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Abstract
In this paperwe prove the existence of a positive energy static solution for theChern–Simons–
Schrödinger system under a large-distance fall-off requirement on the gauge potentials. We
are also interested in existence of ground state solutions.

Mathematics Subject Classification 35J20 · 35Q60

1 Introduction

The following Chern–Simons–Schrödinger system

i D0φ + (D1D1 + D2D2)φ + |φ|p−1φ = 0,
∂0A1 − ∂1A0 = Im(φ̄D2φ),

∂0A2 − ∂2A0 = −Im(φ̄D1φ),

∂1A2 − ∂2A1 = 1
2 |φ|2,

(CSS)

has been object of interest for many authors, physicists and mathematicians, in the last thirty
years.

For p = 3, it corresponds to the model proposed by Jackiw–Pi [16], and studied also
in [10,11,15,17,18], to describe the dynamics of a nonrelativistic solitary wave that behaves
like a particle, in the three dimensional gauge Chern–Simons theory.
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Here t ∈ R, x = (x1, x2) ∈ R
2, φ : R × R

2 → C is the scalar field, Aμ : R × R
2 → R

are the components of the gauge potential and Dμ = ∂μ + i Aμ is the covariant derivative
(μ = 0, 1, 2).

The initial value problem, well-posedness, global existence and blow-up, scattering, etc.
have been considered in [4,12,14,23–25] for the case p = 3. In particular Jackiw and Pi were
able to find self-dual solitons deduced by static solutions of (CSS) transformed by means of
Galilean boost or conformal invariance.

Since, as usual in Chern–Simons theory, problem (CSS) is invariant under the gauge
transformation

φ → φeiχ , Aμ → Aμ − ∂μχ (1)

for any arbitrary C∞ function χ : R × R
2 → R, we easily see that the definition of static

solution, that is time-independent solution, makes sense once we have removed the gauge
freedom. In [16] it has be done assuming the Coulomb gauge choice ∇ · A = 0 (here
A = (A1, A2)), supplemented by large-distance fall-off requirements on the differential
equations satisfied by A0, A1 and A2 (see [18]). In particular, we require that

A0(x) = O(1/|x |), |A(x)| = O(1/|x |), (FO)

being this asymptotic behaviour physically relevant, as it is the reflection of the possible
presence of, respectively, electric charges and magnetic monopoles.

The existence of standing waves for (CSS) and general p > 1 has been studied in [6,8,13,
27,28,31,32], whereas standing waves with a vortex point have been studied in [7,19] (see
also the review paper [26]).

In order to find standing waves, we introduce the following ansatz

φ(t, x) = u(|x |)eiωt , A0(t, x) = A0(|x |),
A1(t, x) = − x2

|x |2 h(|x |), A2(t, x) = x1
|x |2 h(|x |), (2)

where ω ∈ R is a given frequency and u is a radial real valued function that, with an abuse
of notation, has to be meant as a one or two variables function according to the situation.

In [6] the authors proved that (φ, A0, A1, A2) solves (CSS) if we set

h(r) = hu(r) = 1

2

∫ r

0
su2(s) ds, r > 0,

in the previous ansatz (2),

A0(x) = ξ +
∫ +∞

|x |
hu(s)

s
u2(s) ds,

with ξ ∈ R arbitrary, and u is a solution of the equation

− �u +
(

ω + ξ + h2u(|x |)
|x |2 +

∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u = |u|p−1u, in R

2. (3)

Therefore, given a standing wave solution

(
u(x)eiωt , ξ +

∫ +∞

|x |
hu(s)

s
u2(s) ds,− x2

|x |2 h(|x |), x1
|x |2 h(|x |)

)
,
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we can consider, for any c ∈ R, the function χ(t) = c t and use the gauge invariance (1) to
obtain the family of standing wave solutions(

u(x)ei(ω+c)t , ξ − c +
∫ +∞

|x |
hu(s)

s
u2(s) ds,− x2

|x |2 h(|x |), x1
|x |2 h(|x |)

)
c∈R

which is characterized by the constant ω + ξ that results to be a gauge invariant.
In order to differentiate and classify the solutions, as in [18] we fix the gauge freedom

imposing the following decay at infinity condition on the potential A0

lim|x |→+∞ A0(x) = 0. (4)

We point out that, assuming the square integrability of u (which, as we are going to
show, means that the solution has a finite total charge), our ansatz, together with (4), is
consistent with the Coulomb gauge choice ∇ · A = 0, supplemented by large-distance fall-
off requirements (FO).

According to the above discussion, inwhat followswewill take ξ = 0which is a necessary
condition for (FO) as it is assumed for example in [4,18].

Equation (3), therefore, becomes

− �u +
(

ω + h2u(|x |)
|x |2 +

∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u = |u|p−1u, in R

2, (5)

Observe that static solutions of (CSS) having the form (2) are deduced from (5) for ω = 0.
Static solutions of (CSS) deduced from (5) have been found only when p = 3 in [6]. In

detail, in [6] the authors proved that when p = 3 solutions to (CSS) satisfying the ansatz (2)
and which have a field of matter that is nowhere zero (in the sense that u > 0 everywhere)
must be static and belong to a one-parameter family which can be explicitly described. In
particular, it is quite interesting to observe that such solutions are real valued, differently
from the complex valued static field of matter found in [16]. Both solutions found in [6] and
those found in [16] have zero energy (see [6, sec.5] and [18, sec.4]).

When p > 1, p �= 3, Eq. (5) has been approached by variational methods looking for
non-static solutions of (CSS) with ω > 0. Indeed as showed in [6], the Eq. (5) is nonlocal
and it corresponds to the Euler–Lagrange equation of the functional Iω : H1

r (R2) → R,

Iω(u) = 1

2
‖∇u‖22 + ω

2
‖u‖22 + 1

2

∫
R2

h2uu
2

|x |2 dx − 1

p + 1
‖u‖p+1

p+1, (6)

where

H1
r (R2) := {u ∈ H1(R2) : u is radially symmetric}.

Observe that Iω presents a competition between the nonlocal term and the local nonlin-
earity of power-type.

When p > 3, in [6] the authors showed that Iω is unbounded from below and exhibits a
mountain-pass geometry. However the existence of non-static solutions is not so direct, since
for p ∈ (3, 5) the Palais-Smale condition is not known to hold. This problem is bypassed
by using a constrained minimization taking into account the Nehari and Pohozaev identities.
Up to our knowledge, there is no information about the sign of the energy of these solutions.

Finally, non-static solutions of (CSS) deduced from (5) are found for p ∈ (1, 3) in [6]
as minimizers on a L2-sphere: here the gauge freedom is exploited to combine the value ω

with a Lagrange multiplier, generating a family of non-static, not gauge equivalent solutions
which do not in general satify the large-distance falling-off condition.
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Later, the result for p ∈ (1, 3) has been extended in [27] by investigating the geometry
of Iω. Through a careful analysis for a limit equation, the authors showed that there exist
0 < ω0 < ω̃ < ω̄ such that if ω > ω̄, the unique solutions to (5) are the trivial ones; if
ω0 < ω < ω̃, there are at least two positive solutions to (5); if 0 < ω < ω0, there is a positive
solution to (5) for almost every ω.

In particular, in [27] the authors proved that one of the two solutions found in the interval
(ω0, ω̃) has negative energy.

We mention, moreover, [8,13] where multiplicity results are provided.
Inspired by the original paper by Jackiw and Pi [16] and the following literature, the aim

of this paper is to study (CSS) looking for positive energy solutions.
We recall the following result that can be easily deduced by the definition of energy and

charge and direct computations

Proposition 1.1 Assume that (φ, A0, A1, A2) is a solution of (CSS) satisfying the ansatz (2).
Then the energy and the charge of the solution are, respectively,

E(u) = 1

2
‖∇u‖22 + 1

2

∫
R2

h2uu
2

|x |2 dx − 1

p + 1
‖u‖p+1

p+1,

Q(u) = 1

2
‖u‖22. (7)

By a comparison between (6) and (7), we see that E = I0, that is (5) corresponds to the
Euler-Lagrange equation of the functional of the energy, when we are looking for static
solutions.

From a mathematical point of view, the equation

− �u +
(
h2u(|x |)
|x |2 +

∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u = |u|p−1u, in R

2, (8)

falls in that class which is usually called zero mass equations. A variational approach to it
immediately presents several difficulties, starting with the definition of a suitable functional
setting. Indeed, at least formally, solutions of (8) can be found as critical points of the
functional E for which, differently from the case ω > 0, the space H1

r (R2) seems to be “too
small” to apply the techniques of the calculus of variations in a usual way. On the other hand,
the idea of introducing the functional framework as a specific Sobolev space endowed with
a norm containing an expression of the nonlocal term (see for example Ruiz’ approach in
[29]) does not seem to be immediately applicable. In order to overcome this difficulty, we
will make use of a perturbation argument as that presented inside [2], where the problem of
defining the functional setting is due to the dimension N = 2, and recovered in [1] where
another type of nonlocal equation is considered in the zero mass case.

Combining Eq. (8) with a condition at infinity, the problem reads as follows⎧⎪⎨
⎪⎩

−�u +
(
h2u(|x |)
|x |2 +

∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u = |u|p−1u in R

2,

u(x) → 0 as |x | → +∞,

(P)

where u : R2 → R is radially symmetric and p > 3.
As a first step, we have to clarify what we mean as solution of (P). We start with the

solutions in the sense of distribution.

Definition 1.2 We say that a measurable function u : R2 → R is a solution of (P) in the
sense of distribution if
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1. u is in L p
loc(R

2),
2. for every ϕ ∈ C∞

0 (R2)

u(x)ϕ(x)

|x |2
(∫

B|x |
u2dy

)2

∈ L1(R2) and
u2

|x |2
(∫

B|x |
u2dy

) (∫
B|x |

uϕ dy

)
∈ L1(R2),

3. the operators

ϕ ∈ C∞
0 (R2) �→

∫
R2

u(x)ϕ(x)

|x |2
(∫

B|x |
u2dy

)2

dx

ϕ ∈ C∞
0 (R2) �→

∫
R2

u2

|x |2
(∫

B|x |
u2dy

)(∫
B|x |

uϕ dy

)
dx

are in D′,
4. for every ϕ ∈ C∞

0 (R2)

∫
R2

−u�ϕ dx +
∫
R2

u(x)ϕ(x)

|x |2
(∫

B|x |
u2dy

)2

dx

+
∫
R2

u2

|x |2
(∫

B|x |
u2dy

)(∫
B|x |

uϕ dy

)
dx =

∫
R2

|u|p−1uϕ dx,

5. for every δ > 0 the Lebesgue measure of the set {x ∈ R
2 : |u(x)| � δ} is finite.

Even if solutions in the sense of distribution have of course mathematical relevance, it
is absolutely clear that they are in general too weak for having any physical significance.
Indeed observe that, without any global integrability information, we are not able to prevent
the infinite energy phenomenon arising, as it is well known, in classical electrodynamics
models.

Then we introduce a new setting and proceed with the definition of solution in a stronger
sense.

Definition 1.3 We define the sets H2,4(R2) and H2,4
r (R2) as the completion respectively of

C∞
0 (R2) and of the set of radial functions in C∞

0 (R2) with respect to the norm ‖ · ‖2,4 =
‖∇ · ‖2 + ‖ · ‖4.

Moreover, we denote by

H := {u ∈ H2,4
r (R2) : E(u) is finite}.

We will discuss the properties of H2,4(R2) and H2,4
r (R2) in Sect. 2.

Definition 1.4 Let u ∈ H2,4
r (R2). We say that u is a weak solution of (P), if it satisfies (8) in

a weak sense, namely there holds the following equality
∫
R2

∇u · ∇v dx +
∫
R2

h2u(|x |)
|x |2 uv dx

+
∫
R2

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
uv dx =

∫
R2

|u|p−1uv dx, (9)

for all v in H1(R2).
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Finally we give the definition of classical solution.

Definition 1.5 A classical solution of (P) is a radial function u ∈ C2(R2) such that

Uu(x) :=
{

h2u(|x |)
|x |2 if x �= 0,

0 if x = 0,

and

Vu(x) :=
∫ +∞

|x |
hu(s)

s
u2(s) ds

are well defined and continuous inR2, u satisfies (8) pointwise and goes to 0 as x goes to ∞.

In Proposition 3.9, we will show that Definitions 1.4 and 1.5 coincide when the energy
of the solution is finite, namely every u ∈ H is weak solution of (P) if and only if u is a
classical solution of (P).

In the Appendix 1, we will study sufficient integrability conditions on u for Uu and Vu to
be well defined on R2.

We can state now our first result, which guarantees the existence of a static finite energy
solution of system (CSS), satisfying (2) and (4).

Theorem 1.6 For any p > 3, there exists u ∈ H classical positive solution of (P).
As a consequence the quadruplet (φ, A0, A1, A2) defined as in (2) for ω = 0 is in

C2(R2)×(C1(R2))3 and it is a static positive energy solutionof (CSS) satisfying the following
weak formulation of the large-distance fall-off requirement

lim|x |→+∞ A0(x) = 0, A1 ∈ L∞(R2), A2 ∈ L∞(R2).

In the previous result, the positiveness of the energy is a consequence of Nehari and
Pohozaev identities (see Proposition 4.3). We underline that the failure to use variational
methods to find solutions causes non-trivial difficulties in deducing these identities. In par-
ticular, the fundamental Nehari and Pohozaev identities are not immediately available by
means of direct computations based on standard arguments as in [6], but they both require
quite tricky ad-hoc strategies.

These identities also play a key role in view of an analysis of the energy levels and in
particular in order to estimate the zero-point energy of our system. The crucial question of
establishing whether a ground state (at least limiting to static waves satisfying our ansatz)
exists, translates into a minimum problem consisting in minimizing the functional of the
energy in the set of solutions in H. Observe that, since by Theorem 1.6 the set

S := {u ∈ H\{0} : u is a classical solution of (P)} (10)

is not empty, and by positiveness of energy the set {E(u) : u ∈ S} is bounded below, the
minimizing problem makes sense.

Actually, we will prove that the infimum is attained.

Theorem 1.7 For any p > 3, there exists a non-trivial radial ground state, namely there
exists ū ∈ S such that

E(ū) = inf
u∈S E(u).
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As for the energy, the estimate of the total charge of our static wave presents analogous
difficulties due to the particular zeromass structure of Eq. (8). In addition to evident problems
related with the possibility that the total charge may be infinite, by (2) this fact is reflected
in (FO) which is, in general, hard to verify. However, a priori considerations, based on a
comparison argument, lead to the following (quite surprising) result

Theorem 1.8 Assume that p > 9 and let u be the solution found in Theorem 1.6. Then u has
finite total charge (that is u is in L2(R2)) and the corresponding quadruplet (φ, A0, A1, A2)

is a positive energy static solution of (CSS) satisfying (FO) .

This paper is organized as follows.
In Sect. 2, we present the functional framework introducing some useful properties of the

spaces H2,4(R2) and H2,4
r (R2).

Section 3 is devoted to the most of the proof of Theorem 1.6 (positive energy of our static
solution is a consequence of Proposition 4.3 in Sect. 4). Following [1,2], as first step, roughly
speaking we add a positive mass to the functional E ; more precisely, for any ε > 0, we
consider the following perturbed functional

Iε(u) = 1

2
‖∇u‖22 + ε

2
‖u‖22 + 1

2

∫
R2

h2uu
2

|x |2 dx − 1

p + 1
‖u‖p+1

p+1,

defined in H1
r (R2). By [6], it is easy to see that there exists a critical point uε of Iε , for any

ε > 0. The second step consists in studying the behaviour of the family {uε}ε>0, as ε ↘ 0.
By concentration-compactness arguments, we show that, up to a subsequence, there exists
u0 ∈ H such that the family converges weakly to such u0 in H2,4

r (R2), as ε ↘ 0. This will
be enough to prove that, actually, u0 is the desired solution.

In Sect. 4, we perform a deep analysis of the properties related with the energy of our
static wave, and prove Theorem 1.7. An interesting consequence of this study and the result
in [6] is the existence of a continuum of positive energy non-static standing waves stated
in the Corollary 4.4. Moreover, the existence of a ground state will be obtained, again by a
concentration-compactness argument, by means of Nehari and Pohozaev identities holding
for (P).

Finally, in Sect. 5 we show that, when p > 9, our static wave has finite total charge and
Theorem 1.8 holds. The proof is based on a contradiction argument and a precise estimate
of the decay at infinity of the solution will play a crucial role.

We conclude this introduction fixing some notations. For any τ � 1, we denote by Lτ (R2)

the usual Lebesgue spaces equipped by the standard norm ‖ · ‖τ . In our estimates, we will
frequently denote by C > 0, c > 0 fixed constants, that may change from line to line, but are
always independent of the variable under consideration. Moreover, for any R > 0, we denote
by BR the ball of R2 centred in the origin with radius R. Finally the letters x , y indicate
two-dimensional variables and r , s denote one-dimensional variables.

2 Functional framework

In this section we introduce the functional framework presenting some useful properties of
the spaces H2,4(R2) and H2,4

r (R2).
The following inequality will play an essential role in our arguments. It is essentially

already contained in [6], where it is proved for H1
r (R2) functions (see [6, Proposition 2.4]),

but actually it holds also inH2,4
r (R2). The proof is based on the same density argument used

in [6] after having showed its validity in C∞
0 (R2) and therefore we omit it.

123
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Proposition 2.1 For any u ∈ H2,4
r (R2), the following inequality holds:

‖u‖44 � 4‖∇u‖2
(∫

R2

h2uu
2

|x |2 dx

) 1
2

. (11)

Remark 2.2 We observe that the right hand side in inequality (11) could be also infinity, while
it is surely finite if u ∈ H2,4

r (R2) with finite energy.

Proposition 2.3 (H2,4(R2), ‖ · ‖2,4) is a reflexive Banach space.

Proof To prove that the normed space is reflexive it is sufficient to observe that ‖ · ‖2,4 is

equivalent to ‖·‖∗ =
√

‖∇ · ‖22 + ‖ · ‖24 and (H2,4(R2), ‖·‖∗) is an uniformly convex normed
space.

Now we prove it is complete. Let {un}n be a Cauchy sequence in H2,4(R2). Then {un}n
is a Cauchy sequence in L4(R2) and {∇un}n is a Cauchy sequence in L2(R2). Since L4(R2)

is complete, there exists u ∈ L4(R2) such that limn un = u in L4(R2). Since L2(R2) is
complete, then there exists U ∈ L2(R2) such that limn ∇un = U in L2(R2). We want to
prove that ∇u = U in the distributions sense, i.e. that for every ϕ ∈ C∞

0 (R2)

∫
R2

u∇ϕ dx = −
∫
R2

ϕU dx .

Obviously, for every ϕ ∈ C∞
0 (R2) and for every n ∈ N

∫
R2

un∇ϕ dx = −
∫
R2

ϕ∇un dx .

So it is sufficient to prove that

lim
n

∫
R2

un∇ϕ dx =
∫
R2

u∇ϕ dx and lim
n

∫
R2

ϕ∇un dx =
∫
R2

ϕU dx .

Indeed, since limn un = u in L4(R2), then
∣∣∣∣
∫
R2

(un − u)∇ϕ dx

∣∣∣∣ ≤ ‖∇ϕ‖ 4
3
‖un − u‖4 → 0,

while, since limn ∇un = U in L2(R2) then
∣∣∣∣
∫
R2

ϕ(∇un − U) dx

∣∣∣∣ � ‖ϕ‖2‖∇un − U‖2 → 0.


�

Proposition 2.4 The space H2,4(R2) corresponds to the set

W2,4(R2) := {u ∈ L4(R2) : ∇u ∈ L2(R2)}.
Moreover, if we define

W2,4
r (R2) = {u ∈ W2,4(R2) : u is radially symmetric},

then H2,4
r (R2) = W2,4

r (R2).
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Proof We have just to show that the functions in W2,4(R2) can be approximate in the norm
‖ · ‖2,4 by functions in the same space, with compact support. The rest of the proof proceeds
following standard arguments (see [20, Theorem 7.6]).

Indeed, consider u ∈ W2,4(R2) and let k : R2 → [0, 1] be a cut off smooth function such
that k ≡ 1 in |x | � 1 and k ≡ 0 in |x | � 2. For any M > 0, define vM = kMu, where
kM (x) = k(x/M), and set AM = {x ∈ R

2 : M � |x | � 2M}. Certainly vM has a compact
support and it is in L4(R2).
Moreover, since ∇vM = kM∇u + u∇kM , of course ∇vM ∈ L2(R2). We easily have that

‖u − vM‖44 �
∫
Bc
M

|u|4 dx = oM (1),

where oM (1) denotes a vanishing function as M → +∞.

Moreover

‖∇u − ∇vM‖22 � C
∫

|x |�M
|∇u|2 dx + C

M2

∫
AM

u2 dx

� oM (1) + C

M2 ‖u‖24|AM | 12

� oM (1) + C

M
‖u‖24,

and then we conclude. 
�
In the following proposition we study the embedding’s properties of H2,4(R2).

Proposition 2.5 The space H2,4(R2) is continuously embedded into Lq(R2), for any q ∈
[4,+∞).

Proof Going back the proof of the Sobolev inequality, if u ∈ C∞
0 (R2), one has

‖u‖2 �
∥∥∥∥ ∂u

∂x1

∥∥∥∥
1
2

1

∥∥∥∥ ∂u

∂x2

∥∥∥∥
1
2

1
. (12)

See [5, (19), P. 280]. Let m � 2. Applying (12) to |u|m−1u, we get

‖u‖m2m � C

∥∥∥∥|u|m−1 ∂u

∂x1

∥∥∥∥
1
2

1

∥∥∥∥|u|m−1 ∂u

∂x2

∥∥∥∥
1
2

1
� C‖∇u‖2‖u‖m−1

2(m−1).

By the Young inequality, it follows that

‖u‖2m � C(‖∇u‖2 + ‖u‖2(m−1)). (13)

In (13), we first choose 2(m − 1) = 4, that is, m = 3. Thus from (13), we obtain

‖u‖6 � C(‖∇u‖2 + ‖u‖4) = C‖u‖2,4.
Iterating this procedure withm = 3+ j for j ∈ N, and applying the interpolation inequality,
one gets

‖u‖q � C‖u‖2,4 for all u ∈ C∞
0 (R2) and q ∈ [4,+∞).

This completes the proof by a density argument.

�
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Remark 2.6 It is easy to see that H2,4
loc (R

2) = H1,2
loc (R2) and so H2,4

loc (R
2) is compactly

embedded into Lq
loc(R

2), for any q ∈ [1,+∞).

We now introduce a new Strauss Radial Lemma (see [30]) in H2,4
r (R2).

Proposition 2.7 For any τ ∈ (
0, 1

4

)
, there exists Cτ > 0 and Rτ > 0 such that, for all

u ∈ H2,4
r (R2), we have

|u(x)| � Cτ

‖u‖2,4
|x |τ , for |x | � Rτ .

Proof Let k ∈ (
0, 1

2

)
and consider u a radial function in C∞

0 (R2). For any r � 0, we have
that ∣∣∣∣ ddr

(
rku2(r)

)∣∣∣∣ � krk−1u2(r) + 2rk |u(r)||u′(r)|
� krk−1u2(r) + r2k−1u2(r) + r |u′(r)|2.

Now, fix r � 1 and integrate − d
ds

(
sku2(s)

)
in the interval [r ,+∞). We have

rku2(r) � k
∫ +∞

r
sk−

3
2 s

1
2 u2(s) ds +

∫ +∞

r
s2k−

3
2 s

1
2 u2(s) ds + ‖∇u‖22

2π

� k√
2π

(∫ +∞

r
s2k−3 ds

) 1
2

‖u‖24 + 1√
2π

(∫ +∞

r
s4k−3 ds

) 1
2

‖u‖24 + ‖∇u‖22
2π

� C(rk−1 + r2k−1)‖u‖24 + ‖∇u‖22
2π

� C‖u‖22,4.
The conclusion follows easily by density arguments. 
�

The following compact embedding result holds.

Proposition 2.8 The space H2,4
r (R2) is compactly embedded into Lq(R2), for any q ∈

(4,+∞).

Proof Taking into account Propositions 2.5 and 2.7 the proof follows the same arguments as
in [30, Compactness Lemma 2]. 
�

3 Existence of a static solution

First, we will study the following perturbed equation adding a positive small mass term to
(P). More precisely, for any ε > 0 we consider⎧⎪⎨

⎪⎩
−�u + εu +

(
h2u(|x |)
|x |2 +

∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u = |u|p−1u in R

2,

u(x) → 0, as |x | → +∞.

(Pε)

Solutions of (Pε) can be found as critical points of the functional

Iε(u) = 1

2
‖∇u‖22 + ε

2
‖u‖22 + 1

2

∫
R2

h2uu
2

|x |2 dx − 1

p + 1
‖u‖p+1

p+1,
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which is well defined in classical Sobolev space

H1
r (R2) := {u ∈ H1(R2) : u is radially symmetric}.

Following [6], we define a Pohozaev-Nehari type manifold

Mε := {u ∈ H1
r (R2)\{0} : Jε(u) = 0},

where

Jε(u) = α‖∇u‖22 + ε(α − 1)‖u‖22 + (3α − 2)
∫
R2

h2uu
2

|x |2 dx − (p + 1)α − 2

p + 1
‖u‖p+1

p+1,

and we have fixed α > 1 and such that 2
p−1 < α < 2

5−p , for p ∈ (3, 5) and α > 1 arbitrary,
for p � 5.

We have the following

Proposition 3.1 ( [6]) For any ε > 0, there exists uε ∈ H1
r (R2) which is a positive solution

of (Pε) and such that

Iε(uε) = inf
u∈Mε

Iε(u) =: mε > 0.

Moreover these minimum’s levels are uniformly bounded by positive constants both from
above and from below. Indeed we have

Proposition 3.2 There exists C > 0 such that for any ε ∈ (0, 1) we have C � mε � m1.

Proof In the following, for every w ∈ H1
r (R2), we set

a(w) := ‖∇w‖22, b(w) := ‖w‖22, c(w) :=
∫
R2

h2ww2

|x |2 dx .

Consider u ∈ M1 and for any t > 0 assume the following notation ut := tαu(t ·), where
α is chosen as in the definition of Jε . If we denote by tε > 0 the unique value for which
Jε(utε ) = 0 (see [6]), by simple computations we see that tε < 1 for ε ∈ (0, 1). Now, we
have that

mε � Iε(utε )

=
(
1

2
− α

(p + 1)α − 2

)
a(utε )

+ ε

(
1

2
− α − 1

(p + 1)α − 2

)
b(utε ) +

(
1

2
− 3α − 2

(p + 1)α − 2

)
c(utε )

=
(
1

2
− α

(p + 1)α − 2

)
t2αε a(u)

+ ε

(
1

2
− α − 1

(p + 1)α − 2

)
t2(α−1)
ε b(u) +

(
1

2
− 3α − 2

(p + 1)α − 2

)
t6α−4
ε c(u)

�
(
1

2
− α

(p + 1)α − 2

)
a(u)

+ ε

(
1

2
− α − 1

(p + 1)α − 2

)
b(u) +

(
1

2
− 3α − 2

(p + 1)α − 2

)
c(u)

= I1(u).

Passing to the infimum, we have mε � m1.
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Now suppose by contradiction that, for a suitable εn → 0, it results that mεn → 0. For
any n ∈ N, let un ∈ Mεn such that Iεn (un) = mεn . Then we have that

a(un) → 0 and c(un) → 0. (14)

Since un ∈ Mεn , by Proposition 2.5 we have that, for suitable positive constants C1 and C2,

a(un) + c(un) � C1‖un‖p+1
p+1 � C2‖un‖p+1

2,4 . (15)

On the other hand, by (11) and taking into account that a(un) → 0, for a suitable constant
C > 0, we obtain

‖un‖2,4 = (a(un))
1
2 + ‖un‖4 � (a(un))

1
2 + (

a(un) + 8c(un)
) 1
4

� 2
(
a(un) + 8c(un)

) 1
4 � C

(
a(un) + c(un)

) 1
4 . (16)

Inequalities (15) and (16) contradict (14). 
�
As an immediate consequence of Proposition 3.2, we have

Proposition 3.3 The family {uε}ε>0 is bounded in H2,4(R2).

In the following we fix a decreasing sequence {εn}n which tends to zero as n → +∞.
We define

a1 :=
(
1

2
− (1 + δ)α

(p + 1)α − 2

)
, an2 := εn

(
1

2
− (1 + δ)(α − 1)

(p + 1)α − 2

)
,

a3 :=
(
1

2
− (1 + δ)(3α − 2)

(p + 1)α − 2

)
, a4 := δ

p + 1
,

observing that, for δ > 0 small enough and⎧⎨
⎩

α ∈
(

2

p − 1 − 2δ
,

4δ + 2

5 + 6δ − p

)
, if 3 < p � 5

α > 1, if p > 5,

ai > 0 for any i = 1, . . . , 4.
For any n � 1 define un := uεn , where uεn is as in Proposition 3.1,

νn(�) := a1

∫
�

|∇un |2 dx + an2

∫
�

u2n dx + a3

∫
�

h2un u
2
n

|x |2 dx + a4

∫
�

u p+1
n dx,

for any measurable � ⊂ R
2, and

Gn(u) := a1

∫
R2

|∇u|2 dx + an2

∫
R2

u2 dx + a3

∫
R2

h2uu
2

|x |2 dx + a4

∫
R2

|u|p+1 dx

for any u ∈ H1
r (R2). Of course νn(R

2) = Gn(un) = Iεn (un) = mεn = infu∈Mεn
Iεn (u).

By Proposition 3.2, we assume that, up to a subsequence,

lim
n

νn(R
2) = lim

n
mεn = m > 0. (17)

By [21,22] there are three possibilities:

1. concentration: there exists a sequence {ξn}n in R
2 with the following property: for any

ε > 0, there exists r = r(ε) > 0 such that

νn(Br (ξn)) � c − ε;
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2. vanishing: for all r > 0 we have that

lim
n

sup
ξ∈R2

νn(Br (ξ)) = 0;

3. dichotomy: there exist two sequences of positive measures {ν1n }n and {ν2n }n , a positively
diverging sequence of numbers {Rn}n, and m̃ ∈ (0,m) such that

0 � ν1n + ν2n � νn, ν1n (R
2) → m̃, ν2n (R

2) → m − m̃

Supp ν1n ⊂ BRn , Supp ν2n ⊂ Bc
2Rn

.

Proposition 3.4 Concentration holds and, moreover, the sequence {ξn}n is bounded.
We preliminary prove the following two lemmas.

Lemma 3.5 Vanishing does not hold.

Proof If vanishing held, then we would have that

lim
n

sup
ξ∈R2

∫
Br (ξ)

u p+1
n = 0.

Since p > 3, we have also that

lim
n

sup
ξ∈R2

∫
Br (ξ)

u4n = 0.

Therefore, since by Proposition 3.3, the sequence {un}n is bounded in H2,4(R2), by [22,
Lemma I.1], we deduce that un → 0 in L p+1(R2), as n → +∞, and so, being Jεn (un) = 0,
also mεn → 0, contradicting Proposition 3.2. 
�
Lemma 3.6 Dichotomy does not hold.

Proof As usual, we perform a proof by contradiction assuming that, on the contrary,
dichotomy holds.

Define ρn ∈ C1
0 (R

2, [0, 1]) radial such that, for any n � 1, ρn ≡ 1 in BRn , ρn ≡ 0 in Bc
2Rn

and supx∈R2 |∇ρn(x)| � 2
Rn
. Moreover set vn = ρnun and wn = (1− ρn)un , observing that

vn, wn ∈ H1
r (R2).

Now we proceed by steps.
1st step: we prove that, defined �n = {x ∈ R

2 : Rn � |x | � 2Rn}, we have

a1

∫
�n

|∇zn |2 dx + an2

∫
�n

z2n dx + a3

∫
�n

h2zn z
2
n

|x |2 dx + a4

∫
�n

z p+1
n dx → 0, (18)

for zn equal to un , vn and wn .
Indeed observe that

νn(�n) = m − νn(BRn ) − νn(B
c
2Rn

) + on(1)

� m − ν1n (BRn ) − ν2n (B
c
2Rn

) + on(1) = on(1)

and then we deduce (18) for un .
By simple computations

a1

∫
�n

|∇vn |2 dx + an2

∫
�n

v2n dx + a3

∫
�n

h2vnv
2
n

|x |2 dx + a4

∫
�n

v
p+1
n dx
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� 2a1

∫
�n

(
|∇un |2 + 4

R2
n
u2n

)
dx + an2

∫
�n

u2n dx + a3

∫
�n

h2un u
2
n

|x |2 dx + a4

∫
�n

u p+1
n dx

� 8a1
R2
n

(∫
|x |�2Rn

1 dx

) 1
2 ‖un‖24 + on(1)

= 16a1
√

π

Rn
‖un‖24 + on(1) = on(1)

and then we have proved (18) also for vn . The proof for wn is analogous.
2nd step: lim infn Gn(vn) = m̃.
Observe, indeed, that since hun = hvn in BRn , we have

Gn(vn) � νn(BRn ) � ν1n (BRn ) → m̃, (19)

Now, observe that, by the first step and considering that νn � ν2n ,

m = lim
n

νn(R
2) = lim

n
(νn(BRn ) + νn(B

c
2Rn

))

� lim inf
n

Gn(vn) + lim
n

ν2n (B
c
2Rn

).

Since limn ν2n (R
2) = m − m̃ and Supp ν2n ⊂ Bc

2Rn
, we conclude that

lim inf
n

Gn(vn) = m̃.

3rd step: conclusion.
First of all observe that, since un = vn + wn and both vn and wn are nonnegative, then

by the first step

Gn(un) � Gn(vn) + Gn(wn) + on(1). (20)

Observe that, by step 1,

0 = Jεn (un) � Jεn (vn) + Jεn (wn) + on(1). (21)

For any n ∈ N, let tn, sn > 0 be the numbers, respectively, such that (vn)tn ∈ Mεn and
(wn)sn ∈ Mεn .

There are three possibilities.
Case 1: up to a subsequence, Jεn (vn) � 0.
By simple computations we see that tn � 1 and then we have

mεn � Iεn ((vn)tn ) = Gn((vn)tn ) � Gn(vn)

which, for a large n � 1, leads to a contradiction due to the fact that, by (17) and step 2,

lim
n

mεn = m > m̃ = lim inf
n

Gn(vn).

Case 2: up to a subsequence, Jεn (wn) � 0.
Then, proceeding as in the first case, by (19) and using (20), we have, for n sufficiently

large,

mεn � Iεn ((wn)tn ) = Gn((wn)tn ) � Gn(wn) � Gn(un),

which, by (17), implies m = limn Gn(wn). Then, passing to the limit in (20), we have

m � m + lim inf
n

Gn(vn)
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which contradicts the result obtained in step 2.
Case 3: there exists n0 � 1 such that for all n � n0 both Jεn (vn) > 0 and Jεn (wn) > 0.
Then lim infn tn � 1 and, by (21), we also have that Jεn (vn) = on(1).
If lim infn tn = 1, we can repeat the computations performed in the first case and get the

contradiction. If lim infn tn > 1, from

on(1) = Jεn (vn) − 1

t (p+1)α−2
n

Jεn ((vn)tn )

= α

(
1 − 1

t (p−1)α−2
n

)
‖∇vn‖22 + εn(α − 1)

(
1 − 1

t (p−1)α
n

)
‖vn‖22

+ (3α − 2)

(
1 − 1

t (p−5)α+2
n

) ∫
R2

h2vnv
2
n

|x |2 dx

we deduce that

‖∇vn‖2 → 0,

εn‖vn‖2 → 0,∫
R2

h2vnv
2
n(x)

|x |2 dx → 0

and, as a consequence, also ‖vn‖p+1 → 0 by Propositions 2.1 and 2.5 . Of course, we get a
contradiction since lim infn Gn(vn) > 0 by step 2. 
�
Proof of Proposition 3.4 By the previous two lemmas we conclude that concentration holds.
Moreover, the symmetry property of the functions un guarantees the boundedness of {ξn}n .

�

The next two propositions provide fundamental integrability properties related to the
nonlocal terms.

Proposition 3.7 There exists u0 ∈ H2,4
r (R2) such that, up to a subsequence, un⇀u0 in

H2,4(R2) and moreover

(i)
hu0|x | ∈ L∞(R2);

(ii)
hu0|x | u0 ∈ L2(R2), and

hun
|x | un → hu0

|x | u0 in L2(R2); (22)

(iii)
h2u0
|x |2 u0 ∈ L2(R2);

(iv) Vu0(x) =
∫ +∞

|x |
hu0(s)

s
u20(s) ds is well defined and continuous in R

2.

Proof The existence of u0 ∈ H2,4(R2) is guaranteed by the fact that, since {Gn(un)}n is
bounded, {un}n is bounded in H2,4

r (R2) and then it possesses a weakly convergent subse-
quence by Proposition 2.3.
We can assume that such a sequence, relabelled {un}n , is such that

un → u0 a.e. in R
2 (and then u0 is radial and nonnegative)
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un → u0 in Lq(B), for all B ⊂ R
2 bounded and q � 1.

To prove (i), observe that, for any u ∈ L4(R2) and for any x ∈ R
2\{0}, we have that

hu(x)

|x | = 1

4π |x |
∫
B|x |

u2 dy � 1

4π |x |

(∫
B|x |

dy

) 1
2
(∫

B|x |
u4dy

) 1
2

� C‖u‖24.

Therefore, since u0 ∈ L4(R2) and {un}n is bounded in L4(R2), we have

hu0
|x | ∈ L∞(R2) and

{
hun
|x |

}
n
is bounded in L∞(R2). (23)

We prove (ii). First of all we show that, for all B ⊂ R
2 bounded, we have

∫
B

(
hun un − hu0u0

|x |
)2

dx → 0. (24)

Indeed, since un → u0 in L2(B) for every B ⊂ R
2 bounded, we have that

hun (x) → hu0(x) for all x ∈ R
2. (25)

By (23), (25) and the dominated convergence theorem we obtain
∫
B

(
hun − hu0

|x |
)2

u20 dx → 0.

Hence we deduce that
∫
B

(
hun un − hu0u0

|x |
)2

dx � 2

(∫
B

h2un
|x |2 (un − u0)

2 dx +
∫
B

(
hun − hu0

|x |
)2

u20 dx

)

� ‖hun/|x |‖2∞‖un − u0‖2L2(B)
+ on(1)

and we obtain (24).

By contradiction, suppose now that
hu0|x | u0 /∈ L2(R2). Then, for every M � 0, there exists

R > 0 such that ∫
BR

h2u0u
2
0

|x |2 dx � M .

In particular, there exists Rm > 0 such that
∫
BRm

h2u0u
2
0

|x |2 dx � m + 1 (26)

where m is defined in (17). By (24) and (26), we get

lim
n

∫
BRm

h2un u
2
n

|x |2 dx � m + 1.

which leads to a contradiction comparing with (17).
Let us now prove that (22) holds.
By Proposition 3.4, we know that for any δ > 0 there exists Rδ > 0 such that uniformly

for n � 1
∫
Bc
Rδ

h2un u
2
n

|x |2 dx � δ. (27)
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Of course we can assume Rδ large enough to have also
∫
Bc
Rδ

h2u0u
2
0

|x |2 dx � δ. (28)

Then, by (24), we have
∫
R2

(
hun un − hu0u0

|x |
)2

dx �
∫
BRδ

(
hun un − hu0u0

|x |
)2

dx

+ 2

[∫
Bc
Rδ

h2un u
2
n

|x |2 dx +
∫
Bc
Rδ

h2u0u
2
0

|x |2 dx

]

� on(1) + 2δ

and we conclude.
The proof of (iii), follows immediately by (i) and (ii).
Finally we prove (iv) showing that

Vu0(0) =
∫ +∞

0

hu0(s)

s
u20(s) ds = 1

2π

∫
R2

hu0
|x |2 u

2
0 dx ∈ R, (29)

which implies also the continuity of Vu0 . Observe that
u20|x | ∈ L1(B1). Indeed, we have

∫
B1

u20
|x | dx �

(∫
B1

u60 dx

) 1
3
(∫

B1

1

|x | 32
dx

) 2
3

< +∞.

This, together with (i), implies that
∫
B1

hu0
|x |2 u

2
0 dx �

∥∥∥∥hu0|x |
∥∥∥∥∞

∥∥∥∥∥
u20
|x |

∥∥∥∥∥
L1(B1)

< +∞. (30)

Observe, moreover, that u0|x | ∈ L2(Bc
1). Indeed, we have

∫
Bc
1

u20
|x |2 dx �

(∫
Bc
1

u40 dx

) 1
2
(∫

Bc
1

1

|x |4 dx

) 1
2

< +∞.

This, together with (ii), implies that∫
Bc
1

hu0
|x |2 u

2
0 dx �

∥∥∥∥hu0|x | u0
∥∥∥∥
L2(Bc

1 )

∥∥∥∥ u0
|x |

∥∥∥∥
L2(Bc

1 )

< +∞. (31)

Now (29) is a direct consequence of (30) and (31). 
�
Proposition 3.8 For every v ∈ L2(R2) we have

(i)
∫
R2

h2un
|x |2 unv dx →

∫
R2

h2u0
|x |2 u0v dx,

(ii)
hu0
|x |2 u

2
0

(∫
B|x |

u0v dy

)
∈ L1(R2) and

∫
R2

hun
|x |2 u

2
n

(∫
B|x |

unv dy

)
dx →

∫
R2

hu0
|x |2 u

2
0

(∫
B|x |

u0v dy

)
dx,
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(iii)

(∫ +∞

|x |
hu0(s)

s
u20(s) ds

)
u0 ∈ L2(R2) and

2π
∫
R2

(∫ +∞

|x |
hu0(s)

s
u20(s) ds

)
u0v dx =

∫
R2

hu0
|x |2 u

2
0

(∫
B|x |

u0v dy

)
dx .

Proof Let v ∈ L2(R2).

By (iii) of Proposition 3.7 we deduce that
h2u0
|x |2 u0v ∈ L1(R2). Moreover, we prove easily

(i) if we show that

h2un
|x |2 un → h2u0

|x |2 u0 in L2(R2). (32)

Indeed, let B a bounded domain in R
2, then by (23), (25) and the dominated convergence

theorem, we get

∫
B

(
h2un − h2u0

|x |2
)2

u20 dx → 0.

Hence we deduce that

∫
B

(
h2un un − h2u0u0

|x |2
)2

dx � 2

⎛
⎝

∫
B

h4un
|x |4 (un − u0)

2 dx +
∫
B

(
h2un − h2u0

|x |2
)2

u20 dx

⎞
⎠

� ‖hun/|x |‖4∞‖un − u0‖2L2(B)
+ on(1).

Moreover, by (23), (27) and (28), we have that, for any δ > 0 there exists Rδ > 0 such that,
uniformly for n � 1,

∫
Bc
Rδ

h4un u
2
n

|x |4 dx +
∫
Bc
Rδ

h4u0u
2
0

|x |4 dx � δ.

Therefore

∫
R2

(
h2un un − h2u0u0

|x |2
)2

dx �
∫
BRδ

(
h2un un − h2u0u0

|x |2
)2

dx

+ 2

[∫
Bc
Rδ

h4un u
2
n

|x |4 dx +
∫
Bc
Rδ

h4u0u
2
0

|x |4 dx

]

� on(1) + δ

and we conclude the proof of (32).
Now we prove (ii). Observe that

∫
R2

∣∣∣∣∣
hu0
|x |2 u

2
0

(∫
B|x |

u0v dy

)∣∣∣∣∣ dx � C
∫
R2

(hu0)
3
2

|x |2 u20 dx ‖v‖2.

For R > 0, we have

∫
BR

(hu0)
3
2

|x |2 u20 dx � C

(
‖hu0/|x |‖

3
2∞

∫
BR

u20

|x | 12
dx

)
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� C‖hu0/|x |‖
3
2∞‖u0‖24

(∫
BR

1

|x | dx
) 1

2

< +∞

while, taking into account the inequality a
3
2 � 1 + a2 that holds true for any a � 0,

∫
Bc
R

(hu0)
3
2

|x |2 u20 dx �
∫
Bc
R

u20
|x |2 dx +

∫
Bc
R

h2u0
|x |2 u

2
0 dx

� ‖u0‖24
(∫

Bc
R

1

|x |4 dx

) 1
2

+
∫
Bc
R

h2u0
|x |2 u

2
0 dx < +∞

due to (ii) of Proposition 3.7. We deduce, therefore, that
hu0
|x |2 u

2
0

(∫
B|x | u0v dy

)
∈ L1(R2).

Moreover, observe that, for any R > 0,

∫
R2

∣∣∣∣∣
hun
|x |2 u

2
n

(∫
B|x |

unv dy

)
dx − hu0

|x |2 u
2
0

(∫
B|x |

u0v dy

)∣∣∣∣∣ dx

�
∫
BR

|u2n − u20|
hun
|x |2

(∫
B|x |

un |v|dy
)
dx +

∫
BR

u20

∣∣∣∣hun − hu0
|x |2

∣∣∣∣
(∫

B|x |
un |v|dy

)
dx

+
∫
BR

u20
hu0
|x |2

(∫
B|x |

|un − u0||v|dy
)
dx

+
∫
Bc
R

hun
|x |2 u

2
n

(∫
B|x |

un |v|dy
)
dx +

∫
Bc
R

hu0
|x |2 u

2
0

(∫
B|x |

u0|v|dy
)
dx

= B1
n + B2

n + B3
n + B4

n + B5.

Now, B1
n → 0 by compact embedding in bounded domain and a proper application of Hölder

inequality, whereas B2
n and B3

n go to zero by dominated convergence, again using properly
the Hölder inequality (the scheme of the proof is similar to that used to obtain (22)).

As to B4
n , observe that by Proposition 3.4, for δ > 0 we can take R > 0 such that

∫
Bc
R

h2un
|x |2 u

2
n dx < δ and sup

n
‖un‖44

∫
Bc
R

1

|x |4 dx < δ2 (33)

uniformly for n � 1. Since for every a � 0 we know that a
3
2 � 1+ a2, by Holder and (33),

B4
n =

∫
Bc
R

hun
|x |2 u

2
n

(∫
B|x |

un |v|dy
)
dx

� C

[∫
Bc
R

(hun )
3
2

|x |2 u2n dx

]
‖v‖2

� C

⎡
⎣‖un‖24

(∫
Bc
R

1

|x |4 dx

) 1
2

+
∫
Bc
R

h2un
|x |2 u

2
n dx

⎤
⎦ ‖v‖2 < 2δ‖v‖2.

Finally we prove that, for R large enough, B5 is less then δ arguing as for B4
n and taking into

account that
hu0
|x |2 u

2
0

(∫
B|x | u0|v|dy

)
∈ L1(R2).
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As to (iii), observe that we only have to prove that we can apply Fubini-Tonelli Theorem
to the function f : R2 × R

2 → R, where for almost every (x, y) ∈ R
2 × R

2,

f (x, y) := 1

|x |2 χ|y|<|x |hu0(x)u20(x)u0(y)v(y).

It is easy to see that f is measurable inR4 endowedwith the productmeasure ofR2-Lebesgue
measures.

Moreover, denoted by g(x) := ∫
R2 f (x, y) dy and by g̃(x) := ∫

R2 | f (x, y)| dy we have
∫
R2

g̃(x) dx =
∫
R2

(
hu0(x)

|x |2 u20(x)
∫
B|x |

u0(y)|v(y)| dy
)
dx < +∞

by (ii). Then, by Fubini-Tonelli Theorem, for almost every y ∈ R
2 there exists k(y) :=∫

R2 f (x, y) dx . Moreover k(y) ∈ L1(R2) and
∫
R2

k(y) dy =
∫
R2

g(x) dx .

It is easy to check that this corresponds exactly to what we claimed in (iii). 
�
Now we can prove Theorem 1.6, except the positivity of the energy of the solution, which

will be a direct consequence of Proposition 4.3.

Proof of Theorem 1.6 By Proposition 3.1, for any n ∈ N, there exists un ∈ H1
r (R2) such that

un > 0 and I ′
εn

(un) = 0 in H−1. Hence, for every v ∈ H1(R2), we have that I ′
εn

(un)[v] = 0,
namely

∫
R2

∇un · ∇v dx + εn

∫
unv dx +

∫
R2

h2un
|x |2 unv dx

+ 1

2π

∫
R2

hun
|x |2 u

2
n

(∫
B|x |

unvdy

)
dx =

∫
R2

u p
n v dx .

By Proposition 3.7 there exists u0 ∈ H2,4
r (R2) such that, up to a subsequence, un⇀u0 in

H2,4(R2). Moreover, by Proposition 3.4 we know that u0 is nontrivial.
It is immediate that u0 � 0. Moreover

∫
R2 ∇un · ∇v dx → ∫

R2 ∇u0 · ∇v dx and, by
boundedness of

√
εnun in L2(R2), we also deduce that

εn

∫
unv dx � √

εn‖√εnun‖2‖v‖2 → 0.

By compact embedding of H2,4
r (R2) into Lq(R2) for q > 4 (see Proposition 2.8), we also

have u p
n → u p

0 in L
p+1
p (R2) and then

∣∣∣∣
∫
R2

u p
n v dx −

∫
R2

u p
0 v dx

∣∣∣∣ � ‖u p
n − u p

0 ‖ p+1
p

‖v‖p+1 → 0.

By Proposition 3.8, we conclude that (9) holds, namely u0 is a weak solution of (P). By
(i) and (iv) of Proposition 3.7 and by [9, Theorem 8.8] we infer that u0 ∈ W 2,2

loc (R2) and so
u0 ∈ C(R2). Observing that the conclusions of [6, Proposition 2.1] hold for u0, by bootstraps
arguments, following again [9], we conclude that u0 ∈ C2(R2) and u0 > 0 by the maximum
principle.
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Keeping in mind that A0 ∈ L∞(R2) by Proposition 3.7, we can show that Ai ∈ C1(R2),
for i = 0, 1, 2, arguing as in [6, Proposition 2.1]. Finally the potentials verify the weak
formulation of the large-distance fall-off requirement by (i) and (iv) in Proposition 3.7. 
�

We conclude this section showing that the definitions of weak solutions and classical
solutions coincide for finite energy functions. More precisely the following holds.

Proposition 3.9 Let u ∈ H. Then u is weak solution of (P) if and only if u is a classical
solution of (P).

Proof Observing that all the integrability conditions of Propositions 3.7 and 3.8 hold for
functions belonging to H, then, arguing as in the last part of proof of Theorem 1.6, we
conclude. 
�

4 Energy of static solutions

We now prove that any weak solution with finite energy in the sense of Definition 1.4 satisfies
a Nehari type identity. We would like to remark that this fact cannot be deduced as a trivial
consequence of (9) since, in general, we do not know if a weak solution is in H1(R2).
Moreover, while, in general, the Nehari identity is given by E ′(u)[u] = 0, in our case, not
only the weak solution is not found as a critical point of the functional but also the functional
could be not well defined on the weak solution.

Proposition 4.1 Let u ∈ H be a weak solution of (P), then it satisfies the following Nehari
type identity

‖∇u‖22 + 3
∫
R2

h2uu
2

|x |2 dx = ‖u‖p+1
p+1. (34)

Proof For any n ∈ N, let ψn : R2 → R, where

ψn(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if |x | � n,
2n − |x |

n
if n � |x | � 2n,

0 if |x | � 2n.

Being ψnu ∈ H1(R2), for any n ∈ N, we have that
∫
R2

∇u · ∇(ψnu) dx +
∫
R2

ψn
h2uu

2

|x |2 dx +
∫
R2

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
ψnu

2 dx

=
∫
R2

ψn |u|p+1 dx .

(35)

Observe that, being u ∈ H2,4
r (R2),∣∣∣∣

∫
R2

∇u · ∇(ψnu) dx −
∫
R2

|∇u|2 dx
∣∣∣∣

�
∫
R2

|∇u|2|ψn − 1| dx +
∫
R2

|∇u||u||∇ψn| dx

�
∫
Bc
n

|∇u|2 dx +
( ∫

Bc
n

|∇u|2 dx
) 1

2
( ∫

Bc
n

|u|4 dx
) 1

4
( ∫

An

|∇ψn |4 dx
) 1

4

= on(1),
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where An := B2n\Bn .
Analogously, being u with finite energy and u ∈ L p+1(R2), we have easily that

∣∣∣∣
∫
R2

ψn
h2uu

2

|x |2 dx −
∫
R2

h2uu
2

|x |2 dx

∣∣∣∣ = on(1), (36)
∣∣∣∣
∫
R2

ψn |u|p+1 dx −
∫
R2

|u|p+1 dx

∣∣∣∣ = on(1). (37)

Finally observe that, due to the fact that u has finite energy, arguing as in Proposition 3.8, we
have that

∫
R2

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
ψnu

2 dx = 1

2π

∫
R2

huu2

|x |2
(∫

B|x |
ψnu

2dy

)
dx .

Therefore, using again the fact that u has finite energy, we have
∣∣∣∣
∫
R2

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
ψnu

2 dx − 2
∫
R2

h2uu
2

|x |2 dx

∣∣∣∣

=
∣∣∣∣∣
1

2π

∫
R2

huu2

|x |2
(∫

B|x |
ψnu

2dy

)
dx − 2

∫
R2

h2uu
2

|x |2 dx

∣∣∣∣∣
=

∣∣∣∣∣
1

2π

∫
R2

huu2

|x |2
(∫

B|x |
ψnu

2dy

)
dx − 1

2π

∫
R2

huu2

|x |2
(∫

B|x |
u2dy

)
dx

∣∣∣∣∣
= 1

2π

∫
R2

huu2

|x |2
(∫

B|x |
(1 − ψn)u

2dy

)
dx

= 1

2π

∫
Bc
n

huu2

|x |2
(∫

B|x |
(1 − ψn)u

2dy

)
dx

� 2
∫
Bc
n

h2uu
2

|x |2 dx = on(1).

(38)

Now the conclusion follows by (35) together with (36), (37), and (38). 
�

We now prove that each classical solution of (P) with finite energy satisfies a Pohozaev
type identity. We point out that even if a similar identity is present also in [6], we have to
provide a different proof since their arguments need the essential information that the solution
belongs to L2(R2). Hence a new and different strategy is necessary.

Proposition 4.2 Let u ∈ H be a classical solution of (P), then u satisfies the following
Pohozaev type identity

∫
R2

h2uu
2

|x |2 dx = 1

p + 1
‖u‖p+1

p+1. (39)

Proof Let u ∈ H be a classical solution of (P) and fix R > 0. Multiplying by ∇u · x and
integrating by parts on BR we have

−
∫
BR

�u(∇u · x) dx +
∫
BR

h2u
|x |2 u(∇u · x) dx +

∫
BR

(∫ +∞

|x |
hu
s
u2(s) ds

)
u(∇u · x) dx
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=
∫
BR

|u|p−1u(∇u · x) dx .
(40)

Arguing as in [6], we infer that

∫
BR

�u(∇u · x) dx = oR(1), (41)

∫
BR

|u|p−1u(∇u · x) dx = − 2

p + 1
‖u‖p+1

p+1 + oR(1), (42)

where oR(1) denotes a vanishing function as R → +∞.

Observe that we cannot repeat the arguments of [6] to study also the remaining terms,
because in their arguments it is essential the fact that u belongs to L2(R2). Therefore, we use
another approach which seems, actually, less involved than that of [6]. Integrating by parts,
we have

∫
BR

h2u
|x |2 u(∇u · x) dx +

∫
BR

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u(∇u · x) dx

= 2π
∫ R

0
h2uuu

′ dr + 2π
∫ R

0

(∫ +∞

r

hu(s)

s
u2(s) ds

)
uu′r2 dr

= πh2u(R)u2(R) − π

∫ R

0
huu

4r dr

+ π

(∫ +∞

R

hu(s)

s
u2(s) ds

)
u2(R)R2 + π

∫ R

0
huu

4r dr

− 2π
∫ R

0

(∫ +∞

r

hu(s)

s
u2(s) ds

)
u2r dr .

(43)

Being u with finite energy, as observed in [3], we have

lim inf
R→+∞ R

∫
∂BR

h2u(|x |)
|x |2 u2 dx = 0,

and so, by radial symmetry,

lim inf
R→+∞ h2u(R)u2(R) = 0.

Using again the fact that u has finite energy, by Fubini-Tonelli Theorem we deduce that(∫ +∞
|x |

hu(s)
s u2(s) ds

)
u2 is in L1(R2), since

∫
R2

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u2 dx = 2

∫
R2

h2u(|x |)
|x |2 u2 dx .

Hence, arguing as before, we have

lim inf
R→+∞

(∫ +∞

R

hu(s)

s
u2(s) ds

)
u2(R)R2 = 0.
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Finally, another immediate consequence of the fact that
(∫ +∞

|x |
hu(s)
s u2(s) ds

)
u2 is in L1(R2),

we have that

2π
∫ R

0

(∫ +∞

r

hu(s)

s
u2(s) ds

)
u2r dr =

∫
BR

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u2 dx

=
∫
R2

(∫ +∞

|x |
hu(s)

s
u2(s) ds

)
u2 dx + oR(1)

= 2
∫
R2

h2u(|x |)
|x |2 u2 dx + oR(1).

By this, considering a suitable diverging sequence {Rn}n , we conclude taking into account
(40), (41), (42), and (43). 
�

Recalling the definition of S given in (10), observe that, by (34) and (39), any u ∈ S
satisfies

α‖∇u‖22 + (3α − 2)
∫
R2

h2uu
2

|x |2 dx − (p + 1)α − 2

p + 1
‖u‖p+1

p+1 = 0, (44)

where we have fixed α > 1 and such that 2
p−1 < α < 2

5−p , for p ∈ (3, 5) and α > 1
arbitrary, for p � 5. Moreover we have that the functional E is well defined in S.

Proposition 4.3 Every static finite energy solution of the form (2) generated by u ∈ S has
positive energy. Moreover we have that infu∈S E(u) > 0.

Proof By Theorem 1.6, we know that S is not empty.
Now, if we compute E on S, we have

E(u) =
(
1

2
− α

(p + 1)α − 2

)
‖∇u‖22 +

(
1

2
− 3α − 2

(p + 1)α − 2

) ∫
R2

h2uu
2

|x |2 dx (45)

and then, by the choice of α, for any p > 3, we have that infu∈S E(u) � 0.
Assume by contradiction that, for a suitable sequence {un}n in S, we have E(un) → 0,

then, by (11), we deduce also that un → 0 in H2,4(R2).
Using again (11), we have, moreover, that

‖un‖44 � C

(
‖∇un‖22 +

∫
R2

h2un u
2
n

|x |2 dx

)

and then, since un satisfies (44), we have

‖∇un‖22 + ‖un‖44 � C‖un‖p+1
p+1.

Therefore, taking into account that ‖un‖2,4 → 0 and by the continuous embedding
H2,4(R2) ↪→ L p+1(R2), we have that, for any n ∈ N large enough,

‖un‖42,4 � C(‖∇un‖22 + ‖un‖44) � C‖un‖p+1
p+1 � C‖un‖p+1

2,4 ,

which contradicts the fact that un → 0 in H2,4(R2). 
�
As by-product of our results, we now prove the existence of positive energy non-static

solution of (CSS) satisfying the ansatz (2) with sufficiently small frequency.
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Corollary 4.4 There existsω0 > 0 such that, for allω ∈ (0, ω0), there exists (φ, A0, A1, A2),
a positive energy non-static solution of (CSS) satisfying the ansatz (2).

Proof Suppose by contradiction that that there exists a decreasing sequence {ωn}n which
tends to zero as n → +∞ and, for any n � 1, we define un := uωn , where uωn is as in
Proposition 3.1 and with E(un) � 0. By Proposition 3.3 we infer that {un}n is bounded
in H2,4(R2) and there exists u0 ∈ H the weak limit of {un}n in H2,4(R2). Arguing as in
the previous section we deduce that u0 is a solution of (P) which has positive energy by
Proposition 4.3 and such that the conclusions of Proposition 3.7 hold. Then, by the weak
lower semicontinuity of the norm, by the compact embedding of H2,4

r (R2) into L p+1(R2)

and by (22), we have

0 < E(u0) � lim inf
n

E(un) � 0,

reaching a contradiction. 
�
Now we have all the tools to conclude the prove Theorem 1.7.

Proof of Theorem 1.7 Consider {un}n a sequence in S such that E(un) → infu∈S E(u). By
(45), the sequence is bounded in H2,4

r (R2) and then there exists ū ∈ H2,4(R2) such that, up
to a subsequence, un⇀ū in H2,4(R2) and

un → ū in L p+1(R2), (46)

un → ū in Lq(B), for all B ⊂ R
2 bounded and q � 1, (47)

un → ū a.e. in R
2. (48)

Of course ū ∈ H2,4
r (R2).

Arguing as in Sect. 3, we can see that also the minimizing sequence {un}n concentrates
in the sense of [21,22] and, arguing as in Propositions 3.7 and 3.8 , this implies that ū is a
classical solution of (P) with finite energy and so it satisfies (44).

By (44) and (46), therefore, we have that

lim
n

(
α‖∇un‖22 + (3α − 2)

∫
R2

h2un u
2
n

|x |2 dx

)
= (p + 1)α − 2

p + 1
lim
n

‖un‖p+1
p+1

= (p + 1)α − 2

p + 1
‖ū‖p+1

p+1 = α‖∇ū‖22 + (3α − 2)
∫
R2

h2ū ū
2

|x |2 dx .

(49)

Since
∫
R2

h2un u
2
n

|x |2 dx is bounded, we can assume that, up to a subsequence, it is convergent.
We prove that

∫
R2

h2ū ū
2

|x |2 dx � lim
n

∫
R2

h2un u
2
n

|x |2 dx . (50)

By (47) we have that un → ū in L2(B|x |), for all x ∈ R
2. This implies that

hun (x) → hū(x), for all x ∈ R
2. (51)

By (48), (51) and Fatou Lemma, we prove our claim (50).
Using the weak lower semicontinuity property of the norms, inequality (50), and formula

(49), we obtain

(3α − 2)

(
lim
n

∫
R2

h2un u
2
n

|x |2 dx −
∫
R2

h2ū ū
2

|x |2 dx

)
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� α
(
lim inf

n
‖∇un‖22 − ‖∇ū‖22

)
+ (3α − 2)

(
lim
n

∫
R2

h2un u
2
n

|x |2 dx −
∫
R2

h2ū ū
2

|x |2 dx

)

� lim
n

(
α‖∇un‖22 + (3α − 2)

∫
R2

h2un u
2
n

|x |2 dx

)
− α‖∇ū‖22 − (3α − 2)

∫
R2

h2ū ū
2

|x |2 dx = 0.

By (50) we deduce that

lim
n

∫
R2

h2un ū
2
n

|x |2 dx =
∫
R2

h2ū ū
2

|x |2 dx

and, again by (49), limn ‖∇un‖2 = ‖∇ū‖2. Taking into account also (46), E(un) → E(ū)

and we conclude. 
�

5 Static solutions with finite charge

In all this section we assume that p > 9 and we prove that, in this case, the solution found
in Theorem 1.6 belongs to L2(R2).

Wefix a decreasing sequence {εn}n which tends to zero as n → +∞ and, for any n � 1,we
define un := uεn , where uεn is as in Proposition 3.1. By Proposition 3.3 we know that {un}n
is bounded and, up to a subsequence, weakly convergent inH2,4(R2). Finally let u0 ∈ H be
the solution found in Theorem 1.6 as the weak limit of {un}n in H2,4(R2).

Proof of Theorem 1.8 We need only to prove that u0 ∈ L2(R2): this and the Strauss radial
Lemma [30] imply that (φ, A0, A1, A2) is a positive energy static solution of (CSS) satisfying
(FO).

By contradiction, assume that u0 /∈ L2(R2). Then there exists Rσ > 0 such that
‖u0‖4L2(BRσ )

= σ > 16π2.

Fix σ ′ ∈ (16π2, σ ). Since un → u0 in L2
loc(R

2) up to a subsequence, we can assume that
there exists n0 ∈ N such that

σ ′ � ‖un‖4L2(BRσ )
� σ + 1, for all n � n0. (52)

By Proposition 2.7, there exists τ ∈
(

2
p−1 ,

1
4

)
, Cτ > 0 and Rτ > 0 such that

(un(r))
p−1 � Cτ

r τ(p−1)
,

for r � Rτ and any n � 1. In particular, since τ(p − 1) > 2, taken δ > 0 such that
γ := σ ′

16π2 − δ > 1, there exists R′
τ such that

(un(r))
p−1 � δ

r2
, (53)

for r � R′
h and any n � 1. Up to replace Rσ with R′

τ and σ with a larger number, we can
assume Rσ = R′

τ .
Observe that, by (52) and (53), we have that

h2un (|x |)
|x |2 − u p−1

n − γ

|x |2 � 0, (54)
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for |x | � Rσ . Now consider the problem⎧⎪⎪⎨
⎪⎪⎩

−�w + γ

|x |2 w = 0 if |x | > Rσ ,

w = un if |x | = Rσ ,

w → 0 as |x | → +∞,

which is solved by wn(x) = un(Rσ )R
√

γ
σ |x |−√

γ . Observe that

−�(un − wn) + γ

|x |2 (un − wn)

=
(

−h2un (|x |)
|x |2 −

∫ +∞

|x |
hun (s)

s
u2n(s) ds + u p−1

n + γ

|x |2 − εn

)
un (55)

in H−1(R2\BRσ ) and, since un − wn = 0 in ∂BRσ and un − wn → 0 as |x | → +∞, we
have that (un − wn)

+ ∈ H1
0 (R2\BRσ ).

So, multiplying in (55) by (un − wn)
+ and integrating, by (54) and the fact that un > 0

we have∫
|x |�Rσ

|∇(un − wn)
+|2 dx +

∫
|x |�Rσ

γ

|x |2 ((un − wn)
+)2 dx

=
∫

|x |�Rσ

(
−h2un (|x |)

|x |2 −
∫ +∞

|x |
hun (s)

s
u2n(s) ds + u p−1

n + γ

|x |2 − εn

)
un(un − wn)

+ dx � 0

and then, for |x | � Rσ and any n � n0, 0 � un � wn .
In conclusion, by Proposition 2.7,

‖un‖2L2(R2\BRσ )
� 2πu2n(Rσ )R

2
√

γ
σ

∫ +∞

Rσ

r1−2
√

γ dr

� 2π

2
√

γ − 2
u2n(Rσ )R2

σ

� 2π

2
√

γ − 2

Cτ

R2τ
σ

R2
σ

By this and (52) we deduce that {un}n is (up to a subsequence) bounded in L2(R2) and so
also in H1(R2). Then, there exists u ∈ H1(R2) and a subsequence of {un}n such that un⇀u
in H1(R2). Since we can assume that the same subsequence is such that un → u0 a.e., we
have u0 = u ∈ L2(R2), and we obtain the contradiction.


�
Remark 5.1 Using similar arguments as before and taking into account the Strauss Lemma
[30], we have that for any τ ∈ (0, a) there exists Cτ > 0 and Rτ > 0 such that

|u0(r)| � Cτ

rmax(1/2,
√

τ)
, uniformly for r � Rτ ,

where a = limr→+∞ h2u0(r).

Remark 5.2 Arguing as in the proof of Theorem 1.8, if ‖u0‖2 > 16π2, then {un}n is bounded
in L2(R2).

Funding Open access funding provided by Politecnico di Bari within the CRUI-CARE Agreement.
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Appendix A

By Hölder inequality it is easy to see that if u ∈ L4
loc(R

2) radially symmetric, then the
function

Uu(x) :=
{

h2u(|x |)
|x |2 if x �= 0,

0 if x = 0,

is well defined in R
2.

In the following for a measurable function u : R2 → R, we want to understand under
which assumptions on u we have that

Vu(x) :=
∫ +∞

|x |
hu(s)

s
u2(s) ds

is well defined.

Lemma 5.3 If u ∈ Lq(R2) and is radially symmetric with q ∈ (2, 4), then Vu is well defined
in R

2\{0}.
Proof Fix x �= 0. Observe that for any s > |x |, by Hölder inequality we have

hu(s) = c
∫
Bs

u2 dy � c

(∫
Bs

1 dy

) q−2
q

(∫
Bs

|u|q dy
) 2

q

� cs
2q−4
q .

Therefore, being q < 4, we have

Vu(x) � c
∫
Bc|x |

u2(y)

|y| 4q
dy � c

(∫
Bc|x |

1

|y| 4
q−2

dy

) q−2
q

(∫
Bc|x |

|u|q dy
) 2

q

< +∞.


�
Lemma 5.4 If u ∈ Lq(R2) and is radially symmetric with q ∈ (2, 4) and u ∈ Lτ

loc(R
2) with

τ ∈ (4,+∞), then Vu is well defined in R
2.

Proof By Lemma 5.3, we have to prove only that Vu(0) < +∞.
Observe that

Vu(0) =
∫ +∞

0

hu(s)

s
u2(s) ds =

∫ 1

0

hu(s)

s
u2(s) ds +

∫ +∞

1

hu(s)

s
u2(s) ds

=
∫ 1

0

hu(s)

s
u2(s) ds + Vu(1) = Au + Vu(1).
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By Lemma 5.3, we need to estimate only Au . Since

hu(s) = c
∫
Bs

u2 dy � c

(∫
Bs

1 dy

) τ−2
τ

(∫
Bs

|u|τ dy
) 2

τ

� cs
2τ−4

τ ,

being τ > 4, we have

Au � c
∫
B1

u2(y)

|y| 4τ
dy � c

(∫
B1

1

|y| 4
τ−2

dy

) τ−2
τ (∫

B1
|u|τdy

) 2
τ

< +∞.


�
Remark 5.5 By [6], we already know that, if u ∈ L2(R2) ∩ L∞

loc(R
2), then Vu ∈ L∞(R2).
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