a], — [j a],, we, firstly, need to show that if [a], € 'Y}
then [j"al, € I'J"Y,. Assuming then that [a], € I'Y,, we have j a(x) = ji(a) € JY,,
by the similarities in the definitions of J"Y, and I'Y,. We then have

o J Y10 a=7"0 jr(yg_l oao h;}l a) ohg1,=m0)Y,10a0 h;}l 0O hg14
=roY,10a (D.8)
Since 70 )),-1 0 is an open embedding, so is 770 J"Y,-1 05", and thus [j"a], € I'J"Y.

We also have that hg jro = hg.. We now need to show that j” is such that the Diagram
7.6 commutes. Let [, € I'Y,, then

LT Yyoj [ale = [J"Vyoi aoh, jeln, ra@) = 11" (Vg-100h, L) ohgaohy il @)
=" Vg1 0aoh )@ =3 0TYy1[a], (D.9)

Thus, j” is indeed a morphism in G%Etax.

D.3 Proofs for §7.3 in conjunction with §7.5

We give proofs in the most general case of cormeronomic constraints with a group

action present.

Proof of Theorem 7.3.1.2

We want to show that the pullback of 't : I'Q — I'J"Y and j" : I'Y — I'J"Y exists
in G%-Eta. We define the cone ((E?,p?, E9),{P? : E? - TY,PJ : E? - TQ}) and
show it is the limit of this pullback.

We let E? be the topological space defined by the pullback in Top, which exists.
As a set

E? = {([o)s, [Bla) €TY x TQ | j7[0]s = Tiq[Bla}- (D.10)

and P? : ([a],, [B].) = [ols and P§ : ([0]s, [Blz) = [Bla. We let EQ = (PF)~Y(T'Y,)
and we let SgQ be the unique maps such that PYQ o 55? =TIY,o0 PS, which combined
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form a valid partial action, £9 = ({E2} jeqa, {EF }yeqe). Explicitly & : ([oa, [Blz) —
(T'Y, ]z, T'Qy[B]z), which works since ¢¢ is an embedding of partial actions.

Now let us show that it is indeed the limit of the pullback. Let ((E',p’,&"),{F} :
E' = TY, P, : E' = T'Q}) be another cone. We define the map of sets u : £/ — EQ .
e’ (Py(e'), Py(€')). We then have that P2 ou = P} and Pg ou = Fj. Since PY is
an embedding, from the first of these equations we get that u is continuous and it is
unique. It can also, trivially, be used to show that u is an étalé morphism. Finally, to
make sure it is actually in G%-Etay, we need to ensure it interacts correctly with the
partial actions. Since PZ o u(E)) = P{(E;) C I'Y,, we have that u(E}) C EJ. The
explicit form of SgQ , and the fact that Py, and P, are morphisms in G%-Etay, tells us

that so too is w.

Proof of Propositions 7.3.2.3 and 7.3.4.2

We now turn our attention to proving Proposition 7.3.4.2 and consequently Proposi-

tion 7.3.2.3. We split this proof into a series of Lemmas.

Lemma. The limit of the pullback diagram

R
lLR (D.11)

gy L2 g

exists in G-Fiby; denoting it by the cone ((S,1,8),{ts: S — J'Y,k:S — R}), then
Ls 15 an embedding and k is a surjective submersion.

Proof. In Man the limit of this diagram exists, the tg defined by this pullback is an
embedding, and the k is a surjective submersion. We take S, 1 and x as defined by
this pullback in Man. As a set, we have that

S={(la,r) € JY X R|J m7(jic) = tg(r)} (D.12)

with ¢ @ (jha,r) — jia, and & : (jla, ) — 7, which are both fibred morphisms. We
define S in the same way in which we defined £9 above. That is, let S, = 15 (J"Y,).
Let S, the unique map such that tg 0 S, = J'Y, o S,. Explicitly, S, : (jla,7) —
(FY,jia, Ryr), which is valid since tg is an embedding of partial actions and J"77 is a
morphism of partial actions. This makes tg an embedding of partial actions, and x a

morphism of partial actions.



152 Proofs for Chapter 7

The fact that this construction indeed leads to a limit, follows from the same

arguments as for (E%, p@, £9) above. O
Lemma. The limit of the equaliser diagram

7w %0g

S—=Y (D.13)

Qok

exists in G-Fibyx; denoting it by the cone ((Q, v, Q), {Lg : @ — S}), then we have that

Lg 1s an embedding of partial actions.

Proof. Let (1% 015,Q0kK) : S =YV xY : s (77 015(s),Q 0 k(s)). The map
70 0 1g is a submersion, meaning (7" o 15, ) o k) is transverse to the diagonal map
Ay :Y =Y x Y. Thus the inverse image Q = (7" 0 15, Q 0 k) ' (Ay(Y)) exists, with
a corresponding embedding Lg :Q — S of Qinto S.

Let v = 7" o, let y € JY, and let U, € J"Y be a neighbourhood
of y, with coordinates (z*,z% 1" 2% y%). In these coordinates, @ is described
by (z#, 2%, fi(z", 2%, 29), 2%, y%), for some smooth f?. From this, we see that
v(xh 2% fi(ak, 2% 28), 2%, yh) — (a) is a surjective submersion.

As a set, we have that
Q={scS|m00us(s) =Qor(s)}. (D.14)

To define Q we first define Q4 = (18))'(Sy). Then, as before, we let Q, be the unique
map such that L% 0Q,=8,0 L%. The fact that such Q, exist can be seen from the
form of @ and the fact that 70, 1g, Q, and & are all morphisms in G-Fiby. This then
makes Lg an embedding of partial actions.

The universality property then follows that of (E%, p@, £9). ]
Let 1o :=tg0 Lg; since both maps in the composition are embeddings of partial

actions, so is 1q. Let f5 :=ro 12, we then have
Lemma. The triple ((Q,v, X, Q), {to, fg}) forms the limit of Diagram 7.4

Proof. First let us show that ((Q,v, X, Q),{tq, f§}) is indeed a cone of Diagram 7.4.
For this to hold we need 7% o019 = Qo fg, which follows from the equaliser in
Diagram D.13, and J"7z o 1q = tg © f§, which follows from the pullback D.11.

To show that this cone is a limit, suppose we have another cone

((Q/>V/aX7 Q)’{fﬁrva})- (D15)
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From Eqgs. D.12 and D.14, we can write () as
Q ={(ya,r) € ' x R| J'1z(jye) = 1,(r), Ur) = 7" (j;)}. (D.16)

Welet u: Q" — Q: ¢ — (fa(q), fr(¢)); the standard argument shows that this is a

mediating morphism. O

Proof of Theorems 7.3.2.4 and 7.3.4.3

We want to prove Theorem 7.3.4.3 and consequently Theorem 7.3.2.4. Namely, we

want to show that there exists an isomorphism between the étalé spaces
(E?,p?,€9) and (E",p" M), (D.17)
This follows from the structure of a series of cones and limits. We start by noting that

(TQ,Tw, Q),{Tf5,Tiq}) (D.18)

is the limit of Diagram 7.4 in G?-Eta, something which can be shown explicitly following

the standard arguments used previously. But,
(B, p", M), {Pg.j" o T o Pg}) (D.19)
is manifestly a cone of this diagram since, for instance,

[J'770j 0lQoPF=j"0l(150Q) =5 ol("oTipo P}
=j o P =Twpo PF. (D.20)

We denote the corresponding mediating morphism, N : TR — I'Q). Since,
TigoN =j"oT'Qo PE, (D.21)

(ER, pft ER) {N,TQ o PE}) is a cone of the diagram defining E¢. This means we
have a mediating morphism Z : Ef — E9. In a similar vein, ((E%,p?, £9), {Tf5 o
Pg, I'ryz 0 P;,Q}) is a cone of the diagram defining E® since

I'igo ng o Pg =I'J' 170l g0 P8 =TJ1y oj"o PE = jrol'tz 0 Pg (D.22)
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and thus we have a mediating morphism Z : E2 — E®. With this we can show that
7 o T is the identity, since

PloloI=Trz0P?0Z=T7r,0T00PF=TC0liz0PF =P}  (D23)

which, since P£ is an embedding, shows that 7 o7 is the identity. The statement that

7 o T is the identity holds in a similar vein, since
PPoTol=TQoPfol=TQoTffoP]=Ta"0TwyoPy =P  (D.24)

Thus Z and Z are mutually inverse and form isomorphisms.
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