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Abstract of the Dissertation

Entanglement in low dimensional systems

by

Raul A. Santos

Doctor of Philosophy

in

Physics

Stony Brook University

2013

In the ground state of gapped systems, the entanglement entropy
of a subsystem A scales with the length of the boundary of A. This
observation suggests that the entanglement properties of the sub-
system can be described in terms of degrees of freedom living in
the boundary of A. We will discuss the the connection between en-
tanglement properties and effective boundary descriptions in spin
systems in one and two dimensions. In one dimension we present
analytic results for the spin S = 1, Affleck-Kennedy-Lieb-Tasaki
(AKLT) ground state entanglement, characterized by negativity
and entanglement spectrum. We also discuss a generalization of
the AKLT model, based on the quantum group Uq(sl(2)) for gen-
eral integer spin S. In two dimensions, we study two spin systems
whose ground state can be written in terms of tensor product states
of bond dimension two, the AKLT model in the hexagonal lattice
and the Ising projected entangled pair state (Ising PEPS) in the
square lattice. We show how the reduced density matrix of a parti-
tion is associated with a thermal state of a one dimensional model
along the boundary of that partition. We also present arguments
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supporting this correspondence for arbitrary gapped systems. Fi-
nally we discuss the behavior of this boundary theory when the
original two dimensional model is tuned through a quantum phase
transition.
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Chapter 1

Introduction

Quantum entanglement, the spooky action at a distance that has been
atributted as the characteristic of quantum mechanics [1], has received renewed
attention recently, especially with the growth of quantum information science
[2], and as a new tool to study properties of many-body systems [3, 4].

In quantum mechanics, entanglement arises from interactions between two
(or more) quantum systems. These interactions create novel correlations that
persist even when the constituent quantum systems are taken far apart. The
idea of objects been entangled over arbitrary distances (non-locality) is clearly
a puzzling one. It was first challenged in the classic article of Einstein, Podol-
sky and Rosen Can Quantum-Mechanical Description of Physical Reality Be
Considered Complete? [5], where the idea of non-locality is contrasted with
the postulates of special relativity, which impose a maximum speed to any
physical signal. This contradiction, they argued, indicates an incomplete de-
scription of the physical world by quantum mechanics. They proposed the
existence of local hidden variables, not accounted in the original formulation
of quantum mechanics, as a solution of the problem. Despite of the appar-
ent paradox between locality and quantum mechanics, in 1965, John Bell [6]
proved that the principle of locality - the principle establishing that objects
can be influenced directly by their immediate surroundings - is incompatible
with the assumption of local hidden variables. Furthermore, he demonstrated
that any theory based in local realism should obey some inequalities, known
nowadays as Bell’s inequalities, that bound the amount of correlations between
systems described by those theories. He also showed that quantum mechanics
predicts a violation in those inequalities. Such violations have been confirmed
experimentally (see [7] for a review).

Nowadays, there is great consensus in the community that quantum me-
chanics is the more accurate theory of the microscopic world currently at our
disposal. An inevitable consequence of quantum mechanics of many (more
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than one) particles is entanglement.
Instead of fighting back the apparent weird consequences of entanglement,

physicists have taken the approach of studying it as a real physical phe-
nomenon. This point of view has been increasingly fruitful, as many applica-
tions based on entangled states have been developed in quantum information
science. In this context, the purely quantum correlations that appear in entan-
gled states are a resource that can be used for communication tasks otherwise
impossible between distant parties. This ideas have been confirmed experimen-
tally and used for example in teleportation [8], dense coding [9] or quantum
cryptography [10].

In quantum information science, entanglement is regarded as a resource,
like energy for example, that can be used to achieve some purpose. It can be
distilled from a highly entangled state or can be diluted from a high entangled
state to a less entangled one (see Chapter 2).

Entanglement properties are crucially dependent of which type of partition
we are able to perform. So far we have talked about spatial separation, but the
system can also be separated in momentum, number of species, even time. A
system can be entangled respect to one partition, while being disentangled re-
spect to other. Moreover, for a particular type of partition, let’s say a partition
in space, different number of subsystems can be entangled in different ways,
and the situation becomes even more complicated if we start with a mixed sys-
tem. These difficulties complot against a full characterization of entanglement
in quantum systems. In order to quantify the presence of entanglement, it is
necessary to introduce different measures. These measures can be separated
in two categories, measures for pure systems and measures for mixed systems.
Within each category we can study entanglement in bipartite and multipartite
states. An account for the different measures used in both categories is given
in Chapter 2. Among all these measures we concentrate in this text in the
measures for bipartite systems, either for pure or mixed states.

Entanglement generates correlations in quantum systems which are not
properly described by the usual theory of order parameters. Using some bi-
partite measures like entanglement entropy or negativy, properly introduced
in chapter 2, we explore in the subsequent chapters the characterization of
entanglement in many body systems.

The main focus of this thesis is to identify the presence of entanglement in
quantum systes using some of its ubiquitious measures, namely entanglement
entropy and entanglement spectrum for pure systems, and negativity for mixed
systems.

Among states appearing in many body systems, the ground state - the
state of the system with the lowest energy- is of special interest regarding

2



entanglement. A unique ground state has zero entropy, but if entanglement is
present, the entropy between two subsystems of this ground state is nonzero,
reflecting the purely quantum nature of entanglement. In a classical system,
if the entropy of the whole system is zero, the entropy of all the subsystems
is strictly zero. It is for this reason that the entanglement entropy is a good
measure of the entanglement properties between regions of a quantum system
only if the whole system is in its ground state, because it is here where we
know that the state does not have residual thermal, or von Neumman entropy.

The von Neumman entropy has the same mathematical definition as the
entanglement entropy, so if we compute the von Neumman entropy for an
arbitrary quantum system, this entropy should scale with the volume of the
system, because it is an extensive quantity. Contrary to this idea, it has
been found that the entanglement entropy in ground states of gapped systems
scales with the length of the boundary of the partition (see [4] for a review),
a fact that it is now known as area law of entanglement entropy. Using this
as an input, a novel way to approximate (in some cases even describe exactly)
ground states has been deviced. This construction is given in terms of so called
matrix product states and its generalizations called generically tensor network
states (TNS) and projected entangled pair states (PEPS). The states obtained
from this objects follow an area law for entanglement entropy by construction.
We review the construction of ground states in terms of these local matrices
(or tensors) in Chapter 3. This method of obtaining ground states is efficient
(scales just polynomially with the number of constituents keeping bounded
errors) for gapped systems.

Having defined how to construct ground states of gapped systems in gen-
eral, we review a simple example, originally introduced for a completely dif-
ferent purpose, the Affleck-Lieb-Kennedy-Tasaki (AKLT) model [11], which
is a model of a spin one chain with nearest neighbors interactions. The
ALKT model plays an important role in the understanding of condensed
matter systems, specially in one dimension, being the first rigorous exam-
ple of an isotropic spin chain which agrees with the Haldane conjecture, i.e.
Haldane’s suggestion that an anti-ferromagnetic Hamiltonian describing half-
integer spins is gapless, while for integer spins it has a gap [12]. The ground
state of this model has a simple description in terms of matrix product states.
This state is known as Valence-Bond Solid (VBS).

The VBS state is relevant for quantum information processing, as it has
been proved [13] that in two dimensions it can support all necessary quantum
gates (a generalization of binary logic gates in classical computation) needed to
process information encoded in qubits. This possibility makes the VBS state
a good candidate where universal quantum computation could be realized.
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In Chapter 4 we introduce the AKLT model in one dimension and study
its entanglement properties, using entanglement entropy for a bipartition of
the pure ground state, and negativity for the case of mixed systems. Different
boundary conditions are considered and an area law for entanglement entropy
is rederived.

The AKLT model is based on the SU(2) symmetry of the system. This
symmetry can be enlarged to a more general symmetry called quantum group.
This quantum group is a natural deformation of the Lie algebra, in terms of
a parameter q. In Chapter 5 we investigate the entanglement properties for
this type of models. Not only the entanglement entropy is derived, but also a
boundary description in terms of a local Hamiltonian at the boundary of the
partition, the so called Entanglement Hamiltonian. The eigenvalues of this
entanglement Hamiltonian, the entanglement spectrum (ES) [14], provide a
complete description of the entanglement properties of bipartite pure state |Ψ〉
composed of subsystems A and B. It has been shown that the entanglement
Hamiltonian describes excitations living at the edge of partitions of the ground
state of fractional quantum Hall states [14].

Lou et al [15] and Cirac et al.[16], using Montecarlo simulations and pro-
jected he entangled pair states (PEPS) [17] in finite size systems, showed that
the ES of a partition in the ground state of the AKLT model is related with
the conformal XXX Heisenberg model on the boundary of the partition. In
Chapter 6 we show that the ES of a partition of a whole class of ground states
defined in translational invariant lattices, can be approximated by the spec-
trum of a series of local Hamiltonians along the boundary. Evidence for the
structure of the entanglement Hamiltonian is given in Section 6.5 based on the
analysis in the continuous limit.

This Bulk-Edge correspondence between the entanglement properties in
the bulk of gapped systems and the emergence of a boundary description is
explored further in Section 6.6. Here we analyze the Ising PEPS model which is
a model whose ground state wavefunction is given by the partition function of
the classical Ising model in two dimensions with zero external field. This model
allows us to explore the change in boundary description for a model under a
quantum phase transition at zero temperature. The temperature parameter
in the classical model is mapped to a parameter in the local two dimensional
Hamiltonian that interpolates between two different phases for the many body
ground state. At the critical value corresponding to the critical temperature
in the classical partition function, occurs a quantum phase transition in the
quantum model. This is also reflected in the boundary/entanglement Hamil-
tonian.

In the last chapter we present an unified overview of the results obtained
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in this work and discuss some interesting open questions.
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Chapter 2

Entanglement in pure and
mixed states

Entanglement is a phenomena where two (or more) quantum systems are
linked together and their description cannot be done separately, disregarding
their spatial separation. Mathematically, we say that two systems are entan-
gled if the state vector of the whole system cannot be written as a product of
states living in each system separately. Since the early days of Quantum Me-
chanics (QM), entanglement posed an important challenge in the understand-
ing of the microscopic world. Counterintuitive ideas already appear in 1935
Schrodinger’s paper [18] where the known thought experiment of Schrodinger’s
cat was proposed. In this article also the word Entanglement (Verschränkung
in german) was introduced for the first time.

Einstein, Podolsky and Rosen (EPR) in their 1935 paper [5] showed, us-
ing reasonable assumptions on locality and reality, that the description of the
physical world using QM was incomplete. In particular they showed how the
appearance of entanglement conflicted with the usual notion of signals prop-
agating with a maximum speed (speed of light). EPR proposed the existence
of hidden local variables, carrying information about the state of the system.
Since this hidden variables are not accounted for in QM, they claimed that
the description of the physical world in terms of QM was incomplete. John
Bell, in his 1964 paper [6] indicated that such description using local hid-
den variables should satisfy some specific inequalities (today known as Bell’s
inequalities). Bell showed that local hidden variables cannot reproduce the
predictions dictated by quantum mechanics. Several experimental test on the
inequalities introduced by Bell, using entangled states have been performed
so far (see [7] for a review), indicating that quantum mechanics is indeed the
correct description of the microscopic world.

Before proceeding, let’s recall the basic definition of entanglement for bi-
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partite systems Given an state of the system |φA∪B〉 as a vector in the Hilbert
space HA ⊗HB, we call the system separable if

|φA∪B〉 = |φA〉 ⊗ |φB〉, (2.1)

for some pair of vectors |φA〉 ∈ HA, |φB〉 ∈ HB. If the state cannot be written
as (2.1), then the subsystems A and B are entangled.

As entanglement appears as the main characteristic of quantum mechanics,
it is important then to typify the different amounts of entanglement present
in a quantum system, and hence how “quantum”a system really is.

In order to study and characterize entanglement and its role in the dy-
namics of quantum systems, is necessary to define some type of measure of
entanglement. Different measures are useful for different settings.

In this chapter we will present some measures of entanglement, both for
bipartite and multipartite systems. In the first section we discuss the general
requisites for a given entanglement measure. In the second section we introduce
some useful measures for bipartitions in pure states. Entanglement in mixed
states will be defined in the last section of this chapter.

2.1 Requisites for entanglement measures

Let’s consider a quantum state Q shared by several parties A,B, . . . . We
will take an operational standpoint, where we have different laboratories (par-
ties) separated spatially, that can share a quantum system (let’s say a photon)
initially prepared elsewhere. We assume that each party can perform local
arbitrary quantum operations on its subsystem (this means, any operation
allowed by QM, but otherwise arbitrary). We also assume that parties can
communicate classically (using a classical channel, e.g sending an email, etc.)
so they can correlate their actions on Q. Protocols that can be decomposed in
this local operations (LO) and classical communication (CC) are denoted by
LOCC’s. A typical example of this type of protocol in quantum communica-
tion is teleportation [19]. It is natural to assume that the action of LOCC on Q
can increase classical correlations, but cannot increase quantum correlations.
This idea generates the first requisite for a measure of entanglement,

Requisite 1: Monotonicity Any entanglement measure should
be non increasing under LOCC’s.

Although from the point of view of measuring true quantum correlations,
the requisite discussed above is enough, it generates infinite measures of en-
tanglement, even for pure bipartite systems (which is the simplest scenario).
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It is useful then to introduce further requisites that, at least in the case of
pure bipartite systems, make all the entanglement measures equivalent to one
[20, 21]. These requisites are

Requisite 2: Additivity

For two copies of the same system, described by a density matrix ρ1, ρ2,
we would like to have a measure E which is additive, so that it is extensive
(in principle) on the number of particles

E(ρ1, ρ2) = E(ρ1) + E(ρ2). (2.2)

Although this condition seems natural, sometimes it is too restrictive.
Some widely used measures, like the distillable entanglement seems to not
fulfill this requisite.

Requisite 3: Continuity Entanglement Measures should be con-
tinuous.

Continuity allows us to study properties related with entanglement using
perturbation theory or other powerful methods. It is reasonable to expect
that small changes in the parameters of the system (couplig constants, exter-
nal magnrtic fields, pupulation densities, etc) produce small changes in the
entanglement properties of the quantum systems. If on the other hand, using
an enetanglement measure which is continuos, we spot a point where conti-
nuity breaks down, this should signal an abrupt change in the entanglement
properties, for a small change in the parameter. This could be used to char-
acterize phase transitions. An entanglement measure E which is sufficiently
continuous is equivalent, for pure states, to entanglement entropy S(ρ), defined
in the next section.

2.2 Entanglement in pure states

For pure states, all measures of entanglement (entanglement monotones
[20]) are equivalent. A class of measures is related to the eigenvalue spectrum
of the reduced density operator of a partition in the pure state (2.2.1). Another
class of measures is geometric in nature. It is related to the maximum overlap
(fidelity) between the given pure state and all possible separable states with
zero entanglement (2.3.3).

8



2.2.1 Bipartite systems

Reduced density matrix

Consider a normalized state vector |Ψ〉 in a Hilbert space H that represents
a pure state. Let us partition the Hilbert space according to H = HA ⊗
HB. This partitioning may be done in coordinate space, wavenumber space,
particle label space, etc. Different schemes reveal different physical aspects of
the resulting entanglement. Given the pure state |Ψ〉 there exists a Schmidt
decomposition [22–24]

|Ψ〉 =
d∑
i=1

ai|iA〉 ⊗ |iB〉, (2.3)

where {|iU〉} is an orthonormal basis in HU . This decomposition can always
be done, due to the existence of a singular value decomposition of matrices.
The set of Schmidt coefficients ai are unique up to constant phase factors.
They satisfy

∑
i |ai|

2 = 1. We may choose all ai to be real and positive and
label them in order of descending magnitude a1 ≥ a2 ≥ · · · ≥ ad.

To see how entangled region A is with region B, we distinguish region A
by taking the full density operator ρ = |Ψ〉〈Ψ| and taking the partial trace of
the degrees of freedom in B. The result is the reduced density operator

ρA = trB|Ψ〉〈Ψ| =
∑
i

|ai|2 |iA〉〈iA|. (2.4)

This operator acts on the subspace spanned by the block state vectors {|iA〉}.
The set of eigenvalues pi = |ai|2 of the reduced density operator is used to
quantify the entanglement between regions A and B.

Entanglement spectrum

Instead of using just the entanglement entropy as a measure of entangle-
ment in bipartite systems, Li and Haldane proposed [25] that the full eigenvalue
spectrum of the partial density matrix could be used as a measure of entangle-
ment. The reduced density operator is thus interpreted as a mixture (Gibbs
ensemble) of quantum states governed by an effective Hamiltonian called En-
tanglement Hamiltonian, at temperature T which depends on the particular
characteristics of the model.

ρA =
∑
i

e−βEi|iA〉〈iA| =
exp (−βHent)

tr exp (−βHent)
(2.5)

For some models, this effective Hamiltonian is proportional to a physical
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subsystem Hamiltonian [26–28]. This connection will be developed in detail
in Chapter 6. It has been shown that ES can distinguish non-local order in
topological insulators [29, 30], quantum Hall states [31], and spin systems [32].
Also, the closing of Schmidt gap (difference between two largest eigenvalues
of entanglement spectrum) can be used to identify quantum critical points
[33]. For example, degeneracies in the entanglement spectrum of blocks of
sites in the extended Bose-Hubbard model were analyzed to construct the
quantum phase diagram in the ground state[34]. Additionally, the scaling of
the Schmidt gap near the boundaries of the Haldane phases in anisotropic
spin-1 chains were studied [35].

Entanglement entropy

The entanglement entropy (EE) is a scalar function of the eigenvalue spec-
trum {pi} of the reduced density operator. It was proposed as an entangle-
ment measure for pure states [36–39]. It is an entanglement monotone for pure
states. The von Neumann entropy is defined as

SA = −trρA ln ρA = −
∑
i

pi ln pi. (2.6)

From the Schmidt decomposition is trivial to see that SA = SB, so the
entanglement entropy does not depend on a the particular subsystem. A
generalization of S which is easier to compute in some context because involve
powers of ρA is the Rényi entropy, defined as

S(α) =
ln trραA
1− α

=
1

1− α
ln
∑
i

pαi . (2.7)

The Rényi entropy reduces to the von Neumann entropy as α → 1. Instead
of being an extensive quantity (as usual for thermal states) that scales with
the volume of the region considered, the EE for typical ground states scales
linearly with the boundary size, following an area law, or an area law with a
small (often logarithmic) correction [4].

From (2.7), we can compute the Reyni entropy in continuous models, using
the replica trick as follows. We compute trραA for an integer α. If we succeed,
then taking the limit α → 1 (through analytical continuation) we obtain the
desired von Neumann entropy. Having Sα for generic α allow us to recover the
eigenvalues of ρA, the entanglement spectrum [40, 41].

To obtain the reduced density matrix of a subsystem, ρA = trBρ, we define
a bipartition of the space degrees of freedom into two disjoint sets A and B
and we sew the degrees of freedom in one of the sets (let’s take for definiteness
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to be the set B). The sewing corresponds to taking the partial trace over the
degrees of freedom in B, which means integrating over all the fields in the path
integral with support in B (see Fig. 2.1).

A

B

ρ

ρ
o/

o/

A

o/ o/ ='
'

= tr ρB =

τ
x

τ a) b)

c)

0
β

Figure 2.1: a) Subsystems A (red) and B (green) of a one dimensional system
0 ≤ x ≤ L. Euclidean time τ is periodic with period β. b) The density matrix
elements are obtained integrating the euclidean action over the fields, subject
to specific boundary conditions. c) The partial density operator ρA is obtained
tracing over degrees of freedom in B

Let’s introduce some notation. The theory under consideration is described
by a Hamiltonian H, and its density operator is in turn ρ ∼ e−βH . A set of
mutually commuting operators in this theory is φ̂(x, t), where we take the base
manifold Mbase of the theory to be a line in space 0 ≤ x ≤ L and continuous
time t ≥ 0. The density operator in the basis of eigenstates of φ̂(x, t), |φ(x, t)〉
is then

ρA({φ}, {φ′}) =
〈φ(x, t)|e−βH |φ′(x, t)〉

Z(β)
. (2.8)

This expression can be rewritten as an Euclidean partition function,

ρ({φ}, {φ′}) = 1
Z(β)

∫
Dφe−

∫ β
0 dτLEδ(φ(x, 0)− φ(y))δ(φ(x, β)− φ′(y)).

ρA({φ}, {φ′} =
∫
Dφy∈Bρ({φ}, {φ′}) (2.9)

To compute trραA, we glue α copies of ρA, along the cuts,
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trραA =
1

Z(β)α

∫
Dφ1..DφαρA(φ1, φ2)ρA(φ2, φ3) . . . ρA(φα−1, φα)ρA(φα, φ1),

(2.10)
with this procedure, the computation of the Reyni entropy becomes the com-
putation of the Euclidean action (as opposed to the action in Minkowsky space)
of the theory on the Riemmann surface Mα, obtained by gluing together α
copies of the manifold Mbase along the cuts corresponding to the subsystem
A (see Fig 2.2).

a) b)

Figure 2.2: (a) We start with a base manifold Mbase which in this case is a
torus (periodic system in space 0 ≤ x ≤ L and periodic in Euclidean time due
to the introduction of temperature). We define our subsystem to be a region
of the interval 0 ≤ xA ≤ LA with LA < L. (b) To compute the Reyni entropy,
we have to glue α copies of ρA along the subsystem A

The trace of ραA will have the generic form

trραA =
∑
k

gkλ
α
k , (2.11)

where gk is the degeneracy of the eigenvalue λk. We can recover the distribution
of eigenvalues of ρA from (2.11) using

∞∑
k=0

trρkAz
−k =

1

π

∫
dy
zP (y)

z − y
= zP (z), (2.12)

where P (z) =
∑

i δ(z − λi) is the distribution of eigenvalues of ρA.
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Topological entanglement entropy

In topological systems, the entanglement entropy has an expansion of the
form

S(A) = a1L− γ +O(L−b) b > 0, (2.13)

where L is the length of the boundary of A. The first term in (2.13) is the
usual area term, and γ is called topological entanglement entropy [42]. A non
vanishing topological entropy is an indicator of long range entanglement in
the quantum state. It corresponds to the logarithm of the total quantum
dimension of the excitations (quasiparticles) in the many-body state.

Entanglement of formation and and dilution

From an operational point of view, we can ask: Given n q-bits (two level
quantum system) which are little entangled (in a sense defined below), It is
possible to distill from these n qbits, m highly entangled q-bits?. To answer
this question it is necessary to introduce the concept of entanglement distilla-
tion and dilution.

We take the minimal entangled state to be a Bell state

|φ〉 =
|01〉+ |10〉√

2
, (2.14)

if from n copies of |φ〉 we are able to create m(n) high fidelity (see A.0.3)
copies of a desired state |ψ〉 using LOCCs, we can define the entanglement of
formation of |ψ〉 as

Ef (ψ) = lim
n→∞

m(n)

n
, (2.15)

this conversion process is also called entanglement dilution as takes n copies of
maximally entangled states |φ〉 and converts them into m less entangled states
|ψ〉.

Similarly, we can define the distillable entanglement of |ψ〉 as the inverse
process. Starting with m copies of ψ〉, we ask ourselves, how many Bell pairs
can we obtain?. We define then the distillable entanglement of |ψ〉 to be the
asymptotic limit of obtaining n(m) Bell states, starting from m copies of |ψ〉,

Ed(ψ) = lim
m→∞

m

n(m)
. (2.16)

it turns out that Ef (ψ) = Ed(ψ)[2].
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2.2.2 Multipartite states

Entanglement in multipartite systems is more difficult to treat as there
is not known convertibility process to take one state into other, by means of
dilution or distillation. Another problem is related to the existence of entan-
glement between different subsystems of a multipartite state. For example, in
a tripartite state, we can have no entanglement whatsoever, like in the state
|ϕA〉⊗ |ϕB〉⊗ |ϕC〉, or we can have entanglement between just two subsystems
like in |ϕAB〉 ⊗ |ϕC〉 or we can have entanglement between all the subsystems.
In this last case, it is difficult to establish a measure that can discriminate
uniquely between two states. For example we can take the N -partite states

|W 〉 = |100...00〉+|010...00〉+...|00...01〉√
N

, (2.17)

|GHZ〉 = |1111... 〉+|0000... 〉√
2

, (2.18)

which are entangled between all the subsystems. In quantum information
applications, their entanglement properties become useful depending on the
context.

2.3 Entanglement in mixed states

2.3.1 Bipartite states

In mixed states, to characterize the entanglement between subsystems is
more subtle due to the presence of quantum and classical (statistical) correla-
tions. In this scenario, the spectrum of the reduced density matrix is no longer
useful and it is necessary to rely on different measures.

Concurrence

Concurrence is an entanglement monotone defined for a mixed state ρ of
two qbits as C(ρ) = max(0, λ1 − λ2 − λ3 − λ4) with λ1 ≥ λ2 ≥ λ3 ≥ λ4 the
eigenvalues of the operator O =

√√
ρMρM

√
ρ with M = σy ⊗ σy the tensor

product of two σy Pauli matrices [43, 44].
Using concurrence, we can establish one of the main characteristics of en-

tanglement:
Monogamy of entanglement: If two qbits A and B are maximally (quan-

tum) correlated they cannot be correlated at all with a third qbit C. This can
be formally stated using the Coffman-Kundu-Wootters (CKW) inequality [45]
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C2
AB + C2

AC ≤ C2
A(BC), (2.19)

where Cαβ is the concurrence between systems α and β. This inequality can
be extended to the case of n qbits.

Mutual information

Concurrence is a good measure of entanglement in mixed systems composed
of two qbits, but for bigger quantum systems we need another measure. From
information theory we know that the mutual information I(x, y) between two
random variables X and Y measures the amount of correlation between them.
It can be defined in terms of the entanglement entropy as

I(A,B) = S(A) + S(B)− S(A ∪B), (2.20)

where S(A) is the entropy of region A. This measure does not distinguish
between quantum and classical correlations [46]. It is not a proper measure
of entanglement but still it is useful in characterize properties of the quantum
systems. It is also useful when considering multipartite correlations [47].

Negativity

An important measure of entanglement is negativity, introduced in [48].
Negativity is a useful quantity to characterize quantum effects in mixed sys-
tems, where the standard mutual information entropy fails to provide a clear
separation between classical and quantum correlations. Negativity is also use-
ful in the context of quantum information because it does not change under
local manipulations of the system [49].

Consider a mixed state ρ, with two subsystems, A and B. Negativity is
the sum of negative eigenvalues of the operator ρTA which is associated with
ρ by the linear map M which transpose elements of subspace A. In terms of
the matrix elements of ρ 〈lA,mB|ρ|iA, jB〉, the partial transpose matrix ρTA

has elements 〈iA,mB|ρ|lA, jB〉 [48, 49],

N (ρ) =
||ρTA|| − 1

2
, (2.21)

where ||V || = tr
√
V †V is the trace norm of V .

Also, based on N we can define the logarithmic negativity as

EN = log(2N + 1). (2.22)
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Some of the properties mentioned at the beginning of this chapter are not
properties of EN .

- can be zero even if the state is entangled (if the state is PPT entangled).
- is additive on tensor products: EN (ρ⊗ σ) = EN (ρ) + EN (σ).
- is not asymptotically continuous.
- is an upper bound to the distillable entanglement.

2.3.2 Multipartite states

The characterization of mixed multipartite entangled states is far from
being completely understood. One (incomplete) method is to define ll the
different partition of the original subsystems and to see if we can write the
state as a product of states belonging just to each partition. Let’s take a
multipartite system, composed of subsystems A,B and C. The whole system
which is mixed is described by a density matrix ρABC . We can take all the
possible partitions, namely

P = {(A,BC); (AB,C); (AC,B); (A,B,C)}. (2.23)

We now determine if the state in the partition p = (α, β) ∈ P can be written
as

|ψABC〉 = |φα〉 ⊗ |ϕβ〉, (2.24)

where |φα〉 is a state of the α subsystem.
After doing this we will obtain a table stating all the entangled partitions.

This table will be in most of the cases redundant as for example if ψABC =
|φA〉⊗ |ϕB〉⊗ |χC〉, then the state will be unentangled in all the other possible
partitions.

2.3.3 Geometric entanglement

Geometric entanglement is a measure of entanglement based on the geom-
etry of the Hilbert space. Given an entangled state |ψ〉 it is defined through
the Hilbert-Schmidt metric (see A.0.1) as G(ψ) = minφ || |ψ〉 − |φ〉|| where |φ〉
is a separable state. Although this measure is easy to define, the minimization
over all the separable states is usually complicated to perform. Additional
symmetries of the states, like translation invariance in many body systems
simplify this task [50].

This geometric measure of entanglement was introduced for bipartite pure
states in [51] and extended to multipartite pure states in [52]. Geometric
measures for mixed states were discussed in [50, 53]. Universality of geometric
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entanglement near quantum critical point was discussed in [54]. Geometric
entanglement in one-dimensional models described by matrix product states
is explored in [55].
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Chapter 3

Tensor Network States

The exact description of a quantum many body systems with N con-
stituents becomes increasingly complicated as N grows as the number of pa-
rameters needed to represent the quantum system grows exponentially with
the number of sites, due to the enlarged Hilbert space. For a spin 1

2
chain

with m sites, the Hilbert space of the system is C2m and the ground state is
described in principle by 2m parameters. In this chapter we will introduce the
concept of matrix product states (MPS) and its generalization as Tensor Net-
work States (TNS) and projected entangled pair states (PEPS). Using TNS,
the description of ground states scales just polynomially with the number of
sites, providing an useful scheme for analysis of quantum many body systems
and their ground state entanglement properties. This formalism is particularly
efficient for the description of quantum states with an energy gap [56, 57].

In the first section we motivate the introduction of MPS in one dimen-
sional chains and discuss some of the implications for entanglement given this
description. In the second section we generalize the MPS description for arbi-
trary dimensions using TNS. Finally we discuss the connection between PEPS
and area laws in many body ground states.

3.1 Matrix product states

Let’s take a one dimensional system on the lattice, consisting of N sites and
finite local Hilbert space dimension ni (i = 1..N) at site i. A matrix product
state is defined as [58–60]

|Ψ〉 =
∑
{ni}

tr(An1 [1]An2 [2] · · ·AnN [N ])|n1, n2, · · · , nN〉 (3.1)

where the matrices Ani are matrices of dimensions Di. The size of the matrix
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Figure 3.1: (a) Pictorial representation of the operator An. Right and left
lines correspond to the matrix indices of A (auxiliary), while the upper line
corresponds to the quantum state. (b) Construction of the state by joining
auxiliary indices.

is called local bond dimension. This matrices are usually represented as three
legged objects, where two legs correspond to matrix indices and the third leg
corresponds to the so called physical index, which denotes the quantum state
of the system, for a given value of the matrix indices (see Fig 3.1)

For translational invariant systems, the matrices A do not depend on the
site i. Computation of correlation functions in this formalism is very simple.
The object

〈Ψ|OiOj|Ψ〉 =
∑
{ni}

∑
{mj}

tr(An1An2 · · · )tr(Am1Am2 · · · )〈ni, nj|Oimi, Ojmj〉,

(3.2)
is the Ψ-state correlation function of operators O at different sites (we assume
a translational invariant state), and can be computed from local operations
by contracting two matrices A at the same site along their physical index, to
form a four legged tensor, which is called the transfer matrix. This transfer
matrix T is now contracted as in Fig. (3.2) with the matrices at sites i and j
TOi , TOj .

The ground states of many spin chains can be represented as a product
of D × D vector valued matrices. Reduced density operators of blocks of
spins have at most D2 nonzero eigenvalues. Entanglement entropy is therefore
bounded S ≤ logD2. Due to this transfer matrix structure, the correlation
functions decay exponentially. This indicates that the MPS formalism it is
more appropriate for the description of short range ordered systems, or gapped
systems.

The whole discussion presented here is valid for spin systems. Systems with
infinite dimensional local Hilbert spaces (e.g bosons) can also be included with
the proper modifications.

The matrix A establish a linear map between different spaces, the space
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Figure 3.2: (a) Transfer matrix (see text). (b) Computation of correlation
functions with MPS state. The matrix TOi is obtained by inserting the operator
Oi between matrices A.

where the matrix indices act and the Hilbert space where the quantum states
live. This map can be generalized to act between different number of spaces,
as we will define next in order to define matrix product states in higher di-
mensions.

AKLT as an example of MPS

The Affleck Kennedy Lieb and Tasaki (AKLT) model ([61]) is a simple
example where the ideas of MPS can be applied quite easily. We will discuss
this model in detail in the following chapters, so here we will give just the
necessary ingredients to illustrate the power of MPSs.

The AKLT model (in its simpler version) is defined on the lattice, with spin
1 particles at each site, and a local Hamiltonian density acting on neighboring
sites, which is a projector Πij onto total spin 2. We can construct the ground
state of this model simply by thinking of each spin 1 particle as a composite of
two spin 1/2 particles and antisymmetrizing one of this two spin 1/2 particles
with one of the immediate neighbor, in order to produce a singlet. This sin-
glet will prohibit the existence of a spin 2 particle between neighboring sites,
then annihilating the Hamiltonian Πij. The mapping from this two spin 1/2
particles to the spin 1 space is done by the operator

P = |1〉〈++|+ | − 1〉〈−−|+ |0〉(〈+−|+ 〈−+|)√
2

=
∑
α,β,a

Aaαβ|a〉〈αβ| (3.3)

which implements the map to the symmetric subspace of 1
2
⊗ 1

2
. The ground

state is then
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|GSAKLT 〉 =
N⊗
i=1

εβi−1αiA
a
αiβi
|ai〉 (3.4)

3.2 Tensor Network states and PEPS

Is it possible to define tensor network states as in (3.1), but the notation
gets a little cumbersome, so we prefer to define TNS pictorially,

(a) (b)

Figure 3.3: (a) Linear map from the black bonds (auxiliary space) to the red
bond (physical index) useful for two dimensional lattices. (b) Tensor network
states are constructed by joining neighbor tensors and tracing out auxiliary
degrees of freedom. Doing this we are left with just physical indices, charac-
terizing the quantum state.

The local tensor (analogous of A in a the previous section), can be thought
as a linear map from the auxiliary space to the physical Hilbert space. This
map can be implemented through the inclusion of tensors (repeated indices
are summed)

T(i) = T aα1α2···αz [i]|a〉〈α1, α2, · · · , αz|, (3.5)

T(i) = (T aα1α2···αz)
∗[i]|α1, α2, · · · , αz〉〈a|, (3.6)

for a lattice with coordination number z. The constructions presented above
for the computation of observables is still valid in more dimensions, where now
the local union of T⊗ T is a 2z legged tensor.

Based on the construction used for the AKLT model presented above, we
can generalize it for arbitrary dimensions and using more general maximally
entangled states. This generalization leads directly to the construction of
projected entangled pair states [62].
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3.2.1 PEPS

Projected entangled pair states are a natural generalization of MPS, use-
ful in more than one dimension. It can be created by postselection using a
quantum circuit. We put with a maximally entangled state

|Φ〉 =
D∑
n=1

|n, n〉, (3.7)

between two neighboring sites in a lattice. At each site, we will have z halves
of the maximally entangled states, which we project onto a physical state
using a projector P (in the AKLT case this was just the projector onto the
symmetric subspace). This projector defines the PEPS (See Fig 3.4). For a
lattice with in d dimensions, with N sites and coordination number z, the
number of parameters required to specify the state is NdDz.

a) b)

Figure 3.4: a) Maximally entangled state. Each circle coincide with one part
of the state. b) Local PEPS. Given a coordination number z at site i, z
maximally entangled states are brought to site i, where a projection onto the
physical subsystem (red circle) is applied as in the figure.

This construction is fairly flexible, and allows for a efficient approximation
of quantum states. Usually for a generic state the value of D to get a good
approximation may be very high and may increase with N , but as this types
of states follow an area law S ≤ N logD, the scaling of D with N is just
polynomial. Using this idea, it has been proved [63] that PEPS are an efficient
description of a Gibbs state as long as the interactions are local.

PEPS satisfy an area law by construction, due to the presence of maximally
entangled states, which cross from one subsystem to the other. For a system
with a boundary of length L,

SPEPS ≤ L log(D). (3.8)
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Chapter 4

Negativity in AKLT ground
state

After reviewing the basic concepts regarding entanglement in the previous
chapters, we now make explicit use of the some concepts presented in Chap-
ter 2, specially the entanglement measures for bipartite systems, studying a
particular model in one dimension, the AKLT model, briefly introduced before.

In the first section we quickly review the formulation of the AKLT model
and its valence bond solid (VBS) ground state with its extension to make it
unique. We also obtain the density matrix associated with the VBS ground
state. In the second section we take a bipartition of the pure ground state.
We re-derive the spectrum of the partial density matrix ρA = trBρ using
our simpler approach obtaining the results already shown in [64]. We also
computed the transposed density matrix ρTA to illustrate our method. For this
case we compute the full spectrum, along with eigenvectors of ρTA . We also give
a value for the negativity in this case, which decays to a constant value twice
as fast as expected from correlation functions. In the third section we define
two blocks A and B, separated by L sites. We compute the density matrix
of the mixed system A ∪ B ρ(A,B), evaluated by tracing out environmental
degrees of freedom. We obtain the spectrum of ρ(A,B) and the entanglement
spectrum as function of the separation L between blocks and the size of A
and B. The purity of this system corresponds to the one encountered for
maximally mixed states (up to second order corrections). In this section we
find that negativity for this system vanish for non adjacent blocks. We also
study the case of periodic boundary conditions. In the fourth section we obtain
the mutual entropy of the system, in the limit of infinite blocks A and B.
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4.1 The AKLT model and the VBS state

The one dimensional AKLT model that we will consider consists of a chain
of N spin-1s in the bulk, and two spin-1/2’s on the boundary. The location
where the spins sit are called sites. We shall denote by Sk the vector of spin-1
operators and by sb spin−1/2 operators, where b = 0, N+1. The Hamiltonian
is H = HBulk + Π0,1 + ΠN,N+1, where the Hamiltonian corresponding to the
bulk is given by

HBulk =
N−1∑
i=1

1

6

(
3Sk · Sk+1 + (Sk · Sk+1)2 + 2

)
, (4.1)

and the sum runs over the lattice sites. The boundary terms Π describe
interaction of a spin 1/2 and spin 1. Each term is a projector on a state with
spin 3/2:

Π0,1 =
2

3
(1 + s0 · S1), ΠN,N+1 =

2

3
(1 + SN · sN+1). (4.2)

In order to construct the ground state |VBS〉 of H we can associate two
spin 1/2 variables at each lattice site and create the spin 1 state symmetrizing
them. To prevent the formation of spin 2, we antisymmetrize states between
different neighbor lattice sites. Doing this we are sure that this configuration is
actually an eigenstate of the Hamiltonian, with eigenvalue 0 (i.e. the projection
of |V BS〉 on the subspace of spin 2-states is zero). Noting that the Hamiltonian
H is positive definite, then we know that this is the ground state.

We can associate a graph to this state, defining dots as spins 1/2, links as
anti-symmetrization, and circles as symmetrization. The graph representation
of the VBS ground state is then given by Fig. 4.1.

0     1      2     ...     ...     ...    ...     N  N+1
Figure 4.1: Graphic representation of the 1D VBS state.

It is possible to write down a compact expression for this VBS state us-
ing bosonic variables. Following [65], we make use of the Schwinger boson
representation for SU(2) algebra at each site j, namely S+

j = a†jbj, S−j =
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ajb
†
j, Szj = 1

2
(a†jaj − b†jbj), with [Szi , S

±
j ] = ±S±i δij, [S+

i , S
−
j ] = +2Szi δij,

where a and b are two sets of bosonic creation operators, with the usual
commutation relations [ai, a

†
j] = [bi, b

†
j] = δij, [ai, aj] = [bi, bj] = 0 and cor-

respondingly for a† and b†. These two sets commute in each and every lattice
site, i.e. [ai, bj] = [a†i , bj] = 0. To have a finite dimensional representation
of SU(2), it is necessary to impose one more condition on a and b, given by
1
2
(a†jaj + b†jbj) = Sj, with Sj the value of the spin at site j (in this chapter we

have Sj = 1 for j = 1..N and 1/2 at j = 0, N + 1). In this language the VBS
ground state is given by [65]

|VBS〉 =
N∏
i=0

(a†ib
†
i+1 − a

†
i+1b

†
i )|0〉. (4.3)

where |0〉 =
⊗

sites |0a, j〉 ⊗ |0b, j〉. The state |0a, j〉 is defined by aj|0a, j〉 = 0,
and it’s called the vacuum state for the set of operators a. |0b, j〉 is defined
similarly for the set b. In [66] the authors prove that this ground state is
unique for the Hamiltonian H, then we can construct the density matrix of the
(pure) ground state ρ = |VBS〉〈VBS|

〈VBS|VBS〉 . This is a one dimensional projector on the

|VBS〉 ground state of the Hamiltonian.

4.2 Density matrix pure state

In order to compute the partial transposed density matrix of the VBS
system, we define three subsystems A, B1 and B2, where A is a block of L
spins 1 and B = B1 ∪B2 is it’s complement (see Fig. 4.2)

0       1        ...       m       ...    m+L-1   ...       N    N+1{
A=L sites

{
B1

{
B2

Figure 4.2: Partition of the 1D chain in three subsystems A,B1, B2. Subsystem
A, consisting of L sites. Subsystem B = B1 ∪B2 is the complement of A.

For the partition defined by (with 1 ≤ L,m ≤ N) B1 = {sites i, 0 ≤ i ≤
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m− 1}, A = {sites i, m ≤ i ≤ m+L− 1}, B2 = {sites i, m+L ≤ i ≤ N + 1}
we can split the expression (4.3) in the corresponding states of the subsystems

|VBS〉 = (a†m−1b
†
m − a†mb

†
m−1)(a†Kb

†
K+1 − a

†
K+1b

†
K)|A,B〉. (4.4)

where K = m + L − 1. |A〉 and |B〉 are the VBS states of the A and B
subsystems, defined by |A〉 ≡

∣∣
m
K
〉
, |B〉 ≡

∣∣
0
m−1〉|K+1

N+1
〉
, where the states

of the form
∣∣
I
J
〉

are defined as

∣∣
I
J
〉
≡

J−1∏
l=I

(a†l b
†
l+1 − a

†
l+1b

†
l )|0〉, (4.5)

respectively. This state describes spin 1 in the bulk (i.e at l 6= I, J) and
spin 1/2 in the boundary. To recover the spin 1 at those boundaries sites, we
introduce the following notation (ψ1

k)
† = a†k, and (ψ2

k)
† = b†k, to have

|cAd ≡ (ψcm)†(ψdK)†|A〉〉, |cBd〉 ≡ (ψcm−1)†(ψdK+1)†|B〉 (c, d = 1, 2),

then eq. (4.4) becomes

|VBS〉 = |2A1,1B2〉 − |1A1,2B2〉 − |2A2,1B1〉+ |1A2,2B1〉. (4.6)

The four states |σAη〉 belong to the Hilbert space of the block A of length
L. They span the kernel of HBulk(A) [11], but they are not orthogonal to each
other. We make use of the classical variable method, introduced in [65] (see
appendix B.0.4), to prove

||σAν ||2 =
1

4

(
1− (−1)σ+ν

(
−1

3

)L)
, and

〈σAν |νAσ〉 = −1

2

(
−1

3

)L
for σ 6= ν, (4.7)

valid for L ≥ 1 (L ∈ N). The norm ||u||2 is defined as usual ||u||2 = 〈u|u〉. All
other combinations vanish. We can perform a rotation of this basis in order
to make the overlap (4.7) vanish. The new basis is defined by
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|A0〉 ≡
i√
2

(|1A1〉+ |2A2〉), |A1〉 ≡
1√
2

(|1A2〉+ |2A1〉),

|A2〉 ≡
−i√

2
(|1A2〉 − |2A1〉). |A3〉 ≡

1√
2

(|1A1〉 − |2A2〉),

In this basis (here µ, ν = 0..3) the norm is given by

〈Aµ|Aν〉 =
1

4

(
1− sµ

(
−1

3

)L)
δµν , (4.8)

where sµ = (−1,−1, 3,−1). These four different eigenstates of the bulk Hamil-
tonian corresponding to the block A, can be labeled by the Bell pair that is
formed between the spins 1/2’s at the boundary. The states of the environ-
ment B form an orthonormal basis 〈Bµ|Bν〉 = δµν . The boundary operators
a, b which act on the subspace B, also organize themselves in irreducible rep-
resentations, with the only condition that adjacent boundary operators acting
on A and B cannot create a state of spin 2, as required by the VBS ground
state symmetry. We define the following operators for further simplicity (here,
sum over dummy variables c = 1, 2 and d = 1, 2 is assumed)

Tµ
†(i, j) = ψci

†(σµ)cdψ
d
j

†
, (µ = 0..3), (4.9)

with σµ = (iI, σ1, σ2, σ3) being I the 2× 2 identity matrix and σi are the Pauli
matrices.

The operators Tµ keep explicit the symmetry between the operators a and b,
remaining unchanged (up to phase factors) when we interchange the operators
a† and b†. This operation corresponds to take the transpose of σµ, so (σµ)T =
σµ, for µ = 0, 1, 3 and (σ2)T = −σ2. As the set of operators Tµ acting on the
outer edges of an state is just a linear combination of the states defined in
(4.8), the states of the form Tµ(i, j)† |ij〉 are a basis for the four dimensional
space of degenerate ground states of the bulk Hamiltonian (4.1).

With the introduction of these operators, we can write the identity (see
B.0.5) (sum convention, with µ = 0..3)

T †2 (i, i+ 1)T †2 (j, j + 1) = −1

2
Tµ
†(i+ 1, j)Tµ

†(i, j + 1), (4.10)

Using this identity in eq. (4.4), we find that the VBS state has the decom-
position (Tν

†(m,K)|A〉 = |Aν〉)
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|VBS〉 = −1

2
Tµ
†(m− 1, K + 1)|Aµ, B〉.

Now we can write the density matrix for the VBS state ρ = |VBS〉〈VBS|
〈VBS|VBS〉

ρ = Tµ
†(m− 1, K + 1)|Aµ, B〉〈Aα, B|Tα(m− 1, K + 1). (4.11)

We can define the state |s〉 = Tµ
†(m − 1, K + 1)|Aµ, B〉. In terms of this

state, the density matrix (4.11) takes the form ρ = |s〉〈s|, and the eigenvector
is clearly |s〉 with eigenvalue 1. This is natural because so far we have just
taken another basis to represent ρ, which was already a projector onto the
VBS ground state.

It’s important to note that if we trace the B block in expression (4.11),
we get the partial density matrix respect to the A subsystem ρA = |Aµ〉〈Aµ|.
This expression was already found in [64]. The von Neumman or entangle-

ment entropy is given by SA = −Tr(ρA ln ρA) = −1
4
(1+3(−3)−L) ln 1+3(−3)−L

4
−

3
4
(1 − (−3)−L) ln 1−(−3)−L

4
and scales with the length of the boundary as ex-

pected. The entanglement spectrum for ρA = |Aµ〉〈Aµ| is ξ1 = ln
(

4
1+3(−3)−L

)
no degeneracy and ξ2 = ln

(
4

1−(−3)−L

)
with triple degeneracy (L 6= 0) [64].

4.3 Density matrix for the mixed system of 2

disjoint blocks

4.3.1 Open boundary conditions

So far we have studied the density matrix for the pure VBS system. In this
section we want to extend our results to the case of mixed systems. We will
study the mixed system composed of two blocks A and B of length LA and
LB, obtained by tracing away the lattice sites which do not belong to these
blocks in the VBS ground state. This situation is described in Fig 4.3.

To define the blocks, we partition the N + 2 sites of the chain into five
different subsets, A,B,C,D and E, of different length.

Given I, J,K,M,N five positive integers ordered as 0 < I < J < K <
M < N + 1, we define:

• Block C = {sites i, 0 ≤ i ≤ I − 1}, with length LC = I,

• Block A = {sites i, I ≤ i ≤ J − 1}, with length LA = J − I,

• Block D = {sites i, J ≤ i ≤ K − 1}, with length L = K − J ,
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0    1  ...   I-1     I   ...   J-1    J  ...   K-1    K ...   M-1   M ...   N  N+1

C (L  sites)C 

... ... ... ... ...

A (L  sites)        A D(L sites)B (L  sites)        B E (L  sites)E 

Figure 4.3: We made a partition of the VBS state in 5 sectors, labeled
A,B,C,D and E as shown in the figure. To obtain the density matrix for
the blocks A and B, we trace away the spin variables at the sites inside C,D
and E.

• Block B = {sites i, K ≤ i ≤M − 1} with length LB = M −K and

• Block E = {sites i, M ≤ i ≤ N + 1} with length LE = N + 2−M .

We are interested in the density matrix for the mixed system of two different
blocks. In order to compute the density matrix we have to trace away the sites
outside the corresponding blocks. To do that we use the following results for
the bulk states

〈Dµ|Dν〉 = δµνλµ(L) with λµ = 1
4
(1 + z(L)sµ), (4.12)

z(L) =
(
−1

3

)L
; sµ = (−1,−1, 3,−1),

〈C,E|Tµ(I − 1,M)Tν
†(I − 1,M)|C,E〉 = δµν , (4.13)

note that the states Tν
†(I − 1,M)|C,E〉〉 belong to the environment, so they

contain the boundary 1/2 spins, and consequently are orthogonal.

Density matrix of the blocks C & E

The simplest case occur when we trace away the A,D and B blocks. The
density matrix for the C and E blocks is

ρCE = TrABD

{
|VBS〉〈VBS|
〈VBS|VBS〉

}
, (4.14)

= λµT
†
µ(I − 1,M)|C,E〉〈C,E|Tµ(I − 1,M),

≡ λµ|[C,E]µ〉〈[C,E]µ|.
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using identities (4.9) and (B.12) the partial transposed density matrix respect
to the E system is

ρTECE = (λµ − (−1)µ
λ2 − λ1

2
)|[C,E]µ〉〈[C,E]µ|. (4.15)

This is a sum of projector operators (a consequence of (4.12)). The nega-
tivity is non vanishing just for LA + LB + L = 0, i.e. when C and E together
are in a pure state. In this case we have N = 1/2.

Density Matrix of the blocks A & B, case L ≥ 1.

In this case we compute the density matrix for blocks A and B. We obtain
this density matrix by tracing away the states on the C,D and E subspaces.

ρAB = TrCDE

{
|VBS〉〈VBS|
〈VBS|VBS〉

}
. (4.16)

Using the identity (B.15) (See B.0.5), we can write the VBS state as a linear
combination of products between the different four fold degenerate ground
states of the bulk Hamiltonian (4.1) in the form:

|VBS〉 = MµνρσT
†
σ(I − 1,M)|C,Aµ, Dν , Bρ, E〉, with

Mµνρσ = (−1)ν(gµνδρσ + gνρδµσ − gνσδµρ + gναεµαρσ). (4.17)

here we have introduced three types of tensors, the Kronecker delta symbol
in 4 dimensions δαβ, the diagonal tensor gµν = (−1,+1,+1,+1) and the Levi
Civita symbol in four dimensions εµνρσ, which is a totally antisymmetric tensor,
with εµνρσ= sign of permutation (µ, ν, ρ, σ) if (µ, ν, ρ, σ) is a permutation of
(0, 1, 2, 3), and zero otherwise.

Using this representation of the VBS state, it’s easy to write down the
density matrix (4.16) using the orthogonality of the bulk ground states (4.12).
We find that the density matrix ρAB is

ρAB = MµνρσMανβσ|Aµ, Bρ, 〉〈Aα, Bβ|, (4.18)

with the tensor MµνρσMανβσ given explicitly by (summation over dummy vari-
ables ν and σ is assumed)

MµνρσMανβσ = δµαδρβ − z(L)[δµρδαβ − δραδµβ]Sµα + z(L)εαβµρVρβµα, (4.19)
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with Sµα = (sµ + sα)/2 and Vρβµα =
Sρβ−Sµα

2
. We can identify two parts in

(4.18), the first term which does not depend on z and the rest which is linear
in z. The first term is a projector on the ground states of the bulk of A and
B, namely

ρ0(A,B) = δµαδρβ|Aµ, Bρ, 〉〈Aα, Bβ|, (4.20)

while all the other terms, proportional to z(L), have vanishing trace. From
this expression, we can compute the entanglement spectrum associated with
ρ(A,B), in the limit L,LA, LB � 1. This density matrix has rank 16, and
is exponentially close to a maximally mixed state. the eigenvalues are (using
xA = (−3)−LA , xB = (−3)−LB and z = (−3)−L)

{λi}11
i=1 =

1− xA − xB − z
16

, {λi}14
i=12 =

1 + 3xA + 3xB + 3z

16
,

λ15,16 =
1 + xA + xB + z

16
± 1

8

√
z2 + (xA + xB)(xA + xB − z).(4.21)

The entanglement spectrum of ρ(A,B) is ξi = − lnλi. Explicitly we have

{ξi}11
i=1 = 4 ln 2 + xA + xB + z, {ξ}14

i=12 = 4 ln 2− 3xA − 3xB − 3z,

ξ15,16 = 4 ln 2− xA − xB − z ∓
√
z2 + (xA + xB)(xA + xB − z).(4.22)

The purity, defined as γ = Tr(ρ2) corresponds in this limit to the purity of
a maximally mixed state, up to terms of second order in xA, xB and z. We
have γ = 1

16
+ O(2). The general results for arbitrary L,LA, LB are given in

appendix B.0.6.
If we call ρ1(A,B) to all the linear terms in z(L) on (4.18), we can write

for brevity

ρAB = ρ0(A,B) + z(L)ρ1(A,B). (4.23)

From the expressions (4.18) and (4.19) we can obtain the partial transposed
density matrix with respect to the A subsystem.

ρTAAB =

[
δµαδρβ − z(L) ([δαρδµβ − δρµδαβ]Sµα − εµβαρVρβµα)

]
|Aµ, Bρ〉〈Aα, Bβ|.

(4.24)

from where, comparing with equations (4.18) and (4.19), we learn that
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ρTAAB(z) = ρAB(−z). (4.25)

Given this result, and the fact that ρAB(−z) is also a density matrix (proved
in the following theorem), the negativity vanishes for L > 0.

Theorem 1. The negativity of the transposed density matrix ρTAAB(z(L)) is
strictly zero for two blocks separated by L > 0.

Proof. Consider the family of density matrices

ρAB(z) = ρ0(A,B) + z(L)ρ1(A,B), (4.26)

defined in eq. (4.23). Recalling that the space of density matrices is convex [2],
meaning that for two density matrices ρ1, ρ2, the operator ρ̃ = λρ1 + (1−λ)ρ2

is also a density matrix for λ ∈ [0, 1], we proceed as follows. We take the
first two members of the family ρAB(z), namely ρAB(z1) and ρAB(z2) for fixed
z1 = 1, z2 = −1/3 (We can take any pair different z1 and z2, but the greater z is
achieved for z1 = 1, z2 = −1/3 (or vice versa)). By the convexity of the space
of density matrices, ρ̄ = λρAB(z1) + (1 − λ)ρAB(z2) is also a density matrix.
Using (4.23), we write explicitly ρ̄ = ρ0(A,B) + (λz1 + (1−λ)z2)ρ1(A,B). We
can choose λ = 1

4
(1− 3(−1

3
)L) ∈ [0, 1] for L ≥ 1. Using this λ, we find

ρ̄ = ρ0(A,B)− z(L)ρ1(A,B). (4.27)

Then ρ̄ = ρAB(−z) is also a density matrix, for L ≥ 1. Now, by (4.25),
ρTAAB(z) is also density matrix for z < 1 (L > 0). Then the negativity (sum of
negative eigenvalues) of ρTAAB(z) vanishes.

Special case L = 0.

As in the previous section, we analyze separately the case L = 0. In this
case the block D is not present and we cannot take a trace over it.

We can study this scenario using the following identity (see B.0.5)

T †2 (i, i+ 1)T †2 (j, j + 1)T †2 (k, k + 1) =

(−1)νmµνλTµ
†(i+ 1, j)Tν

†(j + 1, k)Tλ
†(i, k + 1) (4.28)

where mµνλ =
−1

4
(gµνδ2λ + g2νδµλ − gλνδ2µ + gναεµα2λ) (4.29)

The VBS state splits into
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|VBS〉 = T †2 (i, i+ 1)T †2 (j, j + 1)T †2 (k, k + 1)|C,A,B,E〉. (4.30)

with i = LC − 1, j = LA + LC − 1 and k = LC + LA + LB − 1 and LC being
the number of sites in C, LA the number of sites in A, LB the number of sites
in B. Here the states |C〉, |A〉, |B〉, |E〉 are defined as in the previous section
taking m− 1 = K (L = 0).

Using the identity (4.28), the equation (4.30) becomes

|VBS〉 = (gµνδ2λ + g2νδµλ − gλνδ2µ + gναεµα2λ)Tλ
†(i, k + 1)|C,Aµ, Bν , D〉

Now, given that (see appendix B.0.4)

〈C,D|Tλ(i, k + 1)Tλ′
†(i, k + 1)|C,E〉 = δλλ′ , (4.31)

we can write the normalized density matrix TrC,Eρ ≡ ρAB as

ρAB =

(
δµαδρβ − [δµρδαβ − δραδµβ]Sµα + εαβµρ

(
Sρβ − Sµα

2

))
|Aµ, Bν〉〈Aα, Bβ|

This expression is analogous to the (4.18), with z(L) = 1 (L = 0). From
this result, the transposed density matrix respect to A is now given by

ρTaAB =

(
δµαδρβ + [δµρδαβ − δραδµβ]Sµα − εαβµρVρβµα

)
|Aµ, Bν〉〈Aα, Bβ|,(4.32)

(with Vρβµα =
Sρβ−Sµα

2
). Using this expression it is possible to compute the

eigenvalues of the transposed density matrix and the negativity. For the results
at finite size of the block A (LA) and block B (LB) see appendix (section B.0.6).
The negativity in the asymptotic limit LA →∞, LB →∞ is given by

NLA,LB→∞ =
1

2
− 3

4

((
−1

3

)2LA

+

(
−1

3

)2LB
)
. (4.33)

4.3.2 Periodic Boundary Conditions

Using the same technology developed previously, we can also analyze the
case of periodic boundary conditions. This state is unique, given that the
coordination number for each spin is two [66].
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In this state, we make a partition in four sectors, labeled by their length as
LA, LB, LC , LD, with LA + LB + LC + LD = L the total length of the system.
We trace away states from sectors that do not belong to A∪B (See Fig. 4.4).

D

A

B

Figure 4.4: We trace blocks C and D, leaving a reduced density matrix in
terms of the states of the A and B blocks.

We split the |VBS〉 as in the previous section, but now the difference is
that the norm of both states that we trace out, namely the block C and D,
is nontrivial, each one contributing with a factor 〈Cα|C ′β〉 = λα(LC)δαβ and
〈Dα|Dβ〉 = λα(LD)δαβ.

The VBS state can be rewritten as |VBS〉 = Mµνρσ|Cσ, Aµ, Dν , Bρ〉, with
Mµνρσ = (−1)ν(gµνδρσ+gνρδµσ−gνσδµρ+gναεµαρσ). The reduced density matrix
in this case is

ρAB = MµνρσMανβσλν(LD)λσ(LC)|Aµ, Bρ〉〈Aα, Bβ|. (4.34)

The tensor Wµραβ = MµνρσMανβσλν(LD)λσ(LC) is given explicitly by

Wµραβ = δµαδρβΛαβ(zd, zc)− δαρδµβΓαµ(zd, zc) + εαβµρRρµβα(zd, zc)

−δµρδαβΓµα(−zd,−zc), (4.35)

where zc = z(LC) and zd = z(LD). The tensors Λαβ(x, y),Γαα′(x, y) and
Rαβα′β′(x, y) are respectively given by
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Λαβ(x, y) =
1 + (sαsβ + sα + sβ)xy

1 + 3z(L)
, Γαα′(x, y) =

sα + sα′

1 + 3z(L)

(
xy − x+ y

2

)
and Rαβα′β′(x, y) =

sα − sβ + sα′ − sβ′
4 + 12z(L)

(x− y). (4.36)

As with the case studied in section 4.3, the partial transposed operator
ρTAAB is exactly ρAB(−zd,−zc). With this result, a vanishing negativity of the
system is analogous to prove that ρAB(−zd,−zc) is a density matrix. We have

Theorem 2. The negativity of the transposed density matrix for the system
with periodic boundary conditions ρTAAB(zd, zc) is strictly zero for LC and LD 6=
0.

Proof. Again we proceed as before. The density matrix ρAB defines a family
of operators ρAB(zd, zc) = ρ0 + zdρ1 + zcρ2 + zdzcρ3, with

ρ0 =
δµαδρβ

1+3z(L)
|Aµ, Bρ〉〈Aα, Bβ|,

ρ1 =

[
sα+sµ

2+6z(L)
(δαρδµβ − δµρδαβ) +

(sα−sβ+sµ−sρ)

4+12z(L)
εαβµρ

]
|Aµ, Bρ〉〈Aα, Bβ|,

ρ2 =

[
sα+sµ

2+6z(L)
(δαρδµβ − δµρδαβ)− (sα−sβ+sµ−sρ)

4+12z(L)
εαβµρ

]
|Aµ, Bρ〉〈Aα, Bβ|,

ρ3 =

[
sαsβ+sα+sβ

1+3z(L)
δµαδρβ − (sα+sµ)

1+3z(L)
(δαρδµβ + δµρδαβ)

]
|Aµ, Bρ〉〈Aα, Bβ|.

We choose four different members of this family, ρa = ρAB(1, 1), ρb =
ρAB(−1

3
, 1), ρc = ρAB(1,−1

3
) and ρd = ρAB(−1

3
,−1

3
). Recalling that the space

of density matrices is convex [2], we have that ρ̃ = αρa+βρb+γρc+(1−α−β−
γ)ρd is also a density matrix for 0 ≤ α, β, γ ≤ 1. Choosing α = 5

32
+ 9

32
(zczd −

zc − zd), β = 3
32

+ 1
32

(9zd − 15zc + 9zczd) and γ = 3
32

+ 1
32

(9zc − 15zd − 9zczd),
we have

ρ̃ = ρ0 − zdρ1 − zcρ2 + zdzcρ3 = ρAB(−zc,−zd), (4.37)

is also a density matrix for 0 ≤ α, β, γ ≤ 1. This condition breaks down when
zc or zd are equal to 1.
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4.4 Mutual Entropy

Having the explicit expression for the density matrix of two blocks and
the proof of vanishing negativity for any separation of the blocks greater than
zero, a natural question to ask is, Does the mutual entropy vanish in this case,
too?. We found surprisingly that the answer is negative, i.e. there is non zero
mutual entropy even when the separation L is greater than zero. The mutual
entropy decays exponentially, as expected from the spin-spin correlations.

From (4.18), we can in principle compute the eigenvalues and eigenvectors
of ρAB, where ρAB can be written as a 16 × 16 matrix. This dimension is
fixed by the dimension of the ground state space for each block. Being V the
Hilbert space spanned by the vector |Aµ, Bν〉 we have

Dim(V ) = Dim(KerA)×Dim(KerB) = 16 (4.38)

where KerA is the Kernel of the bulk Hamiltonian defined on the Hilbert space
of the block A, and similarly for KerB. As we have shown, this spaces are
spanned by the states |Aµ〉, |Bν〉 µ, ν = 0..3, states which are orthogonal but
not normalized in our convention. In the thermodynamical limit, when the
length of each block goes to infinity LA →∞,LB →∞, the states |Aµ〉 become
orthonormal

〈Aν |Aµ〉 = δνµ, 〈Bµ|Bν〉 = δνµ. (4.39)

In this limit, the matrix elements of ρAB are

〈Aµ, Bν |ρAB|Aα, Bβ〉
= δµαδνβ + z(L)[δµνδαβ − δναδµβ]Sµα + z(L)εµναβ (Sνβ − Sµα) , (4.40)

The eigenvalues of this matrix are

λI(z) =
1

16
(1 + 3z), 4-fold degeneracy (4.41)

λII(z) =
1

16
(1− z), 12-fold degeneracy. (4.42)

Using the spectral theorem, we find that the entropy of the system de-
scribed by ρAB, i.e., the entropy of two blocks of infinite length separated by
L sites is
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S[A,B] = −Tr(ρAB ln(ρAB))

= 2 ln 2− 3

4
(1− z) ln

(
1− z

4

)
− 1

4
(1 + 3z) ln

(
1 + 3z

4

)
.(4.43)

The mutual entropy/information is defined as usual

I(A,B) = S[A] + S[B]− S[A,B], (4.44)

the entropy of a block of length L in the AKLT model was calculated in [64],
and also can be obtained trivially from our results of section 4.2. In the limit
of infinite length, we have

S[A] = S[B] = 2 ln 2. (4.45)

The mutual information is finally

I(A,B) =
3

4
(1− z) ln(1− z) +

1

4
(1 + 3z) ln(1 + 3z), (4.46)

where z was defined before as z = z(L) =
(
−1

3

)L
.

4.5 Conclusions

In this chapter we have derived the entanglement spectrum of the density
matrix of two blocks belonging to the 1D VBS state, corresponding to the
ground state of the spin 1 AKLT Hamiltonian. The eigenvalues of the density
matrix decay exponentially with the length of the blocks and their separation
to the eigenvalues of a completely mixed state. This decay was expected from

the behavior of the correlation functions 〈Si0S
j
L〉 = 4

3

(
−1

3

)L
δij. The novel

result is that in the thermodynamic limit, the density matrix ρ(A,B) eq.
(4.18) is maximally mixed, with all the eigenvalues λi = 1

16
for i = 1..16. The

density matrix (4.18) in this limit is a projector on the different ground states
obtained as a tensor products of the four ground states of A and B blocks
|Aµ〉|Bν〉.

The density matrix for this system (4.18) is clearly non separable. This
can be rigorously proved, using that an state is separable iff the quantity
Tr(OρAB) ≥ 0 for any Hermitian operator O satisfying Tr(OP⊗Q) ≥ 0, where
P and Q are projections acting on the Hilbert spaces associated to subsystems
A (HA) and B (HB). If we choose for example O = r(|A0, B0〉〈A1, B1| +
|A1, B1〉〈A0, B0|), it is easy to see that Tr(OP ⊗ Q) = 0, while Tr(Oρ) ∝ r,
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then choosing r properly we can make Tr(Oρ) ≤ 0, proving that the state is
not separable.

The fact that the operator ρ(A,B) describe a state which is non separable,
together with the result that the negativity vanishes for any separation of the
blocks A and B tell us that this state is a bound entangled state [67]. In [67]
the authors show that this kind of states can not be distilled by local action
to create an useful entanglement for quantum communication tasks such as
teleportation. However, bound entanglement is still of interest as it can be used
to generate a secret quantum key [68], or to enhance the fidelity of conclusive
teleportation using another state [69]. In the context of many-body systems,
it has so far been found in thermal states [70], XY models [71] and in gapless
systems [72].

We can understand the result of constant negativity for any separation
of the blocks, qualitatively, using the proved area law for the entanglement
entropy in 1D spin 1 VBS systems [64], namely that the entropy is propor-
tional to the area of the system [4, 73]. In this one dimensional system with
constant bond dimension, the boundary (area) changes just when we go from
adjacent to separated blocks. As the area is insensitive to the separation of
the blocks, we expect the same entanglement between the blocks when they
are infinitely far apart as when they are separated by just one site (at least in
the thermodynamic limit of infinite blocks). Assuming that there are no en-
tangled pairs between the boundary of the blocks A and B, then we conclude
that the available entanglement should be zero. In this sense our result can be
understood, but still is surprising the fact that the system still possess some
bound entanglement, not available for quantum communication.

The mutual entropy of this system, computed in (4.46) tells us that the
work needed to erase all correlations [74] between two different blocks in the
AKLT ground state decay exponentially to zero in the limit of infinite length.
In this sense, all correlations between two blocks located infinitely far apart
vanish (for non entangled boundary spins) which is expected from the ther-
modynamic limit of a gapped system.

We also studied other different boundary conditions which, altogether with
the results found in [75], agree in the limit of infinite separation, except in the
case when we start with an entangled pair at the spin 1 boundary of a free end
AKLT ground state. In that case as shown in [75], the entanglement reduces
to the entanglement of the Bell pair created from the spin 1/2 virtual particles
which remain free after the antisymmetrization between different neighbor
sites.

Our result is in agreement with the fact that 1D AKLT chains alone are
not sufficient for universal quantum computation. This is due to the vanishing
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negativity between two different non adjacent blocks. Still further coupling of
many such chains can in principle implement quantum computation as shown
in [76].
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Chapter 5

Generalization of AKLT: AKLTq

We study entanglement in a one-dimensional q-deformed valence-bond-
solid (VBS) state with a spin-S at each site. This state, which we denote
as VBSq(S), is invariant under the action of the generators of the SUq(2)
quantum algebra [77, 78]. The q-generalization of the underlying algebra in-
troduces anisotropy into the model by a continuous deformation of the usual
SU(2) symmetry. The first part of this chapter is devoted to the analysis of
the spin-1 VBSq(S) state [79], we analytically calculated the dependence of the
entanglement spectrum and entropy on the deformation parameter q. This in-
vestigation and the current one are motivated by the problem of determining
how entanglement in a VBS state is changed by anisotropy. Such anisotropic
effects on entanglement in VBS states is receiving attention recently [79–81].

The isotropic VBS state is the ground state of the one-dimensional Affleck-
Kennedy-Lieb-Tasaki (AKLT) model [11, 61]. This model has nearest-neighbor
interactions between integer spin-S’s. It is described by a Hamiltonian of the
form H =

∑
i hi,i+1. The local Hamiltonian hi,i+1 is a projector onto the sub-

space spanned by the (S + 1), (S + 2), . . . , and 2S-multiplets formed by spins
at sites i and i + 1 [11, 61, 66]. Exact results for the block entanglement
entropy in the S = 1 AKLT model were obtained in [64, 82]. Block entangle-
ment was studied later in its higher integer spin-S [26, 83] and SU(N) [84–86]
generalizations.

The anisotropic q-deformed generalization of the spin-1 AKLT chain was
first considered in [59, 87, 88]. The matrix product state (MPS) representa-
tion [56, 58, 89] of the ground state of the model was constructed in [59]. This
ground state is separated from excited states by a gap [88]. Hence, the spin-
spin correlation functions decay exponentially [59, 88]. The exact entangle-
ment spectrum of blocks of arbitrary length in the spin-1 VBSq(S) state was
calculated in [90]. The higher integer spin generalization of the q-deformed
AKLT model was first proposed in [91, 92], where the spin-spin correlation
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functions were calculated and where it was shown they exponential decay. To
our knowledge, the entanglement spectrum and entropies of VBSq(S) states
for arbitrary integer S have not yet been evaluated.

In this chapter, we calculate the entanglement spectrum and entropies of
q-deformed VBS states with arbitrary integer S. Our analytical approach in-
volves transfer matrix methods and the use of q-deformed Clebsch-Gordan
coefficients and 6j symbols. We begin by constructing the VBSq(S) state
by requiring it to be a ground state of a q-deformed spin-S AKLT Hamil-
tonian. We shall denote this ground state by the state vector |VBSq(S)〉.
This state is then partitioned into a block of ` sequential spins and the en-
vironment E. The density matrix of the whole ground state is therefore
ρ = |VBSq(S)〉〈VBSq(S)|/〈VBSq(S)|VBSq(S)〉. We then compute the reduced
density matrix ρ` of the block by taking the partial trace of ρ over the envi-
ronment, ρ` = trEρ.

In the double scaling limit of an infinitely long block in an infinitely long
chain, we are able to exactly diagonalize the reduced density matrix (5.3.1).
We then use the eigenvalues of this matrix to construct the entanglement
spectrum of the block (5.3.2). This entanglement spectrum (introduced in [14])
enables us to construct an effective Hamiltonian that completely describes the
reduced density matrix. The eigenvalues of the reduced density matrix are
further used to calculate the Rényi and von Neumann entanglement entropies

SR(α) ≡ ln trρα`
1− α

, α > 0, (5.1)

SvN ≡ −tr(ρ` ln ρ`) = lim
α→1

SR(α). (5.2)

We thus provide exact measures of entanglement [36, 38, 39, 93] in the |VBSq(S)〉
ground state as functions of the deformation parameter q and spin S.

We further consider the case of blocks of finite length. We obtain the
exact eigenvalues of the reduced density matrix in the isotropic case q = 1.
With this result, we calculate the leading order finite-size corrections to the
entanglement spectrum and entropies (5.4.1). For a general q-deformation,
we estimate the eigenvalues of the reduced density matrix in the limit of long
but finite blocks by perturbation theory (5.4.2). Furthermore, we numerically
investigate the properties of the reduced density matrix of the spin-2 VBSq(S)
state. This result allows us to make general statements about the structure
and degeneracy of the entanglement spectrum for blocks of any length.
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5.1 Reduced density matrix of MPS.

We start with a pure matrix product state |MPS〉. The density matrix of
the whole state is

ρ = |MPS〉〈MPS|/〈MPS|MPS〉. (5.3)

We then partition the system into a block of ` sequential spins and its envi-
ronment E. The reduced density matrix ρ` is the partial trace of ρ over the
environment, ρ` = trEρ.

The MPS representation of a periodic chain of L identical spins is

|MPS〉 = tr[g1· g2· . . . · gL]. (5.4)

The gj are D ×D matrices (D = 2 for the examples considered below). The
trace here is taken over the auxiliary matrix space (not E). The elements of
gj are

(gj)αβ =
∑
m

Aαβ(m)|m〉j. (5.5)

The set {|m〉j} is a complete orthonormal basis for the Hilbert space of the
spin at site j and the coefficients Aαβ(m) are independent of the site index.
Due to translational invariance, we drop the site label j whenever possible.
We denote the matrix dual to g as ḡ with elements (ḡ)αβ =

∑
mA

∗
αβ(m)〈m|.

Here, the coefficients are replaced by their complex conjugates and the kets
are replaced by the corresponding bras. In Eq.(5.4) the matrix multiplication
(·) involves tensor products of vector matrix elements, i.e.,

(gj· gj+1)αγ =
∑
βmn

Aαβ(m)Aβγ(n) |m〉j ⊗ |n〉j+1. (5.6)

The dual (ḡj· ḡj+1)αγ is defined analogously. For products of g matrices de-
noting a block of sequential spins we introduce an abbreviation

(gj· gj+1· . . . · gj′)αα′ = |αα′; j, j′〉. (5.7)

Thus, it is sufficient to identify the states of boundary spins to specify the
state of a block.

Let us construct a transfer matrix G ≡ ḡ⊗ g that is useful for calculating
state overlaps (scalar products) and correlation functions:

(G)αγ,βδ = (ḡ)αβ(g)γδ =
∑
m

A∗αβ(m)Aγδ(m). (5.8)
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For example, the square of the norm of |MPS〉 is

〈MPS|MPS〉 =
∑
αα′

〈αα′; 1,L|αα′; 1,L〉 = trGL. (5.9)

The density matrix is therefore

ρ =
tr[g1· . . . · gL]tr[ḡ1· . . . · ḡL]

trGL
, (5.10)

while the reduced density matrix is

ρ` =
∑
αα′ββ′

|αα′; 1, `〉
(
GL−`)

α′β′,αβ
〈ββ′; 1, `|

trGL
. (5.11)

We chose the block to extend from site 1 to site ` without loss of generality
because of translational invariance. In this form, ρ` clearly acts nontrivially
only in the subspace spanned by the block state vectors {|αα′; 1, `〉}. The
dimension of this subspace is at most D2.

Let us consider transfer matrices with the symmetries

(G)αβ,α′β′ = (G)α′β′,αβ = (G)βα,β′α′

.
This is a weak requirement because it means that the scalar product

〈αα′; 1, n|ββ′; 1, n〉 is invariant under lattice reflections (e.g., ‘flipping’ the ring
over). We construct a symmetric overlap matrix K(n) that is related to the
nth power of G by (K(n))αα′,ββ′ ≡ (Gn)αβ,α′β′ . With this definition we write
ρ` as

ρ` =
∑
αα′ββ′

|αα′; 1, `〉
(
K(L− `)

)
αα′,ββ′

〈ββ′; 1, `|
trGL

. (5.12)

The indices are now matched so that we can express ρ` as a product of matrices.
Suitable similarity transformations within the space spanned by {|αα′; 1, `〉}
finally gives

ρ` =
K(L− `)K(`)

tr[K(L− `)K(`)]
. (5.13)

This formula has some notable features. First, it is a general expression
that is valid for a large class of MPS. Also, we find that ρ` has a small number of
nonzero eigenvalues, rankρ` ≤ D2. Furthermore, it is evident that ρ` and ρL−`
are isospectral. Thus, the entanglement entropies of the block and environment
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are the same.

5.2 AKLTq model.

The spin 1 AKLTq Hamiltonian is

H = b
∑
j

{
cSj · Sj+1 +

[
Sj · Sj+1 + 1

2
(1− c)(q + q−1 − 2)SzjS

z
j+1

+ 1
4
(1 + c)(q − q−1)(Szj+1 − Szj )

]2
+ 1

4
c (1− c)(q + q−1 − 2)2(SzjS

z
j+1)2

+ 1
4
c (1 + c)(q − q−1)(q + q−1 − 2)SzjS

z
j+1(Szj+1 − Szj )

+ 1
4
(c− 3)

[(
c− 1 + 1

2
(1 + c)2

)
SzjS

z
j+1 + 2

(
c− 1

8
(1 + c)2

)(
(Szj+1)2 + (Szj )2

)]
+ (c− 1) + 1

2
c (q2 − q−2)(Szj+1 − Szj )

}
, (5.14)

with c = 1 + q2 + q−2 and b = [c (c−1)]−1 [87, 88]. It is hermitian for real q. It
commutes with the generators Sz,± ≡

∑
j S

z,±
j of the SUq(2) quantum algebra

[77, 78]. These generators have commutators

[S+,S−] =
q2Sz − q−2Sz

q − q−1
, [Sz,S±] = ±S±. (5.15)

The q-deformed spin-1 operators at site j are Szj = Szj and

S±j =

√
q + q−1

2

(
q−S

z
1 ⊗ · · · ⊗ q−Szj−1 ⊗ S±j ⊗ qS

z
j+1 ⊗ · · ·

)
. (5.16)

Here Sz,±j are undeformed spin-1 operators at site j. Eq. (5.16) has similarities
with Jordan-Wigner transformations. We recover the isotropic AKLT model
at q = 1.

The entanglement spectrum does not depend on the sign of q and is invari-
ant under the transformation q → q−1. Thus, we will only consider q ∈ (0, 1].

The unique ground state of the periodic AKLTq model is a VBSq state. Its
MPS representation was constructed in Ref. [59]. The properties of this state
and its spin-spin correlation functions have been studied [59, 88]. This ap-
proach was later extended to obtain the spin-spin correlators of higher integer
spin-S AKLTq chains [91, 92].

The local Hamiltonian hj,j+1 is a projector onto the subspace of the q-
deformed spin-2 quintuplet formed by adjacent spins [59]. The MPS form
of the VBSq ground state is obtained by requiring hj,j+1 to annihilate the
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Figure 5.1: (a) In the double scaling limit the reduced density matrix of |VBSq〉
has four degenerate eigenvalues at the isotropic q = 1 point. The two middle
eigenvalues are always degenerate (bold line). In the classical limit q → 0
the ground state is a product state and the only nonzero eigenvalue is unity.
(b) The Rényi entropy SR vanishes as q → 0. It saturates to the maximally
entangled value SR = log 4 at the AKLT point q = 1. The von Neumann
entropy (bold line) is obtained at limα→1 SR(α).

elements of the matrix gj· gj+1. This condition leads to

g =

(
q−1|0〉 −

√
q + q−1|+〉√

q + q−1|−〉 −q|0〉

)
, (5.17)

where the vector elements are eigenstates of Sz. This yields the MPS repre-
sentation

|VBSq〉 = tr[g1· g2· . . . · gL]. (5.18)

Since g is a 2×2 matrix, the reduced density matrix has at most four nonzero
eigenvalues.

In the limit q → 0, the AKLTq Hamiltonian is dominated by (classical)
Ising-type interactions. In this case the g matrix has only one diagonal element
|0〉. The resulting ground state is a product state

⊗
j |0〉j describing a magnet

polarized in the transverse direction. In this classical limit all spins are in the
Szj = 0 state. Hence, any block in the chain has zero entropy.
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The transfer matrix (5.8) for the |VBSq〉 state is

G ≡ ḡ ⊗ g =


q−2 0 0 q + q−1

0 −1 0 0
0 0 −1 0

q + q−1 0 0 q2

 . (5.19)

The eigenvalues of this matrix are {Λ,−1,−1,−1} and the dominant eigen-
value is Λ = 1 + q2 + q−2 ≥ 3. The overlap matrix K(`) is therefore

K(`) =
Λ`

q + q−1
diag{q−1, 1, 1, q} (5.20)

+
(−1)`

q + q−1


q 0 0 q + q−1

0 −1 0 0
0 0 −1 0

q + q−1 0 0 q−1

 . (5.21)

Eq. (5.13) gives the reduced density matrix

ρ` =
K(L− `)K(`)

ΛL + 3(−1)L
. (5.22)

In the double scaling limit of an infinite block ` → ∞ in an infinite chain
(L− `)→∞, the reduced density matrix becomes diagonal. Thus, the block
states |αα′; 1, `〉 are orthogonal to each other. The eigenvalues {pi} of the
reduced density matrix ρ`→∞ are

p1,4 =
q±2

(q + q−1)2
, p2 = p3 =

1

(q + q−1)2
, `→∞. (5.23)

We discover an important consequence of q-deformation: The degeneracy of
the entanglement spectrum changes between the classical and isotropic AKLT
points. This result is depicted in Fig.(5.1a).

To obtain an intuitive picture for the mixed state of the block we write
ρ`→∞ = e−βHe/tre−βHe . Here, He is an effective Hamiltonian and 1/β an
effective temperature. The eigenvalues of He form the entanglement spectrum
[14]. Doing so gives the effective temperature 1/β = 1/ |ln q| and effective
Hamiltonian

He = σx1σ
x
` + σy1σ

y
` , (5.24)

where σij are Pauli operators at site j. Thus, ρ`→∞ describes a thermal ensem-
ble of two spin-1/2’s at the block boundaries with Heisenberg (XX) interaction.
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The anisotropy parameter q determines the effective boundary temperature
Te = 1/ |ln q|. For the original AKLT model (q = 1) the effective boundary
spins are in a maximally mixed state (Te → ∞), while in the classical limit
q → 0 they are in a pure state (Te = 0).

This result for the effective Hamiltonian is consistent with the area law
for gapped models [4, 73]. It is similar to the effective boundary spin chain
proposed for 2D AKLT models [15, 94]. However, in the AKLTq chain the
effective boundary spin interaction is long-ranged and exists for arbitrarily
large blocks. The long range of this interaction follows from the non-local
nature of the SUq(2) symmetry (5.16) of the model.

The Rényi and von Neumann entropies in the double scaling limit are

S`→∞R =
2

1− α
log

qα + q−α

(q + q−1)α
, (5.25)

S`→∞vN = log(q + q−1)2 − q − q−1

q + q−1
log q2. (5.26)

We plot these entropies in Fig.(5.1b) and observe the effects of q-deformation
even in the large block limit. Anisotropy reduces entanglement entropy from
its maximum value SR = log 4. This maximum is reached at the AKLT point.

For blocks of finite length ` < ∞ in an infinite chain L → ∞, the overlap
matrix K(`) has off-diagonal terms. In this case, the eigenvalues of ρ` acquire
finite-size corrections:

p1,4 =
q2 + q−2 + 2(−Λ)−`

2(q + q−1)2
±

√
1

4
− 1− (−Λ)−2`

(q + q−1)2
,

p2 = p3 =
1− (−Λ)−`

(q + q−1)2
, Λ = 1 + q2 + q−2. (5.27)

These eigenvalues are exact. The corrections decay exponentially as expected
for a gapped system. At q = 1 we recover the eigenvalues

p1 =
1 + 3(−3)−`

4
, p2 = p3 = p4 =

1− (−3)−`

4
, (5.28)

for the isotropic AKLT chain [64]. Figure (5.2a) shows how q-deformation re-
duces the von Neumann entropy. For a block consisting of one spin (` = 1) one
eigenvalue is identically zero. Thus, the maximum single-site von Neumann
entropy is log 3. This value is reached at the isotropic point q = 1 where there
is a uniform mixture of three spin-1 states.

For large but finite blocks 1 � ` < ∞ and q 6= 1, an expansion of the
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Figure 5.2: The von Neumann entropy decreases away from the isotropic
AKLT points q = 1 for |VBSq〉 (a) and a = 2 for |KSZa〉 (b). At the isotropic
point finite-size corrections are largest for |VBSq〉 and smallest for |KSZa〉.

eigenvalues (5.27) gives the leading order corrections ±(−1)`(q + q−1)−2e−`/ξ.
The characteristic length of these corrections is ξ = 1/ ln(1 + q2 + q−2). This
quantity is equal to the correlation length of the spin-spin correlators of the
VBSq state [59, 88, 92].

5.2.1 General Spin S, Quantum algebra

In this section we generalize the results obtained in the previous section,
going from S = 1, to general spin. The deformation parameter q here, relates
with the one used previously by q → q2.

Let us denote states of a spin-S at site i by |S,m〉i. Here m ∈ {−S,−S +
1, . . . , S} is the magnetic quantum number denoting the z-component of the
spin. The label S of the state |S,m〉i is invariant under the action of q-
deformed angular momentum operators satisfying the SUq(2) quantum group
algebra [78]

[J+
i , J

−
i ] = [2Jzi ], [Jzi , J

±
i ] = ±J±i , [n] ≡ qn/2 − q−n/2

q1/2 − q−1/2
. (5.29)

This algebra has two different unitary representations for positive real q and
complex q on the unit circle [95]. In this chapter we will consider the former
case where q ∈ R+. The resulting algebra is invariant under the transformation
q → q−1 so that we consider further q ∈ (0, 1]. The usual SU(2) algebra is
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recovered at the isotropic point q = 1, while full deformation occurs in the
limit q → 0. The q-number [n] will be used extensively below.

The analogue of total angular momentum, Jtot = J1 + J2 is realized at the
level of operators through the definition of the coproduct

J±tot ≡ q−J
z
1 /2 ⊗ J±2 + J±1 ⊗ qJ

z
2 /2, (5.30)

Jztot ≡ I1 ⊗ Jz2 + Jz1 ⊗ I2. (5.31)

The operators Jz,±tot satisfy the quantum group algebra (5.29). A (2J + 1)-
dimensional irreducible representation of Jtot is therefore spanned by the states

|J,m〉 ≡
∑
m1m2

[
j1

m1

j2

m2

J

m

]
q

|j1,m1〉 ⊗ |j2,m2〉, (5.32)

which satisfies

J±tot|J,m〉 =
√

[J ∓m][J ±m+ 1] |J,m± 1〉, (5.33)

Jztot|J,m〉 = m |J,m〉. (5.34)

These equations define the q-deformed Clebsch-Gordan (q-CG) coefficients[
J
mj

K
mk

L
ml

]
q

up to a phase.

The q-CG coefficients are components of a unitary matrix (a change of basis
matrix) and may be chosen to be real. These coefficients vanish if the triangle
relation |j1−j2| ≤ J ≤ j1 +j2 and selection rule m1 +m2 = m are not satisfied
(angular momentum conservation). Throughout this chapter, the summation
indices mi (lower row of q-CG symbols) are understood to run over all values
compatible with the corresponding quantum number ji (upper row of q-CG
symbols). For example, in (5.32) we sum over mi ∈ {−ji,−ji + 1, . . . , ji}.
Some identities involving the q-CG coefficients that we use in the following
derivations are collected in appendix (C.1).

5.2.2 Matrix product representation

Some of the objects we describe here are conveniently represented as dia-
grams (5.3). The manipulation of these diagrams has been useful in the study
of entanglement and correlation functions in matrix product states [86, 96].

Let us now write down the MPS representation of the VBSq(S) state. For
a periodic chain of L spins we have

|VBSq(S)〉 = tr(g1g2 . . .gL), (5.35)
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Figure 5.3: Diagrammatic representations of matrices used in the MPS de-
scription of the VBSq(S) state (upper row). The q-deformed Clebsch-Gordan
coefficients (lower left) are important in the diagonalization of the transfer
matrix. The matrix ρ̃l (lower right) is related to the reduced density matrix
ρl of l sequential spins in a chain of L sites by ρl = ρ̃l/trG

L.

where gi are (S + 1) × (S + 1) matrices. The trace here is done over the
auxiliary matrix space. The elements of gi and its dual ḡi are state vectors:

(gi)ab =
∑
m

[
S
2

a

S
2

−b
S

m

]
q

(−1)bq−b/2 |S,m〉i, (5.36)

(ḡi)ab =
∑
m

[
S
2

a

S
2

−b
S

m

]
q

(−1)bq−b/2 〈S,m|i. (5.37)

The |VBSq(S)〉 state (5.35) is annihilated by the q-deformed AKLT Hamilto-
nian (periodic boundary conditions)

H =
L∑
i=1

hi,i+1 =
L∑
i=1

2S∑
s=S+1

Πs(i, i+ 1), (5.38)

where Πs(i, i+ 1) is a projector onto the subspace spanned by the q-deformed
s-multiplet formed by spins at i and i+1. To prove this, we look at the overlap
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between the two states

(gigi+1)ac =
∑
bm′m

(−1)c−bq
1
2

(b−c)
[
S
2

a

S
2

b

S

m′

]
q

[
S
2

−b

S
2

−c
S

m

]
q

|S,m′〉i ⊗ |S,m〉i+1,(5.39)

|J,m〉 =
∑
m1m2

[
j1

m1

j2
m2

J

m

]
q

|j1,m1〉i ⊗ |j2,m2〉i+1.(5.40)

Since the states {|j,m〉i} are orthonormal to each other, we obtain

〈J,m|(gigi+1)ac =
∑
bm1m2

(−1)c−bq
1
2

(b−c)
[
S
2

a

S
2

b

S

m1

]
q

[
S
2

−b

S
2

−c
S

m2

]
q

[
S

m1

S

m2

J

m

]
q

.

(5.41)
Using an identity (C.7) derived in (C.2) yields

〈J,m|(gigi+1)ac = (−1)c−S/2q−c/2

√
[2S + 1]

[S + 1]
Fq
[
S S

2
J S

2
; S

2
S
] [ S

2

a

S
2

−c
J

m

]
q

.

(5.42)
The elements Fq[DBJC;NK] of the q-deformed F -matrix are defined dia-
grammatically in (5.4). The q-CG coefficient in the overlap (5.42) vanishes
when J > S

2
+ S

2
proving that hi,i+1|VBSq(S)〉 = 0. Furthermore, hi,i+1 has

nonnegative eigenvalues because it is a sum of projectors. Thus, |VBSq(S)〉 is
a ground state of the Hamiltonian (5.38).

5.2.3 Transfer matrix

We now construct a transfer matrix G that is defined in terms of g and ḡ
by (G)aa′;bb′ = (ḡ)ab(g)a′b′ . Explicitly, its elements are

(G)aa′;bb′ =
∑
m′

[
S
2

a

S
2

−b
S

m′

]
q

[
S
2

a′

S
2

−b′
S

m′

]
q

(−1)b+b
′
q−(b+b′)/2. (5.43)

This transfer matrix is an important object that appears in the calculation of
correlation functions and the reduced density matrix of MPS. Let us diagonal-
ize this matrix through an approach based on the q-deformed F -matrix (C.2).
As depicted in (5.4), we construct the eigenvalue equation (G)aa′;bb′ebb′ = λeaa′
using the q-CG coefficients as an ansatz for the elements of the eigenvector
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Figure 5.4: Diagrams representing the contraction of the transfer matrix G
with a q-deformed Clebsch-Gordan coefficient. The q-deformed F -matrix is de-
fined according to the upper diagram in which the leg labeled by b′ is shifted.
The lower diagram represents the eigenvalue equation (5.45). In these dia-
grams internal lowercase indices are summed over.

eaa′ . The resulting equation is

(G)aa′;bb′ebb′ =
∑
bb′m′

[
S
2

a

S
2

−b
S

m′

]
q

[
S
2

b

j

m

S
2

b′

]
q

[
S
2

a′

S
2

−b′
S

m′

]
q

(−1)b+b
′
q−(b+b′)/2.

(5.44)
Transposing columns in the third q-CG coefficient in order to match the iden-
tity (C.7) leads to

(G)aa′;bb′ebb′ =
∑

bb′m′

[
S
2
a

S
2
b
S
m′

]
q

[
S
2
−b

j
m

S
2
b′

]
q

[
S
m′

S
2
b′

S
2
a′

]
q

(−1)−
S
2
−bqb/2

√
[2S+1]
[S+1]

= (−1)−S [2S+1]
[S+1]

Fq
[
S S

2
S
2
j; S

2
S
2

] [ S
2
a
j
m

S
2
a′

]
q

= λeaa′ . (5.45)

We see that the elements of the eigenvectors of G are eaa′ = (ejm)aa′ =[
S/2
a

j
m
S/2
a′

]
q
. A suitable similarity transformation on G gives the orthonormal

set of eigenvectors

(êjm)aa′ =

[
S
2

−a

S
2

a′
j

m

]
q

. (5.46)
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To obtain this set we transposed the middle and last rows of (ejm)aa′ and
considered the orthogonality relation (C.2). The eigenvalues associated with
these eigenvectors are

λj = (−1)−S [2S+1]
[S+1]

Fq
[
S S

2
S
2
j; S

2
S
2

]
, (5.47)

= (−1)j+S[2S + 1]

{
S
j

S
2
S
2

S
2
S
2

}
q

, (5.48)

where the q-deformed 6j symbol in the second line is defined in (C.9). The
eigenvalue λj is (2j+ 1)-fold degenerate and 0 ≤ j ≤ S. The absolute value of
λj decreases with increasing j. These expressions match the results of [91, 92]
(except for a multiplicative constant).

5.2.4 Reduced Density Matrix

In this subsection we calculate the reduced density matrix ρ` of ` sequential
spins in a chain of infinite length L → ∞. Using the formalism developed in
[97] for matrix product states, we obtain

(ρ`)ab;cd =
1

trGL

∑
a′b′

(GL−`)aa′;bb′(G
`)a′c;b′d. (5.49)

Integer powers of the transfer matrix G may be written as

Gn =
∑
j

λnjPj, (5.50)

where Pj is a projection matrix onto the subspace spanned by the eigenvectors
êjm of G. Since the dominant (largest magnitude) eigenvalue of G is λj=0,
large integer powers of G simplify to Gn → λn0P0 as n → ∞. Thus, in the
limit of infinite chains L→∞ the reduced density matrix (5.49) simplifies to

(ρ`)ab;cd =
∑
a′b′

(P0)aa′;bb′
S∑
j=0

λ`j
λ`0

(Pj)a′c;b′d. (5.51)

Constructing the projectors Pj from the eigenvectors of G (5.46) yields

(ρ`)ab;cd =
q−(a+b)/2(−1)a+b+S

[S + 1]

S∑
j=0

λ`j
λ`0

j∑
m=−j

[
S
2

−a

S
2

c

j

m

]
q

[
S
2

−b

S
2

d

j

m

]
q

, (5.52)
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where the projector P0 is simplified by the explicit formula [95][
S
2

−a

S
2

a

0

0

]
q

=
(−1)a+S/2q−a/2√

[S + 1]
. (5.53)

We can further express the reduced density matrix as a sum of tensor products
by defining the (S + 1)× (S + 1) matrix

(Qjm)ac ≡
(−1)a+S/2q−a/2√

[S + 1]

[
S
2

−a

S
2

c

j

m

]
q

δm,c−a. (5.54)

The Kronecker delta here enforces the triangle relation. Finally, making the
necessary substitutions gives

ρ` =
S∑
j=0

λ`j
λ`0

j∑
m=−j

Qjm ⊗Qjm. (5.55)

5.3 Double scaling limit

5.3.1 Eigenvalues of reduced density matrix

In the double scaling limit, we consider infinitely long blocks and take
` → ∞. The reduced density matrix ρ` (5.55) simplifies to a tensor product
of diagonal matrices ρ∞ = Q00 ⊗Q00. Explicitly, we have:

(ρ∞)ab;cd =
(−1)a+b+Sq−(a+b)/2

[S + 1]

[
S
2

−a

S
2

a

0

0

]
q

[
S
2

−b

S
2

b

0

0

]
q

δacδbd. (5.56)

Remembering that −S/2 ≤ a, b, c, d ≤ S/2, with integer steps, we arrive at
the final expression for the reduced density matrix,

(ρ∞)ab;cd =
q−(a+b)

[S + 1]2
δacδbd. (5.57)

From this expression we can compute all eigenvalues of ρ∞. For example, in
the case of a q-deformed spin-2 VBS state we have

ρ∞ =
1

(q + 1 + q−1)2

 q−1 0 0
0 1 0
0 0 q

⊗
 q−1 0 0

0 1 0
0 0 q

 . (5.58)
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Figure 5.5: The Rényi entropy SR(α) of a q-deformed spin-S VBS state van-
ishes in the limit q → 0+. At the isotropic point q = 1, large blocks are
maximally entangled SR(α) = 2 ln(S + 1). The von Neumann entropy is ob-
tained in the limit α→ 1 (bold line).

5.3.2 Entanglement spectrum and entropy

We now write ρ∞ = e−βHe/tre−βHe , where He is an effective Hamiltonian
and 1/β an effective temperature. The eigenvalues of the Hamiltonian He

constitute the entanglement spectrum of the block [14]. The tensor product
form of ρ∞ (5.57) yields the simple paramagnetic model

− βHe = −β(H(1)
e +H(2)

e ) ≡ βh(Sz1 + Sz2), S2
i = S

2
(S

2
+ 1), (5.59)

βh = |ln q| . (5.60)

Here h is the magnitude of an effective magnetic field along the z-axis, while
Si are spin-S/2 operators of the undeformed SU(2) algebra. We can thus iden-
tify |ln q| as the ratio h/Te between the magnitude of the magnetic field and

effective temperature Te. We observe that the spectrum of H
(i)
e consists of

S + 1 equidistant energy levels. Thus, in the limit S → ∞ the entanglement
spectrum of the block is equal to the energy spectrum of two harmonic oscil-
lators with frequency ω (with an S-dependent energy shift). This frequency is
related to the deformation parameter through |ln q| = ω/Te.

In this effective picture, the isotropic case q = 1 corresponds to infinite
temperature or zero field strength. The block is therefore maximally mixed.
The reduced density matrix ρ∞ has (S + 1)2 nonzero identical eigenvalues. In
the opposite limit q → 0+ the effective model corresponds to zero temperature
or infinite field magnitude. Hence, the block is in a pure state with zero
entanglement.

We use the eigenvalues of the reduced density matrix (5.57) to compute
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the Rényi entropy

SR(α) = ln trρα

1−α = 2
1−α ln

{
q
α(S+1)

2 −q−
α(S+1)

2

q
α
2 −q−

α
2

1
[S+1]α

}
,

= 2
1−α ln

{
q
α(S+1)

2 −q−
α(S+1)

2

q
α
2 −q−

α
2

(
q

1
2−q−

1
2

q
S+1

2 −q−
S+1

2

)α}
. (5.61)

This is an exact expression in the double scaling limit (infinite block). Taking
the limit α→ 1 gives the von Neumann entropy

SvN = 2 ln([S + 1]) +

{
q

1
2 +q−

1
2

q
1
2−q−

1
2
− (S + 1) q

S+1
2 +q−

S+1
2

q
S+1

2 −q−
S+1

2

}
ln q,

= 2 ln

{
q
S+1

2 −q−
S+1

2

q
1
2−q−

1
2

}
+

{
q

1
2 +q−

1
2

q
1
2−q−

1
2
− (S + 1) q

S+1
2 +q−

S+1
2

q
S+1

2 −q−
S+1

2

}
ln q. (5.62)

In order to recover previous results for the spin-1 case [97], we have to rescale
q → q2 in (5.61) and (5.62). This transformation is necessary because of the
different definition (5.29) used here for the deformation parameter q.

These entanglement entropies are graphed in (5.5) as functions of the pa-
rameter q for the cases S = 2, 10. At the isotropic point q = 1, the entangle-
ment entropies simplify to

SR(α) = SvN = 2 ln(S + 1), q = 1. (5.63)

We thus recover previous results [26, 98] for isotropic spin-S VBS states. In
the limit of full deformation q → 0+ the entanglement entropy for any spin S
vanishes.

Finally, let us consider the case of very high spin at fixed 0 < q < 1. Taking
the limit S →∞ in (5.61) and (5.62) gives

SR(α) =
2

1− α
ln

{
(q−1/2 − q1/2)α

q−α/2 − qα/2

}
, (5.64)

SvN = 2 ln

(
1

q−1/2 − q1/2

)
+

(
q1/2 + q−1/2

q1/2 − q−1/2

)
ln q, S →∞. (5.65)

We find that the entanglement entropy is bounded for any q-deformed AKLT
chain of arbitrary spin S. It diverges only at the isotropic point q = 1.
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5.4 Finite-size corrections

We now look at the case of finite blocks in an infinite chain. The reduced
density matrix (5.55) of a block of ` spins may be written as

ρ` = ρ∞ +
S∑
j=1

λ`j
λ`0

j∑
m=−j

Qjm ⊗Qjm. (5.66)

Finding the eigenvalues of ρ` thus involves the diagonalization of an (S +
1) × (S + 1) matrix with nonzero elements (q-CG coefficients). Let us try
right-multiplying the reduced density matrix by a vector with components

(vJM)cd = (−1)−(c+d)q(c+d)/2
[
S/2
−c

J
M

S/2
−d

]
q
. Using the identity (C.7) gives

(ρ`vJM)ab =
q−2a+M

[S + 1]2

(
1 +

S∑
j=1

[2j + 1]
λ`j
λ`0
Fq
[
j S

2
S
2
J ; S

2
S
2

])
(vJM)ab. (5.67)

For arbitrary q, this equation is not a proper eigenvalue equation because of
the factor q−2a. However, we discover that vJM is an eigenvector of ρ` for
q = 1. We treat the isotropic case analytically in (5.4.1). For 0 < q < 1,
we calculate the eigenvalues of ρ` using first-order perturbation theory and
compare this approximation with numerical results in (5.4.2).

5.4.1 Isotropic case

When q = 1, making the appropriate substitutions yields the exact (2J+1)-
fold degenerate eigenvalues

pJM = 1
(S+1)2

(
1 +

∑S
j=1(2j + 1)

λ`j
λ`0
F1

[
j S

2
S
2
J ; S

2
S
2

])
, (5.68)

= 1
(S+1)2 + (−1)J+S

S+1

∑S
j=1(−1)j(2j + 1)

λ`j
λ`0

{
j
J

S
2
S
2

S
2
S
2

}
1

. (5.69)

with 0 ≤ J ≤ S and M ∈ {−J,−J + 1, . . . , J}. For instance, taking S = 2
gives the exact eigenvalues

p00 = 1
9

(
1 + 3(−2)−` + 5(10)−`

)
, (degeneracy 1), (5.70)

p1M = 1
9

(
1 + 3

2
(−2)−` − 5

2
(10)−`

)
, (degeneracy 3), (5.71)

p2M = 1
9

(
1− 3

2
(−2)−` + 1

2
(10)−`

)
, (degeneracy 5). (5.72)

57



The formula (5.69) reproduces the results of [26, 98] for undeformed spin-S
AKLT chains obtained from the Schwinger boson representation of the VBS
state. Our approach, however, emphasizes the role of 6j symbols in determin-
ing finite-size effects on entanglement in these states. Additionally, this result
solves a recursive formula in [26, 98] for the coefficients in the sums for the
eigenvalues pJM .

The leading finite-size correction to the eigenvalue pJM is proportional to
the exponential factor (λ1/λ0)` ≡ (−1)`e−`/ξ. Using the formula{

S

j

S
2
S
2

S
2
S
2

}
1

=
(S!)2

(S − j)!(S + j + 1)!
, (5.73)

gives the characteristic length of decay ξ = 1/ ln((S + 2)/S). This length is
equal to the correlation length of the spin-spin correlation functions in the
spin-S VBS state [92].

Let us construct an effective Hamiltonian for long blocks 1� ` <∞ in the
isotropic case. Considering only the leading-order correction to the eigenvalues
(5.69) gives

pJM ≈
1

(S + 1)2

{
1− 3

S(S + 2)

(
−S
S + 2

)`
(2J(J + 1)− S(S + 2))

}
. (5.74)

Since the reduced density matrix is diagonal in the {vJM} basis, we can write
the effective Hamiltonian He as

− βHe ≈ ln

{
1− 3

S(S+2)

(
−S
S+2

)`
(2J(J + 1)− S(S + 2))

}
,

≈ − 12
S(S+2)

(
−S
S+2

)`
× 1

2

{
J(J + 1)− S(S

2
+ 1)

}
. (5.75)

This expression is valid for 3S`(S + 2)−` � 1. If we define an undeformed
spin-S operator J ≡ S1 + S` as the sum of two spin-S

2
operators S1 and S` on

the block boundaries, we obtain the Heisenberg model

βHe = γ(S, `) (−1)` S1S`, γ(S, `) =
12

S(S + 2)

(
S

S + 2

)`
. (5.76)

We can identify Te = 1/γ(S, `) as an effective temperature that depends on
the length of the block. The double scaling limit `→∞ therefore corresponds
to a maximally mixed state (infinite temperature). In this picture, we fur-
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ther observe that the sign of the coupling strength changes with block length
(alternation between ferromagnetic and antiferromagnetic interactions). This
implies that the dominant eigenvalue of the reduced density matrix alternates
between the p00 singlet (even `) and pSM multiplet (odd `).

Let us now consider the entanglement entropy of a block consisting of a
single spin (` = 1) for the case q = 1. The eigenvalues of the reduced density
matrix may be written as

pJM(` = 1) =
1

(S + 1)2
+

(−1)J+S{
S
0
S/2
S/2

S/2
S/2

}
1

S∑
j=1

2j + 1

S + 1

{
S

j

S
2
S
2

S
2
S
2

}
1

{
j

J

S
2
S
2

S
2
S
2

}
1

.

(5.77)
Making use of the identity (5.73) and{

S

0

S
2
S
2

S
2
S
2

}
1

{
J

0

S
2
S
2

S
2
S
2

}
1

=
(−1)J+S

(S + 1)2
, (5.78)

S∑
j=0

(2j + 1)

{
S

j

S
2
S
2

S
2
S
2

}
1

{
j

J

S
2
S
2

S
2
S
2

}
1

=
δSJ

2S + 1
, (5.79)

gives the desired result

pJM(` = 1) =
δSJ

2S + 1
, q = 1. (5.80)

Thus, the single-site reduced density matrix has (2S + 1) nonzero identical
eigenvalues. This result proves that the block is a uniform mixture of the
(2S + 1) states of a single spin-S as expected. The entanglement entropy in
this case is SR(α) = SvN = ln(2S + 1).

For long blocks satisfying ` � ξ, the leading nonvanishing correction to
the entanglement entropy is proportional to (λ1/λ0)2`. The approximate Rényi
entropy in this case is

SR(α) ≈ 2 ln(S + 1)− 3α

2

(
S

S + 2

)2`

S(S + 1)(S + 2). (5.81)

Finite-size corrections to the von Neumann entropy can be obtained from this
result by taking the limit α→ 1.
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Figure 5.6: The eigenvalues of the reduced density matrix of a block of `
spins in a spin-2 VBSq state (solid and dashed blue lines) are compared to the
perturbation result (red dotted lines). Solid blue lines denote nondegenerate
eigenvalues while dashed blue lines denote doubly degenerate ones. The dom-
inant eigenvalue approaches unity as q → 0. For ` = 1 four eigenvalues are
zero for all q.

5.4.2 Anisotropic case

For arbitrary values of q, the dominant characteristic length of finite-size
corrections generalizes to ξ = 1/ ln([S + 2]/[S]). That is, we have

∣∣λ1/λ0

∣∣ =
[S]/[S+ 2] < 1. For blocks of length `� ξ, we may therefore approximate the
reduced density matrix as

ρ` ≈ Q00 ⊗Q00 +
λ`1
λ`0

1∑
m=−1

Q1m ⊗Q1m. (5.82)

We have already determined that Q00 is diagonal with nondegenerate eigenval-
ues (5.54). This means that first-order perturbation theory within each sector
of the preceding equation involves only the diagonal elements of Q1m. From
(5.54) we know that only Q10 has nonzero diagonal elements and hence we
obtain the approximate eigenvalues

pµν = pνµ ≈
q−(µ+ν)

[S + 1]2

(
1 + [3]

λ`1
λ`0

[
S
2

µ

1

0

S
2

µ

]
q

[
S
2

ν

1

0

S
2

ν

]
q

)
. (5.83)

60



The labels µ and ν are quantum numbers that run from −S
2

to S
2

with inte-
ger steps. The second term in (5.83) involving the q-CG coefficients may be
evaluated explicitly with the identity [95][

S
2

µ

1

0

S
2

µ

]
q

=
q−µ/2√

[S][S + 2]

{
q

1
2

(1+S/2)
[
S
2

+ µ
]
− q−

1
2

(1+S/2)
[
S
2
− µ

]}
. (5.84)

These approximate eigenvalues are compared to exact numerical results for
the spin-2 case in (5.6). We observe a rapid improvement in the accuracy
of the perturbation result with increasing block length `. Furthermore, these
numerical results reveal how q-deformation modifies the degeneracy of the
entanglement spectrum by breaking the multiplet structure present in the
isotropic case.

5.5 KSZ model

Using the tools developed before, we can analyze quite easily another model
defined by MPS in one dimension. This model is know as the Klümper Schad-
schneider Zittartz (KSZ) model. The local KSZ Hamiltonian is given by

hj,j+1 = α0A
2
j + α1(AjBj +BjAj) + α2B

2
j + α3Aj

+ α4Bj(1 +Bj) + α5

[
(Szj )2 + (Szj+1)2

]
+ α6, (5.85)

with a transverse interaction term Aj = Sxj S
x
j+1 +Syj S

y
j+1, longitudinal interac-

tion term Bj = SzjS
z
j+1, and constants αi. Requiring hj,j+1 to have nonnegative

eigenvalues and annihilate an MPS ground state |KSZa〉 leads to a submani-
fold of Hamiltonians with restrictions on the constants αi [99]. The correlation
functions and low-lying excitations of this model have been studied [99, 100],
but its entanglement spectrum has not yet been investigated.

We obtain the MPS form of |KSZa〉 from the g matrix

g =

(
|0〉 −

√
a|+〉√

a|−〉 −σ|0〉

)
, (5.86)

where a > 0 is an anisotropy parameter and σ = signα3. The corresponding
transfer matrix is

G =


1 0 0 a
0 −σ 0 0
0 0 −σ 0
a 0 0 1

 . (5.87)
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The unique ground state is |KSZa〉 = tr[g1· g2· . . . · gL] (periodic boundary
conditions). It reduces to the isotropic VBS state at a = 2 and σ = 1.

The eigenvalues of ρ` for an infinite chain L→∞ are

p1,4 =
1

4

[
1 +

(
1− a
1 + a

)`
± 2

(
−σ

1 + a

)`]
,

p2 = p3 =
1

4

[
1−

(
1− a
1 + a

)`]
. (5.88)

We observe that the entanglement spectrum is the same for σ = ±1. In the
double scaling limit the eigenvalues of ρ`→∞ are four-fold degenerate p`→∞i =
1
4
. The block is maximally entangled with SR = log 4. The entanglement

spectrum therefore corresponds to a four-level system at infinite temperature.
Let us now consider blocks of finite length. The von Neumann entropy

is a maximum at the isotropic point a = 2. This property is depicted in
Fig. (5.2b). For a block of one spin (` = 1) one eigenvalue of ρ` vanishes
and the maximum entanglement entropy is log 3. In the limit a → 0, the
|KSZa〉 ground state approaches the transverse ferromagnet

⊗
j |0〉j. This is a

(classical) product state with no entanglement. In the opposite limit a → ∞
the reduced density matrix represents a uniform mixture of two degenerate
Néel ordered states. In this limit the von Neumann entropy approaches log 2.

Finite-size corrections to the eigenvalues (5.88) are exponential in `. The
characteristic lengths of these corrections are ξ‖ = 1/ ln |(1 + a)/(1− a)| and
ξ⊥ = 1/ ln(1 + a). These quantities are equal to the longitudinal (ξ‖) and
transverse (ξ⊥) correlation lengths of the spin-spin correlation functions [99]:

〈Sz1Sz` 〉 = − a2

(1−a)2 [sign(1− a)]` × e−`/ξ‖ , (5.89)

〈Sx1Sx` 〉 = −a(σ + 1)[sign(−σ)]` × e−`/ξ⊥ , ` ≥ 2. (5.90)

5.6 Conclusions

We exactly calculated the reduced density matrix of q-deformed VBS states
with arbitrary integer spin-S in the double scaling limit. We discovered that
the entanglement spectrum corresponds to a thermal ensemble of two spin-
S/2’s in a uniform magnetic field. We also derived exact expressions for the
Rényi and von Neumann entropies as functions of the deformation parameter
q and spin S. We found the exact dependence of entanglement entropy on the
q-deformation parameter in the double scaling limit.

Furthermore, we constructed the exact reduced density matrix of finite
blocks in an infinite chain. We diagonalized this matrix for the isotropic case
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and obtained its exact spectrum in terms of 6j symbols. We found that degen-
erate eigenvalues of the reduced density matrix are grouped into multiplets.
An approximate effective Hamiltonian describing this undeformed case consists
of two spin-S/2’s with a Heisenberg interaction. For arbitrary values of the
deformation parameter q, we made approximations for the eigenvalues of the
reduced density matrix using first-order perturbation theory. Finally, we nu-
merically investigated the finite block eigenvalue spectrum of the q-deformed
spin-2 VBS state. In this case we discovered that q-deformation partially
breaks the degeneracy of eigenvalues within each multiplet.
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Chapter 6

Bulk-Edge Correspondence of
Entanglement Spectrum

So far we have studied one dimensional systems, that in the gapped phase
follow an area law which saturates to a constant regardless of the length of the
system. This has been reinterpreted in the case of the AKLT model in terms of
a boundary Hamiltonian which is local and acts on spin 1/2 particles located
at both ends of the interval. The natural question is then to ask what happens
in two dimensions, where correlations along boundary degrees of freedom arise,
creating subleading corrections to the area law. In this chapter we attempt to
answer this question focusing again in the AKLT model, now in two spatial
dimensions, defined in the hexagonal (honeycomb) lattice.

In this chapter we introduce the spin S model in section 6.1, defined on
a two dimensional lattice wrapped on a torus and construct its explicit VBS
ground state following [101, 102]. Then, we derive an expression for the RDM
(also called partial density matrix) ρA in section 6.2. This operator is ex-
pressed in terms of classical variables in section 6.3. In this representation,
the operator can be expanded in different graph contributions of the classical
O(3) model as presented in section 6.4. From this expression we identify the
Heisenberg Hamiltonian for spin 1/2 particles in the boundary as the leading
term in a sequence of boundary Hamiltonians. Evidence for the structure of
the entanglement Hamiltonian is given in section 6.5 based on the analysis in
the continuous limit. From Section 6.6 on, we discuss another model based
on the partition function of Ising model, where we can see the change of the
boundary Hamiltonian across a phase transition.
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6.1 Spin S VBS ground state on a two dimen-

sional torus

As discussed on [11, 102, 103] it is possible to construct a valence bond solid
(VBS) ground state in a planar graph G (without edges starting and ending in
the same site) in the following way: Given a planar graph G, consisting of a set
of vertices (sites) V and edges E, with zi edges arriving to vertex i (in graph
theoretical language, zi is called coordination number), we place a local spin Si
on the vertex with the condition Si = zi/2. The local spin state is constructed
from the symmetric subspace of zi spins 1/2 (doing this we obtain a higher spin
representation of dimension 2Si + 1 from 2Si fundamental representations of
SU(2)). Finally we antisymmetrize between nearest neighbors. Representing
the spin 1/2 constituents of the spin Si at site i as black dots, using a circle
to indicate symmetrization and a bond between antisymmetric neighbors, we
obtain a planar graph G ′ isomorphic to G, see Fig 6.1.

The AKLT Hamiltonian for which the VBS state constructed is a ground
state is a sum over interactions on all edges E of G, H =

∑
〈k,l〉∈E Hkl(Sk+Sl),

where the Hamiltonian density Hkl is

Hkl(Sk + Sl) =

Sk+Sl∑
J=Sk+Sl+1−Mlk

AJklπ
J
kl(Sk + Sl), (6.1)

the coefficients AJkl > 0 are arbitrary and can depend on the edge 〈k, l〉, while
the positive number Mkl is the number of bonds (edges) connecting the sites k
and l. The operator πJkl(Sk +Sl) is a projector of the total spin Jkl = Sl +Sk
of the edge 〈k, l〉 on the subspace of spin value J , its explicit form is

πJkl(Jkl) =

Sk+Sl∏
j=|Sk−Sl|,j 6=J

(Jkl)
2 − j(j + 1)

Jkl(Jkl + 1)− j(j + 1)
, (6.2)

The VBS state is the unique ground state of H [66]. While this construction
is totally general, in the rest of this discussion we will focus on graphs without
boundaries, which can be embedded on a two dimensional torus, with Mij = 1
for all edges.
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a) b)

Figure 6.1: a) Original planar graph G, vertices represented with black
dots. b) VBS state on G ′, circles (vertices of G ′) represent symmetrization
of constituents spin 1/2 (black dots) particles, while bonds represent anti-
symmetrization of neighboring spins. Note that any loop in G would make the
associated VBS state vanish, as it would correspond to the antisymmetrization
of a state with itself.

6.2 Partial density matrix and Schwinger bo-

son representation of VBS ground state

In this section, we introduce a general way of writing the reduced density
matrix of a pure system in terms of overlap matrices. These matrices have
elements which correspond to overlap amplitudes between states spanning the
ground space of Hamiltonians defined entirely in the subsystems. We apply
these results to the VBS case introduced in the previous section.

Using the Schmidt decomposition, any ground state |Ψ〉 of a system can
be written as

|Ψ〉 =
∑
α

|Aα〉 ⊗ |Bα〉, (6.3)

where the states |Aα〉 and |Bα〉 are related to the usual states appearing in
the Schmidt decomposition by a scale factor. |Aα〉 and |Bα〉 are states de-
fined in the subsystems A and B, with associated Hilbert spaces HA and HB

respectively. The total system has a Hilbert space H = HA ∪ HB. The set
of states {|Aα〉, |Bα〉} is a complete, linear independent but not orthonormal
basis (in principle). The density matrix for this pure state is the projector
onto the ground state ρ = N|Ψ〉〈Ψ|, with N−1 = 〈Ψ|Ψ〉. Tracing out the sites
belonging to the subsystem B, we obtain the partial density matrix, which
describe the system A, ρA = TrBρ. Using (6.37) the partial density matrix
becomes ρA = N

∑
αβ〈Bβ|Bα〉|Aα〉 ⊗ 〈Aβ|.

We can write the operator ρA as a matrix using the basis |i〉 =
∑

α Uiα|Aα〉
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and its dual 〈j| =
∑

γ Vjγ〈Aγ|, where U and V are matrices of change of basis
and 〈j|i〉 = δij. We have

〈j|ρA|i〉 = (ρA)ji = N
∑
αβµγ

〈Bβ|Bα〉Vjγ〈Aγ|Aα〉Uiµ〈Aβ|Aµ〉. (6.4)

However from the orthonormality condition 〈j|i〉 = δij follows the relation∑
γ Vjγ〈Aγ|Aα〉 = (U−1)αj which inserted back in the expression for (ρA)ji

simplifies it to 〈j|ρA|i〉 = N
∑

αβµ Uiµ(〈Aµ|Aβ〉)∗〈Bβ|Bα〉(U−1)αj. Using this,
the partial density matrix can be written as

(ρA)µα =
∑
γ

〈(Aµ|Aγ〉)∗〈Bγ|Bα〉
〈Ψ|Ψ〉

. (6.5)

From the Schmidt decomposition, we know that the dimension of this op-
erator is the minimum between the dimensions of HA and HB. Let’s assume
dimHA ≤ dimHB. The dimension of ρA is then dimHA × dimHA. This
matrix is not hermitian in the usual sense O† = O, but it is isospectral with
(ρA)†.

Using the Schwinger boson representation for spin operators, the VBS state
on G can be written as [65, 66]

|Ψvbs〉 =
∏

〈i,j〉∈EG

(a†ib
†
j − a

†
jb
†
i )|0〉, (6.6)

where EG is the set of all edges (bonds) of G and |0〉 is the state annihilated by
all the ai and bi operators, i.e. ai|0〉 = bi|0〉 = 0, ∀ i. For a generic partition
of the system into two subsystems A and B (we assume both of them to
be connected regions) with boundaries ∂A and ∂B, we have a collection of
vertices VA, VB such that VA ∪ VB = VG and a collection of edges (bonds)
which endpoints live either both in A (B) or one in A and the other in B. For
bonds which both endpoints live in A we will say 〈i, j〉 ∈ EA (similarly for B),
while for shared bonds with endpoints i and j we use i ∈ ∂A, j ∈ ∂B. The set
of shared bonds we will call it ∂ (and is the same for A and B). Finally the
cardinality of a set M is denoted by |M |. Using this definitions, we can write
the state |Ψvbs〉 in the form (6.3) as follows; first we write

|Ψvbs〉 =
∏
〈i,j〉∈
EA∪EB

(a†ib
†
j − a

†
jb
†
i )
∏
i∈∂A
j∈∂B

(a†ia
†
j + b†jb

†
i )|0〉, (6.7)

where we have applied a local basis transformation on the sites (vertices) in
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B, a†i → −b
†
i and b†j → a†j just for later convenience. In the shared bonds,

we can assign to an endpoint j of a bond, it’s partner in the other end of the
bond to be j̄. Doing this we can expand (6.7) in the form [103]

|Ψvbs〉 =
∑
{α}

∏
i∈∂

(a†i )
αi(b†i )

1−αi(a†
ī
)αi(b†

ī
)1−αi

×
∏

〈i,j〉∈EA∪EB

(a†ib
†
j − a

†
jb
†
i )|0〉

=
∑
{α}

|A{α}〉 ⊗ |B{α}〉, (6.8)

here {α} = {α1, α2, ..α|∂|} with αi = 0, 1, labels the different ground states of
the subsystems, which span a Hilbert space of dimension 2|∂|. The Hamiltonian
in subsystem A is defined by HA ≡

∑
〈k,l〉∈EA Hkl (and similarly for B), with

Hkl given by (6.1). From (6.8), we can read off the form of the states |A{α}〉

|A{α}〉 =
∏

〈i,j〉∈EA

(a†ib
†
j − a

†
jb
†
i )
∏
i∈∂

(b†i )
1−αi(a†i )

αi |0〉, (6.9)

using (6.5) and (6.9), we can compute the density matrix ρA in terms of the

overlap matrices M
[A]
{α},{β} = 〈A{α}|A{β}〉. From eq. (6.5), the partial density

matrix is constructed gluing together two of these overlap matrices, one for
each subsystem, along the boundary of the partition, leaving one index free in
each overlap matrix, obtaining a torus with a cut along the partition (see Fig.
6.2).

From this construction, we see that we can write ρA as a block diagonal
operator, with a nontrivial block of dimension 2|∂| × 2|∂|, and a trivial block
(full of zeros), of dimension (dimHA− 2|∂|)× (dimHA− 2|∂|). This result can
be understood from the properties of the VBS state. This state is annihilated
at each and every site by the action of the Hamiltonian density Hkl. After
making the partition the states defined in the subsystems are still annihilated
by the local Hamiltonians defined in each partition, but the states of the sites
at the edges who cross from one subsystem to the other (in our notation, the
edges belonging to the set ∂) are free to have any possible state on them, as no
local Hamiltonian defined in just one subsystem can act on this edges. This
feature has been encountered before in the study of AKLT chains, where the
dimension of the partial density matrix does not increase with the size of the
system [64].

The computation of this overlap matrix can be mapped to the computa-
tion of partition and correlation functions in an O(3) model, by means of the

68



a )

b )

c )

Figure 6.2: a.- The VBS ground state in its tensor product representation can
be viewed as a two dimensional lattice build up from contractions of virtual
indices (black lines in the plane). The physical indices stick out of the plane.
After making the partition, virtual indices at the boundary are free. b.- The
overlap matrix M

[A]
αβ = 〈Aα|Aβ〉 can be obtained by stacking two of this sys-

tems and contracting their physical index. This creates a two layer stack.
c.- Graphical representation of the partial density matrix ρA, for a particular
partition. For periodic boundary conditions, the overlap matrix corresponds
to a section of the torus with two different, inner and outer, layers. To com-
pute (ρA)αβ, we glue the inner layers of the overlap matrices M [A] and M [B]

(contracting the virtual indices), obtaining a two layer torus with a cut in the
outer sheet along the boundary of the partition. The cut here is represented
by the dashed line.

classical representation of the VBS state [65], as we show in the next section.

6.3 Quantum to Classical mapping

Introducing the spinor coordinates

φak = (uk, vk) = (eiϕk/2 cos
θk
2
, e−iϕk/2 sin

θk
2

),

at site k, with θ ∈ [0, 2π], ϕk ∈ [0, 2π), we can define the the spin coherent
state |Ωk〉 as

|Ωk〉 =
(uka

†
k + vkb

†
k)

2Sk√
(2Sk)!

|0k〉, (6.10)
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(|0k〉 being the vacuum state at site k), this states are complete but not or-
thogonal. Inserting the resolution of the identity

12Sk+1 =
2Sk + 1

4π

∫
dΩk|Ωk〉〈Ωk|, (6.11)

in M
[A]
{α}{β}, and using the result 〈0|aSk−lk bSk+l

k |Ωk〉 =
√

(2Sk)!u
Sk−l
k vSk+l

k , the

following form of the overlap matrix is obtained (dropping overall constant
factors)

M
[A]
{α}{β} =

∫ ∏
i∈A

dΩi

4π

∏
〈i,j〉∈EA

(1− Ω̂i · Ω̂j)×
∏
k∈∂A

(uk)
αk(vk)

1−αk(u∗k)
βk(v∗k)

1−βk ,(6.12)

here Ω̂k = (sin θk cosϕk, sin θk sinϕk, cos θk) is the unit vector over the two
dimensional sphere S2 and u∗ is the complex conjugate of u. From (6.12) we
see that the overlap matrix M [A] is hermitian, so the partial density matrix
ρA = N (M [A])∗M [B] is also hermitian. Using now that (uk)

1−αk(vk)
αk = φαkk

(abusing notation, αk goes from being a power, to become a (supra)index,
φ0
k = uk, φ

1
k = vk) and the identity

2φαk (φ∗k)
β = δαβ + Ω̂k · σαβ, (6.13)

where δαβ is the Kronecker delta symbol, and σ = (σ1, σ2, σ3) is a vector of
Pauli matrices (no distinction is made between upper or lower greek indices);
the expression for the overlap matrix can be written as

M
[A]
{α}{β} =

∫ ∏
i∈A

dΩi

4π

∏
〈i,j〉∈EA

(1− Ω̂i · Ω̂j)×
∏
k∈∂A

(I + Ω̂k · σ)αkβk , (6.14)

combining this result with (6.5), the density matrix of the subsystem A be-
comes

(ρA){α}{β} =
1

Z

∫ ∏
k∈G

dΩk

4π

∏
〈i,j〉∈EA∪EB

(1− Ω̂i · Ω̂j) (6.15)

×
∏
〈k,l〉∈∂

[(I + Ω̂k · σ)(I + Ω̂l · σ)]αkβl .

with Z the proper normalization factor to make TrρA = 1. We can expand
the matrix product inside (6.15) using the product identity for Pauli matrices
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σiσj = δijI + iεijkσk (repeated index implies sum) where εijk is the totally
antisymmetric Levi-Civita tensor. The result of the term inside the square
bracket in (6.15) is then

[(I + Ω̂k · σ)(I + Ω̂l · σ)]αβ (6.16)

= (1 + Ω̂k · Ω̂l)δαβ + (Ω̂k + Ω̂l + i(Ω̂k × Ω̂l)) · σαβ,

where â× b̂ represent the cross product between vectors â and b̂.

6.4 Graph expansion of the density matrix

In this section we derive the structure of the entanglement Hamiltonian as
a sequence of spin 1/2 Hamiltonians with increasing interaction length, using
the quantum to classical correspondence introduced in the previous section.

From (6.16), two types of expressions can be assigned to each edge on ∂.
We draw an straight line between k and l whenever in that bond we have the
expression (1 + Ω̂k · Ω̂l)δαβ, while we put a wiggly line for (Ω̂k + Ω̂l + i(Ω̂k ×
Ω̂l)) · σαβ. Expanding the product over the boundary in (6.15), we obtain a
sum where each term has either a wiggly or straight line corresponding to
〈k, l〉 ∈ ∂. All the other bonds who don’t belong to ∂ have an straight line
associated with them.

In general, for a planar graph L, the expression

ZO(N) =

∫ ∏
k∈L

dΩk

SN

∏
〈i,j〉∈EL

(1 + xΩ̂i · Ω̂j) (6.17)

where Ω̂ is an N dimensional unit vector; corresponds to the partition function
over L of the O(N) model [104] which is analogous to a model of overlapping
loops. To see this, we use that∫

dΩk

SN
Ω̂k · Ω̂k = 1,

∫
dΩk

SN

odd∏
i=1

(Ω̂i · Ω̂k) = 0, (6.18)

where SN is the area of the SN−1 sphere and the second property follows
form the invariance of the integration measure under change Ω̂k → −Ω̂k. As
the only terms that contribute to ZO(N) are the ones with a product of even

(Ω̂i · Ω̂k) terms at each site of the graph, the whole partition function can be
written as [105]
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ZO(N) =
∑
C

w(ζ, C)xΓ(C) (6.19)

with C a particular configuration of loops of total length Γ(C) that can be
embedded in the graph L, and w(l, C) being the corresponding weight asso-
ciated with a loop ζ and with the particular configuration of loops C. For
example, for the hexagonal lattice (coordination number zi = 3) each site has
associated just two bonds, and each integration of a site gives a factor of 1

N
,

except the last integration which closes the loop. The partition function is

then ZO(N) =
∑
C
(
x
N

)Γ(C)
Nn(C), with n(C) the number of loops in the configu-

ration C. The computation of spin correlations 〈Ω̂m · Ω̂k〉 corresponds then to
the computation of ZO(N), with configurations that allow loops and open paths
that begin at site m and end at site k. From (6.15) expanding the product over
the partition’s boundary we get a sum over different configurations of loops
and open strands in the O(N) model, over the graph L with defects (wiggly
lines). In the present case, x = −1 and N = 3 for the classical partition
function of the VBS ground state.

So far we have developed our ideas for general planar graphs with no loops
and no more than one bond shared between neighbors (Mij = 1), but from now
on we will focus the discussion on translation invariant lattices with the previ-
ous restrictions. The discussion will remain general for lattices subject to the
mentioned restrictions, that can be embedded on a torus. Using translation
symmetry, we can expand the product over the boundary in (6.15) in different
contributions of translational invariant Hamiltonians along the boundary, with
increasing number of non-trivial operators (Pauli matrices) acting on the local
Hilbert space associated with a bond. The first term of the expansion corre-
spond to the identity in the 2|∂|-dimensional Hilbert space of the boundary.
The second term, which is proportional to a constant external magnetic field
acting on the boundary chain, vanish. This follows from the observation that
in this term, we have just one wiggly bond placed in the boundary - let’s say
at bond k with endpoints k and k̄ - and the rest are just straight lines, which
after integration will generate all the configurations of loops, and open lines
that start at k, travel through the lattice and end at site k̄ (for this type of
bonds we will use dashed lines, to indicate the corresponding connection on the
lattice). So we will have a term which is proportional to the spin correlation
between k and k̄, and an integral of the form (see fig 6.3.a)

∫
dΩk

4π

dΩk̄

4π
(Ω̂i · Ω̂k̄)

m(Ω̂k + Ω̂k̄ + i(Ω̂k × Ω̂k̄)) · σαkβk̄ ,
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with m odd, which vanish trivially. The next terms in the expansion have two
Pauli matrices acting on the different bonds. These terms are proportional
to the only SU(2) invariants that can be constructed with two vectors (of
Pauli matrices), namely σi · σj (see fig 6.3.b). Depending on the separation
between the wiggly bonds along the boundary, we have different contributions
for which the numerical factor should decay exponentially with this distance,
given that the VBS model is expected to have a mass gap (fact that is proven
for linear and hexagonal lattices [11]), result which is in agreement with the
O(N) model being noncritical for N > 2 at x = −1 [106].

With the previous results, we can write the following expansion for the
density matrix ρA

ρA =
I

2∂
+
∑
r,i

Arσi · σi+r +
∑
ijk

Aijkσi · (σj × σk) + . . . (6.20)

where I is the 2∂ × 2∂ identity operator and the coefficients Ar and Aijk are
related to the correlation functions of the O(N) on the lattice L, with some
sites and bonds erased along the boundary. Specifically for the first coefficient
Ar we have

Ar ∼ 〈(Ω̂k · Ω̂k+r)(Ω̂k̄ · Ω̂k̄+r)〉Lk − 〈(Ω̂k · Ω̂k̄+r)(Ω̂k̄ · Ω̂k+r)〉Lk . (6.21)

Here the correlation function is computed over the lattice Lk which is the same
lattice L but with the bonds 〈k, k̄〉 and 〈k + r, k̄ + r〉 erased. This relation is
exact for hexagonal lattices, while for other lattices with coordination number
greater than 3, all the other possible contractions between even number of
legs at the boundary sites have to be included. As usual with gapped systems,
we expect that this correlation decays exponentially with the separation of
the spins, then we have Ar ∼ exp(−r/ξ1). Numerical studies for two-leg
VBS ladders have been performed [16] being in agreement with this general
result. For r = 1, the second term in (6.21) vanishes in the thermodynamic
limit when minimum distance paths joining the sites are cycles who travel
the lattice. Also taking the limit of infinite size of the A and B subsystems,
the interaction between the two boundary chains along different cuts of the
partition vanishes. Then the total density matrix is the tensor product of
matrices with the expansion (6.20), for each cut.

It is clear that the first nontrivial term in the expansion (6.20) is the XXX
Heisenberg Hamiltonian. We can also determine whether this interaction is
ferro or anti-ferromagnetic in the simplest hexagonal lattice, from the loop
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Figure 6.3: First terms in the graph expansion of the RDM ρA. For a generic
lattice, the number of bonds arriving to a boundary vertex (big circles) can
be any even integer, here we show for simplicity the case corresponding to an
hexagonal lattice where the number of bonds arriving to a vertex is exactly 2.
Dashed lines show the remaining bonds after taking the trace over the whole
lattice, except for the boundary vertices joined by wiggly lines.
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a) b)

Figure 6.4: a.- Loop contribution to A1 in the hexagonal lattice. Big circles
represent boundary sites, along the partition (dashed line). b. Dashed line
represent a partition in the square lattice. The contributions to A1 consist
now of configurations of overlapping loops.

expansion. The structure of the lattice determines the sign of the interaction
through the number of bonds that define the allowed paths between site k
and site k + 1 (each bond has an associated x = −1). An overall minus sign
comes from the contraction of two wiggly lines. Then it is easy to show that
for the hexagonal lattice with a partition like the one in Fig. 6.4.a, all the
paths connecting the boundary sites have even number of bonds, then the sign
of the boundary XXX Hamiltonian is −1, so the boundary chain interaction
is ferromagnetic. Numerical results [15, 16] in finite size square lattices for
a partition like Fig 6.4.b, indicate that in the square grid the interaction is
anti-ferromagnetic.

6.5 Continuous limit and Entanglement Hamil-

tonian

In order to unveil the structure of the entanglement Hamiltonian, we can
analyze the partial density matrix (6.15) taking the lattice spacing in the origi-
nal discrete model to zero, obtaining a continuous version of the model. In this
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limit we can show the locality of the boundary (entanglement) Hamiltonian
as presented in this section.

Starting from (6.15), using (6.16) we can write

(ρA){α}{β} =
1

Z

∫ ∏
k∈G

dΩk

4π

∏
〈i,j〉

(1− Ω̂i · Ω̂j)
∏
〈k,l〉∈∂

[δαkβl + Φ̂kl · σαkβl ]. (6.22)

where Φ̂kl is a unit vector (with complex components), explicitly given by

Φ̂kl =
Ω̂k − Ω̂l − i(Ω̂k × Ω̂l)

1− Ω̂k · Ω̂l

. (6.23)

Note that Φ̂2
kl = 1. We can write Φ̂kl in the orthogonal decomposition Ω̂k

and Ω⊥, with Ω⊥ a complex vector of vanishing square. In the continuous
limit we drop the contribution from Ω⊥. In this approximation we have

Φ̂kl = Ω̂k. (6.24)

Putting this result back on (6.15), we obtain a generating function of a O(3)
model with a discrete action

∑
〈i,j〉 ln(1 − Ω̂i · Ω̂j) and a spin 1/2 operator

localized in the boundary which acts as the current for the generating function.
We can study the related O(N) symmetric model with action −

∑
〈i,j〉 Ω̂i · Ω̂j

which is in the same universality class as (6.17). In this case, the partial
density matrix reads

ρA[σ] =
1

Z

∫ ∏
k∈G

dΩk

4π
exp

−∑
〈i,j〉

Ω̂i · Ω̂j +
∑
k∈∂

Ω̂k · σ


where Ω̂ is constrained to be a unit vector. In the continuous limit, the reduced
density matrix becomes the generating functional of O(3) nonlinear sigma
model in Euclidean two dimensional space, with an external current localized
at the boundary of A. This Euclidean non-linear sigma model has been well
studied [107, 108] and can be solved by standard methods [109]. Here we recall
these methods for completeness.

We can impose the unit vector constraint on Ω̂ by introducing an auxiliary
field α. In sum, we have
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ρA[σ] =
1

Z

∫
DΩDα exp

[
−S[Ω, α] +

∫
d2xΩ · σ

]
(6.25)

with σk(x1, x2) = σk(x1)(δ(x2) + δ(x2 − LA)), (k = 1..3) an spin 1/2 field
defined at the boundary of A, which we have placed conveniently at x2 = 0
and x2 = LA. The action S[Ω, α] is given by

S[Ω, α] =
1

2g2
0

∫
d2x

{
(∇Ω)2 + iα(x)(Ω(x)2 − 1)

}
, (6.26)

where we have introduced a bare coupling g0. As the discussion is essentially
the same for any number of components of the Ω field, we now consider the
more general N component case with the corresponding O(N) global symme-
try. We can integrate out the field Ω, as the action in this field is quadratic,
obtaining

ρA[σ] =
1

Z

∫
Dα expS, (6.27)

with

S = −g
2
0

2

∫
dx dy σk(x)∆−1(x− y)σk(y) +

i

2g2
0

∫
d2xα(x)− N

2
tr ln ∆,

(6.28)

with ∆(x) = −∇2 + iα(x).
In order to make progress, we now can take the N → ∞ limit, keeping

Ng2
0 fixed. In this limit, we can evaluate the integral (6.27) by the method

of steepest descent. The value of α that minimizes the action is given in the
large N limit by α(x) = −im2, with m the solution of the equation∫

d2k

(2π)2

1

k2 +m2
= lim

Λ→∞

1

2π
ln

(
Λ

m

)
=

1

Ng2
0

. (6.29)

This equation is divergent, but can it can be made finite by renormaliz-
ing the bare coupling g0 at an arbitrary renormalization scale M as 1

g2
0

=
1
g2 + N

2π
ln
(

Λ
M

)
. Inserting this equation back in (6.29), we get the following

expression for m in terms of the physical coupling g, the renormalization scale
M and the number of components N of the original Ω field,
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m = M exp

[
− 2π

g2N

]
. (6.30)

In this large N limit, we can compute the Entanglement Hamiltonian as
the logarithm of the reduced density matrix, obtaining

Hent = ln ρA[σ] =
g2

2

∫
dx dy σk(x)∆−1(x− y)σk(y), (6.31)

where ∆−1(x) = K0(m|x|)/2π is the zeroth order modified Bessel function.
The exponential decay ofK0(m|x|) for large x is what defines a local interaction
at the boundary of A. Although this result is obtained in the large N limit,
the general features of the N = 3 model are believed to be captured in this
limit [110].

6.6 Ising PEPS quantum model

A general method to construct quantum Hamiltonians, and to relate their
ground state wavefunctions to classical partition functions was introduced in
[111]. This model was also studied in [112] in the context of projected en-
tangled pair states (PEPS), where was shown that the entanglement entropy
SA for a subsystem follows an strict area law bound SA ≤ |∂A| where |∂A| is
the length of the subsystem’s boundary. Also they found a Hamiltonian (Par-
ent Hamiltonian) whose ground state wavefunction is given by the partition
function of the Ising model.

For completeness in this section we present explicit results following the
methods presented in [111] for a two dimensional square lattice

Given a square lattice Λ, we denote the vertices in Λ by the pair (m,n)
with 0 ≤ m ≤ Nh and 0 ≤ n ≤ Nv. The total number of vertices in Λ is
NhNv. At each site we introduce a Hilbert space of dimension 2, spanned by
the basis {|− 1〉, |1〉}. The state |σi〉 is an eigenstate of the the σzi operator at
site i = (m,n), with the natural notation σzi |σi〉 = σi|σi〉 (σ = {−1, 1}).

We define the following state in the whole lattice (assuming periodic bound-
ary conditions in horizontal and vertical directions)

|Z〉 =
∑
{σ}

e−
β
2
h({σ})|{σ}〉, (6.32)

where |{σ}〉 =
⊗

i∈Λ |σi〉. The set {σ} is just the set of all the sigma labels
in the lattice {σ} = {σi}i∈Λ. This set corresponds to the 2NhNv possible
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configurations of σ variables across the lattice. h({σ}) denotes the Hamiltonian
of the classical Ising model

h({σ}) = −
∑
m,n

Jhσ
z
(m,n)σ

z
(m+1,n) + Jvσ

z
(m,n)σ

z
(m,n+1).

for ferromagnetic interactions (Jh, Jv ≥ 0).
The state |Z〉 is the ground state of the following local quantum Hamilto-

nian, defined in the same square lattice Λ

HQ =
∑
m,n

e(−σz
(m,n)

[2Kv(σz
(m,n−1)

+σz
(m,n+1)

)+2Kh(σz
(m−1,n)

+σz
(m+1,n)

)]) − σx(m,n), (6.33)

this is a local operator, considering that (σz)2 = 1. Expanding we get

H =
∑
m,n

A00 − 2A01σ
z
(m,n)σ

z
(m+1,n) − 2A10σ

z
(m,n)σ

z
(m,n+1) + A02σ

z
(m,n−1)σ

z
(m,n+1)

+ A20σ(m−1,n)σ(m+1,n) + A11σ
z
(m+1,n)σ

z
(m,n−1) + A11σ

z
(m+1,n)σ

z
(m,n+1)

− A21(σz(m,n)σ
z
(m+1,n)σ

z
(m,n−1)σ

z
(m,n+1) + σz(m,n)σ

z
(m−1,n)σ

z
(m,n−1)σ

z
(m,n+1))

− A12(σz(m,n)σ
z
(m,n+1)σ

z
(m−1,n)σ

z
(m+1,n) + σz(m,n)σ

z
(m,n−1)σ

z
(m−1,n)σ

z
(m+1,n))

+ A11(σz(m−1,n)σ
z
(m,n−1) + σz(m−1,n)σ

z
(m,n+1)) (6.34)

+ A22σ
z
(m+1,n)σ

z
(m,n+1)σ

z
(m−1,n)σ

z
(m,n−1) − σx(m,n)/(cosh 2Kv cosh 2Kh)

2

where σx, σz denotes the usual Pauli matrices, and

Aij(β) = (tanh 2Kv)
i(tanh 2Kh)

j. (6.35)

Kh and Kv are given by Kh = βJh/2 and Kv = βJv/2. A graphical depiction
of each local interaction term in the Hamiltonian is given in Fig. (6.6)

Given that HQ is a positive definite operator [111] (for real coupling con-
stants Kh,v), and HQ|Z〉 = 0, which can be verified explicitly, we see already
that |Z〉 corresponds to the ground state HQ.

6.7 Density matrix of a subsystem

We define a bipartition on the lattice Λ (which has the topology of a torus),
between regions A and B, such that A and B are topologically equivalent to
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Figure 6.5: Graphical notation for the interaction terms of the Hamiltonian.
Sites who interact are connected by bonds. a) Vertex and nearest neighbors
in the square lattice. b) Two body interactions. c) Four body interactions.
Different colors represent different interaction strengths (for Kh = Kv).

cylinders. For definiteness we cut along a line in the vertical direction, crossing
Nv links. The boundaries of the regions are ∂A and ∂B respectively. We have
the following decomposition of the original ground state |Z〉

|Z〉 =
∑
{σ}

e−
β
2

(hA(σ)+hB(σ)) exp

Kh

∑
i∈∂A
j∈∂B

σiσj

 |{σ}〉. (6.36)

Here hA(σ) is the Ising Hamiltonian in the region A (and equivalently for
B). The interaction term across the boundary of A and B can be written
as a product over the boundary links of coshKh + σiσj sinhKh. Defining
φ(j)0 =

√
coshKh and φ(j)1 =

√
sinhKhσj we can write the ground state in

the form

|Z〉 =
∑
{α}

|A{α}〉 ⊗ |B{α}〉. (6.37)

The set of states in theA subsystem is |A{α}〉 =
∑
{σ}A e

−β
2
hA(σ)

∏
i∈∂A φ(i)αi |{σ}A〉,

where the sum is done over the lattice sites in A. Each of these states is labeled
by an element of the set {α} = {αi}i∈∂A, whose dimension is 2Nv . From [113]
the partial density matrix can be written as

[ρA]µα =
∑
γ

(〈Aµ|Aγ〉)∗〈Bγ|Bα〉
〈Z|Z〉

. (6.38)
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The overall normalization 〈Z|Z〉 is just the partition function of the Ising
model Z(β) which is dependent of the horizontal (Kh) and vertical (Kv) cou-
plings. The numerator in (6.38) is the product of overlap matrices for each of
the regions. The overlap matrix has the form

〈Aα|Aβ〉 =
∑
{σ}A

e−βhA(σ)
∏
i∈∂A

(
eKhδαiβi + ni · ταiβi

2

)
, (6.39)

where ni = (
√

2 sinh 2Khσi, 0, e
−Kh) is a three dimensional vector, and τ =

(τ1, τ2, τ3) is a vector of Pauli matrices. The partial density matrix reduces to

[ρA]αβ =
∑
{σ}

e−βh(σ)

Z(β)

∏
i∈∂A
j∈∂B

(
δαiβj + sij · ταiβj

2

)
, (6.40)

with

sij =
(
λx(σi + σj),−iλy(σi − σj), e−2Khσiσj

)
,

λx(Kh) = e−Kh

√
sinh 2Kh

2
, λy(Kh) = eKh

√
sinh 2Kh

2
.

The operator acting across the cut is explicitly given by

L
σi,σj
αiβj

= e2Khσiσj(δαiβj + sij · ταiβj). (6.41)

It corresponds to an operator acting on two different spaces, one being the
space where the α index acts, space which we will call quantum space, and
the space where the transfer matrix of the classical Ising model acts, which
we will call auxiliary space. This nomenclature is borrowed from the study of
integrable systems [114] where the construction of the monodromy matrix has
a similar structure.

After applying a change of basis uLu−1, with u = (τ1 + τ3), the matrix L
is explicitly given by,

L = (v
1/2
2 ⊗ I)((I⊗ (I + bτ1) + Jkσ̂

k ⊗ τk)(v1/2
2 ⊗ I),

with v2 =
√

2 sinh 4Kh exp(2K∗hσ̂
x),

b =
e−2K∗h

√
2 sinh 4Kh

, e−4Kh = tanh 2K∗h and (6.42)

81



J =

(
e−2K∗h

√
2 sinh 4Kh

,
−e−Kh√

2 cosh 2Kh

,
eKh√

2 cosh 2Kh

)
, (6.43)

(sum implied over repeated indices). Here the first space in the tensor product
is the auxiliary space Γ , while the second is the quantum space Q. The matrix
I is the 2 × 2 identity in each space. The matrices σ̂1,2,3 are the usual Pauli
matrices.

The partial density matrix has then the following structure

ρ = (22NvZ(Kh, Kv))
−1TrΓ

(
TNALTNBL

)
, (6.44)

with T the tensor product of the identity matrix in the quantum space Q, of di-
mension 2Nv×2Nv with the transfer matrix of the Ising model, T which has the
same dimension. L is the tensor product along the boundary of the L matrices,
explicitly Lσ,σ′

α,β =
∏

ij L
σiσj
αiβj

and has dimension 22Nv×22Nv . The reduced density

matrix is obtained tracing out the auxiliary space. Writing (6.44) we have as-
sumed for the two subsystems A and B to be cylinders of circumference Nv and
length NA

h and NB
h , with NA

h +NB
h = Nh and Nv(N

A
v +NB

v ) the total number
of sites. In the thermodynamic limit, the Ising transfer matrix becomes a pro-
jector on the eigenspace associated with the maximum eigenvalue, multiplied
by that eigenvalue so we can write in that limit ρA = 2−2Nv〈e0|L|e0〉〈e0|L|e0〉,
where |e0〉 is the eigenvector corresponding to the maximum eigenvalue of T .
As expected, the density matrix factorizes in two density matrices, one for each
boundary, so we can study the spectrum of ρA just looking at one boundary,
so from now on we concentrate our efforts in

ρ′A = 2−Nv〈e0|L|e0〉, (6.45)

which is an operator of dimension 2Nv × 2Nv .

6.8 Expansion of ρA

Using (6.45) we can find a series expansion for ρA in terms of correlation
functions of the XY model with magnetic field as follows.

The symmetric transfer matrix of the classical Ising model (6.33) defined
on Γ is given by[115, 116]
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T = V
1/2

2 V1V
1/2

2 , V1 = exp
(∑Nv

i=1 2Khσ̂
z
i σ̂

z
i+1

)
,

V2 = (2 sinh 4Kh)
Nv/2e2K∗h

∑Nv
i=1 σ̂

x
i . (6.46)

The transfer matrix T adds one column to the Ising partition function
Z(Kv, Kh). The partition function (for periodic boundary conditions) can
then be constructed by taking the trace of TNh . The transfer matrix (6.46)
commutes with the Hamiltonian of the one dimensional XY model with mag-
netic field [116]. This Hamiltonian is explicitly given by

HXY = −
Nv∑
j=1

1 + γ

2
σzjσ

z
j+1 +

1− γ
2

σyjσ
y
j+1 + hσxj , (6.47)

where the interaction constant γ and the magnetic field h are related with the
original couplings in the classical Ising model by

γ =
1

cosh 4K∗h
and h =

tanh 4K∗h
tanh 4Kv

,

with sinh 4Kh sinh 4K∗h = 1. (6.48)

This Hamiltonian is related with the usual XY Hamiltonian by the canon-
ical transformation (σx, σz)→ (σz,−σx).

The vector |e0〉 in (6.45) denotes the eigenvector of T with the maximum
eigenvalue. As T and HXY commute, they share the same eigenvectors. It was
shown in [116] that the eigenvector associated with the maximum eigenvalue
corresponds to the ground state of HXY which we call |0XY 〉. The XY Hamil-
tonian can be diagonalized essentially by a Jordan Wigner transformation,
followed by Bogoliubov transformation in momentum space (for more details
see [117]), rendering the model solvable.

In order to use the results available for the XY model, we use the expres-
sion for the operator L introduced in (6.42), which is given in terms of the
observable operators in the XY model. From expression (6.45) we have

ρ′A =

〈
0XY

∣∣∣∣∣
Nv∏
i=0

I(i) ⊗ (I(i) + bτ
(i)
1 ) + Jkσ̂

k
(i) ⊗ τ

(i)
k

2

∣∣∣∣∣ 0XY
〉
.

(6.49)
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6.9 Small and High β expansion

6.9.1 β →∞ limit

We can study the Kh →∞ limit of the partial density matrix from (6.49),
using the ground state associated with the XY Hamiltonian in this regime,
which is just the one dimensional cat state

|0XY 〉∞ =
1√
2

(⊗
i∈∂A

| ↑i〉+
⊗
i∈∂A

| ↓i〉

)
, (6.50)

For x = e−4Kh � 1/
√
Nv the Hamiltonian (6.47) becomes

HXY ≈ −
Nv∑
j=1

(1− x2)σzjσ
z
j+1 + x2σyjσ

y
j+1 + 2xσxj . (6.51)

The unperturbed Hamiltonian H0 = HXY (x = 0) corresponds to the usual one
dimensional Ising model. Using first order perturbation theory, the ground
state of (6.51) is

|0XY 〉x = |0XY 〉∞ +
x

2

Nv∑
i=1

| ↑↓i . . . ↑〉+ | ↓↑i . . . ↓〉,

, where we have choose one particular ferromagnetic ground state.
To write down the expression for ρ′A in this limit, we need to introduce some

notation. The projector operators Z
(i)
± acting on the site i in the quantum

space Q and are defined by

Z
(i)
± =

1(i) ± τ (i)
3

2
. (6.52)

These operators project on the eigenstates of τ3. The operator Z± corresponds

to the product of Z
(i)
± over all sites in Q. The operator Z[i]

a =
∏

j 6=i Z
(j)
a , acts

as a projector on all the sites along the chain different from site i. In general,
the sites where the projector doesn’t act will be denoted in the square bracket.
It turns out that just with the first order perturbation in the state, we can
obtain the expansion for ρ′a up to order x2. The density matrix ρ′A is then (for
x� 1, a = {+,−})
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ρ′A =
1

2

∑
a

((
1− x2Nv

4

)
Za +

Nv∑
i=1

Z[i]
a

[
x

2
τ

(i)
1 − a

(
x

4
− 3x2

16

)
τ

(i)
3

])

+
1

2

∑
a

(
x2

4

Nv∑
j>i

Z[i,j]
a

[
τ

(i)
1 τ

(j)
1 +

1

4
τ

(i)
3 τ

(j)
3

])

+
1

2

∑
a

(
x2

4

∑
i

Z[i]
a Z

(i)
−a − a

x2

8

∑
i 6=j

Z[i,j]
a τ

(i)
3 τ

(j)
1

)
. (6.53)

This operator is explicitly Z2 symmetric. We now concentrate in the exci-
tations respect to just one ferromagnetic ground state for simplicity.

The operator (6.53) (acting now in the quantum space Q) is block diagonal
with respect to the states of definite momentum and particle number,

|0; 0〉 = | ↑↑ . . . ↑〉,

|1; p〉 =
Nv∑
j=1

eipj| ↓j〉, (6.54)

|2; p1, p2〉 =
1

2

Nv∑
j 6=k

eip1jeip2k| ↓j . . . ↓k〉,

where {| ↑〉, | ↓〉} correspond to the eigenstates of τ3, namely τ3| ↑〉 = | ↑〉
and τ3| ↓〉 = −| ↓〉. The state | ↓k〉, indicates a spin flip from the com-
pletely magnetized state at position k. From the Z2 symmetry of the model
ρ′A is also block diagonal respect to corresponding excitations around the other
completely magnetized state | ↓↓ . . . ↓〉.

Up to first order in x, the density matrix can be written as

ρ′A = N e
x
2

∑
i τ

(i)
1 exp

(
−1

4

Nv∑
i=1

[∣∣∣ln x
4

∣∣∣+ x
]
τ

(i)
3 τ

(i+1)
3

)
e
x
2

∑
i τ

(i)
1 (6.55)

with normalization constant N = exp(Nv
4

∣∣ln x
4

∣∣).
6.9.2 β → 0 limit

In the limit ε = e−4K∗h � 1, the Hamiltonian (6.47) becomes

85



HXY ≈ −
Nv∑
j=1

σxj + ε((1 + 4ε)σzjσ
z
j+1 + (1− 4ε)σyjσ

y
j+1). (6.56)

The ground state is given by the product state

|0XY 〉0 =
⊗
i∈∂A

| ↑i〉+ | ↓i〉√
2

=
⊗
i∈∂A

|+i〉, (6.57)

this state does not receive corrections in first order (in ε) perturbation theory.
The expansion of ρ′A is then

ρ′A = X+ −
ε

2

Nv∑
i=1

X[i]
+τ

(i)
1 +O(ε2), (6.58)

where the operators X are defined in analogy with the Z operators, but using
the local projector onto the eigenstates of τ1, i.e

X
(i)
± =

1(i) ± τ (i)
1

2
. (6.59)

To first order in ε, the density matrix (6.58) can be put in the exponential
form

ρ′A = exp

(
−
∣∣∣ln( ε

2

)∣∣∣ Nv∑
i=1

X
(i)
− +Nvε

)
+O(ε2) (6.60)

6.10 Entanglement Hamiltonian

In this section, we will analyze the structure of Entanglement Hamiltonian,
which is basically the logarithm of the partial density matrix i.e Hent = ln ρA.
In order to compute this operator, we start from the expression (6.49). Ex-
panding the product in (6.49) we have

ρ′A =
1

2Nv

〈
0XY

∣∣∣∣∣1 +
Nv∑
i=1

Mi +
1

2

∑
i1 6=i2

Mi1Mi2 +
1

3!

∑
i1 6=i2 6=i3

Mi1Mi2Mi3 . . .

∣∣∣∣∣ 0XY
〉
,

(6.61)
here 1 is the identity in Γ⊗Q and Mi is an operator acting trivially everywhere
except at site i, where it acts as

Mi = J1I(i) ⊗ τ (i)
1 + Jkσ̂

k
(i) ⊗ τ

(i)
k . (6.62)
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Taking the expectation values in the ground state of XY model, we are left
with

ρ′A =
1

2Nv

(
1Q +

Nv∑
i=1

〈Mi〉+
1

2

∑
i1 6=i2

〈Mi1Mi2〉+
1

3!

∑
i1 6=i2 6=i3

〈Mi1Mi2Mi3〉+ . . .

)
.

(6.63)
The operator 1Q is the unit operator in Q. The operators 〈Mi1Mi2 . . .Min〉

are n body operators in the quantum space Q. For example

〈Mi〉 = Jk〈σ̂k(i)〉τ
(i)
k + J1τ

(i)
1 = J1(1 + 〈σ̂x〉)τ (i)

1 , (6.64)

〈MiMj〉 = 〈(J1I(i) ⊗ τ (i)
1 + Jkσ̂

k
(i) ⊗ τ

(i)
k )(J1I(j) ⊗ τ (j)

1 + Jkσ̂
k
(j) ⊗ τ

(j)
k )〉.

= J2
1 (1 + 2〈σ̂x〉)τ (i)

1 τ
(j)
1 + J2

a〈σ̂a(i)σ̂a(j)〉τ (i)
a τ (j)

a . (6.65)

where we have used the translation symmetry to define 〈σ̂x(i)〉 ≡ 〈σ̂x〉 and
the symmetry of the ground state correlation functions for the XY model
〈σ̂z,y〉 = 0, 〈σ̂a(i)σ̂b(j)〉 ∼ δab.

To have a control on the different interaction terms, we add a parameter
λp in front of each operator acting nontrivially in p sites. We recover the
original expression for ρ′A with λ = 1. Taking the logarithm of (6.63) in a
series expansion, we obtain

ln(ρ′A) = −
∑
n

1

n
(1− ρ′A)n

=
∞∑
n=1

−(−1)n

n

(
λ

Nv∑
i=1

〈Mi〉+
λ2

2

∑
i1 6=i2

〈Mi1Mi2〉+
λ3

3!

∑
i1 6=i2 6=i3

〈Mi1Mi2Mi3〉+ . . .

)n

= λ
Nv∑
i=1

〈Mi〉+
λ2

2

(∑
i1 6=i2

〈Mi1Mi2〉 −
∑
i1,i2

〈Mi1〉〈Mi2〉

)
+ . . .

= λ

Nv∑
i=1

hστ
(i)
1 +

λ2

2

∑
i1 6=i2

J2
aG

a(i1 − i2)τ (i1)
a τ (i2)

a +O(λ3) (6.66)

where hσ and Ga(i− j) are given by
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hσ = J1(1 + 〈σ̂x〉), and Ga(i− j) = 〈σ̂a(i)σ̂a(j)〉c = 〈σ̂a(i)σ̂a(j)〉 − 〈σ̂a(i)〉〈σ̂a(j)〉
(6.67)

The expectation value 〈·〉c denotes the connected correlation function in the
XY model ground state. Higher order terms cannot be in principle discarded
as λ is not an expansion parameter (λ = 1). Nevertheless, n-body interaction
terms in (6.66) are proportional to Jna . Then (6.66) can be thought as a
perturbative expansion in terms of Ja (see Fig 6.6).

0.01 0.1 1 10
Kh

- 0.5

0.0

0.5
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J

J 3

J 2

J 1

Figure 6.6: J1, J2 and J3 couplings as function of Kh. The black dots cor-

responds to the value of the couplings at the critical (Kh)crit = ln(1+
√

2)
4

,
where the correlations in the groundstate become long range. In the large
Kh limit, the entanglement Hamiltonian is well approximated by the an Ising
type Hamiltonian.

6.11 Discussion

2D VBS state

Given the structure of the VBS ground state, it is possible to define on
any planar graph, without loops, a VBS state, where the local spin at site i is
given by zi/2, with zi the coordination number at site i. Using the Schwinger
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boson representation of the VBS ground state and the classical variable repre-
sentation of this state, an expression for the partial density matrix ρA, which
describe the physical subsystem A, obtained by partitioning the whole unique
ground state, can be written. This expression for ρA decompose into a classical
loop expansion of the O(3) model in the gapped phase. Analyzing the differ-
ent loop contributions, and assuming translation invariance, we have shown
that the partial density matrix that describes a subsystem of the VBS ground
state can be expressed as a sum over different rotation-invariant quantum op-
erators, where the Heisenberg interaction between nearest neighbors gives the
largest nontrivial contribution to the expansion. This quantum operators act
on a spin 1/2 chain in the boundary of the partition. The translational in-
variance assures us that the different contributions along the boundary are
equally weighted, so the boundary operator is given by the XXX Heisenberg
Hamiltonian. Here we discuss the case of translation invariant lattices which
can be embedded in a torus, but for other lattices with different topologies we
expect similar results.

For non translational invariant lattices, the first nontrivial local interac-
tion term is expected to be also of the type σi ·σi+1 but the Hamiltonian along
the boundary will have different numerical prefactors for each local Heisen-
berg interactions, generating a non invariant Heisenberg Hamiltonian in the
boundary.

In the continuous limit, we show that the entanglement Hamiltonian for
this model is actually a local Hamiltonian, where the Hamiltonian density
corresponds to a Heisenberg interaction of spin 1/2 particles.

The analysis shown in this chapter should be useful for studying other
dimensions d > 2 or other two dimensional lattices with more than one bond
between a pair of sites. In that case, the local dimension of the spin operators
in the boundary Hamiltonian should increase, having then boundary chains
with higher representations of SU(2) per site, but still with SU(2) invariant
local interactions.

Ising Peps

Using the ideas presented in the VBS case is it possible to construct a
state whose wavefunction correspond to the partition function of a classical
model, the two dimensional Ising model in the square lattice. As is it well
known, the classical Ising model in the square lattice has a phase transition
from an order to a disorder phase at a critical temperature Tc. In one and
two dimensions, quantum systems do not have a phase transition at finite non
zero temperature, as the long range fluctuations (small momentum), destroy
any possible order (this is known as the Mermin-Wagner theorem). The phase
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transition in the classical side, translates then to a phase transition at zero
temperature, where now the parameter that plays the role of the temperature
in the classical model is a parameter that appears in the Hamiltonian, then
driving in the quantum side a quantum phase transition at zero temperature.
At zero temperature the system resides in its ground state, an the different
phases correspond to different ground state properties. This is the natural
scenario to study the change in the boundary Hamiltonian through a phase
transition. We found that when the ground state is gapped, so the correlations
functions decay exponentially, the boundary Hamiltonian is well approximated
by a local spin 1/2 model at the boundary. This model remains short range in
the gapped phase of the two dimensional ground state, but becomes long range
at the critical point. At one side of the critical point (β � 1)the boundary
Hamiltonian corresponds to the Ising model in transfer field, where the transfer
field is a small perturbation to the Ising term. At the other side, (β � 1) the
transfer field dominates. At intermediate values of β the situation is less clear
at the moment, and more analysis has to be done.
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Chapter 7

Conclusion

In this thesis we have explored some of the most recent ideas and applica-
tions related with entanglement in many body systems. We have concentrated
in short range entangled states. This type of states have the characteristic that
are entangled states which are in some sense close to a product state (which
does not have entanglement). Here by close we mean that exist a quantum
circuit, i.e. a set of unitary operations (gates) that can be applied locally to
the state, that transform it to a product state. If we allow for any type of
circuit, then we can more or less map anything into anything, so some restric-
tions on the depth of this circuit (how many layers of operations) is imposed.
This construction is clear from the PEPS perspective, as it gives actually a
prescription to construct the state from entangled pairs, which also can be
created using two qubit gates acting on product states.

This short range entangled states follow an area law for the entanglement
entropy of a subsystem. This entropy can be thought as the thermal entropy of
an effective system of one dimension lower living on the edge of the partition.
This correspondence is known as the Bulk-Edge correspondence. We have
explored this correspondence in one and two dimensions for some analytically
tractable MPS states. We found that for the AKLT case, although the model
is described by spin z/2 particles (z is the coordination number of the graph),
the boundary Hamiltonian corresponds to a spin 1/2 (regardless of z), that
inherits the rotational invariance of the original model. The model at the
boundary is short ranged, and this short range interaction comes from the
fact that is mediated through correlation functions in the bulk. This make
the evident the question, what happens when the system undergoes a phase
transition?. A naive answer would be that due to the vanishing mass gap at
the transition, the boundary model becomes long ranged. We explore and
confirmed this intuition studying a model with a quantum phase transition
(of Landau type). This model is known as Ising PEPS ans has a ground state
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function given by the classical partition function of the Ising model in two
dimensions. The transition in temperature in the classical model becomes a
quantum phase transition, where the temperature enters as a parameter in the
quantum Hamiltonian. This parameter controls the strength of an Ising type
interaction relative to the transverse field.

Although in this work we have explored the case of Tensor networks states
with the minimum bond dimension (D = 2), in one and two dimensions, this
ideas can be applied to more general states, where we expect that the bound-
ary Hamiltonians would be in general now Hamiltonians of higher symmetry
groups, not just SU(2) but in general could be decomposed in operators acting
on irreducible subgroups of GL(N), the general lineal group of dimension N ,
where N would be proportional to the bond dimension of the state construc-
tion.

Another interesting point to future analysis is the decomposition of bulk op-
erators in terms of boundary operators. If such a decomposition exist and can
be implemented efficiently, the bulk boundary description would be complete.
The existence of this description is important from practical and philosophical
points of view. In the practical side, such a description implies a drastic reduc-
tion in the effective Hilbert space for the description of bipartite entanglement
as is is not necessary to simulate all degrees of freedom in the bulk, but just
those living in the boundary. On the phylosphical point of view, it is interest-
ing to think that the physics in the bulk can be enconded in a description at
the boundary. This idea is not new in physics, in high energy physics appears
as the Holographic principle [118]. Maybe, remembering Plato’s allegory of
the cave, we are in no better position than the prisoners obliged to stare at
the white wall trying to make sense of the physical world.
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Appendix A

Distance between states,
Purification and Fidelity

A.0.1 Hilbert-Schmidt inner product

We denote the vector space LH as the set of linear operators acting on a
Hilbert space H. Given the linear operators A,B ∈ LH, the Hilbert-Schmidt
inner product is defined as the bilinear functional (·, ·) ∈ LH × LH

(A,B) = tr(A†B). (A.1)

A.0.2 Purifications

Purification is a procedure in which we can construct a state whose partial
trace over some auxiliar system is equal to a desired density operator.

Let’s start with the quantum system A, described by the density matrix
ρA. This density matrix has a Schmidt decomposition

ρA =
∑
i

λi|i〉〈i|, (A.2)

where the states |i〉 form a orthonormal basis. We can construct a pure state
|ψ〉 (hence the name purification), whose partial trace gives rise to ρA, simply
by writing

|ψ〉 =
∑
i,j

√
λi|iA, iB〉. (A.3)

We see trivially (using orthogonality of the basis |iB〉)that trB|ψ〉〈ψ| = ρA.
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A.0.3 Fidelity

When we talk about two create a state which is similar to other with
great fidelity, What do we mean?. We can actually define a distance between
quantum states which is called fidelity.

The fidelity of states ρ and σ is defined to be

F (ρ, σ) = tr
√
ρ1/2σρ1/2. (A.4)

The fidelity F has the following properties [2]

Symmetry

F (ρ, σ) = F (σ, ρ), (A.5)

Invariance under unitary transformations

Given an unitary transformation U , we have

F (UρU †, UσU †) = F (ρ, σ), (A.6)

which follows from the fact that
√
UAU † = U

√
AU †.

Uhlmann’s theorem

Suppose ρ and σ are states of a quantum systems S1. Then

F (ρ, σ) = max|ϕ〉,|φ〉|〈φ|ϕ〉|, (A.7)

where the maximization is done over the purifications (see A.0.2) |ϕ〉 of ρ and
|φ〉 of σ into S1

⋃
S1.
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Appendix B

More results on Negativity

B.0.4 Classical Variable representation

A known representation of the boson algebra introduced in the first section
is given by a†i = ui, ai = ∂

∂ui
, b†i = vi, bi = ∂

∂vi
. In this representation the spin

operators read

S+
i = ui

∂

∂vi
, S−i = vi

∂

∂ui
, Szi =

1

2

(
ui

∂

∂ui
− vi

∂

∂vi

)
(B.1)

Due to the rotational invariance of the AKLT model, it’s useful to choose
[65]

ui = eiφi/2 cos
θi
2
, vi = e−iφi/2 sin

θi
2
, (B.2)

where θ and φ parametrize the unit sphere, with θ ∈ [0, π] θ = 0 being the
positive z axis and φ ∈ [0, 2π].

The condition a†iai+b
†
ibi = 2S imposes a restriction on the functions allowed

to form spin states, namely

1

2

(
ui

∂

∂ui
+ vi

∂

∂vi

)
f(ui, vi) = Sf(ui, vi) (B.3)

The solution to (B.3) is f(u, v) =
∑

k fku
kv2S−k, a polynomial of degree

2S in u and v, with ak an arbitrary constant. The inner product becomes
〈g|f〉 =

∫
dΩ
2π
ḡ(u, v)f(u, v) where Ω is the solid angle over the sphere, ḡ is the

complex conjugate of g. In the subspace of degree 2S polynomials the matrix
elements for S+ are
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〈g(u, v)|S+f(u, v)〉 ≡ 〈g(u, v)|u ∂
∂v
f(u, v)〉

=
∑

j,k ājak
∫

dΩ
4π
ūj v̄2S−ju ∂

∂v
ukv2S−k

=
∑

j,k ājakδk+1,jB(k + 2, 2S − k)(2S − k). (B.4)

with B(x, y) the beta function. Following [65], we introduce the classical
variable representation of S+ as S+

cl = 2(S + 1)uv̄. The matrix elements for
this operator are

〈g(u, v)|S+
clf(u, v)〉 ≡ 〈g(u, v)|2(S + 1)uv̄f(u, v)〉 (B.5)

=
∑
j,k

2(S + 1)ājak

∫
dΩ

4π
ūj v̄2S−j+1uk+1v2S−k

=
∑
j,k

ājakδk+1,jB(k + 2, 2S − k + 1)(2S + 2). (B.6)

Now, writing the beta function in terms of the gamma function, and using
Γ(z + 1) = zΓ(z), we have

B(k + 2, 2S − k + 1) =
Γ(k + 2)Γ(2S − k + 1)

Γ(2S + 3)
=

(2S − k)

2S + 2
B(k + 2, 2S − k).

then 〈g(u, v)|S+
clf(u, v)〉 = 〈g(u, v)|S+f(u, v)〉. The classical representation

of the spin operators is S+
cl = (2S + 2)uv̄, S−cl = (2S + 2)vū, and Szcl =

(S + 1)(uū − vv̄). This expressions provide the same matrix elements as the
operators (B.1), as can be shown easily from the definitions.

Now using the relations a = u = eiφ/2 cos θ
2
, a† = ū = e−iφ/2 cos θ

2
and

b = v = e−iφ/2 sin θ
2
, b† = v̄ = eiφ/2 sin θ

2
, we can also prove that a similar

relation holds for the overlap between states satisfying (B.3)

〈g(a, b)|f(a, b)〉√
〈g|g〉〈f |f〉

=

∫
dΩ
2π
ḡ(u, v)f(u, v)√∫

dΩ
2π
|g(u, v)|2

∫
dΩ
2π
|f(u, v)|2

(B.7)

The state |ii+L−1〉 containing L sites fulfills the condition (B.3) at every
lattice point, except at the boundary sites i and i+L− 1. The ground states
|ASα〉 of the bulk Hamiltonian defined by |Aµ〉 = Tµ

†(i, j+ 1) |ij+1〉, introduced
in (4.8), satisfy the relation (B.3) at each lattice site.
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The norm of the VBS state (4.3) is in this language

〈VBS|VBS〉 =

∫ [N+1∏
i=0

dΩi

4π

]
N∏
i=0

(1− Ω̂i · Ω̂i+1)

= 1. (B.8)

with Ω̂i being the radial vector on the unit sphere

Ω̂i = (sin θi cosφi, sin θi sinφi, cos θi). (B.9)

The norm of the states |Aµ〉 = Tµ
†(i, i + L − 1)

∣∣
i
i+L−1

〉
composed by L

sites is then

〈Aµ|Aν〉 =

∫ L∏
i=1

dΩi

4π
(1− Ω̂i · Ω̂i+1)Tµ∗(1, L)Tν(1, L)

=
1

4

(
1 + sµ

(
−1

3

)L)
δµν , (B.10)

with sµ = (−1,−1, 3,−1). Here we have introduced Tµ, the classical analog
to the operators Tµ, defined as

Tµ(i, j) = ϕai (σµ)abϕ
b
j, with ϕ1

i = ui, ϕ
2
i = vi. (B.11)

B.0.5 Identities

All the identities that we have use in this work can be obtained from the
basic identity, (repeated indices are summed)

ψai
†ψbk

†
= −1

2
(−1)µTµ

†(i, k)(σµ)ab, (B.12)

which can be checked directly by inspection, and makes use of the fact that
the matrices σµ form a basis of the GL(2,C) group. Then for two bound-
ary operators (these operators appear naturally in the boundary between two
different blocks in the bulk) ∂̂†i = T2

†(i, i+ 1) and ∂̂†j = T2
†(j, j + 1), we have

∂̂†i ∂̂
†
j = ψai

†(σ2)abψ
b†
i+1ψ

c
j
†(σ2)cdψ

d†
j+1
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now applying the identity (B.12) twice and using the fact that (σν)ad = (σTν )da
which is also equal to −(−1)νgνν

′
(σν′)da, we get

∂̂†i ∂̂
†
j =

1

4
(−1)µgνν

′
Tµ
†(i+ 1, j)Tν

†(i, j + 1)Tr(σ2σµσ2σν′).

The last term in the above expression is the trace of 4 matrices. To compute
it we can use that σ2σµσ2 = (−1)µσµ and that Tr(σµσν) = 2gµν obtaining

∂̂†i ∂̂
†
j = −1

2
Tµ
†(i+ 1, j)Tµ

†(i, j + 1) (B.13)

Using this identities it is possible to generate all the identities for any
number of boundary operators ∂̂. In this work, we used the identity for three
and four ∂̂ operators

∂̂†i ∂̂
†
j ∂̂
†
k = −1

8
(−1)νgνν

′
Tµ
†(i+ 1, j)Tν

†(j + 1.k)Tλ
†(i, k + 1)

× Tr(σµσν′σ2σλ), (B.14)

∂̂†i ∂̂
†
j ∂̂
†
k∂̂
†
l =

(−1)ν

16
gνν

′
Tµ
†(i+ 1, j)Tν

†(j + 1, k)Tρ
†(k + 1, l)Tλ

†(i, l + 1)

× Tr(σµσν′σρσλ). (B.15)

here σµ = (i, σ1, σ2, σ3) where σk are the three Pauli matrices. We also define
σµ = (−i, σ1, σ2, σ3). To compute the traces of the Pauli Matrices, we use the
following tricks.

σµσν + σνσµ = 2δµν ,
σµσν − σνσµ

2
≡ σµν , σµσν = δµν + σµν

The σµν object is a generator of the Lorentz transformations in Euclidean
space, so it satisfies the Euclidean Lorentz algebra

[σµν , σαβ] = 2(δνασµβ − δνβσµα + δµβσνα − δµασνβ). (B.16)

Further identities can be derived using the Dirac matrices technology,
namely, in Euclidean space we have

γµ =

(
0 −iσµ
iσµ 0

)
γ5 =

(
I 0
0 −I

)
(B.17)
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then we can compute the trace of four Pauli matrices using the identities
for Dirac matrices [109], and projecting out the lower block with the chiral
projector (1− γ5)/2. We have for example

Tr(σµσνσρσλ) =
1

2
Tr(γµγνγργλ(1− γ5)) = 2(δµνδρλ + δµλδρν − δµρδνλ + εµνρλ)

B.0.6 General Results

Block separation L ≥ 1

In section 4.3 we found an explicit expression for the density matrix of
two blocks of length LA and LB separated by L sites. In that section we
presented the asymptotic results for the eigenvalues of ρAB. The result for any
LA, LB ≥ 1 is given in terms of the following quantities

λ0(L) =
1

4

(
1 + 3

(
−1

3

)L)
, λ1(L) =

1

4

(
1−

(
−1

3

)L)
.

From those quantities we define λ00 = λ0(LA)λ0(LB), λ11 = λ1(LA)λ1(LB)
and λ10 = λ0(LA)λ1(LB) + λ0(LB)λ1(LA).

The characteristic polynomial associated to the density matrix ρAB, p(Y ) =
det(ρAB − Y ) is p(Y ) = p1(Y )5p2(Y )p3(Y )3, where pk(Y ) is a polynomial of
degree k on Y , given by (z = (−3)−L)

p1(Y ) = Y − (1− z)λ11,

p2(Y ) = Y 2 − (λ00 + (1 + 2z)λ11)Y + (1− z)(1 + 3z)λ00λ11,

p3(Y ) = Y 3 − (λ10 + λ11(1 + z))Y 2 + [(1 + z)λ00 + (1 + 2z)λ10](1− z)λ11Y

− (1− z)2(1 + 3z)λ00λ
2
11 = Y 3 + bY 2 + cY + d. (B.18)

We define q ≡ 1
27

(2b3 − 9bc + 27d), p ≡ 1
3
(3c − b2). The eigenvalues of

ρAB are the solutions to P (y) = 0. They are
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y = (1− z)λ11 five-fold degeneracy, (B.19)

y =
1

2

(
a1 ±

√
a2

1 − 4a2

)
, (B.20)

a1 = (λ00 + (1 + 2z)λ11), a2 = 4(1− z)(1 + 3z)λ00λ11.

y = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
+

2πk

3

)
− b

3
, (k = 0, 1, 2)(B.21)

triple deg.

Adjacent blocks

In section 4.3, we computed the transposed density matrix of a system
consisting of two blocks inside the VBS state, A and B, of length LA and LB
respectively. The spins which do not belong to A ∪B have been traced away.
In the general case when the blocks are separated by L sites we could prove
that the negativity vanishes for L ≥ 1, being the only nontrivial case when
L = 0. In that case, the negativity in the asymptotic limit LA →∞, LB →∞
is given by

NLA,LB→∞ =
1

2
− 3

4

((
−1

3

)2LA

+

(
−1

3

)2LB
)
. (B.22)

The decay in the thermodynamic limit is twice as fast compared to the
usual decay of the spin correlations, a feature that is already seen in the case
of the negativity of the pure system studied before.

The logarithmic negativity also show this behavior, for LA, LB � 1

EN = 1− 3

4 ln(2)

((
−1

3

)2LA

+

(
−1

3

)2LB
)
. (B.23)

In the case of adjacent blocks, for any LA, LB ≥ 1, the characteristic poly-
nomial associated to the transposed density matrix ρTAAB, p(y) = det(ρTAAB− Iy)
is p̄(y) = p̄1(y)5p̄2(y)p̄3(y)3, where p̄k(y) is a polynomial of degree k on y, given
by (defined in terms of λ00, λ10, λ11)

p̄1(y) = y − 2λ11,

p̄2(y) = y2 − y(λ00 − λ11)− 4λ00λ11,

p̄3(y) = y3 − λ10y
2 − 2λ10λ11y + 8λ00λ

2
11 ≡ y3 + by2 + cy + d, (B.24)

110



this polynomials are related with the polynomials of previous section by taking
z = −1 in eq. (B.18). Out of the 16 eigenvalues (yn), 4 are negative, with y1

(no degeneracy) given by the expression

y1 =
1

2

(
λ00 − λ11 −

√
λ2

00 + 14λ00λ11 + λ2
11

)
, (B.25)

and y2 (triple degeneracy) given by (using again q ≡ 1
27

(2b3−9bc+27d), p ≡
1
3
(3c− b2)).

y2 = −2

√
−p

3
sin

(
1

3
arccos

(
3q

2p

√
−3

p

)
+
π

6

)
− b

3
. (B.26)

The negativity of the system is thenN = −(y1+3y2), while the logarithmic
negativity is given by EN = log2(1 − 2(y1 + 3y2)). In the special case when
LA = LB = l, the negativity simplifies to (using x = (−3)−l)

N (l) = 1
8

√
1 + 4x+ 2x2 − 4x3 + 13x4 − x+x2

4
+ 3

16

√
(1 + 3x)(1− x)3,

' 1
2
− 3

2
(x2 − x3), for x� 1. (B.27)

The logarithmic negativity is given by EN (ρAB) ' 1− 3
2 ln(2)

(x2 − x3).
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Appendix C

Representation theory of SUq(2)

C.1 Identities for q-CG coefficients

Among the key properties of the q-CG coefficients that we use above are
the orthogonality relations

∑
Jm

[
j1

m1

j2

m2

J

m

]
q

[
j1

m′1

j2

m′2

J

m

]
q

= δm1m′1
δm2m′2

, (columns), (C.1)

∑
m1m2

[
j1

m1

j2

m2

J

m

]
q

[
j1

m1

j2

m2

J ′

m′

]
q

= δJJ ′δmm′ , (rows). (C.2)

We also make much use of the following identities involving column transpo-
sitions: [

j1

m1

j2

m2

J

m

]
q

= (−1)j1−J+m2q−m2/2

√
[2J + 1]

[2j1 + 1]

[
J

m

j2

−m2

j1

m1

]
q

, (C.3)[
j1

m1

j2

m2

J

m

]
q

=

[
j2

−m2

j1

−m1

J

−m

]
q

, (C.4)

[
j1

m1

j2

m2

J

m

]
q

= (−1)J−j2−m1qm1/2

√
[2J + 1]

[2j2 + 1]

[
j1

−m1

J

m

j2

m2

]
q

. (C.5)

C.2 q-deformed F-matrix and 6j symbols

The equation for the lower diagram given in (5.4) reads
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∑
abcdk

[
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D
d

]
q

[
D
d
K
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J
j

]
q

[
B
b
C
c
K
k

]
q
|A, a〉 ⊗ |C, c〉 =∑

N

∑
abcdn Fq[DBJC;NK]

[
A
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B
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D
d

]
q

[
D
d
B
b
N
n

]
q

[
N
n
C
c
J
j

]
q
|A, a〉 ⊗ |C, c〉.(C.6)

Using the identity (C.3) in the righthand side of (C.6) and applying the or-
thogonality condition (C.2) to evaluate the sum gives

l
∑
bdk

[
A

a

B

b

D

d

]
q

[
B

−b
C

c

K

k

]
q

[
D

d

K

k

J

j

]
q

(−1)−bqb/2

= (−1)A−D

√
[2D + 1]

[2A+ 1]
Fq[DBJC;AK]

[
A

a

C

c

J

j

]
q

, (C.7)

= (−1)A+B+C+J
√

[2D + 1][2K + 1]

{
D

C

B

J

A

K

}
q

[
A

a

C

c

J

j

]
q

. (C.8)

Here
{
D
C
B
J
A
K

}
q

is the q-deformed 6j symbol. It is related to the elements of

the q-deformed F -matrix by [95]

Fq[DBJC;AK] = (−1)D+B+J+C
√

[2K + 1][2A+ 1]

{
D

C

B

J

A

K

}
q

. (C.9)
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