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We discuss the quantum-mechanical scattering of a massless scalar field on a δ-potential in a ghost-free 
theory and obtain analytic solutions for the scattering coefficients. Due to the non-locality of the ghost-
free theory the transmission coefficient tends to unity for frequencies much larger than the inverse scale 
of non-locality, even for infinitely strong potentials. At the same time there exists a critical strength of 
the δ-potential barrier below which there is always a frequency that is totally reflected. These scattering 
properties in ghost-free theories are quite generic and distinguish them from local field theories. More-
over, we study quasi-normal states that are present for the δ-potential well. In the limit of vanishing 
non-locality, we recover the standard results of local field theory.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Exactly solvable problems have played an important role in 
quantum mechanics, especially at the early stage of its develop-
ment [1–7]. Such problems typically give analytical results for scat-
tering amplitudes and the energies of bound states, and they allow 
one to analyze non-perturbative aspects of these problems, for 
example non-analyticity. A well known problem, both in the non-
relativistic and the relativistic case, is the quantum-mechanical 
scattering of a particle on a δ-like potential. In this letter we con-
sider the same problem in a slightly different setup. Namely, we 
consider the scattering of a particle on a δ-like potential in the 
framework of a so-called ghost-free scalar field theory, which be-
longs to a class of non-local generalizations of relativistic field 
theories that have recently been studied quite extensively [8–12].

A simple example of such a generalization is the field the-
ory of a free scalar massless field, wherein the 1/� propagator 
is changed to f (�2�)/�. If f (z) is an exponent of an entire func-
tion, the propagator does not have extra new poles: then, there are 
no ghost degrees of freedom and thereby unitarity is preserved. 
An important property of non-local ghost-free field theories is that 
non-locality becomes important only for off-shell processes, in the 
presence of external sources or interactions [13]. All on-shell ef-
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fects are immune to the ghost-free modifications of the theories. 
There exists an exhaustive set of publications on this subject, with 
the main focus on the application of ghost-free gravity to the long-
standing problems of General Relativity (cosmological singularities 
as well as black hole singularities) [8,10,12,14–26]. In this letter 
we discuss a rather simple problem related to the linear regime 
of ghost-free theory: scattering and resonant states of the ghost-
free scalar massless particle in the presence of a δ-like potential. 
We shall demonstrate that such a problem is also exactly solvable, 
obtain the reflection and transmission coefficients in closed form, 
and describe how the energy of the resonance is modified. Cer-
tainly, in the limit when the length scale of non-locality � tends 
to zero we shall reproduce the standard results of local quantum 
mechanics. However, for a finite value of � there are quite inter-
esting and unexpected features (at least for us) in the scattering 
amplitude.

2. Scalar ghost-free theory

We start with a non-local modification of the scalar field equa-
tion

[D − V (X)]�(X) = 0 . (2.1)

Here, D is a function of the box operator � and V (X) is a lo-
cal potential term where X are the Cartesian coordinates in a flat 
spacetime. In a standard local theory one has D = �.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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For concreteness let us consider the two-dimensional case. We 
denote the Cartesian coordinates in the flat spacetime by X =
(t, x), and assume that the potential V does not depend on time t . 
Using the Fourier transform, we write � in the form

�(t, x) =
∞∫

−∞

dω

2π
e−iωtϕω(x) . (2.2)

Then, the d’Alembert operator reduces to

� → d2

dx2
+ E , E = ω2 . (2.3)

In what follows, we shall denote by DE the operator D to which 
the substitution (2.3) has been applied. In the case of a δ-potential, 
V = λδ(x), the mode functions ϕω satisfy the following time-
independent equation1

[DE − λδ(x)]ϕ = 0 . (2.4)

The potential describes a δ-potential barrier for λ > 0 and a 
δ-potential well for λ < 0.

Our goal is to study a “ghost-free version” of this equation. 
For simplicity, we consider a so-called GF1 version of the theory, 
where the operator D has the form [27]

D = exp (−�2�)� . (2.5)

In this expression, � is the length scale where the non-locality be-
comes important.

3. Continuous spectrum. Scattering amplitudes

3.1. Local theory

Before describing solutions of the non-local equation (2.4), let 
us first derive the exact solution in the local limit. Note that in 
the limit � → 0 one has D = �, and (2.4) reduces to a time-
independent Schrödinger-type equation,[

d2

dx2
+ E − λδ(x)

]
ϕ = 0 . (3.1)

It is well known that for both signs of λ the energy spectrum 
of such a problem contains a doubly degenerate continuous part, 
E > 0. For negative λ there also exists a single bound state with 
E < 0 [7]. In quantum field theory these states correspond to 
quasi-normal or ringing modes. In this section we consider only 
the continuous spectrum, and we show that in the GF1 general-
ization there also exists a continuous part of the spectrum with 
E > 0. However, the scattering amplitudes are modified by the 
non-locality. We shall turn to the bound states and quasi-normal 
modes in GF1 further below.

Suppose we know a solution of the free equation (that is, if 
V = 0) of (3.1), which we denote by ϕ0 and let G0(x, x′) be the 
Green function of the free equation,[

d2

dx2
+ E

]
G0(x, x′) = −δ(x − x′) . (3.2)

Then a solution of (3.1) satisfies the following Lippmann–Schwin-
ger equation [28]:

1 In order to simplify the notation, from now on we shall omit the subscript ω
of ϕ .
ϕ(x) = ϕ0(x) −
∞∫

−∞
dx′G0(x, x′)V (x′)ϕ(x′) . (3.3)

The local free Green function G0 is symmetric, G0(x, x′) = G0(x′, x). 
In the absence of the potential V the wave equation is transla-
tionally invariant, such that the Green function depends only on 
z = x − x′ ,

G0(x, x′) ≡ G0(z) , G0(z) = G0(−z) . (3.4)

In the context of scattering theory G0(z) must be chosen such that 
in the time-dependent problem a wave packet constructed with 
the help of the Green function corresponds to an out-going wave. 
Such a Green function is

G0(z) =
∞∫

−∞

dk

2π

eikz

k2 − 	2 − iε
= i

2	
ei	|z| . (3.5)

Here and in what follows we use the notation

	 ≡ √
E > 0 . (3.6)

Note that instead of using the properties of time-dependent so-
lutions constructed with the help of the Green function, one can 
specify a Green function by its analytical properties. In this case 
one requires that the pole in the complex E plane for the Fourier 
transform of this Green function is located at E + iε , where ε is 
a small positive constant. For E > 0 one has 

√
E + iε = 	 + iε . 

For such a choice of the pole in the integral (3.5) the Green func-
tion is decreasing at infinity |x| → ∞. This property allows one to 
uniquely specify the required Green function.

As is well known, for the δ-like potential the Lippmann–
Schwinger equation is exactly solvable. If 1 + λG0(0) �= 0 then the 
solution reads

ϕ(x) = ϕ0(x) − λ
ϕ0(0)

1 + λG0(0)
G0(x) . (3.7)

Denoting γ = 	/λ, Eq. (3.7) then implies

ϕ(x) = ϕ0(x) − ϕ0(0)

1 − 2iγ
exp(i	|x|) . (3.8)

To obtain the scattering coefficients let us choose ϕ0 =exp(i	x). 
Then, the corresponding time-dependent mode exp[−i	(t − x)]
describes a quantum moving in the positive direction of x. Since 
both the potential and the equation of motion are symmetric un-
der x → −x, we shall restrict ourselves to the right-moving mode 
without loss of generality. Thus we have

ϕ(x) = ei	x − 1

1 − 2iγ
ei	|x| (3.9)

=
⎧⎨
⎩

−2iγ
1−2iγ ei	x for x > 0 ,

ei	x − 1
1−2iγ e−i	x for x < 0 .

(3.10)

This solution has a well known interpretation: the mode ei	x with 
unit amplitude propagates from left to right. It meets the δ-like po-
tential where it is partly reflected and it partly penetrates through 
it. The corresponding transmission coefficient t and reflection co-
efficient r are

t = − 2iγ

1 − 2iγ
, r = − 1

1 − 2iγ
. (3.11)

Then, we can define T and R such that

T = |t|2 = 4γ 2

1 + 4γ 2
, R = |r|2 = 1

1 + 4γ 2
. (3.12)
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3.2. Non-local ghost-free theory

For the calculation of the scattering coefficients in the ghost-
free theory one needs to find a solution of Eq. (2.4). We shall 
use the same approach as described in the context of local quan-
tum mechanics by employing a representation similar to (3.7) for a 
solution of the corresponding Lippmann–Schwinger equation. The 
only change consists of replacing the local Green function G0(x, x′)
with the Green function G(x, x′) of the non-local equation without 
the potential, which satisfies

DE G(x, x′) = −δ(x − x′) . (3.13)

In the case of GF1 theory the operator DE reads [27]

DE = e−�2(∂2
x +E)(∂2

x + E), E = 	2 . (3.14)

This operator is translationally invariant, such that its Green func-
tion G depends only on z = x − x′ , just like in the local theory, 
G(x, x′) = G(z). Using the Fourier representation for this Green 
function one obtains

G(z) =
∞∫

−∞

dk

2π
eikz e−�2(k2−	2)

k2 − 	2 − iε
. (3.15)

In the above, we added iε to 	2 in accordance with the standard 
prescription for the description of the scattering problem. The in-
tegral (3.15) can be easily computed by rewriting it as the sum

G(z) = G0(z) + 
G(z) . (3.16)

The first term is exactly the Green function (3.5) of the local the-
ory. The integrand of the second term is regular. Therefore, the 
integral is well defined and does not require any iε prescription:


G(z) =
∞∫

−∞

dk

2π
eikz e−�2(k2−	2) − 1

k2 − 	2

= −
�2∫

0

ds

∞∫
−∞

dk

2π
eikze−s(k2−	2) .

(3.17)

By taking the Gaussian integral first and then the integral over the 
parameter s we arrive at the final result

G(z) = i

4	

[
ei	zY (z) + e−i	zY (−z)

]
, (3.18)

where

Y (z) = 1 + erf
(

iα + z

2�

)
, α = 	� . (3.19)

The above Green function has the symmetry G(z) = G(−z) and is 
expressed in terms of the error function erf(x) (see, e.g., [29]). The 
function Y (z) has the following asymptotics:

Y (z) ∼

⎧⎪⎨
⎪⎩

2 − 2�√
π z

exp
[
− (

iα + z
2�

)2
]

for z → ∞ ,

− 2�√
π z

exp
[
− (

iα + z
2�

)2
]

for z → −∞ .

(3.20)

Using these relations it is easy to check that the constructed Green 
function (3.18) has the same property as G0(z): for a small shift 
	 → 	 + iε into the complex plane it becomes a decreasing func-
tion for |z| → ∞. Also,

G(0) = i
Y (0) = i [1 + erf(iα)] . (3.21)
2	 2	
To calculate the scattering coefficients (under the condition that 
1 + λG(0) �= 0) we write the general solution of the Lippmann–
Schwinger equation in the form

ϕ(x) = ϕ0(x) − λ
ϕ0(0)

1 + λG(0)
G(x) . (3.22)

If we choose ϕ0 = exp(i	x) the solution becomes

ϕ(x) = ei	x − λG(x)

1 + iλ
2	

[1 + erf(iα)] . (3.23)

Since for large |z| the Green function G asymptotically coincides 
with G0(z), one can use the relation (3.9) in the asymptotic domain 
with the only change

γ → γ̃ = 	

λ
− 1

2
erfi(α) . (3.24)

Let us point out that the imaginary error function erfi(x) ≡
−i erf(ix) is real-valued for any real argument x. It has the fol-
lowing asymptotics (see, e.g., [29]):

erfi(x) ∼
⎧⎨
⎩

2x√
π

for x → 0 ,

ex2
√

πx
for x → ∞ .

(3.25)

After the change (3.24) the relations (3.11) give the expressions for 
the reflection and transmission coefficients for the scattering of a 
quantum on a δ-like potential in the ghost-free GF1 theory.

4. Properties of scattering coefficients

To study the properties of the scattering coefficients it is useful 
to introduce another dimensionless quantity

� = λ� . (4.1)

Using the dimensionless quantities α and � one obtains

γ̃ = α

�
− 1

2
erfi(α) . (4.2)

The left plot in Fig. 1 shows the transmission coefficient T , 
Eq. (3.12), for both positive and negative λ in the GF1 theory, 
as well as in the local theory. In the non-local case for λ > 0
the transmission vanishes at some finite 	 = 	� , or, equivalently, 
α = α� . To understand this feature, note that the condition of van-
ishing transmission coefficient T = 0 corresponds to γ̃ = 0 and 
amounts to
2α

�
= erfi(α) ≈ 2α√

π
for α � 1 . (4.3)

Non-trivial solutions α �= 0 exist provided

0 < � <
√

π . (4.4)

For fixed positive � in this range there is always some finite 
α = α� at which one has total reflection.

For a critical value of hight of the barrier, � = √
π , the trans-

mission of all modes with α � 1 is strongly suppressed, but for 
higher frequencies α � 1 the barrier becomes transparent; see the 
right plot in Fig. 1.

The condition γ̃ = 0 gives a transcendental equation relating 
α� and � > 0; see Fig. 2 for a plot of this relation. Considering 
Eq. (4.3) in the limit (α� − α) → 0 one obtains the scaling relation

(α� − α) = √
3(1 − �/

√
π)1/2 . (4.5)
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Fig. 1. These plots show the transmission coefficient T as a function of the dimensionless frequency α = 	/λ. Left plot: In case 0 < � < √
π , the transmission coefficient 

vanishes for a finite α = α� . For a δ-potential well (� < 0) there is no such minimum in the transmission. In the local case, the transmission coefficients of both the barrier 
and the well coincide and do not vanish anywhere except at zero frequency. Right plot: For the critical value � =√

π , all frequencies α � 1 are strongly suppressed. For the 
δ-potential well with � = −√

π , nothing special happens.
Fig. 2. This plot shows the dimensionless frequency α� = 	�� as a function of 
� = λ�. For � → 0 the frequency diverges, but for � ≈ O(1), the parameter α�

is finite. If � exceeds √π the frequency vanishes.

Let us now describe several interesting properties of the non-
local scattering coefficients for a fixed, positive value of �:

(i) In the limit of an infinitely high δ-potential barrier (� → ∞) 
or a δ-potential well (� → −∞) the transmission remains 
finite, T > 0. This is a distinct property of the non-local ghost-
free theory as compared to the local theory.

(ii) In the case of a δ-potential barrier 0 < � <
√

π there is al-
ways a frequency α = α� for which γ̃ = 0. Hence, this mode 
is totally reflected, i.e., T = 0 and R = 1.

(iii) In the non-local ghost-free theory, the reflection from the 
δ-potential depends on the sign of λ, while in the local theory 
it does not depend on it.

The property that non-local effects enhance the transparency of 
the δ-potential at high frequencies is not too surprising, because 
ghost-free deformations of the field theory typically regularize sin-
gularities and high frequency behavior. Property (i) is less evident: 
the potential remains transparent for finite α even in the limit 
|�| → ∞ of a very strong potential barrier or potential well.

Property (ii) was unexpected: the δ-potential barrier becomes 
totally reflective at a rather large frequency α� for moderately low 
potential barriers 0 < � <

√
π . This property is quite robust and 

survives for a large variety of ghost-free theories, because for a 
generic ghost-free theory the parameter γ̃ can be read off from 
the Lippmann–Schwinger equation (3.22). Expressed in terms of 
the difference of the ghost-free and local Green functions 
G(z) it 
can be written as2

γ̃ = 	

(
1

λ
+ 
G(0)

)
. (4.6)

The condition of total reflection γ̃ = 0 reduces to

λ = − 1


G(0)
. (4.7)

This condition defines the frequency 	� of the totally reflected 
mode and can be satisfied for some range of λ in a generic ghost-
free theory.

We need to point out that a complete, satisfactory physical in-
terpretation of the resonant reflection for this mode is not quite 
clear. However, the following comment may be useful in this con-
nection. Using the asymptotics (3.20) one can present the solution 
(3.23) for x → ∞ as

ϕ(x) = ei	x − Bei	|x| , (4.8)

where

B = 1 − i

[
2α

�
− erfi(α)

]
. (4.9)

One can roughly describe this scattering problem as follows: The 
interaction of the running wave ei	x with the barrier generates 
a “ringing mode” with a maximum near x = 0. The decay of this 
ringing mode creates two running modes moving away from the 
position of the barrier. Their asymptotic amplitude is B . The local 
and non-local cases differ: both ϕ(0) and the coefficient B are dif-
ferent. In the non-local case for the special value α = α∗ one has 
B = 1. As a result of the interference, at large x � 0 the ringing 
mode exactly cancels the original running mode. However, the field 
ϕ partially penetrates the barrier and does not vanish in a nar-
row layer behind it. The predicted total reflection at the frequency 
α = α∗ is somewhat similar to the effect of high-reflection coat-
ings in optics, where enhanced reflection at a specific frequency is 
achieved by coating a surface with layers of material with a spe-
cial profile of an index of refraction. In that sense one may say 
that ghost-free theory provides a non-local high-reflection coating 
for the δ-potential. It should be emphasized that because a typical 

2 Note that from the definition (3.17), as applied to a general ghost-free theory, it 
follows that 
G(0) is real.



692 J. Boos et al. / Physics Letters B 782 (2018) 688–693
wavelength of the resonant mode is of the order of the non-locality 
scale � one may expect that an interpretation in terms of tradi-
tional local physics fails [13] and non-locality brings about new 
physics.

5. Bound states and quasi-normal modes

Till now we have mainly focused on the continuous part of 
the energy spectrum. Let us now discuss states corresponding to 
discrete components of the energy spectrum. In both local field 
theory as well as non-local GF1 theory such discrete levels ex-
ist only for λ < 0. In the local theory there is exactly one bound 
state with negative E = 	2 < 0 [7]. A normalizable solution with 
such a (complex) quasi-normal frequency 	 is often called a quasi-
normal or ringing mode (for a discussion of such solutions see, e.g., 
the nice review [30]). In a general case, quasi-normal modes are 
determined by the poles of the transmission amplitude. We shall 
demonstrate that for a small value of the dimensionless parameter 
|�|, a similar unique normalizable solution with pure imaginary 
frequency exists also in the GF1 theory. However, for large values 
of the non-locality there may be a discrete set of solutions with 
complex frequencies.

In order to find the solutions for quasi-normal modes one can 
use the Lippmann–Schwinger equation (3.22). It is sufficient put 
there ϕ0(x) = 0. Then, for the ghost-free theory with attractive 
δ-like potential (λ < 0), it gives

ϕ(x) = −λG(x)ϕ(0) . (5.1)

This equation has a non-trivial solution only when the condition

1 + λG(0) = 0 (5.2)

is satisfied. Here, G(0) depends on 	, but 	 is to be considered as 
a complex variable. The solutions 	QN of this equation correspond 
to the poles of the transmission coefficient for a generic ghost-free 
theory.

One can see that the solution is proportional to the ghost-free 
Green function

ϕ(x) = c G(x) . (5.3)

Quasi-normal modes are assumed to be normalizable, i.e., the fac-
tor c is finite. It means that among all the solutions we have to 
choose those that decrease at infinity.

In the local case G0(0) = i/(2	) and we reproduce the classical 
result for the unique quasi-normal frequency

	QN = −i
λ

2
, λ < 0 . (5.4)

The corresponding quasi-normal mode decreases at infinity and is 
normalizable.

In the non-local theory there may be a set of quasi-normal 
modes with complex frequencies, depending on the value of λ. 
However, there always exists only one solution with purely imagi-
nary frequencies α = iκ , where κ > 0. For this case in GF1 theory 
the relation (5.2) takes the form

1 + �

2κ
[1 − erf(κ)] = 0 , � < 0 . (5.5)

For � < 0 and κ ∈ R this equation has a unique solution. Also, 
numerical investigations have shown that for

|�| < 2.282365 (5.6)

this is the only solution of (5.5) with complex κ . However, if the 
inequality (5.6) is violated, additional complex solutions appear be-
sides this pure imaginary solution.
6. Discussion

Let us discuss the results presented in this letter. Our starting 
point was a two-dimensional theory of a massless scalar field in 
the presence of a static δ-like potential. First of all, we demon-
strated that this problem is exactly solvable in GF1 theory and 
presented this solution explicitly.

In a local quantum theory after the frequency Fourier trans-
form, the problem reduces to solving a time-independent Schrö-
dinger-type equation (3.1). The non-local ghost-free generalization 
produces a similar equation (2.4), and one can easily adapt the so-
lution of the latter equation, presented in this letter, to a more 
general case when the field is massive, with mass m, and the 
number of spatial dimensions is greater than 1. To include a non-
vanishing scalar mass it is sufficient to modify the parameter E , 
which enters (2.3), according to E = ω2 − m2. If the number of 
spatial dimensions is greater than 1, and the potential V does 
not depend on the transverse coordinates �y⊥ , then one can write 
mode-solutions in the form

ϕω,�k⊥ = ϕω exp(i�k⊥ · �y⊥) . (6.1)

By performing the Fourier transform with respect to the transverse 
coordinates �y⊥ one again obtains the equation (2.4) with the only 
change E = ω2 − m2 − �k2⊥ .

When we started this project, our naive expectations were that 
in the ghost-free theory the non-locality effectively smears the 
sharp δ-like potential, and, as a result, the scattering coefficients 
would be only slightly modified. Calculations based on the derived 
exact solution in the GF1 theory demonstrated many interesting 
unexpected features.

For the δ-potential barrier there exists a dimensionless value 
of the frequency, α� , at which the transmission coefficient van-
ishes identically, which is a property that does not occur in the 
local case. For the δ-potential well (λ < 0) in the non-local case 
there also exist quasi-normal modes corresponding to E < 0. The 
quasi-normal mode with purely imaginary frequency is unique, as 
in the local theory. However, if the strength of the potential well 
is above some critical value, |�| > 2.282365, there appear extra 
quasi-normal modes with complex frequencies.

In this letter, we presented results for a special choice of the 
ghost-free theory. Nonetheless, we expect that similar results can 
be obtained for more complicated cases, for example when the 
non-local form-factor is of the form ∼ exp [(−��2)N ]. However, 
the technical details become more involved and exact solutions 
may not be readily obtained for these generalizations.

Lastly, let us point out that the method developed in this letter 
can be generalized to the case of multiple δ-like potentials. Our 
preliminary analysis shows that these problems are also exactly 
solvable. One of the possible natural interesting applications is the 
calculation of the Casimir force and energy in ghost-free quantum 
theory. We hope to present our results on this subject in a separate 
publication.
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