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Abstract: We present compact analytic expressions for neutrino propagation probabilities in matter,

with effects from the invisible decay of the ν3 mass eigenstate included. These will be directly relevant

for long-baseline experiments. The inclusion of decay leads to a non-Hermitian effective Hamiltonian,

with the Hermitian part corresponding to oscillation, and the anti-Hermitian part representing the

decay. In the presence of matter, the two components invariably become non-commuting. We employ

the Cayley–Hamilton theorem to calculate the neutrino oscillation probabilities in constant density

matter. The analytic results obtained provide a physical understanding of the possible effects of

neutrino decay on these probabilities. Certain non-intuitive features like an increase in the survival

probability P(νµ → νµ) at its oscillation dips may be explained using our analytic expressions.

Keywords: neutrino oscillations; neutrino decay; long-baseline neutrino experiments

1. Introduction

Neutrino oscillation experiments have conclusively established that neutrinos have
nonzero masses and that neutrino flavor eigenstates mix. The mixing parameters have
been measured to a good accuracy and can explain most of the observations [1]. However,
subleading effects of new physics scenarios are still allowed. One such possible scenario is
the invisible decay of neutrinos [2].

In these Proceedings, we explore the effects of the invisible decay of ν3 vacuum mass
eigenstate in the presence of matter effects. In matter, there will invariably be a mismatch
between the effective mass eigenstates and decay eigenstates [3]. We employ the Cayley–
Hamilton theorem to calculate the neutrino oscillation probabilities for long-baseline neu-
trino experiments like DUNE. The analytic expressions [4] help in understanding the nature
of modifications to oscillation probabilities in the presence of neutrino decay and will aid
in the interpretation of future data.

2. The Formalism

When the ν3 mass eigenstate decays invisibly, i.e., to particles that cannot be detected,
the neutrino propagation in matter may be expressed in terms of the effective Hamiltonian

H(γ3)
f =

1

2Eν
U · Diag

[(

0, ∆m2
21, ∆m2

31(1 − iγ3)
)]

· U† + Diag
[

(Vcc, 0, 0)
]

, (1)

where ∆m2
ij ≡ m2

i − m2
j , with mi being the mass of the νi vacuum eigenstate. The matter

potential is Vcc =
√

2GF Ne, where GF is the Fermi constant, and Ne is the electron number
density. We define γ3 such that it is given by γ3∆m2

31 = m3/τ3, where m3 is the mass,
and τ3 is the lifetime of ν3 in the rest frame. The neutrino mixing matrix is given by
U = U23(θ23)U13(θ13, δCP)U12(θ12).
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We define the dimensionless quantities α = ∆m2
21/∆m2

31, A = 2EνVcc/∆m2
31 and

∆ = ∆m2
31L/4Eν and use sij ≡ sin θij and cij ≡ cos θij. Since any effect of decay must be

subleading to oscillations, i.e., decay length must be larger than the oscillation length scale,
we have the normalized decay width γ3 . 0.1. We can express the small parameters α, s13

and γ3, in terms of the powers of a common book-keeping parameter λ ≡ 0.2, as

α ≈ 0.03 ≃ O(λ2) , s13 ≃ 0.14 ≃ O(λ) , γ3 . 0.1 ≃ O(λ) . (2)

3. Neutrino Oscillation Probabilities

We employ the Cayley–Hamilton theorem to calculate the oscillation probabilities
with exact dependence on the matter term A. Using the Cayley–Hamilton theorem, any
function g(M) of a matrix M can be expressed as

g(M) =
k

∑
i=1

Mi g(Λi) , with Mi ≡
k

∏
j=1,j 6=i

1

Λi − Λj
(M− ΛjI) , (3)

where values of Λi are distinct eigenvalues of the matrix M. Taking M = −iH(γ3)
f L, the

probability amplitude matrix A f in the flavor basis may be calculated. The neutrino

oscillation probabilities are then obtained as Pαβ ≡ P(να → νβ) = |[A f ]βα|2.
Expanding in terms of the small parameters s13, α and γ3 (and hence in terms of powers

of λ) and expressing this as Pαβ ≡ P
(0)
αβ + P

(γ3)
αβ , the survival and conversion probabilities are

P
(0)
µµ = 1 − sin2 2θ23 sin2 ∆ − 4s2

13s2
23

sin2[(A − 1)∆]

(A − 1)2
+ α c2

12 sin2 2θ23 ∆ sin 2∆

− 2

A − 1
s2

13 sin2 2θ23

(

sin ∆ cos A∆
sin[(A − 1)∆]

A − 1
− A

2
∆ sin 2∆

)

+ O(λ3) , (4)

P
(γ3)
µµ =− γ3∆

(

sin2 2θ23 cos 2∆ + 4s4
23

)

+ γ2
3∆2

(

sin2 2θ23 cos 2∆ + 8s4
23

)

+ O(λ3) , (5)

P
(0)
µe = 4s2

13s2
23

sin2[(A − 1)∆]

(A − 1)2

+ 2α s13 sin 2θ12 sin 2θ23 cos(∆ + δCP)
sin[(A − 1)∆]

A − 1

sin A∆

A
+ O(λ4) , (6)

P
(γ3)
µe =− 8γ3 s2

13s2
23 ∆

sin2[(A − 1)∆]

(A − 1)2
+ O(λ4) . (7)

The probability Peµ is obtained from Peµ = Pµe(δCP → −δCP) and the antineutrino oscilla-
tion probabilities are obtained using Pᾱβ̄ = Pαβ(δCP → −δCP , A → −A). In the vacuum
limit (A → 0), the probabilities given above match those given in [5] to appropriate orders.
The perturbative expansions in Equations (4)–(7) remain valid as long as α∆ . 1 and
γ3∆ . 1.

We have also obtained the probability expressions with exact dependence on γ3 [4]. In
addition to the naively expected e−γ3∆ behavior, analytic expressions also involve additional
terms with non-trivial dependence on γ3. Taking into account the exact dependence on γ3

improves the accuracy and expands the region of validity to lower energies.

4. Results

Let us now compare the accuracy of our analytic expressions against the exact numeri-
cal results. We take γ3 = 0.1, and the neutrino mixing parameters as

θ12 = 33◦ , θ23 = 45◦ , θ13 = 8.5◦ , δCP = 0◦ ,

∆m2
21 = 7.37 × 10−5 eV2 , ∆m2

31 = 2.56 × 10−3 eV2 . (8)

The values chosen agree with the global fit [1] within 3σ for normal mass ordering.
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4.1. Accuracy of the Analytic Approximations

In Figure 1, we plot the different analytic approximations and the exact numerical
probabilities (calculated within the constant density approximation) to check the accuracy
of our results. We plot the absolute accuracy |∆Pαβ|, defined by

∆Pαβ ≡ Pαβ(analytic)− Pαβ(numerical). (9)
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Figure 1. The top panels show the probabilities Pµe and Pµµ with γ3 = 0.1, for L = 1300 km,

for the analytic expressions mentioned in these Proceedings, as well as for the One Mass Scale

Dominance (OMSD) approximation [4]. The bottom panels show the absolute accuracy |∆Pαβ| of

these approximations. The thick (thin) curves indicate positive (negative) signs of ∆Pαβ. The figure is

taken from [4].

We observe that the salient features like the positions and heights of oscillation dips
and peaks are predicted accurately by the analytic expressions. Note that the analytic
approximations are very accurate, with the absolute accuracy |∆Pαβ| ∼ 0.001 in the 2–4 GeV
regime, especially in the conversion channel Pµe. Curiously, the oscillation dips for the
survival and conversion probability do not reach zero in spite of satisfying the maximal
mixing condition of θ23 = π/4. We elaborate upon this below.

4.2. Increase in the Survival Probability at Oscillation Dips

From the probability expression with exact dependence on γ3 in [4], we obtain the
leading contribution to the survival probability Pµµ due to ν3 decay as

P
leading
µµ = c4

23 + s4
23 e−4γ3∆ + 2s2

23c2
23 cos(2∆)e−2γ3∆ . (10)

For a value of γ3 ∼ O(λ), the above expression suggests significant deviations from
the standard neutrino oscillation probabilities. We focus on these deviations at the first and
second oscillation dips. Our leading order analytic approximation in Equation (10) predicts

Pµµ(first dip) ≃ 1

4

(

1 − e−πγ3
)2 ≥ 0 , Pµµ(second dip) ≃ 1

4

(

1 − e−3πγ3

)2
≥ 0 (11)

at θ23 = π/4. In the absence of decay, we would have expected Pµµ = 0. Such a increase in
the probabilities due to ν3 decay is a non-intuitive feature of our analytic prediction.
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For ν3 decay with γ3 = 0.1, Equation (11) predicts an increase of ∼0.02 at the first
oscillation dip and ∼0.1 at the second oscillation dip for Pµµ. In Figure 2, we test this
prediction by plotting the numerical probabilities Pµµ at these dips, in scenarios with and
without decay. It is observed that the increase in the probability at these dips matches our
estimates, even at large baselines where matter effects are important.

The increase in the probability at the oscillation dip may be used as a novel signature of
neutrino decay. At a long-baseline experiment like DUNE, the first (second) dip is expected
at ∼2.7 GeV (∼1 GeV), where identifying this signature may be possible.
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Figure 2. The survival probability Pµµ at the first (left) and the second (right) oscillation dips

(∆ = π
2 , 3π

2 ) for a range of baselines L, with θ23 = 45◦ and γ3 = 0.1. The figure is taken from [4].

5. Concluding Remarks

In these Proceedings, we present the modifications to the neutrino probabilities due to
the possible invisible decay of ν3 in matter, in a compact analytic form. Furthermore, we
show that our expressions are accurate enough to be of use for long-baseline neutrino exper-
iments like DUNE. The accuracy of our analytic expressions ensures that the salient features
of the modifications to the oscillation probabilities due to neutrino decay are captured.

As long as the constant matter density approximation is valid, the neutrino oscillation
probabilities given in these Proceedings can be used to probe the physics of the invisible
decay of ν3 for any long-baseline and atmospheric neutrino experiment.
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