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Abstract

In this paper we prove the existence of a positive energy static solution for the Chern—Simons—
Schrodinger system under a large-distance fall-off requirement on the gauge potentials. We
are also interested in existence of ground state solutions.

Mathematics Subject Classification 35J20 - 35Q60

1 Introduction

The following Chern—Simons—Schrddinger system

iDop + (D1 D1 + DyD2)p + 9P~ =0,
d0A1 — 9149 = Im(¢ D2¢p),

doAz — 02Ag = —Im(¢ D1 9),

hAr— hA = Lg%,

(CSS)

has been object of interest for many authors, physicists and mathematicians, in the last thirty
years.

For p = 3, it corresponds to the model proposed by Jackiw—Pi [16], and studied also
in [10,11,15,17,18], to describe the dynamics of a nonrelativistic solitary wave that behaves
like a particle, in the three dimensional gauge Chern—Simons theory.
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Heret € R, x = (x1,x2) € R%, ¢ : R x R? — C is the scalar field, A, : R x R? - R
are the components of the gauge potential and D, = 9, + i A, is the covariant derivative
(u=0,1, 2).

The initial value problem, well-posedness, global existence and blow-up, scattering, etc.
have been considered in [4,12,14,23-25] for the case p = 3. In particular Jackiw and Pi were
able to find self-dual solitons deduced by static solutions of (CSS) transformed by means of
Galilean boost or conformal invariance.

Since, as usual in Chern—Simons theory, problem (CSS) is invariant under the gauge
transformation

¢ — e, Ay — Ay —dux (1

for any arbitrary C* function x : R x R?> — R, we easily see that the definition of static
solution, that is time-independent solution, makes sense once we have removed the gauge
freedom. In [16] it has be done assuming the Coulomb gauge choice V - A = 0 (here
A = (A1, Ay)), supplemented by large-distance fall-off requirements on the differential
equations satisfied by Ao, A1 and A, (see [18]). In particular, we require that

Ao(x) = O(1/IxD), |A()] = O1/|x]), (FO)

being this asymptotic behaviour physically relevant, as it is the reflection of the possible
presence of, respectively, electric charges and magnetic monopoles.

The existence of standing waves for (CSS) and general p > 1 has been studied in [6,8,13,
27,28,31,32], whereas standing waves with a vortex point have been studied in [7,19] (see
also the review paper [26]).

In order to find standing waves, we introduce the following ansatz

3t x) = u(xDe® . Ag(t.x) = Ag(lx]).
At x) = ——Z h(lx]). Ax(t,x) = —h(lx]). 2)
|2 e

where w € R is a given frequency and u is a radial real valued function that, with an abuse
of notation, has to be meant as a one or two variables function according to the situation.
In [6] the authors proved that (¢, Ag, A1, A2) solves (CSS) if we set

h(r) =h,(r) = %/Orsuz(s) ds, r >0,

in the previous ansatz (2),

+oo
Ao(x) =& +/ M) 26y as,

x| §

with £ € R arbitrary, and u is a solution of the equation

2 +00
hTSéD /| hus(s)uz(s)ds>”=lu|l”“u, ink%. - (3)

—Au+(a)+€+

x|

Therefore, given a standing wave solution

+0o0
(u(x)e"w’, £ +/ M) 2y ds, =22 e, x—1h<|x|)> ,

x| s |x|? |x|?
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we can consider, for any ¢ € R, the function x (#) = ¢t and use the gauge invariance (1) to
obtain the family of standing wave solutions

+oo
(u(x)e“w“)’,s e +/| M) 25y ds, =2 h()), |%hum))

x| § |X|2

ceR
which is characterized by the constant w + & that results to be a gauge invariant.

In order to differentiate and classify the solutions, as in [18] we fix the gauge freedom
imposing the following decay at infinity condition on the potential Ao

lim Ag(x) =0. “4)
|x|—=+o0

We point out that, assuming the square integrability of u (which, as we are going to
show, means that the solution has a finite total charge), our ansatz, together with (4), is
consistent with the Coulomb gauge choice V - A = 0, supplemented by large-distance fall-
off requirements (FO).

According to the above discussion, in what follows we will take £ = O which is anecessary
condition for (FO) as it is assumed for example in [4,18].

Equation (3), therefore, becomes

2 +00
(XD M) 26y ds Y u = wirtu, inR2, )
|x|? x| s

—Au—|—<w+

Observe that static solutions of (CSS) having the form (2) are deduced from (5) for w = 0.

Static solutions of (CSS) deduced from (5) have been found only when p = 3 in [6]. In
detail, in [6] the authors proved that when p = 3 solutions to (CSS) satisfying the ansatz (2)
and which have a field of matter that is nowhere zero (in the sense that u > 0 everywhere)
must be static and belong to a one-parameter family which can be explicitly described. In
particular, it is quite interesting to observe that such solutions are real valued, differently
from the complex valued static field of matter found in [16]. Both solutions found in [6] and
those found in [16] have zero energy (see [6, sec.5] and [18, sec.4]).

When p > 1, p # 3, Eq. (5) has been approached by variational methods looking for
non-static solutions of (CSS) with w > 0. Indeed as showed in [6], the Eq. (5) is nonlocal
and it corresponds to the Euler—Lagrange equation of the functional /,, : H,] (R?) — R,

2.2
Lotw) = 31V + Pt + 5 [ s — 2, ©

where
H!(R?) := {u € H'(R?) : u is radially symmetric}.

Observe that /,, presents a competition between the nonlocal term and the local nonlin-
earity of power-type.

When p > 3, in [6] the authors showed that /,, is unbounded from below and exhibits a
mountain-pass geometry. However the existence of non-static solutions is not so direct, since
for p € (3, 5) the Palais-Smale condition is not known to hold. This problem is bypassed
by using a constrained minimization taking into account the Nehari and Pohozaev identities.
Up to our knowledge, there is no information about the sign of the energy of these solutions.

Finally, non-static solutions of (CSS) deduced from (5) are found for p € (1, 3) in [6]
as minimizers on a L2-sphere: here the gauge freedom is exploited to combine the value w
with a Lagrange multiplier, generating a family of non-static, not gauge equivalent solutions
which do not in general satify the large-distance falling-off condition.
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165 Page4of 30 A. Azzollini, A. Pomponio

Later, the result for p € (1, 3) has been extended in [27] by investigating the geometry
of I,. Through a careful analysis for a limit equation, the authors showed that there exist
0 < wg < @ < o such that if @ > ®, the unique solutions to (5) are the trivial ones; if
wp < w < o, there are at least two positive solutions to (5); if 0 < w < wy, there is a positive
solution to (5) for almost every w.

In particular, in [27] the authors proved that one of the two solutions found in the interval
(wo, ®) has negative energy.

‘We mention, moreover, [8,13] where multiplicity results are provided.

Inspired by the original paper by Jackiw and Pi [16] and the following literature, the aim
of this paper is to study (CSS) looking for positive energy solutions.

We recall the following result that can be easily deduced by the definition of energy and
charge and direct computations

Proposition 1.1 Assume that (¢, Aoy, A1, A2) is a solution of (CSS) satisfying the ansatz (2).
Then the energy and the charge of the solution are, respectively,

1 1 h2u? 1 |
E - |V 2 - u dx — p+ ,
) =5 ””2+2/Rz g erlIlull,,H

1 2
Ou) = E“””z- @

By a comparison between (6) and (7), we see that E = I, that is (5) corresponds to the
Euler-Lagrange equation of the functional of the energy, when we are looking for static
solutions.

From a mathematical point of view, the equation

2 +o0
s (hu(|x|) +/ hu(s)uz(s)ds) u=lulP~lu, iR, )
|

|x|2 x| s

falls in that class which is usually called zero mass equations. A variational approach to it
immediately presents several difficulties, starting with the definition of a suitable functional
setting. Indeed, at least formally, solutions of (8) can be found as critical points of the
functional E for which, differently from the case w > 0, the space H,1 (R?%) seems to be “too
small” to apply the techniques of the calculus of variations in a usual way. On the other hand,
the idea of introducing the functional framework as a specific Sobolev space endowed with
a norm containing an expression of the nonlocal term (see for example Ruiz’ approach in
[29]) does not seem to be immediately applicable. In order to overcome this difficulty, we
will make use of a perturbation argument as that presented inside [2], where the problem of
defining the functional setting is due to the dimension N = 2, and recovered in [1] where
another type of nonlocal equation is considered in the zero mass case.
Combining Eq. (8) with a condition at infinity, the problem reads as follows

]’l2 +o00 h

—Au + ( ‘I(IéD +/ ﬂuz(s)ds> w=lu"'u inR2
X |x| $

u(x) -0 as|x| > 4oo,

P)

where u : R> — R is radially symmetric and p > 3.
As a first step, we have to clarify what we mean as solution of (P). We start with the
solutions in the sense of distribution.

Definition 1.2 We say that a measurable function u : R? — R is a solution of (P) in the
sense of distribution if
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I uisin LY (R?),
2. forevery ¢ € COOO(IRZ)

2 2
7’4()()(/)2()6) / u*dy| e L'(R?) and u—z / u*dy / updy | € L'(R?),
x| By, 1=\, Byy,

3. the operators

2
(NS CSO(RZ) l—>/ w / uldy| dx
r2 x| By

2
gongo(Rz)H/ u—z / u*dy / updy | dx
R X7 \ /sy, Byy|
are in D',

4. forevery ¢ € Cgo(]Rz)

2
/ —ulApdx +/ w / uzdy dx
R2 R2 |X| By
u 2 1
+/ — / u-dy / updy | dx =/ [P up dx,
R2 |.X| Bix| Bix| R2

5. for every § > 0O the Lebesgue measure of the set {x € RZ : |u(x)| > 8} is finite.

Even if solutions in the sense of distribution have of course mathematical relevance, it
is absolutely clear that they are in general too weak for having any physical significance.
Indeed observe that, without any global integrability information, we are not able to prevent
the infinite energy phenomenon arising, as it is well known, in classical electrodynamics
models.

Then we introduce a new setting and proceed with the definition of solution in a stronger
sense.

Definition 1.3 We define the sets H2*(R?) and H%A(Rz) as the completion respectively of
Cg° (R?) and of the set of radial functions in Cy° (R?%) with respect to the norm || - |24 =
IVl + 11 - lla

Moreover, we denote by

H = {u € H>*(R?) : E(u) is finite}.
We will discuss the properties of 72#(R2) and H>*(R?) in Sect. 2.

Definition 1.4 Letu € H%A(Rz). We say that u is a weak solution of (P), if it satisfies (8) in
a weak sense, namely there holds the following equality

h2(|x])
Vu-Vuvdx + 5 uvdx
R2 R? |xX]

400
+/ </ wuz(s) ds) uvdx = / |ul”~ v dx, ©
R2 x| s R2

for all v in H'(R?).
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Finally we give the definition of classical solution.

Definition 1.5 A classical solution of (P) is a radial function u € C%(R?) such that

hZ(x])

Uu(x) = { IxI*
0

ifx #0,
if x =0,

and

are well defined and continuous in R?, u satisfies (8) pointwise and goes to 0 as x goes to co.

In Proposition 3.9, we will show that Definitions 1.4 and 1.5 coincide when the energy
of the solution is finite, namely every u € H is weak solution of (P) if and only if u is a
classical solution of (P).

In the Appendix 1, we will study sufficient integrability conditions on u for U, and V,, to
be well defined on R?.

We can state now our first result, which guarantees the existence of a static finite energy
solution of system (CSS), satisfying (2) and (4).

Theorem 1.6 For any p > 3, there exists u € 'H classical positive solution of (P).

As a consequence the quadruplet (¢, Ao, A1, A2) defined as in (2) for o = 0 is in
C2(R?)x (C1(R?))3 and it is a static positive energy solution of (CSS) satisfying the following
weak formulation of the large-distance fall-off requirement

lim  Ag(x) =0, A€ L®R?), A;eL™R.
|x|—4o00

In the previous result, the positiveness of the energy is a consequence of Nehari and
Pohozaev identities (see Proposition 4.3). We underline that the failure to use variational
methods to find solutions causes non-trivial difficulties in deducing these identities. In par-
ticular, the fundamental Nehari and Pohozaev identities are not immediately available by
means of direct computations based on standard arguments as in [6], but they both require
quite tricky ad-hoc strategies.

These identities also play a key role in view of an analysis of the energy levels and in
particular in order to estimate the zero-point energy of our system. The crucial question of
establishing whether a ground state (at least limiting to static waves satisfying our ansatz)
exists, translates into a minimum problem consisting in minimizing the functional of the
energy in the set of solutions in H. Observe that, since by Theorem 1.6 the set

S = {u € H\{0} : u is a classical solution of (P)} (10)

is not empty, and by positiveness of energy the set {E(u) : u € S} is bounded below, the
minimizing problem makes sense.
Actually, we will prove that the infimum is attained.

Theorem 1.7 For any p > 3, there exists a non-trivial radial ground state, namely there
exists u € S such that

E(i) = inf Eu).
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As for the energy, the estimate of the total charge of our static wave presents analogous
difficulties due to the particular zero mass structure of Eq. (8). In addition to evident problems
related with the possibility that the total charge may be infinite, by (2) this fact is reflected
in (FO) which is, in general, hard to verify. However, a priori considerations, based on a
comparison argument, lead to the following (quite surprising) result

Theorem 1.8 Assume that p > 9 and let u be the solution found in Theorem 1.6. Then u has
finite total charge (that is u is in L*>(R?)) and the corresponding quadruplet (¢, Ao, A1, Az)
is a positive energy static solution of (CSS) satisfying (FO).

This paper is organized as follows.

In Sect. 2, we present the functional framework introducing some useful properties of the
spaces H24(R2) and H%A(Rz).

Section 3 is devoted to the most of the proof of Theorem 1.6 (positive energy of our static
solution is a consequence of Proposition 4.3 in Sect. 4). Following [1,2], as first step, roughly
speaking we add a positive mass to the functional E; more precisely, for any ¢ > 0, we
consider the following perturbed functional

: 2,2

1 2 2 1 u p+l
le(u) = E”VMHZ + 2||M||2 +t5 /1-&2 2 dx

p+1’

1

- fle]
p+1
defined in Hrl (R?), By [6], it is easy to see that there exists a critical point u, of I, for any
& > 0. The second step consists in studying the behaviour of the family {u,}c~0, as € N\ 0.
By concentration-compactness arguments, we show that, up to a subsequence, there exists
ug € H such that the family converges weakly to such ug in H%A(RQ), as € \( 0. This will
be enough to prove that, actually, u( is the desired solution.

In Sect. 4, we perform a deep analysis of the properties related with the energy of our
static wave, and prove Theorem 1.7. An interesting consequence of this study and the result
in [6] is the existence of a continuum of positive energy non-static standing waves stated
in the Corollary 4.4. Moreover, the existence of a ground state will be obtained, again by a
concentration-compactness argument, by means of Nehari and Pohozaev identities holding
for (P).

Finally, in Sect. 5 we show that, when p > 9, our static wave has finite total charge and
Theorem 1.8 holds. The proof is based on a contradiction argument and a precise estimate
of the decay at infinity of the solution will play a crucial role.

We conclude this introduction fixing some notations. For any T > 1, we denote by L (R?)
the usual Lebesgue spaces equipped by the standard norm || - ||;. In our estimates, we will
frequently denote by C > 0, ¢ > 0 fixed constants, that may change from line to line, but are
always independent of the variable under consideration. Moreover, for any R > 0, we denote
by Bg the ball of R? centred in the origin with radius R. Finally the letters x, y indicate
two-dimensional variables and r, s denote one-dimensional variables.

2 Functional framework

In this section we introduce the functional framework presenting some useful properties of
the spaces H24(R2) and H>*(R?).

The following inequality will play an essential role in our arguments. It is essentially
already contained in [6], where it is proved for H,1 (R?) functions (see [6, Proposition 2.4]),
but actually it holds also in H%A(Rz). The proof is based on the same density argument used
in [6] after having showed its validity in Cgo (]Rz) and therefore we omit it.

@ Springer
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Proposition 2.1 Forany u € H3‘4(R2), the following inequality holds:

4 h2u2 %
el < 41Vl (fR - dx) . an

Remark 2.2 'We observe that the right hand side in inequality (11) could be also infinity, while
it is surely finite if u € Hf’4(R2) with finite energy.

Proposition 2.3 (H24(R?), || - ll2,4) is a reflexive Banach space.

Proof To prove that the normed space is reflexive it is sufficient to observe that || - [|2,4 is
equivalentto ||+ ||« =/ ||V - |I§ + 1 - ||42t and (H>*(R?), ||-||+) is an uniformly convex normed
space.

Now we prove it is complete. Let {u,}, be a Cauchy sequence in HZ*(R?). Then {uy}n
is a Cauchy sequence in L*(R?) and {Vu,}, is a Cauchy sequence in L2(R?). Since L*(R?)
is complete, there exists u € L*(R?) such that lim, u, = u in L*(R?). Since L*(R?) is
complete, then there exists U € L2(R?) such that lim,, Vi, = U in L2(R?). We want to
prove that Vu = U in the distributions sense, i.e. that for every ¢ € C3° (R?)

/ quodx:—/ oUdx.
R2 R2

Obviously, for every ¢ € C3° (R?) and for every n € N

/ uanodx:—/ oVu, dx.
R2 R2

So it is sufficient to prove that
lim/ u,Vodx = / uVedx and lim/ oVu,dx = / oUdx.
n R2 RrR2 n R2 R2
Indeed, since lim,, u, = u in L*(R?), then

< IV0lls luy = ulls > 0,

/ (up —u)Vodx
R2
while, since lim,, Vu,, = U in LZ(R?) then

< llel2lVup = Ullz — 0.

/Rz ¢o(Vu, —U)dx

Proposition 2.4 The space H>*(R?) corresponds to the set
WHHR?) := {u € L*(R?) : Vu € L*(R?)).
Moreover, if we define
W,2’4(]R2) ={ue W2’4(]R2) s u is radially symmetric},

then H>*(R?) = WH*(R?).
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Proof We have just to show that the functions in W>#(R?) can be approximate in the norm
I - l2,4 by functions in the same space, with compact support. The rest of the proof proceeds
following standard arguments (see [20, Theorem 7.6]).

Indeed, consider u € W24(R?) and let k : RZ — [0, 1] be a cut off smooth function such
that k = 1in [x] < 1 and k = Oin |x| > 2. For any M > 0, define vyy = kpu, where
ky(x) =k(x/M), andset Ay = {x € R?: M < |x| < 2M). Certainly vy has a compact
support and it is in L*(R?).

Moreover, since Vvy = kpyVu + uVkyy, of course Vuy € LZ(RZ). We easily have that

4 4
||u—vM||4</ ul* dx = o (1),
5,

where o) (1) denotes a vanishing function as M — +o0.

Moreover
(o
||Vu—VvM||§<C/ |Vu|2dx+—2/ u® dx
lx|>M M= Jay

C 2 1

<om(1) + W||”||4|AM|2
C 2
<oy(l —ull3,
m(1) + M“ I3

and then we conclude. ]

In the following proposition we study the embedding’s properties of H>*(RR?).

Proposition 2.5 The space H>*(R?) is continuously embedded into L9 (R?), for any q €
[4, 4-00).

Proof Going back the proof of the Sobolev inequality, if u € C§° (R?), one has

1
2

ou du |2
llull2 < il el 12)
Xt | 9x2 |
See [5, (19), P.280]. Let m > 2. Applying (12) to |u|™'u, we get
1
du ||2 ou ||2
m <C m—1 7" m—1 7" < C|V m—1 )
lluell,, Jue] o |, Jue] ol IVall2llulyg, -1y
By the Young inequality, it follows that
llullom < CUVullz + llull2gn-1))- 13)

In (13), we first choose 2(m — 1) = 4, that is, m = 3. Thus from (13), we obtain
llulle < CUIVullz + llulla) = Cllull2,4.

Iterating this procedure with m = 3+ j for j € N, and applying the interpolation inequality,
one gets

lully < Cllull2,4 forallu C(‘)’O(Rz) and g € [4, +00).
This completes the proof by a density argument.

[m}
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Remark 2.6 1t is easy to see that HIOC (]RZ) = loc (RZ) and so HIOC (Rz) is compactly
embedded into quc (R?), for any g € [1, +00).

We now introduce a new Strauss Radial Lemma (see [30]) in Hf’4(]R2).

Proposition 2.7 For any t € (O, 4) there exists C; > 0 and Ry > 0 such that, for all
ue H%A(Rz), we have

llzell2,4
|x|*

lu(x)| < Cr

. Jor|x| = Ry

Proof Letk € (0 ) and consider u a radial function in C0 (Rz). For any r > 0, we have
that

’%(rkuz(r))‘ <k NP )+ 2K u ) 1 ()

Skt + 2R ) e ()

Now, fix r > 1 and integrate — -~ ( k uz(s)) in the interval [r, +00). We have
400 +00 Yu 2
rkuz(r) < k/ ski%s%uz(s) ds +/ szk*gs%uz(s) ds + IVulls
r r 27T
1
k ‘/*m %3 )f 2, |1 T s IVul3
< —/ s70ds ) lullys + — / 577 ds || I+ —===
V2w ( r 4 V2 \Jr N 2n
_ _ IVuell3
<CO Dl + =2 < Cllullz,
The conclusion follows easily by density arguments. O

The following compact embedding result holds.

Proposition 2.8 The space H%A(Rz) is compactly embedded into L1(R?), for any q €
(4, +00).

Proof Taking into account Propositions 2.5 and 2.7 the proof follows the same arguments as
in [30, Compactness Lemma 2]. O

3 Existence of a static solution

First, we will study the following perturbed equation adding a positive small mass term to
(P). More precisely, for any € > 0 we consider

h2(|x) oy, hu(s) 2 1 2
—Au+eu+ | & / (s)ds)u—|u|” in R*,
< |x|? Ix] s (Pe)
u(x) — 0, as x| — +oo0.

Solutions of (P;) can be found as critical points of the functional

1 5 & 5 L h2u? 1 41
I(u) = = ||V - - U dx — —— ||ull?
o (1) 2”“b+ﬂMb+zézmzx pe CAVE
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which is well defined in classical Sobolev space
Hrl (Rz) ={ueH 1(IRZ) : u is radially symmetric}.
Following [6], we define a Pohozaev-Nehari type manifold
M == {u € H' (R>\{0} : Je(u) = 0},
where

(p+Da—2 14
- 1177
p+1 P

2 2 hbzluz
Je(u) = o|Vul|5 + e(a@ — Dlull; + Ga —2) 5 dx
r2 |x|

and we have fixed o > 1 and such that ﬁ <a< ﬁ for p € (3,5) and @ > 1 arbitrary,
for p > 5.
We have the following

Proposition 3.1 ([6]) For any ¢ > 0, there exists u, € Hr1 (R?) which is a positive solution
of (Pe) and such that

I (uy) = ug/lé( I.(u) =:m; > 0.

Moreover these minimum’s levels are uniformly bounded by positive constants both from
above and from below. Indeed we have

Proposition 3.2 There exists C > 0 such that for any ¢ € (0, 1) we have C < my < mj.

Proof 1In the following, for every w € H,.l (R?), we set

2 2 hyw?
atw) = 1Vwl, b= i, )= [ "2

Consider u € M and for any ¢+ > 0 assume the following notation u; := t“u(z¢-), where
« is chosen as in the definition of J.. If we denote by 7, > 0 the unique value for which
Je(uy,) = 0 (see [6]), by simple computations we see that 7, < 1 for ¢ € (0, 1). Now, we
have that

me < Ie(utg)

. 1 o )
2T na—2)M
1 w—1 1 30 —2

e <5 RTETE 2) bl + <5 RTETE 2) ol

= (1 - L) 12 a(u)
2 (p+Da-2

T_o_e=1 ) pe I 3e=2 ) 6
+e (3 G 20+ (3 G ) e
(1 5 )
<(5-———)aw

2 (p+Da-2

+ 1 ai_l b()—l—l & (1)
8<2_(p+1)a—2> ! (2_(p+1)a_2)”‘
= I,(u).

Passing to the infimum, we have m, < m.
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Now suppose by contradiction that, for a suitable ¢, — 0, it results that m,, — 0. For
any n € N, letu,, € M,, such that I, (u,) = mg,. Then we have that

a(u,) — 0 and c(uy) — 0. (14)

Since u, € My, , by Proposition 2.5 we have that, for suitable positive constants C| and C3,
1

auy) + c(uy) < Cillun|747 < Callun 155 (15)

On the other hand, by (11) and taking into account that a(u,) — 0, for a suitable constant
C > 0, we obtain

linll2g = @@)? + lnlls < @G0 * + (alen) + 8e(un))?
< 2(alun) + 8c(un) ¥ < C(alun) + clun) . (16)
Inequalities (15) and (16) contradict (14). O
As an immediate consequence of Proposition 3.2, we have
Proposition 3.3 The family {u;}s~0 is bounded in H>*(R?).

In the following we fix a decreasing sequence {g,},, which tends to zero as n — +o0.
We define

P 1 (1408 o 048 @-1D
T2 pra—2) T P+ ha-2
I (148G« —2)) 8
az = — ), a4y = ——,
2 (p+ Da —
observing that, for § > 0 small enough and
2 46 +2 .
o€ , , if3<p<5S
p—1—-28 54+65—p
o > 1’ lfp > 5,

a; >0foranyi =1,...,4.
For any n > 1 define u, := u,,, where u,, is as in Proposition 3.1,

h2 u?
v () ::a1/ |Vu,|> dx —i—a'z’f u%dx+a3/ u”zndx+a4/ p+ldx
Q Q x| Q

for any measurable Q2 C R2, and

h2 2
G,(u) = alf |Vu|2dx+a§l/ uzdx+a3/ dx+a4/ lu|P*! dx
R2 R2 R |x|? R?

for any u € H}(R?). Of course v,(R?) = G, (un) = I, p) = my, = infyen,, I, ().
By Proposition 3.2, we assume that, up to a subsequence,
lim v, (R?) = limm,, = m > 0. (17)
n n
By [21,22] there are three possibilities:

1. concentration: there exists a sequence {£,}, in R? with the following property: for any
€ > 0, there exists r = r(e¢) > 0 such that

Ve (Br(&n)) 2 ¢ —¢€;
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2. vanishing: for all r > 0 we have that

lim sup v, (B, (§)) = 0;
" geR?

3. dichotomy: there exist two sequences of positive measures {v!}, and {v?2},, a positively
diverging sequence of numbers {R,},, and m € (0, m) such that

Ogv;—l—vfgvn, v,],(]Rz)—>n~1, v,%(]Rz)—>m—n~1
Supp v,l C Bg,, Supp v,% C Big, -
Proposition 3.4 Concentration holds and, moreover, the sequence {§,}, is bounded.

We preliminary prove the following two lemmas.

Lemma 3.5 Vanishing does not hold.

Proof 1If vanishing held, then we would have that

lim sup / ul ™ =o.
" geR2JB(§)

Since p > 3, we have also that

lim sup / ui =0.
n é‘ERz Br(é&)

Therefore, since by Proposition 3.3, the sequence {u,}, is bounded in HZA(R2), by [22,
Lemma I.1], we deduce that u,, — 0in LPT1(R?), asn — 400, and so, being Jg, (u,) =0,
also mg, — 0, contradicting Proposition 3.2. O

Lemma 3.6 Dichotomy does not hold.

Proof As usual, we perform a proof by contradiction assuming that, on the contrary,
dichotomy holds.

Define p, € Cj(R?, [0, 1]) radial such that, forany n > 1, p, = 1in B, p = 0in B
and sup, <2 |Vop(x)] < R%. Moreover set v, = ppu, and w, = (1 — p,)u,, observing that
VUp, Wy, € Hrl(]Rz).

Now we proceed by steps.

1st step: we prove that, defined 2, = {x € R2: R, < |x| < 2R,}, we have

h2 ZZ
a1/ |Vz,,|2dx+a§/ z,%dx+a3/ %dx+a4/ zf,7+ldx—>0, (18)
x

for z, equal to u,, v, and w,.
Indeed observe that

Vp (82,) = m — v, (Bg,) — Vn(BSRn) +on(1)
<m— V;(BR,,) - V,ZZ(BSRH) +on(1) = 0x(1)

and then we deduce (18) for u,,.
By simple computations

h2 v?
1
a1/ |Vv,,|2dx+a£’/ v,%dx +a3/ U”anx+a4/ oI dx
Qy 2 n |X| Qp
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4 h? u?
< 2a; / <|V”n|2 + ﬁuz) dx —}—ag/ u,zl dx +a3/ |u;|2n dx +a4/ u5+1 dx
n n n n n

8aj 2
<— (f 1dx) lunllF + 0a(1)
Ry \Jixi<2r,

_ 16a;/7
" R

n

lunll3 + 0n(1) = 04(1)

and then we have proved (18) also for v,,. The proof for w, is analogous.
2nd step: liminf,, G, (v,) = m.
Observe, indeed, that since A, = h,, in Bg,, we have
Gu(vn) = vn(Bg,) = vy(Bg,) — i, (19)
Now, observe that, by the first step and considering that v, > v?l,

m = liign vy (R?) = li,,m(v”(BRﬂ) + v,,(Ban))

> liminf G, (v,) + lim v2(BSp ).
n n n

Since lim,, v2(R?) = m — /i and Supp v> C By, we conclude that
liminf G, (v,) = m.
n
3rd step: conclusion.

First of all observe that, since u,, = v, + w, and both v, and w, are nonnegative, then
by the first step

Gn(un) 2 Gp(vy) + Gu(wy) + op(1). (20)
Observe that, by step 1,
0= an(un) > an(vn)+Js,z(wn)+0n(l)~ 21

For any n € N, let t,, s, > 0 be the numbers, respectively, such that (v,);, € M, and
(wp)s, € Me,.

There are three possibilities.

Case I: up to a subsequence, Jg, (v,) < 0.

By simple computations we see that 7, < 1 and then we have

me, < Ig, (Vp)r,) = Gu((Vn)y,) < Gp(vy)
which, for a large n > 1, leads to a contradiction due to the fact that, by (17) and step 2,
limmg, =m > m = liminf G, (vy).
n n

Case 2: up to a subsequence, J;, (w,) < 0.
Then, proceeding as in the first case, by (19) and using (20), we have, for n sufficiently
large,

me, < 18,, ((wn)tn) = Gn((wn)tn) < Gn(wn) < Gn(un)v
which, by (17), implies m = lim,, G, (wy). Then, passing to the limit in (20), we have

m > m + liminf G, (vy,)
n
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which contradicts the result obtained in step 2.
Case 3: there exists ng > 1 such that for all n > ng both Jg, (v,) > 0 and Jg, (w,) > 0.
Then liminf, #, > 1 and, by (21), we also have that J,, (v,) = 0,(1).
If liminf, t, = 1, we can repeat the computations performed in the first case and get the
contradiction. If liminf, ¢z, > 1, from

oy (1) = an (vp) — Js,, ((Un)tn)

(p+Da—2
In

1 2 1 2
=« 1—m VU ll5 + en(a — 1) 1—W lvall5
tn tn

3 2|1 ! h%nv,%d
+ Ba —2) _t,(,p_s)aH A@Z Np X

Vunll2 — 0,
enllvnllz — 0,

hZ v2(x
/ 1,0 () )dx—>0
Rz |x|?

we deduce that

and, as a consequence, also [|v,|l,+1 — 0 by Propositions 2.1 and 2.5 . Of course, we get a
contradiction since lim inf, G, (v,) > 0 by step 2. O

Proof of Proposition 3.4 By the previous two lemmas we conclude that concentration holds.
Moreover, the symmetry property of the functions u,, guarantees the boundedness of {&,},.
O

The next two propositions provide fundamental integrability properties related to the
nonlocal terms.

Proposition 3.7 There exists uy € H%A(Rz) such that, up to a subsequence, u,—uq in
H2*(R?) and moreover

(i) h"o c LOO(RZ);

x|

(i) "0y € L2R?), and

x|

h h
Yo — Ly in LA(R?); (22)
x| x|

h2
(iii) ~Sug € L*(R?);

[x]

+00

(iv) Vi (x) = / ) 2
|

x|

(s)ds is well defined and continuous in R2.

Proof The existence of ug € H>*(R?) is guaranteed by the fact that, since {G,, (u,)}, is
bounded, {u,}, is bounded in H%A(Rz) and then it possesses a weakly convergent subse-
quence by Proposition 2.3.

We can assume that such a sequence, relabelled {u,},, is such that

U, — Ug a.e. in R? (and then u( is radial and nonnegative)
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u, — uoin L9(B), forall B C R? bounded and qg=>1

To prove (i), observe that, for any u € L*(R?) and for any x € R?\{0}, we have that

1 1

h 1 1 ’ ’
W) _ Ly < / dy f utdy) < Cllull.
[x]| 47 |x| Biy| 47 |x| By Bix|

Therefore, since ug € L*(R2) and {u,}, is bounded in L*(R?%), we have

h h
| ‘“lJ € L*([R? and { IUT } is bounded in L°(R?). (23)
X n
We prove (ii). First of all we show that, for all B C R? bounded, we have
B ity — h 2
/ <7“””” ”””°> dx — 0. 24)
B x|
Indeed, since u, — ug in LZ(B) for every B C R? bounded, we have that
B, (x) = hy(x) forall x € R2, (25)

By (23), (25) and the dominated convergence theorem we obtain

hu — huy \?
/ <M> u% dx — 0.
B | x|
Hence we deduce that

_ 2 h2 _ 2
/ (7%" tn huouo) dx <2 / 2 uo)2 dx + / <7hu" hu°> u% dx
B |x| B x| B |x]

< My /1 lltn = w032 ) + 0n (1)

and we obtain (24).
By contradiction, suppose now that ”0 [ Uo ¢ L?(R?). Then, for every M > 0, there exists

R > 0 such that
h2 u?
/ 0 0dx > M.
Br x|

In particular, there exists R, > 0 such that

h2 u?
/ W 00y >m+ 1 (26)
Bg,,

n Jpg, X

which leads to a contradiction comparing with (17).
Let us now prove that (22) holds.
By Proposition 3.4, we know that for any § > 0 there exists Rs > 0 such that uniformly

forn > 1
2 u?
/ " B ogx < 8. 7
R

x|
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Of course we can assume Rj large enough to have also

h2 ”0
dx (28)

|x|?

Then, by (24), we have

/ (hunun _huo’/‘0>2 dx S/ <hunuﬂ _hu0u0>2 dx
. K b K
h2 u? h2 u?
+2 / Up 2n dx—l—/ u020 dx
By, 1] B, Xl

<on(l) +26

and we conclude.
The proof of (iii), follows immediately by (i) and (ii).
Finally we prove (iv) showing that

00 o (s) 1 h
Vi (0) = 40272 12 (s) ds Y 24y € R, 29
o (0) /0 B 0(s) =5 |x|2”° x € (29)

which implies also the continuity of V,,,. Observe that € L'(By). Indeed, we have

2
”(2) 6 3 1 ’
dx < ugdx T dx < +4o00.
B |xl By Bi |x|2

This, together with (i), implies that

h h u
/ Sujdx < |22 |2 < +oo. (30)
5 x| 1 oo | 121,
L1(By)

Observe, moreover, that ";—Ol S L2(B]"). Indeed, we have

1

2 2

uy 4 1
/ —zdxé f uydx / —4dx < 4o00.
B¢ x| ¢ B¢ x|

This, together with (ii), implies that

=

h h
/ “ 3 dx < |7 = < 400, (31)
B |x] x| L2(BY) x| L2(BY)
Now (29) is a direct consequence of (30) and (31). O

Proposition 3.8 Forevery v € L*>(R?) we have

h2
()/ x |2“"de / P |2uovdx

(ii) | "ﬁu% (/ upvdy | € L (RZ) and
B

h h
/ u"zu% (/ unvdy> dx — / “Sugp ul (/ uovdy) dx,
R2 | x| By |x| By
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+oo u()(s) 2 2 2
(iii) (/ . (s)ds) ug € L-(R*) and
x|

+00 h h
271/ f MO(S) %(s)ds uovdx—/ 1o u(z) / upvdy | dx.
r2 \Jjx| s R |x|? By,

Proof Letv € LZ(R?).

By (iii) of Proposition 3.7 we deduce that "0 Juov € L 1(R%). Moreover, we prove easily
(1) if we show that

h2 2

|x|2 eﬁuo in L>(R?). (32)

Indeed, let B a bounded domain in R2, then by (23), (25) and the dominated convergence

theorem, we get
2
h2 — k2
/ u"izuo u(z) dx — 0.
B |x|
2 2

2 2
h2 u, —h%u ht hs —h
/ S o °) ax<2 /—”g(un—uo)zdwr/ — ud dx
B |x] B Ixl B | x|

< My /X llun = w0l 72 ) + 0n (D)

Hence we deduce that

Moreover, by (23), (27) and (28), we have that, for any § > 0 there exists Rs > 0 such that,

uniformly forn > 1,
ht u? h
/ n ndx-l—/ 10 dx < 6.
o o, Wl

Therefore

and we conclude the proof of (32).
Now we prove (ii). Observe that

hug o /
u upvdy
/Rz 270\ Jg,,

For R > 0, we have

3
(hug)? ug
WZdx < C (/12112 f dx
By 1127 O Ty 12

(huy)?

|x|?

dx < C ud dx |[v])a.
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1
3 1 2
<cwmmwwmﬁ</A—d0 < 400
B 1XI

while, taking into account the inequality a% < 1 + a? that holds true for any a > 0,

3

Ny u? h2

( uo; uédxé/ —Ozdx—l—/ 2 2 dx
s Il 5 | x|

5 1 % h2
<huolf ([ de +/‘ 2 dx < +oo
g, ] x|

due to (ii) of Proposition 3.7. We deduce, therefore, that ”lg uj ( f By, WOV d y) e L' (R?).
Moreover, observe that, for any R > 0,

R, o / Ry, 2 /
U upvdy | dx — ugvdy
/Rz 2\ " lx |2 Byy|
h
gf |M,% —u%| u'lz / uylvldy |dx +/ 14(2)
Bk ™\ Bg
2 hug
+ Upr—m lun — uollvldy |dx
Bg |x| BM
h’l 2 / huo 2
+/ U up|vldy dx—l—/ u
® |x|2 n( Bx| " B¢, |X|2 0

R

dx

By — hug
|x|?

(/ unlvldy>dx
By

=B, + B} + B, + B, + B°.

Now, B,{ — 0 by compact embedding in bounded domain and a proper application of Holder
inequality, whereas B,% and Bs go to zero by dominated convergence, again using properly
the Holder inequality (the scheme of the proof is similar to that used to obtain (22)).

As to B;f , observe that by Proposition 3.4, for § > 0 we can take R > 0 such that

h, 4 1 2
2 and  supllugl} [ —dx <5 (33)
BS |x |2 n BS x|

uniformly for n > 1. Since for every a > 0 we know that a3 < 1+ a2, by Holder and (33),

h
Bﬁ:/ ""zu,% / uylvldy |dx
B;{ |X| By
3
h, )2
<ol [ Y2 ac |l
B x|

1
<Cﬂwﬁ</
B¢

1 2 h2
Un
|x|4dx> +/ B |2undx lvll2 < 28|v]l2-
R

Finally we prove that, for R large enough, B is less then § arguing as for B and taking into
account that ”Ig ud (IBM u0|v|dy) e LY(R?).
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As to (iii), observe that we only have to prove that we can apply Fubini-Tonelli Theorem

to the function f : R2 x R? — R, where for almost every (x,y) € R? x ]Rz,
1
[ y) = meqx‘huo(x)u%(x)uo(y)v(y>.

Itis easy to see that f is measurable in R* endowed with the product measure of R?-Lebesgue
measures.
Moreover, denoted by g(x) := fRZ f(x,y)dyand by g(x) := fRZ | f(x,y)|dy we have

ha
[Lawar= [ ("2 [ wmioidy)dr <o
R2 R2 x| Byy|

by (ii). Then, by Fubini-Tonelli Theorem, for almost every y € R? there exists k(y) :=
fRQ f(x,y)dx. Moreover k(y) € L! (]Rz) and

fk(y)dy=/ () dx.
RZ RZ

It is easy to check that this corresponds exactly to what we claimed in (iii). O

Now we can prove Theorem 1.6, except the positivity of the energy of the solution, which
will be a direct consequence of Proposition 4.3.

Proof of Theorem 1.6 By Proposition 3.1, for any n € N, there exists u, € H!(R?) such that
up > 0and I (u,) = 0in H~!. Hence, forevery v € H'(R?), we have that I;, (un)[v] =0,
namely

hZ
/ Vun~Vvdx+8,,/unvdx+/ "'éunvdx
R? R2 | x|

1 hu, » / /‘ »
— . dy | dx = dx.
+2n - |x|2u”( 5 upvdy | dx - upvdx

By Proposition 3.7 there exists ug € H%A(Rz) such that, up to a subsequence, u,, —ug in
H24(R2). Moreover, by Proposition 3.4 we know that u¢ is nontrivial.

It is immediate that ug > 0. Moreover fRZ Vu, - Vvdx — fRZ Vug - Vvdx and, by
boundedness of ,/&,u, in L2(R?), we also deduce that

sn/unvdx < Vol amunlallvllz — 0.

By compact embedding of Hf’4(]R2) into L7 (R?) for q > 4 (see Proposition 2.8), we also

P pio 2o
have u;, — u; in L » (R<) and then

ubvdx — ugv dx
R2 R2

By Proposition 3.8, we conclude that (9) holds, namely uq is a weak solution of (P). By
(i) and (iv) of Proposition 3.7 and by [9, Theorem 8.8] we infer that uo € WI%’CZ (R?) and so
ugp € C(R?). Observing that the conclusions of [6, Proposition 2.1] hold for ug, by bootstraps
arguments, following again [9], we conclude that ug € C 2 (R?) and ug > 0 by the maximum
principle.

2
< g — ugll g1 [0l p+1 — .
p
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Keeping in mind that Ay € L% (R?) by Proposition 3.7, we can show that A; € CL(R?Y),
for i = 0,1, 2, arguing as in [6, Proposition 2.1]. Finally the potentials verify the weak
formulation of the large-distance fall-off requirement by (i) and (iv) in Proposition 3.7. 0O

We conclude this section showing that the definitions of weak solutions and classical
solutions coincide for finite energy functions. More precisely the following holds.

Proposition 3.9 Let u € H. Then u is weak solution of (P) if and only if u is a classical
solution of (P).

Proof Observing that all the integrability conditions of Propositions 3.7 and 3.8 hold for
functions belonging to 7, then, arguing as in the last part of proof of Theorem 1.6, we
conclude. O

4 Energy of static solutions

We now prove that any weak solution with finite energy in the sense of Definition 1.4 satisfies
a Nehari type identity. We would like to remark that this fact cannot be deduced as a trivial
consequence of (9) since, in general, we do not know if a weak solution is in H'(R?).
Moreover, while, in general, the Nehari identity is given by E’(u)[u] = 0, in our case, not
only the weak solution is not found as a critical point of the functional but also the functional
could be not well defined on the weak solution.

Proposition 4.1 Let u € H be a weak solution of (P), then it satisfies the following Nehari

type identity
2.2
u

dx = |lu] V7). (34)

nvm@+3/

r2 |x|?

Proof Forany n € N, let ¢, : R> — R, where
1 if |x| < n,

(o) = | 21

if n < |x| < 2n,
0 if |x| > 2n.

Being y,u € H! (]Rz), for any n € N, we have that

h3u2 400 hu(S) ) 5
/ Vu - V(u)dx —I—/ Wniz dx —I—/ / —u“(s) ds) Yau”dx
R2 Rz x| R \Jx| s

=/ Ynlu|P T dx.
RrR2

Observe that, being u € H>"*(R2),

(35)

‘/ Vu-V(\//nu)dx—/ [Vul? dx
R2 R2
</ IVulzlwn—llder/ [Vullul|Vi,|dx
R2 R2

1 1 1
g/ |Vu|2dx+</ |Vu|2dx>2</ |u|4dx)4(/ |V1p,,|4dx>4
BS B¢ B¢ An

= 0,(1),
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where A, := B, \B,.
Analogously, being u with finite energy and u € LP*!(R?), we have easily that

h2 2 h2u2
’/ Y _fz i 4X| = onD: G0
‘/IRQ Unlu|PH dx — /Rz lulPTldx| = 0,(1). (37)

Finally observe that, due to the fact that u has finite energy, arguing as in Proposition 3.8, we
have that

oo p, 1 hyu?
/ <f ﬂuz(s)ds) wnu dx = — u2 w,,uzdy dx.
R2 x| Ky 27 R2 |X | BM

Therefore, using again the fact that u has finite energy, we have

+00 h h2 2

/ (/ ﬂu%ﬂ ds) Ynu® dx —2/ "uz dx’
R2 \J|x| s R2 |x]

1 h 2 h2 2
= 7/ ut Ynuldy dx—Z/ gy

27 Jre 1x12 \Js, R |x|?
1 hyu® 1 hu?
—/ ut wnuzdy dx——/ ut / uzdy dx
2 Jre 112 \ g, 27 Jre 152\,

5 (38)
1 h
= — | ™ / (1 — y)udy | dx
21 Juwe 6 \Us,,
1 hyu?
_ e / (1 — y)udy | dx
27 BS |-x| By
h2 2
< 2/ dx = 0,(1).
B x|
Now the conclusion follows by (35) together with (36), (37), and (38). O

We now prove that each classical solution of (P) with finite energy satisfies a Pohozaev
type identity. We point out that even if a similar identity is present also in [6], we have to
provide a different proof since their arguments need the essential information that the solution
belongs to L?(IR?). Hence a new and different strategy is necessary.

Proposition 4.2 Let u € 'H be a classical solution of (P), then u satisfies the following
Pohozaev type identity

h2u? 1
— p+l
/RZ |;|2 dx_p+1||u||p+1. 39)

Proof Let u € H be a classical solution of (P) and fix R > 0. Multiplying by Vu - x and
integrating by parts on Bg we have

h2 +oo
—/ Au(Vu-x)dx—l—/ : / (/ —uuz(s)ds) u(Vu - x)dx
Bgr Bgr | | Br |x] s
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:/ lul” " u(Vu - x)dx.
Br

(40)
Arguing as in [6], we infer that
/ Au(Vu - x)dx = og(1), 41)
Br
/ ul?" u(Vu - x)dx = — 2 Il 221 + or(1), (42)
BR p+1 +1

where og (1) denotes a vanishing function as R — +o0.

Observe that we cannot repeat the arguments of [6] to study also the remaining terms,
because in their arguments it is essential the fact that u belongs to L?(RR?). Therefore, we use
another approach which seems, actually, less involved than that of [6]. Integrating by parts,

we have
2 400
/ hu2 . / (/ hu(s) 2(s)ds> u(Vi - x) dx
B 1XI Br \Jix| s
R R +00
=27T/ hiuu’dr—i—Zﬂ/ (/ hu(s) 2(s)ds) uu'r? dr
0 0 r S
R
=nh§(R)u2(R)—n/ haur dr (43)
0
< (S) u2 ) 2 k 4
+ 7 / (s)ds | u (R)R +7'r/ hyu”rdr
R 0

+0o0
_271/ (/ I (S) 2(s)ds)u rdr.
0 r s

Being u with finite energy, as observed in [3], we have

hZ
liminfR/ XD 2 40 =
R—+oo  Jop, |x|?

and so, by radial symmetry,
liminf /2 (R)u*(R) = 0.
R—+o00

Using again the fact that u# has finite energy, by Fubini-Tonelli Theorem we deduce that
<f+°° ha) 2 (5 ds)u is in L1(R?), since

+00 2
/ <f wuz(s)ds) urdx = 2[ i (|)§|) u*dx.
R2 \J|x| s R2 |X]

Hence, arguing as before, we have

+
lim inf (/ u () u’(s )ds)u (R)R* =
R

R—+o00
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Finally, another immediate consequence of the fact that ( ‘+|oo h “‘(s) 2(s)d s) u?isin L1 (R?),

we have that

R +o00 +00
271/ (/ i s(g) 2(s)a’s)u rdr_/ </ il S(s) 2(s )ds> u® dx
0 r Bg [x]
+00
:/ (/ i (S) 2(s)ds)u dx +og(1)
R2 |x] S

h2
:2/ XD 2y o).
Rz |x[?

By this, considering a suitable diverging sequence {R,},, we conclude taking into account
(40), (41), (42), and (43). O

Recalling the definition of S given in (10), observe that, by (34) and (39), any u € S
satisfies
_(p+Da -
p+1

o[ Vull3 + (B — 2)/ X |2 || IIP 1—0 (44)

2

where we have fixed @ > 1 and such that %] <@ <5,
18

=, for p € (3,5) and o > 1
arbitrary, for p > 5. Moreover we have that the functional E 1s

well defined in S.

Proposition 4.3 Every static finite energy solution of the form (2) generated by u € S has
positive energy. Moreover we have that inf,cs E(u) > 0.

Proof By Theorem 1.6, we know that S is not empty.
Now, if we compute E on S, we have

i _(1_ « >V 2+<1_ 30 -2 )/ M e s
W2 orne—2) T T e 2 ) fe T

and then, by the choice of «, for any p > 3, we have that inf,cs E (1) > 0

Assume by contradiction that, for a suitable sequence {u,}, in S, we have E(u,) — 0,
then, by (11), we deduce also that u, — 0 in H>*(R?).

Using again (11), we have, moreover, that

h2 u?
4 2 Up"'n
< C [ IVunl? + d
ll2en |y <|| uyll5 /2 TE x)

and then, since u, satisfies (44), we have

+1
Vit l5 + lunlly < Cllunllh )

Therefore, taking into account that |lu,|24 — O and by the continuous embedding
HZ4(R?) — LPTL(R?), we have that, for any n € N large enough,

+1 +1
lunl3 4 < CUVURIIE + lunll]) < Cllun 157y < Cllunllyy
which contradicts the fact that u, — 0 in H>*(R?). O

As by-product of our results, we now prove the existence of positive energy non-static
solution of (CSS) satisfying the ansatz (2) with sufficiently small frequency.
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Corollary 4.4 There exists wg > 0 such that, for all w € (0, wy), there exists (¢, Ao, A1, A2),
a positive energy non-static solution of (CSS) satisfying the ansatz (2).

Proof Suppose by contradiction that that there exists a decreasing sequence {w,}, which
tends to zero as n — 400 and, for any n > 1, we define u, = u,,, where u,, is as in
Proposition 3.1 and with E(u,) < 0. By Proposition 3.3 we infer that {u,}, is bounded
in H2*(R?) and there exists ug € H the weak limit of {uy}n in HZA(R2). Arguing as in
the previous section we deduce that uq is a solution of () which has positive energy by
Proposition 4.3 and such that the conclusions of Proposition 3.7 hold. Then, by the weak
lower semicontinuity of the norm, by the compact embedding of H%A(Rz) into LPT1(R?)
and by (22), we have

0 < E(up) < liminf E(u,) <0
n

reaching a contradiction. O
Now we have all the tools to conclude the prove Theorem 1.7.

Proof of Theorem 1.7 Consider {u,}, a sequence in S such that E(u,) — inf,cs E(u). By
(45), the sequence is bounded in H%A(Rz) and then there exists i € H>*(R?) such that, up
to a subsequence, u, —i in H24(R2) and

up — it in LPYI(R?), (46)
u, — u in LY(B), forall B C R? bounded and q =1, 47
up, — i ae.in R>. (48)

Of course u € H3’4(R2).

Arguing as in Sect. 3, we can see that also the minimizing sequence {u,}, concentrates
in the sense of [21,22] and, arguing as in Propositions 3.7 and 3.8 , this implies that u is a
classical solution of (P) with finite energy and so it satisfies (44).

By (44) and (46), therefore, we have that

I,y (p+ Da —
. 2 u,Y4n 14 o
hy{n (oc||Vun||2+(3o{—2) /1;2 X2 dx) = Pt ||14n||p+1

(49)

_ (p+ Do —

p
R = vl + Ga -2 [ T2

2
Since fRZ l”"‘z" dx is bounded, we can assume that, up to a subsequence, it is convergent.
We prove that

h2i? h2 u?
/ “_dx < lim / I R dx. (50)
r2 |x|? n Jre |x)?
By (47) we have that u,, — u in LZ(B|X|), for all x € R2. This implies that
hy, (x) = hz(x), forall x € R%. (51)

By (48), (51) and Fatou Lemma, we prove our claim (50).
Using the weak lower semicontinuity property of the norms, inequality (50), and formula
(49), we obtain

B . haun o haa?
Ba —2) [ lim dx dx
n Jr2 o |xf? R |x[?
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hZ M2 hzb—lz
. 2 -2 . un'n it
gaOmnMHVWM—WVMb)+Ga—2)hm/1 dx—[ dx
n nJr2o|x|? r2 |x|?
2 u2
Un 1 g x —anvuﬁ-oa—z)/
|x|? R2

h h2i?
Y __dx =0.
|x|2

glhn<aHVuM64—Ga——2{/
n ]RZ

By (50) we deduce that
2 -2 2-2
u 471
lim tn gy = / “ _dx
n g |x|? r2 |x|?
and, again by (49), lim,, ||Vu,|l» = ||Vul2. Taking into account also (46), E(u,) — E(u)
and we conclude. ]

5 Static solutions with finite charge

In all this section we assume that p > 9 and we prove that, in this case, the solution found
in Theorem 1.6 belongs to L2(R?).

We fix a decreasing sequence {¢, },, which tends to zeroasn — +4ooand, foranyn > 1, we
define u, := u,,, where u,, is as in Proposition 3.1. By Proposition 3.3 we know that {u,},
is bounded and, up to a subsequence, weakly convergent in H>*(R?). Finally let ug € H be
the solution found in Theorem 1.6 as the weak limit of {u,}, in H>*(R?).

Proof of Theorem 1.8 'We need only to prove that ug € L*(R?): this and the Strauss radial
Lemma [30] imply that (¢, Ag, A1, A2) is a positive energy static solution of (CSS) satisfying
(FO).

By contradiction, assume that ug ¢ L2(R?). Then there exists R, > O such that

4 2
”uOHLZ(BR(,) =0 > 167~

Fix o’ € (1672, o). Since u,, — ugin L
there exists ng € N such that

2

Toc (IR?) up to a subsequence, we can assume that

o' < ””"”12(3&,) <o+1, foralln > ng. (52)

By Proposition 2.7, there exists T € (%, %), C; > 0and R; > 0 such that
C;

p—1
(1)~ < 2

for r > R; and any n > 1. In particular, since t(p — 1) > 2, taken § > 0 such that
y = 157 — 8 > 1, there exists R’ such that

_ )
Un ()P~ < 5, (53)
r
for r > R}, and any n > 1. Up to replace R, with R, and o with a larger number, we can
assume R, = R..
Observe that, by (52) and (53), we have that

h2 (Ix)
Uy p—1 Y
|x|2 —Uun = W >0, 54
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for |x| > R,. Now consider the problem
“Aw+ Lw=0 iflx| > Ry,
|x|?

w = u, if x| = Ry

w— 0 as |x| — 4o0,
which is solved by w;, (x) = u, (RU)R(}/7|X|_W. Observe that

Y
—Auy —wy) + W(”n — wy)

2 +o00
=<_hu,,<|x|>_/ hu"s(s) ) ds +ul ™ o 8n>un (55)

|x|2 x|

in H~'(R?\Bg,) and, since u, — w, = 0in dBg, and u, — w, — 0 as |x| — +oo, we
have that (1, — w,)" € HO1 (R2\Bg,).

So, multiplying in (55) by (u, — w,)" and integrating, by (54) and the fact that u,, > 0
we have

/ IV (un — wy) " |* dx +f == ((up — w) ") dx
[x|>Ro 1x|>Ro |x|

(lxD) T 1y, (s
:/\|>R ( o [ ”’;() i(s)ds—i—u,, +W—en Uty —wp)Tdx <0
X

|X|2 x|

and then, for |x| > R, and any n > ng, 0 < u,, < wy,.
In conclusion, by Proposition 2.7,

—+00
2 2 27 1-2
””"”U(RZ\W) < Zﬂun(Ro)R(,f/ 172V gy

<3 =73 f 5 u>(Ry)R2
2 C; R?
2f 2y —2RE

By this and (52) we deduce that {u,}, is (up to a subsequence) bounded in L2(R?) and so
also in H!(R?). Then, there exists u € H!(R?) and a subsequence of {u,}, such that u,, —~u
in H'(R?). Since we can assume that the same subsequence is such that u,, — ug a.e., we
have ug = u € L?(R?), and we obtain the contradiction.

m}

Remark 5.1 Using similar arguments as before and taking into account the Strauss Lemma
[30], we have that for any t € (0, a) there exists C; > 0 and R; > 0 such that

C:

R —
uol <

uniformly for » > Ry,

1 2
where a = lim,_, ; huo (r).

Remark 5.2 Arguing as in the proof of Theorem 1.8, if ||ug |2 > 1672, then {u,}, is bounded
in L2(R?).
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Appendix A

By Holder inequality it is easy to see that if u € LIOC(RZ) radially symmetric, then the
function

ARG
Uy(x) := x| ifx #0,
0 if x =0,

is well defined in R2.
In the following for a measurable function u : R? — R, we want to understand under
which assumptions on # we have that

T hu(s)

Viu(x) ::/ u*(s) ds
x| $

is well defined.

Lemma5.3 Ifu € LY(R?) and is radially symmetric with q € (2, 4), then V, is well defined

in R%\{0}.

Proof Fix x # 0. Observe that for any s > |x|, by Holder inequality we have

q—2

) T i
huy(s)=c | u-dy<c 1dy ulfdy ) <es 7 .
B, B, B,

Therefore, being g < 4, we have

q—2 2

2 1 g q
Vu(X)<C/ . ({) y<c / ——dy / lul?dy | < +oo.
B¢ q B¢ 72 B,

Wyl ki |yla=2

m}

Lemma5.4 Ifu € LY(R?) and is radially symmetric with g € (2,4) and u € Li. (R?) with
T € (4, 4+00), then V, is well defined in R2,

Proof By Lemma 5.3, we have to prove only that V,,(0) < +o0.
Observe that

+oo
vu<0)=/ ”() uX(s) ds = / ) 2 g +/ M) 2 as
0 0 S

:/ h”() w?(s)ds + V(1) = Ay + Vi (D).
0
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By Lemma 5.3, we need to estimate only A,. Since

=2 2

2 T T 3 2t—4
h,(s) =c u-dy <c ldy lul* dy <ecs T,
By By By

being T > 4, we have

=2

2 T 2
1 z
Ay gc/ “ ()‘:)dygc / —dy (/ Iulfdy> < +o00.
B |y|® By |y|7™2 B

m}

Remark 5.5 By [6], we already know that, if u € L>(R?) N L (R?), then V,, € L>®(R?).
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