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Abstract This paper extends the Euclidean path integral
formalism to account for nonextensive thermodynamics.
Concretely, we introduce a generalized Wick’s rotation from
real time t to imaginary time τ such that, t → −i fα(τ ), where
fα a differentiable function and α is a parameter related to
nonextensivity. The standard extensive formalism is recov-
ered in the limit α → 0 and f0(τ ) = τ . Furthermore,
we apply this generalized Euclidean path integral to black
hole thermodynamics and derive the generalized Wick’s rota-
tions given the nonextensive statistics. The proposed for-
mulation enables the treatment of nonextensive statistics on
the same footing as extensive Boltzmann–Gibbs statistics.
Moreover, we define a universal measure, η, for the nonex-
tensivity character of statistics. Lastly, based on the present
formalism, we strengthen the equivalence between the AdS-
Schwarzschild black hole in Boltzmann–Gibbs statistics and
the flat-Schwarzschild black hole within Rényi statistics and
suggest a potential reformulation of the AdS5/CFT4 duality.

1 Introduction

The path integral formulation of quantum mechanics, devel-
oped in the mid-twentieth century [1,2], stands as a remark-
able synthesis of key theoretical physics concepts and serves
as a powerful computational tool. This technique has been
applied to a wide range of physical systems across diverse
contexts, including quantum mechanics [3], quantum field
theory [4,5], gauge field theory [6,7], black hole physics
[8], quantum gravity [9,10], string theory [11,12], topology
[13,14], condensed matter physics [15–17], and optical com-
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munications [18], among others [19–21]. Indeed, in statis-
tical physics, path integrals laid the foundation for the first
formulation of the renormalization group transformation and
are widely used to study systems with random impurity dis-
tributions [22]. In particle physics, they have been crucial in
understanding and accounting for the presence of instantons
[23]. Quantum field theory benefits from path integrals as the
natural framework for quantizing gauge fields. In chemical,
atomic, and nuclear physics, this approach has been applied
to various semiclassical schemes in scattering theory. More-
over, path integrals offer a powerful means to explore classi-
cal and quantum fields’ topological and geometrical proper-
ties, facilitating novel perturbative and non-perturbative anal-
yses of fundamental natural processes [24].

The Boltzmann–Gibbs (BG) statistics has long been the
cornerstone for describing a broad class of physical sys-
tems, providing over a century of successful applications.1

It is particularly effective for systems with predominantly
chaotic dynamics, such as classical systems exhibiting mix-
ing, ergodicity, and a positive maximal Lyapunov exponent.
However, many complex physical systems fall outside the
scope of this framework, especially those where the max-
imal Lyapunov exponent vanishes, indicating a departure
from simple chaotic behavior. To better describe the statis-
tical properties of such systems, various generalized forms
of statistical mechanics have emerged, including nonadditive
entropies, Kappa-distributions [25,26],q-Gaussians [27,28],
and Superstatistics [29–32]. These generalized approaches
have demonstrated a wide range of applications both within
and beyond physics.

1 This year’s Nobel Prize in Physics honors
groundbreaking research on the application of
Boltzmann statistics to neural networks and
machine learning.
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For the building and discussion of relativistic quantum
field theoretical models, the concept of passage to imagi-
nary time has proven to be an invaluable technique. This
approach was initially introduced by Dyson [33] and later
formalized by Wick [34], giving rise to the well-known
Wick rotation. Building on this foundation, Schlingemann
[35] provided a more rigorous framework that connected
Euclidean and Lorentzian quantum field theories, leverag-
ing the Osterwalder–Schrader theorem [36,37]. This theo-
rem outlines the necessary and sufficient conditions for a
consistent transition between these frameworks.

Applying a Wick rotation to the Lorentzian path integral
reveals its close resemblance to the partition function in sta-
tistical mechanics. Specifically, the Euclidean path integral
sums over all possible paths, with each path weighted by an
effective energy-like term derived from the action in imag-
inary time-mirroring how the partition function sums over
all states of a system, weighted by their respective energies.
This formalism in Quantum Mechanics (QM) stems from the
time-evolution operator U(t), which satisfies the following
differential equation

i h̄
∂U
∂t

= HU . (1)

Where H is the Hamiltonian operator. The solution of the
above equation for a time-independent Hamiltonian reads as

U(t) = exp

(−i Ht

h̄

)
. (2)

Probability amplitudes are given by matrix elements of U(t).
Wick’s rotation permits a connection with the partition func-
tion of statistical mechanics such that by analytical continu-
ation to imaginary time t → −iτ we get,

U(τ ) = exp

(−Hτ

h̄

)
. (3)

Which is a solution to the diffusion-like differential equation,

∂U
∂τ

= −HU
h̄

(4)

Then, the partition function Z [β] is given by,

Z [β] = tr
[
exp (−βH)

] =
∮

Dg exp (−IE [g]) , (5)

where tr [. ] is the trace operator, β = τ

h̄
, and IE is the

Euclidean action. The integration is performed over all closed
trajectories in phase space. We readily get the thermodynamic
free energy from the partition function as,

F = U − T S = − 1

β
ln (Z [β]) . (6)

Likewise, all other relevant thermodynamic quantities can
be computed from Z [β].

The setup demonstrates that the exponential form of the
time-evolution operator in Eq. (2) aligns with the Boltzmann
exponential probability factor in Eq. (3) after applying a
Wick rotation. This connection suggests that the extensive
nature of Boltzmann–Gibbs statistics in the thermodynamic
limit is fundamentally tied to the linearity of the Schrödinger
equation-without which, the exponential form of the time-
evolution operator would not be feasible. In contrast, nonex-
tensive statistical mechanics modifies the partition function
away from its exponential form, typically by introducing
new functional forms and parameters to capture nonextensive
behavior. However, the linearity of the Schrödinger equa-
tion remains unaltered in such approaches, creating a fun-
damental inconsistency. This inconsistency arises because,
while a statistical mechanics framework attempts to gener-
alize Boltzmann–Gibbs statistics, the quantum mechanical
side lacks any modification to justify this shift. This dis-
crepancy presents a theoretical gap that is unsatisfactory for
a coherent understanding of the relationship between quan-
tum mechanics and nonextensive statistical mechanics. Thus,
there is a clear need for a consistent theoretical foundation
that links the path integral formulation of quantum mechan-
ics with nonextensive statistical approaches. In this paper, we
aim to addr]ess this imbalance and propose a more cohesive
framework.

This paper is structured as follows: In Sect. 2 we provide
a clear and concise definition of nonextensivity. Section 3,
introduces the generalized Euclidean path integral formal-
ism alongside the extended version of Wick’s rotation. Sec-
tion 4 demonstrates the application of this new formalism to
derive nonextensive black hole thermodynamics, achieving
a comparable status to Boltzmannian statistics. Additionally,
we introduce a measure of nonextensivity to quantify the sta-
tistical character. Section 5 explores the proposed Rényi/AdS
equivalence and suggests a potential reformulation of the
AdS5/CFT4 duality. A general discussion and concluding
remarks are provided in Sect. 6.

2 Nonextensivity and black hole thermodynamics

Before proceeding further, it is essential to clarify the con-
cept of nonextensivity in the context of black hole thermo-
dynamics. It’s commonly known that nonextensivity refers
to a property of physical systems where the total proper-
ties, such as energy, volume, or entropy, do not scale linearly
with the system’s size or the number of its components. In
extensive systems, these properties are directly proportional
to system size. However, in nonextensive systems, scaling
is non-linear, often due to long-range interactions, such as
in gravitational systems, fractal structures, or systems with
strong internal correlations. In this sense, nonextensivity sig-
nifies a deviation from standard statistical mechanics, specifi-
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cally the Boltzmann–Gibbs (BG) framework, which assumes
additive entropy. This deviation motivates the introduction of
generalized, non-additive entropy forms, as explored in Tsal-
lis statistics [38,39]. Whereas entropy scales with volume
in typical systems, for black holes, it is proportional to the
horizon area. This fundamental distinction underscores the
importance of studying black hole thermodynamics through
the framework of nonextensive entropy, differing from the
traditional Boltzmann–Gibbs approach.

The appropriateness of standard Boltzmann–Gibbs statis-
tics has been widely debated, particularly in the context of
black hole thermodynamics. In this framework, the limita-
tions of conventional stability analyses are often attributed
to the nonadditivity of entropy, as seen in the nonadditive
and nonextensive Bekenstein–Hawking entropy. These chal-
lenges suggest that using Boltzmann–Gibbs statistics in self-
gravitating systems may yield unreliable results, as extensive
quantities, such as mass, may not be locally well-defined.

In the thermodynamic limit, BG statistics implies exten-
sivity in the sense of scaling with the system’s number of
constituents. However, the Bekenstein–Hawking entropy is
inherently nonextensive. Therefore, it seems inconsistent to
apply the BG thermodynamics along with a nonextensive
entropy.

By using a weaker additivity rule specifically, Abe’s rule-a
novel strategy emerges [40].

Hξ (Sab) = Hξ (Sa) + Hξ (Sb) + ξHξ (Sa)Hξ (Sb). (7)

Here, Hξ denotes a differentiable function of entropy S, ξ is a
real parameter, and (a) and (b) are two independent systems.
The Boltzmann–Gibbs–Shannon entropy is given by,

SBG = −
�∑
i=1

pi ln pi , (8)

with � ∈ N as the total number of configurations and pi as
their probabilities. One can easily verify that for independent
systems (a) and (b) we have an additive rule,

SBG(a ∪ b) = SBG(a) + SBG(b). (9)

Which realizes Eq. (7) for ξ = 0 and Hξ (S) = SBG . A well-
known of nonextensive entropy is the Tsallis entropy [41],
expressed as follows:

Sq = 1 − ∑�
i=1 pqi

q − 1
≡ ST , q ∈ R. (10)

The standard BG entropy SBG is recovered by setting q → 1.
Here, defining Hξ (S) = ST , the pseudo-additivity rule Eq.
(7), reads as

ST (a ∪ b) = ST (a) + ST (b) + (1 − q)ST (a)ST (b). (11)

Biró and Van [42] introduced the formal logarithm of the
Tsallis entropy, corresponding to the Rényi entropy [43]

L(ST ) = 1

λ
ln [1 + λST ] ≡ SR . (12)

Where λ = 1 − q. Remarkably, this definition imparts a
formal additive composition law to the Rényi entropy, such
as,

SR(a ∪ b) = 1

λ
ln [1 + λ (ST(a) + ST(a) + λST(a)ST(a))]

= 1

λ
ln [(1 + λST(a)) (1 + λST(a))]

= 1

λ
ln (1 + λST(a)) + 1

λ
ln (1 + λST(a))

= SR(a) + SR(a). (13)

Thus, Rényi entropy provides an effective approach for
addressing the nonextensive properties of black holes while
preserving entropy additivity. Additionally, we observe that
the pseudo-additivity rule that the Tsallis entropy obeys
allows the Rényi entropy, which is the formal logarithm of the
Tsallis entropy, to capture the non-additive nature of black
hole entropy.

Since Boltzmann–Gibbs (BG) entropy is additive, as
shown in Eq. (9), and extensive in the thermodynamic limit, it
cannot be associated with the nonadditive and nonextensive
Bekenstein–Hawking entropy. Therefore, black hole thermo-
dynamics should not be viewed as a limiting case of BG sta-
tistical mechanics but rather as a limit of a nonextensive sta-
tistical mechanics, where the entropy, in the thermodynamic
limit, does not scale with the system’s size.

Finally, it is crucial to clearly distinguish between the con-
cepts of extensivity and additivity in entropy. For over a cen-
tury, physicists have primarily studied locally interacting sys-
tems, where Boltzmann–Gibbs (BG) entropy has served as
the standard entropic form that satisfies the thermodynamic
requirement of extensivity. However, this focus has led to
a common misconception in various physical contexts and
textbooks, where additivity and extensivity are incorrectly
treated as synonymous. This misinterpretation can result in
misunderstandings and unintended consequences. The essen-
tial difference lies in the fact that, unlike additivity, extensiv-
ity depends not only on the functional form of the entropy but
also on the nature of the correlations within the system com-
ponents, particularly whether these correlations are local or
nonlocal. In this context, BG entropy is inherently additive
but would be extensive (nonextensive) if the system’s ele-
ments are locally (nonlocally) correlated. However, in black
hole thermodynamics, entropy is fundamentally nonadditive
and should not be connected to BG entropy. This raises an
interesting question about terminology-why call it nonex-
tensive black hole thermodynamics when black hole ther-
modynamics is inherently nonextensive? Indeed, black hole
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entropy is both nonextensive and nonadditive, though tra-
ditionally it has been discussed in relation to the extensive
framework of BG thermodynamics. Our choice to emphasize
the nature of the thermodynamics in the name reflects this
departure. Another possible term could be non-Boltzmannian
black hole thermodynamics.

3 Generalized Euclidean path integral

We address this discrepancy by extending the existing pro-
cedure that connects the two frameworks: Wick’s rotation.
Specifically, we introduce a generalized Wick’s rotation,
offering a more comprehensive approach to bridge the gap
between the path integral formulation of quantum mechanics
and nonextensive statistical mechanics as

t −→ −i fα(τ ). (14)

Where α is a real parameter related to nonextensivity
such that, as α → 0, we recover the BG Wick’s rotation
t −→ −iτ , that is lim

α→0
fα(τ ) = τ . We observe that the rela-

tionship between nonextensivity and the parameter α, rep-
resenting the generalized Wick’s rotation, stems from the
finding that each deviation from BG statistical mechanics
introduces a new set of parameters to quantify nonextensiv-
ity. As with the parameter α, we recover the BG statistics
after these parameters are assumed to vanish.

Applying the generalized rotation, Eq. (14), to Eq. (1), we
get

∂Uα

∂τ
= −HUα

h̄
f

′
α(τ ). (15)

Where f
′
α(τ ) is the first derivative of fα(τ ). The generalized

rotated operator Uα is then given by

Uα(τ ) = exp

(
−H

h̄

∫ τ

0
d τ̃ f

′
α(τ̃ )

)

= exp

(
−H

∫ β

0
dβ̃ kα(β̃)

)
. (16)

Here we put kα(β) ≡ f
′
α(τ ). The partition function is there-

fore generalized as

Zα[β] = tr [Uα] =
∮

Dg exp
(−Iα

E [g]) . (17)

Herein,Iα
E is the nonextensive Euclidean action derived from

the Lorentzian action IL through the transformation Eq. (14)
such that

iIL = i
∫

dt L(t) = −
∫

dτ f
′
α(τ ) (−L(τ ))

= −
∫

dτ (−Lα(τ )) = −Iα
E . (18)

Where Lα(τ ) = f
′
α(τ ) L(τ ) is the generalized Euclidean

Lagrangian. In this procedure, the Lorentzian Lagrangian
L(t) is rotated to the Euclidean one Lα(τ ). With the
above-extended formalism, we reconcile the linearity of
QM through the Schrödinger equation with the inherent
non-linearity of the nonextensive statistical mechanics as
proposed by Tsallis and al. [41,44–47]. More precisely,
upon performing the standard Wick rotation to imaginary
time, t → −iτ , on the evolution operator defined by the
Schrödinger equation, the result is the Boltzmann–Gibbs
(BG) statistical partition function, which is extensive in the
thermodynamic limit. This leaves no natural framework for
introducing a nonextensive formalism that would align with
the inherently nonextensive nature of black hole thermody-
namics, except by modifying the partition function after Wick
rotation. However, such modifications are inconsistent with
the standard path integral formalism and compromise the
uniqueness of Wick’s rotation, as they would require corre-
sponding adjustments to the quantum mechanical time evo-
lution operator and, consequently, the Schrödinger equation
itself. Additionally, this approach severs the link between
nonextensive thermodynamics and the quantum mechanical
evolution operator. Quantum mechanics does not, in fact, pre-
scribe a specific statistical or entropic framework for a system
to follow. Consequently, it is overly restrictive to impose an
extensive Boltzmann–Gibbs (BG) thermodynamics simply
because the standard Wick rotation has been applied to the
time evolution operator. Nor does it seem justified to rely on
ad hoc modifications to the partition function to enforce a par-
ticular entropy form. The proposed approach seeks to unify
the relationship between extensive and nonextensive ther-
modynamics and quantum mechanics within a single frame-
work. This would allow the choice of Wick rotation to reflect
the nature of the system’s thermodynamics-whether exten-
sive or nonextensive-based on the intrinsic characteristics of
the system.

In Fig. 1, we present a schematic diagram of the effect
of standard and generalized Wick’s rotations. The standard
Wick’s rotation of the time evolution operator t → −iτ ,
results in the BG statistics and extensive thermodynamics,
while the generalized rotation produces nonextensive statis-
tics and thermodynamics.

The free energy for the nonextensive statistics is computed
as

Fα = Uα − Sα

β
= − 1

β
ln (Zα) . (19)

Here, Sα represents the nonextensive entropy, and β =
1

T
= ∂Sα

∂Uα

denotes the inverse temperature in the framework

of nonextensive thermodynamics. The choice of the nonex-
tensive entropy, Sα , determines the functional form of fα(τ )

through Eq. (19), as will be demonstrated below. Using the
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Fig. 1 Schematic diagram of
the standard and generalized
Wick’s rotations. As the
parameter α goes to zero we
recover the Boltzmann–Gibbs
statistics

well-known saddle point semiclassical approximation, the
partition function Zα takes the following form

Zα ≈ exp
(−Iα

E [gcl ]
)
, (20)

where gcl is the classical solution of the system’s Euler-
Lagrange equations. One then has

Fα = Uα − Sα

β
≈ Iα

E [gcl ]
β

. (21)

�⇒ βUα − Sα = Iα
E [gcl ] ≡ Iα

cl . (22)

Equation (22) is the condition to determine fα(τ ) and
the required Wick’s rotation. Explicitly, we write for a given
spacetime metric g,

M
∂Sα

∂M
− Sα = −

∫ τ

0
d τ̃ Lα[gcl ] = Iα

cl (23)

Where Lα[gcl ] ≡ Lα
cl is the Euclidean Lagrangian com-

puted at the saddle point gcl and we have defined M ≡ Uα .2

It is worth noting that the choice of fα(τ ) could affect
the Euclidean-invariance of the rotated Lagrangian, Lα

cl , and
thus of its Euclidean action, which may supplement further
restrictions on the set of possible functions fα , if such invari-
ance is to be preserved. Nonetheless, the Lorentzian invari-
ance is the physical invariance and it is still conserved. Addi-
tionally, since Wick’s rotation function is derived from the
generalized entropies, it is evident that they should inherit
the consequences of some or all of the Shannon-Khinchin

2 In subsequent sections, The parameter M will be identified with the
mass of black holes.

axioms [48,49]. It is seen from Eq. (16) that the simplest
choice which is Euclidean-invariant, corresponds to the obvi-
ous BG case, f

′
0(τ ) = k0(β) = 1. A close inspection of Eq.

(23) gives a formal expression for kα(β) ≡ f
′
α(τ ) defined in

Eq. (16), in the general case,

∫ β

0
dβ̃ kα(β̃) Lcl(β̃) = Sα − M

∂Sα

∂M
(24)

�⇒ kα(β) Lcl(β) = ∂

∂β

(
Sα − M

∂Sα

∂M

)
. (25)

That is,

kα(β) = 1

Lcl(β)

∂

∂β

(
Sα − M

∂Sα

∂M

)
(26)

= 1

Lcl(β)

(
∂Sα

∂β
− ∂(Mβ)

∂β

)
(27)

= 1

Lcl(β)

(
∂Sα

∂β
− β

∂M

∂β
− M

)
(28)

When a generalized Wick’s rotation for a given nonex-
tensive statistics is calculated using Eq. (28), it is placed on
equal footing as the Boltzmann–Gibbs statistics which also
obeys in the present generalization,

k0(β) = 1 = 1

L0
cl(β)

(
∂S0

∂β
− β

∂M

∂β
− M

)
, (29)

where S0 ≡ SBG , is the Boltzmann–Gibbs entropy. Thus,

L0
cl(β) = ∂SBG

∂β
− β

∂M

∂β
− M. (30)
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We employ the notation index “0” to denote the Boltzman-
nian statistics, which corresponds to the case where the
nonextensive parameter vanishes (α = 0). Reciprocally and
by construction, the Wick’s function k0(β) ≡ f

′
0(τ ) defined

in Eq. (28), enables to rotate the Lorentzian action to the cor-
responding Euclidean one, Iα

E [gcl ], and to obtain the statis-
tics Sα through the partition function Eq. (20). Concretely,
from Eq. (23), one can obtain

M
∂Sα

∂M
− Sα = Iα

cl [β] = Iα
cl

[
∂Sα

∂M

]
, (31)

where we used β ≡ ∂Sα

∂M
. Thus, for a given Wick’s rotation

defined by a function fα(τ ) which produces a semi-classical
Euclidean action Iα

cl [β], the nonextensive entropy generated
by such a Wick’s rotation obeys the differential equation

M
∂Sα

∂M
− Sα − Iα

cl

[
∂Sα

∂M

]
= 0. (32)

This differential equation is used in the next section3 to gen-
erate statistics from their corresponding Wick’s rotations.

4 Applications to black hole thermodynamics

One of the main motivations for deriving nonextensive statis-
tics from the generalized Euclidean path integral is the need
to introduce nonextensive entropies into black hole thermo-
dynamics in order to account for their nonextensive nature.
Through the standard Euclidean path integral formulation,
where Wick’s rotation function is limited to f0(τ ) = τ ,
one can uniquely obtain the Hawking temperature as the
thermodynamic temperature of the black hole. A challenge
arises when attempting to modify the black hole thermody-
namic away from the Boltzmann–Gibbs framework, as alter-
ing the entropy inevitably leads to a corresponding change in
temperature. This contradicts the traditional understanding
of Hawking’s temperature, resulting in a tension between
the need for nonextensive behavior in black holes and the
unique nature of Hawking temperature as derived from stan-
dard Wick’s rotation. The solution proposed in this study
addresses this issue by introducing a generalized Wick’s
rotation, which produces a temperature that aligns with the
chosen statistical framework for the black hole system. In
this view, the Hawking temperature is no longer unique;
it represents the temperature that aligns specifically with
Boltzmannian statistics. Thus, it becomes equally possible
to apply any statistical model to a given black hole without
encountering contradictions. In this approach, we leverage
the freedom of Wick’s rotations to encode nonextensivity,

3 See Sect. 4.4.

allowing for a unified connection between QM and statisti-
cal mechanics, particularly in the application to black hole
thermodynamics. Some may question the necessity of such a
generalization, citing the already established nonextensivity
of the Bekenstein–Hawking entropy [50]. Indeed, the stan-
dard Euclidean path integral formalism, obtained through the
conventional Wick’s rotation, provides a way to derive the
Bekenstein–Hawking entropy from the on-shell Euclidean
action, as demonstrated by Gibbons and Hawking in their
seminal work [9]. However, it is essential to note that the
standard Euclidean path integral and its Wick’s rotation lead
singularly to the BG statistics and, in the thermodynamic
limit, to an extensive thermodynamics, which is inadequate
for describing the nonextensive nature of black holes.

In the literature, numerous generalizations of the Bekenstein–
Hawking entropy have been put forth [51–53]. Away from
the shortcomings of the BG thermodynamics for black holes,
these nonextensive entropies offer a framework to explain the
nonextensivity of black hole thermodynamics. They are typ-
ically started in a disputed way [54,55] by directly altering
the black hole entropy without taking into account the origin
of the black hole temperature, which needs to coincide with
the altered entropy. However, only the Hawking temperature
is revealed by the standard Euclidean path integral following
the well-known Wick’s rotation, and assuming another tem-
perature causes a potential conflict with the Euclidean path
integral formalism and QM. The present framework offers
a new pathway to construct these entropic modifications in
accordance with the principles of QM by utilizing the free-
dom of Wick rotations.

In this section, we assess the applicability of our formal-
ism by analyzing a range of well-known black hole thermo-
dynamic systems, considering both extensive and nonexten-
sive statistical frameworks. Furthermore, we propose a novel
universal measure for quantifying the degree of nonextensiv-
ity in a given statistical model, derived from the generalized
Wick’s rotation introduced in the preceding section.

4.1 The 4d-AdS Schwarzschild black hole in
Boltzmann–Gibbs statistics

Let’s apply Eq. (30) to the case of the four-dimensional
asymptotically-AdS Schwarzschild black hole within BG-
statistics (4d AdS-Sch). We have for the entropy, mass, and
horizon radius of this black hole4

SBH = πr2
h , M = rh

2
− �r3

h

6
and

4 The horizon radius is given in terms of the cosmological constant
� < 0 and the inverse temperature β, pending the condition that the
AdS-Sch black hole phase can appear from the thermal radiation phase.

This holds for β2 < −4π2

�
= β2

min [56]. Similar remarks are true also

for subsequent black hole systems.
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rh =
√

�β2 + 4π2 − 2π

�β
, (33)

here SBH is the Bekenstein–Hawking entropy and � < 0 is
the cosmological constant associated with the AdS spacetime
radius via � = 3

�2 . Because Bekenstein–Hawking entropy is
obtained by the standard Euclidean path integral following
the standard Wick’s rotation, as shown by Gibbons–Hawking
formalism [9], it is therefore associated with the Boltzmann–
Gibbs statistics. By substitution in Eq. (30), the Euclidean
gravitational Lagrangian L0

cl(β,�) is found to be

L0
cl (β, �) =

4π2
(
β2� − 4π

√
β2� + 4π2 + 8π2

)
− β4�2

3β3�2
√

β2� + 4π2
,

(34)

or equivalently in terms of the imaginary time τ = β (h̄ = 1)

L0
cl (τ, �) =

4π2
(
�τ2 − 4π

√
�τ2 + 4π2 + 8π2

)
− �2τ4

3�2τ3
√

�τ2 + 4π2
.

(35)

Integrating Eq. (35) gives the on-shell gravitational
Euclidean action

I0
cl(�) =

�τ 2 + 2π
(√

�τ 2 + 4π2 + 4π
)

3�
(√

�τ 2 + 4π2 + 2π
) − π

�
. (36)

Here I0
cl(�) is finite since it is the sum of the bulk action

which diverges because spacetime has infinite volume, the
Gibbon–Hawking action for the boundary contribution and
the counterterm action to cancel divergences. For small cos-
mological constant, � � 1, we get

L0
cl(τ,�) = − τ

8π
+ �τ 3

96π3 + O
(
�2

)
, (37)

I0
cl(�) = τ 2

16π
− �τ 4

384π3 + O
(
�2

)
. (38)

The associated gravitational partition function for small
� � 1 is given through Eq. (20) such as

Z0(�) = exp

(
− β2

16π
+ �β4

384π3

)
. (39)

Since � is negative, the partition function remains
bounded. In the limit where the cosmological constant van-
ishes, � → 0, we recover the well-known results for the
Boltzmann–Gibbs statistics: the 4-dimensional asymptoti-
cally flat Schwarzschild classical Lagrangian, Lcl , the clas-
sical action, I0

cl , and the gravitational partition function, Z0,
as follows

Lcl(τ ) = − τ

8π
, I0

cl(τ ) = τ 2

16π
,

and Z0(β) = exp

(
− β2

16π

)
. (40)

We note that Eq. (40) concur with the results attained using
various techniques [10,57,58].

4.2 The 4d-flat Schwarzschild black hole in Rényi statistics

We perform the same calculation for the four-dimensional
asymptotically flat Schwarzschild black hole within the
Rényi nonextensive formalism (4d Rényi-Sch) [43,51,59–
61]. One obtain,5

SR = 1

λ
ln

(
1 + λπr2

h

)
, M = rh

2

and rh = 2
√

π − √
4π − β2λ√

πβλ
. (41)

Here, the nonextensivity is measured by the parameter
α = λ which is assumed to be small, 0 < λ � 1, and
accounts for the nonlocal and nonextensive nature of black
holes. In this limit, the Rényi entropy in Eq. (41) reads

SR = πr2
h − λ

2

(
π2r4

h

)
+ O

(
λ2

)
. (42)

By inserting Eq. (41) in Eq. (28), one finds the following
expression (β ≡ τ)

Lλ
cl(τ ) ≡ Lcl(τ ) f

′
λ(τ ) =

√
4 − λτ 2

π
− 2

2λτ
. (43)

Here Lcl(τ ) is the Euclidean Lagrangian derived from the
asymptotically flat Schwarzschild black hole metric, given
by Eq. (40), which is independent of the parameter λ. The
nonextensivity is encoded in the generalized Wick’s rotation
represented by the function fλ(τ ). A direct calculation of
the asymptotically flat Schwarzschild black hole Euclidean
action using the Hawking–Gibbon–York method confirms
the expression of Lcl(τ ) as

Lcl(τ ) = − β

8π
= − τ

8π
. (44)

Therefore, the derivative of the Rényi Wick’s rotation
function fλ(τ ) is found to be

f
′
λ(τ ) = 4π

λτ 2

⎛
⎝2 −

√
4 − λτ 2

π

⎞
⎠ (45)

For small λ � 1, we get for fλ(τ ) and Iλ
cl

fλ(τ ) = τ + λτ 3

48π
+ O

(
λ2

)
, (46)

Iλ
cl = τ 2

16π
+ λτ 4

512π2 + O
(
λ2

)
. (47)

5 For the Rényi-Sch black hole phase to exist, the condition β < βmin =√
4π

λ
must be satisfied [51].
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Consequently, the Rényi gravitational partition function, Eq.
(20), is given by

Zλ = exp

(
− β2

16π
− λβ4

512π2

)
(48)

This Rényi partition function remains finite as long as λ is
positive, ensuring that no divergences occur. As λ → 0, we
recover the Boltzmannian Wick’s rotation function, f0(τ ) =
τ . In summary, within this generalized Euclidean path inte-
gral formalism and in the limit of small parameter λ, to
achieve the nonextensive Rényi black hole thermodynam-
ics, one should perform the Wick rotation of the Lorentzian
action such that:

t → −i

(
τ + λτ 3

48π

)
. (49)

This is in complete parallel with Wick’s rotation to obtain
the Boltzmann–Gibbs thermodynamics given by t → −iτ .

Using Eq. (48), we can verify that we obtain Rényi free
energy through Eq. (19)

Fλ = − 1

β
ln (Zλ) (50)

= β4λ

512π2 + β2

16π
, (51)

in the limit of small nonextensivity parameter λ � 1. The
Rényi entropy is also recovered

SR = β2 ∂Fλ

∂β
(52)

= πr2
h − λ

2

(
π2r4

h

)
+ O

(
λ2

)
(53)

= SBH − λ

2
S2
BH + O

(
λ2

)
, (54)

where the inverted expression giving β as a function of the
horizon radius rh

β = 4πrh
1 + λπr2

h

(55)

was used to first order in λ to get Eq. (53) which matches Eq.
(42).
Tsallis entropy [47], ST , is connected to Rényi entropy SR ,
through Eq. (10) by the relation

Fig. 2 Comparing the derivatives of the Wick’s rotation function of
the Boltzmann–Gibbs, Tsallis, and Rényi statistics. The plot contrasts
the nonextensivity nature of Tsallis and Rényi statistics for black hole
thermodynamics. The shaded areas are a measure of the nonextensivity
of the Rényi statistics ηRényi (Blue area) and the Tsallis statistics ηTsallis
(Orange area). We fixed τ0 = 1

ST = exp[(1 − q) SR] − 1

1 − q
, (56)

where the parameter q = 1 − λ. It is a simple calculation
to compute the derivative of Wick’s rotation function, f

′
q(τ ),

for the Tsallis statistics. One finds through Eq. (28)

f
′
q(τ ) =

4
√

π
[
(1 − q)2τ 4 + 8π(1 − q)τ 2 + 32π3/2

√
4π − (1 − q)τ 2 − 64π2

]

(1 − q)2τ 4
√

4π − (1 − q)τ 2
, (57)

which for q → 1 becomes

f
′
q(τ ) = 1 − 3τ 4

256π2 (1 − q)2 + O
[
(1 − q)3

]
, (58)

�⇒ fq(τ ) = τ − 3τ 5

1280π2 (1 − q)2 + O
[
(1 − q)3

]
.

(59)

Thus, the function, fq(τ ), differs only by a second order
term in the nonextensivity parameter λ = 1 − q, from the
Boltzmann–Gibbs Wick’s rotation function f0(τ ) = τ . As
depicted in Fig. 2, comparing with the function fλ(τ ), Eq.
(49), it is shown that Rényi (blue line) and Tsallis (orange
line) statistics display different nonextensivity characters,
with Rényi being more pronounced than Tsallis. Therefore,
The present framework offers the possibility to contrast the
nonextensive nature of different statistics based on their
defining Wick’s rotations.
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4.3 The nonextensivity measure for statistics

In this section, we introduce a method to quantify the nonex-
tensive nature of a given statistical model using the general-
ized Wick’s rotation formalism. For this purpose, we define a
measure, denoted as η(Sα), corresponding to a specific statis-
tics Sα , such that

η(Sα) = lim
τ→τ0

∣∣∣∣
∫ 1

0

(
f

′
α(τ ) − 1

)
dα

∣∣∣∣, (60)

where f
′
α(τ ) is the derivative with respect to τ of the Wick’s

rotation function of Sα and τ0 is a suitable nonzero imag-
inary time taken in the support of f

′
α(τ ). Then a statistics

Sα1 is more nonextensive than another statistics Sα2 ⇐⇒
η(Sα1) > η(Sα2). The definition Eq. (60) is stated such that
η(SBG) = 0. In Fig. 2, we illustrated the geometrical mean-
ing of the measure η as the shaded areas. Using Eqs. (49) and
(58) one finds,6

ηRényi 
 1

32π
and ηTsallis 
 1

256π2 , (61)

that is, η Rényi > η Tsallis.The measure η is independent of the
specific nonextensivity parameter(s) on which a given statis-
tical model may rely, providing a universal scale for assessing
the degree of nonextensivity. Furthermore, this definition can
be extended to accommodate statistics with multiple param-
eters. A straightforward extension involves replacing the sin-
gle integral over one parameter with multiple integrals over
all relevant parameters in Eq. (60).

A survey of the literature on the numerical quantification
of nonextensivity reveals, to our knowledge, a lack of direct
proposals in this area. However, Hanel and Thurner [63,64]
introduced a two-parameter asymptotic classification of gen-
eralized entropies by relaxing the fourth Shannon-Khinchin
axiom [48,49], building on earlier work by Tsallis [41,65].
Moreover, numerous studies have established a connection
between nonextensivity and complexity [66–70]. In this con-
text, the proposed measure of nonextensivity can also be
interpreted as a measure of complexity.

4.4 The generation of nonextensive statistics from Wick’s
rotation

Here, we investigate the reverse approach: given a specific
Wick’s rotation function and a Lorentzian action, it is pos-
sible to derive the corresponding statistical framework. We
illustrate this procedure through a straightforward example
and then proceed to a more generalized formulation.

6 A similar calculation for the nonextensive Kaniadakis statistics [53,

62] gives its nonextensivity measure as ηKan 
 1

1536π2 .

The second simplest generalized Wick’s rotation one can
postulate, after the Boltzmannian one, is of the form

t → −i(1 + θ)τ, (62)

where θ is a constant nonextensivity parameter. This rotation
generates a nonextensive statistics, Sθ , which can be com-
puted through Eq. (23). Assuming a 4-dimensional asymp-
totically flat Schwarzschild black hole metric, one writes a
differential equation for Sθ . Using Eq. (32) and Eq. (44), we
have

M
∂Sθ

∂M
− Sθ = Iθ

cl = β2 (θ + 1)

16π
. (63)

However, since β ≡ ∂Sθ

∂M
, one finds that Sθ obeys a differ-

ential equation such as,

(θ + 1)

16π

(
∂Sθ

∂M

)2

− M
∂Sθ

∂M
+ Sθ = 0. (64)

Equation (64) has the solution

Sθ = 4πM2

θ + 1
= πr2

h

θ + 1
, (65)

in which, we used the relation rh = 2M for the horizon radius
of the asymptotically flat Schwarzschild black hole. It is clear
that as the parameter θ → 0, the entropy becomes that of BG,
Sθ → SBH . This θ -statistics is the simplest generalization of
the black hole BG statistics one can contemplate. In the case
of extreme nonextensivity, θ → ∞, the black hole entropy
Sθ vanishes and the black hole is in a perfectly-ordered ther-
modynamic state with a unique micro-state.

In a similar manner we generate the Rényi entropy from
its Wick’s rotation Eq. (46) and Euclidean action Eq. (47)

λ

512π2

(
∂SR
∂M

)4

+ 1

16π

(
∂SR
∂M

)2

− M
∂SR
∂M

+ SR = 0.

(66)

Which admits as a solution, to the first order in λ

SR = 4πM2
(

1 − 2λπM2
)

+ O(λ2) (67)

= πr2
h − λ

2

(
π2r4

h

)
+ O

(
λ2

)
. (68)

4.5 The 4d-flat Kerr black hole in Rényi statistics

We apply the formalism to the Kerr asymptotically flat black
hole in Rényi statistics (4d Rényi-Kerr). The expressions of
the entropy, mass, and inverse temperature read as

SR = 1

λ
ln

[
1 + λπ

(
r2
h + a2

)]
, M = r2

h + a2

2rh
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and β = 4πrh
(
r2
h + a2

)
(
r2
h − a2

) [
1 + πλ

(
r2
h + a2

)] (69)

For small spin parameter a � rh , the horizon radius rh
is expressed in terms of the inverse temperature β such as

rh = β

4π
− 8πa2

β
+ λβ3

64π2 + O
(
a4, λ2

)
. (70)

An analogous calculation to the preceding sections yields the
expression for the Euclidean Lagrangian of Rényi-Kerr black
hole as

Lλ
cl(τ, a) = − τ

8π
+ λ

(
− τ 3

128π2 + τa2

8

)
+ 2πa2

τ
. (71)

To retrieve Wick’s rotation function, one needs the
Euclidean Lagrangian for the asymptotically-flat Kerr black
hole which can be found by putting λ = 0 in Eq. (71)

L0
cl(τ, a) = − τ

8π
+ 2πa2

τ
. (72)

Thus, applying Eq. (28) and integrating with respect to τ , the
Wick’s rotation function reads

fλ(τ ) = τ − πλa2τ + λτ 3

48π
+ O

(
λ2, a4

)
. (73)

We notice that Eq. (73) reduces to the function derived for
the 4-dimensional Rényi–Schwarzschild black hole, as given
in Eq. (49), in the limit a → 0. Furthermore, Wick’s rotation
function exhibits dependence on the spin parameter a, which
is intrinsic to the Lorentzian action of the Kerr metric. As
demonstrated in Eq. (69), this dependence arises because,
in the case of the Kerr black hole, the Rényi entropy itself
becomes a function of a.

Lastly, the natural exponentiation of the Euclidean action,
gives the gravitational partition function for the 4d Rényi-
Kerr,

Zλ[a] = exp

[
− τ 2

16π
+ 2πa2 log (τ )

+ λ

(
a2τ 2

16
+ τ 4

512π2

)]
. (74)

In the limit of vanishing spin parameter, a → 0, we have the
Rényi-Sch partition function, Eq. (48).

4.6 The 4d-flat Schwarzschild black hole in Barrow
statistics

In Barrow statistics [52], the nonextensivity is quantified by
the parameter �. We have for the Barrow entropy, mass, and
horizon radius of the 4d asymptotically flat Schwarzschild

black hole (4d Barrow-Sch)

SB =
(
πr2

h

)1 + �

2 , M = rh
2

and

rh =
(

π− �−1
2 β

2 (� + 2)

) 1

� + 1
. (75)

Injecting these expressions in Eq. (28), we obtain the fol-
lowing expression for the Euclidean Lagrangian

L�
cl (τ ) ≡ Lcl(τ ) f

′
�(τ) = −2− �+2

�+1

(
τ

π
�
2 +1(� + 2)

) 1
�+1

.

(76)

Just as before, Lcl(τ ), is the Euclidean Lagrangian for the
asymptotically flat Schwarzschild black hole metric, which is
independent of the parameter � and given in Eq. (44). After
integration with respect to imaginary time τ , one gets the
exact expression of Wick’s rotation function for the Barrow
statistics as

f�(τ) = 2
2�+1
�+1 π(� + 1)

(
τ

π
�
2 +1(� + 2)

) 1
�+1

. (77)

For small Barrow parameter � � 1

f�(τ) = τ + τ

2

[
1 − ln

(
τ 2

16π

)]
� + O

(
�2

)
. (78)

The generalized classical Euclidean action for Barrow
statistics and the corresponding gravitational partition func-
tion read

I�
cl = τ 2

16π
− �

τ 2

32π
ln

(
τ 2

16π

)
+ O

(
�2

)
, (79)

Z� = exp

[
− τ 2

16π
+ �

τ 2

32π
ln

(
τ 2

16π

)]
. (80)

Once again, the BG statistical mechanics are found in the
limit of vanishing parameter � → 0. As a summary, to obtain
the nonextensive Barrow statistical mechanics, to first order
in �, one should Wick rotate the Lorentzian action such as

t −→ −i

(
τ + τ

2

[
1 − ln

(
τ 2

16π

)]
�

)
. (81)

In connection with the nonextensivity measure, applying
Eq. (60) to the Barrow statistics reveals its expression to be

η(S�) 
 4 log
(
2 4
√

π
) − 1

4
. (82)
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4.7 The higher dimensional flat Schwarzschild black hole
in Rényi statistics

In this section, we extend section (4.2) to higher dimen-
sions and show how to compute Wick’s rotation function
in this case. We start with the generalization of Eq. (41) to
d-dimensional spacetime

SR = 1

λ
ln

(
1 + λπ

d−1
2 rd−2

h

2�
( d−1

2

)
)

, M = π
d
2 − 3

2 rd−3
h (d − 2)

8�
( d

2 − 1
2

)

and β = 4π
3
2 rh�

( d
2 − 3

2

)
π

d
2 λrd−2

h + 2
√

π�
( d

2 − 1
2

) . (83)

Here, we express the inverse temperature β in terms of the
horizon radius rh , as the direct inversion of this relationship
is generally not feasible. The classical Euclidean action is
then given by

Iλ,d
cl = πd/2(d − 2)rd=2

h

(d − 3)
[
λπd/2rd−2

h + 2
√

π�
( d−1

2

)]

−1

λ
ln

(
1 + π

d−1
2 λrd−2

h

2�
( d−1

2

)
)

. (84)

The corresponding Euclidean Lagrangian, Lλ,d
cl , can be

computed as

Lλ,d
cl = −∂Iλ,d

cl

∂τ
= −∂Iλ,d

cl

∂rh

drh
dτ

, (85)

then the Wick’s rotation function f dλ (τ ) is determined by

Ld
cl
d f dλ
dτ

≡ Lλ,d
cl , (86)

�⇒ d f dλ
dτ

= Lλ,d
cl

Ld
cl

, (87)

�⇒ d f dλ
drh

= Lλ,d
cl

Ld
cl

dβ

drh
, since β ≡ τ. (88)

Here, Ld
cl , is the Euclidean Lagrangian of the d-dimensional

asymptotically flat Schwarzschild black hole for λ = 0. It
generalizes Eq. (44) as

Ld
cl = −π

d
2 − 3

2 rd−3
h (d − 2)

8�
( d

2 − 1
2

) . (89)

From Eq. (88), we obtain

d f dλ
drh

=
2π

(
�

( d−3
2

) − π
d−1

2 λrd−2
h

)

�
( d−1

2

) + 4π
d−1

2 λrd−2
h

. (90)

For small parameter λ � 1, a straightforward integration
yields the Rényi Wick’s rotation function in d-dimensions in

terms of rh to be

f dλ (rh) = 2

(d − 3)�
( d−1

2

)

×
[

2π�

(
d − 1

2

)
rh − π

d+1
2 λrd−1

h

]
, (91)

and rh is expressed by Eq. (83) as an implicit function of β.
When λ vanishes, one gets from Eqs. (91) and (83)

f d0 (rh) = 2π�
( d−3

2

)
�

( d−1
2

) rh = 4π

d − 3
rh and

β = 2π�
( d

2 − 3
2

)
�

( d
2 − 1

2

) rh = 4π

d − 3
rh . (92)

That is, f d0 (rh) = β = τ . Thus, we arrive at the standard
Boltzmann–Gibbs Wick’s rotation. This can be seen directly
by inspection of Eq. (88); For λ = 0, it reduces to

d f d0
drh

= dβ

drh
�⇒ d f d0

dβ
= 1 �⇒ f d0 (β) = β = τ. (93)

After showing the applicability of the proposed formalism
to some black hole/statistics combinations, we explore in the
next section the Rényi/AdS equivalence.

5 Rényi/AdS equivalence

In the context of the conjectured equivalence between the 4d
AdS Schwarzschild black hole in Boltzmann–Gibbs statistics
(AdS-Sch) and the 4d nonextensive flat Schwarzschild black
hole in Rényi statistics (Rényi-Sch), we propose to equate
their partition functions. That is
ZAdS4 = Zλ, (94)

where ZAdS4 ≡ Z0(�). Apart from strong connections
revealed by recent studies [71–74], which points to such
equivalence, the present framework also provides support by
remarking that their Euclidean actions, Eqs. (38) and (47),
share the same functional form. To first order in the param-
eters, � and λ, they have the following partition functions

ZAdS4 = exp

(
− β2

16π
+ �β4

384π3

)
, (95)

and

Zλ = exp

(
− β2

16π
− λβ4

512π2

)
. (96)

Thus, applying (94) gives the relation

� = −3π

4
λ + O

(
λ2

)
, (97)

which aligns with previous findings obtained using the
Hamiltonian approach to thermodynamics [72]. Thermody-
namically, this indicates that a 4d AdS-Schwarzschild black
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hole is equivalent to a 4d Rényi–Schwarzschild black hole,
provided that Eq. (97) holds.

In the context of the AdS5/CFT4 duality, The GKP-
Witten relation [75,76] proposes the equality of the partition
functions of string theory on 5-dimensional AdS5 spacetime
and the 4-dimensional conformally invariant gauge theory
such as,
ZAdS5 = ZCFT4 . (98)

In the large-Nc limit for the gauge side of Eq. (98), one
can use the saddle-point-approximation for the gravity side,
which gives ZAdS5 in terms of the Euclidean classical action.
Consequently, a parameter dictionary can be derived for this
gauge/gravity duality such as

N 2
c = π

2G5

(
− 6

�5

) 3
2

(99)

where Nc is the number of charges of the gauge group and G5

is Newton’s constant in 5-dimensional spacetime. The gravi-
tational partition functions of the 5d AdS-Sch and Rényi-Sch
black holes are calculated as

ZAdS5 = exp

(
− β3

32π
+ �5β

5

256π3

)
and

Z5
λ = exp

(
− β3

32π
− λ5β

6

512π2

)
(100)

Thus, an equivalence holds between these two thermody-
namic systems if,

�5 = −π

2
λ5β + O

(
λ2

5

)
(101)

An interesting interpretation of Eq. (101) comes from con-
sidering the extended phase space. It is usual to treat the
cosmological constant � as the thermodynamic pressure P
[77,78],

P = −�5

8π
. (102)

Similarly, one defines the Rényi pressure [71], PR in 5-
dimensional spacetime as,

PR = 3π

16
λ5rh . (103)

From the expression of β in terms of the horizon radius rh ,
Eq. (69), it is straightforward to obtain an inverted expression
in five dimensions and for small λ such as,

rh = β

2π
+ O (λ5) (104)

By substitution in (103), we have for the Rényi pressure,

PR = 3

32
λ5β + O

(
λ2

5

)
. (105)

A quick comparison of Eqs. (101) and (105), taking into
consideration Eq. (102) gives,

�5 = −8π P = −16π

3
PR, (106)

�⇒ P = 2

3
PR . (107)

In this respect, Eq. (99) can be reformulated in terms of pres-
sure as

N 2
c = π

2G5

(
3

4π P

) 3
2 = π

2G5

(
9

8π PR

) 3
2

. (108)

Also, in terms of length scales, one has the usual AdS

spacetime radius L =
√

3

4π P
and the Rényi length scale

Lλ =
√

9

8π PR
, then

N 2
c = π

2G5
L3 = π

2G5
L3

λ. (109)

In view of the Rényi 5/AdS5 equivalence,7 we see that the
expression of the AdS5/CFT4 correspondence induces the
duality Rényi5/CFT4 with the dictionary,

N 2
c = π

2G5
L3

λ and λt =
(
Lλ

ls

)4

. (110)

Where λt is the ’t Hooft parameter and ls is the string
length. The two sides of the duality in this new form are both
flat theories. A further investigation of this reformulation is
warranted.

6 Conclusion

In this study, we extend the Euclidean path integral formalism
to derive nonextensive thermodynamics from the Lorentzian
action via a generalized Wick’s rotation. This framework
places nonextensive and extensive statistics on equal foot-
ing, allowing them to emerge from Wick’s rotation of the
same underlying action. In essence, this approach decouples
the Lorentzian action, which defines the equations of motion
for a given system, from the choice of statistical framework,
thereby restoring the freedom to apply any desired statistics
independently of the action itself. Furthermore, this method
enables any statistical form to be systematically implemented
as a rotation of the Lorentzian action, provided a suitable
Wick’s rotation function exists, rather than imposing the
statistics artificially at a later stage. By selecting different
Wick’s rotation functions and examining their deviations
from extensivity, new statistical models can be generated.
Specifically, constructing a Wick’s rotation function that
diverges from the standard Boltzmannian form, f0(τ ) = τ , to
varying extents facilitates the creation of weakly or strongly

7 This equivalency can be easily extended to all d-dimensional space-
times Rényid /AdSd , d > 3. In particular, for d = 4 spacetime,

PR = 3λ

32.
, consequently one has P = PR .
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nonextensive statistics. The principal conceptual advantage
of this generalization is that it integrates nonextensivity into
the linear framework of quantum mechanics, which has
traditionally been restricted to Boltzmann–Gibbs statistics
through the standard Wick’s rotation.

Furthermore, We proceeded to apply the generalized
Euclidean path integral in the saddle point approximation to
black hole thermodynamics and computed Wick’s rotation
functions for a variety of black holes under different statis-
tics. We showed that Rényi statistics is strongly nonextensive
in contrast to the Tsallis one by introducing a novel measure
η to quantify the nonextensive character of any statistics.
Thus, it provides an order in the set of all non-extensive sta-
tistical mechanics. Furthermore, we examined theRényi/AdS
equivalence which we translated to a Rényi/CFT correspon-
dence whenever the AdS/CFT one holds. Moreover, in this
formulation, we have flat theories on both sides of the duality.
Also, this suggests a novel type of correspondence, namely,
a gauge/statistics duality. The investigation of such a theme
is one of the main motivations of this study and we intend to
deepen our inquiry to reach further insights.
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