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Introduction

The thesis considers several enumerative geometric problems concerning the topology of the moduli
space of curves and their combinatorics. These enumerative geometric problems are analysed from
different intertwined points of view and using different mathematical tools, including Hurwitz
theory, Givental theory, cohomological field theories, integrable hierarchies, Fock spaces, quantum
curves, and a relatively new powerful technique introduced by Chekhov, Eynard and Orantin
known as topological recursion. These subjects lie in the interplay between enumerative algebraic
geometry, differential geometry and mathematical physics.

The introduction is organised as follows. Section 1.1 contains a brief motivation on the interplay
of these different points of view, Sections 1.2-1.14 are devoted to the mathematical and physical
background necessary to state the results of the thesis, Section 1.15 outlines the content of thesis
and describes the division in chapters, and finally Sections 1.15.1-1.15.5 describe in detail the
results, chapter by chapter. Every chapter is self-contained and can be read independently. At the
end of the thesis summaries in English and in Dutch are provided.

1.1 Motivation

An important conjecture formulated by Witten in 1991, and proved by Kontsevich in 1992, was one
of the main motivations to investigate the connection between integrable hierarchies and enumer-
ative problems in algebraic geometry. It roughly says that the generating series encoding numbers
with a certain geometric interpretation obeys a certain integrable hierarchy; that is, it is a solution
of a certain infinite list of partial differential equations (PDEs) involving infinitely many variables.
This hierarchy of PDEs is known as KdV integrable hierarchy, since the first equation of the list
is the Korteweg - de Vries equation, which models 1 dimensional waves on shallow water. These
PDEs describe recursive relations among the aforementioned numbers, and since the initial data
comes from algebraic geometry, these numbers are identified uniquely. The geometric meaning of
the numbers lies in the intersection theory of certain classes defined on the moduli spaces of curves,
which is one of the main objects of study in algebraic geometry.

Witten’s conjecture has important implications in the context of two dimensional gravity, in
which one is interested in certain integrals over the space of all gravitational fields (Riemannian
metrics) over the surface formed by space and time. To compute such integrals, two seemingly
different approaches have been developed. The first approach uses sums over triangulations of
surfaces, the second involves the integration over spaces of conformally equivalent metrics. The




1. Introduction

latter corresponds to the generating series collecting the numbers mentioned above. In proving the
conjecture, Kontsevich thus proved that these two approaches are in fact equivalent.

The Witten-Kontsevich result turned out to be just the tip of the iceberg. Many more gen-
erating series are solutions to more involved integrable hierarchies. Often the geometric meaning
of the numbers still lies in the intersection theory of certain cohomological classes, but for more
involved classes. The appropriate mathematical tools that capture the behaviour of these numbers
are called cohomological field theories, which generalise Gromov-Witten theories. Gromov-Witten
theory counts algebraic curves in a fixed target variety with fixed cohomology class, and provides
a formal mathematical counterpart of topological string theory in physics, in which one is inter-
ested in counting the embeddings of closed strings’ world-sheets in space-time. Roughly speaking,
cohomological field theories axiomatise and generalise Gromov-Witten theories, substituting the
cohomology of the target variety with an arbitrary vector space. They were introduced by Manin
and Kontsevich. The Witten-Kontsevich generating series plays a universal role, since it corre-
sponds to the trivial cohomological field theory, or, in terms of Gromov-Witten, it encodes the
Gromov-Witten theory with a single point as target variety. Semi-simple cohomological field the-
ories are described by the Givental-Teleman classification. More explicitly, CohFT’s with fixed
semi-simple topological field theory admit the transitive action of a matrix group, called the Gi-
vental group, that takes values in the endomorphisms of the vector space of the theory, so that
each semi-simple cohomological field theory can be obtained by the action of an element of this
group on a topological field theory.

On the other hand, the list of PDE’s Witten-Kontsevich generating series satisfies can be re-
formulated in terms of differential operators of the Virasoro type. Virasoro constraints encode
relations between invariants of various nature, and they are ubiquitous in the fields of random ma-
trix models, classical integrable systems, statistical physics and string theory. They are equivalent
to loop equations in random matrix models, and their solutions are constructed by a universal
procedure. It is formulated in terms of differential geometry on a Riemann surface, and it carries
the information of the underlying cohomological field theory - this is the Chekhov-Eynard-Orantin
topological recursion.

The Chekhov-Eynard-Orantin (CEO) topological recursion is a recent and powerful method
motivated by random matrix theory and statistical mechanics to compute invariants recursively
through the topology of moduli spaces of curves. Specialisations of these invariants recover many
known invariants, including Weil-Petersson volumes, Gromov-Witten invariants, Hurwitz numbers,
Tutte’s enumeration of maps, knot polynomials or asymptotics of random matrices expectation
values. CEO topological recursion has been chosen to be the topic of 2016 AMS Symposium —
where it celebrated ten years since the formulation — for its fast development and its capacity to
attract researchers from many different areas of mathematics and physics.

Topological recursion takes as input a spectral curve — often an algebraic curve with some
additional structure — and produces a family of differential forms defined on the product of several
copies of the curve. These differentials w, ,,, indexed by two non-negative integers g and n, are
defined by a universal recursion on 2g — 2+ n based on the glueing of surfaces. Often the numbers
of interests are the coefficients of these differentials wy i, .

2



1.2. Semi-infinite wedge formalism
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Topological recursion

Spectral Curve Invariants wg .

Let us name two simple examples. Consider the spectral curves described by pairs of functions
(y(2),x(2)) on the Riemann sphere, given by the Airy curve (z, 22) and by the curve (%, 22).
Let us run the topological recursion and look at the coefficients of the output differentials wy ,,. The
former gives the number of the Witten-Kontsevich generating series, the latter gives the volumes
of moduli spaces of hyperbolic spaces computed by Mirzakhani’s recursion. More complicated
examples involve the Lambert curve and its generalisation for Hurwitz theory, Hitchin systems,

equations of mirror symmetric theory of a Calaby-Yau threefold, to name a few.

One of the most important results in the intersection theory of the moduli spaces of curves is
the celebrated ELSV formula, due to Ekedahl, Lando, Shapiro, and Vainshtein [21]. In particu-
lar, the ELSV formula expresses connected Hurwitz numbers in terms of Hodge integrals on the
moduli spaces of curves, and plays a central role in many of the alternative proofs of Witten’s
conjecture that appeared after the first proof by Kontsevich. On the other side, the topological
recursion and ELSV-type formulae are very much related. In the first place, Eynard and Orantin
[25] proved that the asymptotic behaviour of the correlation differentials wg ,, near a regular zero
of the spectral curve is described by the Airy curve, and therefore the generated numbers are fun-
damentally related to the moduli space of curves. Here, again, the Witten-Kontsevich generating
series shows its universality. Secondly, Eynard [23, 22] showed that the generated numbers are
an explicit combination of Hodge integrals on the moduli space of curves and the moduli space of
a-coloured stable curves. This form already presents many similarities with the structure of the
ELSV formula. Thirdly, Dunin-Barkowski, Orantin, Shadrin, and Spitz [16] identify CEO topolog-
ical recursion and Givental theory. This identification explicitly connects the generated numbers
with cohomological field theories (and Gromov-Witten theories), and it can been used to explicitly
express the correlation differentials in terms of intersection theory of the moduli space of curves,
given a spectral curve. In particular, it can be used to provide new proofs of the ELSV formula
and its generalisations.

1.2 Semi-infinite wedge formalism

In this section we recall the semi-infinite wedge formalism, tailored for our future use. It is nowadays
a standard tool in Hurwitz theory. We refer the reader, for instance, to [34] and references therein
for a complete exposition.




1. Introduction

Let V be an infinite-dimensional complex vector space with a basis labeled by half-integers.
Denote the basis vector labeled by m/2 by m/2, so V = @ieZJr% Ci.

Definition 1.2.1. The semi-infinite wedge space /\%(V) =V is defined to be the span of all of
the semi-infinite wedge products of the form

11 Nig A -+ -

for any decreasing sequence of half-integers (i) such that there is an integer ¢ with iy, + &k — % =c
for k sufficiently large. The constant c is called the charge. We give V an inner product (-,-)
declaring its basis elements to be orthonormal.

Remark 1.2.2. By definition 1.2.1 the charge-zero subspace Vy of V is spanned by semi-infinite

wedge products of the form

1 3
M—=Ady— = A
1 2/\ 2 2/\

for some integer partition A. Hence we can identify integer partitions with the basis of this space:

VOZEBED(CUA

neNAFn
The empty partition () plays a special role. We call

1 3

the vacuum vector and we denote it by |0). Similarly we call the covacuum vector its dual with
respect to the scalar product (+,-) and we denote it by (0.

The vacuum expectation value or disconnected correlator (P)
is defined to be:

of an operator P acting on V)
(P)* = (|0),P[0)) = (OP|0)
We also define the functions
C(z) = e*/? — e7*/2 = 2sinh(z/2)

and

S(2) = C(Zz) _ sin};%ﬂ).

Definition 1.2.3. The following list contains the useful operators for the purpose of the thesis.

i) For k half-integer the operator ©: (i1 Aia A---) +— (kAi1 Adg A---) increases the charge
by 1. Its adjoint operator 15 with respect to (-,-) decreases the charge by 1.

ii) The normally ordered products of ¥-operators

P {wiw;f, it j >0
7,7 T * AP
—’(/)jwi lfj <0.
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iii)

iv)

v)

preserve the charge and hence can be restricted to Vy with the following action. For i # j,
E; ; checks if vy contains j as a wedge factor and if so replaces it by 7. Otherwise it yields 0.
In the case i = j > 0, we have E; j(vx) = vy if vy contains j and 0 if it does not; in the case
i =j <0, we have E; ;(vy) = —vy if vy does not contain_j and 0 if it does. This gives a
projective representation of A, the Lie algebra of complex Z x Z matrices with only finitely
many non-zero diagonals [34].

The diagonal operators are assembled into the operators

.Fn = Z %Ek,k

keZ+1

The operator C' = Fy is called the charge operator, while the operator £ = F; is called
energy operator. Note that Fy vanishes identically on V. We say that an operator P on V)
is of energy c € Z if [P, E] = c¢P.

In other words, if P is an operator of energy ¢, then it maps a basis element of energy k into
a combination of basis elements that all have energies k — c. The operator F; ; has energy
7 — 1, hence all the F,,’s have zero energy. It will be important to us that operators with
positive energy annihilate the vacuum while negative energy operators are annihilated by the

covacuum, explicitly: let M be any operator, let P have positive energy and N have negative
energy, then (MP)® =0 and (N M)* = 0.

For n any integer and z a formal variable one has the energy n operators:

_n 6n,0
gn(Z) = E ez(k P )Ekfn,k: —+ _C(Z) .
k€Z+ %

For n any nonzero integer one has the energy n operators:
Qpy = En(O) = Z Ek—n,k~
kezZ+3

The operator «, is adjoint to «_,, with respect to the scalar product (-,-) described above.

The commutation formula for £ operators reads:

a

a2 &u(w) = (aet |y =) Eunnte

and in particular [y, o] = kg0
Note that &(2)[0) = 0 if k > 0, while Eo(z)’0> = C(z)_1’0>. We will also use the &€ operator

without the correction in energy zero, i.e.

Eo(2) = Z e By, = anzn =C+Ez+Foz?+ ...
kez+% n=0

which annihilates the vacuum and obeys the same commutation rule as &. It is known that the
operators F,. have eigenvectors vy with eigenvalues

1 R TR N
ﬁ;()\i—l+§) —(=i+3)"
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1.3 Hurwitz numbers and their variations

Hurwitz theory studies coverings of Riemann surfaces with prescribed ramifications. For a complete
introduction to the topic we refer, e.g., to [6]. In the following we introduce the standard Hurwitz
numbers and the variations that we study in the thesis.

The number of possibly disconnected Hurwitz coverings h?, ,  of degree d over the 2-sphere
with ramifications described by the partitions p over zero, and v over infinity, with |u| = |v| = d,
and other non specified ramifications codified by the element B in the group algebra Q(&,) can
be defined by considering the coefficient of C'(;a) in the product C,C, B:

o 1

w,v, B = E[C(ld)]CHCVB

For every disconnected Hurwitz number, it is possible to define the connected counterpart by re-
quiring the additional condition that the corresponding permutations act transitively on the set
{1,...,d}. The geometric meaning of this condition indeed corresponds to the count of the con-
nected coverings. We use the common convention in literature of indicating by h® the disconnected
numbers and by h° the connected ones. If B € Z(Q(&,)), then its action in the left regular rep-
resentation is given by the diagonal matrix egv(B), whose action in the irreducible representation
A is the multiplication by an eigenvalue egv,(B). The elements C, lie in the center and their
eigenvalues are given by egv,(Cy,) = |Cy|xr()/dim \; where dim A and y, are the dimension
and the character of the representation A\, and |C,| is the number of permutations of the cycle
type a. This implies that

o _ Tr(egv(Cy)egv(Cy)egv(B)) (1.1)

v, B (dh)? ’

: 2
- % (dldnll)\> egv,(C,) egv,(C,) egv,(B)

77 20 ) e (),
A-d

where Z,, = [T T2, Gi)! for o = (11272 - dit) = (i > -+ > puggu).
Let us discuss some examples. It is well-known that

I T
egv, (Cy) = 5 Z()\i —i+ 5) —(—i+ 5) :
=1

The Hurwitz number 77, , p for B = C229 “2HH) s the standard double Hurwitz number for

possibly disconnected surfaces of genus g [46]. Consider an element C,. such that

1 1 1
egva(Cr) = 5> (Ni—i+3) = (—i+3)"
Ti=1

It is the so-called completed r-cycle [47] (in some normalization), and the Hurwitz number A%, , 5

for B = 5?, b(r—1) =2g—2+£0(u)+ £(v), is the double Hurwitz number with completed r-cycles
for possibly disconnected surfaces of genus g [51].

6



1.3. Hurwitz numbers and their variations

In some cases, one can consider the enumeration of coverings up to automorphisms that fix the
preimages of two special points (say, 0 and oo in CP!) pointwise. In this case, we use the following
formula instead of the one given by Equation (1.1):

We consider the Jucys-Murphy elements Ji, € Q(Sy), k = 2,...,d, defined as
T =0k +Q2k)+-+(k—1k).

They generate a maximal commutative subalgebra of Q(&,) called Gelfand-Tsetlin algebra. It is an
important result of Jucys that symmetric polynomials in the Jucys-Murphy elements generate the
center of the group algebra. It is hence possible to define several variation of the Hurwitz numbers
using the standard bases of symmetric polynomials, evaluated at the Jucys-Murphy elements.

Let p be a standard Young tableau of a Young diagram A F d. We denote by i and jj the
column and the row indices of the box labeled by k. By

cr? == (i1 — ji,d2 — J2, .- ia — Ja)
we denote the content vector of the tableau. Jucys [36] proves that
egvy(B(J2, ..., Jq)) = Blcrh, ... crh)

for any symmetric polynomial B in d—1 variables and any choice of p. Since it does not depend on
p, we can always use some arbitrary choice of the Young tableau, for instance, filling the diagram
from left to right, and denote by cr® the content vector for this choice. This implies the following:

Lemma 1.3.1. If B= B(J,...,J4) is a symmetric polynomial in the Jucys elements, then

. _
h;L,V,B -

A A
WZX)\ (CrQ,...,Crd).
IL=y wa ILET vi S

Let us consider several bases of the symmetric polynomials, in particular, we denote by o} the
elementary symmetric polynomials, with h; the homogeneous complete, and with p, the power
sums. We define the following blocks of ramifications B, which are arguably most important for
applications:

By == 0p(Jay -, Ja); By i=h(Tay- ., Ta); By = u(Tay -, Ta);
b

k
BIL = Z Cy; Bll;‘ = Z(—l)k+b Z HCai

ac(&q/~) k=1 ae(&y/~)k =1
£(a)=d—b S l(o;)=kd—b

Definition 1.3.2. Let us call the double Hurwitz numbers corresponding to the blocks of ramifica-
tions above strictly monotone, monotone or weakly monotone, atlantes, free single and free group,
respectively. In case v = (r,r,...,r) for a positive integer r > 2, we add the adjective orbifold to
the definition; if 7 = 1, we remove the adjective double.




1. Introduction

1.4 Hurwitz numbers expressed in terms of semi-infinite wedge formalism

Double Hurwitz numbers take a very convenient expression in terms of semi-infinite wedge formal-
ism, provided one can find an operator Fp such that Fg.vy = egv(B)vy. Explicitly, the translation
in terms of the semi-infinite wedge formalism is accomplished by the use of the following (see, e.g.
[34]). For a partition p we have

£(p) L(p)
Ha w10) =" xalwoa,  and (O] ] epvn = xalw)-

A X=p] i=1

For example, the r-completed cycles double Hurwitz numbers read

W g
b e = < 1711 >

=1 M i=1

In general, it is useful to pack Hurwitz numbers in formal generating series summing over the
genus of the coverings, where an auxiliary variable u takes care of the Riemann-Hurwitz count b,
considered as a function of the genus. The generating series in this case reads

he o (1) RO
e (e )

i=1

The specialisation for » = 2 recovers the generating series for the usual double Hurwitz numbers.
In general, the connected counterpart of any Hurwitz number has the same expression in the semi-
infinite wedge formalism as the disconnected one, but in terms of connected correlators, indicated
with (...)°, which are defined from the disconnected ones by use of the inclusion-exclusion formula,
(for a precise definition see [18]). From now on, we will refer as h}~*#"" and as hg]u to the Hurwitz
numbers with r-completed cycles (or r-spin Hurwitz numbers) and r-orbifold Hurwitz numbers,

respectively. The numbers h, , will indicate h[g]u

1.5 Moduli spaces of curves and tautological rings

In this section we introduce the needed tautological classes on the moduli space of curves and a
list of conjectures due to Faber concerning a natural part of its cohomology. For an introduction
on the moduli spaces of curves see, e.g., [54].

For 29 —2+4n > 0, let M, ,, be the moduli spaces of smooth, compact, connected, algebraic
curves of genus g with n distinct marked labelled points p1, ..., p,. This space admits a Deligne-
Mumford smooth compactification ﬂg,n of complex dimension 3g—3+n that is a complex orbifold
as analytic space. The space ﬂg,n parametrises algebraic curves of genus g with n marked points
that are smooth away from finitely many singularities analytically isomorphic to {zy = 0} in C?
(nodes), with finite groups of automophisms. The latter condition is the stability condition of
the curves, and is equivalent to the requirement that every irreducible component of the curve
has negative Euler characteristic. Concretely, this means that every rational component has at
least 3 special points and every torus component has at least 1 special point, with special points




1.5. Moduli spaces of curves and tautological rings

indicating both nodes and the marked points pi,...,p,. Let us consider the system of spaces
{Mg.n}t2g—24n>0 alltogether. Let us define three natural maps between these spaces, which are
called tautological.

i). Let 7 : /\/lg ntl — Mg » be the morphism that forgets the last marked point p, 1. We refer
to (™) . My ntm — Mg as the morphism forgetting the last m marked points.

ii). Let gl(l) : MWH — Mﬁl,n the morphism that glues the last two marked points together
producting a curve with genus raised by one.

iii). Let gl(Q) t Mgy a1 X Mgy o1 — Mg, 492 n14n, the morphism that glues the last marked
point of the first curve with the last marked point of the second curve.

The image of the curves may not be stable, but it can be stabilised by contracting the rational
components with two marked points.

The cohomology of ngn, considered here with rational coefficients, has several natural classes,
called tautological classes. Let (C;pi,...,pn) be a point in ﬂg,n, and consider the cotangent line
to the curve C at the i-th marked point. These cotangent lines give raise to a line bundle £;
over M, . Denote the first Chern class ¢1(L;) by 1; € H*(My.n,Q), by k; € H* (Mg, Q) the

pushforward . (wflj_ll), and by K, k,.....k,, the multi-index x-classes

ki+1 ka1 km+1 22 ki (A .
K/kl,kz,“.,km = (W(m))* (wnil 1/%12 s 'wn+m ) € H ZL_I (Mg,ny@)~

Multi-index k-classes can be expressed as polynomials in k-classes with one index. It is possi-
ble to construct a rank g vector bundle over M, , whose generic fiber over the smooth point
(C;p1,...,pn) is constituted by the abelian differentials on the curve C. This vector bundle is
called the Hodge bundle A, and by A; one denotes the j-th Chern class ¢;(A,) € H* (M, n, Q).

The system of cohomological tautological rings { R* (M ;) }2g—24n>0 is defined to be the small-
est system of Q-subalgebras R*(M, ) C H*(M,,,) closed under pushforwards of the tautological
maps defined above. As a result of the definition, the tautological rings are also closed under
pullbacks. The tautological ring of M, , is defined by restriction. The d-th tautological ring
RY(My,,,) is defined as R*(M,,,) N H2d( g Q).

1.5.1 Faber's conjectures

The rank of the tautological ring is in general smaller than that of the full cohomology ring of
Mg . Nevertheless, it is actually not easy to construct examples of non-tautological cohomology
classes, and most of the geometrically defined cohomology classes happen to be tautological. The
structure of the tautological ring R*(My), for g > 2, is the object of Faber conjectures [27].
Faber’s conjectures for the open moduli spaces, if true, completely determine the structure of the
tautological ring R*(M,).

i). Socle. R7972(M,) =0 and RI~*(M,) = Q.
ii). Top intersection. For k; non-negative integers such that ki +--- + k,, =g — 2:

(29 —3+m)!(2g - 3)!!
(29 = 2 T2, (2k: + 1)!!%’2'

Kki,.skm =
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iii). Perfect pairing. For any 0 <1i < g — 2, the cup product defines a non-degenerate pairing
Ri(M,) x RI27H(M,) - RI2(M,) = Q.

For g > 2 and n > 1, Faber’s conjectures have been generalised in [5] to the tautological ring
R*(Myg.,). Again, if true, these conjectures completely determine the structure of R*(M, ).

i). Socle. R*9"'(M,,) =0 and RI"1(M,,) = Q™. The classes Y "', with i = 1,2,...,n
form a basis in R9™1 (M, ).

ii). Top intersection. Suppose that dy +---+d,, + k1 + ...+ ky, = g — 1 and that d;, k; > 0.
Then we have the following equation in R~ (M, ,):

H¢ . B (29 — DN (29 —34+n+m)!
Pk *H;;l(zdmul)un’?; 2k, + DI (29 —2+n)!
"~ (29— 24 n)d; + Xk 4 :
x v;
iii). Perfect pairing. A polynomialinn,...,%,, K1,...,Ke—1 vanishes if and only if its products

with all classes of complementary dimension vanish in R~ (M, ).

1.6 Cohomological field theories

Cohomological field theories were introduced by Kontsevich and Manin in [38] and generalise
Gromov-Witten theories by substituting the cohomology of the target space with an arbitrary
vector space. Let V be a finite dimensional vector space over Q with a basis {eq,...,ex}, let n
be a non-degenerate bilinear-form on V', and let 1 be a distinguished element of V. Denote by
;% the evaluation n(e;, ex) and by n?* the inverse matrix. A cohomological field theory with unit
(CohFT) is a system of elements

{agneH( gna@) ( ) n}

29—24+n>0
compatible with the tautological maps in the following sense:

i). Each element «y , is invariant with respect to the action of the symmetric group &,, acting
simultaneously on the marked points of the curves in M, ,, and on the copies of V*.

ii). (g™M)* (agn(ein, @ ®e;)) = Z;\,[kﬂ oy 1 nia(en, @ Qe ®e; ®ex).
iii). (g1®)* (agm(es, @ ®e;,)) =
N .
Zj,k:l ’r]j’kagl,n1+1(ei1 Qe & ej) ' O[927"2"‘1(61"1‘*2 Q- Q Cingtnyt+1 ® ek)'
v). mag (e, ® - ®ei,) = agnii(e, ® - ®e;,, 1).

v). 0‘0,3(611 ®e,@1) = iy yia-

10



1.7. An explicit example: Chiodo classes

If the properties i) — #ii) hold, and at least one among properties iv) and v) does not hold, we refer
to the system of a4 ,, as a cohomological field theory without unit (CohFT/1). A CohFT composed
of only degree zero classes is called a topological field theory. CohFTs turn V into an algebra with
respect to the associative quantum product e defined by n(v; @ ve,v3) = g 3(v1, v, v3) for which
the element 1 plays the role of unit element. A CohFT is called semisimple if the algebra (V) e) is
semisimple. Semisimple CohFTs carry the transitive action of a huge group introduced by Givental,
whose elements are called Givental R-matrices. A Givental R-matrix is an End(V)-valued power
series

R(Q)=1+) R =exp (Zmd> ., Ry,r €End(V)
=1 =1

satisfying the symplectic condition
R(¢) R*(=¢) = 1 € End(V)

where R* is the adjoint of R with respect to 7. By the Givental - Teleman classification [28, 52],
every semi-simple CohFT is obtained by the action of a Givental R-matrix on a topological field
theory. The Givental action has a concrete expression in terms of an action over the sum of stable
dual graphs. The general definitions can be found in many sources, see, e.g., [16, 28]. In the
following two sections, instead, we show how the computations can be applied to a specific case
that is used later on in the thesis, working out in details the example of Chiodo classes. This
result appears in [40], which corresponds to Chapter 3 of the thesis, but the computations are
there omitted.

1.7 An explicit example: Chiodo classes

In this section we recall Chiodo classes and we show their Givental decomposition; for more details
we refer the reader to [9, 10, 7, 32, 51]. For 2g — 2+ n > 0, consider a nonsingular curve with
distinct markings [C,p1,...,pn] € Mg p, and let wioe = we (D p;) be its log canonical bundle. Let

r>1,1<ay,...,a, <rand 0 < s <r be integers satisfying the condition
n
(2972+n)572ai =0 mod 7 (1.2)
i=1

This condition guarantees the existence of rth tensor roots L of the line bundle

ZACOIEY

on C. For the moduli space of such rth tensor roots a natural compactification ﬂ;; Lay, W8S
constructed in [8, 33].
-—T,S . .
Let w:CI% - M, . be the universal curve, let £ — Cp:3 . be the universal rth

g;ai,...,an g;ai,...,a g;a1,-...,a

root, and let € : M;Zla — M. be the forgetful map (in order for € to be unramified in the

orbifold sense, the target M, , is changed into the moduli space of r-stable curves, meaning that
for each stable curve there is an extra Z, stabilizer at each node, see [8]). Recall the generating
series for the Bernoulli polynomials

tt tert
ZBl(x)ﬁ - et —1
=0

11



1. Introduction

where the usual Bernoulli numbers are B;(0) = B;. We are interested in the Chiodo classes [9]
Com(r,s501,...,a,) = e*c( - R*ﬂ'*ﬂ) =
€4 €XD (Z(—l)l(l — Dlehy(r, s;aq,. .. ,an)> € H"(Mgy.n),
=1

where the Chiodo formula for the Chern characters reads

Bia(3) B (%)
chy(r,s;ar, ... a,) = (l:—ill)!m — Z ﬁ([}f
Iy Bl g, W D)
22 T T

Here j, is the boundary map that represents the boundary divisor with remainder a at one of the
two half edges, and 1), are the 1-classes at the two branches of the node. For r = s = 1, and
moreover a; = 1, for i = 1,...,n, the map € is the identity map and the specialisation recovers
Mumford’s formula [45] for the total Chern class of the dual of the Hodge bundle ¢(A}):

_ - Byt - - Bl+1 l
Con(1,1;1,..., 1)—exp< [Zl Tl Ky Zl I
_'_} B . () + (=) (")
200+ 1) RN
) Ag,

=c(A))=1-X+X—--

where the identity B;(1) = (—1)!B; is used. The formula in [45] is slightly different due to a
different Bernoulli number convention and a missprint in the x term.

1.7.1 Expression in terms of stable graphs

Let us recall the expression of the Chiodo class in terms of the sum of products of contributions
decorating stable graphs, in order to compare it with the Givental action, for more details see [32].
The strata of the moduli space of curves correspond to stable graphs

=(V,E.H,L,g,n:V = Z>o,v:H—V,.: H— H)

where V(T'), E(T"), H(T") and L(T") respectively denote the sets of vertices, edges, half-edges and
leaves of I'; self-edges are permitted. A half-edge indicates either a leaf or an edge together with
a choice of one of the two vertices it is attached to. The function v associates to each half-edge
its vertex assignment, while ¢ is the involution that swaps the two half-edges of the same edge,
or leaves the half-edge invariant if it is a leaf. The function n(v) denotes the valence of T at v,
including both half-edges and legs, and g(v) denotes the genus function. Every vertex v is required
to satisfy the stability condition 2g(v) — 2+ n(v) > 0, and the genus of a stable graph I' is defined
by g(I') :== 3", ey 9(v) + (D). Let Aut(I') denote the group of automorphisms of the sets V and
H which leave the structures L, g, v, and ¢ invariant. Let G, , be the finite set of isomorphism
classes of stable graphs of genus g with n legs. Let moreover Wr ;. s z be the set of weightings
w:H(T) — {0,...,r — 1} satisfying the following three properties:

12



1.8. Givental decompositions for Chiodo classes

(i) The i-th leaf I; has weight w(l;) = a; mod r, for i € {1,...,n}.

(ii) For any two half-edges h’ and h” corresponding to the same edge, we have w(h’) +w(h”) =0
mod 7.

(iii) The condition in Equation (1.2) is satysfied locally on each component: for any vertex v the
sum of the weights associated to the half-edges incident to v is >°,,)_, w(h) = 5(2g(v) —

2+n(v)) mod r.

Proposition 1.7.1 ([32]). The Chiodo class Cy (1, s;a1,...,a,) € R*(M,y,) is equal to

FEOIE ey r) 20(0) 1 D D G = AR )

= TaF1)
e

veV(l)

>

FEGg,n weWF,r,s,d‘

n
I1e
i=1

By (w(h)/m)

L Lgl(*l)FlW[(ﬂ’h’y*(*wh”)l]
—el=

. (1.3
e=(h/,n"")

1—1 Biyi(ai/m) g
Z DT i va,

where &p is the canonical morphism &p : Hvev(r) Mg(v),n(v) — Mg,n of the boundary stratum
corresponding to T'.

1.8 Givental decompositions for Chiodo classes

In this section we show that the action of the R-matrix

_ . o diagg_; Biy1 (%)
R7H() = exp < ; M(Ol>

defined as power series valued in the endomorphisms for the vector space
V={(v1,...,0.)
with
W(Ua,vb) = ;5a+b mod 7

acting on the topological field theory

to 2g—1
O‘g,z(”al - ® U(Ln,) =Y 6a1+---+an—s(2g—2+n) mod 79

produces the Chiodo classes. Therefore Chiodo classes determine a semisimple CohFT with a
known Givental decomposition. The action of the Givental R-matrix is defined as the sum over
stable graphs I' weighted by | Aut(I" )|717 with contributions on the leaves, on the edges, on special
leaves called dilaton leaves, and the topological field theory contributes on the verteces. Chiodo
classes are already expressed as a sum over stable graphs in Equation (1.3) with a very similar
structure. Let us match the Givental contributions one by one:

13



1. Introduction

Ordinary leaf contributions.

The contribution of the i-th leaf reads

o ( > W<‘%>l> = > (BY, ()

=1

Dilaton leaf contributions.

Recall that the kappa classes are defined as k; = w*(wf{'_lll) under the map that forgets the last
marked point 7 : ﬂg,nﬂ — ﬂg}n. The contributions on the dilaton leaves correspond to the
contributions on the vertices in Equation (1.3) before forgetting the corresponding marked point.
For the dilaton leaf marked with label n + i, for some positive integer i, the contribution reads:

exp ( - W(—wnm%—wm)

We check that vy is the neutral element 1 for the quantum product e in flat basis:

N(vs @ vy, vp) = affg(vs ® Vg @ Vp)
— 7”_155+a+b73 mod r — T_l(saer mod r
= 77(’Uaa vb)

Hence the contribution of the dilaton leaf n + 7 is

'l/)n—O—i |:Id - Z(Ril)% (¢71+i):|
j=1
Edge contributions.
The edge contribution in Equation (1.3), multiplied by the factor (¢, 4+ 1) and after applying
the property of Bernoulli numbers (—1)P™!1B, (w(h/)) = Bpi1 (%), reads

(s

w(h') r—w(h')
1— exp ( -3 %(—wh»l) exp ( -3 %(—wm”).

=1 p=1

Note that the condition on the weightings w(h’) + w(h”) =0 mod r can be taken care of by the
scalar product 7. Hence we can write the Givental contribution on the edges as
lel’j” - (Rfl)f,f(h/)(%/)n”(h Jw(h )(Ril)ﬁ(h//)(wh”)

wh' + ¢h”

J1,J2
Weightings.

Out of the three conditions on the weightings, condition (i) becomes w(l;) = a;, condition (i) on
the edges is taken care by the bilinear form 7, condition (#i7) can be substituted by the topological
field theory condition.

14



1.8. Givental decompositions for Chiodo classes

Powers of r.

Every stable graph contributes with |E(I')[+_,cy/(r) 29(v) — 1 powers of r. Indeed the topological
field theory in the vertex v provides 2g(v) — 1 powers of r, and the inverse of 7 provides one power
of r for each edge of T'.

The expression of the Givental action

Let us indicate with {l1,...,ln,lnt1,..,lnsk} = L(I) the set of legs, corresponding to marked
points of the curves in Mg 44, and let

B T Mawyn) = Mg

veV(T)

be the canonical morphism of the boundary stratum corresponding to I' that forgets the last k&
marked points. Let us consider functions w" : H(I') — Z>o without any further condition. We use
here the notation w", instead of w, to remark that the weightings w" decorates the half-edges after
the application of the endomorphisms Rfl. Collecting the contributions and the considerations
above, we have:

1

= reGy nir
wY: H(I')—Z>o

H O‘Z?Z),n(v)( ® ”’u”(h))

veV () he(hH)(_F):

n k
[T 00 @) TT s [T = (R ()|
i=1 =1
1771’v(h/)ﬂvv(’l”) _ Zkl,kz (R_l);fl (h )(wh,)nkH,k’Z (R—l)Z; (h )(wh”)

¢h/ + /l)[}h//

e=(h' b))V (I)

The expression above is equivalent to (R.atap)g n Ve, ® -+ @ ug,), ie. the Givental action of

the matrix R on a!°? correspondent of genus g and n marked points, evaluated in the element
Vg, @+ ® g, (see [28, 16, 49]).
Consider then Cg ., (7, s;a1,...,a,) as the evaluation of a map

Con(r,s): VE" — H™ (M),
where V = (v1,...,v,), and
Con(1,8): Vg @ -+ Qug, = Cypnlr,s;ar,...,an).

The previous calculation anticipates a result of Chapter 3

15
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Proposition 1.8.1 ([40]). For 0 < s <r the collection of maps {Cq4.(r,s)} defined by the Chiodo
classes form a semi-simple cohomological field theory with flat unit, obtained by the action of the
Givental matriz R on the topological field theory amp

(R.at"p) =Cyn(r,s).

g,n

1.9 Local topological recursion

The Chekhov, Eynard and Orantin topological recursion was formalised in 2007 and plays a central
role in the thesis. For a complete exposition see, e.g., [24]. In this section, we define a local version
of the topological recursion and write the corresponding invariants as a sum over graphs, which
allows us to compare it to the Givental action in the next section.

The local version of the CEO topological recursion takes as input the following set of data
S=(3,z,y,B):

I). A local spectral curve 3 = UY,U;, given by the disjoint union of N open disks with the
center points p;, i =1,..., N.

IT). A holomorphic function z: ¥ — C such that the zeros of its differential dz are pq,...,p,.
We will assume the zeros of dz to be simple. Let ' = (C;jw;)? + x; be the local normal form
of x on the disk U; for local coordinates w; and some constants C;.

II1). A holomorphic function y: ¥ — C which does not vanish at the zeros of dr. Denote by y*
the restriction of y to the disk U;.

IV). A symmetric bidifferential B defined on X x 3 with a double pole on the diagonal with residue
1. If z = w; and 2’ = w; are respectively coordinates on the disks ¢ and j the expansion of
B reads

> dz @ dz’'
B"(z,2') = 67J(2® - Z B,Zjlz Jdz @ de .
Je,1=0

The output of the topological recursion procedure consists of a collection of symmetric differen-
tials w ,, defined on the topological product of the curve ¥*™, recursively on 2g —2+n. Explicitly,
for 2g — 2 +n > 0, define

o ) N f Bio: j(ZQ )
205215450 ’
wg,ﬂr‘rl (’207 Zlyeey 2 Z y]( )) dl,'] (Z)

J5J5815-50n (Z

Wyl n s S 2y 21y 2n) +

Z th |A]+1 Z ZA) g JiL,|B\+1(_Z7ZB) )

AUB={1,...,n} h=0

with base cases wf ; (2) := 0; and wy}(z, 2') := B (z,2").
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1.10. ELSV formulae

1.10 ELSV formulae

ELSV-type formulae relate connected Hurwitz numbers to the intersection theory of certain classes
on the moduli spaces of curves. Both Hurwitz theory and the theory of moduli spaces of curves
benefit from them, since ELSV formulae provide a bridge through which calculations and results
can be transferred from one to the other. The original ELSV formula [21] relates simply connected
Hurwitz numbers and Hodge integrals. It plays a central role in many of the alternative proofs of
Witten’s conjecture that appeared after the first proof by Kontsevich (for more details see [41]).
The celebrated ELSV formula expresses these numbers in terms of the intersection theory of moduli
spaces of curves:

he i e(ﬂ) ;,L.L L(f7) 4
T L (e T
Mg ey

j=1d;=0

In the case of r-orbifold Hurwitz numbers, they are known to satisfy the Johnson-Pandharipande-
Tseng (JPT) ELSV-type formula [35] (specialised here to the case G = Z/rZ, U equal to the
representation that sends 1 to e r’ and empty ¥):

e >k
| (i P )
i=1 Mg ey HJ(:L?(l — £2yy)
with b = 2g — 2 + (1) + d/r the count of simple ramification points given by Riemann-Hurwitz
formula, and the euclidean division by r written as x = [z]r + (x), with 0 > (z) > r — 1. The
powers of r are here slightly rearranged, and the products in the denominator are to be understood
as geometric power series as in the ELSV formula above. The class p, Y ,~,(—7)%); is described
in [35] via admissible covers. -
In the case of r-spin Hurwitz numbers D. Zvonkine conjectured the following formula [53]:

o,r—spin
he P

[,1/7«] -
g3it Pb—29—2+L(fi) H / Cg;(r Lr— <M>)7
! i My, f(u)H (M)( l%w])

with rb = 29 — 2 4+ ¢(fi) + d and the same conventions as above.

Every example above expresses numbers enumerating connected Hurwitz covers of a certain
kind, depending on a genus parameter and a partition, in terms of some non - polynomial factor in
the entries of a partition j and an integral over moduli spaces of curves of a certain class intersected
with 1 class. This integral is clearly a polynomial of degree 3g — 3 + £(f{) in the u;. Conceptually:

£(j)
h;:f{md”w" = NonPoly(f) /7 (Class) H Z ca, ()Y
Mg, e j=1d;=0

where ¢4, (1) is a polynomial of degree d; in 15, possibly depending on the parameters (j;).
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1.11 Relation between ELSV formulae and topological recursion: the
ELSV-TR equivalence statements

The CEO topological recursion procedure associates to a spectral curve
§= (Za I(Z)v y(Z), B(Zl7 22))

(see, e.g., [24]) a collection of symmetric correlation differentials wy ,, defined on the product of the
curve X *" through a universal recursion on 2g — 2 + n. The expansion of these differentials near
particular points can unveil interesting invariants, or solutions to enumerative geometric problems.

We say that certain numbers satisfy the topological recursion if there exists a spectral curve
such that the expansion of the correlation differentials near some point has those numbers as
coefficients. The expansion of the correlation differentials takes the form

for some coefficients IV, j;, where ¥ is a function of z that depend on the point of the expansion.
Both the simple Hurwitz and the monotone Hurwitz numbers satisfy the topological recursion (see

[2, 3, 14, 26, 44]), and their spectral curves are respectively

-1
((C}P’l, —z+log(z), z, dz1dz2> ; ((C[pﬂ’ ZZQ )y T2, ( dadz ) (1.4)

(21 — 22)2 21 — 22)2

In the simple Hurwitz case & = e, whereas in the monotone case & = x. On the other side, it was
proved that the expansion of the correlation differentials have the same structure as the right-hand
side of ELSV-type formulae described above (see Theorem 1.12.1), depending on ingredients that
are functions of the spectral curve.

At this point comes the key observation: if one can compute these ingredients explicitly for a
given spectral curve S, one proves that

S(= s »
N;ﬁ:NonPoly (i) /7 (Class®) cfj(uj)z/}j',
Mg ey j=1d;=0

where the non-polynomial part NonPolyS, the class Class®, and the cgj (u;) are explicit. This
allows to formulate equivalence statements in the following sense.

Definition 1.11.1. A TR-ELSV equivalence statement for a Hurwitz problem hZ’;O”ditw" and a
spectral curve § asserts the equivalence between the following two propositions:

i) The numbers h° condition gatisfy the topological recursion with input spectral curve S (i.e.

dition S
0con - N
9,0 g,

o o,condition S/~ S L
i) hy ton — NonPoly® (j7) fﬂg,tz(m(ClaSS ) 1L ) 1 20d;=0 g (,uj)w

up to normalisation factors ).

diti
An equivalence statement for certain Hurwitz numbers 7 7”""*”" and a certain spectral curve

S is useful if for at least one of the two propositions there ex1sts some evidence or a proof.

18



1.12. DOSS identification between topological recursion and Givental theory

Thus, if one establishes i) independently of ii), then ii) follows immediately (and vice versa),
and hence this equivalence relationship has received much attention in the literature. For exam-
ple, for the case of simple Hurwitz numbers and the first curve in Equation (1.4), proposition
i) was conjectured to hold by Bouchard and Marino [3], while ii) is the original ELSV formula.
Proposition i) was proved in [2, 26, 44], and the equivalence statement was proved in [22], see
also [51]. The equivalence statement immediately provides a new proof of i) from ii). The proofs
[26, 44] of i) though, make use of a polynomiality property that is extracted from ELSV, hence the
equivalence cannot be used in the other direction without falling into a circular argument, unless
this polynomiality property can be proved without using ELSV formula. This was done in [17],
see also [18, 39], and thus ii) follows from i) by the equivalence statement.

In the case of r-spin Hurwitz numbers, proposition i) is known as r-Bouchard-Marifio conjecture
[3], proposition ii) is the r-ELSV formula conjectured by Zvonkine in [53], see also [51]. The
equivalence of i) and ii) was established in [51], but since neither of the two has been proven, both
remain conjectural.

1.12 DOSS identification between topological recursion and Givental
theory

In this section we recall the identification procedure between the CEO topological recursion and
Givental theory introduced in [16].

It is known that the correlation differentials take have a very particular internal structure. In
particular, this structure is related to the moduli spaces of curves and cohomological field theories
in the following way.

Theorem 1.12.1 (23, 16]). The correlation differentials win produced via the topological recursion
procedure from the specral curve S = (X, z,y, B) are equal to

n d;
29-2+n Z /7 (Classs) (e, @ - ®ey,) H ¢?jd ((;di) i) :
_ o = j dw

Mg.n

Remark 1.12.2. The Class® defines a semi-simple CohF'T, possibly with a non-flat unit. In this
paper we will restrict the attention to CohFT with flat unit and we will write

(Classs) = (RS_QSJOP)
gmn

g,n

to indicate its Givental decomposition ( for CohFT with non-flat unit see [49] or [40], Section 2.3).

Let us describe the ingredients in the formula above in terms of the data of the specral curve,
following [16]. The only difference with the usual representation is that we incorporate a torus
action on cohomological field theories, fixing a point (C,Cy,...,C,) € (C*)"*t. This formula
doesn’t depend on these parameters, though all its ingredients do.

i). The local coordinates w; on U;, i@ = 1,...,r, are chosen such that w;(p;) = 0 and = =
(Cyw;)* + z;
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1. Introduction

ii). The underlying topological field theory is given in the idempotent basis by
n(ei,ej) = dij,
g.n

dy —2g+2—n
atoP(e, @ ®e;,) =6y, (—QC?C—(0)> .

iii). The Givental matrix RS(() is given by

—%(RSrl(oz

o 1 /C>O B(wi, w;
N vV 27‘(’<~ — o dwl
iv). The auxiliary functions £ : ¥ — C are given by

)= [ )

dwi

wi =0

v). DOSS Test: The following condition for the function y is necessary and sufficient in order
for the unit of the cohomological field theory RS.a to be flat.

202C [ w I dy
L . 20 = E R —Z
\/m . dy e < k=1(R )k ( Ck: dwk (O))

This test was formalised in the form above in [19], Section 4. Its name refers to the initials of
the authors of [16].

1.13 Quantum curves

In this section we briefly introduce the notion of quantum curve, tailored for the specific context
of Hurwitz theory.

For numbers N, (connected) solutions of some enumerative geometric problem depending on
a partition p and a genus parameter g, define the free energies

Fyn(p1,p2,...) = Z N Pus *+ Do
i £(p)=n

Consider the full partition function

Z(p17p27 e h) = exXp (Z ngn(phpQ? e .)h29—2+n>

g,n

. The Schrédinger equation for the

par—>xd

and its principal specialisation Z(z, k) = Z(p1,p2,...;h)

principal specialisation of the partition function reads

D (x,%,h) Z(ha) =0
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1.14. Methods of derivation of quantum curves

for a differential operator D. A quantisation procedure here is meant to be the data of the new
variables & = Z(x, %, h) and § = §(x, %, h). We call quantum curve the operator D(Z,¢). Taking
the semi-classical limit gives an analytic complex curve D(z,y) = 0, which, conjecturally, gives the
topological recursion spectral curve X(D) that generates the same enumerative geometric problem
we started with. Explicitly,

wi&lD)(xl, cony) =di .. dyFyn(z, .. 1)

More precisely, Gukov and Sulkowski [29] conjectured that whenever the solutions of an enu-
merative geometric problem are generated by a spectral curve via CEO topological recursion, there
exists a way to quantise the spectral curve into the operator D(&, 7).

For example, in Hurwitz problems the most used quantisations are

T T
T =u; y=hrxr— or §=h—
4 dx 4 dx
The different choices of quantisation reflect the ambient space in which the spectral curve is de-
fined. The quantum curves for many Hurwitz problems are known, for many other are still to be
computed, below we recall the quantum curves computed in [43].

Hurwitz Spectral Quantum curve
numbers curve

g-orbifold | x = y'/%e Y

r-spin r=ye Y

T
. . atl q i Rt
g-r-mixed | x=y' e | Y- LT exp <r+1zf Tyraty” 1>x 2

1.14 Methods of derivation of quantum curves

In this section we give a brief recollection of some of the basic concepts of KP integrability and
methods of derivation of quantum curves. For more details see, e.g., [50, 42, 1] and references
therein.

The KP hierarchy can be described by the bilinear identity satisfied by the tau-function 7(t),

namely
j{ eE(t—t",2) 7(t — 27 7(t' + [z71])dz = 0,
o0

where £(t,2) = > p—, tx2* and we use the standard notation

1 1 1 1
t:l:l:Z ]: tl:t;,tgj:@,tzgig’... .
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1. Introduction

In particular, in Hurwitz-type problems, it is convenient to work in the coordinates p instead of t,
where pr = kty, k> 1.

Let (®) = (@1, Pg, P3,...) be the point of the Sato Grassmannian. The infinitesimal sym-
metries of the KP hierarchy can be conveniently described by working with Kac—Schwarz (KS)
operators a in the algebra wy ;o of differential operators in one variable that describes infinitesimal
diffeomorphisms of the circle. A Kac-Schwarz operator a for the tau-function 7 leaves invariant
the corresponding point of the Sato Grassmannian, i.e., a (®) C (D).

For the trivial tau-function 7y := 1 with the basis vectors @2 = a:l’k, k > 1, we have two
obvious KS operators

9 1
%7 b@ =T o,

satisfying the commutation relation [ag, by] = by. Note that they act on the basis vectors as

ay = —x

ag &) () = (k= 1)} (z), by )(x) = DYy, ().

A generic KP tau-function 7, has a expression on the fermionic Fock space of semi-infinite
wedge formalism, from which one can find a vector |®) = ¢.|0) representing the point of the Sato
Grassmanian, obtained by an operator g acting on the vacuum. g determines an operator G that
generates an admissible basis ®3(x) = G(k)®? (z) for ®*. At this point, the operators obtained by
conjugation by G

ae :=GagG™!, be := G by G™1

are Kac-Schwarz operators for the tau-function 7, satisfying the same commutation relation as ay
and by, and acting in the same way as above with respect to the basis ®%(z). Under a certain
specialisation, the quantum curve is recovered by the operator a, acting on the first element of the
basis ®9(x).

1.15 OQutline of contents

The thesis is based on the following works:

1. R. Kramer, F. Labib, D. Lewanski, S. Shadrin, The tautological ring of Mg ,, via Pandhari-
pande-Pixton-Zvonkine r-spin relations., arXiv:1703.00681, 2017.

2. A. Popolitov, D. Lewanski, S. Shadrin, D. Zvonkine, Chiodo formulas for the r-th roots and
topological recursion. Letters in Mathematical Physics, pp.1-19, 2016.

3. A. Alexandrov, D. Lewanski, S. Shadrin, Ramifications of Hurwitz theory, KP integrability
and quantum curves. Journal of High Energy Physics 2016(5), 2015.

4. P. Dunin-Barkowski, D. Lewanski, A. Popolitov, S. Shadrin, Polynomaiality of orbifold Hur-
witz numbers, spectral curve, and a new proof of the Johnson-Pandharipande-Tseng formula.
Journal of the London Mathematical Society 92(3), 2015.

5. R. Kramer, D. Lewanski, S. Shadrin, Polynomiality of monotone orbifold Hurwitz numbers
and Grothendieck’s dessins d’enfants. arXiv:1610.08376, 2016.

6. R. Kramer, D. Lewanski, A. Popolitov, S. Shadrin, Towards an orbifold generalization of
Zvonkine’s r-ELSV formula. arXiv:1703.06725, 2017.
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1.15. Outline of contents

Other works related to these subjects by the same author:

7. D. Lewanski, Correspondences between ELSV-type formulae and Spectral Curves. Submit-
ted to Proceedings of the 2016 von Neumann Symposium on Topological Recursion and its
Influence in Analysis, Geometry, and Topology.

8. T. Milanov, appendix by D. Lewanski, W-algebra constraints and topological recursion for
Ap-singularity. International Journal of Mathematics 27 (13), 114-135.

The chapters are structured in the following way. Each chapter of the thesis is based on one of
the six papers cited above, in the same order as they appear in the list, with the exception of
Chapter 6, which is based on both papers 5 and 6. This choice is due to the fact that the results
appearing in those two works are of similar nature and they are proved with similar methods,
besides the technical difficulties taking different forms. The notations can differ slightly from
chapter to chapter. Part of the material appearing in paper 7 is used in several sections of this
introduction. Every chapter is self-contained and can be read independently. In the papers 1 — 6,
all the authors contributed equally.

1.15.1 Chapter 2: The tautological ring of M, ,, via Pandharipande-Pixton-Zvonkine
r-spin relations

In [48], Pandharipande, Pixton, and Zvonkine derive the Givental decomposition for the shifted
semi-simple cohomological field theory whose top degree coincides with the r-spin Witten class.
This decomposition gives explicit relations in the tautological ring of the moduli spaces MM.
We rearrange and specialise these relations to obtain some restrictions on the dimensions of the
tautological rings of the open moduli spaces M, ,,. In particular, we give a new proof for the result
of Looijenga (for n = 1) and Buryak et al. (for n > 2) that dim R9~*(M,,) < n. We also give a
new proof of the result of Looijenga (for n = 1) and Ionel (for arbitrary n > 1) that R*(M, ) =0
for i > g and give some estimates for the dimension of R*(M, ) for i < g—2. Explicitly, we prove
the following results. First, we show that every monomial in ¢ and k classes of degree g — 1 can
be expressed in terms of pure monomials in 1 classes.

Proposition 1.15.1. Let g > 2 and n > 1. The ring Rg’l(/\/lg,n) is spanned by the monomials
Gl fordy, ... dy >0, 30 di=g— 1.

Then, we show that every monomial in 1 classes of degree g — 1 can be expressed in terms of
n generators.

Proposition 1.15.2. Forn > 2 and g > 2, every monomial of degree g — 1 in ¢ classes and at
most one Kk1-class can be expressed as linear combinations of the following n classes

VI ] M, O] e,
with rational coefficients.
Together, the two propositions give a new proof of
Theorem 1.15.3 ([5]). Forn >2 and g > 2

dimg R9™H(M,.,) < n.
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1. Introduction

We moreover prove the vanishing of higher degrees of the tautological ring.

Theorem 1.15.4 ([20, 31]). The tautological ring of Mg ,, vanishes in degrees g and higher, that
is RZ9(My.,) = 0.

These two theorems consistute the generalized Faber socle conjecture stated above, as the
bound dim B9~ (M, ,,) > n can be proved in a relatively simple way, see e.g. [5].

Similarly to [48, theorem 6], our method also gives a bound for the dimension of the lower
degree tautological classes.

Proposition 1.15.5. Let p(n) be the number of partitions of n, and p(n, k) the number of partitions
of n of length at most k.

d
dim RY (M) <Y <”+Z_ 1)p(d— kg —1—d)

k=0

Remark 1.15.6. If we use the natural interpretation of (kgl) as 0,0, this does indeed recover [48,
theorem 6] in the case n = 0.

The proof exhibits an explicit spanning set of this cardinality, consisting of monomials in -
classes multiplied with a multi-index x-class.

1.15.2 Chapter 3: Chiodo formulas for the r-th roots and topological recursion

In this chapter we apply the formula in Theorem 1.12.1 to the spectral curve

dzdz
S5 1= (CPl,x(z) = —2"+logz,y(z) = 2°, B(z,2) = (zi;/)2>

for a global coordinate z on the Riemann sphere and r, s integer parameters. The result of the
DOSS identification for this particular spectral curve is summarised in the following. It is important
to notice that the Givental R-matrix and the topological field theory coincide with the ones in the
Givental decomposition of the Chiodo classes.

Proposition 1.15.7. The following properties hold:

i). Choose the constants C; = 1/y/=2r fori=1,...,r, and C = r'*3/7|s. With this choice the

2
local coordinates w; on U;, i =1,...,7 satisfy x = —% + x(pi)-

it). The underlying topological field theory is given by

1
n(vavvb) = ;5a+b mod r

Sr,s,top

2g—1
ag,n (Ua1 R Uan) =Y 6a1+--~+an75(2972+n) mod 7-

where the flat coordinates v, are defined in terms of the idempotents by
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ii). The Givental matriz RS+ (C) is given by

RS (0) = exp ( i diag),_, Biy1 () Ck> .

— k(k+1)

). The auziliary functions 5;8”: ¥ — C are given by
Sro _ pze NS (0 ET )" gy
=1 ) nl ¢
n=0
v). The DOSS Test is satisfied.
Substituting these ingredients in Theorem 1.12.1 leads to the main theorem of the chapter.

Theorem 1.15.8. The correlation differentials wz,sf,f are equal to

T 5= <M>) eEp,ja;j

MgnH] 1 %wl)

r29—2+n+b n (T]
2g—2+n
S ’
Jj=1 [ IL u =1

where b(r, s) = ((29 24 n)s + Z . MJ> /r.

Remark 1.15.9. Note that the case s = 1 reproduces Theorem 1.7 in [51], which is the ELSV-TR
equivalence statement for r-spin Hurwitz numbers.

Expanding the correlation differentials as

00 NSTLS .
W =di® - @dy ) g et T,
sy pbn=1
we find:
Corollary 1.15.10 ([40]).
NS R g (B Gyt — ()
’ §29—2tn i (]! Myn Hj:1(1_f¢j)

Specialising the corollary for s = r and plugging the r—orbifold Hurwitz numbers and the curve
Sy, into the TR-ELSV equivalence statement in Definition 1.11.1, we get:

Corollary 1.15.11. The two propositions are equivalent:

i) h[’“] Ng;[

n i [,LL7] . —
i) el e T ) / Cynlrrir — ()
s 1 [Mi]! My.n Hj:l(]' - MT]wj)

%
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Note that the statement i) is very similar to JPT formula, with the difference that the class
P D _is0(—7)"A; is described in [35] via admissible covers, while Chiodo’s classes rely on the moduli
space of r-th tensor roots. We prove that two approaches are in fact equivalent:

Proposition 1.15.12. p. Y5 (=7)'Ai = Cyn(r, 757 — (D).
Hence we can re-state the corollary as:
Corollary 1.15.13. The two statements are equivalent:

i) The r-orbifold Hurwitz numbers satisfy the topological recursion with input the spectral curve

Spor.
it) The JPT formula holds.

At this point, since JPT formula is proved independently, the equivalence statement implies a
new proof of the topological recursion for orbifold Hurwitz numbers. One could legitimately ask
the opposite question: can we obtain a new proof of such a result in algebraic geometry just using
topological recursion? Several proofs of the topological recursion existed in this case [4, 13], but all
of them relied on the JPT Formula in the following way: they extracted a certain polynomiality
property from JPT, and proved topological recursion by combining this polynomiality property
with a combinatorial formula obtained by counting graphs over surfaces. In order to achieve the
converse implication, therefore, an independent proof of the polynomiality property is required.
This polynomiality property is proved in Chapter 5 with no use of JPT. Therefore these results
together, and via Corollary 1.15.13, provide a new proof of Johnson-Pandharipande-Tseng formula.

1.15.3 Chapter 4: Ramifications of Hurwitz theory, KP integrability and quantum
curves

In this chapter we consider several variations of Hurwitz numbers. New examples of quantum
curves and vertex operators on the Fock space are derived. Moreover, a systematic organisation of
these combinatorial problems provides new and simpler proofs of known results. In particular, we
use various versions of these numbers to discuss methods of derivation of quantum spectral curves
from the point of view of KP integrability and derive new examples of quantum curves for the
families of double Hurwitz numbers.

The logic works as follows. If the generating function of some combinatorial problem is a
solution of an integrable hierarchy of type KP, its specialization can be seen as a vector of the
corresponding point in the Sato Grassmannian, and this reduces the problem to finding a Kac-
Schwarz operator that would annihilate it. Once a quantum curve is known, one can formulate a
precise conjecture: the semi-classical limit of the quantum curve is the spectral curve for the CEO
topological recursion whose coeflicients of the differentials w, , are precisely the numbers of the
combinatorial problem we started with. Once the spectral curve for the topological recursion is
known, one can conclude that the combinatorial problem can be solved in terms of some intersection
numbers on the moduli space of curves and, therefore, can be expressed using Givental theory and
admits a formula of type ELSV.

Firstly, we consider many of the Hurwitz numbers described above, in particular the strictly
monotone, the weakly monotone, the atlantes, the free single and the free group Hurwitz num-
bers, and we show that the Jucys correspondence and its extension on the homogenous complete
polynomials provides a direct identification between some of these numbers.
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Proposition 1.15.14. The strictly monotone and the free single Hurwitz numbers coincide. The
weakly monotone and the free group Hurwitz numbers coincide.

Explicitly, we show that the blocks of ramifications defining these numbers are interchangable.
On the one hand, this provides a short alternative proof of the Harnad-Orlov correspondence
[30]. On the other hand, it provides a new interpretation of the enumerative geometric problem,
known as enumeration of hypermaps or a particular kind of Grothendieck dessins d’enfant, as the
enumeration of strictly monotone orbifold numbers.

Secondly, we provide an expression in the semi-infinite wedge formalism of strictly monotone,
weakly monotone and atlantes Hurwitz numbers.

Definition 1.15.15. Define the following operators on the semi-infinite wedge as formal series in
z:

log z) ,

_o(d) Eo (-2 L)
D(U)(z) —, <(-=2d) 1= exp (— [M -F logz> .

These operators respectively provide the generating series for the different bases of symmetric
polynomials as eigenvalues, with eigenvectors the basis of the charge zero sector:

Proposition 1.15.16.

k
DP) (2)vy = Z %pk(cr)‘)m, DM () = Z 2P hy(erMus,
k=1 " k=0

D) (2)vy = Z 2Fop(er)vs.

k=0

Hence these operators can be used to express generating series or partition functions of Hurwitz
problems in which the corresponding blocks of ramification appear, in semi-infinite wedge formal-
ism. This allows us to perform explicit calculations at the level of operators and their commutators,
to understand the polynomiality behaviour of the numbers. This has been investigated in Chapter
6.

Thirdly, we consider the relation between topological recursion and ELSV formulae described
above, for the case of weakly monotone Hurwitz numbers. In this case the spectral curve is known
[12]. So, we derive the following ELSV formula.

Proposition 1.15.17. We have:

o(p) o(p)
2 u +d) nt
0,< __ Ak J
i =L () [ emean IT 3 wp Blg 0
im1 NS M j=1d;>0 -
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Here the coefficients A;, i = 1,2, ..., satisfy the following equation:

exp <— ZAM) = (2k+ )IU*.
=1 k=0

Fourthly, we study several examples of KP tau functions arising from Hurwitz theory and we
derive quantum curves by the method of Kac-Schwarz operators.

Proposition 1.15.18. The quantum curve for the monotone r-orbifold Hurwitz numbers is equal
to

e+ [ +ag+hG—1)9
j=1

In particular, for r» = 1, it reduces to Z(Zy* + ¢ + 1), recovering the quantum curves obtained

in [11, 14]. With the same methods, we derive an infinite series of linear equations for the tau-
function of double monotone Hurwitz numbers

Trmm (t,£) = (0] exp <Z tiai> DM (h) exp (Z fiai> |0),
i=1 i=1

and the quantum curve for double Hurwitz numbers, which reads
Proposition 1.15.19.
Z kik (‘%eﬁ)k - QLII(617 h) =0,
k=1

where & = 2- and § = hZZ and ¥(x, ) is the wave function of the partition function

T (t,t) = (0] exp <Z tiai) exp (hFs) exp <Z fioz_i> |0).

=1 i=1

The quantum curve for strictly monotone orbifold Hurwitz numbers is then derived, and we show
that this quantum curve indeed coincides with the one earlier obtained in [12] using combinatorics
of hypermaps and in [15] using the loop equations for hypermaps, confirming the prediction of
Jucys correspondence. Moreover, the interpretation as strictly monotone orbifold Hurwitz numbers
provides a short and easy proof. The quantum curve for blocks of atlantes of fixed type is also
derived. In this case, the quantum curve reads § — @#e? . This case is very interesting since
it provides a counterexample of the usual behaviour of the quantum curves as quantisation of
topological recursion spectral curves. Indeed, the dequantization of this quantum curve concides
with the dequantization of the quantum curve for the r-spin Hurwitz number

1< o
A~ ~3/2 R N B )
J—z exp(r_’_l;x 7'zy )

proved in [43]. Even though the spectral curve and the corresponding r-ELSV formula for the
r-spin Hurwitz numbers are still conjectural, there is very strong evidence for these conjectures
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to be true [51]. From these conjectures we can conclude that the dequantization of § — Z exp(g")
can not be the spectral curve for the atlantes Hurwitz numbers, suitable for the construction
of the topological recursion. Finally, we discuss a one-parameter deformation of single Hurwitz
numbers by the co-length (indicated with the formal variable ¢) of the ramification over infinity.
The resulting quantum curve is

(1- (e_ﬂfc_l —2c+ cgfceﬁ) 9) ¥(z,h) =0

which recovers for ¢ = 0 is the wave function of the single Hurwitz numbers.

1.15.4 Chapter 5: Quasi-polynomiality of orbifold Hurwitz numbers, spectral curve,
and a new proof of the Johnson-Pandharipande-Tseng formula

In this Chapter we address the polynomiality property of orbifold Hurwitz numbers. In particular,
we prove the following result:

Theorem 1.15.20. For 2g — 2 + (i) > 0, we have

o T7 Y
hg:pj = H [L]' P[rl] (Mlv s 7#[(;7:))
i=1
where P[i’]” is a polynomial of degree 3g — 3 + I(ji) depending on the parameters (1), ..., ()

and p = r[p] + (u) denotes the euclidean division by .

Because of the work described above, this allows to achieve via topological recursion a new proof
of the Johnson-Pandharipande-Tseng ELSV Formula, a result that has been previously proved only
by pure algebraic geometric methods. The proof follows the methods developed in [17] for simple
Hurwitz numbers, applying them to the more general case for orbifold ones.

Step 1. Express the generating function for the disconnected numbers

> he.
) = Y
g=0 "

in terms of the semi-infinite wedge formalism as

(i)

1 ar °
H”M([i,u) = i <eTe“‘7:2 Ha_m> :
' i=1

Step 2. By energy considerations, the expression can be re-arranged in a more treatable form:

1(i7) .
< H ev‘re“fzameuﬂerr>
i=1

o [r]/~ 1
Ho (i, u) = e
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Step 3. Following the logic used by Okounkov and Pandharipande, the two nested conjugations
of the operator ar_,,, by the exponential operators can be computed explicitly, leading to the
expression in the so-called A operators:

L) e [Mi] 1 (i) .
g = T (T )

l
-1 M
The precise formula of the r-orbifold A operators can be found in Chapter 5.

Step 4. The same formula holds for the generating function for the connected numbers

17 lﬁ) w1 lﬁ) i ’
o) = 20 T[S (TG ()
. <L ) 17
i=1 (1] H,u V=1 /
where the connected correlators are defined from the disconnected ones by means of the
inclusion-exclusion formula.

Step 5. Following the proof of Okounkov and Pandharipande for the correlators associated to the
simple Hurwitz numbers, Johnson showed that the disconnected correlators of A operators for
r-orbifold Hurwitz numbers converge to an analytic function for complex variables (21, ..., z,)
in a certain region ) for sufficiently small u. The evaluation at (z1,...,2,) = (U1, tn)
recovers the r-orbifold Hurwitz numbers. This allows to consider the Laurent expansion of the
correlators near the origin of C". Using this expansion, the unstable connected correlators,
or correlators corresponding to the two pairs (g, 4(n)) = (0,1), (0,2), are computed explicitly.

Step 6. The disconnected correlators are expressed in terms of the connected ones in terms of sums
of products of connected ones, by means of the inclusion-exclusion formula. Among these
summands, some of them contain, as a factor, unstable connected correlators, and therefore
should be excluded from the expression. By using two recursive formulae, we decompose the
correlators and show that dropping these unstable summands is equivalent to considering the
disconnected correlator of the regular part of the A operators in z1,..., 2, in the expansion
mentioned before.

Step 7. The stable disconnected correlator of the regular part of the A operators, divided by
the product of the p;, is shown to be a symmetric polynomial. This implies, by using
the inclusion-exclusion formula to perform induction on ¢(u), that the same holds for the
connected correlators of the A operators, including regular and principal part.

Step 8. This is not enough, though, to conclude the statement. Indeed, this proves that the result
holds only for those partitions p of d inside the region 2.

Step 9. For fixed n1, po, ..., ftn, we show rationality in the first variable of the disconnected
correlator with bounded degrees of both numerator and denominator for each fixed power
of u. Hence the correlator, as a function of the first variable, can be extended as rational
function, except at most at the poles corresponding to negative integer values. The evaluation
of this rational function and the polynomial function coincide in a Zariski-dense set. This
implies the polynomiality of the connected correlator in the first variable. Now, a symmetric
complex function in several variables that is polynomial in one of the variables is a polynomial
in all the variables. This concludes the proof of the statement.

30



1.15. Outline of contents

1.15.5 Chapter 6: Quasi-polynomiality of Grothendieck's dessins d'enfants, orbifold,
monotone orbifold, spin, and spin orbifold Hurwitz numbers
This chapter collects the quasi-polynomiality statements for five different Hurwitz problems: orb-

ifold weakly monotone, orbifold strictly monotone, r-orbifold, r-spin, and g-orbifold r-spin Hurwitz
numbers.

Theorem 1.15.21. For 2g — 2 + (i) > 0, we have

. o,r, i + [/”LZ] i
i). hg;ﬁS = ( . >P§>(u1,-~-,m(ﬁ))
i=1 Hi
T (-1 (i
iM). homS = ( Eui] >P P (- i)
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T
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where PY, PY) P P and P[< Aar
r T in ql,r—spin
parameters in the upper indices, p = r[u] + (u) denotes the euclidean division by r and p =

qr(plgr + (1) qr denotes the euclidean division by qr.

are polynomials whose coefficients depend on the

Let us analyse the result.

i). The first statements confirms Conjecture 23 in [11]. Note that the small difference in the
convention of the conjecture does not affect quasi-polynomiality since the polynomials P<
depend on the parameters ().

ii). The second statement confirms Conjecture 12 in [12]. The conjecture is stated in terms
of Grothendieck dessin d’enfants, which correspond to strictly monotone orbifold Hurwitz
numbers by the Jucys correspondence as shown in Chapter 4.

iii). The third statement, combined with the results in Chapter 3, provides a new proof of the
Johnson-Pandharipande-Tseng ELSV formula, as explained in Chapter 3. This statement is
already proved in Chapter 5. In this Chapter, though, a new easier proof is provided, by
using the residue methods described below. These methods can be seen in some sense as
more powerful, since they allow the proof of the fourth statement. The proof of the first two
statements could probably have been performed with the methods of Chapter 5, although
the Fock space operators for those Hurwitz problems were not yet known.

iv). The fourth statement is a key step towards the proof of Zvonkine conjecture [53] or, by
the equivalence statement in [51] and reproved in Chapter 3, towards the proof of the r-
Bouchard-Marino conjecture. Although the non-polynomial part in the third and the fourth

31



1. Introduction

statement are the same, these non-polynomialities arise in very different ways from operators
encoding radically different geometric meaning, and I am not aware of any reason they should
be related.

v). The fifth statement yields an orbifold generalization of Zvonkine’s conjecture.

Let us outline the logic of the proof, which is the same in all five cases. In the following we
refer to the euclidean division by r. The logic of the proof for the fifth case follows by replacing r

by qr.
Step 1.-3. Same as for the proof in Chapter 5.

Step 4. Because the correlator is a symmetric expression in the pu;, it is enough to show polyno-
miality of the connected correlators for [u].

Step 5. Rationality in [p4] is shown, for fixed [ua], ..., [tn], (1), -, (un) and fixed power of w,
using the vanishing near the covacuum and imposing zero total energy.

Step 6. This allows the correlator as a rational function in [11] to be extended everywhere except
possibly at finitely many poles at negative integers and compute the residues.

Step 7. The effect of the residue operator on the A operators reads

[kl]%:ezAmm(U, K] + (k) = cA_ gy (u, Ir — (k)

for some constant c¢. Here the operator A° is obtained from A by replacing the inner operator
a, by its adjoint av_,, and inverting the combinatorial prefactors. Each of the five cases clearly
presents different A operators, but this behaviour is common to all of them (although we
prove it separately for each case), with possibly different constants c.

Step 8. This allows a very good control of the possible decompositions of the correlator into
summands with unstable correlators as factors; more precisely, it implies the vanishing of the
residues in all connected correlators, obtained from the disconnected ones by the inclusion-
exclusion formula, except in the two cases (g,¢(n)) = (0, 1), (0,2) corresponding to unstable
correlators.

Step 9. Once the polynomiality of the connected correlator divided by the product of the p; is
proved, the degree of the polynomial in p; can be checked to be independent of the choice
of the fixed parameters. This concludes the proof of the statements.

In the second part of the chapter we show for the first three cases that the property of quasi-
polynomiality is equivalent to the property that the n-point generating function has a natural
representation on the n-th cartesian power of a certain algebraic curve, proving necessary conditions
for the CEO topological recursion. Moreover we prove that the unstable correlation differentials for
the conjectural (or proved) CEO topological recursion coincide with the expression derived from the
A-operators. These computations are performed in the case of monotone orbifold, spin, and spin
orbifold Hurwitz numbers for the cases (g,n) = (0,1) and (g,n) = (0,2), and for strictly monotone
orbifold Hurwitz numbers for the case (g,n) = (0,1). In all cases the computation of the (0, 1)-
numbers was done before. The (0,2)-calculation for the spin and orbifold spin Hurwitz numbers
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is a new result. The (0, 2)-calculation for the monotone Hurwitz numbers is also a new result, but
we learned after completing our calculation that Karev obtained the same formula independently

[37).

We show these computations to test the A-operator formula and to demonstrate its power.

The computations of the generating function for the (0,2) monotone orbifold Hurwitz numbers,
for (0,2) spin Hurwitz numbers and for (0, 2) spin orbifold Hurwitz numbers are necessary for the
conjectures on topological recursion in [11], [51] and the generalisation of Zvonkine’s conjecture
proposed in Section 6.11, respectively.
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The tautological ring of M, via
Pandharipande-Pixton-Zvonkine r-spin relations

In this chapter we use relations in the tautological ring of the moduli spaces MW derived by
Pandharipande, Pixton, and Zvonkine from the Givental formula for the r-spin Witten class in
order to obtain some restrictions on the dimensions of the tautological rings of the open moduli
spaces M, ,,. In particular, we give a new proof for the result of Looijenga (for n = 1) and Buryak
et al. (for n > 2) that dim RY~1(M,,,) < n. We also give a new proof of the result of Looijenga
(for n = 1) and Ionel (for arbitrary n > 1) that R*(M,,) = 0 for i > g and give some estimates
for the dimension of R*(M,,) for i < g — 2.

2.1 Introduction

The study of the tautological ring R* of the moduli spaces of curves goes back to the classical papers
of Mumford and Faber [20, 8], see also [29, 21, 31, 27]. The tautological ring of the moduli space
of curves Mg’n is additively generated by the so-called dual graphs decorated by - and k-classes.
A dual graph determines a natural stratum in Mgm, whose vertices correspond to irreducible
components of a generic point in the stratum, the leaves correspond to the marked points, and
the edges correspond to the nodes. We decorate each vertex with a non-negative integer equal
to the geometric genus of the corresponding irreducible component. Each vertex is also equipped
with a multi-index k-class, and each half-edge, including the leaves, is equipped with a power of
the 1)-class of the cotangent line bundle at the corresponding marked point or the corresponding
branch of the node. There are many linear relations between these generators called tautological
relations.

We can restrict all these classes to the open moduli space M, ,,. Then only the graphs with no
edges can contribute non-trivially. These graphs just correspond to the classes []}_; w;ii Key,....ens
d; > 0, e; > 1. There are still many relations among these classes that can be proved, in particular,
that R"(M,,,) = 0 for i > g, see [19, 15] and also a recent new proof in [3]. In the case i = g—1 one
can prove that dim B9~ (M, ,,) < n, see [19, 2] for the cases n = 1 and n > 2 respectively. In this
chapter we give new proofs of all these results as well as some restrictions on the dimensions of the
tautological rings for ¢ < g — 2. Note that, by the non-degeneracy of some matrix of intersection
numbers, one can in fact show that dim R~ (M, ,,) = n, we refer to [2] for that.

We use the tautological relations of Pandharipande-Pixton-Zvonkine [24]. Givental-Teleman
theory [13, 28] provides a formula for a homogeneous semi-simple cohomological field theory as a
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sum over decorated dual graphs as above, see [12, 4, 5, 23]. These formulae can be explained as
a result of a certain group action on non-homogeneous cohomological field theories applied to the
rescaled Gromov-Witten theory of a finite number of points (also known as topological field theory
or degree 0 cohomological field theory), see [9, 28, 26, 23].

In some cases we can obtain this way a graphical formula for a cohomological field theory
whose properties we know independently. In particular, the graphical formula might contain classes
(linear combinations of decorated dual graphs) that are of dimension higher than the homogeneity
property allows for a cohomological field theory. Then theses classes must be equal to zero and
give us tautological relations. Alternatively, we might consider the graphical formula as a function
of some parameter ¢ parametrizing a path on the underlying Frobenius manifold with ¢ = 0 lying
on the discriminant. If we know independently that the cohomological field theory is defined for
any value of ¢, including ¢ = 0, then all negative terms of the Laurent series expansion in ¢ near
¢ = 0 also give tautological relations. See [17, 22] for some expositions. Once we have a relation
for the decorated dual graphs in ﬂgﬂﬂ_m, m > 0, we can multiply it by an arbitrary tautological
class, push it forward to ﬂg,n, and then restrict it to My ,. This gives a relation among the
classes []1; V& ey ers di >0, ¢, > 1, in R*(M,,,).

In the case of the Witten r-spin class [30, 25] the graphical formula and its ingredients are
discussed in detail in [11, 9, 6, 24].

Both approaches mentioned above produce the same systems of tautological relations on ﬂgyn.
Two particular paths on the underlying Frobenius manifold are worked out in detail in [24], and
we are using one of them in this chapter. Note that the results of Janda [17, 16, 18] guarantee that
these relations work in the Chow ring, see a discussion in [24].

2.1.1 Organization of the chapter

In section 2.2 we recall the relations of Pandharipande-Pixton-Zvonkine. In section 2.3, we use
them to give a new proof of the dimension of R9~*(M, ), up to one lemma whose proof takes up
section 2.4. In section 2.5, we extend this proof scheme to show the vanishing of the tautological
ring in all higher degrees. Finally, in section 2.6, we give some bounds for the dimensions of the
tautological rings in lower degrees.

2.2 Pandharipande-Pixton-Zvonkine relations

In this section we recall the relations in the tautological ring of ﬂg,n from [24] and put them in a
convenient form for our further analysis.

2.2.1 Definition

Fix » > 3. Fix n primary fields 0 < aq,...,a, < r — 2. All constructions below depend on an
auxiliary variable ¢ and we fix its exponent d < 0. A tautological relation T'(g, n, 7, a1,...,an,d) =
0 depends on these choices, and it is obtained as T = r9=1 3" w£k)Tk/k!, where T}, is the
coefficient of ¢? in the expression in the decorated dual graphs of mg,n+k described below, and
(k). Mg7n+k — Hg,n is the natural projection.

Consider the vector space of primary fields with basis {eg,...,e,_2}. In the basis & :=
(b_i/("_l)ei we define the scalar product 7;; = (&, éj> = ¢_(”_2)/(’"_1)6i+j)r,2. Equip each vertex
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of genus h of valency v in a decorated dual graph with a tensor

oy @ @ Eq, (b(h—l)(r—?)/(r—l)(r _ 1)h5(r71)\h7172;’

=1 @i”

Define matrices (R;;1)%, m >0, a,b=0,...,7 — 2, in the basis &y, ...,& 2. We set (R,;')? =0 if

m

b#Za—m modr—1. Ifb=a—m mod r—1, then (R = (r(r—1)¢"/"=1)=™P,.(r,a), where
P, (r,a), m > 0, are the polynomials of degree 2m in r,a uniquely determined by the following

conditions:

Py(r,a) =1,
Py (r,a) = Pp(r,a—1) = ((m — 1)r — a)Pp_1(r,a — 1);
P, (r,0) = Py (r,r — 1).

Equip the first n leaves with Y (R1)5 ™y, @ = 1,...,n. Equip the k extra leaves (the
dilaton leaves) with — > >~ (R, ,))iy™ ey, i = 1,...,n. Equip each edge, where we denote by
¢’ and 1" the 1-classes on the two branches of the corresponding node, with

= e o (R i (R ) ()™ ()
w/ + w/l
Then T is defined as the sum over all decorated dual graphs obtained by the contraction of all ten-

sors assigned to their vertices, leaves, and edges, further divided by the order of the automorphism
group of the graph.

éi’ X éi”

2.2.2  Analysis of relations

There are several observations about the formula introduced in the previous subsection.

1. We obtain a decorated dual graph in RP (M, ,) if and only if the sum of the indices of the
matrices R} used in its construction is equal to D.

2. According to [24, Theorem 7|, T'(g,n, 7, a1, ..., an,d) is a sum of decorated dual graphs whose
coefficients are polynomials in 7.

3. Let A=3"" , a;. Then A = g—14+D mod r—1. We can assume that A = g—1+D+z(r—1),
x > 0, since D is bounded by dim M, , = 3g — 3 + n, whereas the relations hold for r
arbitrarily big. Collecting the powers of ¢ from the contributions above, we obtain d(r—1) =
A+ (g—1)(r —2) —rD. Substituting the expression for A, we have that d < 0 if and only if
D > g+ x. The relevant cases in this chapter are the cases x =0 and z = 1.

These relations, valid for particular » > 3 and 0 < a1, ..., a, < r—2 are difficult to apply since
we have almost no control on the x-classes coming from the dilaton leaves. We solve this problem
in the following way.

Let # = 0, consider the degree D = g. We have relations with polynomial coefficients for all
r much greater than g and A = 2g — 1. More precisely, for all integers 0 < ay,...,a, < 29 —1,
Y ia; = 2g — 1, we have a relation whose coefficients are polynomials of degree 2g in 7. In
other words, we have a polynomial in r whose coefficients are linear combinations of decorated
dual graphs in degree g, and we can substitute any r sufficiently large. Possible integer values of
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r determine this polynomial completely, so its evaluation at any other complex value of r is again
a relation.

Let x = 1, consider the degree D = g + 1. We have relations with polynomial coefficients for
all » much bigger than g and A = 29 — 1+ r. More precisely, for all integers 0 < aq,...,a, <7 —2,
S ai =29 —1+r, we have a relation whose coefficients are polynomials of degree 2g + 2 in r.

Note that in both cases we do not, in general, have polynomiality in aq,...,a,, but we have it
for some special decorated dual graphs, under some extra conditions.

We argue below that a good choice of 7 in both cases is r = % (note that we still have to explain
what we mean in the case = 1, since the sum A depends on r). In particular, this choice kills all
dilaton leaves, and the only non-trivial term that contributes to the sum over k in the definition
of T(g,n,r,a1,...,a,,d) in these cases is Tj.

2.2.3 P-polynomials at r = 2
Recall the P,,(r,a)-polynomials of [24] introduced above, and define

(o) = Qmm' (H_*)

Lemma 2.2.1. We have P, (%,a) = Qn(a).

Proof. We will use [24, lemma 4.3]. It is clear that Qg(a) =1 and are @,,(0) = Qm( — %) = 0,0
Furthermore

Qm(a) = Qmla—1)= (2_77117)7:<ﬁ (a+1_§) B ﬁ (a_ ];))

k=1 k=1
_1ym 1 1 2m—2 k

— (27”21! ((a+ i)a— (a—m-+ 5)(a—m)> ]]_;[1 (af §>

- ﬁ( — 2am +m? — %m)Qm—l(a -1)

= S(m— 5 ~20)Qu a(a—1),

so the equations in the lemma are satisfied.

This does not allow us to conclude yet that our Q,,(a) are equal to the P, (3, a), as the lemma
only states uniqueness for the P, (r,a) as polynomials in a and r. However, we can prove equality
by induction on m. The cases for m = 0,1 are given explicitly in [24], and can be checked easily.

Now assume m > 1 and P, _ 1( ) Qm-1(a). Then

1

Qn(@) = @mla—1) = 5 (m — 5~ 20)@m_1(a— 1),

with the same relation for Pm( ) Hence, P, (% ) = Qm(a) + c. Using the same relation for
m + 1, we get that

1 c 9 2m-—3

Amyi(a) = Pm+1(§,a) — Qma1(a) =—=

> ac+d

40



2.2. Pandharipande-Pixton-Zvonkine relations

We then have that

1 c 2m—3 1—-m
=A,, —=)—-A, =—= - =
0 1 2) +1(0) 3 g ¢ 7 °
Because m > 1 by assumption, this proves ¢ = 0, so Pm(%7 a) = Qm(a). 0

2.2.4 Simplified relations |

In this subsection we discuss the relations that we can obtain from the substitution r = % for the
case of x = 0 in subsection 2.2.2.

The polynomials Qm(a ) =0,1,2,..., discussed in the previous subsection, have degree 2m
and roots — 0, é, 1,. — %,m — 1. Note that on the dilaton leaves in the relation of _[24]
we always have a coefﬁc1ent (R,1)§ for some m > 1. Since for r = 3 we have (R;')§ =

(figﬁ*l)’QO(O) = 0, m > 1, the graphs with dilaton leaves do not contribute to the tauto-
logical relations.

In order to obtain a relation on M, , we first consider a relation in ﬂg,ner that we push
forward to Mg,n and then restrict to the open moduli space M, ,. Note that only graphs that
correspond to a partial compactification of Mg ., can contribute non-trivially. Namely, it is a
special case of the rational tails partial compactification, where we require in addition that at most
one among the first n marked points can lie on each rational tail. We denote this compactification

b Mrt [n]

g,n+m-
For instance, the dual graphs that can contribute non-trivially to a relation on M;tg]ﬂ are
either the graph with one vertex and no edges or the graphs with two vertices of genus g and 0
and one edge connecting them, with leaves labeled by ¢ and n 4 1 attached to the genus 0 vertex

and all other leaves attached to the genus g vertex, i = 1,...,n. These graphs correspond to the
divisors in M;tgil that we denote by Dj 1. -
More generally, we denote by Dy, I C {1,...,n+ m}, the divisor in My 4., whose generic

point is represented by a two-component curve, with components of genus g and 0 connected
through a node, such that all the points with labels in I lie on the component of genus 0, and all
other points lie on the component of genus g. Then the divisors that belong to M“Eﬂm are those
in which I contains at most one point with a label 1 <[ < n, and all dual graphs that we have
to consider are the dual graphs of the generic points of the strata obtained by the intersection of
these divisors.

We denote the relations on ﬂgyn corresponding to the choice of the primary fields a4, ..., a,, by
QD (a1, ... a,) =0, where D is the degree of the class. In this definition we adjust the coefficient,
namely, from now on we ignore the pre-factor 797! in the definition of the relations, as well as
the factor ( qb 1=D coming from the formula for the R-matrices in terms of the polynomials Q.

Hence, QY n(ﬁ) is proportional to T'(g,n, 5, d, d(D)). We will also often write §2 for its restriction

7 2 )
to various open parts of the moduli space, such as M g n +m

Note that, as we discussed above, there is a condition on the possible degree of the class and the
possible choices of the primary fields implied by the requirement that the degree of the auxiliary
parameter ¢ must be negative.

We use the followmg relations in the rest of the chapter: Qg nam (@1, .oy Gpgm), Where D >

g, m > 0, and Z ™a; = g — 1+ D and all primary fields must be non-negative integers.
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2. Tautological ring via PPZ relations

i. The entire space ive Dyging2 vii. Djpi1nt2Dnt1,n42
An+2 An+2 An+2
(0
Qnt1 G An+1 Gn1
aj --- Qp a --- Ay
ii. Dj,n+2 V. Dj,n+1Dk,n+2 viii. Dj,n+1,n+2Dj,n+2

Apt1 An+2 Ant1
(p4-2
O (0 "
v () ORaC
an+1 aj
1 -

" O~
J a;

ai --- Qp a - Qp a n

[

ili. Dj,p1 vi. Djpt1nt2 ix. Djny1nr2Djnt1
(n4-2 an+2 An+2
O
(o) "
J
a; aj
ai --- Qp ai --- ap ai --- Qy

Figure 2.1. Strata in ./\/l;t[ﬂ_g

We sometimes first multiply these relations by extra monomials of 1)-classes before we apply the
pushforward to M, ,, and/or restriction to My .

2.2.5 Simplified relations Il

In this subsection we discuss the relations that we can obtain from the substitution r = % for the
case of z = 1 in subsection 2.2.2.

Let us first list all the dual graphs representing the strata in M;E:ig, see figure 2.1. Note that
under an extra condition on the primary fields a1, ..., a,42, namely, that 1 <a; <7 —3 —ap41 —
apyo for any 1 < i < n, the coefficients of all these graphs in T'(g,n + 2,r,d, —1), equipped in
an arbitrary way with - and k-classes, are manifestly polynomial in ay,...,a,42,7. Indeed, this
extra inequality guarantees that we can uniquely determine the primary fields on the edges in the
Givental formula for all these nine graphs.

Thus, we have a sequence of tautological relations T(g,n + 2,r,d,—1) in dimension g + 1
defined for a big enough r, and arbitrary non-negative integers a1, ..., a,42 satisfying aq +--- +
Onyo =29g+7r—1land 1 <a; <r—3—app1 — apgo for any 1 < ¢ < n. This gives us enough
evaluations of the polynomial coefficients of the decorated dual graphs in M;t[ﬁﬂ to determine
these polynomials completely. Thus, we can represent the values of these polynomial coefficients at
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2.3. The dimension of R9~1(M, )

an arbitrary point (ay,..., @, 2,7) € C**3 as a linear combination of the Pandharipande-Pixton-
Zvonkine relations. This reprebentatlon is non-unique, since we have too many admissible points
(a1,...,an4o,7) € Z"3 satisfying the conditions above. This non-uniqueness is not important for

the coefficients of the decorated dual graphs in M;EZ]FQ, since we always get the values of their
polynomial coefficients at the prescribed points, but the extension of different linear combinations
of the relations to the full compactification ﬂg}mg can be different. Indeed, the coefficients of the
graphs not listed in figure 2.1 can be non-polynomial in aq, ..., a,+2 (but they are still polynomial
inr).

We can choose one possible extension to the full compactification ﬂg,nw for each point
(@1,...,0n4o,7) € C*3. In particular, we always specialize r = %, Uny1 = 5, Unp2 = —%. The
choice r = % guarantees that we have no non-trivial dilaton leaves, that is, we have no x-classes in
the decorations of our graphs. We also divide the whole relation by the factor (3)91 (-3¢~ 1)1~
as in the previous subsection.

Abusing the notation, we denote these relations by Qg naolat, ... an, %, ,l) These relations
are defined for arbitrary complex numbers ay, ..., a, satisfying Z?zl a; = 2g — 5. Of course, it is
reasonable to use half-integer or integer primary fields aq,...,a, that would be the roots of the

polynomials @, since this gives us a very good control on the possible degrees of the 1)-classes on
the leaves and the edges of the dual graphs.

Let us stress once again that restriction of Q7 n+2(a1, can, 2, —1) to ./\/l;t[,z]r2 is well-defined
and can be obtained by the specialization of the polynomlal coefﬁc1ents of the dual graphs in
figure 2.1 to the point (a1,...,an,ant1 = %,an+2 = —%,r = %) We analyze this polynomial

. . . . . 1
coefficients in the next two sections. In the meanwhile, the extension of Qg;ﬁ (aty...,an, %, —%)

from M;t[:ﬁ to ﬂg,n_;,_g is, in principle, not unique, and we only use that it exists.

2.3 The dimension of RY™1(M,,)

In this section we give a new proof of a result in [2] that dim R9~*(M, ) < n.

2.3.1 Reduction to monomials in 1)-classes

In this subsection we show that any monomial ql)ill e Q/JZ"’fel,...,em of degree g — 1 can be expressed
as a linear combination of monomials of degree g — 1 which have only -classes. We prove this fact

by considering the relations Qg;:rmm (a1,...,Gntm) for some appropriate choices of the primary
fields.

Proposition 2.3.1. Let g > 2 and n > 1. The ring R9"'(M,.,,) is spanned by the monomials
Gl fordy,. .. dy >0, 30 di=g— 1.

Proof. The tautological ring of the open moduli space is generated by - and k-classes. Hence, a
spanning set for the ring B9~ (M, ,,) is

(Ut s e |12 0,di 20,62 1,3 i+ > e; =g — 1}

i=1 j=1
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2. Tautological ring via PPZ relations

Let V. C R9~1(M,,,) be the subspace spanned by the monomials

(ot S d =g -1},
i=1

We want to show that BRI~ (M, ,,)/V = 0. We do this by induction on the number m of indices
of the k-class.

Let us start with the case m = 1. Consider a relation Qg’nﬂ (a1,...,an4+1) for some admissible
choice of the primary fields. In this case we have contributions by the open stratum of smooth
curves and by the divisors Dy,41.¢, £ =1,...,n. The open stratum gives us the following classes:

n+1 n+1

2 ea@ ]l

di+-+dpy1=g i=1
0<d;<a;

The condition d; < a; follows from the fact that Qg(a) = 0 for d > a. The contribution of D,11 ¢
is given by

n
> 11 Qas6. (@i + Sicansn) ] ¢ Diwm*(wf)
ditordn—g—1 =1 #0041
0<di<a;+di¢(ant1—1)

Here 7: M"' g n +1 — M, is the natural projection. The sum of the pushforwards of these classes
to My, is equal to

0= Z HQd 4] Qe+1 Ap41 Hd) Re (21)

di+-~4dp+e=g—11i=1
d;>0,e>1

in R9=1(M,,,)/V. Thus we have equation (2.1) in R9~'(M,,,)/V for each choice of a1, ..., an11
such that "' a; =29 — 1.

If we choose the lexicographic order on the monomials ¢f1 ---pdn g, we can then choose the
values of the a; in such a way that the matrix of relations becomes lower triangular, in the following
manner. For every monomial wfl -9k, we choose the relation with primary fields a; = d; for
1=2,...,n,ap41 = e+ 1, and a1 = d; + g — 1. Equation (2.1) allows to express this monomial
in terms of similar monomials with the strictly larger exponent of 1, so this set of relations does
indeed give a lower-triangular matrix. This matrix is invertible, hence all monomials of the form

G qpdng, are equal to 0 in RI™H(M,,)/V.
Now assume that all the monomials which have a k-class with m — 1 indices or fewer are equal
to 0 in RY"Y(M,,,)/V. Consider a relation Qg;ﬂ:ﬁm(al, veeyp, by, ... by). This relation, after

the push-forward to M, ,,, gives many terms with no x-classes and also with x-classes with < m—1
indices, and also some terms with k-classes with m indices. The latter terms are therefore equal
to 0 in R9=1(M,,,)/V, namely, we have:

m

0= Z (HQd a;)y )(HQ6]+1 )nel, e (2.2)

0<d;<a; 1=1
1<e]<b -1
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2.3. The dimension of R9~1(M, )

for >0 di + Z;":l e; = g — 1. Equation (2.2) is valid for each choice of the primary fields a;, b;
such that 2" a; + 3770 by =29 — 2 +m.

Choosing a monomial 1/)?1 S PSm Key e, s We can choose the primary fields to be a; = d; for
1=2,...,n,b;j =ej+1for j=1,...,m, and a1 = d; + g — 1. Again, this relation expresses our
monomial as a linear combination of similar monomials with strictly higher exponent of ;. By
downward induction on this exponent, all monomials with m r-indices vanish in BRI~ (M, ,,)/V
as well.

Thus R9~'(M,,)/V = 0. In other words, any monomial which has a r-class as a factor can
be expressed as a linear combination of monomials in 1)-classes. O

An immediate consequence of this proposition for n = 1 is the result of Looijenga.

Corollary 2.3.2 ([19]). For all g > 2, RI~' (M 1) = Q.

2.3.2 Reduction to n generators

In this subsection we prove the following proposition.

Proposition 2.3.3. Forn > 2 and g > 2, every monomial of degree g — 1 in ¢ classes and at
most one Kk1-class can be expressed as linear combinations of the following n classes

—1 -2 -2
1/}511 9 iJ 1/127 ey % djna

with rational coefficients.
Together with the previous subsection this gives a new proof of

Theorem 2.3.4 ([2]). Forn >2 and g > 2
dimg R~ (M) < n.

Remark 2.3.5. Note that the possible k;-class is added in proposition 2.3.3 for a technical reason;
it seems to be completely unnecessary in the light of proposition 2.3.1. In fact, when we include 1,
we consider systems of generators approximately twice as large, but this allows us to obtain a much
larger system of tautological relations. We do not know of any argument that would allow us to
obtain the sufficient number of relations if we consider only monomials of -classes as generators.

We reduce the number of generators by pushing forward enough relations via the map
s RO (Mynga) = RO (M),

where 72 is the forgetful morphism for the last two marked points (we abuse notation a little bit
here, restricting the map 7 to Mﬂﬂz — M, ). For n > 2, let us consider the following vector

of primary fields:

d=(a1=29—32—Aas,....an, 8011 = 2, an42=—13), (2.3)
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2. Tautological ring via PPZ relations

where a; € Z>g, 1 = 2,...,n, A =Y ,a; < g —2. We consider the following monomials in

RI=H My p):

n
_9_A )
yi= oA v

=2

Ty = 1/1“17_2_A 1—[1/#1'”“7 =2 ....n.
i=2
Lemma 2.3.6. The tautological relation 7r£2)Qg,+nl+2(&'), where @ is defined in equation (2.3), has
the following form:

y- [1Qui(@)@2(3) (Qg-1-4(29 — § — A) = Qy-1-a(29 — 2 — A)) (2.4)

=2

n n
= wp [ [ Qairasi(ai + 30i0) (Qg-1-4(20 — 5 — A) = Qy1-a(29 — 2 — A))
£=2 =2
= terms divisible by wfflfA.
Proof. In order to prove this lemma we have to analyze all strata in M“E? 1o The list of strata is
given in figure 2.1. Each stratum should be decorated in all possible ways by the R-matrices with
1-classes as described in section 2.2.

There are several useful observations that simplify the computation. The leaf labeled by a;,
1=2,...,n,is equipped by wfile (a;). This implies that d; < a;. Since Q>2(%) = 0 (respectively,
Q>0(—%) = 0), we conclude that the exponent of 1,41 is < 2 (respectively, the exponent of ¥, 2
is equal to 0). Note that we can obtain a monomial with k;-class in the push-forward only if we
have 92 41 in the original decorated graph.

Similar observations are also valid for the exponents of the i-classes at the nodes. Note that
there are no v-classes on the genus 0 components in any strata except for the case of the dual
graph vi, where we must have a ¢-class at one of the four points (three marked points and the node)
of the genus 0 component, otherwise the pushforward is equal to 0. So, for instance, we have 1% at
the genus g branch of the node on the dual graph ii with coefficient —Qg41(a; — %), so in this case
d < a;—1. If we have )? at the genus g branch of the node on the dual graph viii, then the product
of the coefficients that we have on the edges of this graph is equal to Q1 (a; — 3)Qq+1(a; — 1 +2-1),
so in this case d < a; — 1. And so on; one more example of a detailed analysis of the graphs vi-ix
is given in lemma 2.4.3 in the next section.

We see that we have severe restrictions on the possible powers of 1-classes at all points but the
one labeled by 1, where the exponent is bounded from below, also after the pushforward. Then
it is easy to see by the analysis of the graph contributions as above that the exponent of ¥ is
> g—2—A. Let us list all the terms whose pushforwards to M, ,, contain the terms with 1/)?727‘4.

e One of the classes in ./\/lg ni2 corresponding to graph i is wfflfA T, 1/1,;“1/1%“ with coeffi-
cient [T} 5 Qa,(a;)Q2(2)Qg—1-4(2g — 2 — A). Its pushforward contains the monomial y and
the terms divisible by wf*l*"‘.
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2.3. The dimension of R9~1(M, )

e Consider graph ii for j = 1. Let m,42: My 42 — M,.ni1 be the forgetful morphism for the
(n + 2)-nd point. One of the classes corresponding to this graph is

n
T %% i D1 (mn ) ( A
=2

with coefficient (—1) [T}, Qa, (a;)Q2(2) - Qg—1-4(29 — 2 — A). Its pushforward is equal to
the monomial y.

o Let mpy1: ﬂgﬂ”g — MWH be the forgetful morphism for the (n+ 1)-st point. One of the
classes corresponding to graph iii for j = £is [, , ¢gi1/)?_1_ADg,n+1 (M) * () with
coefficient (—1) [, , Qa;(a:)Qa,+2(ar + 3)Qg—1-4(2g — 3 — A). The pushforward of this

class contains the monomial z, and the terms divisible by v A

e Consider graph v for j = £ and £k = 1. One of the classes corresponding to this graph is
i * * —2—A . .
||i¢17£ ¥ Dy a1 (Tra1)*( Z£+1)D1’n+2<7rn+2) (] 2 ) with coefficient

H Qa, (a:)Qayy2(ar + g)Qg_1_A(2g —2—A).

i£1,0

Its pushforward is equal to the monomial x,.

Collecting all these terms together, we obtain the left hand side of equation (2.4). Then it is

easy to verify case by case that all other graphs and all other possible decorations on these four

graphs produce under the push-forward only monomials divisible by 1 —i=A O

Let a; > 0 for j = 2,...,n. Consider a vector of primary fields @) obtained from @ by adding
% to a; and subtracting % from aj;, that is,

=) ._ 1 3 _1
ai) .= (2971714,(12,...,@]‘_17@]' — §,aj+1,...,an,§,f§),

Lemma 2.3.7. The tautological relation ﬂ,&z)QZ;ﬂ_Q((i@) has the following form:
Y- H Qa,(a;i — 36:;)Q2(3) (Qg-1-4(29 =1 = A) = Qg—1-4(29g — 2 — A))
i=2

n n

- sz : H Qai+25“g (ai + %51'2 - %52';') (Qg—kA(Qg -1- A) - nglfA@g - % - A))

=2 i=2

L#j
= terms divisible by 9.
Proof. The proof of this lemma repeats the proof of lemma 2.3.6. It is only important to note
that the terms that could produce the monomial x; contribute trivially since they have a factor of
Qa,+2(a; — 3 + 3) =0 in their coefficients. O
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2. Tautological ring via PPZ relations

Remark 2.3.8. Note that we have the condition a; > 0. Indeed, if a; = 0 we can still try to use a/)
as a possible vector of primary fields. But in this case it can contain monomials with lower powers
of 11, and hence those relations cannot be used for our induction argument in increasing powers
of 1. To see this, consider graph ii. The coefficient that we have in this case for the degree d of
the 1)-class on the genus g branch of the node is equal to Qd+1(_% — %) Since —1 is not a zero

of any polynomial ()>¢, the degree d can be arbitrarily high, and therefore there is no restriction
from below on the degree of ;.

Let us distinguish now between zero and non-zero primary fields. Up to relabeling the marked
points, we can assume that

ay=a3=---=as=0, and a;>1, i=s+1,...,n

Note that, by the definition of the Q-polynomials, the coefficient of y is not zero in all relations
in lemmata 2.3.6 and 2.3.7. Dividing these relations by the coefficient of y, we obtain the n — s
linearly independent relations:

~—

2
Rel, - Z Qal+2 a; + 3/

= terms divisible by ¢ 174
ap al QQ 3/2 Y w

\/\-/

Z Qal+2 a; +3/2

s . R g—1—A
(@) 02032 (1 —6;,)x; = terms divisible by v{ ,

~—

for j = s+ 1,...,n. Rescaling the generators by rational non-zero coefficients

N Qal+2(al —|—3/2)

T = — T, =2,....n
Qa, (a1)Q2(3/2)
we can represent the relations in the following matrix:

Y j2 j}s -is-i-l -is+2 i‘s+3 tee -in

Rely 1 1 1 1 1 1 1

Relsg41 |1 1 1 0 1 1 1

M= Relgo |1 1 1 1 0 1 1

Relg43 | 1 1 1 1 1 0 1

Rel, 11 - 1 1 1 1 e 0

Let us take linear combinations of the above relations: R~elj = Relp — Rel; for j =s+1,...
and Rely := Rely — Zj ot 1 Relj. We obtain:

Yy -%2 i's j5+1 :z‘erQ i'erS ~n
Rel, 1 1 1 0 0 0 0
Rel,1 |0 0 0 1 0 0 0
Relyyo [0 0 0 0 1 0 0
Relyt5 |0 0 0 0 0 1 0
Rel, [0 0 -~ 0 0 0 0o - 1
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2.3. The dimension of R9~1(M, )

The relation Rel; expresses the monomial 1)J —2A | 9% as a linear combination of the
generators with higher powers of ;. The relation Rely expresses the monomial 9] A | BT

as linear combination of the monomials ¢¢ >~ [Ty %5 for j =2,...,s and generators with
higher powers of 11. In case no primary field a; is equal to zero (i. e. s = 1), any of the monomials
Y, xa, ..., Ty can be expressed in terms of the generators with strictly bigger power of ).

Reduction algorithm

Consider a monomial 1] “le d’%/)g? ... Let dys be the maximal element in the list of the d;’s
with the lowest index. If djs > 2, compute the relations Rel; for the following vector of primary
fields

(29— 32 =30 dido, ... day—1,dy — Ldagg, .o dny dpgr = 3, dpa = —3) .

Since dp; — 1 > 1, we can use the relation Rely; to express the monomial z/Jf_l_Z di, 1/)32 coqpdn
as a linear combination of monomials with higher powers of ;.

We are left to treat the vectors d with d;=0o0r1,i=2,...,n. They correspond to the vertices
of a unitary (n — 1)-hypercube with non-negative coordinates. Let s be the number of d;’s equal
to zero, so the remaining (n — 1 — s) d;’s are equal to one, s = 0,...,n — 1. Let us distinguish
between the different cases in s.

s =mn —1: In this case we have z/zf_l, a generator.
s =n — 2 : In this case we have the remaining n — 1 generators 1/1{_2% fori=2,...,n.

1 <s<n-—3: This case can be treated as the case s = 0 for some smaller n discussed below.
Let us argue by induction on n. For n < 3, the case 1 < s < n — 3 does not appear. Let
us assume n > 4. We have at least one zero, so let us assume that d; = 0. Let 7rj(-1) be
the morphism that forgets the j-th marked point. If the monomial ¢¢~""*ydz . z/;j copdn
is expressed as linear combination of generators in R9~'(M, ,,—1) (the space where the

point with the label j is forgotten), then the pull-back of this relation via T expresses

J

gmnESyde | 4hi .. i as alinear combination of the pull-backs of the the n—1 generators of
RI"H (Myn1), ¥ " and 9%y, i # 1, 4. To conclude we observe that (7r§1))* 9=l — ot
and (W§1))*l/}i]721/)1- = z/;f’Qwi, i # 1,7 on the open moduli spaces. Note that the same
reasoning does not work in the case s = n — 2 since the argument for s = 0 below uses the
assumption n > 3.

The case s =0

For n > 3, we show that the monomial ¢{ ™" [T/, ¢} can be expressed in terms of the generators
9= 972, i = 2,...,n, concluding this way the proof of proposition 2.3.3.
Let now v} be the vector of primary fields

o n+2+k 1 1 3 1
Vg = <a1:29_7717"'717§a"'57an+1:§7Gn+2:_§)-
k 1—k
n—1—
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2. Tautological ring via PPZ relations

Similarly as before, let

n
 .g—n—1 1
Y= Hwi k1
=2

B o o e =2

Consider the monomials

n n
e and T[]0l %k, £=2,..m,
=2

=2

The relations we used in the cases s > 1 imply that the difference of any two of these monomials
is equal to a linear combination of the generators wi]_l i]_Qz/Ji, i=2,...,n. Let ¢y (respectively,
¢1, ¢2) be the sum of the coefficients of these monomials in the push-forwards of the relations
Qz,tiﬂ(ﬁo) (respectively, Qg;ﬂrz(ﬁl), 95212(172) ), and let & be the normalized coefficients that
we get when we divide the relations by the coefficient of y.

Now we can expand, in this special case, the system of linear relations collected in the matrix
M above. We have a new linear variable, z defined as ¢ " [[/_y v = ¢¢ "1y k1,
{ =2,...,n, and an extra linear relation Rel, corresponding to the vector of primary fields ¥/s.
Since in this special case in these relations all the terms with the exponent of ¢; equal to g—1— A,
A = n — 1, are now identified with each other and collected in the variable z, these relations
express z, Y, Ta,. .., I, in terms of the monomials proportional to 1/)5177‘4. The matrix of this system
of relations reads:

< Yy j2 i‘?’ i‘4 ~’n
Relo éo 1 1 1 1 1
Relg 61 1 0 1 1 1
Rel3 61 1 1 0 1 1
Re14 61 1 1 1 0 1
Rel, | ¢ 1 1 1 1 ... 0
Rel. | é2 1 0 0 1 ... 1

This matrix is non-degenerate if and only if éo — 2¢; 4+ é9 # 0. We prove this non-degeneracy
in proposition 2.4.1 in the next section. This completes the proof of proposition 2.3.3 and, as a
corollary, theorem 2.3.4.

2.4 Non-degeneracy of the matrix

In this section we compute the sum of the coefficients of the monomials

n n
f_nH%‘ and ¢{™" (Hz/)il_5”> ki, £=2,...,n,
1=2

=2
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2.4. Non-degeneracy of the matrix

for the three particular sequences of the primary fields. Let us recall the notation. We denote
these sums of coefficients by

1 1

co for the primary fields g—l—n,i,...,i;
for the pri field 5 1 1 L
c1 for the primary fields g—5-n1,5,...,5;

1 1
co for the primary fields ¢g—2—n,1,1, UL

We denote the sequence of the primary fields by a1, ..., a,. The primary fields at the two points
that we forget are as usual a1 = % and apyo = —%. For each ¢;, i =0, 1,2, we denote by ¢; the
normalized coefficient, namely,

& =i (Qger-n(ar) = Qgir—nlar — 2Ty @u(a)Q2(2) ™", i=0,1,2,

where the sequence of primary field is exactly the one used for the definition of the corresponding
¢, 1=0,1,2.
The goal is to prove the following non-degeneracy statement:

Proposition 2.4.1. For any g and n satisfying 3 < n < g — 1 we have ¢y — 2¢1 + ¢ # 0.
We prove this proposition below, in subsection 2.4.3, after we compute the coefficients ¢y, ¢,
and co explicitly.
2.4.1 A general formula
First, we prove a general formula for any set of primary fields as,...,a, € {%, 1}.

n

Lemma 2.4.2. Let all a;, i = 2,...,n be either % or 1. We have a; = 2g — % —Yia;. A

general formula for the sum of the coefficients of the classes Y{™" 1\, ¢; and ¥{ " T1\_, %1751-,%1’
t=2,...,n, in the pushforward to My, is given by

[T@i(a) - | (29 =2+ n)Q2 (3) Qg-n(ar) (25)
=2

+(20 =2+n)Q1 (3) (Qgr1-n(a1) = Qg1-nlar — 3))
+ Qgy2-n(a1) — Qgya—n(ar — 3)

+ Qgi2-n(a1+1) = Qgro—n(ar + 3)

+(Q1(3) —1(1) Qgr1-n(a1)

" (Q2(3) (Qi(ar) = Qilar — 3))) Qg-1(ar)
" Z Q1 (ay)

£=2
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2. Tautological ring via PPZ relations

Q1(ae)

(Q2(3) Qolar) — Qa(ar+ 3)) (Qgi1-nla1) — Qgr1-nlar — 3))
N Z Q1(ar)

N z": (@s(ae +1) — Qs(ar + 3)) Qg—n(a1)
(=2

Proof. The proof is based on the analysis of all possible strata in ﬂgvnm equipped with all
possible monomials of -classes that can potentially contribute non-trivially to 7" H?:z 1; and
T s wiké”/ﬁ, ¢ =1,...,n, under the pushforward. Note that we do not have to consider
k-classes on the strata in ﬂgm_,rg since the choice r = % guarantees that there are no terms with
k-classes in the Pandharipande-Pixton-Zvonkine relations.
Recall that we denote by Dy, I C {1,...,n + 2}, the divisor in mg,n+2 whose generic point
is represented by a two-component curve, with components of genus g and 0 connected through a
node, such that all points with labels in I lie on the component of genus 0, and all other points lie
on the component of genus g. In this case we denote by ¥y the 1-class corresponding to the node
on the genus 0 component.
We denote by 7': mg,n—i—Z — mg,nﬂ the map forgetting the marked point labeled by n + 2,

by 7 ngnﬂ — Mg, the map forgetting the marked point labeled by n + 1, and by 7 their
+1 ,d;

o Ui =

compute 7, we always first apply 7., we typically mention below the degree of which 1-class is

reduced. The same we do also for 77/ in the relevant cases.

Let us now go through the full list of possible non-trivial contributions.

L. 1 ,d;i—5; . .
composition 7 = 7" o 7', Note that 7, (][] 2 ;>0 T12 s ~%, so, since in order to

e The pushforward of the class { " [[;"_, ¥} 2 | contains ™" [\, 1} with coefficient (29—
24+ n) 1, Q1(ai)Qg—n(an)Q2(2). This explains the first line of equation (2.5). It also
contains the terms ¢{ " []\, Yl %k, £ =2, ... n, with coefficient [T, Q1(ai)Qg—n(ar) -
Q2(3)-

e The pushforward of the class ¢¢ ™" [/, 1! % Dy nyot02. also gives the term 4§ " ]2,

Yl %k, with coefficient — [T, Qi(a; — 5§£)Qg_n(a1)Q2(%). The sum over ¢ of this and
the previous coefficient is equal to the sixth line of equation (2.5).

e The pushforward of the class ¢ " H;Hr; , where at the first step the map 7/, decreases
the degree of 91, gives ¥{ " [[;_, v} with coeﬁiment (29 —24+n) 11—y Q1(a:))Qgs1-n(ar) -
Q1 (3):

e The push-forward of the class (7')*(¢{™") H"H ¢1D1 nte gives i " T, ¥} with coeffi-

cient —(2g — 2+ n) [[1_5 Q1(a;)Qgt1-n(a1 — 2)Q1(2). The sum of this and the previous
coefficient is equal to the second line of equation (2.5).

e The pushforward of the class 1/19”7" [T, ¥}, where both 7, and 7/ decrease the degree of
Y1, gives ¥ " [, ¥} with coefficient []\, Q1(a;)Qgt+2-n(a1)-

e The pushforward of the class (7/)* (¢ ~™) [/, 1} D1 n+a, where the map 77/ decreases the
degree of 1y, gives v{ " [\, ¥} with coefficient — [T, Q1(a;)Qg+2-n(a1 — 3). The sum
of this and the previous coefﬁment is equal to the third line of Equation (2.5).
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2.4. Non-degeneracy of the matrix

e The pushforward of the class (7”)*(¢t" ™) [/, ¥} D1 ny1, where at the first step the
map 7, decreases the degree of (7”)*11, gives ¢{ " [[\_, ¢} with coefficient — []}_, Q1(a;)
Qg+2-nlar + %)

e Consider the following seven cases together: 7 (¢{ ") [T, ¥} D1 nt1,n+2- (Yo + 11+ Vnt1 +

wn+2) and ’R’* (”(/)i]in) H?:Q wilDl,nJrl,'rH»Q (D17n+1 —+ D17n+2 —+ Dn+1,n+2)~ By Lemma 243 be—
low, the total sum of their pushforwards is equal to ¢ " [T\, ¥; with coefficient [}, @1 (a;)-
Qg+2-n(a1 — 3 + 2). The sum of this and the previous coefficient is equal to the fourth line
in Equation (2.5).

e The pushforward of the class ¢{ " []\, L% Dy iy () *9b}, where at the first step the map
7/ decreases the degree of (7”)*1y, gives 1] " ]/, ¥} with coefficient — []/_, Q1126,, (a; +
?’(STM)ngn (al ) .

e Consider the following seven cases together: ¢{ " []i_, %1_5” Dyttt ) - (o + e +

wnJrl + wn+2) and w%in H?:Q wiliéil-DZ,nle,nJrZ . (Dl,nJrl + Dl,n+2 + Dn+1,n+2) . W*wé By
lemma 2.4.3 below, the total sum of their pushforwards is equal to ¢{ " []', v; with co-
efficient [}, Q1+2s,,(a; + 0;¢)Qg—n(a1). Note that this coefficient is always equal to zero,
since Q3(2) = Q3(2) = 0, but we included this term here and in equation (2.5) in any case in
order to make the whole formula more transparent and homogeneous. The sum of this and
the previous coefficient is equal to the seventh line in equation (2.5).

e The pushforward of the class 1/1?“7" H?;; iyl 41, Where, first, the map 7/, decreases the
degree of 1,11, so it becomes zero, and then the map 77 decreases the degree of 11, giving

7T, ¥f with coefficient [T}, Ql(ai)QgH,n(al)Ql(%).

e The pushforward of the class ¢J™'~" H?;Ql ¥ Dypy1 nv2, where the map 7/ decreases the

degree of 11, yielding ¢{ " []\"_, ¥} with coefficient — [T}, Q1(a;)- Qg+1_n(a1)Q1(% -3)
The sum over £ of this and the previous coefficient is equal to the fifth line of Equation (2.5).

e The push-forward of the class ¢¢T' " [T/ ¢l =042 41, where at the first step the map 7/,
and decreases the degree of ¢, gives ] " H;:zl 1/)1-1_5“/41 with the coefficient [, Q1-s,, (a;)-
Qg+1fn(a1)Q2(%)'

e The pushforward of the class (x')* ({ ") [T/Z; ¢ " D1 niat?,; gives the term ¢ " [},
1/)1-175“/11 with coefficient — [T, Q1-s,, (@) Qg+1-n(a1 — %)QQ(%)

e The pushforward of the class "' " H?:_Ql Y% Dy i () ¥4h), where at the first step the
map 7, decreases the degree of vy, gives { " []'"_, ¥} with coefficient — [T\, Q1_s,,(a;) -
Qg1-n(a1)Qa(ar + 3).

e The pushforward of the class (7/)* (49" ™) [1/2y ©r Dy 1 (") bt Dy iy gives 9" -
[T, ¥} with the coefficient [T\, Q1-s,,(a;)Qg+1-n(a1 — 3)Q2(ar + 2). The sum over ¢
of this and the previous three coefficients is equal to the eighth line in Equation (2.5).

Thus we have explained how we obtain all terms in Equation (2.5). Note that since Q>1(—3) =
0, we can never have a non-trivial degree of 1,42 in our formulae. For the same reason, the
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2. Tautological ring via PPZ relations

degree of s, ..., 1, is bounded from above by 1 and the degree of 1,1 is bounded from above
by 2. With this type of reasoning it is easy to see by direct inspection that all other classes
of degree g + 1 do not contain any of the monomials 7 " H?;zl ¥; and " H;:; 1/)1»1_6'“5 K1,
¢ = 2,...,n, with non-trivial coefficients in their push-forwards to M, ,. For instance, for an
arbitrary ag the class (7/)*(¥¢™™) [1ry ¥} Dy, n+2( "Y*b} D1 nt1 gives as result 77[197" [T, v}
with the coefficient [];, Q1—s,,(a;)Qg+1-n(a1 + )Qg(ag — —) But since ay is either % 5 or 1 and
Q2(0) = Qg( ) = 0, this coefficient is equal to zero. O

Lemma 2.4.3. Let the points 1, n+ 1, and n+ 2 have arbitrary primary fields o, 8, and ~v. Then
the pushforward of the part of the class given by

H Pl [D1,n+1,n+27*¢§h (Yo + Y1 + Vng1 + Yug2)
i=2

d
+D1 nt1,m42(D1n+1 + D12 + Do o) 91|

is equal to [[I, w3 with the coefficient []}y Qa, (a:)Qay+2(a + 5 +7).

Proof. Indeed, the Givental formula for the deformed r-spin class (for a general r) in this case
implies that these seven summands have the following coefficients, up to a common factor:

Yo (Rylo)ali (Rdlﬂ)zigg TR IO
vrs = (Rl eI T RIDET
Unri: = (Rg)el i T ARG
Unat — (Rgh ST (R
Dinpr:  (Rgl)elfod ?@hels
Dinsa: (Rl als i (el
Duprnsz: Ryl )ats =t (R 5

(In addition to a common factor on the right hand side we also omit the common factor 7*({*) -
17y ¥ D1 py1.ns2 on the left hand side of this table).

The first term above, (R;yllw)z;rgijfdld, after the substitution r = 1 gives us the factor
Qay+2(a+ B+7), and times the common factor of []"_, Qq4, (a;) it is exactly the results we state in
the lemma. We have to show that the other seven terms sum up to zero. Indeed, the other seven

terms, after substitution r = 2, are proportional to

Qi(—3 —a—B—7)+Q1(a) + Q1(B) + Q1(7)
= Qi(a+B) = Qila+v) —Qi(y+B)

Note that Ql(—% —z) = Q1(x), so the expression above is proportional to

(3+a+B+y(a+B+)+(5+a)a)+(5+8)B)+ (5 +1()
—(zta+p)a+B)—(z+a+y)(a+y)—(3+B+7)(B+7)=0.
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2.4. Non-degeneracy of the matrix

2.4.2 Special cases of the general formula

In this section we use lemma 2.4.2 in order to derive the formulae for cy, ¢, and co. Since all
our expressions are homogeneous (the sum of the indices of the polynomials @ is always equal to
g+ 1), we can drop the factor (— )m/2m in the definition of @Q,,, m > 0.

We can substitute the values Ql( ) =3, Q1(1) = %, Ql(%) = %, Q1(0) =0, Qg(g) = %5,

Q2(2) = L2, Q2(2) = 2, Q3(3) = L2, Q3(2) = 0 in equation (2.5). This gives use the following
coeﬂicients of Qg—nla1), Qg+1 n(a1), and Qgy1-n(ar — 3):
in ¢ : (%‘1 — 243 Qy_n(a1) + (694 3 —3n) Qgi1-n(ar) (2.6)
+ (=69 + 04 3n) Qgy1-1(an — 3)
inej: 379 — 1 —”) Qg—n(ar) + (Gg + % — 3n) Qg+1-n(ar)
+ (= 69 +1+3n) Qgt1-n(ar — 3)
e (-4 + %) Qonlar) + (69 — 5 —3n) Qgr1-n(ar)

+ (=69 +2+3n) Qgr1-n(a1 — 3)

Note that the primary field a; has a different value in these three cases.
Furthermore, we are going to use that

ar)(ar—32)(a1—g—14n
Qgio-n(01) = Qgro nlar — 3) = Lz pinl g in) (27)
—(a1+3)(a1+1)---(a1—g+Lin
Qg+2fn(a1 + 1) - Qg+2fn(a1 + %) = ( 1+2)( (1;;1)775)!1 gtat ) (2'8)

Let us combine these terms with the terms with ()g11—, computed above. In the case of cg
the primary field a; is equal to 29 — 1 — &. Then the sum of (2.6), (2.7), and (2.8) is equal to the
following expression:

2g—1—2).i(g—2+2
BT (201 - D@29 - § - )
—(4g+1-3)Qgs1-n(29 =5 = 5) + (49 +1 = F)Qyr1-n(29 — 1 - §)
n 2 +,,, 1l,n
+ (29 + % - §)Q9+17n(2.g -1- _) < (g+)1 (T‘Lq)l 2t3)
_(2g N 2)(2g—%—7)~~({]—%+ 5) + (4g +1— )(2‘7 1-3)-(9—-14+%)

(g—n)! (g n)!
(2g-5-%)-(9—3+%)
(29+—* ) (g—n)! 2
2g—1—2)...(g—142 ny (2g—3—12)... lin
:(39+§—3n)(9 (29)777,()? 2)—(2g+%—5)(9 3 (g)n()g 5+%)

We can perform the same computation also for ¢; and c¢o. Recall also in all three cases the term
with Q4—, and the overall coefficients H?:_ll Q1(a;) in equation (2.5). We obtain the following
expressions:
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2. Tautological ring via PPZ relations

Corollary 2.4.4. We have:

ny (29— 3 —2)... 1+ 5 29—1—2)..(g—1+2
_(2g+l_§)(g 2 (g n()? 2 ) (394—5—3’/1)(9 (Qg)_n()-? 2)}

e = QuE) Qi) [(F - 4 ) Bt

(29+0 )(29 17(”5;)_-;()?*1+%) +(3g+ 5 _3n)( g—3-12). ~~()g g+7z)j|

n— 2g—3 %) (g—1+%
e = QuH)" Qi (1) (Y - 3 + Gt lhd)
3

_3_ny.. _34n _9_n)...(g—24 1
~(2g— 4~ ) EAE g g4 § gy Bttt

2.4.3 Proof of non-degeneracy

In this subsection we prove proposition 2.4.1. First, observe that the difference of Qg11-,(a1) and

Z1y(ay—
Qg+1-n(a1 — 3) is equal to (a1)(ar (zlng?l 9t We substitute a; = 29 —1+ % for ¢ (respectively,

2g — g + 5 for ¢; and 2g — 24 % for ¢3) and combine the result of corollary 2.4.4 and equation 2.4
in order to obtain the following formulae:

32 39 9 3n (29-3-%) 1 ny(29—-5-%

480 = ( 2 4 2 )(97%4»% )2(g 21+n) (29 2 2) (g— 12-‘,- ) (3‘9 3”)
34 3 15 3n (29—-1-7%) (29—-1-7%) 5
ch_(gff+7)m (29+0f_)ﬁ+(3g+§,3n)
3 3 21 3 (2g-3-% 1 (2g-5-%) 5

102 = (7g -1t Tn ( _§+g)2(g_22+g) — (29 - 2 %) (9722+L2L2) + (39 + 2 3n)

By an explicit computation, we obtain that

3(a S(g,m)
10 =264 8) = G T - T D2 D)
h
where 11 9, 9 1., 3, 1.,
S(g7n):—g+§n—zg +§gn—§g —i—Zg n=n

We want to prove that this polynomial is never equal to zero in the integer points (g, n) satisfying
3 <n <g-—1. We can make a change of variable n = b+ 3, g = a + b+ 4, then we want to prove
that S(a + b+ 4,b + 3) never vanishes for any integer a,b > 0. This is indeed the case since all
non-zero coefficients of the polynomial

201 173 21 39 1 3
S(a+b+4,b—|—3) —?—?a—?b 62—§ ab — = b2—§a3—1a2b

are negative including the constant term. This completes the proof of proposition 2.4.1.

2.5 Vanishing of R=9(M,,)

In this section we will give a new proof of the following theorem.
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2.5. Vanishing of RZ9(M, ,,)

Theorem 2.5.1 ([19, 15]). The tautological ring of M, ,, vanishes in degrees g and higher, that
is RZ9(M,.,) = 0.

This theorem and theorem 2.3.4 together consistute the generalized socle conjecture, as the
bound dim RY~*(M, ) > n can be proved relatively simply, see e.g. [2]. This conjecture is a
generalization of one of Faber’s three conjectures on the tautological ring of My, see [8] for the
original conjectures and [2] for the generalization.

The proof consists of three steps: in steps one and two, we show that the pure - and k-classes
vanish, respectively, and in step three we reduce the mixed monomials to the pure cases. The first
two steps will be proved in separate lemmata.

Lemma 2.5.2. Let ¢ > 0 and n > 1. Any monomial in 1-classes of degree at least max(g, 1)
vanishes on Mg .

Remark 2.5.3. This lemma was originally conjectured by Getzler in [10].

Proof. For g = 0, this is well-known, see e.g. [31, proposition 2.13]. So let us assume g > 1.

We will prove that any monomial in i-classes of degree g vanishes. This clearly implies that
any monomial of higher degree vanishes as well.

For this, look again at 9, but now on M, ,,. When restricted to the open part M, ,, the
only contributing graph is the one with one vertex of genus g, as the other graphs correspond to
boundary divisors by definition. Hence, the equation for the CohFT reduces to

_ {—511?_1 (om0 Qm(a)v?™) i X ai =29~ 1
Myg.n

Qf (a, ... an)

0 else.

We will prove vanishing of all monomials using downward induction on the exponent d; of v,
starting with the case of d;y = g+ 1. This case trivially gives a zero, as this power cannot occur in
a monomial of total degree g.
Now, assuming all monomials with exponent of 11 larger than d; vanish, consider the monomial
‘111 ---qpdn for any d; summing up to g. For the relation, choose a; = d; for all i # 1, and
ap =2g9g—1-— Z?:Q a;. This means Q,,,(a;) = 0 unless m; < d; or i = 1, so the only monomials
with non-zero coeflicients have exponent of ¢; at most d; for i # 1. Because the total degree is
fixed, the only surviving monomial with exponent of i, equal to d; is the one we started with,
and this relation expresses it in monomials with strictly larger exponent of 1. By the induction
hypothesis, this monomial must be zero. O

Remark 2.5.4. Note that this argument breaks down for degrees lower than ¢, as the class does
not vanish there. Therefore, to get relations in those degrees, one must push forward relations in
higher degrees along forgetful maps on the compactified moduli space, which contain non-trivial
contributions from boundary strata.

Lemma 2.5.5. Any multi-index k-class of degree at least g vanishes on Mg .

Proof. Fix a degree d > g, and consider the pure (multi-index) x-classes in this degree. Without
loss of generality, we can assume the amount of indices to be equal to d: this is certainly an upper
bound, and adding and extra zero index only multiplies the class by a non-zero factor, using the
dilaton equation on the definition of multi-index k-classes.
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2. Tautological ring via PPZ relations

We will consider Qg’n 4q- In order to get a relation in R¥(M,.»), we should multiply by a class
o of degree 2d — g, push forward to M, ,, and then restrict to M, ,. As we can now assume

d > g, we have 2d — g > d, and we can therefore choose ¢ = H?Zl 1/’2{;;1» with each f; > 0. By
choosing such a o, we ensure that after pushforward and restriction to the open moduli space,
none of the contributions from boundary divisors on mg,ner survive, and only the term with one
vertex contributes.

We will use downward induction on the first index of the x-class. The base case is a first index
larger than d, and hence another index being negative, giving a trivial zero.

Now, assume all k-classes with first index larger than e; are zero. Fix a class k., .. ., of degree
d= ijl ej, choose a set of non-negative integers {a;, f; | 2 < j < d} such that a; + f; = e;, and

set ap =29 — 1 — Z;lzz aj and f; = 0. We will consider

(a an+d(0 ,O,al,...,ad))‘

Mg.n
— f+1
S0 CERY | OTIIEH]
j=1 j=1m;>0 g,n
1 d
- _5 Z (HQmJ (aj)>,ifl+m1w~sfd+md7
m; >0 j=1

1<j<d

which vanishes. By our choice of a;, for the product of @-polynomials to be non-zero, we need
m; < a; for j # 1. Furthermore, by our choice of f;, this shows that f; +m; < e; for j # 1.
Because we look at a fixed degree d, this means f; +m; > ey, with equality only occuring for
m; = f;, j # 1, and hence for the s-class we started with. Hence this relation expresses our
chosen class ke, ... ¢, in terms of k-classes with strictly higher first index, which we already know
vanish. 0

Remark 2.5.6. Note that we cannot use the vanishing of the i)-monomials in higher degrees and
push these relations forward, as the k-classes are defined by pushing forward w-classes on the
compactified moduli space and then restricting to the open part, and not the other way around.

We are now ready to prove the theorem.

Proof of theorem 2.5.1. For general monomial v-k-classes, i.e. classes of the form p = 1/)?1 R
Key,....ens We will use induction on the total degree d = Y"1 | d; + Z?Zl ej. If all d; are zero, we
are in the case of lemma 2.5.5, so we can assume at least one of them is non-zero, i.e. u=1v -1,
for some 1.

In degree d = g, we get that the degree of v is ¢ — 1. By proposition 2.3.1, we know that v is
a polynomial in 1-classes. Therefore, so is = v - ¢;. By lemma 2.5.2, we know p vanishes.

For the induction step, we know by induction that v is zero, hence u is too. This finishes the
proof of theorem 2.5.1. O

Because the proof of this theorem only uses the case x = 0 from subsection 2.2.2, see also
subsection 2.2.4, and only fixed non-negative integer primary fields, all the relations are actually
explicit on all of M, ,,. Hence, we get the following
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2.6. Dimensional bound for R<9=%(M, ,,)

Proposition 2.5.7. The Pandharipande-Pizton-Zvonkine relations for r = é giwe an algorithm
for computing explicit tautological boundary formulae in the Chow ring for any tautological class
on /\/l .n of codimension at least g. In particular, the intersection numbers of 1-classes on /\/lg n
can be computed with these relations for any g > 0 and n > 1 such that 2g — 2 4+ n > 0.

Remark 2.5.8. The first part of the statement is very similar to [3, Theorem 5], which gave a
reduction algorithm based on Pixton’s double ramification cycle. It confirms an expectation on
[1, Page 7], that “(...)Pixton’s relations are expected to uniquely determine the descendent theory,
but the implication is not yet proven.”

Note that the intersection numbers in - and k-classes can be expressed as intersection numbers
of only 1)-classes by pulling back along forgetful maps, see [31, Corollary 3.23]. By the proposition,
all these intersection numbers can then be computed using the PPZ relations.

Proof. The first sentence follows by the comment above the proposition. For the second sentence,
we will reduce polynomials in 1)-classes to smaller and smaller boundary strata using our explicit
relation. This will be done in the form of an induction on dimmg,n = 39 — 3 + n, the zero-
dimensional case ﬂo 3 being obvious.

For any g1 +g> = g and Ul = {1,...,n} such that 2g;+|I;| =1 > 0, write p7'7> 1 Mg, 1,41 %

M, 11,141 = My .n for the attaching map, and D7"’{> for the divisor (p7'7?).(1). Similarly, write

o Mg_iny2 — ./\/lg’n for the glueing map, and 5m for 04(1). Then these divisors together form
the entire boundary of My ,,, and p*(1;) = v; and o*(¢;) = 1; for any choice of indices.

Now let g and n be such that 3g —3+n > 0, and choose a polynomial p(¢)) € R3973T"(M, ).
Using stability, 3¢ —3 +n > g — 1, so by lemma 2.5.2, this class is zero on M, ,,. Since the proof
only uses relations without k-classes, it can be given explicitly as a sum of the boundary divisors
given above multiplied with other ¥-polynomials. By the projection formula,

[ Tletopmenten® = [ (Tleewta- [ (TTet)oti

Mg.n =1 g1l 1+1 el Mo 12141 iel,
md" d’ d’
/ H w 51rr 1/J ) - /7 ( H ¢ ) n+11/}n+27
Mg ng=1 Mg 1,n+2 5=1

where 1)’ and 1" are the classes on the half-edges of the unique edge in the dual graphs of the
divisors.

All spaces on the right-hand side have a strictly lower dimension, so by induction we can
compute those numbers via the PPZ relations. O

According to [3, Subsection 3.5], proposition 2.5.7 implies the following theorem.

Corollary 2.5.9 (Theorem * [14], improved in [7]). Any codimension d tautological class can
be expressed in terms of tautological classes supported on curves with at least d — g + 1 rational
components.

2.6 Dimensional bound for R<972(M,,)

Similarly to [24, theorem 6], our method also gives a bound for the dimension of the lower degree
tautological classes. For the statement of this proposition, recall that p(n) denotes the number of
partitions of n, and p(n, k) denotes the number of partitions of n of length at most k.
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2. Tautological ring via PPZ relations

Proposition 2.6.1.

d
~1
dim R*(My.,) < (”“L: )p(d— k.g—1-d)
k=0

Remark 2.6.2. If we use the natural interpretation of (kgl) as 0y,0, this does indeed recover [24,
theorem 6] in the case n = 0.

Proof. We will exhibit an explicit spanning set of this cardinality, consisting of 1-k-classes: mono-
mials in ¢-classes multiplied with a multi-index k-class.

First, a less strict first bound can be obtained as follows: any -k-class has a definite degree
in ¢’s, say k. There are ("‘H;_I) different monomials of degree k in n variables, and furthermore
there are as many different multi-index x-classes of degree d — k as there are partitions of d — k,
so p(d — k). This gives the first bound

d
aim My < 30 ("7 ota-
k=0

which is already close to the statement of the proposition.

To get the actual bound, we will show that any 1-k-class with at least g — d x-indices can be
expressed in Y-k-classes with strictly fewer x-indices. Following the logic of the previous paragraph,
this proves the bound.

This reduction step is analogous to the proof of lemma 2.5.5. Suppose we have a class p =

B ypdng, . with m > g —d. Choose non-negative integers {f;,a;}*™ such that the
following hold:

J1=0;
n+m
Y fi=d—g+m;
i=1
a; + fi = d;, for 2 <i<n;
Onyj + foyj =€ +1, for 1 <j<m;

m
a1:29—1—2aj.
j=2

Let o = [[15)" @i, and consider the class

WT(J~ngn+m(a1,...,an+m))‘ .
Myg.n

By the second condition on our chosen numbers, which fixes the degree of o, this expression gives
a relation in R (M, ).

There are no 1-k-classes with more than m x-indices in this relation, and the coefficient of any -
k-class with exactly m indices can only come from the open part of /VWHW as each forgotten point
must carry at least two 1-classes, which would give too high degrees on any rational component.
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2.6. Dimensional bound for R<9=%(M, ,,)

Therefore, the coefficient of ¢7* - ¢pbrry, g, must be [[[; Qp— . (ai) - [12) Qg foys+1(an+j)-
This is only non-zero if p; < f; +a; = d; for all i # 1 and ¢; < foyj +an+j—1 = ¢; for all
j. This implies that p; > d;, with equality only if p; = d; and ¢; = e; for all 4,j. Hence, this
relation expresses the class p as a linear combination of -k-classes with less than m x-indices and
1p-k-classes with strictly higher exponent of ¥;. By induction on first the exponent of 1); and then
the number of x-indices, all these classes can be reduced. O

Remark 2.6.3. This argument breaks down for m < g — d, as the class ¢ would have to have a
negative degree: our class only vanishes in degree at least g, and to get at most m-index r-classes,
we can only push forward m times, so the lowest degree relation would be in R9™™.

The condition that partitions have length at most g — 1 — d seems dual to Graber and Vakil’s
Theorem x, corollary 2.5.9, see [14, theorem 1.1].
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Chiodo formulas for the r-th roots and topological
recursion

In this chapter we analyze Chiodo’s formulas for the Chern classes related to the r-th roots of the
suitably twisted integer powers of the canonical class on the moduli space of curves. The inter-
section numbers of these classes with -classes are reproduced via the Chekhov-Eynard-Orantin
topological recursion.

As an application, we prove that the Johnson-Pandharipande-Tseng formula for the orbifold
Hurwitz numbers is equivalent to the topological recursion for the orbifold Hurwitz numbers. In
particular, this gives a new proof of the topological recursion for the orbifold Hurwitz numbers.

3.1 Introduction

3.1.1 Topological recursion

The topological recursion in the sense of Chekhov, Eynard, and Orantin (see, e.g., [17]) takes as
an input a spectral curve (¥, z,y, B), i.e., the data of a Riemann surface ¥, two functions « and
y on X with some compatibility condition, and the choice of a bi-differential B on the surface
(which is canonical in the case ¥ = CP!, so we will omit it in this case). The recursion produces
a collection of symmetric n-differentials W, ,, (called correlation differentials) defined again on the
surface whose expansion can generate solutions to enumerative geometric problems.

In particular, under some conditions the expansion of W, , are related to the correlators of
semi-simple cohomological field theories [11].

3.1.2 Chiodo's formula

In [21], Mumford derived a formula for the Chern character of the Hodge bundle on the moduli
space of curves M, ,, in terms of the tautological classes and Bernoulli numbers. In [5], Chiodo
generalizes Mumford’s formula. The moduli stack M, ,, is substituted with ﬂ’;i ) the proper

moduli stack of rth roots of the line bundle

n
®s P
Wiog —E a;x;
i=1

ey
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3. Chiodo formulas and topological recursion

where wiog = w(d x;), the integers s, as, ..., a, satisfy

(2972+n)572ai€7"2,

and the x;’s are the marked points on the curves. Let w: C — ./\/l » be the universal curve
and denote by & — C the universal r-th root. Chiodo’s formula computeb the Chern character
ch(R*m.S), again in terms of tautological classes and values of Bernoulli polynomials at rational
points with denominator r. The push-forward of the corresponding Chern class to the moduli
space of curves will be called the Chiodo class.

In one particular case we know a relation between the Chiodo classes and the topological
recursion. Namely, the coefficients of some expansion of the differentials W, , for the spectral
curve data (X = CP!,z = logz — 2",y = z) are expressed in terms of the intersection numbers of
the Chiodo classes for s = 1, r = 1,2,.... The main result of this chapter is an extension of this
correspondence to arbitrary s > 0.

3.1.3 Chiodo classes and topological recursion

We consider the spectral curve
(X =CPY,2(2) = —2" +log z,y(z) = 2%). (3.1)

We prove that (see Theorem 3.4.6)

the expansion of the corresponding correlation differentials in some auxiliary basis of 1-forms is
given by the intersection numbers of the corresponding Chiodo class for these particular r,s > 1.

The case s = 0 is exceptional. In this case, the intersection numbers are the same as in the
case s = r, so we still have to use the spectral curve (X = CP!, 2(z) = —2" + log z,y(z) = 2").

These spectral curves are known in the literature, in some particular cases, in relation to various
versions of Hurwitz numbers.

3.1.4 Hurwitz numbers

Hurwitz numbers play an important role in the interaction of combinatorics, representation theory
of symmetric groups, integrable systems, tropical geometry, matrix models, and intersection theory
on moduli spaces of curves.

There are several kinds of Hurwitz numbers. Simple Hurwitz numbers enumerate finite de-
gree d coverings of the 2-sphere by a genus g connected surface, with a fixed ramification profile
(1., ftn) over infinity, Y7 | p; = d while the remaining 2g — 2 + n + d ramifications over fixed
points are simple.

These Hurwitz numbers are known to be the coefficients of the expansions of the correlation
forms of the spectral curve (3.1) for r = s = 1. This was conjectured in [3] and proved in several
different ways, see, e.g., [16, 9].

Chiodo’s formula in this case is reduced to the standard Mumford formula, so the Chiodo class
is the Chern class of the dual Hodge bundle on the moduli space of curves. The fact that the same
correlation differentials are related, in different expansion, to simple Hurwitz numbers and to the
intersection numbers, implies that there is a formula for simple Hurwitz numbers in terms of the
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3.1. Introduction

intersection numbers. Indeed, it is the celebrated ELSV formula [13]. The equivalence between
the topological recursion and the ELSV formula is proved in [15], see also [9, 23].

Another example is r-spin Hurwitz numbers. In this case, the definition is a bit involved;
roughly speaking, we still consider the maps of genus g algebraic curves to CP', with a fixed
profile over infinity, but the remaining simple ramifications are replaced by more complicated
singularities, so-called completed cycles. We refer to [24, 23] for the precise definition.

In this case, the r-spin Hurwitz numbers are conjecturally related by the spectral curve (3.1)
for that particular r and s = 1, see [20, 23]. The same logic as for the simple Hurwitz numbers
implies that this conjecture is equivalent to an ELSV-type formula that expresses the r-spin Hur-
witz numbers in terms of intersection numbers [23]. The corresponding ELSV-type formula was
conjectured in [25] and is still open.

3.1.5 Orbifold Hurwitz numbers

A case of special interest for us is the r-orbifold Hurwitz numbers. They enumerate finite degree
d, r|d, coverings of the 2-sphere by a genus g connected surface, with a fixed ramification profile
(M1, ptn) over the infinity, Y., u; = d, the fixed ramification profile (r,r,...,r) over zero,
while the remaining 2g — 2 + n + d/r ramifications over fixed points are simple.

It is proved in [2, 8] that the r-orbifold Hurwitz numbers satisfy the topological recursion for
the spectral curve (3.1) with this particular r and s = r. Johnson-Pandharipande-Tseng [19]
exhibited an ELSV-type formula that can be restricted to express r-orbifold Hurwitz numbers
in terms of intersection numbers. As an application of the general correspondence between the
Chiodo formulas and topological recursion, we prove the equivalence of these two statements (see
Theorem 5.1).

Since the Johnson-Pandharipande-Tseng formula (the JPT formula, for brevity) is proved inde-
pendently, our equivalence result implies a proof of the topological recursion of r-orbifold Hurwitz
numbers.

It is a new proof of the topological recursion; the existing proofs [2, 8] do use the JPT formula,
but only its combinatorial structure, and not the geometry of the classes. The topological recursion
is then derived in [2, 8] from an additional recursion relation for r-orbifold Hurwitz numbers called
cut-and-join equation.

3.1.6 Further remarks

A natural question is whether we can use the equivalence between the topological recursion and
the JPT formula for r-orbifold Hurwitz numbers in order to give a new proof of the JPT formula,
as it is done in [9] for the simple Hurwitz numbers. This approach requires a new proof of the
topological recursion that wouldn’t use the JPT formula. This is done in [10], so we refer there for
further details.

Another natural question is whether there is any natural combinatorial and /or geometric prob-
lem of Hurwitz type related to the other spectral curves (3.1) for arbitrary r and s. The only
indication of a possible relation that we know is that similar spectral curves are used in [20] for
the so-called mixed Hurwitz numbers in the context of the quantum spectral curve theory.
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3. Chiodo formulas and topological recursion

3.1.7 Plan of the chapter

In Section 2 we review the semi-simple cohomological field theories, possibly with a non-flat unit,
that correspond to Chiodo classes. In Section 3 we recall the general formula of the differentials
Wy in terms of integrals over moduli spaces of curves as described in [11, 14], while in Section 4 we
compute explicitly all the ingredients of that formula and prove our main theorem, Theorem 3.4.6.
Finally, in Section 5 we identify the particular Chiodo class with the one used in the JPT formula
and prove the equivalence of the JPT formula and the topological recursion for r-orbifold Hurwitz
numbers.

3.2 Chiodo classes

In this Section we recall the definition and some simple properties of the Chiodo classes. These
classes are defined on the moduli spaces of tensor 7th roots of the line bundle wf® . 5 (=>>m,x;), but

in this paper we will only need their push-forward to the space of curves M ,. A more detailed
discussion of the space of rth roots in the case s = 0 is contained in Section 3.5.2. We also refer
the reader to [5, 7, 6, 23] for all necessary background and origin of the lemmas in this section.

3.2.1 Definition

Let r > 1 be an integer and 1 < aq,...,a, <1, 0 < s be integers satisfying

(29—2+n)s— iai er’ (3.2)

i=1

Consider the morphisms

where M. gar,
is the forgetful morphlsm to the space of curves. While the boundary strata of ﬂg’n are described
by stable graphs, those of ﬂ;fh .., are described by stable graphs with a remainder mod r
assigned to each half-edge in such a way that the sum of residues on each edge vanishes and that
Condition (3.2) is satisfied for each vertex. The boundary divisors correspond to one-edged graphs
with two opposite remainders mod r assigned the two half-edges.

The Chern characters of the derived push-forward R*7.S are given by Chiodo’s formula [5]

a, 18 the space of rth roots SO~ wlog (= > a;x;), C is its universal curve, and e

« N m+1(7) . - BWL+1(7) m
chon (R, 5) = (m+ ™ ; (m+1)! Vi

m+1 (¢1)m + (71)m71(¢11)m
9 Z m + 1 ) * ,(/}/ + ,(/J// ?

where j, is the boundary map corresponding to the boundary divisor with remainder a at one of
the two half-edges and v/, 1" are the 1-classes at the two branches of the node.
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We are interested in the Chiodo classes

Con(rysiar,... a,) = (3.3)
exc(—R*'7m,.S) =
e [e(R'7.S)/e(R°m,S)] =

€4 eXP <Z (—1)™(m — 1)!chm(R*7r*S)> € HV(My,n).

m=1
An explicit expression of the classes C, ,(r,s;a1,...,a,) in terms of stable graphs, obtained by
expanding the exponential in the expression above, is given in [18], Corollary 4.
Consider Cg (7, s;a1,...,a,) as a coefficient of a map

Cg’n(T,S)Z V®n — I_Ieven(ﬂg’n)7
where V = (v1,...,v,), and

Cyn(r,8): Vg, @+ @ g, + Cyn(r,s;ar,...,an).

3.2.2 Cohomological field theories

Lemma 3.2.1. For 0 < s < r the classes {C,,,(r,s)} form a semi-simple cohomological field
theory.

A semi-simple cohomological field theory (CohFT) is obtained via the action of an element
of the upper-triangular Givental group on a topological field theory. In order to determine a
topological field theory {wg,}, we have to fix its scalar product  and wg 3. An element of the
upper-triangular Givental group is determined by a matrix R({) € End(V)[[¢]] that should satisfy
the symplectic conditions with respect to 7.

In the case of {C, ,,(r,s)} we have the following description.

Lemma 3.2.2. For 0 < s < r the classes {Cy,(r,s)} are given by Givental’s action of the R-
matriz R(¢) on the topological field theory w with metric n on V', where

V = <'U1,-~-7U7'>7
> diag) =) Bt (2) m>
RIQ) = ex o).
p <mz_:1 m(m+1)
. >, diag),—gBm41 (%) m)
RO = e o).
1

n(vaavb) = ;5a+b mod 7

w0,3(va Qv @ vc) = ;6a+b+c—s mod 75

2g—1
wg,n(val Q- ® Ua,n) =r 5a1+~~+an—s(2g—2+n) mod 7-
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3.2.3 Cohomological field theories with a non-flat unit

Let us discuss now what happens for s > r. We need an extension of the notion of cohomological
field theory, namely, we have to consider the cohomological field theories with a non-flat unit,
CohFT/1 for brevity.

The CohFT/1s are obtained by an extension of the Givental group by translations, which allows
one to use the dilaton leaves (in the terminology of [12, 11]) or x-legs (in the terminology of [22])
with arbitrary coefficients. We refer to the exposition in [22] for further details.

One of the possible descriptions of a CohFT/1 is in terms of stable graphs without any r-legs.
The vertices, leaves, and edges of these graphs are decorated in exactly the same way as in the
case of a usual CohFT, but in addition every vertex is also decorated by exp(> > _, T}, k) for
some constants T,,, m =1,2,....

In the case of Chiodo classes (3.3) for s > r, we have the following:

Lemma 3.2.3. For s > r the classes {C, ,(r,s)} form a CohFT/1. The corresponding element
of the extended Givental group coincides with the one described in Lemma 3.2.2, but instead of the
dilaton shift, we decorate each vertexr by

exp <Z (1)m£(77;;1_£i1))/£m> .

m=1

3.3 Topological recursion and Givental group

In this Section we revisit the main result of [11, 14]. We present a version a bit refined of it, in
order to make precise relation that incorporates a torus action on cohomological field theories.

3.3.1 General background

The input of the local topological recursion consists of a local spectral curve ¥ = U}_, U;, which is a
disjoint union of open disks with the center points p;, i = 1, ..., 7, holomorphic function z: ¥ — C
such that the zeros of its differential dz are pi,...,p,, holomorphic function y: ¥ — C, and a
symmetric bidifferential B defined on ¥ x ¥ with a double pole on the diagonal with residue 1.

The output is a set of symmetric differentials W, ,, on 3". This set of differentials is canonically
associated to the input data via the topological recursion procedure. Under some conditions (for
example, when ¥ is an open submanifold of a Riemann surface, where dz is a globally defined
meromorphic differential, see [14], and we should assume some relation between y and B, see [11]
and below), we can represent this set of differentials in terms of the correlators of a CohFT
multiplied by some auxiliary differentials. This representation is not canonical, the choice of it is
controlled by the action of the group (C*)".

Our goal is to make this action on all ingredients of the formula (that is, the matrix R of a
CohF'T, its underlying TFT, and the auxiliary differentials) precise.

3.3.2 The formula

We fix a point (C1,...,C,) € (C*)". We also fix some additional constant C' € C*. All construc-
tions in this Section depend on these choices.
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3.3. Topological recursion and Givental group

We choose a local coordinate w; on U;, i = 1,...,7, such that w;(p;) = 0 and

In this case, the underlying TFT is given by

n(ei,e;) = iz, (3.4)
dy —2g+2—n
To o 2
ag,np(eh R ® ein) = (5111” <_2Cz dei (0)) .

In particular, the unit vector is equal to Y ;_; (—20?0%(0)) €.
The matrix R(¢) is given by

1__ ; 1 " B(w;,w;) _v
R Y)Y = / v 2, 3.5
c () e dw |, e (3.5)
We have to check that the function y satisfies the condition
202C [ w? u ; dy
: dy-e 2 =) (R (202C—(0 3.6
e | v E =Y (cie o) (3.6
Finally, the auxiliary functions §;: ¥ — C are given by
¥ B(w;, w)
i(2) = e ) 3.7
aw)= [ T @)

Using Formulas (3.4) and (3.5) we define a CohF'T, whose classes we denote by ag%h(eil ®®

ein).

Theorem 3.3.1. [14, 11] The differentials W, , produced by the topological recursion from the
input (X, x,y, B) are equal to

Wy = C297 20 Z /7 ag‘,’f(eil ®---Re;) (3.8)
[ARTIN 2 Mg,n
di,...,dp
n d
d 1 d ’
dal (o) e
j=1 wj dw;

In particular, this formula doesn’t depend on the choice of (Ci,...,Cy) € (C*)" and C € C*,
though all its ingredients do.

The proof of this theorem is given by exactly the same argument as in [14, 11], with a different
choice of local coordinates near the points p;, so we omit it here.

Remark 3.3.2. Let us discuss what happens if the condition (3.6) is not satisfied. Still, under
the same conditions a version of Theorem 3.3.1 holds. Namely, we can represent the correlation
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3. Chiodo formulas and topological recursion

differentials as

Wy = C2720 37 agi e ® - ®ei,)

i17~--7in
di,...,dn

I 1 d\%
Hd’?d((—ld) «5)
j=1 'l,U] w]

h/1

where the classes ag% are described, in terms of the graphical formalism recalled in Section 3.2.3,

via the same TFT and R-matrix as ag%h in Theorem 3.3.1, but instead of the dilaton leaves, we

decorate each vertex labeled by i (that is, the one that is decorated by a]%(e; ® --- ® e;)) with

the k-class
oo
exp (Z Ti,k’%) )
k=1

where the constants T j are given by

2

dy o R)_ 1 C Ay e
dwi (O) exp <;E,k(<) ) - \/m/;oo dy e 2.

This is a direct corollary of [15, Theorem 3.2], see also [11, Lemma 3.5].

3.4 Computations with the spectral curve

Consider the following initial data on the spectral curve ¥ = CP! with a global coordinate z:

x(z) = —2" +log z; (3.9)
y(z) = 2%
dzdz’
B(z,2) = %
(z’ z ) (Z _ Z/)2

In this section we compute all ingredients of the Formula (3.8) for this initial data with a special
choice of the torus point. In particular, for 1 < s < r we prove that the correlation differentials
are controlled by a CohFT, and the corresponding CohFT coincides with the one given by Chiodo
classes (3.3) considered in the normalized canonical frame.

3.4.1 Local expansions

As it was computed in [23], we can associate with this curve the following local data.
The critical points are .
p; =1 YT i=0,....,7r—1,

and the critical values of the function = at these points are

1 2miyv—-1 1
xizzx(pi):—f—l—L—Ogr, 1=0,...,7r—1
T T T
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3.4. Computations with the spectral curve

If we choose a local coordinate w; near the point p; such that w;(p;) = 0 and —w?/2r + z; = =,
i =0,1,...,7 — 1, then there are two possible choices for the expansion of the function z in w;.
We fix it to be

2(w;) = r~ YT 4 ( “lengi ) w; + O(w?),

With this choice we also fix the expansion of y = z°, namely,
y(w;) = r=*/mJ% 4 (87"717%(]2'5) w; + O(w3).

Lemma 3.4.1. We have:

w? E— > Bm 1 2
\/ﬁ/ dy(w;) - e~ 2 ~ (sr™ 177 J") exp <m2_1 MTZ—_EE))(C)”%) . (3.10)

Proof. This Lemma is analogous to [23, Lemma 4.3]. Indeed, we introduce a new coordinate
t = rz". In this coordinate we have:

z= t%r_%Ji;
t logt

- 1
—xz;— 2 +logz=—-— -+ ——;
ror T

dz =t 17 Jide.

We can then make a change of variables and use the standard asymptotic expansion of the gamma
function, cf. the proof of Lemma 4.3 in [23]:

\/—_2T/d ) srm3 3 Jsiec 41 _t
Y-

20 = dttr e ¢

NETS
- (s\/__zr—%—iJsi) exp <_ Z imﬂ (2) (_C)m> _

— m(m+1)

O

Lemma 3.4.2. We have:
B(w;, w,) _
e (- S o)
2 =

Proof. This Lemma is just a refined version of Lemma 4.4 in [23], so the proof is exactly the same
as there. 0

Note that this Lemma means that we have to consider the Givental group action defined by
the matrix R((), where

g (S B (8)
Z eXP( Zm(—o )

m=1
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3. Chiodo formulas and topological recursion

We choose the constants C; = --- = C, := 1/y/=2r and C := r'T%/7/s. In particular, with this
choice the structure constants of the underlying TFT are given by

dy Jis
—920? -
2C;C dw; (0)

r

(3.11)

Lemma 3.4.3. For 1 < s <r the condition (3.6) is satisfied.

Proof. This is a direct computation. We have:

202C [ T ~ Brni1 (2)
Vi | e C—weXp(—meH)(‘o )

N A T DA
_gg . exp( n;lm(m+l)( ¢) ( r)
o 1y 2~ dy

=Y (ke g o)

The second equality is true for 0 < s < r — 1, and also for s = r, since By, 1+1(1) = B;,+1(0) for
m > 1. O

This Lemma implies that we indeed have correlators of a cohomological field theory inside
Formula (3.8) in this case.
Finally, Definition (3.7) implies that

B polmn i
T
and it is easy to see that
1d _1d

—_—— = e 3.12
w dw rdz ( )

This completes the description of all the ingredient of the Formula (3.8) for the correlation differ-
entials Wy .

3.4.2 Correlation differentials in flat basis

In the previous section we described all ingredients of the formula for the correlation differen-
tials (3.8) for the case of the spectral curve data (3.9). In particular, for 1 < s < r we proved that
there are the correlators of a CohFT inside this formula, otherwise we have a CohFT/1. Our goal
now is to show that the cohomological field theories obtained in the previous Section is the one
given by the same formulas as in Lemmas 3.2.2 and 3.2.3. In order to do that we apply a linear

change of variables to the basis e, ..., e._1 used in the previous Section.
We use the change of basis from ey, ...,e.—1 to v1,...,v, given by the formula
T ) r—1 Jai
€ = 5 I vg; Vg = E —e;
T
a=1 i=0
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3.4. Computations with the spectral curve

Lemma 3.4.4. In the basis vy, ...,v, we have:

e The underlying TFT al9% (3.4) with the choice of constants as in Equation (3.11) is given

by
1
n(vaavb) = ;5a+b mod 73

1
wo,3 (Ua ® vy ® vc) - ;5a+b+cfs mod r

2g—1
wg7n(val - Uan) =r 5a1+-~-+an—s(29—2+n) mod r

e The R-matrix is given by

R(Q) = exp (Z S <—<>m>

m(m+ 1)

m=1
e The auziliary functions &, are given by

T

s

@ i (pT +r— a)pe(pr—i-r—a)a:.

ga:T p'

p=0

Proof. The computation of the underlying TF'T is fairly simple:

r—1 Jai+bj r—1 J(a+b)i 1
N(Va, vp) = (e, ej) = 5— = ~0at+b mod
ij=0 i—0 "
J= =
r—1 Jaitbitci
wo,3(Va ® vy ® V) = — ~wp.3(e; R e; @ e;)

i=0
r—1 Jai+bi+ci—si 1
= ’I"—Z = §6a+b+cfs mod r»
i=0
and the other correlators of the underlying TFT are determined uniquely.
The change of basis for the matrix R~ reads:

=1 1 jibtia "1 jej—ci > B,, c
wlh = 5 S e (-3 e o)

i,7=0 " c=0 m=1 m(m + 1)

_ ZOO Bmi1 (5) _ ym

= exp <_ Lot m(m + 1) (_C) > ' 5c—b mod r '6c—a mod r
_ Z‘” Bni1 (£)  oym

e ( = m(m+1) =0 ) R

which implies Equation (3.14).
Finally, Equation (3.15) follows from Lemma 4.6 in [23].

(3.13)

(3.14)

(3.15)
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3. Chiodo formulas and topological recursion

Remark 3.4.5. Observe that Equations (3.13) and (3.14) and Lemma 3.4.3 imply that for s < r
the cohomological field theory that we have in the flat basis coincides with the one given in
Lemma 3.2.2. For s > r, where Lemma 3.4.3 does not apply, we have obtained the topological
field theory and the R-matrix as in Lemma 3.2.3, but we still have to compare the power series
that determines the x-legs.

Lemma 3.4.4 allows us to rewrite formula (3.8) for the correlation differentials of the spectral
curve data (3.9) in the following way.

Theorem 3.4.6. The correlation differentials of the spectral curve (3.9) are equal to

oo
Won= Y. di® - @d, eXimm® (3.16)
1oy pbn =1
></ Cg,n(r,s r77"<“1>,...,r77"<“7">)
Mg Hj:l(l - %wz)
n ( ) TJ 29,2+n+%
jl:[l LMTJJ §29—2+n ’

where & = [ & | 4 (&) is the decomposition into the integer and the fractional parts.

Proof. First, consider the case s < r. Using Equation (3.8), together with Lemma 3.4.4, Re-
mark 3.4.5, Equation (3.12) and C = r'*5/7 /s, we have:

Wyn(x1,. .., 2p)
7‘29—2+”+w
= Z perm T | Cyn(r,siar,... an)
di,...;dn>0 Mg.n
1<ai,...,an<r
n r—a; dj _
% Hwﬂ_ljr—djr L (pr+r a]) rHr—a;)a;
J dx Z !
j=1 J -
d;
=d;®---®@d, Cy, Tsal,...,an)ij
di,... d >0 7 M, j=1

1<aq,..., an<r
(2g—24n)s—37_4 a;

T2g72+2n72?:1 d;i+ -
X S29—2—!—11
n oo
— p+d
X H § : pr + 7 — a;)"™ eprtr—a;)z;
T .
j=1p=0 p

Equation (3.16) is just a way to rewrite the last formula using a summation over the parameter
w; = pir +r — a; instead of a double summation over p; and a;.

In the case s > r, we should compute separately the k-classes. In this case, Remark 3.3.2 and
Equation (3.10) imply that the r-class attached to the vertex of index ¢ (in the basis e, ..., e,_1)
(—1)m Bnt1(2)

m(m+1)
the basis v1,...,v,, where it coincides with the one given by Lemma 3.2.3. O

is equal to exp (2:21 nm). Since it doesn’t depend on i, it remains the same in
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3.5. Johnson-Pandharipande-Tseng formula and topological recursion

Remark 3.4.7. Note that in the case s = 1 we reproduce Theorem 1.7 in [23].

3.5 Johnson-Pandharipande-Tseng formula and topological recursion

In this Section we consider a special case of the correspondence between the Chiodo formulas and
the spectral curve topological recursion. We assume that s = r. In this case, the correlation
differentials of this spectral curve are known to give the so-called r-orbifold Hurwitz numbers in
some expansion.

An r-orbifold Hurwitz number A ; is just a double Hurwitz number that enumerates ramified
coverings of the sphere by a genus g surface, where one special fiber is arbitrary (given by the
partition fi of length n) and one has ramification indices (r,r,...,r). Therefore, the degree of the
covering Y1, p1; is divisible by r and there are b =2g — 2 +n+ Y ., u;/r simple critical points.

The r-orbifold Hurwitz numbers are also known to satisfy the Johnson-Pandharipande-Tseng
(JPT) formula that expresses them in terms of the intersection theory of the moduli space of
curves. The main goal of this Section is to show that the JPT formula is equivalent to the
topological recursion for r-orbifold Hurwitz numbers. In particular, this gives a new proof of the
topological recursion for r-orbifold Hurwitz numbers.

3.5.1 The JPT formula

The formula of Johnson, Pandharipande and Tseng is presented in [19] for a general abelian group
G, its particular finite representation U and a vector of monodromies . Here we consider only the
case of G = Z/rZ, the representation U sends 1 € Z/rZ to e¥, and v is empty. In this case the
JPT formula reads

n I_TJ ).
hg.jt _ i 175 Ex Zl (=)' \i
S =TI T H;Lﬁo— 1507 (317)

where the class €, ;- (—7)"A; is described in detail below.

3.5.2 Two descriptions of rth roots

Let G = Z/rZ be the abelian group of rth roots of unity. The space Mgy.q,. 4, (BG) is the
space of stable maps to the stack BG with monodromies a; € {0,...,r — 1} at the marked points.
This space, and the natural cohomology classes on it, can be constructed in several ways, see,
for instance, [1, 4]. Johnson, Pandharipande, and Tseng [19] use the description via admissible
covers. Chiodo [5] uses the moduli space of rth roots of the line bundle O(— 3 a;x;). In our work
we apply Chiodo’s formulas to a result of Johnson, Pandharipande, and Tseng, so we recall and
briefly explain the equivalence between the two approaches.

The r-stable curves.

An r-stable curve is an orbifold stable curve whose only nontrivial orbifold structure appears at
the nodes and at the markings. The neighborhood of a marking is isomorphic to A/G, where an
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3. Chiodo formulas and topological recursion

rth root of unity p € G acts on the disc A by z — pz. The neighborhood of a node in a family of

r-stable curves is isomorphic to (A x A)/G, where p € G acts by (z,w) — (pz, p~'w).

The moduli space of r-stable curves has the same coarse space as M, ,,, but an extra factor of
G appears in the stabilizer for every node of the curve.

Line bundles over r-stable curves.

A line bundle L over an r-stable curve has a particular structure at the neighborhoods of markings
and nodes. At a marking it can be given by the chart A x C with the action of an element p € G
given by (z,s) — (pz, p®s). Thus the number a € {0,...,r — 1} describes the local structure of L
at a marking. At a node L can be given a by a chart (A x A) x C with the action of an element
p € G given by (z,w,s) = (pz, p~ 1w, p*s). Note, however, that the number a is replaced with —a
(mod r) if we exchange z and w. Thus the local structure of L at node is described by assigning
to the branches of the node two numbers a’,a” € {0,...,r — 1} such that a’ + ¢” =0 mod r.

Roots of O.

In [5] an element of My, 4. (BG) is an r-stable curve C with an orbifold line bundle L — C

endowed with an identification L®" >~ . The integers a; € {0,...,r — 1} prescribe the structure
of L at the markings.

From r-th roots to G-bundles.

To make the connection with the description of My.q,. 4, (BG) in [19] we look at the multi-section
of L that maps to the section 1 of O when raised to the power . This multi-section is a principal
G-bundle 7 : D — C ramified over the markings and the nodes. At a marking with label a the
G-bundle has the monodromy given by adding a in Z/rZ. This can be seen from the G-action
(2,8) — (pz, ps). If we choose p = e*™/7 a path from z to pz in the chart corresponds to a loop
around the marking in the stable curve and its lifting leads from s to p®s in the fiber of L.

Similarly, at the node the G-bundle has monodromies a’ and @’ at the two branches, satisfying
a +a” =0 mod r.

Note that, because D is formed by a multi-section of L, the pull-back of L to D has a tautological
section. We will denote this section by ¢q.

From G-bundles to r-th roots.

In [19] an element of M.q, . 4. (BG) is G-cover 7 : D — C ramified over the markings and the
nodes and satisfying the “kissing condition”: the monodromies of the G-action over two branches
of a node are opposite modulo r. The integers a; € {0,...,r — 1} prescribe the monodromies at
the markings. Suppose we are given a principal G-bundle 7 : D — C' like that. Using this data
it is easy to construct a line bundle L over the r-stable curve C corresponding to C. Over any
contractible open set U C C that does not contain markings and nodes we create a chart U x C
and identify the r-roots of unity in C with the sheets of the G-bundle in an arbitrary way that
preserves the G-action. At the markings we create the orbi-chart A x C endowed with the G-action
(z,8) = (pz, ps) as above and also identify the r-th roots of unity with the sheets of the bundle.
The transition maps between the charts are obtained from the matching of the sheets over different
charts (every transition map is the multiplication by a locally constant r-th root of unity).
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3.5. Johnson-Pandharipande-Tseng formula and topological recursion

Sections of L and of K ® L*.

Let ¢ be a section of L over an open set U C C. Then 7*¢/¢o is a holomorphic function on
7-1(U) C D. Moreover, the G-action on this function has the form f(pz) = p~1f(z). A global
section of L gives rise to a global holomorphic function on D satisfying the above transformation
rule. It follows that L has no global sections over C, with the exception of the case where all a;’s
vanish, L is the trivial line bundle and D = C x G.

Similarly, let ¢ be a section of K ® L* on an open set U C C. Then o = 7%¢ - ¢ is a section of
the canonical line bundle Kp over 7—1(U). Moreover, the G-action on this function has the form
a(pz) = pa(z). In particular, the space of global sections of K ® L* coincides with the space of
holomorphic differentials on D satisfying the transformation rule a(pz) = pa(z).

Two ways of writing R*p.. L.

Chiodo’s formula expresses the Chern character of R*p, L, where we denote by p : Cyia, .....a,, (BG) —
Mg.a,.....a, (BG) the universal curve. Using this formula one can also easily express the total Chern
class of —R*p, L.

According to our remarks above, if there is at least one positive a; then Rp,L = 0. In that
case R'p.L is a vector bundle, and we have ¢(—R*p.L) = c¢(R'p.L).

If all the a;’s vanish, the space Mg;al ,,,,, a,, (BG) has a special connected component on which
the line bundle L is trivial. Over this component R%p,L = C. On the other connected components
we have, as before, Rp,L = 0. Therefore the total Chern class of R%p,L is equal to 1 and we
have, once again, c(—R*p,L) = c¢(R'p.L).

Johnson, Pandharipande, and Tseng use the Chern classes \; of the vector bundle of equivariant
sections of Kp. Our analysis above shows that this vector bundle is the dual of R'p,L. In other
words, we have

o(~R*p.L) = (~1)'A;, (3.18)
which is the equality that we use in our computations.

Remark 3.5.1. In the Johnson-Pandharipande-Tseng formula the monodromies at the markings are
given by the remainders modulo r of —p;, that is, minus the parts of the ramification profile. Thus
if we denote by a; = p; mod r, we will use Chiodo’s formula with remainders r — ay,...,7 — a,
at the markings. If an a; is equal to 0, we can plug either 0 or 7 in Chiodo’s formula. Indeed, we
have By (0) = Bg(1) for any k > 1, thus replacing 0 by r will only affect the Chern character of
degree 0, that is not used in the expression for the total Chern class.

In particular, in Equation (3.17) we use the push-forward of > (—1)'\; to M, ,, for mon-
odromies equal to minus the remainders of 1, ..., p,. This class coincides with Cg ,(r, s;7 —
ai,...,r —ay) defined by Equation (3.3).

3.5.3 The equivalence

Now we are armed to prove the following

Theorem 3.5.2. The expansion of the correlation differentials of the spectral curve (3.9) for s =r
1s given by

) . h .
Won= > di1@-@d, eXimsmm 20l (3.19)
1oy =1 ’
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3. Chiodo formulas and topological recursion

if and only if the numbers hg.; are given by the Johnson-Pandharipande-Tseng formula (3.17).

Proof. The proof is indeed very simple. First, Equation (3.18) allows us to replace Chiodo class in
(3.16) with the push-forward of the linear combination of A-classes. Then we notice the following
rescaling of the integral

e dizo(—T)'Ai Bg—3+n T Dizo(=1)'Ai
My =1 (1= pithi) M, L=y (1 — 52ay)
The equivalence then follows from comparison of coefficients in front of particular d; ® -+ ®

d,, eXi=1"i% in (3.19) and (3.16), which is obvious, modulo the following simple computation of
the powers of r. For s = r,

(3.20)

J (29—24n)s+37_1 1j n
AN y YU RIS N
J §29—2+n L“J‘ |

()l
Viap

is the coefficient in Equation (3.16). This is equal to

‘3‘:;\—/

39—3+n,1-g+3(55) Hi '

which is the coefficient of (3.17) after rescaling (3.20). O
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Ramifications of Hurwitz theory, KP integrability
and quantum curves.

In this chapter we revisit several recent results on monotone and strictly monotone Hurwitz num-
bers, providing new proofs. In particular, we use various versions of these numbers to discuss
methods of derivation of quantum spectral curves from the point of view of KP integrability and
derive new examples of quantum curves for the families of double Hurwitz numbers.

4.1 Introduction

4.1.1 Hurwitz numbers

The purpose of this chapter is to survey some variations of the concept of Hurwitz numbers and
their generating functions. Recall that a simple Hurwitz number A, ,, depends on a genus g > 0
and a partition p - d of length £ = 0(u), u = (p1 > -+ > o), Zle p; = d. By definition, hy ,, is
the weighted number of ramified coverings of a sphere CP! by a genus g surface, whose degree is
d, whose monodromy near oo € CP! is a permutation of a cyclic type p, and these coverings must
have simple ramification points over fixed 29 — 2 + n + d points in CP! \ {cc}.

These numbers satisfy plenty of interesting properties, and for the thesis the most important
ones are

e The generating function of Hurwitz numbers

Z(o 1) Z ) K29—2+€()+
b, ) := exp P
c T (29 — 2+ L(p) + [ul)!
is a tau-function of the KP hierarchy [43, 33].
e The principal specialization W(z, i) of the generating function satisfies a differential equation

X 0
G ael) (g B — o= b
(y xe) (z,h) =0, T=x,9 x@x’

called quantum curve [50]. Here by principle specialization we call the substitution p, =
(z/h)!#! in the formula for Z above.
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

e Hurwitz numbers for fixed g > 0 and ¢ > 1 can be arranged into the so-called ¢-point func-
tions, whose differentials satisfy the topological recursion in the sense of Chekhov-Eynard-
Orantin for the spectral curve

logz =logy — v,

see [22].

e There is a formula for A, ;, in terms of the intersection numbers on the moduli space of curves

Mg7gt

@g—ﬂfﬂl)!“%ﬁ‘f/ [SLYREREDY
Aub(l =3t SR, TIE9 (1~ juass)

hg.. =

(the ELSV formula) [18, 14].

These results are related to each other, and it is interesting to specify a class of combinatorial
problems depending in a natural way on a genus parameter g > 0 and a partition p, where the same
sequence of results can be derived. Let us explain why we find this sequence of results important.

4.1.2  Outline of the logic

Let us assume that we start with a combinatorial problem depending on a parameter g > 0 and
a partition p, and its generating function appears to be a KP tau-function. Then we have the
following:

Step 1: From KP to quantum curve

In the case when the generating function of some problem of enumerative geometry can be identified
with a KP tau-function, the integrable hierarchy often allows us to find a quantum spectral curve.
Indeed, the principal specialization of the generating function coincides with the so-called first basis
vector of the corresponding point of the Sato Grassmannian, and, as it was observed in [2] (see
also [46, 52, 51]), this reduces the problem to a specialization of a suitable Kac—-Schwarz operator
that would annihilate it.

Step 2: From quantum curve to topological recursion

Once we have a quantum curve, we can formulate a precise conjecture that the differentials of
the ¢-point functions satisfy the topological recursion [21] for the spectral curve obtained by the
dequantization of the quantum curve. This relation was made explicit in [30]. Note that the
spectral curve should also correspond to the (g,¢) = (0,1) part of the problem [10], and this
property is automatically implied by the quantum curve, see e.g. [41, 11].

Step 3: From topological recursion to intersection numbers

Once we have spectral curve topological recursion, we can immediately conclude that the cor-
responding combinatorial problem can be solved in terms of some intersection numbers on the
moduli space of curves that represent the correlators of a semi-simple cohomological field theory
with a possibly non-flat unit [19, 20, 13], and therefore, have expressions in terms of the Givental
graphs [16, 13].
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Discussion of Steps 1-3

The most important point of this sequence of steps is that Step 1 provides us with a conjectural
spectral curve for Step 2 and, therefore, with a conjectural intersection number formula in Step
3. Thus, analysis of the principal specialization in the framework of the KP integrability appears
to be a powerful tool that provides very precise conjectural links between combinatorial problems
and the intersection theory of the moduli space of curves.

This logic allows one to prove the ELSV-type formulas in some cases, for instance, this way
the original ELSV is proved in [14], the Johnson-Pandharipande-Tseng formula for the orbifold
Hurwitz numbers is proved in [15], and the conjectural ELSV-type formula for the r-spin Hurwitz
numbers is derived, in a new way, in [49]. The corresponding quantum curves (that might be
considered as the sources of all these formulas) are derived in [50, 41]. In all these examples,
however, the ELSV-type formulas were known before, without any relation to spectral/quantum
curves.

4.1.3 Results of the chapter

Rather general models of Hurwitz type are known to be described by the KP/Toda tau-functions
[3, 42, 31], thus, the logic that we outline above can be applied to them. In this chapter we focus on
the first step for a number of Hurwitz-type theories based on the symmetric functions of the Jucys-
Murphy elements in the group algebra of the symmetric group. These theories were considered
recently in connection to enumeration of dessins d’enfants [4], expansion of hypegeometric tau-
functions [31], study of the HCIZ matrix model [29], and topological recursion [8, 7].

We revisit with new proofs a number of results in [4, 31, 7], namely,

— we establish relations between various geometric interpretations for these Hurwitz-type the-
ories;

— we provide the group operators that generate the corresponding tau-functions;
— we derive the quantum curves from the Kac-Schwarz operators.

Once we have a quantum curve, we can immediately produce an ELSV-type formula. We give a
detailed computation for the monotone Hurwitz numbers — this answers a question posed in [29],
and, in fact, it is not a conjecture but a theorem since the corresponding Step 2 (a proof of the
topological recursion) was derived in [8].

The description of the 2D Toda tau-function for the double monotone Hurwitz numbers in
terms of the KP Kac—Schwarz operators allows us to construct the quantum spectral curve for this
case. The second set of the Toda times plays the role of linear parameters of the corresponding
operator. We use this Kac—Schwarz description in order to derive a system of linear differential
operators that annihilate the tau-function for the double monotone Hurwitz numbers and uniquely
characterize it.

In addition, we derive a number of new quantum curves for similar Hurwitz theories. In
particular, this yields an interesting example for which we can say in advance that the logic
outlined above does not apply. Namely, we have an example where the dequantization of the
quantum curve doesn’t give a spectral curve suitable for the corresponding topological recursion.
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

4.1.4 QOrganization of the chapter

In Section 4.2 we briefly recall the necessary facts from the theory of the KP hierarchy. In Sec-
tion 4.3 we recall the necessary facts from the Jucys theory. In Section 4.4 we define a variety of
Hurwitz-type problems that we study in this chapter, and explain the correspondences between
them that follow from the Jucys correspondence. In Section 4.5 we embed these Hurwitz-type
problems in the framework of the KP formalism. Section 4.6 is devoted to the study of the mono-
tone Hurwitz numbers. We derive in a new way a quantum curve for them, compute the associated
ELSV-type formula, and provide the linear constrains for the tau-function of the double monotone
Hurwitz numbers. Finally, in Section 4.7 we derive quantum curves for some further examples that
are interesting from various points of view (in particular, the one whose classical limit does not
give a proper spectral curve).

4.2 KP hierarchy and Kac-Schwarz operators

In this section we give a brief recollection of some of the basic concepts of KP integrability used
in this chapter. For more details see, e.g., [45, 47, 24, 40, 2] and references therein.

The KP hierarchy can be described by the bilinear identity satisfied by the tau-function 7(t),
namely

j{ S (6 — [ ) r(t + [ H)dz =0,

where £(t,2) = > po; tx2" and we use the standard notation
1 1 1
tE [z =ctik ettt —, ... ¢,
[Z :I { 1 Z’ 2 2227 3 3237 }

In Hurwitz-type problems it is often convenient to work in the coordinates p instead of t, where
pk:ktk, k:1,2,....

4.2.1 Semi-infinite wedge space

We consider the vector space V := @, V. spanned by the vectors that are obtained from

cEZL
0y ;=20 A2z A ZTEA -

by applying a finite number of the operators 1; := 2°A and 9} := 0(21')’ 1 € Z. The gradation c is

introduced as follows:

[0) € Vo, degw; =1, degepf = —1, i € Z.
In particular, the vector space V) has a basis that consists of the vectors
vy = 2MTOA 2T A A2 AL

where A= (A1 > A2 >+ > Xy,) 20>02>---) is a Young diagram. Note that |0) = vy.

We define the operator g9} ¢ on Vp to be ;97 if j > 0 and —¢j¢; if j < 0. The map
Eij = ¥y} ¢ gives a projective representation of gl in V.

Consider the operators ., := »; ;s ¥i—n¥; ¢ defined on V. Note that agVy = 0.

84



4.2. KP hierarchy and Kac-Schwarz operators

There is a map from Vj to C[[t]] given by

Vo 3 v (0] exp(z tic)v, (4.1)

i=1

where (0| is the covacuum, that is, the covector that returns the coefficient of |0). For instance,
the function that corresponds to vy is the Schur function sy (t).

The description of the tau-functions of the KP hierarchy in this language is the following: the
tau-functions correspond to the vectors that belong to the image of the Pliicker embedding of the
semi-infinite Grassmannian, also called Sato Grassmannian. On the open cell this means that we
are looking for the vectors representable as

By ADy ADA -,

where @5 (2) = 217% + 2:2:2—1« DPpmz™, Ppym € C, are known as basis vectors. This description
immediately implies that the group GL(V}) is the group of symmetries of the KP hierarchy.
The map (4.1) allows to translate the infinitesimal symmetries of the semi-infinite Grassmannian

in gl into differential operators that act as infinitesimal symmetries of the KP hierarchy.
There are several examples that are important in this chapter. First of all, we have:

~ 0 ~
ay, & J, = W,n>0; a, & J, = -—nt_,,n <0,
n

where the operators J,, are defined on C[[t]]. The energy operator E: Vy — V defined as E: vy —
[A|va corresponds to the operator Lg: C[[t]] — C[[t]] defined as

302:% Z

i+5=0

Jidj 1,

* ¥

where the normal ordering denoted by = --- * put all operators Ji with positive k to the right of
all J with negative k. The Casimir operator go(z): Vo — Vp acts as follows:

B e " LX) 1 1
Eolu)or = m Z [()‘z —i+ i)r —(=i+ i)r Ux.

r=0 " i=1

Using the auxiliary functions ((u) = e*/# — e~ /2 we can present the corresponding differential

operator on Cl[t]] as

(see [44, 1, 48]).

4.2.2 Kac-Schwarz operators

A convenient way to describe infinitesimal symmetries of the KP hierarchy is to work with the
operators from the algebra w1, (the algebra of differential operators in one variable that describes
infinitesimal diffeomorphisms of the circle) acting on the basis vectors ®;, i = 1,2,....
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

Let us denote by (®) the point of the Sato Grassmannian, defined by the set of the basis vectos
(P, Py, P3,...). We call an operator a € wits the Kac-Schwarz (KS) operator for the tau-
function 7 if for the corresponding point of the Sato Grassmannian we have the stability condition

a{®) C (D).
For the trivial tau-function 7y := 1 with the basis vectors @2 = 2% L > 1, we have two
obvious KS operators
0
= —T— 4.2
ag max, (4.2)
by == x L

These operators satisfy the commutation relation
[ag, by] = by. (4.3)
The KS operators (4.2) act on the basis vectors as follows:
ag DY (x) = (k — 1)@} (x), (4.4)
by B () = Y4, ().
Consider the tau-function

T.(t; E) — 62?’:1 Kty tx = ZSA(t)SA(E)’
A

where sy (t) are the Schur functions. From the point of view of the KP hierarchy this tau-function
corresponds to the basis vectors

B (z) = eXim1 ZR
and the KS operators can be obtained from (4.2) by conjugation:

J
a 6 J 1 E kjt 33 - x
@ k

oo Fai, i _
be 1= 2= 1% py em 275 ¢ bl = g 1.

Qe 1= €271 i@

In this case the commutation relation and action of the KS operators on the basis vectors coincide
with the ones given by Equations (4.3) and (4.4).

Basis vectors for the points of the Sato Grassmannian, corresponding to the double Hurwitz

numbers, can be obtained from (4.2.2) by an action of the operators which are formal series in aca%.
Corresponding Kac-Schwarz operators (and, in particular, the quantum spectral curve operator)
can be obtained from the operators (4.2.2) by a conjugation and also satisfy relations (4.3) and
(4.4).
Remark 4.2.1. Let us stress that the algebra of the Kac—Schwarz operators for the trivial tau-
function is generated not by the operators ag and by, but instead by the operators by Yag and
by. Of course, this is also true for the corresponding Kac—-Schwarz operators for all tau-functions,
which can be obtained from the trivial one by a simple conjugation, in particular for the generating
functions of the Hurwitz numbers (see Remark 4.6.9).
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4.3 Symmetric polynomials of Jucys elements

In this section we briefly recall some relations between different bases of the algebra of symmetric
polynomials and the Jucys correspondence.

4.3.1 Symmetric polynomials

We consider the elementary symmetric polynomials o3, the complete homogeneous polynomials
hp, and the power sums py:

op(x1,.. . ) = Z Ty ot Ty s

1<ii<--<ip<n

ho(21,...,2p) == Z Ty Txys

1SA << <n

b

1<i<n

po(x1, . xy)

The polynomials o, and h; have the following generating series:
(14 zt) Zob T1, ...t (4.5)

1—.13t Zhbl'l,..., )b.

_:13 [femb

Il
-

7

The Newton identities describe relations between the power sums p, and bases o, and hy:

eexp | =Y (2], (4.6)

oy = [z
i>1
hy = [2%]. exp Z bi i
e 4
i>1

We also have the following relations between o}, and hy:

b

hy =Y (=" 3" 04, 0ay, (4.7)

k=1 ae(N*)*
|a|=b
b
o =Y (=D 3" hay - ha,.
k=1 ae(N*)*
|a|=b
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

4.3.2 The Jucys correspondence

Let a € &,,/~ be a conjugacy class of the symmetric group &,, or, equivalently, a partition of n.
We denote the number of cycles of « by £(«). We denote the formal sum of all permutations with
cycle type o as Cy := > gea 9- Note that €y belongs to the center of the group algebra of &,
that is, C,, € Z(Q(&,,)) for any . The elements C,, span Z(Q(&,,)).

We consider the Jucys-Murphy elements J, € Q(&,,), k = 2,...,n, defined as

Je=Qk)+2k) 4+ +(k—1k).

They generate a maximal commutative subalgebra of Q(&,,) called Gelfand-Tsetlin algebra.
The Jucys-Murphy elements are linked to the center of the group algebra through symmetric
polynomials.

Lemma 4.3.1 (Jucys Correspondence [32]). Forb=0,...,n — 1 we have:

op(J2s - Tn) = Y, Can

a€ES,, [~
l(a)=n—b

This lemma together with the result of Farahat and Higman [23] implies that symmetric poly-
nomials in the Jucys-Murphy elements generate the center of the group algebra.

Using Equation (4.7), we obtain the following expression for the homogeneous complete poly-
nomials of Jucys-Murphy elements:

Lemma 4.3.2. Forb=0,...,n— 1 we have:

b k
hb(j%-'-’jn) = Z(_l)k+b Z Hcaz

k=1 &G(Gn/’\‘)k i=1
S l(ay)=kn—b

We denote hy(To, ..., Tn) by Wbe"'. Let %,, be the m-th Catalan number. Let us list the first
few examples of WbG”:

WOG“ =1;

W = %1 Clarin—2) (= o1(J) = p1(J) = sum of all transpositions):;
—1

Wy = ©2C311n-3) + %120(221"*4) + TL(TLT)

Wy = G3C(q110-4) + G2G1C(312110-5) + € Cas1no)

N (ESICES NP

Of course, each summand appears if and only if n is big enough to allow the corresponding cycle
type.
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4.4 Ramifications of Hurwitz theory

In this Section we define the basic objects of study in this chapter — different variations of the
classical Hurwitz numbers, whose definition utilizes symmetric functions of Jucys-Murphy elements.
We describe a class of problems and their geometric interpretations.

4.4.1 General setup

The general setup is the following. We consider the coefficient of C(;ny in the product C,,C, B for
some B € Q(6,):

. 1
hu,u,B = H[C(ln)}CMCVB

If B € Z(Q(6,,)), then its action in the left regular representation is given by the diagonal matrix
egv(B), whose action in the irreducible representation A is multiplication by the eigenvalue egv, (B).
The elements C,, lie in the center and their eigenvalues are given by egv, (Cy,) := |Cq|xa()/ dim A,
where dim A and x, are the dimension and the character of the representation A\, and |C,| is the
number of permutations of the cycle type . This implies that

_ Tr(egv(Cp)eev(Cy)egv(B))
(n!)2
= <dim)\> egv,(C,,) egvy (C,) egvy(B)

n!
)\)—n

hv.B (4.8)

7 Z w)x(v) egvy(B),

where Z, = [T i [T/, (Gi)! for p= (171272 ™) = (g > -+ > pag(p))-
Let us discuss some examples. One can observe that
L(N) 1 1
e N0 VR B i
g (C) =3 i+ g~ (i g
The Hurwitz number hs, , p for B = €397 2T §g the standard double Hurwitz number for

possibly disconnected surfaces of genus g [43]. Consider an element C,. such that
Lo

_ o1,
egv, (C)) 'Z <_Z+§) .

It is the so-called completed r-cycle [36] (in some normalization), and the Hurwitz number hy . B

for B=C," , m(r—1) = 2g—2+£(u) +£(v), is the double Hurwitz number with completed r-cycles
for possibly disconnected surfaces of genus g [48].

In some cases, one can consider the enumeration of coverings up to automorphisms that fix the
preimages of two special points (say, 0 and oo in CP!) pointwise. In this case, we use the following
formula instead of the one given by Equation (4.8):

a0 zHZ(V) 1;XA v) egvy(B).
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

4.4.2 Basic definitions

Let p be a standard Young tableau of a Young diagram A - n. We denote by i and j; the column
and the row indices of the box labeled by k. By

cr’ i= (in — j1,d2 — J2s- - -y in — Jn)
we denote the content vector of the tableau. Jucys [32] proves that
egvy(B(Jay ..., Tn)) = Blerh, ... crf) (4.9)

for any symmetric polynomial B in n— 1 variables and any choice of p. Since it does not depend on
p, we can always use some standard choice of the Young tableau, for instance, filling the diagram
from left to right, and denote by cr® the content vector for this choice. This implies the following:

Lemma 4.4.1. If B= B(Ja,...,Jn) is a symmetric polynomial in the Jucys elements, then

1
h’u,,y,B = > - Z XA(/,L)X)\(Z/)B(CI’S\, B Cri\z)'
ZnZy AFn

Definition 4.4.2. A disconnected double Hurwitz problem is the following set of data: genus g,
degree n, two partitions u,v = n, and a vector P = (P1,.--yPm), m > 1, where each P; is a
central element of Q(&,,). We assign to each P; a number b; and we require the Riemann-Hurwitz
equation to hold: Y"1, b; = 2g — 2+ £(u) + £(v). The associated Hurwitz number is then h®

v, B
for B :=[];", P;, and it can be expressed as
L] 1 N
howp = —[Cam]CuCy 117
i=1
We call elements P; blocks and the vector P the vector of blocks.
Here are some possible blocks (that is, the possible values of P;, i = 1,...,m), which are

arguably most important for applications:

By = 0u(Jos s Tn); Bbg =ho(Jos .., Tn); By =pp(Tos- ., Tn)s
b

k

B Y e HleYerr Y e
ac(&y/~) k=1 Ge(6, /~)F =1
l(a)=n—b S l(ai)=kn—b

In all these cases b; := b.

In each of this cases we can describe the geometry of the covering that realizes the monodromy
of the block. The descriptions follow directly from the definition of the Jucys-Murphy elements
Ji, k=2,...,n, and the central elements Cy, A - n.

Lemma 4.4.3. The geometric interpretation of the possible blocks is the following:

Bj [Strictly Monotone] We have b simple ramifications, whose monodromies are given by the
transpositions (x; y;), x; < yi, © = 1,...,b, with the extra condition y; < yit1.
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4.4. Ramifications of Hurwitz theory

BbS [Monotone] We have b simple ramifications, whose monodromies are given by the transposi-
tions (z; y;), ©; < yi, it = 1,...,b, with the extra condition y; < y;t1.

By [Atlantes| We have b simple ramifications, whose monodromies are given by the transpositions
(z;y),i=1,...,b. Herey is an arbitrary number from 2 to n, which is not fized in advance,
but is the same for all transpositions.

B,L [Free Single] We have one ramification, whose monodromy has no restrictions except for the
Euler characteristic of the preimage of the corresponding disk, that is, the monodromy given
by a cycle type p with £(p) = n — b.

Bl‘)| [Free Group] We have an arbitrary number k of ramifications, 1 < k < b with no restrictions
on the monodromy except for the restriction on the Fuler characteristic: the total number of
zeros of the differential of the corresponding covering should be equal to b. The coverings are
counted with an extra sign (—1)k+°.

The Jucys correspondence given by Lemmas 4.3.1 and 4.3.2 implies the following equalities:

Proposition 4.4.4. We have B~ = BII) and BbS = Bl‘)l.

443 Examples

Here we survey some examples of disconnected double Hurwitz problems in the sense of Defini-
tion 4.4.2 known in the literature.

The Harnad-Orlov correspondence

In [31] Harnad and Orlov prove that a family of 2D Toda tau-functions of hypergeometric type
have two different geometric interpretations involving double Hurwitz problems. Their Theorem
2.1 expresses these tau-functions in terms of some Hurwitz numbers of some special type and their
Theorem 2.2 deals with enumeration of paths in Cayley graphs. We review these two theorems
and show that Jucys correspondence implies their equivalence.

The hypergeometric function 7 ., .)(t, t) is defined as

ot = X S [0

n=0 AFn j=1

Here w = (w1,...,w;) and z = (21,...,2,) are the parameters of the tau-function, and their
number (I and m respectively) is arbitrary, not necessarily finite. For particular values of these
parameters the hypergeometric tau-functions represent all generating functions of the Hurwitz
numbers considered below. Using the generating functions of o, and h;, (see Equation (4.5)) we
rewrite (4.4.3) as

Zq Z Z HwC“Uca (cr? sz ha, (cr)sa(t)sx ()

n=0 AFn cent a=1
deN™
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

Since sx(t) = >, |x X2 (1)Pu(t)/Z,, the coefficient of

I m
q" H Hw Zb pu pl,(f)

a=1b=1

in this expression is equal to

Z X/\ Haca cr? thb cr?

AFn

Lemma 4.4.1, Lemma 4.4.3, and Jucys statement about eigenvalues (4.9) imply that this coefficient
is equal to hj, , g for the vector of blocks given by

P = (B;,.. ,BS, B3, ..,B§m)

This is the way Harnad and Orlov prove [31, Theorem 2.2]. Now Proposition 4.4.4 implies a
different interpretation of the same Hurwitz number, namely,

P =(Bl.....BL.Bl.....Bl ),

which proves [31, Theorem 2.1].

Remark 4.4.5. The monotone and strictly monotone blocks are expressed in [31] as counting paths
in the Cayley graph of &,,. For convenience, we express them as a Hurwitz problem here.

Remark 4.4.6. We also adjust a small inconsistency: observe that our weight in each summand of
the free group block is (—1)**% while in [31] it is (—1)"+F+b.

Remark 4.4.7. The solutions of the Hurwitz problem in genus zero with v = (1™) and a single block

BEU . (which coincides with BIU except that the number of groups k is fixed and it is not weighted
by sign) is known as Bousquet-Mélou Shaeffer numbers [6], see also [34].

Enumeration of hypermaps

The enumeration of hypermaps, or, more generally, of Grothendieck’s dessins d’enfants, is consid-
ered in many recent papers in slightly different formulations in relation to the Chekhov—Eynard—
Orantin recursion, quantum curves, and KP/Toda integrability. An incomplete list of recent
references includes [17, 35, 9, 25, 54, 26, 4, 5].

Enumeration of hypermaps is equivalent to the standard weighted count of the coverings of
degree n of a sphere CP! by a surface of genus g (or, rather, a possibly disconnected surface of
Euler characteristic 2 — 2¢g) that have three ramification points, 0, 1, and oo, such that

— The monodromy over 0 has cycle type p + n, which is a parameter of the enumeration
problem.

— The monodromy over co has cycle type (r"/ ™), r is a parameter of the enumeration problem,
and we assume that r|n.

— The monodromy over 1 is an arbitrary one. Let us denote it by x = n. The only restriction
that we have here is imposed by the Riemann-Hurwitz formula 2g —2+4(p) +n/r = n—{(k).
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4.5. Operators for B;~, Bbé, and B}

In our terms, this enumeration problem can be reformulated as a Hurwitz number h® where

v = (rl#l/m), the vector of blocks P = (P;) has length 1, and

w,v,B>

_ |
B ="P1i= Bag attutinl/r
Proposition 4.4.4 implies that

_ <
B= By, are(uytiul/r

The Hurwitz numbers for the data
_ ()T <
(QvnaM,V - (T ) P (BQg 2+€(u)+n/r))

are called monotone orbifold Hurwitz numbers in [7] (orbifold here refers to the type of partition
v), 8o it is natural to call Hurwitz numbers for the data

(7110 = ("), P = (B, sy smye)

strictly monotone orbifold Hurwitz numbers. Then the observation above can be reformulated as
follows:

Proposition 4.4.8. The enumeration of hypermaps is equivalent to the strictly monotone orbifold
Hurwitz problem.

Remark 4.4.9. This proposition also implicitly follows from the discussion in [4, Section 1], in a
different way.

4.5 Operators for B, Bbg, and By

In this Section we derive the operators that represent the blocks B< Bl;, and B in the semi-
infinite wedge formalism and provide the corresponding differential operatorb

4.5.1 Derivation of operators

Recall that the Casimir operator go(z) on Vpis a é\[w—operator (4.2.1) that generates completed
cycles. We would like to construct the same operators for the blocks B;, Bbg, and B, that is, we
are looking for the operators D()(z), D) (z), and D(?)(z) defined on Vj and acting on the basis
vectors as follows:

D(” Z k'pk et Yoy, D(h) Zz “h( cr YU,

D(” Zz o cr?

Since it is not important how we arrange the generating functions, we do it in the way that is most
convenient for the proof below.
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

Remark 4.5.1. While D®)(z) is an element of the gl__ Lie algebra, operators D (z) and D) (2)
belong to the corresponding group. From the Newton identities it follows that

1

DM (2) = o

Proposition 4.5.2. These operators, as the formal series in z, are given by the following formulas:

log z) ,

D(p)(z) = 0\

g (2 4) -
2N dz) g 2.d
D(h)(z) = 5 <(=*&) = exp <|‘g0 (Z dZ) - F

(%)
_50(—z2%) -
DO () = 2 (—=24) e = exp | — L’%%) —Ellogz].
(=)

Proof. The action of the power sums of Jucys elements was computed by Lascoux and Thibon
in [37, Proposition 3.3]. The formula for D)(z) is equivalent to their result. Note that the
constant term of £(2)/((z) is precisely E. The formulas for D™ (z) and D(?)(z) follow from the
Newton identities (4.6). O

Remark 4.5.3. Since we know the differential operator (4.2.1) that corresponds to o, we immedi-
ately obtain the differential operators corresponding to D®), D) and D).
Remark 4.5.4. Note that the formula for D(?)(2) was already observed in [4, Section 3].

Remark 4.5.5. The operators D®)(z;), D" (2;), and D(?)(z3) commute with each other for arbi-
trary values of z1, zo and z3.

4.5.2 Some examples

In this Section we list some examples of particular Hurwitz problems whose generating functions
are written as vacuum expectations in semi-infinite wedge formalism.

Example 4.5.6. Simple orbifold Hurwitz numbers:

i=1

Z(p;h) = (0] exp (Z pz;“) exp (hFy) exp (%) |0),

where Fy = [2']D(?)(2) is the second Casimir. Note that here we could use D™ instead of D7)
since their [2!] coefficients coincide.

Example 4.5.7. A one-parameter deformation of simple Hurwitz numbers in the tau-function of
double Hurwitz numbers:

N i > cilg
2(p, ) = (0] exp (Z pli ) exp (hFz) exp <Z 5 > |0)

i=1 i=1
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4.6. Monotone Hurwitz numbers

Example 4.5.8. Monotone orbifold Hurwitz numbers:

Z(p;h) = (0] exp (Z ”) DW(H)exp (7 ) 10)
i=1

Example 4.5.9. Strictly monotone orbifold Hurwitz numbers (or, equivalently, hypermaps, see
Proposition 4.4.8):

Z(p:h) = (0] exp (Z W) D) () exp (1) 10)

i=1

Example 4.5.10. Atlantes orbifold Hurwitz numbers:

2(pi 1) = (0] exp (2 pia ) exp(r 1D ) exp (52 ) 10

4.6 Monotone Hurwitz numbers

In this Section we discuss the monotone (orbifold) Hurwitz numbers (see Example 4.5.8 above)
from different points of view.
4.6.1 HCIZ matrix integral and basis vectors

According to [29] the generating function of double monotone Hurwitz numbers is described by
the Harish-Chandra—Itzykson—Zuber (HCIZ) tau-function. More precisely, let us introduce the

tau-function )
-1+
THCIZ ZOC sx(t S,\ 1")\ —l—N—z—i—l)

so that the HCIZ matrix integral is given by the Miwa parametrlzation ti = Tr A, t; = Tr B,
i=1,2,..., of this tau-function

/dUeaTrUAUiB =THCIZ (t,EvaaN) .

Here we assume that the N x N matrices A and B are diagonal, and we normalize the Haar measure

on the unitary group U(N) in such a way that [ dU = 1. Up to a factor that is not relevant for our

computations, HCIZ integral describes a tau-function of the two-dimensional Toda lattice [39, 53].
The generating function of the double monotone Hurwitz numbers is given by

T (6,8) = THe1z (6,8, 071, —h7")
1) A—1
_ZS* sa(t ll—[lkl_[OlJrthrzf)\)

or, in terms of the semi-infinite wedge product, by

o ) = 0 (300 ) o0 () 0
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

Proposition 4.6.1. We can choose basis vectors of the KP hierarchy with respect to the set of
times t in the following way:

Y1) = G (k) e2om=1 T 1=k
where

I(1—k— h~1)(—h)l=k=D 0
T(D—h1)

Gmm(k) =
Remark 4.6.2. To specify the asymptotic we use the operator identity
0 0
- a _ ,a - 1
1) = (@)
valid for arbitrary function f, so that for the leading coefficient of the series (4.6.1) we have

_ T —k—hr1Y)(=h)"P _
1-k _ 11—k _ . 1—k
Gom (k)x =x 0 -k D5 =g "

We have

4.6.2 Quantum curve from KS operators

We construct the KS operators by conjugation:

e} k
) “R)FD(D — B
_ . -5 { -D
Amm = Gmm a Gm’m —~ kth D + k- h—1 )

k-1 1
kipa® _
kal— (D+])

MW

k=1

It follows from Equation (4.4) that this operator annihilates the first basis vector. This implies
that the wave function given by

V) = O]
_ F(—ffl)(—h)*De% T fak

T(D—h )
is annihilated by the operator A,,,,, where
< k—1 1
A = ’; kiyx EO TR hD. (4.10)

We call the operator A,,,, a general quantum curve.
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4.6. Monotone Hurwitz numbers

If £}, = 0 for all k > [ with some finite [, then the quantum curve can be reduced to a polynomial
one:

l k
1
Ao = k _mD
k=1 7j=1
_ ﬁ L i
e 1—h(D —j)
where
. Lk l
A =Y kb [ (1= (D = j)) =aD [ (1 = (D - 5))
k=1 j=1 j=1

also annihilates the wave function:
Ay O™ (2, 1) = 0.

Introducing the operators & = z-, y = _ha%v we obtain

! I—k I
:Zkfkfckn + 29 + hj) + H 1+ 29+ hy).
k j=1 i1

Further specializations of this formula imply the following proposition:

Proposition 4.6.3. The quantum curve for the monotone r-orbifold Hurwitz numbers is equal to

glat+ [Ja+a9+hG-1)9
j=1

In particular, for r = 1, it reduces to
E(29° + 9+ 1).

Remark 4.6.4. These expressions, up to a factor Z, coincide with the quantum curves obtained
in [7, 8.
Proof. Monotone r-orbifold Hurwitz numbers correspond to the specialization

- Ok
tk: k,r

” .

In this case the quantum spectral curve (4.6.2) reduces to

A=a"+2g [[ (1 + 5+ hj)
j=1

" 1+H +2g+h(G—1))9

I
=
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

4.6.3 Linear equations for the tau-function

In this Section we derive some linear equations for the tau-function of double monotone Hurwitz
numbers Ty, (t, t).

Recall that the boson-fermion correspondence allows us to translate the operators in wj 4 into
the differential operators in the variables t in gA[OO. The general formula reads:

; L @)+ )" 5
(D)™ z* - Yapymar = E{Zeg (:U k : lej(x) s | dz,
where the operators (D)™ x*, m >0, k € Z, span w1400, D = xa%. We refer to [2] for a detailed
exposition of this correspondence.
Remark 4.6.5. Note that the operator ?a is a finite-order differential operator if and only if a €
W1400 18 a differential operator, that is a polynomial in D.

Proposition 4.6.6. The tau-function T,m(t,t) satisfies the following linear identities:
R Ty (6,8) = 0T (6,8), n=1,2,....

where
n

Rn = Z(*h)k Z Ya:*"'(Dfil)---(Dfik)
k=0 1< <ia<--<ip<n

Moreover, this system of identities determines the tau-function uniquely up to a constant factor.
Proof. Consider the KS operator

(=mI(D —h"")

. -1 _ -1
brum 1= Gram Yo G = @™ Trp =7 75

=211 - KD -1)).

Using that Dz—! = 271(D — 1), we have:
by =2 "(1=h(D-1))(1=HhD—-2))---(1 =D —n)).
Hence we have that Ifln = ?b;;m, n = 1,2,.... Since the operators 0, are polynomial in D
and preserve {®™™} the corresponding differential operators are finite degree operators in t that
satisfy R }
Yo Tmm = Cn(6)Tomm.- (4.11)

We have to determine the coefficients ¢, (t), n =1,2,....
Note that Equation (4.11) is obtained by conjugation with D(?), where D) is now considered
also as a differential operator in t, of the following equation for 74(t,t):

-~ ~

YiponTe = Cn(t)Te, ,n=1,2,....
The last equation can be rewritten as

0 .
a—tnT. =nt,Te, ,n=1,2,.... (4.12)

Thus we see that ¢, (t,) = nt,, and since Equations (4.12) determine the tau-function 7, up to a
constant factor, the same is true for Equations (4.11) and the tau-function 7,,,,. O
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4.6. Monotone Hurwitz numbers

Remark 4.6.7. By construction, the operators ]%n, n > 1, commute.
Example 4.6.8. Let us list the first two operators, f%l and 1?52. We have:

= 0

Ry = — — ALy,
1 a1 1
~ 0 ~ 9=
Ro= —— — 2hLo + 12 Mo,
Ot
where
~ —~ 1 ~ ~
Lm = Yx—m(D_mT-Fl) = 5 . Jan )
a+b=m
— —~ 1 ~ o~ o~
Mm = == M an ¢

m—m(Dz_(m+1)D+ (1+m)6(2+m) )

are some standard infinitesimal symmetries of KP, see e.g. [2].

Remark 4.6.9. For the tau-function of the double monotone Hurwitz numbers all possible Kac—
Schwarz operators that are polynomial in D are given by the polynomials of b,,,,. However, for
particular specializations of the parameters f;, some other polynomial Kac-Schwarz operators can
appear. In particular, for the single monotone Hurwitz numbers (Example 4.5.8 with » = 1) we
have the following Kac—Schwarz operator:

Conm =02, = b1 G + (1 4+ B Dapm = 2z — hD + B2D(D —1).

mm

The corresponding equation for the tau-function is

Yeom Tmm(tyfﬂfk:hﬂak,l,kg} =0,

where

ﬁmm = W2My — hLo + t,

is equivalent to the cut-and-join equation of [27]. Similar operators can be easily found for higher
T.

4.6.4 ELSV-type formula

We denote by hgﬁ) ., the monotone Hurwitz numbers for the connected covering surface of genus g.
The generating function for these numbers is the logarithm of the one we have in Example 4.5.8
for r = 1. The following quasi-polynomiality property is proved in [27, 28]:

T (20
hQSxHZH( ')Pg’n(ulw'wﬂl(u))
i=1 v

for some polynomial an. Based on this formula the authors conjectured that there should be an
ELSV-type formula for these numbers.
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

The topological recursion for these numbers is proved in [8]. They prove that the expansions

of the correlation differentials of the curve x = —(y + 1)/y? are given by
£(p)
win(zl,...,zn) Z h T Hx”l (4.13)
ME(NX)"

Remark 4.6.10. Here by i we denote a vector, that is, we don’t assume that u; > -+ > u,. We
denote by p the partition of length n whose parts are the ordered components of the vector ji.

This is sufficient to prove the following:

Proposition 4.6.11. We have:

o(p) 2t; £(p) 24 +d; ) — 1!
S * Zz 1 Kk J
Mo 1;[1 ( )/ 1> v BT (4.14)

Hi /I Mg e j=1d;>0

Here the coefficients K;, i = 1,2,..., satisfy the following equation:

exp (—iKlUl> = i(%ﬂ)!!Uk. (4.15)
=1

k=0

Remark 4.6.12. The cohomological field theory in this formula is given by the class exp (>,_; K;r;)
. This type of cohomological field theories of rank 1 with a non-flat unit is considered in detail
in [38).

Proof. First note that z(y) has a single critical point y., = —2 with the critical value z.. :=
2(yer) = 1/4. The local coordinate ¢ around y., and its inverse read

+2 21
C:: VT — mcmt—zLa Yy = -
2y 2¢—1
We expand y near { = 0:
= st s =2, (4.16)

k>0

in particular for odd coefficients we have sop 1 = 4i(—4)".

The correlation differentials wy , produced by the topological recursion can be expressed as
sums over graphs (see [19, 20, 13]). In the case when the spectral curve has a single branch point
Theorem 3.3. in [19] gives an explicit formula for the wg,’s. Since the local coordinate ¢ is in fact
a global coordinate on the sphere, the Bergman kernel is equal to

d¢id¢y
¢ — &%

This means that the Bergman kernel has trivial regular part near the critical point, and the
expression in term of stable graphs simplifies sensibly since only stable graphs with a single vertex
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4.6. Monotone Hurwitz numbers

appear. It can be written as

— " d
wen(€) = (—281)" 727" Y H 2d; +1)! QdCH (4.17)
denn i=1
Lo 5 T (emr ety
Mgn 521 m=0 T ! ae(N*)m k=1 51

(cf. [13, Equation (3.53)]), where the coefficients s, are given by Equation (4.16).
In order to rewrite Equation (4.17) as an expansion in x1, ..., x, near y = —1, we observe that
(2a+1)Md¢ ey o (21 0. 2 +a) - DN L18
(2a+2 Z 2r-nn - (4.18)

=

Indeed, this follows from equation

2a + 1)!ld d\"
(a<2a+)2 CZ <_Cd<> (_C 1)7

()

The multi-index kappa classes can be written as exponent of sum of single kappa classes:

z S T Ao o (zK)
m! =1

Ge(NX)m k=1

and expansion

where the coefficients K; can be computed by the expansion

o0

exp (—iKlUl> =1- Zf(k)Uk
=1 k=1

This implies that

i % > ﬁ 2ak + D'kay,.. a0, = exp (im#) : (4.19)
T ae(Nx

m=0 ym k=1 1=1
where exp (— Y72, KUY = 307 o (2k + D)IU*.
Finally, observe that if Y., di + > 1" | a4 = 3g — 3+ n, then

n

(=251)>2 T ((—a)™ - 20)) - [T 22+ =1 (4.20)

k=1 k=1 1
Now we are ready to complete the proof of the proposition. Note that Equation (4.13) implies

that
S gt = [ [

HE(NX )™
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

On the other hand Equations (4.17), (4.18), (4.19), and (4.20) imply that

/.../w;n:

1=1 Kk n d; (2(/1“] + d]) — 1)” 2/1,]- "
Z Z /— ezf K J];[le (2Mj_1)” ( ‘>{Ej

i 7, m /’L
g ) geqyyn I Mon /

for K given by Equation (4.15), which is equivalent to Equation (4.14). O

Remark 4.6.13. After we shared this formula with colleagues, we learned from N. Do that he and
M. Karev derived the same formula independently, using the geometric approach to topological
recursion due to M. Kazarian.

4.7 Further examples of quantum curves

4.7.1 Strictly monotone orbifold Hurwitz numbers

By Proposition 4.4.8 strictly monotone orbifold Hurwitz problem is equivalent to the enumeration
of hypermaps. Its tau-function is given in Example 4.5.9.

By principal specialization of Schur functions near infinity, the corresponding wave function is
equal to

0o T 0o
\I’(J? 1, h) = Z W Z O'k(CT(Tn’O """ 0))hk (421)
n=0 TS0
00 - rn—1
:anhnrn H(1+‘7h)
n=0 j=1

In order to get a curve, consistent with results of [9, 12], here we consider the wave function as a
series in the variable 2! instead of .

Proposition 4.7.1. We have:

where & = x- and y = fh%.
Proof. Let a,, be the nth summand in Equation (4.21). We have:

r—1
hr(n+ Daps = o " H[l + (nr + j)hlay,.
j=0

In terms of the operators this can be rewritten as

0 . aN]" .,
—hx%anﬂ = {a: (1 — hx&v)} z"a,,.
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4.7. Further examples of quantum curves

Hence we obtain

1 0 " 0 —1 _

O

Remark 4.7.2. This quantum curve was earlier obtained in [9] using combinatorics of hypermaps
and in [12] using the loop equations for hypermaps. Comparison with this results also forces us to
use the variable 2! instead of z.

Remark 4.7.3. Even though we presented here a purely combinatorial derivation of the quantum
curve, it is worth mentioning that one can derive it for a more general double strictly monotone
Hurwitz problem using the method of Section 4.6.2. In this case the operator given by Equa-
tion (4.10) is replaced by

o] k—1
> ke [T (1 + (D + ) - kD,

whose specialization for t; = dy.,./r is equivalent to the operator above after the change of variable
-1
T

4.7.2 Blocks of atlantes

We consider a Hurwitz theory given by a vector of blocks of atlantes of some fixed type, that is,
the vector of blocks is equal to P = (B),...,B)) for some fixed r > 1. We also assume that
V= (1‘“‘)7 see Example 4.5.10 for ¢ = 1. The corresponding wave function is equal to

oo xn
U(x, h) = Z i exp(py (er™00)pr) (4.22)
n=0

Z — exp FLTZ]

Proposition 4.7.4. We have: A
[ — &e” [¥(x, h) =0,

where & = x- and § = hxa% (it is more convenient to use the exponential coordinate in this case,
of. [41]).
Proof. Let a,, be the nth summand in Equation (4.22). We have:

h(n+1ap41 = e ™ a,

In terms of the operators this can be rewritten as

0 8y
ha——an 1 = zel@5:) q,,.

ox

Therefore,

hx% — zelhoas)" U(z, i) = 0.
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

Remark 4.7.5. This case is very interesting since we can say in advance that the logic outlined in
Section 4.1.2 fails. Indeed, the dequantization of this quantum curve consides with the dequanti-
zation of the quantum curve for the r-spin Hurwitz number

1 T
A~ ~3/2 A LA AT —T
Yy T exp (7‘4—1}0%‘ yxy >

proved in [41]. Even though the spectral curve and the corresponding r-ELSV formula for the
r-spin Hurwitz numbers are still conjectural, there is very strong evidence for these conjectures to
be true [49]. From these conjectures we can conclude that the dequantization of §j — 2 exp(g") can
not be the spectral curve for the atlantes Hurwitz numbers, suitable for the construction of the
topological recursion.

Indeed, even though in genus zero atlantes Hurwitz numbers coincide with the r-spin Hurwitz
numbers (and hence all data of the spectral curve must be the same), in higher genera this is no
longer the case.

4.7.3 Double Hurwitz numbers

The partition function of the double Hurwitz numbers is

Tr(t,t) = (0] exp <Z tioq) exp (hJF3) exp (Z fia_i> |0).

i=1 =1
or
THH t t E S)\ S)\ ﬁegv/\(Cg)

Then, the basis vectors for this tau-functlon as a KP tau-function with respect to times ¢ is
QHH (1) = o5 ((D=3)°—(k—3)%) 252, T2’ L 1—k
The wave function is given, as usual, by a rescaling of ®H (x):

U(z,h) = @fIH(x)|t~th,15Mk21

Proposition 4.7.6. We have:
3 ki (2¢%)" — g (e”, h) =0,

where & = x- and § = hD.

Proof. To obtain the KS operators for the generating function of double Hurwitz numbers we use
the conjugation of the operators (4.2.2):

n _n
agg =e2™0a,e”2™M0 (4.23)

= " kix (wexp (kD))" — D

T

kize® =D gk exp (hkD) — D,

E
I
—
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4.7. Further examples of quantum curves

where mg := (D - %)2 + ﬁ (the constant % is not important for the calculations, but this way

we get one of the standard generators of wi4o, cf. the operator M\O in Example 4.6.8). The KS
operators (4.23) act of the basis vectors as follows:

apa P17 (2) = (k — 1)@ (2).

The operator agy annihilates ®77(z) and, therefore, describes the quantum spectral curve
for this model. Namely, we have
AHH \If(x‘, h) =0

where

Apg =Y ke =Dk exp (hkD) — hD, (4.24)
k=1

Remark 4.7.7. The wave function in this case is also given by the integral

U(z. ) = e s Ood y2 Y - Nk y\k
(z,h) = opes y exp —ﬁ—§+2g(we) :

— 00

considered as a formal series in ty.

Remark 4.7.8. Particular specifications of t;, describe interesting examples of this model, in partic-
ular usual simple Hurwitz numbers [2], triple Hodge integrals and string amplitude for the resolved
conifold [51]. Quantum spectral curves for all these examples are given by specifications of the
more general expression (4.24).

A particular example: one-parameter deformation of single Hurwitz numbers

Let us discuss an example of a particular specialization of double Hurwitz numbers given by #;, =

ck=1, k =1,2,.... This gives a one-parameter deformation of single Hurwitz numbers considered

in Example 4.5.7. Up to a simple combinatorial factor, this is equivalent to the Hurwitz theory for

the vector of blocks (B5,...,B5, BS) and v = (14l (recall that BS = B) by Proposition 4.4.4).
In this case the wave function is given by

U(x, h) = (0] exp (Z 9510@) exp (hF2) exp (Z c’_haz> |0).

i=1 i=1

Equation (4.24) reduces to

Ze¥
App = ( - 9.

1 —cie¥)?

(1—cze?)?

Let us multiply this operator by ~——=-—~. The resulting equation for the wave function

(1 - (67

describes the quantum spectral curve for this case.

g7t =2+ Pie?) §) Uz, h) =0
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4. Ramifications of Hurwitz theory, KP integrability and quantum curves.

Remark 4.7.9. The restriction of the wave function ¥(x, %) to ¢ = 0 is the wave function of the
single Hurwitz numbers, and in this special case we recover the quantum spectral curve e 9219 —1,
which is equivalent to the one that was proved in this case in [50].

This quantum spectral curve equation suggests that the spectral curve for the one-parameter
family of Hurwitz numbers that we consider here should be

ye ¥ — (14 2ey)x + yevz® =0,

which is a deformation of the Lambert curve.
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Quasi-polynomiality of orbifold Hurwitz numbers,
spectral curve, and a new proof of the
Johnson-Pandharipande-Tseng formula

In this chapter we present an example of a derivation of an ELSV-type formula using the methods
of topological recursion. Namely, for orbifold Hurwitz numbers we give a new proof of the spectral
curve topological recursion, in the sense of Chekhov, Eynard, and Orantin, where the main new
step compared to the existing proofs is a direct combinatorial proof of their quasi-polynomiality.
Spectral curve topological recursion leads to a formula for the orbifold Hurwitz numbers in terms
of the intersection theory of the moduli space of curves, which, in this case, appears to coincide
with a special case of the Johnson-Pandharipande-Tseng formula.

5.1 Introduction

5.1.1 Main goal

The main goal of this chapter is to present a new important application of the procedure that
allows to relate in a uniform way a class of combinatorial problems to the intersection theory of
the moduli space of curves. First, let us describe this procedure. The logic behind it is the following
one:

— We start with a combinatorial problem that depends in a natural way on a genus parameter
g > 0 and a vector [i € ZZ,.

— We consider the generating functions that solve this combinatorial problem. Quite often we
can prove that they can be considered as an expansion of certain symmetric differentials wy
that solve the matrix model topological recursion [10, 9] for a particular spectral curve data.

— Under some mild assumptions, the expansion of the symmetric differentials obtained via the
topological recursion can be represented (up to some constants) as

. S(al,..
Z Z [ Mg,n HJ 1(1_1/’de Hfa] (@)

l(ﬁ):n at,...,an=1
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Here r is the number of branching points on the spectral curve, S(aq,...,a,) is a certain
explicitly described tautological class on the moduli space of curves, and £,(x) are some
auxiliary functions, a = 1,...,r, also explicitly described [6, §].

— This way we solve the original combinatorial problem in terms of the intersection numbers
of the tautological classes on the moduli space of curves, and the formula that we get is of
ELSV-type [7].

The first instance of this way to derive an ELSV-type formula was presented in [5], where this
leads to a new proof of the original ELSV formula for ordinary Hurwitz numbers.

In this chapter we perform this whole procedure for the so-called orbifold Hurwitz numbers [14,
12, 4, 3]. The orbifold Hurwitz numbers are a special case of double Hurwitz numbers [13], where
the ramification indices in one special fiber are given by an arbitrary partition u, and in the other
special fiber they are all equal to r. The intersection formula that we obtain via this procedure
was previously derived by Johnson, Pandharipande, and Tseng [14], and this way we get a new
proof of it.

5.1.2 The known facts about orbifold Hurwitz numbers

Let us collect here the known facts about orbifold Hurwitz numbers so that we can summarize all
relevant previous papers about them.

Fact 1: (JPT Formula) The orbifold Hurwitz numbers are given by the intersection numbers on
the moduli space of curves via the Johnson-Pandharipande-Tseng formula.

Fact 2: (Quasi-Polynomiality) The orbifold Hurwitz numbers can be represented, up to a par-
ticular combinatorial factor, as the values of a polynomial in n variables puq, ..., t,, whose
coefficients depend only on g mod 7.

Fact 3: (Cut-and-Join) The orbifold Hurwitz numbers satisfy a simple recursion with a clear
topological meaning, which is called the cut-and-join equation [11].

Fact 4: (Topological Recursion) The n-point generating functions of orbifold Hurwitz numbers
can be represented as expansions of the correlation differentials obtained via the Chekhov-
Eynard-Orantin topological recursion procedure.

Let us explain what was known before. First of all, we have the Johnson-Pandharipande-Tseng
result itself [14]:

(Definition) = (JPT formula)
The main results of [3] and [4] can be described as follows:

(JPT formula) = (Quasi-Polynomiality)
(Quasi-Polynomiality) AND (Cut-and-Join) = (Topological Recursion).

Here the first implication is obvious; though, until now, there was no other proof of quasi-
polynomiality than its derivation from the structure of the Johnson-Pandharipande-Tseng for-
mula. So, we see that the JPT formula is used in a very weak way in these papers; only its general
structure appears to be relevant.
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In [15] the full power of the JPT formula is employed; as a result it is proved there that
(JPT formula) < (Topological Recursion)

In the present chapter, we first give a direct proof of the quasi-polynomiality just from the
definition of orbifold Hurwitz numbers. This allows us to use the results of [3, 4] in order to prove
the topological recursion. This allows us to use the result of [15] in order to prove, in a new way,
the Johnson-Pandharipande-Tseng formula. So, the structure of this chapter can be summarized
as follows:

[this chapter]
——

(Definition) (Quasi-Polynomiality)

(Quasi-Polynomiality) AND (Cut-and-Join) following [3, 4] (Topological Recursion)
Topological Recursion uSigw] JPT formula
polog

The first step here is original and it is the main technical result of the present chapter; in the
second step we follow [3, 4], though we try to focus more on the main structure of the formulas
that represent the abstract loop equations rather than on explicit computations; in the third step
we just use the results of [15].

5.1.3 Organization of the chapter

In Section 2 we introduce our basic technical tool — the semi-infinite wedge formalism. In Section 3
we develop further this formalism, in particular, we use it to define the orbifold Hurwitz numbers,
and we represent them, in particular, using the so-called A-operators. In Section 4 we analyze
further the formula for orbifold Hurwitz numbers in terms of A-operators in order to prove their
quasi-polynomiality. In Section 5 we recall the basic setup of the topological recursion. In Section
6 we show how one can use the quasi-polynomiality and the cut-and-join equation for orbifold
Hurwitz numbers in order to prove the topological recursion. In Section 7 we use the result of [15]
to prove the Johnson-Pandharipande-Tseng formula in a new way.
Throughout this chapter we fix integer r > 1.

5.2 Semi-infinite wedge formalism

In this section we introduce the semi-infinite wedge formalism. This allows us in the Section 5.3
to express r-orbifold Hurwitz numbers in terms of vacuum expectation of operators acting on the
semi-infinite wedge space. For a more complete introduction see e.g. [16, 18, 13].

Let V be an infinite dimensional vector space with a basis labeled by half-integers. Denote the
basis vector labeled by m/2 by m/2, so V = @1624_% i.

Definition 5.2.1. The semi-infinite wedge space /\%(V) =V is defined to be the span of all of
the semi-infinite wedge products of the form

i Aig A

for any decreasing sequence of half-integers (ij) such that there is an integer ¢ with iy + &k — % =c
for k sufficiently large. The constant ¢ is called the charge. We give V an inner product (-, -)
declaring its basis elements to be orthonormal.
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Remark 5.2.2. By Definition 5.2.1 the charge-zero subspace Vy of V is spanned by semi-infinite

wedge products of the form

1 3
M—=Ady— = A
1=5 N Ag 3 A

for some integer partition A. Hence we can identify integer partitions with the basis of this space:

=@ Dw

neNAkFn

The empty partition () plays a special role. We call

1 3
1)@:75/\75/\”.

the vacuum vector and we denote it by |0). Similarly we call the covacuum vector its dual with
respect to the scalar product (-,-) and we denote it by (0.

Definition 5.2.3. The vacuum expectation value or disconnected correlator (P)°® of an operator P
acting on Vy: is defined to be:

(P)* == (10), P|0)) =: (0|P|0)

We also define
((z) = e*/? — e7*/? = 25inh(2/2)

Definition 5.2.4. This is the list of operators we will use:

i) For k half-integer the operator ¢y : (iy Aig A---) — (kAiyg Aig A---) increases the charge
by 1. Its adjoint operator 1} with respect to (-,-) decreases the charge by 1.

ii) The normally ordered products of ¥-operators

B {wiw; itj>0
i, * P
—pr; 0§ <0.

preserve the charge and hence can be restricted to Vy with the following action. For i # j
E; ; checks if vy contains j as a wedge factor and if so replaces it by 7. Otherwise it yields 0.
In the case i = 5 > 0, we have E; j(va) = vy if vy contains j and 0 if it does not; in the case
i =7 <0, we have E; j(vy) = —vy if vy does not contain 4 and 0 if it does.

iii) The diagonal operators are assembled into the operators
Fn = Z mEk,k
keZ+%

We will be particularly interested in F5. The operator F is called charge operator, while
F1 is called energy operator. Note that F identically vanishes on V), while F; has the basis
vectors vy as its eigenvectors, with eigenvalues being |vy| (we refer to |vy| as the energy of
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basis vector vy). We also say that operator P, defined on Vy, is an operator of energy ¢ € Z
if —[F3,P] is proportional to P with ¢ being the coefficient of proportionality, i.e. if

*[./_"1, P] = CP
In other words, if P is an operator of energy ¢, then it maps a basis element of energy k into
a combination of basis elements that all have energies k — c.

It will be important to us that operators with positive energy annihilate the vacuum while
negative energy operators are annihilated by the covacuum, explicitly: let M be any operator,
let P have positive energy and N have negative energy, then (MP)® = 0 and (N M)® = 0.
The operator E; ; has energy j — i, hence all the F,,’s have zero energy.

iv) For n any integer and z a formal variable one has the energy n operators:

n On,
En(z) = Z ez(k 2 )Ekfn,k + C(,;O)
kEZA+1/2

v) For n any nonzero integer one has the energy n operators:

an=Eu(0)= > Ep_n

kEZ+1/2
The commutation formula for £ operators is:
[€a(2), E(w)] = ¢ (det [§ 5]) Eavr(z +w) (5.1)
Note that:
L|0>7 ifk=0
Er(2)|0) =< (=)
0 ifk>0.

5.3 A operators

Let r be a positive natural number. The r-orbifold Hurwitz numbers h;jg] enumerate ramified
coverings of the 2-sphere by a possibly disconnected genus g surface, where the ramification profile
over infinity is given by a partition g = (u1,..., () and the ramification profile over zero is
(r,...,r), there are simple ramifications over

L)
bi=2g—2+1(n)+ >
i=1

fixed points, and there are no further ramifications. Clearly r should divide the degree d = |u| of
the covering.

Definition 5.3.1. The genus-generating function of disconnected r-orbifold numbers is the fol-
lowing formal power series:

b

o, r]/~ ‘,Tu
H ’[](/%U): E hg,%]ﬁ
g>0 ’
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The disconnected r-orbifold Hurwitz numbers can be expressed as vacuum expectation in the
following way (see [18, 13, 17]) :

3 ) b . W .
el (i, u) = Z <er]:§ H ,ufh > oo <ere“]:2 H ’“> (5.2)

g>0 i=1

We want to express the vacuum expectation in a more convenient way using the so called A
operators introduced in [18]. We need the notations:

Notation 1. Recall the Pochhammer symbol:

_(z4n)! o (@+D(@+2)-(z+n) n>0
@+ Dn = —7— ‘{ (x(@— 1) (z+n+1)" n<0

From the definition, (z + 1),, vanishes for —n < z < —1 an integer, and 1/(x + 1),, vanishes for
0<z<—(n+1) an integer. Let

sinh(z/2)

S(2) =)z = =00

Moreover we split rational numbers into integer and fractional parts as follows: for x € Q we have

v = |z] +(z),
where |z] € Z and 0 < (x) < 1.

Definition 5.3.2. The following operators will play a central role in the chapter:

Mz u) = e~ 7 (S(ruz)) 7(S(TUZ))]€Z]€ uz
Az, u) (S(ruz)) k% 14 1), Er—n(uz) (5.3)

Define their coefficients in z by .A%T]( u) = ez An [ (k) 2k,

Remark 5.3.3. Our A-operators are at the same time a specialization of Johnson’s A-operators in
[12] (which we will denote by ;.A), and a generalization of Okounkov-Pandharipande ones in [18].
Indeed, we will specialize Johnson’s formulas and results in [12] using the following assumptions
throughout:

K ={e} R=7Z/rZ (5.4)
This implies that every irreducible representation of K is identically one. With these conditions,
Equation (5.5) in [12] gives:

2ral/T

1 _
JA%(Z,U) =7

ta (S(ruz))kzk
S(ruz) —— Elrra(uz
( ) ;Z (HTa + l)k kr+ ( )

The two operators agree in the sense that, for p positive integers:

JA},<&

I

r ru
() = Al () = v~ (S(rup)) JZ “ " ST 1 St ()
keZ

Johnson defines his semi-infinite wedge space to be a tensor product between usual semi-infinite
wedge space and group K. With K specialized to trivial group, however, his definition reduces to
the ordinary semi-infinite wedge space.
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5.3. A operators

Proposition 5.3.4. The generating function for disconnected orbifold Hurwitz can be expressed
in terms of the A operators by:

[5] -
N l(u) B B i r
H(ji,u) = r2esi (5 >H“ “ <HA[ ey (1 > (5.5)

Proof. Both the operators «,. and F» annihilate the vacuum, hence we can conjugate each operator
a_y, in (5.2) by their exponent getting:

1 1(ji) . W\
Ho,[r](/j:’ U) _ T< Hefeu]:ga_uieu]:ze:> (56)
H’L 1 Hi i=1

We recall Equation (2.14) in [18]:

e"Pra_ e = £ (up)

Note that the energy is preserved to be —u. Commutator rule (5.1) gives:

[, E—p(up)] = C(rup)Er—p(up)

We expand the last conjugation in nested commutators of the form above obtaining:

ru k Uk k ru k
e = Y () fen o = S e

r
k>0 k>0

Rescaling by k& — L J — k and using the vanishing properties of the Pochhammer symbol, we can
rewrite the last expression as

uLJ B ru
st ) S

L J keZ J

To match the powers of u we conjugate by the exponent of the energy operator u Since
F1 and its adjoint fix the vacuum, this does not affect operator expectations of products of the
A-operators. Since &; has energy j, the conjugation removes u” from inside the sum and produces
a factor of u{*) outside. Thus we see that the vacuum expectation of the operators in (5.6) can be
replaced by the vacuum expectation of the product of

Fi/r

w |2
ur K o (S(rupi))*
] (S(rup))L J%M—H)&w gty (i)

for i =1,...,1(k). Then, using Equation (5.3) we can rewrite the full formula (5.6) as (5.5). O

Following [18], we define the doubly infinite series:
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5. Quasi-polynomiality of orbifold Hurwitz numbers

which is obtained as the difference between the following two expansions:

1 1 z 22
e w @ W 2l < lw]

1 1w w?

The series 0(z, —w) is a formal d-function at z +w = 0 in the sense that:
(z+w)d(z,—w) =0

We recall the formula for commutators of A, that will be fundamental to prove polynomiality.
Below, by 4,.(n) we denote the function of an integer argument that equals to 1 if n = 0 mod r
and vanishes otherwise.

Proposition 5.3.5 (Particular case of Lemma V.4. of [12]). Let ny,n be integer numbers satisfying
0<m,m <r—1. We have:

[ALIT] (Z’ u)v Agg (wv u)} = 51”(771 + 772)21”5(2, _w)

1

or equivalently:
LA AFEOT = 6, (1) (= 1) 611 (5.7)

We define 2 C C" by
k—1
Q= {(zl,...,zn) € C"|\VE, |z| > Z zl|}
i=1

Specializing Theorem V.2 of [12] with the convention (5.4) (see also Section 2.4 in [5]) we have
the following:

Proposition 5.3.6. For any integer numbers ny,...,0n, 0 < ny,...,n, < 1r—1, the Laurent series
expansion of

<A£;;](z1, ) Al (g, u)>
inu,z1,...,2, converges to an analytic function for (z1,...,z,) € Q and sufficiently small u # 0.

Notation 2. For brevity in the rest of the chapter we denote A%T](z, u) by A, (z).

5.4 Quasi-polynomiality

In this section we derive quasi-polynomiality of r-orbifold Hurwitz numbers (Theorem 5.4.9). The
argument that we use is a suitable generalization of an argument of [5].
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5.4. Quasi-polynomiality

5.4.1 Connected vacuum expectations

Proposition 5.3.4 expresses the genus-generating function of disconnected orbifold Hurwitz in terms
of vacuum expectation of A-operators. Our first goal is have a similar expression for connected
orbifold Hurwitz numbers

Definition 5.4.1. We define the connected correlators (A, (z1) -+ Ay, (21))° in terms of the dis-
connected correlators (---)® via the inclusion-exclusion formula.

The inverse form of the inclusion-exclusion formula reads (cf. [5]):

h(y) o
(Ap, (21) .. - Ay, (20)) Z H < U 1(1,) Zeia(y)) - Anc,i_li(y)m (Zci,li(y)(y)>>/\v(y) (5.8)
YEYVn,k 1=1 !

Here Y, 1 is the finite set of {1,...,n}-Young tableaux y with the following properties:

1. The numbers in the rows should be ascending: ¢; ;(y) is the number in the i-th row and j-th
column, then for any ¢ and for any j; < jo we have ¢; j, (y) < ¢; ;,(y). Each row corresponds
to an individual connected correlator.

2. For rows of the same length, just for the first column the numbers should be ascending: I;(y)
is length of the i-th row, then if l;, (y) = l;,(y) and i1 < iz, then ¢;, 1(y) < ¢iy.1(y).

3. h(y) is the number of rows. Rows are labelled by the vector {\;(y) € {—1,0,1,...}}; with

Zil:(ﬁ) Ai(y) = k. The vector X corresponds to the vector of Euler characteristics of correlators
with sign exchanged.

Remark 5.4.2. For n = 1 we have that connected and disconnected correlators coincide, hence we
just write (A, (2)).

The connected correlators can be used to express the generating function for connected orbifold

Hurwitz numbers: ,
o rl (7 0\ or] W
HM ([ ) = Zhg,ﬂ 3

920

Proposition 5.4.3. Generating function for connected orbifold Hurwitz numbers equals:

WE) i L L1

ol /= W) 1y uTpy

H 7[](M,u):rzz:0<r> Il L“ <|IA (b ,U'1> (5.9)
i=1 r

Proof. This follows from (5.5) and the observation that taking u’-coefficient in H° corresponds to
the coefficient of u29~2+1) in (T].A)°. O

5.4.2 Unstable terms

In this Section we compute explicitly the coefficients of the connected vacuum expectations that
correspond to the orbifold Hurwitz number for ¢ =0 and n =1, 2.
First, let us introduce some convenient notations.
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5. Quasi-polynomiality of orbifold Hurwitz numbers

Notation 3. For any operator P(u) define
(P(w)y = '] (P
(P(w)y = W' (P

Notation 4. We denote by A, ;(z) the positive power part in z of the A, (z) operator to be:

)= Al (5.10)

k>1

u))® (the coefficient of u* in (P(u))*)

(
(
(u))° (the coefficient of u* in (P(u))°)
(

The terms that we want to compute are

o

(An ()2, and (A, (2:) A, (21)),
Lemma 5.4.4. Let n,nm1,1n2 be integer number, 0 <n <r —1. We have:

(Ag(2))°, = 22 (5.11)

z

p k
(A (21) Ay (22))5 5(m+wﬁa§:<—i>. (5.12)

z
k>0 2

Proof. In the vacuum expectation of a single operator A, (z) only zero-energy term can give non-
trivial contribution. Since &; has energy i, we have:

C(ruz)®™ 1 { 1 z(rz—

(Ap(2)) = n,oWC(uz) = 1)u + O(uQ)} dn.0

uz 24
This implies the formula for the genus-zero one-point correlator. The rest of the proof is devoted

to the genus-zero two-pointed correlator.
Note that the following formula for the action of A, (z) on covacuum holds

(01Ag(z) = 22(0] + (0141 (), (513)

which follows directly from Equation (5.3) and two observations:
e &ir_y(uz) annihilates the covacuum when kr —n < 0

e Among the terms that do not annihilate the covacuum, only the term with & (uz) is singular
inzatz=0

Equation (5.8) implies that
(A, (21) Ay (22))g = (Any (21) Any (22))g = (Any (21)) 1 (Any (22))
— (A (21))1 (Ans (22)) 4

Applying (5.13) to the first term in the right-hand side we get:

(A, (21) Ay (22))g = (Any 4 (20) Any (22))g + (A, (20))_; (A (22),
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5.4. Quasi-polynomiality

In the same way, we observe that

<~A771,+(Zl)“4772 (22)>(.) = <[~A771,+(Zl)7“4772 (ZQ)DS + <~A772,+(22)~A771,+(Zl)>(.)
+ (An (1)) (Any(22)) 4

Therefore,

(A, (22)Any (22))g = (Ans 4 (22) Ay 1-(21))g + ([Any 1-(21), Ana (22)])g

The second term here is equal to the right hand side of Equation (5.12) (this follows the commu-
tation rule for coefficients given by Equation (5.7)). In order to complete the proof of the lemma
we have to prove that the first term vanishes.

In other words, we consider

n1+n2 Z27M2 Z1—m

P (A (22) Ay (1) = (5(7%2))*(S(mzl))T X

Z k 1,1
S(ruz))f 2k (S(ruzr)) 2 .
Ekr—n» Er—n, 5.14

><]€lEZ B2 q), (Bom ), < fer—ns (U22)E1r—n (uz1)> ( )

We want to show that the coefficient of u° in this expression does not contain terms of expan-
sion in 21, zo that have positive degrees in both variables. This implies directly that we have

(Aps 1 (22) Ay 1 (21))g = 0.

There are two cases:

e kr —ny = kr —ny =0, which implies k =1 = n; = 1 = 0. In this case the expression (5.14)
is equal to
S(ruzz)%S(ruzl)%l 1 1

3 3 2
= —2-B)+0
C(uz2)C(uz) u2z1 29 + 242129 (rzf + 123 — 2 — 23) + O(u?),

hence all terms in the coefficient of u° have negative degree either in z; or in zs.

o kr —mng # 0 and [r —n; # 0, which implies kr — 12 + Ir — 11 = 0. In this case all factors are
formal power series in u, so we can expand all factors in u up to O(u'). The summand with
particular k& and ! in (5.14) is equal to

_ zéﬂzllz _ N
( 2T7]2 + 1)k( 1T711 + 1)l
The condition kr — 1y 4+ Ir — 17 = 0 is satisfied in one of the two possible cases:

7771:772207]6—’—[:0’]{;7[7&07
—mtnp=rk+l=1

O(u)

In both cases either k or [ is non-positive. Without loss of generality, let’s assume that [ < 0
(the other case is symmetric). Then

l _ _
_#:Zi u u+l+1
(ZIrnl+1)l r r

contains no positive powers of z;.
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5. Quasi-polynomiality of orbifold Hurwitz numbers

5.4.3 Vacuum expectations without unstable terms

In this section we give a formula for the disconnected vacuum expectations, where all unstable
terms, that is, (A,(2))°, and (A, (21)A,,(22)),, are dropped. This is a straightforward general-
ization of the similar formula in [5], which is based on the following simple recursion rules:

Lemma 5.4.5. We can recursively decompose disconnected correlators as follows:

z)HAnxzm; = (Ay(2 HAm Z)) 01+ HAm 2) (5.15)
(Ay H-Am zi))k = (Ay( HAm 2i)) (5.16)
+ (Ao HAm (2i))

Proof. Equation (5.13) and the formula for the one-point correlator (5.11) together prove the first

equality. The second equality follows from the computation of the two-points correlator (5.12). O
This implies the following proposition.

Proposition 5.4.6. We have:

(A +(21) - Agy 4 (20)) (5.17)
h(y)

Z H < Mey, 1(y) Zei, 1(31)) T A"%,li(y)(’y) (Zci’li(y)(y))>>\z‘(y) '

yey e i=1

where

Vil = {y € Yur|lily) = 1= Nily) # —1, li(y) = 2= Ni(y) # 0}
In other words, (A, +(z1)-- ~Anm+(zn>; is equal to (Ay, (21)--- Ay, (20)); with all the unstable
terms dropped.

Proof. The proof of this proposition is completely analogous to the proof of Proposition 2.21 in [5].
It is based on the recursion that expresses (A, (z1)--- Ay, (2,))5 in terms of the unstable vacuum
expectations and A -operators using only Equations (5.15) and (5.16). Though the operators here
are more general, the recursion rules are still the same, so the same argument can be applied. [

5.4.4 Polynomiality

In this section we prove the quasi-polynomiality property for orbifold Hurwitz numbers. First, we

show that (A, +(21) ... Ay, +(20))3 /(21 - 2,) is a symmetric polynomial in z1, ..., z, (excluding
unstable cases of k = —1,n = 1, and k = 0,n = 2). This implies that (A, (z1)... Ay, (20))} /
(21 -+ - 2zp) is & symmetric polynomial in z1,. .., z, (again, excluding unstable cases). This, in turn,

implies quasi-polynomiality of orbifold Hurwitz numbers.

Proposition 5.4.7. The function
<An1,+(zl) s Ann,+<2n)>;

21 2Zn

is a symmetric polynomial in z1, ..., z, for (n,k) # (1,-1),(2,0) .
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5.4. Quasi-polynomiality

Proof. We follow the proof of Proposition 9 in [18]. We have:

i)

ii)

iii)

Boundedness from below: (A, 4(21)... Ay, +(2,)); has strictly positive powers in all its
variables z1,...,z,, as it follows from the definition of A, | (z) given by Equation (5.10).
So, we can divide by []\; z;, and we still have only non-negative powers of z1,. .., z, in the
expansion of the quotient.

Symmetry holds because A, operators commute which each other, which is a direct conse-
quence of the commutation formula (5.7).

Boundedness from above: Since it is a symmetric function, it is enough to show that the
power of z, is bounded. From the definition of the A-operator we have the following

0 S —k,—k

Ag(2)]0) = 1= S (ruz) =/ § (“‘j‘f%;

—k

k=0 T

E kr—n(uz)|0) (5.18)

where we used the change of summation index k — —k since the operators &; with positive
¢ annihilate the vacuum.

Since each factor in each summand in (5.18) has at most first order pole in w, it is sufficient
to do the following. We expand each factor of each summand in (5.18) in u up to O(u™*1),
and we show that the degree of z in this expansion is bounded from above. Indeed, in this
case, the highest possible power of z in €_j,_,(uz) is m; in S(ruz)~" it is again m; in
S(ruz)*=m/" is it equal to 2m (one m comes from argument of S, while the other estimates
power of z in the binomial coefficient in the expansion of (1 + 2)(*="/7; finally, the highest

possible power of z in z7*/(£=1 + 1)_k is equal to 0.

O

Proposition 5.4.8. For (n,k) # (1,-1),(2,0), the function

(Any(21) - Ay, (20))y

21 2Zn

s a symmetric polynomial in z1, ..., 2.

Proof. We follow the proof of Proposition 2.23 in [5]. We prove the statement by induction on the
number of operators in the vacuum expectation. It holds for n = 1. Suppose it holds for vacuum
expectations with any number of operators less than n, and we want to prove it for n operators as

well. Let 3 be the single-row Young tableau. Consider the partition y;f;;b ={y'}U (ystgb \ {y’}).

n?

Then Equation (5.17) implies:

(Any (21) - An, () _ (Agy (1) - Any 4 (z0))

21 2Zn FAIRRR %

h(y) <'A772c,i11(y) (ZCi,l(y)) e Anciwli(y)(y) (Zci,li(y)(y))>

_ Z H Xiy)

o

yeYstab\ [y} i=1 Zeia(y) Zci,l,i(y)(y)
The first term on the right hand side is symmetric polynomial in z1, ..., z, by Proposition 5.4.7,
the second term is symmetric polynomial by induction hypothesis. O
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5. Quasi-polynomiality of orbifold Hurwitz numbers

Now we are ready to prove the quasi-polynomiality of orbifold Hurwitz numbers.

Theorem 5.4.9. The orbifold Hurwitz numbers h;ﬂ] for (g,n) # (0,1),(0,2) can be expressed as
follows:
)

T

n
Hi -
it = o210+l | TL iy | 2o G (5.19)
i=1 Lr 1
where P;n(ul, ooy ) are some polynomials in i, ..., Wy, whose coefficients depend on the pa-
rameters € = (€1,...,€6,), 0 <e€1,...,6, <1 —1 (we have ¢; = (££)).

Proof. For partitions u inside the region €2, this is a direct corollary of Equation (5.9) and Propo-
sition 5.4.8. We show now that the result holds for every partition p. In order to do so it is enough
to show that, for fixed 7y and pig, ..., jt,, the disconnected correlator ([T}, Ay, (u, 11;))° is a power
series in u whose coefficients are rational functions in p; with bounded degrees in both numerator
and denominator. Indeed once we show this, this rationality property of the disconnected corre-
lator implies the same rationality property of the connected one by inclusion-exclusion formula.
Therefore, for each fixed power of u, the rational function in u; coincides with a polynomial expres-
sion in the Zariski dense set given by (a symmetrization of ) 2. This implies that the connected
correlator, for each fixed power of u, is a polynomial in the first variable u;. A complex symmetric
function in several variables that is polynomial in one of the variables is a polynomial in all the
variables. This implies the statement.

Let us now prove the rationality property. Setting p; = v;r+1;, where v; = | & | and n; = (£2),
the operator A,, reads
S(rup)t !

. gtﬂ"*m (uﬂl)

A (u, 1) = T_%S(Tuui)yi Z (vi + 1)y,

ti€Z

Let us expand the product of all the ¢t-sums in the disconnected correlator and impose the
condition vanishing energy Zi(:”f (tir —m;) = 0. The energy of left-most operator A, should be
positive, so t17 — 11 > 0, and the Pochhammer symbol vanishes unless ¢; > —v;. Therefore, for
each fixed ny,v5,n2,...,Vy, Ny, the t1-sum becomes finite. Since the power of w is fixed, it also
gives a bound on the degree in v; both in the numerator and in the denominator. So the coefficient
of a particular power of u in the disconnected correlator ([T}, Ay, (u, 1;))° is a rational function
in v1. This concludes the proof of the theorem. O

5.5 Topological Recursion

In this section we recall the topological recursion of Chekhov, Eynard, and Orantin tailored for
our use. For a more detailed introduction we refer to [10, 9].

Definition 5.5.1. A spectral curve is a triple (X, z,y), where ¥ is a Riemann surface (which we
assume from now on to be CP!) and z,y: ¥ — C are meromorphic functions, such that the zeroes
of dz are disjoint from the zeroes of dy. Moreover the zeros of dx are simple:

In a neighborhood of a point @ € ¥ such that dz(a) = 0 we can define an involution 7, that
preserves function = (deck transformation).
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5.5. Topological Recursion

Furthermore, ¥ x ¥ is equipped with a meromorphic symmetric 2-differential with a second
order pole on the diagonal, which is called the Bergman kernel. In the case of CP! the Bergman
kernel is unique and in a global coordinate z it reads

le dZQ

B=——-—"—.
(21 — 22)?

Definition 5.5.2. By topological recursion we call a recursive procedure that associates to a
spectral curve data (3, x,y, B) a family of symmetric meromorphic differentials, called correlation
differentials wq n (21, ..., 2,) defined on 3", g >0, n > 1.
The first two correlation differentials are given by explicit formulas:
~ydzx

ledZQ
wo,1(2) = - wo,2(21, 22) = m

The correlation differentials wy ,, 29 — 2 +n > 0, are given by:

(i) = 5 ResK(e1,) gt a7 (). 25)

aeX
dx(a)=0

/

Z Wy, 11141 (2, 21)wWg, 11141 (Ta(2), 20) |5

g1+92=g
IuJj==Ss

where S = {2,...,n}, and in the second sum we exclude the cases when (g1, |[I|+1) or (g2, |J|+ 1)
is equal to (0,1). The recursion kernel K is defined in the vicinity of each point «, dz(a) = 0 by
the formula

szu(Z) wO,Q('v Zl)
2(wo,1(7a(2)) — wo,1(2))

In our case (X = CP, 2 is a global coordinate), we can use the following formula:

B x(2) L L dz
Kewd) = gy e (s~ —w) &

In the stable range, 2g — 2 4+ n > 0, the correlation differentials wy , have poles only at the
zeros of dz. They can be expressed as the sum of their principle parts:

won(21,28) = > [won(z1,25)]a (5.20)

acy
dx(a)=0

K(z,2) =

where by principal part [1(z1)]s of a 1-form 7(z1) we mean the projection defined as a version of
Cauchy formula, where we use B instead of the Cauchy kernel:

In fact, there is an equivalent way to reformulate the topological recursion. We say that the sym-
metric meromorphic differentials satisfy the topological recursion if they satisfy the property (5.20)
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5. Quasi-polynomiality of orbifold Hurwitz numbers

for 29 — 2+ n > 0, and also solve the abstract loop equations:

Wy n (2, 25) + wgn(Ta(2), z5) is holomorphic for z — « (5.21)
Wo-1n41(2,Ta(2),28) + Y woy 14111 (2 2D)Wgy 1410) (Ta(2), 2) (5.22)
g}‘jgzjg

is holomorphic for z — « with at least double zero at «.

A proof of that can be found in [1, 2].

5.6 The Spectral Curve

In this section we prove the spectral curve for orbifold Hurwitz numbers using the quasi-polynomi-
ality property proved in Section 5.4 and the cut-and-join equation. It is important to stress that
we do not use the Johnson-Pandharipande-Tseng [14] formula in this Section.

We consider the n-point function for orbifold Hurwitz numbers for fixed genus g:

H;:,[LT](‘TM"WIH): Z Txlitlxl;n

Theorem 5.6.1. Consider the correlation differentials wy n, g > 0, n > 1, for the spectral curve
(X = CP, z,y), where
x(2) = zexp(—2") and y(z) =2

in some global coordinate z. They have the following analytic expansion near x1 = xo = -+ =
z, =0:
0 0

= 8_x1...EH;:LT](xl,...,xn)dxl ® - Qdxy,.

for all (g,n) # (0,2) For (g,n) = (0,2) we have:

Won(T1,. .., Tn)

_dz(x1) ® dz(x2)

 (2(21) — 2(22))?

9 0 o
3 8_1;18_1'2]_[0’72[ ](xl,xg)dazl X dl’g —+

d.’El ® dl’g

(21 —22)?

This theorem is proved in [4] and [3] using the Johnson-Pandharipande-Tseng formula and the
cut-and-join equation for the orbifold Hurwitz numbers. We show below that it is enough to use the
quasi-polynomiality property given in Theorem 5.4.9 instead of the Johnson-Pandharipande-Tseng
formula.

Since, except for the first few steps that have to be adjusted, the arguments of [4] and [3] still
work, we refer to these papers for complete computations. Here, after a careful analysis of the
consequences of quasi-polynomiality, we just sketch the main big steps of computation in order to
give the reader an idea how the abstract loop equations emerge in this context.
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5.6. The Spectral Curve

Proof of Theorem 5.6.1. First of all, we have to check the formulas for wy; and wp 2. This can be
done by direct inspection, see [3, 4].

We have the following expression for connected numbers where the sum over ; € Z7 is finite
because of quasi-polynomiality:

o\fr |1l
hg,L]: (29—2‘*‘1(#) A

—|=
s[E
| E—
o
Q o~
5 SR
Sy
=
=
tb
:ﬁ

<%n>* are the coefficients of the polynomial Pg<,;;b (41, - -+, ) in Theorem 5.4.9. Hence the

=1
~

Here ¢
partition function reads:

= n L%JJ’»JL
[r] (£) M 1 i
‘Hg7 (55'1’ 7-75n): Z p cg,n,j H L&J' Ty L,
A jern i=1 "
=

Now we apply the Euclidean division to each p; with the notations:

e R CY B A Y

The coefficients c<%>

o only depends on the residue of the p; modulo r. Writing [r —1] for {0,...,r—
1} we get:
. (roi )" i
o 3 7 roi+6i
RS YD S | D e
Belr—1]n jezn i=1roi+n;>
Lemma 5.6.2. The n-point functions Hy'p, Ir ](:cl, ..., &y) are local expansions around (1, . ..,2T,) =
(0,...,0) of rational functions in (z1,...,2,), where
z(z) = ze™*
Proof. Tt is proved in [19, Equation (46)] that
o0 /I\o n’
T ’ z
Z(0+77) protn’ — ’ 7]/:1,...,7’
o! 1—rzr
o=0
(note that here we use n’ = 1,...,7 instead of n =0,...,r — 1 in order to take uniformly the sum
over o > 0 rather than ro +n > 0). This is obviously a rational function in z, as well as
o o+j d\’ d\’
ro z z z
3 (ro M7 roin _ (x_) - ( _> . (5.23)
= o! de ) 1—rz" 1—rzrdz) 1—rz"
So, H, ;,’T[f] (z1,...,2,) is an expansion of a finite linear combination of products of rational functions
inzy, ..., 2, O
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5. Quasi-polynomiality of orbifold Hurwitz numbers

Let us denote by pi1,...,p, the critical points of the function z(z). It is obvious that each
function 27 /(1—rz") is a linear combination with constant coefficients of the functions 1/(z—z(p;)),
t=1,...,7, up to an additive constant (where said additive constant is not of interest to us, since
we are deahng with the differentials of these functions). This implies that all functions given by
Equation (5.23) are linear combinations of 1/(z — z(p;))%, i =1,...,7, a > 1. So, we have:

Lemma 5.6.3. The symmetric differentials wy ., = (d1 @ --- ® d,,)Hy ’[r] (1,...,2p) are equal to
the sum of their principal parts in the coordinate z at the pomts PlyevesPn-

This Lemma immediately implies Equation (5.20) for the standard Cauchy kernel in the coor-

dinate z given by B(z1,29) = dz1dzo/(21 — 22)°.

Lemma 5.6.4. The differentials wy n(z1,...,2n) satisfy the linear loop equation (5.21), namely,
Wyn (215, 2n) FwWen(Tiz1, 22, .. ., 2n) s holomorphic for z1 — p;, where by T; we denote the deck
transformation of function x near the point p;, 1 =1,...,r.

Proof. 1t is sufficient to proof this lemma for the differentials of the functions given by Equa-
tion (5.23). Observe that the operator x% preserves this property, namely, if df(z) + df (7;2) is
holomorphic for z — p;, then d(z-L)f(2) + d(z4L)f(r;2) is also holomorphic for z — p;. It is
proved in [19, Equation (4.5)] that

2 B d\ 2" ;o
1—7"2;7“7 IE% 7, 77—1,...,7'.

The functions 2" are holomorphic, so their differentials satisfy the linear loop equation. Therefore,
the differentials of all the functions given by Equation (5.23) satisfy this property as well. O

Now we have to explain how we derive the quadratic loop equation (5.22). The cut-and-join
equation for double Hurwitz numbers [11] (see also [4]) can be written in the following form:

0=—(29g—2+ n)H;:[T] (7)) i H° o[r] (1))
1=1
’ %z;ﬁ; [xjx—x( Jdi >HQ,L]1<r[n]\{i}> + xj%< di )HQ,L]l(af[n]\{j})]
+ %i [(x/%)(x//di//)H;;[Tl],vz+1(‘r/7xl/7x[n]\{i})] o
i=1 T =T =T
* %Z 2 [<wi£>H;’;F’”hH<wn} [(m%)ff;’i@ﬂ(wm)] :

g1+92=g
10J=[n)\{i}

Consider the symmetrization of this expression in variable xl with respect to the deck transforma-
tion near the point p;. Apply further the operator [ e 2( ) to it and cancel the terms that do
not contribute to the polar part of this expression at z(x1) —> pi. The obstruction for the derived
expression to be holomorphic at p; is precisely the quadratic loop equation (5.22).

This computation implicitly contained in [4] and [3] as the first step of the derivation of the
topological recursion, see also [5] for a special case of that. We refer here also to [2, Section 2.4],
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5.7. Johnson-Pandharipande-Tseng formula

where it is shown how to derive the topological recursion from the abstract loop equations in
general situation, where one can easily recognize the general pattern of the argument in [4] for this
particular case. O

5.7 Johnson-Pandharipande-Tseng formula

In this section we give a new proof of a special case of the Johnson-Pandharipande-Tseng formula
for orbifold Hurwitz numbers. This is a simple corollary of Theorem 5.6.1, and the results obtained
n [15].

We consider the space ﬂm_ﬁ(BZr) of stable maps to the classifying space BZ, of the cyclic
group of order r, where the vector —ji in the notation corresponds to the prescribing the monodromy
data (—pg mod r,...,—pu, mod r) at the marked points of source curves. One can think about
the elements of this space as admissible covers of curves in M, ,, with given monodromy at the
marked points. Denote by p the forgetful map M, _z(BZ,) — M.

Consider the action of Z, on the H°(C,wc), where C is the covering curve. Consider its
irreducible component that corresponds to the character U: Z,, — C* that send a generator to
exp(2mi/r). This component gives us a vector bundle over M, _;(BZ,), whose Chern classes we
denote by A;, i > 0. We denote by S(f) the class

S({ifr)) ==, 3 (=) A
i>0
Theorem 5.7.1. We have:

ROl 1|5

g3t i S({ii/r))
b' - ll;Il y\:%J / g 1(7) Hl(u)(llu— ,ujwj) (524)

Remark 5.7.2. This is a special case of the Johnson-Pandharipande-Tseng formula proved in [14],
see also [12, 4, 3] for further explanation of the class S(jZ) used in it.

Remark 5.7.3. Note that this formula looks exactly as formula (5.19), but now the coefficients of

i
the polynomial P<7§1> (t1, - .-, pn) are explicitly represented as intersection numbers.

We give here a new proof of Theorem 5.7.1.

Proof. The proof consists of two simple observations. On the one hand, Theorem 5.6.1 says that

the expressions
J[r]

ol
® - Qdy, Z %x’fl ...xﬁn
Wi)=n
are expansions of the symmetric differentials wy (21, ..., 2,) that satisfy the topological recursion
for the spectral curve data (CP',z = ze=* ,y = 2"). On the other hand, it is proved in [15] that
the expansion of the correlation differentials for this spectral curve is given by

S({fi/r)) uz s
(© Z MgnH] 11_:u’jwj H

I(f@)=n

This identifies the left hand side and the right hand side of Equation (5.24). O
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Quasi-polynomiality of Grothendieck’s dessins
d’enfants, orbifold, monotone orbifold, spin, and
spin orbifold Hurwitz numbers

In this chapter we prove quasi-polynomiality for a number of Hurwitz problems by computing
explicitly the residues of certain operators on the Fock space. More precisely, these enumerative
problems are monotone orbifold and strictly monotone orbifold Hurwitz numbers; and orbifold,
spin, and spin orbifold Hurwitz numbers. The second enumerative problem is also known as
enumeration of a special kind of Grothendieck’s dessins d’enfants or r-hypermaps. The first two
cases answer positively two conjectures proposed by Do-Karev and Do-Manescu. In the third case
we obtain a new and easier proof of the quasi-polynomiality proved in Chapter 5. The fourth
case provides a key step towards the proof of Zvonkine’s conjectural r-ELSV formula that relates
Hurwitz numbers with completed (r + 1)-cycles to the geometry of the moduli spaces of the r-spin
structures on curves. The fifth case allow us to propose an orbifold generalization of Zvonkine’s
conjecture.

In the second part of the chapter we show that the property of quasi-polynomiality is equivalent
in the first three cases to the property for the n-point generating function to have a natural
representation on the n-th cartesian powers of a certain algebraic curve. These representations are
necessary conditions for the Chekhov-Eynard-Orantin topological recursion. In addition to that,
we study the (0, 1)- and (0, 2)-functions in many of the cases cited above, and we show that these
unstable cases are correctly reproduced by the conjectural (or proved) spectral curve initial data.

6.1 Introduction

This chapter is devoted to a combinatorial and analytic study of several kinds of Hurwitz numbers.
The five kinds of Hurwitz numbers that we consider in this chapter are the monotone orbifold, the
strictly monotone orbifold, the usual orbifold, the spin and the spin orbifold Hurwitz numbers. Note
that the theory of the strictly monotone orbifold Hurwitz numbers is equivalent to the enumeration
of hypermaps on two-dimensional surfaces, or, in other words, to the enumeration of some special
type of Grothendieck’s dessins d’enfants.

This type of combinatorial objects is important both for purely combinatorial reasons and also
because of the numerous relations that these numbers and their generating functions have to the
intersection theory of the moduli spaces of curves, matrix models and topological recursion, and
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6. Quasi-polynomiality of Hurwitz problems

integrable systems. We will not make any attempt to survey this very rich theory, and we refer
the interested reader to [1, 2, 3, 7, 8, 9, 10, 11, 15, 20, 21, 22, 23, 24, 25, 30, 31, 35, 40, 41] and
references therein.

The Hurwitz numbers of all five types can be efficiently realized as the vacuum expectations in
the semi-infinite wedge formalism. These formulae will be the starting point for the chapter, and
we use them as the definitions of the corresponding Hurwitz numbers. The equivalence with the
usual definitions is established via the character formula, and we refer to [1] for that.

6.1.1 Monotone orbifold, strictly monotone orbifold and usual orbifold Hurwitz numbers
Recall that the first three Hurwitz numbers that we consider, h;;g’g, h;;g<, and h;;g, depend on
a genus parameter g > 0, and a tuple of n > 1 positive integers i = (u1,- .., ttn). It is a natural
combinatorial question how these numbers depend on the parameters pq,...,u,. We prove in
this chapter that for 29 — 2 4+ n > 0 the dependence on the parameters can be described in a
very explicit way. Namely, let us represent any integer a as rfal + (a), 0 < (a) < r — 1, and let
(i) == ({p1), -+, (n)). We will use this notation throughout the article. We prove that there exist
polynomials P2, P? and P" of degree 3g — 3 4+ n in n variables, whose coefficients depend on 7
and also on ¢ and r, such that

o,r, i - pi 4 14
hg;ﬁ<:Pg>(“1""’“”)'H< 1 >;
i=1 v

o,r, i - uifl
hg;ﬁ<_Pi}w()u’lv'-wun)'l_[( )7

n
o _ plii) ) I
hg;ﬁ_Pu(/’le'-w/}'n) H

We call this property quasi-polynomiality. The proof is purely combinatorial and uses some prop-
erties of the analogues of the A-operators of Okounkov and Panharipande [37] in the semi-infinite
wedge formalism. This statement was known for the usual orbifold Hurwitz numbers [2, 15, 9]. In
this case we give a new proof. In the cases of monotone and strictly monotone orbifold Hurwitz
numbers, this property was conjectured by Do and Karev in [8] and Do and Manescu in [10],
respectively, and no proof was known.

Let us explain why the property of being quasi-polynomial is of crucial importance for these
Hurwitz numbers, as well as some further results of this chapter. For that, we recall several
connections of the Hurwitz theory to other areas of mathematics.

First of all, there is a connection to the spectral curve topological recursion in the sense of
Chekhov-Eynard-Orantin (CEO). This means that the corresponding Hurwitz numbers can be
obtained as the coefficients of some particular expansion of the correlation differentials defined on
the Cartesian products of some fixed Riemann surface called the spectral curve. These differentials
are produced by the CEO topological recursion procedure from a fairly small input data. The input
data consists of a curve X, a symmetric bi-differential B defined on ¥ x ¥ with a double pole on
the diagonal with biresidue 1, and two meromorphic functions, x and y, defined on . This allows
us to compute recursively the correlation differentials. We need one more piece of data — the
variable in which we want to expand the correlation differentials in order to obtain as coefficients
the solutions of the combinatorial problem.
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6.1. Introduction

In our cases, the data is the following. The curve ¥ is always CP! in all three cases. We
denote by z a global coordinate on CP!. In the case of CP! the bi-differential B(z1, z2) is uniquely
determined by its properties and is equal to dz;dzs/(z1 — 22)?. The functions x and y are the
following:

x=2z(1-2"), y=2""1/(z"—1) in the monotone case;
=242z Y=z in the strictly monotone case;
x=logz— 2", y=2z" in the usual case.

The correlation differentials obtained by the CEO recursion in these cases should be expanded

in the variable x near x = 0 in the monotone case;
in the variable z 7! near x = oo in the strictly monotone case;
in the variable e” near e =0 in the usual case.

The topological recursion is proved in the case of the usual orbifold Hurwitz numbers in [2, 9],
in the case of strictly monotone Hurwitz numbers it was conjectured in [10] and combinatorially
proved in [17], based on the original derivation of topological recursion in [5] in the case of the
two-matrix model. In the case of monotone orbifold Hurwitz numbers only the case r = 1 has been
proved in [7], and a general conjecture was made in [8].

The relation between quasi-polynomiality and the topological recursion is the following. We
prove in this chapter that a sequence of numbers depending on a tuple (p1, ..., i) can be repre-
sented as a polynomial in p, ..., f, times the non-polynomial factor [], (”:E“]) (respectively,

I, (“[L_}l), T, MEM]/[M]!) if and only if it can be represented as an expansion of a special kind
of symmetric n-differential on the curve x = z(1 — 2") (respectively, x = 2" + 271, 2 = logz — 2")
in the variable x (respectively, 271, e%).

In the case of the usual orbifold Hurwitz numbers it was already known and used in [9, 2, 15],
and, in a slightly different situation, in [39]. In the case of monotone and strictly monotone orbifold
Hurwitz numbers this equivalence was neither explicitly stated nor proved, though it is implicitly
suggested in a conjectural form in [8] for the monotone and in [10] for the strictly monotone cases.
Note that since the topological recursion is proved for the strictly monotone Hurwitz numbers
independently [5, 17], this equivalence implies the quasi-polynomiality as well.

There are also two unstable cases that have to be studied separately: (g,n) = (0,1) and (0, 2).
In the case (g,n) = (0,1) (respectively, (g,n) = (0,2)) the topological recursion requires that
the generating function of the corresponding Hurwitz numbers is given by the expansion of ydz
(respectively, B(z1,z22) — B(x1,x2)). For (g,n) = (0,1) this property has been proved in all three
cases, in [8] for the monotone, in [10] for the strictly monotone and in [9, 2] for the usual orbifold
Hurwitz numbers. Basically, such a representation for the (g,n) = (0,1) generating function is a
way to guess a spectral curve for the corresponding combinatorial problem. For (g,n) = (0,2) this
property has been proved for strictly monotone and usual orbifold Hurwitz numbers (indeed, the
topological recursion is proved in both cases), but it was not known for the monotone case. We
prove this in section 6.9.

Let us remark that this set of properties (namely, representation of the (0, 1) generating function
as an expansion of ydzx, the (0,2) generating function as an expansion of B(z1, 22) — B(x1, 22), and
the quasi-polynomiality property for 2g —2+n > 0) is required for the approach to the topological
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6. Quasi-polynomiality of Hurwitz problems

recursion in [12]. Once these properties are established, the topological recursion appears to be
a Laplace transform of some much easier recursion property of the corresponding combinatorial
problem.

The other important connection for all three Hurwitz theories that we consider here is their
relations to the intersection theory of the moduli spaces of curves. It appears that the coefficients of
the polynomials in the quasi-polynomial representation of the n-point functions can be represented
in terms of some intersection numbers on the moduli spaces of curves. This statement is proved
for usual Hurwitz numbers for » = 1 in [18] and for any r in [28].

In general, we assume know that being quasi-polynomial is equivalent to being an expansion of
a symmetric differential of certain type. Then in this situation there is an equivalence between the
topological recursion and representation in terms of the intersection theory of the moduli spaces of
curves. The intersection numbers in this case appear to be the correlators of a certain cohomological
field theory, possibly with a non-flat unit. This point of view on topological recursion was first
suggested by Eynard in [19] and worked out in detail in many examples, see e. g. [14, 13, 39, 34].

In particular, the cohomological field theory for the case of the strictly monotone orbifold
Hurwitz numbers is described in [16]. For the monotone orbifold Hurwitz numbers the intersection
number formula was derived so far only the case r = 1, see [1, 8], and it is based on the proof of
the topological recursion in [7].

6.1.2 The r-spin Hurwitz numbers

There is another generalization of Hurwitz numbers [39] natural both from the point of view of the
representation theory of the symmetric group [32] and the Gromov-Witten theory of the projective
line [38], where the typical singularity has the monodromy type of a completed (r + 1)-cycle.
These numbers are called the r-spin Hurwitz numbers, and this name is inspired by an ELSV-type
formula, called the m-ELSV formula, conjectured by Zvonkine in 2006 [42]. This conjecture relates
the r-spin Hurwitz numbers to the intersection numbers on the moduli spaces of r-spin structures,
see [42, 39].

In this case the intersection number formula is only conjectural, and no alternative proof of the
quasi-polynomiality is known. It is proved in [39] that the conjectural r-ELSV formula is equivalent
to the topological recursion on CP* for the following initial data:

x(z) =logz — 2", y(2) =2 B(z1,2) = dzidz /(21 — 20)* (6.1)

It is also proved in [35] that the differential of the (0, 1)-function for r-spin Hurwitz numbers is
indeed the expansion of y dz(z) in the variable exp(z) near exp(z) = 0, where x and y are defined
in equation (6.1).

The results of this chapter include, as a special case, the proof that the 2-differential obtained
from the (0,2)-function of the r-spin Hurwitz numbers is given by the expansion of B(z1,z2)
in the variables exp(z1),exp(z2) near the point exp(z1) = exp(xz2) = 0, where x and B are
defined in equation (6.1), as well as the quasi-polynomiality statement for the (g, n)-functions for
29 —24n>0.

6.1.3 The g-orbifold r-spin Hurwitz numbers

It is natural to combine the spin and the orbifold generalizations of the concept of Hurwitz num-
ber: the monodromy of one special fiber consists of g-cycles, and the monodromy of the typical
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singularity is given by the completed (r + 1)-cycle. This way we get g-orbifold r-spin Hurwitz
numbers [35]. There is not much known about this generalization. There is only a quantum curve
for this case that is proved in [35]. Note, however, that according to logic outlined in [1], this leads
to a guess of the spectral curve for this case, and the spectral curve implies an ELSV-type formula
for this type of Hurwitz numbers as well.

The conjectural spectral curve in this case is CP! with the following initial data:

x(z) =logz — 21", y(z) =29, B(z1,22) = dzdz /(21 — 22)2- (6.2)

The result of [35] implies that the differential of the (0, 1)-function is the expansion of y dz(z) in
exp(x) near the point exp(z) = 0, where x and y are defined in equation (6.2).

The main result of this section is the quasi-polynomiality statement for the g-orbifold 7-
spin Hurwitz numbers and the proof that the 2-differential obtained from the (0, 2)-function of
the g-orbifold r-spin Hurwitz numbers is given by the expansion of B(zj,z2) in the variables
exp(x1),exp(z2) near the point exp(x;) = exp(xz) = 0, where z and B are defined in equa-
tion (6.2). We also prove the statement of [35] about the (0, 1)-function in a new way.

This allows us to generalize the conjecture of Zvonkine, in the following way. We conjecture
that the g-orbifold r-spin Hurwitz numbers satisfy the topological recursion of the initial data
given in equation (6.2). By the results of [19, 14] this immediately implies a conjectural ELSV-
type formula for these Hurwitz numbers. The particular computation for the initial data (6.2) is
performed in [34], where the correlation differentials for this spectral curve are presented in terms
of the Chiodo classes [6]. This allows us to obtain a very precise description of the conjectural
ELSV-type formula for the g-orbifold r-spin Hurwitz numbers, which reduces in the case ¢ =1 to
the original conjecture of Zvonkine.

6.1.4 Organization of the chapter

In section 6.2 we briefly recall the necessary background on semi-infinite wedge formalism. In
section 6.3 we review the interplay between symmetric polynomials and Stirling numbers, together
with their generating function. In section 6.4 we define the A-operators for the monotone and
strictly monotone Hurwitz numbers, and we express the generating series for monotone and strictly
monotone Hurwitz numbers in terms of A-operators acting on the Fock space. In section 6.5 we
state and prove the first result of the chapter: the quasi-polynomiality for monotone and strictly
monotone Hurwitz numbers. In section 6.6 we apply the same methods to the case of orbifold
Hurwitz numbers, obtaining a simpler proof of the results in Chapter 5. In section 6.7 we define
the g-orbifold r-spin Hurwitz numbers and we present them as the vacuum expectations of A-
operators. Applying the same methods, we prove the quasi-polynomiality property. In section 6.8
the polynomiality properties for the first three Hurwitz problems are proved to be equivalent to
the analytic properties that are necessary for the Chekhov-Eynard-Orantin topological recursion.
In section 6.9 we perform the computations for the unstable (0,1), as an example of the usage of
the A-operators, and we prove a formula relating the (0, 2)-generating function for the monotone
orbifold Hurwitz numbers to the expansion of the Bergman kernel. In section 6.10 we consider
the unstable correlation differentials for the conjectural spectral curve and reproduce the (0,1)-
and (0, 2)-point functions for the g-orbifold r-spin Hurwitz numbers. Finally, in section 6.11 we
describe precisely a conjectural ELSV-type formula for the g-orbifold r-spin Hurwitz numbers that
generalizes the conjecture of Zvonkine for r-spin Hurwitz numbers.
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6.2 Semi-infinite wedge formalism

In this section we briefly recall the semi-infinite wedge formalism. It is nowadays a standard tool
in Hurwitz theory, with many good introductions to it. We refer the reader, for instance, to [26]
and [1] and references therein for a more complete exposition.

Let V be an infinite-dimensional complex vector space with a basis labeled by half-integers.
Denote the basis vector labeled by m/2 by m/2,so V = ®iEZ+% Ci.

Definition 6.2.1. The semi-infinite wedge space /\%(V) =V is defined to be the span of all of
the semi-infinite wedge products of the form

1 ANig A=+ -

for any decreasing sequence of half-integers (i) such that there is an integer ¢ with iy, + &k — % =c
for k sufficiently large. The constant ¢ is called the charge. We give V an inner product (-,-)
declaring its basis elements to be orthonormal.

Remark 6.2.2. By definition 6.2.1 the charge-zero subspace Vy of V is spanned by semi-infinite

wedge products of the form

1 3
M—=Ady— = A---
1 2/\ 2 2/\

for some integer partition A. Hence we can identify integer partitions with the basis of this space:

Vo =P P Cun

neNAkFn
The empty partition @) plays a special role. We call

L A 5 A
vy = —— —_— .
‘T2 2
the vacuum vector and we denote it by |0). Similarly we call the covacuum vector its dual with
respect to the scalar product (-,-) and we denote it by (0.

Definition 6.2.3. The vacuum expectation value or disconnected correlator (P)® of an operator P
acting on V) is defined to be:

(P)* = (]0),P|0)) = (0P|0)
We also define the functions
C(z) = e*/? — e7*/2 = 2sinh(z/2)
and

S(z) = C(ZZ) _ sin};%/g).

Definition 6.2.4. This is the list of operators we will use:

i) For k half-integer the operator ¢y : (iy Aig A---) — (kAiyL Aig A---) increases the charge
by 1. Its adjoint operator 9 with respect to (-,-) decreases the charge by 1.
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ii) The normally ordered products of ¥-operators

g Sy, >0
! — e if <0

preserve the charge and hence can be restricted to Vy with the following action. For i # j,
E; j checks if vy contains j as a wedge factor and if so replaces it by 7. Otherwise it yields 0.
In the case i = 5 > 0, we have Ei’j(m) = v, if vy contains j and 0 if it does not; in the case
i =7 < 0, we have Ei,j(w\) = —w, if vy does not contain_j and 0 if it does. This gives a
projective representation of A, the Lie algebra of complex Z x Z matrices with only finitely
many non-zero diagonals [26].

iti) The diagonal operators are assembled into the operators

k’n
Fn = Z — Bk
n!
kez+i

The operator C := Fy is called charge operator, while the operator E = F; is called energy
operator. Note that Fy vanishes identically on Vy. We say that an operator P on V) is of
energy c € 7 if

[P,E] =cP

The operator E;; has energy j — 4, hence all the F,’s have zero energy. Operators with
positive energy annihilate the vacuum while negative energy operators are annihilated by the
covacuum.

iv) For n any integer and z a formal variable one has the energy n operators:

n )
En(z) = Z ez(k_ Z)Ek—n,k + CZZO)
keZ+3

v) For n any nonzero integer one has the energy n operators:

an=E(0)= Y Frnik

kEZ+%
The commutation relation between basis elements reads
(Eap, Ee,d) = 0b,cEa,d — 6a,aFep + 0b,c0a,d(0p>0 — 0a>0) Id . (6.3)
Using this commutation rule, it is useful to compute:
Lemma 6.2.5.

Z aEi—ay, Z feBr—v | = Z (9i-vf1 — 91f1-a) E1—(atb).

1€z = lez
+ atvda>0(91/2f1/2—a ++ + Ga—1/2f-1/2)
+ Satv06>0(91/2—f172 + -+ 9-1/2fp—1/2)-
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6. Quasi-polynomiality of Hurwitz problems

In particular, with g; = fx = 1, it is possible to recover the usual commutation formula
[Oéa, Oéb] = a5a+b-
The commutation formula for £ operators reads:

a =z

6w = ¢ (det |5 2] Emnate (6.4

Note that £ (2)[0) = 0 if & > 0, while &(2)[0) = C(z)_1’0>. We will also use the € operator
without the correction in energy zero, i.e.

Eo(z) = Z e By, = anzn =C+Ez+ Fo2? +...
k€Z+ 3% n=0

which annihilates the vacuum and obeys the same commutation rule as &.

6.3 Symmetric polynomials and Stirling numbers

In this section we recollect some combinatorial notions used in the rest of the chapter. In particular
we recall here some basic facts on homogeneous symmetric polynomials and Stirling numbers, and
their interconnection.

6.3.1 Symmetric polynomials

Definition 6.3.1. Let X = {z1,...,z,} be a finite set of variables. The complete symmetric
polynomials hy and the elementary symmetric polynomials o on X are defined as follows:

hi(X) = > Tiy « o Ti,

1<iy <ia<-<ig<n
or(X) = > Tiy o Ty,
1<i1 <o < <ip<n

The properties of these functions are well-documented, see e.g. [36]. We will list some useful
properties.

Lemma 6.3.2. The generating functions of the complete and elementary symmetric polynomials
are as follows:

oo n 1
k _
th(xla 73771)” _Hlfuxz
k=0 i=1
Zak(xl, L ap)ut = H(l + ux;)
k=0 i=1
Corollary 6.3.3. For any finite set of variables X,
> h(X)uk Y o(X)(~u) =1 (6.5)
k=0 1=0
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6.3. Symmetric polynomials and Stirling numbers

The following lemma is an easy consequence of the definitions, and can be proved by induction
on the number of arguments.

Lemma 6.3.4. If the variables in a symmetric polynomial are all offset by the same amount, they
can be re-expressed as a linear combination of non-offset symmetric polynomials as follows:

k

Ftn—1 ,
hk($1+A7...,In+A):Z< ?Z/ )hk_i(l‘l,...,xn)Al (66)
=0

k .
—k )
ak<x1+A,...7xn+A>=Z<”+j )ak_ml,...,xn)Al

i=0

6.3.2 Stirling numbers

We now recall some notions on Stirling numbers. A complete treatment of the subject can be
found in [4].

Definition 6.3.5. The (unsigned) Stirling numbers of the first kind [z] are defined as coefficients
of the following expansion in the formal variable T’

o[

t=0
where 7,t are nonnegative integers and the subscript indicates the Pochhammer symbol:

(x—|—n)!:{(m+1)(x—+—2)~~(x—|—n) n>0

(x+1), = 7l (x(x—1)---(x+n+1)"t n<0

From the definition, (z 4 1),, vanishes for integers z satisfying —n < « < —1, and 1/(z + 1),
vanishes for integers z satisfying 0 <z < —(n +1).
The Stirling numbers of the second kind {i} are defined as coefficients of the following expansion

in the formal variable T' )
, ‘(i
T = T—-t+1
S

t=0

where 7,t are nonnegative integers. Note that for ¢ > ¢ we have m = {1} =0.

The complete and elementary polynomials evaluated at integers are linked to the Stirling num-
bers by the following relation.

t—wv
t
ho(1,2,...,1) = { t“} (6.7)
The expressions in terms of generating series read
Lemma 6.3.6. We have:
j _[,d—t (j B 1)'8 —j,yi/2. j _[,,J—t L'S t yt/2
H =y ]-7@71)! (y) e/ (=TS (y)Ter
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6. Quasi-polynomiality of Hurwitz problems

6.4 A-operators for monotone orbifold Hurwitz numbers

In this section we express the generating series for monotone and strictly monotone orbifold Hurwitz
numbers in terms of correlators of certain A-operators acting on the Fock space.

6.4.1 Generating series for monotone orbifold Hurwitz numbers

Let us define the genus-generating series for disconnected monotone and strictly monotone orbifold
Hurwitz numbers as

o0 (o]
o7, < -\ L , < b o7 < o
H*"=(u, ji) = Z (h;ﬂ>u , H*"<(u, ji) = Z ( ) (6.8)
g=0 g=0
where, by Riemann-Hurwitz, b is the number of simple ramifications
b=2g—2+1(u)+ |ul/r

We want to express the generating series through the semi-infinite wedge formalism. In [1] it was
proved that the eigenvalue of the operator
.log u>

(c:* u2d

D(h)(u) = exp <l0 ( 5 g“) - F
C(u du)

acting on the basis of the charge zero sector of the Fock space is the generating series for the

complete symmetric polynomials, in the sense that

oo

'D(h) (u).v,\ = Z hk(cr’\)ukv,\,

k=0
where the set of variables cr* is the content of Young tableau A. Similarly, the operator
g w2 d
D) (u) = exp (— [0(23“) —FE .logu>
C ( u du)

produces as eigenvalue the generating series for elementary symmetric polynomials:

D(”) Zak cr u V.
The generating series in equation (6.8) therefore read respectively

H*"=(u, i) = <e“f2><h> )] O‘*’“ > (6.9)

i=1

and

Ho < (1) = <€7D(U>(u) ﬁ O > (6.10)

i=1
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6.4. A-operators for monotone orbifold Hurwitz numbers

6.4.2 Conjugations of operators
In this section we prove several lemmata that we will use later.

Lemma 6.4.1. We have:

Oh(u) =DM (wa_, DM ()™ = > N h,(1+k =1/ .. p+k—12)u"Epy i
kez+1 v=0

S otk =1 pt k=12 By

kez+1 v=0

O (u) =D (u)a_, D' (u) ™!

Proof. We prove only the first equation, since the proof for the second is completely analogous.

Applying the change of variable u(z) = —2~!, we have

DM (u(z)) = exp (—W.log(—z)) (—2)F = eB(z)(—z)E
C(dz)

Observe that the operator B(z) has zero energy and hence commutes with (—z)¥. On the other
hand, the operator or_, has energy —pu, hence the conjugation by the operator (—2)¥ produces the
extra factor (—z)*. By the Hadamard lemma we can expand the conjugation as

oo

_ 1
D(h) (U)Ol_ﬂ'D(h)(u) 1 _ (—Z)/‘ Z 3l adB(Z)(a_/L)
s=0

It is enough to show that

adp (. (a—p) = Z log (]_:[ (21 i - 1/2)> Bk (6.11)

kez+3

Indeed this would imply

o = 1
D (e, D)™ = 3 ([[O 1—<z+k+1/2)(—zl>>E’“+“”“

kezZ+1

which proves the lemma by substituting back © = —z~' and expanding in the generating series for
complete symmetric polynomials. Let C(s) be the left hand side of equation (6.11). We compute:

[ &) e,
C(s) = C(%@) yene C(%) Ll Hlog i)

Zi=Zz

zZi=z
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6. Quasi-polynomiality of Hurwitz problems

Observe that the summation over [ is the result of the expansion in geometric formal power series
of 1/(1 — e~%/42). The expression in the last line equals the right hand side of equation (6.11)
since the s operators act independently, and using e®d= f(z) = f(z+a). The lemma is proved. O

Let us define the operators:
O () = D (w)ar, DM (u) ! 05(w)" = D) (u)a, D (u) !
Lemma 6.4.2. We have:

S otk =1 pt k= 12)(—u) By e

kez+% v=0

Z Zh’”(l +k— 1/2,...,,LL+,Z€ - 1/2)(7U)UE]€J€—IL

kez+§ v=0

Proof. This follows from the duality between generating series of complete and elementary symmet-
ric polynomials expressed in equation (6.5), and the form of the O-operators in lemma 6.4.1.

Corollary 6.4.3. The different kinds of O-operators can also be written as follows:

o) =3 U s uzyte (u)

—= (p=1)
by g Y ! V1S (uz) e (—uz
Oy (u) = Z (va), [2°]S (uz) "€ i (uz)
oz =3 U syt (—uz)

— (=1

Proof. We will first derive the first equation, starting from lemma 6.4.1. First we use equation (6.6):

(’)Z(u): Z Zhv(l—i—k—1/2,...,,u—|—k—1/2)u”E;C+M)k

kez+4 v=0

5SS (0 e

kEZ-i-% v=0 i=0

By equation 6.7 and lemma 6.3.6, we then get:

S U+ﬂ_1 v—1i (’U—"_M_Z_l)' n—1 y% 1,7 z(k:-&-%) v
) zz( Yy O st e D B

keZJrl v=0 i=0

= Z U+M [2Y]S(uz)* e, (uz)
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6.4. A-operators for monotone orbifold Hurwitz numbers

For the other equations, the calculation is similar, replacing the equations for the complete sym-
metric polynomials with their counterparts for the elementary symmetric polynomials where nec-
essary. O

Lemma 6.4.4.
(v+p—1)!

T VIS T St () (6.12)

NE
NE

e Oﬁ(u)e*% =

o~
Il
<}
S
Il

%'(—u)t (278 (u2) S (ruz) Eyp(—uz) (6.13)

~
Il
<
@
Il
o

Q
e

%‘%

I
M=
M=
=
= =
1F

er Of(u)e” ™ = ZZ t'(uu!v)'ut[z“_t]S(uz)_*‘_1S(ruz)t5tr_ﬂ(uz) (6.14)
t=0 v=t ’
(v+p—1)!

(=) [2° 1S (u2)* S (ruz) Epy pu (—uz)6.15)

Q
=3

I
NE
NE

< th(p—1)!

Proof. Let us prove equation (6.12). Applying the Hadamard lemma as in lemma 6.4.1 we find

e Oh Z ti i, (Z W[z”]S(uz)“_lgu(uz))
t=0 :
Z

t

Il
=)

v

v=0

’U + B 1 ’U —
E Y 'rt [S(uz)*"ad, &£, (uz)
=0

By equation (6.4), we know
ada, £, (uz) = ((ruz)&—,(uz)

Using this ¢ times, we get that

e OM(u)e T =" w[ZU}S(UZ)“AC(ruz)tét,»_ﬂ(uz)

— Z Z wut [vat]S(UZ)“i1S(Tuz)t5tr_#(uz)

1 — 1)

t=0 v=0 t (M 1)
For the other equations, the calculation is completely analogous, using that S is an even function.
This finishes the proof of the lemma. O

6.4.3 A-operators

Let us now define the A-operators for the r-orbifold monotone Hurwitz numbers as

Al (u, 1) ZZ J”‘“ T (8 () S (ru2) T (u2) (6.16)
teZ v=t
u[uu[u v+1)1 - -
ATy () = > Z LS (uz) TS (ruz) I,y (uz)  (6.17)

t=—o0 v=t t

where = r[p] + (u) denotes the euclidean division by r.
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6. Quasi-polynomiality of Hurwitz problems

Proposition 6.4.5.
, i) (i) .
Ho" S (u, i) = ut ] ( >< HAh (u, i) > (6.18)
. (i) l(u) o
H*"<(u, i) =ur < ><H.A (u, i > (6.19)

i=1
where p = r{p] + (u) denotes the euclidean division by r.

Proof. Let us prove equation (6.18). Observe that both the operators € and «, annihilate the
vacuum. Hence inserting the operators D) and e®" acting on the vacuum does not change the
expression in equation (6.9):

n

1000 = ( T D0 g (00 ) e )

s Hi
The operators in the correlator are given by formula (6.12), divided by p. For every i = 1,...,n,
rescale the t-sum in formula (6.12) by thew = t — [g;] and the v-sum by vhew = v — [p;], and

conjugate by the operator u”'/". The latter operation has the effect of annihilating the factor

u' and of creating a factor u#:/" that can be written outside the sum. Extracting the binomial
coefficient in equation (6.18) and extending the t-sum over all integers (since the Pochhammer
symbol in the denominator is infinite for ¢ < —[u;]) proves equation (6.18).

The proof for equation (6.19) is analogous, starting from the operator given by formula (6.14).
After rescaling the ¢- and v-sums and conjugating with u”'/", we extract from the correlator the

factor
(p—1)!
(]! (b = [p] = 1)!
Here, we can also extend the sum to +o00, because the Pochhammer symbol in the numerator is
zero for the added terms. Proposition 6.4.5 is proved. O

Define the operators
r [Vt r 2 —&r r
Aw)(u w)’ = ut u( ,u[ ])ufl/ er Oﬁ(u)be T/

and

1 .
?m(u,u)b:U”/rﬂ(H[ ) P Of (u) e Fum

1]
Proposition 6.4.6. We have the following:

A?H) (u, M)b = Z Z W[z'“_t]S(uz)_“_18(ruz)t€”+u(—uz) (6.20)

~
Il
o
<
Il
LS

Al (u, )" = ZZ (;(1;_(1{; [1_1}1;'[1;# (2" 7S (u2) 1S (ruz) Eppy pu(—u2) (6.21)
t=0 v=t A
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6.5. Quasi-polynomiality results for monotone and strictly monotone Hurwitz numbers

Proof. Let us prove equation (6.20). The conjugation of O by the operator e®r/" is given by
formula (6.13). The conjugation with u”*/" annihilates the factor u* and produces a factor u=#/",
which simplifies with «#/”. This proves equation (6.20). Equation (6.21) is proved in the same
way using the conjugation given by formula (6.15). The proposition is proved. O

6.5 Quasi-polynomiality results for monotone and strictly monotone Hur-
witz numbers

In this section we state and prove the quasi-polynomiality property for monotone and strictly
monotone orbifold Hurwitz numbers.

Definition 6.5.1. We define the connected operators ([];_, A, (u, 11;))° in terms of the discon-
nected correlator ([T, Ay, (u, 1;))* by means of the inclusion-exclusion formula, see, e. g., [13, 15].

The monotone Hurwitz numbers are expressed in terms of connected correlators as

1(ji

h;;gﬁ 29~ 2] H( )< H.Ah U, ;) >O

i=1

=

(i

RN (e )<lﬁ,401 )

=1

A
v

We are now ready to state and prove the main result of the chapter.

Theorem 6.5.2 (Quasi-polynomiality for monotone and strictly monotone orbifold Hurwitz num-
bers). For 2g — 2+ I(f) > 0, the monotone and strictly monotone orbifold Hurwitz numbers can
be expressed as follows:

o,r, i | i
hg;ﬁi - ( ' [ Z]>Péu>(“1""’m(ﬁ))

D N
ho™ = 11 ( EN'] >P<” (s - -5 b))

i=1

where Pim and Pim are polynomials of degree 3¢ —3+1(fi) depending on the parameters (i1),. ..,
(), and p = r[p] + (u) denotes the euclidean division by r.

Remark 6.5.3. The two statements of theorem 6.5.2 confirm respectively conjecture 23 in [8] and
conjecture 12 in [10]. Note that the small difference in the conjecture 23 does not affect quasi-
polynomiality since the polynomials P< depend on the parameters (). Conjecture 12 is stated for
Grothendieck dessin d’enfants, which indeed correspond to strictly monotone Hurwitz numbers by
the Jucys correspondence (see for example [1] for details).

Remark 6.5.4. Note that since we allow the coefficients of the polynomials P. < ) and P ) to depend
on (fi), we can equivalently consider them as polynomials in [p1], ..., [un], 7 = I( ) The latter
way is more convenient in the proof.
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6. Quasi-polynomiality of Hurwitz problems

Proof. We will show that, for fixed 7;, the connected correlator ([}, A, (u,;))° is a power
series in w with polynomial coefficients in all p;, for both the operators A" and A?. As these
are symmetric functions in the p;, it is sufficient to prove polynomiality in p;. Indeed, if a
symmetric function P(uq, ..., ;) is polynomial in the first variable, it can be written in the form
Pty pin) = EZ:O ar(pa, - - pn)i¥. To check that each coefficient of P is also polynomial in
L2, we can compute the values of P at the points 1 = 1,...,d + 1 and show that these values
are polynomial in po. But the values of P at these particular values of p; can be computed using
the symmetry of P as P(ua, ..., fin, 1), S0 they are polynomial in us. Proceeding this way, we
establish polynomiality of P in all arguments.

We will first consider the disconnected correlator (]}, Ay, (u, 1;))° where, setting y; = v;r+n;
to stress the independence the parameters v; = [p;] and 1; = (u;) here, the operator A is either

(u i i Vz_"ﬂz"'l U'L_l[Z’Ui*ti]s(uz)ﬂi*1S(Tuz)ti+vi5 (uz)
,uz V +1 tir—mn;
t; €L vi=t;
in the monotone case or
- B B 1))'Ui_1 v;—t; —i— Vi
)= > > wn [ 7S () TS (ruz) T iy (u2)

ti=—0o0 v;=t;

in the strictly monotone case. In both cases, if we expand the product of all the t-sums in the
disconnected correlator, we get the condition Zﬁ(:“l) (t;r —n;) = 0, as the total energy of the
operators in a given monomial must be zero. Furthermore, t17—1n; > 0, since the first £ would get
annihilated by the covacuum otherwise, and t; > —v; (otherwise the symbol 1/(v; + 1), vanishes),
so if we fix 11,019,792, ..., Vn, n, the t1-sum becomes finite. Since the power of wu is fixed, it also
gives a bound on the degree in v1. So the coeflicient of a particular power of u in the disconnected
correlator ([}, Ay, (u, 1;))° is a rational function in vy.

Because the coefficients are rational functions, we can extend them to the complex plane, and
it makes sense to talk about their poles. The only possible poles must come from ﬁ (because
we only look at non-negative exponents of u), and all of these poles are simple. Let us calculate
the residue at v = —[, for [ = 1,2, ...

Lemma 6.5.5. The residue of the A-operators is, up to a linear multiplicative constant, equal to
the correspondent operator A° with a negative argument. More precisely,

Res Al (u,vr 4+ 1) = ﬁfl}ln(u, Ir —n)° ifn#0 (6.22)
Res A (u,vr) = ﬁ/lg(u, ) ifn=0 (6.23)
Res A7 (u,vr +17) = ﬁAz (I — 1)’ ifn#0 (6.24)
Res A7 (u,vr) = W%I)Ag(u, ) ifn=0 (6.25)

Proof. Let us prove equations (6.22) and (6.23) together. The only contributing terms have ¢ > [,
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6.5. Quasi-polynomiality results for monotone and strictly monotone Hurwitz numbers

so we calculate

~—

Vfie_slfli,‘ (u,

(V+‘LL—|—1)1,_1(V—|—Z) v—t p—1 t+v
o+, (2" S(@u)* T S(rau) Ty (zu) .

(:u_l+1)v—1
(101 (t—1)!

(=) (=14 1) g1
i—i!

o
NE

H
il
<
I
L

(—1)v* [m”_t]S(—xu)“_lS(—rxu)t_l&r,n(—qu)

o
M8

ﬁ

i
<
[

(27 1S (zu)* 1S (rou) Epr  (—au)

M8

t

~
Il
<
@
Il

where we kept writing u for —ir 4+ 7. As this is negative, however, it makes sense to rename it
= —A. Substituting and collecting the minus signs from the Pochhammer symbol, we get

Res Ay (u, 1)

)\+1 v)erl 1
i

- -
i~ I~
<
I
~

(278 (uz) A LS (ruz) €y a (—u)

M»

FA+I-1)!

't' py— [V S (ux) A LS (rux) £y a (—ux)

My

v=t

Because A = lr —n, we have | = [\] + 1 — §,0 and n = —(\). Recalling equation (6.20), we obtain
the result. Equations (6.24) and (6.25) follow from the analogous computation of the residue and
the comparison with equation (6.21). O

In the following we will use the notation .4 and D without specifying the symmetric polynomial
chosen, since the argument is valid for both the choices of (A", D") and (A?, D). Lemma 6.5.5
implies that we can express the residues in pp of the disconnected correlator as follows:

n

Res, < f[lAm (u, i) > = c(l,m)< Ay, (e —m)” T An, (u, ) >

V1i=— .
1=2

where ¢(l,n;) is the coefficient in lemma 6.5.5. Recalling equations (6.9) and (6.18) for the mono-
tone case and equations (6.10) and (6.19) for the strictly monotone case and realising that the
corresponding operator A" is given by the same conjugations as the normal A-operator, but start-
ing from ¢, instead of a_,, we can see that this reduces to

Res ( [[A () ) = C{ Dy 1]@ ) (6.26)

lll——l

for some specific coefficient C' that depends only on [ and 7.

Because [ay, ;] = kdp41,0, and Qr—y, annihilates the vacuum, this residue is zero unless one
of the p; equals lr — np for ¢ > 2.

Now return to the connected correlator. It can be calculated from the disconnected one by
the inclusion-exclusion principle, so in particular it is a finite sum of products of disconnected
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6. Quasi-polynomiality of Hurwitz problems

correlators. Hence the connected correlator is also a rational function in vq, and all possible poles
must be inherited from the disconnected correlators. So let us assume p; = Ir — 1y for some i > 2.
Then we get a contribution from (6.26), but this is canceled exactly by the term coming from

Resl< Ay, (u; 1) Ay, (uy I — 1) >.< H AAn (1 15) >.

Vyi=—

2<j<n
J#i
= C< e%D(u)alr—Thaf(lrfnl) > <€:D(U;)Oélr_7h H Oy >
2<j<n
J#i

Hence, the connected correlator has no residues, which proves it is polynomial in v7. Therefore, it
is also a polynomial in puq, see remark 6.5.4. This completes the proof of the polynomiality.

Now, once we know that the coefficient of ©2972%" 2g — 24+ n > 0, of a connected correlator
(TTi-, Ay, (u, 13))° is a polynomial in iy, ..., uy, or, equivalently, in vy,...,v,, we can compute
its degree. The argument is the same in both cases, monotone and strictly monotone, so let us
use the formulas for the A”"-operators. We can compute the degree of the connected correlator
considered as a rational function. Once we know that it is a polynomial, we obtain the degree

of the polynomial. For the computation of the degree in vy, ..., v, it is sufficient to observe that
S (v; —t;) = 29 — 2+ n, therefore Ho?:1(Vi+Hi+1)vi—1/(Vi + 1);, has degree 2g — 2. Moreover,
the leading term in ([]}_, &,r—n,(uz))” has degree n — 2 in uz and n — 1 in vy, ..., vy, and the

coefficient of (uz)?¢ in the product of S-[;_, S(uz)"~1S(ruz)' ", where S without an argument
denotes the S-functions coming from the connected correlator ([} | Er—y: (uz))° divided by its

leading term, is a polynomial of degree 2¢g/2 = ¢g in v4,...,v,. So, the total degree in vy, ..., v, is
equal to2g —24+n—14+g=3g9g—3+n.
This completes the proof of the theorem. O

6.6 Quasi-polynomiality for the usual orbifold Hurwitz numbers

In the case of the usual orbifold Hurwitz numbers, quasi-polynomiality was already known, see
[2, 9, 15]. However, all known proofs use either the Johnson-Pandharipande-Tseng formula [28]
(the ELSV formula [18] for = 1) or very subtle analytic tools due to Johnson [27] (Okounkov-
Pandharipande [37] for » = 1). In the second approach, presented in [13, 15], the analytic continu-
ation to the integral points outside the area of convergence requires an extra discussion, which is so
far omitted. So, it would be good to have a more direct combinatorial proof of quasi-polynomiality
for usual orbifold Hurwitz numbers, and we will reprove it here using the same technique as for
the (strictly) monotone orbifold Hurwitz numbers.

Definition 6.6.1. The usual orbifold A-operators are given by

t, t—1

o2 N SCrup) ™
A<H>(U,ILL) =T S(?"Uﬂ) tezz ([,U/]"'l)t EtT—<H>(ulu’)

Remark 6.6.2. Up to slightly different notation and a shift by one in the exponent of pu, these are
the A-operators of [15].

The importance of these operators is given in the following proposition:
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6.6. Quasi-polynomiality for the usual orbifold Hurwitz numbers

Proposition 6.6.3. [15, proposition 3.1] The generating function for disconnected orbifold Hurwitz
can be expressed in terms of the A-operators by:

U L) ur
E:hw“ =z Hf

The proof of this proposition amounts to the calculation

Aguylsr) ) (6.27)

o)

rr

}1 [ ] F ar ar F1
[ :u’] 4 2L o 2r uF, . —uFy —=F,  —=—b ((328)
With these data, we can start our scheme of pI‘OOf.

Lemma 6.6.4. The operator A, (u, 1) (in the same sense as before) is given by
roe S(rup)tpttH
Ay (Uvﬂ)b = W Z(—l)tfgtwu(—uﬂ)

Proof. The proof is very analogous to the proof of [15, proposition 3.1].
We do the same commutation as for the A-operators, but starting from . First recall [37,
equation (2.14)]:
e"2a,em 2 = €, (—up)

The second conjugation gives

o wFa

e e 7u.7:2

[

E’T‘S‘/L( we -
(C TU,&) gtr+u( upt)

(—up)'S(—rup)*

M%EM8

= £ 5tr+u(*uzu)
t=0 ’
And the third conjugation finally shifts the exponent of u:
1 ar or b — (—rup)t
uTeTe“FQaHefufzefTu r Z —gtr+u(—uﬂ)
t=0 tl
Comparing this to equation (6.28) and multiplying by the coefficient finishes the proof. O

Theorem 6.6.5 (Quasi-polynomiality for usual orbifold Hurwitz numbers). For 2g —2+1(u) > 0,
the usual orbifold Hurwitz numbers can be expressed as follows:

or s wo YRS
hgﬁﬁ:r im1 e HWP (11, - b))
=1 AN

where P are polynomials of degree 3g — 3 + 1(ji) whose coefficients depend on the parameters
(p1), -+ (paqy) and p = r{u] + (u) denotes the euclidean division by .
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6. Quasi-polynomiality of Hurwitz problems

Remark 6.6.6. As stated before, this result is not new. It has been proved in several ways in
[2, 9, 15]. We add this new proof for completeness.

Proof. We will show that, for fixed 7;, the connected correlator ([T, Ay, (u, 1)), n = 1(j7),
is a power series in u with polynomial coefficients in all u; for the operators A. As these are
symmetric functions in the pu;, it is again sufficient to prove polynomiality in 1, or, equivalently
(see remark 6.5.4) in v1 = [uq].

We will first consider the disconnected correlator ([[}; Ay, (u, 11;))°* where, setting p; = vir+n;,
the operator A is

S(rupa) "

A"]i (u’/j/z) = T_%S(T‘U,ui)w Z (V:' —+ 1)t

t, €L

5&-7”*771' (’U,,U,Z)

If we expand all of the t-sums in the disconnected correlator, we get the condition Zi(:“l) (tir—m;) =
0, as the total energy of the operators in a given monomial must be zero. Furthermore, ty7—n; > 0,
since the first £ would get annihilated by the covacuum otherwise, and ¢; > —v; (otherwise the
symbol 1/(v; + 1);, vanishes), so if we fix n1,v2,72,...,Vn, s, the t1-sum becomes finite. Since
the power of u is fixed, it also gives a bound on the degree in v1. So the coefficient of a particular
power of u in the disconnected correlator ([T}, A,, (u, 1:))" is a rational function in v;.

Again, because the coefficients are rational functions, we can extend them to the complex plane,
and it makes sense to talk about poles. The only possible poles must come from ﬁ or u=0.
These poles are all simple, except possibly for the last case. Let us calculate the residue at v = —I,
forl=1,2,....

Lemma 6.6.7. The residue of the A-operators at negative integers is, up to a multiplicative con-
stant, equal to the corresponding A°-operators with a negative argument. More precisely,

Res Ay (u, vr +1) = Ay (u, br — 1)’ ifn#0
%(B_Sl Ao(u,vr) = %Ao(u, Ir) ifn=0

Proof. Let us prove both equations together. The only contributing terms have t > [, so we
calculate

S(rup) p* (v +1)

Res Ay = s(rupy Y- S0 D gy
o t>1 ¢ v=-1
_n _ S(rup)tpt=1
=r " S(rup) lZm&r—n(uﬂ)

t>1

where we kept writing p for —ir + n. As this is negative, however, it makes sense to rename it
1= —A. Substituting and collecting the minus signs from the Pochhammer symbol, we get

1)1t rul)tat—1
Res A, (0. ) = s ;H)“‘Wsﬁ._nuw

S A t)\t-‘rl—l
Sy S AT )
>0

r

(-1

sls

-1
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6.7. Quasi-polynomiality for spin and orbifold spin Hurwitz numbers

Because A = lr —n, we have | = [\] + 1 — §,0 and n = —(\). Recalling equation (6.20), we obtain
the result. O

Because of lemma 6.6.7, we can express the residues in pq of the disconnected correlator as

follows:

n L] n L]

b
s TTAw (o)) = eom){ Aot =) [T o o)

i= =
where ¢(n1) is the coefficient in lemma 6.6.7. Recalling equation (6.27) and realising that the
AP-operator is given by the same conjugations as the corresponding A-operator, but starting from
a,, in stead of a_,, we can see that this reduces to

n ° n [ )
=1 1=2
for some specific coefficient C' that depends only on 7; and .
For the pole at zero, we see the only contributing terms must have t < 0, but we also need
tr —n > 0, in order for the £ not to get annihilated by the covacuum. Therefore, we need only

L]
consider the case 7 = 0 and the term ¢+ = 0. However, this term in <HZ':1 Ay, (u, uz)> cancels

against the term coming from

(At ) ( i_f[QAn,.(u,m) )

as that has exactly the same conditions 7 =t = 0 in order for the first correlator not to vanish.

The rest of the proof is completely parallel to that of theorem 6.5.2, only the computation of
the degree of the polynomial makes some difference.

The degree of the coefficient of u?9=2*" (where 29 — 2 +n > 0) of a connected correlator
(T1-, Ay, (u, 113))° can be computed in the following way. The coefficient [[7_, pb' ™" /(v; + 1),
has degree —n in vq,...,v, and degree 0 in u. The leading term of the connected correlator
(TT'—, Etyr—ni (upi))” has degree n — 1 +n —2 =2n — 3 in v1,...,v, and degree n — 2 in u. The
coefficient of u?? in the series S - [];_; S(rup;)” ', where S without argument denotes the S-
functions coming from the connected correlator ([];_; €y (up;))” divided by its leading term,

is a polynomial of degree (3/2)-2g = 3g in v1,...,v,. So, the total degree in vq, ..., v, is equal to
—n+2n—-3+3g=39g—3+n.
This completes the proof of the theorem. O

6.7 Quasi-polynomiality for spin and orbifold spin Hurwitz numbers

In this section we prove quasi-polynomiality for orbifold spin Hurwitz numbers. We will define
the g-orbifold r-spin Hurwitz numbers as vacuum expectations of certain operators. We will then
rewrite this expression to isolate the non-poynomial behaviour and get a formula for the supposed
polynomial part as a vacuum expectation of a product of A-operators. This line of thought
originates from Okounkov and Pandharipande [37] and has also been used in e.g. [27, 15, 33] to
prove quasi-polynomiality of several different kinds of Hurwitz numbers.

We will write p = a[u]q + (1), for the integral division of an integer p by a natural number a.
If a = qr, we may omit the subscript.
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6. Quasi-polynomiality of Hurwitz problems

Definition 6.7.1. The disconnected q-orbifold r-spin Hurwitz numbers are

[pl b °
0.q,r . % 7 1 ‘Fr-l-l Oy,
hg;ﬁ '_ < ( q ) (Iul)! b(r+ 1)b 1_[1 10; > ) (6.29)

1=

q

where, by Riemann-Hurwitz, the number of (r + 1)-completed cycles is

29 — 2+ I(u) + 1

r

0,q,7

g are defined via the inclusion-exclusion

The connected q-orbifold r-spin Hurwitz numbers h
formula from the disconnected ones.

Remark 6.7.2. This formula can be interpreted as follows: we count covers of P!, reading from
0 to co. At the point 0, we have ramification profile u, corresponding to the product of a’s on
the right. The point oo has orbifold ramification, profile [q,q,...,q|, corresponding to the a’s
on the left, divided by the extra symmetry factor (%)!. In the middle, the ramification profiles
are completed r + 1-cycles, corresponding to the F,,;. These are formal linear combinations of

ramification profiles, with ‘leading term’ (most ramified) [r + 1,1,...,1], see [38].

Definition 6.7.3. The generating series of g-orbifold r-spin Hurwitz numbers is defined as

00 1(7)
®.q,r(~ E ®.q,7 rb 2q urﬂ ( Oy, *
H i ([L,’LL) — hg;ﬁ’ u — ea e 1 H _‘ .

g=0 i1 Hi
The free energies are defined as
o0
n . .
A G I N D A
M1y hn=1

We now introduce A-operators to capture the supposed quasi-polynomial behaviour of the
g-orbifold r-spin Hurwitz numbers in the Fock space formalism.

Definition 6.7.4 (A-operators).
| (wp)?
a.r o
AL = 3 A

et n+1)s
SEZL

i AZ <(I+M)r+1 _lr+1>3+[ﬂ]

i\ D Bitp-ati

t=0

q Agﬂ]q*1 ((l+u)7'+1 _ lr+1>s+[ﬂ]

+ 00y
<#>q,021 q['u']q[/,l/]q! ‘LL(T'+1)

Id |,
1=1/2—j

where A, is the ¢g-backward difference operator acting on functions of I, i.e. (A, f)(1) = f(I) —
fl—q).

Remark 6.7.5. In this definition, u is a formal variable, while p—at this point—is a positive integer.
That is, for fixed p,

Jj=

Gy (1) € Aso[u].

Indeed, for fixed [u] and fixed power of u, ¢ is bounded from above by 7(s + [u]), so only finitely
many diagonals are non-zero.
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6.7. Quasi-polynomiality for spin and orbifold spin Hurwitz numbers

These operators do indeed capture the conjectured polynomial behaviour, as is seen in the
following proposition.

Proposition 6.7.6.
(i) ) 1(i2) .
o0/ — (urui)[ﬂi] -
i=1 w i=1

Proof. Since both F,; and o, annihilate the vacuum, their exponents act as the identity operator
on the vacuum. Hence we can write

Ui -

©.q. (= &) ag w41 Oy w1 _ag \°

H*" ([, u) = ea e 71 e T e ).
i=1 Hi

Lemma 6.7.7. The conjugation with exponents of F reads

r u” Trt1 —u” Z + /”L)TJFI lr+1 ’
Of )= e e T = 3 S (W L

1€Z+1/2 s=0
Proof. As Ad(eX) = 24X we have
Il i u"s &
et T a_y, e ]_- a_y.
(r+ 1 rt
s=0

Applying lemma 6.2.5 with a = 0 and g; = ["*!, we see that every application of the operator
adr,,, produces an extra factor ((l + )t — l”“). Multiplying and dividing by p® yields the
result. O

Lemma 6.7.8. The conjugation with exponents of oy is given as follows:

1 (I4p)tt — z"+1>8
e O[’ ( ) Ep—
7 ZGZZ—H/Qg us' ; qtt| .[‘L(T+1) +pn—qt,
+(5< - Z u]rl ((H-M)rﬂ _ lv»+1)s -
g, g /’LS' = Nf]q M(T+1) 1=1/2—;

Proof. Apply Ad(eX) = X as before and lemma 6.2.5 with a = q. The component of the
identity can only occur if the total energy is zero, i.e. if u = qgt. O

Re-indexing s — s+ [u] we get the equation for the A-operators, where we use that, for s < —[u],
the Pochhammer symbol vanishes, so we can extend the sum over all integers. O

6.7.1 The operators A’

Following the schedule of the previous sections, we would like to calculate the A°-operators.
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6. Quasi-polynomiality of Hurwitz problems

Lemma 6.7.9.

s ek (L= g+t =1y
OL](U) =e" T e Z Z ( T D) Ei_,.

leZ+1/2 s=0

Proof. This is completely analogous to the proof of lemma 6.7.7, only changing the sign of p in
appropriate places. O

Lemma 6.7.10.

A I — 7+1_lr+1 s
. uuu (L —p)
oo = 5 S (ST ) B

1€Z+1/2 s=0

Proof. This is completely analogous to the proof of lemma 6.7.8, bearing in mind that the coefficient
of the identity is zero, as both operators in the repeated adjunction have positive energy. O

In defining the A-operators, we extracted the coefficient
amg
[t
Hence, the A’-operators should include this factor. Therefore we get
Lemma 6.7.11.

u r s+[;¢ o0 A (l 7M)r+1 7lr+1 s
A(#) u N Z Z Z qtt! ,U(r‘f' 1) El—u—qt,l (632)

1€Z+1/2 =0 t=0

6.7.2 Quasi-polynomiality

Definition 6.7.12. An expression defined on a subset S C C is polynomial if there exists a
polynomial p, defined on C, that agrees with this expression on S. We then use p as a definition
of this expression at all other z € C.

The goal of this section is to prove the following statement.

Theorem 6.7.13 (Quasi-polynomiality). For 2g — 2 + £(fi) > 0, the g-orbifold r-spin Hurwitz
numbers can be expressed in the following way:

L(f2) [;Ai]
hy " = T = P (s )
i=1 ['u’]'

where P are symmetric polynomials in the variables p1, . .., pyz whose coefficients depend on the
parameters (p1), ..., () -

Remark 6.7.14. We prove that the degree of P has a bound that does not depend on the entries
of the partition f. The actual computation of the degree in this case is difficult, and it is not
necessary for the purpose of topological recursion. However, these numbers are expected to satisfy
an ELSV-type formula (see conjecture 6.11). The conjecture would imply that the degree is equal
to 39 — 3 +n.
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6.7. Quasi-polynomiality for spin and orbifold spin Hurwitz numbers

Remark 6.7.15. Note that since we allow the coefficients of the polynomials Pz to depend on (fi),
we can equivalently consider them as polynomials in [p1],..., [us], 7 := (). The latter way is
more convenient in the proof.

Comparing the statement of theorem 6.7.13 to equation (6.31), it is clear that the polynomials
P must be the connected correlators of the A-operators, defined via inclusion-exclusion from the
disconnected versions. To prove this theorem, we will therefore first consider the disconnected
correlators, and show that the coefficient of a fixed power of u is a symmetric rational function in
the p;, with only prescribed simple poles. The residues at these poles are explicitly related to the
A’-operators, and cancel in the inclusion-exclusion formula, proving quasi-polynomiality.

First we need some technical lemmata, analysing the dependence on u of single terms in the
sums of the A-operators.

A:c+7n

Lemma 6.7.16. The coefficients of the polynomial inl, m
in x for any p and m. More precisely, the coefficient c{’n’a(x) of I* has degree 2p — a — 2m.

P*® are themselves polynomial

Proof. There is a version of the Leibniz rule for the backwards difference operator:

Aq(f9)(1) = (AgH)(Dg() + f(I = @)(Agg)(D)-

Repeated application of this rule gives the following:

z+m
Aq

e LANSD DR G (GRS SRR

ot igpm=p—m

~ (U~ gl ), 1)

”i? <p+ x) hp—m—al = -, —q(x +m))I®

a=0 a
p—m
pt+x r+p—a p—m—aja
=> (—a) .
= a r+m

Here we used 6.3.4. So the coefficient of [* is given by

hale) = (e (PET T

This binomial coefficient can be written as

1
~@+p) - (@z+p—atl),

which is a polynomial in x of degree a.

The Stirling number, on the other hand, requires a more subtle proof. Define f;(z) = {*1'}.
We prove f; is a polynomial of degree 2t inductively on ¢, starting with fo(z) = 1.

For the induction step, recall the recursion relation for Stirling numbers, which can be written

as follows:
T+t _ r—1+t¢ . r—1+t
x x—1 o x '
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6. Quasi-polynomiality of Hurwitz problems

In other notation, (A; f;)(x) = 2 fi—1(x). By induction, Ay f; is polynomial of degree 2t — 1, hence
ft itself can be written as a polynomial of degree 2t. The Stirling number we require is given by
fp—a—m(z +m), which is of degree 2(p — a — m). Adding degrees yields the result. O

Remark 6.7.17. Note that the equation A;f = 0 has non-polynomial solutions, e.g. f(x) =
sin(27x). However, we only prove that the functions in question can be represented as polynomials,
not that there is no other analytic continuation.

Lemma 6.7.18. For fized r,i,s, (1) € Z>q the expression
Af]ﬂﬂ]q ((l + M)r+1 _ lr+1>8+[u]
g tla (i 4 [u]g)! p(r+1)
is polynomial in [u] (in the sense of definition 6.7.12), of degree 2rs — 2i — 2([u]q) -

Proof. Expanding explicitly using Newton’s binomial formula,
. (1+ u)7+1 z’+1 ZT 1\ gt
T l -— — .
@) = w(r + 141 +1)

Let us now consider the coefficient in front of I"((#lar+5)=a for some particular values of “offset”

[p([uhs) o} Q1) l+s _ g,

( )( ><ri1>; 2
e ( ) ()0

LN
{l’ [u]+s)— } Q) [ul+s _ Z ({AZTEAL/]\?T:}zzl) (}_[1 % ()7:;—11>>ﬂa’

Aa

[lr([u]+8) 1} QL ot

where the multinomial coefficient is

(o )= (11+5) |
=M biz) = (=000 T OF AL

Clearly, this is a polynomial in [u] of degree 2a—one a comes from p® and the other from the
multinomial coefficient in the summand, corresponding to the partition [17].

Furthermore, it has zeroes at [u] € Z>( for which 7([¢]+s)—a < 0 (i.e. when we want to extract
a coefficient in front of the negative power of [). This is because the contributions of partitions
A with more than [u] 4+ s parts are zero thanks to the multinomial coefficient and partitions with
L(N) < [p] + s will have at least one part for which the corresponding binomial coefficient will be
Zero.

Let us denote

Poly, .. ([u]) = [0 +=2] qr 1)+
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6.7. Quasi-polynomiality for spin and orbifold spin Hurwitz numbers

Using lemma 6.7.16), denoting ¢ = i + ([u]4), for brevity and noting [u], = r[u] + ([¢t]4)r, we have

Aé'Jrr[;L] Az ' rp] r([u]+s)

QL(Z)-S'H“] - q ,JFT[IJ«] ’L +T Z POIYasr ])l’r([u]-i-s)—a

g (i + r[u))!
rlul+rs rs—i' —a
2} }j e (r[u]) Poly, , (1))

rs— l"’S’L

EZ S 1R (rlu]) Polya,s. (1),

a=0 k=0

where crucially in the last equality, we can choose upper summation limit of the first sum to be
independent of [u]. We can do this, because:

e for a > rs — i’ the coefficients ¢}, “(r[u]) are zero;

e for a particular value of [u] € Z>¢ it could happen that r([u] + s) < rs —i'. But we know
that for a > r([u] + s), Poly, ;.([#]) = 0. So, adding these zero terms does not change the
sum.

We see that we have arrived at a manifestly polynomial expression, which completes the proof.
The degree follows as the degree of Poly,, . ,.([u]) is 2a and that of ¢}, * is 2(rs —a) —k—2i. O

These lemmata can be applied to prove the rationality of the disconnected correlators of A-
operators.

Proposition 6.7.19. For fized power of u and fixed [ps], ..., [1n], and (i),

I(f7) °
(L5 e )
i=1

is a rational function in the variable [u1], with only simple poles at negative integers and at (] =

—{1)-

Proof. Let us make some observations about the following expression, where we write u = pq,

()’ : T .
< T e ttlQr< DB g [T AG (i )>
1€Z+1/2 HUR s j=2
SEZ
First of all, the energy of the operators on the left should be positive, meaning that p — gt < 0.
On the other side, the exponent of the finite difference operator cannot be greater than the degree
of the polynomial to which it is applied, implying ¢ < r(s+ [¢]). Combining these two restrictions,
one obtains that rs + r[u] > [ulq = r[p] + ([4]q)r. Solving for s gives s > <[“]“> > 0.
Moreover, the correlator is zero unless the sum of the energies is zero, Wthh means

1(77)

(e —qt)+ > py—at; =0. (6.33)
j=2
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6. Quasi-polynomiality of Hurwitz problems

Since the other u; are fixed, it is clear that —i := [u], — ¢ does not depend on p. We can rewrite
the expression as

) SO i+lulg () .
< (u" ) Z Ay Qr (l>s+[,u]E H Ay (e u)> (6.34)
i+ ) | H l+</1'>q7qi7l (;14) 79 5 .
Entt p(ln] +1)s & g+ (i + [u])! =
s>0

where N does not depend on u. Fixing the power of u reduces the s-sum to a finite sum, as for
the other A-operators the power of u is bouned from below by —[u;]. Now, the first fraction is
clearly a rational function in [p] while the second is polynomial by lemma 6.7.18. Hence, the entire
correlator is a finite sum of rational functions, so it is rational itself.

The only possible poles can come from the Pochhammer symbol in the denominator, or the
factor i, and hence are at —s,1 —s,...,—1 and at [u| = —2—?. O

To prove the connected correlator is a polynomial, we should therefore analyse these poles. As
they are simple, we need only calculate the residues, which we do in the following proposition.

Lemma 6.7.20. The residue of the A-operators at negative integers is, up to a linear multiplicative
constant, equal to the A°-operators with a negative argument. More precisely,

Vlingsm AR (u, vqr+mn) = AL (u, mqr—n)° if n # 0; (6.35)

mqr Ui

Res AL (u,vqr) = —5— A3 (u, mqr)’ if n = 0. (6.36)
v=—m

mq 7'2

T

Here the residue is taken term-wise in the power series in w, and the factor u~" means a shift of

terms.

Remark 6.7.21. Note that the first formula is slightly different from the one in 6.6.7 in the case

F
7 = 1. This is because in that section, an extra conjugation with «+ was performed, resulting in
different A-operators.

Proof. Let us prove equations (6.35) and (6.36) together. The only contributing terms have s > m,
so we calculate

r u ) (vm) o= Ab /(14 p) = o
JBes A= Y ("”)Z"(( e T

t!
1€Z+1/2 pr+l)s = q't! plr+1 v=—m
s>m
( 00 At l+/,L)T+1 lT-‘rl s—m
— Eiy,-
s>m
3 (u"p)*(=1)™=1 i Al ( l+u)7"+1 lr“) >
= 1+ t,ls
leiri/2 ,u(m (s—m)! qtt! w(r+1) pean
s>m
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6.7. Quasi-polynomiality for spin and orbifold spin Hurwitz numbers

where we kept writing p for —mr 4+ 7. As this is negative, however, it makes sense to rename it
1= —A. Substituting and shifting the s-summation, we get

( 7‘)\ —_ [ee] At . )\)r+1 _ lr+1 s—m
Z —A(m— 1 (s— mlz qtt! —)\(7"—1—1) Erx—qt,1

l€Z+1/2
s>m

>3 AL z—A)T+1—zr+1 o
- Z A(m— 1 (s— m'Z tt'( (r+1) ) Ei-x-qu

l€EZ+1/2
s>m

U™\ s+m ©° At l_/\)r+1_lr+1 s
Z Am—1)ls! Z gtt! ( A(r+1) ) Eix—qt.1-

zeZ+1/2
s>0

Res AL"(u,p) =

Because A = mr — 1, we have m = [\] +1 — 0,0 and = —(\). Recalling equation (6.32), we
obtain the result. O

Proof of theorem 6.7.13. The Hurwitz numbers are symmetric in their arguments, hence the P
must be as well. By the same argument as for the previous sections, it suffices to prove polynomi-
ality in the first argument.

Lemma 6.7.20 implies that we can express the residues in p; of the disconnected correlator as
follows:

Res < TT Ao, (120 > — c(m, m)< Ayt mgr — 10 T A (s o) > .
=1

=2
where ¢(m, n1) is the coefficient in lemma 6.7.20. Recalling equations (6.29) and (6.31) and realizing

that the A°-operator is given by the same conjugations as the normal A-operator, but starting from
o, instead of a_,,, we can see that this reduces to

JRes { TTwtwm) ) =o( % o5 a,m, [T ) (6.37)
=1

imp M

for some specific coefficient C' that depends only on m, 71, and the p;.

Because [a, oy] = kdg+i,0, and Qmgr—n, annihilates the vacuum, this residue is zero unless one
of the p; equals mqr — n; for i > 2.

Now return to the connected correlator. It can be calculated from the disconnected one by
the inclusion-exclusion principle, so in particular it is a finite sum of products of disconnected
correlators. Hence the connected correlator is also a rational function in 4, and all possible poles
must be inherited from the disconnected correlators. So let us assume p; = mgqr — n; for some
i > 2. Then we get a contribution from (6.37), but this is canceled exactly by the term coming
from

Vy=—

Res, { Ay o)A, (g = ) >< TT s (o) >

2<j<n
J#i
aq o rFrgd ° ag u " Fp ay, °
=C( e e” TF Qmgr—n, O (mgr—n,) ese H . />
2<j<n 1
JF#i
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6. Quasi-polynomiality of Hurwitz problems

where the same C' occurs.

For the pole at [u] = <q7>, the only contributing term in equation (6.34) has s = 0, so we get
G s 11 ’
1@ WAE Gy —ai T Aty (1w )> :
i+[plq q —q ;Uw
leZ+1/2 iz0 4 H] Z + ] ) Jj=2

From the proof of lemma 6.7.18, we can clearly see that Poly,, ,,.([¢]) is divisible by y if a > 0, so
we need a = 0 there. This implies we have only

et = (o (W)

so we clearly need k =4’ = 0, and thus ¢ = 0 and ([u]q), = 0. As the first A-operator acts on the
covacuum, we still need qi — (1), > 0, so (u), = 0. As now (u)gr = (u)q + q([ptlq)r = 0, we get
that this term cancels against the same term from

L(f7)
(asom) (B

Hence, the connected correlator has no residues, which proves it is polynomial in ;. Therefore,
it is also a polynomial in puq, see remark 6.7.15. This completes the proof of the polynomiality in
[1u].

To be able to conclude that the connected correlator is polynomial in all [u]. .. [1,] we must
show that the degree in [u7] of the connected correlator does not depend on [ua] ... [tn]-

Since a connected correlator is a finite sum over products of disconnected correlators, given by
the inclusion-exclusion formula, and the number of summands does not depend on [us] . . . [@,], the
estimate on the degree of the connected correlator follows from estimates on degrees of disconnected
correlators. The degree of the disconnected correlator, which is a rational function in [u;] by
proposition 6.7.19, is defined as the leading exponent in the limit [1] — +o0.

Let us consider summands in the disconnected correlator (6.34) corresponding to a particular
choice of s; > —[u,], for 2 < j < n. The contribution of genus g covers is extracted by taking the

coefficient in front of u29~2t"+3 Xi=1 () 50 we have

29—24+n

= YA

j=2
First of all, the factor m contributes —1 to the degree. Then, by lemma 6.7.18 the degree of
AZ‘H/L]Q ]
——Q ()" 6.38
e MU (6.38)
is 2rs — 20 — 2([p]q). It looks like the sum over ¢ in (6.34) goes from zero, so the highest degree of
these polynomials depends on [pa] ... [py,] (through s and estimates for s;), but we are to obtain a
finer estimate on the lower limit of summation.
We have

tj <r(sj+ [py]) for 2 < j <,
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6.8. Correlation functions on spectral curves

since exponents of difference operators cannot be greater than the exponent of the polynomials to
which they are applied. Combined with the condition (6.33) that the sum of the energies should
be zero, this gives

P> ;(<u>q+j§:<uj>) —Z

which means that the degree of (6.38) is bounded from above by

2 o 2 -
2(2g =2 m)+ 2 D () = 2Aule), = 2 (Uda-+ Dl ) =202~ 2 n),
i=1 j=2
which does not depend on [us] ... [in]-
Thus, the degree of the disconnected correlator does not depend on [psa] ... [pns], and hence the
degree of the connected correlator does not depend on [us] ... [u,] either. O

6.8 Correlation functions on spectral curves

In this section we explain the relation of the polynomiality statements with the fact that the n-
point generation functions can be represented via correlation functions defined on the n-th cartesian
power of a spectral curve. The results concerning the monotone and strictly monotone Hurwitz
numbers in this section are new, while in the case of usual Hurwitz numbers it is well-known and
we recall it here for completeness.

The set-up for the problems considered in this chapter is the following: We consider a spectral
curve CP! with a global coordinate z, with a function # = z(2) on it. Let {po, ..., p,_1} be the set
of the z-coordinates of the critical points of x. We consider the n-point generating function of a
particular Hurwitz problem, for a fixed genus g, and we want it to be an expansion of a symmetric
function on (CP!) *" of a particular type:

> Ps (dil, - d;ln) f[gai () (6.39)

0<ai,..,on<r—1 i=1

Here the Pz are polynomials in n variables of degree 3g — 3 + n, and the functions &,(x) are
defined as (the expansions of) some functions that form a convenient basis in the space spanned
by 1/(pa — 2), «=0,...,7 — 1.

The reason we are interested in the particular degree 3g —3+n, is in short due to this being the
dimension of the moduli space of curves ﬂgm. Somewhat more explicitly, we expect an ELSV-
type formula to hold, as it does in the usual orbifold case—the ELSV-formula itself for r = 1
[18] and the Johnson-Pandharipande-Tseng formula for general r [28], for more explanations and
examples we refer to [19, 14, 34, 15, 1]. The topological recursion implies [19] that the correlation
differentials are given by the differentials of

2 /Mg,n I - ﬁ Ea (22),

d
0<ai,....,ap,<r—1 i=1 (]- - ¢2E> i=1
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6. Quasi-polynomiality of Hurwitz problems

where C is some class in the cohomology of M, ,,. Because the complex cohomological degree of
the 1)-classes is one, this implies that we have a polynomial in the derivatives of degree dim M, ,, =
39 —3+n.

6.8.1 Monotone orbifold Hurwitz numbers

In the case of the monotone orbifold Hurwitz numbers the conjectural spectral curve is given
by = z(1 — 2") [8]. The conjecture on the topological recursion assumes the expansion of
equation (6.39) in x1,...,2, near x; = --- = z,, = 0, so we have the following expected property
of orbifold Hurwitz numbers:

o,r, - i d d -
> ;%hsllxg = §:<Q_IRE(dxy'”’dxn)IIgm(%) (6.40)

pe(Nx)" 0<aq,...,an< i=1

In this case the critical points are given by p; = (i(r + 1)_1/’“7 1t =20,...,7 — 1, where ( is
a primitive r-th root of 1. This means that up to some non-zero constant factors that are not
important, we have the space of functions spanned by:

1
" | =01, =1
51 1_ C_l(T—F 1)1/TZ 2 r

Consider a non-degenerate change of basis & = 37— ¢¥/r - £/. We have:
1/r k
, ((r+1)1r2)
1—(r+1)z"’
Observe that z = z(1 — 2") implies

d 1 d

dr 1—(r+1)2" dz
Therefore, the functions &, are given up to non-zero constant factors C}, by

k41
¢ ,d 2P

—oLE2 k=01 . .r—1
PR ek 1 1hree T

Thus, the suitable set of basis functions for the representation of the n-point function in the form
of equation (6.40) is given by

d i+1
£ (Z >, i=0,...,r—1

T dr \it1
Lemma 6.8.1. Fort=0,...,r — 1, we have:
g0 =3 (1) (6.41)
n=0 "
rlp—1
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6.8. Correlation functions on spectral curves

Proof. In order to compute the expansion of 2! in z, we compute the residue:

1y dx 1—(r+1)z" 2it1dz dz = (n+7\ .
1+1 _ _ o r T
fz xn—&-l - f (1 _ Zr)n+1 Zn+1 - % Zn—z' (1 (T + 1)Z )Z ] 2

Jj=0

This residue is nontrivial only for n = kr+i+41, kK > 0, and in this case it is equal to the coefficient
of z*7, that is,

kr+k+i+1 _(+J)kr+k+i (1) (kr 4k 419)!
k " k=1 )~ Kl(kr+i+1)!

Thus

Pan B i Er+k 414\ zhrtitl
i+l = k kr+i+1
which implies the formula for & = (d/dx) (z“‘l/(i + 1)), 1=0,....,7r—1,if weset p="kr+i O

The explicit formulae for the expansions of functions &; in the variable 2 given by equation (6.41)
imply a particular structure for the coefficients of the expansion given by equation (6.39), that is,
for monotone orbifold Hurwitz numbers. In fact we have:

Proposition 6.8.2. The coefficient of x}* -- -zt of the expansion in x1,...,x, near zero of an
expression of the form

d d .
P _— ., — . 42
> A (Groogn) e (6.42)

0<ki,....kn<r—1

where Py, .k, are polynomials of degree 3g — 3 +mn and & is equal to - ,:J: , s represented as

n

H (’ui —;z[’ul]) “Qua) ety (2], -5 [1m])

i=1

where p; = r{w;] + (i), is the euclidean division, and Q. . ., are some polynomials of degree
39 — 3+ n whose coefficients depend on ny,...,n, € {0,...,r —1}.

Proof. The coefficient of x* in (d/dx)P&, is non-trivial if and only if (u) + p = ¢ mod r. In this
case, the coefficient of z# is equal to

[w+pl+p+p _ (plul (et pl+ s+ p)lp]!
( [+ p] yu+D _< p ) (b + [ [ + ! (649
Represent p as p = —(u) + sr +£ >0, 0 < £ <r — 1. Then the second factor on the right hand
side of equation (6.43) can be rewritten as
((p] +s)r+1) +0)!
(e (r + 1) + () ([l + 1)s

Observe that we can cancel the factors ([u]+ 1), ([u] +2),. .., ([#] + s) in the denominator with the
factors ([pu] +1)(r+1), ([u] +2)(r+1),...,([#]+)(r+1) in the numerator. Since ([p]+1)(r+1) >
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6. Quasi-polynomiality of Hurwitz problems

[#](r + 1) + {(u), after this cancellation the numerator is still divisible by ([g](r + 1) + {(u))!. So,
this factor is a polynomial of degree p in [u], with the leading coefficient (r + 1)P*[u]P.

Since the only possible nontrivial coefficient of z# in (d/dx)P&, is a common factor (MJ;M) mul-
tiplied by a polynomial of degree p in 1], the coefficient of []; 2" in the whole expression (6.42)
is also given by a common factor []}_, ("ZE"]) multiplied by a polynomial in [u1], ..., [1n] of the
same degree as Py, . 1

e

Thus the quasi-polynomiality property of monotone orbifold Hurwitz numbers is equivalent to
the property that the n-point functions can be represented in a very particular way (given by
equation (6.40)) on the corresponding conjectural spectral curve, cf. [8, conjecture 23].

6.8.2 Strictly monotone orbifold Hurwitz numbers

In this case the spectral curve topological recursion follows from the two-matrix model considera-
tion [5], and it was combinatorially proved in [17], see also [10]. From these papers it does follow
that the n-point function is represented as an expansion of the following form:

DR | E S (dil’ . dj) | JEHED) (6.44)
AeM)" i "=l

i=1 0<aq,...,anp<r—1

for the curve & = 2"~! + 2=, The goal of this section is to show the equivalence of this represen-
tation to the quasi-polynomiality property of strictly monotone orbifold Hurwitz numbers.

The critical points of x are given by p; = ('(r — 1)~Y" i =0,...,r — 1, so, repeating the
argument for the previous section and using that in this case

1 d 1 d

S 2dr 1—(r—1)z"dz

we see that a good basis of functions &; can be chosen as

1 d P
i= =5\, =0,...,r—1
¢ zzda:(z—|—1> 1=0 "

1

The expansion of these function in =" near x = oo is given by the following lemmas:

Lemma 6.8.3. Fori=20,...,r — 1, we have:
G@) =) T
=\
rlp—i

Proof. We compute the coefficient of x™# as the residue

1+1 i+1 r\pu—1
%ii z x“‘lda::f—fz g (Gt2D"
22dr \i+1 i+1 Zhtl
We see that his residue can be non-trivial only if 4+ 1 =4+ 1 mod r, and in this case it is equal

to (“[;]1) ) O
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6.8. Correlation functions on spectral curves

The proof of the following statement repeats the proof of proposition 6.8.2.

oy . — _ . . -1 _ . .
Proposition 6.8.4. The coefficient of x; " -+ -z of the expansion in x1 ", ...,z near infinity

of an expression of the form

d d \ —
Z Pkl,...,kn <dxlavdmn>llj[1§kz

0<ky ... .kn<r—1

where Py,
as

.....

k, are polynomials of degree 3g — 3 +n and & is equal to Z%% (Zkk%) , 1S represented
I (" ") Qo (Bl )

i=1

where p; = (] + (i) and Qy, ..., are some polynomials of degree 3g — 3 + n whose coefficients
depend on ny,...,n, €{0,...,7r —1}.

Thus the polynomiality property of strictly monotone orbifold Hurwitz numbers is also equiva-
lent to the property that the n-point functions can be represented in a very particular way (given
by equation (6.44)) on the corresponding spectral curve, cf. [10, conjecture 12].

Note that [10] has a binomial ([ZZ:}]), which is equal to ours unless (u;) = 0. In that case it
differs by a factor r — 1, which can be absorbed in the polynomial.

6.8.3 Usual orbifold Hurwitz numbers

The spectral curve topological recursion for the usual orbifold Hurwitz numbers is proved in [9, 2],
see also [15, 34]. The corresponding spectral curve is given by the formula z = logz — 2", and
the computations for this curves are also performed in [39] in relation to a different combinatorial
problem. From these papers it does follow that the n-point function is represented as an expansion
of the following form:

o,r e Szt d d n
Z hg;ﬁil;[leul - Z Ps (dajl’adxn)ll:[lfal(xz) (6.45)

/IE(NX)" 0<ai,...,anp<r—1

It also follows from these papers that the good basis of functions &; is given by

d [ Zi+1 i
= = i =0,...,7r—1
S dx (i—l—l) 1—rzr’ Tt
and the expansions of these functions in e® near e* = 0 is given by
K
fi(x)zzu—'e“r, 1=0,...,7r—1
= lul!
rlp—i

For these functions the differentiation with respect to = is the same as the multiplication by the
corresponding degree of e”, so the following statement is obvious:

167



6. Quasi-polynomiality of Hurwitz problems

Proposition 6.8.5. The coefficient of e'1%1 ... etn"n of the expansion in €', ... €™ near zero of
an expression of the form

d d \ T
Z Pkl ..... kn <d$177d$n>21:[£k1

0<ky ... kn<r—1

zk+1

k—ﬂ) , 1S represented as

where Py, .., are polynomials of degree 3g —3 +n and &, is equal to % (

n

(i
g
H[

i1 fi)!

Q ) »(Mn><[:u1]a"'v[,u'n])

where p1; = ;] + (i) and Qy, ..., are some polynomials of degree 3g — 3 +n whose coefficients
depend on ny,...,n, €{0,...,r—1}.

Thus the polynomiality property of usual orbifold Hurwitz numbers is also equivalent to the
property that the n-point functions can be represented in a very particular way (given by equa-
tion (6.45)) on the corresponding spectral curve.

6.9 Computations for unstable correlation function for monotone Hur-
witz numbers

In this section we prove that the unstable correlation differentials for the conjectural (or proved)
CEO topological recursion spectral curve coincide with the expression derived from the A-operators.
These computations are performed in the case of monotone orbifold Hurwitz numbers for the cases
(g,m) = (0,1) and (g,n) = (0,2), and for strictly monotone orbifold Hurwitz numbers for the case
(g.m) = (0.1).

Note that in both cases the computation of the (0, 1)-numbers was done before, see [8, 10, 5, 17].
The (0, 2)-calculation for the monotone Hurwitz numbers is a new result, but we learned after
completing our calculation that Karev obtained the same formula independently [29].

We show these computations here to test the A-operator formula and to demonstrate its power.
The computation of the generating function for the (0,2) monotone orbifold Hurwitz numbers is
necessary for the conjecture on topological recursion in [§].

6.9.1 The case (g,n) = (0,1)

In this section we check that the spectral curve reproduces the correlation differential for (g,n) =
(0,1) obtained from the A-operators of section 6.4.

The monotone case

Since in the case of n = 1 there is no difference between connected and disconnected Hurwitz
numbers, the (0,1)-free energy for monotone Hurwitz numbers reads:

oo

Z —1+d/r H. T <<’U,,/L).’L’H

p=1
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6.9. Computations for unstable correlation function for monotone Hurwitz numbers

Of course, in this formula only p = [u]r, [1] > 0, can contribute non-trivially. Let us compute
what we get. We have:

ey = Dy )

]!
|
- T IS S ot

(1 A+ [p])! 1
put et ) (e + o] = 1)
(here we used in the second line equation (6.16), where ¢ and v deliberately must be equal to 0

and —1 respectively).
Thus we have (replacing p by r[u] everywhere):

< _ — (rl] + [ - 2)!:5’"[“]
T5a= 2 T

Theorem 6.9.1. We have: wog)l = dFOS’1 = —ydzx.

Proof. The spectral curve gives y = —z" /. In lemma 6.8.1 we have shown that
Do~k kiDL o~ (ke k+i— D) (ki) g
7 — T — T 6.46
: k;) Kkr +ol " kZ:O e+ DIkr +i— ) (kr+4) " (6.46)
So,

_ - (kT +k+r— 1)' kr+r—1
vl =3 T it

oo

(k- U)r+ (k+1) = 2)! Grypr, e
2 (k+D!((k+1)r —1)! Ity = dFg

k+1=1

(for the last equality we just identify [u] with k + 1). O

The strictly monotone case

Similarly, for strictly monotone Hurwitz numbers the (0, 1)-free energy reads:

o0

Fiy () i= S TS () — log(a)

p=1

Again, only p = [u]r, [u] > 0 can contribute non-trivially. We have:

S ) = I (A ()
— 1!
G T
_ (=1
(1= [1] + D)![u!
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6. Quasi-polynomiality of Hurwitz problems

(here we used in the second line equation (6.17), where ¢ and v deliberately must be equal to 0
and —1 respectively). Thus we have (replacing p by r[u] everywhere):

dx
S gy — 22 4
dFgy = g 1) i x dx (6.47)

T

Theorem 6.9.2. We have: wg, = dFy = ydz.

Proof. The spectral curve reads = 2"~ ! + 27! and y = 2. Let us expand z = ZZOZO anpx™ and
compute the coefficients by

This residue is nontrivial only for n = —rj—1, j < 0, hence we should extract in the two summands
the j-th and the (j — 1)-st term respectively. Therefore, the residue reads

() a0

- (7 )

Hence

S ; —m‘—1+j) 1 e
dr = zdr = —1)7 ) — 7" dx
Y 2.1 ( J (=rj+j—1)
RS (=)
S 1y =irg
7 2 )j!(rj—jJrl)x !

== xI"de = dFy
Z TJ—J+1) o

where, in order to obtain the last line, we collected the minus signs from the Pochhammer symbol.
For the last equality we identify [u] with j and incorporate the term [u] = 0 inside the sum in
formula (6.47). O

6.9.2 The case (g,n) = (0,2)

In this section we use equation (6.18) in order to check whether the holomorphic part of the
expansion of the unique genus zero Bergman kernel gives the differential d; dgFOSQ. More precisely,
we prove the following theorem:

Theorem 6.9.3. We have:

dz1dz dzidzy
o = o e
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6.9. Computations for unstable correlation function for monotone Hurwitz numbers

Proof. 1t is sufficient to prove that
log(z1 — 22) = log(w1 — x2) + Fo2(w1,22) + C1(21) + Ca(22) (6.48)

where C, (5 are some functions of one variable.
We apply the Euler operator

to both sides of this formula. Using that 9, = (1—(r+1)2")719,, we observe that in the coordinates
21, 29 the Euler operator has the form

1—27 0 1— 25 0

TGt Tom T 1T-aDn Pom

We have:

2 e 2 (r 1) 2] 2
I—=(r+1)2)1—(r+1)z)
RN ( Atz e agtl  Aggh
(

02102 r+1)-1+r.2+”'+1(+1) ]
2

r 0 9?2 2722 2225
S T _ ( 122 4 ﬁ)
+ r+10x10x2 (2122 —@22) + 3$13$2 A 2.7

Elog(z; —2z9)=1+7r

Using equation (6.46), we finally obtain the following formula for Elog(z; — 22):

o0

k1r k1 i) (Rar 4+ ko2 +02)! kriin kortis
6.49
Z Z (krr +i1)! kal(kor +d2)! ! . ( )

i1,i2=1 k1,ka=0
i1+i2="r

for the degrees of x1, 22 not divisible by r (Case I), and

1 r > kir + k1 (kor + K2\ ror kor
7‘+1+7‘+1k;_0< kl )( ]{12 )xl (E2
1,~k1=—

r > kir + ky kor +ko\ kv kor
=1 ! 2 6.50
T k;_g ( ki )( ko )ml = (6.50)
1,k1=

(k1,k2)#(0,0)

if one of the exponents, and, therefore, both of them, are divisible by r (Case II).
Now we apply the Euler operator E to the right hand side of equation (6.48). We obtain the
following expression:

1+é1($1)+02($2)+ Z hor< xllx’;z(ul + u2)

(s p2)
p1sp2>1
rl(p1tp2)

We have to prove that the sum of equations (6.49) and (6.50) is equal to this expression.
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6. Quasi-polynomiality of Hurwitz problems

Let us compute hg'/ Equation (6.18) implies that

uu)

o< (m + [m]) (uz + [p2]

05 (H11M2) T Lo

) (A (1) A (1, p12))”

Since we have to use connected correlators, it implies that in the A, -operator we have to
take only the operators £ with the positive indices, and in the A,,)-operator we have to take
only the operators £ with the negative indices. Specializing the formula further, and using that

(9] (€,(¢1)E-0(2))° = v, we have:

[a]+1

o,r,< (p1 + [pa] +¢ = 1) _ (p2 + [p2] —t)!
03 (p,pz) ; Ml'([ﬂl] T t)‘ (t?" <H1>)

in Case I, and

ons 2 (] +t - 1) (2 + [ua] — t — 1)
ho-( ) = Z -

(ka2 put ,u1!([,u1} + t)' NZ!([MQ] _ t)l
in Case II. Note that in Case II, we omit the contributions from the ¢ = 0 part, as it cancels the

strictly diconnected correlator in the inclusion-exclusion formula.
So, in order to complete the proof of the theorem we have to show that

I 1+ 1) +t—1)! (p2 + [p2] —1)!
o) E T O W (051

. (Ml Zl[ul]) (M2 Zz[/m})

in Case I (cf. equation (6.49)) and

[12]
(11 + )+t =1zt =t~ 1)
bt m) 2 T (el ) (652

_ 1 (Ml + [ﬂl]) <M2 + [Mﬂ)
r+1 M1 He2
in Case II.

Let us show this for Case I first. Observe that tr — (u1) = ([u1] + ¢)r — p1 and w1 + po =
([1] + [2] + 1)r, so we can rewrite the left hand side of equation (6.51) as

G ) S bt DU G+ ) o)

— (] =11 po!((pe] +1 —1)!

[p2]+1
—re (] + (2] + 1) - > (1 4[]+t = D! (u2 + 2] — 1)

— (pa = D[] + ) p2!([p2] +1 2!

Let us omit the factor r since we have it in the right hand side of equation (6.51). Let us multiply
the first summand by g1 and the second summand by ([p1] +t). We get identical sums with the
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opposite signs. So, this expression divided by r is equal to

[p2]+1

3 ([l +t =18 (p2 + [p2] — )!
— (] +t =1 (p2 = D([p2] +1—1)!

[f:] i+ m +t—1> (12 + [12] — 1)!
(1

1= D] + ! p2!((pe] — )t
[n2]+1
=2 A Z By
We can reshuffle the summands in this expression in the following way:

A[#Q]Jrl - B[#'z] + A[,u2] - B[uz]fl +-+ A B+ 4

Now we add up term by term, starting at the left. First we get

= (R ) (1) )

(5

Iterating this, get get the following sequence of expressions:

Afus)+1 = Blus) + Afpio]

_ (ul + [M]; 2] — 1) ( ) . (Hl + [M];: [p2] — 1) (u:i 1)
+

<M1 + (] ) <M2 1)
Apps)+1 = Bl + A[#z] Bluy-1

<#1 + [pa] + [pe] — 1) <H2 + 1> <,U1 + [pa] + [p2] — 2) <#2 + 1)
H2 pr—1 2

<M1 + 1] ) (Mz + 1)
M2

eventually ending up at
p+ [l (2 + [pe]
Al +1 = Bluo) + < > ( iy

which gives us equation (6.51).
In Case II, the computation is similar. Observe that ¢ = ([u1] +¢) — p1/r and (u1 + pe)/r =
[1] + [p2], so we can rewrite the left hand side of equation (6.52) in the following way:
[p2]
pa 4[]+t =) (g + [po] —t —1)!
PPN < a7 R P
2 Gl + =D pal(a] — )

[p2]
— ([pa] + [p2]) - Z (1 + [pa] +t = D! (p2 + [u2] —t —1)!

G = DI + 07 pal(fa] — )
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6. Quasi-polynomiality of Hurwitz problems

Again, if we multiply the first summand by p; and the second summand by ([u1] + t), this yields
identical sums with opposite signs. Cancelling these terms, we get that this expression is equal to

) )

t=1

-1
_“‘i <u1+[u1]+t—1>(uz+[uz]—t—l)
t=1 pa—1 H2
[p2] [n2]-1

ST
t=1
Reshuffling the summands in this expression in the same way as for Case I, we would now get
/ / / ! !/ !/ /
As) = Bluaj-1 + Ay o1 = By 2+ + A2 = B+ A4

We will calculate this in the same way as before: we start at the right and at the next term one
at a time. First we get

b= B = () () - ()G

(e

Iterating this, the next few calculations give us the following result:

pal B[m} 1 A

2 pa + [pa] + [p2] — 2 H2
E e
(

Hz]

B[m A — —2
pa + [pa] + [p2] = 2) <u2 + 1> B (Ml + [pa] + [pe] = 3) <#2 + 1)
2 pp—1 2

(Ml + [,u1 [2] — 3) Lo + 1)
H2

And finally we get the followmg result:

A/[M]

—1
LBl et A= (m + [m]) (uz + [u2] )
M1 H2

_ 1 (Ml + [Ml]) (Mz + [#2]>
r+1 H1 2
which gives us equation (6.52).

This way we prove equation (6.48) is satisfied up to the kernel of the Euler operator. Since
neither the left hand side nor the right hand side of equation (6.48) contain the terms in the kernel
of the Euler operator, we see that equation (6.48) is satisfied, and this completes the proof of the
theorem. O
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6.10 Computations for unstable correlation functions for orbifold spin
Hurwitz numbers

In this section we prove that the unstable correlation differentials for the spectral curve

—ar
{X:ew =ze *?

6.53
R (6.53)

coincide with the expression derived from the A-operators. The unstable (0, 1)-energy was already
derived in [35] using the semi-infinite wedge formalism, we derive it here again to test our A-
operators. The computation for the unstable (0, 2)-energy is a new result and fixes the ambiguity
for the coordinate z on the spectral curve.

6.10.1 The case (g,n) = (0,1)

In this section we check that the spectral curve reproduces the correlation differential for (g,n) =
(0,1) obtained from the A-operators. Explicitly, we show:

dFgy (z) = yda. (6.54)

Clearly, when dealing with a single A-operator inside the correlator, only the coefficient of the
identity operator contributes, since (E; ;) = 0. Hence, by definition 6.7.4 and equation (6.31), we
compute, using that connected and disconnected correlators are equal in this case:

FOT () = 3 e, e
p=1
> (ul u_ 5 0 ur([u]+s)’us q A[M]q—1 ) . )
=2 1y T+ 1) ui[ I HOGk eoh
= =0 P : s =1 47 Mg I=5-j
co oo r [m]rmLs)( s+[m]—1 4 Am_l
m—11U mq) . s .
— ZZ[u 1 (CORE] Z :Lm' r (Ot crma
mee o =1 4 I=%—j
i n—-1 gq :
o ) Ay .
= Z nr QEnTJrl) (Z)n el(n7+ )a
0 n! et gVt (rn + 1)! q e
0 n—1
- (q(mﬂ - 1)) Zq: ! et(nr+1)g
oy n! = q(rn+1) |1
o0 n—2
_ (a0 + 1) s
1 0 n! ’

where the third line follows by setting p = mgq, the fourth line by setting m = nr + 1 and s = 0,
and the fifth line because qu—Z! on a monic polynomial of degree d gives 1.
As shown in [35], we have:

_ xqr 1/r
AR (z) = (W( - )> da,
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6. Quasi-polynomiality of Hurwitz problems

n—1

where W is the Lambert curve W (z) := — > 7 | “——(—2)". The properties of the Lambert curve

(see [35] for details) imply that the spectral curve (6.53) does satisfy equation (6.54), which can
be shown by explicitly computing (ze=*"" )" = 272,

6.10.2 The case (g,n) = (0,2)

In this section we prove that the (0,2)-correlation differential coincides with the usual Bergman
kernel on the genus zero spectral curve.
Let us first compute the (0, 2)-energy from the A-operators.

Lemma 6.10.1.

0 [121] [/L2] XM xHe 0 1] [uz] X1 xhe
Fily (X1, X2) = Z A 2 gr Z m
Loy lml! [Mz] (p1 + p2) ! [Mz] (p1 + p2)
1542 M52
qripit+pe qripit+pe
qr|p q7')W1
Proof. Let us write u == 1 + po.
By definition 6.7.4, we have that
. oo 1 " B o
Fiy (X1, X2) = ) [Ug]< Alu, Ml)A(U’M2)> XHxre, (6.55)
_ H1p2
p1,p2=1
where
(u” uz Al .
’LL /141 = Z Z Z qtitﬂ m(li) ‘ Eli‘f’ll‘i*qti’li'
1 €Z+1/2 ;=0 t;i=0 1 "
Note that the coefficient of the identity operator in A does not appear — indeed we are now

interested in connected correlators and, in the case of 2-points correlators, we have the simple
relation (A;.A45)° = (A1 A3)° — (A1)(As). The contributions of the identity operators coincide
precisely with the last summand.

Let us now make some observation about equation (6.55). Analysing the energy and the
coefficient of u, we find

w=q(ty +t2) = qr(s1 + s2) and Ho > qta > 0.

Moreover, the only term that can contribute in the correlator is the coefficient of the identity
operator, produced by the commutation relation of E-operators described by formula (6.3). Hence
we compute that F'y (X1, X3) is equal to

m2—qlta—=1/2 o1 o1 ALy ty
Hao Aq

:ul T S1 q r o S VM1 v H2
Z Z Z Z silsal  giity! i (D) oty 1 (L= 2 +12) %2 X3 X5,

P p2=1s1dsa=t ti =L 1=1)2
OSqt2<u2

Let us now observe that the sum of the degrees of the two difference operators equals the sum of
the degrees of the polynomials to which they are applied. By lemma 6.7.16, whenever the power of
the difference operator is greater than the degree of the polynomial, the result equals zero. Hence
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the only nonvanishing terms should satisfy ¢; = rs; and t3 = rsy. We proved that Fg)g (X1, X5)

equals
51—1 32—1

Z Z (2 — qrs2)%X}ﬂX”25qrw<uz

155!
pi1,p2=1  s1,52=0 2
s1+sa=p/qr

We distinguish now two cases: the case in which the u; are divisible by ¢r and the case in which
the remainders are non-zero.

Case u; = qrig

In this case pus = grve and the Kronecker delta gives so = 0,...,15 — 1, which implies s; =
v+ 1,...,v1 + va. We split (g — grsa) in two terms, and remove the summand for s1 = 11 + 14
from the sum. Writing s for s1, we get that the coefficient of X{"™* X" is given by

stlyuﬁ»ugfs VigflyVlJrVQ*S*l V{1+U271
(V1 + VQ)!

v1+ro—1
vitro—1 1 2 _ 2
(ar) [ Z (5!(V1+V2 —s) s+ —s—1)

s=v1+1

Multiplying and dividing by (1 + v2)! and collecting binomial coefficients we get

_ +ro—1

(q,r,)u1+u2 1[» M1+12\ o1 vitves vi+ve—1\ 1 vt (st1)

| 2 U A s (8 i
=

+ Vi/1+1/21‘| )

Distributing the factor (v; + v and simplifying binomial coefficients, we get
_ vi+ro—1
(qr)u1+u2 ! BN V1+V271 s—1_ vi+ve—s V1+V271 s, vi+rvo—s—1 vi+rva—1
(1 +wv)! Z s—1 ) " B s 142 ™ '
1 2): s=v1+1
This is a telescoping sum, of which the only surviving term is

(qr) e vt vy 1l

gr(vi +v2) ! (v2 = D)1 pa + prg [pa]! [p2]!

Case pu1 = qrvy + 1, with 0 <@ < gr.

In this case ps = gqrve + (qr — i) and the Kronecker delta gives so = 0,...,v9, which implies
s1 =11+ 1,...,v1 + o+ 1. We split (u2 — qrs2) in two terms, and remove the summand for
$1 =11 +v2 + 1 from the sum. Writing s for s1, the coefficient of X! X4? equals

v1+tv2 |: 1971 /1412/1 +vo—s+1 B ,U/‘lqil Mgl—kyg—s :| N¥1+UQ
E qr + :
S sl (v +re—s+1)! sl (v + g —s)! (1 + 12+ 1)!

The rest of the proof is completely analogous to the first case. The only remaining term is

T

p1 + pz [pa]! [pa]!”
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6. Quasi-polynomiality of Hurwitz problems

Summing up the first case and the second case for i = 1,...

concludes the proof of the lemma.

We are now armed to prove the main result of this section.

Theorem 6.10.2.
d21 dZQ

(21 — 22)?

dX1dXs

(X1 — X»)?

Proof. Tt is enough to show that the Euler operator

= +d1d2F6{’2T(X1,X2>

d d Z1 zZ9 d
E =X X = — -
Yax, A dXo 1—qrz{"dzy  1—qrzd" dz
applied to both sides of
log(z1 — 22) = log(X1 — X2) + Fyy (X1, Xa)

gives equal expressions up to at most functions of a single variable X;C(X;

us compute the left hand side first:

Elog(z1 — 22) =

o Al z9 1
S\l —grzlm 1—qr2d ) 2 — 2

1
= g (A el 223’“25”)
_1 d d o 21" log(z2) N 202 N 232 log 21)z
dxy dzo qr gr—1 = 2(gr—2)
d2 qu—lz2 qu 2Z2 zlzqr 1
-1 ar qr 1 1 2 B 2
i dryidzy <Zl T2tz +qr< gr—1  2(qr —2) + qr—1
k k] [Nz] [pa] | [pe2]
_1+Z X1 +Z X2—|—q7‘z #1 NQ N1 U2
k>1 ] 1,2 1,42
qrlk qr\l qT|H1+H2 qr|,u1+,u2
qrip qr|p
where in the last equality we used the fact
d [ = M
() = 2 xm P _
dx<z> Z [M]!X forie=1,...,qr — 1,
pigrip—i
d 2l
A — [l
dx 2 [t
pigr|p

,qr — 1 yields the statement.

This
O

) and XQC(XQ) Let

20 qr)
LT AT
21 %2 )

M1y K2
1 2
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6.11. A generalization of Zvonkine's conjecture

which was proved in [39, Lemma 4.6]—substitute gr for r there. By lemma 6.10.1, the right hand
side reads:

E(log(X1 — Xa) + F{5 (X1, X2)) =

> [pa] [po] (1] [pe2]

1_|_qu H1 '”2 'X#1X#2_|_Z H1 M2 'X 1Y M2
e [p1]! [pa]! e [a]! [p2]!
qripatpe qrlp iz
gripi qr|p
This concludes the proof of the theorem. O

6.11 A generalization of Zvonkine's conjecture

In this section we use the result of Chapter 3 in order to give a precise formulation of the orbifold
version of Zvonkine’s r-ELSV formula.

Conjecture 6.11.1. We propose the following formula for the g-orbifold r-spin Hurwitz numbers:

951505

Cy,n (rq,q;qr—w<%> ,~--,q7“—q7“<“”>)
e = [ i
- n .
My n [T (1= L)

s ) L 3]
(29— 2+n)q+2

n
X
o= f
= P
Here the class Cy ,, (rq, q;qr —qr <%> s, QT —Qqr <Z—:>) is the Chiodo class [6]. We use the
same notation as in [34], and we recall briefly its definition following the exposition there.
Let M " be the space of gr-th roots S®r =~ wgg (Z (qr< > - qr) 961')7 with wieg =
w3, xi), on the curves (C,z1,...,2,) € Mg, Note that the degree of the sheaf

(5]

is equal to q(29 — 2+ n) + qry. <ﬁ—;> — ngr and is divisible by ¢r (this follows from the
Riemann-Hurwitz formula, that s, from the fact that b given by equatlon (6.30) is integer).

We denote by 7: C — /\/l " the universal curve over M" " with universal qr-th root line
bundle & — C, and by e: M

g

n e J\/lg » the projection to the moduli space of curves. We define

() () e 0 )

This definition can be made very explicit, namely, there is an expression of the Chiodo classes
in tautological classes via the Givental graphs. We refer to Chapter 3 for further explanation on
Chiodo classes.
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6. Quasi-polynomiality of Hurwitz problems

In the special case ¢ = 1 this conjecture is reduced to Zvonkine’s 2006 conjecture [42]. In the

case r = 1 it is proved in [34] that this conjecture is equivalent to the Johnson-Pandharipande-
Tseng formula first derived in [28]. In the case ¢ = r = 1 this conjecture reduces to the ELSV
formula first derived in [18].
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Summary

Summary

How many circles are tangent to three given circles on the plane in generic position? This famous
problem formulated more than 2000 years ago is known as one of the very first problems in enumer-
ative algebraic geometry. Classical problems in algebraic geometry include, for example, the count
of algebraic curves of a fixed degree satisfying certain tangency conditions, and generally depend
on several parameters. The solutions of such problems — the numbers — can grow very fast as
functions of these parameters, and more structure is necessary to get a control on them. Enormous
progresses on approaching these problems were made in the framework of Gromov-Witten theory.
The definition of the theory relies on the concept of moduli space of curves and its generalisations.

The moduli space of curves is a key object of study in algebraic geometry. The structure
of its cohomology ring, whose formal study was initiated by Mumford, is rich and mysterious.
Geometrically important loci belong to a specific part of the cohomology, called tautological.
Faber’s three conjectures describe the structure of the tautological ring of the open moduli space
of curves without marked points, later generalised for marked points by Buryak, Shadrin, and
Zvonkine.

One of the main results of the thesis shows how the tautological relations derived by Pan-
dharipande, Pixton and Zvonkine from the Givental decomposition of Witten’s r-spin classes can
be used to re-prove with different methods aspects of the tautological ring (vanishing in higher
degrees, first generalised Faber conjecture), as well as to prove new results (estimations of the
number of generators in lower degrees).

Statistical mechanics is interested in computing quantities defined combinatorially. This study
involves the enumeration of combinatorial objects, such as graphs, tessellations, and triangulations
or n-angulations of very many different kinds.

A general principle that permeates transversely enumeration problems in algebraic geometry
and in statistical physics is the idea that complicated cases can be recovered by the simpler ones
through a recursive formula. Knowing the base cases and the recursive formula provides then an
algorithm to compute all the numbers. A second general principle suggests that the numbers can
be conveniently packaged in generating series. The recursive formulae, hence, take the form of
differential operators applied to such generating series.

The Chekhov-Eynard-Orantin (CEO) topological recursion is a new extremely powerful theory
to deal with enumerative geometric problems arising from different areas of mathematics and
physics, including algebraic geometry and statistical mechanics. It takes a spectral curve as input
and, through a recursive procedure based on the pair of pants decomposition of surfaces, recovers
an infinite collection of differentials defined on the product of the spectral curve whose coefficients
are the numbers of some enumerative geometric problem.

The enumerative geometric problems generated by this recursion are fundamentally connected
with the moduli spaces of curves. Two of the first examples of topological recursion that were
derived provide new proofs of Witten’s conjecture and Mirzakhani’s recursion of volumes of moduli
spaces of hyperbolic structures.

In order to prove that an enumerative geometric problem satisfies CEO topological recursion,
a certain polynomial structure of the problem need to be understood. Roughly speaking, this
polynomial structure is equivalent to state that the differentials are correctly defined on the spectral
curve of the recursion. This thesis approaches the study of the polynomiality structure and provides
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an explicit answer for four different problems in Hurwitz theory, first adapting known methods,
then providing new methods which turn out to be more powerful then the existing ones. In the
case of monotone orbifold Hurwitz numbers and Grothendieck dessins d’enfant, the polynomiality
structure confirms two conjectures by Do and Karev and by Do and Manescu. In the third problem,
the r-orbifold Hurwitz numbers, the polynomiality structure it is used to provide the first proof
of CEO topological recursion that does not dependent on Johnson-Pandharipande-Tseng ELSV
formula. CEO topological recursion has been recently identified with Givental theory by Dunin-
Barkowski, Orantin, Shadrin, and Spitz. By the use of Chiodo classes, the thesis provides the
explicit identification between topological recursion and Givental theory for r-orbifold Hurwitz
numbers. As a corollary, this result implies a new proof of Johnson-Pandharipande-Tseng ELSV
formula. In the fourth case, the r-spin Hurwitz numbers, the polynomiality structure provides a key
step towards the proof of a conjectural ELSV formula for Hurwitz numbers described by completed
cycles. Completed cycles play a crucial role in the Okounkov and Pandharipande correspondence
between Hurwitz theory and Gromov-Witten theory. This ELSV formula, hence, would provide
an identification between certain Gromov-Witten correlators and the intersection theory of the
moduli space of r-spin structures. In addition, the thesis provides a new ELSV formula, for the
enumerative problem of monotone Hurwitz numbers.

Quantum curves can be thought as differential operators annihilating a certain generating series
of the enumerative problem, and hence codify some important relations between the numbers.
Surprisingly, quantum curves in many cases store all the informations needed. More explicitly,
it is proved for many problems that the semi-classical limit of the quantum curve recovers the
spectral curve which generates the entire list of numbers via CEO topological recursion. In this
thesis several new quantum curves have been discovered (double Hurwitz numbers and double
monotone Hurwitz numbers) or re-proved, with the use of the method of Kac-Schwarz operators.
New operators on the Fock space have been constructed. These operators turned out to be key
ingredients in the proof of polynomiality structure for Grothendieck dessins d’enfant and monotone
Hurwitz numbers described above.
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Samenvatting

Hoeveel cirkels zijn er die drie gegeven cirkels in een vlak raken? Deze meer dan tweeduizend
jaar oude beroemde vraag is een van de allereerste problemen in de enumeratieve algebraische
meetkunde. Klassieke problemen in de algebraische meetkunde zoals bijvoorbeeld het tellen van
algebraische krommen van vaste graad die voldoen aan zekere raakvergelijkingen hangen in het
algemeen af van een aantal parameters. De oplossingen voor deze problemen kunnen erg snel
groeien en er is meer structuur nodig om controle te krijgen over deze getallen. Enorme vooruitgang
in het onderzoek naar deze problemen heeft geleid tot gromov-wittentheorie. De definitie van deze
theorie gebruikt het concept moduliruimte van krommen en generalisaties van deze ruimte.

De moduliruimte van krommen is een belangrijk object binnen het gebied van algebraische
meetkunde. De structuur van zijn cohomologiering, als eerste formeel onderzocht door Mumford,
is rijk en mysterieus. Belangrijke loci behoren tot het zogenaamde tautologische deel van de coho-
mologie. De drie vermoedens van Faber (1999) beschrijven de structuur van de tautologische ring
van de open moduliruimte van krommen zonder gemarkeerde punten. Dit is later gegeneraliseerd
tot krommen met gemarkeerde punten door Buryak, Shadrin en Zvonkine.

Eén van de voornaamste resultaten uit deze scriptie laat zien hoe de tautologische relaties die
afgeleid zijn van de giventaldecompositie van Wittens r-spinklassen door Pandharipande, Pixton
en Zvonkine gebruikt kunnen worden om via een andere weg verschillende eigenschappen van de
tautologische ring te bewijzen (verdwijnen in hogere graden, eerste gegeneraliseerde vermoeden
van Faber). Ook worden met de tautologische relaties nieuwe resultaten gevonden (schatting van
het aantal generatoren in lagere graad).

Het asymptotische gedrag van een aantal combinatorische modellen is een interessant onderwerp
binnen statistische mechanica. Zo worden er bijvoorbeeld combinatorische objecten zoals grafen,
betegelingen en triangulaties of n-angulaties van veel verschillende soorten geteld.

Een algemeen principe in telproblemen binnen algebraische meetkunde en statistische fysica is
het idee dat gecompliceerde objecten herleid kunnen worden tot simpelere objecten via een recur-
sieve formule. De basisobjecten en de recursieve formule geven een algoritme om alle oplossingen
van het telprobleem te berekenen. Een tweede algemeen principe is dat een getallenrij gemakkelijk
samengevat kan worden in een voortbrengende functie. De recursieve formules opereren dan als
differentiaaloperatoren op die voortbrengende functies.

De topologische recursie van Chekhov, Eynard en Oratin is een recente en extreem krachtige
theorie om meetkundige telproblemen binnen verschillende wis- en natuurkundige disciplines, zoals
algebraische meetkunde en statistische mechanica, aan te pakken. De recursie neemt als invoer
een spectraalkromme en geeft op basis van broekdecomposities een oneindige verzameling van
differentialen gedefinieerd op het product van de spectraalkromme, waarvan de coéfficiénten een
meetkundig telprobleem oplossen.

De telproblemen die gegenereerd worden door deze recursies zijn fundamenteel verbonden met
de moduliruimte van krommen. Twee van de eerste voorbeelden van topologische recursies die
zijn afgeleid met deze techniek geven een nieuw bewijs van het vermoeden van Witten en van
Mirzakhani’s recursie van volumen van moduliruimten van hyperbolische structuren.

Om te bewijzen dat een meetkundig telprobleem aan de topologische recursie voldoet, moet het
probleem een zekere polynomiale structuur hebben. Simpel gezegd is deze polynomiale structuur
equivalent aan de uitspraak dat alle differentialen correct gedefinieerd zijn op de spectraalkromme
van de recursie. In deze scriptie wordt de polymiale structuur benaderd en wordt een expliciete
oplossing gegeven voor vier verschillende problemen in hurwitztheorie, allereerst gebruik makende
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van bekende methoden en vervolgens met nieuwe methoden die krachtiger blijken te zijn dan de
bestaande methoden.

In het geval van monotone orbifold-hurwitzgetallen en Grothendiecks dessins d’enfant bevestigt
de polynomiale structuur twee vermoedens van Do en Karev en van Do en Manescu.

In het derde probleem, de r-orbifold-hurwitzgetallen, wordt de polynomiale structuur gebruikt
om het eerste bewijs van de topologische recursie te geven dat niet gebaseerd is op Johnson-
Pandharipande-Tsengs ELSV-formule. De topologische recursie is recentelijk geidentificeerd met
giventaltheorie door Dunin-Barkowski, Orantin, Shadrin en Spitz. Door gebruik te maken van
chiodoklassen geeft deze scriptie een expliciete identificatie tussen topologische recursie en gi-
ventaltheorie voor r-orbifold-hurwitzgetallen. Als gevolg impliceert dit resultaat een nieuw bewijs
voor Johnson-Pandharipande-Tsengs ELSV-formule.

In het vierde probleem, de r-spin-hurwitzgetallen, geeft de polynomiale structuur een sleu-
telstap tot het bewijzen van een vermoedde ELSV-formule voor hurwitzgetallen beschreven door
gecompleteerde cykels. Gecompleteerde cykels spelen een cruciale rol in Okounkov en Pandhari-
pandes correspondentie tussen hurwitztheorie en gromov-wittentheorie. Deze ELSV-formule zou
dus een identificatie tussen bepaalde gromov-wittencorrelatiefuncties en de doorsnijdingstheorie
van de moduliruimte van r-spin structuren geven. Daarnaast geeft deze scriptie ook een nieuwe
ELSV-formule voor telproblemen van monotone hurwitzgetallen.

Kwantumkrommen kunnen worden beschouwd als differentiaaloperatoren die bepaalde voor-
brengende functies van telproblemen annihileren en coderen daardoor een aantal belangrijke relaties
tussen die getallen. Verrassend genoeg bevatten kwantumkrommen in veel gevallen alle informatie
die nodig is. Explicieter betekent dit dat voor veel problemen bewezen is dat de semi-klassieke
limiet van de kwantumkromme de spectraalkromme herleidt die op zijn beurt alle oplossingen via
de topologische recursie genereert. In deze scriptie wordt een aantal nieuwe kwantumkrommen
ontdekt (dubbele hurwitzgetallen en dubbele monotone hurwitzgetallen) of herbewezen met de
methode van kac-schwarzoperatoren. Nieuwe operatoren op de fockruimte worden geconstrueerd.
Deze operatoren blijken een sleutelrol te hebben in het bewijs van de polynomiale structuur voor
Grothendiecks dessins d’enfant en monotone hurwitzgetallen zoals boven beschreven.
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