
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Integration of Openstack cloud resources in BES
III computing cluster
To cite this article: Haibo Li et al 2017 J. Phys.: Conf. Ser. 898 062033

View the article online for updates and enhancements.

Related content
Dynamic provisioning of local and remote
compute resources with OpenStack
M Giffels, T Hauth, F Polgart et al.

-

Dynamic VM Provisioning for TORQUE in
a Cloud Environment
S Zhang, L Boland, P Coddington et al.

-

Identity federation in OpenStack - an
introduction to hybrid clouds
Marek Denis, Jose Castro Leon,
Emmanuel Ormancey et al.

-

This content was downloaded from IP address 131.169.5.251 on 28/11/2017 at 17:06

https://doi.org/10.1088/1742-6596/898/6/062033
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022022
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022022
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032107
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032107
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022015
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022015

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062033 doi :10.1088/1742-6596/898/6/062033

Integration of Openstack cloud resources in BES III
computing cluster

Haibo Li1, Yaodong Cheng1, Qiulan Huang1, Zhenjing Cheng1,2 and Jingyan Shi1
1IHEP computing center, 19B Yuquan Road, Beijing 100049, China
2University of Chinese Academy of Sciences, Beijing, China

E-mail: lihaibo@ihep.ac.cn

Abstract.Cloud computing provides a new technical means for data processing of high energy
physics experiment. However, the resource of each queue is fixed and the usage of the resource
is static in traditional job management system. In order to make it simple and transparent for
physicist to use, we developed a virtual cluster system (vpmanager) to integrate IHEPCloud
and different batch systems such as Torque and HTCondor. Vpmanager provides dynamic
virtual machines scheduling according to the job queue. The BES III use case results show that
resource efficiency is greatly improved.

1. Introduction
As a new computing model, cloud computing has an important impact on the high energy physics
(HEP) community. As HEP has great demands for high throughput computing (HTC) workloads,
cloud computing usingvirtualization technology can provide flexible computing resources. Such a
situation often occurs when the resources of one experimental group are not enough, the resources of
other resources are still idle. Cloud computing makes it possible for the sharing of computing resource
among multiple experiment group.

The IHEP Public Service Cloud Computing Platform (IHEPCloud) [1] is an IaaS platform
developed by the IHEP computing center based on Openstack. One of IHEPCloud’s function is to
provide virtual machine (VM) resources for HEP experiments in IHEP. Now IHEPCloud has a cluster
with more than 1,000 cores. Studies have shown that particle physics application code run equally well
in a VM or on the native system [2]. However, it lacks dynamic scheduling interface between job
scheduling system and virtual resources. The commonly used job scheduling system in IHEP now is
Torque [3] and HTCondor [4]. So we provide a tool and technique to integrate the IHEPCloud and job
scheduling system (Torque, HTcondor), making the resources shared between different experiment
groups and dynamically scheduling according to the status of jobs and finally greatly improving the
resource utilization rate.

The rest of the paper is organized as follows. Section 2 presents the related work about the
integration between different cloud systems and job management systems. Section 3 illustrates the
design and implementation of cloud scheduler, which allocates and reclaims VMs dynamically
according to the status of TORQUE and HTCondor queues and the design of resource pool to improve
resource utilization. Section 4 gives a BESIII use case which illustrates the effectiveness of our
mechanism. And we conclude the paper in Section 5.

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062033 doi :10.1088/1742-6596/898/6/062033

2. Related work
With the development of cloud computing and related technologies, international research work is
gradually expanding from different levels. Many cloud computing infrastructure engines are emerging,
such as open source OpenStack[5], OpenNebula[6], Nimbus [7] and other cloud computing
infrastructure engine. More and more institutes began to integrate the HTC environment with cloud
resources. Here are some unique and specialized solutions being actively developed.

Cloud Scheduler [8] is an object oriented python-based package run alongside Condor to manage
VMs for jobs based on the available cloud resources and job requirements. Cloud scheduler boots and
manages the user-customized virtual machines in response to a user’s job submission. A user creates
their VM and stores it in the VM image repository. They write a job script that includes information
about their VM and submits it to the condor job scheduler. The cloud scheduler reads the queues of the
condor job scheduler, request that one of the available cloud resources boot the user VM, the VM
advertises itself to the condor job scheduler which then dispatches the user job to that VM. Once jobs
are finished, if there are no more jobs in the condor queue that user them, Cloud Scheduler shuts down
the worker nodes, and returns the VMs to the cloud.

The grid-middleware project: “Distributed Infrastructure with Remote Agent Control” (DIRAC) [9]
provided a software framework to submit jobs to EC2 compatible IaaS clouds. The pilot agent is
preinstalled in the OS of the virtual machines (VMs) deployed on the IaaS clouds. Once VM starts, the
agent will contact the DIRAC server and request jobs. User must use the DIRAC client commands to
submit jobs, so it is not transparent to users who use Torque and HTCondor as their familiar tools in
IHEP.

Dynamic Torque [10] is a tool developed to integrate Torque/Maui batch system and Openstack
cloud service. Dynamic Torque provides active and passive mode of communication with Toque/Maui
batch system. In Dynamic Torque, the work nodes in the cloud are grouped as ‘static’ and ‘dynamic’:
static means these worker nodes stay up forever, no matter what current workload is; dynamic means
the work nodes will be shut down if no job is in the queue, and they will be launched if jobs are
waiting in the queue.

3. System design and implementation

3.1. Architecture
Our goal is to build a dynamic virtual resource pool to support different experiments to improve the
resource utilization. The architecture is composed of four layers including physical machines, virtual
machines, resource pool manager and job management system. The first layer is physical machines
which are bought by different experiments. The second layer is virtual machines managed by
Openstack, which don’t belong to any experiment. The third layer is resource pool manager, which
dynamically allocate virtual machines to different experiments depending on current computing tasks.
This layer has fine-grained resource allocation policies to balance the resource sharing and physical
machine invest. The fourth layer is job management system. Currently, Torque and HTCondor are
supported. Different job queues are assigned to different experiments, and user can use these queues
like traditional computing cluster. The different point is that the resource in the queue is dynamic,
which can be expanded or be shrunk automatically.

VPMangerisa suite of python script to schedule virtual machines dynamically according to the
workload of job management system. The middleware lies between resource management system
(such as Torque and HTCondor) and Openstack. The overall architecture of the system is shown in
Figure 1.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062033 doi :10.1088/1742-6596/898/6/062033

Figure 1.Virtual computing cluster architecture

3.2. Modules
VPManager is composed of different components, they are VM Pool, VM Quota, Virtual Job manger,
VM node manager and Accounting system. VM Pool manages one or more Openstack deployments,
which hides the detailed information of Openstack from upper applications. VM Pool makes it
possible to deploy multiple and different versions of Openstack. VM Quota checks the information of
VM Pool and requirements of different applications to allocate or reserve resources. Virtual job
manager including VPBS and VCondor checks the status of different queue and get the available VM
number and create new VMs or destroy existing VMs. VM node manager checks and controls all the
VM run environment such network status, affiliated job queue by an agent running in the virtual
machine. Accounting system keeps all the usage information of each virtual machine and generates
bills to user.

Virtual job scheduler checks the status of different queue and create or destroy VMs according to
the job queue. To support two different job manage systems, we divide this part to two sub modules:
VPBS and VCondor. VPBS is responsible for the Torque queue and VCondor is responsible for the
HTCondor queue. Job status monitoring system communicates by command lines or APIs to get the
current status of each job queue. We developed an external component to use the OpenStack API to
control the creation and deletion of VMs.

VM quota checks the information of VM Pool and requirements of different applications to allocate
or reserve resources. Load balance system provides an interface to get the information of available
virtual resources for each experiment from VM Quota. The VM Quota tells load balance system how
many virtual machines one experiment can use and reserve them for a period of time such as 30
minutes. The daemon component asks load balance system to decide how many available virtual
resources.

VM node manager checks and controls all VM run environment such network status, affiliated job
queue by an agent running in the virtual machine. Computing node management component
communicates with Openstack to launch or destroy virtual machines.

3.3. Workflow
This system performs unified management of virtual machines on the basis of job queue. A VM will
be created automatically when a job is waiting to run. It will be destroyed when the job is finished and
there are no more jobs in queue. After a VM is created, it will be added to the resource pool of
corresponding experiment group. Then the VM can get a job to run. After the job finishes, the virtual
machine will be shutdown. When the VM shutdown in Openstack, it will be removed from the
resource pool. Meanwhile, the computing node management system provides an interface to query

API

IHEPCloud

Openstack 1

VMQuota Interface (Socket)

VCondorVPBSVirtual Job
Scheduler

BES CEPC JUNOApplication

Openstack 2

NETDBVM Pool

Create/Delete
VM

LHASSO

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062033 doi :10.1088/1742-6596/898/6/062033

virtual resources usage. It also communicates with job status monitoring system to get the number of
queued jobs. Finally, it calls computing node management system to launch or destroy a few of virtual
computing nodes. The workflow is illustrated in Figure 2 and described below:

1. HEP users submit a job using ‘qsub’ or ‘condor_qsub’ command.
2.Jobs come into the RMS and are captured by Virtual Job Scheduler.
3. Virtual Job Scheduler requests VM from VM quota management.
4. VM quota calculates the available VM number to reply.
5. Virtual Job Scheduler starts the VM according to the job queues.
6. Once VM starts, the client can get jobs from RMS.
Virtual Computing Cluster middleware software has been developed and deployed, and the detailed

development solution can refer to the vpmanager web site [11].

Figure 2. Virtual cluster components and workflow

4. A BESIII use case
The BES III Experiment [12] at the BEPC-2 electron-positron collider at IHEP in Beijing (China) uses
collision energies from 3.5 GeV to 4.7 GeV for the spectroscopy and the investigation of the structure
of light and heavy hadrons and is in operation since 2008. The total volume of experimental data is
already about 0.9 PB, of which about 300 TB is event summary data for physics analysis (DSTs). This
amount of data is rather large to be processed in a single computing centre. Use of cloud computing
looks like an attractive option to increase the computing resources efficiency and to speed up the data
analysis.

Figure 3a shows that the CPU utilization of a BESIII job running on a virtual machine is 99.98%.
This result confirms that the job runs the same on both virtual machines and physical machines. Figure
3b shows the effect of the dynamic scheduling of the BESIII experiment in the virtual computing
cluster system. In this system, the virtual machine start and stop by the user's job number and the
number of virtual machines running the current decision, basically ensure that the number of virtual
machines running and the number of jobs are equal, Figure 3b illustrates the system based on the
current number of virtual machines and operations Quantity, dynamic scheduling of the effectiveness
of resources, which ensure the full sharing of resources between the experimental group. In the virtual
computing cluster, the utilization rate of resources is as high as 95%. Compared with the traditional
computing cluster, the utilization rate from the average 50% is twice as fast as that of the traditional
computing cluster, and the resource utilization rate in the HEP computing environment is greatly
improved.

IHEPCloud

VM
(vm node
manager)

Openstack API

Resource
Management

System

Virtual Job
Scheduler

VM quota
management

1 2 3

45
6

VM
(vm node
manager)

VM
(vm node
manager)

VM
(vm node
manager)

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 062033 doi :10.1088/1742-6596/898/6/062033

 Figure 3a. CPU efficiency of BESIII Figure 3b. Dynamic resource schedule of BESIII

5. Conclusion and future work
In this paper, a set of HEP virtual computing cluster system is designed based on Openstack, which
realizes the dynamic scheduling of virtual resources, and the system is transparent to the users. From
the system analysis and the actual operation, we can conclude that the virtual computing cluster
system to ensure HEP computing operations under the premise of correct, the computing environment
resource utilization showed great advantages, operating efficiency and physical machine Which proves
that the system can meet the requirements of HEP. The current system size is not great, the next step
will have more experimental group of resources to join the system. In the large-scale use of continuous
improvement and perfection, such as resource preemption, dynamic scheduling algorithm optimization,
billing system, support for more batch scheduling system.

Acknowledgments
This work was supported by the National Natural Science Foundation of China(No. 11605223) and the
National key Research Program of China “Scientific Big Data Management System”
(No.2016YFB1000605).

References
[1] IHEPCloud: http://ihepcloud.ihep.ac.cn/.
[2] Agarwal A, Desmarais R, Gable I, et al. Deploying hep applications using xen and globus

virtual workspaces[C]. Journal of Physics: Conference Series. IOP Publishing, 2008, 119(6):
062002.

[3] Staples G. TORQUE resource manager[C]. Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. ACM, 2006: 8.

[4] HTCondor: https://research.cs.wisc.edu/htcondor/.
[5] Openstack:https://www.openstack.org/.
[6] Milojičić D, Llorente I M, Montero R S. Opennebula: A cloud management tool[J]. IEEE

Internet Computing, 2011, 15(2): 11-14.
[7] The Nimbus Cloud: http://workspace.globus.org/clouds/nimbus.html.
[8] Armstrong P, Agarwal A, Bishop A, et al. Cloud Scheduler: a resource manager for distributed

compute clouds[J]. arXiv preprint arXiv:1007.0050, 2010.
[9] DIRAC: http://diracgrid.org/.
[10] Zhang S, Boland L, Coddington P, et al. Dynamic VM provisioning for Torque in a cloud

environment[C]. Journal of Physics: Conference Series. IOP Publishing, 2014, 513(3): 032107.
[11] VPManager: https://github.com/hep-gnu/VCondor.git/.
[12] BESIII experiment: http://bes3.ihep.ac.cn/.

