Physics Letters B 811 (2020) 135858

Contents lists available at ScienceDirect

PHYSICS LETTERS B

Physics Letters B

www.elsevier.com/locate/physletb

L))

Check for
updates

A fully microscopic model of total level density in spherical nuclei

N. Quang Hung ab.* N, Dinh Dang€, L. Tan Phuc ab N, Ngoc Anh9, T. Dong Xuan a,b
T.V. Nhan Hao*®

2 Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam

b Faculty of Natural Sciences, Duy Tan University, Da Nang City 550000, Vietnam

¢ Quantum Hadron Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako City, 351-0198 Saitama, Japan
d Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, 01 Nguyen Tu Luc, Dalat City 670000, Vietnam

€ Faculty of Physics, University of Education, Hue University, 34 Le Loi Street, Hue City 520000, Vietnam

ARTICLE INFO ABSTRACT

Article history:

Received 24 January 2020

Received in revised form 3 August 2020
Accepted 9 October 2020

Available online 15 October 2020
Editor: W. Haxton

A fully microscopic model for the description of nuclear level density (NLD) in spherical nuclei is
proposed. The model is derived by combining the partition function of the exact pairing solution plus
the independent-particle model at finite temperature (EP+IPM) with that obtained by using the collective
vibrational states calculated from the self-consistent Hartree-Fock mean field with MSk3 interaction plus
the exact pairing and random-phases approximation (SC-HFEPRPA). Two important factors are taken into
account in a fully microscopic way, namely the spin cut-off and vibrational enhancement factors are,
respectively, calculated using the statistical thermodynamics and partition function of the SC-HFEPRPA
without any fitting parameters. The numerical test for two spherical ®Ni and °Zr nuclei shows that the
collective vibrational enhancement is mostly dominated by the quadrupole and octupole excitations. This
is the first microscopic model confirming such an effect, which was phenomenologically predicted long
time ago and widely employed in several NLD models. In addition, the influence of collective vibrational
enhancement on nuclear thermodynamic quantities such as excitation energy, specific heat capacity and
entropy is also studied by using the proposed model.
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The concept of NLD, defined as the number of levels per unit
of excitation energy, was first introduced a long time ago by Hans
Bethe [1] by notifying that the number of excited states in atomic
nuclei increases rapidly with the excitation energy. Consequently,
it is impossible to individually treat those states, even by using
advanced experimental and theoretical techniques. Thus, the NLD
reflects the average properties of excited nuclei and has various
applications in the study not only of nuclear structure and re-
actions but also of nuclear engineering and astrophysics [2]. The
NLD also contains various information on the internal structure
of atomic nuclei such as single-particle levels, pairing correlations,
spin distributions, collective (vibrational and/or rotational) excita-
tions, nuclear thermodynamics, etc. [3]. Many theoretical studies
have been carried out during the last seven decades in order to
find a reliable and fully microscopic model of NLD.
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In general, theoretical approaches to NLD are classified into
the phenomenological and microscopic models. Phenomenologi-
cal NLD models such as the back-shifted Fermi gas (BSFG) and
constant temperature [4,5] were derived based on simple analyt-
ical formulas containing some phenomenological parameters such
as the level density parameter, shell correction, pairing energy,
temperature, energy shift, spin cut-off factor, etc. The values of
these parameters are obtained from the local and/or global fit-
tings to a limited number of experimental data such as the ex-
perimental cumulative number of discrete levels at low-excitation
energy E* and the neutron resonance data at E* = B, with B,
being the neutron binding energy [6]. For nuclei, whose experi-
mental NLD data are completely unknown, the prediction of the
above models becomes questionable (see e.g., Ref. [7]). In this case,
the development of microscopic methods should be more favor-
able. Several microscopic NLD models have been developed such
as the Hartree-Fock BCS (HFBCS) [8], static path approximation
(SPA) [9], SPA plus random-phase approximation (SPA+RPA) [10,
11], finite-temperature shell model Monte Carlo (SMMC) [12,13],
and Hartree-Fock-Bogolyubov plus combinatorial method (HFBC)
[14,15]. They were often derived based on a Hamiltonian, which
consists of a realistic or phenomenological single-particle/mean-
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field potential of Woods-Saxon (SPA+RPA or SMMC) or Skyrme
Hartree-Fock (HFBCS) or Hartree-Fock-Bogolyubov (HFBC) com-
bined with the residual interactions (pairing correlation and col-
lective excitations) beyond the single-particle mean field. However,
some ambiguities within the above microscopic models still re-
main. Firstly, pairing is approximately treated within the HFBCS
and HFBC, which both violate the particle-number conservation.
Consequently, the NLD obtained within the HFBCS and HFBC has
to be normalized by using two additional parameters, whose val-
ues are extracted by fitting to the experimental cumulative number
of discrete levels at low E* and neutron resonance data at E* = B,
(see e.g., Eq. (9) of Ref. [15]), losing certainly their microscopic na-
ture. Secondly, the spin cut-off factor o, which is important for
determining the spin distribution of the NLD, is empirically deter-
mined from the rigid-body limit within the HFBCS, HFBC, SPA, and
SPA+RPA, whereas it is microscopically calculated based on the ex-
act ratio between the total p(E*) and spin projected p;(E*) NLDs
within the SMMC. Thirdly, the residual correlations are either not
taken into account (within the HFBCS and HFBC) or taken into ac-
count in a simplified way (within the SPA+RPA). For instance, the
HFBC considers only excitations built on all uncorrelated particle-
hole configurations, whereas the SPA+RPA employs very simple
two-body interactions of the quadrupole-quadrupole and/or higher
excitations, (see e.g., Eq. (1) of Ref. [11]). Lastly, the numerical cal-
culations within the SPA+RPA and SMMC are time consuming, in
particular for heavy nuclei.

Recently, we have proposed a microscopic NLD method based
on the exact pairing plus independent-particle model at finite tem-
perature (EP+IPM) [16]. This model, which contains no fitting pa-
rameters to the experimental NLD data and has very short comput-
ing time, has provided a good description for the NLDs and ther-
modynamic properties of not only hot 179=172yb [16] and %9-62Nj
[17] nuclei but also hot rotating %6Tc [18], 184Re, 200T1, 211Po, and
212At [19] isotopes. However, it still contains two shortcomings.
The first shortcoming is the spin cut-off factor taken from the em-
pirical formula in the rigid-body limit for axially deformed nuclei,
namely o} ~0.015A%3T and o =01 /(3 — 2B2)/(3 + B2), where
T, B2, 01, and o are nuclear temperature, quadrupole deformation
parameter, perpendicular and parallel spin cut-off factors, respec-
tively [16]. The second shortcoming is the collective enhancement
factor ke consisting the vibrational kyj, and rotational k.o excita-
tions, which are also empirically described as

kyip = exp[0.0555A%/3T4/37] (1)
kiot = (02 —1)/[1 4 eE /Dy 1 )

where D¢ = 140082A~%/3 and U¢ = 12083 A/3. The second short-
coming is the most difficult problem of the present NLD models.
Regarding the spin cut-off factor, it can be microscopically cal-
culated by using the statistical thermodynamic method e.g., in
Refs. [20,21], namely,

1 1
2_ - 2 2!
o= > Ek my;sech zﬁEk, (3)

where my, is the single-particle spin projection (written in the de-
formed basis), B = 1/T is the inverse of temperature T, and the
quasiparticle energy Ej is calculated from Ep = /(e —A)2 + A2
if pairing is included or E, = ¢, — A if no pairing is considered
(A, €, and A are pairing gap, single-particle energies and chem-
ical potential, respectively). Within the EP, the pairing gap A and
quasiparticle energy Ej are exactly calculated by using e.g., Egs.
(11) and (12) of Ref. [22]. As for the vibrational enhancement,
there exists another approximate formula given in Refs. [14,23,24],
namely
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kyip = exp[6S — U /T) , (4)

where 85 =Y ";(2A; + DI[(1 + npIn(1 + n;) — nilnn;] and §U =
> i(2x; + Dwin; are the changes in the entropy and excita-
tion energy, respectively, due to vibrational modes with wj,
Ai, and n; being the energies, multipolarities, and temperature-
dependent occupation numbers, respectively. The occupation num-
bers n; are defined as n; = exp(—y;/2w;)/[exp(w;/T) — 1] with
¥i = 0.0075A'3(w? + 472T?) being the spreading widths of
the vibrational excitations. As for the phonon energies w;, the
modified equations including shell correction Egne are consid-
ered, namely w; = 65A7>/%/(1 + 0.05Ege) for the quadrupole
and w3 = 100A~>/8/(1 + 0.05Egpe;) for the octupole [14]. It is
clear to see that Eq. (4) adopts only the lowest energies wy 3 of
the quadrupole (A =2) and octupole (A = 3) vibrations and ne-
glects higher vibrational energies and other multipolarities such
as monopole (1 = 0), dipole (A = 1), hexadecapole (A = 4), etc.
Indeed, such vibrational energies and multipolarities can be mi-
croscopically calculated within the random-phase approximation
(RPA), one of the most extensive approximations for nuclear col-
lective vibrational excitations. In this case, one should construct a
vibrational partition function of the following form

Zyp(M =Y @+ e BT, (5)
A i

in the canonical ensemble, where El.A are all the eigenvalues (ener-
gies) obtained by solving the RPA equation for the corresponding
multipolarity A, which runs from 0 to 4 or 5. Similarly, one can
construct a partition function for rotational excitation Z(T) sim-
ilar to Eq. (5) by replacing the energies E,.A with rotational states
obtained from different rotational bands.

In the present Letter, we develop a fully microscopic method for
the description of NLD, limited to spherical nuclei (no rotational
enhancement or kyo¢ = 1), although the proposed idea is also ap-
plicable to deformed systems. The model is derived based on the
EP+IPM in Ref. [16], however, three significant improvements have
been proposed. First, the single-particle spectra are taken from
the Hartree-Fock mean field plus exact pairing (HF+EP) with an
effective Skyrme interaction (MSk3) as developed in Ref. [25], in-
stead of the phenomenological Woods-Saxon potential. This HF+EP
with MSk3 force has provided a very good description not only
for binding and two nucleon-separation energies but also for nu-
cleon densities and single-particle occupation numbers of light and
spherical 220 and 3Si nuclei at zero and finite temperatures. Sec-
ond, the spin cut-off parameter is calculated using Eq. (3), instead
of empirical formula. Third, the vibrational enhancement is mi-
croscopically treated by combining the EP+IPM partition function
with that given in Eq. (5), in which the self-consistent Hartree-
Fock+EP+RPA (SC-HFEPRPA) with the same MSk3 force [26] is used
instead of the conventional HF+RPA, namely

In Z{o(T) = In Zgp 4 1pp(T) + 10 Zge_ppeprea(T) » (6)

where Z'(T) denotes the excitation partition function [27]. Know-
ing the total partition function (6), one can easily calculate the ex-
citation energy E(T), entropy S(T), and heat capacity C(T), which
are later used together with the spin cut-off factor o to calculate
the total NLD pyot(E*), as has been done in Ref. [16]. Thus, the
collective vibrational enhancement is directly included in the to-
tal partition function and the vibrational enhancement factor ky;,
can be calculated via kyip (E*) = ptot (E*)/ pint (E*), where pint(E™)
is the intrinsic NLD, that is, the NLD obtained by using Zgp+ipm
only. The model in this case is fully microscopic as it does not con-
tain any empirical expressions and fitting parameters to the NLD
data.
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Fig. 1. (a) The total NLD obtained within the fully microscopic EP+IPM by gradually
adding higher collective vibrational modes A to the vibrational partition function
(5) versus the experimental data for %°Ni. (b) The best total NLD obtained from (a)
with A =0%,17,2%, and 3~ (thick solid line) in comparison with those obtained
within the HFBCs (for positive +7 and negative —7 parities) and HFBCS as well as
those obtained within the EP+IPM with phenomenological (k*™), empirical (K™ ),
and without (kyj, = 1) vibrational enhancements. (c) The vibrational enhancement
factor (kyjp) obtained by using empirical (1), phenomenological (4), and microscopic
formulas. (d) The spin cut-off parameter o2 obtained by using empirical (rigid-body
limit) and microscopic (3) formulas.
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Fig. 2. Same as Fig. 1 but for %0Zr.

To test the proposed model, we select the spherical %*Ni nu-
cleus, which is the only nucleus whose experimental NLD data
are presently available from E* ~ 0 up to ~ 23 MeV, well above
E* = B, =11.358 MeV [7,28,29]. The high-energy part of the NLD
is very important to test the validity of the microscopic calcula-
tions. The average binding energy BE/A and energy EZT of the first

2% state obtained within the SC-HFEPRPA calculation for ®°Ni are
—8.736 and 1.336 MeV, respectively, which are in excellent agree-
ment with the experimental data (BE/JA = —8.780 MeV and EZT
= 1.333 MeV). Moreover, the energy-weighted sum rules for the
isoscalar (IS) and isovector (IV) excitations are perfectly conserved
for all the multipolarities A =0%,17,2%,37,4", and 5~ with nat-
ural parities. The results obtained are shown in Figs. 1 and 3. A
similar test for another spherical °°Zr nucleus is also performed
and the results are illustrated in Fig. 2. The pairing interaction G is
selected, as usual, so that the neutron and proton pairing gaps at
T =0 agree with those obtained from the experimental odd-even
mass differences for 59Ni and 2°Zr, respectively [16].
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Fig. 3. The neutron pairing gap Ay (a), excitation energy E* (b), heat capacity C
(c), and entropy S (d) as functions of T obtained within the EP+IPM for %Ni with
(solid line) and without (dotted line) collective vibrational enhancement. In (b), the
excitation energies E* obtained within the HFBC and HFBCS are also plotted for
comparison with the EP+IPM calculations (with and without collective enhance-
ment).

Fig. 1(a) depicts the total NLDs p(E*) obtained within our fully
microscopic EP+IPM by gradually adding the higher multipolarities
) to the vibrational partition function (5). It is clear to see in this
figure that the monopole and dipole excitations (A = 0" and 17)
(dotted line) have very small enhancement to pjy (thin solid line).
Adding the quadrupole A =27 vibration significantly increases the
NLD and the result obtained (dash line) agrees well with not only
the low-energy (E* < B;) but also the high-energy (E* > B,) NLD
data. Adding the octupole A =3~ excitation (thick solid line) does
not enhance much the NLD. However, adding higher hexadecapole
X, =41 (dash dotted line) and quintupole A =5~ (dash-dot dotted
line) excitations enhances the NLD further but the results obtained
slightly overestimate the experimental data, in particular the data
at E* > By. This is because these states of higher multipolari-
ties are always located at a very high excitation energy, which
goes beyond the vibrational excitation region and thus, should not
be included in the vibrational partition function. The analysis in
Fig. 1(a) strongly indicates that the vibrational enhancement of
NLD is mainly due to the quadrupole and octupole excitations. In-
deed, this suggestion was initiated long time ago in Ref. [23] but
without any microscopic justification. Since then, it was widely
used in various NLD models, e.g., Refs. [14,24,30]. Therefore, the
results shown in Fig. 1(a) are of particular valuable as they are the
first microscopic calculation, which confirms the important role of
the quadrupole and octupole excitations in the NLD.

In Fig. 1(b), the best NLD obtained within the EP+IPM with
A =0%,17,2%, and 3~ is compared with those obtained within
other microscopic HFBCS and HFBC (for positive +7r and negative
—m parities) approaches taken, respectively, from RIPL-2 [31] and
RIPL-3 [32] nuclear database as well as those calculated within the
EP+IPM without vibrational enhancement (kyj, = 1) and with em-
pirical (1) and phenomenological (4) formulas for kyj,. It is seen
that the HFBC over estimates the data, whereas the HFBCS agrees
only with the data in Ref. [7] (open squares) at E* > ~4 MeV be-
cause this method was normalized to fit to these data. Once the
data are updated and extended to higher E* as in Ref. [29], the
HFBCS NLD deviates from the new data. This result clearly shows
the main drawback of the HFBC and HFBCS models. The EP+IPM

NLDs, which employ the empirical k\E,in;p' and phenomenological

k\lj?be“', agree with the data at 5 MeV < E* < B;, only due to the fact
that the values of k\E,irgp' and kP are larger than the correspond-
ing microscopic calculation k\'\,’illifr' [Fig. 1(c)]. The later is calculated
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by taking the ratio between the EP+IPM NLD with A =0%,17,2%,
and 3~ and its state density (kyi, = 1).! Moreover, the microscopic
spin cut-off factor calculated within the EP+IPM using Eq. (3) is
found to be larger than that calculated from the empirical formula
of rigid body [Fig. 1(d)]. Similar results can be seen in Fig. 2 but
for the %0Zr nucleus, whose NLD data are available below E* < Bj
[33]. The EP+IPM NLD with the quadrupole and octupole excita-
tions is found in the best agreement with the experimental data
[Fig. 2(a)], whereas the HFBCS (HFBC) overestimates (underesti-

mates) the data [Fig. 2(b)]. The values of ksirgp. and k%‘f“‘ are larger

than that of k\')’i[lijcm' [Fig. 2(c)], while the microscopic spin cut-off
factor is larger than the empirical one [Fig. 2(d)], similar to those
obtained for %ONi in Fig. 1. All the results shown in Figs. 1 and
2 are particularly important because it ensures the validity of our
fully microscopic NLD model, in which pairing is exactly treated
and the spin cut-off and collective vibrational enhancement fac-
tors are microscopically calculated.

Because of the collective excitations, not only the NLD but also
the thermodynamic quantities of excited nuclei are enhanced. We
show in Fig. 3 the thermodynamic quantities such as neutron pair-
ing gap Ay (a), excitation energy E* (b), heat capacity C (c), and
entropy S (d) as functions of T obtained within the EP+IPM for
60Ni with and without the contribution of collective vibrational
enhancement. For E*(T), the predictions of the HFBC and HFBCS
taken from Refs. [31,32] are also plotted in Fig. 3(b). Obviously,
the neutron pairing gap Ay (proton pairing gap is zero because
60Ni has a proton magic number) calculated within the exact pair-
ing decreases with increasing T and remains finite even at T =3
MeV, in agreement with many microscopic calculations (see e.g.,
Ref. [34]). Consequently, one can see an S-shaped heat capacity,
which indicates the signature of superfluid-normal phase transi-
tion in finite nuclear systems. The collective vibrational enhance-
ment is seen to enhance all the thermodynamic quantities, except
the exact pairing gap, which is a mean-field concept, whereas the
collective enhancement goes beyond the mean field. It is also seen
that the HFBC predicts a rather small excitation energy in compari-
son with the HFBCS and our EP+IPM [Fig. 3(b)]. This result of HFBC
can be easily understood because this method is constructed based
only on all the combinations of uncorrelated particle-hole excita-
tions, meaning that some correlated excitations are not taken into
account [14,15]. The HFBCS excitation energy is very close to that
of the EP+IPM calculated without collective enhancement. This re-
sult is reasonable because the HFBCS does not explicitly treat the
collective enhancement [8]. The results shown in Fig. 3 are very in-
teresting, being obtained from the first microscopic model, which
explores the effect of collective enhancement on nuclear thermo-
dynamic quantities.

The present Letter proposes a fully microscopic model for
the description of total NLD. The model is proposed by com-
bining the thermodynamic partition function of the exact pair-
ing solution with that obtained within the finite-temperature
independent-particle model (EP+IPM) and collective vibrational ex-
citation modes. The latter are calculated from the Hartree-Fock
mean field with MSk3 interaction and self-consistently combined
with the exact pairing solution and random-phase approxima-
tion (SC-HFEPRPA). In addition, the spin cut-off parameter is also
microscopically calculated within the EP+IPM using the statisti-
cal thermodynamics. The numerical test has been carried out for
the spherical 6°Ni nucleus, the only nucleus whose NLD data are
available from the excitation energy of 0 to about 23 MeV. A sim-

1 It is seen in Fig. 1(c) that the value of k\')’i'li)”' does not start from 1 at E* — 0

as those of k‘E,irEp' and kPhen . This is due to the well-known unphysical divergence

of the saddle-point approximation at very low T or E*, which has been widely
employed in most microscopic NLD models [35].
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ilar test has also been performed for the spherical %°Zr nucleus,
whose NLD data are provided below the neutron binding energy.
The results obtained show that, by combining the EP+IPM partition
function with that obtained using the collective vibrational states
taken from the SC-HFEPRPA calculation, which excellently repro-
duces the experimental binding energy and energy of the first 2+
state, we are able to study the contributions of different vibra-
tional modes from the monopole (0F) to quintupole (57) states,
from which the quadrupole and octupole excitations are found
to be the most importance. This is, indeed, the first microscopic
confirmation for the important role of the vibrational quadrupole
and octupole excitations in the NLD. The NLD obtained within this
model is found in a much better agreement with the experimental
data than those calculated within other approaches such as HFBCS
and HFBC as well as those obtained by using the empirically/phe-
nomenologically vibrational enhancement and spin cut-off factors.
It has also been found that the vibrational enhancement factor
obtained within our fully microscopic approach is smaller than
that calculated using the empirical and phenomenological formu-
las. Regarding the spin cut-off factor, its value obtained within our
microscopic model is larger than that obtained by using the em-
pirical formula. The effect of vibrational enhancement on nuclear
thermodynamic quantities such as excitation energy, entropy, and
heat capacity is also studied, for the first time, within our fully
microscopic model. Finally, the present model does not consume
much computing time, namely the EP+IPM calculation takes less
than 5 min [16], whereas the SC-HFEPRPA takes about 1 hour for
the calculation of each multipolarity. Therefore, one calculation for
one nucleus, even a heavy one, takes less than 6 hours and thus
can be performed on a PC. Although the present Letter considers
only the NLD in spherical nuclei, the proposed method can also be
applied to deformed isotopes, that is, the rotational enhancement
factor can also be microscopically calculated from the partition
function of all the excited states coming from the rotational bands.
The result obtained for deformed nuclei will be reported in the
forthcoming papers.
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