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We discuss the quantum-mechanical scattering of a massless scalar field on a §-potential in a ghost-free
theory and obtain analytic solutions for the scattering coefficients. Due to the non-locality of the ghost-
free theory the transmission coefficient tends to unity for frequencies much larger than the inverse scale
of non-locality, even for infinitely strong potentials. At the same time there exists a critical strength of
the §-potential barrier below which there is always a frequency that is totally reflected. These scattering

properties in ghost-free theories are quite generic and distinguish them from local field theories. More-
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over, we study quasi-normal states that are present for the §-potential well. In the limit of vanishing
non-locality, we recover the standard results of local field theory.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

Exactly solvable problems have played an important role in
quantum mechanics, especially at the early stage of its develop-
ment [1-7]. Such problems typically give analytical results for scat-
tering amplitudes and the energies of bound states, and they allow
one to analyze non-perturbative aspects of these problems, for
example non-analyticity. A well known problem, both in the non-
relativistic and the relativistic case, is the quantum-mechanical
scattering of a particle on a §-like potential. In this letter we con-
sider the same problem in a slightly different setup. Namely, we
consider the scattering of a particle on a §-like potential in the
framework of a so-called ghost-free scalar field theory, which be-
longs to a class of non-local generalizations of relativistic field
theories that have recently been studied quite extensively [8-12].

A simple example of such a generalization is the field the-
ory of a free scalar massless field, wherein the 1/0 propagator
is changed to f(¢?0)/0. If f(z) is an exponent of an entire func-
tion, the propagator does not have extra new poles: then, there are
no ghost degrees of freedom and thereby unitarity is preserved.
An important property of non-local ghost-free field theories is that
non-locality becomes important only for off-shell processes, in the
presence of external sources or interactions [13]. All on-shell ef-
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fects are immune to the ghost-free modifications of the theories.
There exists an exhaustive set of publications on this subject, with
the main focus on the application of ghost-free gravity to the long-
standing problems of General Relativity (cosmological singularities
as well as black hole singularities) [8,10,12,14-26]. In this letter
we discuss a rather simple problem related to the linear regime
of ghost-free theory: scattering and resonant states of the ghost-
free scalar massless particle in the presence of a §-like potential.
We shall demonstrate that such a problem is also exactly solvable,
obtain the reflection and transmission coefficients in closed form,
and describe how the energy of the resonance is modified. Cer-
tainly, in the limit when the length scale of non-locality ¢ tends
to zero we shall reproduce the standard results of local quantum
mechanics. However, for a finite value of ¢ there are quite inter-
esting and unexpected features (at least for us) in the scattering
amplitude.

2. Scalar ghost-free theory

We start with a non-local modification of the scalar field equa-
tion

[D—-V(X)]P(X)=0. (21)

Here, D is a function of the box operator 0O and V(X) is a lo-
cal potential term where X are the Cartesian coordinates in a flat
spacetime. In a standard local theory one has D = 0.
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For concreteness let us consider the two-dimensional case. We
denote the Cartesian coordinates in the flat spacetime by X =
(t, x), and assume that the potential V does not depend on time t.
Using the Fourier transform, we write ® in the form

o0
dow _;
D, x)= | —e "y, (x). 2.2
o= [ SZe g0 22)
—0o0
Then, the d’Alembert operator reduces to
d2
O— —+E, E=0a?. (2.3)
dx?

In what follows, we shall denote by D the operator D to which
the substitution (2.3) has been applied. In the case of a §-potential,
V = A8(x), the mode functions ¢, satisfy the following time-
independent equation'

[Dg — A8(x)] @ =0. (2.4)

The potential describes a §-potential barrier for A > 0 and a
§-potential well for A < 0.

Our goal is to study a “ghost-free version” of this equation.
For simplicity, we consider a so-called GF; version of the theory,
where the operator D has the form [27]

D =exp(—£?0)0. (2.5)

In this expression, ¢ is the length scale where the non-locality be-
comes important.

3. Continuous spectrum. Scattering amplitudes
3.1. Local theory

Before describing solutions of the non-local equation (2.4), let
us first derive the exact solution in the local limit. Note that in
the limit £ — 0 one has D = 0O, and (2.4) reduces to a time-
independent Schrodinger-type equation,

dx?

d2
|:—+E—A8(x):|(p=0. (3.1)

It is well known that for both signs of A the energy spectrum
of such a problem contains a doubly degenerate continuous part,
E > 0. For negative A there also exists a single bound state with
E <0 [7]. In quantum field theory these states correspond to
quasi-normal or ringing modes. In this section we consider only
the continuous spectrum, and we show that in the GF; general-
ization there also exists a continuous part of the spectrum with
E > 0. However, the scattering amplitudes are modified by the
non-locality. We shall turn to the bound states and quasi-normal
modes in GF; further below.

Suppose we know a solution of the free equation (that is, if
V =0) of (3.1), which we denote by ¢ and let Go(x,x’) be the
Green function of the free equation,

d2
[@ +E} Go(x, X) = —8(x —x). (3.2)

Then a solution of (3.1) satisfies the following Lippmann-Schwin-
ger equation [28]:

! In order to simplify the notation, from now on we shall omit the subscript @
of .

oo

PX) =@o(x) — / dX'Go(x, X))V (X)p(x).

—0o0

(3.3)

The local free Green function Gg is symmetric, Go(x, X') = Go (X', X).
In the absence of the potential V the wave equation is transla-
tionally invariant, such that the Green function depends only on
z=x—-Xx,

Go(x,X)=Go(2), Go(z) =Go(—2). (3.4)

In the context of scattering theory Go(z) must be chosen such that
in the time-dependent problem a wave packet constructed with
the help of the Green function corresponds to an out-going wave.
Such a Green function is

o0

dk etkz i
Z)= A S— 3.5
G0(2) fznkz—szz—ie 2Q (3:5)
—0o0
Here and in what follows we use the notation
Q=vE=>0. (3.6)

Note that instead of using the properties of time-dependent so-
lutions constructed with the help of the Green function, one can
specify a Green function by its analytical properties. In this case
one requires that the pole in the complex E plane for the Fourier
transform of this Green function is located at E + i€, where € is
a small positive constant. For E > 0 one has «/E +ie€ = Q + ie.
For such a choice of the pole in the integral (3.5) the Green func-
tion is decreasing at infinity |x| — oc. This property allows one to
uniquely specify the required Green function.

As is well known, for the §-like potential the Lippmann-
Schwinger equation is exactly solvable. If 1 + 1Gy(0) # 0 then the
solution reads

%0(0)

= — A . 3.7
P =¢o(X) — A G0 (0) Go(x) (3.7)
Denoting y = /A, Eq. (3.7) then implies

P (U N
P =go(x) 1—2iy exp(i2[x]). (3.8)

To obtain the scattering coefficients let us choose @o = exp(iQ2x).
Then, the corresponding time-dependent mode exp[—iQ2(t — x)]
describes a quantum moving in the positive direction of x. Since
both the potential and the equation of motion are symmetric un-
der x — —x, we shall restrict ourselves to the right-moving mode
without loss of generality. Thus we have

x) = !X _ elS2x] 39
000 T (39)
2y i0x forx>0
_ 1-2iy ’
) diex 1 —iox (3.10)
e =27, ¢ forx <O0.

This solution has a well known interpretation: the mode e’** with
unit amplitude propagates from left to right. It meets the §-like po-
tential where it is partly reflected and it partly penetrates through
it. The corresponding transmission coefficient t and reflection co-
efficient r are

2iy 1

t=— — r=— — (311)
1-2iy 1-2iy
Then, we can define T and R such that
4y? 1
T=itP=—Y _ Re|P=— . (3.12)
1+4y2 1+4y2
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3.2. Non-local ghost-free theory

For the calculation of the scattering coefficients in the ghost-
free theory one needs to find a solution of Eq. (2.4). We shall
use the same approach as described in the context of local quan-
tum mechanics by employing a representation similar to (3.7) for a
solution of the corresponding Lippmann-Schwinger equation. The
only change consists of replacing the local Green function Gg(x, X")
with the Green function G(x, x’) of the non-local equation without
the potential, which satisfies

DG, X)=—-8(x—x). (313)
In the case of GF; theory the operator Dg reads [27]
Dp=e D@2 L p) E=Q2. (3.14)

This operator is translationally invariant, such that its Green func-
tion G depends only on z=x — x/, just like in the local theory,
G(x,x") = G(2). Using the Fourier representation for this Green
function one obtains

T dk . e 02—
G(2) = / e

21 K—Q2—ie’
—00

(3.15)

In the above, we added ie to 2 in accordance with the standard
prescription for the description of the scattering problem. The in-
tegral (3.15) can be easily computed by rewriting it as the sum

G(2) =G0(2) + AG(2) .

The first term is exactly the Green function (3.5) of the local the-
ory. The integrand of the second term is regular. Therefore, the
integral is well defined and does not require any i€ prescription:

(3.16)

Todk o, e—t0-9 _4q
_e —

k2 — Q2

ikz

AG(2) =

—0o0

% 00
:_fds/ %eikzefs(szﬁz)
27 '

0 —oo

By taking the Gaussian integral first and then the integral over the
parameter s we arrive at the final result

(317)

LN R —iQzy,
92 = 15 [e Y (2) + e 1%y ( z)], (3.18)
where
) zZ
Y(z):l—i—erf(za—i-ﬂ), a=Q. (3.19)

The above Green function has the symmetry G(z) = G(—z) and is
expressed in terms of the error function erf(x) (see, e.g., [29]). The
function Y (z) has the following asymptotics:

— 2L exp —(io{—i-i)2 for z— oo,
Y(2) ~ e 2 2] (3.20)
—%exp[—(iw—i—ﬁ) ] for z— —o0.

Using these relations it is easy to check that the constructed Green
function (3.18) has the same property as Go(z): for a small shift
Q — Q +ie into the complex plane it becomes a decreasing func-
tion for |z| — oo. Also,

i

. i '
G0) = Z_Y(O) = ﬁ[l + erf(iar)].

S (3.21)

To calculate the scattering coefficients (under the condition that
14 AG(0) # 0) we write the general solution of the Lippmann-
Schwinger equation in the form

_ . %O
p(x) = po(x) 171 G 0) G(x). (3.22)
If we choose o = exp(i€2x) the solution becomes
P(x) = e’ — A5@) (3.23)

14 3501+ erf(io)]

Since for large |z| the Green function G asymptotically coincides
with Gp(z), one can use the relation (3.9) in the asymptotic domain
with the only change
. Q1
y >y =——ceffi(a). (3.24)
A2
Let us point out that the imaginary error function erfi(x) =
—ierf(ix) is real-valued for any real argument x. It has the fol-
lowing asymptotics (see, e.g., [29]):
2x
Jr
erfi(x) ~ )

e* f
ﬁ orx — o<0.

forx — 0,
(3.25)

After the change (3.24) the relations (3.11) give the expressions for
the reflection and transmission coefficients for the scattering of a
quantum on a §-like potential in the ghost-free GF; theory.

4. Properties of scattering coefficients

To study the properties of the scattering coefficients it is useful
to introduce another dimensionless quantity

A=2xL. (4.1)

Using the dimensionless quantities & and A one obtains

a 1
y = — — —erfi(a). 4.2
y = —5eri@) (4.2)

The left plot in Fig. 1 shows the transmission coefficient T,
Eq. (3.12), for both positive and negative A in the GF; theory,
as well as in the local theory. In the non-local case for A > 0
the transmission vanishes at some finite Q = Q,, or, equivalently,
o = o,. To understand this feature, note that the condition of van-
ishing transmission coefficient T = 0 corresponds to y = 0 and
amounts to

20 =erfi(a) ~ 20 fora <« 1 (4.3)
A JT ' '

Non-trivial solutions « # 0 exist provided

0<A<m. (44)

For fixed positive A in this range there is always some finite
o = o, at which one has total reflection.

For a critical value of hight of the barrier, A = /7, the trans-
mission of all modes with & <1 is strongly suppressed, but for
higher frequencies « 2 1 the barrier becomes transparent; see the
right plot in Fig. 1.

The condition y =0 gives a transcendental equation relating
o, and A > 0; see Fig. 2 for a plot of this relation. Considering
Eq. (4.3) in the limit (o, — ) — 0 one obtains the scaling relation

(a, — @) =v3(1—A/Vm)V2. (4.5)
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Fig. 1. These plots show the transmission coefficient T as a function of the dimensionless frequency o = Q/A. Left plot: In case 0 < A < /7, the transmission coefficient
vanishes for a finite @ = «,. For a §-potential well (A < 0) there is no such minimum in the transmission. In the local case, the transmission coefficients of both the barrier
and the well coincide and do not vanish anywhere except at zero frequency. Right plot: For the critical value A = /7, all frequencies o <1 are strongly suppressed. For the

§-potential well with A = —./7, nothing special happens.

2.0

Fig. 2. This plot shows the dimensionless frequency o, = ©,¢ as a function of
A = ML. For A — 0 the frequency diverges, but for A ~ O(1), the parameter «,
is finite. If A exceeds /7 the frequency vanishes.

Let us now describe several interesting properties of the non-
local scattering coefficients for a fixed, positive value of £:

(i) In the limit of an infinitely high §-potential barrier (A — o0)
or a §-potential well (A — —oo) the transmission remains
finite, T > 0. This is a distinct property of the non-local ghost-
free theory as compared to the local theory.

(ii) In the case of a §-potential barrier 0 < A < /7 there is al-
ways a frequency o = o, for which y = 0. Hence, this mode
is totally reflected, i.e, T=0and R=1.

(iii) In the non-local ghost-free theory, the reflection from the
§-potential depends on the sign of A, while in the local theory
it does not depend on it.

The property that non-local effects enhance the transparency of
the §-potential at high frequencies is not too surprising, because
ghost-free deformations of the field theory typically regularize sin-
gularities and high frequency behavior. Property (i) is less evident:
the potential remains transparent for finite o even in the limit
|A| — oo of a very strong potential barrier or potential well.

Property (ii) was unexpected: the §-potential barrier becomes
totally reflective at a rather large frequency o, for moderately low
potential barriers 0 < A < /7. This property is quite robust and
survives for a large variety of ghost-free theories, because for a
generic ghost-free theory the parameter y can be read off from
the Lippmann-Schwinger equation (3.22). Expressed in terms of

the difference of the ghost-free and local Green functions AG(z) it
can be written as?

- 1
7=a(}+800). (46)
The condition of total reflection y =0 reduces to
1
A=———. (4.7)
AG(0)

This condition defines the frequency 2, of the totally reflected
mode and can be satisfied for some range of A in a generic ghost-
free theory.

We need to point out that a complete, satisfactory physical in-
terpretation of the resonant reflection for this mode is not quite
clear. However, the following comment may be useful in this con-
nection. Using the asymptotics (3.20) one can present the solution
(3.23) for x - o0 as

o) = eiQx _ Beinx\ , (4.8)
where
B=1-i [Zxa — erﬁ(oz)] . (4.9)

One can roughly describe this scattering problem as follows: The
interaction of the running wave e!®* with the barrier generates
a “ringing mode” with a maximum near x = 0. The decay of this
ringing mode creates two running modes moving away from the
position of the barrier. Their asymptotic amplitude is B. The local
and non-local cases differ: both ¢ (0) and the coefficient B are dif-
ferent. In the non-local case for the special value o = o, one has
B =1. As a result of the interference, at large x > 0 the ringing
mode exactly cancels the original running mode. However, the field
@ partially penetrates the barrier and does not vanish in a nar-
row layer behind it. The predicted total reflection at the frequency
o = o, is somewhat similar to the effect of high-reflection coat-
ings in optics, where enhanced reflection at a specific frequency is
achieved by coating a surface with layers of material with a spe-
cial profile of an index of refraction. In that sense one may say
that ghost-free theory provides a non-local high-reflection coating
for the §-potential. It should be emphasized that because a typical

2 Note that from the definition (3.17), as applied to a general ghost-free theory, it
follows that AG(0) is real.
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wavelength of the resonant mode is of the order of the non-locality
scale £ one may expect that an interpretation in terms of tradi-
tional local physics fails [13] and non-locality brings about new
physics.

5. Bound states and quasi-normal modes

Till now we have mainly focused on the continuous part of
the energy spectrum. Let us now discuss states corresponding to
discrete components of the energy spectrum. In both local field
theory as well as non-local GF; theory such discrete levels ex-
ist only for A < 0. In the local theory there is exactly one bound
state with negative E = Q2 < 0 [7]. A normalizable solution with
such a (complex) quasi-normal frequency €2 is often called a quasi-
normal or ringing mode (for a discussion of such solutions see, e.g.,
the nice review [30]). In a general case, quasi-normal modes are
determined by the poles of the transmission amplitude. We shall
demonstrate that for a small value of the dimensionless parameter
|A|, a similar unique normalizable solution with pure imaginary
frequency exists also in the GF; theory. However, for large values
of the non-locality there may be a discrete set of solutions with
complex frequencies.

In order to find the solutions for quasi-normal modes one can
use the Lippmann-Schwinger equation (3.22). It is sufficient put
there @o(x) = 0. Then, for the ghost-free theory with attractive
8-like potential (A < 0), it gives

p(x) =—-A2GX)(0). (5.1)
This equation has a non-trivial solution only when the condition

1+1G(0)=0 (5.2)

is satisfied. Here, G(0) depends on €2, but  is to be considered as
a complex variable. The solutions Qqn of this equation correspond
to the poles of the transmission coefficient for a generic ghost-free
theory.

One can see that the solution is proportional to the ghost-free
Green function

) =cGXx). (5.3)

Quasi-normal modes are assumed to be normalizable, i.e., the fac-
tor c is finite. It means that among all the solutions we have to
choose those that decrease at infinity.

In the local case Gp(0) =i/(22) and we reproduce the classical
result for the unique quasi-normal frequency
A <0.

A
Qon=—i =, (5.4)

2
The corresponding quasi-normal mode decreases at infinity and is
normalizable.

In the non-local theory there may be a set of quasi-normal
modes with complex frequencies, depending on the value of A.
However, there always exists only one solution with purely imagi-
nary frequencies o = ik, where x > 0. For this case in GF; theory
the relation (5.2) takes the form

1~|—A[1—erf(ic)]:0, A <0. (5.5)
2k

For A <0 and « € R this equation has a unique solution. Also,
numerical investigations have shown that for

|A| < 2.282365 (5.6)

this is the only solution of (5.5) with complex x. However, if the
inequality (5.6) is violated, additional complex solutions appear be-
sides this pure imaginary solution.

6. Discussion

Let us discuss the results presented in this letter. Our starting
point was a two-dimensional theory of a massless scalar field in
the presence of a static §-like potential. First of all, we demon-
strated that this problem is exactly solvable in GF; theory and
presented this solution explicitly.

In a local quantum theory after the frequency Fourier trans-
form, the problem reduces to solving a time-independent Schro-
dinger-type equation (3.1). The non-local ghost-free generalization
produces a similar equation (2.4), and one can easily adapt the so-
lution of the latter equation, presented in this letter, to a more
general case when the field is massive, with mass m, and the
number of spatial dimensions is greater than 1. To include a non-
vanishing scalar mass it is sufficient to modify the parameter E,
which enters (2.3), according to E = w? — m2. If the number of
spatial dimensions is greater than 1, and the potential V does
not depend on the transverse coordinates y, then one can write
mode-solutions in the form

P, =Poexp(ki - y1). (61)

By performing the Fourier transform with respect to the transverse
coordinates y| one again obtains the equation (2.4) with the only
change E = w? —m? — k3.

When we started this project, our naive expectations were that
in the ghost-free theory the non-locality effectively smears the
sharp §-like potential, and, as a result, the scattering coefficients
would be only slightly modified. Calculations based on the derived
exact solution in the GF; theory demonstrated many interesting
unexpected features.

For the §-potential barrier there exists a dimensionless value
of the frequency, «,, at which the transmission coefficient van-
ishes identically, which is a property that does not occur in the
local case. For the §-potential well (A < 0) in the non-local case
there also exist quasi-normal modes corresponding to E < 0. The
quasi-normal mode with purely imaginary frequency is unique, as
in the local theory. However, if the strength of the potential well
is above some critical value, |A| > 2.282365, there appear extra
quasi-normal modes with complex frequencies.

In this letter, we presented results for a special choice of the
ghost-free theory. Nonetheless, we expect that similar results can
be obtained for more complicated cases, for example when the
non-local form-factor is of the form ~ exp[(—0¢2)N]. However,
the technical details become more involved and exact solutions
may not be readily obtained for these generalizations.

Lastly, let us point out that the method developed in this letter
can be generalized to the case of multiple §-like potentials. Our
preliminary analysis shows that these problems are also exactly
solvable. One of the possible natural interesting applications is the
calculation of the Casimir force and energy in ghost-free quantum
theory. We hope to present our results on this subject in a separate
publication.

Acknowledgements

J.B. is grateful for a Vanier Canada Graduate Scholarship admin-
istered by the Natural Sciences and Engineering Research Council
of Canada as well as for the Golden Bell Jar Graduate Scholarship
in Physics by the University of Alberta. V.F. and A.Z. thank the Nat-
ural Sciences and Engineering Research Council of Canada and the
Killam Trust for their financial support.



J. Boos et al. / Physics Letters B 782 (2018) 688-693 693

References

[1] PA.M. Dirac, The Principles of Quantum Mechanics, 3rd ed., Oxford University
Press, Oxford, UK, 1947.
[2] L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 2nd ed., Pergamon Press, Bris-
tol, UK, 1965.
[3] C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, vol. 2, Wiley,
New Jersey, USA, 1987.
[4] JJ. Sakurai, Modern Quantum Mechanics, revised ed., Addison-Wesley, Boston,
USA, 1994.
[5] R. Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Press, New York,
USA, 1994.
[6] S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, Cam-
bridge, UK, 1995.
[7] DJ. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, New Jersey,
USA, 1995.
[8] L. Modesto, J.W. Moffat, P. Nicolini, Phys. Lett. B 695 (2011) 397, arXiv:1010.
0680 [gr-qc].
[9] T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Phys. Rev. Lett. 108 (2012)
031101, arXiv:1110.5249 [gr-qc].
[10] V.P. Frolov, A. Zelnikov, T. de Paula Netto, ]J. High Energy Phys. 06 (2015) 107,
arXiv:1504.00412 [hep-th].
[11] L. Modesto, Y.S. Myung, S.-H. Yi, arXiv:1710.04367 [gr-qc], 2017.
[12] A. Koshelev, ]J. Marto, A. Mazumdar, arXiv:1803.00309 [gr-qc], 2018.
[13] L. Buoninfante, G. Lambiase, A. Mazumdar, arXiv:1805.03559 [hep-th],
2018.
[14] T. Biswas, T. Koivisto, A. Mazumdar, ]J. Cosmol. Astropart. Phys. 1011 (2010)
008, arXiv:1005.0590 [hep-th].

[15] G. Calcagni, L. Modesto, P. Nicolini, Eur. Phys. J. C 74 (2014) 2999,
arXiv:1306.5332 [gr-qc].

[16] S. Hossenfelder, L. Modesto, I. Premont-Schwarz, Phys. Rev. D 81 (2010)
044036, arXiv:0912.1823 [gr-qc].

[17] Y. Zhang, Y. Zhu, L. Modesto, C. Bambi, Eur. Phys. J. C 75 (2015) 96,
arXiv:1404.4770 [gr-qc].

[18] V.P. Frolov, Phys. Rev. Lett. 115 (2015) 051102, arXiv:1505.00492 [hep-th].

[19] A. Conroy, A. Mazumdar, A. Teimouri, Phys. Rev. Lett. 114 (2015) 201101,
arXiv:1503.05568 [hep-th].

[20] Y.-D. Li, L. Modesto, L. Rachwat, J. High Energy Phys. 12 (2015) 173, arXiv:
1506.08619 [hep-th].

[21] G. Calcagni, L. Modesto, Phys. Lett. B 773 (2017) 596, arXiv:1707.01119 [gr-qc].

[22] AS. Cornell, G. Harmsen, G. Lambiase, A. Mazumdar, arXiv:1710.02162 [gr-qc],
2017.

[23] N. Kajuri, Phys. Rev. D 95 (2017) 101701, arXiv:1704.03793 [gr-qc].

[24] ]. Boos, V.P. Frolov, A. Zelnikov, Phys. Rev. D 97 (2018) 084021, arXiv:1802.
09573 [gr-qc].

[25] L. Buoninfante, A.S. Koshelev, G. Lambiase, J. Marto, A. Mazumdar, arXiv:1804.
08195 [gr-qc], 2018.

[26] L. Buoninfante, G. Harmsen, S. Maheshwari, A. Mazumdar, arXiv:1804.09624
[gr-qc], 2018.

[27] V.P. Frolov, A. Zelnikov, Phys. Rev. D 93 (2016) 105048, arXiv:1603.00826
[hep-th].

[28] B.A. Lippmann, J. Schwinger, Phys. Rev. 79 (1950) 469.

[29] EW. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathemat-
ical Functions, 1st ed., Cambridge University Press, New York, NY, USA, 2010.

[30] P. Boonserm, M. Visser, J. High Energy Phys. 03 (2011) 073, arXiv:1005.4483
[math-phl].


http://refhub.elsevier.com/S0370-2693(18)30466-0/bib44697261633A31393437s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib44697261633A31393437s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4C616E6461753A31393635s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4C616E6461753A31393635s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib54616E6E6F75646A693A31393738s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib54616E6E6F75646A693A31393738s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib53616B757261693A31393934s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib53616B757261693A31393934s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib5368616E6B61723A31393934s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib5368616E6B61723A31393934s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib5765696E626572673A31393935s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib5765696E626572673A31393935s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4772696666697468733A31393935s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4772696666697468733A31393935s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4D6F646573746F3A323031307568s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4D6F646573746F3A323031307568s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4269737761733A323031316172s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4269737761733A323031316172s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib46726F6C6F763A32303135626961s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib46726F6C6F763A32303135626961s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4D6F646573746F3A3230313779637As1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4B6F7368656C65763A32303138687074s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib42756F6E696E66616E74653A323031386D7265s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib42756F6E696E66616E74653A323031386D7265s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4269737761733A323031307A6Bs1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4269737761733A323031307A6Bs1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib43616C6361676E693A32303133767261s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib43616C6361676E693A32303133767261s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib486F7373656E66656C6465723A323030396663s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib486F7373656E66656C6465723A323030396663s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib5A68616E673A32303134626561s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib5A68616E673A32303134626561s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib46726F6C6F763A32303135627461s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib436F6E726F793A32303135776661s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib436F6E726F793A32303135776661s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4C693A32303135627161s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4C693A32303135627161s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib43616C6361676E693A32303137736F76s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib436F726E656C6C3A32303137697268s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib436F726E656C6C3A32303137697268s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4B616A7572693A323031376A6D79s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib426F6F733A32303138627866s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib426F6F733A32303138627866s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib42756F6E696E66616E74653A32303138726C71s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib42756F6E696E66616E74653A32303138726C71s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib42756F6E696E66616E74653A32303138737474s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib42756F6E696E66616E74653A32303138737474s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib46726F6C6F763A32303136786871s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib46726F6C6F763A32303136786871s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4C6970706D616E6E3A313935307A7As1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4F6C7665723A32303130s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib4F6C7665723A32303130s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib426F6F6E7365726D3A323031307078s1
http://refhub.elsevier.com/S0370-2693(18)30466-0/bib426F6F6E7365726D3A323031307078s1

	Quantum scattering on a delta potential in ghost-free theory
	1 Introduction
	2 Scalar ghost-free theory
	3 Continuous spectrum. Scattering amplitudes
	3.1 Local theory
	3.2 Non-local ghost-free theory

	4 Properties of scattering coefﬁcients
	5 Bound states and quasi-normal modes
	6 Discussion
	Acknowledgements
	References


