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Abstract This article analyses the stability of thin-shell
wormholes constructed from non-asymptotically flat worm-
holes and the vacuum Schwarzschild solution. The construc-
tion of these spherically symmetric thin shells focuses on a
specific class of wormholes characterized by a shape function
that is linearly dependent on the radial coordinate. This intro-
duces angular defects, which can be either deficits or excesses
in the solid angle. To analyze the stability of these structures,
we employ linear perturbations around a static solution, using
a master equation to describe the behavior of stable equilib-
rium regions. The study is systematically divided to examine
both positive and negative surface energy densities, and it
delves into various gravitational redshift functions. Finally,
it is concluded that the interaction of an external force on
the thin shell significantly influences the behaviour of stable
regions. It is demonstrated that, in certain cases, the matter
supporting the thin shell may be non-exotic, fully satisfying
all energy conditions.

1 Introduction

The Einstein field equations predict solutions that have
allowed the study of the feasibility of interstellar travel
through hypothetical tunnels called wormholes. In 1916,
Flamm [1] was the first to describe the form of a worm-
hole using a coordinate transformation, resulting in what is
now known as the Flamm paraboloid. Years later, with the
intention of formulating a fundamental theory of particles,
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Einstein and Rosen [2] find a solution that connected two
identical sheets via a bridge. This solution is known as the
Einstein–Rosen bridge. In 1955, Wheeler [3], using a geo-
metric approach, postulates the existence of the geon. Two
years later, J.A. Wheeler and C.W. Misner study the con-
sequences regarding electric charge, which allows them to
visually conceive a wormhole and coin this term in literature
[4]. In 1973, Ellis [5] discovers a new solution by coupling a
scalar field to the spacetime metric. This traversable worm-
hole is known as a drainhole. Years later, in 1988, Morris
and Thorne [6,7], using such solutions as a pedagogical tool
to teach Einstein’s theory, lay the groundwork for the study
of wormholes as a new branch of exotic solutions in gen-
eral relativity. They find that the matter source supporting
wormholes violates all energy conditions; matter with these
properties is known as exotic matter.

The theory of singular hypersurfaces and thin shells for-
mulated by Israel [8] has made significant contributions to
several areas of gravitation. This theory is based on the study
of the extrinsic curvature of a specific spacetime, allowing for
a simpler and coordinate-independent treatment to analyze
junction conditions. Thus, this method enabled Visser [9,10]
to devise a new way to construct spacetime tunnels such as
wormholes. The procedure involves cutting out a region of
spacetime and matching another spacetime manifold onto it.
Visser argues that this technique would allow for the con-
finement of exotic matter in a finite region of spacetime,
enabling a traveler to traverse a thin-shell wormhole without
experiencing the effects of exotic matter. Another advantage
of this technique is that it permits studying the stability of
thin shells, analyzing different equations of state [11,12], or
without specifying an equation of state [13–16], extending
the analysis to different spacetime symmetries [17,18], and
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even applying this study to more general theories of gravity
[19–23].

In the framework of general relativity, the matter support-
ing a spacetime geometry must satisfy certain conditions.
Typically, these include the requirement that energy density
should be positive or dominant over pressures. In the liter-
ature, the weak energy condition (WEC) is often invoked.
For a homogeneous fluid with energy density ρ and spa-
tially homogeneous pressure p the WEC holds if ρ ≥ 0
and ρ + p ≥ 0. By continuity, this implies the null energy
condition (NEC), ρ + p ≥ 0. The strong energy condition
(SEC) is satisfied if ρ + p ≥ 0 and ρ + 2p ≥ 0, while the
dominant energy condition (DEC) holds true if ρ ≥ 0 and
−ρ ≤ p ≤ ρ.

A thin shell in the context of wormholes or other general
relativistic structures can be supported by different types of
matter depending on the specific configuration of the system.
Exotic matter is the most common type of matter consid-
ered in thin-shell wormholes. This kind of matter violates the
known energy conditions, such as the NEC or WEC, which
means it can exhibit negative energy density or pressure.

In the published literature, one can find examples of thin
shells supported by matter characterized by an equation of
state parameter ω. For ω < −1, the solution is sustained by
phantom matter [14]. When −1 < ω < − 1

3 , the thin shell is
supported by dark energy. This type of matter is theoretically
required to stabilize the wormhole throat and keep it open.

In this paper, we construct spherically symmetric thin-
shell traversable wormhole solutions by matching an interior
traversable wormhole solution to an exterior Schwarzschild
vacuum spacetime at a junction interface. The interior solu-
tion considered is the traversable Schwarzschild-like worm-
hole constructed in Ref. [24]. This type of solutions is a slight
generalization of the traversable Schwarzschild wormhole
spacetime, obtained by introducing a linear dependence on
the radial coordinate in the shape function. These spacetimes
exhibit a solid angle deficit (or excess).

It is important to highlight that thin-shell wormholes sup-
ported by non-exotic matter – matter that satisfies the afore-
mentioned energy conditions – have been explored in the
literature. In this regard, we can cite solutions with cylindri-
cal symmetry in the context of Brans-Dicke theory [25], as
well as solutions with spherical symmetry in the presence of
a positive cosmological constant and conformal scalar fields
[26].

The interior solution under consideration exhibits either
deficits or excesses at infinity, extending the range of asymp-
totic flatness behaviors found in previously studied wormhole
models. The study of geometries with topological defects in
general relativity provide essential insights into the physics
of high-energy regimes and the past of the universe. One of
the most challenging current problems in theoretical physics
is explaining the structure formation of the Universe. Par-

ticle physics models predict the formation of topological
defects during phase transitions in the early universe. Dif-
ferent types of topological objects may have formed during
the expansion of the Universe, such as domain walls, cosmic
strings, and monopoles [27–29]. Linde proposed that topo-
logical defects could serve as seeds for inflation [30]. The
study of geometries containing topological defects can also
have significant astrophysical implications. Pando et al. [31]
proposed that topological defects might play a role in the for-
mation of galactic structures. Nucamendi and collaborators
[32–34] further suggested that global monopoles with non-
minimal coupling could offer a realistic model for explaining
dark matter.

The main goal of this paper is to carry out a stability
analysis against spherically symmetric perturbations, linking
wormhole stability to the properties of the matter on the thin
shell. The presence of solid angle deficits [35–37] or excesses
introduces interesting topological features that can have sig-
nificant implications for the wormhole structure and stability.
The solution presented in [24] has been explored across vari-
ous contexts, including Asymptotically Safe Gravity [38], the
Casimir effect [39], and holographic dark energy [40], estab-
lishing it as a significant framework for examining thin-shell
formation in wormhole spacetimes. Notably, the embedding
diagrams for wormholes in [24] differ based on their solid
angle characteristics: those with a deficit extend from the
throat to infinity, while those with an excess extend from the
throat to a maximum radius. Consequently, the shape and
size of these wormholes depend on the deficit or excess in
solid angle, a characteristic absent in the standard traversable
Schwarzschild wormhole spacetime.

In our analysis, we verify that the stability regions can be
significantly increased by selecting appropriate choices of the
redshift function. Specifically, we consider the cases where
the redshift functions are given by �(r) = 0, �(r) = r/r0,
and �(r) = r0/r .

This paper is organized as follows: In Sect. 2 we out-
line shortly key aspects related to the Morris and Thorne’s
traversable wormholes. Section. 3 addresses crucial aspects
regarding the construction of thin-shell wormholes by cutting
and pasting sections of two distinct manifolds. In Sect. 4 we
apply the general formalism described in the previous section
to construct wormhole spacetimes. Here, the Schwarzschild-
like wormhole serves as the interior solution matched to the
exterior vacuum Schwarzschild spacetime at a junction inter-
face. Sections 5 and 6 analyze the equation of state for the
thin shell and derive stability regions for the bulk spacetime
wormhole, respectively. Section 7 presents our conclusions.
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2 Morris–Thorne wormohole spacetimes

We will begin by summarizing key aspects related to the
Morris and Thorne traversable wormholes. These authors
proposed the following spherically symmetric metric for con-
structing wormholes:

ds2 = −e2�(r)dt2 + dr2

1 − b(r)
r

+ r2
(
dθ2 + sin2 θdφ2

)
,

(1)

where �(r) and b(r) are the redshift and shape functions,
respectively. Additionally, Morris and Thorne discussed the
minimal requirements that must be satisfied to obtain a worm-
hole:

1. The shape function must satisfy 1 − b/r ≥ 0, equality
holding for a minimum radius r0 where the throat of the
wormhole is located, i.e., b(r0) = r0.

2. The redshift function �(r) must remain finite throughout
spacetime to ensure the absence of horizons and singu-
larities, thereby achieving a traversable wormhole.

3. The flare-out condition,
(
b − b′r

)
/2b2 > 0, must be

maintained to preserve the shape of the wormhole.

Morris and Thorne specifically studied asymptotically flat
wormholes. Such solutions connect two regions within the
same universe or different universes. For this class of worm-
holes, an additional condition must be imposed: the shape
function must satisfy b/r → 0 as r → ∞.

Considering the metric (1) and an anisotropic energy-
momentum tensor Tμν = diag (−ρ, pr , pl , pl) support-
ing these wormholes, components of the Einstein field equa-
tions are given by

κρ(r) = b′

r2 , (2)

κpr (r) = 2

(
1 − b

r

)
�′

r
− b

r3 , (3)

κpl(r) =
(

1 − b

r

)[
�′′ + �′ 2 − b′r + b − 2r

2r(r − b)
�′

− b′r − b

2r2(r − b)

]
,

(4)

where primes denote ∂/∂r ,ρ(r) is the energy density, pr (r) is
the radial pressure, and pl(r) is the lateral pressure measured
in the direction orthogonal to the radial direction.

3 Formalism of hypersurfaces and equations of
thin-shell wormholes

Let us now outline crucial aspects concerning thin shells,
based on the general theoretical analysis performed in [16].
To construct thin-shell wormholes, we must cut and paste
sections of two distinct manifolds at a timelike hypersurface

, which we denote as the outer region M+ and the inner
region M− [10–23]. Subsequently, these manifolds must be
joined in such a way that we obtain the complete manifold,
M = M+ ∪ M−, namely, a geodesically complete space-
time. In other words, this single manifold M is obtained by
gluing together the two distinct manifolds M+ and M−, at
their boundaries, which are given by 
+ and 
−, respec-
tively. This leads us to the identification of their boundaries,
such that the hypersurfaces where the junction occurs must
satisfy 
+ = 
− = 
. The induced metrics on the hypersur-
faces 
+ and 
− must also satisfy g+

i j = g−
i j = gi j , meaning

that if we take the coordinates ξ i = ξ i (τ, θ, φ) intrinsic to the
hypersurface, these remain invariant under isometric trans-
formations g+

i j (ξ) = g−
i j (ξ) = gi j (ξ). Moreover, if g+

μν(x
μ
+)

and g−
μν(x

μ
−) are the metrics of M+ and M−, respectively,

then the first fundamental form of the junction hypersurface

 is given by gi j = gμνe

μ

(i)e
ν
( j)|±, hence its intrinsic metric

is given by

ds2

 = −dτ 2 + a(τ )2

(
dθ2 + sin2 θ dφ2

)
, (5)

where a(τ ) is the radius of the thin shell and τ is the proper
time of an observer comoving with the junction surface.

The junction hypersurface is defined by the parametric
equation f (xμ(ξ i )) = 0 and its position is described by
xμ(τ, θ, φ) = (t (τ ), a(τ ), θ, φ). The expression for the
four-velocities, measured in the static coordinate systems on
both sides of the hypersurface, is given by

uμ
± = dxμ

dτ
= (ṫ, ȧ, 0, 0), (6)

where the dots denote derivatives with respect to τ .
According to the formalism of Israel [8], the unit normal

vector nμ must be oriented from M− to M+ and is defined
as

nμ = ±
√∣∣∣∣gαβ

∂ f

∂xα

∂ f

∂xβ

∣∣∣∣
−1

∂ f

∂xμ
. (7)

The extrinsic curvature or second fundamental form is
defined as Ki j = nμ;νeμ

(i)e
ν
( j). Differentiating nμe

μ

(i) = 0

with respect to ξ j , we obtain

nμ

∂2xμ

∂ξ i∂ξ j
= −nμ,ν

∂xμ

∂ξ i

∂xν

∂ξ j
. (8)

123



 1327 Page 4 of 14 Eur. Phys. J. C          (2024) 84:1327 

Using the covariant derivative of nμ in Eq. (8), we obtain
for the extrinsic curvature the expression

K±
i j = −nμ

(
∂2xμ

∂ξ i∂ξ j
+ �

μ±
αβ

∂xμ

∂ξ i

∂xν

∂ξ j

)
. (9)

For the discontinuity of Ki j on the hypersurface 
, we
use the following notation

κi j = K+
i j − K−

i j . (10)

From the Lanczos equations, the components of the
induced stress-energy tensor on the hypersurface are given
by

Si j = − 1

8π

(
κ i

j + δi jκ
k
k

)
. (11)

Due to spherical symmetry of the junction hypersurface,
considerable simplifications occur, namely

κ i
j = diag

(
κτ

τ , κ
θ
θ , κ

φ
φ

)
. (12)

The stress-energy tensor can be written in terms of the
surface energy density σ and the surface pressure P , as

Si j = diag (−σ,P,P) . (13)

In addition, the Lanczos equations provide us with a bal-
ance equation on the shell through

Si j |i =
[
Tμνe

μ

( j)n
ν
]+
− . (14)

Now on, we shall consider two generic static spherically
symmetric spacetimes given by the following line elements:

ds2 = −e2�±(r±)dt2± + dr2±
1 − b±(r±)

r±

+r2±
(
dθ2± + sin2 θ±dφ2±

)
, (15)

which clearly are related to the metric (1). In this case the
signs + and − correspond to spacetime manifolds M+ and
M−, respectively. Then, the matching occurs at f (r, τ ) =
r − a(τ ) = 0, where a(τ ) is the radius of the hypersurface.

For the metric (15), the normal vector is given by

n±
μ =

⎛
⎝− e�±(a)

√
1 − b±(a)

a

ȧ,

√
ȧ2 + 1 − b±(a)

a

1 − b±(a)
a

, 0, 0

⎞
⎠ , (16)

where the overdot indicates differentiation with respect to τ .
The non-trivial components of the extrinsic curvature can be

directly computed as

K τ ±
τ =

�′±(a)
(
ȧ2 + 1 − b±(a)

a

)
+ ä − ȧ2(b±(a)−ab′±(a))

2a(a−b±(a))√
ȧ2 + 1 − b±(a)

a

,

(17)

K θ±
θ = ±1

a

√
ȧ2 + 1 − b±(a)

a
, (18)

where the prime now denotes a derivative with respect to the
coordinate a.

Then, using Eqs. (10) and (11), we can compute the com-
ponents of the thin shell stress-energy tensor

σ = − 1

4πa

[√
ȧ2 + 1 − b+(a)

a
−

√
ȧ2 + 1 − b−(a)

a

]
, (19)

P = 1

8πa

×
⎡
⎢⎣

(
a�′+(a) + 1

) (
ȧ2 + 1 − b+(a)

a

)
+ aä − ȧ2

(
b+(a)−ab′+(a)

)
2(a−b+(a))√

ȧ2 + 1 − b+(a)
a

−
(
a�′−(a) + 1

) (
ȧ2 + 1 − b−(a)

a

)
+ aä − ȧ2

(
b−(a)−ab′−(a)

)
2(a−b−(a))√

ȧ2 + 1 − b−(a)
a

⎤
⎥⎦ ,

(20)

where σ and P are the surface energy density and the tan-
gential surface pressure, respectively. From these equations,
it follows that when b+(a) = b−(a) and �+(a) = �−(a),
the components of the stress-energy tensor (13) vanish. The
mass of the thin shell can be written as ms(a) = 4πa2σ(a).
By using Eq. (19), we find

ms(a) = −a

(√
ȧ2 + 1 − b+(a)

a
−

√
ȧ2 + 1 − b−(a)

a

)
.

(21)

Notably, both this expression and Eq. (19) can assume pos-
itive or negative values depending on the shape functions
b+(a) and b−(a). Equation (21) will subsequently be used
to derive the equation of motion for the thin shell, a key
component in the stability analysis.

Furthermore, for our goal of analyzing the stability of thin
shells, we consider Eq. (14), from which we obtain the energy
balance equation of the thin shell

σ̇ + 2 (σ + P)

a
ȧ = � ȧ, (22)

where

� = 1

4πa2

[(
a�′+(a) + ab′+(a) − b+(a)

2 (a − b+(a))

) √
ȧ2 + 1 − b+(a)

a

−
(
a�′−(a) + ab′−(a) − b−(a)

2 (a − b−(a))

) √
ȧ2 + 1 − b−(a)

a

]
.

(23)
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On the left-hand side of Eq. (22), we have the variation
of the internal energy of the shell and the work done by
the internal force of the shell itself, and on the right-hand
side, we have the term corresponding to the work done by
external forces on the shell. More specifically, � arises due
to a discontinuity in the shell and is interpreted as a flux of
momentum across the thin shell. From Eq. (23), we note that
�+(a) = �−(a) = 0 does not necessarily imply � = 0.
This will depend on the form of the shape functions b+(a)

and b−(a).

3.1 Static linearized equation of motion

Now, we shall consider a linearization around an assumed
static solution. From Eq. (21), we deduce the thin shell equa-
tion of motion given by

ȧ2 + V (a) = 0, (24)

where the potential V (a) takes the form

V (a) = F1(a) −
[
ms(a)

2a

]2

−
[
F2(a)

ms(a)

]2

, (25)

this equation is in terms of the thin shell mass ms(a) =
4πa2σ(a) and the functions

F1(a) = 1 − b+(a) + b−(a)

2a
, (26)

F2(a) = b+(a) − b−(a)

2
. (27)

We consider a linearization around a static solution a0 of the
thin-shell equation of motion, which also implies a solution
ä = V ′(a). Consequently, ms(a0) = 4πa2σ(a0), where

ms(a0) = −a0

(√
1 − b+(a0)

a0
−

√
1 − b−(a0)

a0

)
. (28)

From the equation of motion Eq. (24),

ȧ2 + V (a) = 0 ⇒ ȧ2 = −V (a).

Expanding the potential V (a) in a Taylor series up to sec-
ond order around the solution a0,

V (a) = V (a0) + V ′(a0)(a − a0)

+1

2
V ′′(a0)(a − a0)

2 + O((a − a0)
3).

Furthermore, around the static solution ȧ0 = ä0 = 0, we
have the conditions V (a0) = V ′(a0) = 0, so we only need
to consider

V (a) = 1

2
V ′′(a0)(a − a0)

2.

Using Eq. (25), the first and second derivatives of V (a)

are

V ′(a) = F ′
1 − 2

(ms

2a

) (ms

2a

)′ − 2

(
F2

ms

) (
F2

ms

)′
, (29)

V ′′(a) = F ′′
1 − 2

[(ms

2a

)′]2

− 2
(ms

2a

) (ms

2a

)′′

−2

[(
F2

ms

)′]2

− 2

(
F2

ms

) (
F2

ms

)′′
. (30)

Since V ′(a0) = 0, we rewrite it as
(
ms

2a0

)′
≡ � =

(
a0

ms

)[
F ′

1 − 2

(
F2

ms

) (
F2

ms

)′]
. (31)

A stable solution exists only if a0 is a local minimum of
V (a0) and if the second derivative of the potential is greater
than zero, i.e., V ′′(a0) > 0. From Eqs. (30) and (31), we find
the expression
(
ms

2a0

)(
ms

2a0

)′′
< � − �2, (32)

where � is defined as

� = − F ′′
1

2
−

[(
F2

ms

)′]2

−
(
F2

ms

) (
F2

ms

)′′
. (33)

The assumed static solution at a0 is stable if and only if
V (a) has a local minimum at a0, which requires V ′′(a0) > 0.

3.2 Master equation

Now, we can deduce a master equation that dictates the stable
equilibrium configurations [15]. To do this, let us first rewrite
Eq. (22) by using σ̇

ȧ = dσ
da = σ ′. Then, we obtain

σ ′ = −2

a
(σ + P) + �, (34)

and its second derivative

σ ′′ = 6

a2 (σ + P) − 2

a
� − 2

a

(
σ ′η

) + �′, (35)

where we have defined the parameter

η = P ′

σ ′ = dP
dσ

, (36)

which relates the variation of the tangential surface pressure
to the variation of surface energy density in the thin shell.

That is, it is linked to the equation of state of the shell.
In the literature, this parameter is interpreted as the square
of the speed of sound in the thin shell. Rewriting Eq. (35) in
terms of the surface mass of the shell ms(a0) = 4πa2σ(a0),
evaluated at the static solution a0 we obtain
(
ms

2a0

)′′
= ϒ − 4πσ ′η0, (37)
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where

ϒ = 4π

a0
(σ + P) + 2πa0�

′. (38)

Notice that Eq. (37) explicitly includes the parameter η0,
which will be used to analyze the stability regions of the thin
shell.

Now, substituting Eq. (37) into (32), and solving for the
parameter η0 at the static solution a0, we find the master
equation that allows us to study the stability regions of the
thin shell

η0 = η(a0) >
1

msσ ′

(
− a0

2π
(� − �2) + msϒ

4π

)
, (39)

The solutions to the Eq. (39) are

η0 > �0, if msσ
′ > 0, (40)

η0 < �0, if msσ
′ < 0, (41)

where

�0 = �(a0) ≡ − a0
2π

(� − �2) + msϒ
4π

msσ ′ . (42)

This expression characterizes the stability regions of the
metric (15). Furthermore, it reveals that both the surface mass
ms and the derivative of the surface energy density σ ′ play a
crucial role in determining the stability intervals of the thin
shell. A graphical analysis of Eq. (42) will be presented in
Sect. 6.

4 Thin shell with Schwarzschild-like interior wormhole

In this section, we will apply the described general formalism
to a specific wormhole spacetime and derive its correspond-
ing stability regions. Specifically, we will construct worm-
hole solutions by matching an interior traversable wormhole
solution to the exterior vacuum Schwarzschild spacetime at
a junction interface. In such a way, our approach considers
as exterior solution the Schwarzschild metric

ds2 = −
(

1 − 2M

r+

)
dt2+ + dr2+(

1 − 2M
r+

)

+r2+
(
dθ2+ + sin2 θ+dφ2+

)
, (43)

while as the interior solution the Schwarzschild-like worm-
hole studied in [24]. This solution is obtained by imposing a
linear behavior on the radial coordinate in the shape function
b−(r−) given by

b−(r−) = (1 − β) r0 + βr−. (44)

Subsequently, the metric (15) takes the form

ds2 = −e2�(r)dt2 + dr2

(1 − β)
(
1 − r0

r

)

+r2
(
dθ2 + sin2 θdφ2

)
, (45)

where we have dropped the − subscript to avoid overloading
the notation for the interior solution (45). Using the Einstein
field equation for the metric (45), the stress-energy tensor
components are given by

κρ(r) = β

r2 , (46)

κpr (r) = 2 (1 − β)
(

1 − r0

r

) �′

r
− (1 − β)r0 + βr

r3 ,

(47)

κpl(r) = (1 − β) ×
[ (

1 − r0

r

)
�′′

+ (
r�′ + 1

) ( (
1 − r0

r

) �′

r
+ r0

2r3

)]
. (48)

Notice that the parameter β, to maintain the Lorentzian
nature of the metric (45), must be restricted to β < 1. Addi-
tionally, we note that the spacetime described by this metric
exhibits at spatial infinity a solid angle deficit for 0 < β < 1
and a surplus for β < 0.

The joining hypersurface of both solutions corresponds to
the thin shell, which has a radius a0 and a surface area given
by A = 4πa2

0 .
To avoid for the exterior solution the event horizon, the

thin shell radius must satisfy r+ = a0 > 2M . Now, using
equations (19) and (20), we obtain the following components
of the energy-momentum tensor of the thin shell

σ = − 1

4πa0

[√
1 − 2M

a0
−

√
(1 − β)

(
1 − r0

a0

)]
, (49)

P = 1

8πa0

⎡
⎣ 1 − M

a0√
1 − 2M

a0

− (
a0�′ + 1

)
√

(1 − β)

(
1 − r0

a0

)⎤
⎦ ,

(50)

where σ and P are the surface energy density and the tan-
gential surface pressure, respectively.

The surface mass and the derivative of the energy density
of the shell are given by

ms(a0) = −a0

[√
1 − 2M

a0
−

√
(1 − β)

(
1 − r0

a0

)]
,

(51)

σ ′ = 1

4πa2
0

⎡
⎢⎢⎣

1 − 3M
a0√

1 − 2M
a0

−
(1 − β)

(
a0 − 3r0

2

)

a0

√
(1 − β)

(
1 − r0

a0

)

⎤
⎥⎥⎦ .

(52)
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Fig. 1 The figure depicts an embedding diagram of the constructed
traversable thin-shell wormhole. The single manifold is obtained by
gluing together the vacuum Schwarzschild solution M+ and the
Schwarzschild-like wormhole solution M− at the junction surface 
,
joined at a radial coordinate a0, which represents the thin shell. The sur-
face stress-energy tensor on 
 is given in terms of the surface energy
density (49), and the surface pressure (50)

Additionally, there is a momentum flux term acting on the
shell given by

�(a0) =
( r0

2 − a0 (a0 − r0) �′)
√

(1 − β)
(

1 − r0
a0

)

4πa2 (a0 − r0)
.

(53)

We conclude from this equation that the momentum flux
depends explicitly on �(r), as well as on the deficit or excess
of the solid angle 1 − β.

It should be noted that certain cases where there is nei-
ther a deficit nor an excess in solid angle (i.e. β = 0) for
the interior solution (45) have been studied previously in
the literature. When the β-parameter vanishes, the follow-
ing cases may be considered: (i) for e2�(r) = 1 − 2M

r and
r0 = 2 M , the interior and exterior manifolds are given by the
schwarzschild spacetime (43); (ii) for b(r) = r0 wormhole
solutions characterized by the redshift functions �(r) = 0
and �(r) = r0

r can be constructed. These solutions can be
matched to exterior Schwarzschild spacetime. These three
cases of spherically symmetric solutions were discussed in
[15].

A three-dimensional embedding diagram of the gluing of
this solution with the Schwarzschild metric is shown in Fig. 1.

5 Analysis of equation of state of the thin shell

It is also interesting to analyse the equation of state for the thin
shell ω = P

σ
obtained from Eqs.(49) and (50). For simplicity,

we consider the zero-tidal-force solution. Then, for �(r) =

0, Eqs. (49) and (50) imply that

ω = −1

2

⎡
⎢⎢⎢⎣

1− M
a0√

1− 2M
a0

−
√

(1 − β)
(

1 − r0
a0

)

√
1 − 2M

a0
−

√
(1 − β)

(
1 − r0

a0

)

⎤
⎥⎥⎥⎦ . (54)

Let us first analyse the case β = 0. From Eq. (54), we deduce
that in the asymptotic limit as a0 → ∞, the state parameter
approaches ω = −1/2, implying that the thin shell is sup-
ported by dark energy. More specifically, the state parameter
is associated with quintessence cosmological models, where
ω ranges from −1 ≤ ω ≤ −1/3.

Let us now consider cases with non vanishing values of
the β-parameter. From Eq. (54), we observe that the thin shell
can be supported by dark energy and phantom matter in the
following cases:

1. For β < 0:

• Dark energy:
(a) For r0 < 2M , then ζ1 + ζ2 < a0.
(b) For 3M < r0, then

i. r0 < a0 < ζ3 + ζ4 and
ii. ζ1 + ζ2 < a0.

(c) For r0
3 ≤ M < r0

2 , then ζ1 + ζ2 < a0.
• Phantom matter:

(a) For 2M < r0, then r0 < a0 <
2M−r0(1−β)

β
.

2. For 0 < β < 1:

• Dark energy:
(a) For r0 < 2M , then ζ3 + ζ4 < a0.
(b) For M ≤ r0

4 , then r0 < a0.
(c) For r0

4 < M < r0
3 :

i. 0 < β <
(r0−4M)2

(r0−2M)2 , then
A. r0 < a0 < ζ3 − ζ4.
B. ζ3 + ζ4 < a0.

ii. β = (r0−4M)2

(r0−2M)2 , then r0 < a0, with a0 
=
ζ3 − ζ4.

iii. (r0−4M)2

(r0−2M)2 < β < 1, then r0 < a0.

(d) For r0
3 ≤ M < r0

2 , then ζ3 + ζ4 < a0.
• Phantom matter:

(a) For r0 < 2M , then 2M−r0(1−β)
β

< a0.
(b) For 2M < r0, then r0 < a.

where

ζ1 = 2M(β − 2) − r0(1 − β)

2β
, (55)

ζ2 = 1

2

√
(1 − β)((r0 + 4M)2 − (r0 − 2M)2β)

β2 , (56)

ζ3 = 2M(β + 2) − r0(1 − β)

2β
, (57)
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(a) (b)

Fig. 2 The behavior of the surface energy density (dash-dot line), sur-
face tangential pressure (dashed line), and NEC (solid line) as functions
of the junction radius a0 is depicted in these plots for the parameter val-

ues 2M > r0, �(r) = 0, and M = r0 = 1. Figure (a) shows the case
for β = 1

2 , while Figure (b) illustrates the scenario for β = − 1
2 . For

details, refer to the text

ζ4 = 1

2

√
(1 − β)

(
(r0 − 4M)2 − (r0 − 2M)2β

)

β2 . (58)

We can also study certain characteristics of the energy con-
ditions of the thin shell directly using expressions for the
surface energy density (49) and the tangential surface pres-
sure (50). We initiate this analysis by first considering NEC,
which in general, for an anisotropic fluid is expressed as

σ + Pi ≥ 0.

Taking into account Eqs. (49) and (50) NEC takes the fol-
lowing form

σ + P = 1

8πa0

⎡
⎣

3M
a0

− 1√
1 − 2M

a0

+
√

(1 − β)

(
1 − r0

a0

) ⎤
⎦ .

(59)

From this equation we can find the following conditions in
order to satisfy σ + P ≥ 0:

1. For 2M > r0:

(a) If 0 < β < 1, then 2M < a0 ≤ ζ3 + ζ4.
(b) If β < 0, then 2M < a0.

In order to simplify the analysis of this situation, we shall
study the behavior of the surface energy density, tangen-
tial surface pressure and NEC with the help of plots made
for some particular values of the relevant parameters. This
is represented in Fig. 2, where the physical quantities are
shown as functions of the junction radius a0. For simplic-

ity, we consider M = r0 = 1. We shall compare cases
with a deficit and excess of solid angle. For β = 1/2, the
NEC is satisfied if the junction radius lies in the range
2 < a0 < 6.56. The surface energy density changes sign
at a0 = 3, being positive for a0 < 3, while the tangen-
tial surface pressure remains always positive, as shown
in Fig. 2a. For β = −1/2, the NEC and surface energy
density are always positive, while the tangential surface
pressure remains positive if the junction radius lies in the
range 2 < a0 < 4, as shown in Fig. 2b.

2. For 2M < r0:

(a) If 0 < β < 1:
i. If r0

4 < M < r0
3 :

A. If 0 < β <
(r0−4M)2

(r0−2M)2 , then ζ3 − ζ4 ≤ a0 ≤
ζ3 + ζ4.

B. If β = (r0−4M)2

(r0−2M)2 , then a0 = ζ3 − ζ4.

ii. If M = r0
3 , then ζ3 − ζ4 < a0 ≤ ζ3 + ζ4.

iii. If r0
3 < M < r0

2 , then r0 < a0 ≤ ζ3 + ζ4.
(b) If β < 0:

i. If M < r0
3 , then ζ3 + ζ4 ≤ a0.

ii. If M = r0
3 , then ζ3 + ζ4 < a0.

iii. If r0
3 < M < r0

2 , then r0 < a0.

As we did before, we shall again analyze the behavior of the
surface energy density, tangential surface pressure, and NEC
with the help of plots made for some particular values of the
parameters. This is depicted in Fig. 3. We now consider the
parameter values M = 1 and r0 = 3. As before, we will com-
pare cases with both a deficit and an excess of solid angle.
For β = 1/2, the surface energy density is consistently nega-
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tive, the tangential surface pressure remains positive, and the
NEC is satisfied within the range 3 < a0 < 4, as shown in
Fig. 3a. On the other hand, for β = −1/2, the energy density
becomes positive at a0 = 5, while the tangential pressure
remains positive in the range 3 < a0 < 9.27. The NEC is
satisfied for 3 < a0, as shown in Fig. 3b. Thus, there exists an
interval for the junction radius a0, where the surface energy
density, the tangential pressure and the NEC are positive.

Let us now perform the analysis of the SEC, which is
expressed as σ + Ptotal ≥ 0. From this relation, we obtain
that:

σ + 2P = M

8πa2
0

√
1 − 2M

a0

. (60)

From this expression, one may directly conclude that the SEC
is always satisfied for 2M > a0, regardless of the parameter
β.

Finally, let us analyze the DEC, which for the surface
energy density and the tangential surface pressure may be
expressed as:

− σ ≤ P ≤ σ. (61)

This condition is satisfied in the following cases:

1. For 4M > 3r0

(a) If 0 < β <
(4M−3r0)2

9(r0−2M)2 , then ζ5 − ζ6 ≤ a0 ≤ ζ5 + ζ6.

(b) If β = (4M−3r0)
2

9(r0−2M)2 , then a0 = ζ5 + ζ6.

2. For 2M > r0, if β < 0, then ζ5 + ζ6 < a0,
where

ζ5 = M(4 + 6β) − 3r0(1 − β)

6β
, (62)

ζ6 = 1

6

√
(1 − β)((4M − r0)2 − 9(r0 − 2M)2β)

β2 .

(63)

In this scenario, we will visualize the behavior of surface
energy density and tangential pressure by setting M = 1. To
consider a situation with a deficit in the solid angle, we set
β = 0.1 and r0 = 0.2. Then the DEC is satisfied if the junc-
tion radius lies in the range 2.1 < a0 < 11.4, as shown in
Fig. 4a. In this scenario, the traversable Schwarzschild-like
wormhole takes the form ds2− = −dt2 + dr2

9
10

(
1− 1

r

) + r2d�2.

To consider a situation with an excess in the solid angle, we
set β = −1 and r0 = 1. In this case, the surface energy
density and tangential pressure remain positive in the range
2.07 < a0 < 3, as shown in Fig. 4b. In this scenario, the inte-
rior spacetime, represented by the traversable Schwarzschild-
like wormhole, is given by ds2− = −dt2 + dr2

2
(

1− 1
r

) + r2d�2.

This result is interesting, as for 2M > r0, the thin shell may
be supported by non-exotic matter, satisfying all energy con-
ditions.

6 Analysis of stability regions of the thin shell

We will study the stability regions of thin shells with positive
and negative surface energy densities (49), by considering
β 
= 0 and three cases of redshift functions within the context
of the interior metric (45): �(r) = 0, �(r) = r0/r , and
�(r) = r/r0.

Before delving into the analysis, it is important to highlight
some observations derived from the master equation (39),
which dictates the stability equilibrium configurations for
the specific phantom wormhole geometries:

• It can be shown that for the case �(r) = 0, η(a0) →
−1/2 when β → −∞ or a0 → ∞. This indicates that
the stability regions are strongly restricted for high values
of the solid angle excess as well as large ranges of a0.

• In the case of �(r) = r0/r , we observe that η(a0) →
−1/2 only when a0 → ∞. This suggests that, in this sce-
nario as well, the stability region is significantly restricted
for large values of a0.

6.1 Positive surface energy density

First, let us consider the case in which the thin shell has a
positive surface energy density, i.e. σ(a0) > 0 and ms(a0) >

0. The structure of Eq. (49) leads us to separate the analysis
into two cases: 2M > r0 and 2M < r0.

6.1.1 2M > r0

(i) For 0 < β < 1, the radius a0 of the thin shell satisfies
the following inequality:

2M < a0 <
2M − r0(1 − β)

β
. (64)

To simplify and clarify the analysis, let us consider spe-
cific parameter values. By setting β = 1/2 and r0/M = 1
in the previous equation, we determine the following con-
dition for the radius a0:

2 < a0/M < 3. (65)

From this inequality, by using Eqs. (51) and (52), we
deduce that ms(a0) > 0 and σ ′ < 0. Therefore, the
following condition is satisfied:

msσ
′ < 0. (66)
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(a) (b)

Fig. 3 The behavior of the surface energy density (dash-dot line), sur-
face tangential pressure (dashed line), and NEC (solid line) as functions
of the junction radius a0 is depicted in these plots for the parameter val-

ues 2M < r0, �(r) = 0, M = 1, and r0 = 3. Figure (a) illustrates the
case for β = 1

2 , while Figure (b) shows the scenario for β = − 1
2 . See

the main text for details

(a) (b)

Fig. 4 The plots show the behavior of the surface energy density (dash-
dot line) and the surface tangential pressure (dashed line) as functions
of the junction radius a0 in scenarios where the DEC is satisfied, for the

parameter values 2M > r0 and �(r) = 0. Figure (a) depicts the case
with M = 1, r0 = 0.2, and β = 0.1, while Figure (b) illustrates the
scenario with M = r0 = 1 and β = −1. For details, refer to the text

We will now graphically visualize the stability regions
of the thin shell for the redshift functions �(r) = 0,
�(r) = r0/r , and �(r) = r/r0. To do this, we will use
the master equation (39). It is important to note that this
expression derives from Eqs. (36)–(33), and the effect of
the redshift function �(r) is implicitly incorporated in
Eq. (38). Therefore, for the inequality (65), using condi-
tion (66) and the master equation (39), we conclude that
inequality (41) must be satisfied. This allows us to iden-

tify that the stability regions lie below the curves of the
parameter η0 shown in Fig. 5a.
Here, it is observed that the stability regions increase
when �(r) 
= 0, due to the momentum flux (53).

(ii) For β < 0, we have to fulfill that a0 > 2M . Therefore,
the radius of the thin shell is outside the event horizon.
By setting β = −2 and r0/M = 1, we obtain the inequal-
ity 2 < a0/M . The respective stability regions given by
η0 are shown in Fig. 5b. From Eq. (52), we find that
σ ′ < 0, and since we are considering a positive surface
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(a) (b)

Fig. 5 The plots show stability regions for cases σ(a0) > 0 and
r0 < 2M , comparing the redshift functions �(r) = 0 (solid line),
�(r) = r0/r (dashed line), and �(r) = r/r0 (dash-dot line). For plot

(a) with 0 < β < 1, stable equilibrium regions are below the curves.
For plot (b) β < 0, stable regions lie below the curves again. In both
graphs the zero-tidal solution has the smallest stable region

energy density, this implies msσ
′ < 0. Therefore, the

stability regions, dictated by inequality (41), lie below
the η0 curves. Figure 5b reveals that the stability regions
increase for cases where �(r) 
= 0. This observation sug-
gests that the introduction of a non-zero function �(r)
contributes to enlarging the stability regions of the thin
shell.

6.1.2 2M < r0

(i) For β < 0 and ms(a0) > 0 we find that:

2M − r0(1 − β)

β
< a0. (67)

For this specific case, we can see that the Eq. (52) implies
that σ ′ has a positive real root. Let us denote this root as
R, in such a way σ ′∣∣

R = 0. This root lies within the range
of Eq. (67). This indicates the presence of an asymptote
at σ ′∣∣

R = 0 (see Fig. 6). We can then verify that σ ′ > 0 if
2M−r0(1−β)

β
< a0 < R and σ ′ < 0 if a0 > R. Therefore,

the stability regions are restricted by the inequalities:

η0 > �0, si,
2M − r0(1 − β)

β
< a0 < R, (68)

η0 < �0, si, a0 > R. (69)

In order to find roots for Eq. (52) we shall impose a rela-
tion between r0 and M . In this way, we will obtain the
root R depending on a0/M . For the particular values
β = −2 and r0/M = 2.5, the asymptote is located
at R = a0/M = 4.56, resulting in the inequalities:
2.75 < a0/M < 4.56 and a0/M > 4.56. Therefore,

Fig. 6 The figure shows stability regions for σ > 0, 2M < r0 and the
redshift functions �(r) = 0 (solid line), �(r) = r0/r (dashed line),
and �(r) = r/r0 (dash-dot line). The stable regions to the left of the
asymptote at R = 4.56 is above the curves and decreases in size in
cases with tidal forces. The second stable regions, to the right of the
asymptote at R = 4.56, is below the curves and increases in size in
cases with tidal forces

from inequalities (68) and (69), we conclude that the sta-
bility regions are situated above and below the curves of
the parameter η0, as shown and explained in Fig. 6. In
comparison with �(r) = 0, the stability regions increase
for �(r) 
= 0.
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Fig. 7 The graph shows stable equilibrium regions for σ(a0) < 0,
r0 < 2M and the redshift functions �(r) = 0 (solid line), �(r) = r0/r
(dashed line), and �(r) = r/r0 (dash-dot line). The curves correspond
to the case 0 < β < 1, with an asymptote R = 9.56. The stable regions
to the left of the asymptote at R = 9.56 is above the curves and decreases
in size in cases with tidal forces. The second stable regions, to the right
of the asymptote at R = 9.56, is below the curves and decreases in size
in cases with tidal forces

6.2 Negative surface energy density

Let us now consider thin shells with a negative surface energy
density, i.e. σ(a0) < 0 and ms(a0) < 0. We again consider
separately the cases: 2M > r0 and 2M < r0.

6.2.1 2M > r0

For 0 < β < 1, the radius of the thin shell satisfies the
inequation

2M − r0(1 − β)

β
< a0. (70)

Using σ ′∣∣
R = 0, we find a positive real root R. In order

to explicitly showing these regions, we set r0/M = 1
and β = 1/4, where the root R = 9.56. Thus, stable
regions are dictated by inequalities 5 < a0/M < 9.56 and
9.56 < a0/M . In the first interval, we have σ ′ < 0, satisfying
inequality (40), with stable regions above the curves of η0 as
shown in Fig. 7. Additionally, we observe that η0 only takes
positive values, and the equilibrium region increases for tidal
force solutions. In the second interval, we have σ ′ > 0, sat-
isfying inequality (41), with stable regions below the curves
as shown in Fig. 7. Here, the equilibrium region decreases
for tidal force solutions.

6.2.2 2M < r0

(i) For 0 < β < 1, this implies that the thin-shell radius is
located in the region

r0 ≤ a0. (71)

If we evaluate r0/M = 2.4 then 2.4 < a0/M . Then, for
β = 1/3, in this interval we have σ ′ > 0, and according
to Eq. (41), the stability regions lie below the curves of
η0 as shown in Fig. 8a. Furthermore, it is observed that
η0 takes only negative values, and the equilibrium region
for solutions with tidal forces decreases compared to the
solution without tidal force, which has the largest stable
region.

(ii) For β < 0, the radius of the thin shell is within the region

r0 ≤ a0 <
2M − r0(1 − β)

β
. (72)

Evaluating parameters r0/M = 3 and β = −2, we find
3 < a0/M < 3.5. Here, we have σ ′ > 0, with stable
equilibrium regions lying below the curves of η0, which
are always negative, as shown in Fig. 8b.

7 Conclusions

In this paper, we construct a new thin-shell traversable worm-
hole using the cut-and-paste procedure and analyze its stabil-
ity against linearized perturbations around static solutions.
One of the advantages of this approach is its simplicity in
analyzing stable equilibrium regions of thin shells through a
master equation. It should be noted that in the current analy-
sis, the behavior of the mass of the thin shell ms(a) is linked
to the wormhole’s stability through manageable inequalities.

The bulk spacetimes on either side of the wormhole thin
shell are spherically symmetric and static. Specifically, we
consider that the exterior and interior spacetimes are given
by Schwarzschild vacuum spacetime and the traversable
Schwarzschild-like wormholes, respectively. In the frame-
work of general relativity, both spherically symmetric space-
times are matched together at a junction spherical surface
with an arbitrary radius a0 and the surface stresses are calcu-
lated. In this case the surface stress-energy terms are nonzero,
so the junction is not a boundary surface, and it is a thin
shell of radius a0 with a surface mass ms = 4πa2

0σ . All
the material is confined to this thin shell. For the exterior
Schwarzschild solution, the matching occurs at a junction
interface a0 > 2M , situated outside the event horizon, to
avoid a black hole solution. This procedure allows for the
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(a) (b)

Fig. 8 The graphs show stable equilibrium regions for σ(a0) < 0,
2M < r0, comparing redshift functions: �(r) = 0 (solid line),
�(r) = r0/r (dashed line), and �(r) = r/r0 (dash-dot line). In graph
(a), for 0 < β < 1, stable regions are below the curves and decrease for

tidal force redshift functions. Graph (b) corresponds to β < 0, where
stable regions are below the curves. We can see that, �(r) = r0/r
(dashed line) has the largest stable region, while �(r) = r/r0 (dash-
dot line) has the smallest stable region

construction of asymptotically flat spacetimes using non-
asymptotically flat metrics as interior solutions. Specifically,
we use the traversable Schwarzschild-like wormholes con-
structed in Ref. [24], which are a slight generalization of the
traversable Schwarzschild wormhole spacetime, obtained by
introducing a linear dependence on the radial coordinate in
the shape function.

It can be shown that at spatial infinity, the metric (45) may
exhibit a deficit angle for 0 < β < 1 and an excess angle
for β < 0 [24]. The latter case is particularly interesting
because the interior solution (45) describes wormholes with a
finite size. They extend from the throat to a maximum radius,
allowing for the generation of microscopic wormholes.

We perform a stability analysis of this traversable thin-
shell wormhole against spherically symmetric perturbations
(wormhole stability is related to the properties of the matter
residing on the thin-shell) and investigate the behavior of sta-
ble equilibrium regions by considering thin shells with both
positive and negative surface energy densities, as well as var-
ious gravitational redshift functions. It has been found that
stable regions depend explicitly on the parameter β. Addi-
tionally, the behavior of these stable equilibrium regions can
either increase or decrease, depending on the specific form
of the gravitational redshift function.

We also analyze the equation of state for the thin shell,
given by ω = P

σ
. For simplicity, we focus on the zero-tidal-

force wormhole solution. We conclude that the thin shell
can be supported by dark energy, phantom energy, and, in

certain special cases, by non-exotic matter for both β < 0
and 0 < β < 1, thereby satisfying the dominant energy
condition, and consequently also satisfying the weak energy
condition and the null energy condition.

Acknowledgements This work was supported by CONICYT-PCHA/
Doctorado Nacional/2016 through grant No. 21161114 (LL). MC
acknowledges the support of Vicerrectoría de Investigación y Post-
grado and Dirección de Investigación y Creación Artística de la
Universidad del Bío-Bío through grants No. RE2320220 and No.
GI2310339. FO thanks ANID for its support through the grant ANID
BECAS/DOCTORADO NACIONAL 21231231.

Funding This work was supported by: - CONICYT-PCHA/Doctorado
Nacional/2016 through grant No. 21161114 (LL) - Vicerrectoría de
Investigación y Postgrado and Dirección de Investigación y Creación
Artística de la Universidad del Bío-Bío through grants No. RE2320220
and No. GI2310339 (MC) - ANID BECAS/DOCTORADO NACIONAL
21231231 (FO).

Data Availability Statement This manuscript has no associated data.
[Authors’ comment: Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.]

Code Availability Statement This manuscript has no associated
code/software. [Authors’ comment: Code/Software sharing not applica-
ble to this article as no code/software was generated or analysed during
the current study.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not

123



 1327 Page 14 of 14 Eur. Phys. J. C          (2024) 84:1327 

included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. L. Flamm, Phys. Z 71, 448 (1916); and republication in
Gen. Relativ. Gravit. 47, 72 (2015). https://doi.org/10.1007/
s10714-015-1908-2

2. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935). https://doi.org/
10.1103/PhysRev.48.73

3. J.A. Wheeler, Phys. Rev. 97, 511 (1955). https://doi.org/10.1103/
PhysRev.97.511

4. C.W. Misner, J.A. Wheeler, Ann. Phys. 2, 525 (1957). https://doi.
org/10.1016/0003-4916(57)90049-0

5. H.G. Ellis, J. Math. Phys. 14, 104 (1973). https://doi.org/10.1063/
1.1666161

6. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988). https://
doi.org/10.1119/1.15620

7. M.S. Morris, K.S. Thorne, U. Yurtsever, Phys. Rev. Lett. 61, 1446
(1988). https://doi.org/10.1103/PhysRevLett.61.1446

8. W. Israel, Nuovo Cimento B, 44, 1 (1966); and corrections in 48,
463 (1967). https://doi.org/10.1007/BF02710419

9. M. Visser, Nucl. Phys. B 328, 203 (1989). https://doi.org/10.1016/
0550-3213(89)90100-4

10. E. Poisson, M. Visser, Phys. Rev. D 52, 7318–7321 (1995). https://
doi.org/10.1103/PhysRevD.52.7318

11. E. Eiora, C. Simeone, Phys. Rev. D 70, 044008 (2007). https://doi.
org/10.1103/PhysRevD.76.024021

12. J. Lemos, P. Luz, Phys. Rev. D 105, 044058 (2022). https://doi.org/
10.1103/PhysRevD.105.044058

13. M. Ishak, K. Lake, Phys. Rev. D 65, 044011 (2002). https://doi.
org/10.1103/PhysRevD.65.044011

14. F.S.N. Lobo, Phys. Rev. D 71, 124022 (2005). https://doi.org/10.
1103/PhysRevD.71.124022

15. F.S.N. Lobo, P. Crawford, Class. Quantum Gravity 22, 4869 (2005).
https://doi.org/10.1088/0264-9381/22/22/012

16. N. Montelongo Garcia, F.S.N. Lobo, M. Visser, Phys. Rev. D 86,
044026 (2012). https://doi.org/10.1103/PhysRevD.86.044026

17. E. Eiora, C. Simeone, Phys. Rev. D 70, 044008 (2004). https://doi.
org/10.1103/PhysRevD.70.044008

18. E. Eiora, C. Simeone, Phys. Rev. D 81, 084022 (2010). https://doi.
org/10.1103/PhysRevD.81.084022

19. L.A. Anchordoqui, S. Perez Bergliaffa, D.F. Torres, Phys. Rev. D
55, 5226 (1997). https://doi.org/10.1103/PhysRevD.55.5226

20. E.F. Eiroa, C. Simeone, Phys. Rev. D 82, 084039 (2010). https://
doi.org/10.1103/PhysRevD.82.084039

21. M.H. Dehghani, M.R. Mehdizadeh, Phys. Rev. D 85, 024024
(2012). https://doi.org/10.1103/PhysRevD.85.024024

22. I.P. Lobo, M. Graça, J.P. Morais, H. Moradpour, Eur.
Phys. J. Plus 135, 550 (2020). https://doi.org/10.1140/epjp/
s13360-020-00553-y

23. A. Khaybullina, G. Tuleganova, Mod. Lett. Phys A 34, 1950006
(2019). https://doi.org/10.1142/S0217732319500068

24. M. Cataldo, L. Liempi, P. Rodriguez, Eur. Phys. C 77, 748 (2017).
https://doi.org/10.1140/epjc/s10052-017-5332-5

25. E.F. Eiroa, C. Simeone, Phys. Rev. D 81, 084022 (2010). https://
doi.org/10.1103/PhysRevD.81.084022

26. S.D. Forghani, S.H. Mazharimousavi, M. Halilsoy, Phys. Lett.
B 804, 135374 (2020). https://doi.org/10.1016/j.physletb.2020.
135374

27. T.W.B. Kibble, J. Phys. A 9, 1387 (1976). https://doi.org/10.1088/
0305-4470/9/8/029

28. A. Vilenkin, E.P.S. Shellard, Cosmic String and Other Topological
Defects (Cambridge University Press, Cambridge, 1994)

29. T. Vachaspati, https://doi.org/10.48550/arXiv.hep-ph/0101270
30. A.D. Linde, Phys. Lett. B 327, 208 (1994). https://doi.org/10.1016/

0370-2693(94)90719-6
31. J. Pando, D. Valls-Gaboud, L. Fang, Phys. Rev. Lett. 81, 4568

(1998). https://doi.org/10.1103/PhysRevLett.81.4568
32. U. Nucamendi, M. Salgado, D. Sudarsky, Phys. Rev. Lett. 84, 3037

(2000). https://doi.org/10.1103/PhysRevLett.84.3037
33. U. Nucamendi, M. Salgado, D. Sudarsky, Phys. Rev. D 63, 125016

(2001). https://doi.org/10.1103/PhysRevD.63.125016
34. T. Matos, F. Siddharta Guzman, D. Nuñez, Phys. Rev. D 62, 061301

(2000). https://doi.org/10.1103/PhysRevD.62.061301
35. M. Barriola, A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989). https://

doi.org/10.1103/PhysRevLett.63.341
36. I. Cho, J. Guven, Phys. Rev. D 58, 063502 (1998). https://doi.org/

10.1103/PhysRevD.58.063502
37. J. Spinelly, U. de Freitas, E.R. Bezerra de Mello, Phys. Rev. D 66,

024018 (2002). https://doi.org/10.1103/PhysRevD.66.024018
38. G. Alencar, M. Nilton, Universe 7, 332 (2021). https://doi.org/10.

3390/universe7090332
39. A.C.L. Santos, C.R. Muniz, L.T. Oliveira, Int. J. Mod. Phys. D 30,

2150032 (2021). https://doi.org/10.1142/S0218271821500322
40. R. Garanttini, P. Channuie, Nucl. Phys. B 1005, 116589 (2024).

https://doi.org/10.1016/j.nuclphysb.2024.116589

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10714-015-1908-2
https://doi.org/10.1007/s10714-015-1908-2
https://doi.org/10.1103/PhysRev.48.73
https://doi.org/10.1103/PhysRev.48.73
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1016/0003-4916(57)90049-0
https://doi.org/10.1016/0003-4916(57)90049-0
https://doi.org/10.1063/1.1666161
https://doi.org/10.1063/1.1666161
https://doi.org/10.1119/1.15620
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1007/BF02710419
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1103/PhysRevD.52.7318
https://doi.org/10.1103/PhysRevD.52.7318
https://doi.org/10.1103/PhysRevD.76.024021
https://doi.org/10.1103/PhysRevD.76.024021
https://doi.org/10.1103/PhysRevD.105.044058
https://doi.org/10.1103/PhysRevD.105.044058
https://doi.org/10.1103/PhysRevD.65.044011
https://doi.org/10.1103/PhysRevD.65.044011
https://doi.org/10.1103/PhysRevD.71.124022
https://doi.org/10.1103/PhysRevD.71.124022
https://doi.org/10.1088/0264-9381/22/22/012
https://doi.org/10.1103/PhysRevD.86.044026
https://doi.org/10.1103/PhysRevD.70.044008
https://doi.org/10.1103/PhysRevD.70.044008
https://doi.org/10.1103/PhysRevD.81.084022
https://doi.org/10.1103/PhysRevD.81.084022
https://doi.org/10.1103/PhysRevD.55.5226
https://doi.org/10.1103/PhysRevD.82.084039
https://doi.org/10.1103/PhysRevD.82.084039
https://doi.org/10.1103/PhysRevD.85.024024
https://doi.org/10.1140/epjp/s13360-020-00553-y
https://doi.org/10.1140/epjp/s13360-020-00553-y
https://doi.org/10.1142/S0217732319500068
https://doi.org/10.1140/epjc/s10052-017-5332-5
https://doi.org/10.1103/PhysRevD.81.084022
https://doi.org/10.1103/PhysRevD.81.084022
https://doi.org/10.1016/j.physletb.2020.135374
https://doi.org/10.1016/j.physletb.2020.135374
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.48550/arXiv.hep-ph/0101270
https://doi.org/10.1016/0370-2693(94)90719-6
https://doi.org/10.1016/0370-2693(94)90719-6
https://doi.org/10.1103/PhysRevLett.81.4568
https://doi.org/10.1103/PhysRevLett.84.3037
https://doi.org/10.1103/PhysRevD.63.125016
https://doi.org/10.1103/PhysRevD.62.061301
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1103/PhysRevD.58.063502
https://doi.org/10.1103/PhysRevD.58.063502
https://doi.org/10.1103/PhysRevD.66.024018
https://doi.org/10.3390/universe7090332
https://doi.org/10.3390/universe7090332
https://doi.org/10.1142/S0218271821500322
https://doi.org/10.1016/j.nuclphysb.2024.116589

	Stability of the thin shell from traversable Schwarzschild-like wormholes
	Abstract 
	1 Introduction
	2 Morris–Thorne wormohole spacetimes
	3 Formalism of hypersurfaces and equations of thin-shell wormholes
	3.1 Static linearized equation of motion
	3.2 Master equation

	4 Thin shell with Schwarzschild-like interior wormhole
	5 Analysis of equation of state of the thin shell
	6 Analysis of stability regions of the thin shell
	6.1 Positive surface energy density
	6.1.1 2M>r0
	6.1.2 2M<r0

	6.2 Negative surface energy density
	6.2.1 2M>r0
	6.2.2 2M<r0


	7 Conclusions
	Acknowledgements
	References


