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Abstract. One of the challenges a scientific computing center has to face is to keep delivering
well consolidated computational frameworks (i.e. the batch computing farm), while conforming
to modern computing paradigms. The aim is to ease system administration at all levels (from
hardware to applications) and to provide a smooth end-user experience. Within the INDIGO-
DataCloud project, we adopt two different approaches to implement a PaaS-level, on-demand
Batch Farm Service based on HTCondor and Mesos. In the first approach, described in this
paper, the various HTCondor daemons are packaged inside pre-configured Docker images and
deployed as Long Running Services through Marathon, profiting from its health checks and
failover capabilities. In the second approach, we are going to implement an ad-hoc HTCondor
framework for Mesos. Container-to-container communication and isolation have been addressed
exploring a solution based on overlay networks (based on the Calico Project). Finally, we have
studied the possibility to deploy an HTCondor cluster that spans over different sites, exploiting
the Condor Connection Broker component, that allows communication across a private network
boundary or firewall as in case of multi-site deployments. In this paper, we are going to describe
and motivate our implementation choices and to show the results of the first tests performed.

1. Introduction
One of the challenges a scientific computing center has to face is to keep delivering a
computational framework which is well consolidated within the community, such as the batch
computing farm for non-interactive processing, while adhering to modern computing paradigms.
The goal is to ease system administration at all levels, from hardware to applications, and to
provide a smooth end-user experience.

1.1. The underlying computing paradigm
In the last years, it has been shown by various large companies that encapsulating tasks into
higher and higher layers of abstraction can provide a remarkable competitive advantage [1].
Standard hardware infrastructures are being replaced by a multitude of heterogeneous devices
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(the Internet of Things). The application’s architecture is no longer monolithic, instead it is
being factorized into multiple microservices, with great benefits in terms of extensibility and
re-usability. Process delivery is now based on a dynamic DevOps approach [2]. These novel
paradigms naturally fit in the Cloud Computing model: a style of computing in which scalable
and elastic IT-enabled capabilities are delivered as a service using Internet technologies [3]. We
usually think about Cloud Computing in terms of virtual machines. This still remains a good
model for Infrastructure-as-a-Service (IaaS) provisioning, while it could be a too heavy and
static approach to virtualization in the case of an application-focused deployment. Therefore,
Linux containers have gained great popularity in recent times, since they provide a light-weight
virtualization (the kernel is shared with the host) and allow to package and run distributed
application components within the same platform across different environments. Based on
this novel computing paradigm, the INDIGO-DataCloud (INDIGO-DC) project [4] is aiming
at developing an open source data and computing platform targeted at scientific communities,
deployable on heterogeneous resources and provisioned over multiple e-infrastructures. The work
we are going to describe in this paper is part of the INDIGO-DC Platform-as-a-Service (PaaS)
component [5].

1.2. Batch System as a Service
We call Batch System as a Service (BSaaS) the strategy to automatically and dynamically deploy
a complete batch system cluster, with appropriate user interfaces, in highly-available and scalable
configurations. From the end-user perspective, an optimal solution would be a cluster tailored
to her needs, in terms of available software and configurations, easy to use and modify. This
would release lots of efforts on the system administrators side. On the other hand, while having
(almost) full control on their own cluster, users should be isolated from the rest of the system
as not to disrupt other users work or the underlying infrastructure itself. The most critical
aspects of the BSaaS implementation concern networking and storage. Container-to-container
communication and isolation have been addressed with overlay networks (L3). Concerning the
storage aspects, which will not be discussed in this paper, factors such as scalability, performance
and reliability have to be taken into account. We have explored the usage of CVMFS [6](using
Parrot [7]) and the integration with the INDIGO-DC Data Services (OneData, Dynafed, FTS)
[8]. In the following sections, we are going to describe the tools chosen to deploy the INDIGO-
DC BSaaS as well as its architecture, also extending to multi-site deployments. Finally, we
introduce the monitoring system and show the first results obtained.

2. Software stack
Mesos - Physical resources are administered with the Apache Mesos [9] cluster manager. Mesos
is built using the same principles as the Linux kernel, but at a different level of abstraction:
it acts at a data-center level rather than at the operating system level. The Mesos kernel
abstracts CPU, memory, storage and other resources away from physical or virtual machines. It
schedules processes across the entire distributed infrastructure and provides APIs for resource
management. It has a master-slave architecture, where the slave agent runs on each managed
node. The Mesos master can run in high-availability mode, distributed over several instances
and where one instance at the time is elected as leader.
Marathon - In the context of a data-center level operating system, the Mesosphere Marathon
[10] application acts as an init system: it is designed to launch long-running applications.
Marathon provides applications with high-availability, scaling and self-healing capabilities. It
implements an API for scriptability and service discovery, and an easy to use web user interface.
Formally, Marathon is a Mesos framework, that is a set of master, scheduler and executor
components designed to work in synergy with Mesos.
Zookeeper - Both Mesos and Marathon rely on the Apache Zookeeper [11] centralized service
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to maintain configuration synchronization across the whole cluster.
Calico - Network isolation is achieved with Calico [12]. Calico is a layer 3 approach to data-
center networking. It implements a virtual router on each compute node, which leverages the
existing Linux kernel forwarding engine. Each router propagates the workload reachability
information to the rest of the cluster using Border Gateway Protocol (BGP), either directly or
via route reflectors in large deployments. Network policies can be enforced using ACLs on each
compute node, to provide project isolation, security groups and external reachability constraints.
Calico ACLs leverage the kernel firewall (iptables).
Docker - Application isolation (in terms of code, run-time, system tools and system libraries) is
achieved with the Docker [14] containerization platform. Docker containers are deployed using
the Docker Containerizer module of Mesos.
Etcd - The CoreOS Etcd [13] distributed key-value store is used to synchronize network
configuration across the entire infrastructure. Both Docker and Calico refer to the Etcd store
to retrieve network configuration information.
HTCondor - HTCondor [17] is the LRMS chosen to implement the BSaaS. Besides being open
source and widely used in the scientific community, we chose HTCondor also because it’s cloud-
aware. This means that this batch system is suited to work in a dynamic environment, where
the list of worker nodes belonging to a cluster is not fixed. Each node registers with the central
Master service when it is instantiated and it is removed from the list by the central service called
Collector when no longer available.

2.1. Provisioning
The reference infrastructure is composed of one or more front-end machines running the core
services (Mesos, Marathon, Zookeeper, Calico and Etcd) in a fault-tolerant way and a number
of execution nodes. Mesos, Marathon, Zookeeper and Calico run as Docker containers, while
only Docker and Etcd are installed directly on the physical or virtual hosts. Since Etcd is the
store from which Docker retrieves the network topology, we preferred to keep it independent
from Docker itself. The entire infrastructure is deployed using the Ansible [15] provisioning
and orchestration tool. We have developed Ansible roles for all components, which were made
publicly available on the Ansible Galaxy website [16]. Each role supports two back-end operating
systems: Enterprise Linux 7 and Ubuntu > 14.x. The roles that need to be installed on the
front-end servers are: Docker, Etcd, Calico, Zookeeper, Mesos master and Marathon. On the
execution nodes: Docker, Calico and Mesos slave. The complete infrastructure deployment can
be configured and orchestrated via a single Ansible playbook.

In the current implementation, the HTCondor cluster is instantiated as a set of Marathon
applications, using template files. This will be explained in more details in Section 3.3. The
cluster deployment can be automated through the INDIGO-DC PaaS platform [4], using a single
TOSCA [18] template submitted to the INDIGO-DC Orchestrator. The Orchestrator can also
manage multi-site deployments on private Clouds as well as on AWS [19].

3. Architecture
3.1. Infrastructure
Each of the machines composing the cluster, both front-end and execution nodes, runs an
instance of the docker-engine daemon and of the Calico node. Each of the front-end servers also
runs an instance of Etcd, forming a fault-tolerant configuration in which one of the instances is
elected as the leading master and it is replaced by any of the other instances in case of failure.
Global L3 networks, i.e. that span over the entire cluster, are created via the docker-engine by
specifying the Calico driver. The information is stored on Etcd and retrieved by all the docker-
engine instances across the cluster. In turn, Calico nodes retrieve from Etcd the information
about configured networks and workloads (containers) running on each host. According to this
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Figure 1. Services needed to deploy a complete HTCondor cluster are packaged inside Docker
containers and deployed as Marathon Long Running Services. Each container is represented by
a box in the figure. The HTCondor daemons required by each application are indicated within
brackets.

information, the Calico’s agent named Felix programs routing rules and ACLs into the Linux
kernel of each host. Each instance of the BSaaS will have a dedicated Calico network.

3.2. Orchestration
Each of the front-end servers runs an instance of the Mesos and Marathon masters and of
the Zookeeper store, in order to form a fault-tolerant configuration for these services as in the
Etcd case. Each execution node runs an instance of the Mesos slave, and advertises all (or a
configurable fraction) of its resources. Slaves can also be labeled with different tags, if needed,
and applications can be pinned to a specific host type.

In our current approach, the various HTCondor daemons needed to deploy a complete cluster
are packaged inside pre-configured Docker images and deployed as Long Running Service (LRS)
through Marathon. This ensures fault-tolerance and scaling capabilities. Nevertheless, auto-
scaling is not possible since the BSaaS is a stateful application, and the scaling policies provided
by Marathon based on CPU or memory loads, are not suited to this case. Nevertheless, auto-
scaling can be enabled for example with CLUES [20], an energy management system which
monitors resource status and triggers the addition/removal of new slaves accordingly.

Another strategy on which we are currently working is to implement a dedicated HTCondor
framework for Mesos, that can be used by itself or as a component in the more complex INDIGO-
DC PaaS system, also in conjunction with an orchestration layer like Marathon. The new
framework will consist of a scheduler to implement HTCondor policies on the resource offers
provided by the Mesos master and a dedicated executor to launch tasks on the slave nodes. The
benefits of an ad-hoc framework are first of all a fine-grained level of control on the tasks the
application is responsible for. Moreover, it is possible to implement the preferred authorization
rules and roles for multi-tenancy and to define application-specific scaling rules.

3.3. Application (BSaaS)
Each BSaaS instance is composed of three Marathon applications, sketched in Figure 1 and
described below.
Central Manager - This application runs the HTCondor Collector and Negotiator daemons.
The Collector is responsible for collecting the information about the pool status. All other dae-
mons periodically send to the Collector ClassAd updates containing all the information about
the state of the daemons, the resources they represent or resource requests in the pool. They
also query the Collector for information required by their own operations.
The Negotiator is responsible for all the match making within the HTCondor system. Periodi-
cally, it queries the Collector for the current state of all the resources, it contacts the scheduling
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daemons that have waiting resource requests and tries to match available resources with those
requests. The Negotiator is also responsible for enforcing user priorities in the system. Submit-
ter and Executor operations are coordinated by the Central Manager.
Submitter - It acts as access node and runs the Schedd daemon. This daemon represents re-
source requests to the HTCondor pool and manages the job queue. Any machine that is to be a
submit machine needs to have a Schedd running. It advertises the number of waiting jobs in its
job queue and is responsible for claiming available resources to serve those requests. Once a job
has been matched with a given resource, the Schedd spawns a daemon called CondorShadow to
serve that particular request. The Submitter machine also runs the sshd daemon, to allow the
end-user to log-in and submit jobs to the pool. This application can be scaled to more than one
instance.
Executor - It runs the Startd daemon, which represents a given resource to the HTCondor
pool, as a machine capable of running jobs. It advertises certain attributes about machines that
are used to match it with pending resource requests. The Executor application should be scaled
to the number of instances required to cope with the number of queued jobs.

All applications also run an instance of the HTCondor Master daemon, which is responsible
for keeping all the other daemons running.

An example of the Marathon templates used to instantiate these applications can be found on
GitHub [21], together with the files needed to build the Docker containers. The three applications
are based on the same base container, which is configured when the application is instantiated
through a set of parameters passed to the entrypoint script. All daemons are started inside
the container using the Tini [22] lightweight init system and Supervisor [23] to monitor and
control the different processes. The BSaaS can also be enabled to run Message Passing Interface
(MPI) applications by starting the sshd daemon on all the execution nodes and by proper
HTCondor configuration (i.e. configuring the DedicatedScheduler) passed as mounted volumes
to the Docker containers.

All the BSaaS instances run within a private network, and users normally do not have access
to all the machines in the data center, but rather to a restricted number of access nodes. One
possible solution to this problem is to instantiate a container with two NICs, one for the host
network and one on a dedicated Calico network, with proper ACLs to be able to communicate
with each BSaaS cluster. The container runs an sshd daemon configured to forward each user
request to the appropriate Submitter machine, possibly with the help of a service discovery
application (i.e. Mesos-DNS).

4. Geographical deployment
We have studied the possibility to deploy an HTCondor cluster that spans over different sites.
For this purpose, we have set up a front-end server at each of the INFN sites of Bari, Bologna
and Torino, each server also running an instance of the Mesos slave. The three Autonomous
Systems (AS) are connected by the 10Gb/s GARRX NREN [24] and the IP over IP protocol
has been enabled between the front-end servers. The network topology is a full-mesh among
all hosts. For larger deployments we envisage a more scalable configuration with iBGP peering
within the single AS and a Route Reflector (RR) per AS, which is eBGP peered with the RR
on the other AS.

Within the BSaaS application, we have exploited the Condor Connection Brokering (CCB)
component that allows communication across a private network boundary or firewall.
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Torino Bologna Bari

Torino 0.07 ± 0.02 11 ± 3 18 ± 6
Bologna 32 ± 10 0.09 ± 0.03 14 ± 4
Bari 18 ± 6 14 ± 4 0.18 ± 0.06

Table 1. Container-to-container communication: Round Trip Time (RTT) in ms measured
between the sites of Bari, Bologna and Torino. Column headings indicate the site starting the
connection.

4.1. First results
We have tested the container-to-container connectivity across the three sites. There is a distance
of approximately 300km between the cities of Torino and Bologna and of approximately 600km
between the cities of Bologna and Bari. Table 1 shows the Round Trip Time (RTT) in ms
measured between the three sites. Column headings indicate the site starting the connection.
The error is the standard deviation over 10 measurements. As expected, the matrix of results is
symmetric, with the exception of the connection from Torino to Bologna, which is due to a known
instability in the connection between the two sites at the time the measurement was recorded.
The RTT increases by about two orders of magnitude when going from local connection to a
connection between the two most distant cities (Torino and Bari), but is still compatible with
efficient execution of batch jobs (excluding MPI workloads).

We also ran some stress tests using the Linux stress utility to simulate a heavy workload on
the BSaaS and recorded no instabilities in the system.

5. Monitoring
We have developed a system to monitor the Mesos cluster status, which gives us more
extensibility in collecting metrics and selecting time periods than the built-in Mesos Graphical
User Interface (GUI). Data are collected with a custom Python script, through http GET
requests to the Mesos server. Metrics are injected in Graphite [25], a monitoring system of
which we exploit the capability to store numeric time-series data. Stored data are visualized
through Grafana [26]: a tool for querying and visualizing time series and metrics which easily
integrates with Graphite. The metrics collected are those provided by the Mesos server, such
as: number of active slaves, number of running tasks, memory and CPU usage.

In order to monitor the application (BSaaS) performance, we rely on the specific HTCondor
python API [27] to send data to the Elasticsearch analytics engine. Metrics are visualized with
Grafana, using the specific Docker plugin. In this way we can collect metrics concerning the
container activity (i.e. CPU or memory usage) or the HTCondor jobs (i.e. idle or running
jobs, accumulated execution time). An example of BSaaS dashboard displaying these metrics is
shown in Figure 2.

6. Conclusions and outlook
In this paper we described the implementation of the Batch System as a Service (BSaaS)
application. Our efforts were directed at providing a well consolidated computing framework,
while conforming to modern computing paradigms. The tools used for the automated
deployment of a complete batch system on-demand are: Docker, Calico, Mesos, Marathon and
HTCondor. The entire infrastructure is automatically deployed with Ansible.

We have studied the possibility of a geographical deployment of the system. For this purpose,
we set up a VPN connection between the three INFN sites of Torino, Bologna and Bari. Both
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Total Idle Jobs Total Running Jobs

Job Accumulated Execute Time

Container CPU usage Container MEM usageA.u. A.u.

A.u. A.u.

A.u.

Figure 2. Example of BSaaS dashboard displaying application metrics. Data are injected in
Elasticsearch and visualized through Grafana.

the services cluster and the execute nodes were distributed over the three sites. The first tests
performed confirmed the feasibility of a geographical deployment.

Finally, we set up a cluster and application monitoring system, relying on Graphite,
Elasticsearch and Grafana.

In the next steps, we will focus on consolidating the framework by testing it with real use-
cases. For instance, the BSaaS model was chosen as one of the provisioning modes used at the
University of Torino HPC cluster OCCAM [29].

The final work will appear in the INDIGO-DataCloud Service Catalogue [30].
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