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1 Introduction

Yang-Mills theories are at the center of elementary particle physics to describe fundamental

laws of interactions. Topological solitons in these theories, such as instantons, monopoles,

vortices, calorons, merons, played central roles in the study of non-perturbative aspects,

duality structures, quark confinements and so on. (See e.g. [1, 5, 8, 10, 13, 16, 24, 26, 29].)

To study these topological solitons, the anti-self-dual (ASD) Yang-Mills equation would be

in the most important position. For instance, the instantons are global solutions of this

equation with a special boundary condition such that the action is finite. For mathematical

aspects, the instantons are described very elegantly by the ADHM construction [2].

On the other hand, the anti-self-dual Yang-Mills equation has a very close relation-

ship with lower-dimensional integrable equations, such as the KdV equation, the Toda

equations, the Painlevé equations and so on [18, 30]. Energy densities of some soliton so-

lutions to these equations are localized on hyperplanes in the whole space-time dimensions

and hence they can be interpreted as domain walls in the space-times. Existence of these

solitons solutions also relate to their integrability, such as existence of infinite conserved

quantities and existence of hidden infinite symmetries. For anti-self-dual Yang-Mills equa-

tions, the domain wall type soliton solutions exist as well and can be constructed from the
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’t Hooft ansatz and the Atiyah-Ward ansatz. However, already known soliton solutions

given in section 4 always lead to trivial action densities as we will see.

In this paper, we construct exact soliton solutions of anti-self-dual Yang-Mills equa-

tions for G = GL(2) and calculate the action densities of them on four-dimensional real

spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures. We find that these

type Soliton solutions lead to real-valued action densities which can be interpreted as non-

trivial domain walls in four-dimension. This beautiful result is a successful application of

the Darboux transformation developed by Nimmo, Gilson and Ohta [21]. More surpris-

ingly, integration of these non-trivial action densities over the four-dimensional spaces are

suggested to be not infinity but zero. We also discuss in details whether gauge group could

be unitary on our solition solutions or not and find that G = SU(2) could be realized in

one kind of the Ultrahyperbolic signature.

This paper is organized as follows. In section 2, we introduce the anti-self-dual Yang-

Mills equations on four-dimensional complex spaces and give exact soliton solutions to-

gether with action densities of them. In section 3, we present exact soliton solutions with

real valued action densities by taking some dimensional reduction conditions on the com-

plex spaces and discuss the possibility of realization of unitary gauge group on each real

space. In section 4, we review some already known soliton solutions of the anti-self-dual

Yang-Mills equations and show that they are all trivial in the sense of action density while

our solutions are non-trivial. Section 5 is devoted to conclusion and discussion.

2 Soliton solutions on four-dimensional complex spaces

In this section, we give a complex version of four-dimensional anti-self-dual Yang-Mills

equations which is a unified treatment of section 3. In section 2.1, we introduce a for-

mulation of anti-self-dual Yang-Mills equations on four-dimensional complex spaces which

relates to the twistor theory, following the conventions close to that in the book of Ma-

son and Woodhouse [18]. In section 2.2, we calculate a complex-valued action density of

exact soliton solutions [11] generated by the Darboux transformation [21]. This complex-

valued action density would be reduced to four-dimensional real spaces with three kinds

of signatures in section 3 and the reduced action densities could be real-valued by taking

some conditions.

2.1 Anti-self-dual Yang-Mills equations

Let (z, z̃, w, w̃) be a double null coordinates on four-dimensional complex spaces with metric

defined by

ds2 = gmndz
mdzn = 2(dzdz̃ − dwdw̃), m, n = 1, 2, 3, 4. (2.1)

where gmn :=


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 , (z1, z2, z3, z4) := (z, z̃, w, w̃).
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We can recover three kinds of real spaces by taking some suitable reality conditions on

z, z̃, w, w̃ as follows. Concrete realizations are given in section 3.

• Reality condition:z̃ = z, w̃ = −w gives the Euclidean real space E.

• Reality condition:z, z̃ ∈ R, w̃ = w gives the Minkowski real space M.

• Reality condition:z̃ = z, w̃ = w gives the Ultrahyperbolic real space U1.

• Reality condition:z, z̃, w, w̃ ∈ R gives the Ultrahyperbolic real space U2.

Note that U1 and U2 are different real slices even though their signature are the same.

Let us consider a gauge theory on the complex space and assume gauge group to be

G = GL(N). The field strengths are defined by

Fmn := ∂mAn − ∂nAm + [Am, An], (2.2)

where Am(z) denote gauge fields which take values in the Lie algebra of G. The anti-self-

dual Yang-Mills equation on the complex space is defined as follows:

Fzw = 0, Fz̃w̃ = 0, Fzz̃ − Fww̃ = 0, (2.3)

which reduces to the standard anti-self-dual Yang-Mills equations on real slices in the sense

of Hodge dual as we will see in section 3.

In order to find the solution of the anti-self-dual Yang-Mills equations, let us begin

with the Yang equation:

∂z̃(J
−1∂zJ)− ∂w̃(J−1∂wJ) = 0, (2.4)

where theN×N matrix is called Yang’s J-matrix. Then ASD gauge fields could be obtained

from a solution J of the Yang equation by decomposing J into N ×N two matrices h and

h̃ such that J = h̃−1h,1 and setting:

Az = −(∂zh)h−1, Aw = −(∂wh)h−1, Az̃ = −(∂z̃h̃)h̃−1, Aw̃ = −(∂w̃h̃)h̃−1. (2.5)

Note that the gauge transformation acts on h and h̃ as h 7→ gh, h̃ 7→ gh̃, g(x) ∈ G and

hence Yang’s matrix J is gauge invariant. If we take a special gauge h̃ = 1, gauge fields

become a simpler form in terms of J :

Az = J−1∂zJ, Aw = J−1∂wJ, Az̃ = Aw̃ = 0, (2.6)

and satisfy the anti-self-dual Yang-Mills equation. Hence, we can define the following

quantity and called it the action density in this paper:

TrF 2 := TrFmnF
mn = −2Tr(F 2

ww̃ + F 2
zz̃ + 2Fz̃wFzw̃ + 2FzwFz̃w̃), (2.7)

where Fmn := gmkgnlFkl. For ASD gauge fields, TrF 2 = 4Tr(Fwz̃Fzw̃ − F 2
ww̃).

1Note that the relation between J and h, h̃ is different from J := h̃h−1 in [11].
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2.2 Soliton solutions and action densities for G = GL(2)

From now on, let us focus on soliton solutions for G = GL(2) generated from a trivial seed

solution J = 1 by the Darboux transformation [21].

The following 2× 2 complex matrix J is a solution of the Yang equation [21].

J = −QΛ−1Q−1, (2.8)

where Λ is a constant 2× 2 matrix and Q is a 2× 2 matrix satisfying

∂wQ = (∂z̃Q)Λ, ∂zQ = (∂w̃Q)Λ. (2.9)

Soliton solutions are given by setting Q and Λ as follows [11]:

Q =

(
a1e

L + a2e
−L b1e

M + b2e
−M

c1e
L + c2e

−L d1e
M + d2e

−M

)
, Λ =

(
λ 0

0 µ

)
, (2.10)

L := λβz + αz̃ + λαw + βw̃, M := µδz + γz̃ + µγw + δw̃, (2.11)

where a1, a2, b1, b2, c1, c2, d1, d2, α, β, γ, δ, λ, µ are complex constants. Note that we only

consider this type of solution in this paper from now on, that is, J and Q in (2.8) and (2.10),

respectively.

After a little bit lengthy calculation, we can obtain explicit form of the action density

with respect to this solution (For the details, see appendix.):

TrF 2 = 8(λ− µ)2(αδ − βγ)2ε0ε̃0

2ε1ε̃1 sinh2X1 − 2ε2ε̃2 sinh2X2 − ε0ε̃0(
(ε1ε̃1)

1
2 coshX1 + (ε2ε̃2)

1
2 coshX2

)4
 (2.12)

where

X1 := M + L+
1

2
log(ε1/ε̃1), X2 := M − L+

1

2
log(ε2/ε̃2) (2.13)

ε0 := a2c1 − a1c2, ε̃0 := b2d1 − b1d2, (2.14)

ε1 := a1d1 − b1c1, ε̃1 := a2d2 − b2c2, (2.15)

ε2 := a2d1 − b1c2, ε̃2 := a1d2 − b2c1. (2.16)

Note that the action density vanishes identically when λ = µ or αδ = βγ or ε0ε̃0 = 0.

Furthermore, ε1ε̃1 = ε2ε̃2 ⇐⇒ ε0ε̃0 = 0. This means the singularities appear on the

locus D :=
{

(z, z̃, w, w̃) ∈ C4 | (ε1ε̃1)
1
2 coshX1 + (ε2ε̃2)

1
2 coshX2 = 0, ε1ε̃1 6= ε2ε̃2

}
and

D is clearly nonempty because XI = i (nI + 1/2)π (I = 1, 2, nI ∈ Z) satisfies coshX1 =

coshX2 = 0. To find other singularities, for example, we can impose a simple constraint:

ε1 = kε2, ε̃1 = kε̃2, k ∈ R \ {−1, 0, 1} satisfying the condition ε1ε̃1 6= ε2ε̃2 so that phase

shift factor 1/2 log(ε1/ε̃1) = 1/2 log(ε2/ε̃2) =: φ. Then some classes of singularities would

appear on the sub-locus of D:

D̃1 :=
{

(z, z̃, w, w̃) ∈ C4 | tanhL tanh(M + φ) = −(|k|+ 1)/(|k| − 1)
}
, (2.17)
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and a special class of them can be found explicitly on the intersection of complex hyper-

planes defined by L = i {arctan((|k|+ 1)/(|k| − 1)) + nLπ} and M = i(nM + 1/4)π −
φ (nL, nM ∈ Z). Next let us consider another example of sub-locus of D:

D̃2 := D ∩
{

(z, z̃, w, w̃) ∈ C4 | ImXI = nIπ, nI ∈ Z, I = 1, 2
}
, (2.18)

which would greatly simplify the problem of locus D to a homogeneous system of two

linear equations of cosh(ReXI) by the argument formula: coshXI = cosh(ReXI + inIπ) =

(−1)nI cosh(ReXI). Then under the condition: ∆ :=

∣∣∣∣∣Re(ε1ε̃1)
1/2 Re(ε2ε̃2)

1/2

Im(ε1ε̃1)
1/2 Im(ε2ε̃2)

1/2

∣∣∣∣∣ 6= 0, the

singularities of action density are removed successfully since the singular sub-locus D̃2

becomes empty.

Classifying all the singularities of the complex action density (2.12) in details is a

rewarding job, however, we would like to discuss this issue in a separated paper because

our aim in this paper is to study the real-valued action density for physical purpose. In fact,

we can exclude all the singularities on each real slice by adjusting parameters aI , bI , cI , dI
in (2.10) and taking reality conditions on (2.11). The remaining details are discussed in

section 3.

On the other hand, we also find that the action density has two principal peaks lie on

ReX1 = 0 and ReX2 = 0 on the no singularity region, as we mentioned in (2.18). This

fact is very interesting and quite different from our experience in the lower-dimensional

soliton equations. More precisely, the principal peaks of soliton configurations of lower-

dimensional soliton equations usually lie on the ReL = 0 or ReM = 0 (up to phase shift

factors), however, our principal peaks lie on Re(M ± L) = 0. Let us consider the same

analysis of the anti-self-dual Yang-Mills equation, like that for lower-dimensional solition

equations. Firstly, we take a limit of r2 := |
∑4

m=1 z
mzm|2 → ∞ so that |L| is finite in

the solution (2.10). Then |eM | goes to infinity or zero and |e−M | goes to zero or infinity,

respectively. That is,

Q
r2→∞−→

(
a1e

L + a2e
−L b1e

M

c1e
L + c2e

−L d1e
M

)
or

(
a1e

L + a2e
−L b2e

−M

c1e
L + c2e

−L d2e
−M

)
. (2.19)

Note that the former and latter cases correspond to (b2, d2) = (0, 0) and (b1, d1) = (0, 0),

respectively. By comparing (2.12), the resulting action density vanishes in the both cases

while in the lower-dimensional soliton equations, the configuration has its principal peak

on ReL = 0 by similar analysis.

Inspired from the above analysis, let us focus on one principal peak of (2.12) and set

a2 = b1 = c1 = d2 = 0. Then we can obtain a reduced form of our soliton solution

Q =

(
aeL be−M

ce−L deM

)
, a, b, c, d ∈ C, (2.20)

which leads to a simpler form of action density:

TrF 2 = 8(λ− µ)2(αδ − βγ)2
(
2sech2X − 3sech4X

)
, (2.21)

where X := M + L+
1

2
log(−ad/bc). (Note that ε0ε̃0 = ε1ε̃1 = −abcd, ε2ε̃2 = 0.)

– 5 –
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Now let us discuss the singularity problem of the reduced action density (2.21) by the

following argument formula of hyperbolic functions:

sech2(x+ iy) = 2

[
cosh2x cos2y + 1

(cosh2x+ cos2y)2
− i sinh2x sin2y

(cosh2x+ cos2y)2

]
. (2.22)

We find that (2.21) has periodicity on the slice spaces: X = a + i ImX for any given

real number a, and the singularities appear periodically in the case of a = 0 because

sech2X = sec2(ImX) if X = i ImX. Therefore, (2.21) has no solitonic behavior on slice

spaces if the real part of X is fixed. On the other hand, to remove the singularities and

periodicity, we can impose some constraint on the imaginary part of X. For example,

taking the condition X = ReX + inπ for n ∈ Z would achieve this goal as the following:

TrF 2 = 8(λ− µ)2(αδ − βγ)2
(
2sech2(ReX)− 3sech4(ReX)

)
, (2.23)

which possesses real-valued solitonic behavior up to complex constants. For other nontrivial

examples, we can use formula (2.22) and consider the slice spaces: X = ReX+ i(n±1/4)π

for n ∈ Z to get the result:

2sech2X − 3sech4X = 8
(
2sech2(2ReX)− 3sech4(2ReX)

)
± 4i(6sech(2ReX)− 1)sech2(2ReX)tanh(2ReX).

(2.24)

Note that (2.24) which belongs to a new class of solutions, is quite different from (2.23)

because the solitonic behavior appears in both real part and imaginary part.

Finally, we remark a condition for J-matrix such that J is unitary. We hope that

our understanding of J-matrix would be helpful for the realization of G = U(N) since the

action density becomes real-valued and fit to physical interpretation when G = U(N). Let

us put a condition on the solution Q in (2.8) as follows

Q =

(
A B

−B A

)
, Λ =

(
λ 0

0 µ

)
. (2.25)

Then Yang’s J matrix becomes

J =
−1

|A|2 + |B|2

(
(1/λ) |A|2 + (1/µ) |B|2 (1/µ− 1/λ)AB

(1/µ− 1/λ)AB (1/µ) |A|2 + (1/λ) |B|2

)
. (2.26)

Hence, we can find that under the condition (2.25), J ∈ U(2) ⇔ |λ| = |µ| = 1 and

J ∈ SU(2)⇔ µ = λ and |λ| = 1.

We will see it soon in the next section that the ansatz (2.25) gives a magical way to

construct ImX = 0 type action densities (3.10), (3.22), (3.33), and (3.44) belonging to the

same class (n = 0) of (2.23).

3 Soliton solutions on four-dimensional real spaces

In this section, we construct soliton solutions on four-dimensional real spaces with three

kinds of signatures and the corresponding action densities could be realized to real-valued

– 6 –
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functions by taking the reality conditions in section 2.1 and condition (2.25). More pre-

cisely, c1 = −b1, c2 = −b2, d1 = a1, d2 = a2 and M = L. The latter condition gives

rise to relations between parameters α, β, γ, δ, λ, µ on each real slice. After these replace-

ments, the action density TrF 2 reduces to the standard one: TrFµνF
µν with respect to

local coordinates xµ (µ = 0, 1, 2, 3) on the four-dimensional real spaces. We can even show

that the action density TrFµνF
µν is real-valued because X1 becomes real and X2 becomes

pure imaginary.

More interestingly, the soliton solutions (2.20) represent domain wall solutions and the

integration of the corresponding action densities over the real spaces are suggested to be

infinity but zero. We put the proof in section 3.1. This property might shed light on a new

study area of domain walls in cosmology.

On the other hand, we will see that G = U(N) can be realized only on the Ultrahy-

perbolic space U2 in section 3.4 because both gauge fields Aµ and field strengths Fµν must

take values in anti-hermitian N ×N matrices when G = U(N).

3.1 On Euclidean real space E

To realize the Euclidean real slice condition: z̃ = z, w̃ = −w, we take the following

combination of the real coordinates x0, x1, x2, x3 on E:

z =
1√
2

(x0 − ix1), z̃ =
1√
2

(x0 + ix1), w = − 1√
2

(x2 − ix3), w̃ =
1√
2

(x2 + ix3), (3.1)

which satisfy the Euclidean metric ds2 = (dx0)2+(dx1)2+(dx2)2+(dx3)2. Then eq. (2.3) re-

duces to the anti-self-dual Yang-Mills equation: F01+F23 = 0, F02−F13 = 0, F03+F12 = 0.

Further, the condition M = L gives rise to the relations γ = λβ, δ = −λα, µ = −1/λ,

and the soliton solution (2.10) could be represented by

Q =

(
a1e

L + a2e
−L b1e

L + b2e
−L

−b1eL − b2e−L a1eL + a2e
−L

)
, Λ =

(
λ 0

0 −1/λ

)
, (3.2)

where L = (λβ)z + αz + (λα)w − βw. The real coordinates expansion of it is

L = lµx
µ, lµ =

1√
2

(α+ λβ, i(α− λβ), β − λα, i(β + λα)) . (3.3)

Under these setting, the action density of the soliton solution (3.2) is

TrFµνF
µν =8

[
(|α|2+ |β|2)(|λ|2+ 1) |ε0|

]22ε1ε̃1 sinh2X1 − 2 |ε2|2 sinh2X2 − |ε0|2(
(ε1ε̃1)

1
2 coshX1 + |ε2| coshX2

)4
,
(3.4)

where

X1 = L+ L+
1

2
log(ε1/ε̃1), X2 = L− L+

1

2
log(ε2/ε2), (3.5)

ε0 = a1b2 − a2b1, (3.6)

ε1 = |a1|2 + |b1|2 , ε̃1 = |a2|2 + |b2|2 ∈ R, (3.7)

ε2 = a1a2 + b1b2. (3.8)

Note that the action density vanishes identically when α = β = 0 or ε0 = 0.

– 7 –
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To realize the gauge group to be G = U(N), the action density TrFµνF
µν should be

negative definite because Fµν is anti-hermitian and eigenvalues of it are pure imaginary.

However, the action density (3.4) is not negative definite at any point on E. This implies

that the gauge group cannot be unitary.

However, action density TrFµνF
µν could be real-valued even though gauge group

is not unitary. Note that this configuration has solitonic behavior in the X1-direction

and periodic behavior in the X2-direction because X1 is clearly real and X2 is pure-

imaginary, implying coshX2 = cos (ImX2) , sinhX2 = i sin (ImX2). By this property

and (3.5)∼(3.8), TrFµνF
µν is clearly real-valued. Furthermore, since coshX1 ≥ 1, −1 ≤

coshX2 = cos (ImX2) ≤ 1 and ε1ε̃1 ≥ |ε2|2, all singularities appear on the locus D :={
xµ ∈ R4 | coshX1 = 1, coshX2 = cos (ImX2) = −1, ε1ε̃1 = |ε2|2

}
. As we mentioned in

section 2.2 below (2.16), the final condition ε1ε̃1 = |ε2|2 in D implies TrFµνF
µν = 0.

Therefore, there is no singularity in the action density. The same discussion is also valid

for other signatures.

Another surprising thing comes when we focus only on solitonic behavior part by

setting a2 = b1 = 0 in (3.4). Then the soliton solution

Q =

(
aeL be−L

−be−L aeL

)
, (3.9)

leads to a simpler form of action density:

TrFµνF
µν = 8

[
(|α|2 + |β|2)(|λ|2 + 1)

]2 (
2sech2X − 3sech4X

)
, (3.10)

where X = L+ L+ log(|a| / |b|). (Note that |ε0|2 = ε1ε̃1 = |ab|2 , |ε2|2 = 0.)

We find that the action density has its principal peak on a three-dimensional hyper-

plane defined by X = L + L + log(|a| / |b|) = 0 with normal vector lµ + lµ. Therefore,

it’s a domain wall in R4. More surprisingly, integration of this action density over E is

suggested to be zero. In order to explain this property, let us introduce three independent

axes X1, X2, X3 in the directions orthogonal to the X-axis (normal direction of the do-

main wall (DW)). Then, integration of the action density would be performed naively by

the following finite box regularization:∫
E

TrFµνF
µνd4x ∝ lim

R→∞

∫ R

−R

∫ R

−R

∫ R

−R
dX1dX2dX3

∫ R

−R
(2sech2X − 3sech4X)dX

=

∫
DW

dX1dX2dX3

∫ ∞
−∞

(2sech2X − 3sech4X)dX

=

∫
DW

dX1dX2dX3 (tanhX · sech2X)
∣∣ ∞
−∞ = 0. (3.11)

This result suggests that the soliton solution (3.9) belongs to the sector of instanton number

zero. The same discussion is also valid for other signatures. We note that the present

discussion lacks mathematical rigor. In order to justify the integration, we have to solve the

anti-self-dual Yang-Mills equation originally with a suitable boundary condition compatible

to the box regularization.2 This issue will be reported elsewhere.

2The authors thank an anonymous referee to point this out.
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Finally, we remark that J ∈ U(2) ⇔ Λ =

(
eiθ 0

0 −eiθ

)
and J ∈ SU(2) ⇔ Λ =

±

(
i 0

0 −i

)
(θ ∈ R) on E.

In this section, we call solutions like (3.2) one-soliton solutions and solutions like (3.9)

pure one-soliton solutions to distinguish them.

3.2 On Minkowski Real Space M

As discussed in the Euclidean case, we can take the following combination of real coordi-

nates x0, x1, x2, x3 on M to realize the real slice condition: z, z̃ ∈ R, w̃ = w

z =
1√
2

(x0 − x1), z̃ =
1√
2

(x0 + x1), w =
1√
2

(x2 − ix3), w̃ =
1√
2

(x2 + ix3), (3.12)

which satisfy the Minkowski metric ds2 = (dx0)2− (dx1)2− (dx2)2− (dx3)2. Then eq. (2.3)

reduces to the anti-self-dual Yang-Mills equation: F01 + iF23 = 0, F02 − iF13 = 0, F03 +

iF12 = 0. Due to the ASD equation, the realization of gauge group G = U(N) is impossible

since gauge fields A0, A1, A2 and A3 could not be all anti-hermitian.

Further, the condition M = L yields relations β = µα, γ = α, δ = λα (Relation be-

tween λ and µ is not necessary.) and the one-soliton solution (2.10) could be represented by

Q =

(
a1e

L + a2e
−L b1e

L + b2e
−L

−b1eL − b
−L
2 a1e

L + a2e
−L

)
, Λ =

(
λ 0

0 µ

)
, (3.13)

L = (λµα)z + αz̃ + (λα)w + (µα)w (3.14)

= lµx
µ, lµ =

1√
2

((1 + λµ)α, (1− λµ)α, (µ+ λ)α, i(µ− λ)α) . (3.15)

Under these setting, the action density of the solution (3.13) is

TrFµνF
µν = 8 |α(λ− µ)|4 |ε0|2

2ε1ε̃1 sinh2X1 − 2 |ε2|2 sinh2X2 − |ε0|2(
(ε1ε̃1)

1
2 coshX1 + |ε2| coshX2

)4
 , (3.16)

where

X1 = L+ L+
1

2
log(ε1/ε̃1), X2 = L− L+

1

2
log(ε2/ε2), (3.17)

ε0 = a1b2 − a2b1, (3.18)

ε1 = |a1|2 + |b1|2 , ε̃1 = |a2|2 + |b2|2 ∈ R, (3.19)

ε2 = a1a2 + b1b2. (3.20)

Note that the action density vanishes identically when λ = µ or α = 0 or ε0 = 0.

The pure one-soliton solution is given by the same trick as in the Euclidean case:

Q =

(
aeL be−L

−be−L aeL

)
, (3.21)
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which leads to the action density

TrFµνF
µν = 8

∣∣α2(λ− µ)
∣∣2 (2sech2X − 3sech4X

)
, (3.22)

where X = L+ L+ log(|a| / |b|). (Note that |ε0|2 = ε1ε̃1 = |ab|2 , |ε2|2 = 0.) Once again,

integration of the action density (3.22) over M vanishes by the same reason as in (3.11).

Finally, we remark that J ∈ U(2) ⇔ Λ =

(
eiθ1 0

0 eiθ2

)
and J ∈ SU(2) ⇔ Λ =(

eiθ 0

0 e−iθ

)
(θ1, θ2 ∈ R) on M.

3.3 On ultrahyperbolic real space U1

The discussion of U1 is quite similar to the Euclidean case. We can take the following

combination of the real coordinates x0, x1, x2, x3 on U1 to realize the real slice condition:

z̃ = z, w̃ = w

z =
1√
2

(x0 − ix1), z̃ =
1√
2

(x0 + ix1), w =
1√
2

(x2 − ix3), w̃ =
1√
2

(x2 + ix3), (3.23)

which satisfy the Ultrahyperbolic metric ds2 = (dx0)2 + (dx1)2 − (dx2)2 − (dx3)2. Then

eq. (2.3) reduces to the anti-self-dual Yang-Mills equation: F01 − F23 = 0, F02 − F13 = 0,

F03 + F12 = 0.

Further, the condition M = L yields the relations γ = λβ, δ = λα, µ = 1/λ, and the

one-soliton solution (2.10) could be represented by

Q =

(
a1e

L + a2e
−L b1e

L + b2e
−L

−b1eL − b2e−L a1eL + a2e
−L

)
, Λ =

(
λ 0

0 1/λ

)
, (3.24)

L = (λβ)z + αz + (λα)w + βw (3.25)

= lµx
µ, lµ =

1√
2

(α+ λβ, i(α− λβ), β + λα, i(β − λα)) . (3.26)

Under these setting, the action density of the solution (3.24) is

TrFµνF
µν =8

[
(|α|2−|β|2)(|λ|2−1)|ε0|

]22ε1ε̃1 sinh2X1 − 2 |ε2|2 sinh2X2 − |ε0|2(
(ε1ε̃1)

1
2 coshX1 + |ε2| coshX2

)4
,
(3.27)

where

X1 = L+ L+
1

2
log(ε1/ε̃1), X2 = L− L+

1

2
log(ε2/ε2), (3.28)

ε0 = a1b2 − a2b1, (3.29)

ε1 = |a1|2 + |b1|2 , ε̃1 = |a2|2 + |b2|2 ∈ R, (3.30)

ε2 = a1a2 + b1b2. (3.31)

Note that the action density vanishes identically when |α| = |β| or |λ| = 1 or ε0 = 0.
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The pure one-soliton solution is given by

Q =

(
aeL be−L

−be−L aeL

)
, (3.32)

which leads to the action density

TrFµνF
µν = 8

[
(|α|2 − |β|2)(|λ|2 − 1)

]2 (
2sech2X − 3sech4X

)
, (3.33)

where X = L+ L+ log(|a| / |b|). (Note that |ε0|2 = ε1ε̃1 = |ab|2 , |ε2|2 = 0.) Integration

of the action density (3.33) over U1 is zero again by the same reason as in (3.11).

Finally, we remark that the condition J ∈ U(2) implies TrFµνF
µν = 0 on U1. In fact,

the gauge group can not be unitary under the gauge condition Az̃ = Aw̃ = 0 on U1 as well

because
√

2Az̃ = A0 − iA1,
√

2Aw̃ = A2 − iA3 implies A0 = iA1, A2 = iA3. Hence under

this gauge, only one possible solution is Aµ = 0 for G = U(N), that is, Fµν = 0. The

vanishing field strength leads to the trivial action density TrFµνF
µν = 0 which is valid in

arbitrary gauge. Therefore there is no G = U(N) ASD gauge fields which give non-trivial

action density.

3.4 On ultrahyperbolic real space U2

Finally, we discuss another real slice of the Ultrahyperbolic signature, say U2. We take

the following combination of real coordinates x0, x1, x2, x3 on U2 to realize the real slice

condition:z, z̃, w, w̃ ∈ R

z =
1√
2

(x0 − x2), z̃ =
1√
2

(x0 + x2), w = − 1√
2

(x1 − x3), w̃ =
1√
2

(x1 + x3), (3.34)

which satisfy the Ultrahyperbolic signature ds2 = (dx0)2 + (dx1)2− (dx2)2− (dx3)2. Then

eq. (2.3) reduces to the anti-self-dual Yang-Mills equation: F01 + F23 = 0, F02 + F13 =

0, F03 − F12 = 0.

Further, the one-soliton solution (2.10) is reduced by the condition M = L (⇒ γ =

α, δ = β, µ = λ) to the following:

Q =

(
a1e

L + a2e
−L b1e

L + b2e
−L

−b1eL − b2e−L a1eL + a2e
−L

)
, Λ =

(
λ 0

0 λ

)
, (3.35)

L = (λβ)z + αz̃ + (λα)w + βw̃, (3.36)

= lµx
µ, lµ =

1√
2

(α+ λβ, β − λα, α− λβ, β + λα), (3.37)

which leads to the action density

TrFµνF
µν =8

[
(αβ−αβ)(λ−λ) |ε0|

]22ε1ε̃1 sinh2X1 − 2 |ε2|2 sinh2X2 − |ε0|2(
(ε1ε̃1)

1
2 coshX1 + |ε2| coshX2

)4
, (3.38)
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where

X1 = L+ L+
1

2
log(ε1/ε̃1), X2 = L− L+

1

2
log(ε2/ε2), (3.39)

ε0 = a1b2 − a2b1, (3.40)

ε1 = |a1|2 + |b1|2 , ε̃1 = |a2|2 + |b2|2 ∈ R, (3.41)

ε2 = a1a2 + b1b2. (3.42)

Note that the action density vanishes identically when αβ ∈ R or λ ∈ R or ε0 = 0.

The pure one-soliton solution is given by

Q =

(
aeL be−L

−be−L aeL

)
, (3.43)

and the action density becomes

TrFµνF
µν = 8

[
(αβ − αβ)(λ− λ)

]2 (
2sech2X − 3sech4X

)
, (3.44)

where X = L+ L+ log(|a| / |b|). (Note that |ε0|2 = ε1ε̃1 = |ab|2 , |ε2|2 = 0.) By the same

reason as in (3.11), integration of the action density (3.44) over U2 is zero.

Finally, we remark that J ∈ U(2) ⇔ J ∈ SU(2) ⇔ Λ =

(
eiθ 0

0 e−iθ

)
on U2. In fact,

we even find that the gauge group can be unitary in this case! First of all, gauge fields

Az and Aw are anti-hermitian on U2 naturally (See (A.5), (A.6)). On the other hand,√
2Az = A0 + A2,

√
2Az̃ = A0 − A2,

√
2Aw = A1 + A3,

√
2Aw̃ = A1 − A3 together with

Az̃ = Aw̃ = 0 implies all gauge fields Aµ must be anti-hermitian. That is, G = SU(2) gauge

theory is realized on U2 successfully.

4 Comparison to already known soliton solutions

In this section, we review already known soliton solutions of the anti-self-dual Yang-Mills

equation. The four-dimensional complex coordinates (z, z̃, w, w̃) used here is defined as in

section 2.1.

4.1 Atiyah-Ward ansatz solutions (G = GL(2))

Firstly, we begin with the Atiyah-Ward ansatz solutions [3]. The simplest one is [7]:

J =

(
0 −1

1 ∆0

)
(4.1)

with a scalar function ∆0(x) and the Yang equation reduces to a simpler linear equation

(∂z̃∂z − ∂w̃∂w)∆0 = 0. (4.2)

A natural one-soliton solution is given by

∆0 =
1

2

(
eL + e−L

)
= coshL, L = (λβ)z + αz̃ + (λα)w + βw̃, (4.3)

and the corresponding action density vanishes: TrF 2 = 0 by simple calculation.
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The second simplest one is given in the following ansatz:

J =

(
∆0 −∆1∆

−1
0 ∆−1 −∆1∆

−1
0

∆−10 ∆−1 ∆−10

)
, (4.4)

which relates to Yang’s R-gauge [32] and include the non-linear plane wave solutions in the

Minkowski signature [9]. By substituting J-matrix into the Yang equation, it reduces to

the following chasing equations

∂z ∆i = ∂w̃ ∆i+1, ∂w ∆i = ∂z̃ ∆i+1, (4.5)

which implies that ∆0 solves the Laplace equation: (∂z̃∂z − ∂w̃∂w)∆0 = 0.

A natural one-soliton solution is given by

∆0 = coshL, ∆1 = λcoshL, ∆−1 = λ−1coshL, (4.6)

and the corresponding action density is trivial again: TrF 2 = 0 by simple calculation.

4.2 ’t Hooft ansatz solutions (G = SU(2))

The ’t Hooft ansatz [29] (or known as the Corrigan-Fairlie-’t Hooft-Wilczek ansatz [6, 31]) is

very important for the study of G = SU(2) gauge theory on the four-dimensional Euclidean

space and is given by

Aµ = iη(+)a
µν σa∂

ν logϕ, (4.7)

where η
(+)a
µν (a = 1, 2, 3) is the self-dual ’t Hooft symbol and σa is the Pauli matrices.

Under the ’t Hooft ansatz, the anti-self-dual Yang-Mills equation reduces to the Laplace

equation

(∂z∂z + ∂w∂w)ϕ = 0. (4.8)

A natural one-soliton solution is given by

ϕ =
1

2

(
eK + e−K

)
= coshK, K := kµx

µ, (4.9)

where kµ are real constants which satisfy k2 = kµk
µ = 0 due to (4.8). By using some

formulas on the ’t Hooft symbol, we can easily show that

TrF 2 = −3(k2)2(4sech4K − 5sech2K + 2)
k2=0
= 0. (4.10)

In conclusion, the action density of the natural one-soliton solutions (4.3), (4.6)

and (4.9) are all trivial.

5 Conclusion and discussion

In this paper, we constructed exact soliton solutions of four-dimensional anti-self-dual

Yang-Mills equations for G = GL(2) which possess real-valued action densities. Our results

showed that such type of solitons can be interpreted as domain wall in four-dimensional
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spaces and G = U(2) solitons exist on the Ultrahyperbolic signature U2. This fact has a

strong connection with N=2 string theories [17, 22, 23].

In N=2 string theories, the equation of motion of the effective action is the Ultrahy-

perbolic space U2 version of anti-self-dual Yang-Mills equation for G = U(2). Therefore,

our soliton solutions obtained in section 3.4 might give us a hint for finding the correspond-

ing physical objects in these theories. On the other hand, the Euclidean and Minkowski

signature version of such kind of G = U(2) domain wall solutions (or the non-abelian plane

waves [4] of the Yang-Mills equation) are still unknown and worth investigating for our

future work. These studies might perhaps relate to new perturbative aspects of quan-

tum field theories, new invariants in the four-dimensional geometry or the origin of dark

matters someday.

For multi-soliton solutions, we presented these discussions on noncommutative Eu-

clidean spaces explicitly by the noncommutative Darboux transformation in [11] and the

noncommutative Bäcklund transformation in [12, 14]. Asymptotic behaviors of these

noncommutative soliton solutions were also proved to be the same as in commutative

spaces [11, 14]. It might be an interesting future work to confirm our conjecture that n

soliton solutions in [11, 12, 14] have n isolated localized lumps of energy and preserve their

shapes and velocities on each localized solitary wave lump. In addition, explicit analysis

of these n soliton scatterings would be expected to give the phase shifts in the scattering

processes as discussed in the standard soliton theory (e.g. [19]).

Another interesting problem is to compare the asymptotic behaviors of our solu-

tions [11, 12, 14] with multi-soliton solutions in [9]. All of these studies might lead to

a general formulation of Kodama’s Grassmannian approach to the study of soliton scatter-

ings [15], and give a new insight into Hirota’s bilinear forms [25] or other formulation of

integrable hierarchies [20, 27].
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A Calculation of action density (2.12)

Yang’s J-matrix

J = −QΛ−1Q−1 =
−1

∆

(
λ−1AD − µ−1BC (µ−1 − λ−1)AB
(λ−1 − µ−1)CD µ−1AD − λ−1BC

)
, (A.1)

Q =

(
A B

C D

)
, ∆ := detQ = AD −BC (A.2)
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Derivative of J-matrix

J ′ =
µ−1 − λ−1

∆2

(
E F

G −E

) 
E = (AC ′ −A′C)BD − (BD′ −B′D)AC

F = −(AC ′ −A′C)B2 + (BD′ −B′D)A2

G = (AC ′ −A′C)D2 − (BD′ −B′D)C2

(A.3)

Gauge field (f ′ := ∂kf, k = z, w).

Ak = J−1J ′ =
1

∆2

(
R S

T −R

)
(A.4)

R = (µ/λ− 1)(AC ′ −A′C)BD − (1− λ/µ)(BD′ −B′D)AC

S = −(µ/λ− 1)(AC ′ −A′C)B2 + (1− λ/µ)(BD′ −B′D)A2

T = (µ/λ− 1)(AC ′ −A′C)D2 − (1− λ/µ)(BD′ −B′D)C2

Note that if we take (Q,Λ) as mentioned in (2.10), then a simple form of Ak would be

found from the result AC ′ −A′C = 2λp, BD′ −B′D = 2µq:

Ak =
2(µ− λ)

∆2

(
pBD − qAC −pB2 + qA2

pD2 − qC2 −pBD + qAC

)
(A.5){

(p, q) := (αε0, γε̃0) if m = w, (p, q) := (βε0, δε̃0) if m = z

ε0 := a2c1 − a1c2, ε̃0 := b2d1 − b1d2

Moreover, if we consider the Ultrahyperbolic signature U2 (Take (Q,Λ) mentioned

in (3.35)), then gauge fields become anti-hermitian naturally:

Ak =
2(λ− λ)

∆2

(
pAB + pAB −pB2 + pA2

pA
2 − pB2 −pAB − pAB

)
(A.6){

p := αε0, if m = w, p := βε0, if m = z, ε0 := a1b2 − a2b1,

Field strength (ḟ := ∂lf, l = z̃, w̃)

Fkl = −∂lAk =
2(λ− µ)

∆2

(
U V

W −U

)
(A.7)

U = p
[
ḂD +BḊ − 2BD(∆̇/∆)

]
− q

[
ȦC +AĊ − 2AC(∆̇/∆)

]
V = −2p

[
BḂ −B2(∆̇/∆)

]
+ 2q

[
AȦ−A2(∆̇/∆)

]
W = 2p

[
DḊ −D2(∆̇/∆)

]
− 2q

[
CĊ − C2(∆̇/∆)

]
Note that p, q are defined as in (A.5) and Al = 0 as mentioned in (2.6).
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Action density

TrFwz̃Fzw̃ =
16(λ− µ)2ε0ε̃0

∆4
{4ε0ε̃0αβγδ + (αδ − βγ)2(AḊ − ḂC)(ȦD −BĊ)

+ αβγδ[(AD −BC)(ȦḊ − ḂĊ) + (ȦD −BĊ)(AḊ − ḂC)]},

TrF 2
ww̃ =

16(λ− µ)2ε0ε̃0
∆4

{2ε0ε̃0(α2δ2 + β2γ2)+

+ αβγδ[(AD −BC)(ȦḊ − ḂĊ) + (ȦD −BĊ)(AḊ − ḂC)]},
TrF 2 = TrFmnF

mn = 4(TrFwz̃Fzw̃ − TrF 2
ww̃)

=
64(λ− µ)2(αδ − βγ)2ε0ε̃0

∆4
[(AḊ − ḂC)(ȦD −BĊ)− 2ε0ε̃0]

Finally, substituting (2.10) into the above formula, we get (2.12).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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