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Abstract
In response to CERN’s need for alternative imaging solu-

tions of scintillating screens due to the discontinuation of
radiation-hardened VIDICON tubes, the single large-core
multimode fiber has been identified as a potential medium
to transmit image signals to a CMOS camera situated away
from radiation-prone areas. However, significant challenges
in image distortion at the fiber’s output end complicate the
reconstruction of the original beam distribution.

To address this, a novel machine learning-based approach
was introduced that utilizes a deep convolutional encoder-
regressor network. It first compresses the fiber image into
a latent space. Subsequently, a fully connected regression
network directly estimates the beam parameters, such as
centroids and widths, from the encoder output without re-
constructing the detailed image. This contribution will show-
case an end-to-end system capable of estimating transverse
beam parameters from the fiber output patterns and offer-
ing a safe, camera-preserving solution for beam imaging in
high-radiation environments.

INTRODUCTION
At CERN, the monitoring of 2D transverse beam profiles

was mostly done by rad-hard VIDICON cameras. With the
cessation of this kind of camera on a global scale, the transfer
to other imaging solutions is required. This has led to the
exploration and adoption of CMOS cameras as a viable
alternative. However one of the primary concerns using
CMOS cameras is the radiation damage when operating
close to the accelerator. A potential solution is to use optical
fibers relaying the initial image signal so that the camera
can be placed somewhere safe. Multimode fiber (MMF)
has been studied as a direct imaging medium over the past
decades. The large core diameter of MMF supports a high
number of light propagation modes, which is proportional
to the square of the fiber core radius according to the mode
calculation formula [1], and this correlates with the amount
of information it can encode and transmit. Since the mode is
a distinct way light propagates in an MMF, finer resolution
and higher bandwidth are provided for image transmission,
potentially preserving most of the input information and
therefore it is selected for this task.

The reconstruction challenge caused by MMF after trans-
mission is largely due to mode coupling inside the fiber [2].
This phenomenon occurs when light energy is transferred
between different propagation modes within the fiber due to
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changes in geometry and refractive index, making the trans-
mission property of the fiber more dynamic. The methods to
reconstruct the original image from the MMF output speckle
pattern range from initial methods involving phase conjuga-
tion to wavefront shaping that uses spatial light modulators
(SLM). These methods have certain limitations, such as the
reconstructed image must appear at the proximal end of the
fiber, which is the same side as the original light source, or
requiring precise control of the image source [3], making
them impractical for our scenario.

Statistical-based methods that use computers to model
the optical system digitally are another popular means of
MMF image reconstruction, such as a complex value trans-
mission matrix (TM) that tries to approximate the mapping
relationship between fiber input and output planes in terms
of intensity and phase. However, TM is relatively suscep-
tible to environmental perturbations and usually requires
a complex equipment setup for precise measurement [4].
More recent approaches show that neural networks have
very good generalization ability, capable of modeling both
linear and non-linear effects within the fiber, and require only
intensity measurements from relatively small datasets, mak-
ing them one of the most suitable approaches for retrieving
information from the distorted output.

Figure 1: A representative example of transverse parameter
calculation from a scintillating screen and the corresponding
MMF output pattern.
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This study focuses on estimating four basic transverse
beam parameters from fiber output: two that determine beam
position and two that describe beam size. The calculation
of these parameters begins with capturing the ground truth
beam image on a scintillating screen, followed by normaliz-
ing the image dimensions and reducing background noise.
Histograms based on pixel intensity are then created for
both horizontal and vertical directions. Two Gaussian dis-
tributions are subsequently fitted to each histogram using a
non-linear least squares algorithm as Fig. 1 demonstrates.
The mean of these Gaussians represents the beam centroids,
and their standard deviations (std) define the beam widths.
Together, these describe the beam position and size.

DATASET AND MODEL
In this experiment, real beam data were used for both

training and evaluation; the dataset was collected at CERN’s
CLEAR facility, where the light produced by an electron
beam of 150 MeV interacting with a Chromox scintillating
screen (Al2O3 ∶ CrO2) is captured. A Quadrupole scan
is applied for obtaining variations of the beam transverse
distributions [5]. As Fig. 2 shows, the first CMOS camera is
placed near the beam pipe viewport to capture the ground
truth beam image, which will later be used for model training.
A beam splitter is used to divide this initial beam image into
a secondary optical path, which is shrunk and coupled via
a lens system (L1, doublet of 100 mm focal length, OBJ1,
microscope objective). After that, the signal is transmitted
by a ⌀1500 µm step-index MMF. At the distal end of this
fiber, another set of lenses is used to decouple the light signal
from the MMF (OBJ2, microscope objective, L2, doublet
of 100 mm focal length). This output light is eventually
projected onto the second CMOS camera, where the fiber
output speckle pattern is recorded and used as the input of
the model.

Figure 2: Schematic diagram of experimental data collection
of ground truth images and MMF speckle patterns.

Approximately 6000 pairs of single-channel image sam-
ples were gathered and preprocessed (resized and normal-
ized). we used the previously described method to calculate
the four normalized beam parameters as the labels, and sub-
sequently remove abnormal samples. The dataset was then
randomly sampled into training, validation, and test sets with

a ratio of 8:1:1. The model was trained exclusively using the
training set, with performance evaluation conducted through
inference on the test set. Due to the specific nature of this
experiment, data augmentation was not utilized, as the shift
or rescale of labels does not linearly correspond to the shift
and rescale of fiber output patterns.

Figure 3: Convolutional encoder-regressor network.

On the model side, the neural network used for this exper-
iment features a convolutional encoder for input processing,
as Fig. 3 illustrates. Convolutional neural networks (CNN)
are generally considered the best feature extractor for image
data [6]. They reduce the dimension of the input image while
increasing the number of abstract representations layer by
layer, with each kernel searching for specific patterns. The
encoder branch comprises a total of 6 layers of convolution
blocks, each halving the dimension of the single channel
256 × 256 input image down to 1024 total 4 × 4 representa-
tion maps. Pooling is not used; instead, reduction is achieved
by a stride-two Conv2d layer which could preserve more
information. Each layer includes batch normalization to pre-
vent gradient vanishing. To avoid over-fitting caused by pro-
viding the network with excessive pixel-level details, there
are no skip connections in the network. Compressing the
image data into a relatively abstract level of representation
is beneficial, the encoder branch extracts the invariant from
the image and is more resistant to noise and environmental
changes. The second part of this network is a regressor,
consisting of only three layers of fully connected neurons to
extract the final beam parameters from the encoder’s output
latent space. The network is trained using an appropriate
learning rate, Adam optimizer, and 50 training epochs, dur-
ing which the validation loss stabilizes. Early stopping is
also applied. The training employs a Mean Squared Error
(MSE) loss function, defined as:

LossMSE = 1
𝑛

𝑛
∑
𝑖=1

1
𝑚

𝑚
∑
𝑗=1

(𝑦𝑖𝑗 − ̂𝑦𝑖𝑗)2 (1)

Where 𝑛 represents the number of samples in a batch, and
𝑚 denotes the length of the output vector; in this case, 𝑚 = 4
since four beam parameters are being predicted. 𝑦 stands
for the actual values, and ̂𝑦 represents the predicted values.
Using this MSE, errors for four normalized beam parameters
are summed and averaged to determine the value that will
backpropagate and update the network weights.
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Figure 4: Test set prediction statistics on beam centroids and beam widths.

TRANSVERSE BEAM PARAMETERS
REGRESSION

Previously, Generative Adversarial Network (GAN) had
been used to reconstruct the 1:1 detailed beam image [7]
and subsequently use this reconstructed image to calculate
the beam parameters. This led to the idea of developing an
end-to-end system that both extracts information from the
fiber output and estimates beam parameters in a single neural
network. The advantage of this approach is that without the
image decoder branch, the model size is nearly halved, and
the training and inference time is correspondingly reduced.
Figure 4 shows the evaluation results for beam parameters es-
timation. About 600 test samples were input into the trained
model. The left three graphs display the beam centroids
estimation. The first one indicates the correlation between
predictions and the ground truth value. The second and
third illustrate the distributions of residual and prediction
errors. Similarly, the right three images are beam width
prediction results. The normalized Root Mean Square Error
(RMSE) is less than 0.069 for all four parameters and has
an average prediction RMSE of 0.043, indicating a good
prediction performance. A slightly biased prediction toward
smaller values can be observed. This is likely due to the
unbalanced distribution of the dataset. As Table 1 shows, 𝛾1
represents the skewness of data distribution, where positive
skewness suggests more data are concentrated toward the
lower end (left), and negative skewness indicates more data
are concentrated toward the higher end (right). Although
the horizontal centroid has a negative 𝛾1, the mean value 𝜇
for each beam centroid is lower than 0.5, also indicating a
slight shift toward smaller values.

Table 1: Dataset Distribution Statistics (Normalized Beam
Parameter Values)

Beam Parameters 𝜇𝜇𝜇 𝜎𝜎𝜎 𝛾𝛾𝛾1

Centroid (Horizontal) 0.471 0.193 -0.118
Centroid (Vertical) 0.421 0.203 0.486
Width (Horizontal) 0.087 0.054 1.776
Width (Vertical) 0.060 0.024 0.866

DISCUSSION AND FUTURE PLANS
This paper presents a deep convolutional encoder-

regressor network for the direct estimation of the transverse
beam parameters from MMF output patterns. A maximum

test set prediction RMSE of 0.069 is achieved. The future
plan is to solve the prediction shift and further increase the
accuracy by simulating a high-variance simulation dataset
using advanced imaging devices, such as the Digital Mi-
cromirror Device (DMD), to load the pattern and pretrain
the network.

Furthermore, the perturbation of fiber could also be sys-
tematically studied. It is widely known that environmental
changes such as temperature, fiber stress, and fiber geometry
deformation can alter the refractive index, thus changing the
fiber transmission properties. This makes the neural network
trained on data from a specific configuration less effective on
other fiber configurations. Potential methods such as transfer
learning or more complex models with better generalization
capabilities like Vision Transformer need to be designed and
evaluated.

Another interesting observation during training is that
with the same model, dataset and training settings, the model
produces slightly different inference distribution each time.
This variability is likely due to factors such as random ini-
tialization and the stochastic nature of the training process.
Ensemble methods like Bootstrap Aggregating can be ap-
plied in the future to improve the stability of the model.
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