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Abstract: The mass region of rare-earth nuclei in the nuclear chart is riddled with well-deformed
nuclei, exhibiting rotational properties and many interesting nuclear structure-related phenomena.
The scarcity of experimental data as the neutron number increases and the exotic phenomena such as
shape coexistence, which are strongly connected with the underlying symmetries of the Hamiltonian
and are predicted to take place in this region, make this mass region a fertile ground for experimental
and theoretical studies of nuclear structure. In this work, we investigate the structure of the even—even
162-18411f (hafnium) isotopes through a calculation of various observables such as B(E2; 0 —2{)
reduced transition matrix elements and quadrupole moments. Six different nuclear models are
employed in the calculations of the observables for these nuclei, the shapes of which deviate from
spherical symmetry, and as such, are characterized by Hamiltonians, which break the rotational
invariance of the exact nuclear many-body Hamiltonian. The results of the present study are expected
to establish some concrete guidelines for current and future experimental endeavors. Along these
lines, the results for the 1927180Hf isotopes are compared with existing experimental data where
available, showing an overall good agreement.

Keywords: even—even Hf isotopes; theoretical models; quadrupole moments; B(E2) transition rates

1. Introduction

Over the past decade, the study of nuclear structure has regained a dominant role
in nuclear physics, mainly due to the discovery of new physics, occurring far outside
the traditionally studied valley of stability. The discoveries, which resulted from ground-
breaking innovations in radioactive beam production, have posed multiple questions
regarding the fundamental interactions among the nucleons, i.e., the protons and neutrons
under extreme conditions. Filling the large gaps in the knowledge has a critical impact on
understanding the evolution of the Universe driven by nuclear reaction networks in bodies
in the Universe (such as the s- or r-processes) [1] and putting together the puzzle of the
particle constituents that shape nuclear matter.

The massive shift in the nuclear physics scientific community toward using Radioac-
tive Ion Beams (RIBs) to explore new phenomena and test existing symmetries, investing
significant effort in establishing the outer limits of the nuclear chart and the properties of
the exotic species inhabiting those mass regimes (see, for instance, Ref. [2]), has left large
gaps in the knowledge of the mass region lying between the valley of stability and the
nuclear driplines. In particular, the isotopes located in the A ~ 140-180 mass regime to
the east of the valley of stability are of special interest, as they feature low-lying isomeric
states [3,4], shape coexistence [5,6], and sizeable deformations, which can be attributed to
the shape of nuclear potential, new prevailing symmetries, and, often, the appearance of
octupole collectivity [6-10].

Deformed nuclei can be schematically categorized as prolate, oblate, and triaxial—a
direct consequence of the nuclear dynamic symmetries of the deformed Hamiltonian—
based on the three principal axes of rotation in the ellipsoid. These symmetries regarding
the nuclear shapes are clearly reflected on the By plane formed by the set of intrinsic shape
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variables (3, 7) entering the Bohr Hamiltonian. This plane is subdivided into six equivalent
parts based on the symmetries. All of the shapes are uniquely contained in the v = (0°,60°)
sector, which can be taken as the representative one. Prolate nuclei lie on the v = 0° axis,
oblate nuclei lie on the v = 60° axis, whereas the nuclei located in between the ¢y = 0° and
v = 60° are triaxial. These shapes are repeated in each of the remaining subsectors of the
B plane, alternating between the principal symmetry axes [11,12].

Many nuclei in the rare-earth region of the nuclear chart are known to be well de-
formed, often exhibiting quadrupole deformation parameter values 8, > 0.2 for the ground
or low-lying states [4]. It is common for the nuclei in this mass region to show a collective
character with rotational properties, where the energy spectra can be approximated by
the relation E o I(I + 1) (I: total spin) [11]. As nuclear rotations can alter the microscopic
structure of nuclei, the preferred shapes of nuclei typically change as the spin increases.
This is very common for the “soft” nuclei. In any case, a mixed character (both rotational
and vibrational) can be present in many nuclei.

Over the past few decades, numerous theoretical approaches have attempted to study
such phenomena including semi-empirical methods, mean-field and beyond mean-field
models such as the particle-rotor model [13], the cranked shell model [14-16], the projected
shell model [17], the cranking covariant density functional theory [18], and more. All such
theoretical directions, one way or another, provide the means to study the nuclear structure
evolution imposed by the underlying symmetries.

From an experimental standpoint, several observables can provide stringent tests
of the existing theoretical models in an effort to gain insight into the nuclear structure.
B(E2) reduced electric transition probabilities are some of the most prominent among
them, having been proven particularly useful in the task of understanding the collective
behavior of deformed nuclei. Their direct relation to the nuclear state lifetimes allows for
their determination through a variety of experiments, providing valuable information on
the interplay between collective and single-particle degrees of freedom.

In the 1960s, at Oak Ridge National Laboratory, P. H. Stelson and L. Grodzins recog-
nized the importance of the compilation and evaluation of B(E2) transition probabilities
for even—even nuclei and moved on to produce the first compilation of B(E2) 1 values for
the 21+ nuclear states [19]. The next two compilations and evaluations were carried out in
1987 [20] and 2001 [21] by Raman et al. in the framework of the Oak Ridge Nuclear Data
Project prior to the successful launch of the Brookhaven B(E2) 1 project [22] in 2005. The
NNDC database currently contains a compilation of updated B(E2;0; — 2{) experimental
results and evaluated values. A detailed upgrade of the database with the experimental
reduced matrix elements, B(E2) 1s, and mean lifetimes, 7(2]), was carried out by Prity-
chenko et al. [23,24]. Table I in [23] contains experimental values for nuclei with Z = 2-104,
whereas their adopted values, together with deformation 5, are shown in Table III of the
same reference.

In this work, the rotational properties of the well-deformed even—even 92184 Hf nuclei
are investigated through calculations of their electric quadrupole moments and reduced
electric quadrupole probabilities using various theoretical models. Neutron-rich Hf iso-
topes are located in the upper half of the Z = 50-82 proton shell and the N = 82-126
neutron shell, and in this region, multi-particle excitations are expected to be increasingly
preferred. Regarding the theoretical models employed in this work, except for the phe-
nomenological model and finite-range droplet model described in Sections 3.1 and 3.2,
respectively, they are based on a mean-field description (non-relativistic or relativistic) and
include a pairing. Mean-field Hamiltonians break the symmetries that the many-body
Hamiltonians have. The symmetries that are, in general, broken include the translational,
rotational, reflection, and isospin symmetries [25,26]. As for the methods used to incor-
porate the pairing (Bardeen—Cooper-Schrieffer or Bogoliubov), they do not conserve the
particle number. Several techniques have been proposed to restore the broken symmetries
to some extent (see, for example, Refs. [25,27]).
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The results for the Hf isotopes are extended to A = 182,184 for which there currently
exist no experimental data for the 2| states other than the energies E(2;") (it should be
noted that even the spin and parity of the 2; state are questionable in the case of 8*Hf) [23].
The results for the various calculated physical quantities are compared with previous
works [28-30], as well as with the available experimental data [4,21,23,31].

In recent years, many theoretical studies have been conducted that are centered around
the Hf isotopic chain and employ several different models (see, for example, Refs. [32,33]).
This work aims to provide a complete set of predictions for the examined observables, with
an emphasis on experimentally measurable quantities (such as lifetimes and B(E2)s), using
a variety of theoretical models. These results are expected to guide future experimental
and theoretical studies in the unstable neutron-rich Hf isotopes [34,35], as was the case for
a similar study of Yb isotopes [36,37].

2. Physical Quantities and Global Best Fit

For nuclei featuring rotational spectra, the B(E2) can be related directly to the intrinsic
electric quadrupole moment, Qo, and, in turn, be associated with the B, deformation
parameters [11]. Furthermore, the B(E2) is connected to the root mean square (rms) of the
deformation f3, in non-rotational regions. In the following paragraphs, we give some brief
definitions of the various observables studied in this work, among which are the intrinsic
quadrupole moments Qy, the electric quadrupole moments Q, and the 8, deformation
parameters.

2.1. The Intrinsic Quadrupole Moment Q

The intrinsic quadrupole moment Qy is defined in the intrinsic frame of reference
of the nucleus. Deviations from the spherical shape are associated with the intrinsic
quadrupole moment g, which is, in turn, related to the reduced electric quadrupole
transition probability B(E2) through the relation [11]

167 B(E2) 112
R @
e

a-|

where the upward-pointing arrow represents the excitation.

2.2. The Electric Quadrupole Moment Q

The electric quadrupole moment Q describes the apparent shape of the nuclear charge
distributed over the ellipsoid volume. As a convention, negative values of Q in the
laboratory frame are associated with prolate nuclear shapes, whereas positive values of
Q are associated with oblate nuclei. A zero value for the electric quadrupole moment
Q indicates spherically symmetric nuclear shapes [12]. In the framework of the nuclear
shell model, spherical nuclear charge distributions are expected for closed shells; thus, the
measurement of the electric quadrupole moment can serve as a test of the shell model
itself. Since the quadrupole moment depends on the size and charge of the nucleus, a better
comparison is obtained after normalization for those factors, resulting in what is called the
“reduced quadrupole moment”. A plot of measured values [38] reveals that magic numbers
of neutrons and protons are associated with near-zero values of the quadrupole moment.

A single-nucleon transition model fails to accurately describe the quadrupole moments
of strongly deformed nuclei. Such cases are more adequately described in the framework
of a collective nuclear model, involving the collective motion of many nucleons within a
given nucleus. In this model [11], the spectroscopic and intrinsic quadrupole moments are
interconnected via the relation

3K? —I(21 - 1)

Q= Tr)i+3)

Qo 2
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where [ is the total spin of the nucleus and K is the total projection of I onto the z-axis in
the body fixed frame (symmetry axis of the nucleus). For K = 0, I = 2 one obtains

Q@) = 20 ©)

If the intrinsic deformation is prolate (Qp > 0), the corresponding quadrupole moment
in the laboratory frame turns negative, reflecting the result of time averaging a twirled
cigar shape, which becomes an oblate apparent shape [12]. We note that the ratio Rgp =

Q(2))/+/B(E2*) T = —0.906 in this model [39].

2.3. The Deformation Parameter B

The B(E2) 1 values are basic experimental quantities, which are model independent.
Another useful quantity, which is model dependent, is the 8, deformation parameter.
Under the assumptions that the charge distribution is uniform from the center to a distance
R(6, ¢) and zero beyond and that the deformations are small, we find that 8, B(E2), and
Qo are related by the formula

ﬁzz( 4 ){B(EZ)TT/Z VT @

3ZR2 e? 3ZR3Z

where Ry = 1.2A1/3 [fm]. In the theoretical description of the excitation of collective states
through direct reactions, a similar parameter is involved to account for the deformation of
the average potential. The latter is analogous to ,, which involves single-particle effects,
indicative of the existence of quadrupole collective motion in a nucleus. Thus, the ratio
B2/ Bsp is often considered, where Bsp refers to the single-particle model given in [23]:

1.59
Psp=—~ (5)

Before concluding this introductory subsection, we give a final relation between the
observables studied in this work, namely the relation between the lifetimes 7 and the B(E2)
reduced electric quadrupole transition probabilities. This relation, given below, is used to
calculate the lifetimes 7(2;) based on the B(E2) values:

Ty

. B(E2) t
1+ar

-1
= 40.81 ><1013E;5[ 2 ] (1+ar)”" [ps] (6)

where E,, are the energies of the emitted photons in keV and ar are the internal conversion
coefficients [21,23].

2.4. Global Best Fit

Based on the global systematics of available data, knowing the energy of the first 2,
state, E(2]") is sufficient for a prediction of the corresponding B(E2) 1 [e’b?] and T, [ps]
values [21]. Within the framework of the hydrodynamic model with irrotational flow, Bohr
and Mottelson [40,41] derived simple expressions for the T, values, namely

Ty &~ 0.6 x 104E~4Z272A1/3 [ps] 7)
for the small harmonic vibrations of spherical nuclei, and
T, ~ 1.4 x 104E~4Z272413 [ps] 8)

for the rotational degrees of freedom of axially symmetric nuclei [21]. Grodzins [42]
adopted this E~*Z~2 dependence in the above expressions to perform empirical fits on all
even—even nuclei and further replaced A'/3 with A.
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The above expressions have been updated and revised to establish the functional rela-
tionship between (E, A) and (E, 7,) that best describes the experimental data in Ref. [20].
The adopted values for 7,, excluding those for closed-shell nuclei, lead to the expres-
sion [21]:

7, = (1.59 +0.28) x 10¥E~*Z72A2/3 [ps] )

Using Equations (4) and (6), the corresponding B(E2) 1 and B, predictions are given
by [21]
B(E2) 1= (2.57 +0.45)E~1Z2A2/3 [2b?] (10)

and
Bo = (466 +41)E~1/2471 (11)

We should mention that in Ref. [43], an analysis of the evaluated data for the B(E2) 1s
in Ref. [23] has been performed using the “elemental” fit of Habs et al. [44], who introduced
a modification to the B(E2) formula of Raman et al. for nuclei located in the 50 < Z < 82
region of the nuclear chart. Their fit performs better than the Global Best Fit of Raman et al.
in some cases, however, it can lead to predictions of negative B(E2) 1 values, with large
uncertainties for neutron-rich nuclei (e.g., 26Q, 214.216,218pg) (for a detailed discussion on
the fits of Habs et al., see Refs. [43,44]). These non-physical predictions pose limits for the
Habs formalism outside the 50 < Z < 82 mass region, whereas Raman’s formalism, albeit
less accurate, is more robust and can safely be adopted across the nuclear chart.

The resulting values for the lifetimes 7(2]"), reduced transition probabilities B(E2) 1,
(intrinsic) quadrupole moments (Qp) Q, and B/ Bsp ratios are calculated using Equa-
tions (1)-(6) and are compared with the experimental data of Pritychenko et al. [23], as well
as with the theoretical predictions presented in Section 3.

3. Theoretical Models

In this section, we briefly discuss each of the models employed in this study and refer
occasionally to their symmetries. For a complete and detailed description of the models,
please refer to the original works (see the References section). These models have been used
for the calculation of reduced electric quadrupole transition probabilities, B(E2), electric
quadrupole moments Qp and Q, and the $, deformation parameters in the framework
of the nuclear collective model. The results presented later in this section are compared
with the available experimental data. In the case of the phenomenological model (see
Section 3.1 below), the energy levels for the ground-state band of the 927 184Hf isotopes
have been additionally determined. The structure of the excited levels is discussed in
Sections 3.1 and 4.

3.1. Phenomenological Model (PhM)

The phenomenological nuclear adiabatic model described by A. Bohr and B.R. Mottel-
son [11] has been central to explaining the properties of deformed nuclei. In their model,
the low-excitation states in even—even deformed nuclei are connected with the collective
rotations in axially symmetric nuclei. Despite its simplicity, this phenomenological expla-
nation allows for a description of a large set of experimental data for even—even deformed
nuclei while offering predictions of the many new properties of these deformed nuclei.

In Refs. [28,29,45], a phenomenological model (PhM), which takes into account the
non-adiabaticity effects, is proposed by considering the Coriolis mixing of the low-lying
states of positive parity in rotational bands and thus breaking the axial symmetry. The
aforementioned model has been implemented in this work to determine the energies of the
excited levels of the ground-state bands in the deformed '©2184Hf nuclei.

The starting point for this model is a nuclear Hamiltonian of the form [28]

H - H}’Ot + HK,K’ (12)

where H,; is the rotational part of the Hamiltonian and
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Hyg xr = widg xr — Wrot () (jx )k x X (I, K) Ok k741 (13)

with (jx) gk = (K|jx|K’) being the matrix element of the Coriolis coupling of the rotational
band members, wyy(I) the rotational frequency of the core, wi the energies of the band
heads, and
) 1/2
x(L,0) =1, x(I,1) = [1 - M} (14)
The complete energy of a state is found by solving the Schrodinger equation for the
nuclear Hamiltonian of Equation (12). It is equal to

Ey(I) = Ept(I) + &4(I) (15)

where E,: () is the energy of the rotational core and ¢, (I) is the eigenenergy corresponding
to the second term of the Hamiltonian of Equation (12) [28] (a detailed description of the
model’s Hamiltonian, eigenfunctions, and eigenenergies can be found in Refs. [28-30]).
The rotational core energy, E,(I), agrees with the ground-state energy of the rotational
bands in even—even deformed nuclei at the lower values of spin I [29].

For the rotational core, an effective value of the rotational frequency can be determined
from the available experimental data using the classical definition of the rotational frequency

dE

w= i (16)
giving [46]
" - Eexp‘(D _ Eexp.(l _ 2) a7)
ST - JT-D(I-2)
which, for higher levels of spin I, reduces to [29,46]
Ee*P-(I) — E&*P-(] — 2
gy = ETOZE 122 s
Hence, the effective moment of inertia becomes
d/I(I+1)

Topr=—S— 2 19
off dewss (19)

From Equations (17) and (19), we calculate the effective rotational frequency w,sr and
effective moment of inertia 7, ffs respectively. For low rotational frequencies, i.e., at low
spin values I S 87, J,¢r depends almost linearly on w? £ SO We can write

where Jp and J; are the inertial parameters of the rotational core, determined by the
least-squares fit in Equation (20).

Having determined the inertial parameters 7y, J1, we can employ the Harris parame-
terization for the calculation of the energy of the rotational ground-state band [47]:

1 3
Erot (1) = 5 Fowior (1) + 5 rewpor (1) (21)

I=/I(I+1) = Towrer(I) + Tiwy (1) (22)

where wy,; is the rotational angular frequency of the nuclei defined by the real root of the
cubic Equation (22) [28,29]:
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ot~ () + ()]}
I T 1/3
A1)+ )7

In the present work, we calculate w,f; and J,¢s from Equations (17) and (19) for the
first low-lying levels (up to I = 8%) of the g.s. band of the even—even 927184Hf isotopes. A
linear least-squares fit of Equation (20) is then performed to the aforementioned quantities
in order to obtain the values of Jy, J1, which are presented in Table 1. Based on these
values and Equation (21), we proceed to calculate the energies for the I = 0",...20; states
and compare them with the available experimental data [4]. These are shown in Table 2.
Regarding J), it increases as the number of nucleons grows, exhibiting a maximum at the
middle of the shell (A = 176). For isotopes 166-172Hf, the values of Jy, J; calculated in this
work are in good agreement with those in the earlier work of Ref. [47].

Table 1. Jy, J; values obtained within the framework of the phenomenological model for 162-184 ¢
(see text for details). A comparison of the experimental E (21+ ) values of Ref. [23] and the corre-
sponding values calculated within the framework of the phenomenological model (PhM) is also

shown.

Isotope Jo J1 Eth-(2]) ESP-(27)

(Z="72) [X10~2keV—1 72 [x10~8 keV—3 4] [keV] [keV]
162y¢ 0.880 13.804 262.249 285.000
164yt 1.327 14.623 199.610 210.700
16611f 1.821 17.266 153.912 158.640
168 1f 2.373 17.522 122.068 124.100
170R¢ 2.933 20.097 100.055 100.800
1729¢ 3.128 12.837 94.750 95.220
174¢ 3.276 11.366 90.728 90.985
176f 3.381 8.958 88.126 88.349
178 ¢ 3.206 6.822 93.019 93.180
180pyf 3.211 3.584 93.137 93.324
182p9¢ 3.063 4.440 97.485 97.790
18419f 2.800 5.465 106.349 107.100

Figures 1 and 2 show the dependence of the moment of inertia, J, (determined
through the known relation 27 = (41 —2)/(E; — Ej_5) [48], with E = E®?, E" for the
experimental and theoretical moments of inertia, respectively) on the squared angular
frequency of rotation w? (calculated using Equation (18) for E = E®*?, E™, as in the case
of J). The treatment with the phenomenological model leads to a centrifugal stretching
of the nucleus and an increase in [J with the rotational frequency. This increase is almost
linear for the lower values of spin (i.e., for I < 107). For high spin values, the emerging
nonlinearity is associated with the mixture of the ground-state band with other rotational
bands and with the decrease in nucleon pairing. Similar results are presented in Ref. [49],
where the cranked shell model Hamiltonian with pairing correlations, treated by the
particle-conserving method (PNC-CSM), is employed to investigate the upbending of the
experimental moments of inertia appearing in the neutron-rich 170-184Hf isotopes.



Symmetry 2023, 15, 196 8 of 22

th
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162-184Hf jsotopes calculated in the framework of the phenomenological model (PhM) using Equa-
tions (20) and (23), with the 7, J; values determined in this work (see Table 1). The E®*F- values are
taken from Refs. [4,23].

Table 2. Level energies (in MeV) and rotational frequencies w!, (in MeV h_l) for the even—even

Isotope 162 f 164 f 166 £
1 Eexp- Eth w %lt Eexp- Eth w %tt Eexp- Eth w :(’)lt
2F 0.285 0.262 0.183 0.211 0.200 0.148 0.158 0.154 0.119
4%* 0.730 0.709 0.253 0.587 0.577 0.220 0.470 0.465 0.185
67 1.293 1.269 0.302 1.085 1.072 0.270 0.897 0.889 0.234
8%}' 1.940 1.915 0.341 1.669 1.655 0.310 1.406 1.398 0.273
107 2.635 2.632 0.374 2.304 2.311 0.344 1.972 1.978 0.306
1217r 3.185 3.409 0.402 2.995 3.028 0.372 2.566 2.619 0.334
141Jr 3.567 4.239 0.427 3.618 3.799 0.398 — 3.312 0.359
16]'}' 4.068 5.116 0.450 — 4.619 0.421 — 4.053 0.381
1817r 4.653 6.036 0.470 — 5.482 0.442 — 4.836 0.402
20%Jr 5.310 6.996 0.489 — 6.386 0.461 — 5.658 0.421
Isotope 168 £ 170 £ 172 ¢
I Eexp- Eth w :gt Eexp- Eth w :lgt E&xp- Eth w :‘lgt
2F 0.124 0.122 0.097 0.101 0.100 0.080 0.095 0.095 0.076
4llr 0.386 0.383 0.159 0.322 0.320 0.135 0.309 0.308 0.133
61]' 0.757 0.753 0.207 0.643 0.639 0.181 0.628 0.626 0.182
8}“ 1.214 1.209 0.247 1.043 1.039 0.218 1.037 1.035 0.225
10 1.736 1.737 0.280 1.504 1.509 0.250 1.521 1.523 0.262
12]'}' 2.306 2.327 0.309 2.016 2.039 0.278 2.064 2.080 0.294
141F 2.858 2971 0.334 2.567 2.621 0.303 2.654 2.700 0.324
1617r 3.310 3.664 0.358 3.151 3.251 0.326 3.277 3.375 0.351
181Jr 3.833 4.401 0.379 3.768 3.923 0.346 3.919 4.101 0.375
20]1}' 4.440 5.178 0.398 4421 4.635 0.365 4.576 4.874 0.397
Isotope 1741 f 176 Hf 1781
1 Eexp- Eth w%[t Eexp- Eth w%lt Eexp- Eth w%lt
27 0.091 0.091 0.073 0.088 0.088 0.071 0.093 0.093 0.075
4]" 0.297 0.296 0.129 0.290 0.289 0.127 0.307 0.306 0.134
61F 0.608 0.606 0.178 0.597 0.595 0.177 0.632 0.631 0.188
8? 1.010 1.008 0.221 0.998 0.996 0.222 1.059 1.057 0.237
107 1.486 1.490 0.260 1.481 1.482 0.262 1.570 1.575 0.280
121* 2.021 2.044 0.294 2.035 2.044 0.299 2.150 2.177 0.320
14ljr 2.598 2.663 0.324 2.647 2.676 0.332 2.778 2.854 0.356
16]'}' 3.209 3.340 0.352 3.308 3.370 0.362 3.435 3.600 0.389
181F 3.857 4.070 0.378 4.011 4.123 0.390 4.119 4.409 0.420
20%r 4.551 4.850 0.401 — 4.929 0.416 4.837 5.277 0.448
Isotope 180 f 182 f 184yt
I Eexp- Eth w%lt Eexp- Eth wﬂ;t Eexp- Eth wii:tl)lt
21" 0.093 0.093 0.076 0.098 0.097 0.079 0.107 0.106 0.086
47 0.309 0.308 0.136 0.322 0.322 0.142 0.350 0.349 0.153
6llr 0.641 0.640 0.194 0.666 0.666 0.200 0.717 0.717 0.213
8%" 1.084 1.083 0.247 1.122 1.121 0.253 1.200 1.198 0.266
10 1.631 1.629 0.297 1.680 1.678 0.302 — 1.780 0.314
12ljr 2.274 2.271 0.344 2.332 2.329 0.347 — 2.452 0.357
14]'}' 3.005 3.003 0.387 3.065 3.065 0.388 — 3.207 0.396
16# 3.814 3.817 0.427 3.869 3.881 0.426 — 4.036 0.432
18ljr 4.682 4.709 0.464 4.734 4.769 0.461 — 4.933 0.465

20]'}' 5.554 5.674 0.499 — 5.725 0.494 — 5.893 0.495
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A more in-depth consideration of the phenomenological model would require us to
consider the eigenfunctions of the Hamiltonian (12), which contain the mixing amplitudes
of the various underlying states, for the calculation of the B(E2) 1 values. However,
in our simplified approach to this model, we instead calculated the 7(2;) lifetimes, the
B(E2) 1 values, and the f, deformation parameters using the Global Best Fit of Raman
et al. [21] from Equations (9)—(11), using the theoretical E(Zf ) energies resulting from
the phenomenological model. The rest of the observables (Qp, Q, and B,/ Bsp) were then
calculated with Equations (1), (2), and (5). The results are presented in Tables 3 and 4 and
plotted in Figure 3.
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Figure 1. Experimental vs. phenomenological model moments of inertia, 2.7 = (41 —2)/(E; — E;—3),
plotted against the squared angular frequencies of rotation w? = (E; — E;_)? /4 [48] for the even—
even 192-172Hf isotopes: (a) 92Hf, (b) '04Hf, (c) 19°H, (d) %Hf, (e) 17OHI, (f) 172Hf. Solid lines are
drawn to guide the eye. Experimental uncertainties are smaller than the data symbols.
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Figure 2. Same as in Figure 1 for the even—even 174-184 ¢ isotopes: (a) 174H¢, (b) 176Hf, (c) 178H,
(d) 180Hf, (e) 182H, (f) 184Hf.

3.2. Finite-Range Droplet Model (FRDM)

The finite-range droplet model (FRDM) is a global microscopic-macroscopic model
of nuclear structure, which was introduced in 1988 [50], and soon incorporated improve-
ments based on the AME1989 mass evaluation (FRDM92) [51]. The latest enhancement
(FRDM12) [52] included adjustments due to the AME2003 mass evaluation (see Figure 1 in
Ref. [52]). For our calculations, we use FRDM12 (hereafter referred to as FRDM in Figures
and Tables).

In the macroscopic-microscopic method, the total nuclear potential energy, calculated as
a function of shape, Z and N, can be expressed as the sum of a microscopic and a macroscopic
term. The microscopic terms represent the shell-plus-pairing correction [52], namely

Epot(Z, N, shape) = Eyac(Z, N,shape) + Esyp(Z, N, shape) (24)
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The finite-range droplet model, an improved version of the droplet model [53], is em-
ployed for the calculation of the macroscopic contribution of Equation (24). For the micro-
scopic part, proton/neutron shell and pairing corrections have to be taken into account.
The matrix elements of the single-particle Hamiltonian are generated from the basis of the
axial-symmetric harmonic-oscillator eigenfunctions. The shell correction is carried out us-
ing Strutinsky’s method [54], whereas for the pairing correction, the Lipkin—-Nogami [55,56]
version of the Bardeen—Cooper—Schrieffer (BCS) method is employed, which takes into
account in lowest order the effects associated with particle number fluctuations and restores
approximately the violation of the particle number that occurs in the BCS. A folded Yukawa
single-particle potential is assumed in both cases and a zero-point energy is added to the
calculated potential energy at the ground-state shape.

This version of the FRDM (FRDM12) allows for the calculation of several nuclear
properties in addition to the nuclear ground-state masses. Among these are the ground-
state deformation multipoles, calculated through the minimization of the nuclear potential
energy function with respect to the parameters ¢, €3, €4, and €, as these are defined in the
perturbed spheroid parameterization by Nilsson [57]. The f—-shape parameters can then be
derived using the relation

= [r(6,9)Y,(6,¢)d0
Bim = VAT 51¥8(6,4)d0 )

with the radius vector r expressed in the £ parametrization [52].

In this work, we used the values for the deformation parameters 8, and B4 given
in Ref. [52] to calculate the intrinsic quadrupole moments for the 2" state in even—even
162-184Hf jsotopes using the relation [52]

3ZR? 2 /5 20 /5 12
(B 3\ G S ) co) e

The above derivation requires Qg to assume the original value of the considered model
when the protons are distributed uniformly inside a liquid drop with a radius Ry and
deformations B, B4 (sharp-edged density model).

Having calculated the intrinsic electric quadrupole moments, the B(E2) 1 values can
be deduced using Equation (1). The rest of the calculated quantities are obtained using
Equations (2), (5) and (6). All the quantities are shown in Tables 3 and 4 and plotted in
Figure 3a—f.

Qo =

3.3. Hartree—Fock BCS with Skyrme MSk7 Model (HFBCS—-MSk7)

In the HFBCS-MSk7 model, the nuclear ground-state properties can be deduced
using the conventional HF+BCS model coupled with the Skyrme forces [58,59]. In this
framework, the ground-state wavefunction is expressed as an expansion of the single-
particle wavefunctions in a harmonic-oscillator basis. In addition, a 10-parameter Skyrme
interaction (MSk?7) is employed, along with a 2-parameter Wigner interaction and a 4-
parameter J-function pairing force. The Skyrme and pairing parameters for the MSk7
force are determined in Ref. [59] by fitting to the same dataset of nuclear masses as its
predecessor, the MSké6 force. These parameters are listed in Table A in Ref. [59].

For the case of deformed nuclei (see Ref. [59] for more details), the ETFSI-2 method [60]
(where ETFSI stands for extended Thomas—Fermi plus Strutinsky integral) is implemented to
derive the deformation parameters, which are subsequently used as a starting point in
the deformed HF calculations [58]. A correction is made for the spurious center-of-mass
motion and the spurious rotational energy of deformed nuclei is subtracted from the total
computed amount of energy, as calculated in Ref. [58].

The Skyrme part of the MSK7 force on which the HFBCS-1 table of the different
quantities in Ref. [59] is based has the usual form
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ujj = to(1 + x0Pr)d(7i)

1 R
+t(1+ lea)E{Psz‘s(rij) +he}
1, oo
+ (1 + sza)thij -6(7ij) Pij (27)

1 -
+ 8t3(1 + X3Pg)p75(rij)

i QA = S\ =
+ ﬁwo(‘fi +0)) - Pij % 0(7ij) Pij

In the above equation, P, is the two-body spin-exchange operator, whereas the ¢-
function pairing force can be expressed as [59]

Upair (1ij) = Vgd(rif) (28)

where the pairing-strength parameter V7, receives different values for protons and neutrons,
whereas it is slightly stronger for odd nucleons (V) than for even nucleons (V;q) (see
Ref. [58] for more details). As for the Wigner correction term, it has the form

Ew = Vye MN-2/4 (29)

The Skyrme pairing Vn*q, V,;7 and Wigner parameters Viy and A are determined via
a fit on the 1995 mass compilation (Audi and Wapstra). The rather standard HF-MSk7
formalism is summarized in Ref. [58].

Using the B2 and B4 deformation parameter values obtained from the HFBCS-1 table
in Ref. [59], we proceed to calculate the intrinsic quadrupole deformation Qy for the even—
even 162-184Hf isotopes using Equation (26). The rest of the physical quantities studied in
this work are subsequently deduced from Equations (1), (2), (5) and (6). The results are
shown in Tables 3 and 4 and plotted in Figure 3a—f.

3.4. Hartree—Fock—Bogoliubov with Gogny D1S interaction (HFB—Gogny D1S)

The microscopic Hartree-Fock-Bogoliubov (HFB) method with the Gogny D1S ef-
fective nucleon—nucleon interaction [61,62] is a powerful approach with good predictive
power in various aspects of nuclear structure [63]. Incorporating the mean-field approach,
a many-body, effective Hamiltonian for the nucleus is expressed as

A 1 A
H:;Ti+§i§juij (30)

with T; being the kinetic energy of the nucleon i and u;; being the Gogny effective nucleon-
nucleon interaction. The D1S parameterization of the Gogny force (Gogny D1S) [62]—a widely
tested effective interaction—is used in the works of Refs. [63,64] to calculate various nuclear
properties, among which are the B, ground-state deformation parameters.

Here, we give a brief description of the HFB-Gogny D1S model. Due to its finite range,
the D1S interaction can be used in the framework of the full Hartree-Fock-Bogoliubov
theory (HFB) to generate the nuclear pairing field in addition to the nuclear mean field [61],
which gives it an advantage over the Skyrme interaction. The D1S effective nucleon—
nucleon interaction is parameterized as
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2 2 232
rh—=r
2 =) exp [—(1]422)] x (W; + BjPy — HiPr — M;P,P;)
]

j=1

+ia(1+ 20200~ 1) [p (52 )] @)

+iWLs V120(F —72) X V 1z - (31 + 02)
2
+ (14+20:) (14 212) m——
71— 72|
In the above expression, the first term includes two finite ranges and the common
mixing of spin, isospin, and space exchange operators (Py, Pr and — P, P, respectively). A
functional of the nuclear density p is the second term; a zero-range, two-body spin-orbit
interaction is the third term; and the Coulomb repulsion among protons is the fourth term.
For the self-consistent solution of the HFB equations [64,65], an iterative method is
employed that is based on the minimization of the total energy of the nucleus

5<<‘1’|(H—)\2on—}\ZZ—)\NN)|<D>) =0 (32)

In this expression:

1.  H is the nuclear Hamiltonian of Equation (30).

|®) is the HFB wavefunction.

3. Az, Ay are the Lagrange parameters fixing the proton and neutron numbers, respec-
tively.

4. ), is the Lagrange parameter to fix the quadrupole moment g5, defined as

N

g20 = (P[Qo0|P) (33)

167t
Q20 = 4/ ?rzYzo (34)

A harmonic-oscillator basis with axial symmetry is used in this approach and the
deformation parameters f3, are given by

1 5
B = g2\ 9 720 (35)

In the above equation, R = 1.2A!/3 fm is the nuclear radius and g, is the quadrupole
moment of Equation (33), expressed in units of fm? [63]. The results obtained with the above
method are included in the AMEDEE database [64], where large-scale, axial mean-field
calculations from the proton to the neutron dripline were carried out.

In the case of the HFB-Gogny D1S model, the deformation parameters f,,;, were ob-
tained from Ref. [64] and used as the $, deformation parameters to calculate the quantities
shown in Tables 3 and 4 with the help of Equations (1), (2), and (4)—(6). The results are
plotted in Figure 3a—f.

with the operator Qg

3.5. Hatree—Fock—Bogoliubov UNEDF-1 (HFB-UNEDF-1)

In the framework of the Hartree-Fock-Bogoliubov theory, M. Kortelainen et al. [66]
proposed a new Skyrme-like energy density functional, UNDEF-1, suitable for the descrip-
tion of nuclei with strong elongation. In the nuclear density functional theory (DFT), the
total binding energy E of the nucleus is a functional of the one-body density p and the pair-
ing matrices g. In its quasilocal approximation, it can be expressed as a three-dimensional
(3D) spatial integral [66]:
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Elp,p] = [ d7H(7)
- / PENP) + x0(7) + 21 () (36)

+X(7) + E5 (7) + et (7)]

where H (7) is the energy density, which is quasilocal, time-even, scalar, isoscalar, and real.
It is usually broken down into the kinetic energy X" (7); isoscalar and isovector particle-
hole energy densities x;(7), i = 0,1; pairing energy x(F); and Coulomb terms (E5%* (7),
& g}‘c’é‘l( )). We will not present here the full theoretical framework related to UNEDF-1 but
refer the reader to Ref. [66] and the references therein. The results were obtained using the
solver HFBTHO in the axial-symmetric harmonic-oscillator basis and the Lipkin—-Nogami
version of the BCS theory. These results, which are available on the Mass Explorer [67]
website, were obtained with large-scale DFT calculations focusing on the ground-state
properties of even—even nuclei across the nuclear chart.

In this work, we use the 8, deformation parameters obtained from the HFB formalism
with the UNEDEF-1 energy density functional [67] to calculate the quantities shown in

Tables 3 and 4 using Equations (1), (2), and (4)—(6). The results are plotted in Figure 3a—f.

3.6. Relativistic Hartree—Bogoliubov Covariant Energy Density Functional NL3* (RHB-NL3*)

Density functional theory has proven to be a universal and powerful tool in nuclear
structure theory, showing great success in the description of various nuclear phenomena
spanning the full range of the periodic table [68]. The form of DFT is determined by
symmetry arguments and simplicity. The remaining parameter sets are deduced by fitting
them to the experimental data. The relativistic (covariant) DFTs (CDFTs) provide some
of the most interesting cases among the existing nuclear DFTs, respecting the Lorentz
covariance while taking advantage of the basic properties of QCD at low energies such
as symmetries and separation of scales. In this work, we consider the large-scale axial
relativistic Hartree-Bogoliubov calculations of Abgemava et al. [69,70] and employ the
covariant density functional NL3* [71], a nonlinear nucleon-meson coupling model.

Relativistic mean-field (RMF) theory [72], which is based on the Walecka model [73,74],
is the starting point in the development of a covariant density functional (CDF). In this
model, the exchange of phenomenological mesons drives the interaction of nucleons. In all
the CDFs developed so far, two assumptions have been essential [75,76]: (i) the mean-field
approximation in which only the nucleonic fields are quantized and the nucleons move
independently in classical meson fields depending on the nuclear densities and currents in
a self-consistent way and (ii) the no-sea approximation in which vacuum polarization and
the contributions arising from the negative energy solutions are not explicitly taken into
account.

The starting point of the NL3* CDFT is a standard Lagrangian density of the form

L= P[y(id — guw — gpﬁ% —eA) —m — ool

1 1 1
7(80) - Emzaz ZLQF‘VQW + Emi,wz (37)
1 = 1 1

— ZLRWRW mop” — 2 FwF"

containing nucleons of mass m described by the Dirac spinors ¢ and various relativistic
fields characterized by the spin, parity, and isospin quantum numbers. These are effective
fields that are mediated by mesons characterizing the properties of the possible relativistic
fields in the effective Dirac equation. The latter corresponds to the Kohn-Sham equa-
tion (KS) in the non-relativistic case. It is only for simplicity that the conventional names
o(I"=0",T=0),w(I™=1",T=0)and p(I” =1,T = 1) are used. The electromag-
netic field A is also included in the above expression [75] (for a more detailed definition
and description of the various quantities used in the above Lagrangian, see Ref. [72]).
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Table 3. Values of the reduced transition matrix elements B(E2;0{" — 2{) and the lifetimes 7(2;") (see
text for more details about the relevant calculations). The results are compared with the experimental
values [4,22,23]. Predictions for isotopes 182,18414f for which no experimental data exist, are denoted
in bold.

HFB-

Isotope Exp. Global Fit PhM FRDM Hl\lj[gg" Gogny U&Fg;_l RHB-NL3*
D1S
B(E2;0{ — 2) [¢* b?]
162py¢ 1.34(10) 1.6(3) 1.710 2.109 2.230 2.208 2.287 2.143
164pqf 1.82(17) 2.1(4) 2.228 2.774 3.046 3.383 2.953 2.809
166 £ 3467017 2.8(5) 2.866 3.452 3.407 4.766 3.744 3.692
168 1f 4.393(36) 3.5(6) 3.585 4.240 4.815 5.925 5.118 5.283
170p¢ 5.11(18) 4.3(8) 4.339 5.148 5.719 6.514 6.138 6.132
172¢ 5.77(10) 4.5(8) 4.546 5.172 6.257 6.935 6.511 6.421
174p9¢ 5.38(20) 4.7(8) 4.711 5.592 7.086 7.002 6.480 6.132
176 ¢ 5.42(17) 4.8(8) 4.814 5.138 5.364 6.620 5.967 5.695
178 ¢ 4.736(63) 4.5(8) 4.526 5.103 4.633 6.087 5.145 5.375
180t 4.6470(30) 4.5(8) 4.487 4.638 3.333 5.567 4.656 5.093
1821f — 4.2(7) 4.255 4.656 3.949 5.061 4.332 4.813
1841f — 3.8(7) 3.872 4.191 4.376 4.435 3.934 4.401
7(2]) [psl

162py¢ 148(11) 126(22) 176 94 89 90 87 93

o4 f 435(41) 376(66) 467 286 261 235 269 283
166 1f 717(33) 895(157) 1010 721 731 522 665 674
168 yf 1239(10) 1548(271) 1654 1287 1134 921 1067 1033
170H¢ 1740(61) 2074(363) 2137 1735 1562 1371 1455 1457
172Hf 171013 2199(385) 2243 1924 1590 1435 1528 1550
174 f 1986177 2291(401) 2317 1925 1519 1537 1661 1755
176 ¢ 2069787 2350(411) 2373 2196 2103 1704 1891 1981
178 ¢ 2168(29) 2288(401) 2304 2026 2231 1698 2009 1923
180Hf 2203.9(14) 2303(403) 2322 2224 3094 1853 2215 2025
182p9f — 2236(392) 2265 2038 2403 1875 2190 1971
184 ¢ — 2063(376) 2122 1893 1813 1789 2017 1803

The meson masses i, my, and m, and the respective coupling constants g, gw,
and g, are entered into the Lagrangian of Equation (37), which was first introduced by
Walecka [73,74]. This model, however, was unsuccessful in accurately describing the surface
properties of finite nuclei and, in particular, the incompressibility. Therefore, in Ref. [77]
Boguta and Bodmer introduced an additional density dependence using a nonlinear meson
coupling. In that scheme, the %m%az term in Equation (37) was replaced with

U(0) = 3120+ 5820 + 1330 (38)
2 3 4

The NL3* parameter fit leads to a good description of nuclear masses, simultaneously
providing good results for the collective properties of the rotational and vibrational charac-
ter [69,70,75]. The parameters of NL3*, along with their values, are given in Refs. [70,75].

Following a similar path to the case of the HFB-Gogny D1S model, we proceed
to calculate the various observables. The starting point for our calculations is the B,
deformation parameters obtained from Ref. [67] in the framework of the relativistic Hartree—
Bogoliubov (RHB) theory using the NL3* covariant energy density functional (labeled
RHB-NL3* in the tables and graphs). The results are presented in Tables 3 and 4 and
plotted in Figure 3a—f.
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Table 4. Values of the B,/ Bsp ratios, intrinsic quadrupole moments Qy, and electric quadrupole
moments Q (see text for more details about the relevant calculations). The “experimental” values are
calculated from Equations (1), (2), (4), and (5) using the experimental B(E2)s of Ref. [23] (see also
Table 3). Predictions for isotopes '82184Hf, for which no experimental data exist, are denoted in bold.

HFB-
Isotope “Exp.” Global Fit PhM FRDM Hl\lj[gg" Gogny U&Fg;_l RHB-NL3*
D1S
B2/Bsp
162p1f 7.13(27) 7.7(7) 8.044 8.287 8.604 9.147 9.311 9.011
164yt 8.2(4) 8.9(8) 9.107 9.328 9.962 11.230 10.493 10.234
1661 f 11.277928 10.1(9) 10.247 10.325 10.415 13.223 11.720 11.638
1681 f 12.59(5) 11.3(10) 11.369 11.366 12.226 14.626 13.594 13.811
170p¢ 13.48(24) 12.4(11) 12.409 12.408 13.132 15.215 14.770 14.762
172f 14.22(14) 12.6(11) 12.604 12.453 13.585 15.577 15.093 14.989
174¢ 13.63(27) 12.7(11) 12.732 13.042 14.491 15.532 14.943 14.536
176 f 13.54(23) 12.8(11) 12.772 12.589 12.679 14.989 14.230 13.902
178 ¢ 12.58(8) 12.3(11) 12.292 12.589 11.774 14.264 13.115 13.404
180 f 12.371(4) 12.1(11) 12.148 12.091 9.962 13.540 12.383 12.951
182p9f — 11.7(10) 11.743 12.136 10.868 12.815 11.856 12.498
184 ¢ — 11.1(10) 11.121 11.592 11.321 11.909 11.217 11.864
Qo [b]
162py¢ 3.67(27) 4.0(7) 4.146 4.604 4.735 4.711 4.795 4.641
164pyf 4.28(40) 4.6(8) 4.732 5.280 5.534 5.831 5.449 5.314
166 5.9003, 5.3(9) 5.368 5.891 5.852 6.922 6.135 6.092
168 ¢ 6.650(54) 6.0(10) 6.003 6.529 6.958 7.718 7.173 7.288
170H¢ 7.17(25) 6.6(12) 6.605 7.194 7.582 8.092 7.856 7.851
172q¢ 7.62(13) 6.7(12) 6.761 7.211 7.931 8.350 8.090 8.034
174¢ 7.35(27) 6.9(12) 6.882 7.498 8.440 8.390 8.071 7.852
176 ¢ 7.38(23) 6.9(12) 6.957 7.187 7.344 8.158 7.745 7.567
178 ¢ 6.900(92) 6.7(12) 6.746 7.162 6.825 7.823 7.192 7.351
180Hf 6.8300(44) 6.7(12) 6.716 6.828 5.788 7.481 6.842 7.155
182p9f — 6.5(11) 6.541 6.841 6.300 7.133 6.599 6.956
184 ¢ — 6.2(11) 6.239 6.491 6.633 6.677 6.289 6.652
Q[b]
162py¢ —1.05(8) —1.14(20) —1.184 —1.316 —1.353 —1.346 —1.370 —1.326
164yf —1.22(11) —1.32(23) —1.352 —1.509 —1.581 —1.666 —1.557 —1.518
166 -1.69708  —151(26) —1.534 —1.683 —1.672 -1.978 -1.753 —1.741
168 ¢ —1.899(16) -1.7(3) —1.715 —1.865 —1.988 —2.205 —2.049 —2.082
170p¢ —2.05(7) —1.9(3) —1.887 —2.055 —2.166 —2.312 —2.244 —2.243
1729¢ —2.18(4) —1.9(3) —1.932 —2.060 —2.266 —2.386 —2.311 —2.295
174p¢ —2.10(8) —2.0(3) —1.966 —2.142 —2411 —-2.397 —2.306 —2.243
176 ¢ —2.11(7) —2.0(3) —1.988 —2.053 —2.098 —2.331 —2.213 —2.162
178 ¢ —1.971(26) —1.93) —1.927 —2.046 —1.950 —2.235 —2.055 —2.100
180t —1.9528(13) —1.9(3) —1.919 —1.951 —1.654 —2.137 —1.955 —2.044
182p9f — —1.9(3) —1.869 —1.955 —1.800 —2.038 —1.885 —1.988
184 ¢ — —1.8(3) —1.783 —1.854 —1.895 —1.908 —1.797 —1.901

4. Results and Discussion

The various observables calculated in this work for the even—even 192-184Hf isotopes
with the six different models described in Section 3 are shown in Tables 3 and 4 and plotted
in Figure 3a—f. These are compared with existing experimental data and with Raman’s
Global Best Fit predictions [21]. We should clarify that in the case of the quantities labeled
“Exp.” in Table 4, the “experimental” values refer to the values resulting from Equations (1),
(2), (4), and (5) using the experimental B(E2)s of Ref. [23]. We should also mention that
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experimental data for Q exist for the cases of isotopes 176,178, 1801 [78]. Those values are
close to the ones presented in Table 4. All of the theoretical predictions of the models
considered in this work seem to be able to reproduce the trend of the experimental data
fairly well.

Regarding the energies of the low-lying excited states of the ground-state bands in
the even—even 92-184Hf, the phenomenological model employed in this work led to a very
good description of the first low-lying energy levels, yielding an excellent agreement with
the experimental values of Refs. [23,43] for the E(2]") levels (see Tables 1 and 2), as well as
with the theoretical results in the earlier works of Refs. [28-30,47]. The anti-correlation effect
between the E(2]") energies and the deformation parameters 3, was observed as expected.
However, the energy difference AE(I) = E™(I) — E®*P(I) presented an increase with the
increasing angular momentum I. This is due to the occurrence of the non-adiabaticity of
the energy rotational bands in large spin [28,29].

For the B(E2;0; — 2/) reduced transition rates, the intrinsic quadrupole moments
Qo and the electric quadrupole moments Q, the FRDM led to an improved description of
the available experimental data compared to the other models considered in this study. The
HFB formalism slightly overestimated the Q, Qp, and B(E2) 1 values when the Gogny D1S
interaction was used (HFB-Gogny D1S model, green squares in graphs). This behavior
seems to improve slightly in the case of the Skyrme-type energy density functional UNEDF-
1 (orange triangles in graphs). Similar behavior was observed in the case of the relativistic
(covariant) energy density functional NL3* (RHB-NL3*, purple triangles in graphs). The
aforementioned models (HFB-Gogny D1S, HFB-UNEDF-1, RHB-NL3*) are based on
the HFB formalism, differing in the implementation (nonrelativistic, relativistic) and the
effective interactions used. It is interesting that, besides their differences, they exhibited
a similar trend of slightly overestimating the Qp, Q, and B(E2) 1 values compared to
the experimental data in Ref. [23]. Similar conclusions regarding various quantities were
drawn, for instance, in the case of Hg isotopes [79] regarding the comparison of self-
consistent Skyrme and Gogny forces and for heavier nuclei in the transactinide region
around nobelium regarding the performance of Skyrme, Gogny, and covariant energy
density functionals [80].

Regarding the B,/ Bsp ratios, the “experimental” values in Table 4 were calculated
from the adopted B(E2) 1 values of Ref. [23] using the rotational model (Equation (4)).
The “experimental” values of Ref. [23] are almost equal to those of Ref. [21], which is to be
expected since the B(E2) 1 values obtained by Pritychenko et al. and Raman et al. coincided
up to the first decimal digit. Nuclear deformations are difficult to determine experimentally;
therefore, deducing the deformation values from experimental data is associated with a
considerable model dependence. However, the work of Raman and collaborators [20,21]
in which Equation (4) was used seems to be the most common pathway for deducing
deformations from experiments and conducting a systematic comparison of various model
calculations [52]. All of the examined models were successful in reproducing the trend of
the “experimental” B,/ Bsp ratios (Figure 3b), which were well over unity, revealing the
collective quadrupole motion in the neutron-rich even—even Hf isotopes and indicating a
correlation between deformation and the filling of major shells. Depending on the model,
the maximum deformation was observed in either 172Hf or 174Hf, whereas the maximum
value was observed “experimentally” for A = 172, four neutrons away from the mid-shell
A = 176. This differs from the case of the Yb isotopes [37] in which depending on the
model, the maximum deformation was observed four or two neurons away from the
mid-shell (72Yb or 17°Yb) but the “experimental” one was observed two neutrons away
from the mid-shell 74Yb. We should note that the B, values used to determine the 8,/ Bsp
ratios in this work were taken from the relevant references for each model. Furthermore, it
should be stressed that depending on the availability of data, the 8, values refer to either
(i) the quadratic deformation of the mass distribution (for models FRDM, HFB-Gogny-D1S,
and HFBCS-MSK?), or (ii) the quadratic deformation of the nuclear charge distribution.
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However, in this mass region, the two deformation parameters are expected to differ by
less than 5%.
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Figure 3. 8, deformation parameters (a), B2/ Bsp ratios (b), intrinsic Qp (c) and electric quadrupole
moments Q (d), B(E2; Of — 21") reduced electric transition probabilities (e), and lifetimes
7(2]") (f) calculated for the even—even 1627 184Hf isotopes using the models presented in Section 3
(for abbreviations, see text). The theoretical predictions are compared with the global fit [21] values
(cyan-shaded areas in the graphs), as well as the experimental data where available [4,23].

Based on the good agreement between the theoretical models studied in this work and
the experimental data, we attempted to further extend the results to the neutron-rich nuclei
182Hf and '8*Hf for which no experimental data other than the E(2]") exist. The predictions
regarding the 8, deformation parameters, B,/ Bsp ratios, intrinsic quadrupole moments
Qo and electric quadrupole moments Q, B(E2;0{ — 2;) reduced electric quadrupole
transition probabilities, and lifetimes 7(2;") are presented in Tables 3 and 4 and plotted in
Figure 3a—f. It is encouraging that the spread of the values among the different theoretical



Symmetry 2023, 15, 196

19 of 22

References

models for each quantity we examined decreases toward the more neutron-rich isotopes and
is smaller than that of the global model, thus reducing the uncertainty of our predictions.

5. Conclusions

In the framework of the collective model, we conclude that the quadrupole moments
are successfully calculated for a number of permanently deformed even—even nuclei belong-
ing to the Hf isotopic chain in the rare-earth part of the nuclear chart. A B(E2;0; — 2")
data compilation was assembled for the even—even 102-184Hf isotopes using six different
models. Based on the deformation parameters ,, other physical quantities were addi-
tionally calculated, providing further insight into the phenomena related to the nuclear
symmetries defining the shape of the nucleus. The B,/Bsp ratio is considerably greater
than the unity, indicating that these nuclei demonstrate greater quadrupole deformations
than would be expected from shell model predictions.

In this context, the sub-shell structure seems to be important. Some theoretical in-
vestigations [51,81,82] predict that the maximum quadrupole deformation occurs below
N = 104 within an isotopic chain, whereas some available experimental data suggest that
the deformations increase as the proton number decreases below the mid-shell [83,84]. The
strength of the E2 transitions between successive levels is of importance for clarifying some
ambiguities in the structure of the observed states.

Based on the good agreement between the results of the theoretical models and the
experimental data for the 1927184Hf isotopes, we made predictions for the lifetimes of the
2] state, the B(E2;0{ — 2;") reduced transition matrix elements, the intrinsic quadrupole
moments Qy, the electric quadrupole moments Q, and the B,/ Bsp ratios for isotopes 82Hf
and 184Hf (denoted in bold in Tables 3 and 4) for which no information exists other than
the energy of the 2" state. This newly acquired information can serve as a comprehensive
guide for current and future experiments focused on neutron-rich hafnium isotopes.
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