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Abstract

Conformal field theory has varied applications, ranging from critical phenomena in sta-
tistical and condensed matter physics, to formal aspects of quantum gravity. In recent
years, the conformal bootstrap has become one of the most promising frameworks to study
conformal field theory, both at the perturbative and non-perturbative level. In this thesis,
we consider two extensions of the conformal bootstrap: the addition of supersymmetry,
and the addition of conformal defects. Both of these extensions have rich physical appli-
cations, that we discuss in the two main parts of the thesis. In the first part, we present a
pedagogical introduction to conformal field theory, the bootstrap program, supersymmetry
and conformal defects. In the second part, we discuss several applications of these general
methods.

Zusammenfassung

Die konforme Feldtheorie hat vielfältige Anwendungen, die von kritischen Phänomenen
in der Statistik und der Physik der kondensierten Materie bis hin zu formalen Aspekten
der Quantengravitation reichen. In den letzten Jahren hat sich der konforme Bootstrap
zu einem der vielversprechendsten Frameworks zum Studium der konformen Feldtheorie
entwickelt, sowohl auf störungsbezogener als auch auf nicht störungsbezogener Ebene. In
dieser Arbeit betrachten wir zwei Erweiterungen des konformen Bootstrap: das Hinzufügen
von Supersymmetrie und das Hinzufügen von konformen Defekten. Beide dieser Modifika-
tionen haben reiche physikalische Anwendungen, die wir in den beiden Hauptteilen der
Dissertation diskutieren. Im ersten Teil präsentieren wir eine pädagogische Einführung
in die konforme Feldtheorie, das Bootstrap-Programm, Supersymmetrie und konforme De-
fekte. Im zweiten Teil diskutieren wir mehrere Anwendungen dieser allgemeinen Methoden.
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Chapter 1

Introduction

The measure of greatness in a scientific idea
is the extent to which it stimulates thought
and opens up new lines of research.

Paul Dirac [8]

In theoretical physics, to bootstrap means to answer physics problems using only basic
consistency conditions. And according to Dirac’s definition, bootstrapping is a great idea.
Many exciting research directions are “bootstrappy”: from high-loop scattering amplitude
calculations, to constraining the space of UV-complete effective field theories. Because the
bootstrap is such a varied subject, in this work we focus on one of its flavors: the conformal
bootstrap.

The conformal bootstrap is a framework to study Conformal Field Theory (CFT) us-
ing general principles such as symmetry and unitarity. Because CFT describes interesting
phenomena in many different branches of physics, the conformal bootstrap has found nu-
merous applications, some of which we discuss in section 1.1. In section 1.2, we give a
brief overview of the conformal bootstrap program, while in section 1.3 we discuss the ad-
vantages of applying this program to supersymmetric theories and conformal defects. We
conclude in section 1.4 with a brief overview of the rest of this thesis.
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Chapter 1. Introduction

1.1 Applications of conformal field theories

Conformal field theory is important due to its varied applications, which range from critical
phenomena in statistical and condensed matter physics, to formal aspects such as string
theory and the AdS/CFT correspondence. Below we given a list of applications of CFT.

Critical phenomena in statistical physics is one of the main applications of conformal
field theory. The history of how physicists understood the connection between critical
phenomena and CFT is a fascinating subject. Initially, physicists realized that second-
order phase transitions can be understood from the existence of fluctuations at all length
scales, or more precisely, from the existence of scale invariance. Because of long-distance
correlations, it is natural to study second-order phase transitions in the continuum limit,
which is described by Euclidean quantum field theory. In most situations, a scale-invariant
quantum field theory is also invariant under a larger symmetry group: the conformal group.
In conclusion, the modern perspective is that conformal field theories describe second-order
phase transitions.

A remarkable property of critical phenomena is universality, namely that one CFT
describes critical properties of several seemingly different systems. In other words, at the
critical point the microscopic details of a model are not important; instead, only robust
properties such as global symmetries determine which CFT describes the model. The 3d
Ising CFT provides perhaps the simplest example. The universality class of this CFT de-
scribes the 3d Ising model at its critical temperature, as well as the liquid–vapor transition
of water, or the phase transition of uniaxial magnets. Another example with experimental
applications is the O(2) CFT, which describes the critical point of the XY model, as well
as the superfluid transition in 4He. Finally, the O(3) CFT appears at the critical temper-
ature of the Heisenberg model, and describes ferromagnetic phase transitions in isotropic
magnets. A comprehensive review of applications of CFT to critical phenomena can be
found in [9].

Although the previous examples are three dimensional, critical phenomena in two di-
mensions is also described by conformal field theory. However, two-dimensional CFT is
significantly different compared to CFT in higher dimensions, because the two-dimensional
conformal algebra is infinite dimensional. The infinite-dimensional conformal symmetry
was used in [10] to solve a family of two-dimensional CFTs called minimal models. Many
minimal models corresponds to well-known statistical systems. For instance, one of them
describes the critical 2d Ising model, while another describes the critical 3-state Potts

4



Chapter 1. Introduction

model. Although two-dimensional CFT is a fascinating subject, it will not be discussed in
this thesis. The interested reader can find good introductions in [11–13].

Quantum phase transitions are another relevant application of CFT. In a quantum
phase transition, one considers a many-body system that lives on a lattice, and the critical
point is reached by tunning parameters in its quantum Hamiltonian. Because temperature
is not involved in the process, criticality is reached due to large quantum fluctuations rather
than large thermal fluctuations. As an example, consider a thin-film superconductor, which
is described by a two-dimensional lattice that evolves in time by means of a Hamiltonian.
The CFT that describes the quantum critical point naturally lives in 2+1 dimensions, and it
is none other than the Wick rotation of the O(2) CFT. More generally, the quantum phase
transition of a p-dimension lattice is described by a Lorentzian CFT in p+ 1 dimensions.

In the context of particle physics, CFT is valuable in connection to Renormalization
Group (RG) flows. A QFT can be thought of as a microscopic model in the UV, that
evolves under RG flow towards long distances, namely the IR. The physics in the deep IR
is described either by a gapped phase, a phase with massless particles, or a scale invariant
phase described by CFT. A simple example of a CFT phase is the conformal window of
QCD with Nc colors and Nf flavors. By choosing Nf .

11
2 Nc, the beta function shows

that there is an IR fixed point of the RG flow: by scale invariance, the fixed point admits
a CFT description. More generally, if the space of QFTs is viewed as the as the space
of RG flows, then CFTs are points where the flows can end. In this vision, QFTs can
be organized in equivalence classes depending on their IR phases; this is the concept of
universality previously discussed, where several microscopic models can lead to the same
physics at long distances.

Finally, conformal field theory has many applications to formal aspects of theoretical
physics. As a first example, the worldsheet formulation of string theory is consistent
as long as the worldsheet is conformally invariant, connecting the fields of 2d CFT and
string theory. Secondly, in the AdS/CFT correspondence CFT provides a non-perturbative
definition of the meaning of quantum gravity in AdS background. Although being more
than twenty years old, AdS/CFT is still a very fruitful area of research. Finally, the study
of dualities is a major subject where many of the known examples are given by CFTs. This
list is by no means complete; nowadays CFT is connected to so many topics, ranging from
scattering amplitudes to quantum information, that giving a comprehensive review would
be a formidable task.

5



Chapter 1. Introduction

1.2 The conformal bootstrap

The previous list of applications demonstrates that CFT explains interesting physical phe-
nomena. It is therefore necessary to understand and solve CFT, which is unfortunately a
complicated task. One challenge is that due to scale invariance, it is hard to find effective
descriptions that neglect unimportant effects from higher scales. A manifestation of this is
the lack of small parameters to expand on.

Several methods circumvent the lack of small parameters, and allow to study CFTs
perturbatively. One such method is the high temperature expansion, that consists on
expanding the partition function of a lattice model to high order in 1/T , and then extrap-
olating to the critical temperature Tc. An alternative consists on formulating a continuum
model in 4 − ε dimensions, use perturbation theory around ε = 0, and then extrapolate
to ε = 1 to study three-dimensional CFT. Finally, there is the large-N expansion, where
one expands observables in the O(N) CFT in powers of 1/N , and extrapolates to low
values of N at the end. These three methods can be problematic because of the need of
uncontrolled extrapolations to reach the physically relevant regime. That is, to reach the
critical temperature Tc, the physical dimension d = 3, or the symmetry group O(N) for
N = 1, 2, 3, one incurs in errors that cannot be bounded accurately. Although the per-
turbative methods often give results consistent with each other and with experiment, one
might hope to find a more rigorous approach.

Monte-Carlo simulations are a powerful alternative to perturbative methods. In Monte-
Carlo simulations, observables are calculated from a lattice model by averaging over random
samples. A downside of Monte-Carlo methods is the need to extrapolate to the infinite
volume limit, but all in all, Monte-Carlo methods are the most reliable of the ones presented
so far. However, there are two somewhat philosophical problems that apply both to the
perturbative and numerical methods. First, these methods need a microscopic model from
which to extract properties of the CFT, which is universal. Second, these methods do
not exploit the conformal symmetry enjoyed by the critical point. Instead, it would be
desirable to have a method where universality and conformal symmetry are built in from
the beginning, or in other words, a method that studies CFT directly without resorting to
particular microscopic models.

The conformal bootstrap is such a framework. In the conformal bootstrap approach, one
uses conformal invariance to derive properties that any CFT should obey. Actually, these
properties can be promoted to a set of axioms that define conformal field theory, and which

6



Chapter 1. Introduction

are consistent with the Wightman and Osterwalder-Schrader axioms [14, 15]. However,
unlike other axiomatic approaches, the conformal bootstrap is a powerful calculational
framework. Indeed, the CFT axioms imply an infinite set of equations called crossing or
bootstrap equations. Pictorically, the crossing equations read

∑
∆,`

Oi

Oj

Ol

Ok

O∆,`
=

∑
∆,`

Oi Ol

Oj Ok

O∆,` . (1.1)

These equations are very constraining, allowing the conformal bootstrap to make quan-
titative predictions about CFT. For many years, however, it was not understood how to
extract information from crossing equations in d ≥ 3. In 2000 this started to change,
because Dolan and Osborn [16] obtained closed-form expressions for conformal blocks, the
building blocks of the crossing equation. Thanks to that, in 2008 the work of Rattazzi,
Rychkov, Tonni and Vichi [17] proposed a numerical algorithm that constrains the space of
solutions to crossing. Since then, the conformal bootstrap has become an extremely active
research topic, which has reshaped our understanding of conformal field theory. Many of
these exciting developments will be discussed in later chapters. In the rest of the intro-
duction, we direct our attention to supersymmetry and defects, two topics that will be of
central importance in this thesis.

1.3 Supersymmetry and Defects

Because the conformal bootstrap program is such a wide subject, this thesis focuses on two
of its applications: superconformal field theories and conformal defects. Below we show
applications of these subjects, and argue why the conformal bootstrap is a good framework
to approach them.

Superconformal field theory (SCFT) is a rich subject that has attracted interest for
several reasons.1 The first reason is that the large symmetry algebra of SCFT gives ana-
lytical control on part of their dynamics. The extra control manifests itself in the existence
of protected quantities: scaling dimensions and low-point functions of protected opera-
tors; the expectation value of non-local operators such as supersymmetric Wilson loops;

1Although supersymmetry has been intensively studied in connection to possible phenomenological ap-
plications, these play no role in our discussion.
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Chapter 1. Introduction

the superconformal index; etc. Often, protected quantities can be computed using non-
renormalization theorems, supersymmetric localization, or appealing to protected sectors
such as the chiral algebra in 4d N ≥ 2 theories. Another reason for the interest in SCFT is
that some highly-supersymmetric models have holographic duals that give a handle on their
strong coupling behavior. Additionally, since SCFTs are under better analytical control,
there is hope that a classification program can be accomplished. For example, some believe
that 6d (2, 0) theory and 4d N = 4 SYM are the unique maximally-supersymmetric models
in their respective dimensions, up to a choice of Lie algebra. It would be exciting if the
uniqueness is rigorously proven, or if a similar classification is found for the non-maximally
supersymmetric case, where many SCFTs are known to exist. Finally, coming back to
experimental applications, 3d SCFTs with low amount of supersymmetry might exist at
the boundary of topological phases and could potentially be observed in the lab [18,19].

There are several reasons why the conformal bootstrap works well in combination with
supersymmetry. First, because many newly discovered SCFTs do not have Lagrangian
descriptions, a non-perturbative method like the superconformal bootstrap is perhaps the
only way to study them. Second, protected quantities can be used as input in the cross-
ing equations, making them more constraining, and then use these crossing equations to
obtain information of unprotected observables. The advantage is that the predictions for
unprotected observables often could not have been obtained by any other methods. Finally,
because the conformal bootstrap is a general and agnostic method, it might be the perfect
tool to address the classification program for SCFTs.

Defects are the second topic that we discuss in detail throughout the thesis. In QFT
defects are non-local operators, that is, operators that extend on a submanifold of space-
time. In the study of CFT it is natural to focus on conformal defects, which preserve part
of the conformal symmetry of the ambient CFT. However, for the purpose of illustration,
we show applications of general defects, that range from gauge theory to condensed matter
physics. As a first example, in gauge theories Wilson and ’t Hooft operators are line defects
which behave as non-local order parameters, because they allow to distinguish the confin-
ing phase. In statistical and condensed matter physics, defects describe phenomena with
an interplay between micro and macroscopic properties of the critical phase. Indeed, the
prime example of defect is a boundary, which captures the finite size of physical systems. A
perhaps less familiar example is a point-like impurity in a quantum critical point. Because
it extends through the time direction, such an impurity can be described as a line defect.
Finally, open string theory provides a more formal example, where the boundary of the

8



Chapter 1. Introduction

string can be understood as a defect from the worldsheet perspective, while D-branes are
defects from the target-space perspective.

Because of their many applications, understanding defects is a necessary endeavor.
However, as is the case of regular CFT, the study of defects can be quite challenging.
One one hand, perturbative methods such as ε–expansion or large-N expansion lead to
uncontrolled errors. On the other hand, defects with different microscopic origin can be
described by the same universal defect CFT. This calls for an extension of the conformal
bootstrap program to include defects. Such a program, which extends the CFT axioms
and crossing equations to incorporate defects, will be one of the recurring topics of this
thesis.

1.4 Structure of the thesis

The goal of the thesis is to advance our understanding of superconformal field theories,
conformal defects, and often a combination of both. Because many similar ideas are used
in these studies, the purpose of part I is to give a comprehensive introduction to the needed
background. Each chapter covers a topic that will be of importance later in the thesis:
basics of conformal bootstrap, numerical methods, analytical methods, superconformal
theories, and defects. Although some of these topics have been reviewed extensively in the
literature, superconformal theories and conformal defects lack beginner-friendly reviews.
Therefore, one of our goals is to introduce the subjects in a clear and simple way. Un-
fortunately, some of the topics are somewhat technical, and in these situations, we often
sacrifice rigor to achieve greater clarity. At the end of every chapter, we list topics that
we have not covered. The goal of the literature review is to guide the interested reader, as
well as to give credit to the many authors that contributed to our current understanding.
We apologize in advance for important omissions, which are due to the breadth of the
literature on certain subjects.

In part II of the thesis, we move on to advanced applications of these methods. Each
chapter in based on a publication to which the author has contributed substantially. These
chapters are self-contained, with their own motivation and conclusions. In some cases, the
notation might differ slightly from that in part I, but we hope it will not cause too much
confusion. Finally, part III contains a brief summary of the work, and a survey of exciting
directions that might become important in conformal bootstrap research in the coming
years.
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Chapter 2

Conformal bootstrap

The main subject of this thesis are Conformal Field Theories (CFTs). These are quantum
field theories that, besides Poincare invariance, enjoy a larger symmetry group, namely the
group of conformal transformations. In this chapter, we lay the foundations of conformal
field theory, including conformal transformations and their algebra, their representation
theory, correlation functions, the operator product expansion and the crossing equation.
We conclude listing other reviews in the literature, and giving references to subjects we
have not covered.

2.1 Conformal group

2.1.1 Conformal transformations

A conformal transformation is a change of coordinates x → x′(x) under which the metric
is mapped to itself, up to a space dependent scale factor:

ds′2 = Ω(x)2ds2 . (2.1)

In other words, conformal transformations preserve angles but not distances. In order to
classify conformal transformations, it is convenient to consider infinitesimal transformations
around flat space. In particular, we start with a flat metric ds2 = δµνdx

µdxν and perform
an infinitesimal change of variables x′µ = xµ + εµ(x), with scale factor Ω(x) = 1 + σ(x). A
simple calculation shows that conformality requires

∂µεν + ∂νεµ = 2σδµν . (2.2)

11



Chapter 2. Conformal bootstrap

A solution εµ of this equation is called a conformal Killing vector. It is possible to classify all
conformal Killing vector, see for example [20]. Besides the obvious translations, rotations
and dilatations, there is a less familiar solution called special conformal transformation.
As a result, the most general conformal Killing vector reads

εµ(x) = aµ︸︷︷︸
translation

+ ωµνx
ν︸ ︷︷ ︸

rotation

+ λxµ︸︷︷︸
dilatation

+ bµx
2 − 2xµbνxν︸ ︷︷ ︸

special conformal

, (2.3)

where ωµν = −ωνµ. Together, these form a (d+2)(d+1)
2 –dimensional group of transforma-

tions, the conformal group.

2.1.2 Conformal algebra

In quantum field theory, symmetries act on the Hilbert space by means of operators.
In particular, given a conformal Killing vector ε = εµ∂µ, we can define a generator Qε
associated to it. The commutation relations of the conformal generators can then be
obtained from those of the Killing vectors

[Qε1 , Qε2 ] = Q−[ε1,ε2] . (2.4)

If we associate a transformation with parameters {aµ, ωµν , λ, bµ} to the symmetry genera-
tors {Pµ,Mµν , D,Kµ}, then the resulting commutation relations read [21]

[Mµν , Pρ] = δνρPµ − δµρPν , (2.5)

[Mµν ,Kρ] = δνρKµ − δµρKν , (2.6)

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMµρ − δµσMνρ , (2.7)

[D,Pµ] = Pµ , (2.8)

[D,Kµ] = −Kµ , (2.9)

[Kµ, Pν ] = 2δµνD − 2Mµν . (2.10)

The first three lines specify how Pµ, Kµ and Mµν transform under rotations, while the
fourth and fifth line implies that Pµ/Kµ raise/lower the eigenvalue of D by one unit.
These commutation relations can be brought to a more elegant form with the following
redefinition:

Ld+1,µ = Pµ −Kµ

2 , Ld+2,µ = Pµ +Kµ

2 , Lµν = Mµν , Ld+1,d+2 = D . (2.11)

12



Chapter 2. Conformal bootstrap

If we also introduce the metric ηAB = diag(1, . . . , 1,−1) in Rd+1,1, then the new generators
obey the commutation relations

[LAB, LCD] = ηBCLAD − ηACLBD + ηBDLCA − ηADLCB . (2.12)

This shows that the conformal algebra is isomorphic to the algebra of SO(d + 1, 1). This
observation is the basis of the embedding space formalism, which exploits that the con-
formal group acts linearly on Rd+1,1 to study conformal correlators [22–26]. We do not
discuss the embedding space formalism further, since it will not play a role in this thesis.

2.1.3 Reality condition

Because symmetry generators act on the Hilbert space, it is necessary to know how they
transform under Hermitian conjugation. In this work, we are mostly interested in Euclidean
CFT in radial quantization, for which the natural action under Hermitian conjugation is
given by

M †µν = −Mµν , D† = D , P †µ = Kµ . (2.13)

There is a heuristic justification of the above reality condition. In radial quantization, an
in-state is prepared by a local operator at the origin |O〉 = O(0)|0〉, while an out-state is
prepared by an operator at infinity 〈O| = 〈0|O(∞). As a result, Hermitian conjugation
must reverse the role of the origin and infinity, and therefore it exchanges Pµ ↔ Kµ. We
say that a representation of the conformal algebra is reflection positive if it respects the
Hermitian conjugation (2.13).

Let us mention that if we had chosen to work in Lorentzian signature, then the con-
formal group would be SO(d, 2), and in this case we would be interested in self-adjoint
generators

Unitarity for SO(d, 2) : P †µ = Pµ , K†µ = Kµ . (2.14)

Unitary representations of SO(d, 2), i.e. satisfying (2.14), are in one-to-one correspondence
with reflection-positive representations of SO(d+1, 1), i.e. satisfying (2.13), see for example
[27].

2.1.4 Representation theory

In conformal field theories, physical operators transform in representations of the conformal
group. The representation theory of the conformal group can be studied with the little
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Chapter 2. Conformal bootstrap

group technique, which is familiar in the case of Poincare representations, see [28] for a
pedagogical discussion. For conformal field theory, the main idea is to focus on operators
inserted at the origin, and then translate with the Pµ generator:

O(x) = ex
µPµO(0)e−xµPµ . (2.15)

The stabilizer of the origin x = 0 is formed by Mµν , D and Kµ, and operators inserted
at the origin must transform as an irreducible representation of the stabilizer group. We
assume this operator transforms as

[D,O(0)] = ∆O(0) , [Mµν ,O(0)] = SµνO(0) , (2.16)

The eigenvalue ∆ of the dilatation operator is called the scaling dimension of O. Regarding
rotations, the operator transforms in a representation of SO(d), so a more precise version
of the second equation is [Mµν ,Oa(0)] = (Sµν) a

b Ob(0), but in the rest of the discussion we
continue to suppress indices a to simplify notation. Given an operator O(0), acting with
Pµ/Kµ produces operators with higher/lower scaling dimension, which form a so-called
conformal multiplet. In physically sensible theories, the scaling dimension is bounded
below, so without loss of generality we can take O(0) to be the lowest dimension operator
in its conformal multiplet, which we call a conformal primary operator. As a result

[Kµ,O(0)] = 0 (conformal primary operator) . (2.17)

Summarizing, conformal primary operators are characterized by dimension ∆, a represen-
tation under SO(d) and (2.17). Starting from the primary, one obtains the full conformal
multiplet acting with Pµ. This conformal multiplet forms an irreducible representation of
the conformal group.

Besides the generic case just presented, there exist exceptional representations called
short representations. The most important examples of short representations are the free
scalar, conserved current and stress-tensor multiplets. Short representation are character-
ized by a combination of P ’s that kills the conformal primary, for example

[P 2,O(0)] = 0 (free scalar multiplet) , (2.18)

[Pµ, Jµ(0)] = 0 (conserved current multiplet) , (2.19)

[Pµ, Tµν(0)] = 0 (stress-tensor multiplet) . (2.20)
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Consistency with the conformal algebra fixes the dimension of these operators in terms of
their spin. We defer a more detailed discussion of short representations to chapter 5, which
is devoted to superconformal field theories.

As anticipated, by using (2.15) it can determined how the conformal generators act on
operators at an arbitrary location:

[Pµ,O(x)] = ∂µO(x) , (2.21)

[D,O(x)] =
(
xµ∂µ + ∆

)
O(x) , (2.22)

[Mµν ,O(x)] =
(
xν∂µ − xµ∂ν + Sµν

)
O(x) , (2.23)

[Kµ,O(x)] =
(
2xµ(x · ∂)− x2∂µ + 2∆xµ − 2xνSµν

)
O(x) . (2.24)

The first equation can be obtained by taking a derivative of (2.15). The second equation
can be obtained using the Baker–Campbell–Hausdorff formula as follows

[D,O(x)] = ex
µPµ

[
e−x

µPµDex
µPµ , O(0)

]
e−x

µPµ

= ex
µPµ

[
D + xµPµ, O(0)

]
e−x

µPµ

=
(
xµ∂µ + ∆

)
O(x) . (2.25)

Similar calculations give the action of Mµν and Kµ given in (2.23) and (2.24) respectively.

2.2 Correlation functions and the OPE

In the previous subsection we studied the conformal group and determined that physical
operators transform in representations described by scaling dimensions ∆ and representa-
tions under the rotation group SO(d). We are now ready to look at the main observable
in conformal field theories, namely correlation functions of local operators. A key role is
played by the operator product expansion, which relates n- and n− 1–point functions.

2.2.1 Index free notation

For simplicity, in this work we focus on operators in rank–` symmetric-traceless represen-
tations of the rotation group SO(d), which we call spin–` representations. In particular,
scalar operators are the zero-rank case, or equivalently ` = 0. More general representa-
tions, such as mixed-symmetry or spinor operators have been studied in the literature, see
e.g. [24, 25]. For our purposes, it is convenient to employ index-free notation, which we
now introduce.
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Chapter 2. Conformal bootstrap

The goal of index-free notation is to trade objects with symmetric-traceless indices by a
polynomials in an auxiliary polarization vector ηµ. This is achieved by contracting indices
with the polarization vector as follows

O(x, η) = O(x)µ1...µ`ηµ1 . . . ηµ` . (2.26)

Since the ` indices are symmetric, we do not lose information contracting with a unique
polarization vector. Furthermore, since the indices are traceless, one should consider a null
polarization vector ηµηµ = 0. Notice that given O(x, η), the original symmetric-traceless
tensor can be uniquely reconstructed as follows

O(x)µ1...µ` = 1
`!(d/2− 1)`

Dµ1 . . . Dµ`O(x, η) , (2.27)

where we introduced the so-called Todorov operator

Dµ =
(
d

2 − 1 + η · ∂
∂η

)
∂

∂ηµ
− 1

2ηµ
∂2

∂η · ∂η
. (2.28)

The use of index-free notation is particularly useful for correlation functions, which take a
simpler form in this formalism.

2.2.2 Correlation functions

Correlation functions in CFT are highly constrained by conformal symmetry, as we now
show. In order to derive these constraints, it is convenient to work in a Hilbert-space
formalism, where correlation functions are vaccuum expectation values of operators. The
vaccuum |0〉 is a conformal invariant state, meaning that L|0〉 = 0 for any conformal
generator L ∈ {D,Pµ,Kµ,Mµν}. Furthermore, when acting on primary operators we have
[L,O(xi)] = L(i)O(xi), where L(i) are the differential operators in (2.21)-(2.24). As a
result, conformal invariance leads to a system of partial differential equations satisfied by
correlation functions:

0 = 〈0|[L,O1(x1) . . .On(xn)]|0〉 =
n∑
i=1
L(i)〈O1(x1) . . .On(xn)〉 . (2.29)

We are going to call these the conformal Ward identities. In the rest of this section, we
present simple solutions of the conformal Ward identities for n = 1, 2, 3. However, we
stress that the most efficient means to obtain correlation functions is the embedding space
formalism.
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The simplest correlators are one-point functions. By translation invariance, these have
to be constant 〈O(x, η)〉 = k. However, requiring scale invariance x → λx implies that
k 6= 0 only if ∆ = 0. In other words, the identity operator 1 is the only operator in CFT
with non-vanishing one-point function, which we normalize to unity 〈1〉 = 1.

The first non-trivial correlator is a two-point function. In this case, a two-point function
can only be non-vanishing provided the dimensions of the two operators are equal ∆1 = ∆2.
Furthermore, we are allowed to take linear combinations of degenerate operators, in order
to diagonalize the matrix of two-point functions. After such a procedure is implemented,
the two-point function of symmetric-traceless tensors read

〈O1(x1, η1)O2(x2, η2)〉 = δO1,O2

x2∆i
12

(
ηµ1 η

µ
2 −

2ηµ1x
µ
12η

ν
2x

ν
12

x2
12

)`
. (2.30)

As we have shown, two-point functions are completely determined by conformal symmetry
and our choice of normalization conventions.

In order to obtain dynamical information of a theory, it is necessary to look at higher-
point functions. The simplest one is the three-point function of two scalars and a spin–`
operator:

〈O1(x1)O2(x2)O3(x3, η)〉 = λ123

x∆123+`
12 x∆132−`

13 x∆231−`
23

(
ηµxµ13
x2

13
− ηµxµ23

x2
23

)`
. (2.31)

Here we have defined ∆ijk = ∆i+∆j−∆k. Unless there is there is a global symmetry pre-
venting it, it is generically expected that all such three-point functions are non-vanishing.
Since we defined the two-point functions to be unit normalized, the normalization of the
three-point function λ123 is uniquely defined, and therefore it captures dynamical informa-
tion about a CFT. Often λ123 is called three-point coupling, three-point OPE coefficient,
or simply OPE coefficient.

One could go on and consider correlation functions with more operators, but perhaps
surprisingly, they can all be reconstructed with the information of three-point functions.
This is achieved by the operator product expansion, which we now introduce.

2.2.3 Operator product expansion

The Operator Product Expansion (OPE) is a general property of quantum field theory, by
which the product of two operators can be approximated as an infinite sum of single local
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operators:

O1(x1)O2(x2) =
∑
k

λ12kf12k(x12, ∂x2)Ok(x2) as x1 → x2 . (2.32)

In CFT, it is conventional to sum only over conformal primary operators, and capture the
contribution of conformal descendants by taking space derivatives, which explains why f12k

depends on ∂x2 . The fact that the contribution of Ok to the OPE is proportional to λ12k

can be seen inserting (2.32) in the three-point function (2.31). Note that in (2.32) the spin
indices have been left implicit to improve readability.

There are two reasons why the OPE is more powerful in CFT than in regular QFT. The
first reason is that instead of an asymptotic expansion, the OPE in CFT is a convergent
expansion, see [29, 30]. The actual radius of convergence depends on the correlator under
cosideration. For example, the OPE of O1O2 inside the n-point function 〈O1 . . .On〉 is
convergent provided one can surround x1 and x2 with a sphere such that all other points
x3, . . . , xn are outside this sphere. The second reason is that in CFT, since three-point
functions are kinematically fixed up to a normalization, the functions f12k(x12, ∂x2) are
also kinematically fixed. In order to see that, one inserts the OPE (2.32) in the three-point
function (2.31). The result has to be equal to a two-point function of the form (2.30),
which allows one to uniquely determine f12k. For example, at leading order in the limit
x1 → x2 one finds

O1(x1)O2(x2) =
∑
k

λ12k

x∆1+∆2−∆k+`
12

[
xµ1

12 . . . x
µ`
12O

µ1...µ`
k (x2) + . . .

]
. (2.33)

The take-home message is that two- and three-point functions fix the form of the
operator product expansion. If one is interested in higher-point functions, they can be
expressed as infinite sums of products of lower-point functions by repeatedly using the
OPE. Since the spectrum of operators and the set of OPE coefficients fixes any higher-
point function, one can say that a CFT is completely determined by {∆i, λijk}, which is
often called CFT data. The simplest example of the power of the OPE is provided by
four-point functions, which are the subject of the next section.

2.3 The Conformal Bootstrap Program

In the previous section, we argued that given a set of CFT data {∆i, λijk}, one can in
principle construct any correlation function of local operators. However, it is natural to
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ask the question whether any CFT data is valid, or instead there are some consistency
conditions the CFT data should satisfy. In this section we study four-point functions,
and show that associativity of the OPE puts strong constraints on the CFT data. This is
demonstrated by the crossing equation, which will be the most important equation of this
thesis.

2.3.1 Four-point functions

A new feature of four-point functions is the existence of conformally-invariant cross ratios:

u = zz̄ = x2
12x

2
34

x2
13x

2
24
, v = (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
. (2.34)

These two cross-ratios satisfy the conformal Ward identities (2.29) by themselves, so a
four-point functions depends on a function G(u, v). The kinematics of four-point spinning
correlators is complicated, so here and in the rest of the thesis we focus on four-point
functions of scalar (` = 0) operators. There is some freedom on the overall normalization
of the four-point function, but the choice which is most common in the modern CFT
literature is

〈Oi(x1)Oj(x2)Ok(x3)Ol(x4)〉 = Gijkl(u, v)
x

∆i+∆j

12 x∆k+∆l
34

(
x24
x14

)∆ij
(
x14
x13

)∆kl

, (2.35)

where the notation ∆ij = ∆i −∆j is used.
As anticipated in section 2.2.3, the operator product expansion is fundamental in the

study of four and higher-point functions. Indeed, by using the OPE for OiOj we reduce a
four-point function to an infinite sum of the form

∑
O λijOfijO〈OOkOl〉. Remember that

both fijO and 〈OOkOl〉 are kinematically fixed, so each term in this infinite sum can be
computed, and the resulting object is called conformal block. In particular, after stripping
off the prefactors in (2.35), we see that the function of the cross-ratios Gijkl(u, v) admits
the expansion

Gijkl(u, v) =
∑
O
λijOλklOg

∆ij ,∆kl

∆,` (u, v) . (2.36)

In subsection 2.3.3, we discuss in great detail the importance of (2.36), but before we take
a small detour to review basic properties of conformal blocks g∆ij ,∆kl

∆,` (u, v).
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2.3.2 Conformal blocks

Our current understanding of conformal blocks has been shaped by the highly influential
works by Dolan and Osborn [16, 31, 32]. A crucial observation by these authors is that
acting with the Casimir operator on a four-point function, one selects the contribution of
a single conformal family to the OPE. This implies that conformal blocks are solutions to
a differential equation of the form(

C(1+2)
2 − c2

)
〈O1O2O3O4〉 = 0 , (2.37)

where C(1+2)
2 is the quadratic Casimir acting on points x1 and x2 defined by

C(1+2)
2 = −1

2
∑
A,B

(L(1+2)
AB )2 , L(1+2)

AB = L(1)
AB + L(2)

AB . (2.38)

The differential operators L(i)
AB can be read off from (2.11) and (2.21)–(2.24). Finally,

the constant c2 is the eigenvalue of the Casimir operator when acting on an operator of
dimension ∆ and spin `, namely c2 = ∆(∆− d) + `(`+ d− 2).

By using the form of four-point functions (2.35), one arrives at the following differential
equation for the conformal blocks(

Dz +Dz̄ + (d− 2) zz̄

z − z̄
(
(1− z)∂z − (1− z̄)∂z̄

)
− c2

2

)
g∆12,∆34

∆,` (z, z̄) = 0, (2.39)

Dz = z2(1− z)∂2
z + ∆12 −∆34 − 2

2 z2∂z + ∆12∆34
4 z . (2.40)

This differential equation has to be complemented with a boundary condition in order to
get the unique physical solution. By using the leading-order term in the OPE (2.33), it is
possible to derive the following behavior for the blocks

g
∆ij ,∆kl

∆,` (z, z̄) ∼ 1
(−2)` z

(∆−`)/2z̄(∆+`)/2 as 0 < z � z̄ � 1 . (2.41)

There exist explicit solutions of (2.39)-(2.41) for any even d. For the purposes of this thesis,
we only need

d = 2 : g∆12,∆34
∆,` (z, z̄) = 1

(−2)`
1

(1 + δ`,0)
(
k∆12,∆34

∆+` (z)k∆12,∆34
∆−` (z̄) + z ↔ z̄

)
,

d = 4 : g∆12,∆34
∆,` (z, z̄) = 1

(−2)`
zz̄

(z − z̄)
(
k∆12,∆34

∆+` (z)k∆12,∆34
∆−`−2 (z̄)− z ↔ z̄

)
, (2.42)
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which is written in terms of the SL(2,R) block

k∆12,∆34
β (x) = xβ/22F1

(
β −∆12

2 ,
β + ∆34

2 , β;x
)
. (2.43)

The SL(2,R) block is an eigenfunction of the differential operator Dx with eigenvalue
β(β − 2)/2. Alternatively, it is a one-dimensional conformal block with a normalization
different from (2.41).

For odd (and non-integer) dimension d, there exist no simple closed-form expressions.
This is not a problem in applications, because the differential equation (2.39)-(2.41) allows
the generation of power series representations for the conformal blocks, as will be explained
in detail later.

2.3.3 Crossing equation

In equation (2.36) we showed that a four-point function can be expanded in conformal
blocks

Gijkl(u, v) =
∑
O
λijOλklO g

∆ij ,∆kl

∆,` (u, v) . (2.44)

The power of equation (2.44) can be seen in two complementary ways:

1. If one knows a four-point Gijkl(u, v), then (2.44) provides a method to extract in-
finitely many OPE coefficients λijO.

2. Conversely, if one knows the OPE coefficients, then (2.44) provides a method to
reconstruct a four-point function.

However, the logic of the conformal bootstrap program goes in a somewhat reverse way.
Even when the four-point function Gijkl(u, v) and the CFT data are not known, equation
(2.44) leads to strong constraints on the CFT data, and in favorable situations, it allows
to reconstruct the four-point function.

Let us discuss how this procedure works. Crossing symmetry is the simple observation
that it is possible to reorder the position of the operators in a four-point function. For
example, if we flip operatorsOi ↔ Ok, then using (2.35) we see that the correlation function
must satisfy

v
∆j+∆k

2 Gijkl(u, v) = u
∆i+∆j

2 Gkjil(v, u) . (2.45)
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In the above equation the powers of u, v appear due to the prefactors in (2.35). The
combination of crossing symmetry with the OPE expansion leads to the crossing equations

∑
O

(
λijOλklO v

∆k+∆j
2 g

∆ij ,∆kl

∆,` (u, v)− λkjOλilO u
∆i+∆j

2 g
∆kj ,∆il

∆,` (v, u)
)

= 0 . (2.46)

The crossing equations are an infinite-dimensional system of highly non-linear equations
for the CFT data {∆i, λijk}. The goal of the conformal bootstrap program is to solve the
crossing equation, at least in selected examples or simplifying regimes.

There are mainly two approaches to extract information from the crossing equation: the
numerical bootstrap, which is discussed in chapter 3, and the analytic bootstrap, which
is discussed in chapter 4. For supersymmetric CFT, the extra constraints that can be
imposed are discussed in chapter 5. Finally, in chapter 6 we describe how to adapt the
conformal bootstrap program to the study of conformal defects.

2.4 Review of the literature

There exists a long list of excellent lecture notes [20, 21, 33, 34] and review articles [35, 36]
that cover the basics of the conformal bootstrap. An important issue we have not discussed
is when scale invariance and unitarity imply conformal symmetry. This has been discussed
extensively in the literature, for example [37–41] but specially the review [42]. Furthermore,
in this thesis we shall not discuss Gliozzi’s method to solve a truncated version of crossing,
instead we direct the interested reader to the literature [43–46]. Finally, it was discovered
that the Casimir equation can be rephrased as a Schrodinger equation with an integrable
potential, which allows the relation of conformal blocks to special functions studied in the
mathematical literature [47–51].
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Numerical bootstrap

In this chapter, we discuss a numerical method for the crossing equation (2.46). After
reviewing the importance of reflection positivity, we present the main numerical algorithms,
followed by a summary on how to implement them in practice. We conclude explaining how
these methods can be applied to the study of the 3d Ising model, and overview outstanding
results in the literature.

3.1 Implications of reflection positivity

As discussed in section 2.1.3, a CFT is reflection positive when conformal generators pre-
serve the Hermitian conjugation (2.13). Reflection positivity leads to unitarity bounds,
which are constraints on the allowed values of scaling dimensions of physical operators.

General unitarity bounds are easier to understand by deriving the simplest one of
them. Consider the state |O〉 = O(0)|0〉, where O(0) is a conformal primary operator. The
action of Pµ generates new states corresponding to conformal descendants, for example
|Ψµ〉 = Pµ|O〉. These states should have positive norm, which implies

0 ≤ 〈Ψµ|Ψµ〉 = 〈O|KµPµ|O〉 = 〈O|[Kµ, Pµ]|O〉 = 2∆〈O|O〉 (no µ sum) . (3.1)

Because 〈O|O〉 ≥ 0, we conclude that ∆ ≥ 0 for any operator in a reflection positive CFT.
It is possible to obtain stronger bounds by considering more general states

|Ψ〉 = (aµPµ + bµνPµPν + . . .)|O〉 . (3.2)
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Positivity of the norm 〈Ψ|Ψ〉 ≥ 0 gives bounds that depend on the SO(d) representation
of the field [52–54]

∆scalar ≥
d− 2

2 , ∆spin-` ≥ `+ d− 2 . (3.3)

There are similar bounds for spinors, mixed-symmetry tensors, etc. but they play no role
in the discussion that follows.

Reflection positivity also has important consequences for OPE coefficients. Key for
our purposes is that whenever Oi, Oj are scalars and O is a spin-` tensor, then the OPE
coefficient is real

λijO ∈ R . (3.4)

Let us give the gist of the argument, more details can be found in [35]. Take the state
|Ψ〉 = Oi(x1)Oj(x2)O(x3)|0〉, which must have positive norm in a reflection-positive CFT
〈Ψ|Ψ〉 ≥ 0. Roughly speaking, the adjoint state 〈Ψ| is obtained by inserting the same
operators at points reflected respect the unit sphere. Take x1, x2, x3 → 0, so the reflected
points go to infinity. By the cluster decomposition principle, the norm factorizes into a
product of two three-point functions, and in particular 〈Ψ|Ψ〉 ∝ λ2

ijO × (positive), which
implies (3.4).

3.2 Bounding CFT data

After the short detour to explore reflection positivity, it is time to introduce the main
algorithm of this chapter. However, it is good to first rearrange the crossing equation to
makes the notation consistent with the literature. Replacing u↔ v in the crossing equation
(2.46), and adding and subtracting to the original equation, gives∑

O

(
λijOλklO F

ij,kl
∓,∆,`(u, v)± λkjOλilO F kj,il∓,∆,`(u, v)

)
= 0 , (3.5)

where we have introduced the crossing-symmetric/antisymmetric objects

F ij,kl±,∆,`(u, v) ≡ v
∆k+∆j

2 g
∆ij ,∆kl

∆,` (u, v)± u
∆k+∆j

2 g
∆ij ,∆kl

∆,` (v, u) . (3.6)

Instead of presenting algorithms to bound general systems of correlators, we focus on
a four-point function of identical real scalars 〈φφφφ〉. The crossing equation reads

F0,0(u, v) +
∑
O
λ2
φφO F∆,`(u, v) = 0 , (3.7)
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where we abbreviate F∆,`(u, v) = F φφφφ−,∆,`(u, v) to unclutter notation, and use that λφφ1 = 1
in our conventions.

From the numerical perspective, it is convenient to think of the crossing equation as a
sum rule satisfied by the positive coefficients λ2

φφO. As will become clear momentarily, it
is convenient to act with a linear functional α on the crossing equation

α
[
F0,0

]
+
∑
O
λ2
φφO α

[
F∆,`

]
= 0 . (3.8)

The central observation of the numerical bootstrap goes as follows. If there exists a func-
tional α such that α

[
F∆,`

]
≥ 0 for all operators in the spectrum, then (3.8) cannot be

satisfied, because the left-hand side is a sum of positive terms, and the right-hand side is
zero. This simple observation turns into two numerical algorithms that bound the space
of allowed CFTs:

Scaling dimension bound [17]: Choose a putative spectrum of a CFT, namely specify
the set S = {∆, `} of scaling dimensions and spins of operators allowed in the φ× φ OPE.
If there exists α such that

α
[
F0,0

]
= 1 , α

[
F∆,`

]
≥ 0 for all ∆, ` ∈ S , (3.9)

the putative spectrum is ruled out. By making different assumptions about the spectrum
and running this test, it is possible to carve out regions in “theory space” that admit no
consistent reflection-positive CFT.

OPE bound [55]: As before, choose a putative spectrum S, but now find α that maxi-
mizes α[F0,0] such that

α
[
F∆O,`O

]
= 1 , α

[
F∆,`

]
≥ 0 for all ∆, ` ∈ S . (3.10)

Then the OPE coefficient of O is bounded above by λ2
φφO ≤ −α[F0,0]. If there exists α

with α[F0,0] > 0, the bound λ2
φφO < 0 violates reflection positivity and the spectrum is

ruled out. As small modification of the algorithm consists on maximizing α[F0,0] with the
normalization α[F∆O,`O ] = −1, which gives the lower bound λ2

φφO ≥ α[F0,0].

To implement these algorithms with a computer, it is necessary to make a large ansatz
for the functional α, and search if α

[
F∆,`

]
≥ 0 can be satisfied in the parameter space
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of α. The ansatz most used in the literature consists on taking derivatives around the
crossing-symmetric point z = z̄ = 1/2:

α
[
F
]

=
Λ∑

m,n=0
am,n∂

m
z ∂

n
z̄ F (z, z̄)

∣∣
z=z̄=1/2 . (3.11)

This is by no means the unique choice for α, but it is one that worked well so far. Notice
that by increasing Λ the size of the ansatz grows, leading to stronger numerical bounds.
The subject of the next subsection is how to search the parameter space am,n to satisfy
the positivity conditions (3.9)-(3.10).

3.3 Semidefinite programming

A recurrent question in the numerical bootstrap is whether for a given spectrum, namely
a set S = {∆, `}, we can find coefficients am,n such that

Λ∑
m,n=0

am,n∂
m
z ∂

n
z̄ F∆,`(z, z̄)

∣∣
z=z̄=1/2 ≥ 0 for all ∆, ` ∈ S . (3.12)

Here F∆,`(z, z̄) is a highly non-linear function of ∆, `. However, by factoring out a positive
term χ`(∆), it is possible to approximate it as [56–58]

∂mz ∂
n
z̄ F∆,`(z, z̄)

∣∣
z=z̄=1/2 ≈ χ`(∆)Pmn` (∆) , (3.13)

where Pmn` (∆) is a polynomial in ∆. Increasing the degree of the polynomial the approx-
imation becomes better, keeping numerical error under control. Since χ`(∆) is positive,
our problem is rephrased as finding am,n such that

Λ∑
m,n=0

am,nP
mn
` (∆) ≥ 0 , (3.14)

where we reiterate that Pmn` (∆) is a polynomial in ∆. Equation (3.14) is the simplest
instance of a polynomial matrix program. This optimization problem is so indispensable for
the numerical bootstrap that a specialized software SDPB was developed to solve it [59,60].
The most general problem that can be solved with SDPB is:
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Polynomial matrix program: Consider a set of square matrices

Mn
j (x) =


Pnj,11(x) . . . Pnj,1mj (x)

... . . . ...
Pnj,mj1(x) . . . Pnj,mjmj (x)

 , 0 ≤ n ≤ N , 1 ≤ j ≤ J , (3.15)

and a given vector b ∈ RN . Then a polynomial matrix program maximizes b0 + b · y over
y ∈ RN , such that

M0
j (x) +

N∑
n=1

ynM
n
j (x) � 0 (positive semidefinite) , (3.16)

for all x ≥ 0 and 1 ≤ j ≤ J . The simple example (3.14) corresponds to J = 1, m1 = 1 and
N is the number of coefficients amn in the ansatz.

To solve a polynomial matrix program, SDPB maps it to a standard semidefinite pro-
gram, which is solved via an interior-point method. SDPB provides many features tailored
to bootstrap calculations, such as arbitrary-precision arithmetic, high parallelization, or a
mathematica interface. SDPB is by far the most used solver for numerical bootstrap, and
it has contributed enormously to the development of this field.

The only loose end in the above discussion is how to obtain the polynomial approxima-
tions for the conformal blocks (3.13). For the applications discussed in this thesis, which
take place in d = 1, 2, 4, there exist closed-form expressions for the conformal blocks in
terms of hypergeometric functions, see (2.43) and (2.42). Taylor expanding these functions
around z, z̄ = 0, evaluating the series at z = z̄ = 1/2, and factoring out a common positive
prefactor, one obtains expressions of the form (3.13). A simple code that implements this
in d = 2 is attached to SDPB. For the case of d = 4, a refinement of this idea can be found
in appendix 7.B.1. For arbitrary spacetime dimension d, there exist efficient recursion
relations to generate similar polynomial approximations, which have been implemented in
scalar-blocks [61]. We do not give further details on this fascinating subject, which plays
no role in the thesis.

3.4 A success story: the 3d Ising model

We conclude this chapter discussing the biggest achievement of the numerical conformal
bootstrap: the determination of critical exponents of the 3d Ising model to the highest-to-
date precision.
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The 3d Ising model is one of the simplest non-trivial CFTs in d > 2. An essential
feature of this model is that it preserves Z2 global symmetry. We call σ and ε the lowest-
dimensional operators which are Z2 odd and even respectively. The importance of these
operators is that they are the only relevant scalar operators, namely ∆σ,ε < 3 but ∆O > 3
for any other scalar. It is clear that the Z2 symmetry constrains the OPEs of σ, ε to take
the form

σ × σ ∼ 1 + ε+
∑
∆,`
O+ , (3.17)

ε× ε ∼ 1 + ε+
∑
∆,`
O+ , (3.18)

σ × ε ∼ σ +
∑
∆,`
O− , (3.19)

where O± stand for operators which are Z2 even/odd respectively. These assumptions will
be sufficient to constrain the 3d Ising model to high accuracy.

The simplest bootstrap bound is obtained from the four-point function of σ, with
crossing equation

F0,0(u, v) +
∑
O
λ2
σσO F∆,`(u, v) = 0 . (3.20)

Since the value of ∆σ is a priori unknown, one scans the range ∆σ ∈ [0.5, 0.6]. For each
value of ∆σ, we define ε as the lowest-dimension scalar operator in the σ × σ OPE. There
are other scalar operators in the OPE, but they have ∆O+ ≥ ∆ε. The OPE also contains
higher-spin operators, which have dimension above the unitarity bound ∆ ≥ ` + 1. With
these assumptions, we scan different values of ∆ε, and for each of them, we ask whether
the spectrum is allowed (see Scaling dimension bound). The result is that ∆ε cannot be
arbitrarily large, and the shape of the allowed region in the (∆σ,∆ε) plane can be seen in
figure 3.1a). The most noticeable feature is that the allowed region has a kink around the
values (∆σ,∆ε) ≈ (0.52, 1.4), which are very close to the values for the 3d Ising model!

After the exciting discovery that the 3d Ising model sits at a special point in theory
space, there are many ways to proceed. Arguably the most powerful direction is to consider
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∆ε

∆σ

Ising

∆ε

∆σ

Ising

a) b)

Figure 3.1: The a) kink and b) island in the bootstrap bounds for the 3d Ising model. The
solid blue region is allowed by the bootstrap bounds. These plots are schematic, for the
actual results see [59, 62–64]. With state-of-the-art results [64], the island would be too
small to be visible in the plot.

crossing equations involving both σ and ε. Using (3.5) we find five crossing equations:

〈σσσσ〉 : 0 =
∑
O+

λ2
σσOF

σσ,σσ
−,∆,` , (3.21)

〈εεεε〉 : 0 =
∑
O+

λ2
εεOF

εε,εε
−,∆,` , (3.22)

〈σσεε〉 : 0 =
∑
O+

λσσOλεεOF
σσ,εε
∓,∆,` ±

∑
O−

λ2
σεO(−1)`F εσ,σε∓,∆,` , (3.23)

〈σεσε〉 : 0 =
∑
O−

λ2
σεOF

σε,σε
−,∆,` . (3.24)

These crossing equations can be organized in a way that can be fed into SDPB. We assume
that ∆σ, ∆ε are the only relevant scalar operators, so ∆O±,`=0 ≥ 3, and spinning operators
must obey unitarity bounds. As before, we scan the (∆σ,∆ε) plane, and for each point SDPB
determines if the spectrum is allowed. The resulting allowed region has the shape in figure
3.1b). In this case, even more impressively, the 3d Ising model lies inside a small island of
allowed points! There exists an improvement of the above basic algorithm called OPE scan,
which we do not discuss here. Using this and taking Λ in (3.11) as large as computationally
possible, the size of the allowed island becomes extremely small. The island is so small
that the allowed values of ∆σ, ∆ε are more accurate than any Monte-Carlo simulation to
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date:

∆σ = 0.5181489(10) , ∆ε = 1.412625(10) . (3.25)

As a matter of fact, if we plotted the island, it would not be visible in figure 3.1b). Be-
fore we conclude, note that when a theory of interest sits close to the boundary of the
allowed region, it is possible to use a technique called extremal functional method [65,66].
This method allows to extract the approximate spectrum of the theory that saturates the
bounds. For the Ising model, the extremal functional method produces results in excellent
agreement with theoretical expectations.

3.5 Review of the literature

A comprehensive review of modern numerical bootstrap is [34]. Many authors have shared
implementations of algorithms useful for numerical bootstrap studies, for example autoboot
[67], blocks 3d [68], CFTs4d [26], JuliBootS [69], PyCFTboot [70], sailboot [71], SDPB
[59, 60], simpleboot [72] and spectrum-extraction [73].1

Most central ideas in numerical bootstrap appeared in the early days: the dimension
bound algorithm [17, 74], OPE bounds [55], central charge bounds [75], the inclusion of
global symmetry [76], supersymmetry [65] and semidefinite programming [56]. After this
period, the major breakthrough was the study of the 3d Ising using single [62,63] and mixed
correlators [58], leading to the high-precision results [64]. More recent methods include the
OPE scan [64, 77], the use of Delaunay triangulation [77] and the navigator function [78],
which enabled the high-precision determination of critical exponents in the O(2) and O(3)
model [77,79].

The numerical bootstrap has been applied to countless setups. More examples for scalar
correlators include the 3d O(N) models [57, 80–84], CFT in fractional dimension [85–87],
models with cubic and hypercubic symmetry [88–90], MN symmetry [91–93], O(M)×O(N)
symmetry [94], gauge theories [95–98], and many others [99–105]. The numerical bootstrap
has also found applications to mathematics, such as the sphere packing problem [106], or
bounding eigenvalues of the Laplacian [107–110].

Finally, all examples mentioned above considered scalar correlators. The bootstrap of
spinning operators has been also performed in [25,111–115]. These bootstrap studies were

1We want to take this occasion to thank the Bootstrap community for being so generous when it comes
to sharing codes publicly.
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enabled by the large number of works that studied kinematics of conformal correlators and
conformal blocks [16,22–25,31,32,47–51,68,116–121].
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Chapter 4

Analytic bootstrap

In this chapter, we change gears and extract information from the crossing equation with
analytic methods. A fruitful approach is to analytically continue the CFT to Lorentzian
signature, and consider kinematics with nearly lightlike-separated operators. This leads
to the lightcone bootstrap, which we later formalize in terms of the Lorentzian inversion
formula. These techniques have applications to perturbative CFTs, e.g. in the ε–expansion
or in the large–N limit, which we also discuss.

4.1 Lightcone bootstrap

This sections starts considering the lightcone bootstrap, which gives physical intuition
on why it is possible to extract analytical information from the crossing equation. The
presentation is similar in spirit to the original works [122,123]. For simplicity, throughout
this chapter we consider four-point functions of identical scalars φ.

4.1.1 Euclidean vs Lorentzian kinematics

Before the actual bootstrap analysis, let us discuss a difference between Euclidean and
Lorentzian kinematics which we glossed over in the introductory chapter. Given four
points, it is possible to use conformal transformations to map three of them at zero, one
and infinity, while the fourth is restricted to a two-dimensional plane:

x1 = 0 , x2 = (τ, x) , x3 = (0, 1) , x4 =∞ . (4.1)
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Without loss of generality, four-point functions can always be studied in such a frame.
Then the cross ratios z, z̄ defined in (2.34) are interpreted as the complex coordinates of
the two-dimensional plane, since zz̄ = τ2 + x2

(1− z)(1− z̄) = τ2 + (1− x)2
⇒

z = x+ iτ

z̄ = x− iτ
. (4.2)

From this purely Euclidean discussion, we learn that the cross ratios are complex conjugate
of each other z∗ = z̄. However, upon Wick rotation to Lorentzian signature τ = it, the
cross ratios become real and independent z, z̄ = x∓ t.

Since z, z̄ are independent, Lorentzian signature allows for interesting kinematical
regimes unavailable in Euclidean. For instance, if x2, x3 are almost light-like separated,
then x2

23 → 0 and (1 − z)(1 − z̄) → 0. It is then still possible to take x2 to be light-like
from x1 so that zz̄ ∝ x2

12 → 0. This is the lightcone limit, described mathematically by
0 < 1− z̄ � z � 1, and graphically by

z = 0

z̄ = 0

z̄ = 1

z = 1

φ(0, 0) φ(1, 1)φ(1, 1)
φ(z, z̄)

The rest of this chapter discusses how the existence of the lightcone limit constrains the
spectrum of CFT.

4.1.2 Conformal blocks

Before analyzing the crossing equation in the lightcone limit, it is convenient to obtain
representations for conformal blocks in this regime. Throughout this chapter, we normalize
conformal blocks according to

g∆,`(z, z̄) ∼ z(∆−`)/2z̄(∆+`)/2 as 0 < z � z̄ � 1 . (4.3)

The reason we deviate from (2.41) is that the results below will look simpler, and because
(4.3) is becoming standard in the analytic bootstrap literature. The only downside is that
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we need to modify the conformal block expansion to be

G(z, z̄) =
∑
O

1
(−2)`λ

2
φφOg∆,`(z, z̄) , (4.4)

but we simply use PφφO = 1
(−2)`λ

2
φφO to unclutter notation.

Coming back to conformal blocks, they admit a useful decomposition in SL(2,R) blocks
(2.43) [124]:

g∆,`(z, z̄) =
∞∑
n=0

n∑
q=−n

An,q(∆, `)z
∆−`

2 +nk∆+`+2q(z̄) . (4.5)

The coefficients An,q(∆, `) are unknowns that can be fixed recursively using the Casimir
equation. For example, for n ≤ 1 they read

A0,0(∆, `) = 1 , (4.6)

A1,−1(∆, `) = (d− 2)`
2`+ d− 4 , (4.7)

A1,0(∆, `) = ∆− `
4 , (4.8)

A1,1(∆, `) = (d− 2)(∆− 1)(∆ + `)2

16(2∆− d+ 2)(∆ + `− 1)(∆ + `+ 1) . (4.9)

It is relatively straightforward to obtain the coefficients for high values of n using a com-
puter algebra software.

The expansion (4.5) is particularly convenient for small z, because only the first few
terms are relevant. Since the formula is valid for arbitrary z̄, it also works in the lightcone
limit 0 < 1− z̄ � z � 1 that we consider below.

4.1.3 Crossing equation

After this small detour, we finally study the crossing equation for identical scalars φ:(
zz̄

(1− z)(1− z̄)

)∆φ∑
O
PφφO g∆,`(1− z, 1− z̄) =

∑
O
PφφO g∆,`(z, z̄) . (4.10)

Remember that PφφO = 1
(−2)`λ

2
φφO is a shorthand for the OPE coefficient. The behavior

of the blocks in the lightcone limit 0 < 1− z̄ � z � 1 is given by (4.5):

• On the LHS, the blocks go like g∆,`(1 − z, 1 − z̄) = (1 − z̄)
∆−`

2 k∆+`
2

(1 − z). Thus,
only the operators with lowest twist τ = ∆− ` contribute. For now we keep only the
lowest-twist operator, which is the identity g0,0 = 1.
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• On the RHS, the blocks go like g∆,`(z, z̄) = z
∆−`

2 k∆+`(z̄). As we argue below, it is
not possible to discard operators on the RHS.

As a result, the crossing equation in the lightcone limit simplifies to
(

z

(1− z̄)

)∆φ

≈
∑
O
PφφO z

∆−`
2 k∆+`(z̄) , 0 < 1− z̄ � z � 1 . (4.11)

Although not apparent at first, there is some tension in the above equation. The reason is
that the LHS has a power law singularity (1− z̄)−∆φ as z̄ → 1. However, each individual
term on the RHS diverges only logarithmically:

kβ(z̄) = − Γ(β)
Γ(β/2)2

(
log(1− z̄) + 2Hβ−2

2

)
+O(1− z̄) . (4.12)

As a result, it is not possible to reproduce the singularity on the LHS with finitely many
terms on the RHS. Instead, infinitely many contributions from the RHS have to resum to
give the LHS. As we will show, these contributions have to take a very precise form.

Let us focus first on the z dependence of (4.11). Clearly, in order to reproduce the power
z∆φ on the LHS, the operators on the RHS must have scaling dimensions asymptotically
close to

∆` = 2∆φ + ` . (4.13)

Similarly, if we expand the LHS of (4.11) to higher orders in z, each power z∆φ+n has to
be matched with an infinite family of operators with dimension

∆`,n = 2∆φ + `+ 2n . (4.14)

These are called multi-twist operators, or double-twist operators only if n = 0. One can
think of them as having the schematic form

[φφ]`,n ∼ φ∂µ1 . . . ∂µ`�
nφ . (4.15)

Basic power counting shows that the bare dimension of these operators indeed agrees with
(4.14). Physically, the lightcone bootstrap shows that these infinite families of multi-twist
operators are present in all CFTs. Multi-twist operators are weakly coupled at large spin,
in the sense that anomalous dimensions in (4.14) must be suppressed when `� 1.
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Now, we can also consider the z̄ dependence of (4.11). In order for the two sides of
(4.11) to match, the OPE coefficients Pφφ[φφ]`,0 must have a certain asymptotic behavior
at large `, which can be obtained as follows. Consider this identity of SL(2,R) blocks:

(
z̄

1− z̄

)∆φ

=
∞∑
`=0

(∆φ)2
`

`!(2∆φ + `− 1)`
k2∆φ+2`(z̄) . (4.16)

Since the z̄ → 1 of limit of (4.16) reduces to (4.11), the OPE coefficients Pφφ[φφ]`,0 must
approach (4.16) at large spin:

Pφφ[φφ]`,0 ≈
23−2∆φ−2`√π

Γ(∆φ)2 `2∆φ− 3
2 at large ` . (4.17)

There is an extra factor of 2 in (4.17) which compensates the fact that (4.16) sums over all
spins, while (4.11) sums over even spins. A similar discussions applies to the expansion of
(4.11) to higher orders in z, which allows to reconstruct the large-spin behavior of Pφφ[φφ]`,n

As a brief recap, we considered the implications of the identity operator in the lightcone
limit. Matching the z dependence on the two sides of (4.11), we discovered the existence
of multi-twist operators with ∆`,n ≈ 2∆φ + `+ 2n, while matching the z̄ dependence gives
their asymptotic OPE density. Going to subleading order in 1− z̄, a low-twist operator on
the LHS would correct the CFT data of multi-twist operators on the RHS. The corrections
δ∆`,n and δPφφ[φφ]`,n can be derived with methods similar to the ones above. However, it
is more efficient to obtain these corrections using the Lorentzian inversion formula which
we now discuss.

4.2 Lorentzian inversion formula

In this section we introduce Caron-Huot’s Lorentzian Inversion Formula (LIF). The LIF
captures in an elegant and compact way the main ideas of the lightcone bootstrap. However,
instead of producing results that are only valid at large spin, the LIF is valid for spins ` ≥ 2.
Furthermore, the LIF systematizes and simplifies calculations, helping the huge progress in
recent years on solving CFT in perturbative regimes. In this section we discuss the formula
and sketch the main steps in the original derivation, while we examine applications in the
next section.
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4.2.1 Euclidean inversion formula

The derivation of the Lorentzian inversion formula starts from the Euclidean inversion for-
mula, which we now discuss. Consider a correlation function, which in Euclidean signature
z∗ = z̄ must be single valued. G(z, z̄) must admit an expansion in terms of F∆,`(z, z̄), a
single-valued generalization of conformal blocks

G(z, z̄) =
∞∑
`=0

∫ d/2+i∞

d/2−i∞

d∆
2πic(∆, `)F∆,`(z, z̄) . (4.18)

Since we are only sketching the derivation, it suffices to mention that F∆,` is a sum of a
conformal block and its shadow F∆,` ∼ g∆,`+kgd−∆,`. The function c(∆, `) is meromorphic
in ∆, such that each pole sits at a physical dimension, with the residue given by the OPE
coefficient of the corresponding operator

c(∆, `) = −
∑
O

PφφO
∆−∆O

. (4.19)

Clearly c(∆, `) contains the same information as G(z, z̄), just encapsulated in a different
way. By closing the contour to the right in (4.18), one recovers the usual OPE expansion.
As opposed to (4.18), the purpose of an inversion formula is to determine c(∆, `) as an
integral over the correlator G(z, z̄).

The simplest inversion formula is the Euclidean inversion formula. The derivation of
the Euclidean inversion formula uses that the Casimir operator is self adjoint with respect
to the weight (zz̄)−d|z − z̄|d−2. Since F∆,` are single-valued eigenfunctions of the Casimir
operator, they must satisfy an orthogonality relation. By using orthogonality in (4.18),
one obtains the Euclidean inversion formula

c(∆, `) = N(∆, `)
∫
C

dzdz̄

(zz̄)d |z − z̄|
d−2F∆,`(z, z̄)G(z, z̄) . (4.20)

The precise normalization N(∆, `) is unimportant for our purposes, and the integration is
over complex z subject to z∗ = z̄.

4.2.2 Lorentzian inversion formula

Finally, we turn to the Lorentzian counterpart of (4.20). In the original derivation by
Caron-Huot [125], he performed a contour deformation of the Euclidean inversion formula.
By picking the contributions around the branch cuts of G(z, z̄), he obtained

c(∆, `) = κ∆+`
1 + (−1)`

4

∫ 1

0

∫ 1

0

dzdz̄

(zz̄)d |z − z̄|
d−2g`+d−1,∆−d+1(z, z̄) dDiscG(z, z̄) . (4.21)
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Alternatively, it is possible to derive the LIF by Wick rotating spacetime instead of the
cross-ratios [126], see also [127] for the generalization to external spinning operators. The
double discontinuity dDisc is defined as the correlator minus its analytic continuations
around the branch point z̄ = 1 in the directions specified by the arrow

dDiscG(z, z̄) = G(z, z̄)− 1
2G
	(z, z̄)− 1

2G
�(z, z̄) . (4.22)

For future reference, we also give the overall constant

κ∆+` =
Γ
(

∆+`
2

)4

2π2Γ(∆ + `− 1)Γ(∆ + `) .
(4.23)

It is good to take a pause to highlight important properties of the LIF:

1. The LIF reconstructs the CFT data c(∆, `) using only the double discontinuity
dDiscG. This observation is crucial in perturbative settings, where the double dis-
continuity is much simpler than the correlator.

2. The LIF makes it manifest that the CFT in c(∆, `) is analytic spin. There are Regge
trajectories for ` ∈ R, and the physical operators are obtained setting ` ∈ N.

3. The main downside of the LIF is that, in general, it cannot be trusted for small `.
The reason is that the contour deformation used in its derivation is only justified
for ` > `∗. The parameter `∗ is theory dependent, but fortunately it is bounded in
non-perturbative CFTs: It is guaranteed that the LIF is reliable at least for ` > 1.
However, convergence can be better for instance in supersymmetric CFT.

At first glance, it might be hard to fully appreciate the power of the Lorentzian inversion
formula. We hope the applications of the next section will make this clear.

4.3 Applications

4.3.1 Double discontinuity

In order to use the Lorentzian inversion formula, it is necessary to compute the double
discontinuity of the correlator G(z, z̄). Recall dDiscG is computed analytically continuing
around the branch point z̄ = 1. It is then natural to use crossing symmetry to map
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z → 1− z and expand in conformal blocks. The double discontinuity can be applied term
by term, giving:

dDiscG(z, z̄) = dDisc
(

zz̄

(1− z)(1− z̄)

)∆φ

G(1− z, 1− z̄)

=
∑
O
PφφO dDisc

(
zz̄

(1− z)(1− z̄)

)∆φ

g∆,`(1− z, 1− z̄)

=
(

zz̄

(1− z)(1− z̄)

)∆φ∑
O

2 sin2
(∆−2∆φ−`

2 π
)
PφφOg∆,`(1− z, 1− z̄) . (4.24)

In order to obtain the last line, strip off the following prefactor from the conformal block

g∆,`(1− z, 1− z̄) =
[
(1− z)(1− z̄)

]∆−`
2 g̃∆,`(1− z, 1− z̄) . (4.25)

Since g̃∆,`(1−z, 1− z̄) is analytic at z̄ = 1, it cannot contribute to dDiscG, and only powers
(1− z̄)α must be considered:

dDisc(1− z̄)α = 2 sin2(πα)(1− z̄)α . (4.26)

Equation (4.24) explains our claim that dDiscG is simpler than the correlation function
G. Indeed, for an operator close to the multi-twist dimension ∆`,n = 2∆φ + `+ 2n+ γ`,n,
the contribution to the double discontinuity goes like the anomalous dimension squared:

sin2
(∆`,n−2∆φ−`

2 π
)
≈
π2γ2

`,n

4 . (4.27)

In perturbative settings, anomalous dimensions are proportional to small couplings, so
most contributions to dDiscG are suppressed by these couplings. We present examples of
this below.

4.3.2 Inversion of the identity

The simplest application of the the Lorentzian inversion formula is to reproduce and im-
prove the results we obtained in section 4.1.3 using lightcone bootstrap. This is achieved
approximating the double discontinuity by the identity operator contribution. Thus, keep-
ing only the ∆ = ` = 0 term in (4.24) gives

dDiscG(z, z̄) ≈ dDisc
(

zz̄

(1− z)(1− z̄)

)∆φ

= 2 sin2(π∆φ)
(

zz̄

(1− z)(1− z̄)

)∆φ

. (4.28)
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It is challenging to compute the inversion integrals (4.21) in closed form, even for the
simplest case (4.28). A useful strategy is to expand the integrand in the limit z → 0 and
integrate term by term. We focus on the leading term for clarity, although higher terms
can be obtained using (4.5). The integration kernel dramatically simplifies as z → 0

1
z

(
z̄ − z
zz̄

)d−2
g`+d−1,∆+1−d(z, z̄) = z−

∆−`
2 k∆+`(z̄) +O(z) , (4.29)

where we remind the reader that k∆+`(z̄) is a Gauss hypergeometric function (2.43). As
a result of the expansion, the z, z̄ integrals factorize and can be computed in closed form.
On the one hand, the z̄ integral gives

∫ 1

0

dz̄

z̄2 kβ(z̄) dDisc
(

z̄

1− z̄

)∆φ

= 2π2 Γ(β)
Γ(β/2)2

Γ(β/2 + ∆φ − 1)
Γ(∆φ)2Γ(β/2−∆φ + 1) , (4.30)

which is obtained from an Euler-type representation for the hypergeometric function by
swapping the order of integration. On the other hand, the simple power dependence za

makes the remaining z integral trivial. All in all, we obtain

c(∆, `) = − 1(
∆− (2∆φ + `)

)
(
1 + (−1)`

)
Γ
(

∆+`
2

)2
Γ
(

∆+`
2 + ∆φ − 1

)
Γ(∆φ)2Γ(∆ + `− 1)Γ

(
∆+`

2 −∆φ + 1
) + . . . (4.31)

From here, we read off that there is a family of double-twist operators with the following
dimensions and OPE coefficients:

∆`,0 = 2∆φ + ` , Pφφ[φφ]`,0 = 2(∆φ)2
`

`!(2∆φ + `− 1)`
. (4.32)

In the limit ` � 1, these reduce to the lightcone bootstrap prediction (4.17), but (4.32)
is significantly more powerful, because it gives the correct answer at least for ` ≥ 2.
Furthermore, the expansion of the LIF integrand to higher order in z gives the OPE
coefficients of multi-twist operators ∆`,n = 2∆φ + `+ 2n.

Finally, keep in mind that (4.28) approximates dDiscG using only the identity operator.
Subleading operators in the OPE (4.28) would correct these dimensions δ∆`,n and OPE
coefficients δPφφ[φφ]`,n . For example, in the 3d Ising model the double discontinuity can
be approximated with 1, ε, Tµν , giving results in excellent agreement with the numerical
bootstrap.
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4.3.3 Wilson-Fisher fixed point

The Wilson-Fisher fixed point is perhaps the next simplest application of the LIF. We start
reviewing the main structural properties of the CFT data of the theory. At the end, we see
how these properties make the Wilson-Fisher fixed point perfectly suited for a bootstrap
analysis. The ε–expansion has been studied extensively in the bootstrap literature, see for
example [128–133], and specially the nice review [134]. This section is a summary of [135],
which illustrates the main idea behind many modern bootstrap calculations.

The Wilson-Fisher fixed point is obtained from φ4 theory

L = 1
2(∂φ)2 + λ

4!φ
4 , (4.33)

where the mass is tuned to zero m∗ = 0 because we are interested in its IR fixed point.
In d = 4 the coupling λ is marginally irrelevant, and as a result the only fixed point
is Gaussian. On the other hand, the coupling λ is relevant for d ≤ 4, so it triggers an
RG flow that finishes at a non-trivial fixed point with critical coupling λ∗. When this
model is considered in d = 4− ε dimensions, the coupling is only weakly relevant if one is
sufficiently close to four dimensions. More precisely, the critical coupling is λ∗ ∝ ε+O(ε2),
so perturbation theory is reliable near d = 4.

The two lowest-lying operators are φ and φ2, with dimensions

∆φ = d− 2
2 + γ

(2)
φ ε2 + . . . , (4.34)

∆φ2 = 2∆φ + γ
(1)
φ2 ε+ γ

(2)
φ2 ε

2 + . . . . (4.35)

By standard Feynman diagram techniques, it is not hard to obtain the precise anomalous
dimensions, e.g. γ

(2)
φ = 1

108 or γ(1)
φ2 = 1

3 . However, the logic of the conformal bootstrap
is that these constants can be fixed from consistency conditions of the four-point function
〈φφφφ〉.

The main tools at our disposal are the operator product expansion and the Lorentzian
inversion formula. As we have reviewed previously, the operators in a CFT are orga-
nized in twist families. The leading-twist family contains operators of the form [φφ]`,0 ∼
φ∂µ1 . . . ∂µ`φ. Although not obvious, the scaling dimension of these operators gets corrected
at order ε2, namely:

∆`,0 = 2∆φ + `+ γ
(2)
` ε2 + . . . . (4.36)
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Note that the case ` = 0 is special, since there are O(ε) corrections, see (4.35). There exist
also multi-twist operators [φφ]`,n≥1 ∼ φ∂µ1 . . . ∂µ`�

nφ. However, due to the equations of
motion �φ ∼ λ∗φ

3 ∝ εφ3, these operators are subleading. This is captured in their OPE
coefficients, which are order

〈〈Pφφ[φφ]`,1〉〉 = P
(2)
`,1 ε

2 + . . . , 〈〈Pφφ[φφ]`,n≥2〉〉 = P
(3)
`,1 ε

3 + . . . . (4.37)

Although it might seem surprising, knowing the above information allows one to bootstrap
the CFT data to order O(ε3) with minimal effort.

The key idea is that an operator O contributes to the double discontinuity as dDiscG ∝
PφφOγ

2
O, see section 4.3.1. For the sake of clarity, we consider each operator in the OPE

separately:

1. The identity 1 has been discussed in section 4.3.2.

2. The operator φ2 has anomalous dimension γφ2 ∝ ε, so it contributes to dDiscG at
orders O(ε2) and higher.

3. The leading trajectory [φφ]`,0 has anomalous dimension γ`,0 ∝ ε2, which contributes
at order O(ε4) and higher.

4. The subleading trajectories [φφ]`,n have anomalous dimension γ`,n ∝ ε, but since
their OPEs are order O(ε2), these families contribute at order O(ε4) and higher.

The conclusion is that the discontinuity of the correlator at O(ε3) is fully fixed in terms of
a single conformal block:

dDiscG(z, z̄)
∣∣
O(ε3) = Disc

(
zz̄

(1− z)(1− z̄)

)∆φ [
1 + Pφφφ2g∆φ2 ,0(z, z̄)

]
. (4.38)

Here there are three unknowns, ∆φ, ∆φ2 and Pφφφ2 , but there are several consistency
conditions

1. The theory becomes free at d = 4.

2. The theory is local, so there exists a stress tensor. This means ∆2,0 = ∆Tµν = 4− ε
at all orders in ε.

3. The operator φ2 belongs to the [φφ]`,0 family after a suitable analytic continuation
past a pole.
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While conditions 1 and 2 are self-evident, condition 3 is subtle and we have nothing else
to say here. The main message, however, is that using physical assumptions one can fully
fix the free coefficients. The structure of the CFT data (4.35)-(4.37) was of fundamental
importance in order to derive (4.38). Although here we presented the structure of the CFT
data as external input, it is possible to bootstrap it order by order in ε; the CFT obtained
at a certain order serves as input to bootstrap the next order. The first challenge appears at
order O(ε4), where it is necessary to solve a mixing problem to compute the discontinuity.
The authors of [135,136] bypassed this by making an ansatz for the discontinuity and fixing
the free coefficients from consistency conditions.

4.4 Review of the literature

There exist nice pedagogical reviews of the analytical bootstrap [137–141]. After the dis-
covery of the lightcone bootstrap, large-spin perturbation theory was developed [142–145],
which was later systematized by the Lorentzian inversion formula [125]. Besides these,
there exist many analytic bootstrap methods, such as the crossing-symmetric Mellin space
bootstrap [146–149], Mellin space sum rules [150, 151], superconvergence sum rules [152],
the conformal dispersion relation [153, 154], or analytic functionals [155–160]. All these
methods are believed to lead to equivalent dispersive sum rules [161], see also [162,163].

The analytic bootstrap has many applications we could not cover in detail. An interest-
ing idea is to use results from the numerical bootstrap as input for the inversion formula.
This leads to very accurate predictions for the spectrum of the 3d Ising model [124,164,165],
the O(2) model [166] and the N = 1 superIsing model [167]. The Lorentzian inversion
formula and large-spin perturbation theory have been applied to weak coupling gauge the-
ories [168], the Wilson-Fisher fixed point in the ε–expansion [135,136] or large N [169], as
well as models with more exotic symmetry groups [92, 94]. One of the main applications
of the analytic bootstrap is to holographic CFTs, which has become a field of its own. A
list of references to somewhat recent work is [170–178], while older work can be found in
references therein.
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Superconformal field theories

Because the conformal bootstrap relies on symmetry and unitarity, a natural expectation
is that theories preserving larger spacetime symmetry will be more amenable to conformal
bootstrap. Due to the Coleman-Mandula theorem [179], supersymmetry appears to be
the only possibility. The subject of this chapter is SuperConformal Field Theory (SCFT),
namely the study of conformal theories that preserve supersymmetry. Our focus is on
two aspects of SCFTs with a direct connection to bootstrap: representation theory of
superconformal algebras, and superconformal blocks. Unfortunately, we cannot cover other
interesting topics in the SCFT literature, such as localization, protected sectors, geometric
engineering, etc. which are also potentially useful in bootstrap studies. Many properties
of SCFTs depend on the spacetime dimension and the number of supercharges. Whenever
possible, we describe general properties that apply all SCFTs; however, when it is easier
to concentrate on a particular model we use 4d N = 1 SCFTs as a prototypical example.

5.1 Superconformal algebra

The algebra of conformal symmetry generators was the central ingredient to develop the
bootstrap equations in chapter 2. In the context of SCFT, an equally important role is
played by the superconformal algebra, which is the extension of the conformal algebra by
the supersymmetry generators. This section starts with an overview of the superconformal
algebra, and we then give the classification of superconformal algebras in d ≥ 3.
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5.1.1 Commutation relations

Even though the (anti)commutation relations of the superconformal algebra depend on the
spacetime dimension and number of supercharges, its structure remains the same. Here
we discuss the universal structure of the superconformal algebra, while in appendix 5.A we
present the complete set of commutation relations for the 4d N = 1, . . . , 4 case.

Our goal is to combine the N–extended supersymmetry algebra with the conformal
algebra SO(d+1, 1). The supersymmetry algebra is generated by the Poincare supercharges
Q, Q̄.1 These are fermionic generators that transform as spacetime spinors and may carry
an extra index called R-symmetry index. However, here we suppress all indices to keep
the results schematic but generic. The number N is related to the R-symmetry group, or
equivalently the number of Poincare supercharges, although its precise meaning depends on
the algebra under consideration. With these caveats in mind, the supersymmetry algebra
reads

{Q, Q̄} ∼ P , {Q,Q} = {Q̄, Q̄} = [P,Q] = [P, Q̄] = 0 . (5.1)

We insist that there are extra indices that we suppress for clarity. Remember that Hermi-
tian conjugation in radial quantization maps P † = K, so the Hermitian conjugate of (5.1)
must contain new types of supercharge S = Q†, S̄ = Q̄†. The S, S̄ supercharges gener-
ate special superconformal transformations, and anticommute to give a special conformal
transformation:

{S, S̄} ∼ K . (5.2)

Since P and K have dimensions ∆P,K = ±1, and Q, Q̄ and S, S̄ are roughly their square
roots, they must have scaling dimension ∆Q,S = ±1

2 :

[D,Q] = 1
2Q , [D, Q̄] = 1

2Q̄ , [D,S] = −1
2S , [D, S̄] = −1

2 S̄ . (5.3)

Conservation of scaling dimension and R-symmetry can be used to fix most of the com-
mutation relations. For example, we have [K,Q] ∼ S̄ which follows from R-symmetry
and because the right-hand side must have dimension −1/2. In a similar way, one can
proceed to obtain most of the commutation relations. A useful anticommutator that we

1In some cases there are only Q-type supercharges, in which case our formulas are valid upon setting
Q = Q̄.
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mention explicitly is the one involving one Poincare and one superconformal supercharge.
The right-hand side contains all possible operators of zero dimension, namely

{Q,S} ∼ D +M +R , {Q̄, S̄} ∼ D +M +R . (5.4)

Note that besides the generators of dilatations D and SO(d) rotations M , there are gen-
erators R called R-symmetry generators. In supersymmetric theories, the R-symmetry
is an outer automorphism of the supersymmetry algebra, but in superconformal theories
R-symmetry belongs to the superconformal algebra. Once more, appendix 5.A contains
the commutation relations of the 4d superconformal algebra.

5.1.2 Classification

Given an N -extended supersymmetry algebra and a d-dimensional conformal algebra, we
just explained how to obtain its superconformal algebra. In fact, the structure is so rigid
that, given d and N , the resulting superconformal algebra is unique. This leads to the the
classification of superconformal algebras for d ≥ 3 [180]:

d = 3 OSp(N|4) ⊃ SO(3, 2)× SO(N )R ,

d = 4 SU(2, 2|N ) ⊃ SO(4, 2)× SU(N )R × U(1)R ,

d = 5 F4 ⊃ SO(5, 2)× SU(2)R ,

d = 6 OSp(8∗|2N ) ⊃ SO(6, 2)× USp(2N )R . (5.5)

Three comments are in order. First, to help the reader we also wrote in (5.5) the maximal
bosonic subalgebras, which consists of the conformal and R-symmetry groups. Second, the
superconformal algebras have been written in Lorentzian signature, but since in this thesis
we mostly consider Euclidean CFT, we should Wick rotate them. Third, the algebra for
4d N = 4 is PSU(2, 2|N ), since the U(1)R commutes with the rest of generators and can
be quotiented out.

Superconformal algebras in d = 1, 2 are infinite dimensional, a topic is outside the
scope of this work. However, finite-dimensional superconformal algebras in d = 1, 2 have
applications to superconformal defects. In this case, a full classification can be found
in [181].
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5.2 Representation theory

Physical operators in SCFT transform in reflection-positive irreducible representations of
the superconformal algebra. The representations of the superconformal algebra can be
worked out in the same way as in the non-supersymmetric case, with the only difference
that here we find a richer spectrum of short representations.

5.2.1 Long representations

To construct a long representation, one starts with a superprimary operator O(0). Besides
being a conformal primary (2.16)-(2.17), a superprimary operator is anhilated by S, S̄

Superprimary operator: [S,O(0)] = [S̄,O(0)] = 0 , (5.6)

and forms a representation of the R-symmetry group. As before, spacetime or R-symmetry
indices are kept implicit in O(0). Then, the repeated action of P,Q, Q̄ on the superprimary
forms a superconformal representation, also called superconformal multiplet or supermul-
tiplet:

Supermultiplet: O(0), [Q,O(0)], [Q, [Q,O(0)]], [Q, [Q̄,O(0)]], [P,O(0)], . . .

(5.7)

Because the Poincare supercharges are anticommuting spinors, a superconformal multiplet
contains bosons and fermions related to each other by supersymmetry. Furthermore, Q,
Q̄ act at most 2NQ+NQ̄ times, where NQ + NQ̄ is the total number of supercharges. The
2NQ+NQ̄ operators obtained from the superprimary are called superconformal descendants,
or superdescendants for short. As discussed in more detail below, we choose a basis where
superdescendants are conformal primaries on their own, namely they form an irreducible
representation of the conformal group.

Let us also consider the constraints of reflection positivity. By imposing that the
matrix of norms 〈Oi|Oj〉 is positive semidefinite, where Oi are the superdescendants in a
multiplet, one obtains lower bounds on ∆. These lower bounds are generally stronger than
the unitarity bounds obtained for non-supersymmetric theories in section 3.1.

To clarify, we treat N = 1 theories in d = 4 in some detail. As mentioned above,
operators are labeled by the maximal bosonic subalgebra of the superconformal algebra,
which in this case is

SU(2, 2|1) ⊃ SO(4, 2)× U(1)R . (5.8)
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The operators in a multiplet are labeled by the scaling dimension ∆, Lorentz spin [j, ̄]
and U(1)R charge r. Notice that, in these conventions, spin-` symmetric-traceless tensors
correspond to [`, `]. The 4d N = 1 superconformal algebra contains four Poincare super-
charges Qα, Q̄α̇ with α, α̇ = 1, 2, so a long multiplet consists of 24 = 16 superdescendants.
The multiplet can be organized in a table [27,182]

[j; ̄](r)∆

Q̄

��
Q

��

[j; ̄± 1](r+1)
∆+1/2

Q̄

��
Q

��

[j; ̄](r+2)
∆+1

Q

��

[j ± 1; ̄](r−1)
∆+1/2

Q̄

��
Q

��

[j ± 1; ̄± 1](r)∆+1

Q̄

��
Q

��

[j ± 1; ̄](r+1)
∆+3/2

Q

��

[j; ̄](r−2)
∆+1

Q̄

��

[j; ̄± 1](r−1)
∆+3/2

Q̄

��

[j; ̄](r)∆+2

(5.9)

As mentioned previously, each entry corresponds to a conformal primary that, by reflection
positivity, should have positive norm. A calculation similar to (3.1) leads to the unitarity
bound [54,183,184]

∆ ≥ 2 + max
{
j − 3

2r, ̄+ 3
2r
}
. (5.10)

For spin-` representations this gives ∆ ≥ ` + 2 + 3
2 |r|, which is stronger than the non-

supersymmetric unitarity bound ∆ ≥ `+ 2, see (3.3).

5.2.2 Short representations

Besides the long representations presented above, the superconformal algebra admits other
reflection-positive representations called short representations. Short representations are
characterized by the superconformal primary (5.6) being annihilated by a combination
of Poincare supercharges. Consistency with the commutation relations then relates the
dimension of the superprimary to its spin and R-symmetry representation. Since short
representations play an important role in this thesis, we discuss them in more detail here.
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Instead of trying to be general, we first discuss 4d N = 1 and only at the end we explain
general properties of short representations. For their importance in this thesis, we focus
on chiral primary operators, or chirals for short. A chiral primary operator φ(0) is a scalar
operator that, besides being a superprimary, is killed by the Q̄ supercharges:

[Q̄α̇, φ(0)] = 0 . (5.11)

This is called a shortening condition, that is, an equation stating that certain Poincare
supercharges kill a superprimary operator. Similarly, there exist antichiral operators φ̄
which are killed by the supercharges Qα. Because the Q̄α̇ supercharge annihilates the
superprimary, the multiplet is obtained acting with Qα:

[0; 0](r)∆= 3
2 r

Q // [1; 0](r−1)
∆= 3

2 r+
1
2

Q // [0; 0](r−2)
∆= 3

2 r+1 . (5.12)

This is much smaller than the long multiplet (5.9), which explains the terminology “short
multiplet”.

The scaling dimension of a short multiplet is related to its Lorentz and R-symmetry
representation. To derive this relation, note that the shortening condition (5.11) is equiv-
alent to |Ψα̇〉 = Q̄α̇|φ〉 having zero norm. Using the commutation relations in 5.A, the
zero-norm condition gives

0 = 〈Ψα̇|Ψα̇〉 = 〈φ|{S̄α̇, Q̄α̇}|φ〉 = 1
2

(
∆− 3

2r
)
〈φ|φ〉 (no α̇ sum) . (5.13)

Since the norm of the superprimary must be positive 〈φ|φ〉 > 0, the only possibility is that

∆ = 3
2r . (5.14)

An unfamiliar feature of short representations is that their scaling dimensions can be below
the unitarity bound. In this example, the unitarity bound (5.10) applied to a scalar with
charge r gives ∆ = 2 + 3

2 |r|, so the chiral operator is below it.
After this 4dN = 1 example, it is time to discuss more general superconformal algebras,

following the terminology of [182]. In SCFT, long multiplets are generated from superpri-
maries with generic scaling dimension above the unitarity bound. Short multiplets, on the
other hand, are generated from superprimaries that satisfy a shortening condition, that
is, superprimaries killed by combinations of Poincare supercharges. The scaling dimension
of short multiplets is fixed in terms of the Lorentz and R-symmetry representation. If
the scaling dimension of a short multiplet saturates the unitarity bound, one calls them
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A-type multiplets. Instead, a short multiplet is of B-type when its dimension is below
the unitarity bound. If more than one family of multiplets are below the unitarity bound,
these are called B-type, C-type, D-type and so on.

5.3 Superspace

In this section we introduce superspace, a fundamental technique in the study of super-
symmetric theories. For us, the main application of superspace is to study correlation
functions, that can involve either long or short multiplets. In this section we consider
only the 4d N = 1 superspace as in [185, 186], although similar methods apply for other
dimensions or number of supercharges, see e.g. [187–189].

5.3.1 Superspace and superfields

Superspace is an extension of ordinary space in which, besides the spatial directions xα̇α,2

one introduces fermionic directions θα, θ̄α̇. The supercharges Qα, Q̄α̇ translate in the
fermionic directions θα, θ̄α̇, similarly to how Pαα̇ translates the spatial directions xα̇α.
Given a superconformal primary operator at the origin O(0), it can be promoted to a
superfield O by a supertranslation in space and fermionic directions:

O(x, θ, θ̄) ≡ exα̇αPαα̇+θαQα+Q̄α̇θ̄α̇O(0)e−xα̇αPαα̇−θαQα−Q̄α̇θ̄α̇ . (5.15)

Although superspace and superfields appear strange at first, the physical intuition behind
them is simple: the role of θ,θ̄ is to keep track of superconformal descendants. Because the
supercharges Qα and Q̄α̇ are anticommuting, a multiplet contains 24 = 16 superdescen-
dants, which is exactly the number of terms that appear in a Taylor expansion of θα, θ̄α̇.
For example, lets look at the lowest lying term in the Taylor expansion of the superfield
(5.15):

O(x, θ, θ̄) = O(x) + θα[Qα, O(x)] + . . . (5.16)

Thus, given a formula involving the superfield O, we can recover information about the
superprimary component O by setting the fermionic coordinates to zero θ = θ̄ = 0. Simi-
larly, we can recover information of the superdescendant [Qα, O] by extracting the power

2Spacetime and bispinor indices are mapped to each other by xα̇α = xµσ̄α̇αµ . Here we choose bispinor
indices for consistency with the superconformal algebra in appendix 5.A.
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proportional to θα. In a similar way, one can map the 16 superdescendants in (5.9) to the
16 terms in the Taylor expansion (5.16).

5.3.2 Differential operators and Ward identities

Besides elegantly capturing superdescendants, another virtue of superspace is that the
superconformal algebra acts naturally on superfields. For non-supersymmetric CFT, we
showed how the conformal algebra acts on primary fields in (2.21)-(2.24). Similar formulas
are valid for the superconformal algebra acting on superfields. For example, using the
definition of superfield (5.15) and the commutation relations in appendix 5.A, one finds
the action of translation and supertranslations:

[Pαα̇,O(x, θ, θ̄)] = ∂

∂xα̇α
O(x, θ, θ̄) , (5.17)

[Qα,O(x, θ, θ̄)] =
(
∂

∂θα
+ 1

2 θ̄
α̇ ∂

∂xα̇α

)
O(x, θ, θ̄) , (5.18)

[Q̄α̇,O(x, θ, θ̄)] =
(
− ∂

∂θ̄α̇
− 1

2θ
α ∂

∂xα̇α

)
O(x, θ, θ̄) . (5.19)

The action of the remaining generators is obtained with the help of the Baker–Campbell–
Hausdorff formula similar to (2.25). For example, the dilatation operator acts on a super-
field of dimension ∆ as

[D,O(x, θ, θ̄)] =
(
xα̇α

∂

∂xα̇α
+ 1

2θ
α ∂

∂θα
+ 1

2 θ̄
α̇ ∂

∂θ̄α̇
+ ∆

)
O(x, θ, θ̄) . (5.20)

Although it is possible to obtain differential operators for the remaining generators Kα̇α,
Sα, etc. the expressions become lengthy and we do not show them here.

Perhaps the main application of the differential operators above is to constrain super-
conformal correlations functions. As in the non-supersymmetric case, define L(i) to be
the differential operator corresponding to generator L acting at point xi. Then correla-
tion functions must satisfy the superconformal Ward identities for every possible L in the
superconformal algebra:

n∑
i=1
L(i)〈O1(x1, θ1, θ̄1) . . .On(xn, θn, θ̄n)

〉
= 0 . (5.21)

The derivation of the Ward identity is exactly as in the non-supersymmetric case (2.29). By
solving these partial differential equations in (xi, θi, θ̄i), one can fix the form of correlators
of superfields. As explained in the previous section, these correlation functions contain
information about superconformal primaries and all of their descendants.
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5.3.3 Covariant derivatives and short multiplets

In the previous section, we have explained how the supercharges act on superfields. To be
precise, in (5.18) one starts with a superprimary operator O(0), which is then translated
to a superfield O, and finally Qα acts on the superfield. However, sometimes it is more
convenient to act with the supercharges on the superprimary at the origin, and only then
supertranslate. This leads to the covariant derivatives, defined as

DαO(x, θ, θ̄) ≡ ex·P+θQ+Q̄θ̄[Qα,O(0)
]
e−x·P−θQ−Q̄θ̄ , (5.22)

D̄α̇O(x, θ, θ̄) ≡ ex·P+θQ+Q̄θ̄[Q̄α̇,O(0)
]
e−x·P−θQ−Q̄θ̄ . (5.23)

With the commutation relations (5.57), the covariant derivative can be expressed as a
differential operator acting on superfields:

DαO(x, θ, θ̄) =
(
∂

∂θα
− 1

2 θ̄
α̇ ∂

∂xα̇α

)
O(x, θ, θ̄) , (5.24)

D̄α̇O(x, θ, θ̄) =
(
− ∂

∂θ̄α̇
+ 1

2θ
α ∂

∂xα̇α

)
O(x, θ, θ̄) . (5.25)

The usefulness of covariant derivatives is due to shortening conditions being naturally
defined for superprimary operators at the origin.

The example of a chiral superprimary operator φ(0) is again illuminating. We denote
Φ(x, θ, θ̄) the superfield obtained from φ(0), where the chiral superprimary is defined by the
shortening condition [Q̄α̇, φ(0)] = 0. Comparing to the definition of covariant derivative
(5.23), it is clear that the superfield obeys the shortening condition

D̄α̇Φ(x, θ, θ̄) = 0 . (5.26)

It is instructive to solve this shortening condition explicitly. Introducing the distance
yα̇α = xα̇α + 1

2θ
αθ̄α̇, the chiral superfield can only depend on yα̇α and θα, so the Taylor

expansion of Φ contains only three terms

Φ(x, θ, θ̄) = Φ(y, θ) = φ(y) + θαψα(y) + θαθαρ(y) , (5.27)

which correspond precisely to the three operators that form a chiral multiplet, see (5.12).
The punchline is that superconformal multiplets can be constructed in two equivalent

ways. In the operator language of section 5.2, one acts on a superprimary with Q, Q̄

and removes null descendants. In the superspace language, a shortening condition can be
imposed using covariant derivatives. The superfield that solves the shortening condition
contains a smaller number of Taylor components, each of which corresponds to a member
of the supermultiplet.
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5.4 Superconformal blocks

One implication of supersymmetry is that OPE coefficients of operators in the same super-
multiplet are related to each other. This observation leads to the concept of superconformal
block, which is central in the conformal bootstrap of SCFTs. In this section, we explain
two methods to compute superconformal blocks, both of which rely on superspace. These
two methods are applied to the by now familiar example of 4d N = 1.

5.4.1 Setup

The goal of this section is to study superconformal blocks for the four-point function of
chiral and antichiral operators 〈φφ̄φφ̄〉 in 4d N = 1 SCFTs. It is clear that this four-point
function has two different conformal block expansions: one uses the φ× φ OPE, while the
other uses the φ × φ̄ OPE. Although both of them are interesting, we focus on the φ × φ̄
OPE:

(x2
12x

2
34)∆φ〈φ(x1)φ̄(x2)φ(x3)φ̄(x4)〉 = G(z, z̄) =

∑
O∈φ×φ̄

λ2
φφ̄Og∆,` . (5.28)

Many terms in the infinite sum are related by superconformal symmetry, so our goal is to
rearrange the sum taking these relations into account. In the next paragraphs, we explore
this idea in more detail.

Any operator in the φ × φ̄ OPE satisfies two properties: it transforms in integer spin
representation, because this is the only representation allowed in the OPE of two scalars;
and it is uncharged r = 0, as follows from R-symmetry conservation. Now we take a
superprimary operator A in the φ × φ̄ OPE, with scaling dimension ∆ and spin `. Of all
the descendants of A, only three have integer spin and zero charge, as can be seen from
the long multiplet (5.9):

A : [`, `](0)
∆ , J : [`+ 1, `+ 1](0)

∆+1 , N : [`− 1, `− 1](0)
∆+1 , D : [`, `](0)

∆+2 . (5.29)

For future convenience we have named these four operators, which are the only ones in the
multiplet that appear in the φ× φ̄ OPE. In other words, the contribution of these operators
to the conformal block expansion takes the form

G(z, z̄) ⊃ λ2
φφ̄A

g∆,` + λ2
φφ̄J

g∆+1,`+1 + λ2
φφ̄N

g∆+1,`−1 + λ2
φφ̄D

g∆+2,` . (5.30)
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Here supersymmetry has fixed the spin and dimension of the descendants in terms of the
superprimary. Not only that, but supersymmetry also relates their OPE coefficients, so
the expansion can be rewritten as

G(z, z̄) ⊃ λ2
φφ̄A

(
g∆,` + k1 g∆+1,`+1 + k2 g∆+1,`−1 + k3 g∆+2,`

)
︸ ︷︷ ︸

G∆,`

. (5.31)

The superconformal block G∆,` fixes completely contributions of descendants in terms of
the superprimary A. The challenge, though, is to determine the constants k1,2,3. Impor-
tantly, the constants k1,2,3 depend on the superconformal algebra and multiplets under
consideration, but not on dynamical information about the theory.

The rest of this section discusses two methods to compute the superblocks, or equiv-
alently to compute k1,2,3. For the first method, compare equations (5.30) and (5.31) to
obtain the definition of G∆,`:

G∆,`(z, z̄) = g∆,` +
∑

O′∈{J,N,D}

1
nO′

λ2
φφ̄O′

λ2
φφ̄A

g∆O′ ,`O′ . (5.32)

Here we allow for the descendants O′ not to be unit-normalized: instead, their two-point
functions are 〈O′O′〉 ∝ nO′ . The calculation of equation (5.32) proceeds in three steps: first
we define J , N and D in terms of supercharges in section 5.4.2; then we compute two-point
norms nO′ in section 5.4.3; finally, we compute the three-point OPE coefficients λφφ̄O′ in
section 5.4.4. Our discussion follows closely the original work [65]. A second method to
compute the superconformal blocks consists on solving a superconformal Casimir equation.
By using an ansatz of the form (5.31), the supercasimir equation fixes k1,2,3, as explained
in section 5.4.5.

Before proceeding to the calculation, a word of caution to the reader: the derivation
of superconformal blocks is a very technical subject. Here, in the same spirit as the rest
of the text, we aim for clarity more than rigor, so we omit unimportant factors in many
equations. These details can be reconstructed from the original literature.

5.4.2 Superconformal descendants

The first step to calculate superconformal blocks is to define precisely the superdescendants
(5.29). In index free notation, the spin-` superprimary is A(x, η), while the descendants
with spins `±1 and `, are Poincare supercharges acting on A(x, η). More precisely, defining
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Θµ = (σ̄µ)α̇α[Qα, Q̄α̇], the descendants are

J(x, η) ∼ (Θµηµ)A(x, η) , (5.33)

N(x, η) ∼ (Θµ∂ηµ)A(x, η) , (5.34)

D(x, η) ∼ (ΘµΘµ)A(x, η) + c1P
2A(x, η) + c2(Pµηµ)(P ν∂ην )A(x, η) . (5.35)

This definition implies that J , N and D have spin ` + 1, ` − 1 and ` respectively. Fur-
thermore, the commutation relations in appendix 5.A imply that J and N are conformal
primaries, namely special conformal transformations kill them KµJ = KµN = 0. The
situation for D is more complicated, because Θ2A is not a conformal primary. Instead, one
adds the two extra terms in (5.35), and fixes the unknown coefficients requiring KµD = 0.

Having defined the conformal primaries J , N and D, the next step is to understand
them in the language of superfields. Denoting the superfield by O(x, θ, θ̄), then the Taylor
expansion of (5.15) reads

O(x, θ, θ̄, η) ∼ A(x, η) + ζµ∂ηµJ(x, η) + ζµηµN(x, η) + ζ2D(x, η) + . . . (5.36)

where ζµ = θασµαα̇θ̄
α̇. Therefore, for a given expression involving O, the information of the

descendants is recovered by Taylor expanding and keeping appropriate powers of ζ and η.3

5.4.3 Two-point norms

The second step in the calculation of superconformal blocks is to obtain the two-point
function norms of J , N , D. In order to obtain these norms, we work in the Hilbert space
formalism. For example, the operator A(η) generates the state |A(η)〉 = A(0, η)|0〉, which
we take to be unit normalized

〈A(η1)|A(η2)〉 = (η1 · η2)` . (5.37)

Similarly, the states corresponding to superconformal descendants can be obtained from
their definition (5.33)-(5.35). Using the Hermitian conjugation in radial quantization
(5.58), and the commutation relations in appendix 5.A, it is possible to obtain the two-point

3 A more sophisticated method associates a differential operator to each superdescendant. Acting on
the superfield with the differential operator and setting fermions to zero gives the contribution of that
descendant [190,191].
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norms:

〈J(η1)|J(η2)〉 = 2(∆ + `)(∆ + `+ 1)(η1 · η2)`+1 , (5.38)

〈N(η1)|N(η2)〉 = 2(`+ 1)2

`2
(∆− `− 2)(∆− `− 1)(η1 · η2)`−1 , (5.39)

〈D(η1)|D(η2)〉 = ∆2(∆− `− 2)(∆− `− 1)(∆ + `)(∆ + `+ 1)
4(∆− 1)2 (η1 · η2)` . (5.40)

These norms are calculated in a similarly way to unitarity bounds, see (3.1) and (5.13). We
note in passing that positivity of these norms implies the bound ∆ > `+ 2, consistent with
(5.10). When the unitarity bound is saturated, the multiplet shortens and the descendants
N and D drop out.

An alternative method to obtain the two-point norms is based on superspace. As
described in [192], by Taylor expanding the superspace two-point function one can recovers
the norms of all the superconformal descendants in a long multiplet (5.9).

5.4.4 Three-point functions

The final step in the calculation of superconformal blocks is to relate the OPE coefficients
of A, J , N and D. Here we use superspace techniques, although a calculation based on
the Hilbert space formalism is also possible [193]. In superspace, the chiral and antichiral
multiplets are represented by superfields Φ, Φ̄ that satisfy a shortening condition, see
(5.26). Similarly, the multiplet with superprimary A is represented by a superfield O. In
superspace, their three-point function is uniquely fixed [65,185]

〈Φ(y1, θ1)Φ̄(ȳ2, θ̄2)O(x3, θ3, θ̄3, η3)〉 = F (3)(xi, θi, θ̄i, η3) . (5.41)

Although not extremely complicated, we refrain from showing the explicit formula forF (3),
because for our purposes the only necessary property is that F (3) is unambiguously de-
termined up to an overall normalization. Because we are interested only on the OPE
coefficient of the chiral superprimaries φ, φ̄, we set θ1 = θ̄2 = 0. Furthermore, the left-hand
side of equation (5.41) can be expanded using the form of the multiplets (5.36), giving

〈φφ̄O〉 ∼ 〈φφ̄A〉+ ζµ∂ηµ〈φφ̄J〉+ ζµηµ〈φφ̄N〉+ ζ2〈φφ̄D〉 . (5.42)
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Since the right-hand side of (5.41) is fully fixed, it has a similar Taylor expansion. Matching
equal powers of ζ and η in the left- and right-hand side gives

〈φφ̄A〉 = T
∆φ

∆,` , (5.43)

〈φφ̄J〉 = i(∆ + `)T∆φ

∆+1,`+1 , (5.44)

〈φφ̄N〉 = i
(∆− `− 2)(`+ 1)

2` T
∆φ

∆+1,`−1 , (5.45)

〈φφ̄D〉 = −∆(∆ + `)(∆− `− 2)
8(∆− 1) T

∆φ

∆+2,` . (5.46)

To unclutter the notation, we introduced the three-point tensor structure T
∆φ

∆,` , which
follows from (2.31):

T
∆φ

∆,` ≡
λφφ̄A

x
2∆φ−∆+`
12 x∆−`

13 x∆−`
23

(
ηµxµ13
x2

13
− ηµxµ23

x2
23

)`
. (5.47)

We are finally in a position to compute the superblock of interest. The normalization of
the superdescentants is found in (5.38)-(5.40), while the relation between OPE coefficients
follows from (5.43)-(5.46). Inserting these results in the definition (5.32), gives:

G∆,` = g∆,` −
(∆ + `)

2(∆ + `+ 1)g∆+1,`+1 −
(∆− `− 2)
8(∆− `− 1)g∆+1,`−1

+ (∆ + `)(∆− `− 2)
16(∆ + `+ 1)(∆− `− 1)g∆+2,` (5.48)

This superconformal block, which was originally obtained in [65], is the main result of
this section. By now this superblock has been rederived with a variety of alternative
methods [193–196], one of which we review now.

5.4.5 Four-point functions and the superconformal Casimir equation

Before concluding the chapter, we provide an alternative method to compute the superblock
(5.48). For this method, the starting point is the four-point function of chiral and antichiral
superfields:

〈Φ(y1, θ1)Φ̄(ȳ2, θ̄2)Φ(y3, θ3)Φ̄(ȳ4, θ̄4)〉 = 1
(x2

12x2
34)∆φ

G(u,v) . (5.49)

This correlation function depends on the supersymmetric distances x2
ij and two supercon-

formal invariants u and v, whose precise forms can be found in the literature [185, 196].
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These objects are supersymmetrizations of the standard distances and cross-ratios, mean-
ing that setting the Grassmann variables to zero we recover

lim
θ,θ̄→0

x2
12 = x2

12 , lim
θ,θ̄→0

u = x2
12x

2
34

x2
13x

2
24
, etc. (5.50)

The superconformal blocks are eigenfunctions of the superconformal Casimir, analogously
to conformal blocks, which are eigenfunctions of the conformal Casimir, see section 2.3.2.
The superconformal Casimir operator is obtained from the conformal Casimir, by adding
terms that account for the R-symmetry group and the supercharges. In the 4d N = 1
example the Casimir is:

CN=1 = CSO(d+1,1) −
3
4R

2 + [Sα, Qα] + [S̄α̇, Q̄α̇] . (5.51)

From the superconformal Casimir, we can form the differential operator C(1+2)
N=1 which acts

on superspace. This notation means that one should take the Casimir (5.51) and replace
each generator by the corresponding differential operator acting at the first two points.
The eigenvalue problem for C(1+2)

N=1 translates into a differential equation satisfied by the
superconformal block [196,197]:[

z2(1− z)∂2
z + z̄2(1− z̄)∂2

z̄ + z(1− 2z)∂z + z̄(1− 2z̄)∂z̄

+ 2zz̄
z − z̄

(
(1− z)∂z − (1− z̄)∂z̄

)
− 1

2
(
∆(∆− 2) + `(`+ 2)

)]
G∆,`(z, z̄) = 0 . (5.52)

Notice that the eigenvalue of the superconformal Casimir is different than the one for
the purely conformal case. In order to find the solution to this equation, one can simply
make an ansatz of the form (5.31) to fix the coefficients k1,2,3. As a curiosity, however,
observe that the superconformal Casimir equation also admits a solution in terms of a
single conformal block:

G∆,`(z, z̄) = (zz̄)−
1
2 g1,1

∆+1,`(z, z̄) . (5.53)

The relation (5.53) = (5.48) is not obvious, although it is also not hard to show using
hypergeometric identities. In different spacetime dimensions or number of supercharges,
there exist similar expressions, where a superconformal block is equivalent to a single non-
supersymmetric block with shifted arguments [1, 193,194,198].
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5.5 Review of the literature

The numerical bootstrap for SCFT is a very rich subject, which is naturally classified by
spacetime dimension and number of supersymmetries. In three dimensions, there has been
work on the N = 1 superIsing model [167, 199–201], on N = 2 theories [193, 202–205],
on N = 4 theories and their connection to mirror symmetry [206], and on N = 6, 8
models with holographic duals [207–211]. In four dimensions, there is work on N = 1
[56, 65, 212–215], N = 2 [1, 198, 216–218], N = 3 [219], and N = 4 [206, 220–225] models.
Finally, there has also been work on 2d SCFT [226–228], 5d SCFT [229], 6d SCFT [230–232],
and supersymmetric defects [2, 233].

Superconformal algebras and their representation theory is well understood, see [234]
for a review. The early work [184] studied the representation theory of the 4d N -extended
superconformal algebra, which was later generalized [54] to other dimensions d ≥ 3. The
construction of long and short multiplets was initiated in [27] for 4d N = 2, 4 theories, and
later generalized in the very complete work [182].

The calculation of superconformal blocks has also been pursued in a large number of
works, see [65,190,191,193–195,197,235–242] for a list that gives an idea of various methods.
A major omission of this chapter was the study of superconformal Ward identities for
theories with eight or more supercharges [243–245]. In 4d N ≥ 2, these superconformal
Ward identities can be understood from a protected subsector described by a chiral algebra
[246], which allowed to find universal OPE bounds saturated by known theories [247,248],
see [249] for a nice review. Similar protected subsectors also exists in 3d N ≥ 4 [208] and
6d (2, 0) [250].

Finally, let us mention that a more mathematical way to think of superspace is as a
coset of the superconformal group by one of its subgroups. In our case, we have chosen a
particular subgroup that leads to the so-called real superspace. Quotienting by different
subgroups gives other types of superspace, such as chiral superspace, harmonic superspace,
etc. some of which only make sense for N ≥ 2. For a complete treatment of these subjects,
we refer to the pedagogical introduction [251].

5.A Four-dimensional superconformal algebra

In this appendix we show the four-dimensional superconformal algebra SU(2, 2|N ), where
for physical theories N = 1, . . . , 4. Instead of vector indices, it is natural to use spinor
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indices for P , K and M , such that the conformal algebra reads

[D,Pαα̇] = Pαα̇,

[D,Kα̇α] = −Kα̇α,

[Kα̇α, Pββ̇] = δα̇
β̇
M α
β + δ α

β M̄ α̇
β̇

+ δ α
β δα̇

β̇
D,

[M β
α ,M δ

γ ] = δ β
γ M δ

α − δ δ
α M β

γ ,

[M̄ α̇
β̇
, M̄ γ̇

δ̇
] = −δγ̇

β̇
M̄ α̇

δ̇
+ δα̇

δ̇
M̄ γ̇

β̇
,

[M β
α , Pγγ̇ ] = δ β

γ Pαγ̇ − 1
2δ

β
α Pγγ̇ ,

[M̄ α̇
β̇
, Pγγ̇ ] = δα̇γ̇Pγβ̇ −

1
2δ
α̇
β̇
Pγγ̇ ,

[M β
α ,K γ̇γ ] = −δ γ

α K γ̇β + 1
2δ

β
α K γ̇γ ,

[M̄ α̇
β̇
,K γ̇γ ] = −δγ̇

β̇
Kα̇γ + 1

2δ
α̇
β̇
K γ̇γ .

(5.54)

Besides the conformal algebra, the bosonic subgroup also includes an SU(N ) R-symmetry

[Rij , Rkl] = δkjR
i
l − δilRkj , (5.55)

and the U(1)R charge r. There are 4N Poincare supercharges Qiα and Q̄iα̇, with the indices
running over i = 1, . . . ,N and α, α̇ = 1, 2. Under the bosonic subalgebra, these Poincare
and superconformal supercharges transform as

[D,Qiα] = 1
2Q

i
α,

[D, Q̄iα̇] = 1
2Q̄iα̇,

[r,Qiα] = −Qiα,

[r, Q̄iα̇] = +Q̄iα̇,

[D, Q̄iα̇] = 1
2Q̄iα̇,

[Kα̇α, Qiβ] = δ α
β S̄iα̇,

[Kα̇α, Q̄iβ̇] = δα̇
β̇
Sαi ,

[M β
α , Qiγ ] = δ β

γ Qiα − 1
2δ

β
α Qiγ ,

[M̄ α̇
β̇
, Q̄iγ̇ ] = δα̇γ̇Q̄iβ̇ −

1
2δ
α̇
β̇
Q̄iγ̇ ,

[Rij , Qkα] = δkjQ
i
α − 1

N δ
i
jQ

k
α,

[Rij , Q̄kα̇] = −δikQ̄jα̇ + 1
N δ

i
jQ̄kα̇,

[D,Sαi ] = −1
2S

α
i ,

[D, S̄iα̇] = −1
2 S̄

iα̇,

[r, Sαi ] = +Sαi ,

[r, S̄iα̇] = −S̄iα̇,

[Pαα̇, Sβi ] = −δβαQ̄iα̇,

[Pαα̇, S̄iβ̇] = −δβ̇
α̇
Qiα,

[M β
α , Sγi ] = −δ γ

α Sβi + 1
2δ

β
α Sγi ,

[M̄ α̇
β̇
, S̄iγ̇ ] = −δγ̇

β̇
S̄iα̇ + 1

2δ
α̇
β̇
S̄iγ̇ ,

[Rij , Sαk ] = −δikSjα + 1
N δ

i
jS

α
k ,

[Rij , S̄kα̇] = δkjS̄
iα̇ − 1

N δ
i
jS̄

kα̇.

(5.56)
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Finally, the supercharges anticommute as follows:

{Qiα, Q̄jα̇} = δijPαα̇,

{Sαi , S̄jα̇} = δjiK
α̇α,

{Qiα, S
β
j } = δijδ

β
α

(
D

2 + r
4−N

4N

)
+ δijM

β
α − δ β

α Rij ,

{S̄iα̇, Q̄jβ̇} = δijδ
α̇
β̇

(
D

2 − r
4−N

4N

)
+ δijM̄

α̇
β̇

+ δα̇
β̇
Rij .

(5.57)

For N = 4, the U(1)R charge can be quotiented out from the algebra, leading to the
PSU(2, 2|4) superalgebra. Under Hermitian conjugation in radial quantization, the gener-
ators transform as

D† = D , P †αα̇ = Kα̇α , (Rij)† = Rji , r† = r ,

(M β
α )† = M α

β , (M̄ α̇
β̇
)† = M̄ β̇

α̇
, (Qiα)† = Sαi , (Q̄α̇i)† = S̄α̇i .

(5.58)
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Conformal defects

Conformal defects are extended operators that, when inserted in a CFT, break part of the
conformal symmetry. In condensed matter theory, the most familiar examples of defects
are boundaries and impurities. Here, instead of focusing on particular examples, we obtain
a set of crossing equations that are satisfied by any conformal defect. This leads to the
defect bootstrap program, where the goal is to constrain the space of all consistent defects,
similarly to how the conformal bootstrap constrains the space of ordinary CFTs. We start
this chapter with a review of the defining properties of defects, along with several physically
relevant examples. In later sections, we focus on the implications of conformal symmetry,
and how they can be used to constrain or even solve conformal defects.

6.1 Introduction

There exists a great variety of conformal defects: some defects admit Lagrangian descrip-
tion while others are intrinsically non-Lagrangian; some admit weak-coupling expansions
while others are strongly coupled; some defects can break flavor symmetry; etc. To capture
such diversity in a unified framework, we need to focus on the universal properties shared
by all defects.

6.1.1 Geometry

The defining property of a conformal defect is the subgroup of conformal symmetry it
preserves. To see how this symmetry is preserved, we start with a full fledged CFT in Rd,
which by definition preserves the full conformal group. From now on, we call this the bulk

63



Chapter 6. Conformal defects

or ambient CFT. Splitting the Cartesian coordinates as (xa, xi) ∈ Rd, we insert an infinite
flat defect that extends in the xa directions, while it is located at xi = 0. At this stage,
we only need to know that the defect naturally splits space in parallel and orthogonal
directions

Parallel: a = 1, . . . , p , (6.1)

Orthogonal: i = p+ 1, . . . , d . (6.2)

The dimension of the defect is denoted by p, while q = d− p is its codimension. The above
construction applies to any type of defect. What truly defines conformal defects is that
they preserve conformal transformations along their worldvolume and rotations around
them. More precisely, conformal defects preserve the following symmetry generators:

Preserved generators: L̂ ∈ {D,Pa,Ka,Mab,Mij} . (6.3)

For an equivalent but more compact definition, one says that a conformal defect breaks
conformal symmetry as

SO(d+ 1, 1)→ SO(p+ 1, 1)⊕ SO(q) , p+ q = d . (6.4)

In the previous discussion we have implicitly worked with infinite flat defects, although
the symmetry-breaking pattern (6.4) is also compatible with spherical conformal defects.
However, any other geometry leads to defects that are not conformal.

6.1.2 Bulk and defect operators

Another universal feature of defect CFT is the existence of two types of local operators:
bulk and defect operators.

Bulk operators O are the local operators of the bulk CFT in the absence of conformal
defects. As discussed thoroughly in section 2.1, bulk operators transform in representations
of SO(d + 1, 1) defined by the scaling dimension ∆ and spin `. Because of short distance
singularities when bulk operators approach a defect, bulk operators must always be inserted
outside the worldvolume of the defect. To obtain a well-defined operator on the defect, one
needs to first renormalize these singularities. The resulting object, called a defect operator,
is described below.

Defect operators Ô are local operators inserted in the worldvolume of the defect, which
we distinguish from bulk operators with a hat. Since they are restricted to the defect, these
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operators transform in representations of the broken symmetry group

Ô : [∆̂, j, s] ∈ SO(p+ 1, 1)⊕ SO(q) . (6.5)

In words, the defect scaling dimension ∆̂ and the parallel spin j are the quantum numbers
for the p-dimensional conformal group; similarly, the transverse spin s is the quantum num-
ber for SO(q) rotations. However, note that only ∆̂, s are necessary for one-dimensional
defects, while only ∆̂, j are necessary for codimension-one defects.

6.1.3 Canonical operators

The last universal property of defects we discuss is the existence of a displacement operator.
The displacement operator Di measures the failure of the stress tensor Tµν to be conserved
in the presence of a defect. Mathematically, conservation of the stress tensor acquires a
contact term supported on the defect

∂µT
µi(x) = Di(x)δ(q)(xj) , i, j = p+ 1, . . . , d , (6.6)

with the diplacement being the proportionality factor. Since the stress tensor has dimension
∆Tµν = d, equation (6.6) fixes the displacement dimension ∆̂D = p+1. Similarly, the index
structure of (6.6) implies the displacement is a vector under SO(q), or equivalently sD = 1.
The importance of the displacement operator is that it exists in any non-trivial defect in a
local CFTs.

More generally, a defect operator must exist for every continuous symmetry broken by
the defect. Indeed, a continuous symmetry is generated by a conserved current jµ. The
defect breaks this symmetry if the conservation equation acquires a contact term localized
on the defect:

∂µj
µ(x) = t(x)δ(q)(xj) . (6.7)

As before, the proportionality factor is a defect operator t(x), whose existence is guaranteed
in any theory with the same symmetry-breaking pattern. For example, for a defect that
breaks flavor symmetry t(x) is called the tilt operator [252,253], and it has scaling dimension
∆̂t = p. Another example is provided by superconformal theories, where defects break part
of the R-symmetry, leading to protected defect operators.
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6.1.4 Examples

After having reviewed the main properties of conformal defects, it is illustrative to look
at examples. One can think of a defect as a non-local operator D that one inserts in
correlation functions as 〈DO1 . . . Ôn〉. Here, we provide two different ways to construct
such an operator: order and disorder defects.

Order defects

An order defect is a Lagrangian density integrated along a submanifold Σ ⊂ Rd:

D = exp
(
−
∫

Σ
Ldefect(φ)

)
. (6.8)

Above, φ is a collective label for the fields integrated in the path integral. For gauge
theories, a familiar example of order defect is the Wilson loop, while for condensed matter
systems, we provide a similar example below.

Correlation functions with an order defect insertion 〈DO . . .〉 can be computed adding
a term to the action localized on a submanifold:

S =
∫
Rd
Lbulk(φ) +

∫
Σ
Ldefect(φ) . (6.9)

Although the two descriptions (6.8) and (6.9) are equivalent, the second is more common
in the study of RG flows. Since we want a CFT in the bulk, we look at the IR fixed point
of the bulk RG flow. However, the couplings in the defect Lagrangian will typically also
flow. In order to have a conformal defect in a conformal bulk, the defect RG flow must
also be tuned to land on a fixed point.

This abstract discussion becomes more clear in a simple example. Consider the φ4

Lagrangian (4.33) with the line defect operator

D = exp
(
ζ

∫
dτφ

)
. (6.10)

In d = 4 the bulk is Gaussian while the defect operator φ is exactly marginal, so there
is a one-parameter family of conformal defects parameterized by ζ [254]. The situation is
more interesting in d = 4− ε. On the one hand, the bulk RG flow described below (4.33)
lands on the Wilson-Fisher fixed point. On the other hand, the defect operator φ is weakly
relevant because ∆φ = 1 − ε/2 < p = 1, so φ will trigger a defect RG flow that lands on
a non-trivial fixed point [253]. The result is a critical defect embedded in a critical bulk,
which can be described with the framework of defect CFT.
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Disorder defects

An alternative method to obtain a defect is to compute correlation functions using certain
boundary conditions in the path integral:

〈DO1 . . .On〉 =
∫
O1 . . .One−S(φ)Dφ|φ(Σ)=φ0 . (6.11)

Defects obtained in this way are called disorder defects. Note that disorder defects are not
necessarily conformal. For example, if the boundary condition has some scale associated to
it, or it does not respect the isometries (6.4), the defect will typically break conformality.

In gauge theory, a well-known disorder defect is the ’t Hooft line operator, while in con-
densed matter, monodromy defects are important examples of conformal defects. Focusing
again on φ4 theory (4.33), a Z2 monodromy defect is obtained by the boundary condition

φ(r, θ + 2π, ~y) = −φ(r, θ, ~y) . (6.12)

The coordinate ~y ∈ Rd−2 parametrizes the p = d−2 dimensional worldvolume of the defect,
while the polar coordinates (r, θ) parametrize the plane orthogonal to it. The boundary
condition (6.12) is consistent because the Z2 symmetry of the bulk maps φ→ −φ. Due to
the topological nature of (6.12), we expect this monodromy defect to flow to a conformal
defect in the IR. The 3d Ising Z2 monodromy defect has been studied using Monte-Carlo,
ε–expansion and numerical bootstrap [4, 255–258].

6.2 Kinematics

The defining property of conformal defects is the symmetry (6.4) they preserve. This sym-
metry constrains conformal defects in two ways, 1) fixing the form of correlation functions
and 2) with operator expansions and crossing symmetry. In this section we explore the
first idea, while the second is considered in section 6.3. Because our only assumption is the
symmetry-breaking pattern (6.4), our discussion applies to any conformal defect, either of
the order or disorder type.

6.2.1 Obtaining the Ward identities

Correlation functions in the presence of a defect satisfy a set of partial differential equations
that we now derive. To account for the defect, we shall insert a non-local operator D in
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correlation functions 〈DO1 . . . Ôn〉, and then average 〈 · 〉 using the CFT of interest. It is
natural to use the normalization

〈〈O1 . . . Ôn〉〉 ≡
〈DO1 . . . Ôn〉

〈D〉
, (6.13)

so that the identity operator has unit one-point function 〈〈1〉〉 = 1.
To derive the constraints of conformal symmetry, we work in the operator formalism.

In this formalism, correlation functions are vacuum expectation values, the preserved gen-
erators (6.3) commute with the defect [L̂,D] = 0, and the preserved generators kill the
vacuum L̂|0〉 = 0. These three properties lead to the defect Ward identities

0 = 〈0|[L̂,DO1(x1) . . . Ôn(xn)]|0〉
〈0|D|0〉 =

n∑
i=1
L̂(i)〈〈O1(x1) . . . Ôn(xn)〉〉 . (6.14)

The differential operators L̂(i) act at point xi and are presented in (2.21)-(2.24). There
is one difference between (6.14) and the conformal Ward identities (2.29): here only the
preserved generators (6.3) can be used.

6.2.2 Solving the Ward identities

The defect Ward identities (6.14) admit elegant solutions in several simple configurations.
First, we consider correlation functions involving only defect operators. Remember that
defect operators are labeled by a scaling dimension ∆̂ and spins j, s under parallel and
transverse rotations respectively. For simplicity, we use index-free notation for the defect
indices:

Ô(x,w, z) ≡ Ô(x)i1...isa1...ajwi1 . . . wisz
a1 . . . zaj , wiwi = zaza = 0 . (6.15)

Although we do not use it here, the Todorov operator (2.28) can free the indices starting
from the polynomials in w, z. With these definitions, the two-point function of defect
operators reads

〈〈Ô1(x1, w1, z1)Ô2(x2, w2, z2)〉〉 = δÔ1,Ô2

(wi1wi2)s

|xa12|2∆̂

(
za1z

a
2 −

2za1xa12z
b
2x
b
12

|xa12|2

)j
. (6.16)

As in section 2.2.2, we have redefined defect operators to make their two-point functions
orthonormal. After this redefinition, the three-point functions are uniquely determined
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and their normalization λ̂ijk contains dynamical information. For example, the three-point
function of parallel scalars reads

〈〈Ô1(x1, w1)Ô2(x2, w2)Ô3(x3, w3)〉〉 = λ̂123
(w1 · w2)s123(w1 · w3)s312(w2 · w3)s231

|xa12|∆123 |xa13|∆312 |xa23|∆231
. (6.17)

We have introduced ∆ijk = ∆i + ∆j −∆k and similarly for sijk. Higher-point functions on
the defect behave similarly to the bulk discussion in section 2.2.2. The only difference is
that here one has to keep track of SO(q) indices, which behave as flavor symmetry indices.

We can also consider correlation functions involving bulk fields. The simplest example
is the one-point function of a spin-` bulk operator:

〈〈O(x, η)〉〉 = aO
|xi|∆

(
(ηixi)2

|xi|2
− ηiηi

)`/2
. (6.18)

Remember that bulk operators are normalized according to (2.30), so the constant aO
contains dynamical information. Another correlation function fixed by conformal symmetry
is the bulk-defect two-point function. For the simpler case of a bulk scalar, conformal
symmetry fixes the result

〈〈O(x1)Ô(x2, w)〉〉 = bOÔ
(xi1wi)s

(|xi1|2 + |xa12|2)∆̂|xi1|∆−∆̂+s
. (6.19)

As before, since both O and Ô have canonical normalization, the coefficient bOÔ captures
dynamical information about the theory. In fact equation (6.18) is a particular case of
equation (6.19) when Ô = 1̂, or equivalently aO = bO1̂.

Although it is interesting to consider more general correlation functions, the ones above
are the most relevant for practical applications. As in the case without defects, the most
efficient method to obtain other correlation functions is the embedding space formalism
[259]. However, for the sake of clarity, we shall not present it here.

6.3 The defect bootstrap program

In the previous section, we showed that correlation functions with low number of operators
are kinematically fixed. Instead, higher-point correlation functions depend on conformal
cross ratios and can be expanded using operator expansions. In this section, we show that
associativity of these expansions leads to consistency conditions called crossing equations.
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The defect bootstrap program is the study of solutions to the crossing equations, or equiv-
alently, the study of consistent conformal defects. In this section we discuss the defect
bootstrap program in full generality, while in section 6.4 we focus on the crossing equation
for bulk two-point functions.

6.3.1 Operator expansions

Three operator expansions exist in defect CFT: the bulk-bulk, defect-defect and bulk-
defect expansions. Operator expansions are useful because they allow the calculation of
higher-point functions as infinite sums of lower-point functions. Furthermore, associativity
of different operator expansions leads to the crossing equations.

The bulk-bulk operator product expansion has been described in detail in section 2.2.3.
Because the bulk-bulk OPE is valid when two operators approach, and because in this
limit the defect is negligible, the bulk-bulk OPE can be used unchanged in the presence of
defects. For ease of reference, we repeat here the bulk-bulk OPE for scalar operators:

O1(x1)O2(x2) =
∑
k

λ12kf
µ1...µ`
12k (x12, ∂x2)Oµ1...µ`

k (x2) as x1 → x2 . (6.20)

The differential operator f12k captures the contributions of conformal descendants, such
that the infinite sum runs only over conformal primaries. Figure 6.1a) shows a pictorial
representation of the bulk-bulk OPE.

Similarly, the defect-defect OPE expands the product of two defect operators as an
infinite sum of defect operators. The simplest example is the expansion of defect scalars,
that reads

Ô1(xa1)Ô2(xa2) =
∑
k

λ̂12kf̂
a1...aj

12k (xa12, ∂
a
x2)Ô a1...aj

k (xa2) as xa1 → xa2 . (6.21)

This OPE, shown pictorially in figure 6.1a), is analogous to the bulk-bulk OPE, with the
difference that operators are restricted to live on the defect.

Finally, the bulk-defect expansion approximates a bulk operator as an infinite sum
of defect operators. The physical meaning of the bulk-defect expansion is that operators
sufficiently close to the defect are indistinguishable from excitations localized on the defect.
For a scalar operator, the bulk-defect expansion reads

O(x) =
∑
Ô

bOÔ C
i1...is
Ô

(xi, ∂a)Ôi1...is(xa) as xi → 0 . (6.22)
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O1

O2
=
∑
OO

Ô1

Ô2
=
∑
Ô Ô O =

∑
Ô Ô

a) b) c)

Figure 6.1: The three operator expansions in defect CFT: bulk-bulk, defect-defect and
bulk-defect. The straight line represents a p-dimensional defect.

As before, the differential operator CÔ captures contributions of conformal descendants in
the defect multiplet. To obtain the precise form of CÔ, one inserts the bulk-defect expansion
in (6.19), and compares terms order by order as xi → 0. The final result takes a simple
form

Ci1...is
Ô

(xi, ∂a) = xi1 . . . xis

|xi|∆−∆̂+s

∞∑
m=0

(−4)−m

m!(∆̂ + 1− p/2)m

(
|xi|2∂2

a

)m
. (6.23)

The bulk-defect expansion is shown in figure 6.1c).

6.3.2 Crossing equations

Repeatedly using operator expansions, one can compute any correlation function of interest.
However, for the theory to be consistent, different ways to expand correlators must produce
equal results, or in other words, the operator expansions must be associative.

The example of four-point functions was discussed in section 2.3.3. There, we saw
that associativity of the OPE requires that four-point functions should satisfy the crossing
equations (2.46). In defect CFT, four-point functions of bulk operators and four-point
functions of defect operators should both be crossing symmetric:

〈OiOjOkOl〉 :
∑
O
λijOλklO g

ijkl
O =

∑
O
λkjOλilO g

kjil
O , (6.24)

〈〈ÔiÔjÔkÔl〉〉 :
∑
Ô

λ̂
ijÔλ̂klÔ ĝ

ijkl

Ô
=
∑
Ô

λ̂
kjÔλ̂ilÔ ĝ

kjil

Ô
. (6.25)

To make the notation more transparent, we have absorbed kinematical factors in the con-
formal blocks gijklO and ĝijkl

Ô
.

However, in defect CFT these two crossing equations are not sufficient to guarantee
crossing symmetry. Indeed, the requirement that the defect couples consistently to the
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bulk implies a third crossing equation. To derive this crossing equation, notice there are
two ways to expand the three-point function 〈〈OiOjÔk〉〉. One option is to use a bulk-bulk
OPE for OiOj ∼

∑
O and then sum over two-point functions 〈〈OÔk〉〉. Another option is

to use bulk-defect expansions for Oi ∼
∑
Ô and Oj ∼

∑
Ô′, and then sum over three-point

functions 〈〈ÔÔ′Ôk〉〉. The equality of the two expansions gives the crossing equation

〈〈OiOjÔk〉〉 :
∑
O
λijObOk h

ijk
O =

∑
Ô,Ô′

b
iÔbjÔ′ λ̂ÔÔ′k ĥ

ijk

Ô,Ô′
. (6.26)

Here hijkO and ĥijk
Ô,Ô′

are conformal blocks, although different from the ones appearing in
four-point functions. Graphically, the crossing equation is

Oi Oj

Ôk
=

Oi Oj

Ôk
, (6.27)

where the solid line represents the defect and the dashed lines represent operator expan-
sions. The crossing symmetry conditions (6.24)-(6.26) are sufficient to make any higher-
point correlation function crossing symmetric, as can be seen graphically using (1.1) and
(6.27).

The crossing equation (6.26) can be cumbersome to work with. Therefore, most studies
so far have focused on the particular case Ôk = 1̂, because then the double sum in (6.26)
truncates to a single sum

〈〈OiOj〉〉 :
∑
O
λijOaO f

ij
O =

∑
Ô

b
iÔbjÔ f̂

ij

Ô
. (6.28)

The crossing equation (6.28) is significantly easier to use than (6.26). The goal of section
6.4 is to study this equation in detail.

6.3.3 Defect bootstrap program

After this general introduction, we are ready to state the goals of the defect bootstrap
program. In its most ambitious form, the defect bootstrap program wants to answer the
question: Given a bulk CFT, what is the space of consistent conformal defects?

To make the question more precise, we start with a CFT that lives in the bulk. The
bulk CFT is consistent by itself, meaning that the CFT data

Bulk: {∆i, λijk} , (6.29)
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satisfies the crossing symmetry equations (6.24). Then one would like to find all possible
defects

Defect: {∆̂i, λ̂ijk, ai, bij} , (6.30)

that solve the crossing equations (6.25) and (6.26).
In its most most ambitious form, the defect bootstrap program is typically too hard

to address. Instead, one often focuses on a particular defect in a theory of interest, and
then one studies a small number of crossing equations. For example, much work has been
devoted to one-dimensional CFTs, which can be interpreted as line defects embedded in a
higher-dimensional bulk, see [2, 233, 256, 260–262] for examples using bootstrap methods.
In that case, one focuses on simple operators and tries to solve the four-point crossing
equation (6.25). Since the techniques to do so are similar to the ones in chapters 2-5, we
do not explore this direction further. Instead, we are going to focus on the crossing equation
for two-point functions, which is qualitatively different from its four-point counterpart.

6.4 Bulk two-point function

In the defect bootstrap program, one studies conformal defects by solving the crossing
equations (6.24)-(6.28). Because in chapters 2-5 we have presented methods to study the
four-point crossing equations, here we focus instead on the two-point crossing equation
(6.28). Although the lack of positivity in the bulk-channel makes numerical methods hard
to use, the analytic machinery of chapter 4 can be adapted to the defect context, as we
explain below.

As it stands, the crossing equation (6.28) is written schematically. Thus, we start
this section reviewing the kinematics of two-point functions, and providing methods to
approximate conformal blocks. After these preliminaries, we turn to the Lorentzian inver-
sion formula, which is our main tool to solve crossing equations analytically. We conclude
outlining how to apply the Lorentzian inversion formula for conformal defects in the ε–
expansion and in holographic CFTs. The discussion so far applied to general defects, but
from here on we restrict to codimension q ≥ 2. The reason is that for codimension-one
boundaries there are no transverse rotations and there is only one independent cross ratio,
which prevents one from using the Lorentzian inversion formula. Instead, one can use the
analytic methods discussed in chapter 9.
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6.4.1 Kinematics

Let us start reviewing the kinematics of a two-point function of bulk operators in the
presence of a defect. For simplicity we consider equal scalar operators φ(x), in which case
the two-point function reads

〈〈φ(x1)φ(x2)〉〉 = F(z, z̄)
|xi1|∆φ |xi2|∆φ

. (6.31)

This correlator is significantly different than the standard two-point function in the absence
of a defect (2.30). The reason is that with defects only the generators (6.3) are preserved,
so the two-point function is no longer kinematically fixed.

The two cross ratios z, z̄ are analogs to the four-point cross ratios (2.34), sharing
with them a similar geometric interpretation. In a generic frame, the cross rations are
determined from

1 + zz̄

(zz̄)1/2 = |x
a
12|2 + |xi1|2 + |xi2|2

|xi1||xi2|
,

z + z̄

2(zz̄)1/2 = xi1x
i
2

|xi1||xi2|
. (6.32)

Via conformal transformations, there exists a frame where the two operators are located
on a plane orthogonal to the defect, the first sitting at x1 = (τ, x) and the second sitting
at x2 = (0, 1). Then elementary algebra gives

z = x+ iτ , z̄ = x− iτ , (6.33)

so z, z̄ are complex conjugate coordinates in a plane orthogonal to the defect. Alternatively,
if we worked in Lorentzian signature, z, z̄ would be real and independent. The Lorentzian
regime will be useful when we consider the analytic bootstrap approach to defects.

6.4.2 Conformal blocks

The two-point function (6.31) admits expansions using the bulk-defect and the bulk-bulk
OPE. Since these two expansions are completely different, the corresponding conformal
blocks must be treated separately.

On the one hand, the bulk-defect expansion (6.22) leads to the defect-channel conformal
block expansion:

F(z, z̄) =
∑
Ô

1
2s b

2
φÔf̂∆̂,s(z, z̄) . (6.34)
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The bulk-defect OPE coefficient b
φÔ is defined in (6.19), and the factor 2−s conforms

with our normalization conventions. The defect-channel conformal block f̂∆̂,s captures
contributions of defect conformal primaries and all of their descendants. To obtain the
defect-channel blocks, it is possible to solve a Casimir equation in closed form [259]:

f̂∆̂,s(z, z̄) = z
∆̂−s

2 z̄
∆̂+s

2 2F1

(
∆̂, p2 , ∆̂ + 1− p

2 , zz̄
)

2F1

(
−s, q2 − 1, 2− q

2 − s,
z

z̄

)
. (6.35)

As a reminder, p is the dimension of the defect while q is its codimension.
On the other hand, the bulk-bulk OPE (6.20) leads to the bulk-channel conformal block

expansion:

F(z, z̄) =
( √

zz̄

(1− z)(1− z̄)

)∆φ∑
O

1
2`λφφOaOf∆,`(z, z̄) . (6.36)

It is conventional to strip off the prefactor
( √

zz̄
(1−z)(1−z̄)

)∆φ to make the bulk-channel con-
formal blocks f∆,` independent of ∆φ. Unlike the defect-channel blocks, in general no
closed-form expression is known for bulk-channel blocks, but there exist instead series rep-
resentations [259, 263–265]. These series representations follow from the Casimir equation
that bulk-channel blocks satisfy [259]:[

(1− z)2
(
z∂2

z + ∂z
)

− z(1− z)(1− z̄)
z − z̄

(
p

(1− z)(1 + z̄)
1− zz̄ − (d− 2)

)
∂z + (z ↔ z̄)

]
f∆,` = c2

2 f∆,` . (6.37)

In order to solve this equation unambiguously, it must be supplemented by the boundary
condition

f∆,`(z, z̄) ∼ (1− z)(∆−`)/2(1− z̄)(∆+`)/2 as 0 < 1− z � 1− z̄ � 1 . (6.38)

As an application of the Casimir equation, one can make the ansatz (4.5) replacing z, z̄ →
1− z, 1− z̄, and solve for the coefficients recursively. This gives a convenient series repre-
sentation for the bulk-channel conformal blocks around z = 1.

Summarizing, the two-point function of scalars in the presence of a conformal defect
admit bulk- and defect-channel expansions. The equality of the two expansions is called a
crossing equation

F(z, z̄) =
( √

zz̄

(1− z)(1− z̄)

)∆φ∑
O
cOf∆,`(z, z̄) =

∑
Ô

µÔf̂∆̂,s(z, z̄) . (6.39)
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For convenience, here and in later chapters we use shorthand notations cO ≡ 2−`λφφOaO
and µÔ = 2−sb2

φÔ
. The two sides of the crossing equation (6.39) contain different types

of CFT data, which naively suggests that the crossing equation is not very constraining.
This turns out to be false in perturbative settings, where the Lorentzian inversion formula
puts strong constraints on the allowed conformal defects for a given bulk. Although ex-
plicit examples are lacking, we believe crossing to be constraining also in non-perturbative
theories.

6.4.3 Lorentzian inversion formula

The final topic of this chapter is the Lorentzian inversion formula. In defect CFT there
are two inversion formulas, the bulk-defect formula [266] that we discuss here, and the
defect-bulk formula [265] that does not play such a central role in the thesis. The bulk-
defect Lorentzian inversion formula allows to efficiently solve the crossing equation (6.39)
for perturbative CFTs. Here we discuss the formula, while the applications are considered
in section 6.4.4.

Similarly to the four-point inversion formula (4.21), the bulk-defect inversion formula
reconstructs the CFT data of defect operators using the singularities of the correlator. The
derivation proceeds analogously to the four-point case in section 4.2, leading to [266]

µ(∆̂, s) =
∫ 1

0

dz

2z z
−(∆̂−s)/2

∫ 1/z

1

dz̄

2πi(1− zz̄)(z̄ − z)z̄
−(∆̂+s+4)/2

× 2F1

(
s+ 1, 2− q

2 , s+ q

2; z
z̄

)
2F1

(
1− ∆̂, 1− p

2 , 1 + p

2 − ∆̂, zz̄
)

DiscF(z, z̄) ,

(6.40)

The first ingredient in the formula is the discontinuity of the correlator, which is computed
around the branch cut z̄ ∈ [1,∞):

DiscF(z, z̄) = F(z, z̄ + i0)−F(z, z̄ − i0), z̄ ≥ 1 . (6.41)

Differently from the four-point inversion formula, here the singularities of the correlator
are captured by a single instead of a double discontinuity. The second ingredient in the
inversion formula is the function µ(∆̂, s), which contains the dimensions of defect operators
as poles, and their OPE coefficients as residues:

µ(∆̂, s) = −
∑
Ô

µO

∆̂− ∆̂Ô
. (6.42)
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Since (6.40) is analytic in transverse spin s, the CFT data in defect CFT is also analytic.
Finally, notice that the inversion kernel in (6.40) is roughly a defect block with shifted
arguments multiplied by suitable powers of z, z̄.

6.4.4 Perturbative CFTs

This chapter concludes with two applications of the Lorentzian inversion formula to per-
turbative CFTs: conformal defects in the ε–expansion and holographic defects. The reason
these setups can be bootstrapped is that the discontinuity of their correlators is very simple.
Then, by means of the inversion formula, the full correlator can be reconstructed.

The first step is therefore to compute the discontinuity of a generic correlator. From
equation (6.41), we observe that the discontinuity is computed around a cut starting z̄ = 1.
Because bulk blocks have a natural expansion in powers of (1 − z̄), it is then natural to
compute the discontinuity expanding in the bulk channel. A calculations similar to (4.24)
shows that the contribution of a single bulk-channel conformal block to the discontinuity
reads

Disc
( √

zz̄

(1− z)(1− z̄)

)∆φ

f∆,`(z, z̄)

= −2i sin
(∆− 2∆φ − `

2 π

)
(zz̄)

∆φ
2
[
(1− z)(z̄ − 1)

]∆φ−∆−`
2 f̃∆,`(z, z̄) . (6.43)

As in (4.25), we define f̃∆,`(z, z̄) to be a conformal block with a prefactor [(1−z)(1− z̄)]
∆−`

2

striped off. The sine in (6.43) suppresses operators near the multi-twist dimension ∆O =
2∆φ + `+ 2n+ γ. Indeed, multi-twist operators contribute like Disc ∼ γ, and in particular
the discontinuity kills exact multi-twist operators. An important difference with the four-
point function is that, in that case, multi-twist operators are more suppressed dDisc ∼ γ2.

It is possible to use this information to our advantage to bootstrap conformal defects.
For example, the ε–expansion discussion of section 4.3.3 shows that most operators receive
anomalous dimensions starting at order O(ε2). As a result, any conformal defect in the
Wilson-Fisher fixed point has a discontinuity of the form

DiscF
∣∣
O(ε) ∼ Disc

(
1 + cφ2f∆φ2 ,0

)
. (6.44)

Another regime where dramatic simplifications occur is planar N = 4 SYM at strong
coupling. In this case, most operators in the spectrum have exact multi-twist dimension,
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so the discontinuity kills them. For example, in the two-point function of 20′ multiplets,
only the 20′ itself contributes to the discontinuity:

DiscF
∣∣
strong coupling ∼ Disc

(
1 + cO20′FO20′

)
. (6.45)

Because of supersymmetry, FO20′ is a superconformal block similar to the ones presented
in section 5.4.

In order to complete the bootstrap, one uses the inversion formula (6.40) to extract
µ(∆̂, s), or equivalently, the defect CFT data. This defect CFT data can be used to resum
the full correlator at the order we are interested in

F(z, z̄) ∼
∑
Ô

(
δµOf̂∆̂,s + µOγO∂∆̂f̂∆̂,s

)
. (6.46)

Finally, from the full correlator we can expand in the bulk channel, to extract information
about many operators that did not originally contribute to the discontinuity. In the ε–
expansion example, one finds

F(z, z̄) ∝ 1 + cφ2f∆φ2 ,0 +
∞∑
`=2

c0,`f2∆φ+`,` +
∞∑
`=0

c1,`f2∆φ+`+2,` . (6.47)

The two families of operators take the schematic form φ∂µ1 . . . ∂µ`�
nφ for n = 0, 1. Note

that we started only with the identity and φ2, and from them we reconstructed two infinite
families of operators. This example demonstrates the power of the Lorentzian inversion
formula.

There are two subtleties we have not touched in the above discussion. The first subtlety
is that the bootstrap cannot fix the parameters cφ2 and cO20′ in (6.44) and (6.45). Thus,
one should think of the above results as one-parameter families of solutions to crossing.
Alternatively, one should fix the free parameters by other means, such as perturbative
calculations or supersymmetric localization. The second subtlety is that the Lorentzian
inversion formula can miss low-spin contributions. It is then necessary to add truncated
solutions to crossing involving only low spins, which lead to further free parameters that
one must fix by other means.

6.5 Review of the literature

The kinematics of conformal defects was originally studied for boundaries [267–269] and
later generalized to more general defects and spinning operators [259, 263, 264, 270, 271].
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Boundary CFT has been studied with analytic bootstrap [3,269,272–275], using Gliotzzi’s
method [45,46,252], with numerical bootstrap [252,269], diagrammatic perturbation theory
[3, 276–281], and using the large charge limit [282]. For higher codimension, many works
have focused on line defects [253, 283, 284], specially in relation to Wilson lines in N = 4
SYM [5, 233, 262, 285–289], although not exclusively [2, 4, 260, 261, 290–293]. Finally, a
promising idea is the study of defects in free bulk theories [294–296]. There are geometries
with similar properties as conformal defects, such two intersecting boundaries [297], CFT
at finite temperature [298,299], and CFT in projective space [300–304].
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Chapter 7

Bootstrapping Coulomb and Higgs
branch operators

Abstract

We apply the numerical conformal bootstrap to correlators of Coulomb and Higgs branch
operators in 4d N = 2 superconformal theories. We start by revisiting previous results
on single correlators of Coulomb branch operators. In particular, we present improved
bounds on OPE coefficients for some selected Argyres-Douglas models, and compare them
to recent work where the same cofficients were obtained in the limit of large r charge.
There is solid agreement between all the approaches. The improved bounds can be used to
extract an approximate spectrum of the Argyres-Douglas models, which can then be used
as a guide in order to corner these theories to numerical islands in the space of conformal
dimensions. When there is a flavor symmetry present, we complement the analysis by
including mixed correlators of Coulomb branch operators and the moment map, a Higgs
branch operator which sits in the same multiplet as the flavor current. After calculating
the relevant superconformal blocks we apply the numerical machinery to the mixed system.
We put general constraints on CFT data appearing in the new channels, with particular
emphasis on the simplest Argyres-Douglas model with non-trivial flavor symmetry.
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7.1 Introduction

Four-dimensional N = 2 superconformal theories are interesting models that despite a
significant amount of symmetry, show highly non-trivial dynamics and constitute a vast
landscape of theories. In this work, we use modern conformal bootstrap techniques to
study a canonical set of correlators that involve Coulomb and Higgs branch operators.
These are operators that sit in short multiplets of the superconformal algebra and whose
vevs parameterize the moduli space vacua.

Both Coulomb and Higgs branches are a common feature of N = 2 theories and have
been used as a starting point for the ambitious program of classifying N = 2 SCFTs.
Coulomb branch geometries are characterized by their complex dimension, known as the
rank, and a classification of all possible rank-one scale-invariant geometries was recently
proposed in a series of papers [305–308] (for a review of later developments see [309]). The
Higgs branch is also a useful organizing principle, specially when taking into account its
close connection to the VOAs associated to 4d N = 2 SCFTs [246]. It was conjectured
in [310] that one can recover the Higgs branch by looking at the associated variety of the
corresponding VOA. This observation lead to an elegant description of several VOAs in
terms of free field realizations [311–313], and constitutes a first step towards a classification
of VOAs associated to 4d N = 2 theories.

Progress in understanding N = 2 dynamics usually involves quantities protected by
supersymmetry, and access to non-protected data is still a challenge. In this work, we will
study correlators of Coulomb and Higgs branch operators using the numerical bootstrap
of [17]. Even though the external operators in our analysis are protected objects, they still
capture an infinite amount of non-protected data in their correlators. Our results will be
naturally split into two parts: the single-correlator and the mixed-correlator bootstrap.

The single correlator bootstrap for each type of operator has already appeared in the
literature [198,216,217]. Here we refine the Coulomb branch results motivated in part by the
works [314,315], where OPE coefficients of Coulomb branch operators for certain Argyres-
Douglas models were calculated in the large r-charge limit. The same OPE coefficients can
be estimated by obtaining upper and lower bounds using the numerical bootstrap, and our
improved results show solid agreement between the two approaches.

The improved OPE-coefficient bounds also give a better idea of the non-protected spec-
trum of these models. This is because numerical exclusion curves correspond to solutions
to crossing with a spectrum that can be extracted from the zeros of the numerical func-
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tional [66]. We can then use the approximate spectrum as a guide and corner models by
assuming gaps in the single correlator bootstrap, similarly to what was done in [104].

Having exhausted the single correlator analysis, we move on to the mixed-correlator
bootstrap and include Higgs branch operators, which will give us access to a new region of
parameter space that cannot be accessed by looking at single correlators separately. The
mixed correlator setup requires the calculation of new superconformal blocks that include
Coulomb and Higgs branch operators. We solve this problem by demanding that different
N = 1 decompositions of the blocks are consistent, and contribute a new entry to the
superblock catalog, a result interesting on its own right. With the mixed correlator at
hand we explore the landscape of theories with SU(2) flavor symmetry, and also attempt
to corner an individual Argyres-Douglas model, whose symmetries are consistent with our
setup.

The rest of this work is organized as follows. In section 7.2 we review the properties
of the Coulomb and Higgs branch operators that will be the main focus of this work. We
describe to which short representations of the superconformal algebra they belong, and
introduce their OPE selection rules and superconformal blocks. We also summarize the
most salient features of the landscape of known N = 2 superconformal field theories. In
section 7.3 we present the crossing relations obeyed by our correlation functions. Special
care is required for the four-point function of moment-map operators, where one needs to
take into account the chiral algebra construction of [246]. In section 7.4 we present the
results obtained from applying numerical bootstrap techniques to the single and mixed
correlators. We conclude in section 7.5 with a summary of our results and an overview of
possible future directions. The derivation of the new superconformal blocks and the details
of our numerical bootstrap setup are relegated to appendix 7.A and 7.B.

7.2 Preliminaries

We start with a preliminary review of the two basic operators that will be the main focus
of this work. We will concentrate on two types of short multiplets of the superconformal
algebra, whose correlators capture “canonical data” of the theory, in the sense that it is
data common to most N = 2 superconformal theories. In particular, we will study short
operators whose vevs parameterize the Coulomb and Higgs branches of the moduli space
of vacua.
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7.2.1 Canonical data in N = 2 SCFTs

Coulomb branch operators

We denote Coulomb branch operators by ϕr(x) and ϕ̄−r(x). These are superconformal pri-
maries killed by supercharges of the same Lorentz chirality, and their conformal dimension
is fixed by supersymmetry in terms of their corresponding r charges:[

Q̄Iα̇, ϕr(0)
]

= 0,
[
QIα, ϕ̄−r(0)

]
= 0 ⇒ ∆ϕr = ∆ϕ̄−r = 1

2r. (7.1)

In the notation of [182], which we will use throughout the paper, ϕ is the superprimary
of a LB̄[0; 0](0;r) multiplet.1 In the literature, they are sometimes called chiral primary
operators, and we will often refer to them simply as chiral or antichiral operators. They
form a ring under the OPE, called the Coulomb branch chiral ring, and the number of
generators in this ring defines the rank of the theory. Canonical data associated with this
ring are the U(1)r charge values of the generators. In Lagrangian theories, the chiral ring
generators are given by gauge invariant combinations trφn of the basic vector multiplet
φ, and their r-charges are always integer-valued. In interacting Lagrangian models, each
coupling constant will have an associated chiral operator trφ2 of dimension ∆ = 2, which is
the superconformal primary of the multiplet that contains the exactly marginal deformation
responsible for the corresponding direction in the conformal manifold.

Non-lagrangian examples include Argyres-Douglas models, in which the r-charges of the
Coulomb branch generators can have fractional values, and it is therefore unlikely they will
have a standard Lagrangian description. One advantage of the bootstrap approach followed
here is that the value of r for chiral operators is a parameter in the crossing equations, and
it can take any continuous value. This makes Argyres-Douglas models prime candidates
for the conformal bootstrap.

Correlators involving chiral operators have been nevertheless studied by a variety of
means, and some recent results in the literature will guide our analysis. One approach is
the observation that certain chiral correlators satisfy exact differential equations known as
the tt∗ equations [316]. This lead to a series of exciting developments [317–320], which
provide an algorithmic prescription to calculate OPE coefficient among operators in the
chiral ring of Lagrangian N = 2 theories. An alternative approach is provided by the
study of these correlators in the limit of large r-charge [321–324]. Of particular relevance
for us will be the works [314,315], from which one can extract OPE coefficients of Coulomb

1For readers familiar with the notation of [27] this corresponds to the Er/2 multiplet.
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branch operators in rank-one Argyres-Douglas models. We will be able to compare these
results with our bootstrap bounds in section 7.4, showing consistent results between the
two approaches.

The moment map

Complementary to the Coulomb branch there is also canonical data associated to the Higgs
branch. This branch of moduli space is parameterized by another type of short multiplets
killed by a different combination of supercharges, whose highest weights also form a ring
under the OPE. In this work we will only consider the so-called moment map operator
MA

(IJ)(x), which is the superconformal primary of the BB̄[0; 0](2;0) multiplet.2 Unlike the
previous case, this multiplet satisfies a shortening condition involving supercharges of both
chiralities: [

Q̄(I , M
A
JK)(0)

]
= 0,

[
Q(I , M

A
JK)(0)

]
= 0 ⇒ ∆M = 2 . (7.2)

This operator is neutral under U(1)r, and transforms as a triplet under SU(2)R, which we
represent with two symmetric fundamental indices I, J = 1, 2. What makes the moment
map particularly important is that it belongs to the same multiplet as the flavor current
jAµ , this means that both transform in the adjoint of the flavor group GF , which we indicate
with an adjoint index A = 1, . . . ,dimGF . It follows from this discussion that the moment
map will be present whenever there is a global (flavor) symmetry. Flavor symmetries are
ubiquitous in N = 2 superconformal theories, and correlators of flavor currents capture
canonical data associated to the Higgs branch. Relevant for us is the flavor central charge k
which can be considered analogous to the most common central charge c, which is associated
to correlators of the stress tensor.

A fact that will play a fundamental role in our subsequent analysis is that the moment
map belongs to a special class of operators whose protected data is described by a 2d
chiral algebra [246].3 Because the moment map sits in the adjoint of the flavor group,
the corresponding operator in the 2d chiral algebra is an affine Kac-Moody current. The
dictionary between the 4d and 2d theories is well known:

MA
(IJ)(x)→ JA(z) , k4d → −

1
2k2d . (7.3)

2For readers familiar with the notation of [27] this corresponds to the B̂1 multiplet.
3 Coulomb branch operators are not captured by the chiral algebra, and apart from protected conformal

dimensions the rest of the CFT data appearing in their correlators is always dynamical.
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The chiral algebra description of protected data allows to solve for an infinite number of
OPE coefficients in terms of the two central charges c and k. This has two important
consequences for us:

• Imposing unitarity of the parent 4d theory requires that the calculated OPE coeffi-
cients are positive, leading to strict analytic unitarity bounds on the central charges
c and k [246–248, 325]. These unitarity bounds are a good organizing principle that
we will use in the next section when we discuss the landscape of N = 2 theories, in
order to choose which theories one should focus on.

• The second consequence is that having analytic control over the protected part of the
correlator gives valuable input for the numerical bootstrap, which is mostly concerned
with non-protected data. In the crossing equations we present below, the infinite
number of short operators appearing in the moment map four-point function can be
summed and treated exactly.

Case studies

Although the bootstrap is an agnostic approach to study SCFTs, it is important to keep
in mind what assumptions we are making and what theories our bounds apply to. For
example, chiral operators will be present when the theory has a Coulomb branch of rank
one or higher, and the moment map signals a global flavor symmetry group GF . In this
work we will consider only GF = SU(2), so our bounds will apply to any theory with
a flavor symmetry that admits an SU(2) subgroup. We leave the study of other flavor
symmetry groups for future work.

As anticipated, a powerful organizing principle to study the space of N = 2 SCFTs are
the unitarity bounds obtained from the underlying chiral algebra. It will be important to
keep in mind that the central charges of any interacting N = 2 SCFT satisfy [246,248]:4

k ≥ 24ch∨

12c+ dimGF
, k(−180c2 + 66c+ 3dimGF ) + 60c2h∨ − 22ch∨ ≤ 0. (7.4)

For theories without flavor symmetry, the first inequality does not apply and the second
one reduces to c ≥ 11/30 [247].

Perhaps the most familiar examples of N = 2 SCFTs are Lagrangian models, the
simplest one being the SU(N) SYM theory coupled to an adjoint hypermultiplet. This

4The dual Coxeter number h∨ is N for SU(N), N − 2 for SO(N) and so on.
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is precisely N = 4 SYM theory, where part of the full SU(4)R symmetry is reinterpreted
as an SU(2) flavor symmetry. Another interesting model is N = 2 SCQCD, namely an
SU(N) SYM theory coupled to Nf = 2N hypermultiplets. The flavor symmetry is SO(8)
for N = 2 and SU(2N) × U(1) for N ≥ 3. Data associated to these theories is presented
in table 7.1. When restricting to rank-one or equivalently SU(2) gauge group, SCQCD
saturates the two bounds in (7.4), while N = 4 SYM saturates only the first one.

H0 H1 H2 N = 4 SYM N = 2 SCQCD

GF - SU(2) SU(3) SU(2) SU(2N)× U(1)

∆ϕ
6
5

4
3

3
2 2, . . . , N 2, . . . , N

c 11
30

1
2

2
3

N2−1
4

2N2−1
6

k - 8
3 3 N2 − 1 2N

Table 7.1: N = 2 theories that will appear in the discussion of our results.

Three non-Lagrangian models that will play an important role in our analysis are the
Argyres-Douglas theories listed in the first three columns of table 7.1. These models were
originally discovered as fixed points of N = 2 SU(2) supersymmetric QCD [326], and they
correspond to vacua where a monopole and Nf quarks become massless.5 These theories
have a rank-one Coulomb branch, and the flavor symmetry is SU(Nf ) where Nf = 1, 2, 3
for H0, H1, H2 respectively. Moreover, they saturate the bounds (7.4) and have therefore
a distinguished position in the N = 2 landscape.

These Argyres-Douglas models are isolated and strongly interacting with no standard
Lagrangian description.6 Despite this fact and thanks to superconformal symmetry, some
aspects of these theories are under good analytic control. The central charges listed in the
table were calculated using holography in [329], and their associated chiral algebras were
conjectured in [330, 331]. They can also be obtained as low energy theories on D3-branes
probing F -theory singularities [332], a construction that naturally generalizes our models
to higher ranks. In addition to the flavor symmetry already discussed, the rank-N models
will enjoy an extra SU(2)L symmetry, which will have its own flavor central charge kL.

5The H0 theory had been found first in [327] as a fixed point of N = 2 SU(3) super Yang-Mills.
6See however [328] for an interesting approach based on susy enhancement along an N = 1 RG flow.
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The central charges of the higher rank models are [329]:

c = 1
4N

2∆ϕ + 3
4N(∆ϕ − 1)− 1

12 , (7.5)

k = 2N∆ϕ, (7.6)

kL = N2∆ϕ −N(∆ϕ − 1)− 1, (7.7)

where ∆ϕ is the dimension of the rank-one Coulomb branch generator in table 7.1, and the
remaining generators have dimensions 2∆ϕ, . . . , N∆ϕ. This review of N = 2 theories is by
no means complete, but it will be sufficient for the discussion of our numerical results.

7.2.2 Correlators, conformal blocks and selection rules

Having reviewed the basic multiplets we are interested in, let us now have a brief review
of superconformal kinematics. Conformal Ward identities imply that four-point functions
depend on a function of two cross-ratios z and z̄:

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 = Gijkl(z, z̄)
x

∆i+∆j

12 x∆k+∆l
34

(
x24
x14

)∆ij
(
x14
x13

)∆kl

. (7.8)

Using the Operator Product Expansion (OPE) in the (12)→ (34) channel, one obtains the
conformal block decomposition:

Gijkl(z, z̄) =
∑

O∈φi×φj

(−1)`λijŌλklO g
∆ij ,∆kl

∆,` (z, z̄). (7.9)

Here the sum runs only over conformal primaries that appear in the OPE φi×φj , and the
contribution of all conformal descendants is captured by the conformal blocks originally
computed in [16,31]. In our conventions, they are normalized as

g∆12,∆34
∆,` (z, z̄) = zz̄

z − z̄

(
k∆12,∆34

∆+` (z)k∆12,∆34
∆−`−2 (z̄)− k∆12,∆34

∆+` (z̄)k∆12,∆34
∆−`−2 (z)

)
, (7.10)

where the one-dimensional blocks are of the familiar form:

k∆12,∆34
β (z) = zβ/2 2F1

(
1
2(β −∆12), 1

2(β + ∆34);β; z
)
. (7.11)

It will be understood from now on that g∆,` = g0,0
∆,` and kβ = k0,0

β .
When supersymmetry is present, the OPE coefficients of descendant operators can be

related to the ones of the superprimary. As a result, Gijkl can be decomposed in terms of
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superconformal blocks

Gijkl(z, z̄) =
∑

O∈φi×φj

(−1)`λijŌλklOG
ij,kl
∆,` (z, z̄), (7.12)

where the sum now runs only over superprimary operators in the φi × φj OPE, and the
superconformal blocks Gij,kl∆,` are linear combinations of non-supersymmetric blocks.

In the rest of this section we will discuss the implications of N = 2 supersymmetry on
all possible correlation functions formed with (anti)chiral operators ϕ, ϕ̄ and the moment
map operator M . Single correlators for chiral operators and moment maps were studied
originally in [216], while mixed correlators involving both types of operators have not been
studied before. In order to bootstrap this system the first necessary step is to calculate the
corresponding superconformal blocks, this is done in section 7.2.2 by imposing consistency
between different N = 1 decompositions.

Chiral correlators

We focus first on the four-point function of two chirals and two antichirals:

〈ϕr(x1)ϕr(x2)ϕ̄−r(x3)ϕ̄−r(x4)〉 = 1
x

2∆ϕ

12 x
2∆ϕ

34

∑
O∈ϕ×ϕ

|λϕϕŌ|
2 g∆,`(z, z̄). (7.13)

To understand what operators appear in the sum we need to study the OPE ϕr ×ϕr ∼ O.
The non-supersymmetric selection rules require that only even spin operators with 2r-
charge appear in the sum. Furthermore, the LHS is chiral and annihilated by the super-
conformal charge Sα (see [65] for a proof), i.e. Q̄α̇O = SαO = 0. Tables of supermultiplets
can be found in [182], where one starts with a primary operator at the top and all the Q and
Q̄-descendants are arranged in a diamond. The superselection rule implies that the only
operator that contributes to the OPE is the one sitting in the right corner of this diamond.
Since only one operator in each multiplet contributes to the OPE, the superconformal
blocks reduce to standard bosonic blocks and we define Gϕϕ;ϕ̄ϕ̄

∆,` ≡ g∆,`.
Going through the tables of superconformal multiplets, we obtain all operators that

can appear in the OPE. The resulting selection rule, together with the conformal blocks
are summarized in table 7.2.

Similarly, we can study the same four-point function with the operators in a different
order:

〈ϕr(x1)ϕ̄−r(x2)ϕr(x3)ϕ̄−r(x4)〉 = 1
x

2∆ϕ

12 x
2∆ϕ

34

∑
O∈ϕ×ϕ̄

|λϕϕ̄O|2Gϕϕ̄;ϕϕ̄
∆,` (z, z̄). (7.14)
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Multiplet Block Restrictions

LB̄[0; 0](0;2r) g2∆ϕ,0

LĀ[`; `-2](0;2r-2) g2∆ϕ+`,` ` ≥ 2, ` even

LB̄[0; 0](2;2r-2) g2∆ϕ+2,0

LĀ[`; `-1](1;2r-3) g2∆ϕ+`+2,` ` ≥ 2, ` even

LL̄[`; `](0;2r-4)
∆−2 g∆,` ∆ > 2∆ϕ + `+ 2, ` ≥ 0, ` even

Table 7.2: List of multiplets that appear in the ϕr × ϕr OPE, where ϕr is the primary of
N = 2 chiral multiplet. For each multiplet, only one conformal descendant appears in the
OPE, so we obtain non-supersymmetric bosonic blocks.

Now the sum runs over all superprimaries in the OPE ϕr×ϕ̄−r ∼ O. Using superconformal
Ward identities it is easy to prove that only multiplets with vanishing R and r charge can
appear. By going through the list of N = 2 multiplets one obtains

ϕr × ϕ̄−r ∼ 1 +AĀ[`; `](0;0) + LL̄[`; `](0;0)
∆ . (7.15)

For each multiplet, all operators with R = r = 0 appear in ϕr × ϕ̄−r, thus the supercon-
formal blocks are linear combinations of bosonic blocks. The superconformal block for the
exchange of the long multiplet was originally computed in [194], and takes a very compact
form:

Gϕϕ̄;ϕϕ̄
∆,` (z, z̄) = (zz̄)−1g2,2

∆+2,`(z, z̄). (7.16)

At the unitarity bound ∆ = ` + 2, the LL̄ multiplet shortens and we obtain the super-
conformal block associated to AĀ. In particular, the stress tensor belongs to AĀ[0; 0](0;0),
and all the AĀ[`; `](0;0) with ` ≥ 1 contain higher-spin conserved currents that are absent
in interacting SCFTs. Similarly, for ` = 0 and ∆ = 0 we obtain the identity operator.
Although not manifestly so, the above superconformal block can be expanded as a sum of
bosonic blocks with ∆12 = 0. We do not need the full result, but let us note for future
reference the contribution of the stress-tensor multiplet:

Gϕϕ̄;ϕϕ̄
2,0 (z, z̄) = g2,0 + 1

4g3,1(z, z̄) + 1
60g4,2(z, z̄). (7.17)
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In order to study crossing symmetry, we will also need the following ordering:

〈ϕr(x1)ϕ̄−r(x2)ϕ̄−r(x3)ϕr(x4)〉 = 1
x

2∆ϕ

12 x
2∆ϕ

34

∑
O∈ϕ×ϕ̄

|λϕϕ̄O|2 G̃ϕϕ̄;ϕϕ̄
∆,` (z, z̄). (7.18)

The block G̃ is given by the same linear combination of non-supersymmetric blocks as G.
However, for each term in the sum, we must include a factor (−1)` depending on the spin
of the exchanged operator. All in all, the superconformal blocks in compact form are:

G̃ϕϕ̄;ϕ̄ϕ
∆,` (z, z̄) = (−1)`(zz̄)−1g2,−2

∆+2,`(z, z̄). (7.19)

The results of this section are summarized in table 7.3.

Multiplet Block Restrictions

1 1

AĀ[`; `](0;0) Gϕϕ̄;ϕϕ̄
`+2,` ` ≥ 0

LL̄[`; `](0;0)
∆ Gϕϕ̄;ϕϕ̄

∆,` ∆ > `+ 2, ` ≥ 0

Table 7.3: List of multiplets that appear in the ϕr × ϕ̄−r OPE, where ϕr is the primary
of an N = 2 chiral multiplet and ϕ̄−r is its complex conjugate. The explicit form of the
superconformal block is given in (7.16). The multiplets AĀ[`; `](0;0) for ` ≥ 1 contain
higher-spin conserved currents and should be absent in an interacting SCFT.

Moment map correlator

Now we consider the four-point function of moment map operators. In this work, we will
restrict our attention to GF = SU(2), which could represent the full flavor symmetry
of the theory or an SU(2) subgroup. It is convenient to contract the SU(2)R indices
with auxiliary vectors tI to unclutter the equations MA(x, t) = MA

IJ(x)tItJ . Using this
notation the four-point function of moment maps can be decomposed into SU(2)R and
flavor irreducible representations:

〈MA(x1, t1)MB(x2, t2)MC(x3, t3)MD(x4, t4)〉

= (t1 · t2)2(t3 · t4)2

x4
12x

4
34

∑
R=0,2,4

∑
i

PABCDi PR(y) ai,R(z, z̄).
(7.20)
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We contract the auxiliary vectors as ta · tb = εIJ t
I
at
J
b , and the SU(2)R-invariant cross ratio

is

w = (t1 · t2)(t3 · t4)
(t1 · t3)(t2 · t4) , y = 2

w
− 1 . (7.21)

Since the moment map is a triplet under R-symmetry, the four-point function decomposes
into [2]⊗ [2] = [0]⊕ [2]⊕ [4], where [R] is the (R+ 1)-dimensional representation of SU(2).
The projectors PR(y) are given by Legendre polynomials:

P0(y) = 1 , P2(y) = y , P4(y) = 1
2(3y2 − 1) . (7.22)

On the flavor symmetry side, we have an index i which runs over all irreducible represen-
tations in the product of two adjoints i ∈ adGF × adGF . We use orthogonal projectors
normalized as follows:

PABCDi PDCEFj = δijP
ABEF
i , PABBAi = dimRi . (7.23)

For the case of interest to us GF = SU(2), the projectors are:

PABCD1 = 1
3δ

ABδCD , (7.24a)

PABCD3 = 1
2(δADδBC − δACδBD) , (7.24b)

PABCD5 = 1
2(δADδBC + δACδBD)− PABCD1 . (7.24c)

A useful property of the moment map four-point function is that superconformal Ward
identities relate the different R-symmetry channels. In particular, the three ai,R for R =
0, 2, 4 depend on a two-variable function Gi(z, z̄) and a meromorphic function fi(z) [243–
245]:

ai,0(z, z̄) = 2zz̄ − 3(z + z̄) + 6
6 Gi(z, z̄)−

zz̄

2(z − z̄)

((2− z)fi(z)
z

− (2− z̄)fi(z̄)
z̄

)
,

ai,2(z, z̄) = zz̄

2(z − z̄)
(
fi(z)− fi(z̄)

)
+ zz̄ − z − z̄

2 Gi(z, z̄), (7.25)

ai,4(z, z̄) = zz̄

6 Gi(z, z̄).

Since the superconformal blocks satisfy the same Ward identities as the correlator, we can
also express them in terms of G(z, z̄) and f(z). The selection rules for the moment map
operator were first obtained in [333], and the corresponding blocks were calculated in [243].
We do not review the calculation here, but we just quote the result in table 7.4.
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Multiplet Block G(u, v) Block f(z) Restrictions

1 0 1 −

BB̄[0; 0](2;0) 0 2k2 −

BB̄[0; 0](4;0) 6u−1g4,0 6k4 −

AĀ[`; `](0;0) 0 −k2(`+2) ` ≥ 0

AĀ[`; `](2;0) −2u−1g`+5,`+1 −2k2(`+3) ` ≥ 0

LL̄[`; `](0;0)
∆ u−1g∆+2,` 0 ∆ > `+ 2

Table 7.4: List of multiplets that appear in the M×M OPE, where M is theN = 2 moment
map operator. The superconformal blocks can be expressed in terms of two functions G(z, z̄)
and f(z), as discussed around equation (7.25). In our conventions, the contribution from
the lowest-dimension operator is always unit normalized.

Chiral and moment map

Finally, we consider the channel involving both chiral and moment map operators. In this
case, the superconformal blocks are not available in the literature. Fortunately, we can
leverage the knowledge of N = 1 superblocks to easily obtain the required blocks. The
strategy is to build the N = 2 superblocks as a linear combination of N = 1 blocks, and
by a mix of basic consistency conditions and N = 2 selection rules, it turns out all free
coefficients can be fixed. We present the steps in detail in appendix 7.A.

First we consider the four-point function

〈ϕ(x1)ϕ̄(x2)MA(x3, t3)MB(x4, t4)〉 = δAB(t3 · t4)2

|x12|2∆ϕ |x34|4
∑
O
λϕϕ̄OλMMOG

ϕϕ̄;MM
∆,` (z, z̄), (7.26)

where the sum runs over all even-spin superprimaries which are both in the ϕr × ϕ̄−r and
M ×M OPEs (see tables 7.3 and 7.4). Interestingly, the superconformal block can be
written very compactly (see appendix 7.A):

Gϕϕ̄;MM
∆,` (z, z̄) = (zz̄)−1g2,0

∆+2,`(z, z̄). (7.27)

As before, at the unitarity bound ∆ = ` + 2 this block gives the contribution of the
AĀ[`; `](0;0) multiplet. In the appendix we give an expression for Gϕϕ̄;MM

∆,` as a linear
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combination of non-supersymmetric blocks (7.70). We do not need such an expression in
general, only when ∆ = 2, ` = 0 to capture the contribution of the stress tensor:

Gϕϕ̄;MM
2,0 (z, z̄) = g2,0 −

1
30g4,2(z, z̄). (7.28)

These results are summarized in table 7.5.

Multiplet Block Restrictions

1 1

AĀ[`; `](0;0) Gϕϕ̄;MM
`+2,` ` ≥ 0, ` even

LL̄[`; `](0;0)
∆ Gϕϕ̄;MM

∆,` ∆ > `+ 2, ` ≥ 0, ` even

Table 7.5: List of multiplets that appear both in the ϕr × ϕ̄−r and M ×M OPEs. For
each multiplet, the superconformal block can be found in equation (7.27).

Let us now consider the four-point function in the crossed channel

〈ϕ(x1)MA(x2, t2)MB(x3, t3)ϕ̄(x4)〉

= δAB(t2 · t3)2

x
∆ϕ+2
12 x

∆ϕ+2
34

(
x24
x14

)∆ϕ−2 (x14
x13

)∆ϕ−2∑
O
|λϕMO|2GϕM ;Mϕ̄

∆,` (z, z̄),
(7.29)

where the superconformal blocks derived in appendix 7.A are

GϕM ;Mϕ̄
∆,` (z, z̄) = (zz̄)−1/2g

∆ϕ−1,3−∆ϕ

∆+2,` (z, z̄). (7.30)

The sum in (7.29) runs over the superprimaries of three different multiplets. For generic
∆ it is a long multiplet LL̄ and the block is given by (7.30). At the unitarity bound
∆ = ∆ϕ + `+ 1 we either obtain an LĀ multiplet if ` ≥ 1, or an LB̄ multiplet for ` = 0.

When we study crossing we will also need the blocks for the 〈ϕMϕ̄M〉 ordering. As
before, we define them with a tilde:

G̃ϕM ;Mϕ̄
∆,` (z, z̄) = (−1)`(zz̄)−1/2g

∆ϕ−1,∆ϕ−3
∆+2,` (z, z̄). (7.31)

The results in this section are summarized in table 7.6.
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Multiplet Block Restrictions

LB̄[0; 0](2;r) GϕM ;Mϕ̄
∆ϕ+1,0

LĀ[`; `-1](1;r-1) GϕM ;Mϕ̄
∆ϕ+`+1,` ` ≥ 1

LL̄[`; `](0;r-2)
∆ GϕM ;Mϕ̄

∆,` ∆ > ∆ϕ + `+ 1, ` ≥ 0

Table 7.6: List of multiplets that appear in the ϕr × M OPE. For each multiplet, the
superconformal block can be found in equation (7.30).

7.3 Crossing equations

With the selection rules and superconformal blocks at hand, we are finally ready to present
the crossing equations of interest. Although it is generally an easy exercise to obtain them,
for the moment map four-point function one needs to take into account the contributions
coming from the chiral algebra. We will review the most important results which are
derived in more detail in [216].

7.3.1 Generalities

The bootstrap for four-point functions of different scalars was first studied in [58]. As
usual, one demands that the OPE decomposition in the (12)→ (34) channel is equivalent
to the (14)→ (23) channel:7

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 = 〈φi(x1)φj(x2)φk(x3)φl(x4)〉 . (7.32)

Upon expanding in conformal blocks, this implies two independent crossing equations∑
(−1)`λijOλklOEij,kl±,∆,`(z, z̄)±

∑
(−1)`λkjOλilOEkj,il±,∆,`(z, z̄) = 0 , (7.33)

where we have defined

Eij,kl±,∆,`(z, z̄) =(z − z̄)
[
(zz̄)−

∆i+∆j
2 g

∆ij ,∆kl

∆,` (z, z̄)

∓
(
(1− z)(1− z̄)

)−∆i+∆j
2 g

∆ij ,∆kl

∆,` (1− z, 1− z̄)
]
.

(7.34)

7There will also be flavor symmetry indices which for simplicity we do not consider yet.
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We have multiplied by (z − z̄) to simplify the approximation of blocks in terms of poly-
nomials, as explained in appendix 7.B. In what follows, we will use the same notation for
superblocks, for example EMM ;ϕϕ̄ is obtained from (7.34) with ∆1,2 = 2, ∆3,4 = ∆ϕ and
g∆12,∆34

∆,` → GMM ;ϕϕ̄
∆,` . 8

7.3.2 Chiral correlators

The constraints imposed by crossing symmetry on a system of N = 1 chiral correlators in
4d was first studied in [65] and later improved in [56]. The analogous system with N = 2
supersymmetry has been studied by [198,216,217]. Applying (7.33) to 〈ϕϕ̄ϕϕ̄〉 and 〈ϕϕϕ̄ϕ̄〉
one obtains three independent equations

~Ic +
∑
O∈A+

|λϕϕ̄O|2 ~U∆,` +
∑
O∈A−

|λϕϕ̄O|2 ~V∆,` +
∑
O∈B+

|λϕϕŌ|
2 ~W∆,` = 0, (7.35)

where

~U∆,` =


Eϕϕ̄;ϕϕ̄

+,∆,`

Ẽϕϕ̄;ϕϕ̄
+,∆,`

Ẽϕϕ̄;ϕϕ̄
−,∆,`

 , ~V∆,` =


Eϕϕ̄;ϕϕ̄

+,∆,`

Ẽϕϕ̄;ϕϕ̄
+,∆,`

Ẽϕϕ̄;ϕϕ̄
−,∆,`

 , ~W∆,` =


0

Eϕϕ;ϕ̄ϕ̄
+,∆,`

−Eϕϕ;ϕ̄ϕ̄
−,∆,` .

 . (7.36)

Furthermore, we have separated the contribution of the unit operator and the stress tensor
into

~Ic = ~U0,0 +
∆2
ϕ

6c
~U2,0 . (7.37)

The normalization of the stress tensor is easily obtained from (7.17) and the requirement
that it is normalized as ∼ ∆2

ϕ

360cg4,2 (for details see [56,65]). The ranges of the sums in (7.35)
can be read from tables 7.2 and 7.3:

A+ = {` ≥ 0, ` even, ∆ ≥ `+ 2} ,

A− = {` ≥ 0, ` odd, ∆ ≥ `+ 2} ,

B+ = {` ≥ 0, ` even, ∆ = 2∆ϕ + `} ∪ {` ≥ 0, ` even, ∆ ≥ 2∆ϕ + `+ 2} .

(7.38)

The operators in the ϕ × ϕ̄ OPE are divided into even and odd spins A±. Even though
the distinction is not necessary at this point, we keep it in analogy to the mixed system in
section 7.3.4.

8We proceed similarly for the superblocks with tilde. For example ẼϕM ;Mϕ̄ is obtained from (7.34) with
∆2,3 = 2, ∆1,4 = ∆ϕ and g∆12,∆34

∆,` → G̃ϕM ;Mϕ̄
∆,` .
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7.3.3 Moment map correlator

The crossing equations for the moment map are a bit more intricate than for a regular non-
supersymmetric four-point function. Let us remember that this correlator is completely
determined in terms of two variable functions Gi(z, z̄) and meromorphic functions fi(z).
The index i ∈ adGF × adGF runs over representations that appear in the product of two
flavor adjoint representations. The projectors PABCDi transform under crossing as:

PABCDi = F j
i P

CBAD
j , FSU(2) =


1
3

1
3

1
3

1 1
2 −1

2
5
3 −5

6
1
6

 . (7.39)

With this definition it is a simple exercise to show that the crossing relations for fi(z)
decouple from the rest, and take the simple form

fi

(
z

z − 1

)
= (−1)symm(i)fi(z), F i

j fj(z) =
(

z

z − 1

)2
fi(1− z) . (7.40)

Here symm(i) is 0 for representations that are symmetric under the exchange of points
1↔ 2, and 1 for the antisymmetric ones. For the case of SU(2), symm(1) = symm(5) = 0
and symm(3) = 1. Interestingly, the crossing equations (7.40) determine fi(z) up to a free
parameter. Alternatively, one can obtain fABCD(z) as the four-point function of affine
Kac-Moody currents of the chiral algebra associated to the N = 2 theory [246]. Using
either procedure, one obtains

f1(z) =
3− 6z + (5− 8

k )z2 − (2− 8
k )z3 + z4

(1− z)2 , (7.41a)

f3(z) =
− 8
kz + 12

k z
2 + (2− 4

k )z3 − z4

(1− z)2 , (7.41b)

f5(z) =
(2 + 4

k )(z2 − z3) + z4

(1− z)2 . (7.41c)

The free parameter k is the flavor central charge that appears in the four-point function of
flavor currents.

Now one can expand the fi(z) in terms of one-dimensional blocks, and extract the cor-
responding OPE coefficients. Using table 7.4 these can be mapped to the OPE coefficients
in the G(z, z̄) block expansion.9 With this information, one can resum the contribution

9In order to do this mapping unambiguously one needs to assume the absence of higher-spin currents,
or equivalently, that AĀ[`; `](0;0) for ` ≥ 1 are absent in our equations.
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of the BB̄[0; 0](4;0) and AĀ[`; `](2;0) multiplets to G(z, z̄), which splits into protected and
unprotected pieces:

Gi(z, z̄) = Gsh
i (z, z̄) + Glong

i (z, z̄), Glong
i (z, z̄) =

∑
|λMMOi |2 u−1g∆,`(z, z̄). (7.42)

The conformal block decomposition of the long (unprotected) piece involves only LL̄[`, `](0;0)
∆

multiplets, and the corresponding block appears in table 7.4. For SU(2) flavor, the short
(protected) pieces were computed in [216]:

Gsh
1 (z, z̄) = log (1− z̄)

z − z̄

(
6
c

+ 8z2

k(1− z) −
z2 (z2 − 2z + 2

)
(1− z)2

)

− log(1− z)
z − z̄

(
6
c

+ 8z̄2

k (1− z̄) −
z̄2 (z̄2 − 2z̄ + 2

)
(1− z̄)2

)

− 6 log(1− z) log (1− z̄)
czz̄

, (7.43)

Gsh
3 (z, z̄) = (2− z)z log (1− z̄)

(z − z̄) (1− z)

(
4
k
− z2

1− z

)
− (2− z̄) z̄ log(1− z)

(z − z̄) (1− z̄)

(
4
k
− z̄2

1− z̄

)
,

Gsh
5 (z, z̄) = − z2 log (1− z̄)

(z − z̄) (1− z)

(
4
k

+ z2 − 2z + 2
1− z

)
+ z̄2 log(1− z)

(z − z̄) (1− z̄)

(
4
k

+ z̄2 − 2z̄ + 2
1− z̄

)
.

Keeping this information in mind, we are finally ready to write a set of crossing equa-
tions that constrain the unprotected spectrum of N = 2 theories. Besides (7.40), crossing
symmetry implies(

F i
j ± δ

i
j

) (
Hj(z, z̄)±Hj(1− z, 1− z̄)

)
≡
(
F i
j ± δ

i
j

)
H±,j(z, z̄) = 0 , (7.44)

where

Hi(z, z̄) = (z − z̄)(zz̄)−2Gi(z, z̄)−
1

2(zz̄)2

(
z

z − 1fi(z̄)−
z̄

z̄ − 1fi(z)
)
. (7.45)

Out of the six crossing equations (7.44), only three of them are independent. When we
expand them in blocks, there will be a piece which corresponds to the long operators, for
which fi(z) drops out and Gi(z, z̄)→ u−1g∆+2,`, see table 7.4. On the other hand, for the
protected part both (7.41) and (7.43) will be relevant, and we collect them in the vector
~Ic,k. All in all, we get

~Ic,k +
∑
A+

|λMMO1 |2 ~U∆,` +
∑
C−3

|λMMO3 |2 ~X∆,` +
∑
C+

5

|λMMO5 |2 ~Y∆,` = 0 . (7.46)
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with

~U∆,` =


4EMM,MM

+,∆,`

2EMM,MM
+,∆,`

−2EMM,MM
−,∆,`

 , ~X∆,` =


3EMM,MM

+,∆,`

9EMM,MM
+,∆,`

3EMM,MM
−,∆,`

 , ~Y∆,` =


5EMM,MM

+,∆,`

−5EMM,MM
+,∆,`

5EMM,MM
−∆,`

 . (7.47)

For convenience we have defined

EMM,MM
±,∆,` (z, z̄) = (z − z̄)

[
(zz̄)−3g∆,`(z, z̄)∓

(
(1− z)(1− z̄)

)−3
g∆,`(1− z, 1− z̄)

]
. (7.48)

The contribution of all the protected operators depends only on c and k. It can be con-
structed by combining the definition of H in (7.45) with (7.41) and (7.43):

~Ic,k =


4Hsh

+,1 + 3Hsh
+,3 + 5Hsh

+,5

2Hsh
+,1 + 9Hsh

+,3 − 5Hsh
+,5

−2Hsh
−,1 + 3Hsh

−,3 + 5Hsh
−,5

 . (7.49)

Regarding the ranges of summation in (7.46), we have three different channels depending
on the flavor symmetry representation. The singlet channel is equivalent to A+ defined
in (7.38), while the 3 and 5 channels give:

C−3 = {` ≥ 0, ` odd, ∆ > `+ 2} ,

C+
5 = {` ≥ 0, ` even, ∆ > `+ 2} .

(7.50)

7.3.4 Full mixed system

The crossing equations for the mixed system are a simple extension of the ones presented
so far. By considering 〈ϕMϕ̄M〉 and 〈ϕϕ̄MM〉 we obtain three extra equations and a new
channel ϕ×M . The full system is then

~Ic,k +
∑
O∈A+

(
λ∗MMO λ

∗
ϕϕ̄O

)
~U∆,`

(
λMMO

λϕϕ̄O

)
+

∑
O∈A−

|λϕϕ̄O|2~V∆,` +
∑
O∈B+

|λϕϕO|2 ~W∆,`

+
∑
O∈C−3

|λMMO|2 ~X∆,` +
∑
O∈C+

5

|λMMO|2~Y∆,` +
∑
O∈D±

|λϕMO|2 ~Z∆,` = 0.

(7.51)

101



Chapter 7. Bootstrapping Coulomb and Higgs branch operators

The explicit crossing vectors are easy to obtain and are given in appendix 7.B.3. In the
new channel the summation range can be obtained from table 7.6:

D± = {` ≥ 0, ∆ ≥ ∆ϕ + `+ 1} . (7.52)

We will often refer to the different channels by the name of the crossing vector. For
example, the multiplets that appear in the ϕ ×M OPE will be referred to as Z-channel
multiplets, and similarly for the other channels.

7.4 Numerical bounds

In this section we use the numerical bootstrap of [17] to obtain bounds on the space of
N = 2 superconformal theories. Arguably the most important numerical bootstrap result
is the precise determination of the critical exponents of the three-dimensional Ising and
O(N) models [58, 59, 62–64, 77, 80]. In the supersymmetric literature, one can find studies
of 3d models with minimal supersymmetry [199–201], N = 2 supersymmetry [193,202–205]
and maximal N = 8 supersymmetry [207–210]. Similarly, in four dimensions there have
been studies of N = 1 theories [56, 65, 212–214], N = 2 theories [198, 216, 217], N = 3
theories [219] and of N = 4 SYM theory [221,223]. Finally there have also been bootstrap
studies of supersymetric theories in two [226–228], five [229] and six [230, 231] dimensions
and for supersymmetric defects [2,233]. A mixed correlator between Coulomb and moment
map operators similar in spirit to our work has been studied in 3d N = 4 theories in [206].
A pedagogical introduction to the modern numerical bootstrap is [34].

7.4.1 Chiral correlators

In this section we focus exclusively on chiral correlators. Some of our results are new, while
others are improved versions of the ones previously obtained in [198,216,217]. For details
of the numerical implementation for this and all subsequent sections see appendix 7.B.

OPE bounds and spectrum

As summarized in table 7.2, the OPE of two chiral fields ϕr ×ϕr contains a family of pro-
tected operators captured by conformal blocks g2∆ϕ+`,` for ` = 0, 2, 4, . . .. These operators
should be interpreted as double traces of the chiral primary operators ϕ∂µ1 . . . ∂µ`ϕ. For
` = 0 this gives another Coulomb branch operator that we denote ϕ2, while for ` = 2

102



Chapter 7. Bootstrapping Coulomb and Higgs branch operators

the exchanged operator is a level-two descendant in its multiplet which we denote Q̄2O.
In figure 7.1 we plot upper and lower bounds on the OPE coefficients λϕ2 and λ2

Q̄2O as a
function of the dimension of the external field ∆ϕ = r/2, without making any assumptions
about the spectrum. Notice that upper and lower bounds are close to each other for low
values of the external dimension ∆ϕ. Luckily, the Argyres-Douglas models listed in table
7.1 are characterized by a low value of ∆ϕ, which means the bounds are particularly use-
ful to constrain these theories. The equivalent bounds for ` ≥ 4 are qualitatively equal
to the ` = 2 case, in the sense that for low values of ∆ϕ the OPE coefficient must be
approximately given by their MFT values.

1.0 1.5 2.0 2.5 3.0
∆ϕ0

1

2

3

4
λ2
ϕ2

H0
H1
H2
SU(N)
MFT

1.0 1.5 2.0 2.5 3.0
∆ϕ0

1

2

3

4
λ2
Q̄2O

MFT

Figure 7.1: Upper and lower bounds on the OPE coefficients of operators ϕ2 and Q̄2O
in ϕ × ϕ, where ϕ is the highest weight of a chiral multiplet. Curves are shown for
Λ = 16, 20, 24, 28, 32, and the allowed region is filled. In the left figure, the values for the
rank one H0, H1 and H2 theories were computed in the large r-charge limit in [314, 315].
We also present free SU(N) gauge theory values for N = 2, . . . , 6, which as N → ∞
approach the mean-field theory solution (MFT).

It is interesting now to compare our results with the works [314, 315], where analytic
expressions were obtained for λ2

ϕ2 for the Argyres-Douglas theories of table 7.1. In [314]
the authors obtained an expression valid to all orders in 1/r, without taking into account
exponentially-suppressed non-perturbative contributions, which could be relevant for the
case of interest to us where r = ∆ϕ is of order one.10 The approach of [315] also relies on

10We thank D. Orlando for an interesting discussion on this point.
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taking a large r-charge limit, that can be analyzed using Random Matrix Theory (RMT)
techniques. The two methods give very similar results, which we have added to figure 7.1,
and observe that they sit in the allowed region. Figure 7.1 is agnostic regarding the value
of the central charge c, so we can refine these bounds by fixing c to the Argyres-Douglas
values of table 7.1, and also by increasing the number of derivatives Λ. This allows for a
better comparison between the bootstrap and large r-charge results which we present in
table 7.7. There is surprising agreement between the two approaches, especially considering
the analytic results were calculated using a large-r expansion, and the values of r for these
operators are quite low. The values for the Q̄2O OPE coefficients are exclusive to the
bootstrap and have not been estimated by other techniques.

Lower bound Upper bound Resummed [314] RMT [315]

λ2
ϕ2 for H0 2.142596 2.16509 2.1181 2.0982

λ2
ϕ2 for H1 2.216735 2.35462 2.2129 2.2412

λ2
ϕ2 for H2 2.299679 2.69898 2.3457 2.4206

λ2
Q̄2O for H0 0.468394 0.46893 − −

λ2
Q̄2O for H1 0.571321 0.57544 − −

λ2
Q̄2O for H2 0.714878 0.73218 − −

Table 7.7: Upper and lower bounds on the OPE coefficients of operators ϕ2 and Q̄2O in
ϕ × ϕ, where ϕ is the highest weight of a chiral multiplet. The parameters ∆ϕ and c

are fixed to the known values of the rank-one Argyres-Douglas theories in table 7.1. All
bounds have been obtained at Λ = 50. In the rightmost columns we compare with the
values computed by resuming an expansion in 1/r to all orders [314], and using Random
Matrix Theory in [315].

There is a second, less obvious motivation for looking at these bounds. Using the
extremal functional method it is possible to extract the spectrum of the theory which
lives at the boundary of the exclusion region [66]. This idea has been used successfully in
many applications, most importantly the 3d Ising model [63,124]. In our case we have two
numerical bounds that are quite close to each other, and the hope is that the extracted
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spectrum is a good approximation of the actual spectrum of the Argyres-Douglas models.
The results of the analysis are collected in table 7.8 in the appendix. We are focusing on
the ` = 0 operators in the U and W channels. In particular, ∆U is the dimension of the
first superprimary in the ϕ× ϕ̄ OPE, ∆′U of the second superprimary, and so on. For the
ϕ × ϕ OPE, ∆W and ∆′W denote the dimension of the exchanged operators rather than
the superprimaries. For the rank-one H0 and H1 theories a summary of results is

H0 : ∆U ∼ 2.7, ∆′U ∼ 5.9, ∆′′U ∼ 9.2, ∆W ∼ 4.8, ∆′W ∼ 7,

H1 : ∆U ∼ 3.0, ∆′U ∼ 5.9, ∆′′U ∼ 9− 13, ∆W ∼ 5.3, ∆′W ∼ 6− 8.
(7.53)

These are rough averages of the results in table 7.8, for which there is no rigorous way to
estimate the errors. In the next section we are going to use these numbers as a guide and
attempt to isolate these models using bounds on scaling dimensions, and as we will see, a
consistent picture emerges.

Dimension bounds

Having obtained a rough estimate of the spectrum of operators for the H0 and H1 rank-one
Argyres-Douglas theories, let us now try to isolate them using the numerical bootstrap for
conformal dimensions. More precisely, we will fix the dimensions of the external chiral
operator ϕ and the central charge to c to the values listed in table 7.1. We then plot
the allowed region for ∆U and ∆W , assuming they are the dimensions of the lowest-lying
operators in their respective channels. We also assume gaps for the next operator in the
spectrum consistent with (7.53):

H0 : ∆′U ≥ {3.0, 4.0}, ∆′W ≥ {5.0, 5.5},

H1 : ∆′U ≥ {3.5, 4.5}, ∆′W ≥ {5.5, 6.0}.
(7.54)

The results of this analysis can be found in figure 7.2. We observe that even for the most
conservative choices of gaps, the allowed region is a fairly small island in the (∆U ,∆W )
plane. The effect of reducing the gaps in either channel is to allow for solutions to crossing
with smaller dimensions.

An alternative but similar strategy is to focus on a particular channel, like the U -
channel that contains operators neutral under all symmetries. We plot the allowed values
of ∆U and ∆′U , assuming they are the lowest dimension operators, and assume different
gaps for the next operator ∆′′U consistent with the approximate spectrum in (7.53):

H0, H1 : ∆′′U ≥ {6.0, 7.0, 8.0, 9.0}. (7.55)
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Figure 7.2: Dimension ∆U of the lowest dimension unprotected operator in the ϕ × ϕ̄

channel, versus dimension ∆W of the lowest dimension unprotected operator in the ϕ× ϕ
channel. We fix the dimension of the external operator ϕ and the central charge c, and
impose gaps with the next operators in the spectrum ∆′U and ∆′W . All bounds have been
obtained with cutoff Λ = 32.

The results of this analysis can be found in figure 7.3. In this case we observe two quali-
tatively distinct behaviors. For ∆′′U ≥ 7, 8, 9 once again we obtain a small allowed region
in the the (∆U ,∆′U ) plane. The estimate for ∆U from this analysis is compatible with
the one from figure 7.2. On the other hand, when the gap is lowered further to ∆′′U ≥ 6,
the allowed region is no longer a small disconnected island. Let us focus on the H0 plot,
although the conclusion is identical for H1. There are clearly two different regimes when
∆′′U ≥ 6. In the first, ∆U can take any value between the unitarity bound 2 and ∼ 2.6,
provided that ∆′U ∼ 2.66. In the second, ∆′U can take any value between ∼ 2.7 and ∼ 6
provided that ∆U ∼ 2.66. Summarizing, we are assuming there are only two operators
with ∆U ,∆′U < ∆′′U . If the gap ∆′′U is small enough, crossing allows one operator to have
arbitrary conformal dimension as long as the other is at ∆U ∼ 2.66. Thus, the bootstrap
insists on having a long operator with dimension ∆U ∼ 2.66, even when the gaps are
lowered, but it cannot resolve the position of the next operator ∆′U .

We should point out that these results are not on the same footing as the Ising model
island [58], where the gaps were physically justified by assuming only two relevant operators
in the spectrum, and moreover the island was obtained by studying mixed correlators. Our
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Figure 7.3: Dimensions ∆U versus ∆′U of the two lowest dimension unprotected operators
in the ϕ × ϕ̄ channel. We fix the dimension of the external operator ϕ and the central
charge c, and impose a gap with the next operator in the spectrum ∆′′U ≥ 6, 7, 8, 9. For ∆′′U
greater than 7 we provide a zoom to the allowed region, which form small islands isolated
from the continuum. All bounds have been obtained with cutoff Λ = 32.

analysis was inspired by the one in [104], where numerical islands were obtained using a
single-correlator bootstrap, by assuming mild gaps around conserved currents, similar to
what we did here.

We expect this single-correlator approach to give at least qualitative results for the H0

theory, which we are assuming is in a sense “simple” and perhaps one of the models that
has the best chance to be solved by bootstrap methods. Circumstantial evidence in favor
of its simplicity include the fact that the theory is rank one, it has no Higgs branch, it
has the minimum allowed value of c among interacting theories, and the associated chiral
algebra is the Yang-Lee edge singularity, arguably the simplest non-trivial 2d model with
Virasoro symmetry.

For H1 on the other hand we expect more structure. This model does have some
simplifying features similar to those of H0, however there is an SU(2) flavor symmetry
and therefore Higgs branch operators. We will therefore consider the full mixed system of
correlators in our attempts to corner this theory.
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7.4.2 Moment map correlators

Before we jump to the full mixed system, let us also look at the single correlator of moment
map operators, see (7.46). For later purposes, we will be mostly be interested on bounding
the dimension of operators which are neutral under all symmetries, i.e. multiplets appearing
in the U channel. These bounds depend heavily on the values of the central charge c and
the flavor central charge k. In figure 7.4 we present upper bounds on ∆U , the dimension of
the first unprotected operator in the singlet channel of the M ×M OPE. We have chosen
the values of k to match some of the theories in table 7.1, for example H1, H2 and SU(N)
SCQCD, and the rest provide a convenient interpolation between them.

1 2 3 4
2.5

3.0

3.5

4.0

4.5

5.0

5.5
∆U

101 102 103
c

k = any
k = 20
k = 12
k = 8
k = 6
k = 5
k = 4
k = 3.5
k = 3
k = 8/3

Figure 7.4: Upper bound on the dimension ∆U of the first singlet operator in the OPE
M × M of two moment map operators. The values of the flavor central charge from
bottom to top are k = 8/3, 3, 7/2, 4, 5, 6, 8, 12, 20, any. The bounds for c = 103 and c =∞
are identical with the resolution of the plot. All results are obtained at Λ = 32.

We see that the upper bound on ∆U decreases as we increase the central charge c, while
it increases as we increase k. If we do not make assumptions about c, the upper bound is
dominated by the small c values. If we do not make assumptions about k, the bound is
dominated by the large k region. These considerations will be important when we look at
the mixed correlator results. A more comprehensive survey of bounds from the moment
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map four-point function is available in [216], including dimension bounds on the X and Y
channel, as well as bounds on c and k.

7.4.3 Mixed correlators

We are finally ready to consider the full mixed system of crossing equations (7.51). The
bounds we derive no longer apply to the rank-one H0 theory, because there is no flavor
symmetry and therefore no moment map operator. However, they apply to the higher rank
version of H0 with the flavor given by the SU(2)L symmetry, as well as all other theories
discussed in section 7.2.1.

In general one expects the mixed correlator bootstrap to be most efficient when there is
an overlap between the two types of operators. For this reason we focus in the U channel,
which appears both in the ϕ × ϕ̄ and M ×M OPEs, and also in the Z channel, which
contains operators in the ϕ ×M OPE. This last channel is of particular interest because
it captures a new family of operators inaccessible from the single correlators studied so
far. Numerical bounds on the central charges c and k can also be obtained, however the
analytic bounds obtained from the associated chiral algebra [246,248] are quite strong, and
the numerical methods used here will not improve on them.

U-channel dimension bounds

We start bounding the dimension ∆U of the first unprotected multiplet in the ϕ × ϕ̄

and M × M OPEs. The crossing equations (7.51) contain three canonical parameters:
the central charge c, the flavor central charge k and the dimension ∆ϕ of the Coulomb
branch operator. Ideally we would like to obtain ∆U for all possible values of (c, k,∆ϕ),
but exploring a three-dimensional parameter space is computationally intensive. Instead,
in figure 7.5 we plot ∆U for different values of (c,∆ϕ) without restrictions on k, and in
figure 7.6 we plot ∆U for different values of (k,∆ϕ) without restrictions on c.

Before we discuss the results in detail, let us summarize some of our expectations. The
single correlator bound of ∆U as a function of ∆ϕ using the chiral correlators was studied
in detail in [198, 216, 217]. The upper bound on ∆U grows with ∆ϕ with approximately
the same slope as the mean field theory solution ∆U ∼ 2∆ϕ. On the other hand, from the
moment map correlator the bound is 2.5 ≤ ∆U ≤ 5.5, which is independent of ∆ϕ and
changes with c and k as shown in figure 7.4. It is natural to expect that for small ∆ϕ the
upper bound is dominated by the chiral bound, while for large ∆ϕ it is dominated by the
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moment map bound. This is indeed the behavior we observe in figures 7.5 and 7.6. We
also know that for c, k →∞ the numerical bounds cannot rule out the intersection of the
mean field theory (MFT) solutions:

∆U = 2∆ϕ for ∆ϕ ≤ 2, ∆U = 2∆M = 4 for ∆ϕ ≥ 2. (7.56)

These are plotted with a black dashed line in the figures.
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Figure 7.5: Upper bound on the dimension ∆U of the first unprotected operator in the
ϕ × ϕ̄ and M ×M OPEs as a function of the dimension of the chiral operator ∆ϕ. The
flavor central charge k is not fixed to a particular value. In the top blue curve, the central
charge c is also free, while it takes values c = 1/2, 1, 2,∞ in the curves below it. The black
dashed curve is the mean field theory value (7.56). All results are computed with Λ = 24.

In figure 7.5 the flavor central charge k is arbitrary, and as discussed in section 7.4.2,
the upper bound will be dominated by the k →∞ region of parameter space. Let us first
look at the ∆ϕ ≤ 2 regime. For low values of the central charge, the upper bound insists on
staying above the mean-field theory (MFT) solution even when Λ is increased. For large
values of the central charge the upper bound gets closer to the MFT value. As expected,
when we approach ∆ϕ = 1 the upper bound approaches the free-theory value ∆U = 2
regardless of the central charge. The behavior is significantly different for ∆ϕ ≥ 2, where
the curves start flattening as dictated by the moment map crossing symmetry. For small
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values of the central charge 1/2 ≤ c ≤ 1 this transition is smooth. However, as we increase
the central charge c ≥ 2 the transition becomes sharp resulting in a kink around ∆ϕ ∼ 2.

By extrapolating the numerics to Λ → ∞ it seems that the kink of the c = ∞ curve
will eventually land on (∆ϕ,∆U ) = (2, 4) which corresponds to mean field theory (MFT).
The conclusion is then that for large central charge the numerical bootstrap rules out any
theory with a leading gap larger than the MFT value. This is precisely what was observed
in N = 4 SYM in [221, 223]. In this case, the mean field theory solution is interpreted as
the large N and large λ = g2

YMN limit of N = 4 SYM, whose correlators are captured by
tree-level supergravity. We now have a similar phenomenon but for N = 2 SCFTs with
SU(2) flavor symmetry, which incidentally also includes N = 4 SYM. If we consider the
N = 2 decomposition of N = 4 theories, part of the SU(4) R-symmetry gets re-interpreted
as a global SU(2) flavor symmetry. Furthermore, the decomposition of the 20′ multiplet
(the one studied in [221, 223]) into N = 2 contains a chiral and antichiral operator of
dimension ∆ϕ = 2, and a moment map multiplet [27]:

O20′ ∼M + ϕ+ ϕ̄+ . . . , (7.57)

the same multiplets that we are studying in this work. Figure 7.5 presents a bound on
the lowest-dimension multiplet which has a scalar superprimary that is neutral under R-
symmetry, so it should include N = 4 SYM. The plot is however more general and valid
for any N = 2 theory with SU(2) flavor. For 2 ≤ c < ∞ it is unclear to us whether the
kinks corresponds to physical N = 2 theories.

In figure 7.6 we consider the reversed situation, the central charge c is not fixed, but
we allow k to take different values. In this case, we observe a behavior qualitatively similar
as before. For ∆ϕ ≤ 1.5, the upper bound stays above MFT and grows almost parallel to
it. For 1.5 ≤ ∆ϕ ≤ 2.2, depending on the value of k, the curves start to be dominated by
the moment map part of crossing and they flatten. This flattening is smooth and we do
not observe any kinks like the ones found before. The lowest upper bound in figure 7.6 is
obtained by fixing both central charges c and k to the values of the H1 theory. For H1 we
know ∆ϕ = 4

3 , which corresponds to an upper bound ∆U = 2.94. For larger ∆ϕ the upper
bound becomes flat at the value ∆U = 3.4 for Λ = 24. As one increases the number of
derivatives Λ, the upper bound ∆U = 2.94 is very robust and does not decrease, while the
asymptotic value ∆U = 3.4 has not converged and is still decreasing. Ideally, for Λ → ∞
the two upper bounds would coincide, in which case the point (∆ϕ,∆U ) = (1.33, 2.94)
would become a kink, and one could claim that the H1 theory saturates the numerical
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Figure 7.6: Upper bound on the dimension ∆U of the first unprotected operator in the
ϕ × ϕ̄ and M ×M OPEs as a function of the dimension of the chiral operator ∆ϕ. The
central charge c is not fixed to a particular value. In the top blue curve, the flavor central
charge k is also unfixed, while it takes values k = 8/3, 4, 6, 12 in the curves below it. For
the brown curve, both central charges are fixed to the values of the H1 theory c = 1

2 , k = 8
3 .

The black dashed curve is the mean field theory value (7.56). All results are computed
with Λ = 24.

bounds. Looking at the asymptotics of our numerics however it seems unlikely ∆U = 3.4
will go down below ∆U ∼ 3.

Focusing on H1

Let us now change gears for a moment. Instead of presenting bounds applicable to general
N = 2 SCFTs, we will try to use crossing symmetry to focus on the rank-one H1 Argyres-
Douglas theory. Besides the central charges c, k and the dimension of the Coulomb branch
generator ∆ϕ, using the superconformal index [330,334] one can show that the short mul-
tiplet LB̄[0; 0](2;r) that could appear in the ϕ ×M OPE is missing11 (see table 7.6). One

11We thank L. Rastelli for suggesting that this OPE coefficient might vanish in the H1 theory, and J.
Song for confirming that this is indeed the case.
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should be aware that this is not a definitive proof that the multiplet is absent, and it could
be a consequence of cancelations between different contributions to the index12. We will
nevertheless assume the multiplet is absent, and try to leverage this information to learn
about the spectrum of the H1 theory.

2.0 2.2 2.4 2.6 2.8 3.0
∆U

3.0

3.5

4.0

4.5

5.0

∆′U
∆′′U ≥ 6
∆′′U ≥ 6.5
∆′′U ≥ 7

Figure 7.7: Allowed values of ∆U versus ∆′U , the dimensions of the first two multiplets in
the ϕ × ϕ̄ and M ×M OPEs. We assume that these are the only two operators below
∆′′U ≥ {6, 6.5, 7} and the parameters ∆ϕ, c, k are fixed to the values of the rank-one H1

theory. The allowed region is enclosed between the upper and lower curves. The numerical
optimization is using Λ = 24.

Following the approach of figure 7.3, we assume that there are only two operators in
the U channel with ∆U ,∆′U ≤ ∆′′U , and find the allowed region in the plane (∆U ,∆′U ).
Using only the single correlator and assuming a sparse spectrum we managed to obtain
a small island. Now we will complement that result by adding constraints coming from
Higgs branch operators which we know are present in the H1 theory. Using the full mixed
correlator system we observe in figure 7.7 that the gaps ∆′′U ≥ {6, 6.5, 7} are allowed, but
larger gaps are ruled out. For the smallest gap we find a change of behavior in the lower
bound around ∆U = 2.35, for which we do not currently have an interpretation. To be on
the safe side, in the next figure we will assume the most conservative gap ∆′′U ≥ 6.

12We thank Madalena Lemos for comments regarding this issue.
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∆U

3.0
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∆Z ≥ 7/3
∆Z ≥ 2.65
∆Z ≥ 2.68
∆Z ≥ 2.7
∆Z ≥ 2.71

Figure 7.8: Allowed values of ∆U versus ∆′U , the dimensions of the first two multiplets in
the ϕ × ϕ̄ and M ×M OPEs, as a function of the gap ∆Z in the channel ϕ ×M . We
assume that these are the only two operators below ∆′′U ≥ 6, that the short multiplet ϕM
is missing, and the parameters ∆ϕ, c and k are fixed to the values of the rank-one H1

theory. The allowed region is enclosed between the upper and lower curves. The numerical
optimization is using Λ = 24.

The advantage of having the mixed correlator system is that we have a host of gap
combinations we can assume. In particular, since we know that the short operator ϕM ∈
ϕ×M is missing in the H1 theory, it is natural to impose a gap in this channel until the first
long operator ∆Z . The results, shown in figure 7.8, indicate that as we increase the gap in
the Z channel, the allowed region shrinks to a small island around (∆U ,∆′U ) ∼ (2.9, 5). In
this case the value of ∆U is saturating the upper bound in figure 7.6. We are tempted to
conjecture that H1 is characterized by a solution of crossing without the short multiplet
ϕM and maximal gap ∆Z , and we will see in later discussions that this seems to be indeed
a distinguished point in our numerical plots. However, more work will be needed to see
whether this is indeed the case.
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Z-channel dimension bounds

Let us conclude the study of conformal dimensions by putting an upper bound on the
dimension ∆Z of the first unprotected operator in the ϕ×M OPE with ` = 0. As discussed
in the previous section, the most general situation is to have a protected operator ϕM at
the unitarity bound ∆ = ∆ϕ + 1, after which there is a gap until the first unprotected
operator at ∆Z . In some cases however, like the H1 theory, the short operator might be
missing. One can also put gaps on the U channel on top of the Z-channel gaps, starting
with the agnostic case ∆U ≥ 2. In the numerical bounds of figure 7.9 we consider several
possibilities. We have also explored different central charges (c, k), but the results were
not significantly different and therefore we assume general values for them.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
∆ϕ2

4

6

8

10

∆Z

MFT
∆U ≥ 2
∆U ≥ 3
∆U ≥ 4

Figure 7.9: Upper bounds on the dimension of the first unprotected multiplet in the ϕ×M
OPE, as a function of the dimension of the Coulomb branch operator ϕ and the gaps in
the U channel ∆U ≥ {2, 3, 4}. The solid line corresponds to the most general case, when
the short operator ϕM sits at the unitarity bound ∆ = ∆ϕ + 1 and ∆Z is the position of
the first long operator. The dashed line is obtained by the further assumption that the
short operator is not present. All results are obtained with Λ = 24.

The first thing that one observes in figure 7.9 is that discarding the short operator ϕM
leads to much stronger bounds than in the general case. For theories like H1, where the
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short is indeed missing, we have

H1 : 7
3 ≈ 2.33 ≤ ∆Z ≤ 2.90 . (7.58)

Note that in figure 7.8 we obtained the stronger bound 2.33 ≤ ∆Z ≤ 2.73, but we assumed
there are only two operators in the U channel with ∆U ,∆′U ≤ 6.

It is also interesting to add a gap in the U channel. From figures 7.5 and 7.6, this
restricts the dimension of the Coulomb branch operator, namely ∆U ≥ 3 requires that
∆ϕ ≥ 1.34 and ∆U ≥ 4 requires that ∆ϕ ≥ 1.86. Indeed, when in figure 7.8 we assume
gaps in ∆U the curves start at the values of ∆ϕ just discussed. More importantly, at these
values the upper bounds with and without short operator ϕM coincide. Since there is
a unique solution to crossing at the boundary of the allowed region, the solutions that
saturate the bound for arbitrary c and k of figure 7.5 do not have the short operator ϕM
in the spectrum. This suggests that the H1 theory saturates the bounds in figure 7.5.

Finally, the reader can see from figure 7.8 that for large values of ∆ϕ, the upper bound
of ∆Z diverges, i.e. for ∆ϕ high enough any value of ∆Z is allowed. Increasing the gap in
∆U moves the position of this divergence to the right, but does not remove it. We have
tried different parameters of the numerical solver, either increasing the number of spins kept
`max, increasing the precision used by sdpb, or adding more poles to improve the polynomial
approximation, but none of these measures has changed the results. We currently do not
know the reason of this divergence. It has been observed previously that mixed correlator
bootstrap problems involving large external dimensions can be numerically unstable,13 and
perhaps we found another instance of these instabilities.

OPE bounds

Let us conclude our numerical exploration of the crossing equations (7.51) by obtaining
upper and lower bounds on OPE coefficients. As mentioned previously, we will not attempt
to bound the central charges c and k, because the analytic bounds obtained in [247, 248]
are quite strong. We will focus our efforts on studying the operators that appear in the
new channel ϕ×M .

As already discussed, restricting to scalars in the ϕ×M OPE means we have two types
of operators, a short protected one at the unitarity bound that we call ϕM , followed by

13A possibly related issue appeared in figure 6 of [214]. Instabilities in the context of mixed correlator
bootstrap were discussed in [335].
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Figure 7.10: Upper and lower bounds of the protected operator ϕM that appears in the
ϕ × M OPE, as a function of the dimension ∆Z of the first long in the same channel.
We compare the results for different dimensions of the Coulomb branch operator ∆ϕ. All
numerical optimizations are performed at Λ = 24.

an unprotected multiplet whose primary has dimension ∆Z > ∆ϕ + 1. In figure 7.10, we
put upper and lower bounds on the OPE coefficient λ2

ϕ,M,ϕM ≡ λ2
ϕM as a function of the

dimension of the long ∆Z . These bounds depend strongly on the dimension of the Coulomb
branch generator ∆ϕ; we have also experimented changing the central charges c and k but
they had little influence on the final result. When the dimension of the long is close to the
unitarity bound, only upper bounds are obtained, but as we increase ∆Z we can eventually
also obtain lower bounds on the OPE coefficients. The value of ∆Z where the lower bound
appears corresponds precisely to the maximum gap for a theory without the ϕM multiplet,
namely the blue dashed line in figure 7.9. As we increase ∆Z even more, the upper and
lower bounds eventually meet, and after that point there are no solutions of crossing; this
corresponds to the blue solid line in figure 7.9.

One might also be interested in the OPE coefficients of the scalar long operators in the
ϕ ×M OPE, which are presented in figure 7.11. In this case we are only able to obtain
upper bounds because the operators belong to a continuum. We see that the value of these
OPE coefficients decreases monotonically with the dimension ∆Z of the operator. At a
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Figure 7.11: Upper bounds on the OPE coefficient of a long scalar multiplet of dimension
∆Z in the ϕ×M OPE, for different dimensions of the Coulomb branch operator ϕ. Notice
we do not assume that ∆Z is the lowest dimension of an operator in the Z channel. The
black line corresponds to the upper bound for the operator ϕM at the unitarity bound
∆Z = ∆ϕ + 1. All results are obtained with Λ = 24.

certain value of ∆Z , which corresponds precisely to the point where λ2
ϕM acquires a lower

bound in figure 7.10, one can observe a kink. From the discussion around figure 7.9 this
also seems to be the point that saturates the upper bounds of figures 7.5 and 7.6. Once
again, it is very tempting to conjecture that the rank-one H1 Argyres-Douglas theory lives
at this kink.

7.5 Conclusions

In this work we appplied the numerical bootstrap to mixed correlators in N = 2 supercon-
formal theories. We refined single-correlator bounds for OPE coefficients and compared
them successfully to recent results obtained in the limit of large r charge [314, 315]. The
improved bounds allowed us to extract an approximate spectrum for selected Argyres-
Douglas models, information that we then used to obtain numerical islands in the space of
conformal dimensions.
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We then proceeded to study a mixed system between Coulomb branch operators and
the moment map. Even though these type of correlators had been analyzed before [198,216,
217], this is the first time mixed correlators for different types of multiplets are considered
in the 4d N = 2 bootstrap.

As a necessary step towards the mixed system we calculated new superconformal blocks,
a result interesting on its own. Recent progress that attempts to systematize the study
of superblocks include the connection to Calogero-Sutherland models [240, 241], and the
analytic superspace approach of [336]. Here we have contributed a new entry to the list
of known superblocks, and the simplicity of our expressions hints at a simple description
within the framework of [240,241,336].

With the mixed system at hand we applied the numerical bootstrap machinery. Fig-
ures 7.5 and 7.6 are good examples that capture how the full system behaves. As explained
in the main text, there are two regimes dominated by the individual single-correlator
bounds, and the mixed system smoothly interpolates the two. The fact the interpola-
tion is smooth is slightly disappointing, because this happens in a region where we know
Argyres-Douglas models live, and there is no sharp feature signalizing their presence. The
bounds are nevertheless valid and give rigorous constraints on the spectrum of these theo-
ries. The mixed system also allowed us put constraints on a region of the landscape that
was unexplored until now.

One possible future direction is to continue adding information in the form of extra
operators. For the H0 theory, any additional new type of multiplet will not be of the half-
BPS type considered in this work, instead it will have to be semi-short or long multiplets
of the superconformal algebra, which means the four-point kinematics will be challenging.
However, such studies can shed light on the validity of the numerical islands found in
section 7.4. Within the realm of Coulomb and Higgs branch operators, the next natural
system to consider is ϕr1 , ϕr2 and M . The rank-two (A1, A5) theory14 contains precisely
these type of multiplets with a U(1) flavor symmetry, and although computationally this
system will be more intensive than the one considered here, it is still within reach.

A long-term direction is the inclusion of the stress-tensor multiplet. The blocks for its
superconformal primary operator were obtained in [337], however the numerical bootstrap
has not been implemented yet. Perhaps one of the reasons this has not been done is
that these this correlator is known to have nilpotent invariants [247], which means that
to impose the full N = 2 constraints one needs to include correlators of superconformal

14In this notation, the rank-one H0, H1 and H2 models are (A1, A2), (A1, A3) and (A2, A2) respectively.
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descendants. Adding the stress tensor multiplet to the correlators studied here will allow
us to bootstrap all three canonical multiplets in one mixed system, and impose a huge
amount of input coming from supersymmetry. Five years ago such a problem would have
been clearly unfeasible, but thanks to the impressive progress on the numerical front [77],
the bootstrap for correlators with several external operators is now a reality.

7.A Blocks in the mixed channel

In this appendix we compute the superconformal blocks involving mixed chiral and moment
map operators. The arguments rely mostly on representation theory, and no calculations
of three-point functions or Casimir equations are required.

7.A.1 Decomposition of N = 2 into N = 1

The N = 1 and N = 2 superconformal algebras share the same conformal algebra, but
differ in the fermionic generators. The N = 2 Poincare supercharges are QIα, Q̄Iα̇ for
I = 1, 2 and α, α̇ = 1, 2. We can embed the N = 1 subalgebra by keeping only the I = 1
component

(Qα)N=1 = (Q1
α)N=2, (Q̄α̇)N=1 = (Q̄1α̇)N=2, (7.59)

and similarly for the conformal supercharges Sα and S̄α̇. The R-symmetry is reduced from
SU(2)R × U(1)r to U(1)r as follows

rN=1 = 1
3 (r − 2R3)N=2 , (7.60)

and each SU(2)R representation [R] decomposes into the eigenvalues R3 = −R,−R +
2, . . . , R − 2, R. Now we study the implications of this decomposition for the chiral and
moment map multiplets.

Remember that a chiral operator is a scalar killed by all Q̄Iα̇ supercharges, so it can
also be understood as an N = 1 chiral ϕr → φ r

3
, where the r charge assignment follows

from (7.60). Here and in what follows, we denote the superprimary operator of an N = 1
chiral multiplet by φr, satisfying the shortening [Q̄α̇, φr(0)] = 0. The r denotes its U(1)r
charge, which is related to the conformal dimension by ∆φ = 3

2r.
On the other hand, the moment map operator is a scalar satisfying the shortening

conditions (7.2). We can reduce them to N = 1 shortening conditions, noting Q2α → −Qα
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and Q̄1α̇ → Q̄α̇:

[Q̄α̇,M11(0)] = 0, [Q2,M12(0)] = [Q̄2,M12(0)] = 0, [Qα,M22(0)] = 0. (7.61)

Thus the components M11, M12 and M22 are N = 1 chiral, N = 1 current and N = 1
antichiral operators:

M11 → φ 4
3
, M12 → J, M22 → φ̄− 4

3
. (7.62)

Finally, we will use repeatedly the decomposition of N = 2 long multiplets without
SU(2)R charge into N = 1 multiplets:

LL̄[j, ̄](0;r)
∆ → LL̄[j, ̄](

1
3 r)

∆

+
∑
s=±1

LL̄[j + s, ̄](
1
3 (r+1))

∆+ 1
2

+
∑
s̄=±1

LL̄[j, ̄+ s̄](
1
3 (r−1))

∆+ 1
2

+
∑

s,s̄=±1
LL̄[j + s, ̄+ s̄](

1
3 r)

∆+1 +
∑
s=±1

LL̄[j, ̄](
1
3 (r+2s))

∆+1

+
∑
s=±1

LL̄[j + s, ̄](
1
3 (r−1))

∆+ 3
2

+
∑
s̄=±1

LL̄[j, ̄+ s̄](
1
3 (r+1))

∆+ 3
2

+ LL̄[j, ̄](
1
3 r)

∆+2.

(7.63)

This decomposition can be obtained combining the tables in [182] with the rule (7.60).

7.A.2 〈ϕϕ̄MM〉 correlator

In order to compute the blocks it is convenient to switch back to component notation for
the moment map. In this section we suppress the adjoint flavor indices to simplify the
notation. We start with the four point function (7.26):

〈ϕ(x1)ϕ̄(x2)MIJ(x3)MKL(x4)〉 =
εI(KεJ |L)

|x12|2∆ϕ |x34|4
∑
O∈A+

λϕϕ̄OλMMOG
ϕϕ̄;MM
∆,` (z, z̄). (7.64)

The sum runs over all even spin supermultiplets that appear in the chiral-antichiral and
moment map OPEs:

ϕ× ϕ̄, M ×M ∼ 1 +AĀ[`; `](0;0) + LL̄[`; `](0;0)
∆ , ` even. (7.65)

By looking at the (I, J) = (1, 1) and (K,L) = (2, 2) components, we can think of (7.64)
as a correlator of different N = 1 chiral and antichiral operators 〈φ1φ̄1φ2φ̄2〉. The selection
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rules and superconformal blocks for this correlator are well understood [65, 194, 195]. The
N = 1 OPE is

φri × φ̄−ri ∼ 1+AĀ[`; `](0) + LL̄[`; `](0)
∆ , (7.66)

and the contribution of the long multiplet is captured by the following superconformal
block:

Gφ1φ̄1,φ2φ̄2
∆,` = g∆,` + (∆ + `)

4(∆ + `+ 1) g∆+1,`+1 + (∆− `− 2)
4(∆− `− 1) g∆+1,`−1

+ (∆ + `)(∆− `− 2)
16(∆ + `+ 1)(∆− `− 1) g∆+2,`.

(7.67)

The contribution for the exchanged AĀ[`; `](0) short multiplet is obtained setting this block
at the unitarity bound ∆ = ` + 2. Notice that the N = 2 long exchanged in (7.65)
decomposes in N = 1 language as

LL̄[`; `](0;0)
∆ → LL̄[`; `](0)

∆ + LL̄[`+ 1; `+ 1](0)
∆+1 + LL̄[`− 1; `− 1](0)

∆+1 + LL̄[`; `](0)
∆+2,

(7.68)

where we have omitted allN = 1 multiplets that are not allowed by the selection rule (7.66).
Thus, we must have the following decomposition:

Gϕϕ̄;MM
∆,` = a0G

φ1φ̄1;φ2φ̄2
∆,` + a1G

φ1φ̄1;φ2φ̄2
∆+1,`+1 + a2G

φ1φ̄1;φ2φ̄2
∆+1,`−1 + a3G

φ1φ̄1;φ2φ̄2
∆+2,` . (7.69)

We are going to fix the coefficients ai in two different ways leading to the same result.
First, in the OPE of two moment maps only operators with even spin can appear. Insert-
ing (7.67) in (7.69) and demanding that only even spin descendants contribute fixes the
block completely:

Gϕϕ̄;MM
∆,` = g∆,` −

(∆− `)(∆− `− 2)
16(∆− `+ 1)(∆− `− 1)g∆+2,`−2 −

(∆ + `)(∆ + `+ 2)
16(∆ + `+ 1)(∆ + `+ 3)g∆+2,`+2

+ (∆− `)(∆− `− 2)(∆ + `)(∆ + `+ 2)
256(∆− `+ 1)(∆− `− 1)(∆ + `+ 1)(∆ + `+ 3)g∆+4,`. (7.70)

As discussed, this block corresponds to the exchange of a generic long multiplet. The
contribution of AĀ[`; `](0;0) is obtained by evaluating the block at the unitarity bound
∆ = `+ 2. By using hypergeometric identities one can check that (7.70) is identical to the
compact expression provided in the main text (7.27).
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Let us derive the same result in an alternative way. Looking at the (I, J) = (K,L) =
(1, 2) component of (7.64) we get a correlation function of N = 1 chirals and currents
〈φφ̄JJ〉. As before, the selection rules and superconformal blocks are well understood [195,
212, 239]. In particular, the only multiplet relevant in the OPE is J × J ∼ LL̄[`; `](0)

∆ , for
which the conformal block is

Gφφ̄,JJ∆,` even = g∆,` −
(∆− 2)(∆− `− 2)(∆ + `)
16∆(∆− `− 1)(∆ + `+ 1)g∆+2,`, (7.71)

Gφφ̄,JJ∆,` odd = g∆+1,`+1 −
(`+ 2)(∆− `− 2)(∆ + `+ 1)

`(∆− `− 1)(∆ + `) g∆+1,`−1. (7.72)

Following the same reasoning as before, the N = 2 block should decompose as

Gϕϕ̄;MM
∆,` = b0G

φφ̄;JJ
∆,`,even + b1G

φφ̄;JJ
∆+1,`+1,odd + b2G

φφ̄;JJ
∆+1,`−1,odd + b3G

φφ̄;JJ
∆+2,`,even. (7.73)

Demanding that the two decompositions (7.69) and (7.73) are equal uniquely determines
the superconformal block (7.70).

7.A.3 〈ϕMMϕ̄〉 correlator

Now we move on to the calculation of the blocks in the crossed channel:

〈ϕ(x1)MIJ(x2)MKL(x3)ϕ̄(x4)〉

=
εI(KεJ |L)

x
∆ϕ+2
12 x

∆ϕ+2
34

(
x24
x14

)∆ϕ−2 (x14
x13

)∆ϕ−2∑
O
|λϕMO|2GϕM ;Mϕ̄

∆,` (z, z̄) .
(7.74)

The first important question is what multiplets appear in the sum over superdescendants.
Using the superspace calculation of [338], we obtain the following selection rule:

ϕr ×M ∼ LB̄[0; 0](2;r) + LĀ[`; `− 1](1;r−1) + LL̄[`; `](0;r−2)
∆ . (7.75)

The strategy to compute the conformal blocks is the same as before. Consider the
component (I, J) = (2, 2) and (K,L) = (1, 1) of the four-point function and interpret it as
a correlator of N = 1 chirals and antichirals 〈φ1φ̄2φ2φ̄1〉. The selection rules and blocks
are once again in the literature [198]. Restricting to the case of interest to us, we have

φ r
3
× φ̄- 4

3
∼ LB̄[0; 0](

r-4
3 ) + LĀ[`; `](

r-4
3 ) + LL̄[`; `](

r-4
3 )

∆ , (7.76)

and the contribution of the long is given by the superconformal block:

Gφ1φ̄2;φ2φ̄1
∆,` (z, z̄) = (zz̄)−1/2g1+∆12,1−∆12

∆+1,` (z, z̄) . (7.77)
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As before, we want to write our N = 2 block as a linear combination of N = 1 ones. For
concreteness, let us focus on the exchange of the long in (7.75), which has the following
decomposition:

LL̄[`; `](0;r-2)
∆ → LL̄[`; `](

r-4
3 )

∆+1 . (7.78)

We have dropped all terms that are not compatible with the N = 1 selection rule (7.76).
Since there is only one N = 1 multiplet in the decomposition, the block must be equal to
its N = 1 counterpart:

GϕM ;Mϕ̄
∆,` (z, z̄) = Gφ1φ̄2;φ2φ̄1

∆+1,` (z, z̄) = (zz̄)−1/2g
∆ϕ−1,3−∆ϕ

∆+2,` (z, z̄) . (7.79)

Naturally, this can be expanded into non-supersymmetric blocks

GϕM ;Mϕ̄
∆,` = g

∆ϕ−2,2−∆ϕ

∆+1,` + c1g
∆ϕ−2,2−∆ϕ

∆+2,`+1 + c2g
∆ϕ−2,2−∆ϕ

∆+2,`−1 + c1c2g
∆ϕ−2,2−∆ϕ

∆+3,` , (7.80)

with

c1 = (∆−∆ϕ + `+ 3)(∆ + ∆ϕ + `− 1)
4(∆ + `+ 1)(∆ + `+ 2) ,

c2 = (∆−∆ϕ − `+ 1)(∆ + ∆ϕ − `− 3)
4(∆− `− 1)(∆− `) .

(7.81)

As a non-trivial sanity check, we can instead look at the (I, J) = (K,L) = (1, 2)
component of the four-point function, and interpret it as a N = 1 correlator 〈φJJφ〉. The
selection rule in this case is [214]

φr × J ∼ LL̄[`; `+ 1](r−1)
∆ + LL̄[`; `− 1](r−1)

∆ + LL̄[`; `](r−2)
∆ + shorts. (7.82)

Only the first two will play a role, and the associated blocks are

LL̄[`; `+ 1](r−1)
∆ : Ĝ∆,` = ĉ1 g

∆φ−2,2−∆φ

∆+1/2,` + ĉ2 g
∆φ−2,2−∆φ

∆+3/2,`+1 ,

LL̄[`; `− 1](r−1)
∆ : Ǧ∆,` = č1 g

∆φ−2,2−∆φ

∆+1/2,` + č2 g
∆φ−2,2−∆φ

∆+3/2,`−1 ,

(7.83)
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with coefficients [214]:

ĉ1 = (`+ 2)
(`+ 1)(2∆− 2∆φ − 2`− 3) ,

ĉ2 = (2∆− 3)(2∆− 2∆φ + 2`+ 5)(2∆ + 2∆φ + 2`− 3)
4(2∆− 1)(2∆ + 2`+ 1)(2∆ + 2`+ 3)(2∆− 2∆φ − 2`− 3) ,

č1 = 1
(2∆− 2∆φ + 2`+ 1) ,

č2 = (2∆− 3)(`+ 1)(2∆− 2∆φ − 2`+ 1)(2∆ + 2∆φ − 2`− 7)
4(2∆− 1)`(2∆− 2`− 1)(2∆− 2`− 3)(2∆− 2∆φ + 2`+ 1) .

(7.84)

Decomposing the N = 2 long multiplet and keeping only terms compatible with the
OPE (7.82) we get

LL̄[`; `](0;r-2)
∆ → LL̄[`; `+ 1](

r-3
3 )

∆+ 1
2

+ LL̄[`; `− 1](
r-3
3 )

∆+ 1
2

+ LL̄[`+ 1; `](
r-3
3 )

∆+ 3
2

+ LL̄[`− 1; `](
r-3
3 )

∆+ 3
2
,

(7.85)

so we find the following decomposition:

GϕM ;Mϕ̄
∆,` = d0 Ĝ

φJ ;Jφ̄
∆+1/2,` + d1 Ǧ

φJ ;Jφ̄
∆+1/2,` + d2 Ǧ

φJ ;Jφ̄
∆+3/2,`+1 + d3 Ĝ

φJ ;Jφ̄
∆+3/2,`−1 . (7.86)

There is a linear relation between the four N = 1 blocks above, and we fix it by setting
d0 = 0. It is an easy exercise to check that using the remaining coefficients we can indeed
obtain the decomposition (7.86):

d1 = 2(∆−∆ϕ + `+ 1),

d2 = (∆ + ∆ϕ + `− 1)(∆−∆ϕ + `+ 3)2

2(∆ + `+ 1)(∆ + `+ 2) ,

d3 = −(∆ + ∆ϕ − `− 3)(∆−∆ϕ − `+ 1)2

2∆(`+ 1)(∆− `) .

(7.87)

The reader can check that any minor change to the N = 2 or N = 1 superblocks prevents
this decomposition from being possible. This provides a very non-trivial check for our
superblock (7.80), as well as for the results in [214].
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7.B Numerical implementation

7.B.1 Approximating blocks by polynomials

In order to build polynomial approximations of the four-dimensional conformal blocks we
use the recursion relations originally obtained in [56,65], and later generalized in [214].

The quantities we need to approximate are derivatives of one-dimensional conformal
blocks, evaluated at the crossing-symmetric point:

Cnα,β,γ,δ = ∂n

∂zn

(
z1−δkβ,γα (z)

)
z=1/2

. (7.88)

We take β, γ, δ and n to have fixed numerical values, and we wish to approximate Cα,β,γ,δ
as a polynomial in α times a positive function of α. Using the differential equation satisfied
by kβ,γα (z), one obtains the following recursion relation [214]:

Cnα,β,γ,δ =− (2n+ β − γ + 4δ − 10)Cn−1
α,β,γ,δ

+
(
4n(n− β + γ − 3)

+ 2α(α− 2)− β(γ + 2δ − 10) + γ(2δ − 10)− 4δ(δ − 4)− 4
)
Cn−2
α,β,γ,δ

+ 2(n− 2)(2n− β + 2δ − 8)(2n+ γ + 2δ − 8)Cn−3
α,β,γ,δ.

(7.89)

Applying the recursion repeatedly, we can write

Cnα,β,γ,δ = Pn(α, β, γ, δ) kβ,γα (1/2) +Qn(α, β, γ, δ)∂k
β,γ
α

∂z
(1/2) , (7.90)

where Pn and Qn are polynomials in α. Next, we should approximate kβ,γα (1/2) and its
first derivative as polynomials in α times a positive prefactor. We introduce the radial
coordinate ρ [117]

z = 4ρ
(1 + ρ)2 , (7.91)

and expand the one-dimensional blocks in a power series in ρ up to order w. Finally, we
evaluate the expansion at the crossing symmetric point ρ∗ = 3 − 2

√
2 ≈ 0.17. Remember

that the one-dimensional blocks are schematically zα/2 times a 2F1 hypergeometric, so the
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expansion will have the form

kβ,γα (1/2) ≈ (4ρ∗)α/2
w∑
j=0

Rj(α)ρj∗ = (4ρ∗)α/2

Dβ,γ,w(α)Nβ,γ,w(α), (7.92)

∂kβ,γα
∂z

(1/2) ≈ (4ρ∗)α/2
w−1∑
j=0

Sj(α)ρj∗ = (4ρ∗)α/2

Dβ,γ,w(α)Lβ,γ,w(α), (7.93)

where the terms Rj(α), Sj(α) are rational functions of α, and so we can factor a common
term (4ρ∗)α/2/D(α). The zeros of D(α) are at α = 0,−1,−2, . . ., and one can see that
the prefactor is always positive provided the unitary bounds are satisfied. Combining
these ingredients it is a simple exercise to construct the polynomial approximation of the
conformal blocks.

There are other possible approaches to compute the polynomial approximations. One
idea would be to use the Zamolodchikov-like recursion relations for kβ,γα (z) derived in [112].
Another option would be to use the recursion relations directly in 4d [339], which are
already implemented in scalar blocks. It would be interesting to compare the different
approaches in terms of performance, accuracy of the blocks and size of the polynomial
approximation.

7.B.2 SDPB parameters

In this work, we have computed mixed correlator bounds at Λ = 24 and single correlator
bounds at Λ = 32, 50 using sdpb [59, 60]. As we increase the number of derivatives it is
necessary to increase the spins included to ensure numerical stability:

SΛ=24 = {0, . . . , 26} ∪ {29, 30, 33, 34, 37, 38, 41, 42, 45, 46},

SΛ=32 = {0, . . . , 44} ∪ {47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68},

SΛ=50 = {0, . . . , 64} ∪ {67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88}.

(7.94)

Furthermore, it is also important to increase the accuracy of the polynomial approximation
w and the precision used by sdpb:

Λ = 24 Λ = 32 Λ = 50
w 18 18 26

prec 768 768 1024.
(7.95)

We have observed that the polynomial approximation of section 7.B.1 works better for
single correlators. This is the reason why for the single correlator bootstrap at Λ = 32
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we can keep the same number of poles as for the mixed bootstrap at Λ = 24. For the
dimension bounds, we rely heavily on the hot-starting procedure introduced in [67], which
speeds up the computations significantly. We instruct sdpb to stop as soon as a primal or
dual feasible solutions is found:

findPrimalFeasible = findDualFeasible = true,

detectPrimalFeasibleJump = detectDualFeasibleJump = true.
(7.96)

In practice, we observed that the algorithm always stopped after a primal or dual jump.
For the OPE optimizations, in order to speed them up, we have lowered the default
dualityGapThreshold to

dualityGapThreshold = 10−10. (7.97)

For the remaining parameters, we have found that the defaults of sdpb lead to stable
results.

7.B.3 Crossing vectors

In this appendix we write the explicit crossing vectors that appear in equation (7.51). The
~Ic,k term captures all the known contributions, either from the identity, stress-tensor or
flavor current exchanges. The normalization of the stress-tensor contribution for the mixed
blocks can be obtained from (7.28). The rest has already been discussed in the main text:

~Ic,k =



4Hshort
+,1 + 3Hshort

+,3 + 5Hshort
+,5

2Hshort
+,1 + 9Hshort

+,3 − 5Hshort
+,5

−2Hshort
−,1 + 3Hshort

−,3 + 5Hshort
−,5

Eϕϕ̄;ϕϕ̄
+,0,0 + ∆2

ϕ

6c E
ϕϕ̄;ϕϕ̄
+,2,0

Eϕϕ̄;ϕϕ̄
+,0,0 + ∆2

ϕ

6c Ẽ
ϕϕ̄;ϕϕ̄
+,2,0

Eϕϕ̄;ϕϕ̄
−,0,0 + ∆2

ϕ

6c Ẽ
ϕϕ̄;ϕϕ̄
−,2,0

0

EMM ;ϕϕ̄
+,0,0 − ∆ϕ

6c E
MM ;ϕϕ̄
+,2,0

EMM ;ϕϕ̄
−,0,0 − ∆ϕ

6c E
MM ;ϕϕ̄
−,2,0



(7.98)
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The remaining crossing vectors can be easily obtained as discussed in the main text:

U∆,` =



(
4EMM,MM

+,∆,` 0
0 0

)
(

2EMM,MM
+,∆,` 0

0 0

)
(
−2EMM,MM

−,∆,` 0
0 0

)
(

0 0
0 Eϕϕ̄;ϕϕ̄

+,∆,`

)
(

0 0
0 Ẽϕϕ̄;ϕϕ̄

+,∆,`

)
(

0 0
0 Ẽϕϕ̄;ϕϕ̄

−,∆,`

)
0(

0 1
2E

MM,ϕϕ̄
+,∆,`

1
2E

MM,ϕϕ̄
+,∆,` 0

)
(

0 1
2E

MM,ϕϕ̄
−,∆,`

1
2E

MM,ϕϕ̄
−,∆,` 0

)



, V∆,` =



0

0

0

Eϕϕ̄;ϕϕ̄
+,∆,`

Ẽϕϕ̄;ϕϕ̄
+,∆,`

Ẽϕϕ̄;ϕϕ̄
−,∆,`

0

0

0



, W∆,` =



0

0

0

0

Eϕϕ;ϕ̄ϕ̄
+,∆,`

−Eϕϕ;ϕ̄ϕ̄
−,∆,`

0

0

0



,

(7.99)

X∆,` =



3EMM,MM
+,∆,`

9EMM,MM
+,∆,`

3EMM,MM
−,∆,`

0

0

0

0

0

0



, Y∆,` =



5EMM,MM
+,∆,`

−5EMM,MM
+,∆,`

5EMM,MM
−,∆,`

0

0

0

0

0

0



, Z∆,` =



0

0

0

0

0

0

ẼϕM ;Mϕ̄
+,∆,`

EϕM ;Mϕ̄
+,∆,`

−EϕM ;Mϕ̄
−,∆,`



. (7.100)
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7.B.4 Spectrum extraction

In table 7.8 we present the results from extracting the spectrum that saturates the OPE
bounds in table 7.7. We use the package spectrum-extraction developed for [73], which
is available online in the Bootstrap Collaboration website. Although we have not collected
the spectrum for ` > 0 operators, we are happy to provide the data upon request. For a
detailed analysis of the spectrum in the large-` limit for the H0 theory we refer to [217].

Theory Bound Type ∆U ∆′U ∆′′U ∆W ∆′W

H0 ϕ2 upper 2.70 5.94 9.28 4.82 7.82

H0 ϕ2 lower 2.66 5.82 9.14 4.95 7.57

H0 Q̄2O upper 2.69 5.88 9.16 4.81 7.79

H0 Q̄2O lower 2.66 5.79 9.07 4.69 6.49

H1 ϕ2 upper 3.05 6.12 13.11 5.28 8.27

H1 ϕ2 lower 2.92 5.79 12.79 5.79 7.74

H1 Q̄2O upper 3.03 5.98 9.12 5.27 8.28

H1 Q̄2O lower 2.92 5.76 12.65 4.78 6.35

H2 ϕ2 upper 3.45 6.41 9.66 5.88 8.96

H2 ϕ2 lower 3.23 5.91 8.98 6.88 9.89

H2 Q̄2O upper 3.42 6.29 9.49 5.85 8.95

H2 Q̄2O lower 3.21 3.75 5.97 6.86 9.38

Table 7.8: Approximate spectrum from OPE bounds at Λ = 50.
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Chapter 8

Bootstrapping line defects in N = 2
theories

Abstract

We study half-BPS line defects in N = 2 superconformal theories using the bootstrap
approach. We concentrate on local excitations constrained to the defect, which means the
system is a 1d defect CFT with osp(4∗|2) symmetry. In order to study correlation functions
we construct a suitable superspace, and then use the Casimir approach to calculate a
collection of new superconformal blocks. Special emphasis is given to the displacement
operator, which controls deformations orthogonal to the defect and is always present in
a defect CFT. After setting up the crossing equations we proceed with a numerical and
analytical bootstrap analysis. We obtain numerical bounds on the CFT data and compare
them to known solutions. We also present an analytic perturbative solution to the crossing
equations, and argue that this solution captures line defects in N = 2 gauge theories at
strong coupling.

8.1 Introduction

Defects are important observables in quantum field theory: they serve as probes that
allow to extract physics otherwise inaccessible from the study of local operators. In four-
dimensional gauge theories, it is well understood by now that models with the same local
correlators might have different line operators, and therefore correspond to distinct physical
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theories [340]. In this work, we concentrate on line defects in 4d superconformal theories
with N = 2 supersymmetry. In particular, we consider half-BPS defects that preserve an
osp(4∗|2) subalgebra of the full su(2, 2|2) superconformal algebra.

An important example of such a defect is a Wilson line operator, which describes a
charged heavy particle moving in the vacuum of a gauge theory. Due to the high amount of
supersymmetry preserved by the configuration, it is possible to obtain exact formulas using
localization and related matrix model techniques [341]. For example, the Bremsstrahlung
function, which captures the energy radiated by the particle, can be calculated exactly
[342–345]. A way to understand this is that the Bremsstrahlung is proportional to the
one-point function of the stress tensor in the presence of the line, and the latter can be
obtained from localization. This relation between Bremsstrahlung and the stress tensor was
conjectured in [345] for N = 2 theories, and later proven in [290] using only superconformal
symmetry.

The literature on Wilson operators in N = 2 theories is vast, however work on con-
figurations with insertions along the contour has been scarce. Here we study this system
from the 1d CFT perspective by analyzing correlators of operators inserted on the line.
Although 1d theories are non-local due to the absence of a stress tensor, they are consistent
when interpreted as defect theories. Correlators on a defect can be thought of as describing
a lower dimensional CFT embedded in a higher dimensional bulk. In particular, four-point
functions exhibit crossing symmetry and have a conformal block expansion with positive
coefficients. Thanks to this positivity property, one can use the numerical bootstrap of [17]
to constrain the CFT data. We should mention that if one considers operators outside the
defect the positivity property is lost, and the numerical bootstrap does not apply. One can
nevertheless use analytical bootstrap techniques, see [265,266] for recent progress.

The canonical operator that is always present on a defect CFT is the displacement
operator. This operator measures deformations orthogonal to the defect, and is the closest
one can have to a conserved stress tensor. Indeed, the stress tensor and the displacement
are related by a Ward identity [259]. Due to its universal character, in this work we
concentrate on the four-point function of the displacement operator. Because the system
we are considering is supersymmetric, in order to study the displacement operator, it
will be necessary to study the corresponding superconformal multiplet. Our bootstrap
analysis is based on symmetry and we will not commit to any particular theory. This work
is complementary to the bulk N = 2 superconformal bootstrap program [198, 216, 217],
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where the main focus is the study of correlators of local operators.1

In N = 4 SYM, the corresponding line defect with insertions has been studied recently
using a variety of techniques. These include explicit holographic calculations [346], the
conformal bootstrap [233,285], truncations to the topological sector [288,289], and pertur-
bative calculations at weak coupling [347,348]. Another related system is the monodromy
line of the 3d Ising model [255], which was studied using bootstrap techniques in [256].
Apart from their intrinsic interest, 1d CFTs are also a useful laboratory in which bootstrap
ideas can be explored. Recent work includes exact functionals that allow to extract the
spectrum analytically [155–157], inversion formulas [126, 349] (see also [272, 274] for the
closely related case of BCFT), and intriguing positivity properties [350].

The structure of the paper is as follows. In section 8.2 we review the geometry of our
setup and present the preserved osp(4∗|2) superconformal algebra. We find all its unitary
representations and explicitly construct the multiplets of long and short operators that
will play a role in later discussions. In section 8.3 we construct correlation functions using
superspace, concentrating on those containing the multiplet of the displacement operator.
With the superspace at hand, in section 8.4 we use the Casimir approach to calculate
the superconformal blocks involving four displacement multiplets. We write the associated
crossing equations, and find a solution that interpolates between bosonic and fermionic free-
field theory. We apply standard numerical bootstrap techniques to our crossing equations
in section 8.5, and we find that the free-field solutions sit in interesting points of the allowed
regions of the plots, where they saturate the numerical bounds. In section 8.6 we employ
analytic techniques to find a solution to crossing which we interpret as a perturbative first-
order correction to the strong-coupling limit of our line defect. Finally, we conclude in
section 8.7 by giving an outlook on possible future directions of research. We complement
the text with our conventions (appendix 8.A), and a compendium of superconformal blocks
of unprotected long operators (appendix 8.B), which can be useful in future studies of this
setup. We also attach a Mathematica file with a number of technical results.

8.2 Preliminaries

There are several configurations one can consider when studying defect CFTs: correlation
functions of local operators in the presence of the defect, correlators of defect operators, i.e.

1We should also mention that N = 2 theories admit a wide variety of codimension-2 surface operators,
but here we only concentrate on codimension-3 defects.
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local excitations that are constrained to live on the defect, and also mixed configurations
with both local and defect operators (see figure 8.1). Because defects break some of the
conformal symmetry, even low-point correlators tend to have non-trivial structure. One-
point functions of local operators are generically non-zero, and two-point functions have a
non-trivial dependence on two conformal invariants [259], which makes them analogous to
four-point functions in bulk CFTs with no defects.

O1

O2

Ô1

Ô2

Ô3

Figure 8.1: In the presence of a defect, one can consider correlators of local and defect
operators. Because the defect breaks the conformal algebra down to a subalgebra, even
low-point functions can acquire non-trivial coordinate dependence. In this work we will
concentrate exclusively on defect excitations (hatted operators in the figure) which define
a lower dimensional CFT.

In this work we will study line defects in four dimensions, and we concentrate exclusively
on defect excitations. We will consider correlators of the canonical operator that is always
present on a defect CFT: the displacement operator. This universal operator measures
deformations orthogonal to the defect. Intuitively, it can be thought of as the orthogonal
components of the stress tensor, which is the generator of translations. Since we are
resticting ourselves to the line, our system is described by a 1d CFT and all the usual
bootstrap techniques apply2. In particular, four-point functions have a conformal block
expansion with positive coefficients and they satisfy a crossing symmetry equation.

The symmetry algebra preserved by our defect is osp(4∗|2)3, which is a subalgebra of the
full N = 2 superconformal algebra. This is the maximal possible superalgebra consistent
with the geometry of the configuration. In Lagrangian theories, special boundary conditions
can be chosen in order to preserve osp(4∗|2), but here we will not consider any particular
model and we rely only on algebraic and symmetry constraints: the osp(4∗|2) symmetry

2See appendix A of [351] for a general introduction to 1d CFTs.
3A very complete presentation of superalgebras and their real forms can be found in [352].
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algebra will be our starting point.

In four dimensions a line defect has three orthogonal directions, and therefore the
displacement is a vector. In the supersymmetric setup we are considering, the displacement
sits in a supermultiplet whose highest weight is a scalar. This means that after taking into
account all the constraints coming from supersymmetry, our analysis will be similar to
the 1d bosonic bootstrap. In the next subsection we review the osp(4∗|2) superalgebra
together with its representation theory, with special emphasis on the multiplets which will
be relevant when studying crossing symmetry in section 8.4.

8.2.1 The superalgebra

We are interested in line defects that preserve the maximum amount of supersymmetry
osp(4∗|2), with bosonic subalgebra sl(2;R) ⊕ su(2)j ⊕ su(2)R. In addition to the sl(2;R)
factor which captures the 1d conformal symmetry, there is an extra so(3) ∼= su(2)j which
can be interpreted as rotations around the defect. The quantum number associated to it,
which we label by j, is called transverse spin. The last usp(2) ∼= su(2)R is the leftover R-
symmetry preserved by the configuration. For transverse-spin indices we will use a = 1, 2,
and for R-symmetry indices A = 1, 2. The fermionic generators are given by supercharges
Q and S, and carry both types of indices. The bosonic part of the superalgebra is given
by

[D,P] = P,

[D,K] = −K,

[K,P] = 2D,

[M b
a ,M d

c ] = −δ d
a M b

c + δ b
c M d

a ,

[RA
B,RC

D] = −δA
DRC

B + δC
BRA

D.

(8.1)

The fermionic generators anticommute as follows

{QA
a ,QB

b } = εABεabP,

{SaA,SbB} = εABε
abK,

{QA
a ,SbB} = −2δ b

a RA
B + δA

B(M b
a + δ b

a D).

(8.2)
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Finally, the fermionic generators have the following commutation relations with the bosonic
subalgebra

[D,QA
a ] = 1

2Q
A
a ,

[P,QA
a ] = 0,

[K,QA
a ] = εABεabSbB,

[M b
a ,QC

c ] = δ b
c QC

a − 1
2δ

b
a QC

c ,

[RA
B,QC

c ] = δC
BQA

c − 1
2δ

A
BQC

c ,

[D,SaA] = −1
2S

a
A,

[P,SaA] = −εABε
abQB

b ,

[K,SaA] = 0,

[M b
a ,ScC] = −δ c

a SbC + 1
2δ

b
a ScC,

[RA
B,ScC] = −δA

CScB + 1
2δ

A
BScC.

(8.3)

The above superalgebra is compatible with the natural hermitian conjugation in radial
quantization

D† = D, P† = K,
(
M b

a

)†
=M a

b ,
(
RA

B

)†
= RB

A,
(
QA
a

)†
= SaA. (8.4)

8.2.2 Unitary multiplets

Let us now turn to the study of unitary representations of osp(4∗|2). The multiplet that
contains the displacement operator has been constructed in [290], and a similar analysis
for the case of Wilson loops in ABJM can be found in [353,354]. Unitary representations of
osp(4∗|2) have been previously discussed in [355], although here we give a more complete
treatment following the work of [182].

Highest-weight representations of superconformal algebras are constructed starting
from a superconformal primary field V, which is anhilated by the K and S generators,
and transforms in some representation of the bosonic subalgebra. For the case of interest
to us, we label the primary by [∆, j, R], where ∆ is the conformal dimension, and j, R are
positive half-integers that label the transverse spin and R-symmetry respectively. Acting
with Q supercharges on V, one obtains the conformal descendants, which are conformal
primary fields, i.e. fields anhilated by the K generator. It is then clear that the conformal
descendants form representations of the conformal algebra (but not of the superconformal
algebra) on their own. Requiring positivity of the the norm of these descendants at levels
1 and 2, imposes the unitarity bounds and shortening conditions summarized in table 8.1.
To our knowledge, these results have not been presented systematically elsewhere, but we
do not derive them here. Instead, we refer the reader to the works [54, 182], which give
a detailed treatment on how to obtain unitarity bounds for all superconformal theories in
d ≥ 3.
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Name Primary Unitarity Bound Null State

L [∆, j, R] ∆ > 2R+ j + 1 −

A1 [∆, j, R], j > 0 ∆ = 2R+ j + 1 [∆ + 1
2 , j −

1
2 , R+ 1

2 ]

A2 [∆, 0, R] ∆ = 2R+ 1 [∆ + 1, 0, R+ 1]

B1 [∆, 0, R] ∆ = 2R [∆ + 1
2 ,

1
2 , R+ 1

2 ]

Table 8.1: Shortening conditions in one-dimensional N = 2 SCFTs.

Given a superconformal primary field transforming in one of the representations of
table 8.1, it will be important for our analysis to know the explicit quantum numbers of all
the conformal descendants. This can be achieved efficiently by means of the Racah-Speiser
algorithm [27], which has been described in great detail in [182]. Note that the weights of
the supercharges in our conventions are

Q1
1 ∼

[
+1

2 ,+
1
2 ,+

1
2

]
, Q1

2 ∼
[
+1

2 ,−
1
2 ,+

1
2

]
,

Q2
1 ∼

[
+1

2 ,+
1
2 ,−

1
2

]
, Q2

2 ∼
[
+1

2 ,−
1
2 ,−

1
2

]
.

(8.5)

For a long multiplet, we act on the highest weight in all possible ways with the four Q’s,
so we obtain a representation of dimension

dimL = 16(2j + 1)(2R+ 1). (8.6)

In order to construct the A1 supermultiplet, we need to set Q1
2 = 0, since this super-

charge has the weights that correspond to the null state in table 8.1. The corresponding
representation has dimension

dimA1 = 8(1 + j + 3R+ 4jR). (8.7)

In a similar way, the A2 multiplet is obtained by setting Q1
1Q1

2 = 0, and the B1 multiplet
by setting Q1

1 = 0. The corresponding dimensions are

dimA2 = 8(3R+ 1), dimB1 = 8R. (8.8)

In this work, we will be mostly concerned with the displacement operator which has pro-
tected conformal dimension ∆ = 2, and transforms as a vector under rotations orthogonal
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to the defect. Therefore, it must have quantum numbers [2, 1, 0], and it has to sit at
the bottom component of the short multiplet that contains it. A careful analysis of the
representation theory shows that it can only be contained in the [A2]R=0 multiplet [290]

[A2]R=0 : [1, 0, 0]→ [3
2 ,

1
2 ,

1
2 ]→ [2, 1, 0]. (8.9)

Of special relevance will be the following multiplets, some of which will appear in the OPE
of two displacement multiplets

[B1]R=1 : [2, 0, 1]→ [5
2 ,

1
2 ,

1
2 ]→ [3, 0, 0],

[A1]j=1
R=0 : [2, 1, 0]→ [5

2 ,
3
2 ,

1
2 ]→ [3, 2, 0],

[A1]j=1/2
R=1/2 : [5

2 ,
1
2 ,

1
2 ]→ [3, 0, 0]⊕ [3, 1, 0]⊕ [3, 1, 1]→ [7

2 ,
1
2 ,

1
2 ]⊕ [7

2 ,
3
2 ,

1
2 ]→ [4, 1, 0],

[L]j=0
R=0 : [∆, 0, 0]→ [∆ + 1

2 ,
1
2 ,

1
2 ]→ [∆ + 1, 1, 0]⊕ [∆ + 1, 0, 1]→

→ [∆ + 3
2 ,

1
2 ,

1
2 ]→ [∆ + 2, 0, 0],

[L]j=1
R=0 : [∆, 1, 0]→

[
∆ + 1

2 ,
1
2 ,

1
2

]
⊕
[
∆ + 1

2 ,
3
2 ,

1
2

]
→

→ [∆ + 1, 0, 0]⊕ [∆ + 1, 1, 0]⊕ [∆ + 1, 1, 1]⊕ [∆ + 1, 2, 0]→

→
[
∆ + 3

2 ,
1
2 ,

1
2

]
⊕
[
∆ + 3

2 ,
3
2 ,

1
2

]
→ [∆ + 2, 1, 0].

(8.10)

When the above long operators approach the unitarity bound, we get the following recom-
binations rules:

lim
∆→1

[L]j=0
R=0 = [A2]R=0 ⊕ [B1]R=1,

lim
∆→2

[L]j=1
R=0 = [A1]j=1

R=0 ⊕ [A1]j=1/2
R=1/2.

(8.11)

Therefore, we can think of the [A2]R=0 and [A1]j=1
R=0 multiplets as the longs [L]j=0

R=0 and
[L]j=1

R=0 at their respective unitarity bounds, and [A1]j=1/2
R=1/2 as the leftover part after the

recombination of [L]j=1
R=0.

As we pointed out in the introduction, our setup is closely related to the work [233],
which considered line defects in four-dimensional N = 4 theories preserving osp(4∗|4)
symmetry. By carefully studying how our osp(4∗|2) algebra is embedded in osp(4∗|4), we
can decompose the multiplets of N = 4 into their N = 2 counterparts. The most important
multiplets in the N = 4 case are B1, which contains the diplacement operator, and B2,
which is the lowest dimension multiplet in the OPE of two diplacements. They decompose
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in the following way

B1 → [A2]R=0 + 2[B1]R=1/2,

B2 → [L]∆=2
j=R=0 + 2[A2]R=1/2 + 3[B1]R=1.

(8.12)

Therefore, the analogous of the B1 multiplet in our setup is [A2]R=0, since they both contain
the displacement operator. Moreover, the role that was played by the B2 multiplet will be
played now by [L]∆=2

j=R=0. With the numerical results, it will become clear that this intuition
is correct.

8.3 Superspace

Having reviewed the symmetry algebra and its representation theory, we now proceed to
construct a superspace suitable for the type of correlators we want to study. There are
several kinds of superspaces in the literature, and which one to use usually depends on the
type of multiplet being studied. Harmonic superspace is quite useful to study half-BPS
multiplets, while chiral superspace is more efficient for chiral multiplets. In this work we
are interested in the displacement operator, which sits in a multiplet which is neither half-
BPS nor chiral, however it has the simplifying feature that its highest weight is neutral
under su(2)j ⊕ su(2)R. We therefore use the most standard superspace in which we add
one fermionic coordinate for each conserved Q supercharge. In this section we will follow
closely [185,186].

8.3.1 Basic definitions

Since we study a 1d CFT which preserves the supersymmetry algebra osp(4∗|2), the super-
space must have one generator P for translations, and four generators QA

a for supertrans-
lations. These supercharges have to satisfy the algebra

{QA
a ,QB

b } = εabε
ABP, [P,QA

a ] = 0, (8.13)

where A = 1, 2 and a = 1, 2. In this section we will show how to build a superspace
consistent with these commutation relations, and how to obtain the natural differential
and covariant derivative. We take the coordinates of superspace to be zM = (x, θaA), and
a finite supertranslation to be implemented by the operator

g(z) = g(x, θ) = exp
(
xP + θaAQA

a

)
. (8.14)
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The composition of two supertranslations g(ε, ξ)g(z) = g(z′) can be evaluated using the
Baker-Campbell-Hausdorff formula eXeY ≈ eX+Y+ 1

2 [X,Y ], giving

x′ = x+ ε− 1
2ξθ,

θ′ = θ + ξ .
(8.15)

Here and in what follows, we use the index-free notation introduced in appendix 8.A,
where for example ξθ ≡ εabεABξaAθ

b
B = ξaAθ

A
a . The differential of a function in superspace

is defined as

δ̇ ≡ δ̇zM ∂

∂zM
⇒ δ̇f = δ̇x

∂f

∂x
+ δ̇θaA

∂f

∂θaA
. (8.16)

It will prove convenient to rewrite it in terms of the covariant derivative DA
a and the

“covariant one-form” e(z). Looking at the differential of a supertranslation (8.15)

δ̇x′ = δ̇x− 1
2ξδ̇θ,

δ̇θ′ = δ̇θ,
(8.17)

we see that it is natural to define the one-form e(z) ≡ δ̇x + 1
2θδ̇θ, which has the property

e(z′) = e(z) for any constant supertranslation. By rewriting the differential in terms of
e(z), we get

δ̇ = e(z) ∂
∂x

+ δ̇θaAD
A
a , (8.18)

where the covariant derivative is

DA
a ≡

∂

∂θaA
+ 1

2θ
A
a

∂

∂x
, {DA

a , D
B
b } = εabε

AB ∂

∂x
. (8.19)

The covariant one-form e(z) will be important in the next section in order to derive the
Killing equation satisfied by superconformal changes of coordinates. The covariant deriva-
tive will be important as well, when we implement shortening conditions in superspace, see
section 8.3.1.

Killing equation

After having defined the one-form e(z), we are now ready to derive the equation satisfied by
a superconformal change of coordinates, which will be analogous to the conformal Killing
equations in standard CFT.
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A superconformal transformation is defined as a change of coordinates z → z′(z) such
that e(z) transforms as

e(z′)2 = Ω2(z)e(z)2. (8.20)

Under a generic change of coordinates z → z′(z), we have

e(z′) = e(z)
(
∂x′

∂x
− 1

2
∂θ′

∂x
θ′
)

+ δ̇θaA

(
DA
a x
′ − 1

2
(
DA
a θ
′
)
θ′
)
. (8.21)

Therefore, it is clear that the superconformal Killing equations are given by

DA
a x
′ = 1

2
(
DA
a θ
′
)
θ′, Ω(z) = ∂x′

∂x
− 1

2
∂θ′

∂x
θ′. (8.22)

We will see that the usual superconformal transformations solve these constraints, but it is
instructive to first expand the first equation for infinitesimal transformations x′ = x + δx

and θ′ = θ + δθ:

DA
a

(
δx− 1

2δθ θ
)

= δθA
a . (8.23)

In this form, it is clear that there is an infinite family of superconformal transformations.
In particular, given any function h(z), we can construct a solution of the Killing equa-
tion (8.23) with

δx = h− 1
2θ(Dh), δθaA = Da

Ah. (8.24)

It is not surprising that there is an infinite number of solutions, since this is analogous
to the statement that in an ordinary one-dimensional space any change of coordinates
x′ = f(x) is conformal.

There are three particularly simple solutions to the Killing equation (8.22), which can
be associated with translations, supertranslations and dilatations:

exp(aP) : x′ = x+ a, θ′ = θ,

exp(ξQ) : x′ = x− 1
2ξθ, θ′ = θ + ξ,

exp(λD) : x′ = λx, θ′ = 1
2λθ.

(8.25)

Here a and ξ are not necessarily infinitesimal parameters, and λ does not need to be close
to one. In the following sections we will describe how to obtain the full set of osp(4∗|2)
transformations starting from the above three.
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Inversion

Inversions are special types of superconformal transformations with the property I2 =
1, but such that det I = −1. Since they belong to the disconnected component of the
superconformal group, they cannot be expanded infinitesimally around the identity. To
find an inversion we must require that it squares to one and satisfies the finite Killing
equation (8.22). In our superspace, such a transformation is

x
I−→ xI = x

x2 + 1
8θ

4 , θaA
I−→ (θI)aA =

(σ3)ab(x θbA − 1
2(θ3)bA)

x2 + 1
8θ

4 , (8.26)

where (σ3)ab denotes the components of the third Pauli matrix, and the fermionic con-
tractions θ3 and θ4 are defined in appendix 8.A. Using equation (8.22) we can find the
reescaling associated with the previous inversion

Ω(z) = −1
x2 + 1

8θ
4 . (8.27)

Inversions provide a simple way to generate new solutions to the Killing equation (8.22).
Imagine L is a solution, then one can compose it with two inversions to obtain a new
superconformal transformation L′ = I L I. Using this procedure we obtain the special
superconformal transformations

K = IPI, S = IQI , ⇒ ebK = IebPI, eηS = IeηQI . (8.28)

Notice that this provides a definition of the finite action of K and S which is not limited
to infinitesimal transformations.

Differential operators

Given a solution of the infinitesimal Killing equation (8.23), we can use it to build a
differential operator that implements the corresponding infinitesimal transformation

L = δx ∂x + δθaA∂
A
a . (8.29)

If we compose two transformations as [L1,L2] = −L3, one can show that δx3 and δθ3 still
satisfy the Killing equation. From the commutation relations of the superalgebra (8.2),
we see that we can obtain M and R by looking at the anticommutator of Q with S,
schematically

{Q,S} ∼ R+M+D. (8.30)
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In this way we can construct all the differential operators P,K, . . . of our superconformal
algebra. However, before doing so, we need to consider a slight generalization.

In general, we are interested in the action of differential operators on superfields OI,i(z)
which have a conformal dimension ∆, transverse-spin index i, and R-symmetry index I. If
such a field is evaluated at z = 0, then the action of the generators simplifies

DOI,i(0) = ∆OI,i(0), M b
a OI,i(0) =

(
M b
a

)i
j
OI,j(0), RA

BOI,i(0) =
(
RA

B

)I
J
OJ,i(0),

(8.31)

where M b
a and RA

B form representations of the transverse-spin and R-symmetry subal-
gebras. Demanding that the differential operators act on operators at the origin as (8.31),
and that they act on the coordinates as described in this section, we obtain4

P = ∂x,

D = x∂x + 1
2θ
a
A∂

A
a + ∆,

K =
(
x2 − 1

8θ
4
)
∂x +

(
xθaA + 1

2(θ3)aA
)
∂A
a + 2∆x+ 1

2θ
a
Aθ

A
b M

b
a − θaAθB

a R
A

B,

M b
a = θbA∂

A
a − 1

2δ
b
a θ

c
C∂

C
c +M b

a ,

RA
B = θaB∂

A
a − 1

2δ
A

Bθ
c
C∂

C
c +RA

B,

QA
a = ∂A

a − 1
2θ

A
a ∂x,

SaA = −1
2

(
xθaA + 1

2(θ3)aA
)
∂x + x∂bB − 1

2

(
θaAθ

b
B + 3θbAθaB

)
∂B
b −∆θaA − θbAM a

b + 2θaBRB
A.

(8.32)

Notice also that {QA
a , D

B
b } = 0. This standard property of the covariant derivative ensures

that shortening conditions constructed with it are invariant under supersymmetry.

4Here we are abusing notation by using the same symbols for the differential operators and the gen-
erators of the superalgebra. Moreover, as usual in this type of superspace constructions, the differential
operators (8.32) follow the commutation relations (8.1)-(8.3) with an extra minus sign, i.e. [L1,L2} = −L3.
In principle, one would need to be careful with these extra minus signs, however for the problems we will
study this will not be an issue.
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Multiplets in superspace

A generic multiplet with transverse spin j and R-symmetry R can be represented in terms
of a superfield

OA1...A2R
a1...a2j (z) = O(A1...A2R)

(a1...a2j) (z), (8.33)

where we use (a1 . . . am) to denote symmetrization of the indices. The superspace depen-
dence is obtained by applying a supertranslation to the superfield at the origin

OA...
a... (x, θ) = exp

(
xP + θQ

)
OA...
a... (0) . (8.34)

The short multiplets from table 8.1 can be obtained by setting the conformal dimension
∆ to the appropriate value, and then imposing extra shortening conditions in terms of
covariant derivatives

A1 : εabD(A
a O

B1)...B2R
bb2...b2j

= 0, (8.35a)

A2 : εabD(A
a DB

b OC1)...C2R = 0, (8.35b)

B1 : D(A
a OB1)...B2R = 0. (8.35c)

It is not hard to check that the content of these shortened multiplets is in perfect agree-
ment with the decompositions in terms of conformal primaries given by the Racah-Speiser
algorithm of section 8.2.2. In the rest of this section we will work out explicitly the example
of the displacement multiplet [A2]R=0.

We start with a long scalar multiplet of conformal dimension ∆, namely a superfield
that carries no transverse-spin or R-symmetry indices. In equation (8.10) one can see the
decomposition of this multiplet in terms of conformal primaries, which in superspace takes
the form

O(x, θ) = A(x) + θaAB
A
a (x) + θaAθ

b
B

(
CAB
ab (x) + EAB

ab (x)
)

+ (θ3)aAFA
a (x) + θ4G(x) ,

(8.36)

where CAB
ab = C

[AB]
(ab) and EAB

ab = E
(AB)
[ab] . Expanding equation (8.34) and comparing terms,
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one can obtain the explicit form of the components

BA
a (x) = QA

a A(x),

CAB
ab (x) = −1

2Q
[A
(aQ

B]
b) A(x),

EAB
ab (x) = −1

2Q
(A
[a Q

B)
b] A(x),

FA
a (x) = −1

9

(
(Q3)A

a + 1
2Q

A
a P

)
A(x),

G(x) = + 1
144

(
Q4 + P2

)
A(x).

(8.37)

Some of these terms are not annihilated by K and therefore do not correspond to conformal
primaries. By using the commutation relations (8.1)-(8.3), we see that A, BA

a , CAB
ab and

EAB
ab are indeed primaries, but we need to take

F p(x) = F (x)− 1
2(2∆ + 1)PB(x), Gp(x) = G(x) + 1

16(2∆ + 1)P
2A(x). (8.38)

The displacement superfield D(z) corresponds to the short multiplet [A2]R=0, so from
table 8.1 and equation (8.9) it is clear that we need to send ∆ → 1, and remove the
conformal descendants E = F p = Gp = 0. We are then left with the superfield

D(x, θ) = A(x) + θaAB
A
a (x) + θaAθ

b
BC

AB
ab (x) + 1

6(θ3)aA∂xBA
a (x)− 1

48θ
4∂2
xA(x). (8.39)

One can obtain the same expression by making an ansatz for D(z) of the form (8.36) and
imposing the shortening condition (8.35b)

εabD(A
a D

B)
b D(z) = 0 . (8.40)

Then equation (8.39) is the most general solution to this condition, or equivalently, it
implies that E = F p = Gp = 0.

8.3.2 Correlation functions

Having introduced the basics of our superspace, we are now ready to construct correlation
functions of long and short operators. In general, superconformal theories have additional
kinematical structures when compared to standard CFTs. A well known example is that
already at the three-point level there can be non-trivial superconformal invariants [185].
We start by constructing all such invariants up to four points in section 8.3.2, and then
compute the correlation functions for scalar long operators in section 8.3.2. We finish by
specifying our results to the displacement operator multiplet in section 8.3.2.
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Invariants

The superconformal invariants that will form the bulding blocks of our correlators can be
obtained as described in [185]. The most general case we will consider in this work is that
of four points z1, . . . , z4. Notice that these points can be fixed to standard values in the
following way

1. Fix z = 0 by doing a translation P with parameter a = −x followed by a supertrans-
lation Q with parameter ξ = −θ.

2. Fix x =∞ by doing a special conformal transformation K with parameter b = −xI ,
and then fix θ = 0 using an S transformation of parameter η = −θI . Here we
are denoting zI = (xI , θI) the coordinates obtained from z by an inversion, see
equation (8.26).

We can combine these two types of transformations to go to a frame where two of the
points are fixed to z = 0 and z′ = (∞, 0). For our purposes, it will be convenient to work
in two different frames

F1 : z1, z2 unfixed, z3 = 0, z4 = (∞, 0),

F2 : z1 = 0, z2 = (∞, 0), z3, z4 unfixed.
(8.41)

In either frame, one can construct the invariants as the combinations of the unfixed zi

which are invariant under the leftover symmetry generators D, M and R.
Consider first the case of three points in the frame F2, where the only unfixed coor-

dinates are z3 = (x3, θ3). If there is a quantity built from θ3 which is invariant under M
and R, then it must not have any uncontracted indices. As discussed in appendix 8.A, the
only such object is (θ3)4. On the other hand, x3 is automatically invariant under M and
R, and the only independent combinations of both that is also invariant under dilatations
D is

J
∣∣
F2

= θ4
3
x2

3
. (8.42)

One can invert the transformations that led to the frame F2, to obtain the general expres-
sion of the three-point invariant

J =
(
θ4

12
y2

12
+ 2 θ12θ12θ23θ23

y12 y23
+ cycl. perms.

)
+ 2(θ12θ23θ31)(θ12θ31θ23)

y12 y23 y31
, (8.43)
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where yij and θij are the supertranslation invariant combinations

yij = xi − xj − 1
2θiθj , θij = θi − θj . (8.44)

We do not provide details on how to carry out this calculation, but one can find a similar
setup in Appendix A of [356]. It is worth stressing how from a very simple expression for
the invariant in a certain frame (8.42), we obtain a much more complicated equation in
the general case (8.43).

Let us now consider the four-point case, in which one of the invariants is the standard
1d cross-ratio, and the remaining ones correspond to nilpotent quantities. Unlike the three-
point case, with four points there is freedom in how to choose the invariants, and we fix it
by working with a basis which is simple in the frame F1. In our conventions, we take the
bosonic invariant to be

z
∣∣
F1

= 1− x2
x1
, (8.45)

which corresponds to the supersymmetric generalization of the standard 1d cross-ratio χ =
x12x34
x13x24

. From the discussion of appendix 8.A, more precisely equations (8.128) and (8.129),
one can see that a complete basis for the nilpotent invariants is5

I1
∣∣
F1

= θ1θ2
x1

, I2
∣∣
F1

= θ1θ1θ1θ1
x2

1
, I3

∣∣
F1

= θ1θ1θ1θ2
x2

1
,

I4
∣∣
F1

= θ1θ1θ2θ2
x2

1
, I5

∣∣
F1

= θ1θ2θ1θ2
x2

1
, I6

∣∣
F1

= θ1θ2θ2θ2
x2

1
, (8.46)

I7
∣∣
F1

= θ2θ2θ2θ2
x2

1
, I8

∣∣
F1

= (θ1θ2)3

x3
1

, I9
∣∣
F1

= θ4
1θ

4
2

x4
1
.

As before, one could undo the transformation that led to the frame F1, and find expressions
for Ii in a completely general frame. The resulting expressions are rather involved, and
we do not present them here. Actually, for the discussions in this paper, we will mostly
need Ii in the frame F1, and we will only need the expressions in the frame F2 to obtain
the shortening conditions of equation (8.61). The readers interested in this calculation can
find the Ii|F2 in the attached Mathematica notebook.

In order to study crossing symmetry, we will be interested in the invariants Ĩi obtained
from Ii with the replacement z1 ↔ z3. They take simple forms when expressed in terms of

5We remind the reader that we are using an index-free notation for the contractions of anticommuting
variables, which we describe in detail in appendix 8.A.
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the original invariants, for example the bosonic cross-ratio becomes

z̃ = 1− z + I1
2 , (8.47)

while the nilpotent invariants become

Ĩi = Ii for i = 1, 2, 8, 9,

Ĩ3 = I2 − I3,

Ĩ4 = I2 − 2I3 + I4,

Ĩ5 = I2 − 2I3 + I5,

Ĩ6 = I2 − 3I3 + 3
2I4 + 3

2I5 − I6,

Ĩ7 = I2 − 4I3 + 3I4 + 3I5 − 4I6 + I7.

(8.48)

Scalar long multiplets

We are finally ready to write our first correlators. In analogy with standard CFT, the
building block of scalar correlators are combinations Z2

ij of the coordinates zi and zj such
that

Z2
ij =

(Z ′ij)2

Ω(z′i)Ω(z′j)
. (8.49)

Here z′i represent the coordinates obtained from zi by a superconformal transformation
with conformal factor Ω(z), see equation (8.22). The combination Z2

ij must be built out of
the supertranslation invariant intervals yij and θij , defined in equation (8.44). At order x2,
the most general combination we can build from them which transforms correctly under
D,M and R is y2

12 +kθ4
12. We can fix the relative coefficient by requiring that (8.49) holds

also for inversions I, and we find

Z2
ij ≡ y2

ij + 1
8θ

4
ij . (8.50)

Notice that we only defined Z2
ij because |Zij | = (Z2

ij)1/2 does not have a simple form in
terms of yij and θij . From the above discussion, it is clear that the two-point function of
long scalar fields is

〈O1(z1)O2(z2)〉 =
δ∆1,∆2(
Z2

12
)∆1

, (8.51)
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while the three-point function is

〈O1(z1)O2(z2)O3(z3)〉 = λO1O2O3(1 + c J)(
Z2

12
) 1

2 (∆1+∆2−∆3)(
Z2

13
) 1

2 (∆1+∆3−∆2)(
Z2

23
) 1

2 (∆2+∆3−∆1)
. (8.52)

This has the usual form of a three-point function, except for the presence of the three-
point invariant J defined in (8.43), and the free parameter c that cannot be fixed by
superconformal symmetry. Finally, the four-point function of long scalar fields is

〈O1(z1)O2(z2)O3(z3)O4(z4)〉 = F (Ia)(
Z2

12
) 1

2 (∆1+∆2)(
Z2

34
) 1

2 (∆3+∆4)

(
Z2

24
Z2

14

) 1
2 ∆12 (

Z2
14

Z2
13

) 1
2 ∆34

(8.53)

where ∆ij = ∆i −∆j and F (Ia) is an arbitrary function of the four-point superconformal
invariants. We can expand F (Ia) in the nilpotent basis as

F (Ia) = f0(z) +
9∑
i=1

fi(z)Ii, (8.54)

where f0(z), . . . , f9(z) are arbitrary functions not fixed by superconformal symmetry.

The displacement operator

Our main objective in this work is to bootstrap the four-point function of the displacement
operator. This operator can be obtained as the ∆→ 1 limit of a long scalar, provided that
the shortening condition (8.40) is satisfied.

For example, the two point function of the displacement multiplet is

〈D(z1)D(z2)〉 = 1
Z2

12
, (8.55)

which is compatible with the shortening condition (8.40)

εabD
(A
1,aD

B)
1,b 〈D(z1)D(z2)〉 = εabD

(A
2,aD

B)
2,b 〈D(z1)D(z2)〉 = 0. (8.56)

Similarly, the three-point function of two displacements and one long scalar O of dimension
∆ is

〈D(z1)D(z2)O(z3)〉 =
λDDO

(
1− ∆(∆−2)

48 J
)

(
Z2

12
) 1

2 (2−∆) (
Z2

13
) 1

2 ∆ (
Z2

23
) 1

2 ∆
, (8.57)
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where the coefficient c = − 1
48∆(∆− 2) is fixed by the the shortening conditions at points

1 and 2. We could also consider the three-point function of displacement operators, in
which case we set ∆ = 1 in equation (8.57), and the shortening condition at z3 is automat-
ically satisfied. The previous study of the three-point functions implies the following OPE
selection rule

[A2]R=0 × [A2]R=0 ∼ 1 + [A2]R=0 +
∑
∆>1

[L]∆R=j=0 + . . . , (8.58)

where the . . . represent long or short multiplets such that R, j 6= 0. One way to complete
the right-hand side of this equation would be study more general three-point functions. In
section 8.4.1 below we will follow a different route, and derive the full OPE selection rule
by solving the Casimir equations.

Finally, let us consider the four-point function of displacement multiplets, which in the
frame F1 takes the form

〈D(z1)D(z2)D(0)D(∞, 0)〉 = F (Ia)
Z2

12
. (8.59)

In this frame it is simple to impose the shortening condition (8.40) at points z1 and z2,
leading to the constraints

f2(z) = (z + 2)(1− z)f ′0(z)
24z − 1

48(1− z)2f ′′0 (z),

f3(z) = −(1− z)f ′0(z)
6z + (z + 2)f1(z)

6z − 1
6(1− z)f ′1(z),

f4(z) = (1− z)f ′0(z)
8z + f1(z)

4z − 1
2(z + 1)f6(z) + 1

4(1− z)zf ′6(z) + zf8(z),

f5(z) = −f1(z)
2z , (8.60)

f6(z) = −f
′
0(z)
6z + f1(z)

3z − 1
6f
′
1(z),

f7(z) = f ′0(z)
12z −

1
48f

′′
0 (z),

f8(z) = f ′0(z)
24 + (5z − 12)f ′′0 (z)

96 − (z + 4)(z − 1)f0
(3)(z)

96 − z(z − 1)2f0
(4)(z)

192

− f ′1(z)
4 + (1− z)f ′′1 (z)

8 + 12zf9(z).

One should also impose shortening at the points z3 and z4. The simplest way to achieve
this is to consider the four-point function in the frame F2, but now special care is needed
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since equations (8.45)-(8.46) are no longer valid in this frame. All in all, one obtains one
extra constraint

f9(z) =−
(
z2 + z + 2

)
f ′0(z)

288z3 + (z(4− 5z) + 8)f ′′0 (z)
1152z2 + (z + 4)(z − 1)f0

(3)(z)
1152z

+ (z − 1)2f0
(4)(z)

2304 − (z + 2)f1(z)
144z3 + (z + 2)f ′1(z)

144z2 + (z − 1)f ′′1 (z)
144z .

(8.61)

Summarizing, we have found that the four-point function of displacements depends on two
unfixed functions f0(z) and f1(z). These two functions will be the subject of the bootstrap
analysis of the following sections.

8.4 Superconformal blocks

Armed with the four-point functions in superspace we can now calculate the relevant su-
perconformal blocks. There are several approaches that have been used to calculate su-
perblocks with varying degrees of success. These include explicit calculation of three-point
couplings of descendants [65,239], the shadow formalism [194,337], Ward identities in har-
monic superspace [219, 244, 336, 357], the Casimir operator [194, 196, 228, 237], and the
connection to Calogero-Sutherland models [240]. Because the multiplets we are consid-
ering are scalars with no R-symmetry or transverse-spin indices, we will use the most
conventional of these methods, which is to consider superblocks as eigenfunctions of the
Casimir operator.6 In the main text we will concentrate on the blocks for the displacement
multiplet, however in appendix 8.B we present more general correlators that also include
non-protected long operators.

8.4.1 From the Casimir equation

Superconformal blocks are given by a finite sum of 1d bosonic blocks, that capture the
contributions of the sl(2;R) primaries in the conformal multiplets:

g∆12,∆34
∆ (z) = z∆

2F1(∆−∆12,∆ + ∆34, 2∆, z). (8.62)

The coefficients in this sum are fixed by supersymmetry, so we can make an ansatz for
the functions fi in terms of bosonic blocks. After acting with the Casimir operator on

6In some selected cases we will also calculate three-point couplings of descendants as a non-trivial check
for our computations.
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the four-point function, we will obtain a coupled system of equations for the functions fi
that we will use to fix the coefficients in our ansatz. Since we will use the coupled set
of differential equations only to fix these coefficients, the superblocks will automatically
satisfy the correct boundary conditions.

The Casimir of the osp(4∗|2) superalgebra is given by

C2 = +D2 − 1
2(PK +KP) + 1

2M
b
a M a

b −RA
BRB

A − 1
2 [QA

a ,SaA]. (8.63)

When it acts on an operator O with quantum numbers [∆, j, R] it has the following eigen-
value

C2O = c∆,j,RO, c∆,j,R = ∆(∆ + 1) + j(j + 1)− 2R(R+ 1). (8.64)

Given a four-point function, we can evaluate it by taking OPEs in the (12)→ (34) channel,
leading to the usual expansion in terms of superconformal blocks

〈D(z1)D(z2)D(z3)D(z4)〉 = 1
Z2

12Z
2
34

∑
O∈D×D

λ2
DDO GO(Ia). (8.65)

In order to obtain a superconformal block, we act with the Casimir on the four-point
function and find the solution to the eigenvalue problem7

C2
12 G∆,j,R(Ia) = c∆,j,R G∆,j,R(Ia). (8.66)

The differential operator C2
12 is constructed from the Casimir (8.63) and the symmetry

generators in differential form (8.32). Note that the operators need to be evaluated at
points z1 and z2, namely L12 = L1 + L2. In order to solve the above equation, we take
G to be of the form (8.54) with the shortening conditions (8.60) and (8.61). Furthermore,
we evaluate the Casimir equation in the frame F1 where the calculations are simpler. The
resulting system of differential equations is

− z2[(z − 1)f ′′0 (z) + f ′0(z)
]
− 4zf1(z) = c∆,j,R f0(z), (8.67a)

− (z − 1)z
(
zf ′′1 (z) + 4f ′1(z)

)
+ (2− z)

(1
2f
′
0(z) + 2f1(z)

)
= c∆,j,R f1(z). (8.67b)

Notice the similarity of (8.67a) with the usual non-supersymmetric 1d Casimir equation.
To solve these equations one should make an ansatz for the fi in terms of 1d bosonic blocks.
However, as discussed in [228], it is simpler to first “change basis” to a set of functionsGi(z),

7Notice that the dependence on Z2
12 drops from the eigenvalue problem since C2

12Z
2
12 = 0.
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where each of the Gi captures the contribution of the external superconformal descendants,
and build an ansatz for the Gi instead. Let us review in detail how to implement this idea.

We start by expanding the displacement multiplets in terms of their conformal descen-
dants (8.39), so that the four-point function becomes

〈D(z1)D(z2)D(0)D(∞, 0)〉 = 〈A(x1)A(x2)A(0)A(∞)〉

− θa1,Aθb2,B〈BA
a (x1)BB

b (x2)A(0)A(∞)〉+ . . .
(8.68)

Note that since we work in the frame F1, we have θ3 = θ4 = 0, so only the superconformal
primary A at points 3 and 4 will appear. There are only three four-point functions of
descendants that contribute to the above expansion, and for each of them we define a new
function Gi as

〈A(x1)A(x2)A(0)A(∞)〉 → 1
|x12|2

G0(z),

〈BA
a (x1)BB

b (x2)A(0)A(∞)〉 → x12 ε
ABεab
|x12|4

G1(z),

〈CAB
ab (x1)CCD

cd (x2)A(0)A(∞)〉 → εABεCD(εacεbd + εadεbc)
|x12|4

G2(z),

(8.69)

On one hand, we can introduce (8.69) in the expansion (8.68), and on the other, we can
expand the four-point function of displacements (8.59) in terms of θ1 and θ2. By matching
the components of the two sides, we get that the change of basis is

f0(z) = G0(z), f1(z) = −1
z

[
G0(z) +G1(z)

]
. (8.70)

Furthermore, we see that G2 must be related to G0 and G1 by

G2(z) = 1
8G0(z) + 1

48z(z − 4)G′0(z)− 1
48z

2(z − 1)G′′0(z) + 1
2G1(z) + 1

12z(z − 2)G′1(z).
(8.71)

It is natural that G2 is related to G0 and G1, since the four-point function of displacements
contains only two unfixed functions f0(z) and f1(z). However, we still had to include G2

in (8.69), because a priori we did not know what this relation was.
The virtue of the Gi basis is that now the ansatz in terms of 1d bosonic blocks is very

simple

Gi(z) = ai g
0,0
∆ (z) + bi g

0,0
∆+ 1

2
(z) + ci g

0,0
∆+1(z) + di g

0,0
∆+ 3

2
(z) + ei g

0,0
∆+2(z). (8.72)
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We finally have all the ingredients to solve the Casimir equations (8.67). If we consider the
case of an exchanged multiplet [∆, 0, 0], then the Casimir eigenvalue is c = ∆(∆ + 1), and
the equations are solved by

G0(z) = g0,0
∆ (z) + (∆− 1)∆(∆ + 1)

4(∆ + 2)(2∆ + 1)(2∆ + 3)g
0,0
∆+2(z),

G1(z) = 1
2(∆− 2)g0,0

∆ (z)− (∆− 1)∆(∆ + 1)(∆ + 3)
8(∆ + 2)(2∆ + 1)(2∆ + 3)g

0,0
∆+2(z).

(8.73)

From now on, we will sometimes use vectorial notation G(z) = (G0(z), G1(z)). Depending
on the value of ∆, the solution (8.73) is interpreted as follows:

• For ∆ = 0 the block reduces to G1(z) = (1,−1), and corresponds to the identity
operator being exchanged.

• For ∆ = 1 the block reduces to GA2(z) =
(
g0,0

1 (z),−1
2g

0,0
1 (z)

)
, and corresponds to a

displacement multiplet [A2]R=0 being exchanged.

• For ∆ > 1 the block G
[0,0]
∆ (z) is given by (8.73), and corresponds to a long scalar

multiplet [L]j=R=0
∆ being exchanged.

One can also consider an exchanged multiplet [∆, 1, 0], in which case the Casimir eigenvalue
is c = ∆(∆ + 1) + 2, and the equations are solved by

G0(z) = g0,0
∆+1(z), G1(z) = −1

2g
0,0
∆+1(z). (8.74)

The solution (8.74) is interpreted as follows:

• For ∆ = 2 the block reduces to GA1(z) =
(
g0,0

3 (z),−1
2g

0,0
3 (z)

)
. Note that from the

recombination rules (8.11), we could interpret the solution as either an [A1]j=1
R=0 or

an [A1]j=1/2
R=1/2. The correct interpretation is that it is actually [A1]j=1/2

R=1/2 which is
exchanged, in particular its descendant with quantum numbers [3, 0, 0], see equa-
tion (8.10).

• For ∆ > 2 the block G
[1,0]
∆ (z) is given by (8.74), and corresponds to a long scalar

multiplet [L]j=1,R=0
∆ being exchanged.

We have tried solving the Casimir equation considering other possible exchanges, but in
all cases there were no new solutions found, so the above are all the operators that can
appear in the OPE of two displacement multiplets.
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OPE selection rule. Summarizing the above results, we obtain the following selection
rule

[A2]R=0 × [A2]R=0 ∼ 1 + [A2]R=0 + [A1]j=1/2
R=1/2 +

∑
∆>1

[L][0,0]
∆ +

∑
∆>2

[L][1,0]
∆ , (8.75)

which completes the partial selection rule (8.58) obtained from the three-point function
analysis.

8.4.2 From two- and three-point functions

In this section, we calculate the superconformal blocks in the [∆, 0, 0] channel (8.73) follow-
ing the approach of [65]. This provides a non-trivial consistency check for our results, and
sheds light on the structure of such blocks. The key insight is that the coefficients appearing
in the superconformal blocks are OPE coefficients and norms of conformal descendants

G0(z) = λ2
AAA

〈A|A〉
g0,0

∆ (z) + λ2
AAG

〈G|G〉
g0,0

∆+2(z),

G1(z) = λAAAλBBA
〈A|A〉

g0,0
∆ (z) + λAAGλBBG

〈G|G〉
g0,0

∆+2(z).
(8.76)

Here λO1O2O3 denotes the OPE coefficient of two fields from the displacement multiplet
with one operator from a long scalar multiplet, namely O1, O2 ∈ D and O3 ∈ O, see
equations (8.36) and (8.39) for more details. On the other hand, 〈O|O〉 denotes the norm
of an operator that belongs to the long multiplet O, and can be computed from the two-
point function as explained below.

The procedure to obtain the OPE coefficients resembles the way we obtained the change
of basis in equation (8.70). Let us take the three-point function (8.57) of two displacement
operators and a long scalar of dimension ∆. On one hand, we expand it in the fermionic
variables, while on the other we expand the external superfields in terms of their conformal
descendants (8.36) and (8.39)

〈D(z1)D(z2)O(z3)〉 = λDDO
|x12|2−∆|x13|∆|x23|∆

− θa1,Aθb2,B
1
2(∆− 2)λDDOεabεAB

|x12|3−∆|x13|∆|x23|∆
+ . . .

= 〈A(x1)A(x2)A(x3)〉 − θa1,Aθb2,B〈BA
a (x1)BB

b (x2)A(x3)〉+ . . .

(8.77)
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Mapping the two sides one can obtain all the OPE coefficients of the descendant fields.
The relevant ones for us will be

λAAA = λDDO, λAAG = −(∆− 1)∆(∆ + 1)λDDO
24(2∆ + 1) ,

λBBA = 1
2(∆− 2)λDDO, λBBG = (∆− 1)∆(∆ + 1)(∆ + 3)λDDO

48(2∆ + 1) ,

λCCA = − 1
16(∆− 3)(∆− 2)λDDO, λCCG = (∆− 1)∆(∆ + 1)(∆ + 3)(∆ + 4)λDDO

384(2∆ + 1) .

(8.78)

Notice how λAAG, λBBG, λCCG vanish for ∆ = 1, as expected from the shortening O → D
and the fact that G /∈ D. We can do a similar analysis for the two-point function (8.51) of
scalar longs of dimension ∆. In this case we obtain the norms of the descendants

〈A|A〉 = 1, 〈E|E〉 = 1
8(∆− 1)∆,

〈B|B〉 = ∆, 〈F |F 〉 = 2(∆− 1)∆(∆ + 1)(∆ + 2)
9(2∆ + 1) ,

〈C|C〉 = 1
8∆(∆ + 2), 〈G|G〉 = (∆− 1)∆(∆ + 1)(∆ + 2)(2∆ + 3)

144(2∆ + 1) .

(8.79)

It is a simple exercise to check that inserting (8.78) and (8.79) in (8.76) leads to the
superconformal blocks (8.73). One could do a similar analysis to compute the blocks in the
[∆, 1, 0] channel, but it would be more involved, since then an expression for the three-point
functions of external operators with transverse spin would be needed.

8.4.3 Crossing equations

In the previous sections we have studied the four-point function of displacement operators
in the (12) → (34) channel. Demanding that it is equivalent to the four-point function in
the (14)→ (23) channel leads to the crossing equation

1
Z2

12Z
2
34

(
f0(z) +

9∑
i=1

Iifi(z)
)

= 1
Z2

14Z
2
23

(
f0(z̃) +

9∑
i=1

Ĩifi(z̃)
)
, (8.80)

where the Ĩi invariants appear in equation (8.48), and are obtained from the Ii by the
replacement z1 ↔ z3. Since z̃ = 1 − z + 1

2I1, we can Taylor expand the fi’s in the right-
hand side around z̃ = 1−z, and insert the expressions for the Ĩi. By looking at independent
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terms, one can see that the crossing equation reduces to

(1− z)2H(z)− z2H(1− z) = 0, (8.81)

where H(z) is a two-dimensional vector with components

H0(z) = G0(z),

H1(z) = −2zG0(z) + z(z − 1)G′0(z)− 4(z − 1)G1(z).
(8.82)

Notice that from the first component we obtain the usual 1d bosonic crossing equation,
but the second mixes G0(z) and G1(z) in a non-trivial way.

8.4.4 An exact solution

In this section we present a family of exact solutions to the crossing equations in terms
of free fields. We will argue in section 8.6 that one solution in this family describes the
strong coupling limit of line defects that admit a holographic description. Furthermore,
these solutions will play a prominent role in the next two sections, where we will apply
numerical and analytical bootstrap techniques to this correlator.

The most general solution of crossing that we have found built from Wick contractions
contains one free parameter ξ. Since it is a valid correlator, it can be expanded in terms
of superconformal blocks as in equation (8.65)

〈D(z1)D(z2)D(z3)D(z4)〉 = 1
Z2

12Z
2
34

[
1 + ξ

Z2
12Z

2
34

Z2
13Z

2
24

+ Z2
12Z

2
34

Z2
14Z

2
23

]

= 1
Z2

12Z
2
34

1 + cGA1 +
∑
∆≥2

a∆GL[0,0]
∆

+
∑
∆≥3

b∆GL[1,0]
∆

 . (8.83)

Notice how the block GA2 , which a priori could appear in the expansion, has vanishing
OPE coefficient λ2

A2
= 0 for any value of ξ. The other OPE coefficients are given by

a∆ =

(
1 + (−1)∆ξ

)√
π Γ(∆ + 3)

22∆+1Γ
(
∆ + 1

2

) , b∆ = 3(∆− 1)
2(∆ + 1)

(
1 + (−1)∆+1ξ

)√
π Γ(∆ + 3)

22∆+1Γ
(
∆ + 1

2

) ,

(8.84)

and c = b∆=2 = (1 − ξ)/2. Positivity of the OPE coefficients requires −1 ≤ ξ ≤ 1. The
theory with ξ = 1 corresponds to free bosons, ξ = −1 corresponds to free fermions, and
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certain values −1 < ξ < 1 correspond to free gauge theories, as discussed in [233]. We will
argue in section 8.6 that the bosonic theory with ξ = 1 corresponds to the displacement
operator at leading order in the strong-coupling limit. The physical interpretation of the
fermionic ξ = −1 theory is less clear, since we know that the displacement must be a
bosonic operator. Nevertheless, it will be important as a valid solution of crossing that will
sit in interesting corners of the allowed regions of the numerical results in next section.

8.5 Numerical results

In this section we use numerical boostrap techniques [17,56,58] to bound conformal dimen-
sions and OPE coefficients of operators that appear in the four-point function of displace-
ment operators. We start each subsection with a short review of the numerical algorithm,
and then we proceed to discuss the results. We have generated tables of derivatives of su-
perconformal blocks with Mathematica, which are then used by the semidefinite program
solver SDPB [59]8. The results are analyzed using python, and the plots are generated with
matplotlib [358].

In section 8.4.3 we derived the crossing equations (8.81), which take the simple form
F (z) = 0 in terms of the two-dimensional vector

F (z) ≡ (1− z)2H(z)− z2H(1− z) . (8.85)

We can expand F (z) summing the contributions of the operators that appear in the OPE
of two displacements (8.75)

F (z) = F1(z) + λ2
A1FA1(z) + λ2

A2FA2(z) +
∑
∆>1

λ2
L

[0,0]
∆

F
[0,0]
∆ (z) +

∑
∆>2

λ2
L

[1,0]
∆

F
[1,0]
∆ (z) = 0 ,

(8.86)

where by unitarity the OPE coefficients are real, hence λ2
O ≥ 0. Here and in what follows

we are using a shorthand notation where it is implicitly understood that λ2
O = λ2

DDO.
In order to explore the numerical constraints implied by crossing we will make some

structural assumptions about the CFT data. In some of our plots we will assume that
λ2
A2

= 0, or equivalently, that the displacement multiplet does not appear in the OPE of
8An alternative to Mathematica to compute the tables is PyCFTBoot [70], which then relies on SDPB to

carry out the optimizations. On the other hand, one can generate the tables in Mathematica, but then
perform the numerics in JuliBoots [69].
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two displacements. Notice that this is the case for the mean-field solutions of the previous
section, as well as for N = 4 theories that are interpreted as N = 2 SCFT [346]. This is
also true whenever the displacement is odd under a Z2 symmetry. One could relax this
condition, however we found that the numerical results become significantly weaker. It
will be interesting to explore this further in the future. The second assumption is that
the low-lying spectrum is somehow sparse, with gaps in between the local operators. More
precisely, we will assume an isolated long operator with dimension ∆[0,0] separated by a
finite gap from the unitarity bound, and a second gap between ∆[0,0] and a continuum of
long operators with dimensions ∆ ≥ ∆′[0,0]. Similar assumptions will also be made for the
longs in the [1, 0] channel.

The most general case we will be studying is then

F1(z) + λ2
A1FA1(z) + λ2

A2FA2(z) + λ2
L∆[0,0]

F
[0,0]
∆[0,0]

(z) + λ2
L∆[1,0]

F
[1,0]
∆[1,0]

(z) +

+
∑

∆≥∆′[0,0]

λ2
L

[0,0]
∆

F
[0,0]
∆ (z) +

∑
∆≥∆′[1,0]

λ2
L

[1,0]
∆

F
[1,0]
∆ (z) = 0 .

(8.87)

When we discuss the results, it will be instructive to compare with the free-field solu-
tions (8.83). In the plots we will represent these solutions with a solid bullet • or dashed
line , accompanied by a letter representing the type of solution

• B : Free boson, ξ = 1,

• F : Free fermion, ξ = −1,

• G : Free gauge theory, −1 < ξ < 1.

(8.88)

Currently, the only N = 2 line defect with insertions that has been studied in the literature
is the one in N = 4 SYM. The leading-order correlation function of D’s at strong coupling
was computed in [346], and it is given by the free bosonic solution. In that work, the
first-order correction in 1√

λ
to the correlator was also obtained. It would be an interesting

problem for the future to study anN = 2 line defect with insertions either using holography
or perturbation theory and compare with our numerical bounds.

8.5.1 Dimension bounds

The algorithm for bounding operator dimensions works in the following way. First, one
assumes a spectrum of operator dimensions. In the case of interest to us (8.87), this boils

159



Chapter 8. Bootstrapping line defects in N = 2 theories

down to fixing the dimension of the isolated longs ∆[0,0] and ∆[1,0], and also the dimension
of the first longs in the continuum ∆′[0,0] and ∆′[1,0]. Then one tries to find a functional α
such that

α(F1) = 1 , α(FI) ≥ 0 , α
(
F

[0,0]
∆

)
≥ 0 for ∆ ≥ ∆′[0,0] , α

(
F

[1,0]
∆

)
≥ 0 for ∆ ≥ ∆′[1,0] ,

(8.89)

where I = A1, A2, L
[0,0]
∆[0,0]

, L
[1,0]
∆[1,0]

runs over all the operators with fixed conformal dimen-
sions. If such functional α exists, then it is not possible to satisfy equation (8.87), and the
spectrum is ruled out.

As is customary we consider functionals of the form

α(F∆) =
1∑
i=0

Λ∑
m=0

ai,m
∂mFi,∆(z)
∂zm

∣∣∣∣
z=1/2

≈ χ(∆)P (∆) , (8.90)

where i = 0, 1 runs over the two components of F∆(z), and the number of derivatives
Λ needs to be increased in order to obtain stronger bounds. In the last step we have
approximated the conformal blocks by a positive function χ(∆) ≥ 0 multiplying a linear
combination of polynomials in ∆

P (∆) =
1∑
i=0

Λ∑
m=0

ai,mPi,m(∆) . (8.91)

This approximation can be obtained as described in [57, 58]. Thanks to (8.90) and (8.91),
we can reformulate the optimization problem (8.89) as finding a set of coefficients ai,m such
that

α(F1) = 1 , α(FI) ≥ 0 , P [0,0]
(
∆′[0,0] + x

)
≥ 0 , P [1,0]

(
∆′[1,0] + x

)
≥ 0 ,

(8.92)

for all x ≥ 0. This is a semidefinite programming problem which can be solved using
SDPB [59].

In figure 8.2 we present upper bounds on the dimension ∆′[0,0] of the first long in the
continuum, as a function of the dimension of the isolated long ∆[0,0], while keeping all the
operators in the [1, 0] channel slightly above their unitarity bound. In an exactly analogous
way, we also present the upper bound of ∆′[1,0] as a function of ∆[1,0] without imposing gaps
in the [0, 0] channel. The first interesting feature is that regardless of where the continuum
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Figure 8.2: Left: Upper bounds on the dimension ∆′[0,0] of the first long in the continuum
as a function of the dimension ∆[0,0] of the isolated long. Only the allowed region for
Λ = 61 is shaded. There is a sudden jump in the upper bound for ∆[0,0] ' 1.31. We are
not imposing any gaps in the channel [1, 0], and we keep the operators slightly above the
unitarity bound, i.e. ∆[1,0] = ∆′[1,0] & 2. Right: Upper bounds on ∆′[1,0] as a function of
the dimension ∆[1,0] keeping ∆[0,0] = ∆′[0,0] & 1. The free theory solutions are represented
by bullets •, as explained in (8.88).
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sits, there is an upper bound on the dimension ∆[a,b] of the first long. The plots suggest
that in the limit Λ→∞ the maximum dimension is approximately9

∆[0,0] . 3.0 , ∆[1,0] . 4.0 . (8.93)

These bounds are almost saturated by the fermionic free theory of equation (8.83) with
ξ = −1. Moreover, the fermionic theory sits very close to the upper bound for ∆′[0,0] and
∆′[1,0] when (8.93) is saturated. Similarly, we also see that when ∆[0,0] = 2.0 or ∆[1,0] = 3.0,
the free bosonic theory almost saturates the upper bounds for ∆′[0,0] and ∆′[1,0] respectively.
Finally, the free gauge theories (8.83) with −1 < ξ < 1 are far from the boundary of the
allowed region.

Another feature is the sudden jump in the upper bound for ∆′[0,0] starting at

∆[0,0],jump ' 1.31 . (8.94)

As we will discuss in more detail in the following section, this seems to be related to certain
OPE coefficients becoming unbounded for ∆[0,0] < ∆[0,0],jump.

8.5.2 OPE bounds

One can find upper and lower bounds for the OPE coefficient λ2
O using a very similar

algorithm as the one described above. We use a functional α of the form (8.90), and
maximize α(F1) such that α(FO) = 1 and

α(FI) ≥ 0, P [0,0]
(
∆′[0,0] + x

)
≥ 0 for x ≥ 0 , P [1,0]

(
∆′[1,0] + x

)
≥ 0 for x ≥ 0 .

(8.95)

Then we obtain the upper bound λ2
O ≤ −α(F1). Similarly, if we find α that maximizes

α(F1) such that α(FO) = −1 and (8.95) holds, we obtain the lower bound λ2
O ≥ α(F1).

As before, such optimization problems can be solved using SDPB.
First, we would like to understand the nature of the jump observed in figure 8.2 and

discussed around equation (8.94). In figure 8.3 we obtain upper and lower bounds on the
OPE coefficients λ2

L∆[0,0]
and λ2

A1
as a function of the dimension of the first long ∆[0,0].

Here, we are not assuming a double gap in any of the two long channels, i.e. we take
9It would be interesting to confirm that for larger values of Λ the bounds indeed converge to ∆[0,0] = 3

and ∆[1,0] = 4, but at this stage the assumption is very plausible.
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Figure 8.3: Left: Upper bound on the OPE coefficient of the isolated long as a function
of its dimension ∆[0,0]. Right: Upper bound on the OPE coefficient of the [A1]j=1/2

R=1/2
multiplet, as a function of the dimension of the first long ∆[0,0]. In both plots, we keep
∆′[0,0] & ∆[0,0] and ∆[1,0] = ∆′[1,0] & 2. The upper bound of both OPE coefficients diverges
for ∆[0,0] ' 1.33, which is represented with a vertical dashed line.
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Figure 8.4: Upper and lower bounds for λ2
L

[0,0]
∆

(first row) and λ2
A1

(second row) as a

function of ∆′[0,0] when λ2
A2

= 0. In the first column, ∆[0,0] = 2.0 and by increasing ∆′[0,0]
the bosonic free theory sits at the boundary of the allowed region. In the second column,
∆[0,0] = 3.0 and by increasing ∆′[0,0] the fermionic free theory sits at the boundary.
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Figure 8.5: Comparison of the upper and lower bounds of λ2
L (left) and λ2

A1
(right) as a

function of ∆′[0,0] and for different values of ∆[0,0]. All the optimizations have been run for
Λ = 61 and assuming λ2

A2
= 0.

∆[a,b] = ∆′[a,b], but we do assume λ2
A2

= 0. Somehow unexpectedly, both OPE coefficients
become unbounded for ∆[0,0] less than

∆[0,0],jump ' 1.33 . (8.96)

Even though there is a slight mismatch between the values of ∆[0,0],jump in (8.94) and (8.96),
we believe it is only due to the numerical nature of the calculation, and that the two values
would be the same for large enough Λ. A very similar situation was observed in [233], where
a sudden drop in the upper bound of a conformal dimension was related to the appearence
of an upper bound of a related OPE coefficient. For the 3d Ising model it is known that
the dimensions and OPE coefficients of certain operators suffered a sudden jump around
the Ising model point [63]. It would be interesting to see if the region ∆[0,0] ∼ ∆[0,0],jump

corresponds to a line defect of an interesting N = 2 superconformal theory.
In order to obtain further constraints on OPE coefficients we will assume the existence

of gaps, in particular, ∆[0,0] ≥ ∆[0,0],jump, because otherwise the optimization problems
are unbounded. As an important example, we study in more detail the exact bosonic and
fermionic solutions of crossing. We fix the dimension of the first long to ∆[0,0] = 2.0/3.0
for the bosonic/fermionic theories, and then bound the OPE coefficients as we increase the
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second gap ∆′[0,0]. The results are plotted in figure 8.4. In the first row we observe that the
OPE coefficient of the long at ∆[0,0] has upper bounds which are essentially constant, and
lower bounds appear only when the second gap is ∆′[0,0] & 3. The lower bounds grow as we
increase ∆′[0,0], until they meet the upper bound precisely where the bosonic and fermionic
theories sit. For this reason, we expect that the bosonic and fermionic theories are unique
provided that the second gap is large enough. Indeed, our plots are almost identical to the
ones obtained for the N = 4 analogous case [233]. In order to map results, one simply needs
to note that their B2 multiplet is identified with our isolated long of dimension ∆[0,0] = 2
(see the discussion around equation (8.12)). A mixed-correlator bootstrap study for N = 4
revealed the appearence of an island around the bosonic free theory. We are confident that
a similar analysis can be done in our setup, which would give evidence that our free-field
solutions of crossing are unique if one assumes appropriate gaps.

In the second row of figure 8.4 we show bounds on the OPE coefficient of the [A1]j=1/2
R=1/2

multiplet. There is no analogous of this multiplet for line defects in N = 4 theories, so we
will not be able to borrow any intuition from the results of [233]. The primary of A1 has
dimension ∆ = 5/2, so it sits inside the continuum of [1, 0] long operators. Intuitively, in
order for lower bounds to appear, there needs to be enough distance between the dimension
of the operator and the dimension of the first operator in the continuum, and that explains
why we do not obtain any lower bounds for λ2

A1
. In any case, when ∆[0,0] = 2 the upper

bound keeps decreasing until it crosses zero, exactly at the position where the bosonic free
theory sits. When ∆[0,0] = 3, the bounds seems to converge to the rectangular region
λ2
A1
≤ 1 and ∆′[0,0] ≤ 5, and the fermionic theory sits exactly at the upper right corner of

this region.
Summarizing, figure 8.4 provides ample evidence that the numerical bootstrap is iso-

lating the bosonic and fermionic free theories when we assume large gaps in the spectrum
of long operators. Interestingly, one can allow the dimension for the first long to be in the
range

∆jump,[0,0] ≤ ∆[0,0] ≤ 3, (8.97)

and compute bounds on OPE coefficients as a function of ∆′[0,0]. The results are plotted
in figure 8.5. There is an entire family of plots that share similar qualitative features to
the ones we just discussed. This can be thought of as an one-parameter family of theories
interpolating between the fermionic and bosonic free-field theories, and which would extend
all the way up to the critical theory where the OPE coefficients are diverging.

166



Chapter 8. Bootstrapping line defects in N = 2 theories

a) b)

Figure 8.6: Disconnected and connected Witten diagrams in the dual AdS2 description.
The disconnected piece corresponds to a mean-field theory correlator, while the connected
piece is bootstrapped in the current section.

8.6 Analytical results

8.6.1 Introduction

In this section we study perturbations around the bosonic mean-field solution (8.83), similar
to the analysis of section 6 in [233]. We will interpret the bosonic solution as the strong-
coupling limit of line defects in N = 2 theories which admit a holographic description.
From the holographic perspective, the leading contribution to a four-point function at
strong coupling is a disconnected Witten diagram in AdS2, while the first-order correction
is given by a four-point connected Witten diagram, see figure 8.6. The disconnected piece
can be obtained by Wick contractions, and leads to our solution (8.83) with ξ = 1. Our goal
is to use superconformal blocks and crossing symmetry to bootstrap the contribution from
the connected Witten diagram. We will see that under mild assumptions, the correlator
is uniquely determined in terms of two normalization constants c1, c2, which cannot be
fixed by our symmetry arguments. From the correlator it is then possible to extract the
first-order corrections to the anomalous dimensions and OPE coefficients of the operators
in the spectrum. In the analogous N = 4 case, perfect agreement was found between the
explicit holographic calculation [346] and the bootstrap result [233].

Let us remind the reader that in section 8.4.3 we wrote the crossing equation (8.81) in
terms of the two-dimensional vector H(z). This function can be expressed in a superblock-
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like expansion
H(z) =

∑
∆∈S[0,0]

a∆H
[0,0]
∆ (z) +

∑
∆∈S[1,0]

b∆H
[1,0]
∆ (z), (8.98)

where H [a,b]
∆ are also two-dimensional vectors that can be computed from the definition of

H(z) in (8.82) and the superconformal blocks in the two channels (8.73) and (8.74). One
can think of H [a,b]

∆ as a superblock expressed in a new basis, such that the crossing equation
takes a particularly simple form.

The solution to crossing we want to perturb around has OPE coefficients given in
equation (8.84) with ξ = 1, and the spectrum of dimensions is

S[0,0] = {2, 4, 6, . . . } and S[1,0] = {3, 5, 7, . . . }. (8.99)

The idea is to start with this free theory and consider a perturbation of the CFT data to
leading order in the perturbation parameter ε. On the one hand, the correlator will receive
a correction

H(z) = H(0)(z) + εH(1)(z) , (8.100)

which by equation (8.98) will translate into the operators acquiring anomalous dimensions

S
(1)
[0,0] = {∆ + εγ

[0,0]
∆ }∆∈S[0,0] , S

(1)
[1,0] = {∆ + εγ

[1,0]
∆ }∆∈S[1,0] , (8.101)

and the OPE coefficients receiving first-order corrections

a∆ = a
(0)
∆ + εa

(1)
∆ , b∆ = b

(0)
∆ + εb

(1)
∆ . (8.102)

Schematically, we have that H [a,b]
∆ ∼ z∆f(∆, z), so if we give an anomalous dimension to

∆ the first-order correlator H(1)(z) must contain a log term. As a result, we take it to be
of the form

H(1)(z) = R(z) log(z) + P (z) , (8.103)

where R(z) and P (z) are a priory completly arbitrary functions. Comparing this with the
block expansion we obtain

R(z) =
∑

∆∈S[0,0]

a
(0)
∆ γ

[0,0]
∆ H

[0,0]
∆ (z) +

∑
∆∈S[1,0]

b
(0)
∆ γ

[1,0]
∆ H

[1,0]
∆ (z), (8.104a)

P (z) =
∑

∆∈S[0,0]

a
(1)
∆ H

[0,0]
∆ (z) +

∑
∆∈S[0,0]

a
(0)
∆ γ

[0,0]
∆ z∆∂∆

(
z−∆H [0,0](z)

)
+

∑
∆∈S[1,0]

b
(1)
∆ H

[1,0]
∆ (z) +

∑
∆∈S[1,0]

b
(0)
∆ γ

[1,0]
∆ z∆∂∆

(
z−∆H [1,0](z)

)
,

(8.104b)
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In the analysis below, the “brading” transformation

z → z

z − 1 (8.105)

will play a crucial role to provide extra constraints for the functions R(z) and P (z). The
one-dimensional bosonic blocks g∆ = g0,0

∆ of equation (8.62) have clean transformation
properties under braiding. In our analysis, only chiral blocks with even ∆ will appear, for
which we have10

g∆

(
z

z − 1

)
= g∆(z), g′∆

(
z

z − 1

)
= −(1− z)2g′∆(z), etc. (8.106)

From the form of the superconformal blocks Gi(z), it is clear that they inherit these nice
transformation properties under braiding. However, when we work in the H-basis, the
transformations become more complicated and instead of writing them here we will only
present their consequences. Using the transformation (8.106) combined with the expan-
sions (8.104), we obtain non-trivial constraints for the two components of R(z)

R0

(
z

z − 1

)
−R0(z) = 0, R1

(
z

z − 1

)
− B[R](z) = 0, (8.107)

and for the two components of P (z)

P0

(
z

z − 1

)
− P0(z)− log(1− z)R0(z) = 0, (8.108a)

P1

(
z

z − 1

)
− B[P ](z)− log(1− z)B[R](z) + z

z − 1R0(z) = 0. (8.108b)

Here we have defined a functional B, which takes as argument a two-component function
F (z) and mixes its two components as follows:

B[F ](z) = −2z(z − 2)
(z − 1)2 F0(z)− z2

z − 1∂zF0(z) + 1
(z − 1)2F1(z) . (8.109)

In the next section we will study how these constraints fix the functions R(z) and P (z) up
to overall coefficients.

10For generic values of ∆, the chiral block will have an extra branch cut due to the prefactor z∆, and one
has to be careful on how to analytically continue the block under (8.105). See [272] for a careful analysis
in the BCFT setup.
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8.6.2 Corrections to the anomalous dimension

We are now ready to find solutions to crossing which are consistent with the relations just
presented. In order to do so, we take the function P (z) to be of the form

P (z) = z2

(1− z)2R(1− z) log(1− z) +Q(z), (8.110)

and we assume that R(z) and Q(z) are rational functions. This assumption is inspired
by the holographic calculation of [346], and can also be justified a posteriori if a solution
is actually found. The idea is that the contribution from the connected Witten diagram
in figure 8.6 is given by an integral of four bulk-to-boundary propagators living in AdS2,
which is denoted by D∆1∆2∆3∆4 in [346]. For the case of interest to us, the conformal
dimensions of the external operators are all identical and take integer values, in which case
the only transcendental functions appearing in D are log(z) and log(1− z). Therefore, our
ansatz (8.103) and (8.110) is the most general one representing a first order correction in
the holographic dual.

Due to the form of our ansatz, crossing symmetry does not impose conditions on the
function R(z), however the braiding property does impose non-trivial relations on both
R(z) and Q(z). It turns out that it is sufficient to solve (8.108) and that (8.107) does
not impose extra constraints. Also, recall that under the assumption of rationality the
coefficients of possible log terms have to cancel separately. Now we insert our ansatz (8.110)
in (8.108a), and by extracting the coefficient of the log term, we obtain the following relation
for the function R0(z):

− z2R0

( 1
1− z

)
− z2R0(1− z)

(z − 1)2 −R0(z) = 0. (8.111)

Similarly, by looking at (8.108b) we obtain an equation that mixes the two components of
R(z)

−(z − 1)z4R′0(1− z) + 2(z − 3)z3R0(1− z) + (z − 1)3z2R′0(z) + 2(z − 2)(z − 1)2zR0(z)

−z2(z − 1)4R1

( 1
1− z

)
− z2R1(1− z) +

(
−z2 + 2z − 1

)
R1(z) = 0.

(8.112)

In addition to these relations, the functionR(z) is constrained by the block expansion (8.104).
In particular, in the limit z ∼ 0 it should satisfy

(R0(z), R1(z)) ∼ (z2,−2z2), (8.113)
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where the relative factor of −2 comes from the explicit normalization of the conformal
blocks in the basis we employ. As discussed in [233], these conditions are not enough to
fix the function R(z), and we need to look at the behavior of the function around z ∼ 1,
which is correlated with the behavior of anomalous dimensions at large ∆. Because we are
looking for a solution that can be interpreted as a holographic correlator, we will borrow
some intuition from [359, 360]. The idea is that the growth of anomalous dimensions is
governed by how irrelevant the interaction is in the putative AdS dual. Because we are
trying to bootstrap a leading correction to the holographic correlator, we should keep the
solution with the weakest growth. Therefore, we impose that anomalous dimensions grow
no faster than γ[a,b]

∆ ∼ ∆2 for large values of ∆. This last condition fixes the function R(z)
up to two normalization constants. The explicit answer reads

R0(z) = − z2

z − 1c1 −
(
2z2 − 7z + 7

)
z4

2(z − 1)3 c2 , (8.114)

R1(z) = −z
2 (2z2 − 3z − 6

)
3(z − 1) c1 + z4 (8z2 − 28z + 35

)
3(z − 1)3 c2 . (8.115)

It is instructive to compare this result with the analysis of [233] for line defects in N = 4
theories. In the N = 4 case, there is only one function and the solution could be fixed up
to an overall coefficient. Moreover, this coefficient is associated to a three-point function
of half-BPS operators and can be fixed using localization [288]. In our case of line defects
in N = 2 theories, we have two overall constants associated to each independent channel.
Unlike N = 4 SYM, which seems to be unique, we know that there is an extensive catalog
of N = 2 theories, and it is then no surprise that our solution has more freedom.

From the explicit solution for R(z), the anomalous dimensions can be read off from the
block expansion in (8.104a):

γ
[0,0]
∆ = ∆(∆ + 1)

3(∆− 1)(∆ + 2)c1 +
(∆− 2)(∆ + 3)

(
3∆(∆ + 1)− 4

)
12(∆− 1)(∆ + 2) c2 , (8.116)

γ
[1,0]
∆ = −(∆− 1)(∆ + 2)

9∆(∆ + 1) c1 +
(∆− 1)(∆ + 2)

(
9∆(∆ + 1) + 4

)
36∆(∆ + 1) c2 . (8.117)

From this expression is clear that they scale as ∆2 for large ∆.

8.6.3 Corrections to the OPE coefficients

With the explicit solution for R(z) at hand, we can proceed to compute Q(z), which will
allow us to extract the first-order correction to the OPE coefficients. The crossing equation

171



Chapter 8. Bootstrapping line defects in N = 2 theories

gives non-trivial constraints for both components of Q(z), namely

Q(z)− z2

(1− z)2Q(1− z) = 0. (8.118)

The equations coming from braiding will provide extra conditions, in particular if we insert
the ansatz (8.110) in (8.108b) and now extract the term with no logs, we get

(z − 1)4Q1

(
z

z − 1

)
− 2(2− z)z(z − 1)2Q0(z)− (z − 1)2Q1(z)

+z(z − 1)3R0(z) + z2
(
(z − 1)3Q′0(z) + z2R0(1− z)

)
= 0.

(8.119)

As before, the other braiding equations do not provide extra conditions. It only remains
to impose the boundary conditions for z ∼ 0 similarly to what we did for R(z). Our final
solution for Q(z) is given by

Q0(z) =
(
z2 − z + 1

)2
(z − 1)2 c2, (8.120)

Q1(z) = 2z2

3 c1 −
(
16z4 − 32z3 + 97z2 − 81z + 30

)
6(z − 1)2 c2. (8.121)

Having both R(z) and Q(z), we can now use the block expansion (8.104b) to extract
corrections to the OPE coefficients, similarly to what we did for the anomalous dimension.
It turns out that the corrections a(1)

∆ and b
(1)
∆ can be elegantly written in terms of the

derivatives of the anomalous dimensions times the zeroth-order values for a(0)
∆ and b

(0)
∆ :

a
(1)
∆ = ∂

∂∆(a(0)
∆ γ

[0,0]
∆ ) , b

(1)
∆ = ∂

∂∆(b(0)
∆ γ

[1,0]
∆ ) . (8.122)

Similar relations were originally observed in [359, 361]. It is not clear to us which of our
assumptions implies these relations, but in any case it is reassuring to see that they are
satisfied.

Let us finish with some comments. From the start we are assuming that the spectrum
of the perturbed solution is the same as the spectrum of the zeroth-order starting point. In
principle, there could be degenerate families that are lifted at first order. However, because
we are looking at a single correlator, possible degeneracies are invisible at this stage of the
calculation. The more correct way to interpret our results is as weighted averages [362,363].
In order to resolve possible degeneracies it is necessary to study a mixed correlator system.
For example, one could use the correlators involving long multiplets that we present in
appendix 8.B, although perhaps more general correlators are needed in which the external
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operators carry non-zero quantum numbers under su(2)j×su(2)R. We leave this interesting
problem for future work.

Let us also point out that this solution to crossing is interesting in its own right.
It would be ideal to compare our result with other approaches and explicit holographic
calculations in some selected N = 2 model, as it would allow us to understand the origin of
the coefficients c1 and c2. Finally, a similar calculation to ours was done in [157] using the
exact functional method, where possible deformations of a free theory were bootstrapped
by explicitly constructing the exact functionals that give the optimal bound. It would be
interesting to adapat the approach of [157] to our crossing constraints (8.81).

8.7 Conclusions

In this work we have initiated the bootstrap program for line defects in N = 2 theories.
We studied the 1d CFT that lives in a line defect using a collection of bootstrap techniques.
Our results are for the most part very general, as they rely on basic symmetry principles
and consistency requirements, and are therefore valid for standard Wilson and ’t Hooft lines
in gauge theories, but also for more exotic constructions like line defects in non-Lagrangian
models [364–366].

We concentrated mostly on correlators of the displacemente operator, but one can
also consider more general external multiplets and study a mixed correlator bootstrap.
Partial progress towards this goal is already presented in appendix 8.B, where conformal
blocks for correlators that include scalar long multiplets as external operators are shown.
The analysis of this paper shows that not only scalar long multiplets, but also multiplets
charged under transverse spin, are generated in the OPE of two displacements. Therefore,
it would be interesting to consider crossing involving long operators that sit in non-trivial
representations of the bosonic subalgebra.

As a longer term goal, one could include local operators outside the defect. This is
particularly interesting when considering that theories with the same local spectrum can
support different line defects [340]. Basic kinematics constraints on two-point functions
in the presence of an N = 2 line have not been calculated yet. A project for the not so
distant future would be to consider a mixed system between the bulk stress tensor and
the displacement operator, generalizing the analysis of [290] where the coupling between
the displacement and the stress tensor was studied. It would also be interesting to see
bootstrap constraints on possible line defects when assuming a given bulk CFT.
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Another interesting follow-up would be to perform holographic calculations in some
specific N = 2 model, in order to compare with our analytic correlator from section 8.6.
There seems to be no calculation of this sort in the N = 2 literature. In N = 4 SYM the
holographic calculation of [346] and the bootstrap analysis of [233] are in perfect agreement.
We are confident that there will be a similar match in the N = 2 case.

One more possible avenue is to push the analytic analysis to higher orders in the
perturbative expansion. This was done in [233] for N = 4, but in order to resolve the
important issue of degeneracies a bigger collection of correlators has to be considered. In
addition, one could also try to adapt the exact functional machinery developed in [155–157].
The systems studied in this work have interesting simplifying features, i.e. 1d CFTs with a
high amount of supersymmetry, and perhaps exact solutions to the crossing equations are
within reach.
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8.A Conventions

In this appendix, we define an index-free notation to contract the fermionic coordinates
θaA of our superspace. These objects have one transverse-spin and one R-symmetry index,
and since both groups are su(2), we will need to use the totally antisymmetric symbol

ε12 = −ε21 = −ε12 = ε21 = 1, ε12 = −ε21 = −ε12 = ε21 = 1. (8.123)

As usual, the conventions to raise or lower indices are as follows

θA,a = εabθ
b
A, θA,a = εABθaB, etc. (8.124)

There is only one meaningful way to contract two coordinates and form a scalar

θξ ≡ εabεABθaAξ
b
B. (8.125)
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Note that θξ = −ξθ and therefore θθ = 0. Given three coordinates θ, ξ and ζ, they can be
contracted as

(θξζ)aA = εbcε
BCθbAξ

a
Bζ

c
C. (8.126)

This contraction is interesting because it is inequivalent to contracting two coordinates as
in (8.125) and then multiplying by the third one. As a result, it does not vanish even if
two or three coordinates are the same: (θθθ)aA ≡ (θ3)aA 6= 0. Finally, given four Grassmann
variables there is one contraction such that it cannot be decomposed as a product of terms
of the form (8.125)

θξζη = εacεbdε
ABεCDθaAξ

b
Bζ

c
Cη

d
D. (8.127)

As before, this does not vanish even in the case of four identical coordinates θθθθ ≡ θ4 6= 0.
Note also that we could have defined it as θξζη ≡ θaA(ξζη)A

a .
When we classify all possible fermionic invariants, the following relations will be useful

θξθξ = ξθξθ,

θθξξ = ξξθθ,

θξξθ = ξθθξ = 1
2(θξθξ + θθξξ),

ξθθθ = θξθθ = θθξθ = θθθξ,

(8.128)

and also

(θξ)2 = 1
2(θξθξ − θθξξ), (θξ)3 = −2

3θ
3ξ3. (8.129)

8.B Long blocks

In this appendix, we compute superconformal blocks involving unprotected operators. We
start by obtaining the blocks of two displacements and two longs in the (12) → (34)
channel, and then proceed to compute the same blocks involving four long operators. In
order to study crossing for the full mixed system, one would still need to compute the
blocks 〈DDOO〉 in the (14) → (23) channel, but we expect this not to be hard using the
techniques presented in the paper.
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8.B.1 Two displacements and two longs

We will start by computing the superconformal blocks of two displacements D(z) with two
identical long scalar operators O(z) of dimension ∆O in the (12)→ (34) channel

〈D(z1)D(z2)O(z3)O(z4)〉 = 1
Z2

12Z
2∆O
34

∑
O′
λDDO′λOOO′ GO′(Ia). (8.130)

The steps of the calculation are analogous to section 8.4.1, with the exception that now the
shortening conditions are given by (8.60) only. Therefore, there are three free functions
f0(z), f1(z) and f9(z), and there must be an extra independent Casimir equation. As
before, we apply the Casimir operator C2

12 to the four-point function in the frame F1 to
simplify the computations. We get one of the original Casimir equations (8.67a), together
with two new constraints:

− z2[(z − 1)f ′′0 (z) + f ′0(z)
]
− 4zf1(z) = c f0(z), (8.131a)

+ 2304z3f9(z)− 16(2c + 3z − 10)f1(z) + 48(2− 3z)zf ′1(z)− 48(z − 1)z2f ′′1 (z)

+ 8
[
(z − 1)z + 6

]
f ′0(z) + 2

[
z(5z − 4)− 8

]
zf ′′0 (z)

− 2(z − 1)(z + 4)z2f
(3)
0 (z)− (z − 1)2z3f

(4)
0 (z) = 0,

(8.131b)

(c− 2)2cf0(z) + z2[3c2 + 2c(6z − 5) + 4z(9z − 8)
]
f ′0(z)

+ z2[3c2(z − 1) + 2c(z(21z − 23) + 5) + 4z(7z − 6)(9z − 4)
]
f ′′0 (z)

+ 2z3[6c(z − 1)(2z − 1) + z(z(165z − 284) + 138)− 16
]
f

(3)
0 (z)

+ (z − 1)z4[3c(z − 1) + 2z(69z − 79) + 38
]
f

(4)
0 (z)

+ 3(z − 1)2(7z − 4)z5f
(5)
0 (z) + (z − 1)3z6f

(6)
0 (z) = 0.

(8.131c)

As discussed in the main text, we need to first “change basis” from the functions fi(z)
to the Gi(z), and then make an ansatz as a sum of bosonic blocks in order to solve the
Casimir equations. We start by expanding the external fields in terms of their conformal
descendants, and we obtain the same expansion as in the right-hand side of (8.68). Even
though the operators at points z3 and z4 are longs, there are no new terms is the expansion
because we work in the frame F1, where θ3 = θ4 = 0, and therefore we can only get
contributions from the superconformal primary field A. As a result, the mapping (8.69) is
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still valid, and we find that the change of basis must be given by (8.70) together with

f9(z) = G0(z)
48z4 −

(
z2 + 6

)
G′0(z)

288z3 −
(
5z2 − 12

)
G′′0(z)

1152z2 + (z + 4)(z − 1)G(3)
0 (z)

1152z

+ (z − 1)2G
(4)
0 (z)

2304 − G1(z)
24z4 −

G′1(z)
144z2 −

(z − 1)G′′1(z)
144z2 + G2(z)

6z4 .

(8.132)

The final step is to insert the change of basis (8.70) and (8.132) in the Casimir equa-
tions (8.67) and (8.131a), and use the resulting equations to fix the coefficients that apear
in the ansatz (8.72). If we consider the block for an exchanged operator with quantum
numbers [∆, 0, 0], the solution to the equations is

a1 = 1
2a0 (∆− 2) ,

a2 = − 1
16a0 (∆− 3) (∆− 2) ,

e1 = −1
2e0 (∆ + 3) ,

e2 = − 1
16e0 (∆ + 3) (∆ + 4) ,

(8.133)

and bi = ci = di = 0. Note that one of the free parameters, say a0, can be fixed by choosing
an overall normalization of the conformal block, as we did in (8.73). However, the new
feature is that there is still a free parameter e0 that cannot be fixed by superconformal
symmetry.

As a consistency check, we can take the OPE coefficients and norms of section 8.4.2 to
rederive this result. The superblocks are given by

G0(z) = λAAAλ̃AAA
〈A|A〉

g0,0
∆ (z) + λAAGλ̃AAG

〈G|G〉
g0,0

∆+2(z),

G1(z) = λBBAλ̃AAA
〈A|A〉

g0,0
∆ (z) + λBBGλ̃AAG

〈G|G〉
g0,0

∆+2(z),

G2(z) = λCCAλ̃AAA
〈A|A〉

g0,0
∆ (z) + λCCGλ̃AAG

〈G|G〉
g0,0

∆+2(z),

(8.134)

As in section 8.4.2, λO1O2O3 denotes the OPE coefficient of two fields from the displacement
multiplet with one operator from a long scalar multiplet, namely O1, O2 ∈ D and O3 ∈
O′. However, now one needs to consider also λ̃O1O2O3 , where O1 and O2 are descendents
of the external long O, but O3 is a descendant of the exchanged long O′. To recover
equation (8.133) we fix

a0 = λAAAλ̃AAA
〈A|A〉

, e0 = λAAGλ̃AAG
〈G|G〉

. (8.135)

Then, for example, a1 = a0λBBA/λAAA, and using (8.78) we recover the blocks (8.133).
This works in an identical way for the other ai and ei.
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As in the case of four displacements, we can also have an exchange [∆, 1, 0], with
solution given by

c1 = −1
2c0, c2 = 1

48c0 (∆− 2) (∆ + 3) , (8.136)

where ai = bi = di = ei = 0 and we could fix the normalization of the block by c0 = 1.

8.B.2 Four longs

Finally, we compute the superconformal blocks that appear in the four-point function of
long scalar operators in the (12)→ (34) channel

〈O(z1)O(z2)O′(z3)O′(z4)〉 = 1

Z2∆O
12 Z

2∆′O
34

∑
O′′

λOOO′′λO′O′O′′ GO′′(Ia), (8.137)

where for simplicity we assume that ∆1 = ∆2 = ∆O and ∆3 = ∆4 = ∆′O. The steps in
the calculation are very similar to the other studied cases, but the equations soon become
quite long. For this reason, we will skip some intermediate results in our presentation,
but the interested reader can find the details in an attached Mathematica notebook. The
authors are also happy to provide further details on request.

First, we consider the four-point function of interest, which is given by (8.53), and act
on it with the Casimir operator C2

12. Since we do not impose any shortening conditions
to the four-point function, the full system of Casimir equations involves ten independent
functions f0(z), . . . , f9(z). The explicit differential equations, which are not particularly
illuminating, can be found in the attached notebook.

In order to solve these equations, we need to first “change basis” to functions Gi

that capture the contribution of the conformal descendants in our multiplets. In addi-
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tion to (8.69), we need to make the following identifications:

〈EAB
ab (x1)ECD

cd (x2)A(0)A(∞)〉 → εabεcd(εACεBD + εADεBC)
|x12|2∆O+2 G3(z),

〈A(x1)Gp(x2)A(0)A(∞)〉 → 1
|x12|2∆O+2 G4(z),

〈Gp(x1)A(x2)A(0)A(∞)〉 → 1
|x12|2∆O+2 G5(z),

〈BA
a (x1)F pB

b (x2)A(0)A(∞)〉 → εABεab
|x12|2∆O+2 G6(z),

〈F pA
a (x1)BB

b (x2)A(0)A(∞)〉 → εABεab
|x12|2∆O+2 G7(z),

〈F pA
a (x1)F pB

b (x2)A(0)A(∞)〉 → εABεab
|x12|2∆O+3 G8(z),

〈Gp(x1)Gp(x2)A(0)A(∞)〉 → 1
|x12|2∆O+4 G9(z).

(8.138)

Here one needs to be careful to map the Gi(z) with the true conformal descendants in the
O(z) superfield, namely one needs to use F p and Gp defined in (8.38). With the above
identifications, and following the obvious generalization of the steps in the main text, one
can find the explicit change of basis fi(z) → Gi(z). Again, this transformation is a bit
involved, and the interested reader can find it in the attached notebook.

Finally, we make an ansatz for the functions Gi(z) as a finite sum of sl(2;R) blocks, as
in equation (8.72). Unlike the cases described so far, some of the Gi represent four-point
functions of descendants where the operators at x1 and x2 have different dimensions. In
these cases, the sum of bosonic blocks must be given by the blocks (8.62) with ∆12 6= 0.
More specifically, we use the ansatz

Gi(z) = ai g
∆12,0
∆ (z) + bi g

∆12,0
∆+ 1

2
(z) + ci g

∆12,0
∆+1 (z) + di g

∆12,0
∆+ 3

2
(z) + ei g

∆12,0
∆+2 (z), (8.139)

where

∆12 =



−2 for G4(z)

+2 for G5(z)

−1 for G6(z)

+1 for G7(z)

0 otherwise

. (8.140)
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With these ingredients, one can fix the coefficients ai, . . . , ei by solving the Casimir
equations as we previously did. Before we present the solutions, let us make some com-
ments. First, compared to the cases studied before, there is a new solution corresponding
to an exchanged operator with quantum numbers [∆, 0, 1], namely without transverse spin
but with R-symmetry. Similarly to the discussion of the 〈DDOO〉 blocks, there are free
parameters left in the solution. Some of them can be fixed by choosing an appropriate
normalization, but superconformal symmetry is not powerful enough to fix the rest.

Scalar exchange For an exchanged operator with quantum numbers [∆, 0, 0], the Casimir
eigenvalue is c = ∆(∆ + 1) and the blocks are given by

a1 = 1
2a0 (∆− 2∆O) ,

a3 = − 1
16a0 (∆− 2∆O − 1) (∆− 2∆O)− a2,

a4 = +a5 = a0 (∆O + 2) (2∆O −∆) (−∆ + 2∆O + 1)
24 (2∆O + 1) + 2a2

3 ,

a6 = −a7 = a0 (∆O + 2) (2∆O −∆) (−∆ + 2∆O + 1)
6 (2∆O + 1) + 8a2

3 ,

a8 = a0 (2∆O −∆) (−∆ + 2∆O + 1) (−∆ + 2∆O + 2) (∆O + 2) 2

18 (2∆O + 1) 2

+ 8a2 (−∆ + 2∆O + 2)
3 (2∆O + 1) ,

a9 = a0 (2∆O −∆) (−∆ + 2∆O + 1) (−∆ + 2∆O + 2) (−∆ + 2∆O + 3) (∆O + 2) 2

576 (2∆O + 1) 2

+ a2 (−∆ + 2∆O + 2) (−∆ + 2∆O + 3)
12 (2∆O + 1) ,

(8.141)
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and

e1 = 1
2e0 (−∆− 2∆O − 1) ,

e3 = − 1
16e0 (∆ + 2∆O + 1) (∆ + 2∆O + 2)− e2,

e4 = +e5 = e0(∆ + 2)(∆ + 3) (∆O + 2) (∆ + 2∆O + 1) (∆ + 2∆O + 2)
24∆(∆ + 1) (2∆O + 1)

+ 2(∆ + 2)(∆ + 3)e2
3∆(∆ + 1) ,

e6 = −e7 = −e0(∆ + 2) (∆O + 2) (∆ + 2∆O + 1) (∆ + 2∆O + 2)
6(∆ + 1) (2∆O + 1) − 8(∆ + 2)e2

3(∆ + 1) ,

e8 = e0 (∆ + 2∆O + 1) (∆ + 2∆O + 2) (∆ + 2∆O + 3) (∆O + 2) 2

18 (2∆O + 1) 2

+ 8e2 (∆ + 2∆O + 3)
3 (2∆O + 1) ,

e9 = e0 (∆ + 2∆O + 1) (∆ + 2∆O + 2) (∆ + 2∆O + 3) (∆ + 2∆O + 4) (∆O + 2) 2

576 (2∆O + 1) 2

+ e2 (∆ + 2∆O + 3) (∆ + 2∆O + 4)
12 (2∆O + 1) ,

(8.142)

with all other coefficients vanishing: bi = ci = di = 0.
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Transverse-spin charged exchange For an exchanged operator with quantum num-
bers [∆, 1, 0], the Casimir eigenvalue is c = ∆(∆ + 1) + 2 and the blocks are given by

c1 = 1
2c0 (1− 2∆O) ,

c2 = 1
48c0

(
∆(∆ + 1)− 6∆O(∆O + 1) + 6

)
,

c3 = −1
8c0 (∆O − 1) 2,

c4 = +c5 = −c0(∆ + 1)(∆ + 2) (∆O − 1)
24 (2∆O + 1) ,

c6 = −c7 = −c0(∆ + 1) (∆O − 1)
3 (2∆O + 1) ,

c8 = c0 (∆O − 1) 2 (2∆O + 3) (2∆O −∆ + 1) (2∆O + ∆ + 2)
18 (2∆O + 1) 2 ,

c9 = c0 (∆O − 1) 2 (2∆O −∆ + 1) (2∆O −∆ + 2) (2∆O + ∆ + 2) (2∆O + ∆ + 3)
576 (2∆O + 1) 2 ,

(8.143)

with all other coefficients vanishing: ai = bi = di = ei = 0.

R-symmetry charged exchange Finally, when the exchanged operator has quantum
numbers [∆, 0, 1], the Casimir eigenvalue is c = ∆(∆ + 1)− 4 and the solution is

c1 = −c0 (∆O + 1) ,

c2 = −1
8c0 (∆O + 2) 2,

c3 = 1
48c0

(
∆(∆ + 1)− 6∆O(∆O + 1)

)
,

c4 = c5 = c0(∆ + 1)(∆ + 2) (∆O + 2)
24 (2∆O + 1) ,

c6 = −c7 = −c0(∆ + 1) (∆O + 2)
6 (2∆O + 1) ,

c8 = c0∆O (∆O + 2) 2 (2∆O −∆ + 1) (2∆O + ∆ + 2)
9 (2∆O + 1) 2 ,

c9 = c0 (∆O + 2) 2 (2∆O −∆ + 1) (2∆O −∆ + 2) (2∆O + ∆ + 2) (2∆O + ∆ + 3)
576 (2∆O + 1) 2 ,

(8.144)

with ai = bi = di = ei = 0.
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Chapter 9

Superconformal boundaries in 4− ε
dimensions

Abstract

Boundaries in three-dimensional N = 2 superconformal theories may preserve one half
of the original bulk supersymmetry. There are two possibilities which are characterized
by the chirality of the leftover supercharges. Depending on the choice, the remaining 2d
boundary algebra exhibits N = (0, 2) or N = (1, 1) supersymmetry. In this work we focus
on correlation functions of chiral fields for both types of supersymmetric boundaries. We
study a host of correlators using superspace techniques and calculate superconformal blocks
for two- and three-point functions. For N = (1, 1) supersymmetry, some of our results can
be analytically continued in the spacetime dimension while keeping the codimension fixed.
This opens the door for a bootstrap analysis of the ε-expansion in supersymmetric BCFTs.
Armed with our analytically-continued superblocks, we prove that in the free theory limit
two-point functions of chiral (and antichiral) fields are unique. The first order correction,
which already describes interactions, is universal up to two free parameters. As a check
of our analysis, we study the Wess-Zumino model with a supersymmetric boundary using
Feynman diagrams, and find perfect agreement between the perturbative and bootstrap
results.
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9.1 Introduction

Conformal field theories with boundaries have a wide variety of applications that range from
condensed matter to string theory. In recent years the conformal bootstrap has emerged as
a powerful tool to study CFTs and has also been applied to boundary conformal theories
(BCFTs). The numerical bootstrap for BCFTs was originally implemented in [45, 269],
while analytical approaches, which include the ε-expansion bootstrap [269, 272], and the
construction of exact linear functionals [273,274], have also been explored. A closely related
line of research is to study the dynamics of free bulk theories with non-trival dynamics
localized in the boundary [276,278,279,295,367,368].

In this work we study supersymmetric boundaries for three-dimensional models with
N = 2 supersymmetry, a setup that has received particular attention in the context of
infrared dualities [369–372], and localization [373, 374]. There are two ways in which su-
persymmetry can be preserved when a boundary is introduced: one choice preserves su-
percharges of the same chirality which define a 2d N = (0, 2) subalgebra, while the other
choice is non-chiral and describes a 2d N = (1, 1) subalgebra. We will study the kinemat-
ical constraints on correlators for both choices, with a particular emphasis on two-point
functions. As is well known, in the presence of a boundary two-point correlators are not
fixed by symmetry, but depend on a conformal invariant. They contain non-trivial dynam-
ics akin to four-point functions in homogeneous CFTs, which is captured by the existence
of two inequivalent conformal block expansions. One possibility is to fuse the two local
operators together and calculate the resulting one-point functions in the presence of the
boundary. Another option is to expand a local operator as an infinite sum of boundary
excitations, and calculate the resulting two-point functions on the boundary. Consistency
between the two decompositions is the starting point of the bootstrap program for BCFT.

Our main focus will be chiral fields, which are short operators of the bulk superconfor-
mal algebra killed by half of the supercharges, and whose conformal dimension is fixed by
the R-symmetry. As usual in the bootstrap, it is essential to calculate the relevant super-
conformal blocks. Bosonic blocks for BCFT two-point functions have been known for a long
time [268], however less work has been done on supersymmetric models, the sole exception
being boundaries in N = 4 SYM [285]. Attempts to formalize the study of superconfor-
mal blocks include analytic superspace [336] and the connection to Calogero-Sutherland
models [240, 241]. Here we start our analysis using standard superspace techniques, and
calculate superblocks using the Casimir approach [31]. The superspace analysis will be uni-
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form for the N = (0, 2) and N = (1, 1) subalgebras, but it turns out that the N = (1, 1)
blocks have the interesting property that they can be analytically continued across dimen-
sions. In more detail, there is a unique half-BPS boundary in 4d N = 1 which is non-chiral,
and that can be interpolated to the N = (1, 1) boundary in 3d. This is the BCFT counter-
part of the results obtained in [193], where the bulk superconformal blocks were continued
in d. Even though conformal symmetry is subtle in non-integer dimensions,1 conformal
blocks are usually analytic in all their quantum numbers.2

Armed with the analytic continuation we tackle the ε-expansion for models that satisfy
our constraints. Using minimal assumptions, we prove that two-point functions of free
chiral and antichiral fields are completely fixed. At leading order in ε, which already cor-
responds to an interacting fixed point, we prove that the two-point functions are universal
up to two free parameters: the anomalous dimension of the lowest-lying bulk field, and the
anomalous dimension of the lowest-lying boundary field. The solution is non-trivial and
contains an infinite number of conformal blocks, and therefore can be used to extract an
infinite amount of CFT data.

As a check of our general order ε result, we concentrate on the Wess-Zumino model
with cubic superpotential, which is a prime example of a critical system that preserves four
supercharges. Using the results of [376], we construct an explicit Lagrangian model with
boundary degrees of freedom that exhibits all the symmetries of our setup. We use this
model to perform a Feynman diagram calculation at one-loop order, and confirm that the
perturbative result is in perfect agreement with our bootstrap prediction.

The outline of the paper is as follows. In section 9.2 we summarize the differences
between the N = (0, 2) and N = (1, 1) boundaries and introduce the crossing equations
for BCFT. In section 9.3 we carry out a detailed study of correlation functions and super-
conformal blocks of these 3d models. In section 9.4 we rederive the superconformal blocks
with a new method that is applicable to any 3 ≤ d ≤ 4, and use them to bootstrap two-
point functions of chiral operators in the ε expansion. Finally, in section 9.5 we compute
the same two-point functions for the Wess-Zumino model using Feynman diagrams. We
conclude with some possible future directions in section 9.6 and we relegate some technical
details to the appendices.

1See [129] for discussions on non-integer d and [375] for non-integer N (in the context of O(N) models).
2In the case of the defects both dimension and codimension appear as parameters in the blocks [259,264].
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9.2 Preliminaries

In this preliminary section we introduce the symmetry algebra in the bulk, and the two
possible half-BPS subalgebras preserved by a supersymmetric boundary. We also introduce
chiral fields and review the standard bootstrap equations for two-point functions in BCFT.

9.2.1 Superconformal boundaries in 3d

There are two inequivalent half-BPS boundaries that one can consider in 3d N = 2 super-
conformal theories, which are commonly denoted as N = (0, 2) and N = (1, 1) boundaries
(see [369–374, 377] for related work). The cleanest way to understand their differences is
at the level of the commutation relations of their algebras.

Let us start by reminding the reader about the main features of 3d N = 2 supercon-
formal symmetry. Besides the conformal generators D,Pµ,Kµ,Mµν , the superconformal
algebra has four Poincaré supercharges Qα, Q̄α, and four superconformal partners Sα, S̄α.
There is an extra U(1) symmetry generated by R under which Qa,Sa have charge −1,
and Q̄a, S̄a have charge +1. The precise commutation relations with a summary of our
conventions are presented in appendix 9.A. The representation theory of 3d N = 2 is well
known and can be found for example in [182].

When we restrict ourselves to three dimensions, we take the superconformal boundary
to be located at x2 ≡ x⊥ = 0. It is clear that the bosonic subalgebra is generated by Pa,
Ka,Mab, and D, where a = 0, 1 runs over directions parallel to the boundary. We are now
ready to introduce the two inequivalent boundary-preserving superalgebras, which differ
only by the choice of fermionic generators.

The N = (0, 2) boundary: The first possibility is to choose the following fermionic gen-
erators: Q2, Q̄2, S2, S̄2. The precise commutation relations can be obtained by restricting
the full superconformal algebra presented in appendix 9.A.2. The following ones are of
particular importance:

{Q2, Q̄2} = −2(P0 + P1),

{Q2, S̄2} = −2iD + 2R+ 2iM01,

{Q̄2,S2} = −2iD − 2R+ 2iM01.

(9.1)

From the first equation, we notice that P2 does not appear on the right-hand side. This was
to be expected, since translations in the x2 = x⊥ direction are not preserved. Regarding
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the second and third equations, it is crucial to notice the appearence of R. Physically,
it means that the N = (0, 2) boundary preserves R-symmetry, a property that strongly
constrains which correlation functions are non-vanishing. For example, we will often be
concerned with bulk operators Or with charge r. From the above discussion, it follows that
one-point functions 〈Or〉 = 0 unless r = 0, and similarly two-point functions 〈Or1Or2〉 = 0
unless r1 + r2 = 0.

The N = (1, 1) boundary: The second possibility is to choose the following fermionic
generators:

Q̃1 ≡
1√
2

(
Q1 + Q̄1

)
, Q̃2 ≡

i√
2

(
Q2 − Q̄2

)
,

S̃1 ≡ 1√
2

(
S1 + S̄1

)
, S̃2 ≡ i√

2

(
S2 − S̄2

)
.

(9.2)

Once again, the full set of commutation relations can be obtained from the formulas in
appendix 9.A.2. The non-vanishing anticommutators are

{Q̃α, Q̃β} = 2(γa)αβPa ,

{Q̃1, S̃1} = −2i(D +M01) ,

{Q̃2, S̃2} = −2i(D −M01) .

(9.3)

As before, P2 is not part of the algebra since a = 0, 1. Interestingly, the second anticom-
mutator does not contain R, since R-symmetry is broken by the N = (1, 1) boundary.
In this case, charged bulk operators can have one- and two-point functions that would
be forbidden by charge conservation, namely 〈Or〉 6= 0 6= 〈Or1Or2〉 for any values of the
charges.

9.2.2 Chiral primaries in superconformal theories

As announced before, we will mostly focus on chiral primary operators φ and their complex
conjugates. Often, we will call these operators “chirals” and “antichirals” for simplicity.
These are short multiplets of the superconformal algebra killed by half of the supercharges:

[Q̄α, φ(0)] = 0 , [Qα, φ̄(0)] = 0 , (9.4)

and whose conformal dimension and R-charge are related to each other. For general space-
time dimension one obtains

∆φ = d− 1
2 rφ , ∆φ̄ = −d− 1

2 rφ̄ . (9.5)
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There is a consistent way to define chiral multiplets in any, in principle continuous, number
of dimensions, a fact that will play a significant role in section 9.4.

Chiral operators are ubiquitous in the study of SCFTs and they are present in most
known models. A textbook example of a 4d Lagrangian with N = 1 supersymmetry is to
consider chiral fields in superspace with some non-linear interaction. We will consider a
simple example of this in section 9.5, where we study the Wess-Zumino model, i.e. a single
chiral multiplet with a cubic superpotential. This model flows to an interacting fixed point,
which can be described perturbatively in the ε-expansion using weakly-coupled chiral fields.
It turns out that the ε-expansion can be generalized to include boundaries, a fact that we
will explore using the bootstrap results obtained in this work.

An important property of chiral operators is that they often satisfy non-trivial chiral-
ring relations. These relations are dynamic and imply that certain chiral operators might
disappear from an OPE, for example φ3 /∈ φ1 × φ2, even if this is not forbidden by su-
perconformal symmetry. The Wess-Zumino model in 3d is a simple SCFT with chiral-
ring relations. The chiral ring of this model is generated by φ together with the relation
φ2 /∈ φ× φ. In the numerical bootstrap analysis of [193, 378], the chiral-ring relation pro-
vided strong evidence that a kink in the numerical plots described the Wess-Zumino model.
In section 9.5.3 we will notice that our perturbative results are also consistent with the
same chiral-ring relation. More complicated examples of chiral-ring relations can be found
in [205] where the authors studied numerically a 3d conformal manifold parametrized by
the complex gauge coupling τ . Chiral-ring relations of bulk operators could also be used
to extract information of a theory living on the boundary, similar in spirit to the work
of [294,295].3

In this work we will not explore all these questions yet, but they motivated us to study
this setup. Here we will work out basic kinematical constraints and use the bootstrap to
study the dynamics of a single chiral field. Possible future directions and applications of
our results will be discussed in the conclusions. Before we jump to the main analysis, let
us first review the bootstrap approach for BCFT, which will be one of our main tools.

9.2.3 Crossing symmetry in BCFT

In this section we will review crossing symmetry for generic, non-supersymmetric boundary
CFTs. There are two relevant symmetry algebras to study BCFT. The first one contains

3We thank Edo Lauria for discussions on this idea.
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the d-dimensional conformal group, and it describes physics far away from the boundary.
In particular, bulk local operators O(x) transform in irreducible representations of this
algebra, and are labeled by a conformal dimension ∆ and spin `. There can also be
physical excitations localized on the boundary, which are represented by local operators
Ô(xa, x⊥ = 0). These boundary operators transform as irreducible representations of the
symmetry algebra that preserves the boundary, namely they have conformal dimension ∆̂
and d− 1 dimensional spin j.

Correlation functions can be constructed with arbitrary combinations of bulk and
boundary operators. As usual, conformal symmetry puts strong constraints on the form of
these correlation functions. For example, the one-point function and the bulk-to-boundary
correlator of a bulk scalar are fixed up to a constant [268]

〈O(x)〉 = aO
(2x⊥)∆ , 〈O(x1)Ô(xa2)〉 =

bOÔ

(2x⊥1 )∆−∆̂ ((xa12)2 + (x⊥1 )2)∆̂ . (9.6)

For more general correlation functions the situation is more involved, because they can
depend on conformal invariants. For example, a two-point function of bulk scalars depends
on an arbitrary function of the invariant ξ:

〈O1(x1)O2(x2)〉 = F(ξ)
(2x⊥1 )∆1(2x⊥2 )∆2

, ξ = (x1 − x2)2

4x⊥1 x⊥2
. (9.7)

Knowledge of F(ξ) is equivalent to knowing the full two-point correlator. The function
F(ξ) is far from arbitrary; it is heavily constrained by crossing symmetry and it is the
main subject of study in the bootstrap program for BCFT.

The main ingredient to derive the crossing equation is the operator product expansion
(OPE). It is well known that one can rewrite a product of two bulk local operators as an
infinite sum of individual bulk local operators using the standard OPE. In the presence of
a boundary there is a second possible expansion, the boundary operator expansion (BOE),
in which one bulk local operator is replaced by a sum of operators that are localized in the
boundary. In terms of equations, these two OPEs are

O1(x)O2(0) = 1
x2∆ +

∑
O
λO1O2OC[x, ∂x]O(0) ,

O(x) = aO
(2x⊥)∆ +

∑
Ô

bOÔD[x⊥, ∂a]Ô(xa) .
(9.8)

The sums run only over conformal primaries, and the contributions of the descendants are
captured by the differential operators C and D which are completely fixed by conformal
symmetry.
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The power of the OPE is that it allows us to evaluate higher-point functions using
lower-point correlators, provided we know the spectrum of the theory and all the OPE
coefficients a, b and λ. In the example of a bulk two-point function, there are two different
decompositions possible:

F(ξ) =
∑
O
aOλO1O2Of∆(ξ) =

∑
Ô

bO1ÔbO2Ôf̂∆̂(ξ) . (9.9)

The objects f∆(ξ) and f̂∆̂(ξ) are called conformal blocks, which we review in appendix 9.B.
Equation (9.9) is called the “crossing equation”, and it provides non-trivial constraints on
the spectrum and CFT data of boundary conformal field theories.

The above discussion was completely general, and it applies to any conformal field
theory with a conformal boundary. The main goal of the present paper is to specialize it to
superconformal boundaries, in which case the crossing equation (9.9) can be constrained
even further. The reason is that supersymmetry relates the OPE coefficients of different
conformal primaries that belong to the same supermultiplet, which means that we can
organize the expansion in terms of superconformal blocks F∆(ξ) and F̂∆̂(ξ). These new
objects are linear combinations of the bosonic blocks f∆(ξ) and f̂∆̂(ξ) with coefficients fixed
by supersymmetry. In sections 9.3 and 9.4 we will compute these objects in d = 3 and in
3 ≤ d ≤ 4 respectively, which will allow us to study the bootstrap equations analytically
in section 9.4.4.

9.3 Boundaries in three dimensions

9.3.1 Superspace analysis

Let us start by studying correlators for both types of boundary conditions using superspace
techniques. We introduce a standard Minkowski superspace in which each supercharge
Qα, Q̄α, where α = (1, 2) = (−,+), has a Grassmann variable θα, θ̄α associated to it.
This setup is enough for our purposes, because we will mostly study correlators of scalar
operators in a system with minimal supersymmetry.4 Our superspace then consists of three
spacetime coordinates xµ and four Grassmann coordinates θα and θ̄α which we collect as
follows:

z = (xµ, θα, θ̄α) , (9.10)
4See [270,271] for studies of non-supersymmetric two-point functions of arbitrary spin.
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where µ = 0, 1, 2. We can convert spinor indices α, β into vector indices µ, ν by means of
the gamma matrices (γµ)αβ. The form of these matrices, together with further conventions
regarding raising, lowering and contracting indices, can be found in appendix 9.A.1.

The differential form of the (super)translations acting on fields O(z) is standard

[Pµ,O(z)] = i∂µO(z) , (9.11)

[Qα,O(z)] =
(
∂α + i(γµ)αβ θ̄β∂µ

)
O(z) , (9.12)[

Q̄α,O(z)
]

= −
(
∂̄α + i(γµ)αβθβ∂µ

)
O(z) . (9.13)

From the bulk algebra it is easy to derive the form of all the other differential operators,
which we list in appendix 9.A.3. The action of the covariant derivatives is also standard

DαO(z) =
(
∂α − i(γµ)αβ θ̄β∂µ

)
O(z) , D̄αO(z) = −

(
∂̄α − i(γµ)αβθβ∂µ

)
O(z) , (9.14)

and as usual, they anticommute with the action of supertranslations. The main focus
of this paper is on chiral and antichiral operators (see section 9.2), which are defined in
superspace as

D̄αΦ(z) = 0 , DαΦ̄(z) = 0 . (9.15)

In order to work with chiral operators it is useful to work with chiral/antichiral coordinates
defined as

yµ = xµ − iγµαβθ
αθ̄β, ȳµ = xµ + iγµαβθ

αθ̄β. (9.16)

In terms of these coordinates, a chiral field depends only on Φ(y, θ) and similarly for
the antichiral field Φ̄(ȳ, θ̄). If we consider two points, we can also define supersymmetric
invariant distances with well-defined chirality:5

yµ12 = xµ12 − i(γµ)αβ
(
θα1 θ̄

β
1 + θα2 θ̄

β
2 − 2θα1 θ̄

β
2

)
, (9.17)

ȳµ12 = xµ12 + i(γµ)αβ
(
θα1 θ̄

β
1 + θα2 θ̄

β
2 + 2θ̄α1 θ

β
2

)
. (9.18)

These distances are chiral at one point and antichiral at the other, namely

D̄(1)
α yµ12 = D(2)

α yµ12 = 0 , D(1)
α ȳµ12 = D̄(2)

α ȳµ12 = 0 . (9.19)
5Note that yµ12 6= yµ1 − y

µ
2 , we hope the notation will not create confusion.
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Introducing a boundary will generally break supersymmetry in the bulk. In this paper
we study a special class of boundaries that preserve one half of the supersymmetry. As
already discussed, they are characterized by 2d algebras with N = (0, 2) and N = (1, 1)
supersymmetry respectively. The two boundaries have distinct features that we discuss in
detail below, the most prominent being that the N = (1, 1) boundary breaks R-symmetry,
while it is kept intact in the N = (0, 2) case.

9.3.2 The N = (0, 2) boundary

The N = (0, 2) boundary preserves the supercharges Q+, Q̄+, resulting in the algebra given
in (9.1). The bulk superspace can be split into coordinates parallel and perpendicular to
the boundary. The parallel coordinates are(

θ+, θ̄+, xa
)
, a = 0, 1, (9.20)

while the perpendicular coordinates read

(
θ−, θ̄−, x⊥ ≡ x2). (9.21)

As was the case for the bulk theory, it is convenient to define supersymmetric, chiral, and
antichiral perpendicular distances. The supersymmetric distance is

z⊥ = x⊥ − iθαθ̄α (9.22)

and the chiral y⊥ ≡ y2 and antichiral ȳ⊥ ≡ ȳ2 perpendicular distances can be read off
from (9.16). Note that z⊥ is invariant under the boundary (super)translations Pa,Q+ and
Q̄+, while y⊥ and ȳ⊥ are not. The component expansion of a chiral field Φ takes the
familiar form

Φ(y, θ) = φ(y) + θ+ψ+(y) + θ−ψ−(y) + θ+θ−F (y) , (9.23)

where φ is a complex boson, ψα a complex fermion, and F a complex auxiliary field.
It will be convenient to decompose this bulk chiral supermultiplet Φ in terms boundary
supermultiplets, that transform irreducibly under the (0, 2) subalgebra [372,377]

Φ = Φ̂ + θ−Ψ̂ + . . . , (9.24)

where Φ̂ is a boundary chiral field, Ψ̂ a boundary Fermi field, and the . . . stand for deriva-
tives of Φ̂ parallel to the boundary. A similar expansion can be written for the antichiral
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bulk supermultiplet Φ̄. From now on, we will denote boundary multiplets and boundary
fields with a hat. One can straightforwardly derive a similar expansion for Φ̂ and Ψ̂:

Φ̂ = Φ
∣∣∣
θ−=θ̄−=0

= φ+ θ+ψ+ + . . . , (9.25)

Ψ̂ = D−Φ
∣∣∣
θ−=θ̄−=0

= ψ− + θ+F + . . . , (9.26)

where F ∼ ∂⊥φ on-shell and the . . . stand for terms with derivatives. The usual Neumann
and Dirichlet boundary conditions can be neatly represented in terms of these superfields:

Neumann: ∂⊥φ
∣∣∣
∂

= 0, ψ−
∣∣∣
∂

= 0 → Ψ̂|∂ = 0, (9.27)

Dirichlet: φ
∣∣∣
∂

= 0, ψ+
∣∣∣
∂

= 0 → Φ̂|∂ = 0. (9.28)

One-point functions

As reviewed in section 9.2, scalar bulk operators can acquire a one-point function in the
presence of a boundary. In the superspace setup we are considering, we expect on general
grounds one-point functions of the form

〈O(z)〉 = aO
(z⊥)∆ , (9.29)

where z⊥ is given in (9.22). For chiral fields, the chirality condition (9.15) and conservation
of R-symmetry imply that the one-point function vanishes: aΦ = 0.

Bulk-to-boundary correlator

Similarly to the one-point function, we expect bulk-to-boundary correlators to be of the
form

〈O(z1)Ô(z2)〉 = 1
(z⊥1 )∆−∆̂|y2

12 ȳ
2
12|∆̂/2

g(Θi) , (9.30)

where g is a function of possible nilpotent invariants Θi.
Again, the chirality condition (9.15) is extremely powerful and severely constrains the

possible defect operators that can appear in the boundary OPE of a chiral field. From the
expansion in (9.24) we expect two types of boundary multiplets, and indeed there are two
possible correlators consistent with all the symmetry constraints. One choice involves a
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scalar boundary multiplet6

〈Φ(y, θ) ˆ̄Φr(0)〉 =
bΦˆ̄Φ
|yµ|2∆ , (9.31)

where |yµ| is the norm of the chiral distance (9.16), and the conformal dimensions are
constrained by conservation of R-symmetry ∆̂ = ∆φ = rφ = rφ̂.

The other bulk-to-boundary two-point function involves the Fermi multiplet ˆ̄Ψ whose
highest weight carries spin:

〈Φ(y, θ) ˆ̄Ψ(0)〉 =
bΦ ˆ̄Ψγ

µ
1βyµθ

β

(y⊥)∆−∆̂+ 1
2 |yµ|2(∆̂+ 1

2 )
. (9.32)

Charge conservation implies rψ = 1− rφ but ∆̂ is not constrained to take a specific value,
which means these multiplets are responsible for most of the operators that appear in the
boundary block expansion of the two-point function of chiral fields. The power ∆̂ + 1

2
indicates that the contributing field is not the primary, but a descendant (see equation
(9.45) below).

Two-point functions

As reviewed in section 9.2, bosonic two-point functions depend on a conformal invariant
and therefore contain a large amount of dynamical information through their conformal
block decompositions. As evident from our analysis so far, correlators of chiral fields are
severely constrained by superconformal symmetry and their chirality condition. There is
actually only one possible two-point invariant that satisfies all the superspace constraints:

ξ = y2
12

4y⊥1 ȳ⊥2

(
1 + 2i(y

0
12 + y1

12)θ−1 θ̄
−
2

y⊥1 ȳ
⊥
2

+ 2iθ
+
1 θ̄
−
2

ȳ⊥2

)
. (9.33)

This is the unique “supersymmetrization” of the standard bosonic invariant. The most
general two-point function of a chiral and an antichiral field then reads

〈Φ(y1, θ1)Φ̄(0, ȳ⊥2 , θ̄−2 )〉 =
(
ξ

y2
12

)∆
F(ξ) , (9.34)

where F is an abitrary function of the superconformal invariant ξ. In equations (9.33)
and (9.34) we work in a frame where ȳa2 = θ̄+

2 = 0, (a = 0, 1), but we keep the dependence
6Whenever possible we supertranslate point 2 to the origin to simplify our formulas, but if necessary

one can easily supertranslate back to a general frame.
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on ȳ⊥2 and θ̄−2 , since they are perpendicular coordinates and cannot be set to zero. Using
a supertranslation one can find the two-point function in a frame with completely general
z1 and z2, as will be needed below. Two-point functions of two chiral (or two antichiral)
fields are zero due to R-symmetry. For more general external operators, for example
long multiplets of the superconformal algebra, we expect a more complicated correlator
involving nilpotent invariants, which then translates into superconformal blocks that have
free parameters (see for example [228]). We will not consider more general correlators in
this work, however our superspace setup could be used to study them in the future.

Superconformal blocks

We are now ready to obtain one of the main results of this section: the superconformal
blocks associated to the two-point correlator F(ξ). As reviewed in section 9.2, there are
two conformal block expansions associated to the bulk and defect channel respectively.
Bulk conformal blocks are eigenfunctions of the two-point bulk Casimir operator, while
defect blocks are eigenfunctions of the defect Casimir.

Bulk channel: Let us start with the bulk channel,

C(12)
susy〈Φ(z1)Φ̄(z2)〉 = C∆,`,r〈Φ(z1)Φ̄(z2)〉 , (9.35)

where the supersymmetric bulk Casimir is given by

C(12)
susy = −D2 − 1

2{K
µ,Pµ}+ 1

2M
µνMµν −

1
2R

2 + 1
4[Sα, Q̄α] + 1

4[S̄α,Qα] . (9.36)

The superscript (12) indicates that the operator acts on points z1 and z2. To avoid clut-
tering we wrote the superscript only on the Casimir, and omit it from the operators on the
RHS. The eigenvalue reads

C∆,`,r = ∆(∆− 1) + `(`+ 1)− r2

2 . (9.37)

Evaluating (9.35) leads to a differential equation for the corresponding block F∆(ξ). Our
analysis implies the absence of nilpotent invariants when chiral fields are involved. This
means that full superspace correlators can be reconstructed from those of the superpri-
maries and implies that a multiplet contributes only if its superprimary contributes. Be-
cause only scalars can acquire a one-point function in BCFT, we can safely set ` = 0
when looking for solutions to the Casimir equation. A standard approach to solve these
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equations is to recognize that superconformal blocks can be written as linear combinations
of bosonic blocks. The superdescendants of a field O(z) can be generated by acting on
the superprimary O(z) with the supercharges Q, Q̄. This creates superdescendants of the
schematic form Q1 . . . Q̄nO(z).7 We therefore make the following ansatz

F∆(ξ) = f∆(ξ) + c0f∆+ 1
2

+ c1f∆+1(ξ) + c2f∆+ 3
2
(ξ) + c3f∆+2(ξ) , (9.38)

where f∆(ξ) are the bosonic blocks given in (9.175), and we fix the relative coefficients
using (9.35). The solution is easy to find

F∆(ξ) = f∆(ξ)− (∆− 1)∆
(2∆− 1)(2∆ + 1)f∆+2(ξ) , (9.39)

which corresponds to a long operator being exchanged in the φ × φ̄ OPE. There are also
contributions from short multiplets, but they can be obtained from (9.39) evaluating ∆ at
the unitarity bound. The selection rules of this OPE have been studied in the context of
bulk four-point functions [193] and our results are in perfect agreement with the literature.
The block in equation (9.39) can be written as a single hypergeometric funtion

F∆(ξ) = ξ∆/2
2F1

(
1 + ∆

2 ,
∆
2 ; ∆ + 1

2;−ξ
)
. (9.40)

We will see that all of the two-point blocks derived in this section have this feature.

Boundary channel: In the boundary channel the blocks are eigenfunctions of the bound-
ary Casimir

Ĉsusy = −D2 − 1
2 {K

a,Pa}+ 1
2M

abMab −
1
2R

2 + 1
4
(
[S̄+,Q+] + [S+, Q̄+]

)
, (9.41)

where now the operator acts at a single point:

Ĉ(1)
susy〈Φ(z1)Φ̄(z2)〉 = Ĉ∆̂,j,r〈Φ(z1)Φ̄(z2)〉 . (9.42)

The eigenvalue depends on the conformal dimension ∆̂ of the exchanged boundary operator,
as well as its parallel spin j and its R-charge:

Ĉ∆̂,j,r = ∆̂(∆̂− 1) + j(j − 1)− r2

2 . (9.43)

7In order to obtain proper conformal primaries (killed by K) the action of the Qi has to be corrected by
terms containing the momentum generator P.
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Proceeding as before we make an ansatz for F̂∆̂ in terms of bosonic blocks and fix the
relative coefficients using (9.42). Note that we only have to include conformal blocks up to
dimension ∆̂ + 1 in our ansatz, since the boundary only preserves half of the supercharges.
From section 9.3.2 we know there are two types of boundary multiplets that can appear
in the boundary expansion of a chiral field: a scalar Φ̂ and the Fermi multiplet Ψ̂. We
therefore expect two classes of solutions to the Casimir equation. Indeed, the solution
corresponding to a chiral primary with r = rφ, j = 0 and ∆̂ = ∆φ = rφ, is given by

F̂ Φ̂
∆̂(ξ) = f̂∆φ

(ξ) . (9.44)

The second solution, with r = rφ − 1, j = 1
2 corresponds to the Fermi field

F̂ Ψ̂
∆̂ (ξ) = f̂∆̂+ 1

2
(ξ) . (9.45)

Notice that the 1
2 in the argument indicates that the highest weight does not contribute,

but a descendant (as expected).

Three-point functions

Although not our main topic, let us also analyze three-point correlators involving one bulk
field and two boundary fields. An interesting application for these correlators is to impose
that the bulk field is free, and to study the corresponding constraints on the boundary
three-point couplings [294, 295]. For the rest of this section we will choose a frame where
xa2 = θ+

2 = θ̄+
2 = θ+

3 = θ̄+
3 = 0, xa3 →∞. By imposing that the bulk field is chiral we obtain

〈Φ(y, θ)Ô2,j(0, ω)Ô3(∞)〉 = (yaωa)j

(y⊥)∆+∆̂23 |ya|j
F3pt(χ) . (9.46)

The second operator has arbitrary parallel spin j, and we use an index-free notation where
Ô2,j(z, ω) = Ô2,j(z)a1...ajωa1 . . . ωaj and ωa is a null vector in the parallel directions. For
brevity we define ∆̂23 ≡ ∆̂2 − ∆̂3, and ya is defined in (9.16), where one should remember
that a = 0, 1 are the parallel coordinates. Conservation of R-symmetry implies rφ+r2+r3 =
0. The function F3pt(χ) depends on the superconformal three-point invariant χ. Like in
the two-point function case, there is a unique, non-nilpotent, three-point invariant:

χ = |ya|2

(y⊥)2 . (9.47)

The function F3pt(χ) can be expanded in three-point superconformal blocks which are in
turn sums of three-point bosonic blocks (reviewed in appendix 9.B.2). Notice that there is
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no crossing equation for this correlator. We can act with the boundary Casimir on point
z1 and obtain the eigenvalue equation

Ĉ(1)
susy〈Φ(y, θ)Ô2,j(0, ω)Ô3(∞)〉 = Ĉ∆̂,j,r〈Φ(y, θ)Ô2,j(0, ω)Ô3(∞)〉 . (9.48)

By now the story is familiar; we give an ansatz in terms of bosonic blocks and obtain a
solution with r = rφ, jchiral = 0, ∆̂ = ∆φ = rφ :

F̂ 3pt
∆φ

(χ) = f̂3pt,∆̂23
∆φ,j

(χ) , (9.49)

which describes the exchange of a boundary chiral field. The other possible solution has
r = rφ − 1, jfermi = 1

2 and generic ∆̂ :

F̂ 3pt
∆̂

(χ) = f̂3pt,∆̂23
∆̂+ 1

2 ,j
(χ) , (9.50)

and corresponds to the exchange of a Fermi multiplet. Let us also consider the case where
the second operator is a Fermi field. The three-point function is given by

〈Φ(y, θ) ˆ̄Ψ(0)Ô(∞)〉 = (γ1β)µyµθβ

(y⊥)∆+∆̂23+ 3
2
F3pt(χ) , (9.51)

where χ is the same invariant as before. There are again two solutions to the eigenvalue
equation, the first one corresponds to the exchange of a boundary chiral

F̂ 3pt
∆φ

(χ) = f̂
3pt,∆̂23+ 1

2
∆φ,0 (χ) , (9.52)

while the second describes a Fermi field

F̂ 3pt
∆̂

(χ) = f
3pt,∆̂23+ 1

2
∆̂+ 1

2 ,0
(χ) . (9.53)

The supersymmetric block corresponds to a bosonic block with shifted external conformal
dimensions ∆̂23 → ∆̂23 + 1

2 and with spin j = 0. Like in the two-point case, the shift can
be understood as a contribution coming from a superconformal descendant of ˆ̄Ψ.

Free theory in the bulk

Having obtained a handful of correlators, let us investigate the possible constraints that a
free theory in the bulk imposes on the boundary data. In superspace the free field equations
of motion take the form

DαDαΦ(y, θ) = 0 , (9.54)
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which is the supersymmetric version of the more familiar ∂2φ(x) = 0. As usual, a free chiral
field has dimension ∆φ = rφ = 1

2 . Imposing this condition on the two bulk-to-boundary
correlators (9.31) and (9.32), we obtain two solutions:

〈Φ(y, θ) ˆ̄Φ∆̂= 1
2
(0)〉 =

bΦˆ̄Φ
|yµ|

, 〈Φ(y, θ) ˆ̄Ψ∆̂=1(0)〉 =
bΦˆ̄Ψγ

µ
1βyµθ

β

|yµ|3
. (9.55)

This is not surprising. The first solution corresponds to a boundary chiral field of dimension
∆̂ = 1

2 , which corresponds to the operator φ̂ and describes Neumann boundary conditions.
The second solution is a Fermi field with ∆̂ = 1, which has a scalar descendant with
dimension ∆̂+ 1

2 = 3
2 (recall the discussion below (9.32)). The descendant can be identified

with ∂⊥φ̂ as expected for Dirichlet boundary conditions. We have therefore proven that
the boundary expansion of a bulk free field has a finite number of contributions.

We now turn to the three-point function to see if there are extra constraints on the
boundary operators from a free bulk chiral field. Let us expand the correlation func-
tion (9.46) in bosonic blocks, where we take Φ to be a free bulk chiral. From equation (9.55)
we know that there are two independent contributions coming from a chiral and a Fermi
boundary field:

F3pt(χ) = bφφ̂λφ̂Ô2Ô3
f̂3pt,∆̂23

∆̂= 1
2 ,j

(χ) + bφ∂⊥φ̂λ∂̂⊥φ̂Ô2Ô3
f̂3pt,∆̂23

∆̂= 3
2 ,j

(χ) . (9.56)

Note that we have written the OPE coefficients explicitly in terms of the operators that
appear in the OPE and not in terms of the superprimaries. Equation (9.56) is identical to
the conformal block expansion of a non-supersymmetric free scalar in the bulk, which has
been studied in detail in [294, 295]. In the limit χ → 0 there are unphysical singularities,
which can only be removed provided the OPE coefficients satisfy the following relation:

bφ∂⊥φ̂λ∂̂⊥φ̂Ô2Ô3
= −

2Γ
(

2j−2∆̂23+3
4

)
Γ
(

2j+2∆̂23+3
4

)
Γ
(

2j−2∆̂23+1
4

)
Γ
(

2j+2∆̂23+1
4

) bφφ̂λφ̂Ô2Ô3
. (9.57)

This constraint is equivalent to the constraints on non-supersymmetric three-point func-
tions with a free bulk. We can go one step further and look at the three-point function
involving a boundary Fermi multiplet (9.51) in the hope that we will find additional con-
straints on the CFT data from supersymmetry. Once again, we expect the two solutions in
equation (9.55) to contribute to the Fermi three-point function. If we act with the equa-
tions of motion, the resulting differential equation can only be solved if ∆̂23 = 1, excluding
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the solution ∆̂ = 1
2 . The resulting correlator corresponds to a single bosonic block

F3pt(χ) ∝ f̂3pt, 32
∆̂= 3

2 ,0
(χ) = 1

(χ+ 1)
3
2
. (9.58)

In this case the correlator is manifestly non-singular as χ→ 0. Having a free bulk implies
that there is only one operator in the OPE φ̂× ψ̂, which has fixed dimension ∆̂3 = ∆̂2− 1.
This is a new, additional constraint coming from the superspace analysis that was not
present in the non-supersymmetric case. It would be interesting to see if a more systematic
analysis allows us to find more general constraints.

9.3.3 The N = (1, 1) boundary

We now present the superspace analysis for the N = (1, 1) boundary, and since it is quite
similar to what we have done so far, we will mostly state the results. We again divide the
superspace into parallel and perpendicular coordinates, the bosonic coordinates are split
as usual, and for the fermionic variables we define

parallel: θ̃1 ≡ θ̃− = −i(θ− − θ̄−) , θ̃2 ≡ θ̃+ = −(θ+ + θ̄+) , (9.59)

perpendicular: θ1
⊥ ≡ θ−⊥ = −(θ− + θ̄−) , θ2

⊥ ≡ θ+
⊥ = −i(θ+ − θ̄+) , (9.60)

There are two useful ways to construct supersymmetric perpendicular distances

z⊥ = y⊥ + 2iθ−θ+ , z̄⊥ = ȳ⊥ + 2iθ̄−θ̄+ , (9.61)

with the property that they are chiral and antichiral respectively D̄αz
⊥ = Dαz̄

⊥ = 0.
These distances will be the natural objects to appear in correlators of (anti)chiral fields.
The decomposition of a bulk (anti)chiral field for the N = (1, 1) boundary contains only
one boundary supermultiplet instead of the two possibilities present in the (0, 2) boundary

Φ = Φ̂ + . . . , (9.62)

where the dots stand for derivatives of Φ̂. The field Φ̂ can be decomposed into bosonic
components, schematically (see [377] for the precise coefficients)

Φ̂ = φ̂+ θ̃+ψ̂+ + θ̃−ψ̂− + θ̃2∂⊥φ̂+ θ̃2F̂ . (9.63)

We see that φ̂ and ∂⊥φ̂ belong to the same boundary multiplet, which implies the unex-
pected feature that Neumann and Dirichlet boundary conditions are related by supersym-
metry.
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One-point functions

Due to the absence of R-symmetry, (anti)chiral bulk fields can now acquire a one-point
function. The only correlators consistent with the symmetry constraints are given by

〈Φ(y, θ)〉 = aΦ
(2z⊥)∆ , 〈Φ̄(ȳ, θ̄)〉 = aΦ̄

(2z̄⊥)∆ , (9.64)

where z⊥, z̄⊥ were defined in (9.61), and aΦ is the one-point coupling that appears as the
coefficient of the “boundary identity” in the conformal block expansion.

Bulk-to-boundary correlator

Since a chiral bulk supermultiplet decomposes into one boundary supermultiplet, we expect
only one correlator:

〈Φ(y, θ)Ô(0)〉 =
bΦÔ

(2z⊥)∆−∆̂|yµ|2∆̂
, (9.65)

where z⊥ is the same as above and |yµ| is the norm of the chiral coordinate (9.16). Notice
that ∆̂ is unconstrained so these are the operators captured by the boundary conformal
blocks to be calculated below.

Two-point functions

Due to the broken R-symmetry there is now no selection rule implying that correlators
with fields of the same chirality vanish. Thus, we should consider the two-point functions
〈Φ1Φ̄2〉 and 〈Φ1Φ2〉 where the R-charges are arbitrary. The two-point functions in the
presence of the N = (1, 1) boundary have the same structure as in the N = (0, 2) case.
Each of them depends on a single superconformal invariant ξ which has the appropriate
chirality properties:

〈Φ1(y1, θ1)Φ̄2(ȳ2, θ̄2)〉 = Fφφ̄(ξ)
(2z⊥1 )∆1(2z̄⊥2 )∆2

, ξ = (y12)2

4z⊥1 z̄⊥2
, (9.66)

〈Φ1(y1, θ1)Φ2(y2, θ2)〉 = Fφφ(ξ)
(2z⊥1 )∆1(2z⊥2 )∆2

, ξ = (ỹ12)2 + 2iθ2
12(z⊥1 + z⊥2 )

4z⊥1 z⊥2
. (9.67)
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The perpendicular distances z⊥, z̄⊥ are given in equation (9.61), the chiral-antichiral dis-
tance yµ12 can be found in (9.17), and we have defined the following chiral-chiral distance:

ỹ0
12 = y0

1 − y0
2 − 2i(θ+

1 θ
+
2 − θ

−
1 θ
−
2 ) ,

ỹ1
12 = y1

1 − y1
2 − 2i(θ+

1 θ
+
2 + θ−1 θ

−
2 ) ,

ỹ2
12 = z⊥1 − z⊥2 .

(9.68)

Let us now calculate the corresponding superblocks for the functions Fφφ̄(ξ) and Fφφ(ξ).

Superconformal blocks

We now calculate the superconformal blocks using the same approach we used in the
N = (0, 2) case in section 9.3.2. We use the Casimir to obtain a differential equation that
we then solve using a finite combination of bosonic blocks.

Bulk channel: We first act wit the bulk Casimir

C(12)
susy〈Φ1(y1, θ1)Φ̄2(ȳ2, θ̄2)〉 = C∆,`,r〈Φ1(y1, θ1)Φ̄2(ȳ2, θ̄2)〉 , (9.69)

where C(12)
susy and C∆,`,r were already given in (9.36) and (9.37) respectively. The solution

to this equation in terms of bosonic blocks is easy to find. Only ` = 0 and r = r1 − r2

contributes

F φ1φ̄2
∆ (ξ) = f∆12

∆ (ξ) + (∆−∆12)(∆ + ∆12)
(2∆− 1)(2∆ + 1) f∆12

∆+2(ξ)

= ξ
∆−∆1−∆2

2 2F1
(∆−∆12

2 ,
∆ + ∆12

2 ; ∆ + 1
2;−ξ

)
,

(9.70)

which in general corresponds to a long operator being exchanged in the φ1× φ̄2 OPE. The
contributions of short operators can be found by evaluating ∆ at the unitarity bound, as
discussed below equation (9.39). For the two-point function 〈Φ1Φ2〉, which was not present
in the N = (0, 2) case, the solution to the Casimir equation

C(12)
susy〈Φ1(y1, θ1)Φ2(y2, θ2)〉 = C∆,`,r〈Φ1(y1, θ1)Φ2(y2, θ2)〉 , (9.71)

can be written in terms of single bosonic blocks with shifted arguments F φφ∆ = f∆+n
2
. This

is a well-known result which has been described in detail for d = 3 in [193]. We will review
the analysis in detail in section 9.4.1.
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Boundary channel: Let us now move on to the boundary channel. The boundary
Casimir is now given by

Ĉsusy = −D2 − 1
2 {K

a,Pa}+ 1
2M

abMab + 1
4[S̃α, Q̃α] , (9.72)

with eigenvalue
Ĉ∆̂,j = ∆̂(∆̂− 1) + j2 . (9.73)

We can only find consistent solutions when the superprimary has no parallel spin: j = 0.
For the chiral-antichiral correlator we find

F̂ φ1φ̄2
∆̂

(ξ) = f̂∆̂(ξ) + 1
4 f̂∆̂+1(ξ)

= ξ−∆̂
2F1

(
∆̂− 1

2 , ∆̂; 2∆̂;−1
ξ

)
.

(9.74)

while for the chiral-chiral correlator we have

F̂ φ1φ2
∆̂

(ξ) = f̂∆̂(ξ)− 1
4 f̂∆̂+1(ξ)

= ξ−∆̂
2F1

(
∆̂ + 1

2 , ∆̂; 2∆̂;−1
ξ

)
.

(9.75)

These two blocks describe the exchange of operators whose correlator (9.65) is non-vanishing.
This concludes our analysis of two-point blocks in the N = (1, 1) boundary. We will gen-
eralize these results for arbitrary 3 ≤ d ≤ 4 in section 9.4. The superspace analysis of
this section will give supporting evidence that the blocks of section 9.4 are a consistent
continuation of the 3d results presented here.

Three-point functions

Let us now study the correlator of a chiral bulk field and two boundary fields. We allow the
first boundary operator to have arbitrary spin j, and we will work in a frame where we set
xa2, θ̃

a
2 , θ̃

a
3 to zero, and xa3 to infinity. Unlike the situations studied so far, there is a nilpotent

invariant consistent with all the symmetries, which implies the following structure

〈Φ(y, θ)Ô2,j(0, ω)Ô3(∞)〉 = (yaωa)j

(y⊥)∆φ+∆̂23 |ya|j

(
F3pt

1 (χ) + θ+θ−

y⊥
F3pt

2 (χ)
)
. (9.76)

All the dependence of the correlator is in terms of the chiral coordinates y and θ, see (9.16).
The superconformal invariant χ is the same as for the N = (0, 2) boundary in (9.47).
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The superfields Φ, Ôi appearing in the three-point function can be expanded into bosonic
components, whose correlators are captured by F3pt

i . Let us look at this expansion with
more details. Since we chose a frame where θ2 = θ̄2 = θ3 = θ̄3 = 0, only the superprimary
in the θ-expansion of Ôi will contribute, then

Φ(y, θ) = φ(y) + θαψα(y) + θ+θ−F (y) , Ô2(0, ω) = Ô2(0, ω) , Ô3(∞) = Ô3(∞) .
(9.77)

Comparing the correlator (9.76) with the expansion (9.77) we read off

〈φ(x)Ô2(0, ω)Ô3(∞)〉 = (xawa)j

(x⊥)∆φ+∆̂23 |xµ|j
F3pt

1 (χ) , (9.78)

〈ψα(x)Ô2(0, ω)Ô3(∞)〉 = 0 , (9.79)

〈F (x)Ô2(0, ω)Ô3(∞)〉 = (xawa)j

(x⊥)(∆φ+1)+∆̂23 |xµ|j
F3pt

2 (χ) , (9.80)

so indeed F3pt
1,2 capture the correlators of the top and bottom components of the chiral

multiplet. To find the corresponding superconformal blocks we act with the boundary
supersymmetric Casimir in point z1:

Ĉ(1)
susy〈Φ(y, θ)Ô2,j(0, ω)Ô3(∞)〉 = Ĉ∆̂,0,r〈Φ(y, θ)Ô2,j(0, ω)Ô3(∞)〉 , (9.81)

where Ĉ∆̂,0,r is given in equation (9.73). This results in two coupled differential equations,
which we can solve by assuming that the superconformal blocks are given in terms of the
bosonic blocks f̂3pt

∆̂
given in (9.182). The final result reads

F 3pt
1,∆̂

(χ) = f3pt,∆̂23
∆̂,j

(χ) + c∆̂f
3pt,∆̂23
∆̂+1,j

(χ) ,

F 3pt
2,∆̂

(χ) = −2i(rφ − ∆̂)f3pt,∆̂23
∆̂,j

(χ) + 2ic∆̂(rφ + ∆̂− 1)f3pt,∆̂23
∆̂+1,j

(χ) , (9.82)

where c∆̂ is a free parameter, related to the OPE coefficients of the exchanged operator,
see equation (9.83) below.

Free bulk theory

We now repeat the analysis of section 9.3.2, and see how the bulk equations of motion
constrain the spectrum of boundary operators. Imposing that the chiral field is free in
(9.65) fixes the dimension of the boundary field to ∆̂ = 1

2 . Unlike in the N = (0, 2) case
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there is only solution, since both Neumann and Dirichlet boundary conditions are related
by supersymmetry, and belong to the same supermultiplet.

Let us now focus on to the three-point function (9.76). It is well known that the free
equations of motion for a chiral field imply F (x) = 0, so it is sufficient to focus on F3pt

1 (χ).
From the analysis of the free bulk-to-boundary correlator we conclude that there can only
be one multiplet in the bulk-to-boundary OPE. The superprimary has dimension ∆̂ = 1

2 ,
which we will call φ̂. The multiplet also contains a superdescendant of dimension ∆̂+1 = 3

2 ,
which we denote by ∂⊥φ̂. Both operators contribute to the superconformal block (9.82),
and the resulting correlation function is

F3pt
1 (χ) = bφφ̂λφ̂Ô2Ô3

f̂3pt,∆̂23
∆̂= 1

2 ,j
(χ) + bφ∂⊥φ̂λ∂̂⊥φ̂Ô2Ô3

f̂3pt,∆̂23
∆̂= 3

2 ,j
(χ) , (9.83)

where the OPE coefficients are written in terms of the superdescendants, not the super-
primaries. Due to the presence of a free coefficient c∆̂ in the superconformal block (9.82),
the relative coefficient in this expansion is not fixed by supersymmetry. Equation (9.83) is
identical to the non-supersymmetric case of a free scalar in the bulk and to equation (9.56)
for the N = (0, 2) boundary. Thus, the analysis below (9.56) applies here as well and we
find the same OPE relations (9.57). There are no extra constraints coming from super-
symmetry.

9.4 Boundaries across dimensions

In this section we study superconformal theories with boundaries in any, in principle con-
tinuous, number of dimensions 3 ≤ d ≤ 4, keeping the codimension fixed. We obtain
superconformal blocks using similar techniques as were developed originally for bulk four-
point functions in [193, 236].8 Conformal blocks in an arbitrary number of dimensions
allow us to use analytical techniques like the ε-expansion, a subject that we explore in this
section inspired by previous work [269,272] .

9.4.1 Superconformal blocks

Superconformal algebra

In the entire section we follow the same conventions as [193], which we review briefly. The
notation will differ from the one in section 9.3, but our main results, the superconformal

8Another example of blocks across dimensions was uncovered in the context of Parisi-Sourlas supersym-
metry [379,380].
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blocks, will be convention-independent. We hope this does not cause too much confusion.
The reader is welcome to look at the original reference for more details. The conformal
part of the algebra is generated by the usual operators D, Pi, Ki and Mij . We also have
four Poincaré supercharges Q+

α and Q−α̇ and four conformal supercharges Sα̇+ and Sα−

with anticommutation relations

{Q+
α , Q

−
α̇ } = Σi

αα̇Pi , {Sα̇+, Sα−} = Σ̄α̇α
i Pi , i = 1, . . . , d . (9.84)

Finally, there is a generator R of U(1)R symmetry, under which Q+
α and Q−α̇ have charge +1

and −1 respectively. Provided that Σi
αα̇ satisfies certain formal identities, the superjacobi

identites are satisfied for arbitrary d. The full set of commutation relations, the Casimir
operator Cbulk, and many other important relations can be found in [193].

In what follows, we will focus our attention on chiral primary operators φ and their
complex conjugates φ̄. These operators are killed by supercharges of the same chirality,
and using the superconformal algebra their conformal dimension is related to the R-charge:[

Q+
α , φ(0)

]
=
[
Q−α̇ , φ̄(0)

]
= 0 ⇒ ∆φ = ∆φ̄ = d− 1

2 rφ = −d− 1
2 rφ̄ . (9.85)

The chirality property, as well as the relation between ∆ and r, will be important in the
calculation of superconformal blocks in the next section.

The subalgebra of conformal transformations that preserve the boundary is generated
by D, Pa, Ka and Mab, where a, b = 2, . . . , d. We chose P1 not to be part of this subalgebra,
which physically means that the boundary sits at x1 ≡ x⊥ = 0. Only half of the original
supercharges belong to the algebra, and they anticommute as:

{Qbdy
A , Qbdy

B } = (Σbdy)aABPa , {Sbdy
A , Sbdy

B } = (Σbdy)aABKa , A,B = 1, 2. (9.86)

For arbitrary d we embbed the boundary subalgebra into the full superconformal algebra
as

Qbdy
1 = Q+

1 +Q−2 , Qbdy
2 = Q+

2 +Q−1 , Sbdy
1 = S+

2 + S−1 , Sbdy
2 = S+

1 + S−2 . (9.87)

It is easy to check explicitly in d = 3 and d = 4 that (9.87) indeed generate a subalgebra
and that all the superjacobi identities are satisfied, provided that we use the following
Clifford algebra representation:

Σi
αα̇ = (Σ̄α̇α

i )∗ = (σ3, σ1, σ2, i1) . (9.88)
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Notice that the generator R is not part of the boundary superalgebra. In physical terms the
R charge is not conserved near the boundary, and both 〈φ1φ2〉 and 〈φ1φ̄2〉 are non-vanishing
two-point functions for any r1,2. These two-point functions have different superconformal
block decompositions that we treat separately in the next section.

In order to compute superconformal blocks, we will need the explicit form of the su-
perconformal Casimir of the boundary superalgebra:

Cbdy = −D2 − 1
2{Pa,K

a}+ 1
2MabM

ab + 1
4[Sbdy

A , Qbdy
A ] . (9.89)

If we consider a boundary operator with quantum numbers ∆̂, j, then it will be an eigenstate
of the superconformal Casimir with eigenvalue

Ĉ∆̂,j = ∆̂(∆̂− d+ 2) + j(j − d+ 3) . (9.90)

Boundary channel

As discussed at length in the superspace section, the boundary channel blocks for a two-
point function are eigenfunctions of the boundary superconformal Casimir (9.89). We can
naturally split the Casimir operator into a non-supersymmetric piece and a contribution
coming from supersymmetry:

Cbdy = Cbdy,non-susy + Cbdy,susy , Cbdy,susy ≡
1
4[Sbdy

A , Qbdy
A ] . (9.91)

We worked out the non-supersymmetric contribution in equation (9.176). Focusing only
on the supersymmetric part and using the anticommutation relations we obtain:

[Cbdy,susy, φ1(x)]|0〉 =
(
d− 1

2 [R,φ1(x)]− 1
2
{
Q−2 ,

[
S1−, φ1(x)

]})
|0〉

=
(
∆1φ1(x) + ix⊥{Q−1 , [Q

−
2 , φ1(x)]}

)
|0〉 .

(9.92)

In appendix 9.C we use superconformal Ward identities to rewrite the piece with Q−1 Q
−
2

as a term that can be included in a differential equation. Unfortunately, we have not been
able to find a strategy to use these Ward identities for general d. Instead, we focus on
the particular cases of d = 3, 4 where the explicit Clifford algebra representation (9.88) is
valid. Since the final result does not depend on d, we claim it is also valid for 3 ≤ d ≤ 4.9

9It is likely that our blocks are valid for 2 ≤ d ≤ 4 but we have not checked explicitly the d = 2
case. Notice that below d ≤ 3 on has to take into account the operators Mî,ĵ with î, ĵ = d, . . . , 4, and the
calculation is slightly more complicated.

207



Chapter 9. Superconformal boundaries in 4− ε dimensions

The fact that we can find solutions to the Casimir equations with the expected properties
for any continuous d confirms that our assumption is justified. The ε-expansion results, to
be described below and in the next section, also give supporting evidence that the whole
picture is consistent.

〈φ1φ̄2〉 correlator: When we consider the two-point function of a chiral and antichiral
operator, the contribution from supersymmetry is given by

Cbdy,susy〈φ1(x1)φ̄2(x2)〉
(2x⊥1 )−∆1(2x⊥2 )−∆2

= −ξ∂ξF̂ φ1φ̄2
∆̂

(ξ) . (9.93)

Combining the supersymmetric and non-supersymmetric pieces, and using the appropriate
value of the Casimir, we get the following differential equation:[
ξ(ξ + 1)∂2

ξ +
(
d

2 + (d− 1)ξ
)
∂ξ −

(
∆̂(∆̂− d+ 2) + j(j − d+ 3)

)]
F̂ φ1φ̄2

∆̂
(ξ) = 0 . (9.94)

A priori, there are two independent solutions of this equation for arbitrary values ∆̂
and j. However, we must also require that the solutions can be decomposed into non-
supersymmetric blocks, and we find that this is only possible whenever j = 0 for arbitrary
∆̂. The solution can be expressed either as a linear combination of bosonic blocks, or as a
single hypergeometric function with a prefactor:

F̂ φ1φ̄2
∆̂

(ξ) = f̂∆̂(ξ) + ∆̂
2(2∆̂− d+ 3)

f̂∆̂+1(ξ) ,

= ξ−∆̂
2F1

(
∆̂, ∆̂ + 1− d

2 ; 2∆̂− d+ 3;−1
ξ

)
.

(9.95)

Even though we considered a general two-point function 〈φ1φ̄2〉, the superconformal blocks
are the same as for a two-point function of identical (anti)chiral operators 〈φφ̄〉. A nice
consistency check is that the relative coefficient between the non-supersymmetric blocks is
positive, as we expect in the defect channel of 〈φφ̄〉, because the coefficients that appear in
the OPE are |bφÔ|

2. When we restrict to d = 3 we find perfect agreement with the explicit
superspace calculation (9.74).

〈φ1φ2〉 correlator: In a similar way, we can work out the Ward identities for the 〈φ1φ2〉
two-point function. The new contribution to the Casimir equation is:

Cbdy,susy〈φ1(x1)φ2(x2)〉
(2x⊥1 )−∆1(2x⊥2 )−∆2

= −(ξ + 1)∂ξF̂ φ1φ2
∆̂

(ξ) . (9.96)
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Combining the non-supersymmetric and supersymmetric pieces with the eigenvalue (9.90),
the Casimir equation reads[

ξ(ξ + 1)∂2
ξ +

(
d− 2

2 + (d− 1)ξ
)
∂ξ −

(
∆̂(∆̂− d+ 2) + j(j − d+ 3)

)]
F̂ φ1φ2

∆̂
(ξ) = 0 .

(9.97)

Once again, we only find physically acceptable solutions whenever j = 0:

F̂ φ1φ2
∆̂

(ξ) = f̂∆̂(ξ)− ∆̂
2(2∆̂− d+ 3)

f̂∆̂+1(ξ) ,

= ξ−∆
2F1

(
∆̂, ∆̂ + 2− d

2 ; 2∆̂− d+ 3;−1
ξ

)
.

(9.98)

The decompositions into non-supersymmetric blocks in (9.98) and (9.95) are identical up
to a relative minus sign. We know this must be the case, since the boundary OPE of 〈φφ〉
contains b2

φÔ, which is not necesarily positive definite, but instead b2
φÔ = ±|bφÔ|

2. When we
restrict to d = 3 we find perfect agreement with the explicit superspace calculation (9.75).

Bulk channel

Now we proceed to calculate the blocks that appear in the bulk decomposition using the
bulk Casimir.

〈φ1φ̄2〉 correlator: To obtain bulk channel blocks we act with the full Casimir once more
focusing on the part that is new from supersymmetry:

Cbulk,susy = −d− 1
2 R2 + 1

2[Sα̇+, Q−α̇ ] + 1
2[Sα−, Q+

α ] . (9.99)

We can simplify the action of the superconformal Casimir using the commutation relations,
the chirality properties of φ1 and φ̄2, and equation (51) from [193]:[

Cbulk,susy, φ1(x1)φ̄2(x2)
]
|0〉 = ixµ12Σ̄α̇α

µ

[
Q−α̇ , φ1(x1)

] [
Q+
α , φ̄2(x2)

]
|0〉

+
(

2(∆1 + ∆2)− d− 1
4 r2

12

)
φ1(x1)φ̄2(x2)|0〉 .

(9.100)

Here we assume φi has charge ri, we define r12 = r1 − r2 and we use chirality to relate
∆i = 1

2(d − 1)ri. We can use Ward identities to rewrite the Q-dependent part in a way
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that can be put in a Casimir equation. After some algebra we get10

Cbulk,susy〈φ1(x1)φ̄2(x2)〉
(2x⊥1 )−∆1(2x⊥2 )−∆2ξ−(∆1+∆2)/2 =

(
4ξ∂ξ −

d− 1
4 r2

12

)
Gφ1φ̄2

∆ (ξ) . (9.101)

Now we can combine all the pieces to form the differential equation[
4ξ2(ξ + 1)∂2

ξ + 2ξ(2ξ − d+ 4)∂ξ −∆(∆− d+ 2)

− `(`+ d− 2)− d− 1
4 (r2

12 − r2)−∆2
12ξ

]
Gφ1φ̄2

∆ (ξ) = 0 .
(9.102)

The superselection rules in the φ1 × φ̄2 OPE were worked out in four dimensions [65] and
in any d [193]. For our setup, they imply that only superprimaries with r = r12 and ` = 0
can appear11. Indeed, we can solve the Casimir equation in this case to find:

Gφ1φ̄2
∆ (ξ) = g∆12

∆ (ξ) + (∆−∆12)(∆ + ∆12)
(2∆− d+ 2)(2∆− d+ 4)g

∆12
∆+2(ξ)

= ξ∆/2
2F1

(∆ + ∆12
2 ,

∆−∆12
2 ; ∆ + 2− d

2 ;−ξ
)
.

(9.103)

For generic values of ∆ these blocks capture the exchange of a long operator, while they can
be interpreted as short operators when ∆ saturates the unitarity bounds. The classification
of possible short multiplets in d = 3, 4 is well known and can be found for example in [27,
182].

〈φ1φ2〉 correlator: It is well know that when the two operators are chiral the bulk
blocks are equal to non-supersymmetric blocks. The precise selection rules for φ1 × φ2 are
known [193], but we review them here for convenience:

• Consider a superprimary O that has R-charge r = r1 + r2− 2 and dimension ∆. The
descendant (Q+)2O has charge r1 + r2, dimension ∆ + 1 and is killed by Q+

α , so it
appears in the φ1 × φ2 OPE.

• Alternatively, consider the chiral superprimary operator (φ1φ2), with r = r1 + r2 and
∆ = ∆1 + ∆2. In this case the superprimary itself is exchanged in the OPE.

10We find it more convenient to work in terms of G(ξ) = ξ(∆1+∆2)/2F (ξ), but one can easily map the
results between the two conventions.

11Superprimaries with ` ≥ 1 also appear in the OPE but they have zero one-point function, so they are
not relevant in our analysis.
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• Finally, consider an anti-chiral superprimary operator Ψ̄ whose dimension is related
to its charge and given by ∆ = −d−1

2 r = d−1− (∆1 +∆2). The descendant operator
(Q+)2Ψ̄ is exchanged in the OPE.

In what follows, whenever we consider bulk channel φφ superconformal blocks, ∆ will be
the dimension of the actual exchanged operator, and not the dimension of the superprimary.

9.4.2 An aside: codimension-two defects

In the present paper we are mostly concerned with boundaries that interpolate between
3 ≤ d ≤ 4 models. In the same way there exist codimension-two defects that interpolate
between a line in d = 3 and a surface in d = 4. A familiar example is the 3d Ising
twist defect, which was studied using Feynman diagrams in 4 − ε dimensions [256] (see
also [255] for a Monte-Carlo analysis in exactly d = 3). These results were later reproduced
and generalized using analytic bootstrap technology [265]. Similar techniques should be
applicable to half-BPS codimension-two defects in supersymmetric theories like the Wess-
Zumino model. We plan to come back to this problem in the future, but for now we
describe how the superconformal blocks can be obtained within our framework.

The notation in this subsection will be different from the rest of the section; we hope
this does not cause confusion. We insert the codimension-two defect at xi = 0 for i = 1, 2
and label the parallel directions as xa for a = 3, . . . , d. The defect will naturally preserve
parallel translations and special conformal transformations Pa,Ka, dilatations D, as well
as parallel and perpendicular rotations Mab,Mij . The two-point function of local operators
depends on two cross-ratios. To study the defect channel it is convenient to use coordinates
(χ, φ), while the bulk channel simplifies using coordinates (x, x̄):12

|xa12|2 + |xi1|2 + |xi2|2

|xi1||xi2|
= χ = 2− x− x̄√

(1− x)(1− x̄)
,

xi1x
i
2

|xi1||xi2|
= cosφ = 2− x− x̄+ xx̄

2
√

(1− x)(1− x̄)
.

(9.104)

The non-supersymmetric as well as the supercoformal blocks are given below.
Besides the bosonic generators described above, a half-BPS defect preserves two Poincaré

supercharges:

Qdefect
1 = Q+

1 , Qdefect
2 = Q−1 , Sdefect

1 = S1+ , Sdefect
2 = S1− . (9.105)

12Our cross-ratios are related to the ones in [266] by z = 1− x and z̄ = (1− x̄)−1.
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Our system does not preserve R-symmetry or transverse rotations independently, but only
a linear combination of them that we call twisted transverse rotations:13

Mdefect = M12 + d− 1
2 R . (9.106)

With these conventions in mind, we proceed to obtain the superconformal blocks.

Defect channel

When supersymmetry is not present, the defect operators are labeled by the conformal
dimension ∆̂ and the transverse spin s. One can write down a Casimir equation which is
solved by the following conformal blocks [259]:

f̂∆̂,s(χ, φ) = eisφχ−∆̂
2F1

(∆̂
2 ,

∆̂ + 1
2 ; ∆̂ + 2− d

2 ; 4
χ2

)
. (9.107)

In the supersymmetric case the only difference is that s denotes the twisted transverse
spin (9.106). One can work out the selection rules, and find that only one operator in each
multiplet contributes to the OPE, so the superconformal blocks are just (9.107) with the
arguments shifted appropriately.

Bulk channel

Similarly, one can obtain a Casimir equation for the non-supersymmetric bulk channel. It
was observed in [259] that for codimension-two the Casimir equation is identical to the
one found by Dolan and Osborn (D&O) for bulk four-point functions [31]. Therefore,
the bulk-channel blocks of a defect two-point function are equal to the familiar four-point
blocks:

f∆,`(x, x̄) = G0,0
∆,`,D&O(x, x̄) . (9.108)

When supersymmetry is included, the Casimir equation has an extra term Cbulk,susy that
can be simplified using Ward identites, as described in appendix 9.C. When the dust
settles, it turns out that the blocks are described by non-supersymmetric blocks with
shifted arguments:

F∆,`(x, x̄) = (xx̄)−
1
2G−1,−1

∆+1,`,D&O(x, x̄) . (9.109)

Even more surprisingly, these blocks are exactly the same that were found in [193] for a
four-point function of chiral and antichiral operators!

13For the particular case of a line defect in d = 3, the subalgebra has been written explicitly in [181].
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9.4.3 Free theory

After the small codimension-two detour let us come back to the boundary setup. As a
first consistency check of our superconformal blocks, we consider a free chiral multiplet in
the bulk in the presence of a half-BPS boundary. It is well known that a free scalar has
dimension ∆φ = d−2

2 , and the bulk equations of motion have a simple solution:

∂2
x〈φ(x)φ̄(x′)〉 = 0 ⇒ Fφφ̄(ξ) = cφφ̄1

ξ(d−2)/2 + cφφ̄2
(ξ + 1)(d−2)/2 . (9.110)

For the two-point function 〈φφ〉 we find the same solution with free coefficients cφφ1,2. In
order to impose supersymmetry, we must require that these correlators have consistent
superconformal block decompositions in the bulk and boundary channels. It is a simple
exercise to show that this fixes cφφ1 = cφφ̄2 = 0. We can also fix cφφ̄1 = 1 requiring that far
away from the boundary, the two-point function 〈φφ̄〉 is unit normalized: it is normalized
such that the OPE coefficient of the bulk identity block is 1. Finally, after an appropriate
redefinition φ→ eiδφ we can always chose the normalization cφφ2 = 1. All in all,

Fφφ̄(ξ) = 1
ξ(d−2)/2 = F φφ̄Id (ξ) = F̂ φφ̄(d−2)/2(ξ) ,

Fφφ(ξ) = 1
(ξ + 1)(d−2)/2 = F φφd−2(ξ) = F̂ φφ(d−2)/2(ξ) .

(9.111)

In the above equation we also present the expansion of the correlation functions in terms
of superconformal blocks. Interestingly, only one superconformal block contributes to each
channel, and with our normalization conventions all OPE coefficients are equal to one.

The above solution to crossing has a clear physical interpretation if we split the chiral
primary operator in terms of its real and imaginary parts φ = φ1 + iφ2. Then we see
that φ1 satisfies Neumann boundary conditions, whereas φ2 satisfies Dirichlet boundary
conditions. Indeed, from (9.111) we obtain

lim
x→bdy

〈∂⊥φ1(x)φ1(x′)〉 = 0 , lim
x→bdy

〈φ2(x)φ2(x′)〉 = 0 . (9.112)

We can think of our free correlation functions as linear combinations of the Neumann and
Dirichlet boundary CFTs studied in [269], with the precise relative coefficients fixed by
supersymmetry.
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9.4.4 The ε-expansion bootstrap

It was originally observed in [269] that the crossing equation for boundary CFTs can be
used to extract information about the Wilson-Fischer fixed point in the epsilon expansion.
In particular, they bootstrapped the one-loop correlators at order O(ε), and the analysis
was generalized to O(ε2) using different techniques in later works [272, 274, 381]. In this
section we apply the same ideas to our supersymmetric two-point functions, and we obtain
the full correlation functions at order O(ε).

In the supersymmetric setup there are two relevant crossing equations, one for φφ̄ and
the other for φφ:

F φφ̄Id (ξ) +
∑
n

cnF
φφ̄

∆̃n
(ξ) =

∑
n

µnF̂
φφ̄

∆̂n
(ξ) ,

∑
n

dnF
φφ
∆n

(ξ) =
∑
n

ρnF̂
φφ

∆̂n
(ξ) . (9.113)

Notice that the spectrum of operators in the boundary channel is the same for the two
correlators. The boundary OPE coefficients are given in terms of bulk-to-boundary coeffi-
cients as µn = |bφOn |2 and ρn = b2φOn , so they must be equal up to possible signs µn = ±ρn.
The precise signs as a function of n will be an outcome of our bootstrap analysis. The bulk
channel OPE coefficients are products of one- and three-point coefficients cn = aOnλφφ̄On
and dn = aOnλφφOn so we do not expect any relations between them.

Our analysis starts in d = 4, where the SCFT is free and the correlators are given
in (9.111). We assume that the coupling of the theory is of order g ∼ ε, so as we lower the
dimension to d = 4− ε the CFT data acquires small corrections. In particular, we expect
the external chiral operator to acquire an anomalous dimension:

∆φ = d− 2
2 + ∆(1)

φ ε+ ∆(2)
φ ε2 + . . . . (9.114)

We should think of ∆(1)
φ as being related to the strenght of the coupling g ∝ ∆(1)

φ ε, and the
precise constant depends on the model under consideration. In the bulk four-point function
ε-expansion bootstrap, see for example [135], conservation of the stress tensor allows one
to fix the precise value of ∆(1)

φ . Unfortunately this will not be possible in our setup because
the stress-tensor multiplet does not appear in the bulk OPE.

Another consequence of turning on the couplings is that we expect that new infinite
families of operators will enter our crossing equations. In the bulk channel, from the
intuition gained from the usual four-point function analytic bootstrap, we expect double-
trace operators of the form φ�nφ with dimensions

∆n = d− 2 + 2n+ ∆(1)
n ε+ ∆(2)

n ε2 + . . . , (9.115)
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and similarly operators φ�nφ̄ with dimensions ∆̃n. In the boundary channel, we expect
operators of the schematic form �m∂n−2m

⊥ φ so they have dimension

∆̂n = d− 2
2 + n+ ∆̂(1)

n ε+ ∆̂(2)
n ε2 + . . . . (9.116)

Finally, the OPE coefficients will also get corrections as a power series in ε, namely

cn = c(0)
n + c(1)

n ε+ c(2)
n ε2 + . . . , (9.117)

and similarly for dn, µn and ρn. With the above conventions, the free theory solution when
d = 4 is given by

d
(0)
0 = µ

(0)
0 = ρ

(0)
0 = 1, c

(0)
n≥0 = d

(0)
n≥1 = µ

(0)
n≥1 = ρ

(0)
n≥1 = 0 . (9.118)

In what follows we derive the first order correction to the CFT data.

〈φφ〉 correlator

We start by studying the two-point function 〈φφ〉 , because in this case we can reuse many
results from [272]. We will very closely follow the notation and manipulations from this
reference, and we refer the reader there for further details. The similarity is a consequence
of the φφ bulk channel superconformal blocks being equal to non-supersymmetric ones:
F φφ∆ = f∆.

The first step in the construction of [272] is to divide the crossing equation in two terms
called G and H:

Fφφ(ξ) = Gblk(ξ) +Hblk(ξ) = Gbdy(ξ) +Hbdy(ξ) . (9.119)

In G we collect the contributions that appeared at order ε0, but we allow them to acquire
anomalous dimensions:

Gblk(ξ) = F φφ
2−ε+∆(1)

0 ε
(ξ) = 1

ξ + 1 +
(∆(1)

0 − 2∆(1)
φ ) log ξ + log(ξ + 1)
2(ξ + 1) ε+O(ε2) ,

Gbdy(ξ) = F̂ φφ
1− ε2 +ε∆̂(1)

0
(ξ) = 1

ξ + 1 + log(ξ + 1)− 2∆̂(1)
0 log ξ

2(ξ + 1) ε+O(ε2) .

(9.120)

On the other hand, we collect in H all the contributions where the anomalous dimensions
do not contribute, so the blocks are evaluated at integer values of the dimensions:

Hblk(ξ) = ε
∞∑
n=0

d(1)
n F φφ2n+2(ξ) , Hbdy(ξ) = ε

∞∑
n=0

ρ(1)
n F̂ φφn+1(ξ) . (9.121)
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Note that an operator can contribute to both G and H, for instance the anomalous dimen-
sion ∆(1)

0 of the leading bulk operator O0 appears in Gblk, while the correction to its OPE
coefficient d(1)

0 appears in Hblk.
The key observation of [272] was that one can eliminate Hbdy from the crossing equation

by applying the following discontinuity:

Disc f(z) = f(zeiπ)− f(ze−iπ) , z ≡ ξ + 1
2 ∈ (1

2 ,∞) . (9.122)

Indeed, from (9.122) one sees that Disc f̂n(ξ) = 0 for integer n, which implies DiscHbdy(ξ) =
0. It is an easy exercise to take the discontinuity of (9.120), and using the crossing equation
we find

DiscHblk(ξ) = DiscGbdy(ξ)−DiscGblk(ξ) = iπε

ξ

(
2∆̂(1)

0 − 2∆(1)
φ + ∆(1)

0

)
. (9.123)

The authors of [272] reconstructed the full correlator by expanding (9.123) in terms of
discontinuities of bulk blocks, extracting the CFT data, and then resumming the bulk OPE
expansion. Note that since our expansion in the bulk has non-supersymmetric blocks, we
can reuse their results without problems. In particular, comparing their equations (4.8)
and (4.14) with our expression we obtain

Hblk(ξ) = −ε log(ξ + 1)
2(ξ + 1)

(
2∆̂(1)

0 − 2∆(1)
φ + ∆(1)

0

)
. (9.124)

From this calculation we can reconstruct the full correlator Fφφ(ξ) = Gblk(ξ)+Hblk(ξ) and
extract CFT data to O(ε). Before we do that, however, let us also reconstruct the 〈φφ̄〉
correlator using the same technique.

〈φφ̄〉 correlator

As before, let us divide the contributions of the crossing equations into two pieces, where

Gblk(ξ) = F φφ̄Id (ξ) = 1
ξ

+
(1− 2∆(1)

φ ) log ξ
2ξ ε+O(ε2) ,

Gbdy(ξ) = F̂ φφ̄
1− ε2 +ε∆̂(1)

0
(ξ) = 1

ξ
+ log ξ − 2∆̂(1)

0 log(ξ + 1)
2ξ ε+O(ε2) ,

(9.125)

and the functions H are the same we defined in (9.121), replacing (dn, ρn) → (cn, µn)
and using the appropriate superconformal blocks for φφ̄. Again, the discontinuity removes
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Hbdy(ξ) and we are left with

DiscHblk(ξ) = DiscGbdy(ξ)−DiscGblk(ξ) = − 2πiε
ξ + 1

(
∆(1)
φ − ∆̂(1)

0

)
. (9.126)

This can be expanded in terms of discontinuities of superconformal blocks. In principle,
we should repeat the analysis of [272] using our superconformal blocks. However, the first
term in the expansion captures the entire correlator:

DiscF φφ̄2 (ξ) = − 2πi
ξ + 1 = DiscHblk(ξ)

ε
(
∆(1)
φ − ∆̂(1)

0

) . (9.127)

We can remove the discontinuity from this equation14 to obtain

Hblk(ξ) = ε
(
∆(1)
φ − ∆̂(1)

0

)
F φφ̄2 = ε

(
∆(1)
φ − ∆̂(1)

0

) log(ξ + 1)
ξ

. (9.128)

The full correlator is Fφφ̄(ξ) = Gblk(ξ) + Hblk(ξ). Equation (9.127) implies that the bulk
channel of φφ̄ contains only the identity and another block, unlike the φφ expansion which
contained infinitely many blocks.

Correlation functions and CFT data

The solution of crossing we have found to O(ε) has three free parameters. However, as
discussed below equation (9.113), the boundary OPE coefficients in the two channels should
be equal up to a sign ρn = ±µn. Expanding Fφφ(ξ) and Fφφ̄(ξ) in boundary superblocks
and comparing the expansions we find one last constraint:

∆(1)
0 = 2

(
(s+ 1)∆(1)

φ − ∆̂(1)
0

)
, s = ± . (9.129)

Hence, our solution depends on the anomalous dimension ∆(1)
φ of the external chiral opera-

tor, the anomalous dimension of the leading boundary operator ∆̂(1)
0 , and a choice of signs

14The discontinuities of superblocks are schematically DiscFφφ̄2n ∼ Pn, where Pn are certain orthogonal
polynomials. Since any function has a unique expansion in terms of Pn, it is safe to remove Disc from (9.127).
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s = ±. Using this relation, the one-loop correlation functions take a very simple form15

Fφφ̄(ξ) = 1
ξ

+

(
1− 2∆(1)

φ

)
log ξ + 2

(
∆(1)
φ − ∆̂(1)

0

)
log(ξ + 1)

2ξ ε+O(ε2) ,

Fφφ(ξ) = 1
ξ + 1 +

(
1− 2s∆(1)

φ

)
log(ξ + 1) + 2

(
s∆(1)

φ − ∆̂(1)
0

)
log ξ

2(ξ + 1) ε+O(ε2) .

(9.130)

From the correlation functions we can extract the CFT data at one-loop:16

c
(1)
0 = ∆(1)

φ − ∆̂(1)
0 , c

(1)
n≥1 = 0, d

(1)
0 = 0, µ

(1)
0 = ρ

(1)
0 = 0 ,

µ(1)
n = s(−1)nρ(1)

n = s(−1)nd(1)
n = (n− 1)!

2n−1(2n− 1)!!∆
(1)
φ , n ≥ 1 .

(9.131)

Although we lack a conclusive proof, we believe it is very likely that the unfixed sign is
always s = +1. One argument is that the correlators (9.130) are related to each other
under ξ ↔ ξ + 1, provided s = +1. Another argument is that only for s = +1 the signs of
the coefficients in the BOE are alternating, namely (ρ0, ρ1, ρ2, . . .) = (µ0,−µ1, µ2, . . .), and
otherwise they are alternating only for n ≥ 1. Finally, we will do an explicit perturbative
calculation for a specific model in the next section and we will find again that s = +1.

An interesting feature of the CFT data (9.131) is that the bulk and boundary OPE
coefficients are identical for the two-point function 〈φφ〉 . This is a very non-trivial relation,
since ρn = b2φOn , but dn = aOnλφφOn . It would be interesting to see if this is just a
coincidence of the orderO(ε) result, or if it actually persists at higher orders in perturbation
theory.

Going to order ε2

From the structure of the order ε CFT data (9.131), there is hope that one can push
the bootstrap analysis to order ε2. Indeed, only two blocks contribute at order ε in the
φφ̄ bulk channel. We expect infinitely many operators at order ε2, but the majority of

15We can also write 〈φ(x)φ̄(y)〉 = (x − y)−2∆φ(ξ + 1)ε(∆
(1)
φ
−∆̂(1)

0 ) and similarly for 〈φφ〉. This is very
similar to the non-supersymmetric case, see equation (2.32) of [276]. We thank A. Söderberg for pointing
this out.

16 Our solution of crossing splits naturally into a pice involving only boundary blocks with n = 0 and a
piece that includes all n ≥ 1. This resembles the four-point analytic bootstrap where our n plays the role
of the bulk spin `. In particular, our n = 0 solution corresponds to the solutions with finite support in spin
found in [145]. We thank F. Alday for pointing this out.
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them will contribute as conformal blocks of even dimension F2n+2(ξ). One can construct a
discontinuity, different than (9.122), that kills bulk blocks D̃iscF2n+2 = 0, see [273]. From
here there are several possible directions one can pursue:

• Following the ideas of the present section and [272], one can calculate D̃iscHbdy =
D̃iscGblk − D̃iscGbdy. One should now expand D̃iscHbdy in terms of discontinuities
of boundary blocks to extract the relevant CFT data. However, at this order in
ε, the discontinuities of the blocks cannot be easily rewritten in terms orthogonal
polynomials, and it is not clear how to proceed.

• The authors of [273] studied an inversion formula that would reconstruct the bound-
ary data from the two discontinuities DiscF and D̃iscF of a correlator. Unfortu-
nately, they were unable to determine its precise form for the case of interest here,
and even if the relevant inversion formula is found, calculating DiscFφφ̄ in our setup
would be challenging.

• Finally, one can make an ansatz for the full correlator based on trascendentality and
demand consistency with the above discontinuities to fix coefficients. With this ap-
proach it is possible to rederive the order ε2 correlator of the Wilson-Fischer fixed
point calculated in [272]. In our supersymmetric setup, we have found a consistent
solution to crossing at order ε2 that depends on a number of free parameters. How-
ever, it is not clear to us yet whether this correlator is physical or whether it is part
of a more general solution of crossing yet to be found.

9.5 Wess-Zumino model with a boundary

In this section we study the Wess-Zumino (WZ) model with a cubic superpotential in the
presence of half-BPS boundary conditions. The WZ model has a stable fixed point in 4− ε
dimensions, which has been studied in the context of emergent supersymmetry [382, 383].
The two-loop calculation of [384] showed that supersymmetry is preserved perturbatively,
provided the gamma matrix algebra is evaluated in d = 4, but using a 4 − ε dimensional
spacetime otherwise. Here we adopt the same regularization procedure, which is reminis-
cent of the way we obtained the blocks in section 9.4, using a superconformal algebra with
4d spinor representations, but allowing arbitrary d ≤ 4 spacetime dimensions. Further-
more, we assume that the boundary is exactly codimension-one for any d.
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9.5.1 Action and boundary conditions

Our model consists of a single chiral multiplet interacting with a cubic superpotential, so
the degrees of freedom are the real and imaginary parts of φ = φ1 + iφ2, a four-component
Majorana fermion Ψ, and the real and imaginary parts of the auxiliary fields F = F1 + iF2.
The action is obtained by integrating the Lagrangian density over a half-space, with parallel
coordinates x ∈ Rd−1 and perpendicular coordinate y ∈ R+:17

Sblk =
∫
dd−1x dy

(1
2(∂µφ1)2 + 1

2(∂µφ2)2 + 1
2Ψ̄γµ∂µΨ− 1

2F
2
1 −

1
2F

2
2

− λ

2
√

2

(
F1(φ2

1 − φ2
2) + 2F2φ1φ2 − Ψ̄(φ1 + iγ5φ2)Ψ

))
.

(9.132)

In order to compute Feynman diagrams, it will be simpler to integrate out the auxiliary
fields Fi, producing the following interaction vertices:

Sint =
∫
dd−1x dy

( 1
16λ

2
(
φ2

1 + φ2
2

)2
+ λ

2
√

2
Ψ̄(φ1 + iγ5φ2)Ψ

)
. (9.133)

However, it is easier to work with the off-shell action to study how the boundary breaks
supersymmetry. The supersymmetry transformations are parametrized by a Majorana
spinor ε and they are well known:

δφ1 = −ε̄Ψ,

δφ2 = iε̄γ5Ψ ,

δΨ =
(
−/∂φ1 − iγ5/∂φ2 − F1 + iγ5F2

)
ε ,

δΨ̄ = ε̄
(
/∂φ1 − iγ5/∂φ2 − F1 + iγ5F2

)
,

δF1 = −ε̄/∂Ψ,

δF2 = iε̄γ5/∂Ψ .
(9.134)

If we integrated the Lagrangian (9.132) over Rd, the supersymmetry transformations (9.134)
would be an exact symmetry of the action. However, the situation is more complicated in
the presence of the boundary. On the one hand, we know that not all supersymmetries
can be preserved, because that would imply that translations orthogonal to the bound-
ary are also preserved. We can preserve at most half of the supersymmetry, namely the
transformations generated by spinors satisfying [278]

Π+ε = ε ⇔ Π−ε = 0, Π± ≡
1
2 (1± iγ5γ

n) . (9.135)

On the other hand, to check invariance under supersymmetry of (9.132), we have to in-
tegrate by parts, which generates extra boundary terms. Supersymmetry will only be

17 We work in Euclidean signature with {γµ, γν} = 2δµν and γ5 = γ1γ2γ3γ4. The Majorana reality
condition is ΨT C = Ψ̄, where the charge conjugation matrix satisfies γµ = −C−1(γµ)T C.
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preserved for an action containing extra boundary degrees of freedom S = Sblk + Sbdy,
provided we choose Sbdy to cancel the terms generated by the supersymmetry variation of
Sblk. A systematic study of all possible boundary actions for a generic 4d N = 1 theory
appeared in [376], and we can easily translate their results to our conventions. For the
purposes of this section, we will pick the minimal boundary action that preserves super-
symmetry, although more general options would be possible:

Sbdy =
∫
dd−1x

(1
2
(
φ1∂nφ1 + φ2∂nφ2 + φ1F2 + φ2F1

)
− λ

2
√

2

(
1
3φ

3
2 − φ2

1φ2
))

. (9.136)

It is an easy but tedious exercise to check that the combination of bulk and boundary
actions indeed preserves half of the original supersymmetries.

Next we address the problem of determining the boundary conditions of our fields.
Demanding that the Euler-Lagrange variation of the total action vanishes produces a bulk
term which is zero, provided that the fields satisfy the equations of motion (EOM). However,
we also get terms localized in the boundary

δ(Sbulk + Sbdy) =
∫
dd−1x dy ( EOM ) +

∫
dd−1x

(1
2φ1 δ(F2 + ∂nφ1)

+ 1
2φ2 δ(F1 + ∂nφ2)− 1

2δφ1(F2 + ∂nφ1)− 1
2δφ2(F1 + ∂nφ2) + 1

2δΨ̄γ
nΨ
)
,

(9.137)

and the boundary conditions must be chosen such that they are zero. Moreover, one must
check that the boundary conditions are closed under the supersymmetry transformations
(9.134). In [376] it was shown that there is only one possible supersymmetric boundary con-
dition, up to R-symmetry redefinitions φ→ eiδφ. In conventions that match the bootstrap
analysis of section 9.4 this boundary condition is

∂nφ1 = −F2 = λ√
2
φ1φ2 , φ2 = 0, Π−Ψ = 0 . (9.138)

In equations (9.137) and (9.138) we used the bulk equations of motion that relate F ∼ λφ2.
Since we will work in perturbation theory, the free propagators are obtained for λ = 0,
where φ1 satisfies Neumann boundary conditions ∂nφ1 = 0. As pointed out in [385], these
boundary conditions are a good description near the free theory, but are not meant to
describe the boundary condition of the fields at the interacting fixed point.

9.5.2 Using susceptibility

The calculation of correlation functions in the presence of boundaries using Feynman di-
agrams is typically challenging. An important observation that dates back to the work of
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McAvity and Osborn [268,386] is that the calculations simplify in terms of susceptibilities,
defined as

χO1O2(y, y′) =
∫
dd−1x 〈O1(x, y)O2(0, y′)〉 . (9.139)

Crucially, this integral transform is invertible and one can recover the two-point function
in terms of the susceptibility. This idea has been recently used to compute the one-loop
two-point function of the order parameter in the extraordinary phase transition of the
O(N) model [280, 281]. One can also apply it to the O(N) model in the large-N limit,
see [277] for the three-dimensional case with a φ6 potential.

In susceptibility space the role of the cross ratio ξ is played by a new object ζ, which
is defined as follows:

ζ = min(y, y′)
max(y, y′) . (9.140)

The importance of ζ was noted in [280], where they observed that the contribution of a
single conformal block in the boundary expansion is proportional to ζ∆̂− d−1

2 . This allows
one to extract the boundary CFT data directly from the susceptibility without the need
to reexpress everything in terms of the correlation function F (ξ). To be more precise, the
susceptibility can be expanded as

χOO(y, y′) = (4yy′)
d−1

2 −∆O
∑
Ô

µÔπ
d−1

2
Γ
(
∆̂− d−1

2

)
Γ(∆̂)

(4ζ)∆̂− d−1
2 , (9.141)

where ∆O is the dimension of the external operator, µÔ is the boundary OPE coefficient
and ∆̂ is the dimension of the exchanged operator.

Even though the bootstrap analysis used the chiral field and its complex conjugate,
for the purposes of the current section it is more convenient to work with its real and
imaginary parts φ = φ1 + iφ2. The susceptibilities of the two descriptions are related by

χ+(y, y′) ≡ χφ1φ1(y, y′) =
1 + ε

2(γ + log π)
4π2

(
χφφ̄(y, y′) + χφφ(y, y′)

)
,

χ−(y, y′) ≡ χφ2φ2(y, y′) =
1 + ε

2(γ + log π)
4π2

(
χφφ̄(y, y′)− χφφ(y, y′)

)
,

(9.142)

where the prefactor translates from the natural normalization in the bootstrap calculation
to the natural normalization using Lagrangians. It is an easy exercise to check that our
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prediction for the order ε correlator (9.130) leads to

χ+(y, y′) = −1
2
√
ζ

(4yy′)
1
2−∆(1)

φ
ε
[
1 + 2∆̂(1)

0 ε+ ∆̂(1)
0 ε log ζ

−∆(1)
φ ε
(
(1 + ζ) log(1 + ζ) + (1− ζ) log(1− ζ)

)
+O(ε2)

]
,

χ−(y, y′) =
√
ζ

2 (4yy′)
1
2−∆(1)

φ
ε
[
1 + 2

(
2∆(1)

φ − ∆̂(1)
0

)
ε+ ∆̂(1)

0 ε log ζ

−∆(1)
φ ε

((1 + ζ)
ζ

log(1 + ζ)− (1− ζ)
ζ

log(1− ζ)
)

+O(ε2)
]
.

(9.143)

In the rest of this section we will check that perturbation theory gives a result consistent
with this prediction, and we will find the explicit values of ∆(1)

φ and ∆̂(1)
0 for the Wess-

Zumino model.

9.5.3 Susceptibility at one-loop

Tree level

To compute the scalar propagators we have to solve the Klein-Gordon equation in position
space. It is well known that in the presence of a boundary one has to add a “mirror” term
to the propagator to satisfy the correct boundary conditions at y = 0. Since φ1/φ2 satisfy
Neumann/Dirichlet boundary conditions we have:

〈φ1(x)φ1(x′)〉0 = κs

( 1
|x− x′|d−2 + 1

|x̄− x′|d−2

)
,

〈φ2(x)φ2(x′)〉0 = κs

( 1
|x− x′|d−2 −

1
|x̄− x′|d−2

)
.

(9.144)

Here 〈. . .〉0 indicates the two-point functions are evaluated in the free theory. For each
x = (x, y) we defined the mirror point x̄ = (x,−y), and the overall normalization is
κs = Γ( d2 )

(d−2)2πd/2 . We will be mostly interested in the susceptibilities, which can be readily
obtained from (9.139) and (9.144):

χ+
0 (y, y′) = χ〈φ1φ1〉0(y, y′) = −max(y, y′) ,

χ−0 (y, y′) = χ〈φ2φ2〉0(y, y′) = + min(y, y′) .
(9.145)

Similarly, solving the Dirac equation and adding a “mirror” term dictated by the boundary
conditions one gets [278]

〈Ψ(x)Ψ̄(x′)〉0 = κf

(
γ · (x− x′)
|x− x′|d

+ iγ5γ
nγ · (x̄− x′)
|x̄− x′|d

)
, κf =

Γ(d2)
2πd/2

. (9.146)
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It is not hard to check that the fermion propagator satisfies the correct boundary conditions:

Π−〈Ψ(x, 0)Ψ̄(x′, y′)〉0 = 〈Ψ(x, y)Ψ̄(x′, 0)〉0 Π− = 0 . (9.147)

Tadpole diagram

First we consider the quartic interaction terms in (9.133) and we use them to form loop
diagrams with either φ1 or φ2 running in the loop. These diagrams would vanish if the
boundary was not present, or equivalently if we studied physics far away from the boundary.
As a result, we expect them to be finite in the limit ε→ 0. Taking symmetry factors into
account the total contribution is

χ±(y, y′)|tadpole = = ∓2−3+ελ2κsI
±
b (y, y′) . (9.148)

The propagator that runs in the loop is defined as the finite part of 〈φi(x, y)φi(x′, y′)〉0
when x′ → x, and can be obtained from (9.144). With this prescription, the Feynman
integrals we must compute are [281]

I+
b (y, y′) =

∫ ∞
0

dz χ+
0 (y, z) z−2+ε χ+

0 (z, y′) = yεy′

ε− 1 −
y′(yε − y′ε)

ε
− y′ε+1

ε+ 1 ,

I−b (y, y′) =
∫ ∞

0
dz χ−0 (y, z) z−2+ε χ−0 (z, y′) = − yy′ε

ε− 1 −
y(yε − y′ε)

ε
+ yε+1

ε+ 1 .
(9.149)

For simplicity we assumed here and in the rest of the section that y < y′, but one can
obtain the integral for y > y′ replacing y ↔ y′.

Fermion bubble

Similarly, we can use the Yukawa interactions in (9.133) to form diagrams with fermions
running in the loop. If the boundary was not present, these diagrams would be UV di-
vergent and would contribute to the renormalization of φ. Since the boundary does not
change the UV behaviour of the theory, we expect a divergence as ε→ 0 which is canceled
by the counterterm δφ:

χ±(y, y′)|bubble = +

= λ2κ2
fI
±
f (y, y′)− δφχ±0 (y, y′).

(9.150)
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Using the identities

tr
[
〈Ψ(x)Ψ̄(x′)〉0〈Ψ(x′)Ψ̄(x)〉0

]
= −4κ2

f

( 1
|x− x′|2(d−1) + 1

|x̄− x′|2(d−1)

)
,

tr
[
〈Ψ(x)Ψ̄(x′)〉0γ5〈Ψ(x′)Ψ̄(x)〉0γ5

]
= 4κ2

f

( 1
|x− x′|2(d−1) −

1
|x̄− x′|2(d−1)

)
,

(9.151)

we see that the Feynman integral is

I±f (y, y′) =
∫ ∞

0
dz

∫ ∞
0

dz′χ±(y, z)b±(z, z′)χ±(z′, y′) , (9.152)

where we have defined

b±(z, z′) =
∫
dd−1r

 1(
r2 + (z − z′)2)d−1 ±

1(
r2 + (z + z′)2)d−1


= 22−dπd/2

Γ
(
d
2

) (
|z − z′|−3+ε ± |z + z′|−3+ε

)
.

(9.153)

We will evaluate this integral with a trick that has been used in the literature in similar
situations [280, 281, 387]. The idea is to split the integration region between z > z′ and
z < z′. By changing variables to Z = z

z′ and Z = z′

z , one can carry out the first integration
in terms of I±b defined in the previous section. The result is:

I±f (y, y′) = yε+1
[ ∫ ∞

1
dZI±b (1, Z/ζ)b±(1, Z)Z−ε +

∫ 1/ζ

1
dZI±b (1, (Zζ)−1)b±(1, Z)Z

+ ζ−1−ε
∫ ∞

1/ζ
dZI±b (1, ζZ)b±(1, Z)Z−ε

]
. (9.154)

Remember that we are assuming y < y′, such that ζ = y/y′. Finally, all terms in (9.154) can
be integrated using Mathematica18. The result for general ε is not particularly illuminating
and will not be needed later, instead we focus on the result in the limit ε → 0. First, the
divergent piece is canceled in MS with the following counterterm:

δφ = − λ2

(4π)2

(1
ε

+ 1
2(γ + log π) + 1

)
. (9.155)

18The only exception are integrals of the form
∫∞

1 dZ(Z − 1)a, but they are zero in dimensional regular-
ization.
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The total diagram is now finite:

χ+(y, y′)|bubble = λ2

64π2

√
4yy′√
ζ

(
log(4yy′)− log ζ − 2

+ (1 + ζ) log(1 + ζ) + (1− ζ) log(1− ζ)
)

+O(ε) ,

χ−(y, y′)|bubble = −λ
2

64π2
√

4yy′ζ
(

log(4yy′)− log ζ − 2

+ (1 + ζ)
ζ

log(1 + ζ)− (1− ζ)
ζ

log(1− ζ)
)

+O(ε) .

(9.156)

Final result

We can obtain the full susceptibility at order ε by combining the tree-level result (9.145),
the tadpole diagram (9.149), and the fermion bubble (9.156). We should evaluate the sum
at the fixed point coupling λ2

∗ = 16π2

3 ε, and keep only terms up to order ε. The result is
perfectly consistent with the bootstrap prediction (9.143), and we identify

∆(1)
φ = 1

6 , ∆̂(1)
0 = 0 , s = +1 . (9.157)

The anomalous dimension of φ in the Wess-Zumino model is well known in the literature.
One can obtain it by demanding that the superpotential has R-charge R(W ) = 3rφ = 2, so
we find that rφ = 2/3. Using the relation between the R-charge and conformal dimension
we find ∆φ = d−1

3 , in perfect agreement with (9.157). From this argument it is clear that
∆φ is one-loop exact.

An interesting prediction of our calculation is the anomalous dimension of the leading
bulk operator in the OPE φ × φ ∼ O0 + . . .. We calculated this for a general model
in (9.129), and for the Wess-Zumino case we get

∆(1)
0 = 2

3 ⇒ ∆0 = d+ 2
3 = d− 2∆φ . (9.158)

Recalling the selection rules of section 9.4.1, we see that the exchanged operator is of the
form O0 ∼ (Q+)2Ψ̄ where Ψ̄ is an antichiral primary operator. Indeed, the numerical
bootstrap applied to the Wess-Zumino model in [193, 378] also provides strong evidence
that the leading operator in the φ× φ OPE is of this form. The agreement of our results
with the predictions from [193,378] provides a non-trivial sanity check of our perturbative
calculation. It would be interesting to consider other particular models, for instance with
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extra boundary interactions or a more complicated bulk, and see whether the anomalous
dimension of the defect operator changes. We hope to come back to this question in the
future.

9.6 Conclusions

In this work we studied supersymmetric boundaries for 3d N = 2 superconformal theories.
There are two possible choices characterized by 2d N = (0, 2) and N = (1, 1) boundary
algebras respectively. After performing a careful superspace analysis of correlators involv-
ing chiral fields, we observed in section 9.4 that the N = (1, 1) choice can be analytically
continued in the spacetime dimension. This allowed us to compute superconformal blocks
across dimensions and opened the door for the ε-expansion bootstrap in our supersymmet-
ric setup. We proved uniqueness of the first two orders in ε, and confirmed our general
prediction for one specific model using perturbation theory. We used standard perturba-
tive and bootstrap techniques in this analysis, but one could also try using alternative
approaches, such as Mellin space [274] or the equations of motion method of [381].

An interesting follow up to our BCFT analysis is to consider higher codimension de-
fects. The algebraic approach to calculate superblocks of section 9.4 is applicable to higher
codimension, where the spacetime and defect dimensions are allowed to change while the
codimension is kept fixed. In particular, the codimension-two blocks calculated in sec-
tion 9.4.2 are applicable to known examples, such as the Wess-Zumino model in the pres-
ence of twist defects. In the same spirit of the present work, one can use the ε-expansion
to study two-point functions of local operators. In principle one can do explicit perturba-
tive calculations as in [256], however it is perhaps simpler to set up a bootstrap problem
and attempt to solve it using the technology of inversion formulas [265, 266]. One could
also concentrate exclusively on three dimensions and apply the numerical bootstrap on the
line, analogous to what was done for the twist defect in the 3d Ising model [256] (the 1d
bootstrap for superconformal line defects has been studied in [2, 233,260]).

A longer term goal is to include multi-point correlators in the analysis; this is a program
that has been underexplored even in the bosonic case, although significant progress can be
made using Calogero-Sutherland technology [388]. Finally, the study of free theories in the
presence of interacting defects has gotten some attention recently; in particular the results
of [295] suggest the existence of a new conformal boundary condition for the free scalar
field. It would be interesting to repeat their analysis in our supersymmetric setup, either

227



Chapter 9. Superconformal boundaries in 4− ε dimensions

for boundaries or higher codimension defects.

9.A Details on three-dimensional boundaries

9.A.1 Conventions

In section 9.3 we work in Lorentzian signature with mostly plus metric ηµν = diag(−1,+1,+1).
The gamma matrices are defined in terms of the identity matrix 1 and Pauli matrices σi

as

(γµ)αβ ≡
(
−1αβ, (σ3)αβ, (σ1)αβ

)
, (γµ) β

α = (γµ)αγεγβ , (γµ)αβ = εαγ(γµ) β
γ . (9.159)

With these conventions the gamma matrices are real and symmetric. Here and in what
follows we are raising and lowering spinor indices as θα = εαβθβ and θα = εαβθ

β, where

ε12 = 1, ε12 = −1 . (9.160)

The contraction of two spinors is defined as θ2 = εαβθ
αθβ. Finally, the spacetime Levi-

Civita tensor is defined by:
ε012 = −1, ε012 = 1 . (9.161)

9.A.2 Superconformal algebra

The three dimensional Lorentz group SO(2, 1) is generated by Mµν . A generic element
of the algebra J contains vector indices µ, ν, λ, . . . and spinor indices α, β, . . ., and each of
them transforms under rotations as:

[Mµν ,Jλ...] = i (ηµλJν... − ηνλJµ...) ,

[Mµν ,Jα...] = + i

2εµνλ(γλ) β
α Jβ...,

[Mµν ,J α...] = − i2εµνλ(γλ) α
β J

β... .

(9.162)

With these identities it is easy to write down any commutator involvingMµν . The rest of
the 3d conformal algebra is:

[D,Pµ] = iPµ, [D,Kµ] = −iKµ, [Kµ,Pν ] = −2i (Mµν + ηµνD) . (9.163)

The 3d N = 2 superconformal algebra is given by OSP (2|4). Besides the conformal and
R-symmetry generators, it contains four Poincaré supercharges and four superconformal
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supercharges that anticommute as

{Qα, Q̄β} = 2(γµ)αβPµ, {Sα, S̄β} = 2(γµ)αβKµ,

{Qα, S̄β} = −i
(
2δ β
α (D + iR)− εµνλ(γλ) β

α Mµν

)
,

{Q̄α,Sβ} = −i
(
2δ β
α (D − iR)− εµνλ(γλ) β

α Mµν

)
.

(9.164)

The commutation relations between the conformal group and the supercharges are

[D,Qα] = 1
2 iQα, [D,Sα] = −1

2 iS
α, [Kµ,Qα] = (γµ)αβSβ, [Pµ,Sα] = −(γµ)αβQβ,

[D, Q̄α] = 1
2 iQ̄α, [D, S̄α] = −1

2 iS̄
α, [Kµ, Q̄α] = (γµ)αβS̄β, [Pµ, S̄α] = −(γµ)αβQ̄β .

(9.165)

Lastly, all generators are neutral under R-symmetry, except the eight supercharges:

[R,Qα] = −Qα , [R, Q̄α] = Q̄α , [R,Sα] = −Sα , [R, S̄α] = S̄α . (9.166)

9.A.3 Differential operators

In this appendix we present the action of our generators in terms of differential operators
in superspace. We consider an operator O(z) of dimension ∆ and charge r that trans-
forms under rotations in a representation dictated by matrices sµν , which satisfy the same
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commutation relations as Mµν . Then, the generators of the algebra act as:

[D,O(z)] = i

(
∆ + xµ∂µ + 1

2θ
α∂α + 1

2 θ̄
α∂̄α

)
O(z) , (9.167)

[Kµ,O(z)] =
(
− 2i∆xµ − 2ixµxν∂ν + ix2∂µ

− ixµ(θα∂α + θ̄α∂̄α) + iεµνρ(γν) β
α xρ(θα∂β + θ̄α∂̄β)

+ (γµ)αβθαθ̄β(θγ∂γ − θ̄γ ∂̄γ)− i

2θ
2θ̄2∂µ

− 2r(γµ)αβθαθ̄β − 2xνsµν − iηµνενρσsρσθαθ̄α
)
O(z) , (9.168)

[Mµν ,O(z)] =
(
i

2εµνρ(γ
ρ) β
α (θα∂β + θ̄α∂̄β) + ixµ∂ν − ixν∂µ + sµν

)
O(z) , (9.169)

[R,O(z)] =
(
θ̄α∂̄α − θα∂α + r

)
O(z) , (9.170)

[Sα,O(z)] =
(
− i(γµ)αβxµ∂β + θ̄αxµ∂µ + 1

2(γµ)αβ(γν)βγ θ̄γ(xµ∂ν − xν∂µ)

− θαθ̄β∂β + θ̄αθβ∂β − 2θ̄αθ̄β ∂̄β

− i(γµ)βγθβ θ̄γ θ̄α∂µ + 2∆θ̄α − 2r θ̄α + iεµνρ(γρ) α
β θ̄βsµν

)
O(z) , (9.171)[

S̄α,O(z)
]

=
(
i(γµ)αβxµ∂̄β − θαxµ∂µ −

1
2(γµ)αβ(γν)βγθγ(xµ∂ν − xν∂µ)

+ θ̄αθβ ∂̄β − θαθ̄β ∂̄β + 2θαθβ∂β

+ i(γµ)βγ θ̄βθγθα∂µ − 2∆θα − 2rθα − iεµνρ(γρ) α
β θβsµν

)
O(z) . (9.172)

9.B Non-supersymmetric conformal blocks

In this appendix, we will derive the non-supersymmetric bulk and boundary blocks for
bulk two-point functions and bulk-boundary-boundary correlators.

9.B.1 Two-point function

The conformal blocks for a two-point function were first derived in [268] but we will fol-
low [269] in our approach.

Bulk channel: The bulk-channel blocks can be found by acting on the two-point func-
tion (9.7) with the bulk Casimir operator:

C(12)
bulk,bos = −D2 − 1

2 {K
µ,Pµ}+ 1

2M
µνMµν . (9.173)
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The differential operators are well know, but they can also be obtained from section 9.A.3
by setting all Grassmann coordinates to zero. The Casimir eigenvalues is C∆,` = ∆(∆ −
d) + `(`+ d− 2), but only operators with ` = 0 can appear in the bulk OPE. For the bulk
channel, it is convenient to define the blocks in terms of g∆12

∆ (ξ) = ξ(∆1+∆2)/2f∆12
∆ (ξ). The

resulting differential equation is(
Cbulk,bos − C∆,`

)
〈φ1(x1)φ2(x2)〉

(2x⊥1 )−∆1(2x⊥2 )−∆2ξ−(∆1+∆2)/2 =
[
4ξ2(ξ + 1)∂2

ξ + 2ξ(2ξ − d+ 2)∂ξ

−
(
∆(∆− d) + ∆2

12ξ
)]
g∆12

∆ (ξ) = 0 ,
(9.174)

which is solved by

g∆12
∆ (ξ) = ξ∆/2

2F1
(∆ + ∆12

2 ,
∆−∆12

2 ; ∆ + 1− d

2 ;−ξ
)
. (9.175)

Whenever the superscript ∆12 is omitted, it is assumed that ∆12 = 0.

Boundary channel: In the boundary channel, the conformal blocks are eigenfunctions
of the boundary Casimir that acts on a single point

Ĉ(1)
non-susy = −D2 − 1

2 {K
a,Pa}+ 1

2M
abMab , (9.176)

where the index a, b runs only on directions parallel to the boundary. The eigenvalue of
the boundary Casimir is Ĉ∆,j = ∆(∆ − d + 1) + j(j + d − 1), but once more we have to
take j = 0 because only scalar operators appear in the BOE of a bulk scalar. The resulting
differential equation is(
Ĉnon-susy − Ĉ∆,0

)
〈φ1(x1)φ2(x2)〉

(2x⊥1 )−∆1(2x⊥2 )−∆2
=
[
ξ(ξ + 1)∂2

ξ + d

2(2ξ + 1)∂ξ

− ∆̂(∆̂− d+ 1)
]
f̂∆̂(ξ) = 0 ,

(9.177)

which is solved by

f̂∆̂(ξ) = ξ−∆̂
2F1

(
∆̂, ∆̂− d

2 + 1; 2∆̂− d+ 2;−1
ξ

)
. (9.178)

9.B.2 Three-point bosonic blocks

In this section we restrict to d = 3. We start with considering the bosonic correlator

〈O1(x)Ô2,j(0)Ô3(∞)〉 = (xaωa)j

(x⊥)∆1+∆̂23 |xa|j
F3pt(χ), χ = |xa|2

(x⊥)2 , (9.179)
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where the second operator has parallel spin j. We used index-free notation to contract all
vector indices, and ωa is a null-vector. We need to evaluate the eigenvalue equation

Ĉ(1)
bos〈O1(x)Ô2,j(0)Ô3(∞)〉 = Ĉ∆̂,0〈O1(x)Ô2,j(0)Ô3(∞)〉 , (9.180)

where Ĉ∆̂,0 is the boundary Casimir eigenvalue when the parallel spin of the exchanged
operator is zero. This gives us the differential equation[

4χ(χ+ 1)∂2
χ + 4

(
(∆̂23 + 2)χ+ 1

)
∂χ − ∆̂(∆̂− 2) + ∆̂23(∆̂23 + 2)− j2

χ

]
f̂3pt,∆̂23

∆̂,j
= 0 .

(9.181)
The solution to equation (9.181) is once more given by a hypergeometric function

f̂3pt,∆̂23
∆̂,j

(χ) = χ−
1
2 (∆̂+∆̂23)

2F1
(1

2
(
∆̂ + ∆̂23 − j

)
,
1
2
(
∆̂ + ∆̂23 + j

)
; ∆̂;− 1

χ

)
. (9.182)

9.C More on blocks across dimensions

In this appendix, we provide more details on the derivation of the superconformal blocks
in any number of dimension. In section 9.4 we showed that the supersymmetric part of the
Casimir acting on a two-point function can be written in terms of Q supercharges acting
on the two-point function. Our current goal is to find equivalent expressions where the
supercharges are replaced by a differential operator, for example〈

0
∣∣ [Q−α̇ , φ1(x1)

] [
Q+
α , φ̄2(x2)

] ∣∣0〉 ∼ Dx〈0∣∣φ1(x1)φ̄2(x2)
∣∣0〉 . (9.183)

It was proposed in [193] that this can be achieved with supersymmetric Ward identities.
Here we give a quick summary of the strategy. In our setup the supercharges QA and SA
are preserved by the boundary, so the following Ward identities are satisfied:〈

0
∣∣{Qbdy

1 ,
[
Q−1 , φ1(x1)

]
φ̄2(x2)

}∣∣0〉 = 0 ,〈
0
∣∣{Qbdy

1 ,
[
Q−2 , φ1(x1)

]
φ̄2(x2)

}∣∣0〉 = 0 ,〈
0
∣∣{Qbdy

2 ,
[
Q−1 , φ1(x1)

]
φ̄2(x2)

}∣∣0〉 = 0 ,

〈
0
∣∣{Sbdy

1 ,
[
Q−1 , φ1(x1)

]
φ̄2(x2)

}∣∣0〉 = 0 ,〈
0
∣∣{Sbdy

1 ,
[
Q−2 , φ1(x1)

]
φ̄2(x2)

}∣∣0〉 = 0 . (9.184)

There are other Ward identities that can be considered, but these five are sufficient for our
purposes. At this point, it is hard to continue without an explicit matrix representation for
the Clifford algebra, so we focus on d = 3 where Σµ = (σ3, σ1, σ2). Let us consider explic-
itly the simplest Ward identity to show how to replace the supercharges with differential
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operators in the general case. With elementary manipulations we find:

0 =
〈
0
∣∣{Qbdy

2 ,
[
Q−1 , φ1(x1)

]
φ̄2(x2)

}∣∣0〉
=
〈
0
∣∣{Qbdy

2 ,
[
Q−1 , φ1(x1)

] }
φ̄2(x2)

∣∣0〉− 〈0∣∣[Q−1 , φ1(x1)
][
Qbdy

2 , φ̄2(x2)
]∣∣0〉

=
〈
0
∣∣[{Q+

2 , Q
−
1
}
, φ1(x1)

]
φ̄2(x2)

∣∣0〉− 〈0∣∣[Q−1 , φ1(x1)
][
Q+

2 , φ̄2(x2)
]∣∣0〉 .

(9.185)

In our conventions {Q+
2 , Q

−
1 } = P2 + iP3 and also [Pµ,O(x)] = −i∂µO(x), so we conclude〈

0
∣∣∣[Q−1 , φ1(x1)

] [
Q+

2 , φ̄2(x2)
]∣∣∣ 0〉 = (−i∂2 + ∂3)

〈
0
∣∣∣φ1(x1)φ̄2(x2)

∣∣∣ 0〉 . (9.186)

The other Ward identities can be manipulated identically, but unlike the example we
showed they do not decouple, so one has to solve a simple linear system of equations to
obtain the terms we are interested in.

These steps can be automated in Mathematica and applied to all cases of interest
in d = 3, 4. The resulting differential operators Dx depend on xµi and ∂µ,i and take a
complicated looking form. However, we know that the Casimir operator Cbulk/bdy,susy has
to respect conformal invariance, so when we combine all the contributing terms, the result
has to be a differential operator of the cross-ratio ξ. Indeed, in d = 3, 4 we find the following
results:

ixµ12Σ̄α̇α
µ

〈
0
∣∣∣[Q−α̇ , φ1(x1)

] [
Q+
α , φ̄2(x2)

]∣∣∣ 0〉→ (
4ξ∂ξ − 2(∆1 + ∆2)

)
G(ξ) ,

ix⊥1

〈
0
∣∣∣{Q−1 , [Q−2 , φ1(x1)

]}
φ̄2(x2)

∣∣∣ 0〉→ (−ξ∂ξ −∆1)F(ξ),

ix⊥1

〈
0
∣∣∣{Q−1 , [Q−2 , φ1(x1)

]}
φ2(x2)

∣∣∣ 0〉→ (
−(ξ + 1)∂ξ −∆1

)
F(ξ) .

(9.187)

From these results we can obtain (9.93), (9.96) and (9.101). Although the intermediate
differential operators were complicated, the final result takes a remarkably simple form.
Perhaps one could find a more direct method of obtaining these results, and at the same
time make it more manifest that the result is indeed independent of d.
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Chapter 10

Bootstrapping Monodromy
Defects

Abstract

We use analytical bootstrap techniques to study supersymmetric monodromy defects in
the critical Wess-Zumino model. In preparation for this result we first study two related
systems which are interesting on their own: general monodromy defects (no susy), and the
ε–expansion bootstrap for the Wess-Zumino model (no defects). For general monodromy
defects, we extend previous work on codimension-two conformal blocks and the Lorentzian
inversion formula in order to accommodate parity-odd structures. In the Wess-Zumino
model, we bootstrap four-point functions of chiral operators in the ε–expansion, with the
goal of obtaining spectral information about the bulk theory. We then proceed to bootstrap
two-point functions of chiral operators in the presence of a monodromy defect, and obtain
explicit expressions in terms of novel special functions which we analyze in detail. Several
of the results presented in this paper are quite general and should be applicable to other
setups.

10.1 Introduction and summary

Conformal defects are extended objects in conformal field theories that preserve a fraction of
the full conformal symmetry. They are important physical observables and their properties
should be studied with the same emphasis as the spectrum of local operators. In three
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dimensions, the critical Ising model has been the subject of intensive research during the
past years, and part of this work has focused on its spectrum of defects: conformal boundary
conditions were studied using bootstrap techniques in [45, 269], while the existence of a
monodromy defect was proposed in [255], and further studied in [256].

The motivation behind this work is the study of monodromy defects in the N = 2 Wess-
Zumino model, which can be considered a supersymmetric counterpart to the standard 3d
Ising model which preserves four supercharges.1 In order to achieve our goal, several in-
termediate results are necessary, and some of them are interesting on their own right. In
particular, our analysis contains applications valid for non-supersymmetric monodromy
defects, for general codimension-two defects and for the Wess-Zumino model without de-
fects. The purpose of this detailed introduction is to summarize the paper and provide an
outlook of the most relevant results.

Consider a d-dimensional Euclidean conformal field theory. Whenever there is a com-
plex scalar φ(x) invariant under U(1) transformations φ(x)→ eiαφ(x), a monodromy defect
is introduced demanding that the scalar picks a phase when it goes around the origin as
follows

φ(r, θ + 2π, ~y) = e2πivφ(r, θ, ~y) . (10.1)

Here 0 ≤ v < 1 is a real parameter that characterizes the monodromy, and we are using
polar coordinates (r, θ) in the plane orthogonal to the defect. The critical Ising model
provides the simplest example: since the global symmetry is Z2, there exists a monodromy
defect with v = 1/2. This defect was studied in [255, 256] using Monte-Carlo simulations,
ε–expansion calculations and numerical bootstrap (see also [389]). For the case of the
O(N) models, there exist monodromy defects with general v, which were studied in the
ε–expansion in [257], and recently the very systematic study of [258] has extended these
results and obtained new ones in the large-N limit.2

In the present work, an important observable we consider are two-point correlation
functions of scalar fields in the presence of a monodromy defect. Since the monodromy
partly breaks conformal symmetry, the correlator depends on two conformal cross ratios

〈φ(x1)φ̄(x2)〉 = G(x, x̄)
(r1r2)∆φ

. (10.2)

1The N = 1 super Ising model can also be formulated as a Wess-Zumino model [383], and has been
studied successfully using the numerical bootstrap [199,200].

2 The monodromy defect geometry is reminiscent of two interesecting boundaries at an angle θ = 2πv,
although the later setup breaks more symmetry [297].
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Analogously to four-point functions in homogeneous CFT, the correlator G(x, x̄) captures
an infinite amount of CFT data thanks to the Operator Product Expansion (OPE). In the
presence of a defect, two different OPEs are possible, one as a sum of bulk operators, the
other in terms of operators localized on the defect [259]. For two-point functions, these
OPEs give two conformal block decompositions which must be equal:3

G(x, x̄) =
∑
∆̂,s

µ∆̂,sf̂∆̂,s(x, x̄) =
( √

xx̄

(1− x)(1− x̄)

)∆φ∑
∆,`

c∆,`f∆,`(x, x̄) . (10.3)

In this paper, we follow the bootstrap philosophy which uses the crossing equation (10.3)
as the starting point. Indeed, we will see that in favorable situations, (10.3) together with
basic structural properties of the bulk theory and mild physical assumptions, can be used to
fully determine the correlator G(x, x̄). In the case of conformal boundaries, this approach
has been successfully carried out in a number of interesting examples [3, 269,272–275].

The main technical tool we will use to solve crossing analytically is the so-called
Lorentzian inversion formula (LIF). Because defect correlators have two different oper-
ator product expansions, there exist two inversion formulas, one for each channel. These
formulas were obtained in [265, 266] and were already used to study the Z2 Ising mon-
odromy defect. In this work, we continue with this program and use the LIF to solve more
general monodromy defects in the ε–expansion.

We start in section 10.2 with the Wilson-Fisher (WF) fixed point with global O(2N)
symmetry. This model is described in d = 4− ε dimensions by the following Lagrangian

LWF = 1
2(∂µφi)2 + λ

4!(φiφi)
2 , i = 1, . . . , 2N . (10.4)

We define the complex scalar φ = φ1 + iφ2 and impose a monodromy v under rotations
(10.1). Since this model is weakly coupled for 0 < ε � 1, one can use the Lagrangian
description to compute CFT data using Feynman diagrams [256–258]. However, this is not
the approach we follow on this work. Although still perturbative in nature, our analysis
relies solely on modern analytical bootstrap techniques. The bootstrap has several advan-
tages which allow us to present improvements on previous results. On the one hand, we
obtain closed-form expressions for the correlation function G(x, x̄) to order O(ε), which
allows us to extract previously unknown bulk CFT data in an efficient way. On the other
hand, we show that the correlator is an analytic function of the monodromy v, and the

3Here and in the rest of the paper we use the shorthand notation µ∆̂,s = |b
φÔ
|2 and c∆,` = aOλφφ̄O,

where b
φÔ

, aO, λφφ̄O are defined in the main text.
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transformation v → v + 1 has the interpretation of a change of boundary condition for
low-lying defect operators. We also clarify subtleties related to codimension-two defects
that had not appeared in the literature. In particular, we obtain conformal blocks for
odd-spin bulk operators, which are related to the existence of parity-odd one-point tensor
structures when the codimension is q = 2. In order to accommodate these operators, we
also have to extend the bulk-to-defect Lorentzian inversion formula [266]. These results
not only are applicable to monodromy defects, but to any type of codimension-two defect.

Having used the Wilson-Fisher model as a testing ground for our techniques, we move on
to the Wess-Zumino (WZ) model, which is the simplest superconformal model preserving
four supercharges. This model consists of a complex scalar φ(x) and a two-component
complex fermion ψ(x). The allowed interactions are fully fixed by supersymmetry, so the
action depends on a single coupling constant g:

LWZ = (∂µφ̄)(∂µφ) + ψ†σ̄µ∂µψ + g

2(ψψφ+ ψ†ψ†φ̄) + g2

4 (φφ̄)2 . (10.5)

Similarly to the WF case, this model has a fixed point in d = 4 − ε dimensions that can
be studied in diagrammatic perturbation theory.4 Compared to the Wilson-Fisher fixed
point, which has gotten a lot of attention from the bootstrap community [92, 94, 135, 136,
146–149], the literature on the Wess-Zumino model using modern conformal bootstrap is
much scarcer, the most notable exceptions being [193,378].

In section 10.3 we take a small detour in order to fill this gap. In this section we
forget momentarily about defects, and we start by modifying the original LIF [125] into
a formula that directly extracts OPE coefficients of exchanged superconformal primaries.
The main virtues of this formula are that it unmixes the contributions of nearly-degenerate
operators, and that it applies to general superconformal theories with four supercharges
in any number of dimensions. With this newly developed machinery, we carry out the
bootstrap program for bulk four-point functions of chiral operators and extract bulk CFT
data to leading order in ε. This is the simplest application of our formalism, and we hope
to present a more detailed treatment of the Wess-Zumino model using LIF technology
elsewhere.

In section 10.4 we put all the pieces together and study monodromy defects in the
Wess-Zumino model. We start by reviewing the relevant superconformal blocks [3], and
then move on to use the input of section 10.3 and the LIF to bootstrap two-point functions
of chiral fields. The final result can be written in a compact form in terms of a class of one-

4See [383] for a nice summary and introduction to the literature.
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and two-variable special functions which are defined by their series expansions. Because
these functions might be relevant for future bootstrap calculations, we study some of their
analytic properties in more detail. In particular, we explain how to extract their behavior
around x, x̄ ∼ 1 given their series expansions around x, x̄ ∼ 0. This amounts to extracting
both bulk and defect CFT data to leading order in ε, which was one of the original goals
of this work.

10.2 Wilson-Fisher: Monodromy defects

In this section we study monodromy defects in the Wilson-Fisher fixed point, previous work
on this subject include [257,258].5 Here we present some small improvements by obtaining
the full correlation function at order O(ε) and extracting the bulk CFT data. This model,
interesting on its own, is also a good testing ground for our techniques, which we will later
apply to the Wess-Zumino model in section 10.4.

We start this section studying kinematics of codimension-two defects in d-dimensional
Euclidean spacetime. Even though kinematics of defect CFTs are well understood in general
[259], the case q = 2 turns out to be subtle. In particular, we obtain bulk conformal blocks
for odd-spin operators, which have not appeared in the literature before. Furthermore,
we extend the bulk-to-defect inversion formula of [266], in order to accommodate odd-
spin operators for generic q = 2 defects. We end the section by bootstrapping two-point
functions of bulk scalars 〈φ(x1)φ̄(x2)〉 in the presence of monodromy defects, first for free
theories, and then for the more interesting case of the Wilson-Fisher fixed point.

10.2.1 Conformal blocks

When considering the correlator 〈φ(x1)φ̄(x2)〉 we use a frame where the operators lie on
a plane orthogonal to the defect. Furthermore, using a conformal transformation we set
φ̄(x2) at one and parametrize the plane using complex coordinates (x, x̄):

x1 =
(

1
2(x+ x̄), 1

2i(x− x̄), ~y
)
, x2 = (1, 0, ~y) . (10.6)

The coordinates (x, x̄) are the two cross-ratios of our correlation function and play a central
role in the discussion below.6 Let us now look at the two possible OPE channels in defect
CFT.

5See also [390,391] for other works using methods slightly different to ours.
6The cross ratios for a general frame appear in equation (A.2) of [266].
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Defect channel

The defect OPE fuses a single bulk field into a sum of defect fields. In the defect OPE
limit, i.e. when xx̄→ 0, the leading order in the expansion is normalized as

φ(x, x̄, ~y) ∼
∑
Ô

b
φÔ

(
x̄

x

)s
(xx̄)(∆̂−∆φ)/2Ô(~y) + . . . , (10.7)

where ~y parametrizes the directions along the defect. Inserting (10.7) in the two-point
function gives the leading behavior of defect blocks f̂∆̂,s(x, x̄) ∼ x(∆̂−s)/2x̄(∆̂+s)/2. In order
to obtain the full dependence on the cross-ratios, one can write down a Casimir equation
which is solved by the following conformal block [259]:

f̂∆̂,s(x, x̄) = x(∆̂−s)/2x̄(∆̂+s)/2
2F1

(
∆̂, d/2− 1; ∆̂ + 2− d/2;xx̄

)
. (10.8)

Even though this discussion is general, let us return momentarily to monodromy defects.
Since we work in Euclidean signature, the cross ratios are complex conjugates of each other
x∗ = x̄, and moving φ(x1) around the defect corresponds to analytically continuing x (x̄)
around the origin counterclockwise (clockwise). Together with (10.1), we conclude that
our correlation function must satisfy the boundary condition

G(x	, x̄�) = e+2πivG(x, x̄) . (10.9)

The monodromy (10.9) combined with the form of the defect block (10.8) requires the
defect spectrum to consists of non-integer transverse spins:

s = −v + n for n ∈ Z . (10.10)

This observation will be important in the discussion that follows.

Bulk channel

Let us now turn to the bulk OPE φ × φ̄. Since the two operators are different, the bulk
OPE consists of both even and odd spin operators. As is customary, we use index free
notation O(`)(x, u) = Oµ1...µ`(x)uµ1 . . . uµ` and assume the following normalization for the
OPE7

φ(x1)φ̄(x2) ∼
∑
O(`)

λ12O 2`/2O
(`)(x2, x12)

x∆1+∆2−∆+`
12

+ . . . , (10.11)

7The awkward factor 2`/2 leads to four-point blocks normalized as g∆,`(z, z̄) ∼ z(∆−`)/2z̄(∆+`)/2 in the
lightcone limit.
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where we keep the leading order in the bulk OPE limit x2
12 → 0. A peculiarity of

codimension-two defects is that spinning operators with either even or odd spin can have
one-point functions:

` even: 〈O(`)(x, u)〉 = 2`/2aO
|xi|∆

(
(xiui)2

|xi|2
− uiui

)`/2
,

` odd: 〈O(`)(x, u)〉 = − i 2`/2aO εijuiuj

|xi|∆+1

(
(xiui)2

|xi|2
− uiui

)(`−1)/2

.

(10.12)

Here εij is the two-index antisymmetric epsilon tensor, which is an allowed tensor for q = 2
defects. Combining the bulk OPE with the form of the one-point function gives the leading
order behavior of blocks with even and odd spin:

lim
x,x̄→1

f∆,`(x, x̄) =
[
(1− x)(1− x̄)

](∆−`)/2(x− x̄)` . (10.13)

It is perhaps surprising that odd-spin bulk blocks are antisymmetric under x ↔ x̄, but it
is a direct consequence of the existence of parity-odd one-point functions (10.12). It is also
interesting to consider the normalization of bulk blocks in the lightcone limit

f∆,`(x, x̄) =
{

(1− x)(∆−`)/2(1− x̄)(∆+`)/2 0 < 1− x� 1− x̄� 1 ,
(−1)`(1− x̄)(∆−`)/2(1− x)(∆+`)/2 0 < 1− x̄� 1− x� 1 .

(10.14)

As usual, the full dependence of f∆,` on the cross-ratios can be obtained by solving the
Casimir differential equation, which has been worked out in [259,264]. The case of interest
for us is q = 2, when the differential operator in x, x̄ coordinates reads(

Dx +Dx̄ + (d− 2)(1− x)(1− x̄)
1− xx̄

(
x∂x + x̄∂x̄

)
− 1

2c2

)
f∆,`(x, x̄) = 0 ,

Dx = (1− x)2x∂2
x + (1− x)2∂x ,

(10.15)

and the Casimir eigenvalue is c2 = ∆(∆− d) + `(`+ d− 2). The similarity of (10.15) with
the Dolan and Osborn differential operator [31, 32] is apparent. Indeed, it was originally
pointed out in [259] that in terms of z, z̄ coordinates

x = 1− z , x̄ = (1− z̄)−1 , (10.16)

the two differential operators are the same. By comparing the lightcone limit of the defect
block (10.14) with the lightcone limit of four-point blocks, we obtain the precise mapping

f∆,`(x, x̄) = (−1)−(∆+`)/2g∆,`

(
1− x, x̄− 1

x̄

)
. (10.17)
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Our discussion makes it clear that this relation is valid both for even- and odd-spin bulk
operators. In the four-dimensional case, which is relevant for the present work, simple
closed-form expressions for the four-point blocks are known [16], which in the defect case
map to

f∆,`(x, x̄) = (1− x)(1− x̄)
1− xx̄

(
k0,0

∆−`−2(1− x)k0,0
∆+`(1− x̄) + (−1)`

(
x↔ x̄

))
,

kr,sβ (x) = xβ/22F1

(
β − r

2 ,
β + s

2 , β, x

)
.

(10.18)

It is easy to check that this is normalized according to (10.14). For general space-time
dimensions d, one makes an ansatz of the form [124]

f∆,`(x, x̄) =
∞∑
n=0

n∑
j=−n

An,j(∆, `)(1− x)(∆−`)/2+nk0,0
∆+`+2j(1− x̄) , (10.19)

and fixes the coefficients recursively with the Casimir equation (10.15). This process can
be implemented efficiently using a computer. For the sake of clarity, we present some
low-lying coefficients:

A0,0(∆, `) = 1 , A1,0(∆, `) = ∆− `
4 , A1,−1(∆, `) = − (d− 2)`

2`+ d− 4 . (10.20)

10.2.2 Bulk-to-defect inversion formula

The Lorentzian Inversion Formula (LIF) [125,126] is a central tool for the analytic bootstrap
program. In the presence of defects, one can consider a bulk-to-defect LIF [266] and a
defect-to-bulk LIF [265]. The bulk-to-defect LIF is of particular importance in this work,
as will become clear in subsequent sections. For codimension-two defects, we need a small
extension of the formula presented in [266] which we outline below, and we refer the reader
to [266] for further details.

The LIF of [266] was derived assuming that the correlator G(x, x̄) is a symmetric func-
tion of x, x̄, which is true when the external scalars are identical and the theory preserves
parity. In our setup, the bulk expansion generically contains even- and odd-spin blocks,
which are symmetric and antisymmetric respectively, so the full correlator has no definite
symmetry. Furthermore, our derivation is valid for non-integer values of s, which is the
relevant situation for monodromy defects.
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The central object of this discussion is the function µ(∆, s), which encodes dimensions
of defect operators as poles and their OPE coefficients as residues:

µ∆̂∗,s
≡ b2

∆̂∗,s
= −Res∆̂=∆̂∗

µ(∆̂, s) . (10.21)

Let us introduce coordinates x = rw and x̄ = r/w, which in Euclidean signature correspond
to a radial coordinate r and a phase w. The conformal block (10.8) can be decomposed as
f̂∆̂,s(r, w) = w−sf̂∆̂(r), and the correlation function admits a partial wave expansion

G(r, w) =
∑
s

∫ p/2+i∞

p/2−i∞

d∆̂
2πiµ(∆̂, s)w−sΨ∆̂(r) , Ψ∆̂(r) ≡ 1

2

(
f̂∆̂ +

K
p−∆̂
K∆̂

f̂
p−∆̂

)
, (10.22)

where the sum runs for all −∞ < s < ∞ and we introduced K∆̂ = Γ(∆̂)/Γ(∆̂ − p/2)
and p = d − 2. When the partial wave Ψ∆̂(r) has dimension ∆̂ = p/2 + iν it obeys an
orthonormality relation [266]:∫ 1

0
dr

(1− r2)d−2

rd−1 Ψ∆̂1
(r)Ψ∆̂2

(r) = π

2
K
p−∆̂2

K∆̂1

[δ(ν1 − ν2) + δ(ν1 + ν2)] . (10.23)

Furthermore, we assume the defect spectrum is such that the transverse spins are integer
separated s1 − s2 ∈ Z. In this case, we have the orthonormality relation∮

dw

2πiww
s1−s2 = δs1,s2 , (10.24)

where the integral is along the unit circle |w| = 1. Combining the partial wave decom-
position (10.22) with the orthonormality of our basis, one readily obtains the Euclidean
inversion formula:

µ(∆̂, s) =
2K∆̂
K
p−∆̂

∮
dw

2πiww
s
∫ 1

0
dr

(1− r2)d−2

rd−1 Ψ∆̂(r)G(r, w) . (10.25)

Let us stress that this formula is only valid for physical values of the transverse spin s. Now
we would like to deform the integration contour of w into Lorentzian kinematics, leading
to a formula analytic in s. However, in order to deform the contour safely, one needs the
asymptotic behavior of G(r, w) for large and small w:

G(r, w) . w−s∗+ as w → 0 , G(r, w) . ws∗− as w →∞ . (10.26)

Then we conclude that for s > s∗+ we can contract the contour towards the origin picking
up a discontinuity around the cut w ∈ [0, r]. Similarly, for s < −s∗− we blow up the
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contour to infinity, picking a discontinuity around the cut w ∈ [1/r,∞]. We then rewrite
the resulting integral in terms of x, x̄, and keep only poles in µ(∆̂, s) corresponding to the
exchanged operator and not its shadow. After the dust settles, we obtain the bulk-to-defect
Lorentzian inversion formula in its final form:

µ(∆̂, s) =


∫ 1

0 dx
∫ 1/x

1 dx̄ I∆̂,s(x, x̄) Discx̄ G(x, x̄) for s > s∗+∫ 1
0 dx̄

∫ 1/x̄
1 dx I∆̂,s(x, x̄) Discx G(x, x̄) for s < −s∗−

. (10.27)

In the above formula, the integration kernel and discontinuities are given by:

I∆̂,s(x, x̄) = 1
4πi x

− ∆̂−s+2
2 x̄−

∆̂+s+2
2 (1− xx̄)2F1

( 1− ∆̂, 2− d/2
d/2− ∆̂

;xx̄
)
,

Discx G(x, x̄) = G(x+ i0, x̄)− G(x− i0, x̄) ,

Discx̄ G(x, x̄) = G(x, x̄+ i0)− G(x, x̄− i0) .

(10.28)

This is the same formula obtained in [266] for s > s∗+, but one has to exchange the role of
x↔ x̄ to obtain the defect CFT data for for s < −s∗−. Whenever the correlation function
G(x, x̄) is a symmetric function, the positive and negative transverse spin Regge trajectories
are identical, but this is not true in general, as we will see in section 10.4.

In practical applications, the main virtue of the LIF is that it kills exact double-twist
operators. Indeed, only three classes of bulk operators contribute to the inversion formula:

1. The bulk identity.

2. Operators below the double-twist dimension ∆ < 2∆φ + `.

3. Double-twist operators with anomalous dimension ∆ = 2∆φ + `+ 2n+ γ.

The universal contribution from the bulk identity will be the subject of section 10.2.3.
Operators of the second kind appear frequently in large-N CFTs, where they correspond
to single-trace operators, but they play no role in our discussion. Finally, the third type of
contributions is central in our discussion of the Wilson-Fisher and Wess-Zumino models,
and will be treated in more detail there.

10.2.3 GFF monodromy defect

Having developed the necessary techniques, we are ready to study monodromy defects
using analytic bootstrap. We start with a generalized free field (GFF) φ(x) of dimension
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∆φ. It is well known that the bulk spectrum of GFF consists of the identity and double-
twist operators ∆`,n = 2∆φ + `+ 2n, and we just discussed that these do not contribute to
the inversion formula. As a result, we can reconstruct the full defect CFT data from the
discontinuity of the bulk identity:

Discx̄ G(x, x̄) = Discx̄

( √
xx̄

(1− x)(1− x̄)

)∆φ

= 2i sin(π∆φ)
( √

x

1− x

)∆φ
( √

x̄

x̄− 1

)∆φ

.

(10.29)

Plugging the discontinuity in the LIF (10.27), one can obtain the defect spectrum and the
OPE coefficients. This is worked out in detail in [266], the main result is that the defect
spectrum is given by ∆s,n = ∆φ + |s|+ 2n with the following OPE coefficients:

µGFF
s,n (∆φ, d) =

(∆φ + 1− d/2)n(∆φ)2n+|s|
n!(n+ |s|)!(∆φ + n+ |s|+ 1− d/2)n

. (10.30)

For now we assume that the LIF converges down to s = 0, and we come back to the problem
of convergence in section 10.2.3. We would like to use the defect data, which is analytic in
s, to consider a monodromy defect in a bulk GFF. As pointed out around equation (10.10),
one obtains a monodromy defect by allowing the transverse spin to take non-integer values
s ∈ −v + Z. Since we know the full defect CFT data, we can try to resum it and obtain
the full correlation function:

GGFF
∆φ,d,v

(x, x̄) =
∞∑
n=0

∑
s∈Z−v

µGFF
s,n (∆φ, d)f̂∆φ+|s|+2n,s(x, x̄) . (10.31)

As a consistency check, we note that the trivial case with no monodromy defect v = 0,
resums to the bulk identity as one would expect:

GGFF
∆φ,d,v=0(x, x̄) =

∞∑
m=0

∑
s∈Z

µGFF
m,s (∆φ, d)f̂∆φ+s+2m,s(x, x̄) =

( √
xx̄

(1− x)(1− x̄)

)∆φ

. (10.32)

In the sections below, we consider three simple cases where the two-point correlator G(x, x̄)
can also be obtained in closed form.

Free theory monodromy defect

The first simplification is to consider free bulk fields, which have conformal dimension
∆free
φ = (d − 2)/2. In this case only the leading transverse-twist trajectory n = 0 con-

tributes to the defect expansion, see (10.30). Ideally we would like to find Gfree
d,v (x, x̄) ≡
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GGFF
(d−2)/2,d,v(x, x̄) for general values of d and v, but this turns out to be hard.8 Fortunately,

for even spacetime dimension d = 4, 6, . . . the calculation simplifies dramatically and one
can obtain closed form expressions. For example, the d = 4 correlator is [258]

Gfree
4,v (x, x̄) =

√
xx̄

(1− x)(1− x̄)
(1− x̄)xv + (1− x)x̄1−v

1− xx̄ . (10.33)

Similar expressions, though more lengthy, can be obtained for higher even values of d.
Keeping only the leading terms as x → 1, the expressions simplify and it is possible to
guess a formula for the correlator which is analytic in d

Gfree
d,v (x, x̄) =

( √
xx̄

(1− x)(1− x̄)

)∆free
φ (

1+ (10.34)

+ C free
d,v

(
(1− x)(1− x̄)

)∆free
φ

[
2F1

( ∆free
φ ,∆free

φ + v

d− 1
; 1− x̄

)
+O(1− x)

])
,

where we introduced the constants

CGFF
∆φ,d,v

= − Γ(∆φ + 1− v)Γ(∆φ + 1 + v)
(∆φ + v)Γ(2∆φ + 1)Γ(v)Γ(1− v) , C free

d,v = CGFF
(d−2)/2,d,v . (10.35)

Even though (10.34) has been obtained by non-rigorous means, it passes a number of non-
trivial consistency checks. It is correct for any even d = 4, 6, . . ., it is consistent with the
result [265] for v = 1/2 and general d, and it is consistent with the result (10.46) in d = 4−ε
dimensions.

The power of equation (10.34) is that it captures all the bulk CFT data. Indeed, since
the bulk theory is free, the spectrum consists of double-twist operators ∆`,0 = 2∆free

φ + `,
namely

Gfree
d,v (x, x̄) =

( √
xx̄

(1− x)(1− x̄)

)(d−2)/2(
1 +

∞∑
`=0

cfree
` f`+d−2,`(x, x̄)

)
. (10.36)

Here we remind the reader that we use the shorthand notation cO = λφφ̄OaO. Using the
bulk blocks (10.19) and comparing (10.34)-(10.36) at leading order in (1 − x), one can

8After this paper was submitted to the arXiv, we have been made aware by Y. Linke that there exists a
closed form expression for Gfree

d,v (x, x̄) in terms of Appell F1 functions. The precise formula can be provided
by the authors upon request.
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obtain the bulk CFT data order by order in (1− x̄). For the first few coefficients we find

cfree
0 = C free

d,v ,

cfree
1 = (d− 2)(2v − 1)

4(d− 1) C free
d,v ,

cfree
2 = (d− 2)(v − 1)v

8(d− 1) C free
d,v ,

cfree
3 = (d− 2)(d+ 2)(v − 1)v(2v − 1)

96(d− 1)(d+ 1) C free
d,v .

(10.37)

The first three coefficients are in perfect agreement with the explicit calculation of [258] up
to a difference in normalization.9 The main advantage of knowing the correlation function
is that we can extract the bulk data for very high values of the spin `. In doing this, we
observed the CFT data satisfies a simple two-step recursion relation

cfree
`+2 = (2v − 1)(d+ 2`)

4(`+ 2)(d+ `) c
free
`+1 + (`− 1)(d+ `− 3)(d+ 2`− 2)(d+ 2`)

16(`+ 2)(d+ `)(d+ 2`− 3)(d+ 2`− 1)c
free
` , (10.38)

with the initial conditions as given in (10.37).10

Alternate boundary condition

The inversion formula predicts ∆s = ∆free
φ + |s| for the free theory defect spectrum. How-

ever, as we pointed in section 10.2.2, this result only holds for spins |s| > s∗, where the
threshold spin s∗ cannot be fixed from the bootstrap perspective. In this subsection, we re-
lax the assumption s∗ = 0 for defects in free theories, which we show is related to continuing
the correlator as v → v + n for n ∈ Z.

In a free theory, the bulk equations of motion imply the defect spectrum is of the form

∆±s = d− 2
2 ± |s| . (10.40)

The positive modes ∆+
s are given by the inversion formula, while the negative modes ∆−s

can arise as low transverse-spin ambiguities for |s| < s∗.11 The negative modes were studied
9The value of c3 also agrees with v2 of [258].

10For d = 4 we managed to obtain a closed-form expression by inverting the exact correlator (10.33):

cfree
`

d=4= Γ(`− 1)Γ(`+ 1)2 sin2(πv)
24`+1πΓ(`+ 1

2 )Γ(`+ 3
2 )Γ(`− v + 1)Γ(`+ v)

[

Γ(2− v)Γ(`+ v) 3F2

(
`+ 1, `+ 1, `− 1
2(`+ 1), `− v + 1

; 1
)

+ (−1)`
(
v ↔ 1− v

)]
.

(10.39)

11In the setup of [258], the values ∆±s correspond to the two possible boundary conditions certain KK
modes can have on the boundary of hyperbolic space Hd−1. We borrow the name of the section from this
reference.
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in great detail in [294,295] (see also [292,390]). The outcome of these works is that if both
∆+
s and ∆−s are present, the resulting defect is non-trivial. Since we are interested on free

defects, let us assume that for s = −v we have a negative mode instead of a positive mode.
To obtain the correlator we substract the positive mode and add the negative one:

Gfree,−
d,v (x, x̄) = Gfree

d,v (x, x̄)−
Γ(∆free

φ + v)
Γ(∆free

φ )Γ(1 + v)
f̂∆+
−v ,−v

(x, x̄) + µfree,−
−v f̂∆−−v ,−v

(x, x̄) . (10.41)

The OPE coefficient µfree,−
−v is unknown because, by assumption, the inversion formula

cannot be trusted for the negative mode s = −v. Let us keep this OPE coefficient arbitrary
and try to expand the correlator in the bulk channel:

Gfree,−
d,v (x, x̄) =

( √
xx̄

(1− x)(1− x̄)

)(d−2)/2(
1 +

∞∑
`=0

cfree,−
` f`+d−2,`(x, x̄)

)
. (10.42)

Perhaps surprisingly, the correlator does not admit a bulk expansion of the above form.
Instead, one needs to add extra bulk blocks with unphysical conformal dimensions. The
only way for these unphysical operators to drop out is if the defect OPE coefficient takes
the following value:

µfree,−
−v =

Γ(∆free
φ − v)

Γ(∆free
φ )Γ(1− v)

.

This is in perfect agreement with the explicit calculation of [258].
Now, the x → 1 limit of the free correlator is given by (10.34), using hypergeometric

identities one can combine (10.34) with (10.41) to obtain

Gfree,−
d,v (x, x̄) =

( √
xx̄

(1− x)(1− x̄)

)∆free
φ (

1+ (10.43)

Cv+1,d
(
(1− x)(1− x̄)

)∆free
φ

[
2F1

( ∆free
φ ,∆free

φ + v + 1
d− 1

; 1− x̄
)

+O(1− x)
])

.

Interestingly, this is just the original expression with the replacement v → v + 1. Since
(10.43) determines completely the bulk CFT data, and the bulk spectrum is independent
of v, the full correlators satisfies the same relation:

Gfree,−
d,v (x, x̄) = Gfree

d,v+1(x, x̄) . (10.44)
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As a result, the bulk OPE coefficients for alternate boundary conditions are obtained
from (10.37) by v → v + 1. For spin ` = 0, 2 we find perfect agreement with explicit
calculation [258]:

cfree,−
0 = Cv+1,d, cfree,−

1 = (d− 2)(2v + 1)
4(d− 1) Cv+1,d . (10.45)

One can turn on more negative modes in a similar way. Note that in general these violate
the defect unitarity bound, but this does not affect the discussion. In particular, if we use
negative modes for s = −v,−v − 1, . . . ,−v − n + 1, we find that the correlator is given
by Gfree

v+n,d(x, x̄). Similarly, if we turn on negative modes for s = 1 − v, 2 − v, . . . , n − v
the correlator is given by Gfree

v−n,d(x, x̄). More complicated choices of negative modes do not
seem to generate such simple structure.

GFF monodromy defect in d = 4− ε

In preparation for the analysis of the Wilson-Fisher fixed point, let us study GFF as a
perturbation around free theory. Consider a GFF scalar of dimension ∆φ = 1 − δφε in
d = 4 − ε dimensions. The defect data has been presented in equation (10.30). In order
to also extract bulk CFT data, it is necessary to resum the defect expansion. The zeroth
order result appears in (10.33), while here we carry out the resummation to leading order
in O(ε). For the leading transverse-twist family, there are contributions at O(ε) from the
OPE coefficients, the defect blocks and the defect dimensions. Furthermore, there are
higher-twist families with n > 0 that only contribute with tree-level dimensions and OPE
coefficients. The complete O(ε) contribution is then:

GGFF,O(ε)
1−δφε,4−ε,v(x, x̄) = ε

∞∑
n=0

∑
s∈−v+Z

∂ε
(
µGFF
s,n (1− δφε, 4− ε)f̂1+|s|−δφε,s(x, x̄)

)
ε=0

= −δφε
(xx̄)1/2

1− xx̄

[
xv

1− x

(
Φ(x, 1, v) +Hv−1 + log

( √
xx̄

1− xx̄

))

+ x̄xv

1− x̄
(
Φ(x, 1, v)− Φ(xx̄, 1, v)

)
+ (x↔ x̄, v ↔ 1− v)

]
.

(10.46)

The result is written in terms of harmonic numbers Hn and Hurwitz-Lerch zeta function
Φ(x, 1, v), which has nice properties reviewed in appendix 10.A.2. As a consistency check,
for a free defect δφ = 1/2, the correlation function (10.46) at leading order in x→ 1 agrees

249



Chapter 10. Bootstrapping Monodromy Defects

with (10.34) at leading order in ε. Let us also mention that there is a curious non-trivial
cancellation of terms such that the final result is proportional to δφ.

We are now ready to expand in the bulk channel. Once more, since the bulk theory is
of the GFF type, the spectrum contains higher-twist families:

GGFF
∆φ,d,v

(x, x̄) =
( √

xx̄

(1− x)(1− x̄)

)1−δφε(
1 +

∞∑
n=0

∞∑
`=0

cGFF
`,n f2∆φ+`+2n,`(x, x̄)

)
. (10.47)

As explained before, the bulk OPE coefficients can be extracted order by order in (1 −
x),(1− x̄) using the bulk blocks in the form (10.19). Some of the low-lying coefficients are:

cGFF
0,0 = CGFF

∆φ,d,v
+O(ε2) ,

cGFF
1,0 = 1

18C
GFF
∆φ,d,v

(2v − 1)(3− δφε) +O(ε2) ,

cGFF
2,0 = 1

36C
GFF
∆φ,d,v

v(v − 1)(3− δφε) +O(ε2) ,

cGFF
0,1 = ε

96(2δφ − 1)v(v − 1)
(
v2 − v + 4

)
+O(ε2) .

(10.48)

The interested reader can find more OPE coefficients in the attached Mathematica note-
book.

10.2.4 Wilson-Fisher monodromy defect

The last model we consider in this section is the O(2N) Wilson-Fisher (WF) fixed point
in d = 4− ε dimensions.12 Following [257,258], we impose a monodromy v to the complex
scalar φ = φ1 + iφ2. Besides the defect CFT data, we improve on existing results by
computing the two-point function to order O(ε) and by extracting the bulk CFT data. As
already announced, we use the Lorentzian Inversion formula (10.27), which reconstructs
defect CFT data from the discontinuity of the correlator DiscG(x, x̄). In perturbative
CFTs, the discontinuity can be computed using information which is known from bulk
physics at lower orders in perturbation theory.

Let us remind the reader that the identity and double-twist operators with anomalous
dimensions contribute to the defect CFT data through the LIF. For the Wilson-Fisher fixed
point, there are two important simplifications. One the one hand, the external scalar has
dimension ∆φ = (d − 2)/2 + O(ε2), so the GFF part of the correlator behaves as in free

12The literature on the WF O(N) model without defects is too vast to review here. However, let us
mention the nice references [135,136], which use analytic bootstrap techniques that inspired our work.
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theory. On the other, the leading-twist trajectory has anomalous dimensions starting at
order O(ε2), i.e. ∆ = 2∆φ+ `+O(ε2) for ` > 0, and only the ` = 0 operator gets corrected
at order O(ε):

∆φφ̄ = 2∆φ + γ
(1)
φφ̄
ε+O(ε2) = 2∆φ + N + 1

N + 4ε+O(ε2). (10.49)

Our analysis is simplified dramatically, because the discontinuity can be obtained from a
single bulk block. In order to compute the discontinuity, we rewrite bulk blocks as

f∆,`(x, x̄) =
[
(1− x)(1− x̄)

](∆−`)/2
f̃∆,`(x, x̄). (10.50)

The function f̃∆,`(x, x̄) admits an expansion in integer powers of (1 − x), (1 − x̄), so only
the prefactor in (10.50) can contribute to the discontinuity. Combining the block with the
overall factor

( √
xx̄

(1−x)(1−x̄)

)∆φ one obtains

G(x, x̄)|singular = ε

2c0γ
(1)
φφ̄

(xx̄)∆φ/2 log
[
(1− x)(1− x̄)

]
f̃2,0(x, x̄)

= −ε2c0γ
(1)
φφ̄

log
[
(1− x)(1− x̄)

](xx̄)1/2 log(xx̄)
1− xx̄ .

(10.51)

Here G(x, x̄)|singular is the part of the correlator contributing to DiscG(x, x̄) at order O(ε).
Notice it does not include the bulk identity, because it has been studied separately in
sections 10.2.3 and 10.2.3. To obtain (10.51) it was necessary to use the closed-form
expression (10.18) of the bulk blocks in d = 4. The next step in our calculation is to use
the definition (10.28) of the discontinuity to obtain

Discx G(x, x̄) = Discx̄ G(x, x̄) = 2πi ε2
v(v − 1)

2
N + 1
N + 4

(xx̄)1/2 log(xx̄)
1− xx̄ . (10.52)

The integrand of the LIF is O(ε), so we can evaluate the integration kernel (10.28) exactly
in d = 4. The double integral in the LIF is simple to do, for instance when s > 0 one
obtains

µ(∆̂, s) = ε
v(v − 1)

8
(N + 1)
(N + 4)

∫ 1

0
dx

∫ 1/x

1
dx̄ log(xx̄)x−

∆̂−s+1
2 x̄−

∆̂+s+1
2

= −εv(v − 1)
2

(N + 1)
(N + 4)

1
s
(
∆̂− (s+ 1)

)2 . (10.53)

The replacement s→ |s| produces an expression also valid for negative transverse spin. It
is well understood that a double-pole in ∆̂ indicates defect anomalous dimensions, see [266]

251



Chapter 10. Bootstrapping Monodromy Defects

for details. To this, one should add the contribution from the bulk identity. All in all, we
conclude that the defect spectrum consists of a single family with the following CFT data:

∆̂s = d− 2
2 + |s|+ εγ̂(1)

s +O(ε2) , γ̂(1)
s = v(v − 1)

2
(N + 1)
(N + 4)

1
|s|
,

µs =
(1− ε/2)|s|
|s|! +O(ε2) ,

(10.54)

which is in perfect agreement with the literature [257,258].
Let us now extract the bulk OPE coefficients to order O(ε). As for the free and GFF

case, the first step is to resum the defect expansion. The contribution of the bulk identity to
the full correlator has been computed in equations (10.33) and (10.46), where one has to set
δφ = 1/2 because φ behaves as a free field plus O(ε2) corrections. There is a contribution
which is new for the Wilson-Fisher fixed point, which comes from the defect anomalous
dimensions:

GWF(x, x̄) = ε
∑

s∈−v+Z
b2|s|γ̂

(1)
|s| ∂∆̂f̂∆̂,s(x, x̄)

∣∣
∆̂=|s|+1

= ε
v(v − 1)

4
(N + 1)
(N + 4)

(xx̄)1/2 log(xx̄)
1− xx̄

[
xvΦ(x, 1, v) + x̄1−vΦ(x̄, 1, 1− v)

]
.

(10.55)

For v = 1/2 and N = 1/2, this reproduces the Ising Z2 monodromy defect result [265].
We have obtained the full two-point correlation function to O(ε), so it is now an easy

exercise to extract the bulk OPE coefficients. Besides the twist-two there is also a twist-four
family:13

Gfree
d,v (x, x̄) + GWF(x, x̄) =

( √
xx̄

(1− x)(1− x̄)

)∆φ
(

1 + c0,0fd−2+εγ(1)
φφ̄
,0(x, x̄)

+
∞∑
`=1

c`,0f`+d−2,`(x, x̄) +
∞∑
`=0

c`,1f`+4,`(x, x̄)
)
.

(10.56)

The OPE coefficients of the leading-twist trajectory take a particularly simple form after

13The absence of higher-twist families at this order was suggested in [269] for ` = 0, and then proven
in [135].
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normalizing by the free piece

c0,0 = cfree
0

(
1 + ε

2
(N + 1)
(N + 4)(Hv−1 +H−v) +O(ε2)

)
,

c1,0 = cfree
1

(
1 + 3ε

2
(N + 1)
(N + 4) +O(ε2)

)
,

c2,0 = cfree
2

(
1 + ε

6
(N + 1)
(N + 4)

(3v − 2)(3v − 1)
v(v − 1) +O(ε2)

)
,

c3,0 = cfree
3

(
1 + ε

6
(N + 1)
(N + 4)

(
10v2 − 10v + 3

)
v(v − 1) +O(ε2)

)
.

(10.57)

On the other hand, the subleading-twist trajectory has the following CFT data:

c0,1 = ε

16
(N + 1)
(N + 4)v

2(v − 1)2 +O(ε2) ,

c1,1 = ε

144
(N + 1)
(N + 4)v

2(v − 1)2(2v − 1) +O(ε2) ,

c2,1 = ε

1920
(N + 1)
(N + 4)v

2(v − 1)2
(
5v2 − 5v + 2

)
+O(ε2) .

(10.58)

All our results are in perfect agreement with the Ising Z2 monodromy defect [265]. The
interested reader can find the bulk OPE coefficients for higher values of ` in the attached
Mathematica notebook.

10.3 Wess-Zumino: Bulk theory

Superconformal field theories (SCFTs) in non-integer dimensions were studied in [193,378],
where the numerical bootstrap gave evidence that the Wess-Zumino model (10.5) is perhaps
the simplest SCFT preserving four supercharges. In this section we study the Wess-Zumino
model in d = 4−ε dimensions (without defects) using the analytic bootstrap, and the results
will be needed for the study of defects in section 10.4. We work to leading order in O(ε),
but the same methods also work at higher orders in ε, a subject that we plan to study
in future work. For the reader that is mostly interested on the final results, we present a
self-contained summary of the CFT data in section 10.3.4.
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10.3.1 Generalities

Let us briefly review some generalities of SCFT in non-integer dimensions, more details
can be found in [193].14 The conformal part of the algebra is generated by the usual
operatorsD, Pi, Ki andMij with i = 1, . . . , d. There are exactly four Poincaré supercharges
Q+
α and Q−α̇ and four conformal supercharges Sα̇+ and Sα−, where the indices take two

values α, α̇ = 1, 2 regardless of the spacetime dimension. The supercharges obey the usual
supersymmetry algebra

{Q+
α , Q

−
α̇ } = Σi

αα̇Pi , {Sα̇+, Sα−} = Σ̄α̇α
i Pi . (10.59)

There is also a generator R of U(1)R symmetry, under which Q+
α and Q−α̇ have charge +1

and −1 respectively. The monodromy defects in section 10.4 will be naturally obtained by
twisting this U(1)R symmetry.

In what follows, we focus our attention on chiral-primary operators φ and their complex
conjugates φ̄. These operators are killed by supercharges of the same chirality, and the
superconformal algebra fixes their conformal dimension in terms of their R-charge:

[
Q+
α , φ(0)

]
=
[
Q−α̇ , φ̄(0)

]
= 0 ⇒ ∆φ = ∆φ̄ = d− 1

2 Rφ = −d− 1
2 Rφ̄ . (10.60)

In order to bootstrap the Wess-Zumino model without defects, we consider four-point
functions of φ and φ̄. If we focus on the s-channel expansion, there are three inequivalent
orderings of the external operators:

〈φ(x1)φ(x2)φ̄(x3)φ̄(x4)〉 = F(z, z̄)
(x2

12x
2
34)∆φ

= 1
(x2

12x
2
34)∆φ

∑
∆,` even

a∆,` g∆,`(z, z̄) ,

〈φ(x1)φ̄(x2)φ(x3)φ̄(x4)〉 = G(z, z̄)
(x2

12x
2
34)∆φ

= 1
(x2

12x
2
34)∆φ

∑
∆,`

b∆,`G∆,`(z, z̄) ,

〈φ̄(x1)φ(x2)φ(x3)φ̄(x4)〉 = G̃(z, z̄)
(x2

12x
2
34)∆φ

= 1
(x2

12x
2
34)∆φ

∑
∆,`

(−1)`b∆,` G̃∆,`(z, z̄) .

(10.61)

In the above formula a∆,` and b∆,` are shorthand notation for three-point OPE coefficients

14A different type of superconformal theories in non-integer dimensions also appear in the context of
Parisi-Sourlas supersymmetry [379,380]
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squared. The three orderings above are related to each other by simple crossing relations:

G(z, z̄) =
(

zz̄

(1− z)(1− z̄)

)∆φ

G(1− z, 1− z̄) ,

F(z, z̄) =
(

zz̄

(1− z)(1− z̄)

)∆φ

G̃(1− z, 1− z̄) .
(10.62)

The functions G(z, z̄) and G̃(z, z̄) capture the same CFT data in their s-channel expansion,
since they are related by 1↔ 2.

The constraints of supersymmetry are accounted for by expanding the correlation func-
tion in terms of superconformal blocks [193]. It can be shown that in the φ×φ OPE super-
conformal blocks reduce to regular non-supersymmetric blocks g∆,`. On the other hand,
the superblocks G∆,` are non-trivial for the φ × φ̄ OPE. Interestingly, in any dimension
the superblocks take the simple form of non-supersymmetric blocks for unequal external
operators with a suitable prefactor:

G∆,`(z, z̄) = (zz̄)−1/2g1,1
∆+1,` , G̃∆,`(z, z̄) = (zz̄)−1/2g1,−1

∆+1,` . (10.63)

Superconformal blocks capture the contributions to the OPE of all exchanged operators
that belong to the same supermultiplet, which means they should decompose as finite sums
of non-supersymmetric blocks with relative coefficients fixed by susy. This is indeed the
case

G∆,`(z, z̄) = g∆,` + a1 g∆+1,`+1 + a2 g∆+1,`−1 + a3 g∆+2,` ,

G̃∆,`(z, z̄) = g∆,` − a1 g∆+1,`+1 − a2 g∆+1,`−1 + a3 g∆+2,` ,
(10.64)

where the explicit coefficients are

a1 = (∆ + `)
4(∆ + `+ 1) ,

a2 = `(`+ d− 3)(∆− `− d+ 2)
(2`+ d− 4)(2`+ d− 2)(∆− `− d+ 3) ,

a3 = ∆(∆− d+ 3)(∆ + `)(∆− `− d+ 2)
4(2∆− d+ 4)(2∆− d+ 2)(∆ + `+ 1)(∆− `− d+ 3) .

(10.65)

10.3.2 Inversion formula

The next tool we need are inversion formulas, which reconstruct the CFT data from certain
discontinuities of correlators [125]. The main object of interest are functions that encode
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dimensions as poles and OPE coefficients as residues:

a∆,` = −Res∆′=∆ a(∆′, `) , b∆,` = −Res∆′=∆ b(∆′, `). (10.66)

Let us start with the inversion formula that reconstructs a(∆, `). Since the φ × φ OPE
uses non-supersymmetric blocks, we can use the inversion formula originally derived by
Caron-Huot [125]:

a(∆, `) = 1 + (−1)`

4 κ0,0
∆+`

∫ 1

0

∫ 1

0

dzdz̄

(zz̄)d |z − z̄|
d−2 g`+d−1,∆+1−d(z, z̄) dDisc[F(z, z̄)] .

(10.67)

The double discontinuity is defined in the usual way

dDisc[F(z, z̄)] = F(z, z̄)− 1
2F(z, z̄	)− 1

2F(z, z̄�) , (10.68)

where the analytic continuation is performed around the branch point z̄ = 1 in the direc-
tions indicated by the arrows. The overall constant has the following value

κ2r,2s
2h̄ = Γ(h̄+ r)Γ(h̄− r)Γ(h̄+ s)Γ(h̄− s)

2π2Γ(2h̄− 1)Γ(2h̄)
. (10.69)

Similarly, there exists an inversion formula that reconstructs b(∆, `). In order to obtain
it, note that superconformal blocks are non-supersymmetric blocks with shifted arguments
(10.63). Using the inversion formula for completely general external operators [125, 126],
after some manipulations we find

b(∆, `) =
κ1,1

∆+`+1
4

∫ 1

0

∫ 1

0

dzdz̄

(zz̄)d |z − z̄|
d−2
(
g1,1
`+d−1,∆−d+2(z, z̄) dDisc

[
(zz̄)1/2G(z, z̄)

]
+ (−1)`+1g−1,1

`+d−1,∆−d+2(z, z̄) dDisc
[
(zz̄)1/2G̃(z, z̄)

])
.

(10.70)

The inversion formula contains t- and u-channel contributions because the external opera-
tors are unequal. In principle, one could extract the CFT data using the standard inversion
formula (10.67). However, the resulting CFT data is a sum over nearly-degenerate contri-
butions, which would need to be unmixed using the superconformal blocks (10.64). The
supersymmetric inversion formula (10.70) elegantly solves this mixing problem.
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In practice, it is convenient to expand the integrand of the inversion formulas in the
limit z → 0 and integrate term by term. In the limit z → 0 the correlator has an expansion
of the following form

F(z, z̄) =
∞∑
n=0

∞∑
p=0

z∆φ+n logpzFn,p(z̄) , (10.71)

and similarly for G(z, z̄) and G̃(z, z̄). The inversion formula integration kernels can also be
expanded in the limit z → 0:

1
z

(
z̄ − z
zz̄

)d−2
gr,s`+d−1,∆+1−d(z, z̄) = z−(∆−`)/2

∞∑
m=0

m∑
j=−m

Cr,sm,j(∆, `)z
mkr,s∆+`+2j(z̄) . (10.72)

Similarly to equation (10.19), the coefficients in this expansion can be fixed recursively
using the four-point Casimir equation. This type of expansion has been described in detail
in the appendix of [125, 166]. After expanding the inversion formula as above, the only
non-trivial integrals left to do are of the form

INV[g(z̄)](β) =
∫ 1

0

dz̄

z̄2 kβ(z̄) dDisc
[
g(z̄)

]
,

SINV±[g(z̄)](β) =
∫ 1

0

dz̄

z̄3/2k
±1,1
β+1 (z̄) dDisc

[
g(z̄)

]
.

(10.73)

Finally, the last integral in z is elementary and produces poles in ∆.

Collecting the ingredients together, we have obtained new versions of the Lorentzian
inversion formula. For a(∆, `) we find

a(∆, `) = −
∞∑

n,p=0

Sn,p(∆, `)
(∆−∆φ − `− 2n)p+1 ,

Sn,p(∆, `) =
(
1 + (−1)`

)
2pp!κ0,0

∆+`

n∑
m=0

m∑
k=−m

C0,0
m,k(∆, `) INV[Fn−m,p(z̄)](∆ + `+ 2k) .

(10.74)
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Similarly, one obtains b(∆, `) using the following formula:

b(∆, `) = −
∞∑

n,p=0

Sn,p(∆, `)
(∆−∆φ − `− 2n)p+1 ,

Sn,p(∆, `) = 2pp!κ1,1
∆+`+1

n∑
m=0

m∑
k=−m

[
C1,1
m,k(∆ + 1, `) SINV+[Gn−m,p(z̄)](∆ + `+ 2k)

+ (−1)`+1C−1,1
m,k (∆ + 1, `) SINV−[G̃n−m,p(z̄)](∆ + `+ 2k)

]
.

(10.75)
These new formulas are simpler to use in perturbative settings.

10.3.3 Generalized free field theory

As a first application of the inversion technology, let us consider generalized free field theory
(GFF). In order to extract the CFT data a∆,` in the φ× φ OPE we have to use the GFF
correlation function

F(z, z̄) = (zz̄)∆φ +
(

zz̄

(1− z)(1− z̄)

)∆φ

. (10.76)

The first term is regular around z̄ = 1 so it is killed by the discontinuity and it does not
contribute to the inversion formula. Expanding in z → 0 and using the definition (10.71)
we find

F(z, z̄)|singular =
(

zz̄

(1− z)(1− z̄)

)∆φ

⇒ Fn,p(z̄) = δp,0
(∆φ)n
n!

(
z̄

1− z̄

)∆φ

. (10.77)

The next step is to compute the integral (10.73). A useful trick is to use the Euler rep-
resentation of the hypergeometric function, and swap the order of integration. The result
is [125]:

INV
[(

z̄

1− z̄

)p ]
(β) = 2π2 Γ(β)

Γ(β/2)2
Γ(β/2 + p− 1)

Γ(p)2Γ(β/2− p+ 1) . (10.78)

All the ingredients can be combined using equation (10.74) to obtain the dimensions and
OPE coefficients for low values of n. We find the family of operators [φφ]`,n with dimension
∆`,n = 2∆φ + `+ 2n and their OPE coefficients agree with the results of [361]:

aGFF
`,n (∆φ, d) =

2 (∆φ + 1− d/2)2
n (∆φ)2

`+n
`!n! (`+ d/2)n (2∆φ + n+ 1− d)n(2∆φ + `+ 2n− 1)`

× 1
(2∆φ + `+ n− d/2)n

.

(10.79)
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A similar calculation allows one to obtain the OPE coefficients in the φ× φ̄ OPE. Now
the relevant GFF correlation functions are

G(z, z̄) = 1 +
(

zz̄

(1− z)(1− z̄)

)∆φ

, G̃(z, z̄) = 1 + (zz̄)∆φ . (10.80)

Clearly G(z, z̄) has the same singular part as F(z, z̄), see equation (10.77), while G̃(z, z̄)
is regular around z̄ = 1 and does not contribute to the LIF. Using similar techniques as
before one obtains the following integral

SINV+
[(

z̄

1− z̄

)p ]
(β) = 2π2 Γ(β + 1)

Γ(β/2 + 1)2
Γ(β/2 + p)

Γ(p)2Γ(β/2− p+ 1) . (10.81)

Once again, using (10.75) one can obtain the first few OPE coefficients b`,n of the operators
[φφ̄]`,n. They are in perfect agreement with the values reported in [193]

bGFF
`,n (∆φ, d) =

(∆φ + 1− d/2)2
n (∆φ)2

`+n
`!n! (`+ d/2)n (2∆φ + n+ 2− d)n(2∆φ + `+ 2n)`

× 1
(2∆φ + `+ n+ 1− d/2)n

.

(10.82)

10.3.4 Wess-Zumino model

We are now ready to solve the Wess-Zumino model at leading order in ε = 4−d. There is a
well-known Lagrangian formulation for this model (10.5), which consists of a single chiral
superfield Φ interacting with cubic superpotential W ∼ Φ3. In this section we follow a
bootstrap approach similar to [135], but it is useful to keep in mind the Lagrangian (10.5).
At the end, we check that our results are in perfect agreement with the literature.

A family of solutions to crossing

At order O(ε0) the theory consists of a free chiral multiplet in d = 4. The spectrum
and OPE coefficients can be obtained from the previous section by setting ∆φ = 1. In
particular, formulas (10.79) and (10.82) imply that only the leading double-twist families
n = 0 contribute. When we turn on interactions for small ε, the dimension of the external
chiral gets corrected ∆φ = 1 − δφε + O(ε2). Furthermore, the operators in the two OPEs
φ× φ and φ× φ̄ can also get corrected, and new families of operators could appear in the
OPEs.

Let us start studying the φ × φ CFT data at the next order O(ε). The LIF (10.67)
reconstructs the CFT data from the discontinuity of F(z, z̄). Using the crossing equation
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(10.62), the discontinuity can be computed in terms of the φ× φ̄ CFT data. There is one
contribution from the bulk identity, which is considered in section 10.3.3, and a contribution
from anomalous dimensions. The corrections from anomalous dimensions are of order O(ε2)
and can be neglected. Since the inversion formula is not expected to converge for low values
of `, we should also include a term H(z, z̄) with finite support in spin:

F(z, z̄) = (zz̄)∆φ +
(

zz̄

(1− z)(1− z̄)

)∆φ

+ εH(z, z̄) . (10.83)

Solutions to crossing with finite support in spin were studied in [145], and it was found
that around d = 4 there is one such solution that takes the form

H(z, z̄) = k
(
1− ∂∆

)
gd=4

∆,0 (z, z̄)
∣∣
∆=2 . (10.84)

For now the constant k should be treated as an unknown, but later its value will be fixed.
This correlator has the following decomposition in conformal blocks

F(z, z̄) =
(
a

(0)
0,0 + εa

(1)
0,0

)
g2∆φ+εγ,0 +

∞∑
`=2
` even

a`,0g2∆φ+`,` +
∞∑
`=0
` even

a`,1g2∆φ+2+`,` . (10.85)

Notice there is a new family of twist-four operators with tree-level OPE coefficients. To
the order we are working, we have a`,n = aGFF

`,n (∆φ, d). The only exception is the ` = n = 0
case, when the [φφ]0,0 operator has the following CFT data:

a0,0 = 2 + εk , γ = −k2 . (10.86)

Let us now turn to the CFT data in the φ× φ̄ OPE. The inversion formula (10.70) has
a t-channel contribution and a u-channel contribution. As before, one uses the crossing
equation (10.62) and the OPE expansion to see which terms contribute. The t-channel con-
tribution consists of the identity, which has been studied in section 10.3.3, and anomalous
dimensions that contribute at order O(ε2). An unfamiliar feature of the supersymmetric
inversion formula (10.70) is that the u-channel contribution produces O(ε) corrections to
the CFT data. Using crossing, the part of G̃(z, z̄) proportional to log(1− z̄) is given by the
[φφ]0,0 operator we just studied:15

G̃(z, z̄)
∣∣
log(1−z̄) = ε

2a0,0γ(zz̄)∆φ log(1− z̄)g̃2,0(1− z, 1− z̄)

= −ε2k(zz̄)∆φ log(1− z̄) log z − log z̄
z − z̄

.
(10.87)

15Here g∆,`(z, z̄) = (zz̄)(∆−`)/2g̃∆,`(z, z̄) is defined analogously to (10.50).
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From this result, it is clear that the only inversions integrals that one needs to do are:

SINV−
[
z̄−n log(1− z̄)

]
(β) = 2π2Γ(β + 1)

Γ(β/2 + 1)2 ,

SINV−
[
z̄−n log(1− z̄) log z̄

]
(β) = 0 .

(10.88)

In order to obtain these inversions, we expand the integrand in powers of (1−z̄)/z̄, integrate
term by term, and in the end resum an asymptotic expansion in powers of 1/β. This
procedure has been explained in detail in [135, 169], where the reader can find further
details. The ingredients (10.87)-(10.88) can be combined using (10.75) to find b(∆, `). We
find that to this order in ε, the φ× φ̄ OPE consists only of the leading-twist family

G(z, z̄) = 1 +
∞∑
`=0

b`,0G2∆φ+`+εγ`,` +O(ε2) , (10.89)

where the CFT data can be readily obtained using the inversion formula

γ` = k
(−1)`+1

`+ 1 , b`,0 = bGFF
`,0 (∆φ, d)

(
1 + k(−1)`+1 (H` −H2`+1)

(`+ 1) ε+O(ε2)
)
. (10.90)

An important observation is that this result makes sense even for spin ` = 0. Furthermore,
we expect the Lorentzian inversion formula to have better convergence properties in super-
symmetric theories [392]. Thus, we make the plausible assumption that (10.90) is valid for
all ` ≥ 0.

Fixing the coefficients

We have found a two-parameter family of solutions to crossing which depend on k and δφ,
let us now try to fix these coefficients from basic physical requirements. The first condition
is that the stress tensor is conserved. The stress tensor belongs to a short multiplet with
a superprimary of dimensions ∆ = d − 1 and spin ` = 1, as can be seen from the form of
the superconformal block:

Gd−1,1 = gd−1,1 + d

4(d+ 1)gd,2 . (10.91)

As a result, conservation of the stress tensor requires that the operator [φφ̄]1,0 has dimension
d− 1. This relates δφ and k as follows

2∆φ + 1 + εγ1 = d− 1 ⇒ δφ = k + 2
4 . (10.92)
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On the other hand, the identification of the operator [φφ]0,0 allows to fix the remaining
free parameter. As it was discussed in [193], this operator can be identified with a chiral-
primary operator φ2, in which case:

[φφ]0,0 = φ2 ⇒ 2∆φ + εγ0 = 2∆φ ⇒ k = 0, δφ = 1
2 . (10.93)

We conclude that if [φφ]0,0 = φ2 the theory is free in d = 4− ε dimensions.
A second possibility discussed in [193] is that [φφ]0,0 is a level-two descendant of φ̄:

[φφ]0,0 = (Q+)2φ̄ ⇒ 2∆φ + εγ0 = ∆φ + 1 ⇒ k = −2
3 , δφ = 1

3 . (10.94)

This leads to a non-vanishing k, so we have found a non-trivial supersymmetric CFT in
d = 4− ε dimensions. In the following section we provide evidence that this CFT is indeed
the Wess-Zumino model.

Summary and discussion

Let us summarize our results on the Wess-Zumino model at order O(ε). The first result of
our bootstrap analysis is the dimension of the external chiral field:

∆φ = d− 1
3 . (10.95)

This is actually a well-known result. Recall that the Wess-Zumino model has a cubic
superpotentialW ∼ Φ3, which must have R-charge RW = 2 at the fixed point. As a result,
the chiral-primary field φ(x) must have charge Rφ = 2/3, or equivalently ∆φ = (d− 1)/3,
which means that (10.95) is in fact an exact result to all orders in ε.

The φ × φ OPE consists of double-twist operators [φφ]`,n, which are of the schematic
form φ�n∂µ1 . . . ∂µ`φ. The two families n = 0, 1 contribute at order O(ε), with CFT data
given by the GFF results in section 10.3.3. The only exception is the [φφ]0,0 operator,
which has the following CFT data:

a0,0 = 2− 2
3ε+O(ε2) , ∆0,0 = 2∆φ + ε

3 +O(ε2) . (10.96)

The first observation is that ∆0,0 6= 2∆φ so we cannot interpret [φφ]0,0 as a chiral-primary
operator φ2. This is consistent because the Wess-Zumino model has a chiral ring relation
φ2 = 0 due to the cubic superpotential. Instead, the correct interpretation is [φφ]0,0 =
(Q+)2φ̄, which agrees with our results since ∆0,0 = ∆φ + 1 and the R-charge is conserved.
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The presence of such an operator is consistent with the OPE selection rules [193], and it
was also suggested by the numerical bootstrap results of [378]. Thus, we expect the relation
∆0,0 = ∆φ + 1 to hold to all orders in ε.

The φ × φ̄ OPE contains superconformal primaries and superconformal descendants,
and their precise contribution can be obtained from the superconformal blocks (10.64).
We expect superprimaries of the schematic form O` = φ∂µ1 . . . ∂µ` φ̄ + ψ∂µ1 . . . ∂µ`−1σ

µ`ψ̄,
where the precise relative coefficients should be fixed by demanding S±O` = 0. From our
bootstrap analysis we found the following CFT data:

b` = bGFF
`,0 (∆φ, d)

(
1 + (−1)` 2 (H` −H2`+1)

3(`+ 1) ε+O(ε2)
)
,

∆` = 2∆φ + `+ 2
3

(−1)`

`+ 1 ε+O(ε2) .
(10.97)

It is natural to identify the ` = 0 operator with φφ̄, which has dimension ∆φφ̄ = 2 +O(ε2)
[383], in perfect agreement with our results. Finally, using (10.91) one can relate the OPE
coefficient b1 to the central charge16

CT = d(d+ 1)
(d− 1)2

∆2
φ

b1
= 20

3 −
17ε
9 +O(ε2) . (10.98)

Once again this is in perfect agreement with the literature [383], up to a difference in
normalization.

10.4 Wess-Zumino: Monodromy defects

In this section we generalize the analysis of section 10.2 to superconformal theories with four
Poincare supercharges. We study half-BPS monodromy defects that preserve two Poincare
supercharges and focus on two-point functions of chiral operators. We start the section with
general results valid for monodromy defects in arbitrary superconformal theories, and then
move on to the specific case of a monodromy defect for the Wess-Zumino model studied in
section 10.3.

10.4.1 Superconformal blocks

Let us start by calculating the relevant superconformal blocks. We use techniques origi-
nally developed for bulk four-point functions [193,236] and later applied to superconformal

16We define the central charge as in [35], such that the stress-tensor contribution to the OPE is of the
form: 〈φφ̄φφ̄〉 ⊃ 1

4 ( d
d−1 )2 ∆2

φ

CT
gd,2 .
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boundaries [3]. Here we only give an outline the calculation, the interested reader can find
further details in the aforementioned references. We stress again that this section applies
to general half-BPS codimension-two defects, which need not be monodromy defects.

Defect superconformal algebra

As in section 10.2, we chose our codimension-two defect to sit at x1 = x2 = 0. The
subalgebra of conformal transformations that preserve the defect is generated by D, Pa,
Ka and Mab, where a, b = 3, . . . , d are indices parallel to the defect. Since translation
symmetry is partly broken, at most half of the original supercharges can be preserved by
the defect. Following the conventions of section 10.3, we choose the preserved supercharges
to be:

Q1 = Q+
1 , Q2 = Q−1 , S1 = S1+ , S2 = S1− . (10.99)

Using the following Clifford algebra representation Σi
αα̇ = (Σ̄α̇α

i )∗ = (σ1, σ2, σ3, i1), it is
possible to check in d = 3 and d = 4 that the supercharges generate a subalgebra of the
full superconformal algebra. For non-integer dimensions 3 ≤ d ≤ 4 this construction is less
rigorous, however we will obtain perfectly consistent results. The anticommutators of the
supercharges generate translations and special conformal transformations parallel to the
defect:

{QA,QB} = Σ̂a
ABPa , {SA,SB} = Σ̂a

ABKa , a = 3, . . . , d, A,B = 1, 2 . (10.100)

Similarly, by considering anticommutators of the form {Q,S}, we observe that the defect
does not preserve R–symmetry or transverse rotations independently, but only a particular
linear combination of them:17

M = M12 + d− 1
2 R . (10.101)

With these conventions in mind, we proceed to obtain the superconformal blocks.

Defect channel

Let us start with the defect OPE φ(x) ∼
∑
Ô(~y). In this channel only one operator per

defect supermultiplet contributes to the OPE, and as a result, the defect superconformal
17The full subalgebra for d = 3 can be found in [181] in conventions slightly different to ours.
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blocks F̂∆̂,s(x, x̄) reduce to bosonic blocks f̂∆̂,s(x, x̄). In our conventions ∆̂, s label the
conformal primary exchanged in the OPE, and not the superprimary in the corresponding
multiplet.

We justify the above claim following an argument from [65]. Since the chirality condition
(10.60) is preserved by the defect supercharges (10.99), it turns out that [Q1, φ(x)] =
[S1, φ(x)] = 0. Inserting these relations in the OPE implies [Q1, Ô(~y)] = [S1, Ô(~y)] =
0. However, only one operator in each defect supermultiplet can satisfy both of these
conditions, hence superblocks in this channel are just standard bosonic blocks.

Bulk channel

In the bulk channel, up to four conformal primaries in each supermultiplet can contribute
to the OPE. Their contributions are organized in superconformal blocks which we now
calculate.

Following [31, 194], we characterize superconformal blocks as solutions to the super-
symmetric Casimir equation. The superconformal Casimir can be split naturally into a
non-supersymmetric and a supersymmetric piece: Cfull = Cbos +Csusy. The first contribu-
tion 1

2Cbos leads to the differential operator in equation (10.15). The second contribution
is due to supersymmetry:

Csusy = −d− 1
2 R2 + 1

2[Sα̇+, Q−α̇ ] + 1
2[Sα−, Q+

α ] . (10.102)

Following [193], our goal is to massage (10.102) into a differential operator that can be
added to (10.15). Using the commutation relations, the chirality properties of φ and φ̄,
and equation (51) from [193] we find:[

Csusy, φ(x1)φ̄(x2)
]
|0〉 = ixµ12Σ̄α̇α

µ

[
Q−α̇ , φ1(x1)

] [
Q+
α , φ̄2(x2)

]
|0〉+ 4∆φφ(x1)φ̄(x2)|0〉 .

(10.103)

Using superconformal Ward identities as in [3, 193] to rewrite the Q-dependent part as a
differential operator we get

1
2Csusy〈φ1(x1)φ̄2(x2)〉 → −

[
(1− x)∂x + x̄(1− x̄)∂x̄

]
F∆,`(x, x̄) . (10.104)

Combining the bosonic equation (10.15), the supersymmetric one (10.104), and using the
appropriate supersymmetric eigenvalue c2 = ∆(∆ − d + 2) + `(` + d − 2), we obtain a
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differential equation for the superconformal block F∆,`(x, x̄). In d = 4 the solution with
correct boundary conditions takes a simple form:

F∆,`(x, x̄) =
√

(1− x)(1− x̄)
1− xx̄

(
k1,−1

∆−`−1(1− x)k1,1
∆+`+1(1− x̄)

+ (−1)`k1,−1
∆+`+1(1− x)k1,1

∆−`−1(1− x̄)
)
.

(10.105)

For general d, we use an expansion of the form

F∆,`(x, x̄) =
∞∑
n=0

n∑
j=−n

Bn,j(∆, `)(1− x)(∆−`)/2+n(1− x̄)−1/2k1,1
∆+`+1+2j(1− x̄) , (10.106)

and we fix the coefficients using the supercasimir equation. The procedure is easy to
implement using a computer algebra system. For the first few coefficients we find:

B0,0(∆, `) = 1 , B1,−1(∆, `) = (2− d)`
d+ 2`− 4 , B1,1(∆, `) = (2− d)∆(∆ + `)(∆ + `+ 2)

16(2∆ + 4− d)(∆ + `+ 1)2 .

(10.107)

Finally, let us mention that the superconformal block has a decomposition into a sum of
four bosonic blocks:

F∆,`(x, x̄) = f∆,`(x, x̄) + a1 f∆+1,`+1(x, x̄)− a2 f∆+1,`−1(x, x̄)− a3 f∆+2,`(x, x̄) . (10.108)

The coefficients can be found in (10.65). The fact that the coefficients are the same as
the four-point blocks of chiral operators might seem surprising at first. Actually, with the
identification (10.16) the defect bulk blocks F∆,`(x, x̄) are the analytic continuation of the
four-point blocks G̃∆,`(z, z̄) [3]. What we have found is that the close connection between
codimension-two defects and four-point functions also holds at the superconformal level.

10.4.2 Free and GFF half-BPS monodromy defect

Armed with the superconformal blocks, we can now bootstrap superconformal monodromy
defects. In this section we focus on defects in (generalized) free theories, while we leave
the more interesting defect in the Wess-Zumino model for the next section. Fortunately,
we can recycle many results from the non-supersymmetric case studied in section 10.2.

Let us start with the case of a free bulk theory preserving four supercharges. Since
φ(x) is a free-field, its correlation function Gfree

d,v (x, x̄) is independent of the rest of the field
content of the theory, so it is given by the non-supersymmetric formulas (10.33)-(10.34).
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Moreover, the defect superblocks reduce to non-supersymmetric blocks, so the defect CFT
data is given by (10.30). The story is more interesting in the bulk channel, because now
in order to obtain the CFT data one must use superconformal blocks:

Gfree
d,v (x, x̄) =

( √
xx̄

(1− x)(1− x̄)

)(d−2)/2(
1 +

∞∑
`=0

dfree
` Fd−2+`,`(x, x̄)

)
. (10.109)

Once again, we use the shorthand notation dO = λφφ̄OaO. Since the bulk theory is free,
only the leading-twist family contributes. Using the series representation (10.106) for the
superblocks, we can extract the CFT data order by order in (1− x) and (1− x̄). For the
first few coefficients we find:

dfree
0 = C free

d,v , dfree
1 = (d− 2)(v − 1)

2(d− 1) C free
d,v , dfree

2 = (d− 2)(v − 1)(dv − d+ v)
8(d− 1)(d+ 1) C free

d,v .

(10.110)

Similarly to section 10.2, the coefficients satisfy a two-step recursion relation which can be
used to efficiently go to high values of `:18

dfree
`+2 = (d+ 2`)

(
d2(v − 1) + d(4v − 3)`+ d+ (4v − 3)`2 − v

)
2(`+ 2)(d+ `)(d+ 2`− 1)(d+ 2`+ 1) dfree

`+1

+ `(d+ `− 2)(d+ 2`− 2)(d+ 2`)
16(`+ 2)(d+ `)(d+ 2`− 1)2 dfree

` .

(10.112)

The next simplest example is a monodromy defect in a bulk GFF theory. As in the
free case, the full correlator GGFF

∆φ,d,v
(x, x̄) is the same as in the non-supersymmetric theory,

and the defect CFT data is given by (10.30). For the bulk data we can use (10.46), which
is the leading order correlator in ε = 4− d around the free value ∆φ = 1− δφε. Expanding
in bulk blocks

GGFF
∆φ,d,v

(x, x̄) =
( √

xx̄

(1− x)(1− x̄)

)∆φ
(

1 +
∞∑
n=0

∞∑
`=0

dGFF
`,n F2∆φ+`+2n,`(x, x̄)

)
, (10.113)

18Once again, in the d = 4 case it is possible to obtain a closed analytic formula:

dfree
`

d=4= Γ(`)Γ(`+ 1)Γ(`+ 2) sin2(πv)
24`+3πΓ(`+ 3/2)2

[
Γ(2− v)

Γ(`− v + 2) 3F2

(
`, `+ 1, `+ 2

2`+ 3, `− v + 2
; 1
)

+(−1)`+1 Γ(v)
Γ(`+ v) 3F2

(
`, `+ 1, `+ 1
2`+ 3, `+ v

; 1
)]

.

(10.111)
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it is relatively straightforward to extract CFT data up to high values of ` and n using the
expansion (10.106). Some of the low-lying coefficients are

dGFF
0,0 = C∆φ,d,v +O(ε2) ,

dGFF
1,0 = 1

9(v − 1)(3− δφε)C∆φ,d,v +O(ε2) ,

dGFF
0,1 = ε

96(2δφ − 1)v(v − 1)(v − 2)(v − 3) +O(ε2) ,

(10.114)

while we give more coefficients in the attached Mathematica notebook.

10.4.3 Wess-Zumino model

Finally, we proceed to bootstrap the two-point function of chiral operators in the Wess-
Zumino model to order O(ε) in the ε–expansion. The derivation requires knowledge of
the bulk theory derived in section 10.3 and the inversion formula derived in section 10.2.2.
Although the calculations for the Wess-Zumino model are similar in spirit to the Wilson-
Fisher fixed point, in practice they are more challenging and require extra technology which
we develop in the appendix.

Let us remind the reader that the Wess-Zumino model is a theory of a single chiral
superfield with cubic superpotential W ∼ Φ3. At the fixed point, the chiral-primary
field φ(x) must have charge Rφ = 2/3, or equivalently ∆φ = (d− 1)/3. Since the external
dimension differs from free theory at order O(ε), there is a GFF contribution with δφ = 1/3,
which has been discussed in section 10.4.2.

Furthermore, as discussed in section 10.3, the bulk OPE contains double-twist operators
[φφ̄]`,n. Importantly, the leading-twist operators n = 0 have OPE coefficients of order O(1)
and anomalous dimensions γ` of order O(ε), see (10.97). As a result, the entire leading-twist
family contributes to DiscG(x, x̄). Indeed, the part of the correlator with non-vanishing
discontinuity is

G(x, x̄)|singular = ε

2(xx̄)∆φ/2 log
[
(1− x)(1− x̄)

] ∞∑
`=0

dfree
` γ`F̃2∆φ+`,`(x, x̄)

= −ε3v(v − 1)(xx̄)1/2 log
[
(1− x)(1− x̄)

]h( x̄−1
x̄

)
− h(1− x)

1− xx̄ ,

(10.115)

where we introduced h(z) = z 3F2(1, 1, v+1; 2, 3; z). From here it is in principle straightfor-
ward to extract the defect CFT data using the bulk-to-defect Lorentzian inversion formula.
However, for the sake of clarity, we defer the details to appendix 10.A.1. Below we present
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the defect CFT data, which contains contributions from the bulk identity (GFF) and from
(10.115).

Leading transverse-twist family: The first family are defect operators of transverse
twist approximately one. Since these operators are present in the free theory, their confor-
mal dimensions can get corrected at this order in perturbation theory:

∆̂s,0 = d− 1
3 + |s|+ εγ̂(1)

s +O(ε2) , γ̂(1)
s =

0 for s > 0 ,
2(v−1)

3|s| for s < 0 .
(10.116)

Furthermore, their OPE coefficients also get corrected as follows:

µs>0,0 = 1 +
−(2|s|+ 1− v)H|s| + (|s|+ 1− v)H|s|+1−v − (1− v)H1−v

3|s| ε+O(ε2) ,

µs<0,0 = 1 +
−(2|s|+ v − 1)H|s| + (|s|+ v − 1)H|s|+v−1 − (v − 1)Hv−1

3|s| ε+O(ε2) .

(10.117)

An important feature of the CFT data is that it is not symmetric under s ↔ −s. Even
though this seems surprising at first, it follows because φ(x) is a complex field, complex
conjugation relates positive transverse-spin modes from φ(x) with the negative modes from
φ̄(x). From a technical point of view, this asymmetry is due to (10.115) not being symmetric
under x↔ x̄. In particular, one would observe a similar phenomena in the O(N) Wilson-
Fisher fixed point starting at order O(ε2) and N > 1.

Subleading transverse-twist families: The next families of defect operators have
transverse twist 2n+1. At this order in perturbation theory, only the tree-level dimensions
contribute

∆̂s,n = 1 + |s|+ 2n+O(ε) for n ≥ 1 . (10.118)

Notice that these families receive contributions both from the bulk identity and from
(10.115), and as a result, the defect OPE coefficients differ from the GFF values:

µs>0,n = |s|+ 2(1− v)
6n(|s|+ n) ε+O(ε2) , µs<0,n = |s|+ 2(v − 1)

6n(|s|+ n) ε+O(ε2) . (10.119)

269



Chapter 10. Bootstrapping Monodromy Defects

Fractional transverse-twist families: Perhaps surprisingly, there is another family
of defect operators with non-integer transverse twist. Indeed, their tree-level conformal
dimensions are

∆̂fr
s>0,n = 1 + |s|+ 2(n+ 1− v) , ∆̂fr

s<0,n = 1 + |s|+ 2(n+ v − 1) , for n ≥ 1 .
(10.120)

Notice that this family is generated exclusively from the bulk leading-twist family (10.115).
Once more, the tree-level OPE coefficients take a rather simple form:

µfr
s>0,n = n

3(n+ 1− v)(|s|+ n+ 1− v) , µfr
s<0,n = n

3(n+ v − 1)(|s|+ n+ v − 1) .

(10.121)

Having reviewed the structure of the defect CFT data, we can now resum the defect-
channel expansion in order to obtain the full correlation function at order O(ε):

GGFF
d−1

3 ,d,v
(x, x̄) + GWZ(x, x̄) =

∑
s∈−v+Z

( ∞∑
n=0

µs,nf̂∆̂s,n,s
(x, x̄) +

∞∑
n=1

µfr
s,nf̂∆̂fr

s,n,s
(x, x̄)

)
.

(10.122)

The GFF part can be found in equation (10.46) with δφ = 1/3. The contribution which is
new from the Wess-Zumino model is significantly harder:

GWZ(x, x̄) = −ε3

√
xx̄

(1− xx̄)

[
+ xv(1− v)

(
j2v−1,v(x)− jv,v(x)−Hv−1Φv(x) + Φv(x) log(xx̄)

)
+ x̄1−v(1− v)

(
j1−v,1−v(x̄)− j2−2v,1−v(x̄) +H1−vΦ1−v(x̄)

)
+ xv

Hv−1 −H2v−2 + Φv(x)− Φ2v−1(x)
1− x

+ x̄1−vH−v −H1−2v + Φ1−v(x̄)− Φ2−2v(x̄)
1− x̄

− x1−vx̄2−2v
(

(v − 1)J2−2v,1−v(x̄, x) + Φ2−2v(x̄)− xΦ2−2v(xx̄)
1− x

)
+ x2v−1x̄v−1

(
(v − 1)J2v−1,v−1(x, x̄)− Φ2v−1(x)− x̄Φ2v−1(xx̄)

1− x̄

)
− x̄xv+1

(
(v − 1)Jv+1,1(x, x̄)− Φv+1(x)− x̄Φv+1(xx̄)

1− x̄

)

+ xx̄2−v
(

(v − 1)J2−v,1(x̄, x) + Φ2−v(x̄)− xΦ2−v(xx̄)
1− x

)]
. (10.123)
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We could not express this correlation function in terms of elementary functions. Instead,
we introduced the following two special functions

ja,b(x) ≡
∞∑
n=0

xnHn+a
n+ b

, Ja,b(x, x̄) =
∞∑
n=0

n∑
m=0

xn

(n+ a)
x̄m

(m+ b) . (10.124)

In appendix 10.A.2 we derive some interesting properties of these functions, in particular
we give an efficient algorithm to generate their expansion in powers of (1− x) and (1− x̄).
This allows us to expand the correlation function in the bulk channel

GWZ(x, x̄) =
( √

xx̄

(1− x)(1− x̄)

)(d−1)/3(
1 +

∞∑
`=0

dWZ
`,n F∆`,n,`(x, x̄)

)
. (10.125)

Once again, we can extract the CFT data using a software like Mathematica. Some of the
low-lying bulk OPE coefficients are

dWZ
0,0 = ε(v − 1)

(
1
3(2v − 1) (H−2v +H2v)−

1
6(3v − 2) (H−v +Hv)−

5v2 − v + 1
6v

)
,

dWZ
1,0 = ε(v − 1)2

(
1
18(2v − 1) (H−2v +H2v)−

1
36(5v − 2) (H−v +Hv) + 5v3 + 10v2 − 12v + 3

108v(v − 1)

)
,

dWZ
0,1 = ε

144v(v − 1)
(
17v2 − 37v + 18

)
. (10.126)

Let us emphasize that the total OPE coefficients are obtained combining (10.114) and
(10.126), namely d`,n = dWZ

`,n + dGFF
`,n . As usual, we give a larger list of bulk coefficients in

the notebook attached to this publication.

10.5 Conclusions

In this work we used analytical bootstrap techniques to study monodromy defects in the
ε–expansion. This program has been highly successful for four-point functions without
defects, where CFT data has been extracted up to fourth order in ε for the Wilson-Fisher
fixed point [135, 136]. Our analysis can be considered as the first step towards applying
these techniques to monodromy defects in CFT. Our main result is equation (10.123),
which describes the full leading-order two-point correlator of chiral fields in the Wess-
Zumino model. In order to obtain the defect correlator, it was necessary to calculate the
leading order CFT data of the Wess-Zumino model without defects (see section 10.3.4),
a result that is interesting on its own and that we plan to extend to higher orders in the
future.
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We also studied monodromy defects in the Wilson-Fisher O(N) model, reproducing and
in some cases improving previous results. A natural extension of this work is to consider
higher orders in the ε–expansion, although this will require dealing with degeneracies in
the bulk spectrum. Another related system is the large-N limit of the O(N) model, which
has been studied using bootstrap in [169]. Monodromy defects in the large-N limit have
been studied in [258], and they might be good candidates for a bootstrap analysis.

Yet another system in which the techniques used in this paper are directly applicable is a
Wilson line defect in N = 4 SYM at strong coupling. The strong-coupling planar spectrum
of N = 4 SYM contains double-trace operators which are killed by the discontinuity in
the inversion formula. This is very similar to the setup of this paper, and indeed two-
point functions of half-BPS operators can be reconstructed by inverting a finite number of
conformal blocks [5]. It might also be possible to consider other maximally-supersymmetric
models in 3 ≤ d ≤ 6, and bootstrap their defect correlators in suitable limits.

On a more speculative side, the functions studied in appendix 10.A.2 are close cousins
of the Hurwitz-Lerch zeta function. Perhaps these functions will find applications in other
perturbative calculations or in other branches of mathematical physics. Finally, the study
of higher-point functions is one of the long-term goals of the bootstrap. Progress in this
direction was made in [388], where higher-point functions in the presence of defects were
studied. Eventually, one should be able to obtain the corresponding Lorentzian inversion
formulas, and implement the multi-point bootstrap in order to obtain even more restrictive
constraints.

10.A Appendix

10.A.1 Inverting the Wess-Zumino model

In this appendix we explain how to obtain the Wess-Zumino defect spectrum from the
discontinuity of the correlator. By means of the inversion formula, it boils down to com-
puting the integral (10.27). An important observation is that since the discontinuity is not
symmetric under x↔ x̄, the integrals are different for s > 0 and s < 0.

Let us focus on s > 0 first, and we summarize s < 0 at the end. Since the discontinuity
is of order O(ε), we can evaluate the integration kernel at d = 4, when the integral is
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dramatically simpler:

µ(∆̂, s) = ε
v(v − 1)

12

∫ 1

0
dx

∫ 1/x

1
dx̄ x−(∆̂−s+1)/2x̄−(∆̂+s+1)/2

(
h
(
x̄−1
x̄

)
− h(1− x)

)
.

(10.127)

Let us remind the reader that h(z) = z 3F2(1, 1, v + 1; 2, 3; z). The strategy to obtain the
CFT data from such an integral is to notice that poles in ∆̂ come from the region x→ 0.
Thus, we expand the integrand in powers of x and for each power we have∫ 1

0
dx

∫ 1/x

1
dx̄ x−(∆̂−s+1)/2x̄−(∆̂+s+1)/2xn = − 2

(s+ n)
1

(∆̂− s− 1− 2n)
. (10.128)

Physically, each power xn generates a defect family of dimensions ∆̂s,n = 1 + s + 2n and
OPE coefficient µs,n ∼ 1/(s + n). Notice that the function h(1 − x) has the following
expansion

h(1− x) = 2
v

(1−H1−v) + 2
v(v − 1)

∞∑
n=1

(
(n+ v − 1)xn

n
+ nxn+1−v

(v − n− 1)

)
. (10.129)

Combining this expansion with the inversion (10.128) one obtains the CFT data for n > 0,
see (10.119) and (10.121). The case n = 0 is identical, except one also has to consider
contributions from the following integral:∫ 1

0
dx

∫ 1/x

1
dx̄ x−(∆̂−s+1)/2x̄−(∆̂+s+1)/2h

(
x̄− 1
x̄

)
= −

4
(
(s− v + 1)(Hs−v+1 −Hs) + v − 1

)
sv(v − 1)(∆̂− s− 1)

.

(10.130)

This integral has been obtained by expanding the integrand around x̄ → ∞, integrating
term by term, and finally resuming the resulting expression. The final result can be checked
numerically to very high precision.

Let us briefly outline the s < 0 case. The inversion integral is once again (10.127)
where one needs to change x ↔ x̄ in the integration region. The CFT data for n > 0 can
be read off from the following expansion

h

(
x̄− 1
x̄

)
= 2
v

(1−Hv−1 + log x̄) + 2
v(v − 1)

∞∑
n=1

(
(v − n− 1)x̄n

n
+ nx̄n+v−1

n+ v − 1

)
.

(10.131)
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The presence of a log x̄ term leads to the anomalous dimensions (10.116). For the n = 0
case, one also needs the integral∫ 1

0
dx̄

∫ 1/x̄

1
dxx−(∆̂−s+1)/2x̄−(∆̂+s+1)/2h(1− x)

=
4
(
s(s− v + 1) (H−s+v−1 −H−s) + (s+ 1)(v − 1)

)
s2v(v − 1)(∆̂ + s− 1)

,

(10.132)

which has been computed by expanding around x = 0 and integrating term by term.

10.A.2 Defect-channel resummation

In this appendix we present some mathematical results that are useful in order to resum
the defect-channel expansion of monodromy defects.

Hurwitz-Lerch zeta function

The first function we consider is the well-known Hurwitz-Lerch zeta function:

Φ(x, s, a) =
∞∑
m=0

xm

(m+ a)s . (10.133)

The only case which is relevant in the present work is s = 1, when it has a simple expression
as a hypergeometric function:

Φ(x, 1, a) = a−1
2F1

( 1, a
a+ 1

;x
)
. (10.134)

The power of the Hurwitz-Lerch zeta function lies in the possibility of writing seemingly
complicated infinite sums in terms of them. Defect-channel expansions such as (10.46) or
(10.123) can be resummed using the following formulas:

∞∑
n=0

xn (Ha+n −Ha−1) = Φ(x, 1, a)
1− x ,

∞∑
n=0

n∑
m=0

xnx̄m

n+ a
=
∞∑
n=0

xnΦ(xx̄, 1, n+ a) = Φ(x, 1, a)− x̄Φ(xx̄, 1, a)
1− x̄ ,

∞∑
n=0

n∑
m=0

xnx̄m

m+ a
= Φ(xx̄, 1, a)

1− x .

(10.135)
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For our applications, it is important to expand the Hurwitz-Lerch zeta function around
x = 1, which allows us to extract the bulk CFT data. Let us note the two elegant
expressions

Φ(x, 1, v) = −
∞∑
n=0

(v)n
n! (1− x)n

(
log(1− x) +Hv+n−1 −Hn

)
,

xvΦ(x, 1, v) = −Hv−1 − log(1− x) +
∞∑
n=1

(−1)n+1(v − n)n
n2(n− 1)! (1− x)n .

(10.136)

One-variable function

In the study of the Wess-Zumino model, we encountered sums that could not be expressed
in terms of simple special functions. The first sum we consider involves a single variable:

ja,b(x) ≡
∞∑
n=0

xnHn+a
n+ b

. (10.137)

It is not hard to relate ja,b(x) to itself after shifting a→ a± 1 and b→ b± 1.
Let us consider the case a = 0 separately. The function j0,b(x) can be resummed in

terms of the incomplete beta function:

j0,b(x) = −x−b ∂Bx(b, a)
∂a

∣∣∣∣
a=0

. (10.138)

In order to generate the series expansion around x = 1 efficiently, we note that the function
satisfies the differential equation

∂x(1− x)∂x(1− x)x1−b∂x
(
xbj0,b(x)

)
= 0 . (10.139)

Making an ansatz for the series around x = 1

j0,b(x) =
∞∑
i=0

(1− x)i
(
ai + bi log(1− x) + ci log2(1− x)

)
, (10.140)

one can fix coefficients recursively using the differential equation (10.139). The initial
condition can be obtained from (10.138)

a0 = −1
2
(
(Hb−1)2 +H

(2)
b−1

)
, b0 = 0 , c0 = 1

2 . (10.141)

Here H(r)
b =

∑b
n=1 n

−r is a generalization of the harmonic number, where the usual con-
tinuation to non-integer values of b is assumed.
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Let us move on to the general case a /∈ N, and define the auxiliary function

j̃a,b(x) =
∞∑
n=0

xn(Hn+a −Ha−1)
n+ b

= ja,b(x)−Ha−1Φ(x, 1, b) . (10.142)

Clearly, any property of j̃a,b(x) can be easily translated to ja,b(x), since the Hurwitz-Lerch
zeta function that relates them is well understood. The advantage of the auxiliary function
is that it satisfies a simpler differential equation

∂x(1− x)x1−a∂x(1− x)xa+1−b∂x
(
xbj̃a,b(x)

)
= 0 . (10.143)

From this differential equation, one can efficiently generate the expansion around x = 1
fixing the coefficients in the ansatz

ja,b(x) =
∞∑
i=0

(1− x)i
(
di + ei log(1− x) + fi log2(1− x)

)
. (10.144)

In order to find the initial conditions d0, e0 and f0, we note that the sum (10.137) can
be obtained in Mathematica in terms of complicated special functions. Taking the x→ 1
limit, and massaging the resulting expressions, we find

d0 = −
∞∑
n=0

(
Ha−b+n+2
n+ 2 − Ha+n+2

b+ n+ 2

)
+ 1

2 (Ha−b) 2 −Ha−b +Ha

(
Hb + 1

b+ 1

)

− Hb

a
+
H

(2)
a−b
2 + 1

ab
+ 1
−a+ b− 1 + 1

ab+ a+ b+ 1 + π2

6 ,

e0 = Ha+2 −
1
a
− 1
a+ 1 −

1
a+ 2 ,

f0 = 1
2 .

(10.145)

We have not been able to further simplify the infinite sum in d0. However, it is interesting
to note that when expanding (10.123) in the x, x̄ → 1 limit, we have found numerically
that the contributions from these infinite sums combine to give zero.

Two-variable function

There is another type of double sum that we have not been able to express in closed form:

Ja,b(x, x̄) ≡
∞∑
n=0

n∑
m=0

xn

(n+ a)
x̄m

(m+ b) . (10.146)

276



Chapter 10. Bootstrapping Monodromy Defects

For the bulk channel expansion, we need the series expansion of Ja,b(x, x̄) around x, x̄ = 1.
For simplicity, we always take the limits in the order |1− x| � |1− x̄|. There is no loss of
generality, since in order to expand the function Ja,b(x̄, x), one can use the relation

xJa,b(x, x̄) = Φ(x, 1, a− 1)Φ(x̄, 1, b)− Jb,a−1(x̄, x) , (10.147)

which follows from the definition (10.146). The strategy to expand around around x, x̄ = 1
is to first compute the sum in x, and then expand only in x→ 1:

Ja,b(x, x̄) =
∞∑
m=0

(xx̄)m

m+ b
Φ(x, 1, a+m) (10.148)

= −
∞∑
n=0

(1− x)n
∞∑
m=0

n∑
p=0

x̄m(−m)p(a+m)n−p (Ha+m+n−p−1 −Hn−p + log(1− x))
p!(b+m)(n− p)! .

Now we perform that sum in (1 − x)n to the desired order nmax. For any finite value of
nmax, we compute the finite sum in p, and then the sum in m can be computed in terms of
rational functions of (1 − x̄) and the function ja,b(x̄). Using the results of section 10.A.2,
we finally obtain the expansion in (1 − x) and (1 − x̄) to any desired order. Although it
would be hard to do this by hand, the previous algorithm can be implemented efficiently
in Mathematica. Let us also note that the series expansion contains terms of the form
(1− x)n(1− x̄)−m for n,m ≥ 0. A good sanity check of our implementation is that these
spurious powers cancel when they are combined as in (10.123).
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Chapter 11

Bootstrapping holographic defect
correlators

Abstract

We study two-point functions of single-trace half-BPS operators in the presence of a su-
persymmetric Wilson line in N = 4 SYM. We use inversion formula technology in order
to reconstruct the CFT data starting from a single discontinuity of the correlator. In the
planar strong coupling limit only a finite number of conformal blocks contributes to the
discontinuity, which allows us to obtain elegant closed-form expressions for two-point func-
tions of single-trace operators OJ of weight J = 2, 3, 4. Our final result passes a number
of non-trivial consistency checks: it has the correct discontinuity, it satisfies the supercon-
formal Ward identities, it has a sensible expansion in both defect and bulk OPEs, and
is consistent with available results coming from localization. The method is completely
algorithmic and can be implemented to calculate correlators of arbitrary weight.

11.1 Introduction

The analytic conformal bootstrap is a powerful tool that has seen significant progress in
recent years. The basic proposal made in the original papers [122, 123], is that singular
terms in a CFT correlator imply the existence of families of operators at large spin. This
observation was later systematized and allowed the calculation of CFT data as a series
expansion in inverse powers of the spin variable [393]. This line of thinking led to the
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Lorentzian inversion formula, that neatly captures the dependence of the CFT data as an
analytic function of the spin variable [125]. This formula is a fully non-perturbative result
valid for any CFT in any dimension.

Apart from giving us an improved understanding of the structure of CFT, the inversion
formula is also a powerful calculational tool. Its power lies on the fact that correlators can
be reconstructed from a certain discontinuity, which is in general a simpler object. Inver-
sion formula technology is particularly useful for planar theories at strong coupling, where
the discontinuity is captured by only a finite number of conformal blocks, simplifying com-
putations considerably. This approach was carried out successfully for four-point functions
of half-BPS operators in N = 4 SYM [170,394], and confirmed a previous conjecture made
in Mellin space [395,396].

Because the presence of a defect does not change the local physics, the main properties
that enable the bootstrap for strong coupling correlators are still present if we add a line
defect to the configuration. More precisely, in this paper we consider correlators between
single trace half-BPS operators and a supersymmetric Wilson line. These are canonical
examples of local and non-local operators in N = 4 SYM. One point-function of half-
BPS operators in the presence of a line are fixed by kinematics and the overall coefficient
can be calculated exactly using matrix-model techniques [397–400]. Less work has been
done on two-point correlators in the presence of a line. This is the first case in which
correlators depend non-trivially on conformal invariants and therefore capture an infinite
amount of CFT data. The only results on the literature so far are an explicit weak-coupling
calculation [286], the extreme strong coupling limit where the correlator becomes the square
of a one-point function [401,402], and special kinematical points where the correlator does
not depend on invariants and can be calculated using localization [401, 403]. The goal of
this paper is to calculate the full two-point correlator as a function of its cross-ratios, to the
first non-trivial order at strong coupling, relying only on analytical bootstrap techniques.

The outline of the paper is as follows. In section 11.2 we review the basic kinematics of
our two-point functions, including an interpretation of our bootstrap problem in terms of
Witten diagrams. In section 11.3 we compute the two-point function for the stress-tensor
multiplet, which is the half-BPS operator of weight J = 2, using Lorentzian inversion
technology, and present an elegant closed-form expression for the full correlator. In section
11.4 we generalize the analysis for operators of higher weight and present explicit solutions
for the cases J = 3, 4 as a demonstration of our method. Possible future directions are
discussed in section 11.5, while in appendix 11.A we give the bulk and defect conformal
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blocks needed for the computations.

11.2 Preliminaries

In this section we review the basic properties of the setup under study, before jumping into
the technicalities of the computation in section 11.3.

11.2.1 Setup

Consider N = 4 SYM theory with gauge group U(N) in the planar N → ∞ limit. The
most important local operators in our discussion are single-trace chiral-primary operators:

OJ(x, u) := (2π)J 2J/2√
JλJ

tr
(
u · φ(x)

)J
. (11.1)

Here u is a six-component null polarization vector u ·u = 0, such that OJ(x, u) transforms
in a symmetric-traceless representation of the R-symmetry group. These are protected op-
erators that preserve half of the supercharges of the theory. The other important observable
in our analysis is the supersymmetric Wilson line (sometimes called the Maldacena-Wilson
line):

W` := 1
N

tr P exp
∫ ∞
−∞

dτ
(
iẋµAµ + |ẋ|θ · φ

)
. (11.2)

This extended operator also preserves half of the supercharges, and has been studied ex-
tensively in the literature. Here θ is a unit-normalized six-component vector θ · θ = 1 that
parametrizes a direction in R-symmetry space.

In this work we study correlators of local operators in the presence of the supersym-
metric Wilson line:1

〈〈OJ1(x1, u1)OJ2(x2, u2) . . .〉〉 := 1
〈W`〉

〈W`OJ1(x1, u1)OJ2(x2, u2) . . .〉 . (11.3)

Even though our configuration breaks some of the PSU(2, 2|4) symmetry of N = 4 SYM,
these correlation functions are still restricted by the remaining defect (super)conformal
symmetry. It is well understood that in defect CFT one-point functions are kinematically
fixed, see for example [259]. The simplest observables in which the coordinate dependence
is dynamical and not fixed by symmetry are two-point functions of bulk operators. The

1The overall normalization is redundant in the present case because 〈W`〉 = 1, but it would be important
for circular Wilson loops.

281



Chapter 11. Bootstrapping holographic defect correlators

case J1 = J2 = 2 was studied recently at weak ’t Hooft coupling [286] using standard
Feynman diagrams. Here we consider instead a perturbative expansion at large ’t Hooft
coupling:

〈〈OJ(x1, u1)OJ(x2, u2)〉〉 as N →∞, λ = g2N � 1 . (11.4)

To be more precise, our correlator admits a double expansion in powers of λ
N2 and 1√

λ
of

the form

〈〈OJOJ〉〉 = 〈〈OJOJ〉〉(0) + λ

N2

(
〈〈OJOJ〉〉(1) + 1√

λ
〈〈OJOJ〉〉(2) +O(λ−1)

)
+ . . . , (11.5)

where . . . stands for terms starting at λ2

N4 . As we will discuss shortly, the first two terms
in the expansion are somewhat trivial. Our goal then is to use modern bootstrap methods
to calculate the 〈〈OJOJ〉〉(2) contribution. The above perturbative expansion has a natural
interpretation in terms of the holographic dual of N = 4 SYM, to which we now turn.

11.2.2 Supergravity interpretation

Thanks to the AdS/CFT correspondence [404–406], the strong coupling limit of N = 4
SYM admits a description in terms of classical IIB supergravity on AdS5 × S5. Although
we do not use this description to carry out our calculations, it is useful to understand the
structure of perturbation theory.2

The dual of a supersymmetric Wilson loop is a string worldsheet extending inside AdS5,
whose boundary corresponds to the path of the loop [407,408]. Graphically

= 〈W`〉 = 1 . (11.6)

Here the black circle is the boundary of AdS5, where the CFT lives, and the blue line
corresponds to the string worldsheet. The expectation value of the Wilson loop has been
the subject of intense study [341,409,410], but here we concentrate on the straight geometry.

We are interested on the interplay between the supersymmetric Wilson line and half-
BPS single-trace operators OJ . In the holographic description, OJ are dual to certain KK
modes arising from the compactification of the IIB action on S5. One of these modes can
be sourced at the boundary of AdS5, propagate through the bulk and be absorbed by the

2We thank S. Giombi for useful correspondence regarding the holographic calculation.
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string worldsheet. This process is dual to the one-point function of OJ in the presence of
the Wilson line. Graphically

= 〈〈OJ(x, u)〉〉 = aJ
(u · θ)J

(x⊥)J . (11.7)

The precise constant aJ has been determined at strong ’t Hooft coupling using holography
[399,411], and is consistent with the exact result coming from the matrix-model description.
The result is of order aJ ∼ O(

√
λ
N ), as can also be seen by simple power counting arguments.

The focus of the present work is on two-point functions at strong coupling. The leading
order contribution corresponds to a disconnected diagram, where the two operators in the
boundary of AdS5 interact through the bulk “ignoring” the string worldsheet:

= 〈〈OJ(x1, u1)OJ(x2, u2)〉〉disc. = (u1 · u2)J

(x2
12)J

. (11.8)

Following the usual convention in CFT, we normalize this diagram to unity. This cor-
responds to 〈〈OJOJ〉〉(0) in equation (11.5). The next contribution at strong coupling
corresponds to a factorized diagram, where the operators do not interact in the bulk:

= 〈〈OJ(x1, u1)〉〉〈〈OJ(x2, u2)〉〉 = a2
J

(u1 · θ)J(u2 · θ)J

(x⊥1 x⊥2 )J
. (11.9)

From the scaling of the one-point coefficients aJ , it is clear this diagram contributes at
order λ

N2 , so it corresponds to the term 〈〈OJOJ〉〉(1). The first non-trivial correction to the
two-point function contains an interaction vertex in the bulk [401]. In the exchanged line
one sums over all KK modes that can couple to two OJ ’s. Schematically we have

. (11.10)

This is the diagram we calculate in the present work.3

Instead of an explicit calculation using the effective action in AdS5 × S5, we will boot-
strap the result using the bulk-to-defect inversion formula obtained in [266]. The inversion

3 In the case of holographic four-point functions, there exist contact Witten diagrams which are correctly
reconstructed from the inversion formula [170, 394]. If such diagrams are present in the defect case, our
bootstrap result should capture them. We defer a more detailed study of the explicit holographic calculation
for future work.
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formula reconstructs a correlator from its singular part, which is mathematically captured
by a discontinuity:

∼
∫

Disc . (11.11)

The crucial property of holographic CFT’s is that the discontinuity is dramatically simpler
than the correlator. In particular, we show below that the discontinuity receives corrections
only from a finite number of single-trace operators exchanged in the bulk. Each of these
contributions is schematically a product of a tree-level one-point function and a three-point
function:

∼
∑

single
traces

∫
× . (11.12)

The one- and three-point functions are known from localization, so all is left is to compute
a certain integral and sum over finitely many single-trace contributions. In the rest of the
paper, we translate this pictorial representation into a concrete bootstrap algorithm, that
fully fixes two-point correlators with minimal external input.

11.2.3 Superconformal kinematics

The defect CFT associated with the Wilson line (11.2) preserves an OSp(4∗|4) subgroup
of the full PSU(2, 2|4) symmetry. From the spacetime perspective, the defect preserves an
SO(2, 1) ⊂ SO(4, 2) subgroup of the full conformal algebra. Furthermore, the presence of a
preferred direction θ preserves only SO(5)R ⊂ SO(6)R of the R-symmetry. The kinematics
of non-supersymmetric defects have been thoroughly studied in [259]. Below we only give a
brief review, highlighting the new features due to supersymmetry, such as superconformal
Ward identities and superconformal blocks.

Two-point function and cross-ratios

A two-point function in a defect CFT depends on two spacetime cross-ratios, while in our
setup there is an extra R-symmetry cross-ratio σ:

〈〈OJ(x1, u1)OJ(x2, u2)〉〉 = (u1 · θ)J(u2 · θ)J

|x⊥1 |J |x⊥2 |J
F (J)(z, z̄, σ) . (11.13)
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For the spacetime part, we use the cross-ratios z, z̄ defined in [266]

z + z̄

2
√
zz̄

= x⊥1 · x⊥2
|x⊥1 ||x⊥2 |

,
(1− z)(1− z̄)√

zz̄
= x2

12
|x⊥1 ||x⊥2 |

. (11.14)

Geometrically z, z̄ are coordinates in a plane orthogonal to the defect. Indeed, placing the
first operator at x1 = (1, 0, 0, 0) and the second one in a xy-plane x2 = (x, y, 0, 0), then
z = x + iy and z̄ = x − iy. In Lorentzian signature, one would instead find that z and z̄

are real and independent. On the other hand, the R-symmetry cross-ratio is defined as

σ := (u1 · u2)
(u1 · θ)(u2 · θ)

. (11.15)

The correlator F (J)(z, z̄, σ) is a polynomial of order J in the σ cross-ratio. This reflects the
number of different ways to contract u1, u2 with each other and with θ, the polarization
of the Wilson-line defect. Before moving on, let us point out that one can also consider
operators restricted to the line and study the corresponding 1d CFT, this configuration has
been studied recently by a variety of means [233, 262, 288, 346, 412, 413]4. In this work we
consider bulk operators outside the line, which probes the interplay between local physics
and the defect.

Structure of the correlator

As discussed above, the leading contributions at strong coupling to 〈〈OJOJ〉〉 take the
simple form (11.8) and (11.9). Comparing with the form of the two-point function (11.13)
we find

F (J)(z, z̄, σ) =
(

σ
√
zz̄

(1− z)(1− z̄)

)J
+ a2

J +O

(√
λ

N2

)
. (11.16)

Our goal is to compute the correlation function at the next order O(
√
λ

N2 ). For simplicity
we decompose the correlator at this order in powers of the R-symmetry cross-ratio σ:5

F (J)(z, z̄, σ)
∣∣
O(
√
λ

N2 ) =
J∑
j=0

σjF
(J)
J−j(z, z̄) . (11.17)

Below we use bootstrap methods to reconstruct the functions F (J)
j (z, z̄), leading to the

final results in equations (11.64), (11.82) and (11.86).
4Similar setups have also been considered for 3d ABJM theories [260,353,354].
5Note that the definition of F (J)

j in this decomposition is slightly different to the one used in [286]: here
the terms are ordered in terms of powers of σ and not Ω. Furthermore, here we keep outside the definition
the two leading contributions which are trivial.
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Superconformal Ward identities

An important property of our correlator is that it satisfies superconformal Ward identities.
These were studied in detail for half-BPS boundaries in [285], where it was observed that
with a suitable identification of the cross-ratios, they also apply to the half-BPS line defect.6

In our conventions the Ward identities read(
∂z + 1

2∂ω
)
F (J)(z, z̄, σ)

∣∣∣∣
z=ω

= 0 ,
(
∂z̄ + 1

2∂ω
)
F (J)(z, z̄, σ)

∣∣∣∣
z̄=ω

= 0 , (11.18)

where the natural variable to use is ω, defined by

σ = −(1− ω)2

2ω . (11.19)

It is not hard to check that the two leading terms (11.16) satisfy these equations. Note
that the above Ward identities take a form very similar to other setups in the literature
[244, 245, 357]. In the case of N = 4 SYM without defects, the Ward identities admit
a simple closed-form solution in which the different R-symmetry channels are related by
algebraic relations. This drastically simplifies the analysis because in the end one can just
work with the independent channels. Sadly, the defect setup of this paper is closer to the
Ward identities in three dimensions, where such an algebraic relation does no exist [244].
It is possible however to relate the different R-symmetry channels by the action of a non-
local operator. This is obviously more cumbersome, but one can still implement it in order
to focus only on the independent portions of the correlator [207]. In this paper we work
explicitly with all the R-symmetry channels, however finding a better parameterization for
our correlators is an interesting problem that should be studied in more detail.

Crossing equation

The last important ingredient for our calculation are the defect CFT crossing equations.
Here we only summarize them, and refer the reader to [259] for further details. In any
CFT it is possible to fuse two bulk local operators as a sum of bulk operators. This bulk
OPE is denoted schematically as OJOJ ∼

∑
O λJJOO. On the other hand, the defect OPE

expands a bulk operator as a sum of defect operators OJ ∼
∑
Ô bJÔÔ. Note that for a

bulk one-point function 〈〈O〉〉 ∼ aO, the defect OPE implies aO = bO1̂ where 1̂ is the defect
6To be precise, z, z̄ are mapped to the boundary R-symmetry cross-ratios w1, w2, while σ is mapped to

the boundary spacetime cross-ratio −2ξ (this factor −2 ensures the correctness of this map).
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identity operator. These two expansions can be inserted in a two-point function, resulting
in a crossing equation

F (J)(z, z̄, σ) =
( √

zz̄ σ

(1− z)(1− z̄)

)J∑
O
λJJOaOG(J)

O (z, z̄, σ) =
∑
Ô

b2
JÔĜ

(J)
Ô (z, z̄, σ) . (11.20)

It is important to keep in mind that operators in superconformal theories belong to super-
conformal multiplets. For example, in the crossing equation, O refers to the superconformal
primary operator of a PSU(2, 2|4) representation, which is labeled by the dimension ∆,
the spin `, and an SO(6)R label K. Similarly, Ô is the superconformal primary of an
OSp(4∗|4) representation labeled by the defect dimension ∆̂, the transverse-spin s, and an
SO(5)R label K̂.7 Supersymmetry fixes the contributions of superdescendant operators, so
the expansion (11.20) is organized in superconformal blocks. These are linear combination
of non-supersymmetric conformal blocks:

G(J)
O (z, z̄, σ) =

∑
∆,`,K

c
(J)
∆,`,KhK(σ)f∆,`(z, z̄) ,

Ĝ(J)
Ô (z, z̄, σ) =

∑
∆̂,s,K̂

c
(J)
∆̂,s,K̂

ĥK̂(σ)f̂∆̂,s(z, z̄) .
(11.21)

The sums range over all operators in the supermultiplets of O/Ô that can appear in the
bulk/defect OPE of OJ . The function f∆,`(z, z̄) is a bulk-channel conformal block, see
(11.91) for a useful series representation. Similarly, f̂∆̂,s(z, z̄) is a defect-channel conformal
block given in (11.94). Finally, hK(σ) and ĥK̂(σ) are bulk and defect R-symmetry blocks
respectively. They are polynomials in σ with a simple hypergeometric closed form expres-
sion (11.95). The precise relative coefficients c(J)

∆,`,K and c
(J)
∆̂,s,K̂

have been presented in the
appendix of [286].

11.2.4 Topological subsector

An important property of our correlators is that they contain a topological subsector. In
terms of the cross-ratios, the topological subsector can be obtained by setting z = z̄ = ω.
This projects out all the non-protected operators from the bulk and defect OPE and only
half-BPS protected operators remain. This topological subsector goes beyond our two-
point correlators, and it actually describes a closed-subsector of the operator spectrum of

7Detailed analysis of the representation theory of these supergroups can be found in the literature
[27,181,182].
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the theory. The CFT data of the topological subsector can be obtained by solving Gaussian
multi-matrix models [288,289,399,401]. Some of the explicit results that we present below
are necessary to fix overall coefficients in our bootstrap analysis, while others provide non-
trivial consistency checks of our calculation.

We start by looking at bulk single-trace half-BPS operators OJ defined in (11.1). We
follow the usual normalization conventions such that their two-point function is unit nor-
malized, and the dynamical information is captured by three-point functions. In our con-
ventions

〈OJ(x1, u1)OJ(x2, u2)〉 = (u1 · u2)J

(x2
12)J

,

〈OJ1(x1, u1)OJ2(x2, u2)OJ3(x3, u3)〉 = λJ1J2J3
(u1 · u2)J123(u2 · u3)J231(u3 · u1)J312

|x12|2J123 |x23|2J231 |x31|2J312
,

(11.22)

with Jijk := (Ji + Jj − Jk)/2. The OPE coefficients λJ1J2J3 were originally computed
in [414], and they are independent of the coupling:

λJ1J2J3 =
√
J1J2J3
N

. (11.23)

As already discussed, one-point functions of single-trace operators in the presence of the
supersymmetric Wilson line are kinematically fixed:

〈〈OJ(x, u)〉〉 = aJ
(u · θ)J

|x⊥|J
. (11.24)

Since the normalization of OJ is determined by the two point function, the coefficient aJ
contains dynamical information about the defect CFT.8 The precise value can be obtained
from a perturbative calculation [397] or from a matrix-model calculation [398–400]

aJ =
√
λJ

2J/2+1N

IJ(
√
λ)

I1(
√
λ)

λ�1=
√
λJ

2J/2+1N

(
1− (J + 1)(J − 1)

2
√
λ

+O(λ−1)
)
. (11.25)

Note that it is also possible to construct half-BPS multi-trace operators. For example,
the OPE between the two single-trace operators OJ×OJ must contain the following double-
trace operator:

O(J,J)(x, u) := (2π)2J 2J−1/2

JλJ
tr
(
u · φ(x)

)J tr
(
u · φ(x)

)J
. (11.26)

8For the particular case J = 2 the coefficient a2 is proportional to the Bremsstrahlung function [342].
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The prefactor is chosen to have a unit normalized two-point function. By using the lo-
calization techniques of [399, 400, 403], we derived the one-point function of O(J,J) and its
three-point function with single-trace operators. Their product reads

a(J,J)λJJ(J,J) = Jλ

2J+2N2
I2J−1(

√
λ)

I1(
√
λ)

λ�1= Jλ

2J+2N2

(
1− 2J(J − 1)√

λ
+O(λ−1)

)
. (11.27)

This is all the information we need about bulk protected operators.
The topological sector also captures information involving protected operators localized

on the defect. There is a large degeneracy of protected defect operators which has been
discussed in [289]. For our purposes, there are two defect operators that play an important
role. On the one hand, there are defect operators inserted inside the path-ordering of the
Wilson line, which we write as

ÔK̂(τ, û) =W
[(
û · φ(τ)

)K̂ ]
. (11.28)

These operators are in symmetric traceless representations of the SO(5)R symmetry pre-
served by the defect. Therefore, û is a null polarization vector orthogonal to the Wilson
line polarization û · θ = û · û = 0. On the other hand, it is possible to define a similar
operator which lives outside the path-ordering

Ô(K̂)(τ, û) =W tr
(
û · φ(τ)

)K̂
. (11.29)

For both of these operators, one should choose a normalization such that their defect two-
point functions are unit normalized. The non-trivial dynamical information is then encoded
in the bulk-defect two-point function:

〈〈ÔK̂(τ1, û1)ÔK̂(τ2, û2)〉〉 = (û1 · û2)K̂

τ2K̂
12

,

〈〈OJ(x1, u1)ÔK̂(τ2, û2)〉〉 = bJK̂
(u1 · û2)K̂(u1 · θ)J−K̂

((x⊥1 )2 + τ2
12)K̂ |x⊥1 |J−K̂

.

(11.30)

For operators of the first type ÔK̂ , the bulk-defect coefficient has been calculated at strong
coupling in the planar limit [289]

bJK̂ = λ
2−K̂

4

N

2
3K̂−J−2

2
√
J√

K̂!
Γ(J+K̂+1

2 )
Γ(J−K̂+1

2 )

(
1 + 4− 4J2 + 5K̂ + K̂2

8
√
λ

+O(λ−1)
)
. (11.31)
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On the other hand, the coefficients bJ(K̂) have not appeared in the literature. An interesting
outcome of our analysis is a prediction for the value of bJ(Ĵ). However, let us stress that our
correlators also contain information about infinitely many non-protected operators that are
not captured by the topological subsector.

Note that the crossing equation given in (11.20) truncate on both sides in the topological
sector [285]. This is known as microbootstrap, and in some cases the system of equations
can be solved exactly [415].

11.3 〈〈O2O2〉〉 at strong coupling

In this section we compute the correlator 〈〈O2O2〉〉 in the strong coupling limit. As explained
in section 11.2.2, the two leading contributions are somewhat trivial and take the form given
in equations (11.8) and (11.9). As in equation (11.17), we decompose the next correction
into three R-symmetry channels:

F (2)(z, z̄, σ)
∣∣
O(
√
λ

N2 ) = σ2F0(z, z̄) + σF1(z, z̄) + F2(z, z̄) . (11.32)

For compactness, here and for the rest of this section we drop the superscripts in the
functions F (J)

j (z, z̄). In what follows we derive this correlator using the Lorentzian inversion
formula presented in [266].

11.3.1 Lorentzian inversion formula

The idea of the Lorentzian inversion formula is that the discontinuity of the correlator is
sufficient to extract the full defect CFT data, which in turn can be used for reconstructing
the full correlator. For now we consider general single-trace operators OJ(x, u), and later
we focus on the J = 2 case. For a codimension-three defect, such as a Wilson line in four
dimensions, the inversion formula reads

bj(∆̂, s) =
∫ 1

0

dz

2z z
−(∆̂−s)/2

∫ 1/z

1

dz̄

2πi(1− zz̄)(z̄ − z)z̄
−(∆̂+s)/2−2

× 2F1

(1
2 , 1 + s,

3
2 + s; z

z̄

)
2F1

(1
2 , 1− ∆̂, 3

2 − ∆̂, zz̄
)

DiscFj(z, z̄) ,
(11.33)

where the discontinuity is computed around the branch cut in z̄ ∈ [1,∞):

DiscFj(z, z̄) = Fj(z, z̄ + iε)− Fj(z, z̄ − iε), z̄ ≥ 1. (11.34)
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The inversion formula is bosonic and thus it should be applied to each R-symmetry chan-
nel Fj(z, z̄) independently. The defect conformal dimensions are encoded in the poles of
bj(∆̂, s), while the residues are OPE coefficients:

bj(∆̂, s) = −
∑
n≥0

(b2j )n,s
∆̂− (J + s+ 2n+ γn,s)

. (11.35)

The coefficients (bj)n,s capture the normalization of the bulk-defect two-point function
〈〈OJÔn,s〉〉, where the exchanged operators Ôn,s have dimension ∆̂n,s = J + s + 2n + γn,s

and transverse-spin s.9 In the case where (small) anomalous dimensions are relevant,
second-order poles are also present in the formula when Taylor expanding:

bj(∆̂, s) = −
∑
n≥0

(
(b2j )n,s

∆̂− (J + s+ 2n)
+

(b2jγj)n,s
(∆̂− (J + s+ 2n))2

+ . . .

)
. (11.36)

Once the OPE coefficients and the anomalous dimensions have been obtained, the correlator
can be expanded in defect spacetime blocks:

F̃j(z, z̄) =
∞∑
s=0

∞∑
n=0

(
(b2j )n,sf̂J+s+2n,s(z, z̄) + (b2jγj)n,s∂∆̂f̂J+s+2n,s(z, z̄)

)
. (11.37)

Note that we have introduced the notation F̃j instead of Fj , since the inversion formula
might miss contributions from low spins s < s∗ [266]. In that case, we must add extra terms
with spins s = 0, 1, . . . , s∗ to F̃j in order to recover the full correlator Fj . This procedure
will be described in detail in section 11.3.4. Except for these subtleties, equations (11.33)-
(11.37) reconstruct the function Fj using only information in its discontinuity DiscFj .

11.3.2 Computation of the discontinuity

The first step in order to apply the inversion formula (11.33) is to compute the discontinuity.
As we now show, the discontinuity can be computed even though the full correlator is not
known.

The idea is to expand the correlation functions in the bulk channel. The conformal
blocks in (11.91) can be written as f∆,`(z, z̄) = [(1− z)(1− z̄)](∆−`)/2f̃∆,`(z, z̄), where the
function f̃∆,`(z, z̄) has an expansion around z, z̄ = 1 in positive integer powers. As a result,

9In general the defect spectrum contains degeneracies, in which case the CFT data has to be understood
as a sum over degenerate operators.
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only the prefactor can have non-vanishing discontinuity. Therefore, the contribution of a
single bulk operator O to the discontinuity is

DiscFj(z, z̄)
∣∣
O ∝ (zz̄)J/2(1− z)

∆−(2J+`)
2 f̃∆,`(z, z̄) Disc

[
(1− z̄)

∆−(2J+`)
2

]
. (11.38)

There are two situations when this discontinuity does not vanish:

1. If ∆ is non-integer. This corresponds to O having an anomalous dimension correcting
its tree-level dimension ∆ = 2J + `+ 2n+ γ.

2. If ∆ is integer but ∆ < 2J + `. This corresponds to O being a protected single-
trace operator, whose dimension is below the double-trace threshold. Note that even
though Disc(1 − z̄)−n naively vanishes, for n > 0 the singularity at z̄ = 1 gives a
finite contribution to the inversion formula.10

In our setup the discontinuity only receives contributions of the second type. This claim
can be proved by studying the superconformal bulk OPE in detail. From now on we focus
on the J = 2 case. It was shown in [285] that in the presence of the line defect the OPE
O2 ×O2 truncates in the following way:

O2 ×O2 → 1 + B[0,2,0] + B[0,4,0] +
∑
`

C[0,2,0],` +
∑
∆,`
A∆

[0,0,0],` . (11.39)

These representations correspond to the operators acquiring a non-vanishing one-point
function in the presence of a half-BPS line defect (like the supersymmetric Wilson line we
study in this work). The operators in the B[0,2,0] multiplet have integer dimension ∆ < 4+`,
so they have non-vanishing discontinuity. The operators in the B[0,4,0], C[0,2,0],` multiplets
have integer dimension ∆ ≥ 4 + `, so they cannot contribute to the discontinuity. Only the
unprotected multiplets A∆

[0,0,0],` can have anomalous dimensions. The scaling dimensions
of these multiplets have the following schematic structure [416]

∆ = 2J + 2n+ `+ 1
N2

(
a+ b

λ3/2 + . . .

)
+O(N−4) , (11.40)

which means anomalous dimensions do not contribute at the order in perturbation theory
we are working. This implies all the operators in the bulk OPE (11.39) do not have
anomalous dimensions at this order, so the correlator must admit an expansion in integer
powers in the limit z, z̄ → 1.

10This will be proved concretely by deriving equation (11.47).
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The main consequence of these observations is that only the superblock G[0,2,0] corre-
sponding to B[0,2,0] has non-vanishing discontinuity:

DiscF (2)(z, z̄, σ)
∣∣∣
O(
√
λ

N2 )
= λ222a2 Disc

( √
zz̄ σ

(1− z)(1− z̄)

)2

G[0,2,0](z, z̄, σ) . (11.41)

In the rest of this section we reconstruct the full correlator from the single superblock
G[0,2,0].

11.3.3 Inversion of B[0,2,0]

We now invert the superblock G[0,2,0] in order to extract the defect CFT data, and by
resumming the defect expansions, we obtain the correlators given in (11.54), (11.56) and
(11.57).

The superblocks G[0,K,0] are known and given in equation (11.72). For K = 2 they take
the form

G[0,2,0](z, z̄, σ) = h2(σ)f2,0(z, z̄) + 1
180h0(σ)f4,2(z, z̄) , (11.42)

where hK(σ) and f∆,`(z, z̄) correspond respectively to R-symmetry and spacetime con-
formal blocks, which can be found in appendix 11.A. We see that we need to invert two
bosonic blocks, namely a scalar block f2,0 as well as the stress-tensor block f4,2. Using
the definition (11.95) for the R-symmetry blocks, we can extract the discontinuities in the
three channels:

DiscF0(z, z̄) = −λ222a2 Disc zz̄

180(1− z)2(1− z̄)2 (30f2,0(z, z̄)− f4,2(z, z̄)) ,

DiscF1(z, z̄) = λ222a2 Disc zz̄

(1− z)2(1− z̄)2 f2,0(z, z̄) ,

DiscF2(z, z̄) = 0 .

(11.43)

It is convenient to express the blocks using the following variable:

ȳ := 1− z̄√
z̄
. (11.44)

As discussed in the previous section, only negative powers of ȳ are relevant for the discon-
tinuity. Since a factor ȳ−2 comes from the prefactor in (11.43), we have to expand the bulk
blocks to order O(ȳ) as ȳ → 0. Using the methods in appendix 11.A.1 we find

f2,0(z, z̄) = −ȳ log z +O(ȳ3) ,

f4,2(z, z̄) = ȳ

(
90(z + 1)
z − 1 − 30

(
z2 + 4z + 1

)
log z

(z − 1)2

)
+O(ȳ3) .

(11.45)
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Let us now invert an arbitrary power ȳ−p. In this section we only need the p = 1 case,
but the case p ≥ 2 is relevant for section 11.4. For arbitrary powers of ȳ the discontinuity
(11.34) results in:

Disc ȳ−p = 2i sin(pπ)(−ȳ)−p . (11.46)

In principle now we should compute the inversion integral (11.33). In practice this is too
hard, so we expand the integrand as z → 0.11 Each new power of z will give information
of a new defect family with higher transverse-twist ∆̂− s. In the z → 0 limit the integral
over z̄ is standard and gives the following result:

Bp(β) = 2i sin(πp)
∫ ∞

1

dz̄

2πi z̄
−β/2−1(−ȳ)−p =

Γ
(
β+p

2

)
Γ(p)Γ

(
β−p+2

2

) . (11.47)

Although for integer p > 0 the discontinuity (11.46) naively vanishes, note that the final
result is perfectly finite. This is expected, because the correlator is singular at z̄ → 1, and
the inversion formula reconstructs the CFT data from this singularity. Note that for p = 1
then B1(β) = 1, which simplifies our calculations below.

In general the integral over z has the following structure:

b(∆̂, s) =
∑
n≥0

∫ 1

0

dz

2z z
− ∆̂−(2+s+2n)

2
[
b(0,n)(∆̂, s) + b(1,n)(∆̂, s) log z

]

= −
∑
n≥0

b(0,n)(∆̂, s) + 2∂∆̂b
(1,n)(∆̂, s)

∆̂− (2 + s+ 2n)
+ 2b(1,n)(∆̂, s)

(∆̂− (2 + s+ 2n))2
+ . . .


∆̂=2+s+2n

.

(11.48)

This has to be compared to equation (11.36) in order to obtain the OPE coefficients as well
as the product of anomalous dimensions with tree-level OPE coefficients. The presence of
logs in equation (11.45) reveals that the scaling dimensions of the defect operators receive
anomalous corrections at this order.

In principle the results above are sufficient for extracting the defect CFT data in an
algorithmic way and for resumming the correlator using equation (11.37). However, for the
p = 1 case we can derive a closed-form formula for the defect CFT data corresponding to
the bosonic blocks of equation (11.42). In the following we denote by bf∆,`(∆̂, s) the result
of the inversion formula performed for individual bosonic spacetime blocks f∆,`. We begin
with the scalar block f2,0. Using the inversion formula as well as the integrals (11.47) and

11As a side effect, the expansion as z → 0 makes the inversion integral convergent order by order in z.
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(11.48) we find

bf2,0(∆̂, s) = −
∑
j,k≥0

(s+ 1)j(1/2)j
j!(s+ 3/2)j

(1− ∆̂)k(1/2)k
k!(3/2− ∆̂)k

∫ 1

0

dz

2z z
− ∆̂−s−2

2 zj+k log z

= −
∑
j,k≥0

(s+ 1)j(1/2)j
j!(s+ 3/2)j

(1− ∆̂)k(1/2)k
k!(3/2− ∆̂)k

−2
(∆̂− s− 2(j + k + 1))2

, (11.49)

where we have expanded the hypergeometric functions of equation (11.33). There are
only second-order poles present, thus only the coefficients b(1,n) are non-trivial in equation
(11.48). The infinite sum can be obtained in closed form

b
(0,n)
f2,0

(∆̂, s) = 0 ,

b
(1,n)
f2,0

(∆̂, s) = C(n)(∆̂, s) ,
(11.50)

where

C(n)(∆̂, s) = −
Γ
(
n+ 1

2

)
(∆̂− n)n

n!
√
π
(
∆̂− n− 1

2

)
n

4F3

( 1
2 ,−n, s+ 1, ∆̂− n− 1

2
1
2 − n, s+ 3

2 , ∆̂− n
; 1
)
. (11.51)

The calculation of the stress-tensor block proceeds in an analogous way. Using the integrals
given above we obtain

b
(0,n)
f4,2

(∆̂, s) = 90C(n)(∆̂, s) + 180
n∑

m=1
C(n−m)(∆̂, s) ,

b
(1,n)
f4,2

(∆̂, s) = 30C(n)(∆̂, s) + 180
n∑

m=1
m C(n−m)(∆̂, s) .

(11.52)

Putting everything together, with the relative coefficients given by equation (11.43),
the bosonic CFT data for F̃0(z, z̄) reads

(b20)n,s = 1
180λ222a2

(
b
(0,n)
f4,2

(∆̂, s)− 60 ∂∆̂b
(1,n)
f2,0

(∆̂, s) + 2∂∆̂b
(1,n)
f4,2

(∆̂, s)
)

∆̂=J+s+2n
,

(b20γ0)n,s = − 1
90λ222a2

(
30 b(1,n)

f2,0
(∆̂, s)− b(1,n)

f4,2
(∆̂, s)

)
∆̂=J+s+2n

. (11.53)

This can be used for resumming the correlator as in equation (11.37). The result takes a
very simple form:

F̃0(z, z̄) = −λ222a2
zz̄

2(1− z)(1− z̄)

[ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
. (11.54)
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The same analysis can be performed for F̃1(z, z̄), for which we find the following bosonic
CFT data

(b21)n,s = 2λ222a2 ∂∆̂b
(1,n)
f2,0

(∆̂, s) ,

(b21γ1)n,s = 2λ222a2 b
(1,n)
f2,0

(∆̂, s) ,
(11.55)

and the resummation gives a compact expression:

F̃1(z, z̄) = −λ222a2
zz̄ log zz̄

(1− z)(1− z̄)(1− zz̄) . (11.56)

Finally, since the discontinuity of F2(z, z̄) vanishes (11.43), we simply find

F̃2(z, z̄) = 0 . (11.57)

11.3.4 Supersymmetrization of the correlator

The correlation function obtained in the previous section is not supersymmetric, i.e. the
three R-symmetry channels given in (11.54), (11.56) and (11.57) do not respect the Ward
identities given in (11.18). This happens because the inversion formula misses contributions
from low-lying spins s ≤ s∗ as anticipated in section 11.3.1.12 The value of s∗ is related to
the behavior of the two-point function in the Regge limit z/z̄ → 0 [266], and in principle s∗
can be determined by careful analysis of the corresponding Witten diagrams. Instead, in
the present work we use the heuristic that s∗ should take the minimal value that generates
a supersymmetric correlator. As we show below, the resulting correlators make predictions
which are in perfect agreement with the expectations from the topological sector.

As we just argued, in order to obtain a supersymmetric correlator, we add defect families
with operators of dimensions ∆̂ = 0, 1, 2, . . . and low spin s ≤ s∗. The OPE coefficients
of these operators are unknowns that we fix by imposing the Ward identities (11.18). We
have found experimentally that the minimal ansatz consists on taking s∗ = 0 for F̃1(z, z̄)

12 Such a phenomenon has already been observed for bulk correlators. For example, in the bootstrap
of the Wilson-Fisher fixed point there is an ambiguity captured by a single ` = 0 block [135, 145]. In
supersymmetric theories, one expects the inversion formula to converge better than in non-supersymmetric
ones, see [392] for a recent discussion.
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and s∗ = 1 for F̃2(z, z̄). To be precise, we define the final correlators Fj(z, z̄) as

F0(z, z̄) = F̃0(z, z̄) ,

F1(z, z̄) = F̃1(z, z̄) +
∞∑
n=0

(
knf̂n,0(z, z̄) + pn∂∆̂f̂n,0(z, z̄)

)
,

F2(z, z̄) = F̃2(z, z̄) +
∑
s=0,1

∞∑
n=0

(
qn,sf̂n+s,s(z, z̄) + rn,s∂∆̂f̂n+s,s(z, z̄)

)
.

(11.58)

As mentioned before, the free coefficients kn, pn, qn,s and rn,s, can be fixed by requiring
that the Ward identities are satisfied. In fact this fixes all the coefficients in terms of q0,0

and k1. Note that q0,0 corresponds to the ambiguity f0,0(z, z̄) = 1, i.e. the defect identity.
However, we know from the Witten diagrams analysis of section 11.2.2 that the defect
identity is given by the constant contribution a2

2, and thus

q0,0 = a2
2

∣∣∣
O(
√
λ

N2 )
. (11.59)

On the other hand, the unknown k1 can be determined by demanding a bulk expansion
that is consistent with the observations made in section 11.3.2, i.e. there should not appear
anomalous dimensions for bulk operators. This means that the expansion of (11.58) in the
limit z, z̄ → 1 should take the form of a power series, without spurious log(1 − z̄) terms.
Since the defect expansion (11.58) is natural around z, z̄ ∼ 0, this is only possible after
fixing the free coefficients and resumming the correlator. We were able to do so, and the
remaining spurious term reads:

F1(z, z̄) ∼ 1
2 (λ222a2 − k1) log(1− z̄) + . . . (11.60)

This fixes the coefficient k1 to be:
k1 = λ222a2 . (11.61)

11.3.5 Final result and comparison to localization

We will now present the final result for the correlator 〈〈O2O2〉〉 using the input of local-
ization for the two remaining free coefficients, namely a2

2 and λ222a2. We can then obtain
OPE coefficients of other protected operators which in turn can be checked against the
localization data.

The constant contribution a2
2 from the defect identity can be fixed using equation

(11.25):
a2

2 = λ

N2

(1
8 −

3
8
√
λ

+ . . .

)
(11.62)
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while for the OPE coefficient λ222a2 we use the localization results given in equation (11.23)
and (11.25):

λ222a2 = λ

N2

( 1√
λ

+ . . .

)
. (11.63)

We thus obtain a correlator without any free coefficient left:

F0(z, z̄) = −
√
λ

2N2
zz̄

(1− z)(1− z̄)

[ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
,

F1(z, z̄) =
√
λ

N2

[
log(1 +

√
zz̄) + zz̄

(1− zz̄)2

+
zz̄
(
5zz̄ − 2z2z̄2 + z3z̄3 − (z + z̄)(2− zz̄ + z2z̄2)

)
log zz̄

2(1− z)(1− z̄)(1− zz̄)3

]
,

F2(z, z̄) =
√
λ

8N2

[
−3− 2(z + z̄)√

zz̄
+ (z + z̄)(1 + zz̄)− 4zz̄

(1− zz̄)2

+
2
(
(z + z̄)(1 + zz̄)− 4zz̄

)
log(1 +

√
zz̄)

zz̄

+
zz̄
(
(z + z̄)(3− 2zz̄ + z2z̄2)− 6 + 6zz̄ − 4z2z̄2) log zz̄

(1− zz̄)3

]
. (11.64)

Comparing to (11.98), this correlator predicts the OPE coefficient of the double-trace
operator O(2,2)

λ22(2,2)a(2,2) = λ

N2

(1
8 −

1
2
√
λ

+ . . .

)
, (11.65)

which matches the localization results given in equation (11.27). We can also extract the
defect CFT data for the protected operators:

b221 = λ

N2

( 1√
λ

+ . . .

)
,

b22(2) = 1 + λ

N2

(
− 1

2
√
λ

+ . . .

)
.

(11.66)

The OPE coefficient b221 can be compared to the direct computation (see equation (11.31)),
and we find a perfect match. The OPE coefficient b22(2) corresponds to the operator Ô(2)

introduced in equation (11.29) and is a prediction from our result.13

13The observation that Ô(2) should appear in this type of correlator was first discussed in appendix A
of [289]. In principle the operator Ô2 should also appear, but it can be seen from equation (11.31) that it
is not relevant at the present order.
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Moreover, using the superblocks described in [285,286], the correlator above can also be
used for extracting the supersymmetric CFT data for unprotected operators. The resulting
CFT data has to be interpreted as a sum over degenerate operators, and one would need to
solve a mixing problem similar to the case ofN = 4 SYM without defects [170,363,417,418].
Below we provide a few examples, while we postpone the full analysis of the CFT data and
the mixing problem to future work. In particular, the product of tree-level coefficients and
anomalous dimensions for the unprotected operators at lowest twist ∆̂ = s+ 2 reads

F̂s+2,sγs+2,s
∣∣∣
O(
√
λ

N2 )
= − 3 + 2s

2(1 + s)

√
λ

N2 . (11.67)

Note that here we use the notation of [286]. It is also possible to obtain a closed form for
the OPE coefficients of the semishort operators (B, 1)[1,s]:

Ês
∣∣∣
O(
√
λ

N2 )
= − 1 + s

4(1 + 2s)

√
λ

N2 . (11.68)

11.4 General identical operators

In this section we extend the analysis of the previous section for general identical oper-
ators 〈〈OJOJ〉〉. The calculation of 〈〈O2O2〉〉 carries through almost unchanged, as will
be described shortly. As a concrete application we obtain closed-form expressions for the
J = 3, 4 correlators.

11.4.1 General discussion

As discussed in section 11.2, the correlator of interest has the form

F (J)(z, z̄, σ) =
(

σ
√
zz̄

(1− z)(1− z̄)

)J
+ Jλ

2J+2N2 +
J∑
j=0

σjF
(J)
J−j(z, z̄) +O

( 1
N2

)
, (11.69)

where we used the leading-order result for the one-point function (11.25). Here we give a
general prescription to obtain the functions F (J)

j (z, z̄) that contribute at order
√
λ

N2 .
The central idea is to reconstruct these functions using the Lorentzian inversion formula

(11.33). It was discussed in section 11.3.2 that only operators with single-trace dimension
can contribute to the discontinuity of the correlator. The bulk OPE of OJ takes the
form [285]

OJ ×OJ ∼ 1 +
J∑
k=1
B[0,2k,0] + . . . , (11.70)
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where . . . contains unprotected multiplets that do not contribute to the discontinuity.
Furthermore, B[0,2J,0] has double-twist dimension and does not contribute. From this it
follows that, at the order we are working, the discontinuity of the correlator reads

DiscF (J)(z, z̄, σ)
∣∣∣
O(
√
λ

N2 )
= Disc

[(
σ
√
zz̄

(1− z)(1− z̄)

)J J−1∑
k=1

λJJ2ka2kG[0,2k,0](z, z̄, σ)
]
. (11.71)

The superconformal blocks capture the information of half-BPS operators exchanged in
the bulk OPE OJ × OJ . They were obtained in [286], and we reproduce them here for
simplicity:

G[0,K,0](z, z̄, σ) = hK(σ)fK,0(z, z̄) + (K + 2)2K

128(K + 1)2(K + 3)hK−2(σ)fK+2,2(z, z̄)

+ (K − 2)(K + 2)K2

16384(K − 1)2(K + 1)(K + 3)hK−4(σ)fK+4,0(z, z̄) .
(11.72)

Using (11.71) as input to the inversion formula, it is possible to generate a series represen-
tation of the correlators F̃ (J)

j (z, z̄). In concrete examples, these series expansions do not
satisfy the Ward identities, just as we saw for the 〈〈O2O2〉〉 case. This is a result of the
inversion formula not converging for low values of the transverse spin s. Empirically we
have found that the minimal set of additions is

F
(J)
j (z, z̄) = F̃

(J)
j (z, z̄) for j = 0, . . . , J − 2 ,

F
(J)
J−1(z, z̄) = F̃

(J)
J−1(z, z̄) +

∞∑
n=0

(
knf̂n,0(z, z̄) + pn∂∆̂f̂n,0(z, z̄)

)
,

F
(J)
J (z, z̄) = F̃

(J)
J (z, z̄) +

∑
s=0,1

∞∑
n=0

(
qn,sf̂n+s,s(z, z̄) + rn,s∂∆̂f̂n+s,s(z, z̄)

)
.

(11.73)

Namely, we must add s = 0 ambiguities to F
(J)
J−1(z, z̄), while we must add s = 0, 1 am-

biguities to F (J)
J−1(z, z̄). Using the Ward identities (11.18), it is possible to fix all the free

coefficients kn, pn, qn,s, rn,s except for q0,0 and k1. As discussed around equation (11.59),
q0,0 can be identified with the defect identity a2

J and is therefore fixed from localization.
Furthermore, if one keeps the bulk OPE coefficients λJJKaK arbitrary, the Ward identities
also fix their relative values. For example, the Ward identities together with (11.73) imply

λJJKaK
∣∣∣
O(
√
λ

N2 )
= K

2K/2
λJJ2a2

∣∣∣
O(
√
λ

N2 )
for 2 ≤ K ≤ J − 2 . (11.74)
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These results are in perfect agreement with the known values (11.25) at leading order at
large λ. This provides evidence that (11.73) is the correct prescription for the low-spin
additions.

At this point, it is possible to resum the series expansion representations for F (J)
j .

These resummed correlators can be expanded in a series around z, z̄ = 1, which corresponds
to the bulk conformal block decomposition. The expansion contains spurious log(1 − z̄)
terms, which would imply that bulk operators get anomalous dimensions. These anomalous
dimensions should not be present at the order we are working, so canceling the spurious
logarithms fixes the remaining free parameter k1. Finally, one uses a2

J and λJJ2a2 coming
from localization to write down the final correlator. This correlation function produces
all other OPE coefficients in the protected sector, and we find perfect agreement with the
literature.

11.4.2 Example 1: 〈〈O3O3〉〉

Let us turn our attention to the case of 〈〈O3O3〉〉. The purpose of this example is to
illustrate the general formalism that we just discussed. Furthermore, we present concrete
intermediate results to help the readers interested in reproducing our results.

Inversion of single traces

The first step is to obtain the discontinuity of the correlator, by combining (11.71) and
(11.72) with (11.92). For concreteness we look at the coefficient of σ3, or equivalently we
focus on the F (3)

0 (z, z̄) correlator:

DiscF (3)
0 (z, z̄) = λ332a2

z3/2 (z2 − 2z log z − 1
)

2(1− z)5 Disc 1
ȳ2

− λ334a4
z3/2(z3 + 9z2 − 9z − 1− 6z(z + 1) log z

)
4(1− z)6 Disc 1

ȳ
.

(11.75)

Similar expressions can be easily obtained for the other F (3)
j (z, z̄). The next step is to

insert the discontinuity in the inversion formula (11.33), and carry out the inversion order
by order as z → 0. Each power zp induces a defect family with blocks f̂2p+s+2n,s(z, z̄)
and OPE coefficients given by the poles of b(∆̂, s). Similarly, each power zp log z induces
defect anomalous dimensions ∂∆̂f̂2p+s+2n,s(z, z̄) given by the double poles of b(∆̂, s). All
the integrals that are needed are of the form (11.47) with p = 1, 2. The resulting defect
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expansion for the lowest-lying operators is

F̃
(3)
0 (z, z̄) = 1

2(3λ332a2 − λ334a4)f̂3,0(z, z̄) + 1
2(5λ332a2 − λ334a4)f̂4,1(z, z̄)

+ 2
21(121λ332a2 − 73λ334a4)f̂5,0(z, z̄) + 2(5λ332a2 − 3λ334a4)∂∆̂f̂5,0(z, z̄)

+ 1
2(7λ332a2 − λ334a4)f̂5,2(z, z̄) + . . . (11.76)

Once again, the expansions for other F̃ (3)
j (z, z̄) are obtained in an identical manner. Unlike

in the 〈〈O2O2〉〉 case, we were not able to express the defect CFT data in closed forms.
However, the previous calculation can be automatized with a computer, and the expansion
can be generated efficiently up to high orders.

Supersymmetrization of the correlator

As for the 〈〈O2O2〉〉 case, the F̃ (3)
j (z, z̄) do not give a supersymmetric correlator because

the Lorentzian inversion formula can miss low transverse-spin contributions. In order for
F̃

(3)
j (z, z̄) to satisfy the Ward identities (11.18), we add the following s = 0, 1 contributions

to our correlators

F
(3)
0 (z, z̄) = F̃

(3)
0 (z, z̄) , F

(3)
1 (z, z̄) = F̃

(3)
1 (z, z̄) ,

F
(3)
2 (z, z̄) = F̃

(3)
2 (z, z̄) +

∞∑
n=0

(
knf̂n,0(z, z̄) + pn∂∆̂f̂n,0(z, z̄)

)
,

F
(3)
3 (z, z̄) = F̃

(3)
3 (z, z̄) +

∑
s=0,1

∞∑
n=0

(
qn,sf̂n+s,s(z, z̄) + rn,s∂∆̂f̂n+s,s(z, z̄)

)
.

(11.77)

After this addition, the functions F (3)
j (z, z̄) should satisfy the Ward identities (11.18), which

are highly constraining. In fact, the only coefficients that remain unfixed are λ332a2, k1 and
q0,0. In particular, notice that the precise relation between single-trace OPE coefficients is
fixed:

λ334a4
∣∣∣
O(
√
λ

N2 )
= λ332a2

∣∣∣
O(
√
λ

N2 )
. (11.78)

Reassuringly, this relation is consistent with localization (11.25). Again, we believe this
is strong evidence for the ansatz (11.77) for low transverse-spin ambiguities to be correct.
In the case of 〈〈O4O4〉〉 we find a similar result involving K = 4, 6, and for general J we
expect equation (11.74) to hold.
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Fixing free parameters and final result

At this point, we have a supersymmetric correlator depending on three free parameters.
Using the series representation of the correlator (11.76) it is possible to find a closed form
expression in terms of rational functions and logarithms. In particular, we find

F
(3)
2 (z, z̄) = −3

8(3λ332a2 + 32k1) tanh−1√zz̄ + . . . , (11.79)

where . . . stand for terms which have an expansion around z, z̄ = 1 involving only integer
powers. On the other hand, tanh−1√zz̄ has an expansion with log(1 − z̄) terms. These
logarithms correspond to anomalous dimensions in the bulk, which should be absent by
our assumptions. We thus conclude

k1 = − 3
32λ332a2 . (11.80)

In order to fix the last two coefficients we use input from the localization results of the
topological sector. Indeed, from (11.25) we have that

λ332a2 = λ

N2

( 3
2
√
λ

+ . . .

)
, a2

3 = λ

N2

( 3
32 −

3
4
√
λ

+ . . .

)
. (11.81)

As discussed around equation (11.59), the coefficient q0,0 has a natural interpretation as
the defect identity contribution given by a2

3. We thus conclude q0,0 = −3
√
λ

4N2 .
The final result with no free parameters takes a reasonably simple form:

F
(3)
0 (z, z̄) = −6

√
λ

8N2
(zz̄)3/2[

(1− z)(1− z̄)
]2 [ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
,

F
(3)
1 (z, z̄) = 3

√
λ

4N2
(zz̄)3/2

(1− z)(1− z̄)(1− zz̄)4

(
z2z̄2 − 38zz̄ + 1

− 2
(
(z + z̄)(zz̄ + 1)

(
z2z̄2 − 11zz̄ + 1

)
+ zz̄(zz̄ + 5)(5zz̄ + 1)

)
log zz̄

(1− z)(1− z̄)(1− zz̄)

)
,

F
(3)
2 (z, z̄) = −18

√
λ

N2
(zz̄)1/2

(1− zz̄)2

(
zz̄

(1− z)(1− z̄) −
3(1 + zz̄)

(
z2z̄2 + 6zz̄ + 1

)
32(1− zz̄)2

− 2zz̄
(
7 + 10zz̄ + 7z2z̄2) log zz̄

32(1− zz̄)3 + zz̄(1 + zz̄) log zz̄
2(1− z)(1− z̄)(1− zz̄)

)
,

F
(3)
3 (z, z̄) = −3

√
λ

4N2

(
1− 3(zz̄)1/2 ((z + z̄)

(
z2z̄2 + 10zz̄ + 1

)
− 3(zz̄ + 1)3)

4(1− zz̄)4

+ 3(zz̄)3/2 (5z2z̄2 + 2zz̄ + 5− 3(z + z̄)(zz̄ + 1)
)

log zz̄
2(1− zz̄)5

)
. (11.82)
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In principle, this correlation function contains information of infinitely many unprotected
operators, but as for the 〈〈O2O2〉〉 case we leave a detailed analysis of the OPE for future
work. Instead, we focus on the CFT data captured by the topological sector. Comparing
the full correlator (11.69) to equation (11.98) gives the bulk data

λ334a4 = λ

N2

( 3
2
√
λ

+ . . .

)
, λ33(3,3)a(3,3) = λ

N2

( 3
32 −

9
8
√
λ

+ . . .

)
, (11.83)

while comparing to (11.100) gives the defect data

b231 = λ

N2

( 27
16
√
λ

+ . . .

)
, b232 = O

(
λ0

N2

)
, b23(3) = 1 + λ

N2

(
− 3

4
√
λ

+ . . .

)
. (11.84)

These results are in perfect agreement with the literature, see (11.25), (11.27) and (11.31).
Remember that b3(3) cannot be compared to (11.31) because the results of [289] apply
to the defect operator Ô3, while our result applies to the defect operator Ô(3), see the
discussion in footnote 13.

11.4.3 Example 2: 〈〈O4O4〉〉

Let us finally consider the 〈〈O4O4〉〉 two-point function. Since the calculation is essentially
identical to the previous one, we skip most of the details. However, it is important to note
that the following input from localization is necessary:

λ442a2 = λ

N2

( 2√
λ

+ . . .

)
, a2

4 = λ

N2

( 1
16 −

15
16
√
λ

+ . . .

)
. (11.85)
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Following all the steps, which can be automatized with the help of a computer, we obtain
the correlation function

F
(4)
0 (z, z̄) = −

√
λ

N2
(zz̄)2[

(1− z)(1− z̄)
]3 [ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
,

F
(4)
1 (z, z̄) =

√
λ

N2
(zz̄)2

(1− z)2(1− z̄)2(1− zz̄)4

(
z2z̄2 − 38zz̄ + 1

− 2
(
(z + z̄)(zz̄ + 1)

(
z2z̄2 − 11zz̄ + 1

)
+ zz̄(zz̄ + 5)(5zz̄ + 1)

)
log zz̄

(1− z)(1− z̄)(1− zz̄)

)
,

F
(4)
2 (z, z̄) = −3

√
λ

2N2
(zz̄)2

(1− z)2(1− z̄)2(1− zz̄)6

(
+ 2(z + z̄)(zz̄ + 1)

(
8z2z̄2 − 91zz̄ + 8

)
+ 2zz̄

(
43z2z̄2 + 214zz̄ + 43

)
+ (zz̄ + 1)(z4z̄4 + 14z3z̄3 + 270z2z̄2 + 14zz̄ + 1) log zz̄

1− zz̄

+ (z + z̄)(7z4z̄4 − 46z3z̄3 − 222z2z̄2 − 46zz̄ + 7) log zz̄
1− zz̄

)
,

F
(4)
3 (z, z̄) = −

√
λ

2N2

( 270(zz̄)2(zz̄ + 1)
(1− z)(1− z̄)(1− zz̄)4 −

zz̄
(
2z4z̄4 + 229z3z̄3 + 438z2z̄2 + 229zz̄ + 2

)
(1− zz̄)6

+ 90(zz̄)2 (z2z̄2 + 4zz̄ + 1
)

log zz̄
(1− z)(1− z̄)(1− zz̄)5 − 4 log

(
1 +
√
zz̄
)

− (zz̄)2 (2z5z̄5 − 14z4z̄4 + 117z3z̄3 + 325z2z̄2 + 395zz̄ + 75
)

log zz̄
(1− zz̄)7

)
,

F
(4)
4 (z, z̄) =

√
λ

N2

(
− z + z̄

2
√
zz̄

+ (z + z̄)(zz̄ + 1)− 4zz̄
2zz̄ log

(
1 +
√
zz̄
)

+ 2(z + z̄)(zz̄ + 1)
(
2z4z̄4 − 11z3z̄3 + 468z2z̄2 − 11zz̄ + 2

)
16(1− zz̄)6

− 15z6z̄6 − 74z5z̄5 + 1397z4z̄4 + 924z3z̄3 + 1397z2z̄2 − 74zz̄ + 15
16(1− zz̄)6 (11.86)

+ (zz̄)2(z + z̄)
(
z5z̄5 − 6z4z̄4 + 14z3z̄3 + 56z2z̄2 + 315zz̄ + 70

)
log zz̄

4(1− zz̄)7

− (zz̄)2 (4z5z̄5 − 28z4z̄4 + 189z3z̄3 + 245z2z̄2 + 385zz̄ + 105
)

log zz̄
4(1− zz̄)7

)
.
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Once again, let us compare the predictions of this correlator with the topological sector.
We find the bulk data

λ444a4 = λ

N2

( 2√
λ

+ . . .

)
, λ446a6 = λ

N2

( 3
2
√
λ

+ . . .

)
,

λ44(4,4)a(4,4) = λ

N2

( 1
16 −

3
2
√
λ

+ . . .

)
,

(11.87)

while the defect data is given by

b241 = λ

N2

( 2√
λ

+ . . .

)
, b242 = O

(
λ0

N2

)
,

b243 = O

(
λ0

N2

)
, b24(4) = 1 + λ

N2

(
− 1√

λ
+ . . .

)
.

(11.88)

These results are in perfect agreement with the literature, except for b4(4), which is a new
prediction from our calculation.

11.4.4 A conjecture

In the three examples considered in the present paper, the function F (J)
0 (z, z̄) is very simple:

F
(J)
0 (z, z̄) = −J

√
λ

4N2
(zz̄)J/2[

(1− z)(1− z̄)
]J−1

[ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
. (11.89)

It is tempting to conjecture that this relation also holds for J > 4. From our bootstrap
calculation, (11.89) is a result of a precise combination of the spacetime bulk blocks (11.92),
the superblocks (11.72) and the OPE coefficients in the topological sector (11.25). Perhaps
from the point of view of the explicit holographic calculation the origin of (11.89) will be
more transparent.

Let us also note the similarity between F
(3)
1 (z, z̄) and F

(4)
1 (z, z̄)

F
(J)
1 (z,z̄) = J

√
λ

4N2
(zz̄)J/2

(1− z)J−2(1− z̄)J−2(1− zz̄)4

(
z2z̄2 − 38zz̄ + 1

− 2
(
(z + z̄)(zz̄ + 1)

(
z2z̄2 − 11zz̄ + 1

)
+ zz̄(zz̄ + 5)(5zz̄ + 1)

)
log zz̄

(1− z)(1− z̄)(1− zz̄)

)
.

(11.90)

We do not have enough data points to propose a full analytic formula for any J , however
our current results look promising. In the discussions below we speculate on what might
be the best possible strategy for the future.
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11.5 Conclusions

In this work we have studied the structure of two-point functions of single-trace half-BPS
operators in the presence of a supersymmetric Wilson line in N = 4 SYM theory. We used
analytical bootstrap techniques in order to reconstruct the correlator at strong coupling.
For operators of weight J = 2, 3, 4 we obtained fairly simple results presented in (11.64),
(11.82), (11.86) which only involve logarithms and rational functions of the cross-ratios.

A natural continuation of our work is the analysis of two-point functions for arbitrary
weight 〈〈OJ1OJ2〉〉. One obvious approach is to keep pushing the algorithm presented in
this paper to higher values of J . However there might be better strategies. In N = 4 SYM
without defects, explicit closed form expressions for half-BPS operators take a particularly
simple form in Mellin space [171, 172, 395, 396]. It would be interesting to transform the
explicit formulas presented in this paper to Mellin variables. The Mellin space approach for
defect CFT was explored in [419], the hope being that this might be the natural language
to write the most general correlator 〈〈OJ1OJ2〉〉.

Another interesting line of research is to reproduce our results by an explicit holographic
calculation using Witten diagrams. Some observables in holographic defect CFTs have been
studied perturbatively at strong coupling, for example bulk one-point functions [399,411],
bulk-defect correlators [289] and correlators localized on the defect [260,288,346,420,421].
The two-point function of bulk operators was studied to order O( λ

N2 ) in [401], and the
next order will involve the calculation of the Witten diagram (11.10). The structural
understanding presented in this work might give valuable input for this type of calculation.

The idea of reconstructing correlators starting from their discontinuity is powerful.
In defect CFT it seems to be as powerful as in the case for homogeneous CFTs. For
monodromy defects in the ε–expansion this method was already used to fully bootstrap
two-point correlators of chiral fields [4]. In this work we developed an algorithm that in
principle can be used to bootstrap an infinite family of half-BPS correlators. We expect that
the same method also works in related N = 4 SYM setups, such as the non-supersymmetric
Wilson line [420], Wilson lines in more general representations of the gauge group [421],
or even higher codimension defects. Furthermore, many half-BPS defects are known to
exist in maximally supersymmetric theories in d = 3, 4, 6, and all of them might be prime
targets for the analytical bootstrap techniques used here.
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11.A Appendix

11.A.1 Singular part of bulk blocks

In this appendix, bulk blocks are studied in the limit ȳ = (1 − z̄)/
√
z̄ → 0. These results

provide the necessary input for the inversion formula in sections 11.3 and 11.4. The starting
point are the explicit formulas for bulk blocks derived in [264, 265], which we reproduce
here for convenience:

f∆,`(z, z̄) =
∞∑
m=0

∞∑
n=0

4m−n

m!n!

(
− `

2

)2

m

(
2−`−∆

2

)
m

(−`)m
(

3−`−∆
2

)
m

(
∆−1

2

)2

n

(
∆+`

2

)
n

(∆− 1)n
(

∆+`+1
2

)
n

(
∆+`

2

)
n−m(

∆+`−1
2

)
n−m

× (1− zz̄)`−2m
4F3

(
−n,−m, 1

2 ,
∆−`−2

2
2−∆−`−2n

2 , ∆+`−2m
2 , ∆−`−1

2
; 1
)

(11.91)

× [(1− z)(1− z̄)]
∆−`

2 +m+n
2F1

( ∆+`
2 −m+ n, ∆+`

2 −m+ n

∆ + `− 2(m− n)
; 1− zz̄

)
.
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After changing variables from z̄ → ȳ and expanding up to order O(ȳ3), we obtain the
following formulas:

f2,0(z, z̄) ∼ −ȳ log z + ȳ3
(

z + 1
8(z − 1) −

z log z
4(z − 1)2

)
,

f4,0(z, z̄) ∼ ȳ2
(
−12 + 6(z + 1) log z

z − 1

)
,

f4,2(z, z̄) ∼ ȳ
(

90(z + 1)
z − 1 − 30

(
z2 + 4z + 1

)
log z

(z − 1)2

)

+ ȳ3
(
−15(z + 1)

(
z2 − 20z + 1

)
8(z − 1)3 − 15z

(
z2 + 7z + 1

)
log z

2(z − 1)4

)
, (11.92)

f6,0(z, z̄) ∼ ȳ3
(

90(z + 1)
z − 1 − 30

(
z2 + 4z + 1

)
log z

(z − 1)2

)
,

f6,2(z, z̄) ∼ ȳ2
(
−140

(
11z2 + 38z + 11

)
3(z − 1)2 + 140(z + 1)

(
z2 + 8z + 1

)
log z

(z − 1)3

)
,

f8,2(z, z̄) ∼ ȳ3
(

525(z + 1)
(
5z2 + 32z + 5

)
(z − 1)3 − 630

(
z4 + 16z3 + 36z2 + 16z + 1

)
log z

(z − 1)4

)
.

The symbol ∼ is a reminder that these expressions are valid up to corrections of order
O(ȳ4). The same calculation can be carried out to higher orders in ȳ, as will be necessary
to extend the present work to correlators with J > 4.

11.A.2 Conformal block normalization

In this appendix we review our normalization conventions for conformal blocks. Further-
more, we study the contribution of half-BPS operators to the bulk and defect OPEs. This
allows to extract topological subsector data from correlation functions, and compare to the
predictions from section 11.2.4.

The bulk-channel conformal block is given explicitly in (11.91). In the bulk OPE limit
z, z̄ → 1 it goes like

lim
z,z̄→1

f∆,`(z, z̄) = [(1− z)(1− z̄)](∆−`)/2(1− zz̄)` . (11.93)

For the defect-channel conformal block we use the same normalization as [266]

f̂∆̂,s(z, z̄) = z
∆̂−s

2 z̄
∆̂+s

2 2F1

(1
2 ,−s;

1
2 − s;

z

z̄

)
2F1

(1
2 , ∆̂; ∆̂ + 1

2; zz̄
)
. (11.94)
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The asymptotics in the defect OPE limit z, z̄ → 0 can be easily extracted. Finally, we use
the following form of the R-symmetry blocks:

hK(σ) = σ−K/2 2F1

(
−K2 ,−

K

2 ;−K − 1; σ2

)
,

ĥK̂(σ) = σK̂ 2F1

(
−K̂ − 1,−K̂;−2(K̂ + 1); 2

σ

)
.

(11.95)

Using (11.13) and (11.15), it is possible to check that these blocks satisfy the appropriate
Casimir equations.

In the discussion of the main text, it is crucial to compare to the predictions in the
topological subsector of section 11.2.4. We start showing how to extract the topological
bulk CFT data from our correlators. The choice of normalization in (11.22) fixes uniquely
the bulk OPE

OJ(x1, u1)OJ(x2, u2)
∣∣
OK

= λJJK
(u1 · u2)J−

K
2

(x2
12)J−

K
2

(u1 ·D(6)
u )

K
2 (u2 ·D(6)

u )
K
2 OK(x2, u)

K!(K + 1)! + . . .

(11.96)

This is the contribution of a single half-BPS operator OK(x, u) to the bulk OPE, and we
suppress terms subleading as x2

12 → 0. In order to deal with the R-symmetry polarization,
we use the SO(r) Todorov operator

(D(r)
u )µ =

(
r

2 − 1 + u · ∂
∂u

)
∂

∂uµ
− 1

2uµ
∂2

∂u · ∂u
. (11.97)

One can insert the bulk OPE (11.96) combined with the one-point function (11.24) in the
two-point function. Keeping only the leading term as z, z̄ → 1 gives

F (J)(z, z̄, σ)
∣∣
OK

=
( √

zz̄ σ

(1− z)(1− z̄)

)J
λJJKaKhK(σ)

[
(1− z)(1− z̄)

]K
2 + . . . (11.98)

This is the leading contribution of a protected half-BPS operator to the bulk OPE, and it
is equally valid for single- and multi-trace operators. It is reassuring that the contribution
is proportional to the R-symmetry block (11.95). This result also justifies our choice of the
overall normalization for the bulk superblock (11.72).

The story for the defect OPE works in an identical way. The form of the correlators
(11.30) fixes uniquely the bulk-defect expansion

OJ(x, u)
∣∣
ÔK̂

= bJK̂
(u · θ)J−K̂

|x⊥|J−K̂
(u ·D(5)

û )K̂ÔK̂(τ, û)
K̂!(3/2)K̂

+ . . . (11.99)
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As before, we focus on the contribution of a protected defect operator and keep only the
leading-order term as x⊥ → 0. Since the defect operator transforms as an SO(5) symmetric
traceless tensor, we use the r = 5 version of (11.97). Inserting the defect OPE in the two-
point function gives

F (J)(z, z̄, σ)
∣∣
ÔK̂
∼ b2

JK̂
ĥK̂(σ)(zz̄)K̂/2 + . . . (11.100)

This is the leading contribution as z, z̄ → 0 of a protected defect operator to the defect
OPE.
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Chapter 12

Summary and future directions

12.1 Summary

The goal of this thesis was to advance our understanding of conformal bootstrap in the
presence of supersymmetry and defects. This goal has been achieved in two different fronts.

First, we have contributed to the numerical and analytical study of SCFT without de-
fects. The single-correlator bounds of chapter 7 have improved the state-of-the-art results
for 4d N = 2 SCFTs. Furthermore, we performed the first mixed-correlator study that
involves Coulomb and Higgs branch operators, two operators ubiquitous in SCFT. Addi-
tionally, chapters 9 and 10 studied the Wess-Zumino model, a supersymmetric cousin of the
3d Ising CFT. While previous work on the Wess-Zumino model was numerical [193, 378],
we focused on analytic methods. Within our framework, we determined the spectrum of
the Wess-Zumino model at leading order in the ε–expansion, and in the future, we hope
to extend these results beyond the ε–expansion.

Second, this thesis has contributed to the study of conformal and superconformal de-
fects. As a first example, in chapter 8 we studied superconformal line defects in 4d N = 2
theories. Our analysis, which considered correlators restricted to the defect, can be viewed
as a less-supersymmetric generalization of previous work in N = 4 SYM [233]. The numer-
ical results put general constraints in the space of allowed line defects, while the analytic
results solve the crossing equation in the holographic regime. As a second example, in
chapters 9-11 we have studied two-point functions of bulk operators in the presence of a
conformal defect. Before this thesis, most work on bulk two-point functions considered only
non-supersymmetric boundary CFT. In our work, we have generalized this in two ways.
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On the one hand, in chapter 9 we added supersymmetry by considering the Wess-Zumino
model in the presence of a boundary. On the other hand, using the Lorentzian inversion
formula [266] we were able to systematically consider defects of codimension q > 1. The in-
version formula does not require supersymmetry, but it only applies to perturbative setups,
such as the ε–expansion (chapter 10) and holographic CFTs (chapter 11).

12.2 Future directions

After every chapter in part II, we have given an outlook of future directions specific to that
context. Instead of summarizing them here, we present more general goals of the conformal
bootstrap, that will hopefully be accomplished to some extent in the coming years.

Although the numerical bootstrap is a consolidated technique, there are still prospects
of obtaining many interesting results. In the past years, a large effort has led to the
determination of critical exponents for the Ising, O(2) and O(3) CFTs to unprecedented
accuracy [64, 77, 79]. In the process, the community has developed tools of general appli-
cability [60,68,78], so the next natural step is to use these tools to study other 3d models
relevant to critical phenomena. Another exciting possibility is to use numerical bootstrap
to study the fixed points of 4d gauge theories such as QCD. Sadly, these models have been
elusive in the numerical bootstrap, although some progress has been made recently [96–98].
Finally, a longstanding dream is to combine the developments in the analytic and numerical
bootstrap. To be more precise, the goal is to develop numerical bootstrap methods with
built-in knowledge of the large-spin behavior predicted by the analytic bootstrap.1

These powerful numerical tools can also be used to study SCFT. Although a full classifi-
cation program for SCFT is unattainable at the moment, perhaps partial results are within
reach. For instance, the 3d N = 1 super-Ising model appears to be the unique SCFT in a
particular corner of theory space [167,199,200]. Perhaps the Wess-Zumino model can also
be cornered to an island in parameter space, providing stronger evidence that it is the sim-
plest SCFT with four supercharges. To achieve this for the Wess-Zumino model, the natu-
ral system of correlators would involve a mix of chiral operators and the lowest-dimension
neutral scalar, which is unprotected. However, it has been a longstanding problem to
compute superconformal blocks with external unprotected operators. Although there has
been significant progress with other correlators [2, 196, 197, 200, 214, 228, 240, 241, 356], the

1Shortly before this thesis was submitted, [422] appeared which takes a first promising step in this
direction.
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superblocks that apply to the Wess-Zumino model are not yet known. Finally, the recent
work [225] proposed a method to do numerical bootstrap, at the same time requiring that
the integrated correlator takes a particular value. The motivation is that in SCFT some in-
tegrated correlators can be computed using supersymmetric localization. For N = 4 SYM
theory, the combination of integrated correlators, numerical bootstrap and supersymmetric
localization gave exciting results [225], which perhaps can be extended to other setups.

In this thesis, our discussion of the conformal bootstrap has been restricted to scalar op-
erators. However, in conformal field theory all four-point functions are crossing symmetric,
not only those of scalars. It is thus important to include spinning operators in the crossing
equations, as has been done several times in the literature [25, 111–115]. The relative low
number of papers considering spinning bootstrap is due to the technical complications that
arise in these calculations. However, these complications have been overcome in 3d [68,423],
so now is the perfect time to explore in more detail the numerical bootstrap with spinning
operators. In the case of superconformal field theories, the extra difficulty is that super-
conformal blocks involving spinning operators are largely not known, but see [190] for an
exception. In the case of defects, two-point functions of spin-` operators are understood
kinematically, but only [269] has studied dynamics.

Although exploring spinning correlators is an important endeavor, it is possible that
similar or better results can be obtained from higher-point scalar correlators. Higher-point
correlators involve five or more external operators, and by means of the OPE, they contain
information of spinning exchanged operators. Therefore, crossing of scalar higher-point
functions can be equivalent to crossing of spinning four-point functions. Although on paper
scalar correlators might appear simpler, the price to pay is that multipoint computations
become hard due to the proliferation of conformal cross-ratios. Nevertheless, examples
of higher-point correlators have been obtained in perturbation theory [175, 424, 425]. In
order to develop the bootstrap program for higher-point functions, the first step is to
compute the conformal blocks. Although computing higher-point blocks in full generality is
challenging, partial results have appeared in the literature [424,426–431]. In particular, the
kinematics simplify by taking the lightcone limit between consecutive points, facilitating
the computation of conformal blocks and allowing analogs of the traditional lightcone
bootstrap [425,432,433]. However, there are still many unanswered questions. For example,
is analyticity in spin preserved for higher-point functions, and if yes, is there an analog of
Caron-Huot’s Lorentzian inversion formula? On the numerical front, there are no results
yet of multipoint numerical bootstrap.
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The final topic we want to discuss are conformal defects. Recently, a fruitful idea has
been to classify the allowed conformal defects given a free bulk theory [294–296]. The next
natural step, which has taken a substantial part of this thesis, is the study of conformal
defects in a weakly coupled bulk. However, at the non-perturbative level, it is still an open
question how to leverage known properties of the bulk to constrain the space of allowed
defects. It is possible that this goal requires imposing crossing symmetry of higher-point
correlators such as bulk-bulk-defect. Once again, the kinematics in this setup becomes
harder, but recently some of the necessary blocks have been obtained [295,388]. Although
the bootstrap was possible in theories where the bulk is free [294–296], not much progress
has been made yet on using bulk-bulk-defect correlators in other setups. Another ambitious
idea is to consider correlators involving more than one defect. Besides the expansions
mentioned in chapter 6, a defect can be expanded in terms of local operators. By using
the defect-local operator expansion, the two-point function of defects can be expanded in
conformal blocks [434, 435]. However, in order to find a crossing equation, it is necessary
to also consider the expansion of two defects in terms of defects. Unfortunately, it is not
clear whether there exists a conformally invariant expansion for the product of two defects,
see [436].

This summary shows that, even though there has been amazing progress in the last
years, there are still lots of interesting and promising bootstrap questions to answer in the
future!
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[299] L. Iliesiu, M. Koloğlu and D. Simmons-Duffin, Bootstrapping the 3d Ising model at
finite temperature, JHEP 12 (2019) 072 [1811.05451].

[300] Y. Nakayama and H. Ooguri, Bulk Local States and Crosscaps in Holographic CFT,
JHEP 10 (2016) 085 [1605.00334].

[301] Y. Nakayama, Bootstrapping critical Ising model on three-dimensional real
projective space, Phys. Rev. Lett. 116 (2016) 141602 [1601.06851].

341

https://doi.org/10.1007/JHEP11(2018)123, 10.1007/JHEP05(2018)109
https://arxiv.org/abs/1802.05201
https://doi.org/10.1088/1751-8121/ab046c
https://doi.org/10.1088/1751-8121/ab046c
https://arxiv.org/abs/1811.02369
https://doi.org/10.1103/PhysRevLett.121.141601
https://arxiv.org/abs/1805.04111
https://doi.org/10.1140/epjp/s13360-022-02341-2
https://doi.org/10.1140/epjp/s13360-022-02341-2
https://arxiv.org/abs/2112.03841
https://doi.org/10.1007/JHEP06(2020)056
https://doi.org/10.1007/JHEP06(2020)056
https://arxiv.org/abs/1911.05082
https://doi.org/10.1007/JHEP07(2020)170
https://arxiv.org/abs/1911.12388
https://arxiv.org/abs/2005.02413
https://arxiv.org/abs/2009.03336
https://arxiv.org/abs/2111.04747
https://doi.org/10.1007/JHEP10(2021)057
https://arxiv.org/abs/2103.03132
https://doi.org/10.1007/JHEP10(2018)070
https://arxiv.org/abs/1802.10266
https://doi.org/10.1007/JHEP12(2019)072
https://arxiv.org/abs/1811.05451
https://doi.org/10.1007/JHEP10(2016)085
https://arxiv.org/abs/1605.00334
https://doi.org/10.1103/PhysRevLett.116.141602
https://arxiv.org/abs/1601.06851


Bibliography

[302] C. Hasegawa and Y. Nakayama, ε-Expansion in Critical φ3-Theory on Real
Projective Space from Conformal Field Theory, Mod. Phys. Lett. A 32 (2017)
1750045 [1611.06373].

[303] C. Hasegawa and Y. Nakayama, Three ways to solve critical φ4 theory on 4− ε
dimensional real projective space: perturbation, bootstrap, and Schwinger-Dyson
equation, Int. J. Mod. Phys. A 33 (2018) 1850049 [1801.09107].

[304] S. Giombi, H. Khanchandani and X. Zhou, Aspects of CFTs on Real Projective
Space, J. Phys. A 54 (2021) 024003 [2009.03290].
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[433] C. Bercini, V. Gonçalves, A. Homrich and P. Vieira, The Wilson Loop - Large Spin
OPE Dictionary, 2110.04364.

[434] A. Gadde, Conformal constraints on defects, 1602.06354.

[435] N. Kobayashi and T. Nishioka, Spinning conformal defects, 1805.05967.
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