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Abstract

The WIMP limit set by the Xenon10 experiment in 2007 signals a new era in direct detection of dark

matter, with several large-scale liquid target detectors now under construction. A major challenge

in these detectors will be to understand backgrounds at the level necessary to claim a positive

WIMP signal. In liquid xenon, these backgrounds are dominated by electron recoils, which may be

distinguished from the WIMP signal (nuclear recoils) by their higher charge-to-light ratio. During

the construction and operation of Xenon10, the prototype detector Xed probed the physics of this

discrimination.

Particle interactions in liquid xenon both ionize and excite xenon atoms, giving charge and

scintillation signals, respectively. Some fraction of ions recombine, reducing the charge signal and

creating additional scintillation. The charge-to-light ratio, determined by the initial exciton-ion

ratio and the ion recombination fraction, provides the basis for discrimination between electron and

nuclear recoils. Intrinsic fluctuations in the recombination fraction limit discrimination.

Changes in recombination induce an exact anti-correlation between charge and light, and when

calibrated this anti-correlation distinguishes recombination fluctuations from uncorrelated fluctua-

tions in the measured signals. We determine the mean recombination and recombination fluctuations

as a function of energy and applied field for electron and nuclear recoils, finding that recombination

fluctuations are already the limiting factor for discrimination above ∼12 keVr (nuclear recoil energy).

Below 12 keVr statistical fluctuations in the number of scintillation photons counted dominate, and

we project a x6 improvement in background rejection with a x2 increase in light collection efficiency.

We also build a simple recombination model that successfully reproduces the mean recombina-

tion in electron and nuclear recoils, including the the surprising reversal of the expected trend for

recombination with ionization density in low energy electron recoils. The model also reproduces

the measured recombination fluctuations to within a factor of two at high energies. Surprisingly,

the model suggests that recombination at low energies is independent of ionization density, and our

observed discrimination is due not to the different stopping powers of electrons and nuclei as was

thought, but rather to a different initial exciton-ion ratio. We suggest two possible physical models

for this new result.
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Chapter 1

The Case for WIMP Dark Matter

The nature of dark matter is one of the longest standing fundamental problems in physics. The first

evidence for dark matter came in 1933 when Zwicky measured the velocity dispersion of objects at

the edge of the Coma cluster [1], and in the years since, measurements of galactic rotation curves [2],

gravitational lensing [3], the cosmic microwave background [4], and even collisions between clusters

of galaxies [5] all support the existence of a large invisible matter component to the universe. Our

understanding of nucleosynthesis in the big bang indicates that the majority of this missing matter

is non-baryonic [6], while our understanding of structure formation rules out relativistic particles

such as neutrinos [7]. In short, no particle in the Standard Model can account for the extra mass

demanded by these observations.

When we look beyond the standard model for dark matter candidates, one compelling class of

particles are WIMPs, or weakly interacting massive particles. Predicted by many supersymmetric

extensions of the standard model, WIMPs interact via the weak force like neutrinos, but can have

masses from 40 GeV–3.2 TeV [8]. Remarkably, the particle physics describing WIMPs naturally

gives a relic WIMP density matching that of dark matter. If WIMPs are the dark matter, then they

should be present in our own galaxy, with local densities of a few particles per liter and velocities of

several hundred km/s [9].

In this chapter we review the evidence for non-relativistic, non-baryonic dark matter, and describe

how WIMPs naturally emerge with the required dark matter density. In Chapter 2 we describe how

WIMPs may be detected on earth as they scatter off target nuclei, and we summarize the current

experimental efforts to detect or rule out a WIMP signal. Chapter 3 discusses dual-phase xenon

time projection chambers, as used in the ZEPLIN, XENON, and LUX experiments, and describes
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the instrumentation of our prototype detector Xed. Chapters 4–6 cover our measurements in Xed

on the physics of signal production in liquid xenon, with particular attention to the background

discrimination capability of these detectors. The final chapter discusses WIMP searches in large

xenon time projection chambers, ending with the Xenon10 upper limit on the spin-independent

WIMP-nucleon cross section.

1.1 Evidence for Dark Matter

As stated above, there is evidence for dark matter at all scales, from the cosmological to single

galaxies. While alternatives to dark matter such as MOND (modified newtonian dynamics) may

satisfy one or even many of these observations [10], the overall evidence is overwhelmingly in favor

of a universe full of dark matter.

1.1.1 Cosmological Constraints on Ω
m

The mass density in the universe may be determined from a combination of measurements of cosmic

expansion and the cosmic microwave background, as shown in Fig. 1.1. In a universe composed of

non-relativistic matter and a cosmological constant (known as the ΛCDM model), the Friedmann

equations may be written

H2

H2
0

≡ 1

H2
0

(

ȧ

a

)2

= Ωm

(a0

a

)3

+ Ωk

(a0

a

)2

+ ΩΛ, (1.1)

and

1

H2
0

ä

a
= −1

2
Ωm

(a0

a

)3

+ ΩΛ, (1.2)

where Ωm and ΩΛ are the energy densities today of matter and the cosmological constant relative

to the critical density
3H2

0

8πG , H0 is the Hubble constant today (70.8 (km/s)/Mpc), H and a are the

Hubble constant and scale factor at time t, and Ωk is a term for the spatial curvature of the universe.

For open, closed, and flat universes, Ωk is greater than, less than, and equal to zero, respectively.

The relative densities are constructed such that Ωm + Ωk + ΩΛ = 1, as may be seen by evaluating

Eq. (1.1) at t = t0 (today).

Measuring the acceleration of the universe lets us relate Ωm and ΩΛ using Eq. (1.2). These mea-

surements are made by measuring redshift as a function of distance, where distances are determined

by use of a standard candle (such as supernova IA’s [11]) or standard ruler (such as from baryon
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Figure 1.1: Constraints on matter density and the cosmological constant from supernovae, the cosmic
microwave background, and galaxy clusters (with big bang nucleosynthesis). Data from [11, 12, 13],
figure taken from [14].

acoustic oscillations [15]), with the resulting constraint on Ωm and ΩΛ shown in Fig 1.1.

A second constraint comes from anisotropies in the cosmic microwave background (CMB). The

first peak in the CMB power spectrum gives the curvature of the universe, which is measured to be

flat (Ωk ≈ 0), so we have Ωm +ΩΛ ≈ 1. Combined with expansion data, this picks out Ωm=0.28 and

ΩΛ = 0.72 (see Fig. 1.1). Further analysis of the anisotropy power spectrum gives an independent

measurement of Ωm that is consistent with these results [4].
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1.1.2 Big Bang Nucleosynthesis

We need to compare our value of Ωm with the density of ‘normal’ baryonic matter, Ωb. This can

also be extracted from the CMB power spectrum [4], but an alternate method comes from big bang

nucleosynthesis [6]. In the very early universe (t < 3 min), neutrons and protons are free and in

thermal equilibrium. At t = 3 min the universe has cooled to the point where nuclei begin to form.

The nuclear composition of the universe evolves according to the cross-sections of various nuclear

interactions and the thermodynamics of the expanding universe, until the Hubble expansion rate

exceeds the nuclear interaction rate. At this point the existing nuclei “freeze-out”, their abundances

fixed until nuclear processes restart with stellar formation. The primordial abundances are sensitive

to the temperature (time) at which freeze-out occurs, and thus to the baryon density in the early

universe. The overall matter density is not important — the universe is radiation dominated at this

stage, so non-baryonic matter affects neither the expansion rate nor the nuclear interaction rate. The

primordial abundances of 4He, 3He, D (2H), and 7Li are shown in Fig. 1.2 as a function of Ωb, along

with the measured primordial abundances based on observations of present day abundances [16, 17].

The value of Ωb given by the measured primordial abundances is consistent with that determined

from the microwave background, giving Ωb = 0.046 and leaving Ωχ = 0.23 for non-baryonic dark

matter.

1.1.3 Galaxies and Galaxy Clusters

The best measurements of matter densities in clusters come from a combination of x-ray and weak

lensing observations, which measure the baryonic and total mass of the cluster, respectively. In

weak lensing, one looks at the deformation of galaxies behind the cluster in question. In contrast

to strong lensing, where a specific object is identified as being lensed, producing multiple images

or gross distortion, weak lensing measures distortions that are smaller than the normal variation in

the unlensed object’s appearance — thus it is impossible to say how lensed a single object is. By

looking at patterns of distortion in large numbers of lensed objects, however, one can extract the

mass of the lens. An overview of weak lensing can be found in [3].

The baryonic mass of a large cluster is dominated by x-ray emitting intracluster gas, and so

the total baryonic mass can be estimated from the x-ray intensity [13]. Combined with the total

mass given by weak lensing, this gives the ratio of baryonic to dark matter in the cluster. Taking

the baryon density from big bang nucleosynthesis and assuming that the matter in the cluster is

representative of the matter make-up of the universe, one finds the total mass density. The Ωm picked
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Figure 1.2: Primordial abundances of nuclei as a function of Ωb according to big bang nucleosynthesis,
with observed abundances shown as boxes. The Ωb given by the cosmic microwave background is
also shown. Figure taken from [6].

out by this technique agrees with that determined from expansion and microwave background data,

as shown in Fig. 1.1.

There are many methods of measuring dark matter densities based on the dynamics of gravita-

tionally bound objects, including measurements galactic rotation curves [2] and the velocity disper-

sion of galaxies in clusters [19]. These and all the previous measurements, however, could potentially

be explained by modifications to gravity at large length scales. This is not the case for the most

recent evidence for dark matter — the Bullet cluster (1E 0657-56) is a recent collision between two

galaxy clusters, shown in Fig. 1.3. As before, the baryonic mass and total mass of the colliding clus-

ters are measured using x-ray observations and gravitational lensing, but now the key information

is the location of the lens relative to the gas. During the collision, the x-ray gas experiences drag

5



Figure 1.3: The Bullet cluster (1E 0657-56). The blue shows the location of mass, as determined
by gravitational lensing, while the red shows the location of the x-ray gas [18]. The x-ray gas
experienced drag and formed a shock wave during the collision, but the dark matter passed through
unhindered.

forces, forming a visible shock-wave and lagging behind the unimpeded the dark matter. The center

of gravitational mass and the center of visible mass are now significantly displaced from each other,

a feat beyond the reach of modified gravity schemes [5].

1.1.4 Structure Formation

The final piece of evidence for dark matter, as well as a clue towards the nature of dark matter,

comes from considering structure formation. Structures grow as overdense regions draw in surround-

ing matter, creating a positive feedback for primordial density fluctuations. This structure is believed

to have grown from the bottom up, with small structures (galaxies) forming first, followed later by

the growth of galaxy groups, clusters, and super clusters. Experiments such as the Sloan Digital

Sky Survey have revealed the extent of large scale structure in the universe to extend even beyond

the super cluster size (see Fig. 1.4). Such large scale structures today require an early start to struc-

ture formation. Structure formation due to baryons is suppressed until electron-proton combination

occurs, since until this point the photon pressure works against the growth of density perturbations

[20]. This does not affect dark matter particles, which may begin forming structures long before

combination occurs. Not only does structure formation require dark matter, it specifically requires

non-relativistic dark matter. Relativistic particles tend to smooth density perturbations, both de-

laying the growth of the first galaxies and increasing the physical size of these structures when they
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Figure 1.4: A map of large scale structure from the Sloan Digital Sky Survey data. Figure taken
from [21].

eventually form [7].

1.2 The WIMP Miracle

We now have a basic recipe for the universe: 4.6% baryons, 23% non-relativistic, non-baryonic dark

matter, and 72% vacuum energy (or dark energy). Thus 95% of the universe is unknown, but there

are several candidates for the dark matter piece. The two primary candidates are axions and weakly

interacting massive particles, or WIMPs (for a discussion of axions, see [22]). The WIMP hypothesis

follows from the hypothesis that dark matter is a thermal relic of the big bang, as described in [23].

Let us consider a particle χ with mass Mχ and annihilation cross section σa. In the very early

universe, when T ≫ Mχ, these particles will have the same abundance as any light particle in

thermal equilibrium (modulo the number of internal degrees of freedom). As the universe cools to

T < Mχ, the equilibrium number of particles neq
χ falls. The number density then follows

dnχ

dt
= −〈σav〉

[

(nχ)
2 −

(

neq
χ

)2
]

− 3Hnχ, (1.3)
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Figure 1.5: Densities of particles in thermal equilibrium and after freezout. The solid line shows the
equilibrium density falling as the universe cools, with dotted lines showing the freezout densities for
various annihilation cross-sections. Figure taken from [23], originally appearing in [20].

where 〈σav〉 is the thermally averaged velocity times annihilation cross section. The first term on the

right hand side of Eq. (1.3) shows that nχ approaches neq
χ at a rate determined by the annihilation

cross-section times the particle flux, while the second term gives the drop in density due to expansion.

The expansion H is determined independently since the early universe is radiation dominated. When

annihilation begins the first term is dominant, but as the universe expands and the particle density

falls, the expansion term begins to dominate. At this point annihilation stops, and the remaining

particles freeze out with a constant co-moving density. Following through the thermodynamics and

expansion physics (see [23] for a complete explanation), one finds that the mass density at freeze-out

is independent of Mχ and inversely proportional to 〈σav〉, as shown in Fig. 1.5. If the particle is

stable, then this relic density will still exist today.

Now the WIMP miracle occurs. If we take an annihilation cross section corresponding to the

weak interaction in particle physics [23],

〈σav〉 = α2 (100GeV)
−2 ∼ 10−25cm3s−1, (1.4)
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we come to a relic density of Ωχ ∼ 0.1, within an order of magnitude of what we need for dark

matter. In other words, if a stable WIMP exists, it will be present as dark matter at or near the

density we require. As a bonus, many supersymmetric extensions of the standard model predict a

stable WIMP. In particular, models that conserve R-parity (originally invoked to prevent proton

decay) have a stable LSP (lightest supersymmetric particle). This particle is often a partner to the

neutral gauge bosons, known as the neutralino [23]. This, or any other WIMP, would at long last

solve the dark matter problem.
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Chapter 2

WIMP Detection

There are two paths to testing the WIMP hypothesis: direct and indirect detection. In indirect

detection, one looks for signatures of WIMPs annihilating in the galactic center, the sun, or in

nearby dark-matter dominated galaxies. These signatures include mono-energetic gammas [24], and

an excess of neutrinos [25] and cosmic anti-matter [26]. We will focus on direct detection, where

WIMPs scattering off of a target nucleus produce measurable nuclear recoils. In the first part of this

chapter we calculate the WIMP recoil spectrum a function of the target nucleus and WIMP mass.

We then review existing direct detection experiments according to their techniques for distinguishing

the WIMP signal from background radiation.

2.1 WIMP recoil spectrum

In this section we follow the discussion of WIMP recoil spectra by Lewin and Smith [9]. The shape

of the WIMP recoil spectrum is determined by the WIMP mass Mχ, the target nucleus mass MT , a

nuclear form factor F , and the distribution of WIMP velocities about the target. We write the last

as

dn =
n0

k
f (v, vE) d3v, (2.1)

where n0 is the WIMP number density ρ0

Mχ
(with ρ0 the local dark matter density), k is a normal-

ization factor such that
∫

dn = n0, v is the WIMP velocity with respect to the target, and vE is

the velocity of the target (earth) in the rest frame of the galaxy. For vE = 0, we take v to follow a

Maxwell-Boltzmann distribution,

f (v, 0) = e
− v2

v2
0 , (2.2)
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truncated at the galactic escape velocity vesc. A non-zero vE translates this distribution so that

〈v〉 = −vE . Independent of vE, we have

k =
(

πv2
0

)
3
2

[

erf

(

vesc

v0

)

− 2√
π

vesc

v0
e
− v2

esc

v2
0

]

. (2.3)

The interaction rate per target mass is given by the number of target nuclei per unit mass M−1
T ,

the scattering cross section per nucleus σT , and the WIMP flux vdn,

dR =
1

MT
σT vdn. (2.4)

Integrating Eq. (2.4) over WIMP velocities gives the total WIMP scattering rate. To find the

differential spectrum, we begin by assuming isotropic scattering in the center-of-mass frame. In

terms of the center-of-mass scatering angle θcm, the recoil energy is given by

Er = Mχv2 (1 − cos θcm)
MT Mχ

(MT + Mχ)
2 . (2.5)

Isotropic scattering gives a uniform distribution in cos θ, so for a given WIMP velocity we see a flat

recoil spectrum from 0 to Er,max = 1
2Mχv2 4MT Mχ

(MT +Mχ)2
. Putting together the pieces thus far, we have

a differential recoil spectrum of

dR

dEr
=

(MT + Mχ)
2

2M2
T Mχ

2

ρ0

Mχ

σT

k

∫

d3v
Θ (vesc − |v + vE |)Θ (Er,max − Er)

|v| e
−|v+vE|2

v2
0 , (2.6)

where the two theta functions limit the integral to velocities present in the WIMP halo and capable

of producing a recoil of energy Er. If we take vE = 0 and vesc = ∞, this reduces to

dR (vE =0, vesc =∞)

dEr
=

1

MT

ρ0

Mχ

2v0σT√
π

1

E0r
e−

Er
E0r (2.7)

where E0 = 1
2Mχv2

0 is the mean WIMP energy and r =
4MT Mχ

(MT +Mχ)2
. The basic recoil spectrum (before

considering vesc, vE , or the upcoming nuclear form factor) is simply a falling exponential with mean

energy E0r, which is maximized when Mχ = MT . Lewin and Smith take ρ0=0.4 GeV/c2cm3,

v0=230 km/s, vesc=600 km/s, and

vE = (244 + 15 sin (2πy)) km/s, (2.8)
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where y is (approximately) the time in years since March 2nd [9].

We still need an expression for σT , which includes both a coherence term and a nuclear form

factor. When the momentum-transfer q =
√

2MT Er is small, so that h
q is much larger than the

size of the target nucleus, the scattering is coherent over the entire nucleus. For spin-independent

interactions (scalar couplings), where all nucleons contribute to the scattering amplitude with the

same sign, this gives a factor of A2 in the cross section, where A is the number of nucleons in

the nucleus. (This assumes identical interactions for neutrons and protons — scalings closer to

(A − Z)
2

may be seen for spin-independent interactions in a given model. For comparing results

between different target materials, these scalings are very similar and we adopt the A2 scaling.) The

cross section also scales like the square of the reduced mass, giving

σT (q=0) = A4 (Mn + Mχ)
2

(AMn + Mχ)2
σn, (2.9)

where Mn is the nucleon mass, σn is the scattering cross section on a single nucleon, and we’ve taken

MT = AMn. The q=0 indicates that this is in the coherent limit.

For spin-dependent interactions (axial couplings), nucleons with opposite spins contribute with

opposite signs, giving zero amplitude for paired nucleons. Thus, only nuclei with odd numbers of

neutrons and/or protons are sensitive to the spin-dependent cross-section, and there is no A2 bonus.

Comparing spin-dependent interactions between targets is more complicated, depending on the spin

structure of the nucleus. See [9] for a review of spin-dependent cross sections.

For higher energy recoils, the distribution of scatterers in the nucleus becomes important, ef-

fectively negating the A2 coherent bonus in spin-independent scattering. We write the reduced

cross-section in terms of a form factor,

σT (q) = σT (q=0)F 2 (q) , (2.10)

where, for spin-independent scattering, F (q) is the Fourier transform of the scatterer (mass) density

of the nucleus. Helm gives a convenient analytic form factor for a nucleus with constant density

inside radius R0 convoluted with a Gaussian of width s [27]

F (q) =
3j1 (qR0)

qR0
e−

(qs)2

2 , (2.11)
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where j1 is the spherical Bessel function. Lewin and Smith suggest s = 0.9 fm and

R0 =

√

(

1.23A1/3 − 0.60
)2

+ 2.18 fm. (2.12)

The spin-dependent scattering form factor is again more complicated — see [9, 28] for a discussion

of spin-dependent form factors.

Putting together Eq. (2.3,2.6,2.9,2.10,2.11), we find the WIMP recoil spectrum from spin-inde-

pendent scattering in three common target materials: germanium (A=73), xenon (A=131), and

argon (A=40) (see Fig. 2.1). All give featureless exponential spectra, with the highest low-energy

scattering rate in xenon. The xenon rate falls more quickly with recoil energy than the others due

to loss of coherence over the large nucleus.

2.2 Direct Detection Methods

The primary challenge for any direct detection experiment is to distinguish the WIMP signal from

radioactive backgrounds. There are three basic methods for accomplishing this. First, the annual

modulation in vE results in an annual modulation in the WIMP spectrum, which may distinguish

the WIMP signal from background. Second, WIMPs will scatter only once in the target volume,

while other penetrating particles (gammas and neutrons) can scatter multiple times. Finally, many

backgrounds deposit energy in target electrons, while WIMPs deposit energy in target nuclei. De-

tectors may respond differently to these two recoil types, giving what can be very strong background

discrimination.

2.2.1 Sources of Background

Background events in WIMP detectors can come either from penetrating particles originating outside

the target, or short-range particles from decays in the bulk or on the surfaces of the target. The

former include high energy gammas and neutrons producing Compton scatters and nuclear recoils

in the detector, respectively. These backgrounds can be reduced by shielding and selection of low-

radioactivity detector components. Neutrinos will also become an irreducible background in this

category as detectors improve in sensitivity.

Short range bulk and surface backgrounds include beta decays, x-rays following electron capture

decays, internal conversion electrons, and alphas with the associated nuclear recoil. The most

problematic are betas, since these have a broad energy spectrum covering the WIMP region, while
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Figure 2.1: The sensitivity of xenon, germanium, and argon to spin-independent WIMP scattering,
taking a 100 GeV WIMP and a 10−43cm2 scattering cross section for a single nucleon. The solid
lines show the differential rate (events / keV / kg / day) and the dashed show the integrated rate
over the detection threshold threshold (events / kg / day). For detection thresholds below 17 keV,
xenon is the most sensitive of the three target materials.

the others have characteristic energies for a given decay that make them identifiable and potentially

put them outside the range of interest. Betas with no associated gammas, i.e. betas to the ground

state of a stable nucleus, are known as ‘naked’ betas and are particularly troublesome. Alphas are

a background only in threshold detectors, since alpha energies (∼5 MeV) are orders of magnitude

higher than WIMP recoil energies. The recoiling nuclei in an alpha decay have energies of ∼100 keV,

at the high-end of the WIMP spectrum. If the alpha emitter is on the surface of the target and the

alpha is emitted outward, only the nuclear recoil is measured, giving a potential background. Bulk

and surface backgrounds must be removed via purification (sometimes requiring isotopic separation)

of the target medium.

After reducing the backgrounds that can be reduced, it is necessary to distinguish the residual
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Figure 2.2: The expected annual modulation in the spin-independent WIMP recoil spectrum in NaI.
At the lowest energies, there is a ∼6% higher scattering rate on Dec 2 (lowest velocity relative to
WIMP halo) than on June 2 (highest velocity). The spectra cross at 23 keV, and by 80 keV there
is a 10% higher rate in June than in December.

background from a WIMP signal. The following three sections discuss the three basic methods for

achieving this.

2.2.2 Annual Modulation

The expected annual modulation in the WIMP spectrum based on the analysis in Section 2.1 is shown

in Fig. 2.2. The DAMA/LIBRA experiment uses 250 kg of highly radiopure NaI(Tl) scintillator to

look for this modulation signal [29]. DAMA has reported a modulation signal (see Fig. 2.3), but

the modulation is incompatible with the limits set by other dark matter experiments in the context

of standard WIMP models [30, 31, 32]. It may be that DAMA sees an annual modulation in

their background — in particular, the modulation is observed at the same energy as the argon

Auger electron that follows a 40K electron capture. The question of the origin of the DAMA
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Figure 2.3: The annual modulation result from DAMA. The superimposed sine waves have maxima
at Dec 2 (minima at June 2). Figure taken from [29].

signal is unresolved, reflecting the difficulty understanding backgrounds and systematic errors in

this technique.

2.2.3 Active Shielding

It is preferable to reject backgrounds on an event-by-event basis. One technique to do so is to

use 3-D position reconstruction to reject neutrons and gammas that scatter multiple times in the

detector volume. This is known as ‘active shielding’, as the outer layer of the detector serves to tag

events originating from outside the detector, while the inner or ‘fiducial’ volume is used for WIMP

detection. That is, any event with a scatter in the fiducial volume and no scatters in the outer

volume is a WIMP candidate.

Another way to describe this technique is to examine the rate of single-scatter events from

penetrating particles as a function of position in the detector. The probability distribution for the

distance between scatters of a penetrating particle is given by

P (x) =
1

x0
e−

x
x0 , (2.13)

where x0 is the interaction length of the particle and is a function of particle type and energy. We

are interested only in scatters at WIMP recoil energies, which are orders of magnitude below the

energies of penetrating neutrons and gammas, so we can consider the incident particle to continue

traveling in the same direction with the same energy after each scatter. The probability of a particle
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scattering n times along a path of length d through the target is then

Pn (d, x0) =

(

d
x0

)n

n!
e−

d
x0 . (2.14)

This can be proved by induction, taking the base case of no scatters, P0 = e
− d

x0 , and the recursion

relation

Pn (d, x0) =

∫ d

0

dx
1

x0
e−

x
x0 Pn−1 (d − x, x0) , (2.15)

where dx 1
x0

e−
x

x0 is the probability of the first scatter occurring at x, and Pn−1 (d − x, x0) is the

probability of having n − 1 scatters along the remainder of the track. The probability of a single

low-energy scatter at any given point along the path is P1(d,x0)
d PE<E0 = 1

x0
e−

d
x0 PE<E0 , where the

additional factor PE<E0 is the probability that the scatter energy is in the WIMP region of interest.

To determine the total single scatter rate at a given point in the detector, we integrate over all

straight paths passing through that point, weighted by the expected activity along that path:

R =

∫

dφdθ sin θ
PE<E0

x0
e−

d(θ,φ)
x0

∫

drA (r, θ, φ) , (2.16)

where θ, φ define a line through the point in the detector, A (r, θ, φ) is the activity in decays/volume

a distance r from the point along that line, and d (θ, φ) is the length of the line inside the target.

The total rate will be dominated by the path that minimizes d (θ, φ). At the edges of the detector,

this length can be very short, and backgrounds are correspondingly high. When the minimum d is

many times the interaction length, backgrounds are greatly reduced (see the example in Chapter 3).

This style of background rejection is not effective against non-penetrating internal backgrounds

such as beta decays, so this technique requires an extremely radiopure target. A prime candidate for

this is liquid xenon, which is easily purified, has no long-lived radioactive isotopes, and has interaction

lengths of 10 and 15 cm for gammas and neutrons, respectively. The XMASS experiment uses pure

liquid chambers surrounded by PMTs for event reconstruction [33]. A 100 kg XMASS detector has

been completed, and an 800 kg module is now being constructed (see Fig. 2.4). The next generation

of dual-phase xenon time projection chambers will also take advantage of active self shielding, as we

will discuss in Chapter 3.
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Figure 2.4: Schematic of the 800 kg XMASS detector. Figure taken from [33].

2.2.4 Nuclear Recoil Discrimination

The most successful dark matter detectors to date have been those that discriminate between electron

and nuclear recoils. The dominant nuclear recoil background at WIMP energies comes from elastic

scattering of neutrons produced in cosmic muon interactions and alpha-n nuclear reactions. These

backgrounds are reduced by going deep underground, shielding with hydrogenated material, and

practicing the same low background techniques (targeting the U/Th chains) used to reduce internal

gamma backgrounds. Neutron backgrounds are several orders of magnitude lower than the Compton

scatter background for a given U/Th activity, so a method for rejecting electron recoils can greatly

reduce the overall background. Electron recoil discrimination is also the only way to reject naked

betas in the target bulk. With one exception, discriminating experiments work by detecting events

in multiple channels, using the relative strengths of the different signals to determine the recoil type.

Cryogenic Detectors

Cryogenic detectors operate at temperatures of <100 mK and detect both electronic excitation

(either as scintillation, as in CRESST [35], or as ionization, as in EDELWEISS [36] and CDMS
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Figure 2.5: Electron recoil discrimination in CDMS. The dark (top) population of events are electron
recoils from a gamma source, and the gray (bottom) are nuclear recoils from a neutron source, with
the y-axis showing the ratio of the ionization signal to the phonon signal, normalized to electron
recoils. The discrimination shown here is before timing cuts, which remove problematic events at
the edge of the detector. Figure taken from [34].

[30]) and thermal/phonon energy loss. Nuclear recoils lose the majority of their energy through low

energy collisions with other nuclei, producing typically one fourth the electronic excitation of an

electron recoil with the same energy. This effect was discovered by Lindhard [37], and is discussed

in Chapter 4. Electron recoil misidentification rates of less than 1 in 10−6 have been reported by

CDMS (see Fig. 2.5). The discrimination in these detectors is limited by processes that cause an
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Figure 2.6: Electron recoil discrimination in DEAP (liquid argon) based on pulse shape discrimi-
nation. The blue (top) population of events are nuclear recoils from a neutron source, and the red
(bottom) are electron recoils from a gamma source. Nuclear recoils produce a greater fraction of
excitons in the short-lived singlet state, giving a higher fraction of ‘prompt’ scintillation. Figure
taken from [38].

event to lose part of the electronic signal, particularly at the edges of the detector.

Pulse-Shape Discriminating Detectors

Discrimination is also possible when looking at the electronic signal alone. The DEAP/CLEAN

collaboration uses the pulse-shape in the scintillation signals in liquid argon and neon to distinguish

electron and nuclear recoils [38]. Noble liquids produce scintillation following recombination of ions

(see Chapter 4). The resulting excitons can be in a long-lived triplet state or short-lived singlet state,

with a preference in nuclear recoils for the singlet state. Nuclear recoils thus have a greater fraction

of scintillation light at the start of the pulse, as in Fig. 2.6. DEAP has demonstrated electron recoil

discrimination of 7.6 × 10−7 in liquid argon at WIMP energies with 50% acceptance for nuclear

recoils. This large discrimination is necessary for an argon based experiment due to the background

from the 269 year half-life naked beta emitter 39Ar.
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Figure 2.7: Electron recoil discrimination in WARP. The left plots show nuclear recoils from a
neutron source, and the right show WIMP data (dominated by 39Ar betas). The top plots show
a WIMP recoil energy range from 40–60 keV, and the bottom 60–130keV. The x-axes show the
pulse-shape discrimination parameter and the y-axes the charge-light discrimination parameter.
Discrimination at 50% nuclear recoil acceptance is 3 × 10−7, primarily from the scintillation pulse
shape discrimination. Figure taken from [39].

Charge-Light Discriminating Detectors

Another way to split the electronic excitation signal in noble liquids is to apply a drift field and

extract electrons from the event before they recombine. The ratio of the charge and light signals can

then be used to distinguish electron and nuclear recoils, giving discrimination up to 10−3 at 50%

nuclear recoil acceptance — this is discussed extensively in Chapters 5 and 6. This technique also has

the advantage that the charge signal may be used to give high resolution position information for an

event, as described in Chapter 3. This allows XMASS style rejection of gamma and neutron events

while rejecting betas (which XMASS cannot reject) using the electron recoil discrimination. The

ZEPLIN [40], XENON, and LUX collaborations use this technique in liquid xenon. The WARP [39]
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Figure 2.8: From left to right, muon, neutron, and alpha (or WIMP) events in COUPP. Muon tracks
and other minimum ionizing particles do not nucleate bubbles in the detector under normal (WIMP
search) operating conditions. Neutrons may be identified by multiple scatters, while alphas and
WIMPs appear as a single bubble. Pictures taken from [32].

and ArDM [41] experiments use an argon target, taking advantage of both pulse-shape discrimination

and charge-light discrimination, but losing the active shielding advantage because of the internal

39Ar background. The combined pulse-shape and charge-light discrimination in WARP is shown in

Fig. 2.7.

Superheated Liquid Detectors

The final WIMP detector type uses superheated liquids, either as droplets in a gel (PICASSO [42]),

or as a large bubble chamber (COUPP [32]). Energy deposited by a nuclear recoil forms a bubble

in the metastable liquid, which then grows until it is observable either as an accoustic signal, as in

PICASSO, or visually, as in COUPP. The temperature and pressure of these chambers is set so that

electrons and other minimum ionizing particles cannot deposit enough energy in a small enough

volume to nucleate a stable bubble. Discrimination in these detectors is extremely powerful —

COUPP reports 1 in 1010 electron recoils producing a bubble at a nuclear recoil threshold of 10 keV

(threshold is also a function of pressure and temperature). The weak point in these detectors is the

inability to discriminate between bulk alpha decays and WIMP recoils, but recent measurements

by PICASSO suggest that these events may be distinguished by their ultrasonic signature [43]. See

Fig. 2.8 for pictures of muon, neutron, and alpha (or WIMP) events in COUPP.
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Chapter 3

Xenon Time Projection Chambers

This chapter introduces the dual-phase xenon time projection chamber (TPC), also known as an

electron emission chamber. We lay out the basic technique and the advantages of these detectors

for direct detection of WIMPs, and describe in detail the prototype chamber ‘Xed’, which we use

for the calibration and discrimination measurements in Chapters 4–6.

3.1 Basic Xenon TPC Operation

Interactions in liquid xenon produce both free electrons and 175 nm scintillation photons (the physics

behind the production of these two signals is discussed in Chapter 4). The scintillation signal is

prompt, produced in the ∼100 ns following the interaction. The charge signal can be collected by

drifting the free electrons under an applied field, with drift velocities of ∼2 mm/µs at typical fields

(see Fig. 3.1). The delay between the prompt scintillation and the arrival of electrons at the collector

gives the distance to the interaction, hence the name ‘time projection chamber’. In the context of

direct detection experiments (as opposed to high energy tracking chambers), these chambers measure

point interactions, where a penetrating particle (gamma, neutron, neutrino, or WIMP) or internal

decay (alpha or beta) deposits energy in a single recoil extending no more than a few 10’s of µm

(see Chapter 6 for details of energy loss by electron and nuclear recoils), so the charge signal arrives

as a short pulse. The prompt scintillation and charge signal are known as S1 and S2, respectively.

There are many methods for measuring the S1 and S2 signals, with the typical setup is shown

in Fig. 3.1. Here the S1 is detected by photo-multiplier tubes (PMTs) above and below the target

volume. Efficiencies for detecting S1 photons in existing detectors are 5–10%, with ∼50% light

collection efficiency and ∼17% PMT efficiency — see Chapters 4 and 5, as well as [44] for more
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Figure 3.1: Left: Schematic of a dual phase xenon time projection chamber. An incoming particle
(gamma, neutron, or wimp) scatters in the liquid, producing a flash of prompt scintillation and free
ionization. The free electrons drift to the liquid surface under the applied field Ed and are extracted
into the gas, where they produce electroluminescence until being collected on the anode. The two
flashes of scintillation light (prompt and electroluminescence) are known as S1 and S2, respectively.
The delay between flashes gives the drift time of electrons in the liquid, and thus the depth of the
event. Arrays of photo-multiplier tubes above and below the active volume detect the S1 and S2
light. The top array is also used to determine the x-y position of the event, based on the location
of the S2 flash. This figure is supplied by John Kwong, appearing in [44]. Right: Drift velocities of
electrons in liquid and gas xenon. The x-axis is in drift field over number density of atoms, where 1
Td = 10−17 V cm2. At 180 K (a typical operating temperature), N = 1.3 · 1022cm−3 in liquid and
9.4 · 1019cm−3 in gas [45]. This figure is taken from Atrazhev et al. [46]. The solid lines show the
calculations by Atrazhev et al., and the points show data from experiments [47, 48, 49, 50].

discussion on S1 efficiency. To detect the charge signal with the same efficiency, some physical

gain is needed. This is easily accomplished in xenon gas, where electrons drifting at high field

produce electroluminescence [51]. This light is also 175 nm, and is sometimes called ‘proportional

scintillation’ in analogy with a proportional counter, where electrons drifting at high field produce

additional ionization.

There is a potential barrier at the phase boundary that must be overcome to extract electrons

from liquid into gas [51], and gas fields of 10 kV/cm are necessary for efficient (>98%) extraction [52].

At typical operating pressures (∼2 atm), electrons drifting in this field produce O(100) scintillation

photons per millimeter — this light may be measured with the same PMTs used to detect S1.

Detection of single electrons extracted from the liquid has been demonstrated using this technique

(see Chapter 7). An array of PMTs above the anode gives the x-y location of the S2 light pulse.
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Combined with the depth determined from the electron drift time, this gives full 3-D position

reconstruction. Position resolutions of 3 mm in x-y and 1 mm in z have been demonstrated in these

detectors [53], and because of the relatively large S2 signals this resolution essentially independent

of event energy, all the way to the S1 detection threshold.

A number of support systems are necessary for dual-phase TPC operation. The most basic

of these include cryogenics (typical operating temperatures are 170–190 K) and xenon purification

(electronegative impurities can trap drifting electrons). Details on the instrumentation used in the

Xenon10 and LUX experiments may be found in [54, 55, 44, 56], and in Section 3.3 we describe in

detail our prototype xenon TPC, Xed.

3.2 XenonTPCs as WIMP Detectors

Xenon TPCs excel as direct detection experiments. They are easily scalable, and have the low

threshold needed for WIMP recoil sensitivity. Xenon itself is easily purified and strongly self-

shielding, with no long-lived radioactive isotopes, so extremely low background rates are possible.

The backgrounds that remain are primarily electron recoils and may be discriminated against based

on the ratio of the S2 and S1 signals.

3.2.1 WIMP sensitivity

The WIMP sensitivity of xenon compared to germanium and argon for spin-independent interactions

was shown in the previous chapter (Fig. 2.1). Xenon benefits from the A2 term in the coherent

spin-independent cross section (Eq. (2.9)). Because of its large nucleus, scattering on xenon loses

coherence at high energies, but for sufficiently low energy thresholds (e.g. 17 keV for 100 GeV

WIMPs) xenon is the most sensitive of these targets. The energy threshold in liquid xenon is

determined by the efficiency for detecting S1 photons. Low energy nuclear recoils in xenon give ∼10

scintillation photons per keV, and thresholds of 5 keV have been demonstrated (see Chapters 4, 7).

Xenon is also sensitive to spin-dependent interactions coupled to neutrons — 129Xe and 131Xe are

neutron-odd make up 26.4% and 21.2% of naturally occurring xenon, respectively.

3.2.2 Scalability

WIMP sensitivity scales with the mass of the detector, and current WIMP limits already show the

need for targets of several hundred kilograms, or even several tons. The target material in a xenon
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TPC is a liquid and the instrumentation scales with the surface area (top and bottom arrays of

PMTs) while the sensitivity scales with volume, making these detectors both easy and economical

to scale to very large sizes. The only limitations to size are set by high voltage constraints and the

ability to drift charge and see scintillation light over long distances. Of these, the limiting factor

appears to be charge drift. A drift length of 4 meters was measured in the Xenon10 experiment

[57, 55] — we discuss the problem of charge drift in larger detectors in Chapter 7.

3.2.3 Chemical Purity

Xenon is a noble gas, and so chemical purification is straightforward. Commercial xenon is produced

by distillation, and purification in the lab is performed by heated getters, which remove non-noble

contaminants at <1 ppb [58]. Purification from other noble elements may be achieved by gas

chromatography (see next section).

3.2.4 Radiopurity

There are no long-lived radioactive xenon isotopes. The chief internal background comes from

krypton, which is present at 5–10 ppb in the best commercially available xenon. 85Kr is a naked

beta emitter (99.6% of decays have no assosciated gamma) with half-life of 10.77 years, decaying

to the stable 85Rb. At WIMP recoil energies, the beta spectrum gives 2.2 · 10−3 betas per keV per

decay (nuclear data from [59]). With a conservative (high) estimate for the relative abundance of

85Kr, one ppb of krypton contamination corresponds to ∼0.05 events/keV/kg/day [60].

Krypton may be removed from xenon via either distillation or gas chromatography. In the latter,

a pulse of xenon contaminated with krypton is forced through a charcoal column by a carrier gas

(helium). The greater adsorption of xenon onto the charcoal separates the gasses in the column

— the krypton emerges first and is diverted to a trap, followed by the xenon (see Fig. 3.2). A

chromatography system built at Case Western has achieved krypton levels of < 3 ppt (parts-per-

trillion) [60], sufficient for a 10 ton experiment..

3.2.5 Active Shielding

A major strength for these detectors is their 3-D position reconstruction. As described in Sec-

tion 2.2.3, neutron and gamma events can be efficiently rejected in a large 3-D position reconstruct-

ing detector by identifying multiple-scatters. Interaction lengths for gammas and neutrons in liquid

xenon are shown in Fig. 3.3, roughly 15 cm for neutrons and 10 cm for the most penetrating gammas.
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Figure 3.2: Krypton removal from xenon using gas chromatography. This plot shows the krypton
and xenon partial pressures (plotted as current in a mass spectrometer) at the outlet of the charcoal
column in the Case Western krypton purification system. In phase I, a pulse of xenon+krypton is
fed into the charcoal column, in phase II the krypton leaves the column and is diverted to a cold
trap, and in phase III the xenon is leaves the column and is recovered. This plot is taken from [60].

From Eq. (2.16), the single scatter rate at a point in the detector due to gammas or neutrons from

a given direction is proportional to e−
d

x0 , where x0 is the interaction length of the particle and d

is the path length in the active region that the particle must travel. For example, in the corner of

the detector there are several paths that cross only a small length of active xenon, and penetrating

particles along these paths have a significant single scatter probability. Any path through the center

of the detector must cross the entire active region, so single scatters there are very unlikely. Inte-

grating over all paths through a given point, weighting by the expected activity along each path as

in Eq. (2.16), we get very similar results to a full Monte Carlo background simulation. The expected

Compton scatter background as a function of position in a LUX size detector is shown in Fig. 3.4.
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Figure 3.3: Gamma and neutron interaction lengths in liquid xenon. Gamma data comes from [61]
and neutron data from [62]. Neutron data is averaged over the stable xenon isotopes, weighted by
their abundance. We take a liquid xenon density of 2.84 g/cm3 (T=180 K).

3.2.6 Discrimination

Active shielding is the primary method for rejecting for gamma events, but one can also discriminate

between electron and nuclear recoils using the ratio of the S1 and S2 signals. This also allows rejection

of backgrounds from internal betas (dominated by 85Kr) and at very large scales from charged-current

neutrino interactions. Xenon10 has demonstrated 99.4% rejection efficiency with 50% nuclear recoil

acceptance, and we project 99.9% rejection at low energies in upcoming experiments — see Chapter 5

for an in depth discussion on electron recoil discrimination.
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Figure 3.4: An analytic calculation of single scatter background due to gammas in a cylindrical
300 kg (LUX size) liquid xenon chamber. The x-axis gives the distance from the central axis of the
detector, while the y-axis gives the height. The rate varies by three orders of magnitude from the
hottest point (top and bottom edge) to coldest (center). This plot produced by Tom Shutt.

3.3 The Xed Prototype TPC

The data presented in Chapters 4, 5, and 6 was taken in a prototype xenon TPC constructed at

Princeton University and operated at Case Western Reserve University from 2005 on. This detector

was dubbed Xed. This section describes the instrumentation, data acquisition, and data processing

techniques used with Xed.

3.3.1 Cryostat

The Xed cryostat is shown in Fig. 3.5. This is a vacuum cryostat with an aluminum cold-finger to a

liquid nitrogen bath for cooling. The cryostat has two sealed spaces: the inner can, containing the

detector, and the outer can, kept at vacuum. The detector hangs from the top flange of the inner

can, which in turn hangs from the top flange of the outer can, supported by Vespel R© rods. Thin
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Figure 3.5: The Xed vacuum cold-finger cryostat, designed by Tom Shutt. Figure compiled by John
Kwong, as appearing in [44].

walled stainless steel nipples extend from the inner can up to air-side feedthroughs for electrical and

plumbing connections. An aluminum radiation shield is mounted to the top flange of the inner can,

and the cold-finger extends from the bottom of the radiation shield. Platinum resistor thermometers

are mounted at the top of the cold finger, the bottom of the radiation shield, and the top and bottom

of the inner can. A PID controlled 50 W heater on the top of the inner can regulates the temperature.

3.3.2 Internal Structure

The internal structure of the Xed detector is shown in Figs. 3.6 and 3.7. Two photo-multiplier tubes

(PMTs) form the top and bottom faces of a cylinder with 3.729 cm diameter in the active region,

stepping out to 4.534 cm diameter at the top. Five wire grids (in order, ‘bottom’, ‘cathode’, ‘gate’,

‘anode’, and ‘top’) set the electric fields in the chamber. Each grid is a single plane of parallel wires,

tensioned and soldered to copper pads on a cirlex disk at 2 mm pitch. The bottom three grids

are 40 µm BeCu wires at 40 gm tension (room temperature), and the top two grids are 120 µm
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Figure 3.6: The Xed detector. This shows the two PMT configuration — in the single PMT
configuration, the bottom PMT and wire grid are removed, and the cathode (next-to-bottom) grid
is replaced by a silver-plated copper plate with a 210Po alpha source deposited in its center. The
active region in both configurations is 0.964 cm tall and 3.729 cm in diameter. The following
materials are color coded: stainless-steel (solid blue), liquid xenon (slashed blue), PTFE (Teflon R©)
(slashed pink), Cirlex R© (slashed green), and aluminum (black outline). Photo-multiplier tubes are
shown in red. This figure produced by John Kwong, appearing in [44].

Au plated Al wires at 100 gm tension. The active volume, between the cathode and gate grids, is

0.964 cm tall, for a total active mass of 30 gm. The cathode, gate, and anode grids set the drift and

extraction fields, while the top and bottom grids shield the PMTs from the high field regions. The

extraction field is kept at 10 kV/cm in the gas (5.1 kV/cm liquid) with the liquid surface midway

between the gate and anode grids. Active region drift fields of up to 4.4 kV/cm are achieved in this

setup. Voltages are set using the electrostatic analysis in Appendix A.

Typical events produce similar numbers of primary scintillation photons and electrons. Each

electron in turn produces ∼250 secondary scintillation photons, creating a large dynamic range

between small S1s and large S2s. Due to reflection at the liquid surface, the bottom PMT is ∼4

times more efficient than the top for detecting S1 light. Here we use a Hamamatsu R9288 with

a quoted 23.24% quantum efficiency at 175 nm and 70% photo-electron collection efficiency for a

total efficiency of 16%, biased at 875 V for a clear single photo-electron signal. The top PMT is a

Hamamatsu R6041 with 7% total efficiency, biased at 820 V. S2s of over ∼300 electrons begin to
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Figure 3.7: Picture showing the Xed active region, with the top PMT removed. Copper clad Cirlex R©
rings hold the wire grids used to set the fields in the chamber. The copper pads at the outside edge
of the ring are repeated on the grid and anode planes and form the capacitors used to measure liquid
level. The pads at 120◦ on the grid and anode planes measure the liquid level, and the fourth pads
on the anode and top planes form a reference capacitor. This picture originally published in [44].

give a non-linear response in the bottom PMT and are measured with the top PMT. The maximum

S1 signal giving a linear response in the bottom PMT corresponds to ∼10,000 scintillation photons,

or ∼600 bottom PMT photon-electrons.

3.3.3 Cleaning and Xenon Purification

Xenon purity begins with cleanliness inside the detector. The detector is assembled in a clean room

or at a clean bench (hooded bench with HEPA blower), and all internal detector components except

for PMTs are ultrasonically cleaned in acetone followed by ethyl alcohol, with deionized water rinses

after both cleanings. After sealing, the detector is heated to 50 C◦ (limited by the PMT’s) and
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Figure 3.8: Picture showing (from right to left) the Xed cryostat, gas panel, and storage cylinders.
Picture annotations by John Kwong, as appearing in [44].

pumped for several days to drive out impurities absorbed in detector materials (in particular H2O,

although the exact impurity content is unknown), typically reaching vacuum pressures of 10−5 torr.

Xenon is purified using a SAES R© MonoTorr R© heated getter, pictured with the gas handling

system in Fig. 3.8. Xenon passes through the getter when moving between the stainless-steel storage

cylinders and the main chamber and when recirculating the fluid in the main chamber. At the start

of each run, the xenon was either recirculated or repeatedly moved between the storage cylinders

and the chamber (batch mode purification) until drift lengths of 30 cm were achieved, determined

from the depth dependence of S2 from 122 keV photo-absorption events. Recirculation was restarted

periodically during a run as necessary to maintain a 30 cm drift length, but data was not taken while

recirculating due to large fluctuations in the liquid level.
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Figure 3.9: Liquid level monitoring in Xed. This shows one of the three parallel plate liquid level
monitors displaying the sawtooth pattern that we associate with bubbles trapped under surfaces in
the liquid. The same pattern is seen with the same phase and amplitude in all three meters. As
the bubble grows, liquid is displaced and the liquid level rises, until the bubble is large enough to
escape and the liquid level quickly drops back to its starting point. The y-axis gives the liquid level
as a fraction of the distance from the gate to anode (4.67 mm) — the amplitude of the oscillations
is ∼100 µm. The bubbles can be stopped by slowly warming the detector from the top. This raises
the gas pressure above the vapor pressure of the liquid, halting bubble formation. Plot courtesy of
John Kwong, appearing in [44].

3.3.4 Liquid Level Monitoring

For normal operation, the liquid level is kept in the 0.467 cm region between the gate and anode

grids. The height and tilt of the liquid surface are measured using three parallel plate capacitors,

each with one plate level with the gate and one level with the anode. The commercially available

UTI chip reads the capacitances [63], achieving <40 µm resolution in the liquid height and a sample

rate of ∼2 Hz. The level meters also monitor the state of the liquid surface, detecting ripples in

the liquid surface (due primarily to bubble formation at the bottom PMT base), shifts in the liquid

level when fields are applied, etc. Figure 3.9 shows behavior associated with bubbling in the xenon.

3.3.5 Source Placement

The dual-phase data in Chapters 4 and 5 uses three sources: 57Co for photo-absorption events from

122 and 136 keV gammas, 133Ba for Compton scatters from 356 keV gammas, and 252Cf for elastic

and inelastic nuclear recoils from neutrons (average energy 2.35 MeV). The 57Co source is inserted

into a re-entrant tube in the cryostat, positioning it directly under the center of the active volume.

The bottom of the stainless-steel inner can is thinned from 0.375” to 0.039” in a 0.5” diameter

disc over the source to allow the 122 keV gammas into the xenon volume. A PTFE rod from the

inside bottom of the inner can to the bottom PMT further collimates the gammas, which have an
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interaction length of only 3.0 mm in the surrounding xenon. The 133Ba source is placed at the side

of the cryostat above the liquid xenon level — the 356 keV gammas have a 2.5 cm interaction length

in liquid xenon, illuminating the entire active volume. The 252Cf is housed in a lead castle ∼9” from

the center of the detector, with 4” of lead between the source and the active volume and 6” of lead

behind. The lead serves to shield the detector from the high rate of gammas coming from the source

(the heavy lead nuclei scatter but do not moderate the neutrons).

3.3.6 Data Acquisition

Waveforms from the PMTs are amplified by an SRS 350 MHz, x5 amplifier and digitized using 8 bit

500 MHz Acqiris digitizers. We use two digitizer channels with different full-scales for each PMT

to capture the full dynamic range. The digitizers are triggered by a discriminator on the bottom

PMT with a threshold at 5 electrons in the S2 signal — this is well below the analysis threshold

set by the S1 light collection efficiency. High energy events trigger on S1 before triggering on S2 —

the digitized waveforms extend a full drift length on either side of the trigger to catch both pulses

regardless of which causes the trigger.

3.3.7 Data Processing

The saved traces pass through a software pulse-finder, which doubles as a compression algorithm. Of

the 10–15 µs digitizer trace, typically less than 2 µs contains signal (see Fig. 3.10). The pulse finder

identifies pulses and saves a compressed version of the file, recording the waveform segments where

there are pulses and the sample at which they occur, while saving only the mean and rms noise of

the baseline. The pulse finding algorithm first determines the baseline and noise in the trace using

the first microsecond of the waveform, being careful not to include any pulses in the baseline sample.

The baseline is subtracted from the trace, and the result is put through a time-domain filter. The

filter shape is the derivative of a Gaussian with σ=30 ns. A threshold (determined by the baseline

noise) is set on the absolute value of the filtered pulse, and any piece of the waveform over threshold

is identified as part of a pulse. Typically this catches the entire S1, but will occasionally miss the

flat peak of an S2, catching only the rising and falling edges. A 40 ns buffer is added to either side

of each found pulse piece, catching tails and filling in any gap in the S2. Figure 3.10 shows a sample

event with the pulse finding results.

After pulse finding, individual pulses are classified as S1 or S2 based on pulse shape. The S2

pulse is 1 µs wide, set by the time it takes electrons to drift from the liquid surface to the anode
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Figure 3.10: Sample waveform from the bottom PMT for a nuclear recoil event in Xed. The shaded
regions show where pulses were found, in this case a single S1 and single S2.

grid, and fairly symmetric. The S1 pulse has a ∼10 ns risetime, set by the PMT risetime, and a

∼100 ns falltime, set by the recombination timescale — see [44] for details on S1 pulse shapes in

liquid xenon.

The integrals of the S1 and S2 pulses gives the light and charge signals, and basic cuts reduce

the data to single-scatter events (one S1 and one S2). Depth corrections are applied to the S1 signal

to correct for position dependence in the light collection efficiency (with a single top PMT, we can

only reconstruct the z-coordinate of the event). After recirculation, no depth dependence is seen in

S2. Cuts and corrections were developed by John Kwong and are discussed in [44].

3.3.8 Single-Phase Operation

The detector is occasionally run as an ionization chamber rather than a time projection chamber,

with the liquid level raised above the top grid. In this mode, the ‘top’ grid acts as the anode, with
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electrons from the active region drifting past both the ‘gate’ and ‘anode’ grids before being collected.

A charge sensitive preamp connected to the top grid measures the charge signal directly. This has

much lower signal to noise than proportional scintillation but removes dependence on pressure and

gas field and allows an absolute calibration of the charge signal.

Single phase data is taken both in the configuration in Fig. 3.6 and in a single PMT configuration

with the bottom PMT and bottom grids removed and the cathode grid replaced by a silver-plated

copper plate. In the former configuration, the bottom PMT is used to detect S1 while charge data

is taken with the pre-amp. In latter, S1 light can still be measured by the top PMT, but charge and

light data cannot be taken simultaneously due to cross talk between the PMT and the top wire grid.

The advantage of the single PMT setup is the simpler electrode geometry, making it easier to reliably

set drift fields. The plate also removes the xenon space below the cathode, where scintillation light

is produced but no charge is collected. The cathode plate has a 1 nCi 210Po alpha source deposited

in its center, which is used for preamp calibration.

For both configurations, we use an Ortec 142AH preamp to integrate the charge signal. The

feedback capacitance (gain) is calibrated through a combination of fall time measurements, gain

measurements with pulses through known input capacitances, and measurements of the ionization

signal from the alpha source in gas and liquid compared with published results [64]. These measure-

ments are consistent, and give a feedback capacitance of Cf = 1.15 ± 0.01 pF. The preamp output

is sent through an Ortec 572 spectroscopy amplifier with 3 µs shaping time and then digitized. For

charge-only data in the single PMT configuration, the unshaped preamp output is also digitized.

In single-phase operation we attempt no position reconstruction for events, and so restrict our

sources to the 57Co centered below the detector and the 210Po on the cathode in the single-PMT

configuration. The 122 and 136 keV gammas from 57Co have interaction lengths in liquid xenon of

3.0 and 3.9 mm, respectively, so that ∼96% of these events occur below the ‘gate’ grid (alphas from

the 210Po travel only ∼45 µm, so are also contained in the active region). The ‘gate’ and ‘anode’

grids shield the ‘top’ from slow moving positive ions so the charge signal is independent of the depth

of the event (see Appendix A). The fields in the gate-anode and anode-top regions are kept constant,

fixing the velocities of electrons in the regions visible to the preamp. The maximum active region

drift field is 2 kV/cm, with fields of 4 and 8 kV/cm in the regions above to ensure transparency of

the grids to drifting electrons. For light-only data, neither drift speed nor transparency is an issue,

so all fields are kept proportional to the field in the active region.
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3.3.9 Other Xed Configurations

The Xed detector ran in many other configurations besides the two described. It was used to

investigate the use of CsI photocathodes inside the chamber for detecting S1 light, proportional

gas gain at the anode for measuring the S2 signal, and the use of waveshifters to increase S1 light

collection efficiency. These projects are described by John Kwong in [44]. We will focus on the

calibration, recombination, and discrimination measurements made in the single- and dual-phase

modes described above.
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Chapter 4

Recombination and Calibration

The charge and light signals produced in liquid xenon are best understood in terms of ion recom-

bination at the event site. Recombining ions contribute to, and in fact create most of the primary

scintillation light, so that the total ionization signal is split between the charge and light signals.

Variations in the recombination fraction induce an exact anti-correlation between the two signals.

This anti-correlation may be exploited for calibration and used to distinguish fluctuations in the re-

combination fraction from the uncorrelated fluctuations assosciated with measurement of the charge

and light signals.

This chapter presents the basic recombination model for signal production and demonstrates the

power of the model analysing 122 keV gamma events from a 57Co calibration source in the Case

prototype, Xed. We demonstrate the signature anti-correlation by varying the applied drift field

and thus the mean recombination fraction, and from this calculate the W-value (average energy

expended per ion or exciton) and S1 light collection efficiency. We then decompose the fluctuations

seen in the 122 keV peak into uncorrelated S1 and S2 fluctuations and anti-correlated recombination

fluctuations, discussing the physics behind each type of fluctuation.

4.1 Recombination Model for Signal Production in Liquid

Xenon

The recombination model for signal production in liquid xenon is not new, but past treatments of

the model have missed its broad implications. Recombination is often mentioned in the context

of energy resolution [65, 66], while the applications in calibration and fluctuation decomposition in
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dual-channel detectors have been missed. This is at least partly due to the lack of a precise statement

of the model in the literature. We therefore begin this chapter with a careful discussion of signal

production in liquid xenon, building the framework within which the measurements in this chapter

and the next should be understood.

4.1.1 Signal Production in Electron Recoils

Interactions in liquid xenon create tracks of excited and ionized xenon atoms, with ten to twenty

times as many ions as excitons (excited atoms). Excitons form an excited dimer, Xe∗2, which emits

a 175 nm (VUV) photon as it decays [67]. If an ionized electron recombines with a xenon ion, the

resulting exciton will also go through this process, so that the total number of scintillation photons

will be

Nph = a · Nex + b · r · Ni, (4.1)

where Nph is the number of scintillation photons, Nex is the number of direct excitons in the track,

Ni is the number of ions in the track, r is the fraction of ions that recombine, and a and b are the

efficiency with which direct excitons and recombined ions produce scintillation photons, respectively.

We expect a ≈ b ≈ 1, but we include them as coefficients here so it is clear later which results are

sensitive to these efficiencies. For electron recoils, we define the W-values

Wq = E/Ni (4.2)

and

Wph = E/(a · Nex + b · Ni), (4.3)

where E is the energy of the recoil, so that E/Wq gives the total charge yield with zero recombination,

and E/Wph gives the total light yield with full recombination. Both Wq and Wph are expected to

be energy independent [68]. Due to photons from direct excitation,

Wph = Wq/

(

a · Nex

Ni
+ b

)

≈ Wq/1.06, (4.4)

where the value Nex

Ni
= 0.06 is taken from theoretical calcuation based on absorption measurements

and oscillator strengths in solid phase [69, 70]. In the literature, a third W-value for light yield

at zero field is often cited. This value is generally 10–50% higher than Wph due to incomplete

recombination at zero field as electrons diffuse away from the track [68]. Since it depends on the
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recombination fraction, the zero-field W-value varies with recoil energy and track type.

When an electric field is applied, electrons that do not recombine may be extracted from the

track and measured separately. The amount of charge extracted is

Nq = (1 − r)Ni, (4.5)

and, combining Eq. (4.1,4.3,4.5), we find the recombination independent sum

E = (Nq + (Nph/b)) · (Wph · b) , (4.6)

where we have moved all dependence on b into terms with Nph and Wph. This grouping of terms

is convenient since absolutely calibrating Nq is much easier than Nph (the former requires only a

calibrated preamp, while the latter requires both a photo-sensor calibrated at liquid xenon temper-

atures and an accurate calculation of light collection efficiency in the chamber, neither of which has

yet been achieved). We rename the pieces of Eq. (4.6): ne = Nq, nγ = Nph/b and W = Wph · b,

giving

ne = (1 − r) · Ni, (4.7)

nγ = (
a

b

Nex

Ni
+ r) · Ni, and (4.8)

E = (ne + nγ) · W. (4.9)

In words, one electron recombining will reduce ne by one and increase nγ by one. (Strictly speaking,

a recombining electron has probability b of increasing nγ by b−1 and probability 1 − b of leaving

it unchanged, giving an average increase in nγ of one.) We write the units for ne and nγ as [ne]

and [nγ ], read as numbers of extracted and recombined electrons, respectively. For example, a

calibration constant for the scintillation signal may have units phe/[nγ ], meaning photo-electrons

per recombined electron. Note that nγ itself is not the actual number of recombining electrons, as it

also includes light from direct excitation, but rather the number of recombining electrons required

to produce the observed scintillation signal in the absence of direct excitation. Note also that a

and b do not explicitly appear in Eq. (4.9), and no knowledge of a and b is necessary to construct

the recombination independent energy scale. We will construct this scale in section 4.2, finding

W = 13.7 ± 0.2 eV.

Equations (4.7)–(4.9) describe the partition of electronic excitation into charge and scintillation
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signals, given by the initial excitation-ion ratio and recombination fraction. The initial partition

into direct excitation and ionization is expected to be independent of energy [71], so the term a
b

Nex

Ni

should be constant (although it may vary with recoil type, as discussed below). The recombination

term depends on the electric field and ionization density in the track, with greater recombination

at low fields and in dense tracks. Locally, the ionization density is determined by the electronic

stopping power for the recoiling particle, while the local electric field is the applied drift field minus

any screening from the ionization in the track. Globally, both of these are influenced by the track

structure: since stopping power is energy dependent, the division of energy among daughter recoils

will affect the ionization density distribution, and track geometry may impact screening of the

electric field. The fraction of charge recombining for electron and nuclear recoils versus energy and

drift field is given in Chapter 5, and a model for recombination is presented in Chapter 6.

4.1.2 Nuclear Recoils

In electron recoils the entire recoil energy is lost through electronic excitation, but nuclear recoils

also lose energy through elastic collisions with other nuclei. While some of these nuclei create further

ionization, most have energies below the ionization threshold. This energy loss is not detectable in

liquid xenon, so we see an overall suppression of electronic excitation for nuclear recoils. Lindhard

derives the integro-differential equation describing the total electronic energy loss in a nuclear recoil

cascade in terms of the differential elastic nuclear scattering cross-section and electronic stopping

power for recoiling nuclei [37]. For low-velocity ions (v < c/137) Lindhard takes the electronic

stopping power to be

S = 4πh̄ca0Z
7/6

√

E

Mc2
, (4.10)

where Z is the atomic number of both the recoiling nucleus and the atoms in the medium, M and E

are the mass and kinetic energy of the recoiling nucleus, and a0 is the Bohr radius. The differential

scattering cross section is given by

dσ = πa2 dη

η2
f(η), (4.11)

where

η =
4πǫ0a

2e2Z2

√

EEr (4.12)

for incident energy E, energy transfer Er, and screening radius a given by

a = 0.626a0Z
−1/3. (4.13)
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Lindhard uses the Thomas-Fermi model to compute f(η), which is approximated by

f(η) =
λη1−2m

(

1 +
(

2λη2(1−m)
)q)1/q

(4.14)

with m = 1/3, q = 2/3, and λ = 1.309 [72]. Other approximations for stopping powers, differential

cross sections, and screening radii are listed in [73].

Lindhard’s numerical solution is approximated in [9] by

L =
kg(ǫ)

1 + kg(ǫ)
, (4.15)

where the energy dependent factor L is the fraction of the initial recoil energy eventually lost to

electronic excitation, with

ǫ = 11.5 (Enr/keV )Z(−7/3), (4.16)

k = 0.133 Z2/3A−1/2, and (4.17)

g(ǫ) = 3ǫ0.15 + 0.7ǫ0.6 + ǫ, (4.18)

for a recoil of energy Enr. Making the commonly-used assumption that the portion of energy lost

electronically creates excitation and ionization with the same efficiency (W-values) as electron recoils,

we write

Enr = L−1 · (ne + nγ) · W. (4.19)

Equation (4.15) gives the generic prediction for L in any material, and it accurately describes

ionization from nuclear recoils in semiconductors [74]. The prediction in liquid xenon is more com-

plicated. There is some evidence from our recombination modeling results (see Chapter 6) that Nex

Ni

is higher for nuclear recoils than electron recoils. This would lower the W-value for electronic energy

loss in nuclear recoils (the W in Eq. (4.19)), since less energy is required to produce an exciton

than an ion. Experimentally this has the same signature as an increase in the Lindhard parameter

(i.e., an increase in the total electronic energy loss) and can be folded into L in Eq. (4.19). Except

where explicitly stated otherwise, we assume the same W-value for electron recoils and electronic

excitation in nuclear recoils when discussing L.

Instead of the Lindhard factor L, many experiments measure the ‘effective Lindhard factor’ Leff ,

also called ‘relative scintillation efficiency’ [75, 76, 77, 78, 79, 80] (see Fig. 4.1). This factor is defined
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as the ratio of the zero-field light yields of electron and nuclear recoils,

Leff =
nγnr

nγer

Eer

Enr
at zero field, (4.20)

where the nr and er subscripts indicate the nuclear recoil and a reference electron recoil. A standard

reference is necessary, since the zero-field Eer

nγ er

is energy dependent — to date this reference has been

a 122 keV photo-absorbed gamma from a 57Co source. Enr is usually determined kinematically by

measuring the scattering angle of a neutron with known initial energy, with the exception of [79],

where Leff is found from the nγ spectrum at 730 V/cm from an AmBe neutron source compared

with the Monte Carlo generated recoil spectrum. This measurement is adjusted to zero-field values

using the field dependence of the 56.5 keV nuclear recoil light yield reported in [77].

If recombination were complete at zero field, one would see Leff = L, but experimentally nei-

ther nuclear nor electron recoils undergo complete recombination at zero field. At this time no

experiments have published results measuring L directly, e.g., by measuring both nγ and ne for

kinematically known recoils (this data should appear in [81]), but measurements giving both nγ

and ne for nuclear recoils of unknown energy can be used to relate Leff to L. For a given Leff ,

the recoil energy of an event can be determined from nγ , taking the measured field dependence for

the 56.5 keVr nuclear recoil light yield in [77] to shift from zero-field to at-field light yields. The

equivalent electron energy of the event is given by Eq. (4.9). By definition, the ratio of these energies

is L. This is shown in Fig. 4.2, where we use the calibrated neutron measurements in Chapter 5

to compute L from Sorensen’s Leff [79]. We use Sorensen’s values because they are based on data

taken at field (730 V/cm) — since our data is taken at a similar field, this avoids most of the sys-

tematic uncertainty in the field dependence of the light yield for nuclear recoils (i.e., when shifting

Sorensen’s values from the zero-field Leff to the light yield at our field, we are merely undoing the

adjustment Sorensen made to produce his zero-field values). The resulting L is more consistent with

a constant Lindhard factor of 0.25 than the L falling with energy described in Eq. (4.15). Turning

the process around, we compute Leff from the neutron data using both L = 0.25 and the L given

by Eq. (4.15) (Fig. 4.3). The constant Lindhard factor is consistent with Sorensen’s spline, but the

theoretical factor is not. This implies that the drop in Leff from 0.24 around 50 keVr to 0.15 below

10 keVr is due not to a drop in the actual Lindhard value but to an increased fraction of the signal

lost to escaping electrons at zero field.

Constant Lindhard factors have also been seen in some scintillators, including NaI [82] and CaF2

[83], but it is not clear why this should be the case in liquid xenon. One possible explanation
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Figure 4.1: Relative scintillation yield (Leff ) of nuclear recoils in liquid xenon, referenced to 122 keV
gamma rays from 57Co. The data points are from neutron scattering experiments at zero field, with
nuclear recoil energies determined kinematically from the scattering angle [75, 76, 77, 78, 80]. The
gray curve is the spline fit for Leff in [79], which is based on a fit to a recoil spectrum from an
AmBe neutron source. The errorbars along the curve indicate the knots in the spline and their
uncertainties, and the dashed parts of the curve indicate regions not used in the fit. The Sorensen
curve is based on data taken at 730 V/cm and adjusted to zero-field using the field dependence of
the 56.5 keV recoil light yield reported in [77]. This plot was compiled by Aaron Manalaysay.

is bi-excitonic quenching — in this process, the usual Xe + Xe∗ → Xe∗2 → 2Xe + γ is replaced

with Xe∗ + Xe∗ → Xe∗∗2 → Xe + Xe+ + e−. This electron may then recombine to produce a

single scintillation photon, giving one photon from two excitons. This process applies to both

direct excitons and excitons following recombination, as described in [84], and has been observed in

tracks with extremely dense excitation and ionization — alpha tracks experience a 23% reduction in

scintillation yield attributed to this effect [68]. If present in nuclear recoils, as is suggested in [85],

bi-excitonic quenching would be stronger for higher energy recoils because of their higher electronic

stopping power (see Section 4.2.5), tending to flatten the measured Lindhard value — but it would
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Figure 4.2: The Lindhard factor, or fraction of energy lost to electrons in nuclear recoils, versus
nuclear recoil energy. The solid red line takes the nuclear recoil energy determined from nγ using
the Leff given by Sorensen [79], while energy lost to electrons is given by W (nγ + ne). Statistical
errorbars on the curve come from the uncertainty in Leff . Systematic errors (shown below) include
the systematics quoted by Sorenson and the uncertainty in field-dependence of the light yield. The
blue dashed line is the theoretical Lindhard factor as given in Lewin and Smith [9].

also result in a measured value lower than the theoretical prediction. We see a Lindhard value

higher than the theoretical prediction, but this could be due to a higher direct-exciton fraction and

therefore lower W-value for nuclear recoils. Some combination of these effects may describe the

nuclear recoil signal. Dual channel (charge and light) measurements with known energy nuclear

recoils are needed to resolve this issue. Not only will this measure L directly, but if bi-excitonic

quenching is a factor, then the efficiency b for creating scintillation via recombination will be lower

for nuclear recoils than electron recoils. This would be apparent in anti-correlation measurements,

such as those in Section 4.2.

4.1.3 Energy Scales

There is historical confusion on the construction of energy scales in liquid xenon detectors. The

custom has been to use nγ as the energy scale, a practice inherited from detectors where only the

light channel was measured. From Eq. (4.8), we see that a linear scale in nγ will only work for

electron recoils if the recombination fraction r is energy independent. This is not the case, even at

zero field, especially when extrapolating from a calibration source (typically > 100 keV) down to
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Figure 4.3: Relative scintillation yield (Leff ) based on the measured recombination in nuclear recoils
in Xed at 520 V/cm and the theoretical value for L (red −−) and L = 0.25 (blue −·−). Also shown
is the spline fit to Leff from [79], which is based on nuclear recoil data from Xenon10 at 730 V/cm.

WIMP recoil energies. In fact, even a non-linear energy scale based on nγ is inadequate, because r

is not single-valued versus energy. In particular, as will see in Chapters 5 and 6, a Compton scatter

and photo-absorption event with the same total energy will have different recombination fractions,

and thus different nγ ’s. The combined energy defined in Eq. (4.9) is recombination independent,

and therefore both single valued and linear for electron recoils. In this thesis ‘keVee’ refers to a

measured electron equivalent energy using Eq. (4.9).

For nuclear recoils, there is call for an energy scale based on nγ because the existing calibrations

for nuclear recoils are in terms of nγ . This requires choosing a Leff and a reference electron recoil

(to date a 122 keV photo-absorption event from 57Co). On the other hand, it is also desirable to

have a recombination independent energy scale for nuclear recoils, as in Eq. (4.19). This requires

choosing an L. (There is also an implicit assumption of a common W-value for electronic energy

loss in electron and nuclear recoils, which may be considered part of the definition of L.) In this
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thesis, ‘keVr’ refers to a measured nuclear recoil energy using Eq. (4.19) with L = 0.25.

All nγ based energies in this thesis will be clearly labeled as such, with the Leff or calibration

point used to construct the scale explicitly stated. We will also use ‘keV’ when referring to physical

(as opposed to reconstructed) energies.

4.2 Calibrating Recombination Measurements

From Eq. (4.9) we see that the sum nγ + ne is independent of the recombination fraction due

to the exact anti-correlation between the charge and light signals. We can turn this around and

determine the relative calibration of our measured charge and light signals by varying recombination

and finding the recombination independent sum of the two signals. For many measurements this

relative calibration is all that is necessary, but we can also use the relative calibration to translate an

absolute charge calibration into an absolute light calibration and find the W-value in Eq. (4.9). This

section describes the method for calibrating from the charge-light anti-correlation and its application

in three configurations of Xed.

4.2.1 Method for Calibrating Using Charge-Light Anti-correlation

We define the normalized charge yield, y, as

y =
ne

nγ + ne
. (4.21)

We can calibrate y using the anti-correlation between charge and light with varying recombination,

making it easier to work with than the actual recombination fraction r. The two are related by

r = 1 −
(

a

b

Nex

Ni
+ 1

)

y, (4.22)

containing the difficult to measure a
b

Nex

Ni
. When a recombination fraction is necessary, we take

a
b

Nex

Ni
= 0.06, corresponding to the theoretical value for Nex

Ni
and a = b = 1.

We define the overall measurement gains g1 and g2 such that

S1 = g1 · nγ and (4.23)

S2 = g2 · ne,

where S1 and S2 are the uncalibrated scintillation and charge signals, respectively. To determine y
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from the measured S1 and S2, we need only the ratio of gains g1

g2
, since

y =
S2

S2 + g2

g1
S1

. (4.24)

We also have, for electron recoils,

E ∝
(

S2 +
g2

g1
S1

)

, (4.25)

from Eq. (4.9,4.23). This ratio of gains may be determined by measuring S1 and S2 for two or more

peaks with known energies and different values of y. For two peaks,

g2

g1
=

EaS2b − EbS2a

EbS1a − EaS1b
, (4.26)

where the subscripts indicate the two peaks being considered. This gives an uncertainty inversely

proportional to the separation in y,

δ [ln (g2/g1)] ∝
1

|ya − yb|
. (4.27)

For multiple peaks a least squares approach is needed, but again the measurement depends on finding

peaks with good separation in y.

The simplest way to apply Eq. (4.26) is to look at a single peak while varying the applied drift

field. Energy then falls out of the equation, and g2

g1
is simply the (negative) slope of a plot of S2

vs S1. This is shown in Fig. 4.4 for three sets of measurements of 122 keV 57Co gammas, with

drift fields ranging from a few V/cm to 4.4 kV/cm and y from 0.11 to 0.67. The three datasets

correspond to the three configurations for Xed described in Chapter 3: single phase separate charge

and light measurements, single phase simultaneous charge and light measurements, and dual phase

simultaneous measurements.

4.2.2 Single-phase, Separate Charge and Light

The single-phase separate charge and light measurement data is taken in the single PMT config-

uration of Xed (see Chapter 3). For charge data, this has the smallest field range of the three

57Co datasets, limited at the high end to 2 kV/cm by the high voltage requirements (electrons are

collected on the ‘top’ grid rather than the ‘anode’ for direct charge readout, and the extra drift dis-

tance limits the fields available) and at the low end to 400 V/cm, below which the shrinking charge

signal is unmeasurable in the face of electronics noise. The advantage of this mode is the absolute
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Figure 4.4: Light output vs charge output for 122 keV gamma events at drift fields from 0–4.4 kV/cm.
For each of the three datasets, the axes are scaled so that the intercepts of the least-squares linear
fit are at 1. E and g2 are known, allowing one to determine W (13.7 ± 0.2 eV) and g1 (0.060 ±
0.001 phe/[nγ ] in dual phase) from the unscaled intercepts.

calibration of the charge measurement. To determine charge yields we first perform a Gaussian

fit to the background-subtracted specamp spectrum, as shown in Fig. 4.6. We use the Gaussian

fit to determine the likelihood for each event to have come from the 57Co source, and average the

unshaped preamp traces weighted by this likelihood. The charge signal is read off the mean preamp

trace, making g−1
2 the preamp feedback capacitance, Cf = 1.15 ± 0.01 pF, measured in Chapter 3.

There is an additional factor of 0.874 in g2 when the spec-amp is connected due to its low input

impedance, but this is easily calibrated.

Light data was taken separately, since cross-talk from the single PMT above the top grid swamped

the charge signal when the PMT was biased. Light-only data may also be taken over a wider field

range, which we use to our advantage in Section 4.2.5. Since there is no need to drift electrons,

the drift field only needs to be maintained over the active region, and fields of 4.5 kV/cm are
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Figure 4.5: ]
Spec-amp spectrum at 1 kV/cm with and without the 57Co source. The higher peak is from the
210Po alpha source inside the detector.

achieved. There is no lower bound to the drift field — the light signal increases as field decreases.

The systematic errors in the drift field assosciated with large field changes across electrodes are

eliminated by keeping all fields proportional to the drift field (again, this is possible because there

are no requirements on the fields outside the active region). There is also no need for position

reconstruction in this setup, since the 57Co gammas are collimated in x-y, cannot interact to produce

visible S1 light until they are above the cathode, and have attenuation lengths in liquid of 3.0 and

3.9 mm for the 122 keV and 136 keV lines, respectively, so that events are concentrated at the

bottom center of the active region. This is in fact the only setup in which we can reliably measure

light yield at zero drift field. In the 2 PMT setup there is no way to reject events below the cathode

at zero field, and these events have significantly higher light collection efficiency in the bottom PMT,

skewing the light yield measurement.

Plotting the light versus charge at fields where both are available, the data falls on a line as

expected from equation (4.9). The independent measurement of g2 lets us extract W from the

(unscaled) x-intercept of the linear fit in Fig. 4.4. This is complicated by the fact that the 57Co
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Figure 4.6: The average preamp trace for 57Co events at 1 kV/cm. The height of the step is equal
to xnee

Cf
, where Cf = 1.15± 0.01pF is the feedback capacitance of the preamp, and x = 0.874 is the

measured drawdown when connecting the spec-amp (which does not have a high-impedance input).

source emits gammas at both 122 and 136 keV, which cannot be distinguished with the relatively poor

resolution we see in this mode. At the source, 11% of the gammas are 136 keV, giving a calculated

13% 136 keV piece in the active volume due to the greater penetration of the higher energy gamma

through the aluminum, stainless steel, liquid xenon, PTFE, and copper between the source and the

active volume. Using a mean event energy of 123.92± 0.03 keV, we find W = 13.7 ± 0.3 eV, where

the error in W comes primarily from the statistical error in the linear fit. This agrees well with the

13.8±0.9 eV reported by T. Doke et al. for Wph,max, the maximum light yield seen from relativistic

heavy ions in liquid xenon at zero field [68]. Doke interprets this maximum as corresponding to full

recombination and zero bi-excitonic quenching, corresponding to our Wph = W/b.

4.2.3 Single-phase, Simultaneous Charge and Light

The single-phase simultaneous charge/light data can push to lower field by using S1 values to select

57Co events, thereby improving the signal-to-noise in the charge channel. The actual fields achieved
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at low field settings are unknown because geometric tolerances lead to uncertainties in how much of

the high field above the ‘gate’ grid bleeds through to the active region. This configuration also seems

to suffer from charge build up on insulating surfaces, evidenced by a hysteresis in the drift field. To

reach low fields, the nominal drift field is varied until the charge signal disappears, indicating that

the active region field is reversed.

Due to DAQ limitations at the time of taking this data, the unshaped preamp output was not

digitized in this mode. Instead, the charge signal is determined for each event from the amplitude

of the shaped signal from the spectroscopy amplifier. We use a template fit to give an unbiased

estimate Q of the signal amplitude,

Q =

∑

(SiTi)
∑

(T 2
i )

· max (Ti) , (4.28)

where the waveform Si is the digitized amplifier output, and Ti is the template waveform constructed

from the average 57Co signal. The template is the same for each drift field, but it is translated in

time to match the mean 57Co peak time. The digitizers for both the light signal and charge signal

are triggered from the PMT (S1), so the timing of the charge signal depends on the electron drift

velocity in the active region. The fields above the active region are kept fixed, so that the electron

velocity in regions visible to the readout (top) grid are independent of the applied drift field.

The challenge at low fields is to distinguish 57Co events (with small charge signals) from events

occurring in the liquid below the cathode (which give zero charge signal, since the electrons drift

the wrong direction). To accomplish this, we take advantage of the dual-channel data by finding

the 57Co peak in 2-D, as in Fig. 4.7. We fit to a 2-D Gaussian in Q and S1 (taken as the integral

of the PMT signal) plus a fixed background of events with zero charge signal and a variable flat

background in the S1–Q plane. The zero-charge background from events below the cathode is the

product of the noise peak in Q and the spectrum in S1 of these events. We characterize the Q noise

peak by looking at 122 keV events below the cathode, which are guaranteed to have zero charge

signal. These comprise over half of the total triggers and are always well separated from the active

region 57Co peak due to the high (reverse) field below the cathode — at low fields, active region

events have a higher light yield than events below the cathode, while at high fields they are separated

by the charge signal. The noise peak was observed to follow a logistic distribution,

P (x) =
d

dx

1

1 + e−(x−µ)/s
, (4.29)
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Figure 4.7: Single phase, simultaneous charge and light measurements of the 122 keV (and 136 keV)
57Co peak. The left plot shows data at the highest field reached in this mode, while the right
shows the lowest field with non-zero charge signal. The fit drift field is determined by matching
the light yield (scaled by the intercept of the linear fit in Fig. 4.4) to the yield-vs-field found in
Section 4.2.5. The charge and light yields in the right plot are consistent with what is observed
at zero-field. Lowering the nominal field further results in zero charge signal and lower light yield,
indicating a rising reverse drift field in the active region. The ellipses show the 2-D Gaussian fits
to the peak. The ellipse is defined by (x − µ)

⊤ · Σ−1 · (x − µ) = 1, where µ is the mean and Σ is
the covariance matrix. (This is equivalent to drawing points at x = µ ± σ in a 1-D distribution.)
The vertical black-and-white dashed lines show the slice used to determine the charge noise profile,
and the black-and-white box indicates the region used to find the zero-charge S1 spectrum. Noise
profiles and S1 spectra are shown in Fig. 4.8. The diagonal dashed line is the linear fit to peak
positions at different fields, as in Fig. 4.4. Histogram bins are 292 [nγ ] by 391 [ne]. Calibration to
ne and nγ is done from the intercepts of the linear fit, using the W found in the previous section
and an estimated average energy of 124 keV.

as shown in Fig. 4.8. The S1 spectrum of zero-charge events is found by taking a slice in Q from

1 to 3σ below the noise peak (where σ = π√
3
s is the square root of the variance of the logistic

distribution). We fit the spectrum to a polynomial, and take the product with the noise peak to

fix the 2-D zero-charge background. An additional variable flat background is included in the 2-D

Gaussian fit to allow for background events in the active region. Both 1-D and 2-D fits are done using

maximum-likelihood histogram fits, described in Appendix B. The 2-D fit extends to the estimated

half-max of the Gaussian distribution, which in 2-D includes half of the events in the peak.

This data lacks an independent calibration of g2, and given the large systematic uncertainty in

the drift field, cannot be anchored to the previous data set except by matching the charge intercept

of the linear fit in Fig. 4.4. We therefore gain no information on the W-value or field dependence of

the charge and light yield. This data does confirm that the exact anti-correlation between the charge

and light signals holds all the way to zero field, and it gives a measurement of the near-zero-field
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Figure 4.8: Charge (above) and light (below) background profiles for single-phase dual-channel data.
The left two plots correspond to the high-field data in Fig. 4.7, and the right two to the low-field
data in the same figure. The upper plots show the charge noise peak (blue histogram) and the fit
logistic distribution (red curve). The solid part of the curve indicates the region used in the fit.
The σ’s reported for both curves are the square root of the variance of the distribution. The lower
plots show a polynomial fit to the S1 spectrum associated with the zero-charge background. The
product of these two backgrounds gives the fixed 2-D background of zero-charge events used for the
2-D Gaussian fit in Fig. 4.7.

charge yield.

4.2.4 Dual-phase, Simultaneous Charge and Light

Dual-phase data also benefits from simultaneous charge/light measurements, as well as higher reso-

lution and lower noise for the charge signal (the noise in the proportional light signal is < 1 extracted

electron, compared to ∼580 and ∼810 electrons in our single- and dual-channel single-phase setups

— resolution is discussed in Section 4.3). There is potential in dual phase for systematic variation

in g2 with drift field since the production of proportional scintillation is sensitive to the electric field
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in the gas [51], but if present this would result in a non-linear light-vs-charge plot. Dual-phase data

in Xed can reach drift fields up to 4.4 kV/cm since electrons are collected on the ‘anode’ rather than

the ‘top’, reducing high voltage requirements.

In dual-phase, it is possible to resolve the 122 and 136 keV 57Co peaks, as seen in Fig. 4.9. To fit

the peaks, we first estimate g1 and g2 by fitting Gaussians to the S1 and S2 distributions. It is not

possible to distinguish the two peaks in either signal alone, so we take a mean energy of 124.25 keV

and fix g1 by matching the light-yield versus field at high fields (>2 kV/cm) to that seen in the

single-phase light-only measurements. We then find g2 at each field by requiring W (g1S1 + g2S2) =

124.25 keV. From these initial estimates, we construct the recombination independent energy scale,

in which the two peaks are distinguishable. Making a cut around the 122 keV peak in the combined

energy, we repeat the process (now with a peak of known energy). These estimates are then used to

create the axes in Fig. 4.9.

With these calibrated axes, we fit the 122 and 136 keV peaks to two 2-D Gaussians in the

recombination independent energy E and log( ne

nγ
). We require the two peaks to have the same

covariance matrix, and also fix the ratio of the mean energies of the distributions to 136/122. This

leaves eight free parameters in the fit: amplitude, mean, and covariance matrix for the 122 keV peak

plus the amplitude and mean log( ne

nγ
) of the 136 keV peak. The background of photo-absorption

and Compton scatter events is difficult to determine (especially complicated because of the higher

charge yield for Compton scatter events) and is not included in the fit. To avoid background, the fit

covers only the center 40% (1σ) of the 122 keV peak and 15% of the 136 keV peak, chosen so that

the signal is well above background. The dual-phase points in Fig. 4.4 are found by taking the means

of the two peaks in raw S1 and S2 and weighting them by the 87%:13% 122:136 keV ratio seen in

the single-phase separate charge-light data. Based on the above calibration, or equivalently, on the

scatter about the fit line in Fig. 4.4, we calculate a ∼1% rms variation in g2 that is uncorrelated

with the drift field.

The dual-phase data has much smaller error bars and a wider field range than either single

phase dataset, and we can take advantage of this to reduce the statistical error on the W-value

measurement. The W-value is given by the x-intercept of the linear fits in Fig. 4.4 and by g2. We

only have an absolute calibration of g2 in the single-phase charge-only data, but we can use that

to fix the mean g2 in the dual-phase data by requiring that the charge yield versus field agree at

high fields (above 2 kV/cm, where the field dependence of the charge yield and uncertainty in the

applied field are small). We can then use the much tighter linear fit from the dual-phase data to

determine W . This gives a value 0.5% higher than the previous W-value, and significantly reduces
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Figure 4.9: Dual-phase 57Co data at 1.23 kV/cm, showing the 122 and 136 keV peaks. The ellipses

around the peaks are the 2-D Gaussian fit to the peaks, where the ellipses are defined by (x − µ)
⊤ ·

Σ−1 · (x − µ) = 1. The lines inside the ellipse show the decomposition into S1 (upper-left to
lower-right), S2 (lower-left to upper-right), and recombination (vertical) fluctuations, with each
line extending to ±1σ for its respective fluctuation. Histogram bin sizes are 0.8 keVee by 0.0187
[

log10

(

ne

nγ

)]

.

the statistical uncertainty. Our final W-value is W = 13.7 ± 0.2 eV, where the uncertainty is now

dominated by the uncertainty in the preamp calibration.

4.2.5 Recombination versus Field

To calibrate other detectors, it it necessary only to have a peak with known energy and y. To this

end we find y versus drift field for the 57Co source, so that to calibrate another detector we need

only know the drift field and see the 57Co peaks. We use the single phase light-yield-only data for

this, inferring y from S1 using the linear fit in Fig. 4.4. (As we did for the W-value, we use the

dual-phase data for the linear fit, anchoring this to the single-phase light-only data by matching

light yields at fields above 2 kV/cm.) This allows us to measure y at low fields both by removing the

uncertainty in drift field assosciated with the bleed-through of the high fields above the gate and by
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Figure 4.10: Above: Normalized charge yield for 57Co gammas (87.0% 122.1 keV, 13.0% 136.5 keV).
210Po alphas (5.3 MeV) and 56.5 keV nuclear recoils are also shown. The line through the 57Co
points is a spline interpolation used for calibration at other fields. Below: The same, but scaled
relative to charge yield at 4.5 kV/cm for each recoil, showing the contrasting field dependence of the
three recoil types. Errorbars for gamma and alpha data are too small to plot; errorbars for nuclear
recoils are the size of plot points in the lower figure.

using the channel (S1) with higher signal to noise. It also allows us to measure the zero field charge

yield, i.e., the charge that fails to recombine in the absence of an applied field. The resulting yields

are shown in Fig. 4.10, along with yields for the 120Po alpha source and 56.5 keV nuclear recoils.

The nuclear recoil yields include data from the nuclear recoil bands in Chapter 5 taking the Leff

given by Sorensen [79], and from Aprile [77] for the zero-field point.

Figure 4.10 demonstrates the two basic trends expected for recombination in liquid xenon. First,

recombination decreases as the applied field is strengthened, and second, tracks with higher ionization

density experience greater recombination. Along any piece of a track, the ionization density is

determined by the electronic stopping power, or the amount of energy lost to atomic electrons
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Figure 4.11: Electronic stopping power for electrons [86], alphas [87], and nuclear recoils [88, 37] in
liquid xenon. The dots correspond to the starting energies of the recoils shown in Fig. 4.10. Higher
electronic stopping power corresponds to higher ionization density, and, in most situations, greater
recombination. (Exceptions to this trend are discussed in Chapters 5 and 6.)

per distance traveled. Figure 4.11 shows the stopping power versus energy for electrons, alpha

particles, and xenon nuclei in liquid xenon, with the dots on each curve indicating the recoil energies

shown in Fig. 4.10. When taking the SRIM data for nuclear recoils, the highest stopping power

corresponds to the lowest charge yield (alphas), and the lowest stopping power corresponds to the

highest charge yield (electrons). It is worth noting, however, that while the charge yield for alphas

and electrons shows a strong dependence on drift field, nuclear recoils, which have an absolute

charge yield between that of alphas and electrons, show almost no field dependence. This is the first

indication that recombination in small tracks is qualitatively different than in large tracks, a theme

that will reappear in Chapters 5 and 6.

59



−10 0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

integral (mV−ns)

h
e

ig
h

t 
(m

V
)

 

 

lo
g

1
0
(c

o
u

n
ts

)

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.12: Single photo-electrons and noise triggers in the bottom PMT of Xed, during dual-phase
operation. PMT bias is 875 V. The dashed lines show the cut around the single photo-electron peak
used for the fit in Fig. 4.13.

4.2.6 Absolute Light Calibration

Once W is known, we can use the intercepts of the linear fit to determine g1 for dual-phase data.

Light collection efficiency for S1 is commonly quoted in photo-electrons (phe) per keV at 122 keV

at zero field (3.9 phe per keV in dual-phase in Xed), but in finding g1 we calculate the efficiency

in absolute units, phe per [nγ ]. The single photo-electron signal is typically found using a pulsed

LED, tuned so that ∼90% of the pulses give no signal. (By Poisson statistics, this ensures that

95% of the pulses that do give signal give only single photo-electrons.) There is no LED in Xed,

so to see single photo-electron signals we reduce the trigger threshold until most triggers are due to

electronics noise. We do this while at liquid xenon temperatures, where thermal emission of electrons

from the photo-cathode and dynodes should be rare, so the light pulses we see are most likely S1s

from background radiation interacting with xenon outside the active region.

A 2-D plot of pulse height versus integral shows a clear band for real PMT signals (see Fig. 4.12).
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Figure 4.13: The single photo-electron spectrum in the bottom PMT of Xed, during dual-phase
operation. PMT bias is 875 V, with the signal going into a 25Ω impedance (50Ω terminations at
the PMT and amplifier), followed by a x5 voltage amplifier. The spectrum is fit to a log-normal
distribution over an exponential tail of noise, and the mean corresponds to a PMT gain of 7.27×105.
The spectral shape is not well understood — the noise peak in the charge signal in single phase also
has exponential tails. A log-normal photo-electron spectrum would be expected for uncorrelated
fluctuations in the average gain at each dynode, but these are usually sub-dominant to the Poisson
statistics for electrons coming off the first dynode. The mean and variance of the fit log-normal
distribution match the statistical fluctuations in S1 measured in Section 4.3, and the mean is also
consistent with extrapolations from photo-electron spectra at higher bias, where the peak is clearly
separated from noise.

Cutting around the band and plotting the integral spectrum, we see an exponential tail of noise

triggers plus a log-normal distribution for the single photo-electron peak (Fig. 4.13). The log-

normal distribution is not expected, and the tail at high signal may be due to multiple photo-electron

pulses. Taking the mean and variance of the log-normal fit, however, gives good agreement with the

statistical S1 fluctuations seen in section 4.3, and the mean is also consistent with extrapolations

from higher bias, where the single photo-electron peak is well separated from noise. From the fit

mean, we find g1 = 0.060 ± 0.001 phe per nγ . Dividing out the reported 23% quantum efficiency
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of the bottom PMT and the estimated 70% collection efficiency for the first dynode, we see 37% of

recombined ions result in a scintillation photon striking the bottom PMT photo-cathode. Given the

large uncertainty in the reflectivity of the PTFE walls of the chamber, this is consistent with b = 1.

Finally, we note that if bi-excitonic quenching is present and affects excitons created via recom-

bination, then one would see b < 1. This would be evident in plot like Fig. 4.4 as a lower slope for

the quenched recoil. This may be a method to test the bi-excitonic quenching hypothesis in nuclear

recoils, but it faces two problems. First, as seen in Fig. 4.10, recombination in nuclear recoils is

nearly field independent, so it will be difficult to get the spread in y necessary for a good linear fit.

Second, the excitons that you gain and lose when shifting field are likely from the edges of the track,

while bi-excitonic quenching is expected at the core. Thus, while a slope change between electron

and nuclear recoils would be a strong indication of bi-excitonic quenching, it is difficult to rule out

bi-excitonic quenching by the absence of the effect.

4.3 Measuring Recombination Fluctuations

As has been noted by several authors [65, 89, 66], recombination fluctuations are the dominant

factor in resolution in single channel liquid xenon detectors. These fluctuations produce the same

charge-to-light anti-correlation as drift field variations, and the calibrated sum of the light and charge

signals in Eq. (4.9) is insensitive to recombination fluctuations. Because of this, the sum energy scale

gives much higher energy resolution than can be obtained in a single-channel detector.

Under the assumption that all other fluctuations are uncorrelated in the charge and light signals,

it is possible to extract the strength of recombination fluctuations at a peak from this improvement

in resolution, or equivalently, from the 2-D charge/light distribution. This assumption holds except

for fluctuations in initial ion production, which are suppressed by a theoretical Fano factor of 0.05

[71] and thus subdominant, and for position-dependent effects, which are easily corrected in a 3-D

position reconstructing detector. Xed has no x-y position reconstruction, but the 57Co gammas are

collimated so that they populate only the center axis of the detector.

The simplest analysis of fluctuations is to find the Gaussian widths of the 57Co 122 keV peak in

the measured values of ne, nγ , and E, which are given by

σ2
nγ

= σ2
R + σ2

S1, (4.30)

σ2
ne

= σ2
R + σ2

S2, and (4.31)

σ2
E = W 2

(

σ2
S1 + σ2

S2

)

, (4.32)
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where σ2
S1, σ2

S2, and σ2
R are the variances in units of quanta measured ([nγ ]2 and [ne]

2) due to

uncorrelated S1 and S2 fluctuations and recombination fluctuations, respectively. These relations

may be found by the same technique used below for Σ, but they should be fairly obvious — nγ is

sensitive to recombination and S1 fluctuations, which add in quadrature since they are independent,

and similarly for ne. The energy E is unaffected by recombination, but responds to both S1 and S2

fluctuations. It follows that

σ2
R =

1

2

(

σ2
nγ

+ σ2
ne

− σ2
E

W 2

)

. (4.33)

This method is complicated by the nearby 136 keV peak, so we shift to 2-D, where the two peaks

are distinct. We consider a two-dimensional distribution of points resulting from three different types

of fluctuations, each with a known direction but unknown magnitude: S1 fluctuations move points

along lines of constant S2 and vice versa, while recombination fluctuations move points along a line

of constant energy (see Fig. 4.9). A 2-D Gaussian has a width described by three parameters, which

we can relate to the magnitudes of these three fluctuations. The general multi-variable Gaussian

distribution is given by

P (x) =

√

1

|2πΣ|e
− 1

2 (x−µ)†·Σ−1·(x−µ), (4.34)

where µ is the mean of the distribution and Σ is the covariance matrix,

Σij = 〈(xi − µi) (xj − µj)〉 . (4.35)

We approximate the peak as a 2-D Gaussian in the recombination-independent energy E and

log ( ne

nγ
), taking the fits from Section 4.2.4. The latter variable is the discrimination parameter

used by Xenon10 (up to a constant), and has been seen to follow a Gaussian distribution for elec-

tron recoils [31] (see Chapter 7). Considering small fluctuations δS1, δS2, and δR, the corresponding

shifts in E and log ( ne

nγ
) are

δE = W (δS1 + δS2) , (4.36)

and

δln ( ne
nγ

) =
δS2 − δR

ne
− δS1 + δR

nγ
, (4.37)

where we have used δnγ
= δS1 + δR and δne

= δS2 − δR. The covariance matrix for the distribution

is then given by

ΣE,E =
〈

δ2
E

〉

= W 2
(

σ2
S2 + σ2

S1

)

, (4.38)
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ΣE,ln ( ne
nγ

) =
〈

δEδln ( ne
nγ

)

〉

= W

(

σ2
S2

ne
− σ2

S1

nγ

)

, and (4.39)

Σln ( ne
nγ

),ln ( ne
nγ

) =
〈

δ2
ln ( ne

nγ
)

〉

=
σ2

S2

n2
e

+
σ2

S1

n2
γ

+

(

1

ne
+

1

nγ

)2

σ2
R, (4.40)

where we have used
〈

δ2
X

〉

= σ2
X and 〈δXδY 〉 = 0 for X, Y = R, S1, S2 (X 6= Y ). Figure 4.9 shows a

sample fit of the 122 and 136 keV peaks and their decomposition into constituent fluctuations.

Figure 4.14 shows the breakdown of fluctuations for the dual phase 57Co data, scanning over

drift field as in Fig. 4.4. The recombination fluctuations are peaked around 50% recombination

(y ≈ 0.47) as would be expected for a binomial process, but the variance is 100–150 times larger

than from binomial statistics. The peak being near 50% indicates that these fluctuations are due

not to variations in field (which we expect would be peaked at low y, where field dependence

is strong), but rather to random fluctuations in the recombination process. These fluctuations

are assosciated with variations in track structure, as explored in Chapter 6. The uncorrelated S1

and S2 fluctuations may be divided into statistical and ‘instrumental’ fluctuations based on their

scaling with signal size. Statistical fluctuations are proportional to the square root of the signal

size and include binomial fluctuations for S1 light collection
(

σ2 = (1−g)gn
g2

)

, Poisson fluctuations

for S2 light production
(

σ2 = gn
g2

)

, and the variation in photo-electron response for both S1 and S2
(

σ2 =
gnσ2

phe

g2

)

, where for each of these n is the number of quanta creating the signal, gn is average

number of photo-electrons created, and σ2 is measured variance in units of [n]2. Combining these

gives

σ2
S1,stat =

1 − g1 + σ2
phe

g1
nγ , and (4.41)

σ2
S2,stat =

1 + σ2
phe

g2
ne, (4.42)

where g1 and g2 are in phe per quanta and σ2
phe is the variance of the single photo-electron distribution

in phe2. As noted in Section 4.2.6, we find g1 = 0.060 phe per [nγ ], and the single photo-electron

distribution is log-normal with a variance σ2
phe = 0.19. Typical values for g2 are 13–15 phe per [ne].

The remaining ‘instrumental’ fluctuations are event by event variations in g1 and g2, and thus

proportional to signal size.

Figure 4.14 also shows fits for instrumental plus statistical fluctuations in S1 and instrumental

fluctuations in S2 (statistical fluctuations in S2 are negligible). The fit statistical piece for S1

fluctuations is 4.48 ± 0.15
√

nγ , consistent with the expected 4.34
√

nγ from Eq. (4.41). The fit

instrumental fluctuations in S1 and S2 are 0.0315nγ and 0.0395ne, respectively. The dominant
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a = b = 1 and takes the theoretical value Nex

Ni
= 0.06.

instrumental fluctuations in S2 come from ripples on the liquid surface, which can affect both the

amount of S2 light produced per electron and the efficiency with which electrons are extracted

into the gas phase. Improved S2 resolution has been achieved by slowly warming the detector

from the top, which raises the gas pressure above the vapor pressure of liquid and halts bubble

formation, visibly calming the liquid surface. Instrumental fluctuations in S1 may also be related to

the liquid surface, or may be residual position dependence in light collection efficiency. Instrumental

fluctuations in both channels increase significantly for a non-collimated source, due to uncorrected

x-y position dependence.
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4.4 Conclusions on Recombination and Calibration

We have demonstrated that the 122 keV 57Co peak follows an exact anti-correlation between the

charge and light signals, as expected from the recombination model for signal production. This

anti-correlation has been verified in both single- and dual-phase detectors, from zero drift field to

4.4 kV/cm. The resulting linear fit, along with the absolute calibration of the charge signal in

single-phase, gives the W-value W = 13.7± 0.2 eV, where the uncertainty is due to the uncertainty

in the preamp calibration. The anti-correlation also lets us translate the absolute charge calibration

to an absolute light calibration, and we find that 6.01 ± .10% of recombined ions result in a S1

photo-electron in the bottom PMT of Xed. Dividing out the PMT efficiency and assuming 100%

efficiency for scintillation production from recombining ions, this corresponds to a 37% light collection

efficiency.

The same anti-correlation seen when varying the drift field is present in recombination fluc-

tuations. We have decomposed the measured fluctuations in the 57Co peak into recombination

fluctuations and uncorrelated charge and light fluctuations based on the known orientation of each

fluctuation type. The resulting recombination fluctuations are peaked at 50% recombination, as for

a binomial distribution, but the variance is 100–150 times that from binomial statistics. We have

divided the uncorrelated charge and light fluctuations into instrumental and statistical fluctuations,

where the former scale with signal size and the latter with the square root of signal size. We find

that fluctuations in the light signal have an instrumental piece of 3.12±0.46% and a statistical piece

consistent with that predicted by the above light yield and the measured photo-electron spectrum.

Statistical fluctuations in the charge signal are negligible, also as expected, while instrumental charge

fluctuations are found to be 3.95 ± 0.06%.

We now have a reference for absolute calibration of any detector with known drift field, as well as

a consistent picture for fluctuations in the detector. We are ready to extend this picture to WIMP

recoil energies.
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Chapter 5

Recombination and Discrimination

We now extend the recombination picture to the WIMP region of interest. Our goal is to measure the

discrimination power between electron and nuclear recoils at WIMP energies based on the different

recombination fractions of the two event types, and to understand this discrimination in terms of

fundamental fluctuations as we did the resolution of the 57Co peak in the last chapter. Ultimately,

we want to determine the recombination distribution as a function of energy and drift field for both

recoil types.

With Xed in dual-phase mode, we study low energy Compton scatters from 356 keV 133Ba gam-

mas and elastic scatters from 252Cf neutrons for electron and nuclear recoils, respectively, looking

at drift fields of 60, 522, 876, 1951, and 4060 V/cm. After determining the statistical and instru-

mental fluctuations in the detector, we extract the intrinsic recombination fluctuations from the

residual widths of the electron and nuclear recoil bands. We then predict the discrimination power

of other real and envisioned xenon TPCs by adding back the appropriate statistical and instrumental

fluctuations.

We note that this work began alongside the construction of the Xenon10 experiment — in fact,

when the XENON collaboration was formed, there was neither a physical model nor data supporting

any discrimination between electron and nuclear recoils at WIMP energies, aside from the known

electronic stopping powers of the two recoil types and the observed trend that, as electronic stopping

power increases, so does the recombination fraction. These measurements were the first to verify

discrimination between electron and nuclear recoils at WIMP energies, and indeed it turns out

that recombination at low energies behaves very differently than expected. Although our original

motivation to look for low energy discrimination was incorrect (as we will see in Chapter 6), we
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demonstrate that 99.9% discrimination can be achieved in these detectors below 12 keVr.

5.1 Calibration of Gamma and Neutron Data

To study the fundamental processes determining disrimination, there are two calibration tasks to

perform at each drift field setting. We need to find gains in the light and charge signals (g1 and g2

in the notation from the previous chapter), and we need to determine the instrumental fluctuations

in the light and charge signals for events uniformly distributed in the active region (which may

be significantly larger than those found for the collimated 57Co events). The first calibration we

accomplish using the 57Co peaks measured in Chapter 4, and we use the 40 keV inelastic nuclear

recoil peak present in the neutron data to determine instrumental fluctuations (see Fig. 5.1).

5.1.1 Determining Calibration Constants

In the last chapter we found the charge and light yields for the 122 and 136 keV 57Co photo-

absorption peaks versus drift field, so that this source could serve as a calibration reference in any

detector with a known applied field. Because of the relatively short active region in Xed and the

large field changes across wire grids, there are large uncertainties on the actual drift fields achieved.

We thus have three unknowns at each field setting: the actual drift field, g1, and g2.

We have several handles on the calibration problem. We know the nominal drift field at each

setting, and at high fields, where field dependence is weak and error in uncertainty in the field

setting is low, this gives an acceptably good estimate of the charge and light yields. We also know

the g1 and g2 found for dual-phase data in Chapter 4, and we have an expectation that g1, which

depends only on PMT gain, PMT efficiency, and S1 light collection efficiency, be stable and field

independent. In addition, we have the field independent relation

S1

g1
+

S2

g2
=

E

W
, (5.1)

with W = 13.7± 0.2 eV found in the previous chapter. This applies to the 122 and 136 keV peaks,

and also to the 40 keV inelastic scatter (although the exact energy of this peak is uncertain, due to

the unknown nuclear recoil part of the interaction).

We find the most consistent picture for both 40 and 122 keV peaks when we keep g1 fixed across

datasets, setting its value by matching the light yield expected at 122 keV at the nominal drift field

for the two highest field datasets. This gives g1 = 6.02 ± 0.03 10−2phe/[nγ ], which agrees with the
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g1 found for dual-phase data in Chapter 4. Fixing g1, we use the 122 keV peak to determine g2 and

the drift field from Eq. (5.1) and the data in Chapter 4, with results shown in Table 5.1.

We found that it was also necessary to allow g2 to vary between datasets at the same applied

field. Each dataset (57Co, 133Ba, and 252Cf) contains low energy Compton scatters and high energy

electron recoils (a mix of Compton scatters and photo-absorptions), and we shift g2 for the 133Ba

and 252Cf data such that the charge yield versus energy for these events is the same as in the 57Co

data (see Fig. 5.2). The low-energy comparison is limited to 14–30 keVee — below 14 keVee the

elastic nuclear recoil band overlaps with the Compton band in the 252Cf data, and above 30 keV the

Compton band runs into the inelastic nuclear recoil peak. We also compare above the 57Co peaks,

from 160–200 keVee. We have much higher stats at these energies, but we also have an unknown mix

of Compton scatter and photo-absorption events, which may be different for the different sources.

Since photo-absorption events have a lower average charge yield than Compton scatters (discussed

below), there is potential for a systematic offset between sources. We find, however, that matching

the bands at low energies gives near agreement at high energies as well.

At 522, 876, and 1951 V/cm a ∼5% decrease in g2 is observed between the 57Co dataset and the

133Ba and 252Cf datasets. No significant change in g2 is seen between the 133Ba and 252Cf datasets

at any field except at 60 V/cm, which is the only field where the electron and nuclear recoil datasets

were not taken consecutively. At 4090 V/cm the 57Co and 252Cf sources were used simultaneously,

so there is no shift in g2 between any datasets at that field. The shift in g2 at the three middle

fields is probably related to the total event rate — our trigger rate is ∼100 Hz for the 133Ba and

252Cf sources, and ∼25 Hz for the 57Co source. The g2 values for each dataset and the nominal

and calibrated drift fields are shown in Table 5.1, along with limits on the shift in log10(
g2

g1
) (after

corrections) between the 133Ba and 252Cf datasets based on Compton scatter events.

The calibrated neutron and gamma data at each field is shown in Figs. 5.1, 5.3, and 5.4.

5.1.2 Determining Bulk Instrumental Fluctuations

In Chapter 4 we found the instrumental fluctuations in the 122 keV peak, but these events were

concentrated in the bottom-center of the active region. To measure the instrumental fluctuations

present in the electron and nuclear recoil bands we need a peak that is uniform in the active volume.

Photo-absorption lines like those from 57Co gammas are unsuitable for this. Above 300 keV the

Compton scattering cross section is greater than that for photo-absorption, and the photo-peak is

washed out by forward scattering of incoming gammas and high energy Compton scattering inside
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Figure 5.1: Calibrated Xed data at 876 V/cm with all three sources. The top two plots show 133Ba
gamma data at low and high energy, the lower-left shows 252Cf elastic and inelastic neutron scatters
(plus gammas), and the lower-right shows the 122Co calibration source with the 122 and 136 keV
photo-absorption peaks. The electron and nuclear recoil band centroids are also shown. The gray-
masked region at the left edge of each plot shows our threshold. At high charge yield this is an
S1 threshold corresponding to half a photo-electron, set by the PMT noise peak. At low charge
yield this is an S2 threshold of 10 extracted electrons, set by our hardware trigger. An upper S1
threshold can be seen in the high-energy gamma plot, cutting out the lower-right corner of the plot.

Bin sizes are 0.6 keVee by 0.03
[

log10

(

ne

nγ

)]

on the left, with 1.6 keVee bins on the right. Multiply

by the x-axis values by 4 for nuclear recoil energies (keVr). Fits to the 40 keV inelastic and 122 keV
photo-absorption peaks are shown as ellipses at 1σ, with crosses indicating the decomposition of
the fit width into uncorrelated fluctuations as in Chapter 4. The additional horizontal piece of the
cross in the 40 keV peak is the smearing due to the variable nuclear recoil. The magnitude of this
smearing is unknown — we show it as 1.3 keVee (5.2 keVr), half of the maximum allowed by the
observed width and known statistical fluctuations. Both the 40 and 122 keV peaks lie below the
electron recoil centroid. The individual recoils making up these peaks are shown as dots on their
corresponding centroids, and the dot at the full energy is the sum of the constituent recoils. For the
40 keV inelastic peak, this reconstructed charge yield is significantly higher than the observed yield
because many of the constituent recoils arise from the same atom, giving them a lower charge yield
than the lone Compton scatters. For the 122 keV peak, the charge yield for the low-energy recoils
is similarly overestimated, while the charge yield of the 87 keV photo-electron is underestimated
due to photo-absorption events skewing the electron recoil centroid, conspiring to give an accurate
reconstruction. Both reconstructions are handled correctly in Chapter 6.
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Figure 5.2: Calibrated Xed data at 876 V/cm with each source. The histograms show the charge
yield (with the electron recoil centroid subtracted) for each source in energy windows of 14–30 keVee
(left) and 160–200 keVee (right), with a Gaussian fit about each peak. We have calibrated g1 and g2

for the 57Co dataset using the 122 keV photo-absorption peak, and shifted g2 for the other sources
so that the electron recoil bands align at low energy. Calibration values are given in Table 5.1.

Table 5.1: Calibration values for dual-phase data. Errors in the table are statistical only, based on
the 57Co fit and fits to low energy Compton scatters. Errors do not include the uncertainty in the
W-value or single photo-electron signal, although these are included later in the systematic error
analysis. The final column is the 1σ uncertainty on the shift in log10(

g2

g1
) between the 133Ba and

252Cf datasets, based on low energy Compton scatters and high energy electron recoils (Compton
scatters and photo-absorptions).

Drift Field (V/cm) g1(phe/[nγ ]) g2(phe/[ne]) δ log10(
g2

g1
)

Nominal Calibrated 57Co, 133Ba, 252Cf 57Co 133Ba 252Cf 133Ba ↔ 252Cf

4000 4060 ± 190 · · · 13.51(3) · · · 0.003

2000 1951 ± 86
... 13.70(4) 13.43(14) 0.003

1000 876 ± 36 6.02(3) 10−2 14.57(7) 14.00(15) 0.002

500 522 ± 23
... 14.20(6) 13.50(15) 0.004

100 60 ± 5 17.26(25) 15.13(27) 15.78(26) 0.004

the detector. Lower energy gammas have interaction lengths at or below the dimensions of even

our small active region, giving a non-uniform spatial distribution. The neutron interaction length

is ∼15 cm, much larger than our active volume, so we can use the 40 keV inelastic recoil peak (see

Fig. 5.4) as our uniform source.

The 40 keV inelastic peak includes 39.6 keV in electron recoils from the excitation of the target

nucleus. Typically this energy goes into a 5.3 keV K-shell internal conversion electron, a 29.8 keV
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Figure 5.3: Calibrated Xed data at 4060 (top-left), 1951 (top-right), 522 (bottom-left), and 60 V/cm
(bottom-right), showing the 133Ba source (Compton scatters). The electron and nuclear centroids
are drawn in, the latter taken from Fig. 5.4. The tail of low charge-yield events underneath the
electron recoil band is due to events at the edge of the detector, where charge may be lost on the
PTFE walls. This tail is removed by a fiducial cut in detectors with x-y position reconstruction.

Kα1 x-ray, and a 4.5 keV L3-XX Auger electron, as diagrammed in Fig. 5.5. The x-ray travels

∼0.4 mm before being photo-absorbed by an L-shell electron, giving a 25 keV photo-electron and

another 5 keV Auger electron. There is also a variable nuclear recoil component to the peak. The

energy spectrum of this recoil is unknown, but the measured elastic recoil spectrum from neutrons

is roughly a falling exponential with mean of ∼6.8 keVr (∼1.7 keVee) (see Fig. 5.6). This is smaller

than the observed width in E of the 40 keV peak, so an exponential shape to the peak may be

washed out by other fluctuations. Given this and the unknown shape of the underlying nuclear

recoil distribution, we simply fit the peak to a 2-D Gaussian.

We fit the 40 keV peak to a 2-D Gaussian in E and log
(

ne

nγ

)

over a fixed 2-D background of

Compton scatters and determine the instrumental fluctuations from the fit covariance matrix. The
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Figure 5.4: Calibrated Xed data at 4060 (top-left), 1951 (top-right), 522 (bottom-left), and 60 V/cm
(bottom-right), showing the 252Cf source (Compton scatters and elastic and inelastic neutron scat-
ters). The fits to the 40 keV inelastic peaks are also shown, giving the instrumental fluctuations
listed in Table 5.2. The electron and nuclear centroids are drawn in, the former taken from Fig. 5.3.
At 4060 V/cm the 57Co source is also present, and we have a lower total 252Cf exposure than at the
other fields.

profile of the fixed background in log
(

ne

nγ

)

versus E is taken from the gamma data at the same

field, and the background energy spectrum is a linear interpolation of the gamma rate above and

below the 40 keV peak in the neutron data. The fluctuation decomposition is similar to that for

the 122 keV peak from Chapter 4, where the strengths of three linear fluctuations with known

orientations in
(

E, log
(

ne

nγ

))

were determined from the three elements of the covariance matrix.

For the inelastic scattering peak, the variable nuclear recoil adds a fourth fluctuation. The direction

of this fluctuation is estimated from the elastic nuclear recoil band, taking

δ

[

ln
ne

nγ

]

=

(

ñe

n̄e
− ñγ

n̄γ

)

δ [E]

Enr
, (5.2)
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Figure 5.5: Schematic of inelastic neutron scattering (above) and photo-aborption (below) events.
Both event types typically knock a K-shell electron from the target atom (a photo-electron in the
photo-absorption case, and an internal conversion electron from nuclear de-excitation for the inelastic
recoil). This results in a Ka x-ray (29–30 keV) as the hole is filled by an electron from the L-shell,
followed by an Auger electron (4–5 keV) as the L-shell vacancy is filled. The x-ray travels a mean
distance of 0.4 mm before being photo-absorbed by an L-shell electron, which escapes with ∼25 keV
and results in another Auger electron.

where n̄γ and n̄e are the mean of the 40 keV peak, Enr = W (ñγ + ñe) is the mean nuclear recoil

energy in keVee (given by the peak energy minus 39.6 keVee), and ñγ and ñe are mean nuclear recoil

contribution to n̄γ and n̄e, estimated from the elastic nuclear recoil band at Enr .

For a given amplitude of nuclear-recoil fluctuations δ[E] we can subtract the nuclear-recoil fluc-

tuations from the fit covariance matrix and determine the magnitudes of the uncorrelated S1, S2,

and recombination fluctuations as before. Instrumental fluctuations are then found by subtracting

the known statistical fluctuations given by Eq. (4.41,4.42) from the total S1 and S2 fluctuations. We

vary δ[E] from zero to the maximum consistent with non-zero instrumental fluctuations for S1 and
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Figure 5.6: Spectra of 133Ba electron recoils (red) and 252Cf nuclear recoils (blue) in the 876 V/cm

data, after cuts (drift-time and single-scatter), and selecting events within 0.26 in log10

(

ne

nγ

)

of the

appropriate centroid (so inelastic scatters and electron recoils are not included in the nuclear recoil
spectrum). In simulations, we take the electron recoil spectrum to be constant, and the nuclear
recoil spectrum to be a falling exponential.

S2. The resulting ranges for instrumental fluctuations in S1 and S2 are shown in Table 5.2.

Table 5.2 also shows the fit energies and charge yields for the 40 keV peak. The fit energies are

consistently higher than the 41.3 keVee expected based on the elastic nuclear recoil spectrum, espe-

cially at high field, where the fluctuations in the measured E (dominated by statistical fluctuations

in S1) are largest. This may indicate a more energetic nuclear recoil piece to the spectrum than

was guessed, which would simply shift the mean when energy resolution is poor (higher field), but

would skew the fit, which tends to pick out the mode, to lower energy when energy resolution is

good (lower field), assuming the spectrum is still exponential. Without nuclear data to support such

a spectrum, however, we simply take the instrumental fluctuations as listed in Table 5.2. Because of

the way instrumental fluctuations scale with signal size, the large uncertainties become unimportant

in the WIMP region.
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Table 5.2: Fits to the 40 keV inelastic neutron scatter peak. The errors on E and log10(
ne

nγ
) are

statistical only. The ranges in S1 and S2 instrumental fluctuations are found by varying the smearing
due to the variable nuclear recoil piece of the event. It is unclear why the fit energy varies with field.
One possibility is that as statistical S1 fluctuations decrease (due to higher S1 at lower field), the
shape of the underlying spectrum (probably exponential) begins to skew the fit.

Field

(V/cm) E (keVee) log10(
ne

nγ
) S1 inst S2 inst

4060 42.8(3) 0.046(10) 1.7–9.2% 5.8–9.4%

1951 42.2(2) −0.080(5) 2.4–8.1 6.9–10.3

876 43.2(2) −0.167(5) 6.5–10.0 0.6–9.1

522 41.7(1) −0.255(4) 1.9–6.4 4.5–10.0

60 41.5(1) −0.509(4) 2.0–2.9 1.5–6.4

5.2 Characterizing Gamma and Neutron Bands

The next task is to characterize the electron and nuclear recoil bands in the 133Ba and 252Cf data.

Ideally, we should measure the profile of each band in log
(

ne

nγ

)

as a function of recoil energy E. In

fact, neither Xenon10 nor Xed alone can do this, Xenon10 because of the lack of statistics in the

electron recoil band, and Xed because in the absence of x-y information we cannot reject events at

the edge of the active region that lose charge and create a long tail at low log
(

ne

nγ

)

. Fortunately,

Xenon10 has shown that this tail is removed with a fiducial cut in a 3-D imaging detector [53],

and that the remaining distribution in log
(

ne

nγ

)

is Gaussian (see Chapter 7). We therefore study

the bands in Xed by truncating the charge-loss tail and fitting Gaussians about the peaks of the

distributions in log
(

ne

nγ

)

.

5.2.1 Centroid Estimates

The actual centroid and width of a recoil band are smooth functions of recoil energy, but faced with

a finite amount of data, we must slice the data into discrete energy bins and find the mean and width

of the band bin by bin. This gives a mean that is the average centroid value in the bin, weighted

by the energy spectrum across the bin, but it systematically inflates the width if the centroid is not

constant across the bin. Since our bin size is determined by the available statistics, we cannot escape

this problem simply by moving to small bins. Instead, we construct a smooth centroid estimate and
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shift to centroid-subtracted units

∆ log

(

ne

nγ

)

= log

(

ne

nγ

)

−
〈

log

(

ne

nγ

)〉

nγ+ne

, (5.3)

where the brackets indicate the centroid estimate as a function of energy (given by nγ + ne). With

an accurate centroid estimate, this completely removes bin-size effects from the calculation. For an

imperfect centroid, the systematic offset in the measured variance in a bin is given by

δ
[

σ2
]

= 〈δ [µ]2〉 − 〈δ [µ]〉2 =

∫ E2

E1
dE (δ [µ])

2

E2 − E1
−
(
∫ E2

E1
dEδ [µ]

E2 − E1

)2

, (5.4)

where δ [µ] is the difference between the centroid estimate and the true centroid, and E1 and E2 are

the bin edges.

Our requirement on the centroid estimate is that δ
[

σ2
]

be much smaller than the statistical

uncertainty on the variance for the bin sizes we choose. (This is trivial if we choose very small

bins, but we want to choose bins such that our statistical uncertainties are similar to the systematic

uncertainties in the calibration.) There is no unique way to fulfill this requirement. We construct

our centroid estimates by slicing the data into energy bins with ∼2,000 events per bin, fitting a

Gaussian about the peak (µ ± ∼1.5σ) in each bin, fitting a high order polynomial to the fit means

to smooth outliers, and taking a cubic spline between the polynomial fit points. This process is

repeated on the centroid-subtracted data with shifted energy bins, until a stable centroid is found,

typically after two or three iterations. At low energies, the polynomial and spline use log (E) rather

than E as the x-axis. The final centroid estimates are shown over the data in Figs. 5.1, 5.3, and 5.4,

and the centroid-subtracted data is shown in Fig. 5.7. In the next section we will show that the

δ
[

σ2
]

from this approach is indeed smaller than our statistical uncertainty.

Although the centroid estimates are primarily coordinate transforms to avoid the bin-width

issue, smooth centroids are useful in many areas, and these estimates may be used for qualitative

statements or in cases where other errors dominate. For example, the nuclear recoil centroid estimate

at 522 V/cm was used in Chapter 4 to convert between L and Leff in Figs. 4.2 and 4.3. The centroids

also reflect the mean recombination versus energy, since

log

(

ne

nγ

)

= log

(

y

1 − y

)

= log

(

1 − r
a
b

Nex

Ni
+ r

)

≈ log

(

1 − r

0.06 + r

)

. (5.5)

For electron recoils at energies above ∼10 keVee, we see that recombination decreases as the field in-
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Figure 5.7: Centroid-subtracted data at 876 V/cm. The top two plots have the electron recoil
centroid subtracted, while the bottom has the nuclear recoil centroid subtracted. Band widths are
measured after subtracting the band’s own centroid, while band separation is measured with the
electron recoil centroid subtracted from both bands.

creases and also as energy increases, as we expect based on the electronic stopping power in Fig. 4.11.

That recombination reaches a maximum (charge yield reaches a minimum) around ∼10 keVee is not

expected. The electronic stopping power continues to increase as energy decreases, all the way to

1 keVee, so this change in the slope of the centroid breaks the correlation between recombination

and stopping power. We also see that field dependence largely disappears for electron recoils at

energies below the minimum charge yield, in fact showing behavior very similar to nuclear recoils.

These features are explored in much greater detail in Chapter 6.

Continuing to look at the electron recoil centroid in Figs. 5.1 and 5.3, we see that the 40 keV

inelastic peak and the 122 keV and 136 keV photo-absorption peaks lie below the Compton scatter

band. Unlike Compton scatters, these events produce multiple electron recoils. The inelastic recoil

was described earlier — an internal conversion electron and Auger electron are produced at the
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primary site, and a photo-electron and Auger electron come from the x-ray absorption site ∼0.4 mm

away. Similarly, the 122 keV gamma is photo-absorbed by a K-shell electron, giving an 87 keV

photo-electron and 5 keV Auger electron plus the 30 keV Kα x-ray, which produces another 25 keV

photo-electron and 5 keV Auger electron as for the inelastic scatter. These events thus sample the

Compton band at energies below the total energy of the event. Since charge yield decreases with

energy, the sum charge yield is lower than for Compton events with the same total energy.

If one simply sums the charge yield from the constituent Compton recoils, however, the charge

yield is still over-estimated. This is because the upturn in charge yield below 10 keV is assosciated

with overall track size, as will be shown in Chapter 6. The 5 keV Auger electrons, however, are always

accompanied by other recoils, and as part of a larger track they experience greater recombination

than a lone 5 keV Compton scatter. This effect is borne out in the recombination model presented

in Chapter 6.

5.2.2 Band Statistics

Our desired band statistics can now be found by shifting to centroid-subtracted units as in Eq. (5.3),

choosing energy bins, and performing the Gaussian fits. We choose our energy bins such that our

statistical uncertainties are similar to the systematic errors from the calibration uncertainty. In par-

ticular, the last column in Table 5.1 gives the systematic uncertainty on the separation between the

electron and nuclear recoil bands, and at low energies we choose bin sizes such that the uncertainty

in the mean in each bin is similar to this systematic error. At higher energies we use logarithmic

binning to avoid a proliferation of data points (this costs little information, since the band statistics

do not change quickly at higher energies). We use the same energy bins at each field.

Within each bin, our Gaussian fits extend to +2.0σ and −1.6σ for electron recoils, and +1.8σ

and −1.6σ for nuclear recoils. The lower bound is set by the tail of low charge-yield events from the

edge of the detector, and upper bound for nuclear recoils is to avoid the electron recoil band (present

at a lower rate in the nuclear recoil data). We fit each band in its own delta-space to determine

its width, and also fit the nuclear recoil band with the electron recoil band centroid subtracted to

determine band separation. Band separation and widths are shown in Fig. 5.8.

The band statistics show quantitatively much of what we have already seen from the band

centroid estimates, including weak field dependence in band separation at WIMP recoil energies.

We can also use these band statistics to verify that our centroid estimates were sufficiently accurate

to avoid inflating the measured band widths. Equation (5.4) tells us the width inflation due to
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Figure 5.8: Gamma band width (bottom-left), neutron band width (bottom-right), band means
(top-left), and band separation (top-right) versus energy. Errorbars show statistical uncertainties.
On the means plot, the lower set of points corresponds to nuclear recoils. The systematic uncertainty
in band separation, given in the last column of Table 5.1, is similar to the statistical uncertainties
shown in the means at low energy.

the error in the centroid estimate — we cannot truly calculate this since we don’t know the true

centroid, but we estimate δ [µ] by taking the difference between two different centroid estimates.

For our second centroid estimate, we simply take the spline in log
(

ne

nγ

)

versus log (E) through the

means in Fig. 5.8. The resulting δ
[

σ2
]

’s are much smaller than the statistical error-bars on our

width measurements except for the lowest energy electron recoil bin, where the statistical errors and

systematic inflation are comparable (see Fig. 5.9). This is sufficient for the band width decomposition

in Section 5.3, and does not effect at all the Monte-Carlo analysis in Section 5.4.

It is tempting to calculate discrimination directly from these band widths and separations, as

was in fact done when reporting the Xenon10 result [31]. There are implicit assumptions when doing

this, the most obvious of which is that the electron recoil band remains Gaussian in the low charge-

yield tail, where Xenon10 lacks statistics and Xed is contaminated by edge events. With current
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Figure 5.9: Estimated inflation in the measured variance in Xed due to centroid uncertainty, relative
to the statistical uncertainties shown in Fig. 5.8. The solid points indicate the nuclear recoil band,
empty points the electron recoil band, with data at 4060 (blue 2), 1951 (cyan △), 876 (green ♦), 522
(magenta ▽), and 60 V/cm (red ©). The inflation in the variance is at least an order of magnitude
below the statistical uncertainty of the measurement except for the lowest energy bin for electron
recoils.

data, such an assumption is unavoidable, and we will make a similar one below. The less obvious

assumption is that the fluctuations determining discrimination do not move events in energy. This

is true for recombination fluctuations (in the Xenon10 case it is true for S2 fluctuations, since there

we use an S1 based energy scale), but for generic fluctuations, this definition of discrimination is

inadequate.

For example, a useful measure of discrimination is the fraction of electron recoils of a given energy

that fluctuate into the WIMP acceptance region. Compare this with the Xenon10 definition, which is

the ratio of the number of electron recoil events in the WIMP acceptance region to the total number

of electron recoil events observed at the same S1. As we will see, the two dominant fluctuations

(recombination and S1) both give a negative correlation between log ( ne

nγ
) and nγ , so that leakage

events are always events that have fluctuated to higher S1. By comparing leakage events to events
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at the same S1, the Xenon10 definition of discrimination inflates the number of events considered

as candidates to leak into the WIMP region (i.e., the denominator in the discrimination fraction),

giving a discrimination power two to five times higher than the more intuitive definition.

The picture becomes more complicated when one is interested in the apparent energy spectrum

of leakage events, as is the case when creating a limit using Yellin’s maximum gap method [90]. Since

different physical fluctuations move events in different directions, some fluctuations are more likely

to give low energy leakage events than others. This is pertinent, since both S1 and recombination

fluctuations are dominant in different regions of the WIMP range (as we will see). The band width is

therefore insufficient to calculate meaningful discrimination numbers — we also need to decompose

the band width into its constituent fluctuations. A Monte-Carlo including the various fluctuations

can then give an accurate background and discrimination analysis.

5.3 Analytical Band Width Decomposition

Before building the fluctuation Monte-Carlo, it is illuminating to do an approximate analytical

decomposisition of the band width. Except for recombination fluctuations, we know how each fluc-

tuation scales with signal size, and we can estimate the effect of each fluctuation of the band width.

Adding the known fluctuations in quadrature, we can determine the magnitude of recombination

fluctuations from the excess in the measured band width.

We make two approximations, first that S1 and S2 fluctuations are small compared to the cur-

vature of the band centroid, so that the shift in centroid-subtracted value ∆ ln ( ne

nγ
) assosciated with

the shifts δ [S1] and δ [S2] is

δ

[

∆ln
ne

nγ

]

=

(

δ [S2]

S2
− δ [S1]

S1

)

− (5.6)

W

(

δ [S2]

g2
+

δ [S1]

g1

)

· d

dE

〈

ln
ne

nγ

〉

E

.

The first term in the equation is the shift in ln ( ne

nγ
), while the second is the shift in the centroid

value with the changing reconstructed energy of the event. Thus, when d
dE

〈

ln
(

ne

nγ

)〉

E
is negative,

as is the case for both nuclear and electron recoils in the WIMP recoil energy range, S1 fluctuations

have a reduced impact on ∆ ln
(

ne

nγ

)

. That is, S1 fluctuations tend to shift an event along the band

without moving away from the centroid. This allows discrimination at much lower energies than

would otherwise be possible (see Fig. 5.10).

The second approximation we make is that the band width at E depends on the size of fluctuations
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Figure 5.10: Electron (left) and nuclear (right) recoil bands, with centroids subtracted in the lower
plots. The dotted lines above and below the centroid indicate the measured 1σ band width. The
dashed lines crossing the centroid are lines of constant S2. Fluctuations in S1 move events along
these lines, and each crossing line extends to ±1σ for statistical fluctuations in S1. For electron
recoils these fluctuations fall short of the measured band width except at the lowest energies. For
nuclear recoils the statistical S1 fluctuations account for almost all of the observed band width. In the
WIMP range (∼10 keVee and below) S1 fluctuations are nearly parallel to the electron and nuclear
recoil centroids before centroid subtraction and have a reduced contribution to the band width. (The
‘nearly parallel’ statement does not apply to the centroid subtracted bands since centroid subtraction
does not preserve angles, but the contribution of S1 fluctuations to the band width is the same.)

about the centroid at E. This requires that the strengths of S1 and S2 fluctuations, which shift an

event in energy, change slowly with energy. Both approximations fail at some point, the former at

the minimum electron recoil charge yield where band curvature is high, and the latter near threshold

where statistical fluctuations in S1 are increasing rapidly.

Using Eq. (4.41,4.42,5.6) and the instrumental fluctuation values in Table 5.2, we calculate the

contributions to band width of statistical and instrumental fluctuations in S1 and S2. These fluc-

tuations are shown in Fig. 5.11 for the 876 V/cm data, along with the measured band widths for

both electron and nuclear recoils. The difference between the measured width and the sum of the
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Figure 5.11: Contributions of S1 and S2 statistical and instrumental fluctuations to total band width
for electron recoils (left) and nuclear recoils (right) at 876 V/cm. From top to bottom at the left
edge, the solid bands are analytical estimates of the effects of total S1/S2 fluctuations (green), S1
statistical fluctuations (blue), S2 instrumental fluctuations (red), S2 statistical fluctuations (red),
and S1 instrumental fluctuations (blue). The widths of the bands indicate the systematic error in
determining the strength of each fluctuation. The black data points show the measured variance
with statistical uncertainties given by the error-bars. The difference between the observed width and
the sum of all other contributions (green band) gives the magnitude of recombination fluctuations.

known S1 and S2 fluctuations is inferred to be the recombination fluctuation component. We see

immediately that recombination fluctuations are the dominant factor in the electron recoil band

width down to 4 keVee, or 16 keVr. The nuclear recoil band, on the other hand, is dominated by

statistical fluctuations in S1.

This approach has one additional source of systematic error, which is apparent in the projected

contribution of S1 statistical fluctuations to the electron recoil band width. We see large oscillations

in the strength of these fluctuations between 10 and 40 keVee, stemming from the second term in

Eq. (5.6), where we take the derivative of the centroid estimate. An accurate derivative is a much

more stringent requirement on the centroid estimate than we had for band width calculations. The

fluctuations in the calculated band width indicate that either our centroid estimate is not up to

the task (i.e., the fluctuations in the derivative leading to the band width wiggles are noise), or the

oscillations are real, in which case our first approximation fails and this approach is invalid. These

difficulties are easily handled in the context of a fluctuation Monte Carlo.

5.4 Monte-Carlo of Fluctuations

In this section, we build and tune a Monte Carlo that simulates the fluctuations in each step of signal

generation, from the initial recoil to the signal output by the PMTs. The only significant unknown in
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this process is the recombination distribution at a given energy. We make the assumption that this

distribution is Gaussian in log
(

1−r
r

)

, where r is the recombination fraction, in order to match the

observed Gaussian shape in log
(

ne

nγ

)

≈ log
(

1−r
r

)

in the electron recoil band in Xenon10 at energies

where, we know from the previous section, recombination fluctuations dominate. The unknowns in

the Monte Carlo are the mean and variance in log
(

1−r
r

)

as a function of drift field, recoil type, and

recoil energy. We tune these parameters so that the Monte Carlo output matches the band statistics

from Section 5.2.

5.4.1 Building the Monte Carlo

The Monte Carlo follows events step-by-step through the creation of the measured signal. First

the energy of the event in electron equivalent units is randomly sampled from the input spectrum.

When tuning to Xed data, we input a flat (constant) spectrum for electron recoils and a piecewise-

exponential spectrum for nuclear recoils, fit to the observed spectra. We then calculate the number

of ions Ni and direct excitons Nex in the track. We take Ni + Nex from a Gaussian distribution,

with a mean determined by the W-value W = 13.7 eV, and a variance of F · (Ni + Nex), where F

is the Fano factor. This has not been directly measured in liquid xenon, so we take the theoretical

value F = 0.05 [71]. We then separate Ni + Nex into Ni and Nex following a binomial distribution,

with a mean Nex

Ni
= 0.06, also based on theory.

Next we compute the number of ions that recombine. We supply the Monte Carlo with smooth

functions giving the mean and variance of log
(

1−r
r

)

versus electron equivalent energy. Rather than

taking the actual recoil energy, the Monte Carlo passes the energy WqNi to these functions, taking

Wq = 1.06W (see Eq. (4.4)). We sample r from the resulting Gaussian distribution in log
(

1−r
r

)

and

translate this to a number of recombining ions, rounding to an integer number of ions. At this point

we have the true number of S1 scintillation photons and S2 electrons for the event, nγ = Nex + rNi

and ne = (1 − r)Ni.

Creating the photo-electrons in the PMTs is a two step process. First we determine the gains

g1 and g2 in phe/[nγ ] and phe/[ne], including S1 and S2 instrumental fluctuations as event-by-event

fluctuations in the gains. We take g1 and g2 to be Gaussian distributions, with means given by

the calibration parameters in Table 5.1 and widths given by the midpoints of the instrumental

fluctuation ranges in Table 5.2. Once we have the gains, we step through the statistical process

of creating photo-electrons. For S1, each scintillation photon has a probability g1 of creating a

photo-electron, so the total number of S1 photo-electrons follows a binomial distribution with nγ
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trials and mean g1nγ . For S2, the number of electrons successfully extracted into the gas follows a

binomial distribution, electroluminescence photons are created in a Poisson process as the extracted

electrons travel through the gas, and these photons in turn follow binomial statistics when creating

photo-electrons. The first binomial process has a success rate near one (assuming negligible charge

loss to impurities and a strong extraction field, as in Xed) and may be ignored. A Poisson process

followed by a binomial process is merely a Poisson process with a lower mean than the original,

so the number of S2 photo-electrons follows a Poisson distribution with mean g2ne. For speed in

Matlab the distributions for S1 and S2 photo-electrons are modeled as Gaussians with variances of

g1(1 − g1)nγ and g2ne, respectively, whenever the expected number of photoelectrons is ≥ 10. This

is always true for S2 light, since g2 ≈ 14 phe/[ne]. For events with g1nγ < 10 an actual binomial

distribution is sampled to determine the number of S1 photo-electrons.

The final step is to sample the single photo-electron spectrum for each photo-electron to give the

measured S1 and S2. For Xed, we take this to be the log-normal distribution found in Chapter 4,

with σ
µ = 0.437, where µ is the mean and σ is the square root of the variance. The measured S1

and S2 are then scaled to units of [nγ ] and [ne] using the mean g1 and g2 values.

5.4.2 Tuning the Monte Carlo

The only inputs to the Monte Carlo not known from other measurements are the mean and width of

the recombination distribution as a function of energy, recoil type, and drift field. These parameters

must be tuned so that the Monte Carlo reproduces the band statistics found in Section 5.2. More

precisely, we want to tune the recombination parameters for each band (both recoil types at each

field) so that, when simulating Xed data and performing Gaussian fits identical to those in Section 5.2

(i.e., using the same centroid subtraction, bin edges, and fit regions), we get means and widths

consistent with those found in the real data.

For a given band, the mean and width of the recombination distribution should be smooth

functions in energy. We constrain both the mean and the log of the variance in log
(

1−r
r

)

to be cubic

splines of log (E). Knots (discontinuites in the 3rd derivative) in both splines are fixed at the centers

of the bins used for the Gaussian fits in Section 5.2, and we impose vanishing 2nd derivatives at the

first and last knots. Our initial guess for the mean recombination is the smoothest spline that fits

the means from Section 5.2 with a reduced χ2 of 1, where we have converted the means to log
(

1−r
r

)

using Nex

Ni
= 0.06. By ‘smoothest’ we mean the spline with the minimum integral of the square of

the second derivative.
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Figure 5.12: Data points show the knots of the spline input to the Monte-Carlo for the mean
log10

(

1−r
r

)

, with errorbars showing statistical uncertainties. Fields shown are 4060 (blue 2), 1951
(cyan △), 876 (green ♦), 522 (magenta ▽), and 60 V/cm (red ©). The upper sets of points are
for electron recoils, and the lower are for nuclear recoils. The recombination fraction r is calculated
from the normalized yield y using a

b
Nex

Ni
= 0.06.

We run the Monte Carlo with this mean and zero recombination fluctuations, then create a guess

for the recombination fluctuations from the difference between the simulated band variance in each

energy bin and the measured variance. Again, the guess is the smoothest spline consistent with the

data. We repeat the process, running with the new recombination variance to improve the centroid

spline, then again with the new centroid spline for a final shot at the variance. We find that this

level of iteration is sufficient to achieve agreement between the Monte Carlo simulations and the

Xed data.

The tuning result depends on both the other inputs to the Monte Carlo (g1, g2, instrumental

fluctuations, and the photo-electron spectrum width), and on the band statistics being matched.

Both of these have uncertainties that we wish to propagate through the tuning and upcoming

discrimination calculations. To find the uncertainties in the tuned parameters, we repeat the tuning
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Figure 5.13: The same as Fig. 5.12, but showing the variance in log10

(

1−r
r

)

rather than the mean.
Solid points are for nuclear recoils, empty points are for electron recoils. The dashed black line gives
the variance expected from statistical fluctuations for a binomial process with r given by the nuclear
recoil centroid at 876 V/cm — the binomial fluctuations expected for electron recoils are similar.
The recombination fluctuations observed in nuclear recoils are nearly consistent with the binomial
model, but those observed in electron recoils are much larger, especially at high energies. The drop
in recombination fluctuations in electron recoils around 100 keVee may indicate photo-absorption
events entering the data at that energy (see discussion in Chapter 6).

using sets of inputs and band statistics varied randomly about their measured values according to

their uncertainties. We find systematic uncertainties by varying the inputs, statistical uncertainties

by varying the band statistics being matched, and total uncertainties by varying both. The tuned

parameters are uncertainties are shown in Figs. 5.12 and 5.13. When using the Monte Carlo for

discrimination calculations, we run the simulation with every set of tuned parameters found in this

error analysis and use the resulting spread in discrimination values to determine the uncertainty in

discrimination.

We will look in detail at the physics behind the recombination parameters we have just found

in Chapter 6, but it is worth comparing now the measured recombination fluctuations with those
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we would see if recombination were a binomial process. This gives the variance σ2
rNi

= r(1 − r)Ni,

which translates into a variance in log
(

1−r
r

)

of

σ2
ln( 1−r

r
)
=

1

r(1 − r)Ni
. (5.7)

We see in Fig. 5.13 that this is nearly consistent with the nuclear recoil band at low energies, but

is much lower than the observed recombination fluctuations in electron recoils, especially at high

energies.

5.4.3 Band Decomposition Revisited

We can repeat the analysis from Section 5.3 using the Monte Carlo, turning on and off various

fluctuations in the simulation and looking at the resulting band widths. Figs. 5.14 and 5.15 show

the simulated band widths from individual and combined statistical and instrumental fluctuations

over the original analytic decomposition at each field. Recombination fluctuations still dominate

the electron recoil band width down to 4 keVee, and statistical fluctuations in S1 dominate at lower

energies and in nuclear recoils at all energies, but the irregularities due to the fluctuations in the

derivative of the centroid estimate are mostly gone. Again, the effect of S1 fluctuations at WIMP

recoil energies is suppressed by the slopes of the electron and nuclear recoil bands. The simulated

band width with all fluctuations included on is also shown in these plots, and it correctly follows

the data (as it was tuned to do) except in the lowest energy bin for electron recoils. At all but the

highest drift field, the simulated fluctuations in this bin are 1–2σ higher than observed. This is due to

the smoothness requirement we imposed on the recombination fluctuations versus energy, and may

cause us to over-estimate leakage by ∼1 error-bar in the lowest bin in the following discrimination

analysis.

5.5 Electron Recoil Discrimination

With the tuned Monte Carlo, it is simple to calculate any discrimination parameter we choose.

We can also simulate discrimination in other detectors by inputting the appropriate instrumental

fluctuations, S1 and S2 gains, and photo-electron spectrum.

It is possible for a large scale detector to eliminate at WIMP recoil energies all fluctuations

except for those from recombination and S1 light collection statistics. Beyond that, if we wish to

improve discrimination, we must face these two fluctuations. We can decrease S1 fluctuations by
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Figure 5.14: Decomposition of the electron recoil band width at 4060 (top-left), 1951 (top-right),
876 (bottom-left), 522 (bottom-right), and 60 V/cm (bottom-left of Fig. 5.15). The solid bands
show the approximate analytic decomposition of the band width as in Fig. 5.11, and the points with
error-bars show the measured band width. The empty diamonds show the simulated band widths
with all fluctuations (black), all fluctuations except recombination (green), and each individual
known fluctuation (colors matching the corresponding bands). To the extent that our analytic
decomposition was accurate, the colored diamonds lie atop the solid band of the same color. The
Monte-Carlo verifies that the oscillations seen in the contributions of known fluctuations were largely
artifacts of the analytical calculation, and also corrects the contribution of S1 statistical fluctuations
at low energies where our small fluctuation approximation fails. The black diamonds demonstrate
the Monte-Carlo tuning, and should lie atop the measured band widths, smoothing over outliers.
Note that at all except the highest field, the band width in the lowest energy bin is over-estimated
by 1–2σ. This is due to our smoothness requirement for recombination fluctuations, and may cause
us to over-estimate leakage in the lowest energy bin in the following discrimination calculations by
∼1 error-bar.
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Figure 5.15: Decomposition of the nuclear recoil band width at 4060 (top-left), 1951 (top-right),
876 (mid-left), 522 (mid-right), and 60 V/cm (bottom-right). (Bottom-left shows 60 V/cm electron
recoils, continuing from Fig. 5.14.) The bands, data points, and diamonds are as in Fig. 5.14.
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increasing the total S1 efficiency, which will significantly improve discrimination at low energies

where these fluctuations dominate (and where the WIMP signal is strongest). We have less control

over recombination, either to increase band separation or reduce recombination fluctuations. There

are only two physical knobs available that might affect recombination: the applied drift field and

the liquid density. The former we know is important at energies above the WIMP range, but there

is no guarantee that increasing the drift field helps discrimination at low energies. The latter we

have not investigated — the liquid density can only vary by ∼5% in the operational vapor pressure

range of most detectors, and in the model in Chapter 6 this would have a much smaller effect on

recombination in the WIMP region than the large shifts available to us in drift field.

5.5.1 Reproducing Xenon10 Discrimination

To test the predictive ability of our Monte Carlo, we first simulate the Xenon10 detector and compare

with its published results. We take g1 = 0.087 phe/[nγ ] (5.6 phe per keVee at 122 keV at zero

field), g2 = 23.7 phe/[ne], σphe = 0.5 phe, and zero instrumental fluctuations, the last having been

essentially removed by the position dependent calibrations described in Chapter 7. We use the

recombination parameters tuned to our 876 and 522 V/cm data — Xenon10 ran at 730 V/cm.

To make the comparison, we precisely follow the Xenon10 prescription for calculating discrimi-

nation. We simulate electron recoils assuming a flat energy spectrum, and find the electron recoil

centroid in log
(

ne

nγ

)

vs nγ in the simulated data. We then shift to centroid subtracted units as

before, but now subtracting the centroid along lines of constant nγ instead of constant energy. We

then slice the data in nγ , using the same bins as in [31], and fit a Gaussian about the electron recoil

peak in each bin. To determine the WIMP acceptance window, we simulate nuclear recoils, taking

an exponential energy spectrum with a mean of 8 keVr to match the simulated spectrum from the

AmBe source in [79]. We shift to electron-centroid subtracted units and slice in nγ bins as before,

and in each bin choose a threshold to match the nuclear recoil acceptance quoted in [31]. We then

calculate, based on the Gaussian fit, the fraction of electron recoil events in each bin falling in the

WIMP acceptance region.

Figure 5.16 shows the simulated and reported Xenon10 discrimination. While these are generally

consistent, the Xenon10 discrimination shows a more dramatic change with energy than the projec-

tions. Given the large error-bars this may be acceptable, but it may also indicate that we are slightly

overestimating electron recoil recombination fluctuations in our lowest energy bin (5–12 keVr).
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Figure 5.16: Projected discrimination for Xenon10, calculated along lines of constant S1 at drift
fields of 876 V/cm and 522 V/cm, compared to the reported Xenon10 discrimination at 730 V/cm
[31]. The projected discrimination is calculated for 44%–49% acceptance, varying by S1 bin, as done
for the Xenon10 result. The tick marks on the x-axis indicate the binedges used for calculating
discrimination. The Xenon10 discrimination generally lies between our projections at higher and
lower field, but shows a more dramatic improvement at low energy. Given the large error-bars
this may be acceptable, but it may also indicate that we are slightly overestimating electron recoil
recombination fluctuations in our lowest energy bin (5–12 keVr) — see Fig. 5.14.

5.5.2 True Discrimination Calculations

With the Monte Carlo, there is no need to restrict ourselves to discrimination calculations that can

be pulled from the ‘measured’ data. That is, we need not compare leakage ratios in bins based on

measured parameters. We can instead, for example, look at what fraction of electron recoils at a

given real energy are measured to be in the WIMP acceptance region. We will refer to this as the

‘Leakage Fraction’. As noted above, we also care about the measured energy spectrum of leakage

events. For this we define the ‘Relative Leakage Rate’ as the differential rate of electron recoils in

the WIMP acceptance region for a flat electron recoil background, divided by the background rate
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Figure 5.17: Simulated data for Xed (above) and an ideal detector (below) with g1 = 0.174 phe/[nγ ]
(twice the Xenon10 light collection). The plots on the left show a simulated WIMP signal, nuclear
recoils with an exponential spectrum with a mean 12 keVr recoil. The plots on the right show the
simulated background, a flat spectrum of electron recoils. The dashed line is the centroid of the
simulated WIMP band — the area underneath the centroid is the WIMP acceptance region in our
discrimination calculations. The ideal detector simulation takes σphe = 0, and in the upper-left of
the simulated background the stripes correspond to integer numbers of photo-electrons (in the rest
of the plot the separation between stripes is smaller than the histogram bin width).

(in the same units — i.e., when dividing rates, both the leakage rate and background rate should

be in events/keVee).

Both the Leakage Fraction and Relative Leakage Rate depend on the definition of a WIMP

acceptance region. We choose this region such that, at any measured energy, there is 50% acceptance

for WIMP events. To calculate this, we simulate nuclear recoils with a falling exponential spectrum

of mean 3 keVee (12 keVr, corresponding to a ∼100 GeV WIMP), slice the result into small bins

in the measured energy, find the median in each bin, and take a smoothing spline in log
(

ne

nγ

)

versus log (E) through the medians. The WIMP acceptance region is the area below the spline (see

Fig. 5.17).

Finally, we should reiterate that we are assuming a Gaussian distribution in log
(

1−r
r

)

when
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running the simulations that produce the following discrimination numbers. Xenon10 data suggests

that this is valid out to at least 3σ (99.87% discrimination) based on events from 2–20 keVee (see

Chapter 7), but with current data we cannot rule out non-Gaussian tails in recombination that

develop at low energies or below 3σ.

5.5.3 Discrimination Projections

We now find the Leakage Fraction and Relative Leakage Rate at each our drift fields in five simulated

detectors. The first two of these are Xed and Xenon10, with input parameters as described above.

The last three are ‘ideal’ detectors, in that they have zero instrumental fluctuations in S1 oand S2,

and zero photo-electron spectrum width. Negligible instrumental fluctuations are easily achievable

for the small signals at WIMP recoil energies in detectors with 3-D position reconstruction —

by correcting for the position dependence of the S1 and S2 calibrations, one sees instrumental

fluctuations at the level of the collimated 122 keV peak in Xed. The zero photo-electron width is

less obvious, but it is also readily achieved for small S1s in large detectors. When a small S1 is divided

over many PMTs, the majority of the PMTs see either zero or one photo-electrons, and those that see

two are likely to see them separated in time (this is especially true for the next generation detectors,

where the photon travel time can be several hundred nano-seconds with multiple reflections, see

[44]). As long as one photo-electron is easily distinguishable from zero, the detector becomes digital,

giving discrete numbers of photo-electrons. This does not hold for the S2 signal, but even with

non-zero photo-electron width statistical fluctuations in S2 are negligible. The ‘ideal’ detector is

thus described by a single parameter — the total S1 efficiency, g1. We simulate ideal detectors with

g1 of 2x and 3x that of Xenon10, and one with g1 = 1, or 100% light collection efficiency. Twice

the Xenon10 light collection is a reasonable goal for next generation detectors, which will already

benefit from PMTs with higher quantum efficiencies and photo-electron collection efficiencies. There

is also research into materials that are reflective at 175 nm, which could optimistically boost light

collection to three times the Xenon10 value. The g1 = 1 detector is not realistic, but illustrates the

effect of the inescapable recombination fluctuations.

Figures 5.18 and 5.19 show the Leakage Fraction and Relative Leakage Rate at 876 V/cm for the

five detectors. The former looks at the actual recoil energy of leakage events, while the latter looks

at the measured energy. Where recombination fluctuations dominate, these numbers are the same,

since recombination fluctuations don’t move an event in energy. Figure 5.20 shows the Relative

Leakage Rate normalized to the Xenon10 projection, with error-bars indicating the uncertainty in
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Figure 5.18: The leakage fraction as a function of recoil energy, at a drift field of 876 V/cm in
various detectors. Tick marks on the x-axis indicate energy bins used for the calculation. The
data points give the leakage in the Case prototype (g1 = 0.060), in Xenon10 (g1 = 0.087), and in
ideal detectors with twice the Xenon10, three times Xenon10, and perfect light collection. Twice
the Xenon10 light collection is a reasonable goal for next generation detectors. Note the difference
between the relative leakage rate and the Xenon10 definition of discrimination — the magenta ▽’s in
this figure and the green ♦’s in Fig. 5.16 are from the same simulations, and differ by a factor of five
at low energies. Error-bars on the Case and g1 = 1 points indicate total uncertainties (dominated
by statistical uncertainties). Uncertainties in the different projections are correlated. We may be
overestimating leakage in the lowest energy bin by ∼1 error-bar due to our smoothness requirement
for recombination fluctuations versus energy.

the improvement with increased light yield. At most energies there is only room for a x2 reduction

in leakage from the Xenon10 value before hitting the barrier of recombination fluctuations. In

the lowest energy bin (5–12 keVr) a x6 reduction in leakage is expected when doubling the Xenon10

light collection (error-bars from x3.3–x11), but diminishing returns for further improvements in light

collection efficiency. In terms of absolute discrimination, the x2 detector gives ∼99.6% rejection in

most of the WIMP region, improving to better than 99.8% in the lowest energy bin. Note that

our lowest energy bin estimates may be pessimistic — if recombination fluctuations drop as sharply
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Figure 5.19: The energy spectrum of leakage events resulting from a flat electron recoil background,
at a drift field of 876 V/cm in various detectors. These numbers are very similar to those of Fig. 5.18,
but here the x-axis indicates the measured energy of the leakage event rather than the true energy.
Error-bars on the Case and g1 = 1 data indicate total uncertainties. Uncertainties in the different
projections are correlated — see Fig. 5.20 for uncertainties on the relative improvement between
detectors. Again, we may be overestimating leakage in the lowest energy bin by ∼1 error-bar due
to our smoothness requirement for recombination fluctuations versus energy.

at low energy as our data may suggest (and was disallowed by our smoothness requirement in the

Monte Carlo tuning), the lowest energy discrimination projections may be systematically too high

by roughly one error-bar.

To escape recombination fluctuations, our only viable option is to increase the drift field. Fig-

ure 5.21 shows the Relative Leakage Rate in the ideal detector with x2 Xenon10 light collection at

each of our drift fields. We find relatively little field dependence for discrimination in the WIMP

range. There may be a factor of two reduction in leakage in the lowest energy bin when increasing

the field from 876 to 1951 V/cm, but this is within errors. Going to 4060 V/cm actually appears to

makes discrimination worse, partly because of the smaller S1 signals. On the other hand, our lowest
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Figure 5.20: The Relative Leakage Rate at 876 V/cm in various detectors, normalized to the Xenon10
leakage rate. The datapoints correspond to those of Fig. 5.19, but the errorbars show only the error
in the ratio between leakage rates. The errorbars along the bottom of the graph show the common
mode error in each bin. The tick marks on the x-axis indicate bin edges. In the lowest energy bin, a
x3.3–x11.0 reduction in leakage is expected between Xenon10 and a detector with twice the Xenon10
light collection.

energy electron recoil data point at 4060 V/cm appears to be an outlier at high band-width, and

unpublished results from ZEPLIN III suggest the 4060 V/cm point should follow the trend of the

876 and 1951 Vcm points, giving strong discrimination. The discrimination at low fields is surpris-

ingly good. Since high voltage requirements are one of the hurdles for very-large scale detectors, the

ability to discriminate at low fields may be important in the future.

5.6 Conclusions on Recombination and Discrimination

We have now described discrimination as well as resolution in terms of the fundamental fluctuations

present in liquid xenon detectors. From the gamma and neutron data taken in Xed, we have extracted
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Figure 5.21: The energy spectrum of leakage events resulting from a flat electron recoil background
in an ideal detector with twice the Xenon10 light collection (g1 = 0.174) at various fields. Errorbars
indicate statistical uncertanties, and uncertainties in projections at different fields are not correlated.
Systematic errors are smaller than the statistical errors shown. As before, we may be overestimating
leakage by ∼1 error-bar in the lowest energy bin at intermediate fields.

the unknown recombination fluctuations by tuning a Monte Carlo so that it reproduces the observed

electron and nuclear recoil band widths. We have seen that the electron recoil band, and thus

discrimination, is dominated by the intrinsic fluctuations in recombination at most energies, thanks

in large part to the suppression of S1 fluctuations by the slopes of the electron and nuclear recoil

bands. Below 12 keVr S1 fluctuations dominate, and improved discrimination may be achieved by

increasing the S1 light collection efficiency. A factor of two increase in light collection over Xenon10

will result in a x3.3–x11 decrease in the Relative Leakage Rate below 12 keVr.

We have also shown that increases in drift field appear not to significantly improve discrimination

in the WIMP energy range. Both electron and nuclear recoils show very little field dependence in

this range — increasing the drift field increases the charge yield in both bands, and while it slightly
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increases band separation, it also increases recombination fluctuations. The increased charge yield

also results in smaller S1 signals and therefore stronger S1 fluctuations.

Thus far we have considered recombination and recombination fluctuations empirically. Our

vague notions that recombination increases with increasing stopping power and decreases with in-

creasing field held up at high energies, but fall apart in the WIMP region, where field dependence

for both recoil types is weak, and electron recoils actually have the wrong slope, with recombination

decreasing as energy falls and stopping power increases. Recombination fluctuations in electron re-

coils at all energies are orders of magnitude greater than a binomial process would suggest. We turn

now towards the physics behind recombination, in an attempt to explain these unexpected features.

100



Chapter 6

Recombination Models

In the last chapter we measured the mean and variance of the recombination distribution versus

energy and drift field for electron and nuclear recoils. Of the underlying physics, we have discussed

only the basic trend that recombination should increase in tracks with greater electronic stopping

power (denser ionization) and decrease when a stronger electric field is applied, and we vaguely

attribute recombination fluctuations to variations in track structure. In this chapter we present a

simple model based on Monte Carlo track simulations that quantitatively matches the mean recom-

bination observed in electron recoils and comes within a factor of two of the measured fluctuations

(or factor of ∼3 in the variance). Most importantly, this model reproduces the features in the

data which are counter to the basic trends mentioned above. The success of the model illuminates

the underlying recombination physics, paving the way for future models that may more accurately

reproduce recombination fluctuations.

6.1 The Need for a Recombination Model

The physics of recombination in liquid xenon is not well understood. Existing recombination models

can reproduce the field dependence of recombination in alpha and high energy electron recoils,

but thus far no model has quantitatively explained the energy dependence of recombination or

the magnitude of recombination fluctuations, especially at WIMP recoil energies. As noted earlier,

when the XENON collaboration was formed, there was neither a physical model nor data supporting

any discrimination between electron and nuclear recoils at WIMP energies, aside from the known

electronic stopping powers of the two recoil types and the observed trend that, as electronic stopping

power increases, so does the recombination fraction.
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We saw in the Chapter 5 that, while discrimination is observed at low energies, the expected

recombination trend does not hold for electron recoils in the WIMP region — the recombination

fraction for electron recoils decreases as energy falls below 10 keVee, even though the electronic

stopping power continues to rise. This actually saves our discrimination in the WIMP region. Early

data with thresholds above 10 keVee painted a very dismal picture for background rejection, and

the fortuitous turn-up in the electron recoil band was a great surprise.

Although this unknown recombination physics rescues us from the electron recoil background, it is

not a perfect rescue. In Chapter 5 we determined that fluctuations in the recombination fraction are

the dominant process causing leakage of electron recoils into the WIMP acceptance region. To match

Xenon10 data we model these fluctuations as Gaussian in log
(

1−r
r

)

, where r is the recombination

fraction, but our statistics at the low charge-yield (high recombination) tail of this distribution are

very poor, and so our true discrimination capability is unknown. For this reason Xenon10 did not

use background subtraction when reporting a WIMP limit [31].

The poor understanding of recombination in liquid xenon is not important when setting a WIMP

limit without background subtraction, but it becomes a major stumbling block when faced with a

potential discovery. It is necessary to calibrate with an electron recoil source, gathering an order

of magnitude more calibration events than WIMP background events, but this is non-trivial in a

large-scale detector (as we will discuss in Chapter 7). Our understanding of different sources of

fluctuations in Chapter 5 makes it feasible to perform the discrimination measurement in a smaller

detector and translate the results to the detector used for WIMP searches, but such a technique will

be more convincing with a physics understanding of the recombination fluctuations being measured.

Finally, there are still open design questions for very large scale liquid xenon TPC’s. For ex-

ample, we saw in Chapter 5 that it may not be necessary to go to high drift fields for background

discrimination. If we can understand the physics behind this statement, we may confidently relax

the high voltage requirements in future detectors. Similarly, understanding the tails of the recom-

bination distribution will improve our ability to project discrimination in large detectors, which in

turn sets the requirements for radio-purity and 85Kr contamination. For Xenon10 these issues were

not considered since only modest voltage and backgrounds were required, but for larger detectors

with discovery potential, these questions become important.

We will therefore attempt to build a physical model for recombination and recombination fluctu-

ations in liquid xenon. The ultimate goal is to quantitatively match the recombination fluctuations

already observed, and then to use the model to give insight into the tails of the recombination distri-

bution. Before that, we must reproduce and understand the weak field dependence and anomalous
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energy dependence of recombination in electron recoils at WIMP energies.

6.2 Existing Recombination Models

The physics determining the recombination rate in a population of electrons and holes (or negative

and positive ions) in a low-mobility medium was put forth by Langevin in 1903 [91]. Langevin

considers a system where recombination times are dominated by diffusion, so that once a pair

is close enough that the electrostatic potential between them overcomes diffusion, recombination

happens quickly. This critical radius is given by

e2

4πǫrc
= kT, (6.1)

where kT gives the thermal energy of the electron-hole pair. Outside rc (called the Onsager or

Coulomb radius), diffusion is the dominant mode of transport between the pair, but inside rc drift

due to the electric field from the charges dominates. The total recombination rate is the rate at

which electrons and holes diffuse into each others’ Onsager radii. This rate is proportional to the

densities of the two species,

R = αN+N−, (6.2)

where R is the recombination rate per unit volume, N+ and N− are the number densities of positive

and negative charge carriers, and α is the recombination coefficient. This coefficient can be estimated

by considering the flux of charge carriers across the surface of the sphere of radius rc about a charge

carrier of the opposite sign. This flux is determined by diffusion, but by construction transport by

diffusion and drift under the electric field are balanced at rc, so we can instead consider the drift

velocity

v = µ
e

4πǫr2
c

, (6.3)

where µ is the combined mobility of the two charge carriers. Multiplying by the surface area and

carrier densities, we get

R =
µe

ǫ
N+N−, (6.4)

giving α = µe
ǫ = De2

kTǫ , where D is sum of the electron and hole diffusion constants, and the final

equality is given by the Nernst-Einstein relation.
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Jaffé first considered recombination in ion tracks in 1913 [92], writing the differential equations

∂N+

∂t
= D+∇2N+ − µ+E · ∇N+ − αN+N− (6.5)

∂N−
∂t

= D−∇2N− + µ−E · ∇N− − αN+N−, (6.6)

where D± are the diffusion constants for the two charge carriers, µ± are the mobilities, and E

is the electric field (both applied and from the other charge carriers). For each species there is a

diffusion term, a drift term, and Langevin’s recombination term. Since writing these equations, Jaffé

and others have found solutions with various approximations and initial conditions. Of particular

interest to us is the work by Kramers (1952) [93] and Thomas and Imel (1987) [94]. Thomas and

Imel specifically consider liquid argon and xenon, simplifying the above equations to

∂N+

∂t
= −αN+N− (6.7)

∂N−
∂t

= −v
∂N−
∂z

− αN+N−, (6.8)

where we have taken a constant electric field in the −z direction so that v = µ−E (i.e., we ignore

the fields from the charges themselves). The charge carriers in liquid xenon are positive ions and

electrons, with ions having much lower mobility and diffusion constants then electrons, so the positive

charge distribution is treated as stationary. From here on, we will drop the subscripts in µ and D,

always meaning the electron mobility and diffusion constant. Thomas and Imel also ignore electron

diffusion, which we will discuss in Section 6.5, leaving a negative charge distribution drifting with

constant velocity past a fixed positive charge distribution.

Equations (6.7,6.8) are exactly solvable for the initial condition N−(t = 0) = N+(t = 0) = N0,

as done by Kramers [93]. We substitute Eq. (6.7) into the right hand side of Eq. (6.8), giving

∂N−
∂t

=
∂

∂t

[

v

α

∂

∂z
[lnN+] + N+

]

. (6.9)

Integrating from t = 0 and substituting for N− on the left hand side gives a first order equation for

N+,

∂

∂t
[lnN+] = −v

∂

∂z

[

ln
N+

N0

]

− αN+. (6.10)

To solve this, we define Y = N0

N+
and change variables to u = t + z

v and w = t − z
v , simplifying
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Eq. (6.10) to

∂Y

∂u
=

α

2
N0, (6.11)

with the initial condition Y (u+w=0) = 1. Integrating from u = −w gives

Y (u, w, x, y) = 1 +
α

2

∫ u

−w

du′N0

(

x, y,
v

2
(u′ − w)

)

, (6.12)

Y (t, x, y, z) = 1 +
α

v

∫ z

z−vt

dz′N0 (x, y, z′) , (6.13)

and finally,

N+(t, x, y, z) =
N0(x, y, z)

1 + α
v

∫ z

z−vtdz′N0(x, y, z′)
. (6.14)

The positive charge density at a point decreases over time as negative charge drifts up from below

and recombines. The total charge escaping recombination is given by taking t → ∞ and integrating

over all space,

ne =

∫

d3x
N0(x, y, z)

1 + α
v

∫ z

−∞dz′N0(x, y, z′)
. (6.15)

Kramers and Thomas-Imel differ when choosing the initial condition N0. Kramers follows Jaffé

and considers an infinite column with Gaussian cross section, as in the track of a relativistic heavy

charged particle. Thomas and Imel are interested in smaller tracks, taking

N0 =

{

Ni

8a3 |x|, |y|, |z| < a

0 otherwise
, (6.16)

or Ni ions spread uniformly in a 3-D box with sides of length 2a. Taking Thomas and Imel’s N0

and performing the integrals in Eq. (6.15) gives

ne

Ni
=

1

ξ
ln (1 + ξ) , where (6.17)

ξ =
Niα

4a2v
. (6.18)

Thomas and Imel show that this functional form fits the observed field dependence of alphas and

368 keV 113Sn internal conversion electrons in liquid argon and xenon when they take ξ ∝ E−1.

They interpret this as a drift velocity effect (v ∝ E), with a and α field independent. This is curious,

since at the fields considered (up to 2 kV/cm in xenon and 30 kV/cm in argon) electrons in liquid

argon/xenon do not have a constant mobility. Indeed, electron drift velocity changes very slowly

with the applied field [46]. We will return to this point in Section 6.5 and give a more consistent
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interpretation of the Thomas-Imel result.

The recombination models following Jaffé’s differential equations consider ‘columnar’ or ‘cluster’

recombination, i.e., recombination between a population of positive and negative charges. Other

models such as that by Onsager [95] consider recombination between an electron and the ion from

which it originated. We don’t expect this ‘initial recombination’ to be dominant in liquid xenon,

since if it were, we would see no correlation between ionization density and recombination fraction,

and we would also see only binomial recombination fluctuations (since the recombination of every

ion pair would be an independent event) — both contrary to observations. In fact, an ‘initial

recombination’ fraction would be indistinguishable from a shift in Nex

Ni
, except that the former may

have some field dependence. Initial recombination also depends strongly on the initial energy given

to ionized electrons, as it requires the electrons to thermalize before leaving the Onsager radius.

We will see that there is a possibility for initial recombination in nuclear recoil tracks, but defer to

Onsager’s paper for a complete discussion.

For completeness, there are also models that describe recombination as an interaction between

a cylindrical core of positive ions and classically orbiting electrons, with a small probability for

recombination each time an electron passes through the track core. These models do not apply to

the small, scattered tracks we see at WIMP recoil energies, but interested readers may find them in

[84, 96].

6.3 Construction of a Recombination Model

Where the existing recombination models focus on the field dependence of recombination, we wish

to focus on the energy dependence and on recombination fluctuations — that is, we are interested

primarily in changes in recombination at a fixed drift field. Recombination takes place on time scales

of 10s to 100s of nanoseconds [44], many orders of magnitude longer than it takes the initial track

of ions to form, so all information that can influence recombination is encoded in the positions of

the ions and electrons after the recoil energy has been spent. We therefore divide the recombination

modeling problem into two pieces. First we develop Monte Carlo methods to generate recoil tracks in

liquid xenon, creating spatial maps of the resulting electron and ion distributions. We then construct

a method for determining the expected recombination fraction for a given ionization map.
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6.3.1 Electron recoil track Monte Carlo

We create electron recoil tracks using Penelope [97], a Monte-Carlo program for electro-magnetic

interactions based on a model of generalized oscillator strengths. Penelope was designed for ap-

plications in medical physics and specializes in low energy interactions, where it is more accurate

than Geant4 and EGS [98]. Penelope follows cascades of electrons down to 100 eV, reporting all

energy loss along the cascade. For each simulated recoil, we translate the Penelope output into a

spatial map of ions by placing an ion at every location where a new cascade electron is created.

We also place one or more ions at points where energy loss below the 100 eV tracking threshold is

reported, with the number of ions placed equal to the energy lost divided by Wq, rounding down,

but always placing at least one ion (even if the energy loss is less than Wq). This last requirement

is reasonable because Penelope records energy losses only for inelastic scatters, with a minimum

energy loss around the ionization energy of the atom. Elastic scatters are simulated in Penelope as

‘random hinges’ with zero energy loss.

Figure 6.1 shows several sample tracks from Penelope. We see that there are occasional hard

scatters, with the incoming electron giving several keV or more to another electron. It is this division

of energy among daughter recoils that we expect to give rise to recombination fluctuations. Since

stopping power increases with every energy loss, these branches result in two dense tracks where we

would otherwise see one sparse track. For example, a 10 keV electron that loses its energy without

any hard scatters samples the stopping power from 0–10 keV, while the same recoil that immediately

loses half its energy to another electron samples the stopping power from 0–5 keV twice, resulting in

a higher average ionization density. Even daughter recoils with a few hundred eV result in a dense

spot of ionization along the track. This is reflected in the ion positions we take from Penelope,

which when fed through our recombination model should result in higher recombination in tracks

with many hard scatters.

We also see that electron recoil tracks are not at all straight lines. When interpreting the

parameters of our recombination model below, it will be useful to know the spatial extent of these

tracks as a function of energy. As a measure of track size we take the rms radius of the track,

Rrms =

√

〈

|x − 〈x〉|2
〉

, where the brackets indicate the mean over the ions in the track. Figure 6.2

shows the mean and variation in Rrms as a function of electron recoil energy.
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Figure 6.1: Example electron recoil tracks at 4, 10, 20, and 40 keVee, simulated using Penelope.
Each blue dot is one xenon ion, and the red X marks the location of the initial recoil. The boxes
correspond to the box sizes (a) in our recombination model, as listed in Table 6.2.

6.3.2 Nuclear recoil track Monte Carlo

For nuclear recoils, the Monte Carlo program SRIM/TRIM [88] creates cascades of recoils using

the universal nuclear scattering cross sections given by Ziegler [99]. Although this program does

keep track of energy lost via electronic channels, it is difficult to extract this information from the

output available to the user. We therefore create a Monte Carlo to suit our purposes, dubbed

RIVAL (Recoiling Ions in Various Atomic Liquids). This program also generates nuclear recoil

tracks, following the primary and daughter recoils down to a set energy threshold and keeping track

of energy lost via low-energy nuclear collisions and electronic stopping along the way. It turns out

that the details of the nuclear recoil simulation are unimportant in our recombination model, but

see Appendix C for a complete description of the Monte Carlo.

Sample nuclear recoil tracks are shown in Fig. 6.3. As with electron recoils, hard scatters give the

track a tree-like structure. Since stopping power in nuclear recoils decreases as energy is lost, such

branches have the opposite effect on ionization density as in electron recoils — every branch ends

in a sparse scattering of ions. Figure 6.2 shows the rms radii of nuclear recoil tracks as a function
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Figure 6.2: Track size as a function of energy for electron and nuclear recoils. We use the rms radius
of the track as a measure of track size. The points show energies at which tracks were simulated
in Penelope (electron recoils, red ©) or RIVAL (nuclear recoils, blue ♦). Error-bars indicate the
standard deviation in track size at each energy. The black dashed line has a slope of 1 (track size
proportional to energy) — for electron recoils, stopping power falls as energy increases, so track size
grows faster than energy. For nuclear recoils, stopping power increases with energy, so track size
rises more slowly.

of energy. Note that our biggest nuclear recoils (100 keVr) are only as big as a ∼3 keVee electron

recoil. This is well within in the range where we see weak field dependence and anomalous energy

dependence for recombination in electron recoils.

6.3.3 Modified Thomas-Imel Model

We now need a prescription to go from a spatial map of ions to a recombination fraction. We begin

with the same differential equations as Thomas-Imel model, with the solution given by Eq. (6.15).
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Figure 6.3: Example nuclear recoil tracks at 2, 5, 10, 20, 50, and 100 keVr, simulated using RIVAL.
Each blue dot is one xenon ion, and the red X marks the location of the initial recoil. All of these
tracks are much smaller than the box sizes found in Section 6.4.

We then take the initial condition

N0 =

Ni
∑

k=1

{

1
8a3 |x − xk|, |y − yk|, |z − zk| < a

0 otherwise
, (6.19)

where {xk, yk, zk} are the locations of the ions in the track as given by the recoil simulations. Note

that in the original Thomas-Imel condition a determines the total size of the track, but for us the

track geometry is given in the spatial distribution of ions and a is the smearing applied at each

ion. This construction is the simplest way to include the Monte Carlo tracks in the recombination
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calculation, and we assign no a priori physical interpretation to the box size a. If the size of the

track is much smaller than the box size, our initial condition becomes the same as the Thomas-Imel

condition, and the solution is given by Eq. (6.17). This model is entirely deterministic, so that

recombination fluctuations must come from the variations in structure output by the track Monte

Carlos.

6.4 Comparing the Model to the Data

The integral in equation (6.14) may be exactly calculated for the initial condition given in Eq. (6.19).

In practice we snap the ions to a grid with spacing of 0.1a for faster computation (this does not

significantly affect the result). The drift velocity and recombination coefficient enter the solution

together, so the two free parameters in the model are α
v and the box size a. We simulate electron

recoils at energies from 0.5–100 keVee and nuclear recoils from 0.5–100 keVr and find the resulting

recombination over a range of α
v and a. We find that, at each field, we can match the observed

mean electron recoil recombination versus energy with fixed values of these two parameters. With

one adjustment we extend the model to nuclear recoils as well. We also look at the recombination

fluctuations produced by the model, finding that while they have roughly a third the measured

variance, they do reproduce some of the features in fluctuation strength seen in the data.

6.4.1 Electron Recoils

The first hurdle for our model is to reproduce the energy dependence of recombination in electron

recoils. The model naturally produces a maximum recombination fraction when overall track size

Rrms is close to the box size a. Any track structure at length scales smaller than a is washed out by

the box-smearing, and for tracks much smaller than a the model reverts to the original Thomas-Imel

model with the recombination fraction determined entirely by the ratio Niα
a2v , completely independent

of the stopping power. Thus, below a threshold set by the box-size, recombination falls and charge

yield rises as energy and Ni decrease.

We fit the electron recoil centroid at each field with a fixed a and α
v , minimizing χ2 with respect to

the measured recombination up to 60 keVee. Figure 6.4 shows the resulting fits, with fit parameters

listed in Table 6.1. The fit box-size is determined by the location of the charge-yield minimum,

while α
v is varied to match the measured recombination fraction. That we also fit the slope of the

electron recoil band above and below the minimum charge yield is a clear success for the model.

The deviation between model and data above ∼80 keVee is likely due to photo-absorption events in
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Figure 6.4: Fits of the modified box model to the electron and nuclear recoil band centroids. Data
points show the recombination fractions measured in Chapter 5, and lines show the fits to our
recombination model. In the left plot electron and nuclear recoil bands are fit independently, while
on the right they share the same α

a2v at each field. The dashed section of the electron recoil line
indicates the region not used in the fit. The discrepancy between model and data in this region
may be due to the presence of photo-absorption events in the data. Fields shown are 4060 (blue 2),
1951 (cyan △), 876 (green ♦), 522 (magenta ▽), and 60 V/cm (red ©), with electron recoils above
and nuclear recoils below. The y-axis takes r calculated using Nex

Ni
= 0.06, the expected value for

electron recoils. We allow Nex

Ni
to vary with field for nuclear recoils. Fit values are given in Table 6.1.

Table 6.1: Box model parameters giving the best fit to the electron recoil centroid, nuclear recoil
centroid, and both centroids at each field. Fits are shown in Fig. 6.4. Each band at each field
has two free parameters — for electron recoils, these are the two box model parameters, while for
nuclear recoils they are a single box model parameter and the ratio of direct-excitons to ions (before
recombination). We also perform a simultaneous fit to both bands, using the same box model
parametes for electron and nuclear recoils. The exciton-ion ratio for electron recoils is always held
at Nex

Ni
= 0.06. Errors shown are statistical. Systematic errors are larger, and may be estimated

from the spread between the different fitting schemes (see also Table 6.2).

Drift Field Electron Recoils Nuclear Recoils Both Recoils

E (V/cm) a (nm) 100 α
a2v 100 α

a2v
Nex

Ni
a (nm) 100 α

a2v
Nex

Ni

4060 ± 190 201(3) 3.17(5) 3.19(5) 0.711(17) 200(3) 3.18(4) 0.716(13)

1951 ± 86 244(4) 3.71(5) 3.37(3) 0.817(12) 263(3) 3.48(3) 0.781(10)

876 ± 36 484(6) 2.96(3) 3.08(3) 0.865(11) 473(4) 3.03(2) 0.883(9)

522 ± 23 648(8) 3.35(3) 3.76(3) 0.786(10) 604(5) 3.54(2) 0.846(8)

60 ± 5 2111(18) 3.39(2) 4.02(5) 0.945(15) 2032(17) 3.48(2) 1.111(8)

the data, discussed in detail in Section 6.4.5. Finally, the weak field dependence at low energy we

now see as weak field dependence in the ratio α
a2v . Field dependence will be the key to the physics

interpretation of the model in Section 6.5.
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6.4.2 Nuclear Recoils

We see an immediate problem when applying the model to nuclear recoils. The key to reproducing

the electron recoil band is the smearing that washes out structures smaller than the box size, but all

of our nuclear recoil tracks are also smaller than the box-size. Thus, at energies below the minimum

electron charge yield, electron and nuclear recoils are indistinguishable in our model. (This is also

why the details of our nuclear recoil track Monte Carlo were unimportant.) Even allowing our fit

parameters to vary between recoil types, we cannot match the nuclear band data. For small tracks

our only free parameter is α
a2v , which adjusts the intercept of a line in log

(

1−r
r

)

vs log (E) (as in

low-energy electron recoils), but the slope is fixed by the model. This slope does not match that of

the nuclear recoil band.

We can fit the nuclear recoil band by introducing the initial exciton-ion ration Nex

Ni
as a free

parameter. The physical motivation for such a parameter may be either initial recombination of

electrons that never leave the Onsager radius, as in [95], or an actual shift in the direct exciton

to ion ratio in the recoil track. Certainly, the mechanisms for electronic energy loss in nuclear

and electron recoils are very different. Ionized electrons in nuclear recoil tracks may have very low

energies, and therefore be subject to initial recombination. In [100], ionization in nuclear recoils is

attributed to electron promotion when energy levels shift as the recoiling nucleus (ion) crosses the

target atom, followed by Auger electron emission. This is effectively an adiabatic process, with atom

velocities much lower than velocities of the orbiting electrons. Since only a subset of atomic states

shift in a manner that will cause ionization, this may reduce the number of ionization channels

available to nuclear recoils, giving a larger fraction of direct excitons. Whatever the underlying

mechanism, this parameter allows us to fit the nuclear recoil bands, as shown in Fig. 6.4, with fit

parameters in Table 6.1.

6.4.3 Combined Fits

The electron and nuclear recoil fits have one parameter in common, α
a2v , the fit values of which

are very similar for the two bands. We therefore perform simultaneous fits to both bands using

three parameters (a, α
a2v , and Nex

Ni
), with results very similar to those found when fitting the bands

separately (see Fig. 6.4 and Table 6.1). Going one step further, we fit all bands at all fields, allowing

a and α
a2v to vary with field but taking a single value for Nex

Ni
for nuclear recoils (see Fig. 6.5 and

Table 6.2). This shifts the fit box model parameters significantly at low and high fields and by eye

gives cleaner trends with drift field (the fits at different fields no longer fall on top of each other
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Figure 6.5: Fits of the modified box model to the electron and nuclear recoil band centroids, as in
Fig. 6.4, but taking a field independent value for Nex

Ni
for nuclear recoils. These fits show smoother

field dependence and better match the electron recoil bands at low energies, but do not fit nuclear
recoils below 10 keVr (2.5 keVee) as well as the previous fits. The right y-axis shows log10

(

1−r
r

)

calculated using the fit Nex

Ni
for nuclear recoils, while the left uses Nex

Ni
= 0.06. Fit parameters are

given in Table 6.2.

at low energies), but does not match the nuclear recoil data at low energies as well as the previous

fits. For all fits, we keep Nex

Ni
= 0.06 for electron recoils — allowing this to vary as well does not

significantly change the fit.

6.4.4 Compound Recoils

We now apply our model with the fit parameters from Table 6.2 (combined electron and nuclear recoil

fits with field-independent Nex

Ni
) to the inelastic scatter and photo-absorption peaks. As described

earlier, these peaks have two interaction sites (primary scatter and x-ray absorption), each with

multiple recoils. We find the recombination at each site by concatenating the ion positions of all

recoils originating at that site and sending the total ion list to the recombination model. Summing
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Table 6.2: Box model parameters giving the best fit to both centroids at all fields, allowing a and α
a2v

to vary with field but keeping Nex

Ni
for nuclear recoils fixed. For electron recoils we take Nex

Ni
=0.06.

Errors shown are statistical. Systematic errors are larger, and may be estimated from the spread
between these values and those in Table 6.1. The fits with these parameters are shown in Fig. 6.5.

Drift Field All Recoils

E (V/cm) a (nm) 100 α
a2v

Nex

Ni

4060 ± 190 231(2) 2.80(2)

1951 ± 86 293(2) 3.19(2)
...

876 ± 36 478(3) 2.99(1) 0.899(4)

522 ± 23 632(5) 3.42(2)
...

60 ± 5 1726(13) 3.86(2)

the signals from the two interaction sites, we find the locations of the peaks, shown in Figs. 6.6

and 6.7. When reconstructing the 40 keV inelastic scatter, we include a nuclear recoil piece from

0–20 keVr. Note that, although the 122 keV reconstruction includes a recoil at 87 keVee where the

model does not fit the band, the peak reconstruction is still successful. This supports the hypothesis

that the electron recoil band is contaminated by photo-absorption events at those energies.

6.4.5 Fluctuations

Figures 6.6 and 6.7 also show the fluctuations in recombination given by the model for the 40 keV and

122 keV peaks. Our modeled fluctuations consistently have about one third the measured variance,

extracted from the 2-D Gaussian fits to the peaks. The fluctuations predicted for the electron recoil

band are shown in Fig. 6.8. Immediately we see a problem at low energies — since the model is

insensitive to structure at scales smaller than the box size, small tracks show zero recombination

fluctuations. This is perhaps accurate for nuclear recoils, where the observed fluctuations are near

those expected from binomial statistics (which are not included in the model), but it is not consistent

with electron recoils. At higher energies we do produce fluctuations, but again they have roughly

one third the measured variance.

The sharp drop in recombination fluctuations at all fields around 100 keV is our strongest indi-

cation that the electron recoil band is contaminated by photo-absorptions at high energies. Because

photo-absorption events have significant structure imposed on them initially (the full energy being

divided into two Auger electrons, an x-ray photo-electron, and the initial photo-electron), there is
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Figure 6.6: Reconstruction of the 40 keV and 122 keV peaks at 876 V/cm using our recombination
model with the fit parameters in Table 6.2. Left: The 40 keV peak is shown with the 2-D Gaussian
fit from Chapter 5 and decomposition into constituent fluctuations drawn in blue. The vertical
component of the blue cross indicates the recombination fluctuation component. Electron and
nuclear recoil centroids are drawn as dashed lines, with the dashed line between the centroids from
10–15 keVee showing the predicted recombination at the primary scatter (0–22 keVr nuclear recoil,
5 keVee internal conversion electron, and 5 keVee Auger electron). The dot at 30 keVee shows the
predicted recombination at the x-ray absorption site (25 keVee photo-electron and 5 keVee Auger
electron). The dashed line from 40–45 keVee is the sum of these two components. The dotted lines
above and below the sum show the 1σ variation in recombination predicted by the model, which
in this case is roughly half of the observed fluctuations (one fourth the variance). Predictions at
other fields (see Fig. 6.7) also give from one half to one fourth of the observed variance. Right: The
122 keV photo-absorption peak, with the Gaussian fit and decomposition in blue. The dashed line is
the electron recoil centroid, and the dotted line the recombination predicted for Compton scatters.
The discrepancy between the two above ∼80 keVee may be due to photo-absorption events in the
data. The dots at 92 and 30 keVee show the predicted recombination at the primary absorption
and x-ray absorption sites, respectively, with the dot at 122 keVee showing the sum. The black
error-bars on the 122 keVee point indicate the predicted recombination fluctuations, which have one
third of the observed variance.

much less phase space for fluctuations than for a Compton recoil with the same energy. This is

reflected both in the model and the data when looking at the 122 keV peak — both show roughly

half the variance for the peak that they do for the Compton band below 100 keV. That the model

and the data show the same relative decrease in fluctuations for an effect that we know is due to

track structure indicates that our problem is not a failure to create structure variations, but rather

a failure to propagate them fully through the recombination model.

Although we do not quantitatively reproduce the observed recombination fluctuations, it is worth

looking at the shape of the modeled recombination distribution. We cannot do this in the WIMP

region since we produce no recombination fluctuations there, but Fig. 6.9 shows the recombination

distribution at 80 keVee. We have only simulated 1,000 events at each energy and so do not have

large statistics, but we see a definite tail at low charge-yield. We cannot draw any conclusions about
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Figure 6.7: Reconstruction of the 40 keV inelastic recoil at 4060 (top-left), 1951 (top-right), 522
(bottom-left), and 60 V/cm (bottom-right). See the caption of Fig. 6.6 for an explanation of the
plots.

the shape of the recombination distribution at WIMP energies, but this emphasizes the need for a

quantitative understanding of these fluctuations.

6.5 Interpretation of Fit Parameters

We have seen that this model reproduces the shape of the electron recoil centroid, but we do not

yet have a physical interpretation of the box size. The key to this lies in the field dependence of the

model parameters. Figure 6.10 shows the box size following a power law relation a ∝ E−γ , where

E is the magnitude of the applied field, with γ=0.48–0.56 depending on the set of fits used. This

scales similarly to the radius RF within which the field from the ion is stronger than the applied
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Figure 6.8: Model predictions for recombination fluctuations at all fields. Data points show the
recombination fluctuations measured in Chapter 5, and lines show the fluctuations in electron recoils
given by our recombination model, using the electron recoil fit parameters in Table 6.1. The model
produces no recombination fluctuations in nuclear recoils. Fields shown are 4060 (blue 2), 1951
(cyan △), 876 (green ♦), 522 (magenta ▽), and 60 V/cm (red ©), with empty points for electron
recoils and solid for nuclear recoils. The dashed black line shows the fluctuations expected for a
binomial process (slightly dependent on the mean recombination — here we have taken the nuclear
recoil centroid at 876 V/cm). The drop in measured recombination fluctuations at 100 keVee is likely
due to photo-absorption events in the data. The 122 keV photo-peak has a measured recombination
variance of ∼0.011 in these units.

drift field,

RF =

√

e

4πǫE
= 86nm

√

kV/cm

E
, (6.20)

where we have taken ǫ=1.96ǫ0. The fit values for a are roughly 5 times the values for RF . Similar

interpretations, such as the impact parameter at which field lines converge on the ion (2RF ), may

come closer. Regardless of the exact interpretation, order of magnitude and scaling with drift field

are consistent with a being an electrostatic length scale.

This forces a reinterpretation of v. In the model, the role of v is to determine the amount of time
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Figure 6.9: The modeled recombination distribution at 80 keVee, taking a = 500 nm, corresponding
to a drift field of ∼800 V/cm. There is a clear tail of low charge-yield events.

a passing electron spends inside a given ion’s box (t = 2a
v ) during which it may recombine. (The

drift velocity also moves electrons to the box, of course, but that time scale does not enter in the

recombination fraction.) If the field inside the box is dominated by the field from the ion, then v

cannot be the drift velocity due to the applied field. The actual mechanism for electron transport

inside the box depends on the box size. Diffusion is the primary mode of transport at length scales

greater than the Onsager radius e2

4πǫkT , within which drift under the ionic field dominates, and

smaller than kT
eE

, beyond which drift under the applied field dominates. The box scale is between

these two distance (RF is the geometric mean of the two) so transport in and out of the box is

primarily by diffusion. The time spent in the box is then of order (2a)2

2D , where D ≈ 80 cm2/s is

the diffusion constant for electrons in liquid xenon [101]. The v entering the model should then be

roughly D
a .
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Figure 6.10: Box size versus drift field for our three fit schemes. The results at 1951 V/cm are
not included in the linear fits. The fit with fixed Nex

Ni
for nuclear recoils is consistent with the 1√

E

scaling we expect for electrostatic length scales. Errors are determined from the uncertainties in the
calibrated drift fields.

Taking this value for v and the Langevin recombination coefficient α = De2

ǫkT we expect

α

av
=

e2

ǫkT
. (6.21)

It is important to note that the temperature in Eq. (6.21) is the electron temperature. Above

∼10 V/cm electron mobility in liquid xenon begins to fall, and higher drift fields increase the

electron temperature. Equation (6.21) therefore has a hidden field dependence. It is not obvious

which electric field is important in this picture. We care about electrons inside the box, where

the ionic field dominates, but electrons may not remain in the box long enough to thermalize with

the higher field. From our above analysis, times in the box range from 1 ns at 60 V/cm to 10 ps

at 4060 V/cm. Thermalization times for hot electrons in liquid xenon have been measured to be

∼6.5 ns [102], so at least for high fields (small boxes) the electron temperature is determined by
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Figure 6.11: Characteristic electron temperature (eDT

µ , where DT is the transverse diffusion coeffi-

cient) versus drift field. The black-and-white portion of this plot is copied from Atrazhev et al. [46].
The curves indicate calculations by Atrazhev et al., while the liquid and gas data points come from
[101] and [103], respectively. The solid red diamonds indicate kT from Eq. (6.21) and Table 6.2, and
the empty red diamonds are the same, divided by 6 to show the consistent scaling with data. At
our lowest field point, the electron temperature may be influenced by the field of the ion. 1 Td =
10−17 V cm2, and we have taken N = 1.3 × 1022cm−3 (T=180 K).

the applied drift field. Figure 6.11 shows the characteristic electron energy εc = eDT

µ versus drift

field (where DT is the transverse diffusion coefficient), compared to kT from Eq. (6.21) with our fit

parameters in Table 6.2. We see kT ≈ 6 εc ∝ E0.6, so scaling and order of magnitude support the

Langevin interpretation of our recombination model.

We can apply this interpretation to the original Thomas-Imel model and the result ξ = Niα
4a2v ∝

E−1 in large tracks. In the context of our model, α
a2v ∝ E−0.1 and a ∝ E−0.5, and so the field

dependence in large tracks comes from the varying number of ions in each box as the box-size changes.

Since electrons drift through the track, an ion may recombine with electrons arising anywhere in a

column with volume proportional to a2. Taking Ni ∝ a2 ∝ E−1 gives us the scaling that Thomas

and Imel observed.
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We can use the same arguments to predict the dependence of recombination on density. We have

T ∝ ρ−0.6 and, from the Clausius-Mossotti relation, ǫ ∝ ρ0.6. This gives α
a2v ∝ ρ0.3, indicating that

in small tracks, recombination is three times more sensitive to density than it is to the applied field.

We have to be careful looking at larger tracks. Linear dimensions in a track scale like ρ−1, but we

can simplify matters by multiplying every unit of length by ρ so that, in our new units, the track

geometry is density independent. This gives a ∝ ρ0.7, and so Ni ∝ ρ1.4, finally giving ξ ∝ ρ1.7 for

large tracks. In Xed we can vary ρ by ∼5% by changing the temperature, which would have the

same effect on recombination in large tracks as an 8.5% change in the drift field. This should be

observable, and hopefully future work will test this prediction.

We do not have enough information to draw conclusions on the nuclear recoil parameter Nex

Ni
. It

appears to be field dependent, which supports an Onsager recombination interpretation, but we need

an estimate of the energies of ionized electrons in nuclear recoil tracks to calculate the expected initial

recombination fraction. The direct-exciton interpretation predicts a field independent Nex

Ni
, which

does not fit as well below 10 keVr, but this interpretation does help solve the Lindhard problem. In

Chapter 4 we saw that the measured Lindhard factor at low energies is higher than expected. A

higher Nex

Ni
for nuclear recoils than electron recoils would reduce the average electronic energy loss

spent per exciton/ion, giving a larger Lindhard factor at all energies. This shift is not enough to

produce agreement between the measured and theoretical Lindhard values, but it significantly closes

the gap.

6.6 Conclusions on Recombination Physics

Our modified box model has successfully reproduced the mean recombination seen in electron recoils,

and with one extra parameter matches nuclear recoils as well. The minimum in the electron recoil

charge yield occurs when track size falls below an electrostatic length scale. For a single ion, this

length scale roughly defines the region in which the ion’s field is stronger than the applied field. Once

an electron enters this region, recombination occurs as described by Langevin: electron transport is

dominated by diffusion until it either enters the Onsager radius of the ion and recombines, or until

it wanders back into the region where the applied field is dominant and escapes.

In our model, recombination is insensitive to track structure below the critical electrostatic length

scale, and so the rising stopping power in low energy electron recoils is irrelevant. By the same token,

so is the higher stopping power of nuclear recoils. In fact, it appears that at WIMP energies, our

discrimination is not due to stopping power at all, but rather to the different modes of electronic
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excitation open to nuclear recoils, resulting in a higher Nex

Ni
. This may be due to either immediate

recombination of very low energy ionized electrons or to a higher fraction of direct excitons.

Field dependence enters our model by changing the critical electrostatic length scale as well as

in the electron temperature, which in turn affects the Onsager radius and therefore the Langevin

recombination coefficient. These effects conspire to give the weak field dependence we observe in

small tracks.

We do not accurately reproduce recombination fluctuations, consistently falling short of the

measured variance by a factor of three, but the physics interpretation of our model suggests several

improvements which may address this problem. The most glaring problem is our mistreatment of

diffusion, which we have replaced with a linear drift. We may also want to separate the initial

distributions of ions and electrons. Although computationally expensive, it could be worthwhile to

build a recombination Monte Carlo in which individual electrons are followed until they either enter

the Onsager radius of an ion or escape the track.

In the end, while a physics understanding of the detector supports a good calibration and may

be necessary to claim a discovery, it is possible to set WIMP limits in xenon without a perfect

understanding of recombination. We end by describing how we have accomplished this in Xenon10

and discuss the remaining challenges for discovery-oriented large scale xenon TPCs.
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Chapter 7

Xenon10 and Beyond — Searching

for WIMPS with Large Scale

Xenon TPCs

In Chapter 3 we described xenon TPCs in general and the Xed prototype in detail. Constructing

and operating a large scale detector in order to produce a WIMP limit involves an entirely new

set of challenges, from shielding and radio-purity to cryogenics, fluid handling, data acquisition and

processing, calibration, and WIMP search analysis. Many of these issues we successfully faced in

Xenon10, as addressed in the theses of fellow collaboration members [54, 55, 44, 81], while others

become problematic only in the next generation of large detectors — some of these (e.g., Kr removal

and large-scale cryogenics) are solved [60, 56, 104], and some are still being worked out. We make

no attempt to give a comprehensive list in this thesis, but rather survey a few interesting problems

and describe how they have been or are being faced by the Xenon10 and LUX collaborations.

We look at four categories of problems: fluid handling (now with constant recirculation), data

handling (now with multiple PMTs), calibration (in a detector larger than neutron and gamma

interaction lengths), and WIMP analysis, ending with the Xenon10 limit on the spin-independent

WIMP-nucleon cross section.
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7.1 Fluid Handling

In Xed we achieved sufficient purity for charge drift through ultrasonic cleaning, baking at ultra-high

vacuum, and batch xenon purification at the start of each run, with periods of recirculation through

the purifier as needed. We did not circulate xenon while taking data. In large detectors, where

cleaning is more difficult and a greater drift length is needed, constant recirculation is necessary.

This creates two issues which we did not face in Xed: dynamic liquid level control and the heat load

from the returning xenon.

7.1.1 Liquid Level Control

Shifts in the liquid level height affect the strength of the gas extraction field (see Appendix A)

as well as the path length in gas over which extracted electrons generate electroluminescence. A

stable S2 signal therefore requires a stable liquid surface. This is non-trivial even without constant

recirculation — in Xed we observed bubbles trapping under surfaces, displacing liquid and raising

the liquid level. The situation is worse in large detectors, where there are many PMT’s in the

liquid whose bases are heat sources that can generate bubbles. Temperature changes can also cause

significant liquid level shifts in large detectors (liquid xenon has a volume expansion of 2.5×10−3K−1

[45]). Recirculation and the resulting heat load from condensing xenon add to these problems, and

it becomes impossible to maintain a stable liquid surface without some form of liquid level control.

There are currently two working methods to set a fixed liquid level, both relying on constant

circulation of xenon. The first is the diving bell, implemented in Xenon10 and illustrated in Fig. 7.1.

In this setup the extraction region and top array of PMTs sit inside a bell, with the incoming purified

xenon gas fed into the top of the bell. The gas bubbles out the bottom of a vertical tube to the

side of the bell and equal pressures force the liquid surface inside the bell to sit level with the end

of outlet tube. By moving the outlet tube up and down, one can change the liquid level inside the

bell. Changes to the total xenon volume shift the liquid height outside the bell.

One potential drawback to the diving bell is that it requires an incoming flow of xenon gas, so

condensing the xenon before returning it to the main chamber is not an option. The gas pressure

inside the bell is also higher than that in the main chamber, which will drive condensation inside the

bell. This warms the liquid surface in the bell, resulting in a possibly undesirable thermal gradient.

These issues are avoided when the liquid level is controlled using a spill-over dam, or weir, also shown

in Fig. 7.1. Here the level is controlled using the outgoing liquid rather than the incoming gas. The

weir can be designed to draw liquid from anywhere in the chamber, not necessarily form the surface.
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Figure 7.1: Two methods for liquid level control. Left: Diving bell schematic. Xenon gas returning
from purification comes into the bell containing the top PMT array and electrodes, and bubbles out
the inverted standpipe at the side of the bell. The liquid level inside the bell is set by end of the
standpipe, and changes in the total liquid volume shift the liquid level outside the bell. The pressure
inside the bell is higher than the outside pressure by the difference in liquid height inside and outside
the bell. This will drive condensation in the bell, heating the liquid until the vapor pressure matches
the bell gas pressure. If the both the liquid inside and outside the bell are in equilibrium with the
gas, the temperature difference will be ∼0.03 K per cm of column height [45]. Right: Weir schematic.
Xenon is drawn from the weir for purification and returned to the main chamber as either liquid or
gas. The liquid level height is set by the weir spillover height, and changes in the total xenon volume
change the amount of xenon in the weir and outlet tube. The setup illustrated here shows how the
weir may draw xenon from any point in the chamber, not necessarily from the liquid surface. Both
the weir and bell can be built with movable parts (indicated by double-ended arrows) to adjust the
liquid level. Xenon10 used a bell and LUX is using a weir to control liquid level.

Changes in the total xenon volume change the amount of liquid inside the weir outlet. Constant

circulation is still necessary for the weir to respond to underfull as well as overfull conditions.

7.1.2 Recirculation Rates

The recirculation rate in a detector determines not only the time it takes to achieve the purity

necessary for charge drift, but also the maximum drift length reached. Xenon acts as a solvent for

many impurities. If we consider a constant rate of impurities dissolving into the liquid, a well-mixing

model gives

dn

dt
= R − n

V
r, (7.1)

where n is the number of impurities dissolved in the liquid, V is the liquid volume of the system,

r is the liquid volume rate of recirculation, and R is the rate at which impurities enter the liquid.

The solution gives

n = n0e
−t/τ + Rτ, (7.2)
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where τ = V
r is the time it takes to recirculate the entire liquid volume once. The steady-state level

of impurities is proportional to this time constant. If recirculation operates in batch mode rather

than in a well-mixed mode, then any given volume element spends a time τ between purifications,

giving n ≈ Rτ
2 . R itself will decrease with time as the detector is cleaned by the circulating xenon,

but the timescale for this in Xenon10 was months, and a plateau was eventually reached. If we

assume R scales with the surface area of the detector and we require the impurity density n
V to

scale like one over the drift distance required, then τ should be roughly detector independent. The

recirculation rate therefore needs to scale with volume of the detector.

In Xenon10, we saw drift lengths up to 4 meters (drift times of 2 ms) with a recirculation rate

of 2.5 slpm (τ = 16 hours) [57, 55]. The recirculation rate was limited by the heat load from the

returning gas, which is dominated by the heat of condensation, 96 kJ/kg at 170 K. For a target τ

of 1 day this corresponds to P
M = 1.1W

kg
, where P is the heat load from condensing xenon and M

is the total xenon mass in the detector. The cryogenic systems used by Xenon10 and LUX expect

parasitic heat loads on the main chamber of < 50 W, so condensing xenon is a problem in detectors

of more than a few tens of kilograms. With the weir system, it is possible to liquify the purified

xenon using a dedicated cooler before returning it to the main chamber, but another solution is to

exchange heat between the outgoing evaporating xenon and either the incoming condensing xenon

or the condensing gas in the main chamber. Various heat exchange designs are being tested in the

LUX engineering runs, with one early version shown schematically in Fig. 7.2.

7.2 Data Handling

Data in a large detector is fundamentally different from what we dealt with in Xed, in that the S1

and S2 signals are split over many PMTs. The long drift times between the S1 and S2 pulses in a

large detector also require long digitizer traces to capture events. This section explores the changes

in data acquisition and processing that are required to handle the increased data flow and interpret

multi-PMT data.

7.2.1 Data Compression

With 88 PMTs and drift lengths of ∼80 µs, the raw digitized PMT waveforms from Xenon10 take

more than two orders of magnitude more disk space per event than Xed data (this despite using a 5x

slower digitizer). The vast majority of this is flat baseline — digitized waveforms are ∼156 µs long

(to accomodate both S1 and S2 triggers), of which only ∼2 µs actually contains signal. This clearly
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Figure 7.2: Schematic of a prototype heat exchanger used by LUX. The recirculation pump draws
gas from the evaporator, which is fed liquid by the weir. In this setup, the weir level is set by the
vapor pressure difference between the evaporator and the main chamber P0 − PE , which at 170 K
gives a column height per ∆T of 31 cm/K [45]. Changes in the total xenon volume change the liquid
volume inside the evaporator. The purified gas returns to the condenser, drawn here surrounding
the evaporator. As drawn, all incoming xenon will condense before returning to the chamber, but
this need not be the case. The condenser vapor pressure drives the column height between the liquid
surface in the condenser outlet and the main chamber. TE and TC are determined by the recirculation
rate and the heat flow between the evaporator and condenser. Increasing the recirculation rate
increases the evaporative cooling on the evaporator, lowering TE until the heat input from the
condenser balances the evaporative cooling. As TE drops, the pressure difference P0 − PE increases
and the weir empties. If the weir empties completely, the system enters a failure mode where it
recirculates the chamber gas rather than the liquid. In the first run of this heat exchanger, the
maximum flow rate before the weir emptied was roughly one fifth the target recirculation rate.
Subsequent designs have increased the heat flow between condenser and evaporator (reducing the
necessary TC − TE) and added safeguards against the empty-weir failure mode. Ultimately, any
scheme in which liquid is drawn from the chamber and evaporates while still in thermal contact with
the chamber will solve the heat load problem.
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calls for data compression, similar to what was used in Xed (see Chapter 3). The compression needs

to be applied before the data is written to a remote disk, otherwise disk access and network speeds

limit the rate of both data taking and analysis. The compression therefore needs to be part of or

directly in line with the data acquisition (DAQ) software.

The Xed compression algorithms are ∼5x slower (on a single cpu) than the DAQ rate in Xenon10,

so faster compression schemes are necessary. The method decided on in Xenon10 was to first remove

baseline noise in each waveform by setting any samples within ±4 ADC (analog to digital converter)

counts of the baseline to be exactly equal to the baseline. This threshold removed most of the

white noise from the signal but kept electronics glitches (10–20 ADC counts, varying by PMT) and

was well below the single photo-electron peak (∼100 ADC counts). The data was then compressed

using gzip (available in the free zlib library [105]). Since the baseline flattening resulted in long

strings of bytes with the same values, this generic compression algorithm gave a x14 reduction in

file size, and was fast enough that it did not limit the data acquisition rate. A x20 compression was

demonstrated with more aggressive baseline flattening, as used in the first step of data processing

in the next section.

With this compression, the limiting factor in the Xenon10 DAQ rate (maximum of 20 Hz) was

the data transfer speed between the digitizers and the DAQ computer. While this is more than

sufficient for low-background data, it is desirable to have a higher rate during calibrations. The

LUX experiment will implement data compression directly in the digitizer firmware so that empty

baseline data is not sent to the DAQ computer, increasing the maximum DAQ rate [106].

7.2.2 Data Processing

Since in the data compression in Xenon10 does not identify pulses in waveforms (as was the case for

Xed), the first step of data processing is peak finding. (This is also the case for LUX, despite the

rudimentary peak finding implemented by the digitizer firmware.) Again, the long waveforms make

a processor intensive filter such as the one used to identify pulses in Xed too costly, requiring many

processors to keep up with the DAQ.

The peak finding in Xenon10 operated on the sum of the digitized waveforms from all PMT’s.

Though much faster than scanning each PMT separately, this does create a noise problem. In a

single PMT, a single photo-electron is clearly distinguishable from baseline, but summing the noise

from 88 PMT’s makes this more difficult. This is especially true in the face of coherent noise between

PMT’s, as shown in Fig. 7.3. The solution is to remove this noise before summing, performing a
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more aggressive baseline flattening than was done in the DAQ. On each PMT we impose a threshold

determined by that PMT’s electronics noise, typically at 10–20 ADC counts (still a fifth or less of

the mean photo-electron height). This effectively removes baseline noise from the summed signal.

We search for pulses in the summed flattened waveform, looking independently for S1’s and S2’s.

To find S1 candidates we simply find the maximum of the waveform and step out to either side of

the peak until the edges of the pulse are found. We then find the next maximum not contained

in the first pulse, and so on until either no points above a set threshold remain or the maximum

number of S1 candidates allowed in the analysis have been found. The S2 search is done the same

way, but on a filtered waveform. To build the S2 filter, we first define the box filter,

b
(a)
i (y) =

i+a
∑

j=i−a

yj , (7.3)

and the max value filter,

m
(a)
i (y) = MAX {yi−a, yi−a+1, . . . , yi+a} , (7.4)

where y is the waveform being filtered. The S2 filter is then

f (a1,a2) (y) = b(a2) (y) − m(a2−a1)
(

b(a1) (y)
)

. (7.5)

In words, the filter takes the integral of the pulse in a box of width 2a2 + 1 centered on the sample

in question, minus the maximum integral in any box of width 2a1 + 1 contained within the first

box. Thus, the filter gives zero response for any pulse shorter than 2a1 + 1. We typically set

a2 = 100 samples (1 µs, the mean S2 width) and a1 = 10 samples (100 ns, the typical S1 width), so

that the filtered signal is completely insensitive to S1-like pulses yet still sensitive to single electrons

extracted from the liquid surface (see Fig 7.4). This filter is also extremely fast, requiring only

addition and comparison operations.

There are many variations of the above methods — for example, in the Xenon10 analysis, the

S1 peek finder looked for S1’s only prior to the largest S2 and ranked the S1 candidates strictly by

height. An early LUX analysis scheme searched the entire waveform for S1 candidates and ranked

them by their height minus their height in the S2 filter (with an appropriate scaling factor). The

rules for determining the edge of a pulse in particular must be tuned to avoid either clipping the

end of a pulse with a long tail or combining two distinct pulses into one. In general these details
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Figure 7.3: A small S2 in Xenon10, showing- Top: An overlay of all 88 PMT waveforms as output
by the DAQ (with the basic 4 ADC count flattening). Middle: The same 88 waveforms with the
more aggressive baseline flattening (10–20 ADC counts) used by the analysis. Bottom: The sum of
PMTs with the DAQ flattening (blue) and the analysis flattening (red). In the top plots, the signal
between samples 8600 and 8800 is clearly light in the detector, seen by multiple PMTs (in fact these
appear to be late electrons coming off the liquid surface). When summing all PMTs with only the
DAQ baseline flattening, these signals are lost in electronics noise, but they are clearly visible in the
sum of the more aggressively flattened data.
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Figure 7.4: Examples of the S2 filter output on Xenon10 pulses, showing- Top-left: a typical S1
pulse, Top-right: a typical S2 pulse, Bottom: a single-electron S2. In each plot, the dark blue
line shows the input (flattened and summed) waveform, the green shows b(a2) (y), the cyan shows
m(a2−a1)

(

b(a1) (y)
)

, and the red shows the final filter output (green minus cyan), where we have
taken a1 = 10 samples (100 ns) and a2 = 100 samples (1 µs). In the S1 example, the entire signal
is contained within a 200 ns box, so the green and cyan lines are exactly on top of each other, and
filter output is identically zero.

will change depending on detector performance.

7.2.3 Position Reconstruction

The great advantage of a multi-PMT detector is the ability to reconstruct event locations in 3-

D by measuring the x-y location of the S2 light. This reconstruction is done using the χ2 or

maximum-likelihood methods described in [55], comparing the observed hit pattern in the top PMT

array to that expected as a function of the x-y position of the event. The expected hit pattern is

given by simulations (including effects such as reflections from the liquid surface and walls of the

chamber), as shown in Fig. 7.5. The position reconstruction is verified by comparing the resulting
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Figure 7.5: Monte Carlo simulation of S2 light in Xenon10. The red circle indicates the active
region of the detector, and the green squares are the top-array PMTs. The color histogram shows
the number of S2 photons arriving in each bin in the top-PMT plane for an event at X ≈ 60 mm
and Y ≈ 40 mm. A single S2 is typically concentrated in one or two top PMT’s. Plot courtesy of
John Kwong, originally appearing in [44].

spatial distribution events with that expected from a Monte Carlo for a given source. The most

useful comparison is to a source known to be uniform in the detector, such as the activated xenon

calibration discussed in Section 7.3.2.

7.3 Detector Calibration

There are three calibration tasks to be performed in any large detector. The position dependence

of the charge and light gains must be measured and corrected for, the absolute charge and light

gains measured, and the nuclear and electron recoil bands characterized to determine the WIMP

acceptance region and background leakage rate. The challenge for each of these is to produce the

necessary events in the middle of the detector. Band characterizations are particularly difficult in a
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large detector.

7.3.1 Position Dependent Corrections

Position dependent corrections require a peak (fixed energy event) occurring throughout the active

volume in the detector. Photo-absorption peaks are inadequate, since the low energy gammas

required for a clean peak do not penetrate to the center of the detector, but there are several nuclear

transitions in xenon giving internal conversion electrons that may be used. The 129Xe isotope

(26.4% abundance) has two accessible excited states, one at 39.58 keV (0.97 ns half-life) which may

be excited by inelastic neutron scattering (see Chapter 5), and one at 236.14 keV (8.88 day half-life)

that undergoes a two-step decay (196.56 and 39.58 keV), both typically through internal conversion.

There is also a metastable state in 131Xe at 163.93 keV (11.84 day half-life) that gives a single

internal conversion electron (nuclear data from [59]). The two meta-stable states are produced by

exposing a xenon sample to a neutron source [107], and the activated xenon is then added to the

detector. This was done following the WIMP search runs in the Xenon10 experiment. An alternative

method using m83Kr (half-life 1.8 hours) is described in [104].

Figure 7.6 shows the position dependence in r and z of the 164 keV S1 in Xenon10. This

dependence comes from the varying light collection efficiency with event position, and does not

appear to depend on azimuthal angle. The x-y position dependences of the 40 and 164 keV S2’s are

shown in Fig. 7.7. The variation in S2 with position is due to the warping of the anode grid, and can

be seen in the S2 pulse-width as well as the integral. A shorter S2 pulse (i.e., shorter path length

in gas) corresponds to a larger S2, indicating that the increased field with the warping grid has a

greater effect than the reduced gas region. Also note the change in the S2 map between the neutron

data (40 keV peak) and activated xenon data. This may be due to liquid level or bell pressure

changes when the activated xenon was added. These S1 and S2 maps are used to adjust measured

S1 and S2 values to the S1 and S2 an event would have had, had it occurred in the center of the

detector. See [44, 55] for details on the construction of position dependent correction maps.

7.3.2 Absolute S1 and S2 Calibrations

In Section 5 we used the 122 keV photo-absorption peak as a reference to find the absolute S1 and

S2 calibration in Xed. This can be done in a large detector as well, but requires robust position-

dependent corrections since the photo-absorption events will occur only at the edge of the detector.

The 164 and 236 keV activation lines occurring throughout the detector would be ideal, but to date
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Figure 7.6: Position dependence of the 164 keV 131mXe decay S1 signal in Xenon10. The top-left
shows the S1 in all PMTs, the top-right the S1 in bottom PMTs only, and the bottom the S1 in
top PMTs only. The depth is given in terms of drift time (∼2 mm/µs). No significant azimuthal
dependence was observed. Plot courtesy of John Kwong, originally appearing in [44].

the field dependence of the charge and light yield for these peaks has not been measured.

An alternate calibration technique is to measure the single-electron S2’s from electrons popping

off the liquid surface. These are present at some level in all Xenon10 data, and their source is

uncertain. Most of these electrons occur at the edge of the detector, indicating that they may be

charge that was trapped on the walls and later freed, but many also occur in the fiducial region.
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Figure 7.7: Position dependence of the S2 integral (left) and width (right) for 164 keV (above) and
40 keV (below) events in Xenon10. The asymmetric patterns are likely due to warping of the anode
mesh. A wider gas gap (larger S2 width) corresponds to a smaller S2 amplitude, indicating that
the changing electric fields with grid separation are the dominant factor in the S2 variation. Plot
courtesy of John Kwong, originally appearing in [44].

These may be electrons from previous events that failed to extract into gas, although the mode for

subsequent extraction is unclear. Higher event rates give a higher rate of these single electrons.

Figure 7.8 shows the single electron signal in the Xenon10 neutron data. These pulses are

identifiable as S2’s based on timing (1 µs pulse width) and the division of light between top and

bottom PMT arrays. Taking this for our absolute S2 calibration (i.e., assuming 100% efficiency

for drifting electrons from the event site and extracting them into the gas) we can find the S1

calibration from any peak with known energy, using the W-value found in Chapter 4. With the

absolute calibration, we can separate out the uncorrelated S1, S2, and recombination fluctuations
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Figure 7.8: Single electron S2’s in the Xenon10 neutron calibration data. The plot shows the total
signal in the bottom and top PMT arrays for S2-like pulses (width of ∼1 µs) within the fiducial
radius (80 mm), after position corrections. The division of signal into top and bottom PMTs verifies
that this light originates in the gas gap (S2 region).

as before, shown in Fig. 7.9 for the 40, 164, and 236 keV peaks in Xenon10.

7.3.3 Nuclear Recoil Measurements

Nuclear recoil calibration is necessary to determine the WIMP signal and measure the efficiency of

any cuts applied to the data. These calibrations are done exactly as in Xed, using a 252Cf or AmBe

neutron source (see Fig. 7.10), but with the complication that many events are now multiple scatters.

The neutron interaction length in liquid xenon is ∼15 cm [62], so Xenon10 still sees single scatters

throughout the detector volume, but next generation detectors may have to use multiple-scatter or

edge events for calibration.

Multiple scatters give a single S1 that is sum of the S1’s from each individual scatter, plus one S2

for each scatter (assuming the scatters are separated spatially). If we take the sum of the individual
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Figure 7.9: Fits to the 40, 164, and 236 keV nuclear excitation peaks in Xenon10, using the single
electron peak for S2 calibration. After position dependent corrections, S2 fluctuations are evidently
very small, but S1 fluctuations are larger than expected. This is somewhat suspect — the activated
xenon data suggests a non-linearity in the S1 response. To fit both 164 and 236 keV peaks with linear
calibrations in S1 and S2, the signal from a single electron should be 27.3 photo-electrons (using
Eq. (4.26)), while the single electron peak in the activated data appears at 20.1 photo-electrons. This
large discrepancy can be resolved by allowing the S1 calibration to fall by ∼5% between the 164 and
236 keV peaks. Alternatively, there may be less than 100% extraction efficiency for electrons at the
phase boundary. This would produce a difference between the S2’s corresponding to a single-electron
extracted from the event site and a single-electron extracted from the liquid surface. These issues
are unresolved in Xenon10, as they do not significantly affect the WIMP limit.
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Figure 7.10: Nuclear and electron recoil bands in Xenon10. The nuclear recoils (left) are elastic neu-
tron scatters from an AmBe neutron source, and electron recoils (right) are Compton scatters form
137Cs. The data is shown after all position-dependent corrections, basic cuts, fiducial cuts, and qual-
ity cuts (see Section 7.4.1). As in the previous chapters, we plot using the recombination independent
energy scale, taking L = 0.25 for nuclear recoils (note, this is not the scheme used in the Xenon10
standard plots). The S1 threshold (2 photo-electrons) and S2 threshold (300 photo-electrons) set in
the analysis are clearly visible in the upper-left and lower-left of the plots, respectively.
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Figure 7.11: Double elastic scatters by AmBe neutrons in Xenon10. The left plot shows the double-

recoil band in log10

(

ne

nγ

)

versus nuclear recoil energy, taking the sum of the two observed S2’s to

determine ne. The dashed line indicates the single-scatter centroid from Fig. 7.10. The right plot
compares the observed S1 to that expected based on the two S2’s observed. The mean and width

of the distribution in log
(

S1exp

S1obs

)

is consistent with the single scatter nuclear recoil band. Next

generation detectors may need to rely on multiple scatters when calibrating the nuclear recoil band
in the center of the detector.

S2’s as the charge signal for the event, the resulting multiple scatter band lies above the single

scatter band (see Fig. 7.11). This can be quantified by comparing the observed S1 to the sum of

the expected S1’s associated with each S2. Thus, the charge yield of the multiple scatter band can

be predicted from and used to verify the expected yield of the single scatter band. Determining cut

efficiencies on single scatters using the multiple scatter band may be more problematic, especially

for cuts based on PMT hit patterns (see Section 7.4.1).

7.3.4 Discrimination Measurements

Electron recoil band measurements face the same problem as nuclear recoil measurements — single

scatter events in the center of the detector from outside sources are very rare (the maximum gamma

interaction length in xenon is ∼10 cm, corresponding to 4 MeV gammas [61]). In fact the situation

is worse than for nuclear recoils, which typically forward scatter, giving the low energy recoils we

are interested in. The Compton scattering spectrum is relatively flat and extends to a much higher

energy, so that multiple Compton scatters tend to have at least one energetic scatter that swamps

the signal from any WIMP range scatters.

The Xenon10 detector is small enough to still see single scatter events throughout, but collecting

statistics at low energies was difficult. A high-energy veto was required to prevent triggering on
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Figure 7.12: Electron recoil band profile in Xenon10, based on the 137Cs calibration. The histogram
shows the distribution in ∆ log10
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Gaussian fit to the peak, with a dashed line in regions not included in the fit. The fit region extends
to ±3σ. The tail at low charge yield may include Gamma-X events that were not tagged by the
cuts. The tail at high charge yield may also be due to strange pathologies, but since shifts to higher
yield do not result in leakage, these events were not studied.

events above the interesting energy range so that DAQ speed did not limit data taking. This was

accomplished, but the detector itself began to display poor behavior when the physical event rate

was over 100 Hz. This behavior included light flashes in the detector unassociated with clean events

(probably spurious S2’s from electrons popping off the liquid surface), especially in the millisecond

following a large S2. With the physical trigger rate for quality data limited to ∼50 Hz, the electron

recoil calibration statistics gathered were in the end equal to the electron recoil background in

WIMP data. Discrimination numbers were produced, as well as a band profile (see Fig. 7.12), but

no background subtraction was attempted.

For larger detectors still, electron recoil calibration with a gamma source becomes unmanageable,
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except at the edges of the detector where single scatters are still possible. There is interest in using

an internal beta source for calibration, such as 3H (18.3 keV endpoint, 12.33 year half-life). If

xenon recirculation operates in batch mode, the source could simply be injected in the recirculation

loop downstream of the purifier, travel through the volume, and be removed on the next pass

through the purifier. Such techniques are currently under development for LUX. Without this or a

similar solution, discrimination measurements in large detectors will depend on edge events and/or

measurements in smaller detectors.

7.4 WIMP Analysis

At last the purpose of a large scale detector is to detect WIMP recoils or set a limit on the WIMP-

nucleon cross section, and in this final section we outline the steps of a WIMP analysis. We end

with the Xenon10 limit on the spin-independent WIMP-nucleon cross-section.

7.4.1 WIMP candidate selection

The first step in a WIMP analysis is to determine the rules for accepting events as WIMP candidates.

These cuts on the data fall into three general categories, which we will term Basic Cuts, Background

Cuts, and Quality Cuts. Basic Cuts are cuts with an assumed 100% acceptance for WIMP events,

such as rejecting multiple scatters and obvious noise triggers. Background Cuts include the cut in

log
(

S2
S1

)

to remove electron recoils and a fiducial cut to remove single scatters at the edge of the

detector. Quality cuts target any recurring pathological behaviors in legitimate background events

that may cause them to leak into the WIMP acceptance region. The efficiency of Background and

Quality Cuts must be measured using the nuclear recoil data and included when calculating WIMP

recoil rates. All cuts must be frozen before unblinding WIMP search data, to avoid tailoring cuts to

remove specific WIMP candidates from the data.

Background Cuts are chosen to optimize limits based on WIMP exposure (favoring weak cuts)

and estimated background (favoring strong cuts). Often this is done so that the expected background

in the WIMP search data is ∼1 event. In Xenon10, we simply set the log
(

S2
S1

)

threshold for 50%

acceptance as in the simulations in Chapter 5, while the fiducial volume was set primarily to exclude

Gamma-X events (see Section 7.4.2 and Fig. 7.15).

Quality cuts fall into three general categories: PMT hit patterns, pulse timing characteristics,

and general detector health. Hit pattern cuts target events that would have been rejected with an

accurate position reconstruction, but were misidentified. These include the Gamma-X cuts listed
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in Section 7.4.2 and cuts targeting multiple-scatters with the same drift-time. Pulse timing cuts

use various measurements of pulse width, rise time, and fall time to reject events with atypical S1’s

and S2’s. General health requirements include low baseline noise and a limit on the total signal not

contained in either S1 or S2 (i.e., the spurious photo-electron rate). Many of these cuts are also

used to distinguish bona-fide events from non-events arising from electronics glitches or scatters in

the gas or outside the active region, and to some extent it is a judgement call at what point the cut

becomes a Quality Cut (and therefore included in the WIMP efficiency) rather than a Basic Cut.

The general procedure followed by Xenon10 is to develop Quality Cuts targeting leakage events

in electron recoil calibration data and unblinded background data, verify that these cuts do not

significantly reduce nuclear recoil acceptance in the neutron data, and then apply the cuts to a

second set of electron recoil data to verify their effect on leakage events. Many proposed cuts fail

this final test, turning out to have been statistical flukes in the earlier data. (In fact, an additional

high statistics electron recoil calibration dataset would have helped tune the cuts in Xenon10, as

was apparent when analyzing the WIMP search data. This points out the need for high statistics

in-situ electron recoil calibration.) The final sets of cuts used for the Xenon10 analysis are discussed

in detail in [55]. Of these, the most important to future detectors are the ‘Gamma-X’ cuts, discussed

next.

7.4.2 Non-Gaussian Leakage

The primary source of leakage in Xenon10, aside from the normal fluctuations of electron recoils

into the WIMP region due to light-collection and recombination as described in Chapter 5, was

the ‘Gamma-X’ event. These events consist of a single Compton scatter in the active region of the

detector, plus a second scatter in one of the non-active liquid regions where S1 light is produced

but no charge is collected. These include the reverse-field region between the cathode and bottom

PMT array, the liquid outside the walls of the active region, the liquid <1 mm inside the active

region wall, and the liquid in the space left for the resistor chain between the field shaping rings.

By collecting the S1 light from two scatters and the S2 from one, the S2
S1 ratio of these events falls

and they may be classified as nuclear recoils. Since these are multiple scatter events they tend to

appear at higher energies, but they are problematic at the high end of the WIMP region.

Gamma-X events are targeted by the fiducial cut (the active region scatter tends to be near the

cathode or edge of the detector) and by their S1 hit pattern, looking for either a concentrated hit

pattern in the bottom array (for reverse-field region scatters) or an excess of light in edge PMT’s
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Figure 7.13: Left: An illustration of a Gamma-X event in Xenon10, where the missing-S2 scatter
occurs reverse field region between the cathode and bottom PMTs. Right: The S1 hit pattern from
an event identified with this behavior. This figure on the left is courtesy John Kwong, appearing in
[44], and the figure on the right is courtesy of Peter Sorensen, originally appearing in [55].

Figure 7.14: Left: An illustration of a Gamma-X event in Xenon10, where the missing-S2 scatter
occurs in the hole for the resistor chain setting the voltages on the field shaping rings. Right: The
S1 hit pattern from an event identified with this behavior. This figure is courtesy of Peter Sorensen,
originally appearing in [55].

(for outer- and resister-chain region scatters). The primary Xenon10 analysis targeted these events

using thresholds on the ratio of S1 light in the top and bottom PMT arrays and on the rms spread

in the signal among bottom array PMTs, while a secondary analysis set thresholds on S1i

√
S1

S1bot
and

S1edge

S1 , where S1 is the total S1 signal in photo-electrons, S1bot is the S1 signal in the bottom PMT

array, S1i is the signal in the most-hit PMT, and S1edge is the S1 signal in bottom-edge PMT’s. See
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Figure 7.15: The Xenon10 WIMP search results, originally appearing in [31]. On the left, events
passing Basic, Quality, and Fiducial cuts are plotted by energy and charge yield, showing ten WIMP
candidates in the WIMP acceptance region (these events are discussed in the text). On the right,
events passing Basic cuts are shown by position in the detector, with +’s indicating events in the
WIMP acceptance region that were rejected by the Quality cuts, and ⊕’s indicating events in the
WIMP acceptance that were not rejected. Most of the WIMP region events (+’s and ⊕’s) outside
the fiducial region towards the wall and bottom of the chamber are attributed to Gamma-X events.
The Yellin maximal gap method used by Xenon10 to report a limit picks out the gap between events
1 and 2, where the WIMP signal is expected to be highest, to set the limit.

Figs. 7.13 and 7.14 for example Gamma-X hit patterns from reverse field region and resistor-ladder

events.

7.4.3 Calculating a Dark Matter Limit

Once a WIMP acceptance region is defined, a fiducial region chosen, and Basic and Quality Cuts

fixed, the WIMP search data is unblinded, giving (possibly) a population of WIMP candidate events

(shown in Fig. 7.15 for Xenon10). These events are compared to the expected WIMP recoil spectrum

for a given WIMP mass (making assumptions about the WIMP velocity distribution and local

density, as in Chapter 2) to produce a limit on the WIMP scattering cross-section.

Limits are generally presented as confidence intervals on the WIMP scattering cross-section as

a function of WIMP mass. A confidence interval for a physical parameter σ is defined by a set

of intervals [σ1, σ2] corresponding to the possible results of the experiment, where, for any actual

value of σ, there is a probability α that the experiment will produce a result giving an interval such
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that σ ∈ [σ1, σ2], where α is the confidence level. That is, for any real σ, there is a subset X(σ) of

experimental results that will give a confidence interval containing σ, and we require

∀σ :
∑

x∈X(σ)

P (x|σ) = α, (7.6)

where x indicates a possible result, and P (x|σ) is the likelihood function, or the probability of the

result x given the physical parameter σ. Confidence intervals are not unique — there are many

choices of σ1 (x) and σ2 (x) that satisfy Equation 7.6.

If we ignore the energies of the candidate events and the shape of the expected WIMP recoil

spectrum, then our ‘result’ is simply the number of events observed, and our confidence intervals

are determined by Poisson statistics. Speaking in terms of the expected number of WIMP events ν

rather than the cross-section σ, the likelihood for observing n events is

P (n|ν) =
e−(ν+b) (ν + b)n

n!
, (7.7)

where b is the expected number of background events (if known). If one decides a priori to set an

upper limit (i.e., ν1 = 0), then ν2 is given by: (see [108] for a detailed construction)

1 − α =

n
∑

k=0

e−(ν2+b) (ν2 + b)
k

k!
. (7.8)

Of course, most experiments also want to claim a discovery if a signal is detected. Feldman and

Cousins present a technique for setting confidence intervals without deciding beforehand whether

to give a one or two sided interval by choosing intervals based on ratios of likelihoods [108]. For

example, in the zero background case with no events detected, Eq. (7.8) gives the 95% confidence

limit at 3.00 events, while Feldman and Cousins give 3.09, paying the penalty for the right to choose

a two-sided interval had there been a signal. The Feldman-Cousins approach has other advantages

as well — Eq. (7.8) can give negative upper limits on ν (resulting in an empty confidence interval)

if significantly fewer events are observed than expected in the background. On the one hand, this

unphysical limit indicates a poor fit to the background model, but Feldman and Cousins allow one

to still produce a physical confidence interval.

If the background is unknown or not well known, as was the case in Xenon10, one must take

b = 0 in Eq. 7.8 (or in the Feldman-Cousins construction), limiting one’s ability to set a limit in

the face of leakage events. If the leakage events have a different energy spectrum than the expected
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signal, however, this information may be used to improve the limit, as done by Yellin [90]. The

simplest of Yellin’s methods (and the one used by Xenon10) looks at the ‘maximum gap’ between

leakage events in the data. Given a set of n WIMP candidate events with energies {Ei}, there is a

corresponding set of ‘gaps’,

xi =

∫ Ei+1

Ei

dE′NMχ,σ
(E′) , (7.9)

where i runs from 0 to n, with E0 the lower bound of the WIMP acceptance region and En+1 the

upper bound, and NMχ,σ is the differential spectrum (in number of events per unit energy) expected

for WIMP recoils in the specified acceptance region. In other words, xi is the number of WIMP

events expected in the (i+1)th gap in the WIMP search data. For a given total number of expected

WIMP events, µ =
∑n+1

i=0 xi, the probability that the largest gap is smaller than x is

C0 (x, µ) =

⌊µ

x ⌋
∑

k=0

(kx − µ)
k
e−kx

k!

(

1 +
k

µ − kx

)

, (7.10)

where
⌊

µ
x

⌋

indicates the largest integer less than or equal to µ
x . Equation (7.10) is derived by Yellin

[90]. It has the expected properties, C0 (0, µ) = 0, C0 (µ, µ) = 1−e−µ, and C0 (x, µ) = 1 when x > µ

(the largest possible gap is µ, corresponding to zero events, with likelihood e−µ). It also satisfies

the recursion relation (when x < µ),

C0 (x, µ) =

∫ x

0

dx′e−x′

C0 (x, µ − x′) , (7.11)

where the terms in the integral are the probability dx′e−x′

that the first event occurs after a gap x′

and the probability C0 (x, µ − x′) that in the remainder of the acceptance region the largest gap is

smaller than x.

Yellin’s maximal gap method is generally used to give an upper limit (single-sided confidence

interval). The maximum gap x and total events expected µ are functions of the WIMP mass and

cross section (entering in Eq. (7.9)), and the single-ended confidence interval at WIMP mass Mχ

for σ is [0, σ2], where C0 (x (Mχ, σ2) , µ (Mχ, σ2)) = α. For zero measured events (x = µ), this

gives µ (Mχ, σ2) = − ln (1 − α), the same as in Eq. (7.8), but when there are leakage events the

Yellin method gives the better limit. Yellin also presents the ‘optimal gap’ method in [90], in which

gaps containing 1, 2, .. n events are also considered when constructing the limit — the additional

spectral information results in a slightly tighter limit. It should also be possible to use Eq. (7.10)

or the equivalent in Yellin’s optimal gap method to produce two-sided confidence intervals using
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the procedure laid out by Feldman and Cousins for the Poisson case, but this is not widely done.

(The strength of the Yellin method is in setting a limit with an unknown background, and if one’s

background is unknown it is inappropriate to produce a two-sided confidence interval.)

The Xenon10 experiment (and future xenon experiments) benefit greatly from the maximal gap

treatment when setting limits. The WIMP signal is strongest at low energies, where both the leakage

due to recombination fluctuations (Chapter 5) and the leakage due to Gamma-X events are smallest.

In the final Xenon10 data (Fig. 7.15), events 3, 4, 5, 7, and 9 are likely normal electron recoil leakage,

while 2, 6, 8, and 10 are likely Gamma-X events. Event 1 appears to be an extremely low energy

electron recoil with an electronics glitch that was interpreted by the analysis as an S1. Regardless of

these a posteriori explanations, all these events are treated as possible WIMPs when setting a limit.

The Yellin method picks the gap between events 1 and 2 to set the cross section limits. There are

systematic uncertainties in the size of the gap, due primarily to uncertainties in the nuclear recoil

energy scale which enters in Eq. (7.9). The limit shown in Fig. 7.16 for spin-independent interactions

takes Leff = 0.19 (with the usual 122 keV photo-absorption reference), and the changes in the limit

with subsequent Leff measurements are given in [79, 80].

7.5 Conclusions on WIMP Hunting

As the Xenon10 experiment has demonstrated, xenon TPCs are a powerful detector technology

for direct detection of WIMPs. As these detectors continue to grow in scale, the largest hurdles

appear to be purity for charge drift (and the required high recirculation rates) and electron recoil

calibration. Xenon10 shows that it is possible to set a strong limit without background subtraction

using Yellin’s maximum-gap method, but a better understanding of backgrounds will be necessary to

claim a discovery. This will require either a high statistics electron recoil calibration throughout the

detector volume, or a calibration at the edge of the detector or in a smaller detector coupled with a

solid understanding of the fluctuations leading to leakage events, as was put forward in Chapters 4–6.

A robust model for and calibration of Gamma-X events will also be necessary.

Future experiments should be performed with potential discovery in mind. If we did not rea-

sonably expect WIMPs to exist, surely 20 years of null results would have discouraged us by now.

Theories have adapted over time to the lower limits, but WIMPS remain in the minds of many the

primary dark matter candidate, and we are assured by theorists that we are within a factor of 102 (or

surely 103) of either a discovery or a very significant null result, at least for spin-independent inter-

actions. Whether using xenon TPCs or other technologies, dark matter searchers must be prepared
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Figure 7.16: The Xenon10 90% C.L. limit on the spin-independent WIMP-nucleon cross section,
originally appearing in [31]. The next-strongest limit at the time (CDMS [109]) is also shown.
CDMS has since released a new limit, passing the Xenon10 limit for WIMP masses above 40 GeV
[30].

at last for a positive signal! Right now it depends who you ask whether, in their heart of hearts,

a handful of WIMP events appearing in the detector would be a dream come true or a nightmare.

In Xenon10 we were thrilled when we unblinded the data and saw no events in our most sensitive

region, and rightly so given the goals of the detector! But now we need to shift modes. When the

box is opened and a WIMP signal is seen, we should respond with even greater jubilation — we are

not there yet. The aim of this work has been to lay down the physics of background discrimination

in liquid xenon, bringing us closer to the understanding we need in order to one day unveil our data

and shout “Eureka! We have found it!”
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Appendix A

Electrostatics of Wire Grids

Electrostatic simulations of xenon TPCs are generally done using software packages such a Maxwell

[110], but for the simple case of parallel wire grids (as in Xed) the analytical calculation is straight-

forward. We consider first a chamber with two parallel plates separated by a wire grid (see Fig. A.1).

The bottom electrode is held at potential V1 and is a distance b1 below the grid, and the top is at

potential V2 a distance b2 above the grid. The grid consists of wires of radius r with spacing a, held

at voltage V0. By imposing periodic boundary conditions, one can solve for the potential everywhere

in the chamber, as done in [111]. At z satisfying

e2π|z|/a

2
≫ 1, (A.1)

where z = 0 at the wire grid plane, the electric fields are uniform and may be written in terms of

the ‘sheet’ potential of the grid, Ṽ0,

E1 =
V1 − Ṽ0

b1
, E2 =

Ṽ0 − V2

b2
. (A.2)

The sheet voltage is related to the wire voltage by

V0 = Ṽ0 + ∆E
a

2π
ln
( a

2πr

)

, (A.3)

with ∆E = E2 − E1. Given the voltages of the top and bottom plates and the wire grid, one can

substitute E1 and E2 from Eq. (A.2) into Eq. (A.3) and solve for Ṽ0.

We generalize to a series of n wire grids with pitch ai, wire radii ri, and voltage Vi, spaced
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Figure A.1: Wire grid between two parallel plates, with wires perpendicular to the page

between two plates with distances di between the ith and (i + 1)th grid (d0 is the distance between

the bottom plate and the bottom grid, and dn the distance between the top grid and top plate).

The problem is to find the fields Ei and sheet voltages Ṽi given the voltages on each electrode. The

above equations now give us

Ei =
Ṽi − Ṽi+1

di
, (A.4)

where the Ei’s follow the same numbering as the di’s, and

Vi = Ṽi + (Ei − Ei−1)Xi, (A.5)

where

Xi =
ai

2π
ln

(

ai

2πri

)

. (A.6)

The bottom and top plates have X0 = Xn+1 = 0. Substituting Eq. A.4 into Eq. A.5, we have

Vi = − Xi

di−1
Ṽi−1 +

(

1 + Xi

(

1

di−1
+

1

di

))

Ṽi −
Xi

di
Ṽi+1, (A.7)

with V0 = Ṽ0 (bottom plate) and Vn+1 = Ṽn+1 (top plate). Thus we can write Vi = Mij Ṽj , summing

over repeated indices, where M is a (n + 1)× (n + 1) matrix containing the coefficients in Eq. (A.7).

Inverting the matrix M we get Ṽj = M−1
ji Vi, giving us the sheet voltages Ṽj and thus the electric
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fields in terms of the wire grid voltages Vi.

Next we need to add the liquid-gas barrier to the problem. Suppose the liquid level is between

the kth and (k + 1)th electrodes, at a fractional distance x. The fields above and below the liquid

surface are given by

Ek,liq =
Ṽk − Vℓ

xdk
, Ek,gas =

Vℓ − Ṽk+1

(1 − x) dk
, (A.8)

where Vℓ is the potential at the liquid surface. Since Ek,gas = ǫrEk,liq , where ǫr ≈ 1.96 is the ratio

of the dielectric constants in liquid and gas xenon, this potential is given by

Vℓ =
Ṽkǫr (1 − x) + Ṽk+1x

ǫr (1 − x) + x
, (A.9)

The liquid surface modifies Eq. (A.5) for Vk and Vk+1, the former using Ek,liq for Ek, and the latter

Ek,gas. Using Eq. (A.8,A.9) we find the analog of Eq. A.7 for Vk and Vk+1, giving new coefficients

in the corresponding rows in M . We still simply invert the matrix M to find the sheet voltages in

terms of the applied voltages.

There are two other problems of interest, aside from calculating the fields between grids. First,

we need the condition to ensure that a grid is transparent to drifting charges. This requires that no

field lines end on the grid, or that the surface charge density on the wire have everywhere the same

sign as the drifting charge. Using the single-grid setup for ease of notation, the mean charge density

around the wire is given by

σ0 =
λ

2πr
=

σsa

2πr
=

∆Eǫa

2πr
, (A.10)

where λ is the linear charge density along the wire, σs is the average charge density in the wire

grid plane, and the last equality is Gauss’ law. The background electric field EB = E1+E2

2 adds a

sinusoidal charge distribution to the wire,

σB = 2ǫEB cos θ, (A.11)

where θ is the angle around the wire. For transparency, we require |σ0| > |σB | so that the surface

charge on the wire is all one sign. This gives the transparency condition

∣

∣

∣

∣

∆E

EB

∣

∣

∣

∣

>
4πr

a
, (A.12)
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or, for transparency to upward-drifting charge,

|E2| > |E1|
a + 2πr

a − 2πr
. (A.13)

The final problem concerns direct charge readout with a charge sensitive preamp attached to one

of the grids. The preamp integrates the image current due to the drifting electrons, but a negative

image can remain after the electrons are collected due to the slow moving positive ions still in the

chamber, reducing the total signal. In Xed we drift electrons past two grids before collecting them

to shield the preamp from this positive charge. To calculate the shielding efficiency, we use Green’s

Reciprocity Theorem,
∫

dV ρ1φ2 =

∫

dV ρ2φ1, (A.14)

where ρ1 and ρ2 are two charge distributions resulting in potentials φ1 and φ2, and the integrals are

over all space. To determine the image charge on an electrode from a charge q at x, we take φ1 and

ρ1 to be the chamber with the ith grid at potential Vi, all other grids grounded, and no free charges.

We take φ2 and ρ2 to be the chamber with all electrodes grounded and a charge q at x. Since ρ1

is non-zero only on the grids, and φ2 is zero on the grids, the first integral in Eq. A.14 vanishes.

Evaluating the second integral, we find

qVi (x) + qiVi = 0, (A.15)

where qi is the image on the ith grid, and Vi (x) is the potential at x with the ith grid at Vi.

The ratio − qi

q = Vi(x)
Vi

can be calculated from the relevant coefficients of M−1 above, since Vi (x)

is determined by the sheet voltages of the grids above and below x. If x is between the kth and

(k + 1)th grids, at a height z above the kth grid, then

Vi (x) = Ṽk
dk − z

dk
+ Ṽk+1

z

dk
, (A.16)

which, since Ṽj = M−1
ji Vi, gives

−qi

q
= M−1

ki

dk − z

dk
+ M−1

k+1,i

z

dk
. (A.17)
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Appendix B

Maximum Likelihood Histogram

Fitting

The fits in Chapters 4 and 5 to peaks and bands in the data are maximum likelihood fits to finely

binned histograms, performed using the MATLAB R© fminunc routine. This appendix describes the

fit technique.

A maximum likelihood fit is a generalization of the χ2 fit to data with non-Gaussian error-bars.

For a set of physical parameters Θ, the likelihood of a result X is the conditional probability of the

result for a given set of parameters,

L (X, Θ) = P (X |Θ) . (B.1)

The maximum likelihood estimate for Θ is the set of parameters maximizing L (X, Θ) for the mea-

sured result. In the context of the usual χ2 fit, the result X is a set of independent measurements xi,

each sampled from a Gaussian distribution with width σi and mean µi, where the µi’s are functions

of Θ. The likelihood is then given by

L =
∏

i

1

σi

√
2π

e
− (xi−µi)

2

2σ2
i , or (B.2)

ln (L) = −
∑

i

[

ln
(

σi

√
2π
)

+
(xi − µi)

2

2σ2
i

]

= −χ2

2
+ constant. (B.3)

Thus, finding the maximum likelihood estimate for Θ is same as minimizing χ2.
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When fitting a histogram, our result is a set of bin counts ni, each of which follows a Poisson

distribution with mean νi (Θ), giving a likelihood function

L =
∏

i

e−νiνni

i

ni!
, (B.4)

and the log-likelihood

constant − 2 ln (L) = χ2
P =

∑

i

{

2
(

νi − ni + ni ln
(

ni

νi

))

ni > 0,

2νi ni = 0,
(B.5)

where the left-hand side of Eq. (B.5) is the equivalent of χ2 in Eq. (B.3), with the constant chosen

so that the right-hand side is zero when νi = ni. We call this quantity χ2
P , for Poisson chi-square.

When fitting a set of data points to a distribution, it is possible to find the maximum likelihood

fit directly without binning the data, but it is often computationally simpler to bin the data and

minimize χ2
P . The two fits converge as bin size goes to zero. The histogram approach is especially

helpful when fitting a sub-region of the data, as when fitting a Gaussian about a peak and ignoring

tails — one simply excludes the bins outside the fit region from the sum in Eq. (B.5). Typically

we chose bins such that 〈ν〉 ≈ 1. In general, smaller bins preserve more information from the

original data and come closer to the unbinned maximum likelihood fits, but rounding errors can be

problematic when νi << 1 (in particular, χ2
P blows up when νi = 0 and ni > 0) and huge numbers

of bins slow down the fit.

Once bins are chosen, we write functions for νi in terms of θa (where θa are the parameters

making up Θ). It is also useful to explicitly find ∂νi

∂θa
and ∂2νi

∂θa∂θb
. The minimization routine fminunc

performs better if given the gradient and Hessian of the function being minimized, which in terms

of the above derivatives are

∂χ2
P

∂θa
=
∑

i

[

2

(

1 − ni

νi

)

∂νi

∂θa

]

, (B.6)

and

∂2χ2
P

∂θa∂θb
=
∑

i

[

2

(

1 − ni

νi

)

∂2νi

∂θa∂θb
+

2ni

ν2
i

∂νi

∂θa

∂νi

∂θb

]

. (B.7)

Errors on fit parameters may be determined from the Hessian in Eq. (B.7) evaluated at the

fit point. As in the normal χ2 fit, the 1σ contour for fit parameters occurs at χ2
P = χ2

P + 1.

Approximating χ2
P to be a parabola, the error on a one dimensional fit is then

σ2 [θ] = 2/
d2χ2

P

dθ2
. (B.8)
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This is equivalent to assuming the likelihood function L is Gaussian in θ and finding the variance. If

we have many fit parameters, then Eq. (B.8) holds for the eigenvectors of the Hessian. If these have

the normal basis θ̃b =
∑

a Uabθa (where U is unitary), then the error on the original fit parameters

is

σ2 [θa] =
∑

b

[

(Uab)
2
σ2[θ̃b]

]

, (B.9)

which is simply the usual error propagation, taking the errors in the θ̃b to be independent.
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Appendix C

RIVAL — A Nuclear Recoil Track

Monte Carlo

In Chapter 6 we refer to RIVAL, a home-built nuclear recoil track simulator that produces maps of

the ionization resulting from nuclear recoils in liquid xenon. The detailed results of this simulation

turn out to be unimportant in the context of the chapter, but for reference we document the Monte

Carlo here.

RIVAL (Recoiling Ions in Various Atomic Liquids) tracks nuclear recoil cascades, following daugh-

ter recoils down to a set tracking threshold, recording energy lost to sub-threshold nuclear recoils

and electronic stopping along the way. The inputs to the Monte Carlo include the tracking threshold

energy Eth, the electronic stopping power as a function of recoil energy Se(E), and the differential

elastic scattering cross section between nuclei, σ(E, Er), where E is the energy of the incoming nu-

cleus and Er is the energy given to the target nucleus. Nuclear scatters below the threshold energy

are not followed, so we define the nuclear stopping power,

Sn (E) =

∫ Eth

0

dErErσ (E, Er) , (C.1)

and the total ‘hard’ nuclear scattering cross-section,

σh (E) =

∫ E

Eth

dErσ (E, Er) . (C.2)

Note that we use units of energy×length2 for the stopping power, rather than energy/length.

Throughout this discussion, track lengths are multiplied by the number density of nuclei in the
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liquid, so that density does not enter into the equations. Include factors of density as appropriate

to give normal units.

The Monte-Carlo requires the probability distribution P (ℓ|E) of path lengths ℓ to the next hard

scatter for a nucleus with energy E, where by ‘hard’ scatter we mean a recoil resulting in another

tracked nucleus. To calculate this, we first find the range of the nucleus in the absence of hard

collisions,

R (E) =

∫ E

Eth

dE′ 1

Stot (E)
, (C.3)

where Stot(E) =
∑

Si(E) is the total stopping power, or in this case, Se(E) + Sn(E). The lower

limit of the integral in equation (C.3) is our tracking threshold Eth — when a recoil reaches this

energy, we stop tracking and assign the remaining energy loss to nuclear stopping. The energy of a

nucleus that began with energy E and has since traveled distance ℓ without a hard collision is

Ẽ (E, ℓ) = R−1 (R (E) − ℓ) , (C.4)

and we have,

P (ℓ|E) = σh

(

Ẽ (E, ℓ)
)

e
−
∫

ℓ

0
dℓ′σh(Ẽ(E,ℓ′)). (C.5)

The exponential is the probability for no hard scatters over the path length ℓ, and the term

σh

(

Ẽ (E, ℓ)
)

is the probability density for a hard scatter to occur at ℓ. The cumulative distri-

bution function (cdf) Cl(ℓ|E), which is the function acutally used in the Monte-Carlo, is given

by

Cl (ℓ|E) = 1 − e
−
∫

ℓ

0
dℓ′σh(Ẽ(E,ℓ′)). (C.6)

The cdf will have a maximum value Cl (R (E) |E) < 1, indicating that there is a finite probability

for the nucleus to fall below the threshold energy (i.e., travel its full range) without undergoing a

hard collision. Once the distance ℓ to the next hard scatter has been determined (by taking the

inverse-cdf of a random number from 0 to 1), the energy lost along the way due to a given stopping

power is

∆Ei (ℓ|E) =

∫ ℓ

0

dℓ′Si

(

Ẽ (E, ℓ′)
)

, (C.7)

where the subscript indicates the mode of energy loss. If ℓ = R (E) we add Eth to ∆En. One can

verify that ∆Etot = E − Ẽ(E, ℓ). Note that we are ignoring any straggling (statistical variations) in

the electronic or sub-threshold nuclear stopping powers.

Having taken the recoiling nucleus to the next hard scatter (if there is one), the cdf for recoil
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energies is

Cr (Er|E) =

∫ Er

Eth
dE′

rσ (E, E′
r)

σh (E)
, (C.8)

where E is now the energy of the nucleus immediately before the scatter. The recoil energy is

generated by taking the inverse-cdf of a random number from 0 to 1. The process now repeates with

two recoiling nuclei of energies Er and E − Er, and so on, generating a tree of recoils. For each

branch on the tree we record the ∆Ee and ∆En.

The spatial geometry of the tree is also readily calculated. Each segment between hard collisions

is taken to be a straight line, and the scattering angle at each collision is determined kinematically.

In the center-of-mass frame, the scattering angle between two equal mass objects is

θcm = 2 arcsin

(

√

Er

E

)

, (C.9)

which, with the target ion initially at rest, gives a lab frame scattering angle

θ = arctan

(

sin (θcm)

1 + cos (θcm)

)

, (C.10)

where θ is the angle (from 0 to π/2) between the initial and final trajectories of the incoming nucleus.

The target nucleus recoils at π/2− θ from the initial trajectory on the opposite side, and there is a

random azimuthal angle from 0 to 2π.

Of the above equations, the only input functions used directly by the Monte Carlo are Cl (ℓ|E),

Cr (Er|E), ∆Ee (ℓ|E), and ∆En (ℓ|E). We create lookup tables for these four functions, using the

built-in Matlab numerical integration package. The tables have fixed logarithmic spacing in E, ℓ,

and Er, allowing fast interpolation by the Monte Carlo.

For the results in Chapter 6, we use Eq. (4.10) and (4.11) for the electronic stopping power

and differential elastic scattering cross section, and take a tracking threshold of 10 eV. It is worth

noting that the procedure laid out above is exactly equivalent to the process described by Lindhard’s

integro-differential equation for electronic energy loss in a nuclear recoil cascade [37] if we take our

threshold energy to zero.

For use in our recombination model, we need a map of ionization sites in the track. We place ions

randomly along track pieces, weighted by electronic energy loss. Using the total electronic energy

loss to determine the number of ions to place simply reproduces the Lindhard result, which does

not match data. Instead, at each simulated recoil energy we assign the measured number of ions at

that energy to the average total energy loss in the simulated tracks at that energy. This is fixing the
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symptom, not the problem — the problem presumably lies in the stopping power and cross section

we have used. We also don’t have an actual measurement of the number of ions at a given energy,

rather, we have a measurement of the number of ions plus direct excitons. We take Nex

Ni
= 0.06, as

for electron recoils, but as indicated in Chapter 6, this may not be accurate for nuclear recoils. None

of these issues affect the conclusions in Chapter 6, where all we require from these simulations is the

overall track size, which at all simulated energies much smaller than than the critical box sizes in

our recombination model.
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