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Abstract

This dissertation investigates three well-motivated scalar extensions of the Standard Model

and shows that the combination of constraints from collider experiments, from the evolution

of the early Universe, and from future astrophysical experiments, such as GW interferome-

ters, will be very valuable for probing the parameter space of those models. In particular,

extensions of the Higgs sector of the Standard Model allow for a rich cosmological history

around the electroweak scale. In the two-Higgs-doublet model (2HDM) and its real singlet

extension (the N2HDM), we determine the parameter regions featuring a first-order EW

phase transition (FOEWPT), but also the regions where other effects occur such as elec-

troweak symmetry non-restoration (SnR) at high temperature. We further show that the

presence of vacuum trapping can impede a strong FOEWPT in parameter space regions

that previously were considered promising for the realisation of electroweak baryogenesis.

We analyse these phenomena and in particular their relation to each other, and discuss their

connection to the predicted phenomenology at the LHC. Specifically for the 2HDM, we

study whether the parameter space region featuring a strong FOEWPT can be probed in

the future with the space-based gravitational-wave (GW) telescope LISA via the detection

of the associated stochastic GW background. We find that only very contrived regions of

the parameter space can give rise to GW signals that are detectable at LISA. We point

out that these regions predict indications of new physics at energy scales that will already

be probed at the HL-LHC by means of searches for new physics at the TeV scale or the

experimental information on the self-coupling of the Higgs boson at 125 GeV. We also

investigate a complex singlet extension of the 2HDM, the S2HDM, which contains a pseudo-

Nambu-Goldstone dark matter (DM) candidate. In this model, the cross sections for the

scattering of the DM on nuclei vanish at tree-level in the limit of zero momentum-transfer

due to a U(1) symmetry. However, this symmetry is softly broken in order to give a mass to

the DM particle. As a consequence, non-vanishing scattering cross sections arise at the loop

level. On one hand, we confront the model with a multitude of theoretical and experimental

constraints and discuss the complementarity between constraints related to the DM sector

and to the Higgs sector. On the other hand, we calculate the leading radiative corrections

to the DM-nucleon scattering in the S2HDM, and we find that the current cross-section

limits from DM direct-detection experiments can hardly constrain the parameter space of

the S2HDM. However, the loop-corrected predictions for the scattering cross sections can

be well within the reach of future direct-detection experiments.
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Zusammenfassung

Diese Dissertation untersucht drei auf verschiedene Weise motivierte skalare Erweite-

rungen des Standardmodells und zeigt, dass die Kombination von Einschränkungen aus

Teilchenbeschleuniger-Experimenten, aus der Entwicklung des frühen Universums und aus

zukünftigen astrophysikalischen Experimenten, zum Beispiel Gravitationswellen (GW)-

Interferometern, von großem Wert sein werden, um die Parameterraum dieser Modelle

einzuschränken. Erweiterungen des Higgs-Sektors des Standardmodells ermöglichen eine

vielfältige kosmologische Entwicklung rund um die elektroschwache (EW) Skala. Im Zwei-

Higgs-Dublett-Modell (2HDM) und seiner Erweiterung um ein weiteres reales Singletfeld

(dem N2HDM) bestimmen wir die Parameterregionen, die einen EW Phasenübergang erster

Ordnung (FOEWPT), aber auch andere Effekte wie die Nichtrestauration der EW Symme-

trie (SnR) bei hohen Temperaturen, vorhersagen. Wir zeigen ferner, dass das Vorhandensein

von ‘vacuum trapping’ eine starke FOEWPT in Parameterraumregionen verhindern kann,

die zuvor als vielversprechend für die Realisierung von EW Baryogenese angesehen wur-

den. Wir analysieren diese Phänomene und insbesondere ihre Beziehung zueinander und

diskutieren ihre Verbindung zur vorhergesagten Phänomenologie am LHC. Speziell für das

2HDM betrachten wir, ob die Regionen des Parameterraums mit einem starken FOEWPT

in Zukunft mit dem weltraumgestützten GW-Teleskop LISA durch durch die Beobachtung

eines zugehörigen stochastischen GW-Hintergrunds getested werden können. Wir finden,

dass nur sehr eingeschränkte Bereiche des Parameterraums GW-Signale hervorrufen können,

die durch LISA nachweisbar sind. Wir zeigen außerdem auf, dass diese Parameterregio-

nen Indizien für neuartige Physik bei Energieskalen vorhersagen, die bereits am HL-LHC

durch Suchen nach neuartiger Physik an der TeV-Skala oder durch die Messungen der

Selbstkopplung des Higgs-Bosons bei 125 GeV experimentell untersucht werden. Wir ana-

lysieren desweiteren eine Erweiterung des 2HDMs, das ein komplexes Singletfeld enthält,

das S2HDM. Dieses Modell sagt ein Teilchen voraus, das als sogenanntes pseudo-Nambu-

Goldstone ein Kandidat für dunkle Materie darstellt. Im S2HDM verschwinden aufgrund

einer U(1)-Symmetrie auf klassischer Ebene und im Limes von verschwindendem Impul-

stransfer die Wirkungsquerschnitte für die Streuung der Dunklen Materie an Atomkernen.

Die U(1)-Symmetrie ist jedoch sanft gebrochen, um dem Dunkle-Materie-Teilchen eine Mas-

se zu verleihen. Als Folge dessen entstehen nicht-verschwindende Wirkungsquerschnitte auf

Schleifen-Niveau. Einerseits konfrontieren wir das Modell mit einer Vielzahl theoretischer

und experimenteller Randbedingungen und diskutieren die Komplementarität zwischen den

Randbedingungen im Zusammenhang mit dem Sektor der Dunklen Materie und dem Higgs-

Sektor. Andererseits berechnen wir die führenden Strahlungskorrekturen der Streuung der

dunkler Materie an Nukleonen im S2HDM und stellen fest, dass die aktuellen Obergrenzen

an die Wirkungsquerschnitte ermittelt mit Hilfe der Experimenten zur direkten Detektion

dunkler Materie den Parameterraum des S2HDMs kaum einschränken können. Im Gegen-

satz dazu können die strahlungskorrigierten Vorhersagen für die Streuquerschnitte jedoch

über den Obergrenzen zukünftiger Experimente zur direkten Detektion dunkler Materie

liegen.
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Prologue
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Chapter 1

Introduction

The Brain -is wider than the Sky-

For -put them side by side-

The one the other will contain

With ease -and You- beside

Emily Dickinson

Physical cosmology is a relatively new Science [5]. In the fall of 1916, Willem de

Sitter (1872-1934) and Albert Einstein (1879-1955) met to discuss the newly born theory

of General Relativity (GR) [6]. In these meetings the idea of using GR as a theoretical

framework to study the large-scale Universe was conceived. In 1917, Einstein published his

article ”Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie” [7], in which he

proposed a model for a finite, static, spherically curved universe with a non-vanishing matter

density. A few years later, Edwin Hubble (1889-1953) observed that nearby galaxies are

moving away from Earth at speeds proportional to their distance [8], thus giving rise to the

first observational evidence that any acceptable model of the Universe had to accommodate.

We owe the first theory of an expanding universe to Georges Lemâıtre (1894-1966), who

would later be known as the father of the Big Bang theory. He did not only claim that the

Universe was expanding but, furthermore, he postulated its abrupt origin [9]. Based on

those early considerations and further developed, physical cosmology has accomplished a

consensus standard model, the ΛCDM (see e.g. Ref. [10] for a review). It has been built

in meticulous detail and can be considered as well-substantiated by a growing body of

observations1. Relying on extrapolating the well-tested local physics governing gravity

and the other fundamental forces to large scales, it describes the overall structure of the

Universe and its evolution. This paradigm is based on the classical description of gravity

provided by GR and on the Standard Model (SM) of the strong and electroweak (EW)

interactions. It additionally requires novel ingredients of unknown nature such as dark

energy and dark matter (DM).

According to the ΛCDM cosmology, the Universe was once in an extremely hot early

state. It evolved by expanding, cooling, and developing structures at various scales, such

as galaxies and stars. Because radiation, matter, and a cosmological constant term (or

dark energy) dilute with expansion at different rates, an expanding universe naturally

falls into separate epochs. Shortly after the Big Bang, most of the energy was in the

1See Ref. [11] for a comprehensive review of its shortcomings.
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Chapter 1 – Introduction

form of radiation, which set the dynamics of the Universe by controlling the expansion.

A radiation-dominated epoch transitioned to a matter-dominated phase at a later time,

and it was followed eventually by a dark-energy-dominated phase that persisted until

the present time. During most part of the radiation-domination epoch, the interactions

among elementary particles were efficient enough to keep the primordial plasma in thermal

equilibrium, whose state was then solely determined by the temperature. However, the

turning points in our early Universe’s evolution happened due to a series of departures from

thermal equilibrium during its hot thermal phase, which allowed some particle species to

acquire a significant cosmological abundance. When the interactions that coupled a particle

to the thermal plasma fell out of equilibrium, it decoupled and streamed freely across the

Universe, carrying valuable information about the moment of decoupling, and bearing the

traces of the most distant past.

The deepest reliable probe of the Universe dates back to Big Bang nucleosynthesis (BBN),

when the light element abundances froze in within the “first three minutes” after the Big

Bang, at a temperature of ∼ 0.1 MeV [10]. Prior stages to BBN are so far not supported by

observational evidence, and the theoretical extrapolation becomes increasingly uncertain,

in view of shortcomings of the SM which require new physics beyond the SM (BSM).

Experimentally probing those earlier instants could shed light on the precise BSM model

realised in nature, and those experimental probes receive valuable feedback from high energy

experiments, such as the Large Hadron Collider (LHC).

Among other deficiencies, the ingredients of the SM are not sufficient to generate the

observed baryon asymmetry (BAU) of the Universe [12–14], and the SM lacks a particle

candidate to explain the observed cosmological abundance of DM [15]. Another mystery

lies in the nature of the EW phase transition (EWPT), the cosmological realisation of

electroweak symmetry breaking (EWSB). Feasible in minimal extensions of the SM [16–

23], a first-order EW phase transition (FOEWPT) is a particularly attractive scenario

that provides the necessary out-of-equilibrium conditions needed to generate the observed

BAU [24]. Such a transition has also the remarkable feature of sourcing a stochastic

gravitational wave (GW) background that may be detectable with future space-based GW

interferometers [25, 26] such as LISA [27].

This dissertation is an effort toward a better understanding of the evolution of our

Universe before BBN. On one hand, the focus is placed on the EWPT, happening naturally

at T ∼ O(100 GeV), and more generally on the cosmological evolution of the vacuum

structure. On the other hand, we study a scalar weakly-interacting massive particle (WIMP),

a DM candidate with weak couplings to the SM particles and a mass around the EW scale

that decouples from the thermal plasma at T ∼ O(1 − 100 GeV). This yields an overall

structure for the manuscript divided into two big blocks, Part II gathers the discussions

concerning the cosmological evolution of the vaccuum structure, and Part III contains the

analyses focusing on DM.

All the BSM scenarios explored in this dissertation bear in common the sensitive depen-

dence on the precise structure of the Higgs sector, containing additional scalar states apart

from the discovered Higgs boson with a mass of about 125 GeV at the LHC [28, 29]. Within

4



the current experimental and theoretical uncertainties, the properties of the detected parti-

cle agree with the predictions of the SM [30–32]. However, they are also compatible with a

wide variety of BSM scalar extensions. We analyse three well-motivated scalar extensions

of the SM, exploiting the strong interplay between collider measurements and present or

projected output from dedicated DM or GW experiments. Such a complementarity con-

strains the physically allowed parameter space of the models or allows making projections

in order to distinguish between them in the future. The detailed structure of this thesis is

described in the following.

Part I discusses Higgs sectors as the basic framework for further discussions in this

dissertation. In Chapter 2, we review the Higgs sector of the SM (Sect. 2.1), as well as several

aspects of its phenomenology at colliders. We also illustrate how the present composition

of the Universe calls for BSM physics (Sect. 2.2). In Chapter 3, we motivate extended

Higgs sectors in view of the aforementioned shortcomings. In particular, we introduce

the three models analysed in upcoming chapters (Sect. 3.1): the two-Higgs-doublet model

(2HDM), the next-to-two-Higgs-doublet model (N2HDM) and the singlet-extended 2HDM

(S2HDM). All of them share the characteristic of containing at least one additional EW

doublet. Finally, we describe the constraints that shape the physically allowed parameter

space of those models in Sect. 3.2.

In part II the focus is placed on the fate of the EW symmetry in the early Universe. It

is has been shown that adding further Higgs doublets to the SM [33–35] makes it possible

to realise a FOEWPT [36–39]. Other interesting features in models with extended Higgs

sectors are related to the vacuum structure. In the SM, the EW symmetry is broken

spontaneously at zero-temperature by a non-vanishing vacuum expectation value (vev) for

the Higgs field. Due to the measured value of the Higgs boson mass, the ΛCDM cosmology

follows the commonly expected picture in which the gauge symmetry is restored at high

temperatures, and is broken dynamically via a cross over as the Universe cools down to

temperatures below 160 GeV [40–44]. This intuitive picture, even though commonly taken

for granted, is not generically present in extensions of the SM, as it was already pointed out

in Ref. [45]. The presence of additional scalar fields can give rise to much richer symmetry-

breaking patterns. For instance, a symmetry might remain broken at all temperatures, or

only be restored in an intermediate temperature region. These two scenarios feature the

so-called ”symmetry non-restoration” (SnR) [45–51], which would require other mechanisms

than EW baryogenesis [52] to yield the observed BAU. A further possibility in the thermal

history of the universe is vacuum trapping: at zero temperature the EW vacuum exists

as the deepest minimum of the potential. However, if the conditions for the on-set of the

FOEWPT were never fulfilled, the Universe would be trapped in a higher-energetic non-EW

vacuum.

In Chapter 4, we present the background material needed for these related discussions:

basics on finite temperature Quantum Field Theory, cosmological phase transitions and the

associated GW production are therein reviewed. In Chapter 5, we discuss the 2HDM, for

which all the features described above (FOEWPT, stochastic GWs, SnR, vacuum trapping)

can be present and give rise to an interesting interplay between the early Universe physics

5



Chapter 1 – Introduction

and the collider phenomenology. In Chapter 6, we study scenarios with a FOEWPT, EW

symmetry-non-restoration and vacuum trapping in the N2HDM, as well as the connection

of such early Universe processes to possible signatures at the LHC. Our results illustrate

the plurality of thermal histories that can be realised in extended Higgs sectors, as well

as the phenomenological impact of these different histories. In particular, we demonstrate

that the results for the thermal history of the early Universe can rule out large parts of the

otherwise unconstrained N2HDM parameter space.

Finally, Part III focuses on the study of WIMP scalar DM. We explore a complex singlet

extension of the 2HDM that respects a softly broken global U(1) symmetry, the S2HDM.

In view of the fact that the DM particle(s) might not be charged under the SM gauge

groups, the possibility of coupling the DM to the SM only via the Higgs sector, often called

Higgs portal [53, 54], is an interesting scenario. Many extended Higgs sectors provide a

(pseudo)scalar DM candidate fitting the WIMP paradigm. However, they are stringently

constrained by DM direct-detection (DD) experiments [55]. A way to evade those constraints

can be achieved by means of momentum-suppressed tree-level DM-nucleon cross sections.

A particle that naturally has this feature is the so-called pseudo-Nambu-Goldstone boson

(pNG) DM [23, 56–61]. As a result, BSM models including a pNG DM candidate and

accounting for the DM relic abundance have recently gained a lot of attention [62–71]. In

Chapter 7, we provide the needed background material for further discussions on DM DD.

In Chapter 8, we study a relatively light pNG DM candidate in the S2HDM, which

suggest an interesting interplay of collider phenomenology and astrophysics. In particular,

we focus on DM masses between 40 and 80 GeV. In scenarios of this kind, the DM

relic abundance [72] can occur via the freeze-out mechanism through resonantly enhanced

annihilations mediated by the SM-like Higgs boson. As for the rest of the analyses presented

in this thesis, we constrain the parameter space by various experimental requirements

coming from flavour physics, EW precision observables, searches for additional scalars

and measurements of the properties of the 125 GeV Higgs boson. Additionally, there are

experimental constraints arising from cosmological and astrophysical sources. In particular,

the limitation imposed by the measured DM relic abundance and indirect-detection limits

from the observation of dwarf spheroidal galaxies by the Fermi-LAT space telescope [73]

play an important role. We also take into account several theoretical constraints to ensure

the validity of the perturbative treatment of the theory and the stability of the EW vacuum.

Furthermore, we note that the corresponding parameter space is suitable for explaining

the excess of gamma rays from the galactic centre observed by the Fermi Large Area

Telescope (LAT) [74, 75]. It has been argued that these observations could be due to DM

annihilations in the galactic centre [76–82], where a large concentration of DM is expected

to reside [83, 84]. At the same time, the Alpha Magnetic Spectrometer (AMS) [85], onboard

the International Space Station, reported an excess over the expected flux of cosmic ray

antiprotons consistent with DM annihilating into b-quark pairs with a similar range of DM

masses [86–91]. In Chapter 8, we address the question whether the DM candidate of the

S2HDM can account for the two cosmic-ray excesses in combination with a Higgs boson at

roughly 96 GeV that could explain the so-called LEP [92] excess in the bb̄ final state, and

6



an excess observed by CMS in the diphoton final state [93].

In Chapter 9, we calculate the leading radiative corrections to the DM-nucleon scattering

in the S2HDM. As mentioned above, pNG DM models have the distinct feature of having

a negligible DM DD cross section at leading order (LO) as first reported in Ref. [58]. The

first relevant contribution to the cross section comes from the one-loop EW corrections

to the DM-nucleon cross section. In order to unmistakably observe a DM candidate, one

needs DD experiments that probe the mass and couplings of the DM particle with the SM

particles via its interactions with known objects such as nuclei. This motivates the need

of understanding in great detail the DM-nucleon cross sections in the different proposed

models. If we confine ourselves to the mass region of WIMPs the most restrictive and

up-to-date DD constraints were obtained by the PandaX-4T [94], the XENON1T [95] and

the LZ [96, 97] collaborations. Our calculation of the next-to leading order (NLO) EW

corrections to the DM DD cross section shows that, even though the current experimental

sensitivities by XENON1T, PandaX-4T and LZ are not sufficient to probe the S2HDM

parameter space in a notable way, a significant portion of the parameter space will be

probed in near-future DD experiments.

In Chapter 10, we conclude and summarise our results. Furthermore, we give an outlook

as to the possible directions into which the analyses presented in this thesis could be

extended.

7





Chapter 2

The need for BSM physics

Symmetry, tightly related to the concepts of unity, beauty, and harmony, has served as a

guiding principle to understanding the Cosmos already since Classical antiquity. In Plato’s

Timaeus, the regular polyhedra are granted a central role in the doctrine of the natural

elements for their harmonious proportions and the beauty of their forms. Aristotle described

symmetry as one of the greatest forms of beauty to be found in the mathematical sciences.

Another characteristic example of the essential role of symmetry in the understanding

of the cosmic structure is Kepler’s 1596 Mysterium Cosmographicum, which presented a

planetary system based on the five regular solids [98]. The ancient notion of symmetry

used by the Greeks and Romans has evolved into the concept found today in modern

science, in which the underlying symmetry patterns that govern the elementary particles

and their interactions are described mathematically with group theory. In particular, gauge

invariance has taken a central role in providing the architecture of the fundamental laws.

The SM is the gauge theory of the EW and strong interactions of elementary particles.

It describes the structure of the subatomic world with an unprecedented level of precision,

achieving predictions in agreement with experimental measurements up to the level of

one part in 1013 [99]. The EW theory [100–102] is a Yang-Mills [103] theory based on

the gauge symmetry group SU(2)L ×U(1)Y which describes the electromagnetic [104–109]

and weak [110, 111] interactions acting on quarks and leptons. Together with Quantum

Chromodynamics (QCD) [112–117], the theory of strong interactions based on the SU(3)c
symmetry group, the model provides a unified framework to describe all the known forces of

nature except for gravity. One of the pillars of the SM is the mechanism of EWSB [118–122],

the Brout-Englert-Higgs (BEH) mechanism, whose relic, the Higgs boson, is a central piece

to the consistency of the SM since it ensures the unitarity of the theory beyond the TeV

scale and permits the existence of massive gauge bosons and fermions while respecting

gauge invariance. Despite of the excellent agreement between the SM predictions and the

experiments, important questions remain unanswered. Some of the solutions might be

deeply connected to the structure of the scalar sector and the precise properties of the

Higgs boson discovered in 2012. Exploring such a connection is the central goal of this

dissertation.

In this chapter, we briefly review the mechanism of EWSB and several aspects of the

SM Higgs phenomenology that will be useful in the discussions of the upcoming chapters

(Sect. 2.1). Furthermore, we illustrate the unsolved problems of the SM, paying special

attention to those that concern the results presented in this thesis (Sect. 2.2).

9



Chapter 2 – The need for BSM physics

2.1 The Standard Model Higgs sector

The EW sector of the SM is described by the gauge symmetry group SU(2)L × U(1)Y of

weak left-handed isospin and hypercharge (see e.g. Refs. [10, 123–126] for reviews on EW

and Higgs physics). We will first recapitulate the consequences of EWSB for the bosonic

sector of the SM, which is specified by the bosonic piece of the EW Lagrangian,

LEW = −1

4
BµνB

µν − 1

4
W a

µνW
µν
a + |DµΦ|2 − V (Φ), (2.1)

V (Φ) = µ2 |Φ|2 + λ |Φ|4 . (2.2)

The field Φ is a complex scalar doublet under SU(2)L with weak hypercharge Y = 1

for a singlet doublet field. The postulated scalar potential V (Φ) is the most general

renormalisable potential. The covariant derivative Dµ and the field strength tensors Bµν

and W a
µν read

Dµ = ∂µ + ig
τa

2
Wµa + ig′

Y

2
Bµ, (2.3)

Bµν = ∂µBν − ∂νBµ, (2.4)

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gfabcWµbWνc, (2.5)

where the fields W a
µ (a = 1, 2, 3) and Bµ are the respective gauge fields of the symmetry

groups SU(2) and U(1). Here τa = σa are the Pauli matrices, i.e. the SU(2) group generators

in their fundamental representation, fabc are the SU(2) structure constants, and g and g′

are the SU(2)L and U(1)Y gauge couplings, respectively. Here Y is understood as a diagonal

matrix proportional to the identity matrix. However, throughout this discussion, loosely

speaking it will be also understood as its eigenvalue. If the quadratic term in the scalar

potential is negative, µ2 < 0, the minimum of the potential is found at

⟨Φ⟩ = 1√
2

0

v

 with v :=

√
−µ2
λ

. (2.6)

The vev, v ≈ 246 GeV, can be extracted experimentally through measurements of the

Fermi constant GF in muon decay. After spontaneous symmetry breaking, the electric

charge, Q = (τ3 + Y )/2, remains as the sole unbroken generator, i.e. Q ⟨Φ⟩ = 0. Therefore,

electromagnetism is left unbroken by the vev, which yields the desired symmetry breaking

scheme,

SU(2)L ×U(1)Y → U(1)em. (2.7)

To guarantee the stability of the scalar potential, λ should be positive. The doublet Φ can

be expanded about the ground state and be expressed in terms of the BEH field h and

three Goldstone boson fields ϕ1,2,3 as

Φ =
1√
2

 ϕ1 + iϕ2

v + h+ iϕ3

 . (2.8)
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2.1 The Standard Model Higgs sector

Field SU(3) SU(2)L U(1)Y

QL =

 uL

dL

 3 2 1
3

uR 3 1 4
3

dR 3 1 −2
3

LL =

 νL

eL

 1 2 −1

eR 1 1 −2

Φ =

 ϕ+

ϕ0

 1 2 1

Table 2.1: Representations of the SM gauge groups to which the first generation of quarks and

leptons belong.

In the unitary gauge, the three Goldstone bosons disappear from the mass spectrum and

they transform into the longitudinal components of the three massive weak vector bosons,

W±
µ and Zµ. The photon Aµ, being the gauge field corresponding to an unbroken symmetry,

remains massless. The EW gauge boson mass eigenstates are

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), (2.9)

Zµ = cwW
3
µ − swBµ, (2.10)

Aµ = swW
3
µ + cwBµ. (2.11)

Here we have defined the weak mixing angle θw = arctan g′/g, and the short-hand notation

sw = sin θw and cw = cos θw. The Higgs-gauge boson interactions are described by

LhGB =

[
M2

WW
+
µ W

−µ +
1

2
M2

ZZµZ
µ

](
1 +

h

v

)2

− 1

2
M2

hh
2 − λSMhhh

3!
h3 − λSMhhhh

4!
h4, (2.12)

with

MW =
1

2
gv, MZ =

1

2

√
g2 + g′2v, Mh =

√
2λv, (2.13)

λSMhhh = 3
m2

h

v
, λSMhhhh = 3

m2
h

v2
. (2.14)

We now turn to briefly illustrate the implications of the BEH mechanism for the SM

fermions. In Tab. 2.1, we show the representations of the SM gauge groups to which the

first generation of quarks and leptons belong, together with their charges. It is found

experimentally that right-handed fields do not interact with the W± boson, implying that

11



Chapter 2 – The need for BSM physics

the right-handed quarks and leptons are SU(2)L singlets. The Yukawa interaction terms

for the first generation of fermions read

LY = yuQ̄LΦcuR + ydQ̄LΦdR + yeL̄LΦeR + h.c., (2.15)

where Φc ≡ −iτ2Φ∗. An SU(2) transformation brings Φ in Eq. (2.8) to the unitary gauge

Φ =
1√
2

 0

v + h

 . (2.16)

Inserting Eq. (2.16) in Eq. (2.15), we obtain

LY = muūu

(
1 +

h

v

)
+mdd̄d

(
1 +

h

v

)
+meēe

(
1 +

h

v

)
, (2.17)

with the definitions f̄f = f †LfR + f †RfL and mf = yfv/
√
2 with f = u, d, e.

These terms are esily extended to the three-family case, where the Yukawa couplings yd,

yu and ye become 3× 3 matrices

LY =
(v + h)√

2

∑
j,k

ūjLy
jk
u u

k
R + d̄jLy

jk
d d

k
R + ēiLy

jk
e e

k
R + h.c.

 . (2.18)

Given that yu and yd cannot be simultaneously diagonalised, there is a net effect of the basis

change on the charged current interaction, which couples u-type and d-type quarks. Thus,

charged-current interactions mediated by theW± boson acquire a flavour structure encoded

in the Cabbibo-Kobayashi-Maskawa (CKM) matrix [127, 128]. In the SM, CP-violation

originates from the single phase naturally occurring in the CKM matrix. Since the Yukawa

matrices and the fermion mass matrices are proportional to each other, the interactions

of the Higgs boson with the fermion mass eigenstates are flavour diagonal, and the Higgs

boson does not mediate flavour changing interactions.

Custodial symmetry The masses of the weak vector bosons (Eq. (2.13)) satisfy the

following tree-level relation,

ρ ≡ M2
W

c2wM
2
Z

= 1, with c2w =
g2

g2 + g′2
, (2.19)

which is protected by the custodial symmetry. The Higgs potential has a global approximate

symmetry SU(2)L × SU(2)R, which is explicitly broken by the EW hypercharge and the

hierarchy between the fermion masses. After EWSB, the global symmetry spontaneously

breaks down to the custodial symmetry group SU(2)C . In the limit of g′ → 0, the three

gauge fields W a
µ belong to a triplet representation of SU(2)C , meaning that their masses

are degenerate. Due to the small value of the hypercharge, there exists a relatively small

difference between the masses of the weak vector bosons. The custodial symmetry gives rise

to the relation in Eq. (2.19) at lowest order, and the leading radiative corrections vanish in

the limit g′ → 0 and mt → mb.
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2.1 The Standard Model Higgs sector

7 11. Status of Higgs Boson Physics

11.2.4 Higgs boson production and decay mechanisms
Comprehensive reviews of the SM Higgs boson’s properties and phenomenology, with an em-

phasis on the impact of loop corrections to the Higgs boson decay rates and cross sections, can be
found in Refs. [39–46]. The main results are summarised here.
11.2.4.1 Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron collider and the LHC are gluon fusion (ggF),
weak-boson fusion (VBF), associated production with a gauge boson (V H), and associated pro-
duction with a pair of tt quarks (tt̄H) or with a single top quark (tHq). Figure 11.1 depicts
representative diagrams for these dominant Higgs boson production processes.

W

q

q′′ q′′′

q′

(b)

H

(c)

q′

q

W,Z

H

W,Z

(f)

b t

q′q

HW

g

g

(d) (e)

g

g

H

q′

H

t

(g)

b

q

g

g

(a)

t
H

Z

H t

t

W,Z

W,Z

t

Figure 11.1: Main leading order Feynman diagrams contributing to the Higgs boson production
in (a) gluon fusion, (b) Vector-boson fusion, (c) Higgs-strahlung (or associated production with a
gauge boson at tree level from a quark-quark interaction), (d) associated production with a gauge
boson (at loop level from a gluon-gluon interaction), (e) associated production with a pair of top
quarks (there is a similar diagram for the associated production with a pair of bottom quarks),
(f-g) production in association with a single top quark

The state-of-the-art of the theoretical calculations in the main different production channels is
summarized in Table 11.1.

The cross sections for the production of a SM Higgs boson as a function of
√
s, the center of mass

energy, for pp collisions, including bands indicating the theoretical uncertainties, are summarized
in Fig. 11.2 (left) [47]. A detailed discussion, including uncertainties in the theoretical calculations
due to missing higher-order effects and experimental uncertainties on the determination of SM
parameters involved in the calculations, can be found in Refs. [43–46]. These references also con-
tain state-of-the-art discussions on the impact of PDF uncertainties, QCD scale uncertainties and
uncertainties due to different procedures for including higher-order corrections matched to parton
shower simulations, as well as uncertainties due to hadronisation and parton-shower events.

Table 11.2 summarizes the Higgs boson production cross sections and relative uncertainties for
a Higgs boson mass of 125GeV, for

√
s = 7, 8, 13 and 14TeV.

i. Gluon fusion production mechanism

At high-energy hadron colliders, the Higgs boson production mechanism with the largest cross
section is the gluon-fusion process, gg → H +X, mediated by the exchange of a virtual, heavy top

7th May, 2022

Figure 2.1: Main leading Feynman diagrams contributing to the Higgs boson production at the

LHC via a) gluon fusion, b) weak-boson fusion, (c-d) associated production with a gauge boson,

e) associated production with a pair of quarks, (f-g) production in association with a single top

quark [10]. H in the image stands for h in the text.

Higgs boson production and decays The Higgs boson couplings to the fundamental

particles are determined by their masses. Consequently, the dominant channels for the

Higgs boson production and decay involve the coupling of h to W±, Z and/or the third

generation of fermions. The main production mechanisms at the LHC and the Tevatron

collider are gluon fusion (ggF), weak-boson fusion (VBF), associated production with a

gauge boson (V h), and associated production with a pair of tt quarks (tth), or with a

single top quark (th) [10]. The most relevant leading order Feynman diagrams contributing

to the different production mechanisms are shown in Fig. 2.1 [10]. In Fig. 2.2 (left), we

display their contribution to the SM Higgs boson production cross section as a function

of the centre-of-mass energy for pp collisions [129]. The blue line corresponds to the total

production cross section due to gluon fusion exclusively. The red one indicate the same for

the weak-boson fusion mechanism. The green and grey lines show the total cross section

for the associated production with a W and a Z boson, respectively. Finally, the pink

and dark violet lines coincide with the cross section for the associated production with a

pair of bottom and top quarks, respectively, whereas the light violet curve shows the cross

section for Higgs production in association with a single top. All these processes have been

computed including important QCD and EW radiative corrections at different levels of

accuracy, which are correspondingly indicated in the lines labels (see Ref. [129] for further

details on those corrections). The Higgs boson production mechanism with the largest

cross section is gluon-fusion and, in particular, the largest contribution to gluon fusion is

mediated by a virtual top quark.

In Fig. 2.2 (right), we show the branching ratios including QCD and EW radiative
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Figure 2.2: Left [129]: Production cross sections for a SM Higgs boson at Mh = 125 GeV in pp

collisions as a function of the centre-of-mass energy
√
s. Lines labelled as pp→ X refer to ggF for

X = h, VBF for X = qqh, V h for X = Wh and X = Zh. Right [129]: Branching ratios for the

main decays of the SM Higgs boson near mh = 125 GeV. Uncertainties are indicated as bands. H

in the image stands for h in the text.

corrections for the decay of a SM Higgs boson of mass around 125 GeV [130]. The dominant

decay modes are h→ bb̄, h→WW ∗, h→ gg, h→ τ τ̄ , h→ cc̄ and h→ ZZ∗. With smaller

decay rates follow h→ γγ, h→ Zγ and h→ µµ̄.

Higgs self couplings Measuring the Higgs boson trilinear and quartic self couplings is

an extremely important direct probe of the SM. The SM tree-level predictions of these

couplings are shown in Eq. (2.14). Reconstructing the Higgs scalar potential is a crucial

long-term experimental goal that will deepen our understanding of the mechanism of EWSB.

The cubic and quartic Higgs couplings could be directly measured using double- and triple-

Higgs production processes, respectively. However, constraints from the hhh final state

on the quartic Higgs self coupling are inaccessible to current and near-future colliders due

to the intricate final states and the small production rates [131]. On the other hand, the

Higgs triple self-interaction can be constrained through the measurement of double Higgs

production either at hadron colliders, where the production is dominated by gluon fusion,

gg → hh, or at lepton colliders via double Higgs-strahlung, e+e− → Zhh, particularly

relevant at low energies, or via VBF, e+e− → hhνeν̄e, more important at centre-of-mass

energies of 1 TeV and above [132]. The currently strongest bound at the 95% C.L.on the

trilinear Higgs self coupling λhhh has been reported by ATLAS [133],

− 1.1 < κλ < 6.3, (2.20)

where κλ ≡ λhhh/λ
SM
hhh. In the future, the sensitivity will further improve [132]. At the

high-luminosity LHC (HL-LHC), the projected sensitivity for the trilinear Higgs coupling
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2.2 Unsolved problems of the Standard Model

will be

0.1 < κλ < 2.3 (2.21)

at 95% C.L. with 3 ab−1 data [134] (assuming SM rates), whereas the prospects for the

ILC and the FCC-hh point towards O(10%) experimental precision [135–137].

2.2 Unsolved problems of the Standard Model

Despite its enormous success in describing very accurately the vast majority of measure-

ments of particle physics experiments performed in the last decades, the SM cannot be the

ultimate theory of nature. There is a variety of theoretical open questions and experimental

anomalies which strongly suggests the existence of physics BSM.

On the theory side, the first shortcoming concerns gravity, which is described at the

classical level by GR and for which a consistent quantum theory has not been framed

yet. The SM does not incorporate gravity, implying that its validity is limited at most

by the Planck scale MP ∼ O(1019) GeV, where gravitational effects are expected to be

of comparable strength as the other interactions. There is also the question whether the

converging behaviour of the gauge couplings at a high scale signifies the unification of the

fundamental forces, in which case all SM fermions should fit (ideally) in a representation of

a larger symmetry group containing the SM gauge group as a subgroup. Besides that, we

have no explanation to the apparent absence of CP-violation in the QCD sector (strong CP

problem), which otherwise would be permitted by gauge invariance. We also do not know

what protects the Higgs mass and the cosmological constant from Planck-scale radiative

corrections, often referred to as the hierarchy problem [138–140], and the cosmological

constant problem, respectively. Furthermore, we are ignorant of the mechanism that is

driving the accelerated expansion of the Universe. Another important set of issues bears on

the question why the SM has such a flavour structure. Finally, the scalar potential in the

SM is postulated ad hoc and the dynamics by which the Higgs acquired its vev in the early

Universe remains still a mystery. The nature of the EW phase transition (EWPT) is one

of the enigmas that contextualises a large part of the results presented in this dissertation.

On the experimental side, neutrino oscillations [141] infer the existence of neutrino

masses, which are not accommodated in the SM. In addition, the observedmatter-antimatter

asymmetry [72] of the Universe requires additional sources of CP violation beyond the CP-

violating phase in the CKM matrix and the departure from thermal equilibrium in the

early Universe in order to meet the Sakharov conditions [24] to accomplish baryogenesis.

Another prominent cosmological question, which also frames large parts of the results of

this thesis, is the nature of the dark matter that constitutes some 80% of the matter in the

Universe [72].

In the following, we will expand on the need to study the EWPT and the nature of dark

matter.
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2.2.1 The electroweak phase transition

Since the SM scalar potential is an ad hoc choice in order to trigger EWSB while respecting

gauge invariance and renormalisability, its origin remains a mystery. The nature of the EW

phase transition and the generation of mass in the early Universe are still a conundrum.

The SM predicts that the spontaneous breaking of the EW symmetry set in smoothly,

i.e. through a mild cross over, as the Universe cooled down to temperatures below 160 GeV.

This would imply that the bulk motion of the primordial plasma did not depart from

thermal equilibrium and, hence, did not generate cosmological relics. Interactions could

have been out of thermal equilibrium in the primordial Universe by means of a FOEWPT,

which is a crucial element for EW baryogenesis. In a FOEWPT, the Universe transitions

from a metastable EW symmetric vacuum into a (meta)stable symmetry-breaking vacuum,

through a process of bubble nucleation, growth, and merger. The collision of bubble walls

naturally leads to the production of an stochastic GW background whose peak frequency

overlaps with the sensitivity of next generation GW experiments [142]. Independently of

baryogenesis, the EWPT is an interesting issue to study in its own right that compels the

research program of high energy physics and GW astronomy. We will expand on the details

of a FOEWPT and the generation of gravitational waves in Chapter 4.

While the SM is found to feature no FOEWPT, such a transition can be achieved via

minimal extensions such as introducing additional scalar particles with masses around the

EW scale or modifying the scalar potential [143, 144].

Concerning the latter possibility, a first-order phase transition can be realised through

a sufficiently large Wilson coefficient of the effective operator (ΦΦ†)3 [143]. This can be

viewed as one of the main motivations to look for large deviations at the HL-LHC and future

colliders of the trilinear Higgs coupling with respect to the SM prediction and confirm or

rule out the possibility of EW baryogenesis in a rather model-independent way [126].

Many extensions of the SM can accommodate a FOEWPT, for instance models contain-

ing additional EW singlets [16–23] or additional doublets (see e.g. [39, 145, 146]). Such

extensions would not only achieve the realisation of a FOEWPT but could also give rise to

a rich variety of patterns in the thermal evolution of the scalar fields in the early Universe,

differing significantly from the commonly expected scenario of EWSB around a temperature

T of O(100 GeV). For instance, it is well-known that the EW symmetry can be broken

already at temperatures much larger than the EW scale, resulting in EW SnR up to these

(possibly very high) temperatures, or even in no restoration at all. In view of these kind

of scenarios, the question concerning the order of the phase transition can be replaced

by an even more fundamental question. Did an EWPT ever occur in the early Universe?.

This thesis is concerned with the implications on the thermal evolution of the vacuum

configuration caused by including, at least, one additional EW doublet in the Higgs sector.

The EWPT as well as non-standard cosmological histories will be some of the topics studied

in the upcoming chapters (see Chapter 4).
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2.2 Unsolved problems of the Standard Model

2.2.2 Dark matter

Another experimental milestone consists of various indications for the existence of dark

matter (DM) through a conjoint of data gathered from, among others, rotation curves of

spatial galaxies [147, 148], gravitational lensing [149], and the Bullet cluster merger [150].

The Planck collaboration [72], using the precise map of the cosmic microwave background

(CMB), reports the most precise measurement of today’s DM relic abundance Ωh2,

(Ωh2)Planck = 0.119± 0.003. (2.22)

Hence, the DM sector constitutes about 26% of the energy-matter content of the Universe.

Apart from the incontestable astrophysical evidence, there are cosmological indications for

the existence of DM. For instance, it is widely accepted that DM played a crucial role in

structure formation [151]. In the absence of DM, any density perturbation would have

been washed out during the era of radiation domination. Since DM does not interact with

radiation, the DM gravitational wells were required to form galaxies and clusters sufficiently

fast.

Even though there are many indirect indications for the existence of DM via gravitational

effects, so far there has not been any direct discovery of a DM particle that could give rise

to more information about the attributes of DM. The elusive nature of DM has opened up

an interesting landscape of BSM theories that can provide one or more DM candidates. A

good candidate must account for the following properties:

• A detailed analysis of the anisotropies in the CMB spectrum demonstrates that

approximately 26% of the matter-energy content of the Universe is constituted by

DM [72].

• DM is electrically neutral, except for a possible millicharge [152].

• DM interacts gravitationally. This is clear by all the evidence listed above.

• DM must interact only very feebly with the SM particles.

• DM must be stable or have a lifetime of at least the age of the Universe.

• DM is most likely ”cold” (non-relativistic) and pressureless.

One of the most studied scenarios in such SM extensions is the weakly-interacting massive

particle (WIMP), a particle with weak couplings to the SM particles and a mass around the

EW scale whose existence could potentially be probed also at present or future colliders. In

view of the fact that the DM particle(s) might not be charged under the SM gauge groups,

in which case they are also not coupled directly to the quarks and leptons, the possibility

of coupling the DM to the SM only via the Higgs sector, often called Higgs portal [53, 54],

is an interesting scenario.
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Chapter 3

Extended scalar sectors

Except for the SM-like Higgs boson discovered in 2012, all the SM particles either have

spin 1/2 (fermions) or spin 1 (gauge bosons). Lorentz invariance, on the other hand,

demands that the Higgs field be scalar. All other known scalar particles are composed of

more fundamental particles, i.e the mesons are composed of quarks. Hence, this raises the

question: is the discovered Higgs boson the sole fundamental scalar particle that populates

our Universe? Or is there a scalar particle zoo that awaits to be discovered? Thinking

of the SM Higgs boson as the one and only fundamental scalar particle existing might be

perplexing on its own, but there are more reasons to motivate the existence of additional

scalar states. The precisely measured value [10] of the ρ parameter, defined in Eq. (2.19),

ρ = 1.00038± 0.00020 (3.1)

is compatible with additional EW doublets and singlets, since their structure of weak

isospin and hypercharge leads to the same SM tree-level prediction, i.e. ρ = 1. In particular,

the 2HDM addresses some of the shortcomings listed in Sect. 2.2, while being one of

the minimal extensions of the SM Higgs sector. As mentioned in Sect. 2.2.1, 2HDMs

can accommodate a FOEWPT, which is interesting because of its crucial role in EW

baryogenesis and its capability to source a GW stochastic background. Furthermore,

supersymmetric extensions of the SM, in which the hierarchy problem can be addressed [138–

140], require the existence of at least two Higgs doublet fields in order to account for the

masses of all quarks and leptons. Also the most commonly studied solutions to the strong

CP-problem incorporating the so-called QCD axion require the presence of two doublet

fields [153]. Moreover, new axially coupled U(1) interactions, resulting in extra gauge

bosons weakly coupled to standard model particles and which behave very much as axion-

like particles, provide a possible bridge to a new dark sector and also demand an additional

EW doublet [154]. Other models to solve the hierarchy problem rely on a unification of the

gauge interactions and the fact that the discovered Higgs boson at 125 GeV, h125, arises as a

(composite) pNG, but where also additional (potentially stable) pNGs can be present [155].

Such models could resemble at low energy a model with two Higgs doublets [156–159].

Finally, 2HDMs and extensions thereof can provide scalar DM candidates [160, 161], scalar

mediators as a portal to a more complex dark matter sector[162, 163] and be linked to

neutrino masses [164].

Furthermore, adding a second EW doublet leads to a rich phenomenology. It permits

experimental signatures that are impossible within the SM, such as several Higgs bosons,
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charged and neutral, modifications of the SM-like Higgs couplings and additional forms of

CP-violation from the scalar sector. The latter was the reason for T. D. Lee to introduce

the 2HDM in 1973 [33]. We will concentrate on the phenomenology of the 2HDM and real

and complex scalar extensions thereof, the N2HDM and the S2HDM, respectively. We will

explore their role in confronting problems of cosmological relevance, such as the EW phase

transition and the elusive nature of DM.

In this chapter, we present the 2HDM (Sect. 3.1.1), the N2HDM (Sect. 3.1.2) and the

S2HDM (Sect. 3.1.3), illustrating some of their general phenomenological consequences.

We will also explicitly review the theoretical and experimental constraints to which these

models are subjected (Sect. 3.2).

3.1 Models

Here we present the basic characteristics of the 2HDM, the N2HDM and the S2HDM, which

will be analysed in Chapter 5, Chapter 6 and Chapters 8 and 9, respectively. The three

models include at least an additional SU(2)L doublet and therefore share multiple features.

In particular, they all share the same mechanism to avoid the existence of flavour-changing

neutral currents (FCNCs) at tree-level, which results in four different configurations. For

the three models, we will only explore the so-called Yukawa type II (see the definition

below).

3.1.1 Five fundamental scalars: The 2HDM

The tree-level potential of the CP-conserving 2HDM1 with a softly broken Z2 is given by

Vtree = m2
11 |Φ1|2 +m2

22 |Φ2|2 −m2
12

(
Φ†
1Φ2 + h.c.

)
+
λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+
λ5
2

[(
Φ†
1Φ2

)2
+ h.c.

]
, (3.2)

where all the parameters are real as a result of imposing hermiticity and CP-conservation.

The Z2 symmetry of the 2HDM potential in Eq. (3.2),

Φ1 → Φ1, Φ2 → −Φ2 , (3.3)

is softly broken by the m2
12 term. The most general [165] vacuum configuration allows for

the spontaneous breaking of CP and electric charge,

⟨Φ1⟩ =
1√
2

 vC

v1 + ivCP

 , ⟨Φ2⟩ =
1√
2

 0

v2

 , (3.4)

where v1,2, vC, vCP are real values. A charge-breaking vacuum with vC ̸= 0, resulting in a

non-zero photon mass, must be avoided for phenomenological reasons. We will not consider

1See Ref. [165] for a comprehensive review of the 2HDM and its phenomenology.
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spontaneous charge- and CP-violation at the physical EW minimum, meaning that in the

following we use vC = vCP = 0. In principle, charge-breaking and CP-breaking vacua

could coexist in the potential together with the physical vacuum, raising the possibility of

tunneling between different minima, which will be discussed in Sect. 3.2.1. We can expand

the fields around the EW vacuum as follows,

Φ1 =

 ϕ+1

(v1 + ρ1 + iη1) /
√
2

 , Φ2 =

 ϕ+2

(v2 + ρ2 + iη2) /
√
2

 , (3.5)

where v1, v2 > 0 are the field vevs for the Higgs doublets at zero temperature, where the

EW scale is defined as v =
√
v21 + v22 ≈ 246 GeV. Minimising the tree-level potential with

respect to the two fields that acquire a vev, ρ1 and ρ2, leads to the minimisation (or tadpole)

equations,

m2
11 +

λ1v
2
1

2
+
λ3v

2
2

2
= m2

12

v2
v1

− (λ4 + λ5)
v22
2
, (3.6)

m2
22 +

λ2v
2
2

2
+
λ3v

2
1

2
= m2

12

v1
v2

− (λ4 + λ5)
v21
2
. (3.7)

After spontaneous symmetry breaking, the CP-conserving 2HDM gives rise to five physical

mass eigenstates in the scalar sector: two CP-even neutral scalars h and H, one CP-odd

neutral pseudoscalar A and a pair of charged states H±. In addition, there are one neutral

and two charged massless Goldstone bosons G0 and G±, respectively, which are absorbed

into longitudinal polarisations of the gauge bosons Z andW±, respectively. With the above

minimum, the mass matrix for the charged scalars reads,

M2
C =

[
m2

12 −
1

2
(λ4 + λ5)v1v2

] v2/v1 −1

−1 v1/v2

 . (3.8)

For the charged and, as we will see, for the CP-odd scalar sectors, the mass eigenstates are

related to the gauge eigenstates by an orthogonal rotation defined by the angle

tanβ = v2/v1. (3.9)

The zero eigenvalue corresponds to the mass of the charged Goldstone boson G±. The mass

squared of the charged Higgs boson H± is

m2
H± =M2 − 1

2
(λ4 + λ5)v

2, (3.10)

with the mass scale M2 = m2
12/sβcβ. Analogously, the mass matrix for the pseudoscalar

sector is expressed as

M2
η =

[
m2

12

v1v2
− λ5

] v22 −v1v2
−v1v2 v21

 . (3.11)
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Chapter 3 – Extended scalar sectors

This yields an additional massless Goldstone mode G0 together with the mass squared of

the pseudoscalar state,

m2
A =M2 − λ5v

2. (3.12)

Finally the mass matrix for the CP-even states is given by

M2
ρ =

 m2
12

v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v1
v2

+ λ2v
2
2

 , (3.13)

with λ345 = λ3 + λ4 + λ5. The CP-even sector is diagonalised by the rotation angle α. The

masses of the CP-even states are expressed as

m2
h =

1

2

(
(Mρ)11 −

√
4(Mρ)212 + ((Mρ)11 − (Mρ)22)2 + (Mρ)22

)
, (3.14)

m2
H =

1

2

(
(M2

ρ )11 +
√
4(M2

ρ )12 + ((M2
ρ )11 − (M2

ρ )22)
2 + (M2

ρ )22

)
, (3.15)

where the (M2
ρ )ij denote the matrix elements of M2

ρ . The state h is conventionally chosen

as the lightest CP-even scalar and, throughout this thesis, plays the role of the discovered

Higgs boson h125 at mh = 125 GeV and should resemble the properties of a SM Higgs boson.

The parameters α and β control the coupling strengths of the scalar particles to fermions

and gauge bosons. The neutral Higgs couplings to vector bosons V ≡W,Z, normalised to

the respective SM Higgs couplings, read

ChV V = sin (β − α), CHV V = cos (β − α), CAV V = 0. (3.16)

Note that the sum rule
∑

i(ChiV V )
2 = 1 holds as a consequence of unitarity [166]. In the

limit β − α → π
2 , the lightest CP-even state h is SM-like and can be identified with the

experimentally observed Higgs boson h125 within the present experimental and theoretical

uncertainties. The heavier state H decouples from the gauge boson pairs in this limit.

This is the so-called alignment limit [167], where the couplings of h to all SM particles

are precisely as predicted by the SM, whereas cos(α − β) ̸= 0 give rise to deviations of

the couplings of h compared to the SM. The alignment limit has also been motivated by

employing different global symmetries of the scalar potential [168, 169]. It is convenient

to reconstruct the scalar potential in terms of quantities with a direct phenomenological

meaning, i.e. particle masses of the Higgs sector and the mixing angles. We choose the

following set of independent parameters:

tβ(:= tanβ) , m2
12 , v , cos(β − α) , mh , mH , mA , mH± . (3.17)

The relations between the set of input parameters shown in Eq. (3.17) and the Lagrangian

parameters shown in Eq. (3.2) can be found in Ref. [165].

Concerning the Yukawa structure, the 2HDM faces the dangerous possibility of FCNCs

at tree-level, which are severely experimentally constrained [10]. To illustrate the problem,
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uR dR eR QL, LL Φ1 Φ2

Type-I − − − + + -

Type II − + + + + -

Type III or LS (lepton-specific) − − + + + -

Type-IV or F (flipped) − + − + + -

Table 3.1: Models that lead to the absence of FCNC at lowest order in the 2HDM. Z2 charge

assignments of the different fermionic multiplets.

consider the most general form of the Yukawa interactions for down-type quarks in the

2HDM,

y1dijQ̄LidRjΦ1 + y2dijQ̄LidRjΦ2, (3.18)

where i, j are the generation indices. The mass matrix is then

Mij = y1dij
v1√
2
+ y2dij

v2√
2
. (3.19)

In the 2HDM, the transformation that diagonalises M (Eq. (3.19)) will not, in general,

simultaneously diagonalise y1d and y2d, and the Yukawa couplings will not be flavour diagonal.

This opens the possibility of FCNC at tree-level mediated by the scalars. FCNC are

absent at tree-level in the SM and highly suppressed in loop corrections by the GIM

(Glashow–Iliopoulos–Maiani) mechanism [170]. A way to address this problem in the

2HDM is to extend the Z2 symmetry defined in Eq. (3.3) to the Yukawa sector in such a

way that, if all fermions with the same quantum numbers, which therefore mix with each

other, couple to the same Higgs multiplet, FCNC will be absent. The two fields Φ1 and Φ2

transform differently under the Z2 symmetry, resulting in four configurations or types that

avoid FCNCs at tree-level depending on the Z2 charge assignment of the fermionic fields

(Tab. 3.1). In the following, we will concentrate on the Yukawa type II, which provides

the same Yukawa couplings as the original Peccei–Quinn models as well as supersymmetric

models. The discrete Z2 symmetry leads to the following Yukawa interactions,

L2HDM
Y = −

∑
f=u,d,e

mf

v

(
Chff f̄fh+ CHff f̄fH − iCAff f̄γ

5fA
)

(3.20)

−
{√

2Vud
v

ū (muCAuuPL +mdCAddPR) dH
+ +

√
2meCAee

v
ν̄LeRH

+ + h.c.

}
.

(3.21)

In the Lagrangian u, d, e stand for the three generations, PL/R are the projection operators

for left-handed/right-handed fermions, and Vud is the CKM matrix element that mixes the

up-type quark u with the down-type quark d in charged-current interactions. The factors

C in the Yukawa type II are given by

Chuu = cosα/ sinβ, Chdd = − sinα/ cosβ Chee = − sinα/ cosβ, (3.22)

CHuu = sinα/ sinβ, CHdd = cosα/ cosβ CHee = cosα/ cosβ (3.23)
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CAuu = cotβ, CAdd = tanβ CAee = tanβ. (3.24)

We see that the only source of flavour changing couplings is given by the CKM matrix,

which controls the quark interactions with W bosons and with charged scalars H±.

Collider phenomenology The type II 2HDM parameter space that concerns our study

features low tanβ values and large splittings among the CP-even states masses and the

CP-odd and charged scalar masses, i.e. M ∼ v ∼ mH ≪ mA ∼ mH± . We will also focus

on the alignment limit where cos (β − α) = 0. In the following, we will go through some of

the potential manifestations at colliders of this specific scenario.

The neutral Higgs bosons in the 2HDM are produced [165] via the same production

mechanisms as the SM Higgs Boson (gluon fusion, weak vector fusion, etc. ). In the regime

of low tanβ values, the main loop production channel is still gluon fusion mediated by

top quark (see Fig. 2.1), which is modified with respect to the SM by the factors (Chuu)
2,

(CHuu)
2, and (CAuu)

2 for the production of h, H and A, respectively. Considering the

other production mechanisms, those that involve couplings to gauge bosons are absent for

the CP-odd state A and change with respect to the SM-Higgs production by the factors

(ChV V )
2 and (CHV V )

2 for the production of h and H, respectively. Consequently, in the

alignment limit where CHV V = 0, vector boson fusion and Higgsstrahlung are suppressed

for the heavy CP-even scalar. As for the top-pair associated production, the 2HDM Yukawa

type II prediction is modified by (Chuu)
2, (CHuu)

2, and (CAuu)
2 for the production of h,

H and A, respectively. Therefore the two relevant production channels to probe the heavy

neutral CP-even Higgs boson within the parameter region analysed in this thesis are gluon

fusion and top quark associated production. Here we should note the importance of the

bottom-pair associated production in the high tanβ region. Regarding the charged Higgs

production, if it is heavier than the top quark, the most important production mode in the

region of low tanβ is usually [171]

pp→ H±tb. (3.25)

As for the decays, for masses beyond the di-top quark threshold and low tanβ values,

the neutral Higgs bosons will decay predominantly into top quark pairs. Besides the decays

into SM particles, processes involving BSM scalars can occur. In particular, the cascade

decay

A→ ZH (3.26)

is particularly important to probe at the LHC the hierarchical pattern in which we are

interested leading to a FOEWPT [172]. This signal will be called in the following the

smoking-gun signature. Regarding the current status of LHC searches of this kind, ATLAS

and CMS have searched for the A→ ZH signature within their 8 TeV [173] and 13 TeV [174,

175] data sets, assuming that the Higgs boson H decays into a pair of bottom quarks or a

pair of τ -leptons.

In general, the 2HDM can be probed at colliders by directly producing BSM states or

searching for rare 125 GeV Higgs boson decays. One can also look for deviations of the decay

rates of the h125 as compared to the SM predictions. Both strategies are complementary and
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correlated probes of the model since the same interactions can affect the signals involving

new scalars and the measured Higgs properties. Even though no current experimental

anomaly clearly points towards a 2HDM interpretation, one can limit the parameter space

of the model, which has 7 independent parameters in the CP-conserving version. In Sect. 3.2,

all the relevant experimental but also theoretical constraints will be described in detail.

3.1.2 Six fundamental scalars: The N2HDM

In the N2HDM, the tree-level scalar potential of the two SU(2)L Higgs doublets Φ1 and Φ2

and the real singlet field ΦS is given by [176]

Vtree = m2
11 |Φ1|2 +m2

22 |Φ2|2 −m2
12

(
Φ†
1Φ2 + h.c.

)
+
λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+
λ5
2

[(
Φ†
1Φ2

)2
+ h.c.

]
+

1

2
m2

SΦ
2
S +

λ6
8
Φ4
S +

λ7
2

(
Φ†
1Φ1

)
Φ2
S +

λ8
2

(
Φ†
2Φ2

)
Φ2
S . (3.27)

Here the terms that only involve the two Higgs doublets are identical to the 2HDM scalar

potential in Eq. (3.2) and, therefore the Z2 symmetry defined in Eq. (3.3) and extended to

the Yukawa sector also prevents the occurrence of FCNCs at lowest order in the N2HDM.

The third line of the tree-level potential includes the contribution of the singlet field. Here

an extra discrete Z′
2 symmetry is imposed,

Φ1 → Φ1 , Φ2 → Φ2 , ΦS → −ΦS , (3.28)

which is not explicitly broken. The original motivation to introduce this symmetry for

the N2HDM was the fact that, when not spontaneously broken, it will give rise to a DM

candidate after EWSB (see e.g. [177–184]). In this work we do not restrict to such a

scenario, but study the case where ΦS does acquire a vacuum expectation value, which

makes it unstable and permits its decay and enables the possibility of mixing with the other

two CP-even Higgs bosons. The most general vacuum configuration corresponds to

⟨Φ1⟩ =

 0

v1/
√
2

 , ⟨Φ2⟩ =

 vC/
√
2

(v2 + ivCP) /
√
2

 , ⟨ΦS⟩ = vS , (3.29)

where we removed redundant degrees of freedom via an SU(2)L ×U(1)Y gauge transforma-

tion. In the physical vacuum, charge-breaking and CP-breaking vevs are both required to

vanish, i.e. vC = vCP = 0. A discussion on the stability of the EW minimum is reserved to

Sect. 3.2.1. The vevs v1, v2, vS > 0 are the field vevs for the Higgs doublets and the singlet

field, respectively, at zero temperature. We expand the fields around the EW minimum as

follows,

Φ1 =

 ϕ+1
1√
2
(v1 + ρ1 + iη1)

 , Φ2 =

 ϕ+2
1√
2
(v2 + ρ2 + iη2)

 , ΦS = vS + ρ3. (3.30)
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The doublet vevs v1 and v2 define the EW scale v =
√
v21 + v22 ≈ 246 GeV. The minimiza-

tion (or tadpole) equations for v1, v2 and vS read

v2
v1
m2

12 −m2
11 =

1

2

(
v21λ1 + v22λ345 + v2Sλ7

)
, (3.31)

v1
v2
m2

12 −m2
22 =

1

2

(
v21λ345 + v22λ2 + v2Sλ8

)
, (3.32)

−m2
S =

1

2

(
v21λ7 + v22λ8 + v2Sλ6

)
, (3.33)

with λ345 ≡ λ3 + λ4 + λ5.

Since, in the physical vacuum, the CP symmetry and the electric charge are conserved,

the (squared-)mass matrix for the fields Φ±
1,2, η1,2, ρ1,2,3 can be split into three blocks: a

3×3 matrix M2
ρ for the CP-even states ρ1,2,3, a 2×2 matrix M2

η for the CP-odd states η1,2,

and a 2× 2 matrix M2
C for the charged scalars Φ±

1,2. The matrices M2
η and M2

C correspond

to the ones obtained in the 2HDM (see Eqs. (3.11) and (3.8)). They can be diagonalised

via the rotation matrix

Rβ =

 cβ sβ

−sβ cβ

 , (3.34)

with tβ ≡ tanβ ≡ v2/v1. After diagonalization we are left with the charged and neutral

massless Goldstone bosons, G± and G0, and the charged and neutral CP-odd physical mass

eigenstates, H± and A, with masses mH± and mA.

The neutral CP-even sector of the N2HDM is modified with respect to that of the 2HDM

by the presence of the singlet ρ3. The mass matrix M2
ρ in the basis ρ1,2,3 can be expressed

as

M2
ρ =


v2λ1c

2
β +m2

12 tβ v2λ345 cβ sβ −m2
12 v vSλ7 cβ

v2λ345 cβ sβ −m2
12 v2λ2 s

2
β +m2

12/tβ v vSλ8 sβ

v vSλ7 cβ v vSλ8 sβ v2S λ6

 . (3.35)

In the physical basis h1,2,3, the mass matrix M2
ρ is diagonal. The rotation matrix R

between the h1,2,3 and ρ1,2,3 bases satisfies RM2
ρ R

T = diag
(
m2

h1
,m2

h2
,m2

h3

)
, where m2

hi

denotes the squared tree-level mass for hi. The matrix R can be parametrised in terms of

the angles α1,2,3 as

R =


cα1cα2 sα1cα2 sα2

− (cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 − (cα1sα3 + sα1sα2cα3) cα2cα3

 . (3.36)

Without loss of generality, the angles α1,2,3 are defined in the range −π/2 ≤ αi < π/2,

and we choose the convention that the mass eigenstates are ordered by ascending mass as

mh1 < mh2 < mh3 . The singlet composition of the mass eigenstates hi will be denoted by

Σhi
= R2

i3. (3.37)
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u-type d-type leptons

Type II Ri2/sβ Ri1/cβ Ri1/cβ

Table 3.2: N2HDM coupling factors Chiff of the CP-even Higgs bosons to fermions as defined in

Eq. (3.40), for the Yukawa type II.

The singlet field ρ3 does not couple directly to the SM fermions and gauge bosons. As a

result, any change in the couplings of the CP-even Higgs bosons to the SM particles with

respect to the ones from the 2HDM is due to the mixing between the fields ρ1,2 and ρ3. The

Feynman rules for the couplings of the states hi to the massive gauge bosons V ≡W, Z are

i gµν ChiV V g
SM
hV V , (3.38)

where gµν denotes the Minkowski metric. Here ChiV V are the N2HDM coupling factors of

the CP-even Higgs bosons hi to the massive SM gauge bosons, and gSMhV V is the corresponding

SM Higgs–gauge coupling, gSMhWW = gMW and gSMhZZ =
√
g2 + g′2MZ (see Eq. (2.12)). The

coupling factors ChiV V are given in terms of the mixing matrix elements Rij , and the

mixing angle β as

ChiV V = cβRi1 + sβRi2, (3.39)

and, consequently, in terms of the mixing angles αi if we replace the Rij by their corre-

sponding parametrisation shown in Eq. (3.36).

As in the 2HDM, the Z2 symmetry in Eq. (3.27) may be extended to the Yukawa sector

of the theory in order to avoid tree-level FCNCs. As the two fields Φ1 and Φ2 transform

differently under the Z2 symmetry, they cannot be coupled both to the same SM fermions.

The flavour-conserving Yukawa-types of the N2HDM are those of the 2HDM (see e.g. [165]).

We will focus exclusively on type II. The Yukawa interactions involving the CP-even Higgs

bosons hi can be written as

LN2HDM
Y = −

3∑
i=1

√
2 mf

v
Chiff f̄ f hi , (3.40)

with the N2HDM coupling factors Chiff given in Table 3.2. The Feynman rule for the hi
coupling to the CP-odd A and the Z boson is given by

λµ(hiZA) =

√
g2 + g′2

2
(phi

− pA)µ c̃(hiV ), (3.41)

where phi
and pA denote the incoming four-momenta of hi and A, respectively. The effective

coupling c̃(hiV ) is not normalised to a corresponding SM coupling, since there is no SM

counterpart. The coupling factors c̃(hiV ) can be found in Tab. 3.3. The alignment limit in

the N2HDM is defined through C2
hiV V = C2

hiuu
= C2

hidd
= 1, where hi is identified with the

observed scalar at 125 GeV, i.e hi ≡ h125. In this limit, the interactions involving h125, the

CP-odd scalar A and the Z boson vanish at tree-level, i.e. λµ(h125ZA) = 0.

We also note that any coupling not involving the CP-even neutral Higgs bosons remains

unchanged with respect to the 2HDM and may be found in [165].
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c̃(hiV )

h1 -cα2sβ−α1

h2 sβ−α1sα2sα3 + cα3cβ−α1

h3 cα3sβ−α1sα2 − sα3cβ−α1

Table 3.3: The couplings factors c̃(hiV ) as defined in Eq. (3.41).

Collider phenomenology In the N2HDM, we are also interested in exploring a hierar-

chical spectrum among the scalar masses and low tanβ values. As previously mentioned,

the decay A→ ZH (Eq. (3.26)) has emerged as a smoking-gun collider signature [172] of

a FOEWPT in the 2HDM. Also in the N2HDM such a type of signature is linked to the

possible presence of a FOEWPT, but the collider phenomenology related to this class of

processes in the N2HDM is much richer than in the 2HDM. In the 2HDM in the alignment

limit, only the decay A→ ZH is possible if kinematically allowed, whereas in the N2HDM

the two decays, A → Zh2 and A → Zh3, can occur. Those branching ratios depend on

both the singlet component and the masses of h2,3.

3.1.3 Seven fundamental scalars: The S2HDM

The scalar sector of the S2HDM consists of two SU(2) doublets and a complex gauge singlet

field, which can be expressed as

Φ1 =

 ϕ+1

(ρ1 + iη1) /
√
2

 , Φ2 =

 ϕ+2

(ρ2 + iη2) /
√
2

 , ΦS = (ρ3 + iχ) /
√
2 , (3.42)

where the imaginary component χ gives rise to the DM candidate of the model. Assuming

the absence of explicit CP violation, the scalar potential of the S2HDM is given by

V = µ211

(
Φ†
1Φ1

)
+ µ222

(
Φ†
2Φ2

)
− µ212

((
Φ†
1Φ2

)
+
(
Φ†
2Φ1

))
+

1

2
µ2S |ΦS |2 −

1

4
µ2χ

(
Φ2
S + (Φ∗

S)
2
)

+
1

2
λ1

(
Φ†
1Φ1

)2
+

1

2
λ2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

1

2
λ5

((
Φ†
1Φ2

)2
+
(
Φ†
2Φ1

)2)
+

1

2
λ6
(
|ΦS |2

)2
+ λ7

(
Φ†
1Φ1

)
|ΦS |2 + λ8

(
Φ†
2Φ2

)
|ΦS |2 .

(3.43)

Here the terms that exclusively involve the doublet fields are identical to the scalar potential

of the 2HDM, where a Z2 symmetry defined by the transformations Φ1 → Φ1, Φ2 → −Φ2

and ΦS → ΦS is only softly broken by the terms proportional to µ12. One can define the

usual four Yukawa types depending on the assigned Z2 charges of the fermions as shown

in Tab. 3.1. We will focus on the Yukawa type II. The remaining terms of the scalar

potential involve the singlet field ΦS and respect a global U(1) symmetry, except for the

term proportional to µ2χ. This term softly breaks the U(1) symmetry, thus providing a

non-zero mass for the pNG DM.
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Without loss of generality, the field configuration of the vacuum can be expressed as

⟨Φ1⟩ =

 0

v1/
√
2

 , ⟨Φ2⟩ =

 vC/
√
2

(v2 + ivCP) /
√
2

 , ⟨ΦS⟩ = (vS + ivDM) /
√
2 , (3.44)

where we made use of the fact that redundant degrees of freedom related to the gauge

symmetries can be removed via an SU(2)L × U(1)Y gauge transformation. We will focus

on the case in which the EW symmetry is broken by non-zero values of v1 and v2, and a

discrete Z2 symmetry, under which ρ3 changes the sign, is broken by vS ̸= 0. The charge-

breaking vev vCB, the CP-breaking vev vCP, and vDM are required to be vanishing at the

physical minimum, noting that a non-zero value of vDM would give rise to decays of the

DM candidate χ. As for the N2HDM, in order to make a connection to the SM and the

2HDM we define the parameters v2 = v21 + v22 ∼ (246 GeV)2 and tanβ = v2/v1.

Assuming the EW vacuum configuration as described above, the CP-even fields ρ1,2,3
mix with each other, giving rise to the mass eigenstates h1,2,3, where throughout this thesis

the mass hierarchy mh1 < mh2 < mh3 will be assumed. The mixing in the CP-even sector

can be written in terms of an orthogonal transformation given by a matrix R, such that
h1

h2

h3

 = R ·


ρ1

ρ2

ρ3

 , (3.45)

where R is identically defined as in Eq. (3.36). The charged scalar sector remains unchanged

compared to the 2HDM. It contains two physical charged Higgs bosons H± with mass mH±

and the charged Goldstone bosons related to the gauge symmetries. The pseudoscalar

components η1 and η2 form a neutral Goldstone boson and one physical state A with mass

mA. The pseudoscalar A has effectively the same couplings to the fermions as the one of the

2HDM. Here it is important to note that the remnant Z2 symmetry that is present when

vDM = 0, preventing the DM candidate χ from decaying, also forbids the mixing between χ

and hi. The alignment limit in the S2HDM is defined through C2
hiV V = C2

hiuu
= C2

hidd
= 1,

where hi is identified with the observed scalar at 125 GeV, i.e hi ≡ h125, and the coupling

factors to gauge bosons and fermions are defined as in the N2HDM in Eq. (3.40) and

Eq. (3.39).

Given the definitions of the parameters as defined above, it is possible to replace most of

the parameters of the scalar potential shown in Eq. (3.43) by more physically meaningful

parameters,

mh1,2,3 , mA , mH± , mχ , α1,2,3 , tanβ , M =
√
µ212/ (sβcβ) , vS . (3.46)

The relations between the parameters shown in Eq. (3.46) and the Lagrangian parameters

of the potential in Eq. (3.43) are given in App. A.
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Chapter 3 – Extended scalar sectors

3.2 Theoretical and experimental constraints

We review the most important theoretical and experimental constraints on CP-conserving

2HDMs and their singlet extensions, specifying how they apply to each one of the three

models under investigation. Further details on the concrete codes used to implement these

constraints will be given in the corresponding chapters describing the analyses.

3.2.1 Theoretical constrains

Tree-level perturbative unitarity

In this section we review the constrains derived from unitarity in order to ensure a well-

behaved energy growth of scattering amplitudes involving the scalar states. Any scattering

amplitude can be expanded in terms of partial waves as follows [185]:

M(θ) = 16π
∞∑
l=0

al(2l + 1)Pl(cos θ), (3.47)

where Pl(cos θ) is the Legendre polynomial of degree l, θ is the scattering angle, and the

coefficients of the expansion al can be extracted by using the orthonormality of the Legendre

polynomials. The 2 → 2 scattering cross section reads

σ =
16π

s

∑
l

(2l + 1)|al|2, (3.48)

where s is the center of mass energy. From the unitarity of the S-matrix, the optical theorem

that relates the total cross section of the scattering process with the forward scattering

amplitude is derived,

σ =
1

s
Im M(θ = 0). (3.49)

Even though unitarity requires the optical theorem to hold for the full amplitude M, it

does not say anything about the individual partial waves al. But if a partial wave on its

own were to violate the optical theorem, we would need large cancellations between the

different partial waves. Therefore any process is expected to satisfy the optical theorem at

the level of partial waves,

16π

s
(2l + 1)|al|2 =

1

s
16π(2l + 1)Im al, (3.50)

which can be recast into the equation of a circle in the complex plane,

(Re al)
2 +

(
Im al −

1

2

)2

=
1

4
, (3.51)

which results in the bound

|al| <
1

2
. (3.52)
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In the high energy limit, diagrams containing trilinear vertices are suppressed by an energy-

squared factor coming from the intermediate propagator. Therefore, the scalar scattering

amplitudes of 2 → 2 processes are determined by the contact interactions proportional to

quartic couplings. Consequently, only the l = 0 partial amplitude a0 will receive nonzero

contributions from the leading order terms in the scattering amplitudes. The partial wave

amplitude a0 can be cast in the form of a scattering matrix as follows

(a0)ij =
1

16π
(M2→2)ij , (3.53)

where M2→2 is the scattering matrix of 2 → 2 processes in the high-energy limit with

different two-body states as rows and columns. Due to the equivalence theorem [186, 187],

unphysical Goldstone bosons can be used instead of the longitudinal components of the

gauge bosons to compute M2→2. Therefore, unitarity constraints can be implemented by

solely considering pure scalar scattering. The bound in Eq. (3.52) can be expressed as

|Mi
2→2| < 8π, (3.54)

with Mi
2→2 being the i-th eigenvalue of M2→2. The bounds derived from Eq. (3.54) result

in upper limits for the maximum size of certain combinations of the quartic couplings,

which facilitate the perturbative treatment of the theory, preventing the Higgs sector from

becoming strongly coupled.

An additional näıve upper bound can be imposed on the absolute values of the quartic

couplings λi to ensure that they remain relatively small. Even though the exact upper

bound is somewhat arbitrary we choose 4π, since it is a common choice in the literature.

Therefore, for any quartic coupling λi, the following condition is adopted,

|λi| < 4π. (3.55)

Since various results discussed in Chapters 5 and 6 involve sizeable quartic scalar couplings,

the perturbative unitarity constraints play an important role in our analyses.

Tree-level perturbative unitarity in the 2HDM In the CP-conserving 2HDM with

a softly broken Z2 symmetry, perturbative unitarity leads to the following conditions [188,

189]

|λ3 ± λ4| < 8π, (3.56)

|λ3 ± λ5| < 8π, (3.57)

|λ3 + 2λ4 ± 3λ5| < 8π, (3.58)∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ24

)∣∣∣∣ < 8π, (3.59)∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ25

)∣∣∣∣ < 8π, (3.60)∣∣∣∣12 (3λ1 + 3λ2 ±
√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

)∣∣∣∣ < 8π. (3.61)
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Tree-level perturbative unitarity in the N2HDM The conditions (3.56)-(3.60)

must also be fulfilled by the N2HDM. Additionally, tree-level perturbative unitarity in the

N2HDM demands [176, 190]

|λ7| , |λ8| < 8π, (3.62)

1

2
|a1,2,3| < 8π, (3.63)

where a1,2,3 are the real roots of the cubic polynomial

4(−27λ1λ2λ6 + 12λ23λ6 + 12λ3λ4λ6 + 3λ24λ6 + 6λ2λ
2
7 − 8λ3λ7λ8 − 4λ4λ7λ8 + 6λ1λ

2
8)

+ x(36λ1λ2 − 16λ23 − 16λ3λ4 − 4λ24 + 18λ1λ6 + 18λ2λ6 − 4λ27 − 4λ28)

+ x2(−6(λ1 + λ2)− 3λ6) + x3 (3.64)

Tree-level perturbative unitarity in the S2HDM In the case of the S2HDM,

besides the conditions (3.56)-(3.60), shared with the 2HDM and the N2HDM, and the

condition (3.62), exclusively shared with the N2HDM, tree-level perturbative unitarity also

implies

|λ6| < 8π, (3.65)

|b1,2,3| < 8π, (3.66)

where b1,2,3 are the real roots of the cubic polynomial

(48λ2λ
2
7 + 48λ1λ

2
8 + 64λ23λ6 + 16λ24λ6 − 144λ1λ2λ6 + 64λ3λ4λ6 − 64λ3λ7λ8 − 32λ4λ7λ8)

+ (−16λ23 − 16λ4λ3 − 4λ24 − 8λ27 − 8λ28 + 36λ1λ2 + 24λ1λ6 + 24λ2λ6)x

+ (−6λ1 − 6λ2 − 4λ6)x
2 + x3. (3.67)

Stability of the electroweak vacuum

The existence of a sufficiently stable minimum, around which perturbative calculations can

be performed, is a basic requirement of any physical theory. In order to guarantee the

stability of the EW vacuum, two essential requirements must be imposed. Firstly, we have

to make sure that the potential is bounded from below, i.e. there is no direction in field

space along which the potential tends to minus infinity. Secondly, even if boundedness-

from-below (BfB) is satisfied, the EW minimum has to be either the global minimum or a

local minimum of the potential. In case it is not the global minimum, additional constraints

arise from the requirement of having a metastable EW vacuum.

BfB is satisfied at tree-level in the SM by the simple condition λ > 0. However, in

models with extended Higgs sectors, the situation is more complicated since we have to

ensure that the quartic terms in the scalar potential never become infinitely negative in

any direction in field space. We show below, for each of the three models analysed, the

sufficient and necessary conditions [190, 191] to ensure the positivity of the quartic terms

along any field direction (stability in the strong sense as defined in Ref. [191]).

The second requirement for the stability of the EW vacuum concerns the possibility of

vacuum decay [192, 193]. If the EW minimum is not the global minimum of the potential,
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3.2 Theoretical and experimental constraints

the vacuum can tunnel into a deeper minimum. Since such a devastating phenomenon

has not occurred, the EW vacuum must be either a global minimum (stable vacuum)

or a minimum with a sufficiently long lifetime as compared to the age of the Universe

(metastable vacuum). A conservative approach would require the ground state to be the

global minimum of the potential. However, in our analyses in the 2HDM and the N2HDM,

we consider metastable minima also as acceptable, as long as their lifetime is larger than

the age of the Universe.

In the following we will evaluate the probability of a transition from a true vacuum (the

physical EW-breaking vacuum) Φ⃗T to a false vacuum Φ⃗F (any other unphysical vaccum

configuration). The tunnelling process between vacua can be described semi-clasically.

Perturbation theory describes small oscillations near the equilibrium position, and somewhat

larger fluctuations are needed to cause an instability and trigger the transition. Therefore,

it is natural to expect that the action corresponding to large field fluctuations will be large

and, thus, that the problem can be treated quasiclassically [194, 195]. Given a Lagrangian

L =
1

2
(∂µΦ⃗)(∂

µΦ⃗)− V (Φ⃗), (3.68)

where Φ⃗ is a vector of scalar fields, the associated four-dimensional Euclidian action takes

the form

S4 =

∫
d4x

[
1

2
(∂µΦ⃗)

2 + V (Φ⃗)

]
. (3.69)

Assuming spherical symmetry, which means that the solution must be a function of two

angular variables, a radial coordinate r and time t, the classical trajectory Φ⃗B that describes

the tunnelling from a Φ⃗F false to a Φ⃗T true vacuum solves the equations of motion [196]

d2Φ⃗

dρ2
+

3

ρ

dΦ⃗

dρ
= ∇V (Φ⃗), (3.70)

where ρ2 = r2 − t2. The solution Φ⃗B is often referred as bounce and satisfies the boundary

conditions

Φ⃗(∞) = Φ⃗F , and
dΦ⃗

dr

∣∣∣∣∣
ρ=0

= 0. (3.71)

In the interpretation of the variable ρ as a radial coordinate and Φ⃗ as a field describing the

type of phase, the bounce solution describes a bubble separating an interior phase of true

vacuum, corresponding to the value Φ⃗T of the field, from an exterior phase of false vacuum

corresponding to the value Φ⃗F of the field. One can define the lifetime of the metastable

vacuum as the inverse of the decay rate (in units of the age of the Universe TU ),

τ =
1

ΓTU
. (3.72)

The decay probability for the false vacuum per unit volume is given by

Γ = Ae−S4 , (3.73)
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whereA is a subdominant dimensionful parameter that contains contributions from quantum

fluctuations around the bounce solution. It can be estimated on dimensional grounds from

a typical mass scale of the theory, A = M4. In Ref. [197–199], it was shown that the

threshold of instability given by τ ∼ 1 was highly sensitive to S4 and only mildly sensitive

to A, where the variation of the mass scale M over a generous range, from 10 GeV to

100 TeV, resulted only in small shifts in the border between metastability and instability

by less than 10% in S4. In Ref. [197–199], a false vacuum is considered to be metastable if

with S4 > 440 and unstable if S4 < 390. Intermediate values of S4 indicate an uncertainty

of this approach. In order to avoid the possibility of discarding possibly physical scenarios,

we will only consider vacua as unstable for which

S4 < 390. (3.74)

As pointed out in Sect. 3.1, the most general vacuum configuration of the three models

under investigation allows for charge- and CP-breaking minima. Therefore, to guarantee

the stability of the physical minimum we shall not only consider the possibility of tunnelling

to vacua with vC = vCP = 0 but also to charge and CP-violating minima.

Vacuum stability in the 2HDM The tree-level conditions for the CP-conserving

2HDM scalar potential to be bounded from below read [188, 189, 200]

λ1 ≥ 0 (3.75)

λ2 ≥ 0 (3.76)

λ3 +
√
λ1λ2 ≥ 0 (3.77)

λ3 + λ4 − |λ3|+
√
λ1λ2 ≥ 0. (3.78)

In Ref. [201], it was found that the existence of a normal vacuum with vC = vCP = 0

ensures it to lie deeper than any possible charge- or CP-breaking vacua in the 2HDM.

However, the tunnelling to other normal vacua would still be possible. To avoid this

possibility, we require the EW minimum to be the global minimum of the tree-level potential

by imposing the positivity of the discriminant [201]

D1 = m2
12

(
m2

11 −m2
22

√
λ1
λ2

)(
tanβ − 4

√
λ1
λ2

)
. (3.79)

Therefore, in the investigated scenario, the presence of a metastable EW minimum only

arises at the loop level. It will be important to test the metastability of the one-loop scalar

potential through the condition in Eq. (3.74) by using the four-dimensional Euclidean action

S4 with the one-loop effective potential inserted, which will be defined later in Eq. (4.42).
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3.2 Theoretical and experimental constraints

Vacuum stability in the N2HDM In the N2HDM, the parameter region allowed

by BfB is given by [176, 190]

Ω1 ∪ Ω2 (3.80)

where

Ω1 =
{
λ1, λ2, λ6 > 0;

√
λ1λ6 + λ7 > 0;

√
λ2λ6 + λ8 > 0;√

λ1λ2 + λ3 +D > 0;λ7 +
√
λ1/λ2λ8 ≥ 0

}
(3.81)

and

Ω2 =
{
λ1, λ2, λ6 > 0;

√
λ2λ6 ≥ λ8 > −

√
λ2λ6;

√
λ1λ6 > −λ7 ≥

√
λ1/λ8;√

(λ27 − λ1λ6)(λ28 − λ2λ6) > λ7λ8 − (D + λ3)λ6

}
(3.82)

with the discriminant D2 = min(λ4 − |λ5| , 0).
Even though in the 2HDM the existence of a vacuum with vC = vCP = 0 precludes the

existence of a deeper CP- or charge-breaking minima at tree-level [201], this cannot be

generalised to the N2HDM. Our analysis followed the procedure in Ref. [199]. We chose the

model parameters such that there is an EW minimum with v1, v2, vS ̸= 0, vC = vCP = 0

and
√
v21 + v22 = v. Subsequently, all the stationary points of the tree-level N2HDM scalar

potential were found and their depths were compared to the depth of the EW vacuum.

Whenever the EW minimum was found to be the deepest, we considered it to be absolutely

stable. Otherwise, the tunnelling time to each of these deeper extrema was computed and

considered to be unstable if the criterion in Eq. (3.74) was met. As in the 2HDM, the

(meta)stability of the EW vacuum at the one-loop level will be also tested in the N2HDM

by using the same approach.

Vacuum stability in the S2HDM Due to the fact that the quartic part of the

potential V is unchanged compared to the N2HDM, we can apply the same conditions that

were found for the N2HDM. We exclude all parameter points from our analyses that do

not feature a scalar potential that is BfB.

In the S2HDM, we required the EW minimum to be the global minimum of the scalar

potential to avoid potentially short-lived vacua as compared to the age of the Universe. We

verified for each selected parameter point that exists a global minimum of the potential with

v1, v2, vS > 0 and vC , vCP , vDM = 0. As opposed to the approach followed in the analyses of

the 2HDM and the N2HDM, we did not consider metastable vacua in the S2HDM. Allowing

for a richer vacuum structure is not as important in the S2HDM analysis as in the 2HDM

and the N2HDM analyses. This is due to the fact that the latter are dedicated studies to

the precise thermal evolution of the vacuum configuration in the early Universe, whereas

the main focus of the former is on the interplay between collider and DM phenomenology.

As explained in the next subsection, we will impose further requirements to avoid loop

effects from changing the stability of the tree-level global EW minimum in the S2HDM.
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Energy scale dependence of the theoretical constraints

Both the perturbative unitarity constraints and the BfB conditions in many analyses of

the 2HDM or its extensions are applied exclusively at a certain energy scale. However, it

is known that the model parameters obtain an intrinsic energy scale dependence due to

radiative corrections, which is governed by their evolution under the renormalisation group

equations (RGE). It is therefore possible that even though at the initial scale, assumed to

be µ = v throughout this dissertation, a parameter point passes the theoretical constraints,

the point becomes unphysical at larger energy scales µ > v.

At the loop-level, the common way of achieving BfB and perturbative unitarity is to

check the tree-level conditions with running couplings inserted. Due to the fact that

the perturbativity conditions allow for values of |λi| > 1, the energy range in which the

theoretical constraints are fulfilled could very well lie within the energy scales that are

probed at the LHC. One should bear in mind that as long as we are within a perturbative

regime, we can to a first approximation neglect the one-loop contribution to the effective

potential and simply insert the running couplings into the tree-level conditions. However,

it might happen that beyond a certain energy scale, the perturbative expansion breaks

down and those conditions are no longer valid. In fact, it was shown in Ref. [202] that large

loop corrections can transform a bounded tree-level 2HDM potential into an unbounded

one, potentially destabilizing the EW vacuum. This effect is expected to be also present

in the N2HDM and the S2HDM, such that our tree-level analysis of the boundedness

could permit potentially unphysical parameter points. The possibility of loop corrections

changing the boundedness of the potential was shown to be present only in regions of the

parameter space with splittings between mA, mH and mH± that are larger than ∼ 250 GeV,

where consequently large quartic couplings are present [202], which then give rise to the

corrections.

Since our analyses in the 2HDM and the N2HDM explore large splittings among the

scalar masses, we will perform additional checks to the the one-loop effective scalar potential

in these two models to ensure the stability of the EW minimum (see Sects. 5.3.1 and 6.2).

We will carry out a finite-temperature analysis of these two models, so we will also require

the condition(3.55) to hold for the running quartic couplings, extracted from the two-loop

β-functions, evaluated at the energy scale µ = T for the whole range of temperatures

analysed.

For the S2HDM, we simply demand an upper limit of 200 GeV on the splitting of the

heavy Higgs-boson masses compared to the mass scale M defined in Eq. (3.46), such that

the boundedness of the potential, and therefore the stability of the EW vacuum, are not

expected to be severely affected by the loop corrections. We apply the previously described

tree-level theoretical constraints taking into account the energy-scale dependence of the

parameters, utilizing the two-loop β-functions of the S2HDM and demanding that the

theoretical constraints are respected up to a certain energy scale.
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3.2.2 Experimental constraints

Electroweak precision observables

EW precision observables (EWPO) provide constraints on loop effects arising from the

states of extended Higgs sectors. The EWPO are quantities which are very well known

experimentally, at the percent level or better (see e.g. Ref. [203] for more details). In the

SM at tree-level, they just depend on the parameters of the EW sector –the fine structure

constant αem and/or the Fermi constant GF –but the other model parameters can enter

via loop corrections. This is also the case for many extensions of the SM and, in particular,

for extensions consisting of Higgs doublets or singlets. If we compute radiative corrections

to the predictions for the EWPO and perform a global fit of the floating parameters to

the EW data, we can constrain new physics contributions that enter the calculations via

those quantum corrections. In extended Higgs sectors, deviations in the EWPO from the

SM can at the one-loop level conveniently be expressed in terms of the oblique parameters

S, T and U [204, 205]. This approach assumes that the dominant new physics effects

reside in the self-energies of the gauge bosons. Since most of the calculations for the

EWPO involve the gauge boson propagators, the oblique parameters account for a whole

class of corrections which appear in the predictions for the W boson mass and the Z

boson observables. Denoting the contributions of the new physics to the various one-loop

self-energies by Πnew
ij , the S, T and U parameters are defined as

α̂T ≡ Πnew
WW (0)

M2
W

− Πnew
ZZ (0)

M2
Z

, (3.83)

α̂

4ŝZ
2ĉ2Z

S ≡ Πnew
ZZ (M2

Z)−Πnew
ZZ (0)

M2
Z

− ĉ2Z − ŝ2Z
ĉZ ŝZ

Πnew
Zγ (M2

Z)

M2
Z

−
Πnew

γγ (M2
Z)

M2
Z

, (3.84)

α̂

4ŝZ
2 (S + T ) ≡ Πnew

WW (M2
W )−Πnew

WW (0)

M2
W

− ĉZ
ŝZ

Πnew
Zγ (M2

Z)

M2
Z

−
Πnew

γγ (M2
Z)

M2
Z

, (3.85)

where ŝZ ≡ sin θW (MZ), ĉZ ≡ cos θW (MZ), and α̂ ≡ ĝ2ŝ2Z/(4π) are defined in the MS

scheme and evaluated atMZ . Notice that the S, T, U parameters are defined such that they

vanish for the SM. The BSM contributions to the predictions for the W boson mass and

the Z boson observables can be conveniently expressed in terms of these three parameters,

such that a global fit to the EW precision data yields [10]

T = 0.03± 0.12, (3.86)

S = −0.02± 0.10, (3.87)

U = 0.01± 0.11. (3.88)

Following Refs. [206, 207], where the S, T, U parameters are computed generically for

models exclusively containing gauge-singlet and SU(2)L-doublet scalar fields, we were able
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to constrain all the models discussed here by comparing the predictions for the oblique

parameters with the values in Eqs. (3.86)-(3.88).2

Flavour observables

As discussed in Sect. 3.1, the softly broken Z2 symmetry defined in Eq. (3.3), extended

to the Yukawa sector, forbids FCNCs at tree-level in the three models under investigation.

Accordingly, loop contributions play an important role for the predictions of low-energy

flavour-physics observables, such as rare B-meson decays and B-meson mixing parameters,

and their comparison with the experimental results. In the 2HDM, the dominant deviations

from the SM predictions have their origin in the presence of the charged scalars H±.
Most of flavour constraints are expected to be relatively insensitive to the presence of

additional singlet fields. In particular, for the Yukawa types II and IV, experimental

limits on BR(B → Xsγ) yield a roughly tβ-independent limit on the charged Higgs boson

mass[209, 210]

mH± ≳ 600 GeV, (3.89)

whose dependence on the details of the neutral scalar sector is only subleading [211]. On

the contrary, constraints derived from rare Bd and Bs decays based on the b → s flavour

changing neutral-current transition such as Bs → µ+µ− can get contributions from the

neutral scalars and, therefore, differ for each of the models of interest here. However, as we

concentrate on the Yukawa type II for all the studies presented here, the flavour constraints

for tβ values 1.5 ≤ tβ ≤ 10 –which is the regime of interest– are mainly derived from

experimental data from Bs → Xsγ [210]. Since the additional gauge singlet scalars of the

N2HDM and the S2HDM do not couple directly to the SM fermions, the relevant range of

tanβ is not expected to be substantially modified compared to the 2HDM. In our analyses,

we will use parameter points with tanβ ≈ 2 or below, such that the constraints from the

Bs,d → µ+µ− decays are of minor importance. Therefore, we can safely adopt the flavour

constraints of the 2HDM in Ref. [210] for our analyses in the N2HDM and the S2HDM. For

the 2HDM and the N2HDM, allowed parameter points are required to be located within

the 2σ region of the mH± − tβ plane as identified via a global fit to experimental data

in Ref. [210]. For the S2HDM type II, we applied hard cuts on the values of mH± and

tanβ corresponding to mH± > 600 GeV and tanβ > 1.5 in order to not be in conflict

with constraints from radiative and (semi-)leptonic B meson decays and from their mixing

frequencies [210].

Direct searches for additional Higgs bosons

Experimental upper limits on the production of BSM-type Higgs bosons provide important

constraints on the parameter space of models with extended Higgs sectors. For each of the

scenarios analysed, we list below the most constraining searches which obviously depend on

2The results given in Eqs. (3.86)-(3.88) do not take into account the new measurement of the W -boson

mass reported recently by the CDF collaboration [208].
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3.2 Theoretical and experimental constraints

mha mhb mhc mA mH± tanβ C2
hatt̄

C2
haV V sgn(Ra3) Rb3 m2

12 vS

125.09 [30, 1000] 400 650 650 2 1 1 −1, 1 [−1, 1] 65000 [1, 1000]

125.09 400 160 650 650 2 [0.8, 1.2] [0.7, 1.0] 1 0 65000 300

125.09 400 105 650 650 2 [0.8, 1.2] [0.7, 1.0] −1, 1 0 68500 300

Table 3.4: Set of input parameters for the three different scenarios explored in our analysis. Here

the three CP-even scalars (not necessarily ordered in mass) are denoted as ha,b,c. The first row

corresponds to a case in which the SM-like Higgs boson ha does not have a singlet component and

the two heavier CP-even scalars, hb and hc mix with each other. The second and third rows describe

scenarios where the SM-like Higgs boson ha mixes with a heavier and lighter singlet-like scalar hc,

respectively.

the particular parameter space region under investigation. Those searches were identified

and applied by means of the public code HiggsBounds. Further details on the code and the

specific versions that were utilised for each analysis are given in Sects. 5.1.1, 6.1 and 8.1.2.

2HDM For the following ranges of the input parameters

tanβ = 3 , mh = 125.09 GeV , 200 GeV ≤ mH ≤ 1 TeV ,

500 GeV ≤ mA = mH± ≤ 1.2 TeV , cos(β − α) = 0, M2 =
m2

12

sβcβ
= m2

H ,

the searches that led to the exclusion of parameters points are:

- ATLAS [174]: gg → H → (h)Z → (bb̄)l+l− at
√
s = 13 TeV, 139 fb−1

- ATLAS [212]: pp→ (A)γ → (jj)γ at
√
s = 13 TeV, 79.8 fb−1

N2HDM In the N2HDM, we focus on three different parameter space regions depend-

ing on the mixing patterns between the CP-even neutral scalars. In the first case, for a

scenario where the SM-like Higgs boson (h1 ≡ h125) does not have a singlet component and

the two heavier CP-even scalars, h2 and h3, mix with each other (see first row of Tab. 3.4),

the following searches are found to be the most relevant:

- CMS [213]: gg → A→ tt̄ at
√
s = 13 TeV, 35.9 fb−1 and including width effects

- CMS [213]: gg → h3 → tt̄ at
√
s = 13 TeV, 35.9 fb−1 and including width effects

In the case of a SM-like Higgs boson (h1 ≡ h125) that mixes with a heavier singlet-like

scalar h2 (see second row of Tab. 3.4), the searches that led to the exclusion of parameter

points are:

- CMS [214]: pp→ h3 → ZZ at
√
s = 13 TeV, 35.9 fb−1 and including width effects

- CMS [215]: pp→ (h2) → (WW )X at
√
s = 7 + 8 TeV, 4.6 fb−1
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For the scenario where a SM-like Higgs boson (h2 ≡ h125) mixes with a lighter singlet-like

scalar h1 (see third row of Tab. 3.4), the most constraining direct searches are:

- CMS [214]: pp→ h3 → ZZ at
√
s = 13 TeV, 35.9 fb−1 and including width effects

- LEP [216]: ee→ (h1)Z → (bb̄)Z at
√
s = 189− 209 GeV with combined data

S2HDM For the broader scan performed in the S2HDM over the following ranges of

input parameters

1.5 ≤ tanβ ≤ 10 , mh1 = 125.09 GeV , 140 GeV ≤ mh2,3 ≤ 1 TeV ,

40 GeV ≤ mχ ≤ 80 GeV , 40 GeV ≤ vS ≤ 1 TeV , −π/2 ≤ α1,2,3 ≤ π/2 ,

400 GeV ≤M ≤ 1 TeV , 600 GeV ≤ mH± ≤ 1 TeV , mA ≤ 1 TeV ,

∆Mmax = max (|mH −M |, |mA −M |, |mH± −M |) < 200 GeV , (3.90)

the direct searches that excluded parameter points are:

- ATLAS [174]: gg → A→ (h2)Z → (bb̄)l+l− at
√
s = 13 TeV, 139 fb−1

- ATLAS/CMS [217, 218]: pp→ h2, h3 → V V at
√
s = 13 TeV/7+8 TeV, 36 fb−1/5.1 fb−1

- CMS/ATLAS [214, 219]: pp → h2 → ZZ at
√
s = 13 TeV, 36 fb−1, 36.1 fb−1 and

including width effects

- ATLAS [220]: pp→ h2, h3, A→ τ+τ− at
√
s = 13 TeV, 139 fb−1

- ATLAS [221]: pp→ h2, h3 → h1h1 → bb̄bb̄ at
√
s = 13 TeV, 36.1 fb−1

- CMS [222]: gg → A → (h1)Z → (bb̄)l+l− at
√
s = 13 TeV, 35.9 fb−1 assuming

h1 = h125

- ATLAS [223]: pp→ (H±)tb→ (tb)tb at
√
s = 13 TeV, 139 fb−1

- ATLAS [224]: pp→ h2, h3 → h1h1 at
√
s = 13 TeV, 36.1 fb−1 assuming h1 = h125

- CMS [213]: gg → h2, h3 → tt̄ at
√
s = 13 TeV, 35.9 fb−1 and including width effects

Properties of the 125 GeV Higgs boson

The discovery of a Higgs boson with a mass of approximately 125 GeV at the LHC by the

ATLAS [225] and the CMS [226] collaborations puts strong constraints on models with

extended Higgs sectors. Purely CP-odd fermionic and bosonic couplings to the 125 GeV

Higgs boson are excluded, but admixtures are compatible with experimental results[227].

In a CP-conserving 2HDM, the pseudoescalar state A cannot play the role of the discovered

Higgs boson and, thus, the only possibility to account for the CP properties of the 125 GeV

Higgs boson is to identify one of the CP-even scalars with the discovered particle h125.

Furthermore, as the signal-rate measurements of the 125 GeV Higgs boson agree with the
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predictions of the SM at the 10% level [133, 228], the compatibility with those measurements

requires that the couplings of h125 should, within the current experimental uncertainties,

resemble the couplings of a SM Higgs boson. As discussed above, in the alignment limit in

2HDMs, the properties of the SM-like Higgs boson are recovered. The alignment limit can

occur with or without the decoupling of the non-SM-like scalars. In general, the masses of

the heavier Higgs bosons take the form

m2
ϕ =M2 + f(λi)v

2 +O(v4/M2), (3.91)

with ϕ ≡ H,A,H±, and f(λi) is a linear combination of the quartic couplings. If M2 ≫
f(λi)v

2, the mass of ϕ is dominated by the soft-breaking scale of the Z2 symmetry ∼ m2
12.

This is the so-called decoupling limit, where the effective theory below M consists of only

one doublet, and all the tree-level couplings of h ≡ h125 approach those of the SM Higgs.

However, a non-decoupling effect can still occur even though the non-SM-like scalars are

heavy. If M2 ≤ f(λi)v
2, a large value of mϕ arises if f(λi) is large, which corresponds

to the strong coupling regime. Here radiative corrections can appreciably change the low-

energy physics. In conclusion, the decoupling effect leads to the alignment limit but this is

only a sufficient condition and not necessary. The alignment limit in the 2HDM can also

occur within a non-decoupling regime as long as cos (α− β) = 0. These arguments can be

extended to the N2HDM and the S2HDM, where the alignment limit is defined as in the

2HDM plus a vanishing singlet component for the SM-like Higgs boson. The alignment

limit facilitates the agreement between the measured signal rates of the observed Higgs

boson and the predicted ones. In the 2HDM and partially in the N2HDM, we will focus on

the alignment limit within a non-decoupling regime of the heavy scalars (see Sect. 5.3 and

Sect. 6.5.1, respectively). In the N2HDM and the S2HDM, we will be also interested in

departures from the alignment limit (see Sect. 6.5.2 and Sect. 8.2.1, respectively). In general,

the predicted signal rates for h125 in models with extended Higgs sectors deviate from the

SM predictions. We have to ensure that these deviations lie within the experimental

uncertainties. For the case of the S2HDM, in addition to the global constraints on the

measured signal rates of h125, its parameter space can also be probed via possible decays

of h125 into a pair of DM particles χ with a mass of mχ < 125/2 GeV. At leading order,

the partial decay width of such an invisible decay is given by

Γinv (hi → χχ) =
1

32πmhi

√
1−

4m2
χ

m2
hi

(Ri1λ7v1 +Ri2λ8v2 +Ri3λ6vS)
2 , mhi

> 2m2
χ .

(3.92)

The most recent upper limit on the branching ratio of the invisible decay BRinv of h125 has

been reported by ATLAS and is given by BRinv < 0.11 at the 95% confidence level [229].

This additional decay mode also suppresses the ordinary decays of h125 into SM final states,

whom may lead to the incompatibility with the global constraints on the measured signal

rates.

The compatibility with the experimentally measured signal rates of the Higgs boson

at about 125 GeV was done by utilising the public code HiggsSignals. Further details
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on the code and the specific versions that were utilised for each analysis are given in

Sects. 5.1.1, 6.1 and 8.1.2.
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Part II

The EW symmetry in the early

Universe
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Chapter 4

Extended scalar sectors at

finite-temperature

The ΛCDM model offers comprehensive explanations for a broad range of observed phenom-

ena such as the abundances of the light elements, the existence and structure of the CMB,

the accelerating expansion of the Universe and the large-scale structure in the distribution

of galaxies (see e.g. [10] for a review). The measured abundances of the light elements are

the experimental evidence from the earliest stages of the Universe probed up to date, which

date back to roughly 180 s after the Big Bang. The detection of GWs in 2016 [230–232]

inaugurated the GW astronomy as a promising window into earlier cosmological epochs,

unreachable by other means. In particular, the characteristic frequency of the GW signal

generated during a FOEWPT overlaps with the sensitivity of the next generation of GW

experiments. The detection of such a GW signal would carry invaluable knowledge of the

early stages of our Universe, dating back to roughly 10−10 s after the Big Bang, when

the primordial plasma had a temperature of the order of the EW scale. The discovered

Higgs boson confirms the paradigm of a scalar field-driven symmetry breaking in the early

Universe, and the study of the EW epoch could shed light on the content of the scalar

sector, possibly containing additional scalar states. Extensions of the scalar sector may

have been responsible for a variety of phenomena impossible within the SM, such as a

FOEWPT or EW SnR at higher temperatures. Since the equilibrium description of the

Universe is a good approximation at the EW scale, the primordial plasma can be described

by a finite-temperature equilibrium field theory [233]. To see why this approximation holds,

we consider the measure of deviation from thermal equilibrium as the ratio of two time

scales, of which the first one is the rate of the Universe expansion, given by the Hubble

parameter H(T ). The second one is a typical reaction time. At the EW scale when

Tew ∼ mW , the slowest reactions, those involving chirality flips for the lightest fermions

(e.g. eRh125 → νW ), occur at a rate Γ ∼ y2e(g/4π)
2Tew. The ratio H(Tew)/Γ ∼ 10−2 ≪ 1

implies that to a very good approximation the primordial plasma was in thermal equilibrium

when its temperature was roughly Tew ∼ mW .

Here we present the background material needed for the later discussions in Chap-

ters 5 and 6. In particular, we derive the finite-temperature effective potential (Sect. 4.1).

We also discuss the EWPT and other possible effects in the thermal evolution of the EW

vacuum configuration, such as EW SnR and vacuum trapping (Sect. 4.2). Finally, we review

the production of GWs during a FOEWPT (Sect. 4.3).
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4.1 The finite-temperature scalar potential

Generating functionals In quantum field theory (QFT), the n-point correlation func-

tions are the basic objects that allow us to make predictions through the computation of

scattering amplitudes and making use of the Lehmann-Symanzik-Zimmermann (LSZ) [234]

reduction formula.1 The correlation or Green’s functions are defined as

Gn(x1, ..., xn) ≡ ⟨ω|T ϕϕϕ(x1)...ϕϕϕ(xn)|ω⟩ = lim
t1 → +∞
t2 → −∞

⟨0|T ϕ(x1)...ϕ(xn)U(t1, t2)|0⟩
⟨0|U(t1, t2)|0⟩

, (4.1)

where |ω⟩ and |0⟩ denote the respective ground states of the interacting and free theory,

described by the full H and the free H0 Hamiltonian, respectively. Here ϕ are the fields in

the interaction picture, whose evolution is controlled by H0, whereas ϕϕϕ are the fields in the

Heisenberg picture, which are evolved utilizing the full interacting Hamiltonian H. Both

representations are related via a time-dependent unitary transformation

ϕϕϕ = U †(0, t)ϕU(t, 0), (4.2)

where U(t1, t2) is the time-evolution operator given by

U(t1, t2) = eiH0t1e−iH(t1−t2)e−iH0t2 . (4.3)

The operation T denotes the time-ordered product. The Eq. (4.1) provides a basis for

perturbative calculations in QFT. It expresses the Green’s functions, which are expectation

values over the physical vacuum of the time-ordered product of Heisenberg field operators,

in terms of fields in the interacting picture and expectation values over the vacuum of the

free theory. The scattering matrix operator is defined as

S = lim
t1 → +∞
t2 → −∞

U(t1, t2) = lim
t1 → +∞
t2 → −∞

T e−i
∫ t1
t2

dtV (t) = T eiSint , (4.4)

where Sint = −
∫ t1
t2
dtV (t) and is V (t) =

∫
dx⃗V with V given by H = H0 + V . The

generating functional of the full n-point Green’s functions (including vacuum bubbles) is

the partition function,

Z[J ] = ⟨0|T eiSint+i
∫
dxJ(x)ϕ(x)|0⟩, (4.5)

from which one can compute the n-point correlation functions by taking derivatives of the

partition function with respect to the auxiliary function J(x) as follows

Gn(x1, ..., xn) = (−i)2 1

Z[0]

Z[J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

. (4.6)

Therefore, all transition amplitudes are encapsulated in the partition function, which –in

most cases– cannot be derived in a closed form but can be computed to some order of a

perturbative expansion in powers of a coupling constant. The generating functional Z can

1In this subsection, we followed the lecture notes in Ref. [235].
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be computed as a functional integral over all the possible paths for the field variable ϕ

weighted by a phase involving the classical action with boundary conditions ϕ1 = ϕ(t1, x⃗)

and ϕ2 = ϕ(t2, x⃗) in the limit t1 → +∞ and t2 → −∞,

Z[J ] = lim
t1 → +∞
t2 → −∞

∫
[Dϕ(x)]eiS+i

∫
dxJϕ, (4.7)

with

S =

∫ t2

t1

dt

∫
d3xL(ϕ(x)) =

∫ t2

t1

dt

∫
d3x

[
1

2
(∂µϕ)(∂

µϕ)− Vtree(ϕ)

]
, (4.8)

where Vtree(ϕ) is the tree-level potential. The vacuum-to-vacuum transition amplitude Z[J ]

generates all correlation functions by means of Eq. (4.6). We can also define the generating

functional for connected correlation functions as the phase of the partition function

W[J ] = −i logZ[J ]. (4.9)

From the first functional derivative of W[J ] we obtain the classical expectation value of

the field ϕ(x) in the presence of the source J as

δW[J ]

δJ(x)
= ⟨ϕcl⟩J = ϕcl(x). (4.10)

Setting J = 0, one obtains the 1-point function or the vacuum expectation value of ϕ(x)

δW[J ]

δJ(x)

∣∣∣∣
J=0

= ⟨ϕ(x)⟩. (4.11)

Furthermore, the Legendre transform of W[J ] as a function of J(x) defines the effective

action

Γ[ϕcl] = W[J ]−
∫
d4xJ(x)ϕcl(x), (4.12)

which is the generating functional for one-particle-irreducible (1PI) correlation functions,

Γ(n)(x1, ..., xn). The expectation value ⟨ϕ⟩ satisfies Euler-Lagrange equations derived by

finding the extrema of the effective action,

δΓ[ϕcl]

δϕcl(x)

∣∣∣∣
ϕcl=⟨ϕ⟩

= 0. (4.13)

Considering quantum fluctuations around the classical vacuum ϕ(x) = ϕcl(x) + η(x),

the saddle point evaluation of the effective action is given by the sum of the tree-level

classical action, a one-loop correction piece written in closed form, plus an infinite series of

higher-loop corrections originating from the fluctuations η(x) which can only be computed

diagrammatically,

Γ[ϕcl] = Sr[ϕcl]±
i

2
Tr log

(
−δ

2Sr
δϕ2

[ϕcl]

)
− i

 sum of

higher-loop diag.

+∆S[ϕcl]. (4.14)
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Here Sr corresponds to the renormalised classical action and ∆S to the set of counterterms.

The one loop contribution can be understood as the sum of all one-loop 1PI diagrams with

any number of external scalar fields legs. The ± sign in front of the 1-loop contribution

depends on whether the loops originate from bosonic (+) or fermionic (−) fields. For a

translationally invariant theory we have

ϕcl(x) = ϕcl, (4.15)

i.e. ϕcl is independent of x. Therefore, we define the effective potential as

Γ[ϕcl] = −
∫
d4xVeff(ϕcl). (4.16)

Thermal field theory The partition function has the interpretation of a statistical field

theory with the temperature identified as the inverse of imaginary time.2 To get an intuitive

idea on this, we consider the transition amplitude between an initial state ϕ(ta, x⃗) = ϕa
and final state ϕ(tb, x⃗) = ϕb given in terms of the path integral representation

⟨ϕa|e−iH(tb−ta)|ϕb⟩ =
∫
[Dϕ]ei

∫ tb
ta

dt
∫
d3xL. (4.17)

A system in thermal equilibrium with temperature T , described by the hamiltonian H and

with several conserved charges Qi ([Qi,H] = 0), is defined by its density matrix ρ,

ρ =
1

Z
e
− 1

T

(
H+

∑
i
µiQi

)
, (4.18)

where µi is a set of chemical potentials. The grand canonical partition function Z is the

statistical sum of the system,

Z = Tre
− 1

T

(
H+

∑
i
µiQi

)
= Tre

−β

(
H+

∑
i
µiQi

)
, (4.19)

where we have made the identification 1
T ≡ β. In the following, we will assume the approx-

imation of vanishing chemical potentials, as suggested by the observed BAU. Taking the

trace amounts to compute the integral

Z =

∫
dϕa⟨ϕa|e−βH|ϕa⟩, (4.20)

where ϕa are the set of eigenstates of the full interacting hamiltonian. We observe that the

computation of Z reduces to the computation of a path integral similar to Eq. (4.17) after

performing a Wick rotation

t→ −iτ. (4.21)

As a consequence of taking the trace, we require periodic boundary conditions for bosonic

fields

ϕa(0, x⃗) = ϕa(β, x⃗), (4.22)

2In this subsection, Refs. [233, 236–239] were followed.
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and anti-periodic boundary conditions for fermionic fields,

ψa(0, x⃗) = −ψa(β, x⃗). (4.23)

After the Wick rotation, the Lagrangian density for the real scalar field in Euclidean space

(τ, x⃗) reads

L → LE =
1

2

(
∂ϕ

∂τ

)2

+
1

2

3∑
i=1

(
∂ϕ

∂xi

)
+ Vtree(ϕ). (4.24)

The path integral representation of the statistical sum Z (Eq. (4.19)) in the presence of

external sources is given by

Z[J ] =

∫
[Dϕ(x)]e−SE+

∫
dτ

∫
d3xJϕ, (4.25)

with the Euclidean action defined on a finite τ -interval 0 < τ < β,

SE =

∫ β

0
dτ

∫
d3xLE . (4.26)

The (anti-)periodicity on the boundary conditions allows the expansion of the fields in

Fourier modes

Bosons: ϕ(τ, x⃗) =
1√
β

∞∑
n=−∞

ϕn(τ, x⃗)e
−iωnτ ,

Fermions: ψ(τ, x⃗) =
1√
β

∞∑
n=−∞

ψn(τ, x⃗)e
−iωnτ , (4.27)

where the Matsubara frequencies ωn = 2nπβ−1 and ωn = (2n + 1)πβ−1 lead to the

discretization of the energy of the bosonic and fermionic modes, respectively.

Given the equivalence between a finite-temperature equilibrium field theory and an

Euclidean field theory defined on a finite ”time” interval, many methods developed for

the zero-temperature QFT are inherited by the finite-T case. In particular, perturbation

theory at finite temperature looks precisely like perturbation theory at zero-temperature

with a substitution of quantities associated with the zero component of the 4-momentum.

For instance,

Boson propagator :
i

p2 −m2
; pµ = [2niπβ−1, p⃗ ]

Fermion propagator :
i

γ · p−m
; pµ = [(2n+ 1)iπβ−1, p⃗ ]

Loop integral :
i

β

∞∑
n=−∞

∫
d3p

(2π)3

Vertex function : −iβ(2π)3δ∑ωi
δ(3)

(∑
i

p⃗i

)
. (4.28)
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There is a standard trick to perform the infinite sums that appear in loop integrals [236].

For a particular choice of contour C, we have

1

β

∞∑
n=−∞

f(p0 = iωn) =

∫ +i∞

−i∞

dz

4πi
[f(z) + f(−z)] + η

∫
C

dz

2πi
n(z)[f(z) + f(−z)], (4.29)

where η = ±1 for bosons/fermions. Here n(ω) are the Bose-Einstein and Fermi-Dirac

distribution functions for bosons and fermions, respectively

n(ω) =
1

eω/T − η
, (4.30)

with the Matsubara frequencies

ω2(p⃗, ϕcl) = |p⃗|2 +m2(ϕcl). (4.31)

Here m2(ϕcl) is the background-field-dependent mass of ϕ(τ, x) computed as

m2(ϕcl) =
∂2Vtree(ϕ)

∂ϕ2

∣∣∣∣
ϕ=ϕcl

, (4.32)

for the Lagrangian in Eq. (4.24).

One-loop effective potential at finite T For a generic interacting theory, the gen-

erating functional of Green’s functions Z[J ] in Euclidean space with periodic boundary

conditions over the interval τ ∈ [0, β] corresponds to the grand canonical partition function

Z[β, J ] in the presence of an external source J coupling to the field variables. The gener-

ating functional W[J ] of connected Green’s functions is interpreted as the Helmholtz free

energy functional F [β, J ] = −1/β logZ[β, J ], whereas the effective action corresponds to

the Gibbs free energy functional

G[β, ϕcl] = F [β, J ] +

∫
Jϕcl. (4.33)

Since we can extend the definition of the effective action to finite-temperature field theory,

we can use the computational machinery seen in the first part of Sect. 4.1 to obtain the

one-loop effective potential V 1
eff at finite-temperature. The effective scalar potential can be

diagrammatically understood as the sum of all 1PI diagrams with any number of external

legs

Veff = −
∞∑
n=0

ϕncl
n!

Γ(n)(p = 0). (4.34)

Here Γ(n)(p = 0) is the n-point vertex function that contains all possible interactions at

any loop order for vanishing external momenta. In particular, the diagrammatic expansion

of the one-loop contributions to V 1
eff from scalars, fermions and gauge bosons can be seen

in Fig. 4.1.
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+ +

+

+

+
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V 1
eff ⊃

Figure 4.1: Illustrative example of the type of one-loop diagrams included in the 1-loop effective

potential.

To explicitly compute the closed form of the one-loop effective potential for a single

real scalar field, we consider the one-loop contribution to the effective action in Eq. (4.14)

(second term in the sum). Together with the definition of the effective potential in Eq. (4.16),

V 1
eff reads

V 1
eff =

1

2
Tr log

(
−∂2τ − ∇⃗2 +m2(ϕcl)

)
=
T

2

∑
n

∫
d3p⃗

(2π)3
log
(
ω2
n + ω2(p⃗, ϕcl)

)
, (4.35)

with ω(p⃗, ϕcl) defined in Eq. (4.31). In the second step in Eq. (4.35) we evaluated the trace

in the Fourier mode expansion in Eq. (4.27). This can be rewritten in the form

V 1
eff =

∫
d3p⃗

(2π)3
I(ω(p⃗)), (4.36)

in terms of the function

I(ω) =
T

2

∑
n

log
(
ω2
n + ω2(p⃗, ϕcl)

)
. (4.37)

Since we are only interested in the field-dependent part ω ≡ ω(p⃗, ϕcl), we can take the

derivative of I(ω) with respect to ω, and subsequently integrate the result. This yields

I(ω) =
ω

2
+

1

β
log
[
1− e−

ω
T

]
. (4.38)

Inserting this result into Eq. (4.36), we obtain the one-loop radiative corrections to the
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Chapter 4 – Extended scalar sectors at finite-temperature

scalar potential at zero-temperature (V
1(0)
eff ) and at finite temperature (V

1(T )
eff ),

V
1(0)
eff (ϕcl) =

∫
d3p⃗

(2π)3
ω

2
,

V
1(T )
eff (ϕcl) =

T 4

2π4

∫ +∞

0
dxx2 log

[
1− e−

√
x2+(m

T
)2
]
. (4.39)

The generalisation to higher-spin fields coupling to several scalar fields ϕi yields

V 1
eff(ϕcl,i) =

∑
j

njT

2

+∞∑
n=−∞

∫
d3p⃗

(2π)3
log
(
ωn + p⃗2 +m2

j ((ϕcl,i))
)

= V
1(0)
eff (ϕcl,i) + V

1(T )
eff (ϕcl,i)

=
∑
j

nj
2

(∫
d3p⃗

(2π)3

√
|p⃗|2 +m2

j (ϕcl,i)

+
T 4

π4

∫ +∞

0
dxx2 log

[
1− e−

√
x2+(

mj
T

)2
])

, (4.40)

where mj(ϕi) is the background-field-dependent tree-level mass of the particle species j,

and nj its corresponding number of degrees of freedom.

The temperature-independent contribution V
1(0)
eff is UV-divergent, so the divergences

must be isolated through regularisation and subsequently absorbed by an appropriate set

of counterterms. After renormalising V
1(0)
eff in the MS renormalisation scheme, we obtain

the well-known Coleman-Weinberg (CW) potential VCW [240]. For brevity, we will drop

the index of ϕcl keeping in mind the background-field approach that disregards excitations.

Let us now expand on the above considerations. The full effective potential computed

at the one-loop order is given by

Veff = Vtree + VCW + VT + VCT, (4.41)

where Vtree is the tree-level potential, and VCW denotes the CW potential. VCT includes a

finite set of counterterms and will be discussed below. At zero-temperature, the contribution

from VT vanishes,

Veff = Vtree + VCW + VCT. (4.42)

The CW potential is given in the MS renormalisation scheme by

VCW(ϕi) =
∑
j

nj
64π2

(−1)2sj m4
j (ϕi)

[
ln

( |mj(ϕi)
2|

µ2

)
− cj

]
, (4.43)

where sj is the particle spin. Here we set the renormalisation scale µ to be equal to the

SM EW vev, µ = v. In the MS renormalisation scheme, the constants cj are cj = 3/2 for

scalars and fermions, and cj = 5/6 for gauge bosons. In the three models analysed, the

sum in Eq. (4.43) runs over the various neutral scalars, the charged scalars, the SM quarks

q and leptons ℓ, the longitudinal and transversal gauge bosons. The CW potential has been
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4.1 The finite-temperature scalar potential

evaluated in the Landau gauge as this allows the omission of ghost contributions to VCW.

The effective potential is well-known to be gauge-dependent, and the extraction of physical

information from Veff has to be done with care.3

In scalar extensions of the SM, the tree-level scalar masses and mixing angles in general

differ from those extracted from the one-loop effective potential. To perform an efficient

scan through the parameter space of these models, we shift from the MS scheme to an

”on-shell” (OS) renormalisation scheme. To this purpose, we have followed Refs. [244, 245].

We required that the zero-temperature loop-corrected scalar masses and mixing angles be

equal to their tree-level values. We achieve this by adding to the effective potential an

UV-finite counterterm contribution VCT, given by

V CT =
∑
i

∂V0
∂pi

δpi +
∑
k

(ϕk + vk)δTk , (4.44)

where pi stands for the parameters of the tree-level potential. A tadpole counterterm δTk
is introduced for each field ϕk which is allowed to develop a vev. To maintain the tree-level

values of the scalar masses and their mixing angles at the loop level, we have imposed the

following renormalisation conditions

∂ϕi
VCT(ϕ)

∣∣∣⟨ϕ⟩T=0
= −∂ϕi

VCW(ϕ)
∣∣∣⟨ϕ⟩T=0

, (4.45)

∂ϕi
∂ϕj

VCT(ϕ)
∣∣∣⟨ϕ⟩T=0

= −∂ϕi
∂ϕj

VCW(ϕ)
∣∣∣⟨ϕ⟩T=0

, (4.46)

where ⟨ϕ⟩T=0 corresponds to the tree-level vev at zero temperature. The derivatives of

the CW potential have been computed following Ref. [246]. The contribution VT is the

one-loop thermal potential [236, 247] given in Eq. (4.40), which can be more conveniently

expressed in terms of the functions J±,

VT (ϕi, T ) =
∑
j

nj T
4

2π2
J±

(
m2

j (ϕi)

T 2

)
. (4.47)

The thermal integrals for fermionic (J+) and bosonic (J−) particle species are defined by

J±

(
m2

j (ϕi)

T 2

)
= ∓

∫ ∞

0
dxx2 log

1± exp

−

√
x2 +

m2
j (ϕi)

T 2

 , (4.48)

which vanish as T → 0 assuming that m2
j is positive. In addition to the degrees of freedom

considered in Eq. (4.43), the sum in Eq. (4.47) includes the photon, due to the non-zero

effective thermal mass of its longitudinal polarisation.

3Often the Nielsen identities [241, 242] are employed in this context; see e.g. [243] for a discussion of this

issue.
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Chapter 4 – Extended scalar sectors at finite-temperature

In certain situations (e.g. when studying EW SnR at high T ) it is convenient to expand

the thermal functions J± in the high temperature limit [236]

J−(y) ≈ −π
4

45
+
π2

12
y − π

6
y

3
2 − 1

32
y2 log

( |y|
ab

)
+O(y3) ,

J+(y) ≈ −7π4

360
+
π2

24
y +

1

32
y2 log

( |y|
af

)
+O(y3) for |y| ≪ 1 , (4.49)

with ab = π2exp(3/2 − 2γE) and af = 16π2exp(3/2 − 2γE), γE = 0.57721 . . . being the

Euler-Mascheroni constant.

Breakdown of perturbation theory The fact that thermal-loop effects overpower a

temperature-independent tree-level potential hints at the breakdown of perturbation theory.

This effect is what permits the high-temperature restoration of the EW symmetry in the

SM. Otherwise radiative corrections should be unable to restore the symmetry, since they

would be subleading with respect to the tree-level piece.

The perturbative expansion breaks down at high temperature due to zero-Matsubara-

modes that behave as massless degrees of freedom and generate divergences via an infrared(IR)-

mass pole in the propagator. Only bosons can have a vanishing Matsubara frequency (see

Eq. (4.27)), and therefore fermions do not cause IR-divergences.4 It is clear that this

problem will be accentuated in the high temperature regime, where the particles can be

approximated as nearly massless.

The breakdown of perturbation theory in finite-temperature field theory has a deep

physical reason [233]. At zero temperature, we consider processes where only a small

number of particles participate. However, at high temperature a very dense environment

favour the interaction among a large number of particles. For bosons, the number density

is proportional to the Bose-Einstein distribution function n(ω) (Eq. (4.30)). The number

density becomes large for zero-modes in the IR. Therefore, since the distribution function

enters the computation of loop integrals (see Eq. (4.28)), there will be certain diagrams for

which this feature becomes an IR-divergence. For fermions the situation is different, given

that the Pauli exclusion principle forbids the occupation of a single mode by more than

two particles.

Therefore, we cannot trust the completeness of the one-loop result due to the existence

of some higher-loop corrections of the same order. Furthermore, the leading part of these

multi-loop corrections that need to be resummed in the IR-limit is all contained in the set

of diagrams called daisy diagrams [249–251], shown in Fig. 4.2.

The first method to perform the resummation, introduced by Parwani [250], consists

in shifting the masses of all the Matsubara modes for the bosonic fields. In this way, the

IR-divergences are avoided by giving the bosons a finite mass,

m2
j (ϕi) → m2

j (ϕi) + Πj(T ). (4.50)

4In the gauge sector, only longitudinal polarisations lead to the breakdown of the perturbative expan-

sion [248].
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4.1 The finite-temperature scalar potential

Figure 4.2: Sum of daisy diagrams. Image taken from [239]

This temperature-dependent shift is the thermal mass, which is an effective mass that

particles acquire through their continuous interaction with the heat bath. The thermal

masses can be computed as the leading order contributions to the masses in the high-

temperature expansion of the one-loop thermal potential (Eq. (4.47)). Using the prescription

in Eq. (4.50), the one-loop effective potential is given by

V 1+Parwani
eff =

∑
j

njT

2

+∞∑
n=−∞

∫
d3p⃗

(2π)3
log
(
ωn + p⃗2 +m2

j (ϕi) + Πj(T )
)
. (4.51)

With this replacement, each bosonic propagator is substituted by its “dressed” version, and

we implicitly account for the daisy diagram contributions and remove their divergences.

The main problem arising in this approach is that, after renormalising the UV-divergent

part of the potential (4.51), the UV-behavior of the theory depends on the IR-dynamics.

Instead, we prefer the other frequently used approach that consists in ”dressing” only the

zero-modes propagators. This is the so-called Arnold-Espinosa (AE)5 approach [251]

V 1+AE
eff =

∑
j

njT

2


+∞∑

n=−∞\{0}

∫
d3p⃗

(2π)3
log
(
ωn + p⃗2 +m2

j (ϕi)
)

+

∫
d3p⃗

(2π)3
log
(
p⃗2 +m2

j (ϕi) + Πj(T )
)}

≡ V 1
eff + Vdaisy. (4.52)

The part containing the resummation of the daisy diagrams reads

Vdaisy(ϕi, T ) = −
∑
i

T

12π
Tr
[(
m2

i (ϕi) + Π2
i

) 3
2 −

(
m2

i (ϕi)
) 3

2

]
. (4.53)

Since Vdaisy effectively generates a cubic term which may affect the energy barrier between

degenerate minima in a FOEWPT, this contribution is crucial to correctly asses its strength.

The inclusion of the daisy resummation diminishes the strength of the FOEWPT due to

the screening caused by the thermal mass Πi for the field-dependent terms in m2
i (ϕi).

In conclusion, we will use in the following the full effective potential including the

resummation of daisy diagrams, which is given by

V (ϕi, T ) = Vtree + VCW + VT + VCT + Vdaisy. (4.54)

5See Chapter 6 for a comparison between the AE and the Parwani resummation methods.
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Scale dependence and perturbativity The renormalization group evolution of the

quartic scalar couplings λi can provide meaningful constraints on the viable region of the

parameter space of the models analisyed. Even if λi(µ) are perturbative at an energy

scale µ = v, the running of the parameters may drive the scalar quartic couplings into

a non-perturbative regime. Depending on the values of λi(v) this can happen already at

relatively low energy scales (i.e. not far from the EW scale). Hence, as a key ingredient

in our analysis, we solve the renormalization group equations (RGEs) for each model

parameter point discussed, and require that |λi(µ)| < 4π for v < µ < Tmax, where Tmax is

the maximum temperature analysed in each case. Due to the renormalisation prescription

showed in Eqs. (4.45) and (4.46), it is necessary to transform the OS values of the model

parameters pOS at µ = µ0 into the corresponding MS values pMS, such that the running of

the parameters can be applied by numerically solving the RGEs, given in terms of the β

functions in the MS scheme. The transformation between the two schemes is given by the

finite parameter counterterms δpi introduced in Eq. (4.44), using

pOS(µ0) + δpOS(µ0) = pMS(µ0) + δpMS(µ0) (4.55)

⇒ pMS(µ0) = pOS(µ0) + δpOS
fin.(µ0) , (4.56)

where the second equality follows from the fact that by definition the counterms δpMS do not

contain finite pieces. Accordingly, the counterterms δpOS
fin.(µ0) for the different parameters

pi correspond to the finite counterterms δpi in Eq. (4.44).

In the perturbative regime, the evolution of the parameters under a variation of µ is

logarithmic. Therefore, the scale dependence gives rise to only a relatively small uncertainty

in the context of FOEWPTs, which naturally take place at T ≲ v. On the other hand, for

the study of the scalar potential at temperatures beyond the EW scale, e.g. for the purpose

of investigating EW SnR, the variation of the quartic couplings λi with the energy scale

within the whole temperature region can be numerically important. Methods to improve

the theoretical uncertainties are discussed e.g. in Refs. [252, 253]. In order to limit the

impact of a potentially large scale dependence, we restrict our analysis to parameter points

with values of the renormalised couplings in the MS renormalisation scheme, |λ MS
i (µ0)|,

considerably below the perturbativity bound 4π.
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4.2 Thermal evolution

4.2 Thermal evolution

In this section, we describe the relevant phenomena that may have occurred to the cosmo-

logical history of the Universe around the EW scale. In particular, we focus on the EWPT

(Sect. 4.2.1), vacuum trapping (Sect. 4.2.2) and EW SnR (Sect. 4.2.3).

4.2.1 The EWPT

The effective potential V (ϕi, T ) (see Eq. (4.54)) can be interpreted as the free energy density

of a medium at a temperature T with the (homogeneous) background scalar fields equal

to ϕi. In thermal equilibrium, the free energy density is minimised with respect to all

the macroscopic parameters and, in particular, with respect to the fields ϕi, as we also

deduce from its connection to the effective action (Eq. (4.33)). At zero temperature, the

ground state is not invariant under the EW gauge group SU(2)L ×U(1)Y : the symmetry is

spontaneously broken down to the gauge group U(1)em due to the non-zero EW vev, which

in the three models explored is given by v =
√
v21 + v22 ≈ 246 GeV (see Sect. 3.1).

As we have seen in the previous section, the effective potential at finite-temperature

acquires additional contributions, resulting in the temperature dependence of the EW vev,

v(T ) =
√
v21(T ) + v22(T ). As predicted by standard comoslogy,6, the EW symmetry is

unbroken at very early times, so v(T ) vanishes at sufficiently high temperatures, i.e. v(T ≳
v) = 0. This means that, as the Universe cooled down, there must have been a transition

between the unbroken phase of the EW symmetry (in which v = 0) and the broken phase

(where v ̸= 0).

Essentially there are two different types of phase transitions: these are first and second-

order phase transitions. A FOEWPT is associated to a jump in the vev as a function of

temperature, while a second-order transition is characterised by a continuous change. This

can be observed in Fig. 4.3, where the families of curves represent the effective potential for

different temperatures in a particular field direction. Upper curves represent the potential

at higher temperatures. The left plot illustrates a FOEWPT. As temperature decreases,

we see how the minimum at the origin (false minimum) gets separated by an energy barrier

from the minimum where the EW symmetry is broken (true minimum). The true minimum

is the minimum that evolves towards the zero-temperature physical situation of an unbroken

EW symmetry with v = 246 GeV. It must have been adopted by Universe at some point

of its thermal evolution. The vacuum state associated to the true minimum is called ”true

vacuum”. A false minimum is any other minimum that does not converge to a physically

allowed minimum as the temperature approaches zero, and the vacuum state associated

to that minimum is called ”false vacuum”. At the critical temperature, Tc, both the true

and the false minima are degenerate, and, eventually, the false minimum becomes unstable.

At the nucleation temperature Tn, the transition occurs via the nucleation of bubbles of

the true vacuum phase, their subsequent expansion and mergers, culminating in an abrupt

6We will also consider the less conventional scenario in which the EW symmetry can be broken already at

temperatures much larger than the EW scale (see Sect. 4.2.3).
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Chapter 4 – Extended scalar sectors at finite-temperature

Figure 4.3: Shape of the effective potential at various temperatures: upper darker curves correspond

to higher temperatures. The left and right panels describe first and second order phase transitions,

respectively. Black circles show the expectation value ⟨ϕ⟩. Image taken from [254].

change of the vev (see Fig. 4.4). When the unbroken phase percolates, the Universe returns

to an spatially homogeneous state of thermal equilibrium with v ̸= 0. The turbulent

expansion and collision of the bubbles generates GWs (see Sect. 4.3).

The right plot in Fig. 4.3 exemplifies a second-order phase transition, which proceeds by

a slow and homogeneous change of the medium properties over the entire space. At every

moment of time, the medium is in a state close to thermal equilibrium and the vev changes

continuously with temperature. Here we remark that the background-field method utilised

to derive the effective potential in Eq. (4.54) is a good approximation for the study of a

strong FOEWPT, but breaks down for weakly first-order and second-order phase transitions

close to the critical temperature. We define a strong FOEWPT as a transition for which

the following condition is satisfied
vn
Tn

≳ 1, (4.57)

where vn ≡ v(Tn). During a strong FOEWPT, a large barrier between the two phases

suppresses large amplitude thermal fluctuations around the false minimum. Therefore, an

initial false vacuum state is well-defined, as no sizeable fraction of volume is in the new phase

before the transition occurs [255]. In this situation, neglecting the fluctuations around the

background field in Eq. (4.14) is a good approximation to study the transition. For weaker

first-order and second-order phase transitions, at the critical temperature the curvature

at both degenerate minima is close to or exactly zero, and large-amplitude fluctuations

are expected to cause a substantial mixing between the two phases. In this situation

an initial vacuum state located at the origin of field space is ill-defined. Therefore, the

method based on the analysis of the effective potential in Eq. (4.54) is appropriate to study
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4.2 Thermal evolution

Figure 4.4: Three-dimensional simulation of a FOEWPT, which proceeds via the nucleation of

growing bubbles of a broken phase with v ̸= 0 in a background unbroken phase with v = 0. The

image shows a moment where a substantial fraction of the bubbles have collided. Image by David

Weir [256, 257].

strong FOEWPTs, but the calculation of the critical temperature for weakly first-order

and second-order EWPTs should be regarded as a mere illustrative quantity.

The occurrence of a strongly FOEWPT depends on the transition rate per unit time

and unit volume from the false vacuum into the true (EW) vacuum [192, 193, 258, 259]

Γ(T ) = A(T ) e−S3(T )/T , (4.58)

with S3 being the three-dimensional action for the “bounce” (multi-)field configuration ϕ⃗B
that interpolates between the false and the true (EW) vacua for T < Tc,

S3(T ) = 4π

∫
r2dr

1
2

(
dϕ⃗B
dr

)2

+ V
(
ϕ⃗B, T

) . (4.59)

Specifically, the bounce ϕ⃗B is the configuration of scalar fields ϕ that solves the equations

of motion derived from the action Eq. (4.59) with boundary conditions dϕ/dr|r=0 = 0

and approaching the false vacuum at r → ∞. Physically, ϕ⃗B describes a bubble of the

true vacuum phase nucleating in the false vacuum background. The prefactor A(T ) is a

functional determinant [193] given approximately by A(T ) ∼ T 4 (S3/2πT )
3/2 [258]. The

onset of the FOEWPT occurs when the time integral of the transition rate,Eq. (4.58),

within a Hubble volume H becomes of order one. This defines the nucleation temperature

Tn (see e.g. [260]) as ∫ Tc

Tn

T 4

H4

A(T )

T
e−S3(T )/T dT ∼ 1 , (4.60)

where we have used that the time-temperature relation in an expanding Universe is assumed

to be dominated by radiation. The Hubble parameter H is given by

H2(T ) = (8π3geff(T )T
4)/(90M2

Pl), (4.61)

59



Chapter 4 – Extended scalar sectors at finite-temperature

where geff(T ) denotes the effective number of relativistic degrees of freedom at a temperature

T, and MPl = 1.22× 1019 GeV is the Planck mass. Eq. (4.60) roughly yields [27]

S3(Tn)/Tn ∼ 140 (4.62)

as the requirement for the occurrence of a FOEWPT. The possibility that the condition

(4.60) is not satisfied for any temperature below the critical temperature Tc will be discussed

in section Sect. 4.2.2.

On general grounds, a cosmological first-order phase transition can be characterised

by four macroscopic parameters which we specify in the following. These quantities are

obtained from the microscopic properties of the underlying particle physics model. As will

be discussed in more detail in Sect. 4.3, these parameters also determine the predictions of

the amplitude and the spectral shape of the stochastic GW background that is generated

during the first-order phase transition. The first key parameter is the temperature T∗ at

which the phase transition takes place. The second parameter, α, measures the strength of

the phase transition. Following Refs. [26, 27], we define α as the difference of the trace of

the energy-momentum tensor between the two (false and true vacua) phases, normalised

to the radiation background energy density, i.e.

α =
1

ρR

(
∆V (T∗)−

(
T

4

∂∆V (T )

∂T

)∣∣∣∣
T∗

)
. (4.63)

Here ∆V (T ) = Vf − Vt, with Vf ≡ V (ϕf ) and Vt ≡ V (ϕt) being the values of the potential

in the false and the true vacuum, respectively.7 ρR is the background energy density

assuming a radiation dominated Universe, i.e. ρR = π2geff(T∗)T 4
∗ /30. We also note that

for cosmological phase transitions in which α ≪ 1, the transition temperature T∗ can

be identified with the nucleation temperature Tn defined by Eq. (4.60) [26], since the

temperature at the onset of the transition is approximately equal to the temperature for

which true vacuum bubbles collide and the phase transition completes. The third quantity

is the inverse duration of the phase transition in Hubble units, β/H. It can generally be

expressed (see [263] for a discussion) in terms of the derivative of the action S3 with respect

to the temperature evaluated at the time of the phase transition,

β

H
= T∗

(
d

dT

S3(T )

T

)∣∣∣∣
T∗

. (4.64)

The fourth quantity that characterises a cosmological first-order phase transition is the

bubble wall velocity vw in the rest frame of the fluid and far away from the bubble. So

far, except for the case of ultrarelativistic bubbles [264–266], the computation of vw is

7In some studies (see, for instance, Refs. [145, 261] for 2HDM analyses) the parameter α has been defined

instead as the latent heat released during the transition divided by ρR, in which case the factor 1/4 in

the second term in Eq. (4.63) is absent. However, recent studies have shown that the definition used

here yields a better description of the energy budget available for the production of GW waves compared

to a definition of α by means of the pressure difference or the energy difference [262].

60



4.2 Thermal evolution

generally a very complicated task that requires solving a coupled system of Boltzmann and

scalar field equations in a fairly model-dependent approach (see Refs. [267–276], as well as

[26, 27] for a general discussion). There is no precise prediction for vw in the 2HDM (or

related extensions of the SM) available in the literature.8 Hence, we will treat vw as a free

parameter in our analysis in the 2HDM Chapter 5.

EW baryogenesis EW baryogenesis is an interesting scenario to explain the BAU that

predicts new phenomena at the EW scale potentially accessible at present and near-future

colliders, precision experiments and GW interferometers. The generation of the observed

BAU requires out-of-equilibrium dynamics [24] to avoid the wash-out of the baryon number.

Such a prerequisite can be fulfilled by the EWPT, but only if it is first order [52]. The

SM predicts that EWSB happened in the early Universe via a smooth crossover [40–44],

where all the medium properties changed continuously with temperature. A crossover is

not considered to be a proper phase transition even though there are similarities between

its features and those of a second-order phase transition, i.e. the continuous temperature

evolution of v(T ). In contrast, a second-order phase transition shows a discontinuity in

the temperature evolution of the second derivative of the free energy density, whereas for

a crossover there are no discontinuities at any order in the derivatives of the free energy

density. The fact that the SM predicts a smooth crossover instead of a FOEWPT has been

often used as a motivation for BSM physics (see e.g. the review [277]).

The role of the FOEWPT is fundamental for EW baryogenesis [52], which essentially

proceeds in three steps. Firstly, provided the existence of baryon number and C- and

CP -violating processes, when the nucleated bubbles expand, particles in the plasma can

scatter with the phase interface and generate CP and C asymmetries in the particle

number densities in front of the bubble wall. Secondly, these asymmetries diffuse into

the symmetric phase ahead of the bubble wall, where they bias EW sphaleron transitions

to produce more baryons than antibaryons [277]. Finally, some of the net baryon charge

created outside the bubble wall is swept up by the expanding wall into the broken phase,

where sphaleron processes must be sufficiently suppressed in order to avoid the wash-out

of the generated baryon asymmetry. This prerequisite leads to the condition in Eq. (4.57),

which arises from requiring the rate of sphaleron processes inside the bubble to be smaller

than the Hubble expansion rate [277]. One should note that the ratio vn/Tn is not a

well-defined physical quantity, since it is gauge-dependent. In addition, the frequently

used criterion in Eq. (4.57) implicitly assumes specific choices for various parameters such

as the duration of the transition or the factor accounting for fluctuations that are not

sphaleron zero-modes [277]. Given that the goal of this dissertation is the study of the

EWPT independently of baryogenesis, the precise criterion to avoid the baryon asymmetry

washout is not of prime importance. Nevertheless, the intrinsic gauge dependence of the

8See Ref. [39] for estimates of vw in the 2HDM for some specific parameter configurations. A simple

analytical formula to predict vw has been obtained in Ref. [275]. However, this formula has not yet been

applied to models with a second Higgs doublet, and it is unclear how accurate the prediction for vw
would be for the 2HDM.
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scalar field vacuum expectation values at any temperature, the critical and the nucleation

temperatures is indeed a source of uncertainty that does affect our analysis. In Ref. [278] it

was noted that, in most models, the uncertainty arising from the quantitative dependence

on the gauge-fixing parameter should be rather small as compared to the uncertainty of

neglecting two-loop contributions to the effective potential.

4.2.2 Vacuum trapping

The Universe must evolve to the EW minimum at T = 0. This condition has a highly

non-trivial impact on the physically allowed parameter space of BSM models. It implies

that a zero-temperature analysis does not suffice to determine the viable parameter space

region. A scalar potential that is bounded from below and has the EW vacuum as the global

minimum at T = 0 could still correspond to a scenario that is not physically acceptable.

It is possible that the scalar potential at T = 0 has more than one local minimum: the

EW vacuum as global minimum and, for instance, a false vacuum with ⟨Φ1,2⟩ = 0 (using

the notation of Sect. 3.1). If at some temperature T > 0 only the ⟨Φ1,2⟩ = 0 vacuum is

present, the Universe can only evolve to the EW minimum by tunnelling from the false one.

Then, if the conditions for the on-set of the first-order phase transition were never fulfilled

(Eq. (4.60)), the Universe would be trapped in a false vacuum at T = 0.

This phenomenon is dubbed vacuum trapping. In particular, when aiming to identify

the parameter space regions of a BSM model where a FOEWPT occurs, the possibility of

vacuum trapping indicates that an approach based solely on the critical temperature Tc is

not sufficient and may yield misleading results. Vacuum trapping will be discussed in the

context of the 2HDM and of the N2HDM in Chapters 5 and 6, respectively. It has been

recently discussed in the NMSSM [279] and also previously in the context of colour-breaking

minima within the MSSM [280]. In the 2HDM, vacuum trapping has been also recently

explored in Ref. [145], emphasising that this phenomenon may take place in particular if the

barrier between the false and the true vacua is driven almost exclusively by the radiative

corrections, rather than by the thermal contributions to the effective potential.

4.2.3 EW symmetry non-restoration

It is known that in certain extensions of the SM the EW symmetry can be broken already

at temperatures much larger than the EW scale, resulting in EW SnR [46–51, 281]. The

effect of SnR can exist up to possibly very high temperatures, and it is also possible to find

no restoration at all within the energy range in which the model under consideration is

theoretically well-defined. As we will discuss in Chapter 5 for the 2HDM and in Chapter 6

for the N2HDM, in doublet extensions of the SM the presence of EW SnR is related to the

existence of sizeable quartic scalar couplings and the impact of the resummation of infrared

divergent modes in the scalar potential. In that scenario, the maximum temperature up

to which the analysis of SnR is valid corresponds to the upper cut-off Λ4π defined as the

energy scale µ at which one of the quartic couplings reaches the naive perturbative bound
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4π (see the end of Sect. 4.1 for a related discussion). Λ4π is representative of the energy

scale µ at which the theory enters a non-perturbative regime.

The occurrence of EW SnR in the early Universe has a number of cosmological conse-

quences [47]. For instance, in the absence of a FOEWPT, there will be no GW signal. Even

though the absence of GW signals is also a prediction of the SM, scenarios with EW SnR

could be distinguished through deviations from the SM that are potentially measurable

at colliders. Furthermore, an unrestored EW symmetry at high temperature maintained

down to the EW scale allows the possibility of high-scale or GUT baryogenesis [282–286].

Through the suppression of EW sphalerons, any possible baryon asymmetry generated at

high energy scales could be preserved as the Universe cools down. This situation would

allow for sources of CP-violation that are only manifest at those possibly very high energy

scales, ensuring the compatibility with the required amount of CP-violation to generate

the baryon asymmetry and bounds from electric dipole moments. In general, EW SnR

can cause changes in the thermal evolution of the Universe as compared to the symmetry-

restored ”vanilla” cosmology. In particular, it can alter the evolution of the relativistic

degrees of freedom geff, add contributions to the Hubble rate, induce changes in the de-

coupling/recoupling to the thermal bath of particles that obtain mass through the Higgs

sector, modify their equations of state, trigger a period of early matter domination (possi-

bly influencing structure formation), and modify freeze-in and freeze-out calculations with

potential effects on the abundance of DM and SM particles.

4.3 Cosmological gravitational wave backgrounds

We review the framework that underlies the analysis about GWs in the 2HDM in Chapter 5.9

In Sect. 4.3.1, we define the GWs. We describe the basic formalism that connects first

principles from GR to the actual measurable quantity in GWs observatories, the GW power

spectrum ΩGW. In Sect. 4.3.2, we estimate the dependencies of ΩGW with some of the

relevant quantities in the FOEWPT. Towards the end of the section, we give the formulas

for the different contributions to ΩGW depending on the specific source in a FOEWPT.

4.3.1 Characterisation of a stochastic GW background

The Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric is the background metric

that describes our expanding Universe under the assumptions of spatial isotropy and

homogeneity. GWs are represented by transverse and traceless tensor spatial perturbations

hij (i, j = 1, 2, 3) of the FLRW metric

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (4.65)

where t, xi are the comoving coordinates and a(t) is the scale factor. Due to general covari-

ance, the perturbation hij is imposed to satisfy the transverse-traceless gauge conditions

hii = 0 and ∂ihij = 0, (4.66)

9This section is partly based in Ref. [287], which offers a very comprehensive review on GWs.
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which yield a total of two propagating degrees of freedom.

The GW equation of motion is given by Einstein equations linearised to first order in

hij over a FLRW background

ḧij(t,x) + 3Hḣij(t,x)−
∇2

a2
hij(t,x) = 16πG ΠTT

ij (t,x), (4.67)

where ∇2 is the Laplacian in comoving coordinates, a dot denotes the derivative with

respect to the comoving time t, H = ȧ/a is the Hubble rate and ΠTT
ij is given by the

traceless and transverse part of the anisotropic stress,

a2Πij = Tij − pa2(δij + hij), (4.68)

where p is the background pressure and Tij are the spatial components of the energy-

momentum tensor of the source. ΠTT
ij (t,x) contains the information relative to the source

of the perturbation hij and depends on the specific scenario. In general, the solutions

to Eq. (4.67) can be decomposed into the two polarisation states r = +,× as

hij(t,x) =
∑

r=+,×

∫
d3k

(2π)3
hr(t,k)e

−ik·xerij(k̂), (4.69)

where k̂ = k/k is the unit vector in the k direction and the two polarisations satisfy

erij(−k̂) = erij(k̂). The polarisation vectors can be written as

e+ij(k̂) = m̂im̂j − n̂in̂j (4.70)

e×ij(k̂) = m̂in̂j − n̂im̂j , (4.71)

with n̂, m̂ and k̂ orthogonal among them. With these definitions we have erij(k̂)e
r′
ij(k̂) =

2δrr′ .

While performing GW experiments, the variation of the cosmological expansion can be

neglected during the duration of the signal. Under this assumption, we can rewrite the

expansion in Eq. (4.69) in terms of the frequency f and the unit wave vector k̂

hij(t,x) =
∑

r=+,×

∫ +∞

−∞
df

∫
d2k̂h̄r(f, k̂)e

i2πf(t−k̂·x)erij(k̂). (4.72)

In the following, we would like to relate the Fourier amplitude modes h̄r(f, k̂) to the energy

density of GWs ρGW, which is ultimately related to the measurable GW spectrum.

To obtain the energy density of GWs, we need to compute the effective stress-energy

tensor, by firstly noting the need to distinguish a GW originated by metric fluctuations

over those caused by the curved background metric. The differentiation is usually done by

exploiting a separation of scales/frequencies. If the background metric varies over a typical

length scale given by the current value of the Hubble parameter H0, LB ∼ 1/H0, and

the fluctuation is characterised by a typical wave length λ, then they are distinguishable

provided that λ≪ LB. On practical grounds, this requires performing averages of physical
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quantities over length-scales l such that λ ≪ l ≪ LB. Einstein equations at second order

in the metric perturbation yield

TGW
µν =

⟨∇µhαβ∇νh
αβ⟩

32πG
, (4.73)

where ∇ denotes the covariant derivative with respect to the background metric, G is the

gravitational constant and ⟨. . .⟩ is an average over a length or time scale. The energy density

of GWs is the 00 component of the stress energy tensor which, for the FLRW metric, can

be expressed as

ρGW = T 00
GW =

⟨ḣij ḣij⟩
32πG

. (4.74)

The GW background originated from cosmological sources is an stochastic background,

i.e. the amplitude of the tensor perturbation hij is understood as a random variable which

can be characterised only statistically. The resulting GW signal is the outcome of the

superposition of a large number of independent sources distributed uniformly across the

Universe. The stochastic GW background is assumed to be statistically homogeneous

and isotropic, unpolarised and Gaussian. Homogeneity and isotropy are inherited

properties of the FLRW metric. As a consequence of the lack of significant sources of parity

violation in the early Universe, the GW background is also considered unpolarised. Finally,

by the central limit theorem, the superposition of many independent signals is expected to

follow a Gaussian distribution. According to these four properties, the power spectrum of

the Fourier amplitude modes h̄r(f, k̂) can be written as

⟨h̄r(f, k̂)h̄∗p(g, q̂)⟩ =
1

8π
δ(f − g)δ(2)(k̂ − q̂)δrpSh(f), (4.75)

where Sh(f) is the spectral density which satisfies Sh(−f) = Sh(f) and has frequency

dimensions.

Using Eq. (4.72) and Eq. (4.75), one is able to compute the energy density of GWs ρGW

(4.74). Finally, the intensity of a stochastic background of GWs can be characterised by

the GW power spectrum

ΩGW(f) =
1

ρc

dρGW

d log f
, (4.76)

where ρc is the value of the critical energy density for closing the Universe

ρc =
3H2

8πG
. (4.77)

ΩGW and ρc are normally computed at the moment of the detection or at the moment of

the GWs production. In the following subsection, we explain how both relate.

4.3.2 Stochastic GW background from FOEWPTs

Cosmological GWs arriving at the Earth are redshifted as compared to the originally emitted

waves. This is a consequence of their propagation across the expanding Universe. After the
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production of the GWs, they travel unperturbed due to the fact that they are decoupled

from the rest of the Universe. The GW energy density is diluted as radiation with the

expansion of the Universe ρGW ∝ a−4, whereas the frequency and the wave vector of GWs

redshifts as ∝ a−1. Considering that the Universe expands adiabatically. The conservation

of the entropy per comoving volume S ∝ a3geff(T )T
3 yields the ratio of the scale factor at

the transition (dubbed with ∗) to the scale factor today (dubbed with 0) [288]

a∗
a0

= 8.0× 10−14

(
100

g∗

)1/3(1 GeV

T∗

)
, (4.78)

where g∗ ≡ geff(T∗) is the effective number of relativistic degrees of freedom at the tem-

perature of the phase transition. Now we can relate the GW amplitude ΩGW,∗ and the

characteristic frequency f∗ at the moment of the transition with the amplitude ΩGW and

the frequency f0 measured today, respectively.

f0 = f∗

(
a∗
a0

)
= 1.65× 10−7 Hz

(
f∗
H∗

)(
T∗

1 GeV

)( g∗
100

)1/6
(4.79)

ΩGW = ΩGW,∗

(
a∗
a0

)4(H∗
H0

)2

= 1.67× 10−5h−2

(
100

g∗

)1/3

ΩGW,∗. (4.80)

We can easily estimate how the GW amplitude at the moment of the production ΩGW,∗
scales with the duration of the phase transition 1/β and the tensor anisotropic stress of

the GW source ΠTT (see Eq. (4.68)). In the following we drop the indices for simplicity.

Assuming that the processes associated to Π have a typical duration 1/β with β/H∗ > 1,

H∗ = H(T∗) and
ḣ ≃ ∆h/∆t, ∆h ∼ h ∆t = 1/β, (4.81)

the Eq. (4.67) implies

β2h ∼ 16πGΠ, (4.82)

which suggests that

ḣ ∼ 16πGΠ. (4.83)

The energy density of GWs (4.74) at the time of the production is therefore estimated as

ρ∗GW ∼ ḣ2

32πG
∼ 8πGΠ2

β2
. (4.84)

Dividing by the total energy density at the time of the GW production we have

ρ∗GW

ρ∗tot
∼
(
H∗
β

)2( Π

ρtot

)2

. (4.85)

Using Eq. (4.80), we arrive at

h2ΩGW ∼ 1.67× 10−5h−2

(
100

g∗

)1/3(H∗
β

)2( κα

1 + α

)2

, (4.86)
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where Π/ρtot has been rewritten by using

ρ∗tot = ρ∗R + ρvac. (4.87)

ρvac is the vacuum energy released in the transition. We have used the approximation

α ≈ ρvac/ρR. We have also set κ ∼ Π/ρvac, where κ is an efficiency factor that can be either

κϕ = ρϕ/ρvac or κv = ρv/ρvac., (4.88)

depending on the source. ρϕ and ρv are the vacuum energy released during the transition

that is converted into gradient energy of the scalar fields driving the transition and into

bulk motion of the plasma, respectively.

From Eq. (4.86) we see that processes that minimise β/H∗, i.e. slow processes, favour a

detectable GW signal. At the same time, very energetic transitions, where a large amount

of vacuum energy is released, also favour the detection. Considering the typical time scale

of the transition given by 1/β, we get from Eq. (4.79) the GWs characteristic frequency

today

f ∼ 1.65× 10−5 Hz

(
f∗
H∗

)(
T∗

100 GeV

)( g∗
100

)1/6
. (4.89)

From here we estimate that the characteristic frequency of the GW spectrum associated to a

FOEWPT (T∗ ∼ 100 GeV) falls in the frequency range of LISA for values 1 ≲ β/H∗ ≲ 105.

Sources of GWs in a FOEWPT Beyond the rough estimates that Eqs. (4.86) and (4.89)

provide, there are three specially compelling sources of GW in FOEWPTs whose precise

contributions to the spectrum have to be modelled by means of numerical simulations.

The collisions of the expanding bubbles, the resulting motion of the ambient cosmic fluid

and magnetohydrodynamic turbulence in the plasma source a stochastic GW background

that could be observable at future GW interferometers (see e.g. [26, 27, 289] for a discus-

sion). For FOEWPTs in the 2HDM, where the expanding bubbles do not run-away [39],

the contribution from the bubble collisions themselves can be safely neglected. Then, GWs

are generated from the sound waves and turbulence generated in the plasma following

the bubble collisions [26]. As introduced in Sect. 4.2.1 the GW spectrum produced in a

FOEWPT is characterised by four essential quantities [26, 27]: the transition temperature

T∗, the strength α, the inverse duration of the phase transition β/H, and the bubble wall

velocity vw, i.e. the speed of the bubble wall after nucleation in the rest frame of the plasma

far away from the phase-transition interface. The GW power spectrum as a function of

frequency h2ΩGW(f) is given by

h2ΩGW(f) = h2Ωsw(f) + h2Ωturb(f) , (4.90)

where h2Ωsw and h2Ωturb are respectively the contributions from sound waves and tur-

bulence. The contribution from sound waves propagating in the plasma was originally
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obtained with the help of large-scale lattice simulations of bubble collisions inducing bulk

fluid motion [256, 290]. It can be written as [26] (see also [291, 292])

Ωsw (f) = 0.687Fgw,0 Γ
2 Ū4

f

(
H∗R∗
cs

)
Ω̃gw

(
H∗τsw
cs

)
C (f/fsw,p) , (4.91)

with

Fgw,0 = 3.57 · 10−5

(
100

g∗

)1/3

, Ω̃gw = 0.012 . (4.92)

We have also introduced the speed of sound of a relativistic plasma cs = 1/
√
3 and the

adiabatic index Γ = 4/3. Ūf is the the root-mean-square four-velocity of the plasma given

by

Ū2
f =

κα

Γ(1 + α)
, (4.93)

where κ denotes the efficiency factor taking into account the relevant energy fraction

for sound waves introduced in Eq. (4.88), which is a function of α and vw that also

depends on the steady-state bubble expansion regime (deflagrations, detonations or hybrids,

see e.g. [293]), which we obtain following Ref. [293]. The mean bubble separation R∗
entering (4.91) is defined by

H∗R∗ = (8π)1/3
(
β

H

)−1

max(vw, cs) . (4.94)

The factor H∗τsw in Eq. (4.91) is introduced in order to account for a timescale τsh for the

formation of shocks in the plasma (leading to the damping of the sound waves) that may

be shorter than one Hubble time [294]

H∗τsw = min(1, H∗τsh) with H∗τsh ≃ H∗R∗
Ūf

. (4.95)

Finally, the spectral shape of the sound-wave signal is approximated by the function

C(s) = s3
(

7

4 + 3s2

)7/2

, (4.96)

and the associated peak frequency is given by

fsw,p = 26

(
1

H∗R∗

)(
T∗

100 GeV

)( g∗
100

)1/6
µHz . (4.97)

As indicated above, if the sound-wave period is much shorter than a Hubble time (H∗τsw ≪
1), a large fraction of the energy stored in the bulk motion of the plasma does not get to

produce GW from sound waves. Yet, when the fluid flow becomes nonlinear (giving rise

to shock formation), it can lead to the appearance of turbulence in the plasma, which in

turn can also generate GWs. Following Ref. [294], we have modelled h2Ωturb under the

most optimistic assumption that all the energy remaining in the plasma when the sound
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waves are damped gets transformed into turbulence. In this case, the spectrum of GWs

from turbulence may be written as [295]

Ωturb = 7.23 · 10−4

(
100

g∗

)1/3

vw

(
β

H

)−1

(1−H∗τsw) Γ3/2 Ū3
f D(f, fturb,p) , (4.98)

with peak frequency

fturb,p
H∗

= 1.75

(
β

H

)(
1

max(vw, cs)

)
µHz , with H∗ = 1.65·10−5

(
T∗

100 GeV

)( g∗
100

)1/6
,

(4.99)

and the spectral shape approximated by

D(f, fp) =

(
f

fp

)3(
1 +

f

fp

)−11/3(
1 + 8π

f

H∗

)−1

. (4.100)

We note in any case that the details of the GW spectrum produced from turbulence

constitute a subject of ongoing debate (see e.g. Refs. [296–298]). At the same time, we have

assumed for simplicity in this work that all the energy remaining in the plasma after the

sound waves are switched-off leads to turbulence. This gives rise to the factor (1−H∗τsw)
in Eq. (4.98), to be compared with the factor H∗τsw in Eq. (4.91). We also stress that the

efficiency of turbulence generation as a result of nonlinearities in the plasma is currently

under investigation [299]. Nevertheless, we here find that Ωturb plays only a minor role

in our estimate of the GW spectrum, since it has a substantially smaller peak amplitude

compared to Ωsw.
10

The value of the EW scale is such that the GW signal from a FOEWPT would lie within

the frequency sensitivity band of the future space-based LISA GW interferometer. In order

to assess the detectability of a GW signal from a FOEWPT by LISA one has to evaluate

the Signal-to-Noise Ratio (SNR) of the GWs. The SNR can be computed according to [26]

SNR =

√
T
∫ +∞

−∞
df

[
h2ΩGW(f)

h2ΩSens(f)

]2
, (4.101)

where T is the duration of the mission times its duty cycle. We have used values for T = 3y

and 7 y. ΩSens(f) is the nominal sensitivity of a given LISA configuration to stochastic

sources11, obtained from the power spectral density Sh(f)

h2ΩSens(f) =
2π2

3H2
0

f3Sh(f), (4.102)

10In particular, we find that including Ωturb does not affect the SNR at LISA at the level of turning an

undetectable GW signal into a detectable one. Still, for strong GW signals Ωturb affects the overall GW

spectral shape: as will be discussed in more detail in section 5.3.2, Ωturb enhances the signal at the high-

frequency tail, which leads to a slight increase in SNR (compared to the GW signal originated by Ωsw

alone) when the peak frequency of the sound wave contribution Ωsw is lower than the frequency-range

for which LISA has the best sensitivity.
11Then, When showing the LISA sensitivity curve in this work (e.g. in Fig. 5.4), it corresponds to the

nominal LISA sensitivity h2ΩSens(f) rather than to the so-called power-law sensitivity of LISA [300] to

cosmological sources.
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with Sh(f) taken from the LISA mission requirements [142]. In order to be considered

detectable, a GW signal should give rise to roughly SNR ≳ 10 [26]. It should be noted,

however, that our model predictions for SNR suffer from sizable theoretical uncertainties.

In particular, both the peak frequency and the maximum amplitude of the power spectrum

Ωsw depend on the bubble wall velocity vw, for which no well-established model prediction

is available even though there are promising recent proposals such as in Refs. [275, 276]. For

most parts of our analysis, we will choose vw ≃ 0.6, for which the best prospects regarding

GW detection at LISA are obtained in the 2HDM (see section 5.3.3 for details).12 We

nevertheless note that values of vw largely different from 0.6 may give rise to substantially

smaller SNR values at LISA. Thus, the predictions for the SNRs in our numerical discussion

should be regarded as rough estimates.

12Remarkably, in Ref. [276] it has been found that for the values of α generically realised in the 2HDM,

deflagration bubbles with vw ∼ cs (thus fairly close to our choice vw = 0.6) are a relatively common

feature of FOEWPTs, independently of the precise microscopic properties of the BSM model under

consideration.
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Chapter 5

Interplay between gravitational

waves and LHC physics in the

2HDM

In this Chapter we analyse in detail the thermal history of the Universe in the 2HDM,

discussing the occurrence of a FOEWPT as needed for EW baryogenesis, as well as the

production of GWs potentially observable by LISA. We show the important impact that

SnR and vacuum-trapping phenomena (which can appear in the 2HDM despite its relatively

simple structure) have in shaping the 2HDM regions of parameter space where baryogenesis

and/or GW production are possible. In particular, we demonstrate that vacuum-trapping

reduces the 2HDM parameter range for which a GW signal from a FOEWPT would be

observable by LISA to a very fine-tuned parameter-space region. In addition, focusing on

the type II 2HDM, we investigate the connection between the thermal history of the early

Universe, particularly regarding a possible FOEWPT, and phenomenological signatures at

colliders (see Refs. [145, 172, 244, 301–303] for earlier analyses of this connection in the

2HDM): we study the new BSM Higgs boson signatures that are favored by scenarios with

a FOEWPT. We demonstrate that ongoing and future LHC searches in final states with

top-quarks will probe the vast majority of the 2HDM parameter-space region yielding a

strongly FOEWPT, already covering the entire region accessible via GW observations by

LISA. We also analyse the connection between a FOEWPT and a large enhancement of the

125 GeV Higgs-boson self-coupling with respect to its SM value [304, 305]. We show that

probes of the Higgs boson self-coupling at the HL-LHC and particularly at the International

Linear Collider (ILC) yield a very promising probe of FOEWPT scenarios in the 2HDM

(and more broadly, in extended Higgs sectors).

This Chapter is organised as follows. In Sect. 5.1 we briefly discuss the finite temperature

effective potential of the 2HDM, focusing on the implementation of the various constraints

applied to the zero-temperature scalar potential. Our analysis of the cosmological evolution

of the scalar vacuum in different regions of the 2HDM parameter space is then presented

in section 8.2, and the connection with both GW production and collider phenomenology

is discussed, providing a critical view on the interplay between these two.

This chapter is based on ref. [4].
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5.1 The 2HDM: an overview

In this section we discuss several aspects of the 2HDM in connection with the material

presented in the Chapters 3 and 4. Here we will mainly focus on the numerical tools utilised

in the different steps of the analysis.

5.1.1 The zero-temperature 2HDM effective potential

Tree-level scalar potential In order to specify our notation and conventions we refer

to Sect. 3.1.1, where the CP-conserving 2HDM tree-level scalar potential Vtree was given

in (3.2).

Theoretical and experimental constraints The set of 8 independent input parame-

ters,

tβ(:= tanβ) , m2
12 , v , cos(β − α) , mh , mH , mA , mH± , (5.1)

is restricted by various experimental and theoretical constraints. To implement these in our

analysis, we make use of several public codes. We scan the 2HDM parameter space with the

code ScannerS [306, 307] in terms of the set of parameters shown in Eq. (5.1). ScannerS

checks whether the parameter point under investigation is in agreement with perturbative

unitarity, boundedness from below and vacuum stability at zero temperature. Concerning

the experimental constraints, ScannerS also ensures that a parameter point is in agreement

with bounds coming from flavour-physics observables [210] and electroweak precision ob-

servables (EWPO) [206, 207, 210].1 In addition, we make use of HiggsSignals [308–311]

and HiggsBounds [312–316] to incorporate bounds from measurements of the properties

of the experimentally detected 125 GeV Higgs boson and searches for additional scalar

states, respectively. The required cross sections and branching ratios of the scalars have

been obtained with the help of SusHi [317] and N2HDECAY [318], respectively.

One-loop effective potential and renormalisation conditions At one-loop, the

effective potential Veff for the 2HDM is given by

Veff = Vtree + VCW + VCT , (5.2)

where Vtree is the 2HDM tree-level potential given in Eq. (3.2), VCW represents the CW

potential in the MS renormalisation prescription given in Eq. (4.43). VCT contains the

UV-finite counterterm contributions that were shown in Eq. (4.44), and that were defined

by imposing the OS renormalisation conditions given in Eqs. (4.45) and (4.46). To compute

the finite set of counterterms, we made use of the public code BSMPT [319, 320]. In the

2HDM, the sum in the CW potential runs over the neutral scalars Φ0 = {h, H, A, G0},
the charged scalars Φ± = {H±, G±}, the longitudinal and transversal gauge bosons, VL =

1The check for the agreement with the EWPO (carried out on the basis of the oblique parameters)

does not take into account the new measurement of the W -boson mass reported recently by the CDF

collaboration [208], which is in significant tension with the SM predictions.
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{ZL, W
+
L , W

−
L } and VT = {ZT , W

+
T , W

−
T } and the SM quarks q and leptons ℓ. The degrees

of freedom nj for the species of each type are

nΦ0 = 1 , nΦ± = 2 , nVT
= 2 , nVL

= 1 , nq = 12 , nℓ = 4 .

The omission of ghost contributions is achieved by evaluating the Coleman-Weinberg po-

tential in the Landau gauge.2

5.1.2 Scale dependence and perturbativity of scalar couplings

The renormalisation group evolution of the quartic scalar couplings λi can provide meaning-

ful constraints on the viable region of the 2HDM parameter space, as emphasised in Sect. 4.1.

We require that the λi(µ) remain below the perturbativity bound 4π for any value of the

energy scale µ up to the physical scalar masses of the theory mj , i.e. λi(µ) < 4π for µ ≤ mj

(∀j). This provides a (minimal) theoretical consistency condition on the 2HDM parameter

space in relation to renormalisation group evolution.

We have solved numerically the RGEs taking into account the one-loop and two-loop

contributions to the β-functions of the model parameters computed with the help of the

public code 2HDME [322]. In order to obtain MS parameters pMS (as required by 2HDME) from

our OS parameters pOS, we refer to the transformation displayed in Eq. (4.56). We also

stress that thermal effects, to be discussed in the next section, introduce the temperature

of the system T as a relevant energy scale. Then, for the study of the scalar potential

at temperatures substantially larger than the EW scale, T ≫ v (targeted towards the

determination of whether the EW symmetry is restored in this limit, see section 4.2.3), we

must also require λi(µ = T ) to be perturbative.

5.2 The finite-temperature 2HDM effective potential

We now briefly comment on the addition of thermal corrections to the effective potential Veff ,

which was discussed in detail in Sect. 4.1. The several phenomena which may occur in the

thermal evolution of the vacuum configuration of a (multi-) Higgs potential were reviewed

in Chapter 4: a FOEWPT (see Sect. 4.2.1), possibly with an accompanying stochastic

signal of GW (see Sect. 4.3); the non-restoration of EW symmetry at high temperatures

(see Sect. 4.2.3); and the trapping of the vacuum in an unbroken EW configuration (see

Sect. 4.2.2).3

With the inclusion of thermal corrections, the 2HDM (finite-temperature) one-loop

effective potential with daisy-resummation reads

Veff = Vtree + VCW + VCT + VT + Vdaisy . (5.3)

2Discussions on the gauge dependence of the effective potential in the context of the electroweak phase

transition can be found in Refs. [243, 247, 278, 321].
3We refer to Chapter 6 and to Refs. [279]–[281] for other analyses on vacuum trapping and EW SnR in

2HDMs.
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with Vtree, VCW and VCT specified in Sec. 5.1, and VT and Vdaisy given in Eqs. 4.47 and 4.53,

respectively. Besides the degrees of freedom considered in the CW potential and specified

in Sec. 5.1, the sum in VT includes the photon, which acquires an effective thermal mass at

finite temperature (and therefore must be included in the sum in spite of being massless

at T = 0). In Vdaisy, the sum in Eq. (4.53) runs over all the fields ϕ ∈
{
Φ0,Φ±, VL, γL

}
,

where γL is the longitudinal polarisation of the photon, which acquires a mass at finite

temperature. The thermal squared masses Π2
i have been obtained as in Ref. [244]. We used

the public code CosmoTransitions [196]) to analyse the thermal evolution of the effective

potential Veff .

5.3 2HDM thermal history and phenomenological

implications

In this section we study the thermal history of the 2HDM regarding a FOEWPT and the

associated production of GWs, as well as the occurrence of vacuum trapping and/or EW

SnR. We analyse how these can yield meaningful constraints on the parameter space of the

2HDM, and we discuss the potential complementarity between colliders searches and GW

probes with LISA.

The FOEWPT in the CP-conserving 2HDM has been extensively studied (see Refs. [39,

145, 146] for analyses that include a calculation of the nucleation temperature). The usual

scenario that features such a first-order transition requires relatively large quartic couplings,

which subsequently implies sizeable splittings among the scalar masses and/or between these

masses and the overall (squared) mass scale of the second doublet,M2 = m2
12/sβcβ [39, 172].

In this work we focus on the 2HDM with type II Yukawas, for which stringent limits arising

from flavour observables constrain the mass of the charged states to be mH± ≳ 600 GeV

[210]. This requirement in conjunction with the constraints from electroweak precision

observables favors the degeneracy of the masses of the heavy pseudoscalar and the charged

scalar, mA ∼ mH± . In order to explore the parameter space of the 2HDM taking into

account these considerations, we have scanned the parameter space of the CP-conserving

type II 2HDM over the following ranges of the input parameters,

tβ = 3 , mh1 = 125.09 GeV , 200 GeV ≤ mH ≤ 1 TeV ,

600 GeV ≤ mA = mH± ≤ 1.2 TeV , cos(β − α) = 0, M2 =
m2

12

sβcβ
= m2

H . (5.4)

Using ScannerS, we have generated 10k 2HDM parameter points within the above ranges,

passing all the theoretical and experimental constraints discussed in section 5.1.1. In a

second step, we have analysed the thermal history of each of these 10k benchmark points

with cosmoTransitions [196], exploring the temperature range [0, 700 GeV]. We have

studied the temperature dependence of the minima of the one-loop effective potential Veff
from Eq. (5.3) in terms of the two CP-even neutral fields (ρ1(T ), ρ2(T )). We then have

computed the tunneling rate defined in Eq. (4.58) between coexisting minima at finite
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temperature, evaluating whether the criterion from Eq. (4.60) is met and a FOEWPT takes

place.4

In section 5.3.1, we explore the different thermal histories that the CP-conserving 2HDM

features within our parameter scan, which targets the regions where a FOEWPT is realised,

as well as the vicinity of such regions. As mentioned before, a FOEWPT in the 2HDM

strongly favours sizeable values of the quartic couplings, and we complement this analysis

with a study of the energy scale dependence of the quartic couplings. We stress the rich

variety of phenomena that arise within this parameter space region, and investigate in

particular the effects of vacuum trapping and EW SnR. The analysis of the 2HDM thermal

history will allow us to determine the regions of the parameter space in which the strongest

FOEWPT can be realised in the type II 2HDM, and to assess how strong such transitions

are. In section 5.3.2 we analyse the GW signals that are produced during the phase

transitions. We will compare the predicted GW signals to the expected LISA sensitivity in

order to assess whether such signals could be detectable at LISA. Finally, in section 5.3.3

we compare the prospects of a GW detection at LISA with the collider phenomenology of

the corresponding 2HDM parameter regions in order to address the question whether those

regions could also be probed in a complementary way by (HL-)LHC searches.

5.3.1 The cosmological evolution of the vacuum in the 2HDM

In this section we will investigate possible realisations of non-standard cosmological histories

in the 2HDM. Even though the motivation for the analysed parameter plane was its

suitability for the occurrence of FOEWPTs, as described above, we point out that the

considered parameter space also features a rich variety of thermal histories in terms of the

patterns of symmetry breaking and symmetry restoration.

Before we start the discussion of the 2HDM cosmological history, we briefly inspect the

additional constraints from the RGE running of the parameters, that we have applied in

order to restrict the analysis to parameter benchmarks for which our perturbative analysis

is applicable. Since we are interested in FOEWPTs, we explore a parameter space region

where relatively large quartic couplings are present. A key check on the validity of our

perturbative calculation of the quantities that characterise the FOEWPT is to make sure

that at the energy scales relevant for our analyses the values of the couplings remain in

the perturbative range |λi| < 4π (see section 5.1.2 for details). In Fig. 5.1 we show the

analysed parameter space in the (mH ,mA) plane of the 2HDM of type II as specified in

Eq. (5.4). For each point we indicate the energy scale Λ4π at which one of the 2HDM

quartic couplings reaches the naive perturbative bound 4π. The lower-right corner in

which no points are shown is excluded from the requirement on the tree-level potential to

be bounded from below, imposed via ScannerS.5 In the lower right strip we find points

4We do not take into account the possibility of CP-breaking or charge-breaking minima at finite tempera-

ture.
5Such parameter points could still feature a bounded potential upon inclusion of loop corrections [202].

We did not include this possibility in our analysis because we focus here on the thermal evolution of the
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Figure 5.1: Constraints from perturbativity and vacuum stability, and region featuring a strong

FOEWPT in the plane of the mass of the heavy CP-even scalar mH and the masses of the CP-odd

scalar and the charged scalars mA = mH± in the type II 2HDM, with the other parameters specified

in Eq. (5.4). The displayed points pass all the theoretical and experimental constraints discussed in

section 5.1.1. The colour bar indicates the energy scale Λ4π at which one of the quartic couplings

of the parameter point reaches the naive perturbative bound 4π (for points with Λ4π < 10 TeV).

Points with Λ4π < mA or mH are indicated in gray, and points with a short-lived EW vacuum are

shown in red. Yellow points feature Λ4π ≥ 10 TeV. The black line circumscribes all the points that

feature a strong FOEWPT (see text for details).

with Λ4π ≥ 10 TeV, which are indicated in yellow. On the other hand, we find that a

large part of the parameter space that is allowed by the constraints discussed in section

5.1.1 features relatively low values for Λ4π, smaller than 10 TeV. This feature arises as a

consequence of the sizeable values of the quartic couplings λi at the initial scale µ0 = v that

are required to achieve large splittings among the scalar masses, as described in section 5.3.

In particular, our scan contains points for which Λ4π < mA = mH± or Λ4π < mH , which

are shown in gray in Fig. 5.1. Since for these points the perturbativity bound is reached for

an energy scale that is lower than one of the involved masses, we regard such a situation as

unphysical. Accordingly, we consider this parameter region as excluded and will not analyse

it further. As will be discussed below, this region exclusively features scenarios where the

global minimum of the potential at T = 0 is the origin of field space. Consequently, this

potential. Including the boundedness check for the loop-corrected scalar potential at zero temperature

is computationally much more expensive compared to the application of the tree-level conditions which

were determined in compact analytical form [201].
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additional constraint does not exclude parameter points that otherwise would predict a

FOEWPT. Furthermore, we verified that a subset of points with Λ4π < mA = mH± or

Λ4π < mH features a short-lived EW minimum, i.e. the probability for quantum tunnelling

from the EW minimum into the deeper minimum (the origin of field space) in this case is

such that it gives rise to a lifetime of the EW vacuum that is substantially smaller than the

age of the universe.6 The points with a short-lived EW vacuum are shown in red in Fig. 5.1.

Finally, all the points that feature a strong FOEWPT in Fig. 5.1 are circumscribed by a

solid-black line. The strong FOEWPT region is characterised by

ξn =
vn
Tn

> 1, (5.5)

where vn is the vev in the minimum adopted by the universe at the nucleation temperature

Tn. We stress that for values of ξn substantially smaller than 1 it becomes numerically im-

possible to distinguish between a first- and a second-order phase transition in a perturbative

analysis, and such a distinction would then require to take into account non-perturbative

effects [40, 323].

We now discuss the different kinds of symmetry-breaking patterns that occur in the

analysed parameter space. In the upper plot of Fig. 5.2, we indicate six qualitatively

distinct zones of the (mH ,mA) plane of the 2HDM of type II shown in Fig. 5.1, labelled by

A, B, C, D, E and F (as discussed above, in our analysis we regard the gray/red points as

excluded). Each of the six zones features a different temperature evolution of the vacuum

configuration of the 2HDM Higgs potential. The red line divides the mass plane into two

regions. The points above and to the left of the red line feature at T = 0 a global minimum

at the origin of field space, whereas those below and to the right of the red line have the EW

minimum as global minimum at T = 0. The different zones in the upper plot of Fig. 5.2

are analysed individually in the six plots shown in the lower part. These plots indicate the

typical temperature dependence of the minima of the potential for each of the six labelled

regions (where the specific point is taken where the label is located). The six benchmark

points have been analysed with cosmoTransitions up to a temperature Tmax = 550 GeV.

The blue lines indicate the temperature evolution of vmin ≡
√
v21 + v22|min evaluated at the

minimum where the electroweak symmetry is broken. The absence of a blue line for a given

temperature indicates that no EW symmetry breaking minimum exists at this temperature.

The orange line shows the temperature dependence of the minimum located at the origin

of field space. The absence of this line for a given temperature shows that there is no (local

or global) minimum at the origin of field space. The vertical dashed-red lines show the

temperature at which the two minima involved in the transition are degenerate, i.e. the

critical temperature. The label “origin” corresponds to a range of temperatures where

6The calculation of the lifetime of the EW vacuum relies on the computation of the four-dimensional

euclidean bounce action instead of the three-dimensional bounce action that determines the decay rate

of the false vacuum at finite temperature. It should also be noted that in the scenario investigated here

the presence of the global minimum in the origin only arises at the loop level, such that a tree-level

analysis of the EW vacuum stability would not be sufficient here.
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Figure 5.2: Top: The parameter plane as shown in Fig. 5.1, with zones featuring qualitatively

different thermal histories of their vacuum structure labelled as A, B, C, D, E and F. The red line

separates the region with a zero-temperature global minimum at the origin of field space (left) from

the region with a zero-temperature electroweak global minimum (right). Bottom: characteristic

temperature dependence of vmin for the local minima of the potential for each of the six labelled

regions. The blue lines indicate the temperature evolution of vmin evaluated at the minimum

where the electroweak symmetry is broken. The orange lines denote how the minimum where the

electroweak symmetry is unbroken evolves. The dashed black lines show the vacuum configuration

adopted by the universe taking into account phase transitions between co-existing minima. The

vertical red lines show the critical temperature, and the labels “origin” and “EW” indicate the

global minimum of the potential.
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the origin is the global minimum of the potential, and “EW” indicates a global minimum

where the EW symmetry is broken. Taking into account the possible transitions between

coexisting minima, the dashed-black line indicates the temperature dependence of the vev

actually adopted by the universe for each of the benchmark scenarios.

The parameter points with a zero-temperature global minimum at the origin, i.e. the

points on the upper left of the red line, are classified into two different zones (A and B).

We find that a zero-temperature vacuum stability analysis would allow those points as

they all feature meta-stable EW minima whose lifetime is compatible with the age of the

universe. The benchmark point belonging to zone A has an EW-broken minimum for

the entire temperature range explored, whereas a minimum at the origin only appears for

temperatures below T ∼ 500 GeV. Consequently, the adopted vacuum configuration at

high temperature is the one breaking the EW symmetry, and zone A features EW SnR

at high temperature. This implies that the breaking of the EW symmetry in the early

universe would have taken place at temperatures substantially above the EW scale (in

particular T > Tmax). Such a high value of the transition temperature can have profound

consequences in the context of EW baryogenesis and the related phenomenology at colliders

or other low-energy experiments searching for CP-violating effects. In view of those features

and of the existing limits on BSM physics around the EW scale at the LHC, the proposal

of EW high-scale baryogenesis has gained attention in recent years [1, 47–50, 281, 324–326].

Based on the perturbative treatment of the effective potential, we find in this work that the

2HDM, or more broadly speaking extensions of the SM containing a second Higgs doublet,

could feature EW SnR and possibly allow for EW baryogenesis at energy scales much higher

than the EW scale. On the other hand, for the benchmark scenario belonging to zone B,

the only existing minimum at Tmax is the minimum at the origin, i.e. the EW symmetry is

restored at the maximum temperature that we have analysed. The broken phase appears

for temperatures below T ∼ 325 GeV, but never becomes deeper than the minimum at the

origin, which remains the global minimum for all T . A phase transition into the broken

phase is not possible, and the EW symmetry is preserved as the temperature approaches

zero. Consequently, this parameter region is regarded as unphysical and therefore excluded.

Now we turn to the analysis of the parameter space region that features a global EW

minimum at T = 0, located on the lower right side of the red line in the upper plot of

Fig. 5.2. Here we identify four qualitatively different zones depending on their thermal

histories (C, D, E, F). For the benchmark point of region C, an EW symmetry breaking

minimum exists already at Tmax, whereas no minimum of the potential at the origin exists

at this temperature. Consequently, this zone exhibits EW SnR at high temperature. The

EW minimum is always deeper than the one at the origin, which for our chosen benchmark

within this region appears for temperatures below T ∼ 280 GeV, such that no transition to

the minimum at the origin can occur, and the parameter points in this region are, at least in

principle, not excluded (in order to definitely determine whether such points are physically

viable, one would require a detailed analysis of the behaviour of the scalar potential at even

higher temperatures).
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Region D features the phenomenon of vacuum trapping. In the benchmark scenario

shown in plot D, the EW symmetry is restored at high temperature, and the EW phase

appears for temperatures below T ∼ 225 GeV. Even though a critical temperature exists in

this scenario, the condition Eq. (4.62) is never satisfied, and as a consequence the universe

remains trapped in a false vacuum at the origin as T → 0. This parameter region is

therefore not phenomenologically viable and has to be excluded. The possibility of vacuum

trapping in the thermal history of the universe and its phenomenological implications will

be further discussed in section 5.3.2.

All the points in region E feature a strong FOEWPT, where the quantity ξn meets

the condition (5.5). The plot E exemplifies the typical temperature dependence of the

vacuum configuration for one of such parameter points. In this benchmark scenario, the

EW symmetry is restored at Tmax. The EW minimum appears for temperatures below T ∼
155 GeV, and a strong FOEWPT takes place at a nucleation temperature Tn ≈ 140 GeV.

The nucleation temperatures for all points in zone E are given by the colour coding in the

upper plot of Fig. 5.2. In region E gravitational wave signals that are sufficiently strong

to be detected by LISA could potentially be generated. In section 5.3.2, we will discuss

zone E regarding the possible detectability of such GW signals by LISA.

Finally, the points in zone F feature either a weak FOEWPT with ξn < 1 or a second-

order EW phase transition.7 The plot F shows a specific benchmark in this region with a

second-order phase transition (or a very weak FOEWPT) taking place at T ∼ 170 GeV. At

low temperature the minimum adopted by the universe breaks the EW symmetry, whereas

the minimum adopted at high temperature is located at the origin of field space and

therefore the EW symmetry is restored.

To summarise the above discussion, taking into account the requirement that the universe

has to reach the correct minimum that breaks the EW symmetry at zero temperature has

shown that the regions B and D are unphysical and have to be excluded.

5.3.2 Phenomenological consequences of vacuum trapping

Vacuum trapping, as outlined in section 4.2.2, corresponds to the situation where the

universe remains trapped in an EW symmetric phase while it cools down, even though

a global EW symmetry breaking minimum of the potential exists at zero temperature.

The potential in this case is such that Eq. (4.62) is never fulfilled at any temperature at

which the EW symmetry breaking minimum is deeper than the minimum at the origin.8

Several recent analyses [1, 145, 279] have noted the importance of this phenomenon for

the phenomenology of models with extended Higgs sectors, in particular regarding the

possibility of a FOEWPT, the realisation of EW baryogenesis, or the production of a

7The numerical precision of the calculation of ξn is not sufficient to distinguish between a very weak

FOEWPT, ξn ≪ 1, and a second-order EW phase transition, but for the purpose of our analysis such a

distinction is of no phenomenological relevance anyway.
8We stress that in the 2HDM analysis presented in this chapter we did not encounter vacuum trapping in

any false minimum other than the one located at the origin.
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Figure 5.3: The parameter plane as shown in Fig. 5.1, where the points shown in light gray feature

a second-order EW phase transition or a FOEWPT with ξc < 1, whereas for the dark gray points

the global minimum is in the origin (corresponding to the area of the gray points and the zones A

and B in Fig. 5.2), and accordingly the points do not feature an EW phase transition within the

investigated temperature range. The coloured points feature a critical temperature Tc at which the

EW minimum becomes the global one, where the colour coding of the points indicates the value

of ξc. The dashed black line circumscribes all points that feature a FOEWPT with ξn > 1. In

the right plot the black points indicate the parameter region that is excluded as a consequence of

vacuum trapping, and the vertical black line in the colour bar indicates the maximum value of ξc
that is found after the incorporation of the constraint from vacuum trapping.

stochastic GW background. As we will show in the following, taking into account the

constraints from vacuum trapping has an important impact on the prospects for probing

parameter regions featuring such phenomena at particle colliders. We start with an analysis

of the implications of vacuum trapping for parameter regions in which EW baryogenesis

could occur. Afterwards we discuss the impact of vacuum trapping on the possibility of

generating GW spectra during a FOEWPT in the 2HDM with a sufficient amplitude to be

detectable at future GW observatories.

Implications for electroweak baryogenesis

Although the LHC has set important limits on the presence of additional Higgs bosons

at the EW scale, the 2HDM remains compatible with those limits as a viable framework

for the explanation of the matter–antimatter asymmetry of the universe by means of EW

baryogenesis [39]. In addition to new sources of CP-violation that can be present in the

2HDM compared to the SM, another vital ingredient for the realisation of baryogenesis is

the presence of a strong FOEWPT. In the following, we will focus on the criterion of a
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FOEWPT.9 As an indicator of the presence of a FOEWPT that is sufficiently strong for

allowing the generation of the observed matter–antimatter asymmetry, the criterion

ξc =
vc
Tc

> 1, (5.6)

has often been used in the 2HDM and extensions thereof [172, 244, 245, 302, 303, 327–333].

Here vc is the vev in the EW symmetry breaking minimum at the critical temperature

Tc, and ξc is denoted as the strength of the transition. This so-called baryon number

preservation criterion [243] (see also Ref. [236] and references therein) yields a condition for

avoiding the wash-out of the baryon asymmetry after the EW phase transition. However,

in parts of the literature it is also used as a sufficient requirement for the presence of a

FOEWPT via the existence of the critical temperature Tc at which the EW minimum

becomes the global minimum. In contrast to this, we will show in this section that the

criterion of Eq. (5.6) is not a reliable indicator of the occurrence of a FOEWPT in the

2HDM (see also Ref. [243]). As analysed below, instead the calculation of the nucleation

(or transition) temperature with the help of Eq. (4.62) is crucial, not only in order to assess

the actual strength of the FOEWPT which happens at temperatures T∗ ∼ Tn < Tc, but

more importantly to determine whether the FOEWPT takes place at all. The nucleation

criterion shown in Eq. (4.62) should then be used in order to accurately determine the

2HDM parameter space that reaches the EW vacuum configuration at zero temperature as

a result of a FOEWPT, whereas a criterion based on the existence of Tc would include also

parameter space regions that are unphysical due to the occurrence of vacuum trapping.

In Fig. 5.3 we show the parameter scan points in the (mH ,mA) plane, where the colour

coding indicates (both for left and right plots) the values of ξc for parameter points for

which ξc > 1. According to several existing analyses (see the discussion above) these points

would be classified as featuring a strong FOEWPT that could generate the observed baryon

asymmetry of the universe. The dark gray points in Fig. 5.3 correspond to the region with

a zero-temperature global minimum at the origin of field space (corresponding in Fig. 5.2 to

the combined area of the gray points and of the zones A and B). These points are thus not

relevant for the present analysis (being either unphysical or featuring EW SnR up to the

highest temperatures analysed in our scan). The light gray region depicts parameter points

that, while featuring a zero-temperature global EW minimum, do not meet the condition

imposed on the strength of the transition based on Tc, see Eq. (5.6). The dashed black

line circumscribes the points that meet the more appropriate requirement for a strongly

FOEWPT based on Tn, defined in Eq. (5.5) (coinciding with the solid black line in Fig. 5.1

and the zone E in Fig. 5.2). Fig. 5.3 - left shows that the region with highest values of

ξc (corresponding to the pink points) lies at the border with the dark gray region, and

features transition strength values up to ξc ∼ 6, which would be particularly well suited

for EW baryogenesis. However, taking into account the constraint from vacuum trapping

(zone D in Fig. 5.2), indicated by the black points in Fig. 5.3 - (right), one can see that

9We assume that the required sources of CP violation do not have an impact on the dynamics of the phase

transition and can therefore be neglected in our analysis.
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the parameter region featuring the highest ξc values is in fact excluded as a consequence of

vacuum trapping. After taking into account this constraint, the maximum allowed value for

ξc is ξc ∼ 1.8 (instead of ξc ∼ 6), indicated by a vertical black line inside the colour bar on

the right plot of Fig. 5.3. At the same time, Fig. 5.3 highlights that vacuum trapping not

only has a strong impact on the maximum values of ξc that can be achieved in the physically

viable parameter regions, but it is also crucial for determining the 2HDM parameter region

that does feature a FOEWPT: the constraint from vacuum trapping excludes the parameter

region in Fig. 5.3 - (left) with the largest values for the mass splitting mA − mH for a

fixed value of mH . This has important consequences for the prospects of probing 2HDM

scenarios featuring a strong FOEWPT at current and future colliders. For instance, the

cross section for the LHC signature pp → A → ZH (which would indicate the existence

of such a strong FOEWPT in the 2HDM [39, 172, 302]) depends on the mass splitting

between A and H, since the branching ratio for the decay A→ ZH grows with increasing

mass splitting. The constraint from vacuum trapping can then place an upper limit on the

cross section for such A→ ZH signature within the 2HDM (see e.g. [145]). A more detailed

discussion on the collider phenomenology of the parameter region with a FOEWPT will be

given in section 5.3.3.

Finally, we point out that the black-dashed line in Fig. 5.3, defined by the criterion

ξn > 1, circumscribes also light-gray points at the upper end of the mA, mH mass ranges

considered here. Thus, in this mass region we find parameter points that feature strongly

FOEWPTs based on the transition strength evaluated at Tn, but would not satisfy the

corresponding criterion for avoiding the wash-out of the baryon asymmetry evaluated at

Tc. As a consequence, the criterion based on Tn allows for larger values of mA and mH

compared to the (potentially misleading) criterion based on Tc.

Gravitational waves

As discussed in section 4.3, a cosmological FOEWPT can produce a stochastic GW back-

ground that could be observable by the future LISA GW interferometer. We now analyse

the production of GWs from a FOEWPT in the 2HDM, discussing the quantities T∗, α,
β/H and vw and studying the prospects for the detection of the GW signals at LISA. We

will specifically show how the phenomenon of vacuum trapping puts severe limitations on

the GW SNR achievable at LISA in the 2HDM.

We first discuss briefly the dependence on the bubble wall velocity vw. In Fig. 5.4 we

show, for different values of vw, the predictions for the GW spectrum of a specific 2HDM

benchmark point with BSM scalar massesmH = 419.33 GeV andmA = mH± = 663.05 GeV,

yielding a FOEWPT at a temperature of Tn = 52.43 GeV with α = 0.172 and β/H = 26.2.

The solid lines correspond to the predictions for h2ΩGW omitting the contribution from

turbulence in the plasma, whereas the dashed lines include such contribution. Fig. 5.4 also

shows the LISA nominal sensitivity obtained from its noise curve (see section 4.3 for details).

The bubble wall velocity has a strong impact on the GW spectrum, shifting the position

of the peak of the GW signal and significantly modifying its amplitude. These translate

83



Chapter 5 – Interplay between gravitational waves and LHC physics in the 2HDM

10−5 10−4 10−3 10−2 10−1

f [Hz]
10−15

10−13

10−11

10−9

h
2
Ω

vw = 0.2

vw = 0.4

vw = 0.6

vw = 0.8

vw = 1

h2Ωsens

Figure 5.4: GW spectrum for a 2HDM benchmark point with BSM scalar massesmH = 419.33 GeV

and mA = mH± = 663.05 GeV, yielding a FOEWPT with Tn = 52.43 GeV, α = 0.172 and

β/H = 26.2. h2ΩGW predictions for different bubble wall velocity values (vw = 0.2, 0.4, 0.6, 0.8, 1)

are shown in different colours for the concave curves. The dotted curve indicates the nominal

sensitivity of LISA to stochastic sources, h2Ωsens. Solid lines omit the turbulence contribution to

h2ΩGW, included in the dashed lines.

vw turb. no turb.

0.2 23 18

0.4 149 67

0.6 522 153

0.8 431 101

1 70 28

Table 5.1: LISA SNR of the GWs for the 2HDM benchmark scenario shown in Fig. 5.4 for different

values of the bubble wall velocity vw taking into account the effect of turbulence as a source of GWs

(”turb.”) and neglecting it (”no turb.”).

into a large variation of the SNR at LISA (assuming a duration of the LISA mission T = 7

years) for different values of vw, as shown in Table 5.1. Both with and without the inclusion

of turbulence, the highest SNR occurs for vw ∼ 0.6. This is fairly generic in the 2HDM

(not particular to the benchmark chosen for illustration), and we thus use vw = 0.6 for the

predictions of the GW signals in the rest of this work.

In Fig. 5.5 we show the values of the inverse duration of the phase transition β/H in

dependence of the strength α for all the points in our random scan satisfying ξn > 1 (region

E in Fig. 5.2). The colour code indicates the value of the SNR at LISA (for vw = 0.6 and a

LISA mission duration T = 7 years). As expected, the points with the largest values of α
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Figure 5.5: Parameter points of the scan shown in Fig. 5.1 in the (α, β/H) plane, with the colour-

code indicating the SNR at LISA (assuming vw = 0.6 and T = 7 years).

and the smallest values of β/H feature the largest SNRs for LISA. The SNR values range

over several orders of magnitude for relatively small changes in the values of the masses

mH and mA, as will be shown below. This is a consequence of the strong sensitivity of

the predicted GW spectra to the underlying 2HDM model parameters (specifically, the

BSM scalar masses).10 We also note that the strongest GW signals are concentrated in a

very narrow region of the (mH , mA) mass plane adjacent to the parameter space featuring

vacuum trapping, and thus only a very small fraction of the 2HDM neutral BSM mass

plane could be probed by LISA.

To explore in detail the region of parameter space where the strongest GW signals

are present, we have performed a linear regression of the points featuring SNR ≳ 0.5,

which are effectively found along a line given by mA = amH + b, with a = 0.87 and

b = 295 GeV. We have then performed a finer scan of the regions adjacent to this line

along parallel lines in the mH -mA plane by shifting the value of b in steps of 1 GeV, i.e. for

b ∈ {291, 292, 293, 294, 295, 296, 297} GeV. The results of this dedicated, finer scan can be

seen in Fig. 5.6, where we show the GW SNR at LISA in dependence of the mass difference

∆m ≡ mA −mH (we recall that we set mA = mH± and M = mH throughout this work).

The colour code indicates the value of mH . Bearing in mind the large uncertainties of the

predictions for the GW signal from a FOEWPT, as discussed in section 4.3, we consider as

potentially detectable by LISA any SNR of O(1), and mark the corresponding (indicative)

threshold SNR = 1 in Fig. 5.6 as a horizontal dashed-red line. The largest SNR values that

10Such strong sensitivity has already been observed in Ref. [39] (see, for instance, Fig. 3 therein). Similar

observations have been made in the triplet extension of the SM [334].
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Figure 5.6: SNR at LISA (for vw = 0.6 and T = 7 years) against ∆m = mA − mH for the

parameter points of the dedicated finer scan (see text) with mA = amH + b, a = 0.87 and

b = {291, 292, 293, 294, 295, 296, 297}. The colour coding of the points indicates the values of mH .

we find in our finer scan are O(100) to O(1000) (such points could therefore be detected

by LISA for T < 7 years and/or with a substantially different assumption on vw). For

b = 296, 297 GeV, Fig. 5.6 shows a region ranging from ∆m ∼ 215 GeV to ∆m ∼ 240 GeV

where the would-be points yielding the largest SNR values are found to be unphysical due

to vacuum trapping (the corresponding lines of benchmarks in Fig. 5.6 are thus interrupted

in this region). Large values of SNR are only found at the lower and the upper end of

the ∆m scan range, where the parameter points barely avoid vacuum trapping. In fact, a

further would-be line of parameter points in Fig. 5.6 with b = 298 GeV is entirely excluded

as a result of vacuum trapping.

In addition to the finer scan discussed above, we show in Fig. 5.6 the SNR resulting

from scans with fixed value of mH and increasing ∆m, specifically, for mH = 400 GeV

(grey-dashed line in Fig. 5.6) and mH = 511 GeV (brown-dashed line in Fig. 5.6). Both

show the same features regarding vacuum trapping as discussed above. This whole analysis

then demonstrates that the phenomenon of vacuum trapping severely limits the possibility

of achieving large values of SNR at LISA from GW production in the 2HDM.

The strong dependence of the SNR on the 2HDM model parameters, pointed out at

the beginning of this section and shown explicitly in Fig. 5.6, is related to the fact that

the largest GW signals occur just at the border of the parameter space region in which

the universe remains trapped in the false vacuum. To investigate this in more detail,
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Figure 5.7: S3(T )/T as a function of T with the colour coding indicating the value of ∆m =

mA −mH . In the left plot, we show the results for scan points corresponding to b = 295 GeV in

the dedicated scan of Fig. 5.6, whereas in the right plot we show the results for the b = 297 GeV

line of points (which is interrupted at intermediate values of ∆m due to the presence of vacuum

trapping). The dashed blue horizontal line indicates S3(T )/T = 140. The crossing of the lines for

S3(T )/T with the dashed-blue line for decreasing T signals the onset of the phase transition at the

respective temperature (see the nucleation criterion in Eq. (4.62)).

we depict in Fig. 5.7 the values of the bounce action over the temperature, S3(T )/T for

temperatures lower than Tc, such that a FOEWPT can occur. In the left panel of Fig. 5.7

we show S3(T )/T for b = 295 GeV in our detailed scan from Fig. 5.6 (corresponding to

the benchmark line in Fig. 5.6 with the largest values of SNR without featuring a gap

as a consequence of vacuum trapping): bearing in mind that we assume the onset of the

FOEWPT occurs for S3(T )/T ∼ 140 (recall the discussion in section 4.2.1), we see that

the benchmarks in Fig. 5.7 - (left) with ∆m ∼ 230 GeV barely reach S3(T )/T ∼ 140, and

are thus on the verge of being vacuum-trapped. In the right panel of Fig. 5.7, we show

the corresponding values of S3(T )/T for the b = 297 GeV benchmark set, which features

vacuum trapping for ∆m in the approximate range [215, 240] GeV (as seen in Fig. 5.6).

As a result, the lines in Fig. 5.7 - (right) are separated into two different bundles. The

would-be lines in between these two bundles remain above S3(T )/T = 140 (depicted as

as dashed-blue line) over the whole temperature interval 0 < T < Tc, reflecting vacuum

trapping. In addition, many S3(T )/T lines have their minima just below the dashed-blue

line. Since they are on the verge of vacuum-trapping, these lines become rather flat as they

approach S3(T )/T = 140, leading to a large variation of Tn (i.e. the temperature at which

S3(T )/T ≃ 140 is achieved) within a very small ∆m range. As an example, for the black

bundle of lines in Fig. 5.7 - (right) we have 243 GeV < ∆m < 247 GeV (only four GeV!),

yet Tn varies in the range 52 GeV < Tn < 77 GeV. At the same time, by comparing the two

panels of Fig. 5.7 we observe that a very small change in b from our detailed scan, leads to
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Figure 5.8: Parameter points of the dedicated finer scan of Fig. 5.6, in the (Tc, Tn) plane (left-panel)

and in the (α, β/H) plane (right-panel), with the colour coding of the points indicating the SNR

at LISA.

large variations of the Tn behaviour as a function of ∆m. The very strong dependence11 of

Tn on subtle changes of the 2HDM masses then feeds into the GW spectra (e.g. α ∼ 1/T 4
n)

and ultimately into the SNRs at LISA. As a result, values of SNR > 1 are found only in a

very restricted region of the 2HDM parameter space, in the vicinity of the vacuum-trapping

(unphysical) parameter region.

In Fig. 5.8 we explicitly show, for the detailed scan introduced in Fig. 5.6, the dependence

of the LISA SNR on the quantities Tn, α and β/H. In Fig. 5.8 - (left), we show the relation

between the nucleation temperature Tn and the critical temperature Tc for this scan (with

colour-code indicating the SNR at LISA). The large difference between both temperatures

for all the points in this scan reaffirms the necessity of computing the nucleation temperature

to make reliable predictions concerning the FOEWPT properties in the 2HDM, since not

even a qualitative description of the strength of the phase transition is possible based

on the knowledge of the critical temperature. On the right panel of Fig. 5.8 we show

the corresponding detailed scan points in the (α, β/H) plane, from which an intricate

dependence of both parameters on the 2HDM masses can be inferred by correlating with

11We stress that the FOEWPT nucleation criterion used here, S3(T )/T = 140, is only an approximation [26],

and also the computation of the tunneling rate given by Eq. (4.58) suffers from sizable theoretical un-

certainties from missing higher-order contributions (both in the prefactor A(T ), and in the perturbative

formulation of Veff , affecting S3) as well as from the issue of gauge dependence [243]. Yet, such uncer-

tainties only have a sizable impact on parameter points close to the vacuum-trapping region, whereas

regions leading to weaker GW signals (i.e. not in the vicinity of the vacuum-trapping region) do not

feature such large uncertainties in the SNR prediction. Thus, our conclusion that most of the parameter

points with a FOEWPT do not give rise to a GW signal that could be observed at LISA is therefore

robust even in view of these issues.
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Figure 5.9: Parameter points of the dedicated finer scan of Fig. 5.6, in the (∆m = mA −mH ,SNR)

plane, with the colour coding indicating the energy scale Λ4π at which one of the quartic couplings

reaches the naive perturbative bound 4π.

the information on Fig. 5.6. Compared to the broader scan shown in Fig. 5.5, we find here

a substantially smaller range of β/H (down to β/H ∼ 23) and overall larger values of α

(up to α ∼ 0.17). We stress here that values of β/H ≪ 100 are an indicator of being close

to featuring vacuum trapping (see e.g. the discussion in [263]).

Finally, we re-stress that a FOEWPT in the 2HDM requires sizable quartic scalar

couplings λi for a potential barrier between the two minima involved in the transition to

be generated via radiative and/or thermal loop corrections. The RGE evolution of such

sizable quartic couplings can drive the theory into a non-perturbative regime already at

energies not far from the TeV scale, as discussed in detail in section 5.1.2 (see also Ref. [335]

for a one-loop analysis). This issue is most severe for the strongest phase transitions, such

as the ones that produce GW signals with sizable SNR values at LISA. We then need

to investigate the energy range in which the theory is well-defined for the type II 2HDM

parameter regions that could yield an observable GW signal at LISA. In Fig. 5.9 we show

the 2HDM parameter points of our detailed scan in the (∆m = mA −mH , SNR) plane, as

in Fig. 5.6, but now with the colour-code indicating the energy scale Λ4π at which one of the

quartic scalar couplings λi reaches the naive perturbative bound 4π (see section 5.1.2 for

details). The value of Λ4π signals the energy scale µ at (or below) which new BSM physics

should be present in order to avoid a Landau pole and render the theory well-behaved

above that energy scale. We observe that the lowest values of Λ4π in our detailed scan
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are Λ4π ∼ 1.2 TeV, whereas the largest values are found slightly above Λ4π = 2 TeV. By

comparing with Fig. 5.6, we also observe that the smallest values of Λ4π correlate with the

largest values of mH in the scan, which can have important phenomenological implications

(as we discuss in the next section). Altogether, Fig. 5.9 shows that parameter regions that

feature a potentially detectable (SNR > 1) GW signal at LISA would require new-physics

effects (e.g. new strongly coupled states) at energy scales that are well within the reach of

the LHC, which calls for a critical assessment of the complementarity between LHC (and

future collider) searches and GW probes with LISA in these theories.

5.3.3 Interplay between the LHC and LISA

As already outlined above, the 2HDM parameter regions featuring a GW signal potentially

observable at LISA generally predict signatures of BSM physics within reach of the LHC,

both from the presence of the 2HDM scalars themselves and from further new (strongly

coupled) states that would be needed to prevent the appearance of a Landau pole close to

the TeV scale. In this section, we focus on the collider signals of the 2HDM scalars, taking

a critical view on the interplay between the possible observation of a stochastic GW signal

from the 2HDM at LISA and LHC (and future collider) probes of the 2HDM states.

GWs at LISA vs. direct BSM searches at LHC

Given the projected HL-LHC and LISA timelines, the HL-LHC would scrutinise the 2HDM

parameter space of relevance for GW searches before the LISA observatory will start taking

data. We show that, within the type II 2HDM, the hypothetical absence of direct BSM

signatures at the high-luminosity phase of the LHC would already exclude (to a very large

extent) the prospects of observing a GW signal at LISA.

Among the possible collider signatures of the heavy 2HDM scalars, the most promising

ones to probe the 2HDM parameter with a FOEWPT consist of Higgs cascade decays, due

to the sizable mass splittings between the BSM Higgs bosons. Specifically, the production

of the pseudoscalar A that then decays into a Z-boson and the heavy CP-even scalar H is

a smoking-gun collider signature of FOEWPT scenarios in the 2HDM [172]. This signature

has been searched for at the LHC with
√
s = 8 TeV and 13 TeV assuming that A is

produced via gluon-fusion or in association with a pair of bottom quarks, and utilizing

the leptonic decay modes of the Z-boson. The scalar H was required to decay either to

a pair of bottom quarks or to a pair of tau leptons [173, 175, 336]. However, as already

pointed out in Ref. [1], the combination of theoretical and experimental constraints in the

type II 2HDM currently pushes mH to be above the di-top threshold in almost the entire

parameter region featuring a FOEWPT. Then, the branching fractions for H → bb̄ and

H → τ+τ− become very small (except for large values of tβ), and searches via these final

states do not yield relevant constraints on FOEWPT scenarios. It is instead much more

promising to search for A→ ZH signatures with H decaying into a pair of top quarks, and

preliminary studies of this final state exist already in the literature [337, 338]. While this

channel has not yet been probed experimentally at the LHC, efforts to analyse the Z tt̄ final
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Figure 5.10: Parameter points of the parameter scan discussed in section 5.3.1 in the (mH ,mA)

plane, with the colour coding indicating the value of ξn for the points that feature a strong FOEWPT,

i.e. ξn > 1. The remaining points are shown in gray. The red dashed lines indicate the projected

95% C.L. exclusion regions resulting from the (HL-)LHC searches for the process pp → A → ZH

with H decaying into a pair top quarks (see text for details).

state are ongoing by both the ATLAS [339] and CMS [340, 341] collaborations. We here

use the public preliminary CMS results on this channel (using only the Z → µ+µ− decay

mode) for an integrated luminosity of 41 fb−1 at 13 TeV [340] to estimate the projected

(HL-)LHC sensitivity to the process A→ ZH in the Z tt̄ final state, for several integrated

luminosities: L = 300 fb−1, 600 fb−1, 1000 fb−1, 2000 fb−1, 3000 fb−1 and 6000 fb−1 (the

latter corresponds to the total integrated luminosity collected by ATLAS and CMS combined

at the HL-LHC). We obtain the predicted 2HDM production cross sections (at NNLO)

times branching ratios for the pp→ A→ ZH → µ+µ− tt̄ signature as a function of mA and

mH (with the rest of parameters fixed as in Eq. (5.4)) using SusHi [317] and N2HDECAY [318],

and show in Fig. 5.10 the expected 95% C.L. exclusion sensitivity for different values of

L from a naive rescaling of the CMS expected limits by a factor
√
(41 fb−1)/L (which

assumes that the present CMS sensitivity is limited by statistics rather than systematics).

We emphasise that taking into account also other (leptonic) decay modes of the Z-boson

yields even stronger projected limits [341], and the exclusion regions shown in Fig. 5.10

should be regarded as rough conservative estimates of the reach of BSM Higgs searches in

the Z tt̄ final state at the (HL-)LHC.

In Fig. 5.10 we also show the points of the 2HDM parameter scan discussed in section

5.3.1, with the parameter points featuring a strong FOEWPT shown in colour (colour-code
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indicates the value of ξn) and the remaining points depicted in gray. Already at the end

of LHC Run 3 with 300 fb−1 (600 fb−1 assuming a potential combination of ATLAS and

CMS data), a substantial part of the interesting parameter space will be explored, with

values mH ≲ 470 GeV being probed. In particular, the 2HDM region yielding observable

GW signals at LISA with values of Λ4π > 2 TeV (see Fig. 5.6 and Fig. 5.9) will be completely

covered by this LHC search during Run 3, and so will be the parameter points with the

strongest phase transitions, corresponding to values of ξn ∼ 4. The HL-LHC, with ten times

more data, will be able to probe masses up to mH ∼ 650 GeV via the A→ ZH (H → tt̄)

search, covering almost the entire 2HDM region that features a GW signal potentially

detectable with LISA (see Fig. 5.6). This analysis highlights the importance of putting the

expectations for GW signals from FOEWPTs that could be detectable by LISA into the

context of the projected (HL-)LHC results.

GWs at LISA vs. Higgs boson self-coupling measurements at LHC and ILC

A well-known avenue to probe the thermal history of the EW symmetry, particularly in

connection with a possible FOEWPT, is the measurement of the trilinear self-coupling of the

125 GeV Higgs boson. FOEWPTs are generically associated with a sizable enhancements

of the trilinear coupling λhhh as compared to the SM prediction [304, 305].12 In the

following, we determine the values of λhhh predicted in the 2HDM parameter space regions

which feature a FOEWPT, including the regions that would yield a GW signal potentially

observable at LISA. According to our definition of the zero-temperature effective potential

from Eq. (5.2), λhhh is here calculated at the one-loop level, and to align our analysis

with the experimental interpretations of the Higgs trilinear self-coupling measurements

performed by the ATLAS and CMS collaborations within the κ-framework, we here define

κλ = λhhh/λ
SM
hhh, where λ

SM
hhh is the tree-level Higgs self-coupling prediction of the SM. In

Fig. 5.11 we show the values of κλ in dependence of the mass splitting mA −mH for the

parameter scan from Eq. (5.4). In the left panel, the various colours indicate the different

types of thermal histories (the letter in each region specifies the corresponding thermal

evolution of the vacuum according to the description of Fig. 5.2). As expected, large

values of mA −mH are correlated with large values of κλ. In particular, parameter points

featuring a strong FOEWPT (region E) predict values of up to κλ ∼ 2, and vacuum trapping

(region D) excludes part of the parameter space with even larger values of κλ. There are still

physically viable parameter points predicting values of κλ > 2 (regions A and C; we remind

the reader that region B is unphysical, see section 5.3.1), associated with the phenomenon

of EW SnR. Finally, the largest values of κλ occur for 2HDM parameter regions that are

not phenomenologically viable (dark-grey points), as these regions feature an energy cutoff

Λ4π smaller than the masses of the BSM scalar states, i.e. Λ4π < mA = mH± or Λ4π < mH ;

a large fraction of these points also features a short-lived EW vacuum (see Fig. 5.1).

12This is specially the case for FOEWPTs which are not singlet-driven (caused by a singlet scalar field

coupling to the SM Higgs doublet). For a singlet-driven FOEWPT, it is possible to avoid such large

enhancements [342].
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Figure 5.11: Parameter points from the scan as defined in Eq. (5.4) with the mass difference

mA −mH on the horizontal axis and κλ on the vertical axis. In the left panel, the colour of the

points indicates the different kinds of thermal histories: the letter specifies each region according to

Fig. 5.2, and dark-grey points feature Λ4π ≤ mA or mH , and/or a short-lived EW vacuum. In the

right panel, blue points feature EW SnR, black points feature vacuum trapping (and are therefore

unphysical), and pink points predict a FOEWPT with an associated GW signal that could be

detectable at LISA (SNR ≥ 1, see text for details). The characteristics of the light-grey points can

be inferred from the left panel.

The value of κλ can be constrained via the measurements of single and double Higgs

boson production at colliders. In order to compare the 2HDM predictions for κλ with

present and future experimental constraints, we show in Fig. 5.11 the currently strongest

95% C.L. experimental limit on κλ, corresponding to κλ < 6.3 as reported by ATLAS13

using the full Run II dataset and combining measurements of single Higgs boson and

(nonresonant) Higgs boson pair production [133]. We also show the projected 95% C.L.

sensitivity of the HL-LHC (dashed-red line), given by κλ < 2.2 [134], and the projected 95%

C.L. sensitivity of the future International Linear Collider (ILC) with
√
s = 500 GeV and

an integrated luminosity of 4000 fb−1 (dashed-yellow line), given by κλ < 1.54 [343]. We

stress that these experimental limits on κλ hold under the assumption that the couplings

of h to other SM particles are those of the SM, which is the case in the alignment limit of

the 2HDM (at leading order) used in this work. In addition, the projected limits shown for

HL-LHC and ILC assume that κλ = 1 will be measured experimentally (we discuss below

the impact of a different assumption).14 While the current LHC experimental sensitivity is

not sufficient to probe the viable parameter space analysed here, HL-LHC would be capable

13CMS has reported a comparable upper limit of κλ < 6.49 [228].
14Note that, with our definition of κλ (which matches that of the ATLAS and CMS experimental collab-

orations), κλ = 1 corresponds to the SM prediction only when one-loop corrections to λhhh in the SM

(which amount to −9% of the tree-level value [302]) are neglected.
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Figure 5.12: Parameter points of the detailed finer scan discussed in section 5.3.2 (already shown

in Fig. 5.6 and Fig. 5.9), in the (∆m = mA −mH , SNR) plane. The colour-code here indicates the

prediction for κλ.

of virtually probing the entire parameter space featuring EW SnR, while ILC-500 would

further probe most of the region featuring a strong FOEWPT.

In order to estimate the values of κλ for parameter points with detectable GW signals at

LISA, we show in the right panel of Fig. 5.11 the same parameter plane as in the left panel,

but with the strong FOEWPT parameter points predicting SNR ≥ 1 at LISA highlighted

in light-pink. These points have values of κλ ∼ 2, and thus lie in the ballpark of the

expected HL-LHC upper limit on κλ. To further scrutinise this parameter region, focusing

on the interplay between measurements of the Higgs boson self-coupling at colliders and

potential observations of GWs at LISA, we show in Fig. 5.12 the same plane as depicted in

Fig. 5.6 and Fig. 5.9, with the colour-code now indicating the values of κλ (points above the

dashed-red line in Fig. 5.12 then correspond to the pink area in Fig. 5.11 - (right)). Values

of κλ in this plot range from κλ ∼ 2 up to κλ ∼ 2.2, possibly within reach of HL-LHC. The

plot further illustrates that a strong FOEWPT that gives rise to a potentially detectable

GW signal is associated with a significant deviation from κλ = 1 (see also Ref. [145]).

Conversely, if no deviations of κλ from the SM prediction are observed at the HL-LHC, no

GW signal at LISA would be expected.

We also stress that future measurements of κλ at the HL-LHC and ILC will be a

very important probe of the EW phase transition, independently of the associated GW

production (as shown in Fig. 5.11, a large fraction of the parameter space featuring a strong

FOEWPT does not yield an observable GW signal at LISA). In this sense, we note that
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Figure 5.13: Parameter points from Fig. 5.12 with SNR ≥ 0.1 in the (SNR, κλ) plane. The colour

coding of the points indicates the projected experimental precision of the measurement of κλ at the

HL-LHC (left) and the ILC-500 (right), see text for details.

the leading two-loop corrections to the self-coupling of the SM-like Higgs boson can yield

a sizable enhancement of κλ [344] with respect to the one-loop result. Thus, an analysis

of κλ at the two-loop level may result in even better prospects for a measurement of a

modification of the Higgs boson self-coupling with respect to the SM value, a study we

leave for the future.15

In all the above discussion, we have focused on the potential of HL-LHC and ILC

measurements of κλ to exclude the presence of sizable BSM contributions to λhhh, by

assuming κλ = 1 will be measured. However, the expected HL-LHC and ILC precision of

the κλ measurement, δκexpλ , would significantly change in the event of a κλ > 1 measurement

(for κλ = 1 the HL-LHC and ILC-500 precision are respectively given by δκexpλ = 60% [134]

and δκexpλ = 27% [343]). In order to analyse how precisely the HL-LHC and ILC would

measure a value of κλ in the 2HDM parameter space region yielding an observable GW

signal at LISA, we show in Fig. 5.13 the parameter points of Fig. 5.12 with SNR ≥ 0.1 in the

(SNR, κλ) plane, with the colour-code indicating the experimental precision with which κλ
could be measured at the HL-LHC (left panel) and ILC-500 (right panel). At the HL-LHC,

the experimental precision of a κλ ∼ 2 measurement (δκexpλ ≳ 70%) worsens compared

to that of κλ = 1. This is due to the enhanced negative interference between signal and

background diagrams, leading to a reduced cross section at the HL-LHC (see, for instance,

Fig. 3 of Ref. [345] for the cross-section predictions). On the other hand, the situation

would be much more favorable at the ILC with
√
s = 500 GeV in the process e+e− → Zhh,

15For a complete analysis of the possible impact of these two-loop effects on the interplay between LISA

and the (HL-)LHC, two-loop corrections would have to be taken into account also for the prediction of

the FOEWPTs, which however lies beyond the scope of this analysis.

95



Chapter 5 – Interplay between gravitational waves and LHC physics in the 2HDM

for which a precision δκexpλ ∼ 10% could be expected for a κλ ∼ 2 measurement with an

integrated luminosity of 4000 fb−1 [343]. The Higgs boson self-coupling measurement at the

ILC-500 relies mainly on the Higgs-strahlung channel, which exhibits a positive interference

between signal and background diagrams and thus an enhanced di-Higgs production cross

section for κλ > 1 (see Fig. 8 of Ref. [346]).

Finally, regarding the interpretation of Fig. 5.13 we remind the reader that the current

theoretical uncertainties on the prediction for the GW spectra from a FOEWPT, as well

as the lack of knowledge of the value of vw (see section 4.3 for details), translate into an

uncertainty on the SNR (not shown in the plots), much larger than that stemming from a

δκexpλ ∼ 10% uncertainty in the measurement of κλ, reachable at the ILC-500. This should

be taken into account when trying to investigate the complementarity between colliders and

GW detectors within the 2HDM. Still, we can robustly conclude that the type II 2HDM

parameter space that features GW signals potentially detectable at LISA predicts values

of κλ ∼ 2, which would be measured only poorly at the HL-LHC, but with a much better

precision at the ILC-500 or other e+e− colliders with sufficient center-of-mass energy to

produce pairs of Higgs bosons.
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Chapter 6

EW symmetry non-restoration and

trapped vacua in the N2HDM

Extensions of the Higgs sector of the Standard Model allow for a rich cosmological history

around the EW scale. In this chapter, we show that besides the possibility of strong first-

order phase transitions (Sect. 4.2.1), which have been thoroughly studied in the literature,

also other important phenomena can occur, like the non-restoration of the EW symmetry

(Sect. 4.2.3) or the existence of vacua in which the Universe becomes trapped ( Sect. 4.2.2),

preventing a transition to the EW minimum. Focusing on the N2HDM of type II and taking

into account the existing theoretical and experimental constraints ( Sect. 3.2), we identify

the scenarios of EW SnR, vacuum trapping and first-order phase transition in the thermal

history of the Universe. We analyse these phenomena and in particular their relation to

each other, and discuss their connection to the predicted phenomenology of the N2HDM

at the LHC. Our analysis demonstrates that the presence of a global EW minimum of the

scalar potential at zero temperature does not guarantee that the corresponding N2HDM

parameter space will be physically viable: the existence of a critical temperature at which

the EW phase becomes the deepest minimum is not sufficient for a transition to take place,

necessitating an analysis of the tunnelling probability to the EW minimum for a reliable

prediction of the thermal history of the Universe.

This chapter is organised as follows: In Sect. 6.1 we introduce the N2HDM, in connection

to the content of Sect. 3.1.2. In Sect. 6.2, we describe the numerical implementation of

the theoretical and experimental constraints discussed in Chapter 3 (Sect. 3.2) for the

(zero-temperature) analysis of the N2HDM parameter space. Then, in Sect. 6.3 we present

the finite-temperature scalar potential of the N2HDM. We study the phenomenon of EW

SnR in Sect. 6.4, both via an analytical and a numerical approach, and analyse its interplay

with the occurrence of a FOEWPT in the N2HDM. In Sect. 6.5 we investigate the possible

occurrence of vacuum trapping, together with the connection between the thermal history

of the N2HDM and its LHC phenomenology.

This chapter is based on ref. [1].
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6.1 The N2HDM at zero-temperature

Tree-level scalar potential The N2HDM is the extension of the CP-conserving (real)

2HDM with a softly broken Z2 symmetry by a real scalar field. In order to specify our no-

tation and conventions we refer to Sect. 3.1.2, where the N2HDM tree-level scalar potential

Vtree was given in (3.27).

One-loop effective potential and renormalisation At the one-loop order, the effective

scalar potential at zero temperature Veff is given by

Veff = Vtree + VCW + VCT, (6.1)

where VCW denotes the Coleman-Weinberg potential given in the MS renormalisation

prescription (see Eq. (4.43)). For the N2HDM, the sum in VCW runs over the neutral

scalars Φ0 = {ha, hb, hc, A, G0}, the charged scalars Φ± = {H±, G±}, the SM quarks q

and leptons ℓ, the longitudinal and transversal gauge bosons VL = {ZL, W
+
L , W

−
L } and

VT = {ZT , W
+
T , W

−
T }. The respective degrees of freedom nj for the species in each category

are

nΦ0 = 1 , nΦ± = 2 , nVT
= 2 , nVL

= 1 , nq = 12 , nℓ = 4 . (6.2)

The Coleman-Weinberg potential has been evaluated in the Landau gauge. The effective

potential is well-known to be gauge dependent, and the extraction of physical information

from Veff has to appropriately handle this problem. Here we note that in the present

case the EW symmetry breaking dynamics will be dominantly dictated by quartic scalar

interactions that are not gauge dependent, or explored at high T retaining only gauge-

invariant contributions. Thus, the gauge dependence of Veff is of minor concern for our

analysis. For the N2HDM, the sum in Eq. (4.43) includes the scalars h1,2,3, A, H
±, the

Goldstone bosons G±, G0, the massive EW gauge bosons and the SM fermions (where the

main contribution arises from the top quark).

Furthermore, to perform an efficient scan through the parameter space of the N2HDM,

we required the zero-temperature loop-corrected scalar masses and mixing angles to be equal

to their tree-level values by adding to Veff the UV-finite counterterm contribution VCT given

by Eq. (4.44), and imposing the conditions in Eq. (4.46). In the case of the CP-conserving

N2HDM, the tadpole counterterms are δT1, δT2, δTS . They vanish since no additional

symmetry is broken by the radiative corrections at the one-loop level. Accordingly, in the

following we apply Eq. (4.44) with δTk = 0. We have found perfect agreement with the

implementation of the N2HDM renormalised zero-temperature effective potential of the

public code BSMPT [319].

Scale dependence and perturbativity As discussed in Sect. 4.1, including radiative

corrections induces a dependence of the model parameters on the unphysical energy scale

µ, which is controlled by the RGEs. In our finite-temperature analysis, we verified that

the absolute values of the quartic couplings |λi| remain substantially smaller than the
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perturbativity bound 4π over the range µ = [µ0, Tmax], where Tmax is the maximum

temperature analysed in each case.

We have numerically solved the RGEs, given in terms of their β functions, in the MS

scheme. We took into account the one- and two-loop contributions to the β functions,

which we obtained with the help of the public code SARAH v.4.14.3 [347, 348], solving the

general expressions published in Refs. [349–351]. We have checked the expressions for the

β functions using the public code PyR@TE v.3.0 [352] and found exact agreement. For the

dominant one-loop terms we analytically checked that, in the limit λ6,7,8 → 0, the terms

reduce to the ones of the 2HDM, which are well-known in the literature (see e.g. [335, 353]).

Due to the renormalisation prescription specified in Eq. (4.46), which we call “on-shell” (OS)

in the following, it is necessary to transform the OS values of the model parameters pOS

at µ = µ0 into the corresponding MS values pMS, such that the running of the parameters

can be applied as described above. The transformation between the two schemes is given

by the finite parameter counterterms δpi introduced in Eq. (4.44), using

pOS(µ0) + δpOS(µ0) = pMS(µ0) + δpMS(µ0) (6.3)

⇒ pMS(µ0) = pOS(µ0) + δpOS
fin.(µ0) , (6.4)

where the second equality follows from the fact that by definition the counterms δpMS do not

contain finite pieces. Accordingly, the counterterms δpOS
fin.(µ0) for the different parameters

pi correspond to the finite counterterms δpi in Eq. (4.44).

In order to limit the impact of a potentially large scale dependence, we restrict our

analysis to parameter points with values of |λMS
i (µ0)| considerably below the perturbativity

bound 4π in these cases. To be more precise, for the benchmark scenarios discussed in

sections 6.4.1 and 6.4.2 related to SnR we only take into account points with |λMS
i (µ0 =

v)| < 3. In Sec. 6.4.3 we discuss the interplay between EW SnR at high-T and the

occurrence of a FOEWPT at intermediate temperatures. Here, somewhat larger values are

required in order to give rise to a potential barrier between true and false vacuum. However,

the values of |λMS
i (µ0)| are still substantially smaller than 4π, and we additionally checked

that the values of |λMS
i (µ)| remain below the bound within the relevant temperature region

that has been analysed. Moreover, the conditions for perturbative unitarity were applied

(see Sec. 6.2), yielding further limitations on |λMS
i |.

6.2 Constraints

The N2HDM has 12 real independent parameters. It is convenient to choose the particle

masses of the Higgs sector as input parameters since they have a direct physical meaning.

In this section we outline the various theoretical and experimental constraints that we

have imposed. We discuss their impact on the parameter space of the N2HDM. We have

made use of the public code ScannerS [306, 307]. The input parameters that we supply to

ScannerS are

C2
hatt , C

2
haV V , sgn(Ra3) , Rb3 , tβ , vS , mha , mhb

, mhc , mA , mH± , m2
12 , (6.5)
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where the three CP-even scalar mass eigenstates (not necessarily ordered in mass) are

denoted as ha,b,c. We identify these masses with the physical (OS) values; accordingly, the

λi that are obtained from those input values (see (3.27)) correspond to on-shell quantities,

λOS
i (these on-shell parameters are converted to their λMS

i counterparts where running

parameters are required). Under the assumption ChaV V · Chatt > 0, the above parameters

determine the mixing angles α1,2,3 [307]. In the following we conveniently choose a param-

eterization where ha is identified with the Higgs boson at about 125GeV, i.e. ha ≡ h125
and mha ≈ 125 GeV. With an appropriate choice of the masses mhb,c

, the states ha,b,c
can then be identified with the mass-ordered eigenstates h1,2,3. For further details on the

experimental and theoretical constraints we refer to Sect. 3.2.1 and Sect. 3.2.2, respectively.

In the following, we will mainly focus on the methods and codes involved in their application

to the N2HDM.

Theoretical constraints: Vacuum stability and unitarity ScannerS discards points

in which the tree-level N2HDM scalar potential is not bounded from below, making use

of the conditions from Refs. [176, 190]. Apart from global EW minima, we also consider

in our analysis metastable EW minima (at T = 0). In the latter case, we evaluate the

probability for the quantum tunnelling from the EW minimum into the deeper minima

and, subsequently, determine whether the lifetime of the EW minimum is sufficiently long

compared to the age of the Universe. This investigation is carried out with the linked public

code EVADE [198, 354]. Parameter points are regarded as allowed if the EW minimum is

the global minimum or if it is sufficiently long-lived (metastable). In addition, BfB and the

stability of the EW vacuum were also checked at the one-loop level. We implemented the

one-loop effective potential in cosmoTransitions, which found the minima of the potential

at zero-temperature and computed the tunnelling rate among them. The code was also

able to identify any unbounded direction of the one-loop potential.

In addition, we require that each parameter point fulfils perturbative unitarity constraints,

formulated in terms of 2 → 2 scalar scattering processes. We use the approach implemented

by default into ScannerS for the N2HDM, demanding that the eigenvalues of the scattering

matrix should be smaller than 8π. The relevant expressions can be found in Ref. [176]. Since

various results discussed in sections 6.4 and 6.5 involve sizeable quartic scalar couplings,

the perturbative unitarity constraints play an important role in our study.

Flavor-physics observables As discussed in Sect. 3.2.2, we can safely adopt the flavour

constraints of the 2HDM for our N2HDM analysis. We have followed the approach imple-

mented in ScannerS, where allowed parameter points are required to be located within

the 2σ region of the mH±–tβ plane as identified via a global fit to experimental data

in Ref. [210]. In our analysis the flavour-physics observables exclude values of tβ ≲ 0.8 in

all four N2HDM types from Table 3.2. In addition, a roughly tβ-independent limit on the

charged scalar mass mH± ≳ 600 GeV is obtained for type II and IV of the N2HDM.
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Properties of the observed Higgs boson at 125 GeV The compatibility with the

signal-rate measurements of the Higgs boson at about 125 GeV requires that the couplings

of ha = h125 should, within the current theoretical and experimental uncertainties, resemble

the couplings of a SM Higgs boson. In the N2HDM, the effective Higgs couplings (defined

as the coupling strength normalised to the SM prediction for a Higgs boson with the

same mass) are determined by the mixing angles αi and tβ. Accordingly, those mixing

angles are constrained by the LHC Higgs signal-rate measurements. In order to check the

compatibility of the N2HDM parameter space points with the experimentally measured

signal rates of the Higgs boson at about 125 GeV, we use the public code HiggsSignals

v.2.6.0 [308–311], conveniently linked to ScannerS by default for the N2HDM. In the

scenario of an almost decoupled singlet-like Higgs boson, the N2HDM can reproduce the

alignment and decoupling limits of the usual 2HDM. In these limits the couplings of ha are

equal to the SM couplings. Since ScannerS allows one to use ChaV V and Chatt as input

parameters, choosing ChaV V ≈ 1, Chatt ≈ 1 yields parameter points that generally pass

the HiggsSignals test. A parameter point is regarded to be excluded if

∆χ2
HiggsSignals = χ2

N2HDM − χ2
SM ≥ 6.18 , (6.6)

where χ2
N2HDM and χ2

SM are calculated via a fit to all currently available signal-rate mea-

surements of the Higgs boson at about 125 GeV from the Tevatron and the LHC. The SM

result for a mass of 125 GeV is χ2
SM = 84.4 for 107 considered measurements.

Direct searches for additional Higgs bosons Experimental upper limits on the

production of the BSM-type Higgs bosons hb, hc, A and H± provide important constraints

on the parameter space of the N2HDM. We take into account the limits from Higgs-boson

searches at LEP, the Tevatron and the LHC for each parameter point by employing the

public code HiggsBounds v.5.9.0 [312–315]. For the N2HDM, the HiggsBounds code

is linked to ScannerS by default, where the so-called effective-coupling input is used for

the cross sections, while the branching ratios are calculated internally using the code

N2HDECAY [176, 318] and given as input directly to HiggsBounds. The code then determines

for the considered parameter point the channel with the most sensitive expected limit for

each Higgs boson and tests whether the parameter point is allowed at the 95% confidence

level by comparing for the selected channels the prediction for the production cross section

times branching ratio with the observed upper limit.

EW precision observables In the N2HDM, deviations in the EWPO from the SM can

conveniently be expressed in terms of the oblique parameters S, T and U [204, 205]. They

are determined via the gauge-boson self energies, and we define them relative to the SM

with a Higgs-boson mass of ≈ 125 GeV. The parameter T provides the strongest constraints

on the N2HDM parameter space. Since it accounts for the breaking of custodial symmetry,

the contributions of the BSM-type Higgs bosons to T approximately vanish when either

the CP-odd scalar A or the doublet-like CP-even scalar (hb or hc) are close in mass to the

charged scalar H±, i.e. m2
A ≈ m2

H± or m2
hb,c

≈ m2
H± . We make use of the implementation
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in ScannerS of the S, T and U computation for models exclusively containing gauge-singlet

and SU(2)L-doublet scalar fields [206, 207]. A point is considered to be excluded if the

prediction for the S, T and U parameters yields a ∆χ2 of more than 2σ relative to the

best-fit point from a global fit to the EWPO [210].

6.3 The N2HDM at finite-temperature

The discussion of the N2HDM in Sect. 6.1, followed by the introduction of the relevant

constrains in Sect. 6.2, was limited to the zero-temperature case. In this section, we will

introduce the necessary ingredients to study the N2HDM at finite temperature and analyse

the thermal history of the Universe in this scenario. Further details on the derivation and

the structure of the finite-temperature scalar potential are given in Sect. 4.1.

Finite-T effective potential The one-loop effective potential at finite temperature is

given by

V ≡ Vtree + VCW + VCT + VT , (6.7)

where VT is the one-loop thermal potential given in Eq. (4.47). In addition to the degrees

of freedom considered in Eq. (6.2), the sum in (4.47) includes the photon.

As discussed in Sect. 4.1, the breakdown of the conventional perturbative expansion

results in the need to resum a certain set of higher-loop diagrams, the daisy contribu-

tions. We follow here the AE method, which amounts to add another piece, Vdaisy (given

by Eq. (4.53)), to the one-loop effective potential at finite temperature. In the N2HDM,

the sum in Vdaisy runs over WL, ZL, γL, and the field-dependent masses M2
C(ϕ), M

2
η (ϕ) and

M2
ρ (ϕ). Π

2
k denotes their corresponding squared thermal mass matrices [248]. Considering

the resummation of daisy diagrams as part of the effective potential yields

V ≡ Vtree + VCW + VCT + VT + Vdaisy . (6.8)

Using the AE resummation method, the effective potential can be treated analytically in

the high-temperature regime using the expansions of Eqs. Eq. (4.49). In this limit, the

resummation simply amounts to performing the substitution m2(ϕ) → m2(ϕ) + Π2 inside

the y3/2 term in Eq. (4.49). We have compared our resummation prescription with the

Parwani resummation method, frequently used in the literature.

The two methods are commonly assumed to be equivalent in the m2(ϕ)/T 2 → 0

limit, since the field-dependent contributions from the logarithmic terms in Eq. (4.43)

and Eq. (4.49) cancel each other. However, it should be noted that the expansion of

Eq. (4.49) is no longer justified when using the Parwani resummation prescription, since

Π2 ∼ T 2 at leading order, and thus y = (m2(ϕ) + Π2)/T 2 does not necessarily go to

zero in the high-T limit. For m2(ϕ) ≪ Π2, we can use the expansion for J±(y) from

Refs. [36, 244, 251], which includes contributions of O(y3) and higher, to obtain the leading
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difference between the two methods in the high-T limit, given by

∆Vm2/T 2→0 ≃
∑
j∈b

nj m
2
j (ϕ)T

2

2

 ∞∑
ℓ=2

(
−Π2

j

4π2T 2

)ℓ
(2ℓ− 3)!! ζ(2ℓ− 1)

(2ℓ)!!


−

∑
j∈f

nj m
2
j (ϕ)T

2

2

 ∞∑
ℓ=2

(
−Π2

j

4π2T 2

)ℓ
(2ℓ− 3)!! ζ(2ℓ− 1)

(2ℓ)!!
(22ℓ−1 − 1)

 ,(6.9)
where ζ(x) is the Riemman ζ-function, and (x)!! denotes the double factorial. The respective

sums are carried out for bosons b and fermions f . This difference can qualitatively modify

the high-T behavior of V in specific regions of parameter space, and even yield a different

answer about the fate of the EW symmetry in such regions, as we will discuss in more

detail in Sect. 6.4.

The leading (∼ T 2) contributions to the thermal masses for the scalars in the N2HDM

are given by (in the interaction basis)

Πρ1ρ1 = Πη1η1 = Πϕ+
1 ϕ+

1
= T 2

c1 +
 0 , Type I/III

1
4y

2
b , Type II/IV

 , (6.10)

Πρ2ρ2 = Πη2η2 = Πϕ+
2 ϕ+

2
= T 2

c2 +
 1

4y
2
b , Type I/III

0 , Type II/IV

 , (6.11)

Πρ3ρ3 = c3T
2, (6.12)

with

c1 =
1

16
(g′2 + 3g2) +

λ1
4

+
λ3
6

+
λ4
12

+
λ7
24
, (6.13)

c2 =
1

16
(g′2 + 3g2) +

λ2
4

+
λ3
6

+
λ4
12

+
λ8
24

+
1

4
y2t , (6.14)

c3 =
1

6
(λ7 + λ8) +

1

8
λ6 . (6.15)

In Eq. (6.10) and Eq. (6.11) the only considered fermionic contributions are the ones from

the top and bottom quarks through their respective Yukawa couplings yt and yb. Upon

diagonalization of the M2
k (ϕ) + Π2

k matrices, one can obtain the effective masses including

thermal effects for the N2HDM scalars. The thermal masses of the longitudinal parts of

the SM gauge bosons can be found in Ref. [244].

N2HDM thermal history In the following we analyse the thermal history of the

N2HDM scalar potential for the regions of parameter space that satisfy the constraints

discussed in Sec. 6.2.

We use the public code CosmoTransitions [196] to study the scalar potential evolution

with temperature, and the phenomenon of vacuum trapping (see Sect. 4.2.2). Previous

studies of the N2HDM in the early Universe [245, 319] have relied on identifying the critical
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temperature Tc at which the EW minimum would have been degenerate in energy with

other potential vacua. Therein, it was furthermore assumed that the phase transition to the

EW vacuum always takes place if the EW vacuum is the global minimum of the potential

at T = 0. However, as argued above, this is by no means guaranteed, but depends on the

false vacuum tunnelling rate per unit time and volume given by Eq. (4.58).

As will be discussed below, we find that such a situation is quite common in the N2HDM,

with the metastable vacuum corresponding to a minimum in which only ⟨ΦS⟩ is non-zero.1
In particular, when aiming to identify the regions of the N2HDM parameter space where a

FOEWPT is possible, the approach based just on Tc [245, 319] (but not Tn) is not sufficient

and can result in rather misleading specifications of the parameter space. In Sec. 6.5 we

will discuss these “trapped-vacuum” scenarios in detail.

In addition, our study of the thermal history of the N2HDM reveals the possibility that

the EW symmetry is not restored at high T , as well as the possible non-restoration of the

discrete Z′
2 symmetry of the singlet sector, see Eq. (3.28). The occurrence of Z′

2 SnR at

high temperature has also been explored for a singlet extension of the SM [355]. We will

discuss the details of EW SnR within the N2HDM in the next section.

6.4 Symmetry non-restoration at high T

We now investigate whether the EW symmetry remains un-restored at high T within the

N2HDM. In a first step we do this analytically by studying the curvature of the effective

potential around ⟨Φ1⟩ = 0, ⟨Φ2⟩ = 0 in the high-temperature limit. We find that, under

certain assumptions (see below), the fate of the EW symmetry at high temperatures

(restoration vs. non-restoration) can be reliably determined from our analysis, while this is

not necessarily true for the restoration or non-restoration of the Z′
2 symmetry of the singlet

field. We then compare our analytical results with our numerical study of the effective

potential evolution with temperature in Sec. 6.4.2, and discuss the implications of our

results for the EW phase transition in Sec. 6.4.3.

6.4.1 Analytical considerations

In order to analytically study the behavior of the effective potential at high T , we use Eq. (4.49)

for the thermal functions J± and compute Vdaisy, given by Eq. (4.53), in the limitm2(ϕ)/T 2 ≪
1. In addition, since the leading (∼ T 2) contributions to the squared thermal masses Π2

enter only into the diagonal elements of the scalar mass matrices, as shown in Eqs. (6.10)–

(6.12), the off-diagonal terms can be neglected in the high-T limit.

The restoration of both the EW symmetry and the discrete Z′
2 symmetry of the singlet

field requires the origin of field space ⟨Φ1⟩ = 0, ⟨Φ2⟩ = 0, ⟨ΦS⟩ = 0 to be a minimum at

high temperature. In order to assess whether this is the case we compute the principal

minors of the Hessian matrix H0
ij = ∂2V/∂ρi∂ρj

∣∣
(0,0,0)

as a function of the parameters of

1A corresponding observation of such a situation has recently been made for the NMSSM [279].
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the theory. The conditions for the origin to be a minimum of the N2HDM potential at

large T (large in comparison to the bilinear terms of the theory) are

H0
11 > 0 , (6.16)

H0
11H

0
22 −

(
H0

12

)2
> 0 , (6.17)

H0
33 > 0 , (6.18)

where we made use of the fact that H0
13 = H0

23 = 0. Since the cross derivative H0
12 = −m2

12

does not depend on T , the above conditions can be simply cast as cii ≡ lim
T→∞

H0
ii/T

2 > 0

with i = 1, 2, 3. The coefficients cii are given by

c11 ≃ −0.025 + c1 −
1

2π

(
3

2
λ1

√
c1 + λ3

√
c2 +

1

2
λ4

√
c2 +

1

4
λ7

√
c3

)
, (6.19)

c22 ≃ −0.025 + c2 −
1

2π

(
3

2
λ2

√
c2 + λ3

√
c1 +

1

2
λ4

√
c1 +

1

4
λ8

√
c3

)
, (6.20)

c33 = c3 −
1

2π

(
λ7

√
c1 + λ8

√
c2 +

3

4
λ6

√
c3

)
, (6.21)

with λi ≡ λOS
i . Here, the contribution of the SM gauge couplings g and g′ to (6.19)

and (6.20) arising from the resummation of daisy diagrams is given numerically (≈ −0.025)

for reasons of compactness. Even though our analysis focuses in the N2HDM type II, these

coefficients are valid for all Yukawa types up to subleading corrections proportional to the

tau lepton and the bottom quark Yukawa couplings. The quantity c2 receives a large positive

contribution from the top Yukawa coupling (see Eq. (6.14)). Thus, for the moderate values

of λi used in our analysis one finds c22 > c11, and accordingly the simultaneous restoration

of both the EW and Z′
2 symmetries at high temperature occurs for positive c11 and c33.

In contrast, for positive c33 but negative c11 the EW symmetry is not restored at high

temperatures.2

For c33 < 0, the origin of field space is unstable along the singlet field direction ρ3. The

analysis of EW symmetry restoration in this case requires the investigation of the curvature

of the effective potential at high temperature around ⟨Φ1⟩ = 0, ⟨Φ2⟩ = 0, ⟨ΦS⟩ = vS(T ),

where vS(T ) denotes the (nonzero) minimum of the potential along the ρ3 field direction.

The curvature around (0, 0, vS(T )) in the direction of ρ1 is given by

cS11 = lim
T→∞

HS
11(vS(T ), T )

T 2
, with HS

11(ρ3, T ) =
∂2V

∂ρ21

∣∣∣∣
(0,0,ρ3)

. (6.22)

Then, cS11 < 0 is a sufficient condition for EW SnR when c33 < 0. As discussed above, from

the large positive contribution of the top Yukawa coupling to the curvature in the direction

of ρ2, we generally expect this to be larger than the curvature in the direction of ρ1. So, for

2We note that in this case, determining whether the Z′
2 symmetry is restored or non-restored at high T

would require the exploration of the N2HDM scalar potential away from the origin of field space, along

the EW field directions (for ⟨Φ1⟩ ̸= 0, ⟨Φ2⟩ ̸= 0), corresponding to a much more involved analysis.
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cS11 > 0 (when c33 < 0) the EW symmetry is generally restored at high T . The coefficient

cS11 takes the form

cS11 = lim
T→∞

{
− 0.025 + c1 +

λ7
2

v2S(T )

T 2
− 1

2π

(
3

2
λ1

√
c1 +

λ7
2

v2S(T )

T 2

+ λ3

√
c2 +

λ8
2

v2S(T )

T 2
+
λ4
2

√
c2 +

λ8
2

v2S(T )

T 2
+
λ7
4

√
c3 +

λ3
2
λ6
v2S(T )

T 2

)}

= c11 +O
(
vS(T )

2

T 2

)
. (6.23)

From a computational perspective, calculating cS11 is slightly more involved than obtaining

c11 since one has to identify the extrema of the scalar potential in the plane (0, 0, ρ3)

as a function of temperature to obtain vS(T ). We also remark that the analysis of EW

SnR based on the sign of cS11 relies on the validity of the high-T expansion: the N2HDM

scalar masses evaluated at (0, 0, vS(T )) receive contributions (dependent on λ6, λ7 and

λ8) proportional to the singlet vev vS(T ), and |vS(T )| will be a monotonically increasing

function of temperature. In order to guarantee that these contributions do not render the

scalar masses at (0, 0, vS(T )) comparable to the temperature, thus invalidating the high-T

expansion, we require |λ6|, |λ7|, |λ8| < 1 at the initial scale µ0 = v.3

From Eq. (6.23), if the corrections proportional to vS(T )
2/T 2 are subleading compared to

the coefficient c11, i.e. |c11| ≫ |vS(T )2/T 2|, this coefficient c11 defined at the origin in field

space also controls the stability of the field space point (0, 0, vS(T )) in the direction of ρ1 in

the high-temperature limit. Then, the sign of c11 determines the high-T restoration/non-

restoration of the EW symmetry for both c33 > 0 and c33 < 0. On the other hand, if the

O
(
vS(T )

2/T 2
)
term in Eq. (6.23) is comparable in size to c11, then the full calculation of

cS11 is needed to assess the fate of the EW symmetry at high T (when c33 < 0). The coupling

λ7 plays an important role in this respect: the only O(vS(T )
2/T 2) term in Eq. Eq. (6.23)

proportional to a single power of λi, and not suppressed by an additional (2π)−1 factor,

depends precisely on λ7. This is then the most important parameter for the O(vS(T )
2/T 2)

corrections in cS11.

In order to illustrate this analytic assessment of the EW SnR behavior at high tempera-

ture, we now discuss several benchmark scenarios (A1,2, B1,2, C1,2, D), defined in Table 6.1

in terms of their ScannerS input parameters, which are in agreement with all constraints

discussed in Sec. 6.2. We have required |λ6,7,8| < 1 for all benchmarks to ensure the validity

of the high-T expansion, and imposed |λ1,...,5(µ = v)| < 3 for the other quartic couplings to

guarantee that they remain perturbative much above the TeV scale, as discussed in Sec. 6.1.

The bounds on |λi| lead to a common feature for all benchmarks: the pseudoscalar A, the

charged Higgs bosons H± and the heavy doublet-like scalar are close to each other in mass,

3The dependence of λ6,7,8 on µ is very mild for |λ6,7,8(µ0)| < 1 due to the singlet nature of ρ3. In the

following, all quoted values of λ6,7,8 (e.g. in Table 6.2) are understood to be given at µ0 = v, having in

mind that they are not substantially different at µ > v within the perturbative regime.
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mh1 mh2 mh3 mA mH± tβ Ch1tt Ch1V V sgn (R13) R23 m2
12 vS

A1 125.09 934 1263 1008 958 1.72 0.94 0.94 −1 −0.22 6042 2637

A2 125.09 840 1355 904 828 1.73 0.99 0.96 −1 −0.104 5572 2298

B1 125.09 589 760 739 748 1.51 0.99 0.99 +1 −0.96 4952 2500

B2 125.09 685 700 680 678 2 0.97 0.97 +1 −0.46 4362 1100

C1 125.09 835 1370 897 834 1.1 0.97 0.96 +1 0.04 5592 2707

C2 125.09 792 850 835 814 1.02 0.99 0.99 −1 0.51 5102 2565

D 125.09 408 717 731 707 2 0.99 0.99 +1 0.86 3802 1487

Table 6.1: Illustrative type II N2HDM benchmarks for high-T EW symmetry restoration/non-

restoration, in terms of ScannerS input parameters. The parameters mhi
, mA, mH± , m12 and vS

are given in GeV.

with their mass scale roughly given by M ≡
√
m2

12/(sβcβ).
4 Also, the values tβ ≳ 1 that

have been chosen for all displayed benchmarks correspond to the parameter region for which

the various theoretical and experimental constraints are most easily accommodated [176].

In Table 6.2 we show the values of c11 and c33 for each of the benchmarks (we have verified

that c22 > 0 for all of them). For benchmarks C1,2 we find c33 > 0, and accordingly the

sign of c11 fully determines the fate of EW symmetry at high temperature. In both cases

c11 < 0 holds, and thus the EW symmetry is un-restored at high T . For benchmarks A1,2,

B1,2 and D we have c33 < 0, and thus the origin of field space is unstable along the singlet

field direction. The possible restoration of the EW symmetry in this case is controlled by

the sign of cS11, also shown in Table 6.2. For B1,2 and D we find cS11 > 0, and thus the EW

symmetry is restored at high T , while the singlet Z′
2 symmetry remains broken at high T .

In contrast, for A1,2 the EW symmetry is not restored at high temperature since cS11 < 0.

The scenarios A1,2 and B1,2 are benchmarks for which |c11| ≫ |vS(T )2/T 2| at high

temperature, such that c11 determines the fate of the EW symmetry in this limit. The signs

of c11 and cS11 are the same for such a case, as shown explicitly in Table 6.2. In contrast,

for benchmark D we have cS11 > 0 despite the negative value of c11. This behavior is caused

by the small value of |c11| (the smallest among all benchmarks) together with a sizeable

value of λ7 (the largest among all benchmarks, also shown in Table 6.2). This renders the

contribution given by λ7/2 v
2
S(T )/T

2 in (6.23) large in comparison to c11, leading to the

restoration of the EW symmetry at high T even for c11 < 0.

The different types of scenarios regarding EW symmetry restoration or non-restoration at

high temperature discussed above are illustrated in Figure 6.1, where each plot corresponds

to a different type of benchmark (A, B, C, D). Figure 6.1 shows the behavior of the effective

potential (in the high T approximation) along the (0, 0, ρ3) field space direction and in

dependence of T . The region for which HS
11(ρ3, T ) < 0 is depicted in light blue, and the

4This is h2 for benchmarks A1,2, C1 and h3 for benchmarks B1, D. For benchmarks B2, C2 the doublet–

singlet mixing is sizeable, such that mh2,3 ≈ M .
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A1 A2 B1 B2 C1 C2 D

c11 -0.092 −0.06 0.182 0.10 -0.104 −0.04 -0.006

c33 -0.011 −0.02 -0.002 −0.002 0.058 0.005 -0.010

sgn(cS11) - - + + - - +

λ6 0.211 0.329 0.058 0.382 0.246 0.104 0.115

λ7 0.154 0.400 -0.199 -0.440 -0.465 0.218 0.760

λ8 0.703 0.986 0.007 -0.362 -0.613 0.087 0.271

Table 6.2: The values of c11, c33 and sgn(cS11) for each of the benchmarks defined in Table 6.1.

For all displayed benchmark scenarios c22 > 0 holds. Also shown are the values of the singlet field

quartic couplings λ6,7,8 = λOS
6,7,8.

dark blue lines show the stationary points along the singlet field direction,5 i.e. the solutions

to

NS(ρ3, T ) =
∂V (T )

∂ρ3

∣∣∣∣
(0,0,ρ3)

= 0 . (6.24)

Given the symmetry of the potential, these solutions correspond to ρ3 = 0 and ρ3 = ±vS(T ),
the latter only appearing as solutions (in this case, yielding two identical stationary points)

when the field space point (0, 0, 0) is either a maximum or a saddle point of the effective

potential. When a dark blue line in Figure 6.1 lies within the light blue region, the

corresponding extremum along the singlet direction ρ3 is unstable along the ρ1 field direction,

and the EW symmetry will not be restored there. For benchmark A1 in the upper-left plot

of Figure 6.1, none of the NS(ρ3, T ) stationary points is stable in the direction of ρ1 for

T ≳ 2 TeV. Therefore, the EW symmetry is inevitably un-restored at high temperature. In

contrast, for benchmark B1 in the upper-right plot of Figure 6.1, the extrema (0, 0,±vS(T ))
are stable along the ρ1 field direction and correspond to global minima of the N2HDM

potential at high temperature, leading to EW symmetry restoration. For benchmark C1

in the lower-left plot of Figure 6.1, the only extremum along the singlet direction at high

T (in this case, for T ≳ 3.5 TeV) is ρ3 = 0, since c33 > 0. Yet, the origin of field space is

unstable in the direction of ρ1 at high T , as a result of HS
11(0, T ≳ 3TeV) < 0, and the EW

symmetry is therefore not restored in this case. Finally, for benchmark D in the lower-right

plot of Figure 6.1, we observe that for the extremum ρ3 = 0 (a maximum along the singlet

direction), we have HS
11(0, T ) < 0 as a consequence of c11 < 0. However, for the other two

extrema ρ3 = ±vS(T ), which correspond to minima along the singlet direction, we have

HS
11(±vS(T ), T ) > 0. This leads to EW symmetry restoration at high temperature in the

field space points (0, 0,±vS(T )).

To summarise, our analytical approach based on the high-T expansion of the effective

potential allows one to determine the restoration or non-restoration of the EW symmetry

5Note that along the ρ1 and ρ2 field directions the derivatives are 0 automatically for (0, 0, ρ3) due to

SU(2)L gauge invariance.
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Figure 6.1: (ρ3–T ) plane for four qualitatively different benchmark scenarios (depending on the

sign of the coefficients c11, c33 and cS11, see text for details) from Table 6.1, A1 (top-left), B1 (top-

right), C1 (bottom-left) and D (bottom-right). The region for which HS
11(ρ3, T ) < 0 is depicted

in light blue. The dark blue lines indicate the stationary points with NS(ρ3, T ) = 0 of the high

temperature approximation of the potential.

above the TeV scale in the N2HDM (our approach could be easily applied also to other

multi-scalar BSM scenarios), in a fast and computationally inexpensive way.6 We find that

in this scenario a part of the parameter space leads to EW SnR at high temperatures. It

is also interesting to note that in previous studies of EW SnR (see e.g. [47, 48]), the daisy

resummation terms tend to restore the EW symmetry at high T , partially counterbalancing

the SnR effect of ch < 0 (where ch denotes the corresponding coefficient ci for the case of

the SM-like Higgs boson). In our study of the N2HDM we observe the opposite behavior,

as the SnR at high temperature is driven by contributions from the resummation of daisy

6It is certainly much less expensive than a fully-fledged numerical minimization of the 1-loop finite

temperature potential in the three-dimensional field space (ρ1(T ), ρ2(T ), ρ3(T )).

109



Chapter 6 – EW symmetry non-restoration and trapped vacua in the N2HDM

diagrams7 that enter the computation of the curvature with an overall minus sign. They can

prevent the restoration of the EW symmetry without the occurrence of negative values of

the quartic couplings, which are often in contradiction with bounded-from-below constraints.

Since the daisy contributions to Eqs. (6.19)–(6.21) depend on a higher power of the scalar

quartic couplings λj than the coefficients ci, the potential non-restoration behavior for the

N2HDM arises for the case where (some of) the scalar couplings λj are of O(1). Accordingly,

for all benchmark points discussed in this section we have checked the RGE running (as

discussed in Sec. 6.1), ensuring that the quartic couplings satisfy the general perturbativity

condition
∣∣∣λMS

i (µ)
∣∣∣ < 4π for energy scales into the tens of TeV. A detailed discussion on

this issue is deferred to the following section.

Finally, we bear in mind that the study in this section has been based on the high-T

expansion,8 and as such the T dependence in Figure 6.1 is expected to be fully controlled

only in the high-T limit. A more detailed analysis of the intermediate T regime should

be based on the full one-loop finite-T effective potential, which can only be computed

numerically. This issue is addressed in the next section.

6.4.2 Numerical Analysis

As discussed above, while the analytical approach developed in the previous section allows

the determination of the fate of the EW symmetry at temperatures far above the TeV

scale, the details of the temperature evolution from the vicinity of the EW scale upwards

need to be explored numerically. For the numerical computations, we have implemented

the full one-loop effective potential given in Eq. (6.7), together with the resummed daisy

contributions following the AE method, given by Eq. (4.53), using CosmoTransitions [196]

to analyse its phase/vacuum structure as a function of T . The thermal functions have been

calculated using a cubic spline approximation to the exact functions given in Eq. (4.48).

In order to ensure the validity of our numerical analysis, we first have to verify that

the values of the quartic couplings λMS
i are well within the perturbative regime over the

whole temperature range that has been investigated. As explained in Sec. 6.1, we perform

the RGE evolution of the model parameters at the two-loop level, and the energy scale

µ has been varied far beyond the maximum temperature that is relevant to our analysis.

To illustrate this we show in Figure 6.2 the MS values of the quartic couplings, λMS
i , as a

function of the scale µ for benchmarks A2 (left), B2 (middle) and C2 (right) from Table 6.1.

For all three benchmarks, the various λMS
i remain perturbative up to at least µ = 50 TeV,

and the overall change of the couplings with the energy scale is mild below 10 TeV due to

the small coupling values at the initial scale µ0 = v. Similar results are obtained for all our

benchmarks from Table 6.1.

We present a first comparison between our analytical and numerical analyses in Figure 6.3,

which shows (as Figure 6.1) the behavior of the effective potential along the (0, 0, ρ3) field

space direction and in dependence of T , here for the benchmarks A2 (top), B2 (middle) and

7The same behaviour has been reported very recently in Ref. [356].
8The use of only the leading T 2 terms guarantees here the gauge independence of the effective potential.
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Figure 6.2: Dependence of the quartic couplings λMS
i on the energy scale µ for the benchmark

points A2 (left), B2 (center) and C2 (right). The gray line indicates the perturbativity bound of 4π.

C2 (bottom). The predictions based on the high-T approximation used in our analytical

approach are shown on the left-hand side, whereas the numerical results based on the full

one-loop potential are shown on the right-hand side. As in Figure 6.1, the dark-blue lines

correspond to NS(ρ3, T ) = 0, and the region in which HS
11(ρ3, T ) < 0 is shown in light-blue.

In the case of benchmark A2 (upper row of Figure 6.3), while both the numerical and

analytical approaches show the non-restoration of the EW symmetry at high T , the shape

of the HS
11(ρ3, T ) < 0 region differs between the two approaches. This difference is due to

the inaccuracy of the analytical treatment in field space points in which the field values

are comparable in size to the temperature. Since c33 < 0 (see Table 6.1), |vS(T )| grows
with temperature at high T , and the scalars whose masses receive a large contribution from

the singlet vev (note that λ6,7,8 are sizeable for this benchmark) can therefore affect the

convergence of the high-T expansion. Here it should also be noted that the derivatives of

the J± functions have a slower convergence towards the corresponding high-T expansions

than the functions themselves [357]. At the same time, the numerical implementation of

the thermal functions J± via a cubic spline introduces a small source of uncertainty when

computing numerical derivatives,9 which can also impede a better agreement between the

two methods (see also discussion below). For benchmarks B2 and C2 only minor differences

arise from the uncertainties discussed above, and a good agreement between the analytical

and numerical approaches is found.

In order to better understand the differences between the analytical and the numerical

approach, in Figure 6.4 we show for the three benchmark points used above the curvatures

at the origin of field space, H0
ii, as a function of temperature. In the numerical analysis, we

compare the AE (solid-red lines) and Parwani (dotted-green lines) approaches. The values

of H0
ii computed analytically using the high-T expansion (according to the AE approach,

9See [357] for a detailed discussion of the numerical issues related to the precise form of the implementation

of the thermal functions J± and their derivatives.

111



Chapter 6 – EW symmetry non-restoration and trapped vacua in the N2HDM

4 3 2 1 0 1 2 3 4
3 [TeV]

0

1

2

3

4

5

6

T 
[T

eV
]

A2 Analytical

NS( 3, T) = 0
HS

11( 3, T) < 0

4 3 2 1 0 1 2 3 4
3 [TeV]

0

1

2

3

4

5

6

T 
[T

eV
]

A2 Numerical

NS( 3, T) = 0
HS

11( 3, T) < 0

3 2 1 0 1 2 3
3 [TeV]

0

1

2

3

4

T 
[T

eV
]

B2

3 2 1 0 1 2 3
3 [TeV]

0

1

2

3

4
T 

[T
eV

]
B2

4 3 2 1 0 1 2 3 4
3 [TeV]

0
1
2
3
4
5
6
7
8
9

T 
[T

eV
]

C2

4 3 2 1 0 1 2 3 4
3 [TeV]

0
1
2
3
4
5
6
7
8
9

T 
[T

eV
]

C2

Figure 6.3: Comparison of the (ρ3–T ) plane obtained analytically (left) and numerically (right)

for the benchmark scenarios A2 (top), B2 (middle) and C2 (bottom) from Table 6.1. The colour

code is the same as in Figure 6.1.
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Figure 6.4: Second derivatives of the effective potential at the origin of field space, H0
ii, as a

function of temperature for the benchmarks A2 (upper row), B2 (middle row) and C2 (lower row)

using the analytical (within the AE – AE – approach) high-T approximation (blue) and evaluated

numerically using the AE approach (red) and the Parwani approach (dashed green).
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see the discussion in Sec. 6.4.1) are also depicted (solid-blue lines). One can observe that

the Parwani method agrees with the AE numerical result only for very small T and thus can

lead to a different prediction for the restoration of both the EW and the Z′
2 symmetries.10

This is indicated by the fact that in several cases the result for H0
ii grows with temperature

using the Parwani implementation, while the result for H0
ii obtained with the AE method

decreases with temperature (see, for instance, the upper left and upper right plot of Fig. 6.4).

Thus, these two methods employed in the literature to resum the contributions from daisy

diagrams may yield qualitatively different behaviors at high temperature, as was already

pointed out in Sec. 6.3 (see also Eq. (6.9)).

We also see from Figure 6.4 that our H0
ii analytical computation agrees well with the

AE numerical result. Only a minor difference is present between the numerical result and

the analytical one (both rely on the AE method). This difference is mainly driven by the

fact that the O(y3) and, in particular, the logarithmic pieces of the expansions of the J±

functions are not taken into account in the analytical treatment, whereas they are implicitly

contained in the numerical result, for which the thermal functions are implemented as an

interpolation to the exact form of the integrals. As a result of this interpolation, also

the numerical predictions for the second derivatives suffer from an uncertainty at large

temperatures, due to the fact that the tiny variations of the functional argument y cannot

be resolved.11 In combination, the uncertainties of both methods give rise to the small

offsets between the blue and the red curves that are visible in Fig. 6.4. These differences

however do not affect our results for the EW symmetry restoration behavior, for which

the predictions obtained using the numerical and the analytical method within the AE

approach are very similar In view of the discussion in the previous section, this adds support

to the reliability of our analytical analysis for predicting the fate of the EW symmetry at

high temperature in the N2HDM [359]. In particular, if c33 > 0 or if c33 < 0 and vS(T )
2/T 2

is sufficiently small at high T (see Eq. (6.23)), the coefficient c11 controls the stability of

the effective potential along the doublet field directions at high T .

An analogous approach can be applied to the study of the fate of the discrete Z′
2 symmetry

as a function of temperature. In this case, however, we can only make definite analytical

statements regarding the restoration of the Z′
2 symmetry in a handful of scenarios: if both

c11 and c33 are positive, the Z′
2 symmetry is restored at high T , while if c33 < 0 and

cS11 > 0 then the Z′
2 symmetry is broken at high T . The investigation of other scenarios

would require a numerical analysis of the finite temperature effective potential for ⟨Φ1⟩ ≠ 0,

⟨Φ2⟩ ≠ 0, which can be in principle performed with CosmoTransitions, but which we do

not pursue further in this work.

The cosmological consequences of the possible non-restoration of EW and/or Z′
2 sym-

metries are several: domain wall problems in cosmology are associated with the existence

10The Parwani method inconsistently mixes loop contributions of different orders in the couplings and

the temperature (see e.g. [358, 359]), such that thermal effects are enhanced as compared to the AE

approach. Using the latter, the cancellation between logarithmic contributions between VCW and VT are

ensured in the high-T limit.
11We used a step size of ystep = 0.01 for the cubic spline interpolation of J±(y).
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mha mhb mhc mA mH± tanβ C2
hatt̄

C2
haV V Rb3 m2

12 vS

125.09 [30, 1000] 400 650 650 2 1 1 [−1, 1] 65000 [1, 1000]

Table 6.3: Set of input parameters for our ScannerS scan. All the input parameters remain fixed

except for the mass of one of the CP-even Higgs bosons mhb
, its singlet component Rb3 (with

Σhb
= |Rb3|2) and the singlet vev at T = 0, vS .

of multiple vacua in theories with spontaneous breaking of discrete symmetries. However,

N2HDM scenarios in which the Z′
2 symmetry is never restored would trivially avoid the

formation of domain walls, i.e. eliminating the domain-wall problem. On the other hand,

an un-restored EW symmetry at high temperatures would lead to a very strong suppres-

sion of the baryon-number-violating sphaleron transitions at those temperatures, possibly

hindering baryogenesis/leptogenesis mechanisms relying on sphalerons. Yet, we stress that

high-T EW SnR is not incompatible with having H0
11 > 0 at intermediate temperatures, as

shown e.g. in Figure 6.4, top-left (see also Figure 6.3, top-left). This means that the EW

phase transition could take place also in such scenarios. We will explore this possibility in

more detail in the next section.

6.4.3 The EW phase transition and SnR

In this section we explore the possibility of a FOEWPT in the N2HDM and discuss its

connection to the possible non-restoration of the EW symmetry at high T . The simultaneous

occurrence of both phenomena requires a temporary restoration of the EW symmetry,

together with its breaking at higher temperatures.

In order to investigate the parameter region of the N2HDM possibly realising a FOEWPT,

we start by discussing the region of the 2HDM featuring a FOEWPT, and analyse in the

next step how the presence of the singlet field ΦS in the N2HDM affects this picture.

In the type II 2HDM the region of parameter space giving rise to a FOEWPT is quite

constrained: it generally correlates with the existence of sizeable quartic couplings among

λ3,4,5 in the 2HDM scalar potential. Since the mass splittings between the 2HDM scalars

are also controlled by such couplings, at least one of the additional 2HDM scalars (apart

from the SM-like Higgs boson at about 125 GeV) must be significantly lighter or heavier

than the overall mass scale M =
√
m2

12/(sinβ cosβ) of the second Higgs doublet [302].

Therefore, in general a FOEWPT in the 2HDM relies on a hierarchical spectrum with a

considerable mass splitting between the pseudoscalar A and the heaviest CP-even Higgs

boson H [39, 172, 301]. In the type II 2HDM B-physics observables push the mass of the

charged scalar to mH± > 590 GeV [210]. In combination with EWPO constraints, this

results in a most obvious possibility for the realization of a FOEWPT in a type II 2HDM

consisting on a hierarchical spectrum with mA ≈ mH± ≳ 600 GeV and a substantially

lighter scalar state H.12

12The opposite case with mH ≈ mH± ≫ mA is much less favorable for FOEWPTs, as it requires almost

exact alignment in order to decouple the heavy H from the phase transition dynamics [39, 172, 301].
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Figure 6.5: Singlet component Σh3
of the third CP-even Higgs boson in dependence of its mass

mh3
. The colour code indicates the value of the coefficients c11 (left), c22 (middle) and c33 (right).

Points with a black circular edge feature a FOEWPT.

Based on the above considerations for the 2HDM, we generated a total of 2000 N2HDM

benchmark points with ScannerS using values for the free parameters as shown in Table 6.3,

with a flat prior for the parameters mhb
, Rb3 and vS that have been varied. All the

benchmarks fulfil the theoretical and experimental constraints described in Sec. 6.2. The

chosen mass gap between mhc and mA increases the possibility of a FOEWPT in analogy to

the 2HDM case. We also focused on the alignment limit with C2
hatt

= C2
haV V = 1, such that

only hb and hc can have a non-zero singlet admixture (hence Ra3 = 0). The parameters

varied in our scan correspond to those related to the presence of the singlet in the N2HDM

Higgs sector, i.e. the mass of a third CP-even Higgs boson mhb
, its singlet component Rb3

and the value of the singlet vev vS .

Using CosmoTransitions, we have numerically analysed the thermal history of each scan

point within the temperature regime T = [0, 600 GeV], which covers the region relevant for

the possible presence of a FOEWPT. At T = 0, we observe that each point has a global

EW minimum of the kind (v1, v2, vS) and a false minimum of the kind (0, 0, ṽS), separated

by a potential barrier generated already at T = 0 by VCW. We find that 542 points out

of the 2000 initial ScannerS benchmarks feature a FOEWPT. Most of the scan points

satisfy the general perturbativity conditions |λMS
i | < 4π up to energy scales larger than

µ = 2 TeV. At the same time, we find that our analytical analysis to ascertain the fate

of the EW symmetry at high temperature is, for a large set of the scan sample, already

applicable for T ≲ 1 TeV, given that the mass scale of the doublet field bilinears is close to

the EW scale for most of the benchmarks (e.g. the mass scale of the non-SM Higgs doublet

is M ≈ 400 GeV).

In Figure 6.5 we show the results of our ScannerS parameter scan in the (mh3–Σh3)

plane, i.e. the heaviest CP-even scalar mass vs. its singlet component, with the colour code

indicating the value of the coefficients c11 (left), c22 (center) and c33 (right). The absence

of points in the lower right region is due to the perturbative unitarity constraints. The

points that feature a FOEWPT are highlighted with a black circular edge. We see that

none of the points of our scan features the restoration of both the EW and Z′
2 symmetries
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mh1 mh2 mh3 mA,H± tβ Ch1tt/V V sgn (R13) R23 m2
12 vS c11 c33

E1 125.09 400 517.29 650 2 1 −1 0.98 2552 746.79 −0.99 0.007

E2 125.09 400 487.29 650 2 1 −1 0.64 2552 559.31 −0.24 0.03

E3 125.09 400 550.25 650 2 1 −1 0.48 2552 544.63 −0.25 0.03

Table 6.4: Type II N2HDM benchmarks corresponding to the scan described by the input parame-

ters in Table 6.3. Point E1 is a benchmark point for which the EW symmetry is never restored up

to the maximum temperature analysed, Tmax, E2 features a FOEWPT, and E3 features a Universe

trapped in a false vacuum at zero temperature. Also shown are the values of c11 and c33 for the

three benchmark points. c22 is positive for the three scenarios. The parameters mhi , mA, mH± ,

m12 and vS are given in GeV.

at high temperature, given that c11 < 0 for all points. The coefficient c22, even though

positive for most benchmarks in the scan, reaches negative values for a fraction of the points.

However, there is no point with c22 < 0 and c11 > 0 due to the positive Yt contribution

to c22, which confirms our expectation that c22 provides no relevant information for the

fate of the EW symmetry at high T (see the discussion in Sec. 6.4.1). The coefficient

c33, which is related to the possible restoration of the Z′
2 symmetry, obtains values in our

scan that range from ≈ −1.25 to ≈ 0.8. Figure 6.5 highlights that it is perfectly possible

to have a FOEWPT together with an unrestored EW symmetry at higher temperatures

within the N2HDM. Actually, all the scan points featuring a FOEWPT have c11 < 0 (note

however that as discussed above c11 < 0 is only a sufficient condition for EW SnR at high

T if c33 > 0). The connection between both phenomena lies in the fact that the sizeable

scalar quartic couplings which contribute to making the EW phase transition strongly

first-order in the (N)2HDM may also contribute to rendering the coefficients cii negative,

see Eqs. (6.19)–(6.21).

In the following we choose three benchmark points from our parameter scan to illustrate

different EW thermal histories (we give further details on the rationale behind this choice

in the next section). The ScannerS input parameters of the three benchmarks E1,2,3 are

given in Table 6.4, in which we also show the values for their coefficients c11 and c33. For

these three benchmarks, we also use CosmoTransitions to numerically track the evolution

of the vacuum of the system13 (v(T ), vS(T )) from a temperature Tmax = 1 TeV down

to T = 0. We show in Figure 6.6 the temperature evolution of the EW vev v(T ) (left)

and the singlet vev vS(T ) (right) for each of the three benchmarks. For scenario E1 the

EW symmetry is never restored up to Tmax, and no EW phase transition occurs in this

temperature range, in agreement with the expectation from the values of c11 and c33 for this

benchmark (see Table 6.4). In contrast, scenario E2 shows a FOEWPT with a nucleation

temperature Tn = 138 GeV, and the EW symmetry is restored in the temperature range

T ∈ [Tn, 620 GeV]. For temperatures larger than ≈ 620 GeV the vacuum with v(T ) = 0

is unstable, and the EW symmetry is thus un-restored at high T . The singlet vev vS(T )

13We take into account all possible local minima at each temperature in the three-dimensional field space.
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Figure 6.6: EW vev v (left) and singlet vev vS (right) in dependence of the temperature for the

benchmarks E1 (solid gray), E2 (orange) and E3 (dashed black). These curves were computed using

our numerical implementation of the full 1-loop potential in CosmoTransitions.

starts to decrease for T ≳ 600 GeV, which suggests that at very high temperatures the

Universe would have been in an EW-breaking but Z′
2-conserving vacuum configuration

(this is in agreement with the values of c11 and c33 found for this scenario). Finally, for

benchmark scenario E3 the EW symmetry is broken at high temperatures and becomes

unbroken when the Universe reaches a temperature T ≈ 600 GeV. However, for lower

temperatures the Universe does not undergo another transition to the EW vacuum,14 but

rather it is trapped in an EW symmetric phase down to T = 0, which makes this scenario

unphysical. The existence of these trapped-vacuum scenarios in the N2HDM has already

been briefly discussed in Sec. 6.3, and we will explore it in more detail in Sec. 6.5.

Before moving on to the next section, we note that for all three benchmarks E1,2,3 the

value of the singlet vev vS(T ) shows a decreasing trend for increasing temperature, as

shown in Figure 6.6. Yet, the Z′
2 symmetry is not restored at Tmax and one would have to

go to larger temperatures to observe its restoration (as expected from the value of c33 for

all three benchmarks, see Table 6.4). However, the values of the quartic couplings λi for

these benchmarks are relatively large, and we find that the RGE evolution of λi cannot be

neglected for energies above 1 TeV. We therefore did not investigate here the behavior of

the effective potential beyond Tmax = 1 TeV, which would require including the effect of

this RGE evolution.

6.5 Trapped metastable singlet vacua

In Sec. 4.2.2 we pointed out the phenomenon of vacuum trapping : in the N2HDM a scenario

with a global EW minimum at T = 0 could be unphysical due to the Universe being trapped

in a false (singlet) vacuum. Vacuum trapping is expected to be particularly relevant in

14The point E3 shows the peculiar phenomenon that the EW symmetry is broken at high T but unbroken

at T = 0, the opposite of the commonly expected behavior.
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parameter regions in which FOEWPTs can occur, as for such regions several minima

that are simultaneously present in the early Universe (one of them being the EW-broken

phase) can co-exist down to T = 0 (see also the analysis of the vacuum structure of the

N2HDM at T = 0 that was performed in Ref. [199]). In this section we explore in more

detail the occurrence of (singlet) vacuum trapping, and discuss its relation to the N2HDM

parameter space region featuring a FOEWPT. Our analysis is divided into two different

parts, which concentrate on two regions of the N2HDM parameter space with different

phenomenological features: in Sec. 6.5.1 we analyse scenarios with a SM-like Higgs boson

at about 125 GeV, h125, where the singlet field mixes with the 2HDM-like heavy CP-even

scalar H; in Sec. 6.5.2 we then analyse scenarios in which h125 contains a singlet admixture,

while the singlet field does not mix with H. In both cases we study the interplay between

scenarios with trapped singlet vacua and with a FOEWPT, as well as the connection of

such early Universe phenomena to the phenomenology of the N2HDM.

In the following we also emphasise the conceptual differences between the N2HDM and

the (extensively studied) 2HDM regarding the EW phase transition. In the N2HDM, due to

the presence of the singlet field and its associated Z′
2 symmetry, there can be several phase

transitions during the thermal history of a specific N2HDM scenario. Yet, since the singlet

field does not couple directly to the massive degrees of freedom of the SM (besides the

Higgs sector), the breaking of the Z′
2 symmetry usually takes place at higher temperatures

than the EW phase transition.15 Thus, the FOEWPTs that we analyse in the following are

of the type (0, 0, ṽS(T )) → (v1(T ), v2(T ), vS(T )), where ṽS(T ) and vS(T ) are the vevs of

the singlet field in the EW-conserving false minimum and the EW-breaking true minimum,

respectively. This type of transitions obviously does not exist in the case of the 2HDM.

6.5.1 Case 1: Singlet admixture in H

We focus here on scenarios where the singlet scalar field mixes only with the heavy CP-even

2HDM state H, while the SM-like Higgs boson at about 125 GeV is unaffected by the mixing

with the singlet state. We use again the N2HDM parameter scan discussed in Sec. 6.4.3 in

connection to EW SnR, as defined in Table 6.3. We note that the scan parameter values,

and in particular the hierarchy between mhc and mA = mH± , have been chosen so as to

explore in detail the impact of the presence of the singlet field within the N2HDM, relative

to scenarios that would feature a FOEWPT in the 2HDM [172, 244, 301, 303].

In Figure 6.7 we show the scan results for the critical and nucleation temperatures Tc
(left) and Tn (right) of a FOEWPT, in the plane of the heaviest CP-even scalar mass mh3

vs. its singlet component Σh3 = |R33|2. The lower-right region of the plots is excluded due

to the perturbative unitarity constraints (as discussed in Sec. 6.4.3). For the gray points,

the EW symmetry is not restored up to the maximum temperature used for this numerical

analysis (recall the discussion in Sec. 6.4.3), Tmax = 600 GeV, and no FOEWPT takes place

15Only for very small values of vS ≪ v a simultaneous breaking (in a single transition) of the EW and Z′
2

symmetries can be realised. A discussion of this scenario is left for future work.
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(Tc and Tn are thus not defined).16 For the coloured points in the left plot of Figure 6.7

there exists a critical temperature Tc at which there are two degenerate minima, of the form

(0, 0, ṽS(T )) and (v1(T ), v2(T ), vS(T )), and one could naively be led to conclude that these

points also feature a FOEWPT. However, looking at the right plot of Figure 6.7, one can

see that only a fraction of these points yield a FOEWPT occuring at T = Tn. The black

points in the right plot have Tc defined, but there is no temperature T < Tc for which the

nucleation criterion of Eq. (4.60) is fulfilled. As a consequence, the Universe stays trapped

in the false vacuum (0, 0, ṽS(T )), and the EW phase transition does not occur.

In agreement with the results from Ref. [245], we observe from Figure 6.7 that for large

values of the mass mh3 a FOEWPT is associated with a very singlet-like state h3. This

is also reflected in the fact that for a fixed value of mh3 both Tc and Tn decrease with

increasing Σh3 . On the other hand, for smaller values of mh3 a FOEWPT is possible for a

sizeable doublet component in h3. Moreover, for a fixed value of Σh3 , Tc and Tn decrease

with decreasing mh3 . This may be understood as follows: Higgs bosons that participate in

the EW phase transition (by acquiring a vev) should not be too heavy, since large Higgs

boson masses require in general large bilinear terms, which hinder a FOEWPT if they

enter the transition dynamics [39]. In addition, the trilinear terms generating the potential

barrier between true and false vacua are absent at tree-level in the N2HDM, and arise

only from the radiative and thermal corrections to the potential, thus depending on the

quartic scalar couplings λi. The values of λi (and therefore the size of the potential barrier)

grow with the splitting between the masses of h2,3 and A (where mA has been fixed at

650 GeV in our scan). The strongest FOEWPTs are then expected to occur for low values

of mh3 ≈ mh2 ≪ mA, except when h3 is almost entirely singlet-like, i.e. Σh3 ≈ 1.

For a given Σh3 , there is a critical value of mh3 below which the energy barrier becomes

so large that the probability for the tunnelling between vacua is too small to allow for the

onset of the phase transition as defined in Eq. (4.60). The corresponding black points in

Figure 6.7 thus yield trapped metastable singlet vacua (0, 0, ṽS) down to T → 0. This

situation yields an inflationary process that suffers from the “graceful-exit” problem [362]

and leads to an unphysical scenario. This is the case even though a critical temperature Tc
(at which the EW minimum becomes the global minimum of the potential) does exist for

such points, as shown in the left plot of Figure 6.7. Furthermore, Figure 6.7 highlights that

this trapped-vacua region features the lowest values of Tc. In EW baryogenesis scenarios,

the strength of the FOEWPT is precisely quantified as (see e.g. [236]) ξ = vc/Tc (where

vc =
√
v1(Tc)2 + v2(Tc)2 is the EW vev at the critical temperature). In an investigation

based only on Tc one would then naively – and erroneously – conclude that the strongest

FOEWPTs for EW baryogenesis would occur in the region of parameter space corresponding

to the black points in Figure 6.7. However, our results show that this region is unphysical.

Overall, the black “vacuum-trapping” region constitutes a sizeable fraction of the pa-

16One could also argue that the gray points avoid the problem of vacuum trapping, because no FOEWPT

has to take place in order to reach the EW minimum at T = 0. Similar solutions were proposed in the

context of supersymmetric GUT theories [360, 361].
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Figure 6.7: Parameter points according to Table 6.3. The singlet component Σh3 of the third

CP-even Higgs boson is shown in dependence of its mass mh3
. The colour code indicates the

values for the critical temperature Tc (left) and the nucleation temperature Tn for the points with a

FOEWPT (right). Black points do not feature a Tn, and the Universe is trapped in a false minimum.

For the gray points, for which Tc cannot be defined, the Universe is in the EW minimum already at

Tmax = 600 GeV, i.e. the EW symmetry is not restored within the investigated temperature range,

and no FOEWPT occurs.

rameter space in our scan that based on the thermal history of the Universe is ruled out

because the breaking of the EW symmetry does not occur. This result makes manifest an

important shortcoming of a zero temperature analysis of the stability of the EW minimum

in extended scalar sectors (as implemented e.g. in ScannerS, see Sec. 6.2), as we demon-

strate that the presence of a global EW minimum at T = 0 is not a sufficient criterion

for an acceptable vacuum configuration in the N2HDM (this has also been shown recently

within the NMSSM [279]). If further local minima besides the EW minimum are present

at T = 0, an analysis of the thermal history of the Universe including the nucleation prob-

abilities of possible metastable minima is necessary to assess whether an N2HDM scenario

is physical. An analysis based only on the critical temperature (as done e.g. in Ref. [245]),

is not sufficient and can yield misleading predictions. We also note that an analysis of

the N2HDM thermal history based on the Parwani resummation scheme would lead to a

larger region of the parameter space experiencing vacuum-trapping: The Parwani method

typically predicts smaller values for Tc as compared to the AE method used in this work,

since in the former the finite-T contributions tend to restore the EW symmetry at lower

temperatures (the same was found in the 2HDM [244]). The tunnelling probability scales

with exp(−S3/T ) (see Eq. (4.60)), and so the onset of the EW phase transition is further

suppressed in the Parwani resummation method.17 While we regard the AE method as

17We have found that all our 2000 scan points feature trapped-vacua when using the Parwani method,
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more appropriate for the analyses in our study (see the discussion above), the comparison

with the Parwani resummation method shows that the parameter regions in the N2HDM

that we have indicated as unphysical because of vacuum-trapping are robust and conser-

vative, in the sense that those regions would be identified as unphysical based on both

methods.

As a further step, we now discuss the interplay between the thermal evolution and the

collider phenomenology of the N2HDM. For the case of the 2HDM it has been found that

the occurrence of a FOEWPT is favoured by a hierarchical spectrum [244, 301], and the

decay A → Zhi has emerged as a “smoking-gun” collider signature [172] of a FOEWPT

in the 2HDM. Also in the N2HDM such a type of signature is linked with the possible

presence of a FOEWPT, but the collider phenomenology related to this class of processes in

the N2HDM is much richer than in the 2HDM. In the alignment limit18 (which is realised

in our parameter scan), the AZh125 coupling between the pseudoscalar A, the Z boson

and the SM-like Higgs boson at about 125 GeV vanishes at tree-level. While in the 2HDM

in this limit only the decay A → ZH is possible if kinematically allowed, in the N2HDM

the two decays A→ Zh2 and A→ Zh3 can occur, whose branching ratios depend on both

the singlet component and the masses of h2,3. As shown in Figure 6.7, these parameters

also play an important role for the thermal history of the N2HDM. In our parameter scan

we find that both decay channels are generally open in scenarios with a FOEWPT, except

when h3 is very singlet-like (and can thus effectively decouple from the FOEWPT dynamics,

mh3 ≫ v).

In Figure 6.8 we show as result of our parameter scan defined in Table 6.3 the predictions

for the signal rates pp (gg) → A → Zh2 and pp (gg) → A → Zh3 at the LHC with
√
s =

13 TeV, where the production cross section has been calculated with SusHi v.1.6.1 [317,

363], and the branching ratios have been obtained with N2HDECAY [176, 318]. Since the

production cross section σ(gg → A) is constant in our scan (it only depends on mA and

tanβ), Figure 6.8 effectively shows the interplay between BR(A→ Zh3) and BR(A→ Zh2).

As a result, we find that (stronger) FOEWPTs with smaller nucleation temperatures are

correlated with larger values for these branching fractions. However, the largest values of

the signal rates for each of the two processes in our scan correspond to unphysical trapped-

vacua scenarios. The detection of the processes pp→ A→ Zh2 and pp→ A→ Zh3 at the

LHC would open the possibility to infer details about the thermal history of the Universe

that would have occurred in the N2HDM. Regarding the current status of LHC searches

of this kind, ATLAS and CMS have searched for the pp → A → Zhi (with hi ̸= h125)

signature within their 8 TeV [364] and 13 TeV [365, 366] data sets, assuming that the Higgs

boson hi decays into a pair of bottom quarks or a pair of τ -leptons. It should be noted that

our scan shows that for scenarios featuring a FOEWPT in the N2HDM the masses of both

h2 and h3 could easily be above the decay threshold into top-quark pairs. In fact, for the

rather small value of tanβ = 2 in our scan the discovery potential for the “smoking-gun”

despite the EW minimum being the global minimum at T = 0 for all of them.
18We note that this limit is strongly preferred for a FOEWPT in the 2HDM, see e.g. [302].
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Figure 6.8: Correlation of the cross sections for the processes A → Zh2 and A → Zh3 for the

N2HDM benchmark scenarios defined in Table 6.3. The colour coding is the same as in Figure 6.7

(right).

signatures in the N2HDM scenarios could be higher for the decay of h2,3 → t̄t. Thus, our

results motivate to explore the signature pp→ A→ Z(hi) → Z(t̄t) within the programme

of experimental searches at the LHC (see also [337]).

6.5.2 Case 2: Singlet admixture in h125

In contrast to the scan studied in the previous section, we now explore scenarios where the

Higgs boson h125 has a singlet admixture (whereas the heavy CP-even stateH does not), and

study the impact of such an admixture on the N2HDM thermal history. The measurements

of the signal rates of the SM-like Higgs boson together with the EWPO set limits on the

possible amount of a singlet component that can be acquired by h125 [176, 367]. These

limits also constrain the possible impact of the singlet-doublet mixing on the FOEWPT in

the considered scenario. In order to be able to study the effect of a singlet admixture in

h125 over a substantial mixing range, here we will fix the mass of the singlet-like scalar in

our parameter scan to be relatively close to 125 GeV (the relatively small mass splitting

between the Higgses then allows for sizeable mixing). We perform two N2HDM parameter

scans with ScannerS, defined in Table 6.5, to cover both mass orderings (as they have

different phenomenological implications): a singlet-like scalar somewhat heavier than h125,

and a singlet-like scalar somewhat lighter than h125. In both scans we keep the hierarchy

between the masses of the heavier CP-even doublet-like Higgs boson (hb in Table 6.5) and

the CP-odd state A in order to guarantee the presence of a potential barrier separating the

false minimum at (0, 0, ṽS) and the true minimum at (v1, v2, vS).
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mha mhb
mhc mA mH± tanβ C2

hatt̄
C2
haV V sgn(Ra3) Rb3 m2

12 vS

125.09 400 160 650 650 2 [0.8, 1.2] [0.7, 1.0] 1 0 65000 300

125.09 400 105 650 650 2 [0.8, 1.2] [0.7, 1.0] −1, 1 0 68500 300

Table 6.5: ScannerS input parameters used in the study of the impact of a singlet admixture in

h125 on the N2HDM thermal history. The upper (lower) row corresponds to the scan parameters

for mhc
> (<) 125.09 GeV.

We first analyse the scenario in which h125 is the lightest Higgs boson h1, choosing

our ScannerS scan parameters as shown in the first row of Table 6.5. We generate 1000

benchmark points fulfilling the theoretical and experimental constraints discussed in Sec. 6.2.

The only parameters that are varied in our scan are the scalar mixing angles, under the

condition that the singlet component of hb = h3 vanishes. We choose the mass of the

singlet-like Higgs boson mh2 = 160 GeV to allow for a sizeable mixing with the SM-like

Higgs boson h1 without being in conflict with the LHC searches for scalar resonances

decaying into a pair of Z bosons [368]. In Figure 6.9 we show the set of parameter

points in the plane of normalised squared-couplings of the Higgs boson at 125 GeV to

EW gauge bosons and SM fermions, C2
h1V V and C2

h1tt̄
, respectively. Note that C2

h1V V

also corresponds to the singlet component of h2, i.e. Σh2 = 1 − Σh1 = C2
h1V V (Σh3 = 0

because of Rb3 = 0). The allowed parameter space in Figure 6.9 is defined by three different

constraints: boundedness from below of the tree-level potential requires λ1 > 0, which

excludes the lower-right triangular region of the (C2
h1V V , C

2
h1tt̄

) plane in Figure 6.9; it also

requires λ2 > 0, which excludes the upper-left triangular region of the (C2
h1V V , C

2
h1tt̄

) plane

in Figure 6.9. We then find a diagonal band of allowed parameter space, based only on

these theoretical considerations. Finally, the roughly elliptical shape of this allowed band in

Figure 6.9 is due to the experimental LHC constraints on the h125 signal strengths, which

we implement using the χ2 result of HiggsSignals (see Sec. 6.2).

For each of the 1000 scan points, we have performed a finite-T analysis with CosmoTransitions,

computing the thermal evolution of the effective potential from a maximum temperature

Tmax = 300 GeV19 down to T = 0. In contrast to the scan results discussed in Sec. 6.5.1,

here we find that at Tmax the Universe finds itself in a minimum of the kind (0, 0, ṽS)

for all N2HDM benchmarks, and so the EW symmetry is always restored (at least in an

intermediate temperature regime). As the Universe cools down from Tmax, all benchmark

points feature a critical temperature Tc, shown in Figure 6.9 (left), at which the EW-broken

minimum is degenerate with the singlet minimum (0, 0, ṽS). For 609 points in our scan the

Universe remains trapped in the false (singlet) vacuum, as indicated by the black points in

the right plot of Figure 6.9, while for the remaining (391) points a FOEWPT takes place.

In the latter case, the nucleation temperature Tn is shown in Figure 6.9 (right). We see

19The maximum temperature Tmax that we consider here is substantially lower than in our previous scans,

since here we are not interested in the SnR behavior, but rather in the appearance of trapped vacua, for

which the temperatures studied need not be much larger than the EW scale.
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Figure 6.9: Parameter scan according to Table 6.5 (upper row) in the C2
h1V V –C

2
h1tt̄

plane. The

colour coding indicates the values of the critical temperature Tc (left) and the nucleation temperature

Tn for the points with a FOEWPT (right). For the black points the Universe is trapped in a false

minimum, such that no nucleation temperature can be defined.

that both Tc and Tn decrease with increasing C2
h1V V , in agreement with results previously

obtained in the 2HDM [244, 303]. This suggests (as we have discussed also in the previous

sections) that the strength of the transition reaches the largest values in the alignment

limit, in which the heavier doublet-like CP-even Higgs boson does not obtain a vev. We

note that within the 2HDM this reduces the prospects for detecting deviations from the

SM case via signal rate measurements of h125 in the parameter space that is relevant for

FOEWPTs. Our results show that this is also the case for the N2HDM if h125 is the lightest

Higgs boson. However, the opposite effect can occur if h125 is the second-lightest Higgs

boson, as we will show below.

We turn now to the analysis of scenarios where the singlet-like scalar state is lighter

than h125, in order to demonstrate the importance of the mass ordering of the singlet-

and doublet-like Higgs bosons. Our parameter scan now corresponds to the lower row of

Table 6.5, with mh1 = 105 GeV. This allows for a sizeable variation of the mixing with

h125 = h2 without being in conflict with the cross section limits obtained from the LEP

Higgs searches [369]. We also slightly increase the value of m2
12 compared to the previous

analysis (see the upper row of Table 6.5) in order to increase the tunnelling rate between

minima in a FOEWPT.20 We generate 1000 points fulfilling the theoretical and experimental

constraints using ScannerS and use CosmoTransitions to analyse the thermal history of

20As shown in Ref. [303] for the 2HDM, larger values of m2
12 reduce the potential barrier and the distance

in field space between false and true minima, thus increasing the tunnelling rate of FOEWPTs. In the

present scan, the increased value of m2
12 counterbalances the otherwise suppressed tunnelling probability

due to the overall reduced mass scale of the CP even Higgs bosons when mh1 = 105 GeV and mh2 =

125 GeV compared to the previous scan with mh1 = 125 GeV and mh2 = 160 GeV.
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Figure 6.10: Parameter scan according to Table 6.5 (lower row) in the C2
h2V V –C
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h2tt̄

plane. The

colour coding indicates the values of the critical temperature Tc (left) and the nucleation temperature

Tn for the points with a FOEWPT (right). For the black points the Universe is trapped in a false

minimum, such that no nucleation temperature can be defined.

each scan point as described above for the previous scan. In Figure 6.10 we show the

resulting points in the plane of the effective couplings C2
h2V V and C2

h2tt̄
. The allowed

parameter space is defined as in Figure 6.9 by the bounded-from-below constraints λ1,2 > 0

and by the constraints on the signal rates of h125 that are tested with HiggsSignals. It

is interesting to note that the region with Ch2V V = Ch2tt̄ = Ch2bb̄
= 1, i.e. the alignment

limit, cannot be realised with the choice of parameters of this scan, since in this region one

finds λ1 < 0. For the allowed points, we find 0.5 <∼ Ch2bb̄
<∼ 0.8 (not shown in the plots)

together with Ch2V V < 1 and Ch2tt̄ < 1 in order to satisfy the constraints on the signal

rates of h125.
21

All 1000 points in our scan feature a critical temperature Tc (at which the true EW

minimum is degenerate with the false minimum (0, 0, ṽS)), shown in the left plot of Fig-

ure 6.10. However, the majority of scan points correspond to trapped-vacuum scenarios,

shown in the right plot of Figure 6.10 as black points, and excluded since a FOEWPT

does not take place (from the 1000 points only 225 yield a FOEWPT). For the points that

do feature a FOEWPT, the colour coding in Figure 6.10 (right) indicates the nucleation

temperature Tn. As opposed to the scenario with h125 as the lightest Higgs boson, here both

Tc and Tn are reduced for decreasing values of Ch125V V . A decrease in Ch125V V is linked

to an increase in the mixing between the (singlet-like) lightest Higss boson h1 and h125,

Σh125 ≈ 1−C2
h125V V , which decreases the mass scale of the particles obtaining a vev during

the transition. This in turn increases the strength of the FOEWPT and leads to a lower

Tn. As Figure 6.10 highlights, this decrease in Tn eventually results in vacuum-trapping,

which in our scan rules out all points with Σh125 ≳ 0.15. The fact that, given the presence

21For C2
h125V V , C2

h125tt̄
< 1 and C2

h125bb̄
≈ 1 the diphoton branching ratio of h125 would be too small.
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of a singlet-like scalar below 125 GeV, the N2HDM can realise a FOEWPT quite far away

from the alignment limit is a very important difference w.r.t. the 2HDM (in which the

strength of the FOEWPT is maximised in the alignment limit [244, 302]). In the N2HDM,

a mixing of h125 with a lighter singlet-like scalar reverses the dependence of the EW phase

transition strength on Ch125V V compared to the case of the 2HDM. This constitutes a key

feature of the N2HDM regarding the interpretation of possible deviations from the SM in

the couplings of the Higgs boson at 125 GeV that could be revealed in future measurememts

at the LHC and the HL-LHC.

127





Part III

Dark matter

129





Chapter 7

Dark matter direct-detection

Dark matter is still today one of the greatest mysteries in physics. Although the first hints

of its existence were reported almost 100 years ago, and significant pieces of evidence have

been gathered from different sources, we are nevertheless ignorant of its nature. Perhaps the

simplest way to be in tune with all experimental results is to consider DM as a particle yet

to be discovered. There are many ongoing experiments that can provide further directions

in the search for the correct description of the DM field. However, in order to unmistakably

observe a DM candidate, one needs direct-detection experiments that probe the mass and

couplings of the DM particle with the SM particles via its interactions with known objects

such as nuclei. As a DM particle interacts with nuclei, light and electric charge are emitted,

providing information about energy and location of the collision.

In this chapter, we illustrate in the context of the S2HDM, the distinct feature of the

pNG DM: having a negligible DM DD cross section at LO (see Sect. 7.1). In Sect. 7.2, we

describe the basic formalism used in Chapter 9 to predict the one-loop DM-nucleus DD

cross section in the S2HDM.

7.1 Pseudo-Nambu Goldstone dark matter

In the S2HDM (see Sect. 3.1.3) at the tree level, the scattering of χ on a quark q is

transmitted via the t-channel exchange of the Higgs bosons hi. The corresponding amplitude

M can be written as

M = − Yq√
2

3∑
i=1

RiaiΓhiχχ

m2
hi

+ t
, (7.1)

where yq is the Yukawa coupling of the quark q = {u, d, c, s, t, b}, Γhiχχ is the tree-level

coupling between the DM particle χ and the Higgs bosons hi given by

iΓhiχχ = λ7vdRi1 + λ8vuRi2 + λ6vSRi3 , (7.2)

and Ria are the elements of the mixing matrix of the CP-even scalars defined in Eq. (3.45),

with a = 1 or a = 2 depending on whether the quark q is coupled to the doublet field Φ1

or Φ2, respectively. Hence, in type I and type LS a = 2 for q = {u, d, c, s, t, b}, whereas
in type II and type F a = 2 for q = {u, c, t} and a = 1 for q = {d, s, b}. Rewriting the

amplitude M in terms of the squared masses, or vice-versa replacing the squared masses in

terms of the Lagrangian parameters and the vevs, and by making use of the orthogonality

of R, it is easy to show that M vanishes in the limit of zero-momentum exchange, i.e. t→ 0.
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7.2 Dark matter direct detection

The DM halo of a galaxy envelops the galactic disc and extends well beyond the visible part

of the galaxy. If DM has a WIMP-nature, the Earth would receive a flux of DM particles of

the order of 105(100 GeV/mχ)cm
−2s−1 [370] as it traverses the Milky way rotating around

its center. Even though DM is weakly interacting with ordinary matter (if it interacts at

all), this flux is sufficiently large to cause a potentially measurable fraction of nuclear recoils

as a result of WIMP elastic scattering off nuclei in dedicated low background detectors.

This is the main idea that drives DM DD experiments, whose major role in probing the

WIMP region is central to unmistakably confirm the existence of a DM particle candidate.

In this section1, we will review how to derive the physical observable differential detection

rate per recoil energy in the context of a model providing a scalar DM candidate like the

S2HDM.

General considerations The detector material is typically kept at low temperatures,

such that the target nuclei can be considered at rest with respect to the laboratory frame

prior to the interaction with the DM particle. The DM halo is gravitationally bound, so

the typical velocity with which a DM particle incises on the Earth must be smaller than

the local escape velocity, which has been measured to be vesc = 533 km/s−1 ≈ 2 · 10−3

at the 90% C.L. [374]. Therefore, the non-relativistic treatment of the kinematics of

the DM-nucleus scattering is justified. For a WIMP scattering off a typical nucleus, the

maximum momentum transfer q can be estimated to be of the order of |q| ∼ O(10 MeV−
100 MeV) [375]. This sets a characteristic length scale for the process of the order of the

radius of the target, i.e. 1/|q| ∼ O(1 fm− 10 fm). In the small momentum transfer limit,

1/|q| ≪ 10 fm, the DM interacts with the whole nucleus coherently. In particular, for

a Higgs portal to scalar DM, only spin-independent interactions will be relevant to the

computation of the DM-nucleus scattering cross section, such that the total nuclear cross

section is enhanced by the square of the atomic mass due to the coherent summation over

all the scattering centers in the nucleus.

The detection rate The detection rate per recoil energy per total target mass is com-

puted as [372]

dR
dER

=
ρχ

mNmχ

〈
vχ
dσN
dER

〉
, (7.3)

where ρχ is the local mass density of the DM candidate, mN is the mass of the target

nucleus, mχ is the DM mass, σN is the the DM scattering cross section off a nucleus,

and the brackets indicate the average over the velocity vχ distribution of the DM in the

reference frame of the detector. For spin-independent interactions, the DM scattering cross

section σN can be written in terms of the scattering amplitudes of the DM particle off the

1Here the references Refs. [370–373]were followed.
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constituent nucleons [373]

σN =
µ2N
π

|ZMproton + (A− Z)Mneutron|2|F (q)|2 (7.4)

with µN being the WIMP-nucleus reduced mass, Z is the number of protons of the nucleus

and A the total number of nucleons. Here Mproton and Mneutron stand for the scattering

amplitudes of the DM particle on a proton and a neutron, respectively. The form factor

for coherent interactions F (q) can be qualitatively understood as a Fourier transform of

the nucleon density. F (q) is normalised to unity at zero momentum transfer [370]. In the

approximation MN ≡ Mproton ≈ Mneutron we obtain

σN =
µ2N
µ2N

A2σN |F (q)|2, (7.5)

where we used the DM-nucleon scattering cross section σN expressed as

σN =
µ2N
π

|MN |2. (7.6)

Here µN stands for the reduced mass of the WIMP-nucleon system. Once stated the connec-

tion between the DM-nucleon scattering cross section (7.6) and the detection rate (7.3), for

the rest of the discussion we will work at the level of nucleons, yielding results independent

of the specific target material. To compute MN , we consider the effective Lagrangian

reproducing the interactions between the DM particles and nucleons

Leff = αNχχN̄N, (7.7)

where N is the nucleon spinor field and αN is the effective coupling. The scattering

amplitude of the DM particle and the nucleon is given by

iMN = iαN ūNuN = i2mNαN , (7.8)

where it was used that, in the limit of zero external momentum, the product of the two

spinors, uN and ūN , can be replaced by their normalisation, 2mN , with mN being the mass

of the nucleon. Using Eq. (7.8), the cross section σN can be expressed as

σN =
1

4π

(
mN

mχ +mN

)2

|M|2. (7.9)

In order to obtain the effective coupling αN in terms of the parameters of the underlying

DM model, we have to match the quark level operators onto the nucleon level operators.

The scattering cross sections of the DM particle on a quark q can be effectively described

by the effective scalar operator

mqC
s
qχχq̄q , (7.10)

where mq is mass of the quark, and Cs
q is the Wilson coefficient that is determined order

by order in perturbation theory from the matching to the full model. The precise form
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of the radiative corrections that we incorporate into Cs
q will be discussed in Sect. 9. The

heavy quark contributions will be included as gluon initiated processes making use of the

QCD trace anomaly that relates the heavy quark Q = b, c, t operators with the gluon field

strength tensor [376]

mQQ̄Q→ − αs

12π
GµνG

µν . (7.11)

Here we should note that the parton operator basis forming the most general spin-independent

interactions for scalar DM should also include interactions induced by gluon-DM interac-

tions and twist-2 operators related to additional gluon-induced interactions. However, as

it was argued in Ref. [69] for a pNG DM model with one Higgs doublet, their contribution

was found to be subleading with respect to the contributions arising from the operator in

Eq. (7.10). Therefore, we will consider the operator mqC
s
qχχq̄q as the sole contribution to

the DM-nucleon scattering cross section in the S2HDM.

The effective Lagrangian for the scattering of the DM particle on a quark q can be

expressed as

Leff = mqC
s
qχχq̄q + Cs

QmQχχQ̄Q, (7.12)

with Cs
Q being the Wilson coefficient for the contributions from heavy quarks Q. The

effective couplings extracted from the effective Lagrangian to quarks and gluons are αs
q =

2mqC
s
q and αs

Q = 2mQC
s
Q, respectively. We can compute αN in Eq. (7.7) as the sum of

two contributions:

αN =
∑

q=u,d,s

⟨n|q̄q|n⟩αs
q +

∑
Q=b,c,t

⟨n|Q̄Q|n⟩αs
Q,

=
∑

q=u,d,s

⟨n|q̄q|n⟩αs
q +

∑
Q=b,c,t

⟨n| − αs

12π
GµνG

µν |n⟩2Cs
Q, (7.13)

with the bracket products interpreted as the probability to find a specific quark flavour

in the nucleon [373]. The first sum in Eq. (7.13) contains the contributions from the

scattering of χ directly on the valence quarks. The second term in Eq. (7.13) contains the

contributions from the scattering on the gluons, where we take into account at LO only the

quark-mediated contributions. As a consequence of this approximation, this contribution

can also be expressed in terms of the effective operator shown in Eq. (7.10). The expectation

values of the operators are defined as [376–378]

⟨n|mq q̄q|n⟩ ≡ mnf
n
Tq , (7.14a)

⟨n| − αs

12π
GµνG

µν |n⟩ ≡ 2

27
mnf

n
Tg. (7.14b)

fNTq are the contributions of the valence quarks to the nucleon mass. Their numerical values

have been extracted from lattice simulations and from data-driven methods to be [378–381]

fpTu = 0.029 , fpTd = 0.027 , fpTs = 0.009 , (7.15)

fnTu = 0.013 , fnTd = 0.040 , fnTs = 0.009 . (7.16)
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The gluon contribution can at LO be expressed in terms of the contributions of the valence

quarks. It is given by [370]

fNTg = 1−
∑

q=u,d,s

fNTq . (7.17)

By plugging Eqs. (7.14) and (7.13) in Eq. (7.9), we find that the scattering cross section

for the scattering of χ on nucleons as a function of Cs
q can be expressed as as [370]

σN =
1

π

m4
n

(mn +mχ)2

∣∣∣∣∣∣
∑

q=u,d,s

Cs
qf

N
Tq +

2

27
fNTg

∑
q=b,c,t

Cs
q

∣∣∣∣∣∣
2

. (7.18)
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Pseudo-Nambu Goldstone dark

matter in the S2HDM

In this chapter, we investigate a possible realization of pNG DM in the framework of

the S2HDM, which was introduced in Sect. 3.1.3. pNG DM gained attraction due to the

fact that DD constraints can be avoided naturally because of the momentum-suppressed

scattering cross sections, whereas the relic abundance of DM can nevertheless be accounted

for via the usual thermal freeze-out mechanism. We confront the S2HDM with a multitude

of theoretical and experimental constraints, paying special attention to the theoretical

limitations on the scalar potential, such as vacuum stability and perturbativity. In addition,

we discuss the complementarity between constraints related to the DM sector, on one hand,

and to the Higgs sector, on the other hand. In our numerical discussion we explore the

Higgs funnel region with DM masses around 60 GeV using a genetic algorithm. We

demonstrate that the S2HDM can easily account for the measured relic abundance while

being in agreement with all relevant constraints. We also discuss whether the so-called

center-of-galaxy excesses can be accommodated, possibly in combination with a Higgs boson

at about 96 GeV that can be the origin of the LEP- and the CMS-excess observed at this

mass in the bb̄-quark and the diphoton final state, respectively.

This chapter is organised as follows. Since the model was already presented in Sect. 3.1.3,

we start by describing in Sect. 8.1 the precise implementation of the relevant experimental

and theoretical constraints that we applied to the parameter space of the S2HDM. In

Sect. 8.2, we describe the genetic algorithm that was used to scan the parameter space

and to determine the parameter points that pass the various theoretical and experimental

requirements. In Sect. 8.2.1, we explore the Higgs funnel region after imposing the previously

described constraints and disregarding the explanation of the excesses at LEP and CMS,

whereas in Sect. 8.2.2 we additionally demand that the collider excesses are accommodated.

This chapter is based on ref. [2].
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8.1 Constraints

Here we briefly discuss the constraints on the parameter space of the S2HDM that we

applied in our analyses, mainly focusing on the methods and codes utilised. For further

details on the relevant experimental and theoretical constraints we refer to Sect. 3.2.1 and

Sect. 3.2.2, respectively.

8.1.1 Theoretical constraints: vacuum stability and unitarity

Due to the fact that the quartic part of the potential V is unchanged compared to the

N2HDM, we can apply the same BfB conditions on the tree-level scalar potential that were

found for the N2HDM (see Eq. (3.80)). We excluded all parameter points from our analyses

that did not feature a scalar potential that is BfB. As explained in Sect. 3.2.1, to avoid the

possibility of loop corrections changing the boundedness of the potential, we also demanded

an upper limit of 200 GeV on the splitting of the heavy Higgs-boson masses compared to

the mass scale M , defined in Eq. (3.46).

We demanded the EW minimum to be the global minimum of the tree-level potential V

(3.43), by solving the stationary conditions ∂V/∂(v1, v2, vC, vCP, vS , vDM), where we used

the code Hom4PS-2 [382] to solve the system of polynomial equations. For each extrema

we calculated the value of V in this point of field space. One can conclude that, if for any

of the extrema the value of V is smaller than for the field values of the EW vacuum, the

EW minimum is not the global minimum of V . In this case, the EW vacuum is potentially

short-lived compared to the age of the universe, such that the corresponding parameter

point might be unphysical, and we rejected it from the analyses.1

The precise form of the conditions to ensure a perturbative treatment of the model

for a specific parameter point is given in Sect. 3.2.1. Due to the fact that compared

to the N2HDM the only additional degree of freedom is the CP-odd component of the

singlet field ΦS , the perturbativity conditions are in most parts very similar to the N2HDM

conditions [176]. However, an important difference is that an additional condition on the

singlet self-coupling of the form |λ6| < 8π appears. In addition, the constraints related to

scattering amplitudes involving the singlet field components and the field components of

the doublet fields (see Eq. (3.67)) are modified with respect to the N2HDM.

We applied the previously described theoretical constraints taking into account the energy

scale dependence of the parameters, utilizing the two-loop β-functions of the S2HDM and

demanding that the theoretical constraints are respected up to a certain energy scale µv. The

1A (zero temperature) calculation of the lifetime of an unstable EW vacuum shows that in some cases the

EW vacuum can be considered to be sufficiently long-lived, even though there are deeper minima present,

such that a parameter point with a non-global EW minimum could still be viable (see Ref. [199] for an

N2HDM analysis). However, in such cases it is still unclear whether the universe would have adopted

the (meta-stable) EW vacuum at some point within the thermal history of the universe, or would have

rather transitioned into a deeper unphysical minimum. The analysis of the thermal history of the scalar

potential of the S2HDM is beyond the scope of this analysis (see Chapter 6 for an N2HDM analysis),

such that we demand the most conservative constraint, i.e. excluding all parameter points for which the

EW minimum is not the global minimum of the potential.
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β-functions for the S2HDM were obtained with the help of the public code SARAH [347, 348],

solving the general expressions known in the literature [349–351]. We also calculated the

β-functions with the code PyR@TE 3 [352] to be able to cross check the expressions and

found exact agreement. We discarded a parameter point when the scale µv at which the

scalar potential becomes unbounded or at which the perturbative unitarity constraints are

violated is below 1 TeV, which was also chosen as the upper limit on the Higgs-boson

masses in the numerical discussion (see Sect. 8.2).

8.1.2 Experimental constraints

The S2HDM offers a rich phenomenology that can be probed experimentally by various

means. The corresponding experimental (null)-results give rise to numerous constraints

that have to be taken into account. We start by discussing the constraints related to the

Higgs sector of the model. Subsequently, we describe the manner in which the constraints

from measurements from DM experiments were taken into account.

Searches for additional scalars and properties of h125

Regarding the Higgs phenomenology of the model, we used the public code HiggsBounds

v.5.9.0 [312–316, 383] to test the parameter points against a large number of cross-sections

limits from direct searches for Higgs bosons at LEP, the Tevatron and the LHC. For each

Higgs boson, HiggsBounds selects the potentially most sensitive experimental search based

on the expected limits. For the selected searches, the code then compares the predicted

cross sections against the observed upper limits on the 95% confidence level and excludes

a parameter point whenever the theoretical prediction lies above the experimental limit for

one of the Higgs bosons.

Regarding the discovered Higgs boson at 125 GeV, we use the public code HiggsSignals

v.2.6.1 [308–311] to verify whether an S2HDM parameter point features a particle hi that

resembles the properties of the discovered particle h125 within the experimental uncertainties.

HiggsSignals performs a χ2-analysis confronting the predicted signal rates against the

experimentally measured signal rates. In our more general parameter scan discussed in

Sect. 8.2.1, we applied as constraint that the resulting χ2 value (called χ2
125 in the following)

fulfils χ2
125 ≤ χ2

SM,125 + 5.99, where χ2
SM,125 = 84.41 is the fit result assuming a SM Higgs

boson at 125 GeV, and where the allowed penalty of 5.99 corresponds to a 95% confidence

interval for two-dimensional parameter distributions.2 In Sect. 8.2.2, in which we aim for

accommodating the collider excesses observed at about 96 GeV, we combine the value of

χ2
125 obtained from HiggsSignals with a value χ2

96 that quantifies the fit to the excesses.

The precise criterion applied will be given in Sect. 8.2.2.

HiggsBounds and HiggsSignals require as input effective coupling coefficients, which

are defined as the couplings of the physical scalars normalised to the coupling of a SM Higgs

boson of the same mass. With the help of these coupling coefficients, the codes compute

2See Ref. [311] for details on the interpretations of the χ2 analysis of HiggsSignals.
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the relevant cross sections for the scalars by rescaling the predictions for a hypothetical

SM Higgs boson. In the S2HDM, the coupling coefficients can be expressed in terms of

tanβ and (for the states hi) in terms of the mixing angles αi. The precise expressions

are identical to the N2HDM expressions and can be found in Ref. [176]. Moreover, the

user has to provide the branching ratios of the Higgs bosons. We calculated these in two

steps. First, we used the public Fortran code N2HDECAY [176, 318, 384–386] implemented

in the anyhdecay C++ library to calculate the decay widths of hi, A and H± for decays

into SM particles and for cascade decays with one or two Higgs bosons in the final state.3

In a second step we calculated the decay widths for the invisible decay into a pair of χ as

described below (see Eq. (3.92)). We finally divided each partial decay widths by the total

widths to obtain the branching ratios for each possible decay mode.

Additionally, we applied the currently strongest upper limit on the branching ratio of the

invisible branching ratio BRinv from direct searches (see Eq. (3.92)) given by BRinv < 0.11

at the at the 95% confidence level [229]. However, as will be demonstrated in Sect. 8.2.1,

in most cases parameter points with sizable values of the corresponding branching ratios

BRinv are already excluded by the global constraints on the measured signal rates of h125,

since the additional decay mode h125 → χχ suppresses the ordinary decays of h125 into SM

final states.

Electroweak precision observables

Since the S2HDM extends the SM particle content exclusively by scalar states, one can

to a very good approximation apply the formalism of the oblique parameters S, T , U

to include the constraints from EWPO. In order to predict the oblique parameters, we

applied the general expressions at the one-loop level from Refs. [206, 207] to the S2HDM.

Experimentally, S, T and U are constrained via global fits to the EWPO, where we utilise

here the results (including their uncertainties) found in Ref. [210]. In 2HDM-like extensions

of the SM, the most sensitive parameter is the T parameter, whereas the modifications of the

U parameter in practically all cases are orders of magnitude smaller than the experimental

sensitivity, and we explicitly checked this to hold in the S2HDM.4 We therefore performed a

two-dimensional χ2 test regarding S and T , written as χ2
ST in the following, and discarded

parameter points for which the predicted values were not in agreement with the experimental

fit result [210] at the 95% confidence level. This gives rise to the requirement χ2
ST ≤ 5.99.

The T parameter is sensitive to the breaking of the custodial symmetry. As a result, one

finds strong exclusions when there is a sizable mass splitting between the states A, H± and

(depending on the doublet-admixture) one of the heavy CP-even state h2 or h3.

3The anyhdecay library can be downloaded at https://gitlab.com/jonaswittbrodt/anyhdecay.
4We found that at the one-loop level the theoretical predictions for S, T and U in the S2HDM and the

N2HDM (given the same values of mhi , mA and mH±) are identical, because they do not depend on

the additional state χ of the S2HDM as long as vDM = 0.
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Flavour-physics observables

Since there are no public results for the theoretical predictions in singlet extensions of

the 2HDM for some of the most relevant flavour observables, we simply applied hard cuts

on the ranges of tanβ and mH± in our numerical analysis. The cuts were determined by

assuming that the exclusion regions known from the 2HDM are not severely modified by

the presence of the additional field of the S2HDM, which we expect to be the case due to

the singlet nature of this field (see discussion in Sect. 3.2.2). Consequently, working in the

type II S2HDM, we set lower limits of tanβ > 1.5 and of mH± > 600 GeV in order to not

be in conflict with constraints from radiative and (semi-)leptonic B meson decays and from

their mixing frequencies [210].5

Dark matter observables

We now turn to the experimental constraints that are related to the presence of the DM

candidate χ. The most important limitation arises from the fact that a too large relic

abundance of χ after thermal freeze-out would overclose the universe. The currently most

precise measurement of today’s DM relic abundance Ωh2 is given by surveying the cosmic

microwave background by the Planck satellite, leading to a measurement of (Ωh2)Planck =

(0.119± 0.003) [72]. We will use this value as an upper limit on the relic abundance of χ in

our analysis, taking into consideration that, in case the relic abundance of χ is smaller than

(Ωh2)Planck, there is room for additional (particle or astrophysical) contributions to the

relic abundance. We focus the analysis on the Higgs funnel region with DM masses of 40 ≤
mχ ≤ 80, where there are good prospects to be able to explain most (or all) of the observed

DM relic abundance via the thermal freeze-out of χ [23, 64, 66, 70, 389]. For the theoretical

prediction of the relic abundance, we wrote an S2HDM modelfile for the Mathematica

package FeynRules v.2 [390–392], which we utilised to obtain a CalcHEP [393] input

for the public code MicrOMEGAs v.5 [394] written in C and Fortran. With this input,

MicrOMEGAs is capable of calculating the relic abundance and the freeze-out temperature,

where for the computation of the annihilation cross section all 2 × 2 processes and also

processes with off-shell vector bosons in the final state are taken into account.

As already pointed out, one of the attractive features of the S2HDM is that due to the

pNG nature of the DM particle the cross sections for the scattering of χ on nuclei vanish

at leading order in the limit of vanishing momentum transfer [389], such that at this order

DD experiments are not sensitive to the presence of χ. In addition, it was shown in models

with a single Higgs doublet field and a complex singlet field that the loop contributions

to the DD cross sections are small, and the predicted DD scattering cross sections remain

far below the current (and near future) sensitivity of DD experiments [62, 63, 69]. We

5A more recent result suggests a lower limit of mH± > 800 GeV in the type II 2HDM from the measurement

of the radiative B meson decay [387], whereas Ref. [388] claims that theoretical uncertainties might have

been underestimated in the literature, potentially giving rise to a weaker lower limit. We emphasise that

the conclusions drawn from our numerical analysis do not depend on the precise value of the lower limit

chosen for mH± .
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assume that these results are not substantially modified by the presence of the second Higgs

doublet field in the S2HDM, which is a reasonable assumption in the type II S2HDM in

which the additional doublet particle states are substantially heavier than the values of mχ

in our analysis. Consequently, there are no relevant constraints from DD experiments that

have to be taken into account in our analysis.

On the other hand, constraints from DM in DD experiments are important, in particular

in the Higgs funnel region investigated here, in which χ mainly annihilates into b quark pairs,

typically via h125 in the s-channel. The most stringent constraints on the annihilation cross

sections of DM come from the observation of dwarf spheroidal galaxies (dSph) by the Fermi-

LAT space telescope [73]. In order to account for these constraints, we used FeynRules

to generate UFO [395] model files for the S2HDM, which were then used as input for the

public code MadDM v.3 [396, 397]. MadDM is a plugin for MadGraph5_atMCv.3.1.1 [398] that

can be used to compute the relevant velocity-averaged annihilation cross sections ⟨σvrel⟩bb̄,
and to subsequently compare the theoretical predictions to the upper limits on the velocity

weighted cross section for DM particles annihilating into bb̄ final states from the Fermi

measurements of gamma rays from dSph at the 95 % CL.6 The Fermi-LAT collaboration

utilises a likelihood analysis to fit the spectral and spatial features of dSphs to obtain

upper limits on the annihilation cross section as a function of the DM mass [73]. The

analysis accounts for point-like sources from the latest LAT source catalog, models the

galactic and isotropic diffuse emission, and incorporates uncertainties in the determination

of astrophysical J-factors, which depend on both the DM density profile and the distance.

The observed limits are sensitive to the determination method of the J-factors. In Ref. [73]

an evaluation of the uncertainties arising from targets lacking measured J-factors was

performed. Using only predicted J-factors for the whole sample weakened the observed

limits by a factor of about 2 to 3, depending on the choice of J-factor uncertainty, with

respect to the limits obtained by using both predicted and measured J-factors. Considering

these uncertainties will be important for the discussion of the tension between the constraints

coming from dSph and the gamma-ray excesses and anti-protons measured from the galactic

center, as will be demonstrated in Sect. 8.2.1.

For the comparison between the predicted annihilation cross section and the Fermi

bounds from dSph observations, we rescaled (when not explicitly said otherwise) the cross

sections with a factor

ξ2 =

(
Ωh2

(Ωh2)Planck

)2

, (8.1)

in order to account for the suppression of today’s annihilation cross section of χ due to

the smaller number density when the relic abundance of DM is not made up completely

out of χ.7 We also point out that the velocity-averaged annihilation cross sections can

6We also computed ⟨σvrel⟩ for other two body final states. However, for the range of mχ investigated here

the b quark final state was always the dominant one. In addition, we applied the so-called fast mode of

MadDM in order to reduce the duration of the calculation. We checked for several parameter points of our

scans that the difference between the values of ⟨σvrel⟩ in the fast and the precise mode are very similar.
7For the calculation of ξ we used the value of Ωh2 as predicted by MicrOMEGAs. In principle, also MadDM can
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be considered here to be velocity-independent in the non-relativistic limit to a very good

approximation, since in our scan range of mχ they are dominantly generated via diagrams

with s-channel exchange of either h1 or h2 [399]. Nevertheless, we calculated ⟨σvrel⟩ with
different relative velocities vrel for the comparison against the Fermi-LAT dSph constraints,

on the one hand, and for the comparison against the preferred regions regarding the gamma-

ray and the anti-proton excesses, on the other hand. In both cases we used the default

values of MadDM, which are vrel = 2 · 10−5 for the DM in dSph and vrel = 10−3 for DM in

the center-of-galaxy as relevant for the excesses. In agreement with our expectation, the

differences of the annihilation cross sections for the two values of vrel stayed below a few

percent and are not relevant for our discussion.

8.2 Numerical analysis

We divide our numerical analysis of the type II S2HDM into two parts. In the first part

discussed in Sect. 8.2.1, we will demonstrate in a broad parameter scan how the Higgs funnel

region with 40 GeV ≤ mχ ≤ 80 GeV is affected by the various theoretical and experimental

constraints. Here the DM particle χ is the lightest BSM state, and h125 = h1 is the lightest

of the three CP-even Higgs bosons hi. We will describe in detail the predictions for the

DM relic density and its interplay with the Higgs sector of the model. In addition, we

investigate whether the annihilation of χ in this scenario could give rise to the cosmic-rays

anomalies from observations of the spectra of cosmic rays coming from the center of the

galaxy. We emphasise at this point that due to the large mass gap between the DM mass

mχ studied here and the masses of the heavy scalar states h3, A and H± in the type II

S2HDM, the predictions for the DM relic abundance and today’s DM annihilation cross

section mainly depend on the couplings of χ to the SM-like Higgs boson and (when present)

the light singlet-like Higgs boson. Accordingly, the properties of the DM sector will be

similar compared to the predictions from the pNG DM model with only one Higgs doublet,

because additional annihilation processes involving the heavier states do not play a role.

However, differences between both models can still arise due to the richer mixing patterns

of the states hi in the S2HDM, where the mixing angles α1,2,3 enter the couplings of hi to

χ.

In the second part of our analysis, discussed in Sect. 8.2.2, we focus on the parameter

space in which at the same time the collider excesses at about 96 GeV could be accom-

modated. Consequently, here the presence of a singlet-like Higgs boson h96 = h1 with

mh1 = 96 GeV is enforced as an additional constraint on the parameter space. As a result,

the SM-like Higgs boson h125 is the second lightest Higgs boson h2, and its mixing with

h96 is subject to the constraints from the LHC measurements of the signal rates of h125.

Going beyond the discussion of the collider phenomenology and the excesses at 96 GeV,

we will illustrate in detail how the presence of h96 has also important consequences for the

calculate the relic abundance. However, by default MadDM does not take into account the contributions to

the annihilation cross section with off-shell gauge bosons, which are relevant in our analysis. Moreover,

the calculation of the relic abundance is much faster using MicrOMEGAs.
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DM phenomenology in the Higgs funnel, in particular giving rise to a second s-channel

contribution to the thermal freeze-out cross section and today’s annihilation cross section

relevant for DM in DD experiments.

In both parameter scan presented in the following, we sampled the multi-dimensional

parameter space of the model utilizing a genetic algorithm. In contrast to random or

uniform (grid)-scans of the model parameters, a genetic algorithm has the advantage that it

focuses on the relevant parameter region by minimizing a so-called loss function, which has

to be suitably defined in each case. The definition of the loss functions used in both parts

of our analysis will be given in Sect. 8.2.1 and Sect. 8.2.2. Apart from the loss function,

the properties of the genetic algorithm applied were in large parts identical in both scans.

For the interested reader we briefly describe the main design choices here, where we made

use of the public python package DEAP [400] to perform the algorithm.

The algorithm starts by generating an initial sample (also called population) of 50 000

parameter points. Each parameter point (also called individual) is defined by a list of 14

numbers (also called attributes or genes), where each number of this list defines a value

of one of the model parameters within a given parameter range. The population is then

subject to an evolution including the three steps: selection, mating and mutation. These

three steps are performed in a loop for a total number of N cycles (also called generations),

such that each cycle gives rise to a new population of parameter points with (desirably)

better fitnesses. The fitness of each individual is defined by the corresponding value of the

loss function: the smaller the value of the loss function given the parameter values of an

individual, the better is the fitness of the individual.

The first step of each cycle, i.e. selection, determines which of the individuals of the

population are allowed to take part in the following two steps, i.e. mating and mutation.

As a selection function we used the so-called tournament selection with size three. This

function selects the individual with the best fitness from three randomly picked individuals

of the population. In total 50 000 individuals are selected in this way (where each individual

was allowed to be selected more than once) and these then proceed to the mating stage.

Since the selection is based on the fitness values, individuals with better fitness have a

higher chance of producing new individuals (called offspring).

For the mating process, we divided the selected individuals into two distinct groups, and

then we performed a uniform crossover of pairs of individuals from each group. A uniform

crossover creates two child individuals from each pair of parent individuals, where the child

individuals are defined by swapping the attributes of the two parent individuals, in our case

according to a probability of 0.2. Hence, the two parent individuals produce two offspring

individuals which have on average 20% of the attributes from one parent and 80% of the

attributes from the other parent. In addition, we included a so-called mating probability

of 0.8, such that for 20% of the pairs of parent individuals no mating was performed and

the parent individuals were just kept in the population without changing their attributes.

Afterwards, the mutation stage is performed, which modifies some of the individuals of

the offspring via a randomised function, potentially giving rise to new individuals with good

fitness values that belong to so far unexplored parameter regions. As a mutation function
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we applied the so-called float uniform mutator function with a mutation probability of 0.2.

This function multiplies the attributes of an individual with a random number between

0.8 and 1.2 according to a probability of 0.1. As a result, 20% of the individuals of the

offspring are mutated, and the mutations modify on average 10% of the attributes of such

individual.

At the end of each cycle, we replace the initial population with the offspring and enter a

new cycle, until either an individual is found that corresponds to a value of the loss function

below a certain threshold, or until the maximum number of cycles is reached. Since it is

possible that the individual in the parent population with the best fitness would be lost when

the population is replaced, we append this best-fit individual to the offspring population

in order to ensure that it always survives the complete cycle. Finally, when the algorithm

has completed, we save the parameter point with the best fitness. Accordingly, the above

described algorithm is performed as many times as the number of desired parameter points

in the final sample.

For the two scans discussed in Sect. 8.2, we compared the performance of the genetic

algorithm to the one of a random scan over the free parameters using a flat prior. For a

machine-independent estimate of the performances of both algorithms, we chose the number

of evaluations of the loss function L (see Eq. (8.3)) that is required until a parameter point

featuring a value of L below a certain threshold is found. We found for the first scan

discussed in Sect. 8.2.1 that, on average, the genetic algorithm succeeds in finding a value

of L < 90 with roughly 60% to 70% fewer evaluations of L compared to the random scan,

such that the improvment is only moderate. For the second scan discussed in Sect. 8.2.2, in

which L receives an additional term, our computations indicate that the genetic algorithms

outperforms the random scan drastically. Here we found that using the genetic algorithm

the average number of evaluations of L in order to find a parameter point with L < 150 was

approximately 35 times smaller than using a random scan. Since in this scan the parameter

points with the desired features with regards to the collider excesses (see Sect. 8.2.2 for

details) require values of L that are even smaller than L = 150, we conclude that the usage

of the genetic algorithm was a vital piece of our numerical analysis. The reason for the

fact that the genetic algorithm performs so much better in the second scan, whereas the

improvement was only moderate in the first scan, can be attributed to the fact that the

simultaneous minimization of the values of χ125 (see Sect. 8.1.2) and the value χ96 (defined

in Sect. 8.2.2), which quantifies the fit to the collider excesses, requires additional relations

between the mixing angles αi and tanβ, which the genetic algorithm is able to find more

quickly by successively adjusting the parameters of the points with the lowest values of L

that have been found in the previous generation.

8.2.1 pNG DM in the Higgs funnel region

In order to explore the Higgs funnel region, we scanned the parameter space of the S2HDM

within the parameter ranges

1.5 ≤ tanβ ≤ 10 , mh1 = 125.09 GeV , 140 GeV ≤ mh2,3 ≤ 1 TeV ,
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40 GeV ≤ mχ ≤ 80 GeV , 40 GeV ≤ vS ≤ 1 TeV , −π/2 ≤ α1,2,3 ≤ π/2 ,

400 GeV ≤M ≤ 1 TeV , 600 GeV ≤ mH± ≤ 1 TeV , mA ≤ 1 TeV ,

∆Mmax = max (|mH −M |, |mA −M |, |mH± −M |) < 200 GeV , (8.2)

where in the last line mH = mh2 when Σh2 < Σh3 or mH = mh3 when Σh2 > Σh3 . Thus,

this condition on ∆Mmax ensures that the masses of the heavy doublet-like states A, H±

and H = h2 or = h3 are not further than 200 GeV away from the mass scale M . As

explained in Sect. 8.1.1, and as will also be demonstrated in the following, this condition

excludes parameter points that have a very small energy range v ≤ µ ≤ µv in which the

parameter points fulfill the theoretical constraints, with potentially µv ≪ 1 TeV. The lower

limits of tanβ ≥ 1.5 and mH± ≥ 600 GeV exclude parameter points that are potentially

in conflict with constraints from flavour-phyiscs observables. The mass hierarchy of the

CP-even Higgs bosons hi is fixed such that h125 = h1 is the lightest one. Their mixing

angles αi are scanned over the theoretically possible range, where it should be noted that

their values are strongly constrained by the measurements of the signal rates of h125, as

will also be demonstrated below. The vev of the singlet field vS is allowed to take on values

up to 1 TeV, which coincides with the upper value chosen for the masses of the heavier

BSM states H±, A and h2,3. If we would have allowed for larger values of vS and M ,

the heavy states could acquire also larger masses and decouple from the lighter states h1
and χ. However, we wanted to focus on the parameter space region in which the collider

constraints from direct searches at the LHC play a role, such that we limited our scan to

the case in which all particle states could be produced (and discovered) at the LHC.

The scan points that we will present were obtained in a two step procedure. In the first

step we applied the genetic algorithm as described before in order to find parameter points

that minimise the loss function

L = χ2
125 +max

[
0, (rHB

obs − 1) · 100
]
+


C , when χ2

ST > 5.99 or theo.

constraint violated at µ = v

0 , otherwise

.

(8.3)

Here χ2
125 is the result of the HiggsSignals test, and rHB

obs is provided from the HiggsBounds

test. rHB
obs is defined as the ratio of predicted cross section for the most sensitive channel

divided by the experimentally observed upper limit (see Sect. 8.1.2 for details). As a result,

parameter points featuring a value of rHB
obs > 1 should be rejected, and the second term in

the loss function quantifies the penalty of this requirement. The factor 100 is included in

order to enhance the importance of this exclusion in terms of the loss function compared to

the values of χ2
125, thus making sure that all parameter points with low values of the loss

function have rHB
obs < 1 and are consequently not excluded by direct searches. Finally, the

third term is a huge constant C that is added when a parameter point does not fulfil the

theoretical constraints at the initial energy scale µ = v, or when the constraints from the

EWPO are not fulfilled. With this definition of the loss function, the genetic algorithm finds

parameter points that pass the theoretical constraints, the constraints from the collider
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experiments and the EWPO.

In a second step, all the parameter points found with the genetic algorithm were subject

to the remaining constraints: according to the discussion in Sect. 8.1.1, we applied the

theoretical constraints for scales µ > v and verified whether they are fulfilled up to at

least µ = 1 TeV. In addition, we verified that, regarding the SM-like Higgs boson, we have

∆χ2
125 = χ2

125 − χ2
SM,125 ≤5.99 and BRinv < 0.11, and, regarding the DM candidate, that the

predicted relic abundance is is not larger than the Planck value, i.e. Ωh2 ≤ (Ωh2)Planck. We

also ensured that the constraints from the in DD experiments from the observation of dSph

are respected. The DM observables were not taken into account already in the definition

of the loss function, because the computation of the relevant theoretical predictions were

the most time-consuming part of the analysis, such that it was much more efficient to

perform these computations only for the parameter points that otherwise passed all the

other theoretical and experimental constraints.

As was already mentioned before, the main purpose of this analysis is to illustrate the

combined impact of the various constraints on the model parameters. In particular, we will

point out which of the constraints give rise to limitations on which subset of parameters, and

whether the constraints cover similar or clearly distinct regions of the S2HDM parameters.

In the following, we start the discussion with the theoretical constraints that were applied

according to the discussion in Sect. 8.1.1. In the next step, we examine the impact of the

collider constraints by taking into account both the constraints from direct searches and

from the constraints on the properties of h125 (see Sect. 8.1.2). Finally, we consider the

physics related to the DM candidate χ, and how its properties are interconnected to the

Higgs sector.

In order to analyse the impact of the theoretical constraints, we show in Fig. 8.1 the

parameter points with the colour coding indicating the energy scale µv until which the

theoretical constraints are respected. We remind the reader that all parameter points fulfill

the theoretical constraints at the initial scale µ = v. All points for which µv < 1 TeV are

shown in grey. We performed the RGE running up to µ = 100 TeV, such that points that

have µv = 100 TeV (yellow points) are potentially valid up to much higher energy scales.

In the upper left plot we show the parameter points in the plane mH± −M and mA −M .

One can see that only points for which these differences are below roughly 50 GeV are valid

at energy scales much beyond 1 TeV. On the other hand, parameter points with values

of |mH± −M | ≳ 120 GeV and/or |mA −M | ≳ 150 GeV are always in contradiction with

one of the theoretical constraints already at scales µv < 1 TeV. The same observation

can be made in the upper right plot, in which |mH −M | is depicted on the vertical axis.

Points that feature values of µv much larger than about 1 TeV are concentrated at values

of |mH −M | ≲ 50 GeV, whereas points with larger values of |mH −M | are almost always

only well behaved within a small range of energies.

We find that the relevant constraint that give rise to the low values of µv are in most

cases the tree-level perturbative unitarity constraints. These constraints effectively provide

upper limits on the absolute values of the quartic scalar couplings λi and combinations

thereof (see also Sect. 3.2.1). It is therefore easy to understand why they are more severe
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Figure 8.1: Top row: mA −M (left) and mH −M (right) in dependence of mH± −M , where

mH = mh2 or mH = mh2 depending on whether Σh2 < Σh3 or vice versa. Bottom row: λ3 in

dependence of λ1 (left) and λ1 + λ2 + λ3 in dependence of λ4 − λ5 (right). The colour coding

indicates the value of µv. Also shown in grey are discarded parameter points with µv < 1 TeV.

in region of parameter space with relatively large splittings between the masses of the

heavy BSM states and the mass scale M , since such splittings are induced by large absolute

values of λ1,2,3,4,5 (see also App. A). Moreover, for obvious reasons also the energy scale

dependence of the quartic couplings is stronger when their absolute values are larger. As

a result, points with large mass splittings, which potentially were already on the edge of

being excluded via the tree-level perturbative unitarity constraints at the initial energy

scale, quickly break one of these constraints once the RGE evolution is considered. This is

also reflected in the plots in the lower row of Fig. 8.1, in which we show the points in the

148



8.2 Numerical analysis

planes λ1-λ3 on the left and (λ4 − λ5)-(λ1 + λ2 + λ3) on the right. In the left plot one can

see that verifying the theoretical constraints exclusively at the initial scale µ = v gives rise

to parameter points with values of λ1 ≲ 4 and −3 ≲ λ3 ≲ 8, whereas demanding that the

constraints are respected within a range of energy of at least v ≤ µ ≤ 1 TeV, the allowed

ranges shrink to λ1 ≲ 3 and −2 ≲ λ3 ≲ 5.8 A similar observation can be made in the right

plot, in which the allowed values change from λ1 + λ2 + λ3 ≲ 9 and −6 ≲ λ4 − λ5 ≲ 10 to

λ1+λ2+λ3 ≲ 6 and −4 ≲ λ4−λ5 ≲ 7 once the RGE running and the additional constraint

µv > 1 TeV is taken into account. Note that the limits on the values of the couplings that

we found are much below the naive perturbativity criterion |λi| < 4π, which is often applied

in the analysis of extended Higgs sectors in order to exclude non-perturbative parameter

regions.

Consequently, we conclude that regarding the collider phenomenology the main impact

of our choice to demand the theoretical constraints to be respected at least until µ = 1 TeV

is that the masses of the heavy states are closely related to the overall mass scale M , which,

however, does not significantly constrain the values of λ6,7,8, since they do not depend

directly on M (see App. A). Thus, the only exception to the constraints on the mass

splittings arises when there is a Higgs boson h2 or h3 with almost 100% singlet component

present, in which case its mass would be dominantly related to the value of vS instead

of M , and the mass could differ substantially from mA, mH± and mH , as will also be

further discussed below. Thus, our approach of including the theoretical constraints drives

the model predictions towards the decoupling limit of the S2HDM, where the masses of

the heavy states mA, mH± and mH are approximately determined by the scale M of the

soft-breaking of the discrete Z2. Considering the theoretical constraints described above has

in some aspects the same effect as applying the constraints from the EWPO, which are also

sensitive to large mass splittings between the scalar states [210]. This fact on its own is not

very surprising since also the EWPO observables arise from the radiative corrections. More

interesting, however, is that while it is sufficient to have either mH ∼ mH± or mA ∼ mH±

in order to be in agreement with the constraints from EWPO (at one-loop level), the

inclusion of the RGE running and the requirement µv > 1 TeV gives rise to the fact that

both conditions should be approximately fulfilled, i.e. mH ∼ mA ∼ mH± .

The low values of µv that we found for values of |λi| ≳ 1 are relevant also for cosmological

aspects of the S2HDM, where we stress again that one of the main motivations of the model

is the possibility of accommodating a first-order EW phase transition. In order to achieve

such a transition, it is required (just as in the 2HDM) to consider parameter space regions

where large loop corrections to the scalar potential are present, since at tree level the scalar

potential does not allow for an EW phase transition of first order. The required loop

corrections have their origin in values of one or more |λ1,2,3,4,5| > 1 (see Chapter 6). As a

result, our analysis indicates that for a perturbative study of the parameter regions of the

S2HDM relevant for possible first-order EW phase transitions, it is of crucial importance to

take into account constraints in relation to the perturbative unitarity and the RGE running

8λ1 has to be positive according to the BfB conditions on the tree-level scalar potential.
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Figure 8.2: Spectrum of the heavy Higgs bosons h2,3, A and H± for the parameter points fulfilling

the theoretical and experimental constraints. Left: mh3 in dependence of mh2 , with the colours

indicating Σh2
. Right: mA in dependence of mH± , with the colours indicating mh2

. Also shown in

grey are excluded parameter points with µv < 1 TeV. The dashed line indicates where mH± = mA.

of the quartic couplings.9 On the other hand, if one restricts an analysis of the S2HDM to

regions of the parameter space in which the couplings λi have absolute values substantially

below one, then the model can be valid to energy scales much beyond the TeV scale. In

this case, however, the S2HDM cannot accommodate a first-order EW phase transition and

its related phenomenology, and also the heavy BSM states are largely decoupled from the

EW scale (as discussed above).

To shed more light on the spectrum of the Higgs bosons, we show in Fig. 8.2 the mass

mh3 in dependence of mh2 on the left and mA in dependence on mH± on the right. In

the left plot one can see that it is possible that h2 is substantially lighter than h3 when

it has a large singlet component of Σh2 > 90%, as indicated by the colours of the points.

On the other hand, when h2 and h3 are sizably mixed, the masses of both states have

to be relatively close to M in order to comply with the theoretical constrains. The same

observation can be made in the right plot regarding the masses of A and H±. Note here

that all the points with mA−mH± ≳ 150 GeV are grey, indicating that they feature values

of µv < 1 TeV. In this plot the colour coding indicates the values of mh2 , and a correlation

can be seen between the mass of h2 and the masses of A and H±. The heavier the latter

states, the larger also tend to be the values of mh2 . Since by definition mh2 < mh3 , one

can conclude that in most parameter points all six states h2,3, A and H± are relatively

close in mass, with the only exception being a very singlet-like state h2 with mh2 ≪M , as

9For instance, both type II benchmark scenarios in Tab. I of Ref. [70], where first-order phase transitions

are discussed in the context of the S2HDM, would be excluded in our analysis due to the large absolute

values of λ4 ∼ 5 and λ5 ∼ −7.
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mentioned earlier already. Hence, our analysis shows a trend towards the decoupling limit of

the S2HDM, in which at low energies the model could become practically indistinguishable

from the SM. In this case, the only possibility to observe a BSM effect would arise from the

DM phenomenology or a possible invisible branching ratio of h125 if the decay h125 → χχ

is kinematically allowed (see the discussion below). The presence of an invisible branching

ratio of h125 could also allow for a distinction between the S2HDM and the 2HDM, whereas

the S2HDM in the decoupling limit could be practically indistinguishable from the pNG

model with one Higgs doublet, in which case only a discovery of one of the additional

particles of the S2HDM at a collider could shed light on the model realised in nature.

Going beyond the theoretical limitations, the spectrum of the Higgs bosons is also

severely constrained by direct searches at colliders, where due to the fact that we focus here

on the mass ordering with h1 = h125 only the LHC results play a role in our discussion.10

Without going into the details of each of the relevant search channels, the searches that were

selected by HiggsBounds and which led to exclusions of parameter points in the scenario

under investigation were listed in Sect. 3.2.2. In general, the most promising searches at the

lower end of the tanβ range are the searches for the charged Higgs bosons or the searches

for the neutral states h2, h3 and A dominantly produced in the gluon fusion channel, where

depending on their masses they then mostly decay into pairs of t quarks, pairs of vector

bosons or into a lighter Higgs boson and a Z boson. For the upper end of the tanβ range,

the most promising channel is the resonant search for new Higgs bosons in the invariant

mass spectrum of two τ leptons. Here it should be noted that the resulting exclusions in the

S2HDM can be substantially different in comparison to the 2HDM, because h3 and A can

have sizable branching ratios for the decays into final states containing a potentially much

lighter singlet-like state h2, in which case the branching ratios in regards to the decays of

h3 and A into a pair of τ -leptons are suppressed. As a result, for a fixed value of tanβ

both states can be lighter in the S2HDM compared to the 2HDM without being in conflict

with the searches for heavy Higgs bosons decaying into two τ leptons [223]. Finally, for

parameter points in the intermediate tanβ range with 3 ≲ tanβ ≲ 6, the bosonic decays of

the neutral states are most relevant, such that the searches with two vector bosons in the

final state or Higgs cascade decays can probe parts of the parameter space of the S2HDM.

Complementary to the direct searches for the BSM particles, the Higgs sector of the

S2HDM can also be probed indirectly via the properties of the Higgs boson h1 = h125
resembling the Higgs boson that was discovered at the LHC. In order to illustrate the

impact of such constraints, we show in the left plot of Fig. 8.3 the allowed parameter

points, which all fulfil the criterion χ2
125 ≤ χ2

SM,125 + 5.99 (see Sect. 8.1.2 for details), with

sin(α− β) on the horizontal and tanβ on the vertical axis. In the case in which one of the

heavier states h2 or h3 has a singlet component of almost 100%, the S2HDM features an

alignment limit similar to the 2HDM. In this limit the couplings of h1 reduce to the ones

of a SM Higgs boson, and the limit is determined by the condition sin(α− β) = 0 (see also

Ref. [176]). Consequently, departures from this condition are associated with deviations

10See also Refs. [401, 402] for investigations of the collider phenomenology of a 2HDM extended with a

complex singlet scalar, in which no additionally U(1) symmetry is imposed on the singlet.
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of the predictions for the signal rates of h125 with respect to the SM. As can be seen in

the left plot of Fig. 8.3, our analysis indicates that in order to be in agreement with the

measured signal rates, one has to fulfil roughly | sin(α− β)| ≲ 0.1. The largest departures

from zero are found for the lower end of the tanβ range, whereas for larger values of tanβ

the allowed range of | sin(α − β)| shrinks substantially. The colour coding of the points

indicates the singlet component of the SM-like Higgs boson Σh1 . Notably, we find that the

current uncertainties of the signal-rate measurements still allow for a singlet-component of

more than 14%.

Precise measurements of the properties of h125, for instance correlated deviations from

the SM prediction of the various different couplings coefficients of h125 to the up- and down-

type fermions Ch125uū and Ch125dd̄
and the gauge bosons Ch125V V , could help to distinguish

the type II S2HDM from the usual 2HDM. Here the coupling coefficients Ch125uū,dd̄,V V are

defined to be the couplings normalised to the ones of a SM Higgs boson. A sizable singlet-

component of h125, as found in parts of our parameter points, gives rise to a suppression of

Ch125V V . In the usual 2HDM, a deviation from |Ch125V V | = 1 is possible via departures from

the alignment limit, and thus tightly constrained to values of C2
h125V V ≳ 0.9 [210]. Since we

find parameter points with Σh125 > 0.1, and since in the S2HDM one has C2
h125V V ≤ 1−Σh125 ,

a possible future measurement indicating C2
h125V V ≲ 0.9 at the (HL)-LHC would favor an

S2HDM interpretation instead of the 2HDM. It is also interesting to compare the maximum

values of Σh125 ∼ 14% with the corresponding values found in the pNG DM model with

only one Higgs doublet. In Ref. [64] it was shown that in this case the mixing of the SM-like

Higgs boson with the singlet state is more constrained, and, except when the singlet scalar

and the doublet scalar are degenerate in mass, only values of up to 10% were found to be in

agreement with the Higgs-boson measurements. As a result, and under the assumption that

a deviation of the properties of h125 w.r.t. the SM will be observed, one could potentially

distinguish the S2HDM from the simpler model with only one Higgs doublet via the precise

measurements of Ch125V V , Ch125uū and Ch125dd̄
. Moreover, the model with one Higgs doublet

predicts Ch125uū = Ch125dd̄
, such that experimental indications for Ch125uū ̸= Ch125dd̄

would

clearly favour an S2HDM interpretation. Another obvious possibility to distinguish both

models arises from the fact that the S2HDM can predict values of |Ch125dd̄
|, |Ch125uū| > 1

due to enhancements by factors of 1/cβ or 1/sβ (depending on the Yukawa type), while

the pNG DM model with one Higgs doublet can only accommodate values equal or smaller

than one.

The mixing among the CP-even scalar fields in the S2HDM is identical to the one of the

N2HDM, such that it is not surprising that we find similar effects on the allowed parameter

ranges of αi in the S2HDM. However, a crucial difference between both models is the

presence of the additional particle χ in the S2HDM. Since we are focusing here on the

Higgs funnel region of the model, it is possible that mχ < 125 GeV/2, giving rise to an

additional decay mode of h125 into an invisible final state. To illustrate the impact of this

additional decay on the allowed parameter regions, we show in the right plot of Fig. 8.3

the branching ratio for the invisible decay of h125 in dependence of mχ for the parameter

points with mχ < 125 GeV/2. Here we show also the parameter points that would be
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Figure 8.3: Left: tanβ in dependence of sin(α1 − β) for the parameter points that pass all the

constraints discussed in Sect. 8.1. Right: Invisible branching ratio BR(h1 → χχ) in dependence of

mχ for the parameter points with mχ < mh1
/2 that pass the constraints, not taking into account

the experimental upper limit on BR(h1 → χχ) as reported by ATLAS [229]. The colour coding

indicates Σh1
.

excluded by the observed upper limit on BR(h1 → χχ) [229] (indicated by the horizontal

dashed line). In this way we can demonstrate the interplay between the global constraints

from the HiggsSignals analysis and the direct limit on the invisible branching ratio. One

can see that only a very small fraction of the otherwise allowed parameter points, which in

particular have passed the constraint χ2
125 ≤ χ2

SM,125 + 5.99, lie above the ATLAS limit on

the invisible branching ratio. Nevertheless, for some points we find values of BR(h1 → χχ)

that are about 50% larger than the upper limit in the whole range of mχ in which allowed

points were found.

The grey points in the right plot of Fig. 8.3 have to be discarded because they feature a

too large thermal relic abundance of DM. For the allowed points the DM relic abundance

is indicated by the colour coding of the points. One can see that we find a limit of

mχ ∼ 53.8 GeV below which no allowed points were found.11 This limit arises from a

combination of the upper limit on BR(h1 → χχ), on the one hand, and the constraint

Ωh2 ≤ (Ωh2)Planck, on the other hand. Parameter points with mχ ≲ 53.8 GeV feature

either a χ that is weakly coupled to h125, in which case BRinv can be in agreement with

the ATLAS limit but the DM relic abundance is too large because the annihiliation process

with h125 in the s-channel is not efficient (see also discussion below), or χ is coupled more

strongly to h125, in which case the DM relic abundance can be below the upper limit but

the invisible branching ratio of h125 is unacceptably large. Note here that in the plot almost

all parameter points with mχ ≲ 53.8 GeV belong to the first option, predicting too large

11A very similar limit was found in the pNG DM model with one Higgs doublet [64].
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values of Ωh2, while BRinv is below the experimental upper limit. On the other hand,

there are only three parameter points with mχ ≲ 53.8 GeV belonging to the second option,

featuring too large values of BRinv but with Ωh2 below the Planck limit. The reason for

this lies in our procedure to generate the parameter points using the genetic algorithm.

Parameter points with values of BRinv = O(0.1) feature overall larger values of χ2
125 and

constitute therefore only a very small part of the sample of parameter points, because the

genetic algorithm tries to find parameter points that minimise χ2
125 (see the definition of

the loss function defined in Eq. (8.3)).

The above discussed findings already indicate the strong interplay between the Higgs

phenomenology and the DM sector of the S2HDM, in particular in the scenario discussed

here that fundamentally relies on the Higgs funnel to predict a DM relic abundance in

agreement with experiments. To shed more light on this interplay, we show in Fig. 8.4

the relic abundance as predicted according to the freeze-out mechanism in dependence of

the DM mass mχ. One can see the strong suppression of Ωh2 for most parameter points

at mχ ∼ 125/2 GeV, where the DM annihilation cross sections with h1 in the s-channel

are resonantly enhanced. At this precise resonance region, there are nevertheless also a

few parameter points featuring values of Ωh2 within an order of magnitude below the

experimentally measured value (Ωh2)Planck = 0.119 (indicated by the grey dashed line in

Fig. 8.4). For these parameter points the resonant enhancement of the annihilation cross

sections is counteracted by strongly suppressed couplings of χ to h125.
12

For values of mχ below mh125/2, there is a small band of values 53 GeV ≲ mχ ≲ mh125/2

in which the measured value of the relic abundance can be accommodated, whereas for

values below this range the predicted amount of DM density is always too large (grey

points). As already mentioned before, the reason for this lies in the constraints on the

properties of h125. In order to predict an allowed value for Ωh2 when mχ ≲ 53 GeV it is

required that the coupling of χ to h125 is large. However, this inevitably results in values

of the invisible branching ratio for the decay h125 → χχ above the experimental upper

limit. As a result, the lower limit on mχ found here can be regarded as a robust bound

under the assumption that h125 corresponds to the lightest scalar h1. One can compare

also to the right plot of Fig. 8.4, where the colour coding indicates the values of the singlet

component of the SM-like Higgs boson h1. A clear distinction is visible between the points

below and above the resonance at mχ = 125/2 GeV. Points with mχ below the resonance

have substantially smaller values of Σh1 , whereas points with mχ above the resonance allow

for values of Σh1 ≳ 0.1. Moreover, only points for which mχ is relatively close to the

kinematic threshold of the decay h1 → χχ, i.e. mχ ∼ mh125/2, feature sizable values of

Σh1 when mχ < mh125/2. The reason for this is that the couplings λ7 and λ8 that couple

the singlet field to the doublet fields (see Eq. (3.43)) appear in the partial decay width for

the invisible decay as shown in Eq. (3.92). In addition, these couplings are responsible for

12These parameter points also have highly suppressed DM-SM scattering processes at finite temperatures,

such that in some cases χ might be kinematically decoupled already before the freeze-out period. As a

result, this effect of early kinetic decoupling of DM [403, 404] can give rise to an additional source of

uncertainty for the prediction for Ωh2 for these points.
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Figure 8.4: Relic abundance Ωh2 as predicted by thermal freeze-out in dependence of mχ. The

colour coding indicates the values of mh2 (left) and the values of Σh2 (right). Grey points are

excluded by Ωh2 > (Ωh2)Planck or Fermi dSph measurements.

the possible singlet admixture of the state h1. Accordingly, parameter points with sizable

values of Σh1 have sizable values of λ7 and λ8, which in turn can give rise to too large

values of BR(h1 → χχ) whenever this decay is kinematically allowed. In Sect. 8.2.2 we will

address the question whether the bound mχ ≳ 53 GeV can be substantially modified in a

scenario featuring a scalar h1 with a mass smaller than 125 GeV, and the second lightest

scalar h2 plays the role of the discovered Higgs boson. In this case χ has two possibilities

to annihilate resonantly, either with h1 or with h2 in the s-channel, and the predictions for

the relic abundance can be substantially modified.

For values of mχ > 125/2 GeV one can see that the prediction for Ωh2 rises quickly

with increasing value of mχ, because the resonant enhancement of the annihilation cross

section is lost. As a result, most parameter points predict a too large DM relic abundance.

Taking into account the values of mh2 (indicated by the colour coding of the points in the

left plot of Fig. 8.4), one can see that most parameter points with mχ ≳ 65 GeV that are

in agreement with the upper limit on Ωh2 feature a relatively light scalar h2 with masses

at the lower end of the scan range of mh2 . As before, the reason for this is that when h2
is not much heavier than twice the value of mχ, the second s-channel contribution to the

annihilation cross section becomes relevant. This gives rise to a suppression of Ωh2 such

that the prediction can be below the experimental limit even when mχ is several GeV larger

than 125/2 GeV. Again, this hints to the fact that also in the mass range mχ > 125/2 GeV

the prediction for Ωh2 could be substantially modified using the inverted mass hierarchy in

which h125 is not the lightest scalar, and we investigate this possibility assuming a Higgs

boson h1 at 96 GeV in Sect. 8.2.2.

In both plots in Fig. 8.4 the grey points are characterised by either being excluded
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Figure 8.5: Today’s velocity averaged annihilation cross section of χ into pairs of b quarks taking

into account the number density as predicted by thermal freeze-out (left) and assuming Ωh2 = 0.119

(right). The colour coding indicates the predicted value of Ωh2 (left) and the value of mh2
(right).

Also indicated are the regions in which the cosmic-rays excesses could be explained within the

2σ confidence level (blue and orange dashed lines) [66, 89]. Grey points are excluded by Ωh2 >

(Ωh2Planck) (left) or Fermi dSph measurements (left and right).

due to Ωh2 > (Ωh2)Planck, as already mentioned before, or they are excluded due to the

constraints from DM in DD experiments. In most parts of the analysed parameter space,

the more constraining experimental limit results to be the upper limit on the predicted relic

abundance, as indicated by the fact that most of the grey points lie above the horizontal

dashed line indicating the Planck measurement. However, there is a small region with

62.5 GeV ≲ mχ ≲ 67 GeV in which we find grey points below the Planck limit. Conse-

quently, in this mass range of χ the in DD limits from the observation of dSph by the

Fermi satellite are more constraining. Note that this is a region in which it appears to be

relatively easy to accommodate a value of Ωh2 ∼ (Ωh2)Planck without being in tension with

constraints on h125, since it is just above the resonance of the annihilation cross section,

and the decay h125 → χχ is kinematically forbidden. The fact that these parameter points

can be probed via in DD experiments is therefore crucial. We remind the reader that

the constraints derived from the Fermi measurements are subject to uncertainties, as was

also discussed in Sect. 8.1.2, such that the respective limits might change slightly in the

future and are currently possibly not as robust as the Planck limit on the relic abundance.

Nevertheless, our results indicate that when the DM candidate of the S2HDM in this mass

range is responsible for a large fraction of the measured relic abundance, the observation

of dSph and the resulting constraints (or signals, more optimistically speaking) will be of

great importance for studies in the context of pNG DM.

In this context it is interesting to note that recent in DD experiments found anomalies

in the cosmic ray spectra. The first so-called galactic center excess was found by the Fermi
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satellite, which measured an intensity of gamma-rays coming from the center of the galaxy

significantly above the predictions of the standard model of cosmic rays generation and

propagation with a peak in the spectrum around a few GeV [74, 75]. Another anomalous

cosmic-ray spectra was measured by the Alpha Magnetic Spectrometer (AMS) [85], mounted

on the international space station, which reported an excess over the expected flux of cosmic

ray antiprotons.13 While it is still under debate whether the excesses arise from unresolved

astrophysical sources [406–408] or the treatment of systematic uncertainties [409, 410], or

whether their origin could be the annihilation of DM, we will in the following assume that

the latter is the case.14 In Ref. [89] it was shown that the excesses are compatible with a

DM interpretation, where the DM candidate annihilates into pairs of b quarks. For the γ

excess the allowed range of the mass of the DM candidate at the 2σ confidence level was

found to be 37 GeV ≤ mDM ≤ 67 GeV. For the p̄ excess the allowed range was found to

be 46 GeV ≤ mDM ≤ 94 GeV, which partially agrees with the mass range preferred by the

γ excess. Consequently, it is an interesting question whether the S2HDM can explain both

the excesses simultaneously, while being in agreement with all theoretical and experimental

constraints.15

In order to answer this question we show in Fig. 8.5 on the vertical axes ⟨σbb̄vrel⟩, being
the predicted velocity-averaged annihilation cross sections of χ into pairs of b quarks, in

dependence of the DMmassmχ for the parameter points of our scan. The 2σ confidence level

regions of these two parameters required to explain the γ and the p̄ excesses are indicated

with the blue and orange dashed lines, respectively [66, 89]. We show the parameter points

in the two plots of Fig. 8.5 under two different assumptions. In the left plot we assume that

the usual thermal freeze-out scenario can be applied, such that we have to take into account

the predicted values of the relic abundace for each parameter point. Hence, the values of

⟨σbb̄vrel⟩ on the vertical axis are scaled by the factor ξ2 as defined in Eq. (8.1). On the other

hand, in the right plot we show the parameter points under the assumption that the relic

abundance of DM is always accounted for by χ, independently of the prediction from the

thermal freeze-out. As a result, they demand a non-standard cosmological history giving

rise to the experimentally measured relic abundance, which we will however not specify any

further. In the plots the grey points correspond to parameter points that are excluded by

a too large predicted relic abundance (left) or by constraints from dSph observations (left

and right). In the right plot the dSph constraints are consequently applied also assuming

Ωh2 = (Ωh2)Planck.

Assuming the usual thermal freeze-out scenario (left plot), one can see that the resonant

structure of the distribution of the annihilation cross sections gives rise to two distinct

regions of mχ in which points inside the blue and the orange curves can be found. The first

region at lower DM masses of mχ ≈ 50 GeV contains parameter points that predict values

of ξ2⟨σbb̄vrel⟩ as required for an explanation of the excesses, and where the values of mχ lie

13The updated result of the AMS collaboration could neither definitively rule out nor confirm the DM

interpretation of the antiproton excess [405].
14See also Refs. [411–415] for recent discussions of possible explanations of the center-of-galaxy excesses.
15See Ref. [66] for an investigation of the excesses in a singlet-extension of the SM featuring pNG DM.
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roughly in the center of the values preferred by the γ excesses and at the lower end of the

range preferred by the p̄ excess. However, these points are excluded because the predicted

values of Ωh2 are about an order of magnitude larger than the experimentally measured

value, as can also be seen in the left plot of Fig. 8.4. Accordingly, the parameter points in

this region of mχ are excluded and the cosmic-ray excesses cannot be realised there. The

second region of DM masses in which points within both the blue and the orange curves

are found is given by 63 GeV ≲ mχ ≲ 67 GeV. However, as before, the corresponding

points are shown in grey and are consequently excluded. Interestingly, here the responsible

experimental constraint do not arise from the Planck measurement of the relic abundance,

but from the Fermi-LAT observations of dSph, as was already discussed before. In fact,

the predictions for Ωh2 in this range of mχ are close or effectively identical to the Planck

measurement. Hence, the points in this second region of DM masses possibly predict the

correct DM relic abundance and could give rise to both the cosmic γ- and the p̄-excesses,

but they are in tension with the null-results from the observations of dSph. Here we remind

the reader, as was discussed already in Sect. 8.1.2, that the Fermi-LAT dSph constraints

are subject to uncertainties in regards to the astrophysical modelling of the spectral curves,

and as a result might be slightly weaker as compared to applied here. Nevertheless, with

future improvements of the dSph observations, for instance, due to the inclusion of more

dSph and the increasing time periods of data taking, a firm exclusion (or confirmation if a

DM signal will actually be found) of the parameter space region of the second DM mass

range discussed here should be possible [416].

Under the assumption of a non-standard cosmological history that somehow gives rise

to a relic abundance of χ in agreement with the Planck measurement (right plot), one can

see that this time only one DM mass region with parameter points suitable for a realization

of the excesses is present. Naturally, this region lies where the resonant enhancement of

⟨σbb̄vrel⟩ is present, i.e. at 61 GeV ≲ mχ ≲ 67 GeV, which consequently partially coincides

with the second region of DM mass found in the left plot of Fig. 8.5. As before the points

that lie within both the blue and the orange curves are in tension with the dSph observations

from the Fermi satellite.

We end the discussion of the DM properties in this scan by noting that many of the above

mentioned findings crucially depend on the assumed mass ordering of the CP-even Higgs

bosons. In particular, the presence of a Higgs boson below 125 GeV can potentially impact

the predictions for the relic abundance, as discussed in relation to Fig. 8.4. Moreover, the

question whether the cosmic-ray excesses can be accommodated more easily when a second

s-channel resonance for the annihilation cross section is available can be addressed. In

Sect. 8.2.2 we will investigate these questions following the approach of Ref. [66], in which

the presence of a Higgs boson at around 96 GeV was assumed in order to simultaneously

explain also two collider excesses found at LEP in the bb̄ final state and at the LHC in the

diphoton final state.
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8.2.2 pNG DM and a Higgs boson at 96 GeV

In Ref. [66] it was used that the hypothetical particle state h96 at 96 GeV can be coupled

to new relatively light charged states that can give rise to additional contributions to the

loop induced coupling of h96 to photons in order to account for the diphoton excess found

by CMS. In Ref. [367] it was shown that in the N2HDM the presence of the additional

doublet Higgs field and the real singlet field are sufficient to accurately describe the collider

excesses. Here, the diphoton rate was enhanced not via an enhancement of the coupling

coefficient |Ch96γγ |, where the coupling coefficients Ch96... are defined as the coupplings

normalised to the one of a SM Higgs boson of the same mass. Instead, the branching

ratio for the diphoton decay of h96 was enhanced via a suppression of the couplings of

h96 to b quarks, which then also gives rise to a suppression of the total width of h96.
16

The required suppression of the coupling coefficient |Ch96bb̄
| (without suppressing |Ch96tt̄|

in order to maintain sizable couplings to photons via the t-quark loop) can also be realised

in the S2HDM due to the possible mixing patterns in the CP-even sector and the presence

of the three mixing angles α1,2,3 in total analogy to the N2HDM. In this regard, the only

difference in the S2HDM compared to the N2HDM is the possible presence of the additional

decay modes h96/h125 → χχ, potentially giving rise to a small suppression of the decay

modes h96 → γγ relevant for the CMS excess and h96 → bb̄ relevant for the LEP excess,

or to stronger constrains on the properties of h125. In the following we will discuss a scan

to illustrate the impact of the presence of h96 on the phenomenology of the DM candidate

χ, and whether the collider excesses can be realised in combination with the cosmic-ray

excesses.

Before going into the description of the parameter scan that we performed, we briefly

introduce the relevant details of the collider excesses. At LEP searches for Higgs bosons

were performed utilizing the bb̄ final state [92], which can be exploited at a lepton collider

in contrast to the LHC due to the much smaller SM background. Theoretically, the Higgs

boson that is searched for is assumed to be produced via the Higgstrahlung pocess and

subsequently decays into a pair of b quarks. A local excess of about 2σ confidence level was

observed at a mass of roughly 96 GeV, where the mass resolution is rather poor due to the

hadronic final state. In Ref. [417] it was shown that the excess is consistent with a signal

interpretation corresponding to a signal strength of

µexpLEP = 0.117± 0.057 . (8.4)

Low-mass Higgs-boson searches have also been performed at the LHC in various final states.

CMS searched for light Higgs bosons in the diphoton final state utilizing the 8 TeV and

parts of the 13 TeV datasets [93]. A local excess of roughly 3σ confidence level was observed

at a mass of 96 GeV, hence in agreement with the mass range compatible with the LEP

excess. In this case the excess is consistent with a signal interpretation corresponding to a

16The presence of a second doublet field gives rise to the presence of the states H±, such that also in the

S2HDM (compared to the SM) new charged states are present. However, the loop contributions of H± to

|Ch96γγ | are not relevant for the explanation of the CMS excess, such that one can have mH± ≫ 96 GeV.
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signal strength of

µexpCMS = 0.6± 0.2 . (8.5)

In our scan, in which h1 will play the role of the state h96, we compare the theoretical

predictions for the signal strengths to the experimental values given above. The predictions

were calculated by

µLEP ≈
C2
h96V V · BR

(
h96 → bb̄

)
BRSM

(
H → bb̄

) , µCMS ≈
C2
h96tt̄

· BR (h96 → γγ)

BRSM (H → γγ)
. (8.6)

Hence, in both cases the cross section ratios that enter the definitions of the signal strengths

are expressed to a very good approximation in terms of the effective coupling coefficients

Ch96V V = cα2cβ−α1 and Ch96tt̄ = sα1cα2/sβ, which, as mentioned already, are defined as

the couplings of h96 normalised to the respective couplings of a SM Higgs boson with the

same mass. The values for the SM branching ratios in the denominator, again assuming

a SM Higgs boson at 96 GeV, can be found in the literature [418]. From the theoretical

predicted values µLEP,CMS and the experimentally determined values µexpLEP,CMS and their

uncertainties we construct a χ2 function

χ2
96 =

(µLEP − 0.117)2

0.0572
+

(µCMS − 0.6)2

0.22
, (8.7)

in order to quantify the goodness of the fits to the excesses. In this definition we assumed

that there is no correlation between both measurements.

Technically, the details of the scan that we discuss here are very similar to the ones of

the scan discussed in Sect. 8.2.1. The scan ranges were set as given in Eq. (8.2), except for

the masses of the scalars, which were chosen to be

mh1 = 96 GeV , mh2 = 125.09 GeV , mh3 = mH ≤ 1 TeV , (8.8)

such that mh3 = mH is further constrained by the condition ∆Mmax < 200 GeV, as defined

in Eq. (8.2) and substantially heavier than h1 and h2 due to the lower limit on mH± . We

again followed the two-step procedure. In the first step, we used the genetic algorithm to

obtain parameter points in agreement with the theoretical constraints and the experimental

constraints from the Higgs phenomenology. To the loss function defined in Eq. (8.3) we

added a term 10χ2
96 in order to obtain parameter points that potentially feature both a

good fit to the signal rates of the SM-like Higgs boson h2 = h125 and to the signal rates

µLEP and µCMS. All parameter points obtained by the help of the genetic algorithm were

subject to the constraint

χ2
125 + χ2

96 ≤ χ2
SM,125 + χ2

SM,96 , χ2
SM,125 = 84.41 , χ2

SM,96 = 13.99 , (8.9)

where the value of χ2
SM,96 is obtained from Eq. (8.7) assuming zero values for both µLEP

and µCMS as predicted by the SM, in which no particle is present at a mass of 96 GeV. As

a result, in comparison to the analysis discussed in Sect. 8.2.1 in which the requirement

χ2
125 ≤ χ2

SM,125 was used, the requirement shown in Eq. (8.9) allows for larger values of
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Figure 8.6: µLEP in dependence of µCMS, with the colour coding indicating the values of mχ (left)

and Ωh2 (right). Grey points are excluded by Ωh2 > (Ωh2)Planck or Fermi dSph measurements.

The dashed ellipse indicates the experimentally preferred region of the collider excesses at the 1σ

confidence level.

χ2
125 as long as the S2HDM parameter point provides a good fit to the collider excesses,

i.e. it features values of χ2
96 ≪ χ2

SM,96. Here it should be noted that even in the most

extreme case with χ2
96 = 0 the allowed maximum value of χ2

125 still does not indicate severe

modifications of the signal rates of h125, taking into account that the HiggsSignals fit

result applies a total amount of 107 observables, such that the reduced χ2 value remains

substantially smaller than one even in this case. The second step is totally analogue to

the scan discussed in Sect. 8.2.1. All parameter points that pass the constraint shown in

Eq. (8.9) were confronted with the theoretical constraints including now the RGE evolution

of the parameters. As before, we required the scalar potential to be well behaved up to

energy scale of at least µv = 1 TeV, such that in particular the values of the quartic

couplings λi allow for a perturbative treatment at the range of energy at which there are

also particle masses in our scan. Finally, the remaining experimental constraints regarding

the DM phenomenology were applied.

We show the resulting parameter points in Fig. 8.6, where we display the signal rate

µLEP in dependence of µCMS. We indicate with the colour coding of the points the value

of the DM mass mχ (left) and the DM relic abundance Ωh2 as predicted by the usual

thermal freeze-out scenario (right). Also shown as grey points are parameter points that

are excluded by a too large prediction of the relic abundance or by limits coming from

observations of dSph. The ellipse in both plots indicates the region in agreement with

the collider excesses at the 1σ confidence level, i.e. χ2
96 = 2.3. One can see that we

find parameter points within the ellipses. Consequently, both excesses can be explained

simultaneously while taking into account the constraints described in Sect. 8.1. In the left

161



Chapter 8 – Pseudo-Nambu Goldstone dark matter in the S2HDM

40 45 50 55 60 65 70 75 80

mχ [GeV]

10−5

10−4

10−3

10−2

10−1

100

101

Ω
h
2

mh1
= 96 GeV

mh2
= 125 GeV

(Ωh2)Planck

Ωh2 > (Ωh2)Planck or dSph excl.

0.025 0.050 0.075 0.100 0.125 0.150

µLEP

40 45 50 55 60 65 70 75 80

mχ [GeV]

10−5

10−4

10−3

10−2

10−1

100

101

Ω
h
2

mh1
= 96 GeV

mh2
= 125 GeV

(Ωh2)Planck

Ωh2 > (Ωh2)Planck or dSph excl.

0.0 0.2 0.4 0.6 0.8

µCMS

Figure 8.7: Ωh2 in dependence of mχ, with the colour coding indicating the values of µLEP (left)

and µCMS (right). Grey points are excluded by Ωh2 > (Ωh2)Planck or Fermi dSph measurements.

plot, we observe that parameter points with sizable values of µLEP and µCMS feature DM

mass values close to or larger than mh125/2. On the other hand, parameter points with

mχ < mh125/2 only predict substantially smaller signal strengths, and the collider excesses

cannot be accounted for. The reason for this is, as was also discussed in Sect. 8.2.1, that

in this case the decay h125 → χχ is kinematically open. As a result, the possible mixing of

the singlet field h1 = h96 with the SM-like Higgs boson h2 = h125 is much more constrained.

However, a sizable mixing of h96 and h125 is necessary to obtain values of µLEP and µCMS

of the order of the experimentally measured values. We therefore can conclude that a

realization of the collider excesses demands DM masses of mχ > mh125/2. In the right

plot of Fig. 8.6 we find that several of the parameter points that are able to explain both

excesses also predict sizable values for the relic abundance, with some parameter points

saturating the value measured by the Planck collaboration. Accordingly, we come to the

conclusion that the S2HDM can accommodate the collider excesses at 96 GeV while at the

same time accommodating a large fraction or all of the measured DM relic abundance.

In Fig. 8.7 the predicted relic abundance is shown in dependence of the DM mass. The

values of the signal rates measured by LEP (left) and CMS (right) are also indicated by

the colour coding of the points. We note a new prominent feature in the distribution of the

parameter points with respect to Fig. 8.4. Due to the opening of a new resonant s-channel

mediated by the h96, parameter points featuring DM masses smaller than about 53 GeV

can now be in agreement with the upper limit imposed by the observed DM relic abundance.

Moreover, the presence of h96 also gives rise to the fact that a large fraction of parameter

points with mχ > mh125/2 lie below the Planck limit, whereas we found in Sect. 8.2.1

(compare to Fig. 8.4) that in this DM mass region most points predict Ωh2 > (Ωh2)Planck.

Grey points that lay below the experimental upper limit are excluded by dSph observations.
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Figure 8.8: Today’s velocity averaged annihilation cross section of χ into pairs of b quarks taking

into account the number density as predicted by thermal freeze-out (left) and assuming Ωh2 = 0.119

(right). The colour coding indicates the predicted value of Ωh2 (left) and the value of mh2
(right).

Also indicated are the regions in which the cosmic-rays excesses could be explained (blue and

orange dashed lines) [80, 89]. Grey points are excluded by Ωh2 > (Ωh2Planck) (left) or Fermi dSph

measurements (left and right).

Here it is interesting to note that we find, in addition to the region around mχ ∼ 63 GeV

already present in Fig. 8.4, a second region at 48 GeV ≲ mχ ≲ 58 GeV in which the dSph

constraints discard points that would be in agreement with the Planck measurement of the

DM relic abundance. In the left plot of Fig. 8.7 we find that for the points at the right side

of the resonance the predicted values of µLEP can be close to the measured central value

µexpLEP = 0.117 independently of the precise value of mχ. On the contrary, as can be seen

in the right plot of Fig. 8.7, values of µCMS ∼ µexpCMS = 0.6 that are in agreement with the

constraints are mostly found in the interval 62 GeV ≲ mχ ≲ 65 GeV. For larger values of

mχ one can still find parameter points that fit the CMS excess at the level of 1σ. However,

they often predict too large values of Ωh2 > (Ωh2)Planck and are therefore shown mostly

as grey points. The reason for this is that, as discussed before, fitting the diphoton excess

requires a suppression of the couplings of h96 to b quarks. However, this then yields also a

suppression of the annihilation cross section via the process χχ→ h96 → bb̄.

In order to discuss the gamma-ray and the antiproton excesses, we show in Fig. 8.8 today’s

velocity-averaged annihilation cross section of χ into pairs of b quarks taking into account

the number density as predicted by thermal freeze-out (left) and assuming Ωh2 = 0.12

(right), as explained in Sect. 8.2.1. In comparison to Fig. 8.5, here we observe that there are

more regions of mχ in which points are found inside the preferred region to explain both

cosmic-ray excesses simultaneously. These points remain in tension with present limits

imposed by the observation of dSph. We remind the reader about the uncertainties in

determining those limits (see Sect. 8.1.2 for more details). Regarding the agreement with

163



Chapter 8 – Pseudo-Nambu Goldstone dark matter in the S2HDM

the signal rate µCMS, only the parameter points situated towards the right end of the blue

curve could simultaneously explain the two cosmic ray and the CMS excesses. These points

are again in tension with in DD limits from dSph observations. Regardless of whether

the collider excesses are accommodated or not, we see that the presence of h96 gives rise

to more points at the lower end of mχ that lie within the blue and the orange curves.

Thus, the new light scalar state gives rise to new interesting regions of parameter space

with mχ < 60 GeV in the context of the cosmic-ray anomalies. However, as was already

mentioned, the collider excesses, which were the main motivation to investigate a scenario

with mh1 = 96 GeV in the first place, cannot be realised here.
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Chapter 9

Direct detection of pNG DM in

the S2HDM

In the S2HDM, the cross section for the scattering of the DM on nuclei vanishes at tree-level

in the limit of zero momentum-transfer due to a U(1) symmetry. However, this symmetry is

softly broken in order to give a mass to the DM particle. As a consequence, non-vanishing

scattering cross sections arise at the loop level. In Chapter 8, we carried out a detailed

investigation of all the relevant constraints that specify the physically allowed parameter

space of the S2HDM for DM masses in the range 40 ≤ mχ ≤ 80. However, DD constraints

were not included in this analysis. This was justified due to the fact that, for BSM scalar

masses substantially heavier than the DM masses considered, we could safely assume that

the relevant loop corrections to the DM-nuclei scattering cross sections were captured by

the pNG DM model with only one Higgs doublet, and found to be negligible.

In this chapter, we carry out a follow-up study of the aforementioned analysis, and we

calculate the leading radiative corrections to the DM-nucleon scattering for a wide sample

of parameter points in the S2HDM. We compare our results with the current limits set by

XENON1T [95] PandaX-4T [94] and LUX-ZEPLIN (LZ) [97], and, in addition, with future

limits projected for DARWIN [419]1. We find that the current cross-section limits from DM

DD experiments can hardly constrain the parameter space of the S2HDM. However, the

loop-corrected predictions for the scattering cross sections can be well within the reach of

future DD experiments. As a consequence, future phenomenological analyses of the S2HDM

should take into account cross-section predictions beyond tree-level and the experimental

constraints from DM DD experiments.

The outline of the chapter is as follows. Since the model was introduced in Sect. 3.1.3, and

the implementation of the various constraints matches2 the methods described in Sect. 8.1,

we start in Sec. 9.1 by calculating the electroweak corrections to the spin-independent direct

detection cross section. In Sec. 9.2, the results are presented and discussed.

This chapter is based on ref. [3].

1Note that there are other planned direct detection experiments such as SuperCDMS [420], just to name

an example. We have taken DARWIN as a prototype for future DD experiment.
2The only difference is that, in this analysis we do not take into account constraints from the indirect

detection of DM, because these constraints are only relevant in a narrow mass window of the DM below

mχ ≲ 100 GeV [73], and the application of the indirect detection constraints relies on a Monte-Carlo

simulation which is computationally quite expensive (see Chapter 8 for details).
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Figure 9.1: Schematic diagrams with upper vertex corrections and propagator corrections.

9.1 Calculation of DM-nucleon scattering cross section

In this section we discuss the calculation of the radiative corrections, where we include

the dominant contributions at the one-loop level stemming from diagrams with the scalar

states in the loops. Our procedure is an extension of the calculation performed in Ref. [62].

In Sect. 9.2 we will then present the numerical discussion of the loop-corrected scattering

cross sections in order to answer the question whether the presence of the pNG DM state

χ is testable at direct-detection experiments.

9.1.1 One-loop contributions to Wilson coefficients

The tree level diagram is just a t-channel χq → χq scattering where q is a quark belonging

to the nucleon. The one-loop contributions to this process can be divided in three main

contributions: upper vertex, lower vertex and mediator corrections. There are also box

corrections that do not fit in this classification. Finally, although of higher order, the

gluon initiated processes play a major role in the calculation. The one-loop contributions

considered are the ones given by the topologies schematically shown in Fig. 9.1. These

include only upper vertex and mediator corrections. Let us now discuss in detail why the

remaining contributions were discarded.

The tree-level χq → χq amplitude vanishes in the limit of zero momentum transfer

(the explicit expression is given in Sect. 7.1). Hence, the one-loop amplitude has to be

finite in the same limit, that is, there is no need for a renormalization prescription nor

for any counterterm. This was already proven in Ref. [62] for the singlet extension and

again checked for our model. We explicitly verified the cancellation of the counterterm

diagrams which can be carried out without specifying the individual counterterms, and thus

in a generic fashion that is valid for all four Yukawa types of the S2HDM (counterterms

insertions are shown in Fig. 9.2). As a consequence, the sum of all amplitudes is UV-finite

(without the addition of counterterm diagrams), and the sum is also independent of the
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9.1 Calculation of DM-nucleon scattering cross section

Figure 9.2: Counter-term insertion diagrams for the DM-nucleon scattering (i, j ∈ {1, 2, 3}).

Figure 9.3: External leg corrections to the DM-nucleon scattering with i, j, k ∈ {1, 2, 3}

renormalization scale, which we verified numerically. Our analysis of the UV-finitenes of the

one-loop amplitude is specific to the S2HDM, although we expect the same result to hold

in a broad class of models which feature a vanishing tree-level amplitude in the limit of zero

momentum transfer, because then there is no counterterm that could cancel a UV-divergent

contribution at one-loop level.

In Fig. 9.3 we show the corrections on the external χ-legs. These corrections vanish in the

limit of zero-momentum transfer, since the corresponding amplitudes are proportional to

the tree-level amplitude which themselves vanish by means of the U(1) symmetry, such that

the corresponding diagrams do not have to be considered. Finally we present in Fig. 9.4
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Figure 9.4: One-loop diagrams with loops containing SM particles, A or H± with F ∈
{u, c, s, c, b, t}, V ∈ {Z,W} and S ∈ {G0, G±, A,H±}

the set of diagrams with all SM particles, the charged scalars and the pseudoscalar in

self-energies and tadpole loops. We explicitly verified that only diagrams with the neutral

CP-even Higgs bosons and the DM state χ in the loops give rise to non-zero contributions,

whereas the diagrams with the fermions, the gauge bosons, the pseudoscalar, the charged

Higgs bosons and their corresponding Goldstone bosons in the loop cancel due to the

proportionality to the tree-level amplitude. We note that again this was also shown to be

true for the complex scalar extension [62], but in the S2HDM there are new particles in

the scalar sector and the proportionality to the tree-level amplitude is not obvious. As a

consequence of this result, the one-loop corrections to the scattering cross section considered

in our analysis are independent of the gauge fixing, which we also explicitly verified by

calculating the amplitudes in the Rξ-gauge and varying the gauge-fixing parameter.

A set of diagrams that we did not take into account are the box contributions for

the process χq → χq. This is not because the amplitudes are proportional to the tree-

level amplitude but rather because their contribution is at least one order of magnitude

smaller than the vertex and mediator contributions. This was checked for two different

models [69, 371, 421] and is mainly related to the fact that the amplitude is proportional

to product of two Yukawa couplings to light quarks.

With all the above considerations the set of diagrams that actually contribute to the one-

loop cross-section is the one with the topologies depicted in Fig. 9.5, containing the upper

hiχχ-vertex and the hi-propagators corrections. As discussed before, the only particles

that have to be considered in the loops are the neutral CP-even Higgs bosons h1,2,3 and

the DM particle χ, since the diagrams with the other particles cancel each other out as a

result of the U(1) symmetry.

Moreover, the above considerations lead us to consider only the effective scalar operator

for the computation of the scattering cross sections of the DM on nucleons,

Leff = mqC
s
qχχq̄q , (9.1)

where mq is mass of the quark, and Cs
q is the Wilson coefficient that is determined order

by order in perturbation theory from the matching to the full model. Since one has to

consider the scattering on both up-type quarks and down-type quarks, there are important

differences between the different Yukawa types of the S2HDM. In the type I and the type LS

(Lepton Specific), only the doublet field ϕ2 is coupled to the quarks, independently of the
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9.1 Calculation of DM-nucleon scattering cross section

Figure 9.5: One-loop topologies that contribute to the DM-nucleon scattering cross section in our

approximation with q ∈ {u, d, c, s, b, t} and i, j, k, l ∈ {1, 2, 3}.

quark flavour. As a result of the fact that the dependence on the mass of the different

quarks is factored out of the Wilson coefficients Cs
q as shown in 9.1, in these types Cs

q is

identical for all six quark flavours, i.e.

CI,LS
q = Cs

u,d,c,s,b,t . (9.2)

In contrast, in the Yukawa types II and F (Flipped) the doublet field ϕ2 is coupled to

up-type quarks, and the field ϕ1 is coupled to down-type quarks. This gives rise to the

fact that the amplitudes are different depending on whether the DM particle χ scatters

on up-type quarks or down-type quarks.3 Consequently, one finds two different Wilson

coefficients which we denote

CII,F
u = Cs

u,c,t(= CI,LS
q ) and CII,F

d = Cs
d,s,b , (9.3)

in the following.

The calculations of the one-loop corrections as described above were performed using

FeynRules 2.3.48 [390, 392, 395], FeynArts 3.10 [422, 423] and FeynCalc 10.0.0 [424,

425]. An independent calculation was performed using SARAH 4.14.3 [347, 426–429],

FeynArts 3.11 and FormCalc 9.9 [430] All loop integrals were computed using Loop-

Tools [431, 432]. We found agreement between both results. As a consequence of the fact

that the total number of diagrams is large, we refrain from giving analytic expressions for

the Wilson coefficients CI,LS
q and CII,F

q here, but instead discuss their numerical impact in

terms of the DM-nucleon scattering cross sections, as discussed in the following. However,

we make the obtained expressions for the Wilson coefficients available to the public as

Fortran and python routines.4

3Also the tree-level amplitudes given in Eq. (7.1) are different in type II and type F depending on whether

χ scatters on up-type or down-type quarks. However, at tree-level both amplitudes vanish in the limit

of zero momentum transfer.
4The routines are available at https://gitlab.com/thomas.biekoetter/dds2hdm. The computation of
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9.1.2 From amplitudes to cross sections

Following the discussion in Sect. 7.2, the DM-nucleon scattering cross section is given

by Eq. (7.18). Hence, with the Wilson coefficients discussed above we can directly determine

the DM-nucleon scattering cross section including the one-loop EW corrections.

As previously discussed, in our computation of Cs
q we only include the numerically

dominant corrections to the upper vertex hiχχ and the hi-propagator corrections, according

to the strategy also applied in Ref. [62] for the pNG DM model with a single Higgs doublet.

In this approximation, in type II and type F the amplitudes Cs
q are different for the up-type

quarks q = u, c, t and the down-type quarks q = d, s, b, whereas in type I and type LS they

are independent of the quark flavour. In the latter case, one can simplify 7.18 and write it

as

σN =
1

π

m4
N

(mN +mχ)2
∣∣Cs

q

∣∣2 f2N , with fN =
∑

q=u,d,s

fNTq + 3
2

27
fNTg = 0.27 , (9.4)

where fN is the nucleon form factor that was used in Ref. [62].

9.2 Numerical impact in light of current and future

experiments

In this section we will present the numerical analysis of the DM direct-detection cross

sections at the approximate one-loop level. We will start our discussion in Sect. 9.2.1 by

analysing whether our expressions for the one-loop contributions fulfil some theoretical

requirements that can be derived from symmetry arguments in order to cross check our

results. In the second step, we present the results of two parameter scan projections in

the type I and the type II of the S2HDM with the goal of determining whether the DM

scattering cross sections are sufficiently enhanced at the loop level such that the presence

of the DM state χ could be probed at DM direct-detection experiments.

9.2.1 General considerations

Due to the large number of diagrams that give rise to finite contributions to the DM-nuclei

scattering cross sections in the limit of zero-momentum transfer, as discussed in Sect. 9.1,

the complete expressions for the loop corrections are rather lengthy and complicated, such

that they can only be evaluated numerically. Nevertheless, the expressions have to fulfil

some basic requirements that can be derived by means of symmetry arguments (see Ref. [62]

for a discussion in the pNG DM model with one Higgs doublet). We will discuss here if

these requirements are met by our result. This will also provide us with a first insight about

the order of magnitudes of the cross sections that can be achieved in the S2HDM beyond

tree-level. A more complete assessment of the phenomenological impact can be found in

Sect. 9.2.2, where we will discuss two parameter scan projections in which we take into

the DM-nucleon scattering cross sections will is also be implemented in the new version of the public

code s2hdmTools [2].
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Figure 9.6: DM-proton scat-

tering cross section σχp in de-

pendence of the DM mass mχ

for different values of the singlet

vev vS in type 2. The other pa-

rameters are fixed to the values

shown on the right. Also shown

are the current upper limits on

the 95% confidence level from

XENON1T [95] (blue dashed),

PandasX-4T [94] (red dashed)

and LZ [97] (green dashed), and

the projected upper limit from

Darwin [419] (dotted). The

gray area indicates the neutrino

floor [433].
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account the whole list of theoretical and experimental constraints mentioned in Sect. 8.1.1

and Sect. 8.1.2, respectively.

The presence of non-vanishing corrections to the scattering cross sections at the loop level

is related to the fact that the U(1) symmetry, under which the singlet field ϕS is charged,

is softly broken in order to give rise to a mass for the DM state χ. If the U(1) symmetry

would be exact, the cancellation mechanism for the t-channel Higgs-boson exchange between

χ and the quarks would hold at all orders in perturbation theory. A condition that the

one-loop corrections have to fulfil is therefore that in the limit of mχ → 0, i.e. in the limit

in which the U(1) symmetry is restored, the corrections have to vanish as well. On the

other hand, if the DM mass becomes much larger than the masses of the Higgs bosons,

i.e. mχ ≫ mhi
, the cross sections become smaller as a result of the factor 1/m2

χ in 7.18.

In Fig. 9.6 we show the predictions for the cross sections of the scattering of χ on protons

σχp as a function of mχ in the type II S2HDM. We show σχp for different values of the

singlet vev vS , where the value of the latter is indicated by the colour coding of the lines.

The values of the remaining free parameters are given next to the plot on the right-hand

side. The parameter values were chosen such that the theoretical constraints discussed in

Sect. 8.1.1, in particular the perturbative-unitarity constraints, are respected. However,

we did not apply the experimental constraints on the Higgs sector and the DM sector.

Also shown with the dashed lines are the exclusion limits at the 95% confidence level from

the XENON1T experiment [95] (blue), the PandaX-4T experiment [94] (red) and the LZ

experiment [97], respectively, and the dotted line indicates the future projected exclusion

limits from the Darwin experiment [419]. The gray shaded area indicates the neutrino

floor [433]. As expected based on the discussion above, the cross sections vanish in the

limit mχ → 0 independently of the value of vS . σχp reaches the maximum value for DM

masses that are close to the masses of the CP-even Higgs bosons hi. For DM masses that

are much larger the cross sections drop again until they fall below the neutrino floor at

mχ ≳ 10 TeV for the smallest values of vS considered, whereas for the largest values of
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Figure 9.7: DM-proton

scattering cross section σχP

in dependence of the mass

of one of the CP-even Higgs

bosons mhb for different val-

ues of the singlet vev vS in

type 1. The other parameters

are fixed to the values shown

on the right.
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vS the predictions are always within the neutrino floor. One can also observe that overall

larger values of σχp can be achieved for smaller values of vS . This is due to the fact that for

fixed values of the masses mhi
smaller values of vS give rise to larger values of the quartic

couplings λ6,7,8. These couplings act as the portal couplings between the visible and the

dark sector, such that larger values of λ6,7,8 give rise to larger values of the scattering cross

sections. However, larger values of the quartic couplings also yield larger values of the

annihilation cross sections and, therefore, smaller values of the predicted relic abundance.

As a consequence, the parameter points with the largest values of σχp can be expected

to predict a relic abundance which is smaller than the measured DM relic abundance.

The impact of the predicted DM density on the prospects of probing the S2HDM at DD

experiments will be discussed in more detail in Sect. 9.2.2.

By comparing the theoretical predictions with the upper limit from XENON1T PandaX-

4T and LZ, one can see that only for the smallest value of vS = 100 GeV considered here

the current DD experiments have the potential of probing the S2HDM parameter space. It

should be noted that even smaller values of vS , for which σχp would become even larger, are

excluded in this scenario as a consequence of the tree-level perturbative unitarity constraints.

This emphasises the importance of taking into account such theoretical constraints in order

to give an accurate estimate of the maximum values of σχN that can be achieved in the

S2HDM. While the current upper limits from XENON1T PandaX-4T, and LZ barely

constrain the parameter points shown in Fig. 9.6, large parts of the interval of DM masses

that are shown can be probed in the future by Darwin. For instance, assuming a value

of vS = 200 GeV, the expected limits from Darwin would exclude the DM mass range

30 GeV ≲ mχ ≲ 1.8 TeV. In general it is interesting to note that the scattering cross

sections peak for DM masses of the order of the masses of the Higgs boson. The presence of

the BSM Higgs bosons can be tested at the LHC if they are not too heavy to be produced.

In this case the S2HDM can be probed in a complementary way by DD experiments and

colliders.

Another theoretical requirement which has to be fulfilled by the one-loop corrections

that we take into account is that the cancellation mechanism only holds in the limit of
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vanishing momentum transfer. As a result, the cancellation mechanism breaks down if the

mass of one of the Higgs bosons is not much larger than the momentum that is transferred

in the scattering process. In order to demonstrate that our result also complies with this

condition, we show in Fig. 9.7 the predictions for σχp as a function of the mass of one

of the Higgs bosons hb, with the remaining parameters fixed to the values shown on the

right-hand side of the plot, and where we show here the predictions of the type I S2HDM.

One can see that, as expected, σχp increases drastically in the limit mhb
→ 0, independently

of the value of vS as indicated by the colour coding of the lines. As before, we applied

only the theoretical constraints in order to produce the results shown in Fig. 9.7, whereas

the experimental constraints were not applied. This is important to note because values of

mhb
≪ 125/2 GeV would be excluded due to constraints from the signal-rate measurements

of h125 in combination with the condition of not overclosing the universe [2]. As a result,

although the direct-detection cross sections can be very large if the singlet-like Higgs boson

(here hb) is much lighter than 125 GeV, DM direct-detection experiments cannot provide

additional exclusion limits in this region of the parameter space.

In the opposite limit with mhb
≫ mχ, one can observe in Fig. 9.7 that σχp instead

increases with increasing value of mhb
. This behaviour has its origin in the fact that for

fixed values of vS the quartic couplings λ6,7,8 grow with increasing value of the singlet-

like Higgs-boson mass mhb
. As already mentioned, larger absolute values of the quartic

couplings give then rise to larger scattering cross sections. The absolute values of the quartic

couplings are ultimately bounded from above by the constraints from perturbative unitarity.

The predictions in Fig. 9.7 are shown for each value of vS up the maximum value of mhb

for which the parameter points were still in agreement with these bounds. Consequently,

the maximum values of σχp that are achieved here in a parameter region that is potentially

not yet excluded by other experimental constraints are of the order of σχP ∼ 10−48 cm2,

which is well within the range that can be tested at future DD experiments like Darwin.

Another interesting feature that can be observed in Fig. 9.7 is the appearance of blind-

spots at certain values of mhb
where σχp drops to zero. Such blind-spot regions were also

observed in the simpler case of the pNG DM model with only one Higgs doublet [62].

The presence of the blind-spots is a result of a cancellation between the amplitudes of

different loop diagrams, giving rise to the fact that the sum of all amplitudes, and thus

the Wilson coefficients Cs
q , vanish. For the blind-spot on the right-hand side it is easy to

see that it appears at the point at which all CP-even Higgs bosons are mass degenerate,

with mha,b,c
= 125 GeV. Even though it is questionable whether such a situation is

phenomenologically viable in light of constraints from the LHC measurements, it is still

an interesting observation that approximately mass-degenerate scalar states could yield

a highly suppressed DM-nucleon scattering cross section. A second blind-spot can be

observed at roughly mhb
∼ 30 GeV, where the precise location depends on the value of

vS . In addition, the location of this additional blind-spot also depends in a non-trivial way

on the choice of the masses mha,b,c
and the mixing angles α1,2,3. For both blind-spots, it

might be interesting to compute corrections beyond the one-loop level in order to analyse

whether they would remain, in which case their presence would be related to an accidental
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Figure 9.8: Left: Cross sections for the scattering of χ on protons (N = p) and neutrons (N = n) as a

function of mhb in type I (orange) and type II (blue). Right: Wilson coefficients as defined in 9.2 and 9.3

as a function of mhb . The remaining parameters are fixed to the values shown on the right.

symmetry, or whether the higher-order corrections eliminate the blind-spots, in which case

their presence relies on a purely accidental choice of parameters.

In addition to the blind-spots that appear due to vanishing scattering amplitudes between

the DM state χ and the quarks, as discussed above, in the type II and the type F S2HDM

further blind-spots can appear as a result of a cancellation between the different terms in

the sum over the quark contributions as shown in 7.18. As discussed in Sect. 9.1.1, in type I

and type LS (at the one-loop level) there is only a single Wilson coefficient CI,LS
q that enters

in this sum. However, in type II and type F there are two independent coefficients CII,F
u

and CII,F
d (see 9.3 and the related discussion) for the scattering on up-type and down-type

quarks, respectively. If these two coefficients have the opposite sign, the sum in 7.18 can

be suppressed even though the individual terms are unsuppressed.

In order to demonstrate this feature, we show in the left plot of Fig. 9.8 the cross sections

for the scattering of the DM state χ on protons and neutrons in type I (orange line) and

type II (blue lines) for a representative benchmark scenario. As before, we applied here only

the theoretical constraints in order to ensure that the scalar potential is well behaved. One

can see that at values of mhb
∼ 100 GeV the scattering cross sections in type II decrease by

two orders of magnitude, whereas the cross sections in the type I remains almost constant.

Moreover, it should be noted that in this interval of mhb
the cross sections in type II are

substantially different for the scattering on protons (solid blue line) and neutrons (dashed

blue line). On the other hand, in type I both cross sections are practically equal, and

consequently only one line for both the scattering on protons and on neutrons is shown. As

a phenomenological consequence, one can notice that since different nuclei are composed

out of a different number of neutrons and protons, a hypothetical measurement of the

scattering cross sections on different kinds of nuclei could be utilised to distinguish between

a DM candidate χ as predicted by the types I/LS or the types II,F, respectively.

174



9.2 Numerical impact in light of current and future experiments

The suppression of the cross sections in type II can be understood by the fact that one

of the Wilson coefficients CII,F
u or CII,F

d changes the sign at the corresponding mass interval

of hb. In the right plot of Fig. 9.8 we show the Wilson coefficients as a function of mhb

for the same benchmark scenario as was used in the left plot of Fig. 9.8. As expected,

one can see that the coefficient CII,F
d (dashed line) becomes negative in the mass range

50 GeV ≲ mhb
≲ 200 GeV, where the mass range coincides with the one in the left plot in

which the cross sections in type II are strongly suppressed. Since in type I there is only

one Wilson coefficient CI,LS
q , which is identical to the coefficient CII,IV

u in type II (solid

line), the change of the sign of CII,F
d has no impact on the cross sections in type I. Finally,

we note that the precise location of the blind-spot visible for type II and also the amount

of the suppression of the cross sections depend on the nucleon form factors fNTq
, which

are only known approximately as they are determined from lattice simulations and from

experimental data. As a consequence, in the parameter regions in which the scattering cross

sections are suppressed due to the accidental cancellation of contributions from different

quark types with opposite sign, the relative uncertainty of the cross-section predictions

associated to the uncertainty of the form factors should be regarded as larger compared to

other parameter space regions in which no such cancellation takes place.

As a summary of the discussion in this section, one can conclude that the one-loop

corrections included in our computation fulfil the theoretical requirements that can be

derived from symmetry arguments, which serves as a non-trivial cross check of our results.

Moreover, we have demonstrated that the cross sections as predicted at the one-loop level

can be well within the reach of future DM direct-detection experiments. It should be

noted that we did not apply here the experimental constraints on the model parameters

as introduced in Sect. 8.1.2. In order to verify whether the future sensitivity of DM

direct-detection experiments is capable of probing parameter space regions that are not yet

excluded by other experimental constraints on the Higgs sector and the DM sector of the

S2HDM, we will discuss in the following section two parameter scans in the type I and the

type II S2HDM in which the experimental constraints will be taken into account.

9.2.2 Parameter scans in type I and type II

In order to estimate the relevance of the loop-corrected predictions for the cross sections of

the scattering of the DM state χ on nuclei, we present here the predictions in two parameter

scan projections in the S2HDM type I and type II in which we take into account all the

theoretical and experimental constraints discussed in Sect. 8.1.1 and Sect. 8.1.2, respectively.

We note here that the Yukawa sectors of type I and type LS as well as the Yukawa sectors of

type II and type F only differ in the couplings of the Higgs bosons to leptons. Consequently,

the cross-section predictions for the DM-nucleon scattering in the type I are identical to the

predictions in the type LS, and the predictions in the type II are identical to the ones in the

type F. Accordingly, apart from the different collider constraints that have to be applied,

the results using type I and II presented in the following also provide a good understanding

of the importance of future DM DD experiments in the type LS and the type F.
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Type mha mhb ,mhc ,mA,mχ mH± α1,2,3 tanβ M vS

I 125.09 [30,1000] [150,1000] [−π/2, π2] [1.5,10] [20, 1000] [30,1000]

Type mha mhb,mA mH± mhc,χ α1,2,3 tanβ M vS

II 125.09 [200,1000] [650,1000] [30,1000] [−π/2, π2] [1.5,10] [450, 1000] [30,1000]

Table 9.1: Values of the free parameters for the scan in type I (top) and type II (bottom). Dimensionful

parameters are given in GeV.

In our scans we used values for the free parameters as shown in Tab. 9.1. We fixed

mha = 125.09 GeV in order to account for a scalar state that could, depending on its

couplings, behave in agreement with the experimental measurements with regards to the

discovered Higgs boson. The masses of the BSM scalars were scanned up to values of 1 TeV,

corresponding to a range that is potentially in reach of the LHC. It should be noted here

that for the scan in type II we used a lower limit of mH± > 650 GeV in order to bypass

constraints from flavour-physics observables, whereas in type I we used a lower limit of

mH± > 150 GeV since the flavour constraints are much weaker (see also the discussion in

Sect. 8.1.2). In combination with the theoretical constraints on the quartic scalar couplings

and constraints from the EWPO, also the lower limits on the mass scale M and the masses

mhb
and mA of one of the CP-even scalars hb and the pseudoscalar A, respectively, are

pushed to larger values in type II in order to account for the fact that the differences

between these parameters and mH± cannot be too large. The mixing angles were scanned

over all physically distinguishable parameter space, and the lower limit on tanβ was chosen

according to constraints from flavour physics. Finally, the singlet vev vS is varied within

the scan range of the BSM scalars. We note that due to its pNG nature the DM state χ

can be light even though the global U(1) symmetry breaking has its origin at energy scales

much larger than the TeV scale, such that also values of vS ≫ 1 TeV would be physically

reasonable. However, as we demonstrated in Sect. 9.2.1, sizable values of the cross sections

for the scattering of the χ on nuclei are present only if vS is of the order of the masses of

the CP-even Higgs bosons or smaller. Therefore, for the purpose of determining the largest

scattering cross sections that can be realised in the S2HDM it is sufficient to scan only a

range in which vS is of the order of mha,b,c
(or smaller).

We have generated parameter points by scanning uniformly over the given parameter

ranges. For each parameter point generated in this way, we have applied the theoretical

and experimental constraints discussed above, and we have discarded the parameter points

for which one of the constraints was violated. For the remaining parameter points, we

have calculated the predictions for the DM-nucleon scattering cross sections. We have then

compared the theoretical predictions against the current and future DM direct-detection

constraints from the XENON1T, PandaX-4T, LZ and the Darwin experiment, respectively.

Finally, we have also taken into account the predicted value of the DM density as obtained

by assuming the standard freeze-out mechanism in order to answer the question whether
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Figure 9.9: Parameter points of the scan in type I (left) and type I (right) in the (mχ,σχP ) plane (top)

and in the (mχ,ξ
FO
PlanckσχP ) plane (bottom). The colour coding of the points indicates the value of mhS/vS

(top) and the value of (h2Ω)FO (bottom). Also shown are the current upper limits on the 95% confidence

level from XENON1T [95] (blue dashed line), from PandaX-4T [94] (red dashed line) and from LZ [97]

(dashed green line), and the projected upper limit from Darwin [419] (dotted line). The gray solid line

indicates the neutrino floor [433].

the parameter points that could be probed by DD experiments would also predict a sizeable

fraction of the measured DM relic abundance. Moreover, in case the predicted relic abun-

dance is substantially smaller, we address how much this reduces the prospects of probing

the corresponding S2HDM parameter space by means of DD experiments.

In the top row of Fig. 9.9 we show the scan points in type I (left) and type II (right) with

the DM mass mχ on the horizontal axis and the DM-proton scattering cross section σχp
on the vertical axis. The colour coding of the points indicates the value of mhS

/vS , where

177



Chapter 9 – Direct detection of pNG DM in the S2HDM

hS is defined as the CP-even scalar hi with the largest singlet admixture given by R2
i3 (see

Sect. 3.1.3). Also indicated are the cross section limits at the 95% confidence level from the

XENON1T [95], the PandaX-4T [94] and the LZ [97] experiments with blue, red and green

dashed lines, respectively, and the projected future limits from the Darwin experiment [419]

with the black dashed line. Finally, the gray solid line indicates the neutrino floor [433].

One can see that we find points which predict values of σχp that are within the reach of

Darwin, whereas the current experimental sensitivity by XENON1T PandaX-4T and LZ

are not sufficient to probe the S2HDM parameter space in a significant way. On the other

hand, the largest fractions of parameter points feature values of σχp that are substantially

below the Darwin sensitivity, and many points are within the neutrino floor in which case

a possible DM detection is not very promising even in the distant future. We note here

that the range of the vertical axis for σχp was set to 10−52 cm2 for a better visibility of

the relevant range of σχp for which there is experimental sensitivity, although there are

parameter points featuring values of σχp that are orders of magnitude smaller. Finally, we

emphasise that overall larger values of the DM-proton scattering cross section are correlated

with larger values of the ratiomhS
/vS , which is in agreement with the observations discussed

in Sect. 9.2.1.

The cross-section limits from XENON1T, PandaX-4T, LZ and Darwin, as shown in

the top row of Fig. 9.9, were derived under the assumption that the DM particle under

consideration accounts for the entire measured DM relic density as measured by Planck.

However, in the S2HDM one can predict the DM relic abundance composed of the state χ

assuming the standard freeze-out scenario, and in the parameter scans we only demanded

that the predicted DM relic abundance is not larger than the measured value, thus leaving

room for additional sources that contribute to the DM relic abundance. If the predicted

abundance of the DM state χ is smaller than the measured value, the prospects for the DD

of DM decrease, since the number of scattering events in the detector is smaller compared

to the number of scattering events expected based on the measured DM density. In order

to account for the impact of the predicted relic abundance, it is illustrative to compare

the upper limits on the scattering cross section from the DM DD experiments against the

predicted scattering cross section σχp times a scaling factor

ξFOPlanck =

(
h2Ω

)
FO

(h2Ω)Planck
, (9.5)

where (h2Ω)FO is the theoretical prediction for the today’s DM relic abundance based

on the freeze-out mechanism (obtained with the help of MicrOmegas), and (h2Ω)Planck =

(0.119± 0.003) is the value as measured by the Planck sattelite [72].

In the bottom row of Fig. 9.9 we show the rescaled cross sections ξFOPlanckσχp in dependence

of the DM mass mχ for type I on the left and for type II on the right, respectively. Here

the colour coding indicates the value of the predicted DM relic abundance (h2Ω)FO. Since

we demanded (h2Ω)FO ≤ (h2Ω)Planck (see Sect. 8.1.2), the parameter points all feature

ξFOPlanck ≤ 1. Thus, compared to the plots in the upper row of Fig. 9.9, the points move

towards the neutrino floor and away from the experimental upper limits on the DM-nucleon
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scattering cross section. Nevertheless, we find a mass interval 60 GeV ≲ mχ ≲ 300 GeV in

which Darwin has the potential to probe the S2HDM parameter space in both type I and

type II. One should note that many of the parameter points in this interval of mχ predict a

sizable fraction (or all) of the measured DM relic abundance. Hence, the DD constraints will

have the potential to probe regions of the parameter space that are especially interesting in

view of the predictions for (h2Ω)FO.
5 For larger DM masses, additional DM annihilation

channels, for instance into pairs of on-shell vector bosons, top quarks or Higgs bosons hi,

become kinematically open. As a consequence, in the range 200 GeV ≲ mχ ≲ 500 GeV

we find a strong suppression of (h2Ω)FO, and therefore ξFOPlanck ≪ 1. This gives rise to the

fact that in this range of mχ almost no points are found above the projected upper limit

of Darwin. For values of mχ ≳ 500 GeV, one can see that parameter points featuring

sizable values of (h2Ω)FO can be found above the neutrino floor, however also here the

projected sensitivity of Darwin is small and limited to parameter points for which the DM

state χ does not account for the whole DM relic abundance. Finally, we note that no

large differences between both Yukawa types can be found. Accordingly, the prospects for

probing the S2HDM parameter space at future DM direct-detection experiments can be

expected to be fairly similar.

5DM masses of 63 GeV ≲ mχ ≲ 67 GeV were also shown to be favoured for a simultaneous description of

the Fermi-LAT galactic-center excess and the AMS antiproton excess in the S2HDM [2].
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Conclusions

Nature rarer uses yellow

Than another hue;

Saves she all of that for sunsets,–

Prodigal of blue

Emily Dickinson

There are exciting times ahead. The discovery of a Higgs boson in 2012 and the first

detection of GW signals in 2015 opened new windows to look into the unresolved mysteries

of particle physics and cosmology.

Among the near future experimental achievements, we expect the recently started Run 3

of the LHC to explore new territory in the search for new physics with the increased data

samples and higher collision energy [434]. With the HL-LHC upgrade, which is projected

to be operational in 2029 [435], we will be granted further opportunities to study known

mechanisms in detail, and observe new phenomena. In particular, these experiments will

aim at probing the nature of the Higgs boson with unprecedented precision. Deviations

from the SM might be found in its production or decay modes, through the searches for rare

decays of the Higgs boson, or via the measurements of the strength of its self-interaction.

Aside from the perspectives in collider physics, the first space-based GW interferometer will

be launched towards the end of the 30s [436]. LISA will be the first experiment to measure

GWs in the milli-Hertz frequency range. Among the possible signals in this frequency band,

the stochastic GW background from a strong FOEWPT in the early Universe exemplifies

a well-motivated scenario that is expected in many models of physics BSM [26, 27].

Another experimental milestone consists of various indications for the existence of DM

gathered since the first hints of its presence were reported almost 100 years ago. If DM

has a particle nature, we need to probe its mass and couplings to the SM particles at

direct detection experiments. Developments in this direction are being pursued, and future

facilities, such as DARWIN [419], project sensitivities close to the neutrino floor.

Parallel to the progress on the experimental side, a blooming landscape of theoretical

ideas aims at curing the shortcomings of the SM while making testable predictions for

those present and near future experiments. This thesis represents an example of the theory

efforts to tackle two of the major questions in particle physics that still remain unanswered:

• How did the Higgs field acquire its vacuum expectation value in the early Universe?

(addressed in Chapters 5 and 6)
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• What is the nature of dark matter? (addressed in Chapters 8 and 9).

Original results addressing these two questions followed from the analysis of three well-

motivated scalar extensions of the SM: the 2HDM, the N2HDM and the S2HDM. A common

feature of all the studies gathered in this dissertation is the interplay between Higgs physics

and early Universe cosmology. Further similarities are the central role that the predictions

for future experiments play, and the approach of combining multiple sources of experimental

data as a valuable tool to probe BSM scenarios. In the following, we summarise the main

conclusions drawn as a result of each one of the four studies.

10.1 The electroweak symmetry in the early Universe

In Chapters 5 and 6, we studied the 2HDM and the N2HDM, respectively. We have shown

how scalar extensions of the SM allow for a rich cosmological history associated to the

thermal evolution of the scalar potential in the early Universe. Besides the possibility

of a FOEWPT, which has been studied in depth for all these scenarios, we encountered

other interesting finite-temperature evolutions: vacuum trapping and EW SnR. The striking

feature of vacuum trapping is that it triggers a situation in which the Universe remains in an

unbroken EW phase, although the EW vacuum is the deepest one at T = 0. Such a situation

is not phenomenologically viable, and parameter regions featuring vacuum trapping can,

therefore, be excluded. On the other hand, contrary to the commonly expected picture

predicted by the SM, in the presence of EW SnR, the vacuum adopted at high temperature

is not the EW symmetric one. The viability of those scenarios depend on the details of the

thermal evolution of the Universe at high temperatures.

In the analyses of both models, we demonstrated that relying merely on the presence of

a critical temperature, at which the co-existing symmetric vacuum and the EW vacuum

are degenerate, does not account for the effect of vacuum trapping, and erroneously assigns

the strongest FOEWPTs to regions of the (N)2HDM parameter space in which actually

no EW phase transition can take place. We also found that the occurrence of EW SnR

in both models is driven by contributions from the resummation of daisy diagrams, and is

expected to happen in other BSM extensions of the SM as well.

Overall, the results of both studies suggest that the combination of constraints from

collider experiments, from the evolution of the early Universe and from future astrophysical

experiments, such as GW interferometers, will be indispensable for probing the parameter

space of BSM models featuring an extended Higgs sector.

Chapter 5 In the 2HDM, our analysis was performed in a well-motivated benchmark

scenario, which, in order to facilitate a FOEWPT, is characterised by the alignment limit

(cβ−α = 0) and sizeable mass splitting between the second CP-even state H and the

CP-odd and the charged Higgs bosons A and H±. The light CP-even Higgs-boson mass

was set to 125.09 GeV, and the heavy CP-even Higgs-boson mass as well as the mass of

the CP-odd Higgs-boson, assumed to be equal to the mass of the charged Higgs-bosons,
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are free parameters, whereas the soft Z2-breaking parameter was fixed by the relation

m2
12 = m2

Hsβcβ, and we chose tanβ = 3.

Concerning the production of GWs, we found that even with optimistic assumptions

(bubble wall velocity of vw = 0.6 and a mission time for LISA measurements of 7yrs),

the part of the 2HDM type II parameter space that results in a SNR larger than 1 is

very restricted. Most parts of the parameter space featuring a strong FOEWPT predict

an associated stochastic GW background that is too weak to be detectable with LISA.

Potentially detectable GW signals are found for a relatively fine-tuned interval of mass

splittings between the additional CP-even state H and the CP-odd state A at the level

of 200 GeV ≲ mA −mH ≲ 250 GeV. We also demonstrated that parameter points with

substantially larger mass splittings either feature SnR, or they feature unphysical thermal

histories because of, for instance, vacuum trapping or a short-lived EW vacuum at zero

temperature.

Concerning the collider phenomenology, based on the RGE evolution of the quartic

scalar couplings and the TeV-scale energy cut-off of the parameter points featuring a

detectable GW signal, we demonstrated that in these parameter regions new-physics effects

are expected to be observable at the (HL-)LHC. As one of the promising examples for

how such new-physics might arise at colliders, we discussed that the relevant parameter

regions will, to a large extent, be probed at the high-luminosity phase of the LHC via the

“smoking gun signature” pp→ A→ ZH with subsequent decay of H → tt̄.

In the second HL-LHC analysis we focused on the trilinear coupling of the Higgs

boson at ∼ 125 GeV, λhhh. Regions in the 2HDM parameter space that can give rise to

large GW signals are associated with relatively large values of κλ := λhhh/λ
SM
hhh ∼ 2, which

are within the 95% confidence-level upper limits that are expected to be reachable via the

measurement of the non-resonant Higgs-boson pair-production at the HL-LHC. Even larger

values of κλ are found for SnR, such that parameter regions giving rise to this phenomenon

will also be probed at the HL-LHC.

The precision with which κλ can be measured sensitively depends on its precise value.

κλ ∼ 2 leads to a strongly reduced sensitivity at the HL-LHC with a resolution of only

∼ 70%, due to the enhanced negative interference of signal and background diagrams.

The situation is reversed at the ILC operating at
√
s = 500 GeV. For κλ ∼ 2, the

precision increases to ∼ 10% due to an enhanced positive interference between signal and

background diagrams. Since a FOEWPT is naturally connected to values of κλ > 1, the

general prospects for the HL-LHC to measure the trilinear couplings of the Higgs boson

are worse than in the SM, whereas they improve substantially for the ILC.

As a final conclusion of our work on these subjects, we stress that in the 2HDM type II

the parameter points accommodating a primordial GW background in reach of LISA

are confined to contrived regions of the parameter space. Moreover, these regions of the

parameter space imply the observation of new physics at energy scales accessible at the LHC.

As a consequence, the hypothetical scenario of the absence of any indications for new-physics

at the LHC, in particular during the high-luminosity phase, would put severe limitations

on the prospects of a detection of a GW background at LISA within the considered model.
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Chapter 6 For the N2HDM, we have identified the key quantities that can be used

to analytically determine the restoration or non-restoration of the EW symmetry at

high temperature, summarised in Eqs. (6.19)–(6.21) and (6.23). Previous studies in the

literature [47–49] have shown that the presence of at least O(100) thermalised scalars

with negative quartic Higgs-portal couplings can keep the electroweak symmetry broken at

temperatures well above the electroweak scale.1 In this dissertation, a new mechanism to

realise the non-restoration of the EW symmetry in the early Universe has been presented.

Contrary to these earlier works, the presence of negative quartic couplings is not a nec-

essary condition to achieve a persisting broken EW phase at high temperature. Instead,

contributions to the scalar potential from the resummation of daisy diagrams are respon-

sible for driving the thermal mass of the CP-even doublet-like scalars negative. Avoiding

the necessity of negative quartic couplings facilitates achieving a stable scalar potential

while realising EW symmetry non-restoration with an O(1) number of additional degrees

of freedom. We have supplemented our analytical investigation with a numerical analysis

of the N2HDM thermal history with the help of the code CosmoTransitions tracking in

each case the local minima of the potential as a function of temperature. Furthermore, we

have shown that it is possible for a scenario with an unrestored EW symmetry at high

temperatures to still feature a FOEWPT, since the EW symmetry can be restored in an

intermediate temperature regime. The occurrence of both effects within the same thermal

evolution was studied in detail for the N2HDM, but, in principle, this could also happen in

similar models like the 2HDM.

In a further step, we have demonstrated that vacuum trapping leads to unphysical

regions of the N2HDM parameter space despite the presence of a global EW minimum of

the scalar potential at T = 0.

Finally, we have analysed the connection of these early Universe phenomena to the

predicted phenomenology of the N2HDM at the LHC. We have shown that the patterns

of the thermal history of the early Universe can be linked to characteristic signatures in

the N2HDM which have no equivalent in other models like the 2HDM. While in the 2HDM

in the alignment limit only the decay A→ ZH is possible if kinematically allowed, in the

N2HDM the two decays A→ Zh2 and A→ Zh3 can occur, whose branching ratios depend

on both the singlet component and the masses of h2,3. We have also shown that in the

N2HDM a departure from the alignment limit does not necessarily diminish the prospects

for a FOEWPT, in contrast to the case of the 2HDM [172].

10.2 Pseudo-Nambu-Goldstone dark matter

In Chapters 8 and 9, we studied the S2HDM, a complex singlet extension of the 2HDM,

that provides a DM candidate through a U(1) symmetry softly broken by dimension-two

terms. The tree-level amplitude of the DM-nucleon scattering process is proportional to

1In Ref. [49], the possibility of reducing the additional number of degrees of freedom required to achieve

EW symmetry non-restoration by considering an extra EW doublet was for the first time discussed.
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the DM velocity, and thus negligible for direct-detection experiments. This is a feature of

a class of models with a pseudo Nambu-Goldstone boson as the DM candidate.

In Chapter 8, we performed a detailed treatment of the S2HDM, taking into account

a large number of experimental and theoretical constraints. Direct-detection constraints

were not considered, due to the fact that the tree-level scattering amplitudes vanish in the

limit of zero momentum transfer. Since non-vanishing scattering cross sections arise at the

loop level, we studied a specific parameter space region were the contributions from those

radiative corrections are expected to be small.

As a continuation of this analysis, in Chapter 9 we calculated the one-loop EW corrections

to the DM-nucleon scattering cross section for a general choice of the parameter space. We

profited from all the tools developed for the former study, in order to implement the multiple

constraints and shape the physically allowed parameter space of the model.

Chapter 8 For the analysis of the S2HDM in this Chapter, we focused on the range

of DM masses in the Higgs funnel region, i.e. 40 GeV ≤ mχ ≤ 80 GeV., were most (or

all) of the observed DM relic abundance can be accounted for via the thermal freeze-out

of χ through resonant DM annihilation via s-channel diagrams mediated by the SM-like

Higgs boson. This mass region is also interesting due to the increasing sensitivity in this

regime of indirect detection experiments to probe those DM annihiliation cross sections,

which are required to yield the correct relic abundance. Additionally, the corresponding

parameter space is also suitable to realise the excess of gamma rays from the galactic center

observed by Fermi LAT. At the same time, the Alpha Magnetic Spectrometer, reported an

excess over the expected flux of cosmic ray antiprotons, which is also consistent with DM

annihilating into b-quark pairs with a similar range of DM masses.

We performed the first analysis in this model that considers simultaneously all the

constraints listed in the following. We required the scalar potential to be well-behaved up

to energy scales of 1 TeV, i.e. to be bounded-from-below, to feature a stable EW vacuum and

to fulfil conditions derived from perturbative unitarity. We also ensured that the parameter

points were in agreement with measurements of EWPO, flavour physics, properties of the

discovered Higgs boson at 125 GeV, searches for additional scalar states and with the DM

observables (measured DM relic abundance and indirect detection constraints).

We focused on two benchmark scenarios. Firstly, we performed a broad parameter

scan assuming that the SM-like Higgs boson h125 was the lightest of the three CP-even

Higgs bosons. Secondly, we studied a scenario featuring a singlet-like CP-even state h96
at 96 GeV, where the presence of h96 gives rise to a second s-channel contribution to the

thermal freeze-out cross section, apart from the one mediated by the SM-like Higgs.

In the first scenario, DM masses 62.5 GeV ≲ mχ ≲ 67 GeV were found to be able

to explain the Fermi LAT galactic center and antiproton excesses, while simultaneously

also predicting values of the DM relic abundance in agreement with the observations by

the Planck collaboration. However, these parameter regions are in tension with indirect-

detection limits derived from observations of dwarf spheroidal galaxies, which are still

subject to uncertainties with regards to the astrophysical modelling of the spectral curves.
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In the second scenario, we studied whether the S2HDM could offer an explanation

for the collider excesses observed at about 96 GeV at LEP and CMS in the bb̄ and the

diphoton final state, respectively. Here we found that a singlet-like CP-even Higgs boson

at 96 GeV can reproduce both collider excesses under the constraint that mχ > mh125/2.

Furthermore, it is possible to accommodate at the same time a large fraction or all of the

measured DM relic abundance. Finally, we found that the simultaneous explanation of the

cosmic-ray excesses and the collider excess at 96 GeV is in principle possible, but, as in the

first scenario, the parameter regions are also in tension with limits arising from observations

of dwarf spheroidal galaxies.

To summarise, we demonstrated that the S2HDM is an attractive model that can

accommodate a rich phenomenology and an interesting interplay between the DM sector and

the Higgs sector. We also showed that it is crucial to take into account the various theoretical

and experimental constraints on the model parameters. We made our implementation of

the model predictions and the application of the constraints available to the public in the

form of a python package called s2hdmTools2.

Chapter 9 For the analysis of the S2HDM in this Chapter, we calculated the one-loop

EW corrections to the DM-nucleon scattering cross section.

The calculation was verified by two independent calculations. From the theoretical point

of view, the Nambu-Goldstone nature of the DM particle has to be reflected in a zero cross

section in the limit where the exact U(1) symmetry is recovered. Another check was the

fact that there was no need to introduce counterterms as the process is zero at tree-level in

the limit of zero DM velocity. We have verified explicitly that all these features are fulfilled

by the loop-corrected scattering amplitudes.

A scan of the model parameters has been performed taking into account all theoretical

and experimental constraints discussed in the analysis of Chapter 8, except for DM indirect

detection constraints. No parameter points have been found that could be probed by

present direct detection experiments such as XENON1T, PandaX-4T or LZ, while at the

same time predicting a sizeable fraction of the measured DM relic abundance. However, we

have found such parameter points within the reach of future experiments such as DARWIN.

2More instructions regarding the installation and the usage of the package can be found in the documen-

tation under the link https://www.desy.de/~biek/s2hdmtoolsdocu/site/
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Appendix A

Change of basis in the S2HDM

In the following we give the transformation formulae between the basis of the Lagrangian

parameters and the physical basis chosen to scan the parameter space of the S2HDM defined

in Eq. (3.46). The quartic couplings λi can be written in terms of the physical basis as

λ1 =
1

v2c2β

(
−M2s2β +

3∑
n=1

m2
hi
R2

i1

)
, (A.1)

λ2 =
1

v2s2β

(
−M2c2β +

3∑
n=1

m2
hi
R2

i2

)
, (A.2)

λ3 = −M2 +
1

v2

(
1

cβsβ

(
3∑

n=1

m2
hi
R2

i1R
2
i2

)
+ 2mH±

)
, (A.3)

λ4 =
1

v2
(
M2 +m2

A − 2mH±
)
, (A.4)

λ5 =
1

v2
(
M2 −m2

A

)
, (A.5)

λ6 =
1

v2S

(
3∑

n=1

m2
hi
R2

i3

)
, (A.6)

λ7 =
1

vvScβ

(
3∑

n=1

m2
hi
Ri1Ri3

)
, (A.7)

λ8 =
1

vvSsβ

(
3∑

n=1

m2
hi
Ri2Ri3

)
, (A.8)

where the matrix elements Rij have been defined in terms of the mixing angles α1,2,3 in

Eq. (3.45). With the previous transformations, one can also compute the mass parameters

in the scalar potential using the tadpole equations as follows,

µ211 = m2
12 tanβ − 1

2

(
λ1v

2c2β + (λ3 + λ4 + λ5)v
2s2β + λ7v

2
S

)
, (A.9)

µ222 =
m2

12

tanβ
− 1

2

(
λ2v

2s2β + (λ3 + λ4 + λ5)v
2c2β + λ8v

2
S

)
, (A.10)

µ2χ = m2
χ , (A.11)

µ2S = m2
χ −

(
λ7v

2c2β + λ8v
2s2β + λ6v

2
S

)
. (A.12)
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[266] S. Höche, J. Kozaczuk, A. J. Long, J. Turner and Y. Wang, Towards an all-orders

calculation of the electroweak bubble wall velocity, JCAP 03 (2021) 009

[2007.10343]. [p. 60]

[267] G. D. Moore and T. Prokopec, How fast can the wall move? A Study of the

electroweak phase transition dynamics, Phys. Rev. D 52 (1995) 7182

[hep-ph/9506475]. [p. 61]

[268] T. Konstandin, G. Nardini and I. Rues, From Boltzmann equations to steady wall

velocities, JCAP 09 (2014) 028 [1407.3132]. [p. 61]

[269] J. Kozaczuk, Bubble Expansion and the Viability of Singlet-Driven Electroweak

Baryogenesis, JHEP 10 (2015) 135 [1506.04741]. [p. 61]

[270] G. C. Dorsch, S. J. Huber and T. Konstandin, Bubble wall velocities in the Standard

Model and beyond, JCAP 12 (2018) 034 [1809.04907]. [p. 61]

[271] M. Barroso Mancha, T. Prokopec and B. Swiezewska, Field-theoretic derivation of

bubble-wall force, JHEP 01 (2021) 070 [2005.10875]. [p. 61]

[272] B. Laurent and J. M. Cline, Fluid equations for fast-moving electroweak bubble walls,

Phys. Rev. D 102 (2020) 063516 [2007.10935]. [p. 61]

[273] G. C. Dorsch, S. J. Huber and T. Konstandin, A sonic boom in bubble wall friction,

JCAP 04 (2022) 010 [2112.12548]. [p. 61]

[274] W.-Y. Ai, B. Garbrecht and C. Tamarit, Bubble wall velocities in local equilibrium,

JCAP 03 (2022) 015 [2109.13710]. [p. 61]

208

https://doi.org/10.1103/PhysRevD.78.123528
https://arxiv.org/abs/0809.3215
https://arxiv.org/abs/2201.04791
https://doi.org/10.1088/1475-7516/2020/07/057
https://arxiv.org/abs/2004.06995
https://doi.org/10.1088/1475-7516/2019/04/003
https://doi.org/10.1088/1475-7516/2019/04/003
https://arxiv.org/abs/1809.08242
https://doi.org/10.1088/1475-7516/2009/05/009
https://doi.org/10.1088/1475-7516/2009/05/009
https://arxiv.org/abs/0903.4099
https://doi.org/10.1088/1475-7516/2017/05/025
https://doi.org/10.1088/1475-7516/2017/05/025
https://arxiv.org/abs/1703.08215
https://doi.org/10.1088/1475-7516/2021/03/009
https://arxiv.org/abs/2007.10343
https://doi.org/10.1103/PhysRevD.52.7182
https://arxiv.org/abs/hep-ph/9506475
https://doi.org/10.1088/1475-7516/2014/09/028
https://arxiv.org/abs/1407.3132
https://doi.org/10.1007/JHEP10(2015)135
https://arxiv.org/abs/1506.04741
https://doi.org/10.1088/1475-7516/2018/12/034
https://arxiv.org/abs/1809.04907
https://doi.org/10.1007/JHEP01(2021)070
https://arxiv.org/abs/2005.10875
https://doi.org/10.1103/PhysRevD.102.063516
https://arxiv.org/abs/2007.10935
https://doi.org/10.1088/1475-7516/2022/04/010
https://arxiv.org/abs/2112.12548
https://doi.org/10.1088/1475-7516/2022/03/015
https://arxiv.org/abs/2109.13710


References

[275] M. Lewicki, M. Merchand and M. Zych, Electroweak bubble wall expansion:

gravitational waves and baryogenesis in Standard Model-like thermal plasma, JHEP

02 (2022) 017 [2111.02393]. [pp. 61 and 70]

[276] B. Laurent and J. M. Cline, First principles determination of bubble wall velocity,

2204.13120. [pp. 61 and 70]

[277] D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys.

14 (2012) 125003 [1206.2942]. [p. 61]

[278] M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at

finite temperature, JHEP 07 (2012) 189 [1205.3392]. [pp. 62 and 73]

[279] S. Baum, M. Carena, N. R. Shah, C. E. Wagner and Y. Wang, Nucleation is More

than Critical – A Case Study of the Electroweak Phase Transition in the NMSSM,

2009.10743. [pp. 62, 73, 80, 104, and 121]

[280] J. M. Cline, G. D. Moore and G. Servant, Was the electroweak phase transition

preceded by a color broken phase?, Phys. Rev. D 60 (1999) 105035

[hep-ph/9902220]. [p. 62]

[281] M. Carena, C. Krause, Z. Liu and Y. Wang, New approach to electroweak symmetry

nonrestoration, Phys. Rev. D 104 (2021) 055016 [2104.00638]. [pp. 62, 73, and 79]

[282] J. A. Harvey, E. W. Kolb, D. B. Reiss and S. Wolfram, Calculation of Cosmological

Baryon Asymmetry in Grand Unified Gauge Models, Nucl. Phys. B 201 (1982) 16.

[p. 63]

[283] S. Weinberg, Cosmological Production of Baryons, Phys. Rev. Lett. 42 (1979) 850.

[p. 63]

[284] D. V. Nanopoulos and S. Weinberg, Mechanisms for Cosmological Baryon

Production, Phys. Rev. D 20 (1979) 2484. [p. 63]

[285] A. Y. Ignatiev, N. V. Krasnikov, V. A. Kuzmin and A. N. Tavkhelidze, Universal

CP Noninvariant Superweak Interaction and Baryon Asymmetry of the Universe,

Phys. Lett. B 76 (1978) 436. [p. 63]

[286] M. Yoshimura, Origin of Cosmological Baryon Asymmetry, Phys. Lett. B 88 (1979)

294. [p. 63]

[287] C. Caprini and D. G. Figueroa, Cosmological Backgrounds of Gravitational Waves,

Class. Quant. Grav. 35 (2018) 163001 [1801.04268]. [p. 63]

[288] M. Kamionkowski, A. Kosowsky and M. S. Turner, Gravitational radiation from first

order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044]. [p. 66]

209

https://doi.org/10.1007/JHEP02(2022)017
https://doi.org/10.1007/JHEP02(2022)017
https://arxiv.org/abs/2111.02393
https://arxiv.org/abs/2204.13120
https://doi.org/10.1088/1367-2630/14/12/125003
https://doi.org/10.1088/1367-2630/14/12/125003
https://arxiv.org/abs/1206.2942
https://doi.org/10.1007/JHEP07(2012)189
https://arxiv.org/abs/1205.3392
https://arxiv.org/abs/2009.10743
https://doi.org/10.1103/PhysRevD.60.105035
https://arxiv.org/abs/hep-ph/9902220
https://doi.org/10.1103/PhysRevD.104.055016
https://arxiv.org/abs/2104.00638
https://doi.org/10.1016/0550-3213(82)90375-3
https://doi.org/10.1103/PhysRevLett.42.850
https://doi.org/10.1103/PhysRevD.20.2484
https://doi.org/10.1016/0370-2693(78)90900-0
https://doi.org/10.1016/0370-2693(79)90471-4
https://doi.org/10.1016/0370-2693(79)90471-4
https://doi.org/10.1088/1361-6382/aac608
https://arxiv.org/abs/1801.04268
https://doi.org/10.1103/PhysRevD.49.2837
https://arxiv.org/abs/astro-ph/9310044


References

[289] R. Caldwell et al., Detection of Early-Universe Gravitational Wave Signatures and

Fundamental Physics, 2203.07972. [p. 67]

[290] M. Hindmarsh, S. J. Huber, K. Rummukainen and D. J. Weir, Shape of the acoustic

gravitational wave power spectrum from a first order phase transition, Phys. Rev. D

96 (2017) 103520 [1704.05871]. [p. 68]

[291] M. Hindmarsh, Sound shell model for acoustic gravitational wave production at a

first-order phase transition in the early Universe, Phys. Rev. Lett. 120 (2018) 071301

[1608.04735]. [p. 68]

[292] M. Hindmarsh and M. Hijazi, Gravitational waves from first order cosmological phase

transitions in the Sound Shell Model, JCAP 12 (2019) 062 [1909.10040]. [p. 68]

[293] J. R. Espinosa, T. Konstandin, J. M. No and G. Servant, Energy Budget of

Cosmological First-order Phase Transitions, JCAP 06 (2010) 028 [1004.4187].

[p. 68]

[294] J. Ellis, M. Lewicki and J. M. No, Gravitational waves from first-order cosmological

phase transitions: lifetime of the sound wave source, JCAP 07 (2020) 050

[2003.07360]. [p. 68]

[295] C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background

from turbulence and magnetic fields generated by a first-order phase transition,

JCAP 12 (2009) 024 [0909.0622]. [p. 69]

[296] A. Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A. G. Tevzadze and

T. Vachaspati, Evolution of hydromagnetic turbulence from the electroweak phase

transition, Phys. Rev. D 96 (2017) 123528 [1711.03804]. [p. 69]

[297] A. Roper Pol, S. Mandal, A. Brandenburg, T. Kahniashvili and A. Kosowsky,

Numerical simulations of gravitational waves from early-universe turbulence, Phys.

Rev. D 102 (2020) 083512 [1903.08585]. [p. 69]

[298] P. Auclair, C. Caprini, D. Cutting, M. Hindmarsh, K. Rummukainen, D. A. Steer

et al., Generation of gravitational waves from freely decaying turbulence,

2205.02588. [p. 69]

[299] D. Cutting, M. Hindmarsh and D. J. Weir, Vorticity, kinetic energy, and suppressed

gravitational wave production in strong first order phase transitions, Phys. Rev. Lett.

125 (2020) 021302 [1906.00480]. [p. 69]

[300] E. Thrane and J. D. Romano, Sensitivity curves for searches for gravitational-wave

backgrounds, Phys. Rev. D 88 (2013) 124032 [1310.5300]. [p. 69]

[301] G. Dorsch, S. Huber and J. No, A strong electroweak phase transition in the 2HDM

after LHC8, JHEP 10 (2013) 029 [1305.6610]. [pp. 71, 115, 119, and 122]

210

https://arxiv.org/abs/2203.07972
https://doi.org/10.1103/PhysRevD.96.103520
https://doi.org/10.1103/PhysRevD.96.103520
https://arxiv.org/abs/1704.05871
https://doi.org/10.1103/PhysRevLett.120.071301
https://arxiv.org/abs/1608.04735
https://doi.org/10.1088/1475-7516/2019/12/062
https://arxiv.org/abs/1909.10040
https://doi.org/10.1088/1475-7516/2010/06/028
https://arxiv.org/abs/1004.4187
https://doi.org/10.1088/1475-7516/2020/07/050
https://arxiv.org/abs/2003.07360
https://doi.org/10.1088/1475-7516/2009/12/024
https://arxiv.org/abs/0909.0622
https://doi.org/10.1103/PhysRevD.96.123528
https://arxiv.org/abs/1711.03804
https://doi.org/10.1103/PhysRevD.102.083512
https://doi.org/10.1103/PhysRevD.102.083512
https://arxiv.org/abs/1903.08585
https://arxiv.org/abs/2205.02588
https://doi.org/10.1103/PhysRevLett.125.021302
https://doi.org/10.1103/PhysRevLett.125.021302
https://arxiv.org/abs/1906.00480
https://doi.org/10.1103/PhysRevD.88.124032
https://arxiv.org/abs/1310.5300
https://doi.org/10.1007/JHEP10(2013)029
https://arxiv.org/abs/1305.6610


References

[302] G. Dorsch, S. Huber, K. Mimasu and J. No, The Higgs Vacuum Uplifted: Revisiting

the Electroweak Phase Transition with a Second Higgs Doublet, JHEP 12 (2017) 086

[1705.09186]. [pp. 71, 82, 83, 93, 115, 122, and 127]

[303] J. Bernon, L. Bian and Y. Jiang, A new insight into the phase transition in the early

Universe with two Higgs doublets, JHEP 05 (2018) 151 [1712.08430]. [pp. 71, 82,

119, and 125]

[304] A. Noble and M. Perelstein, Higgs self-coupling as a probe of electroweak phase

transition, Phys. Rev. D 78 (2008) 063518 [0711.3018]. [pp. 71 and 92]

[305] P. Huang, A. Joglekar, B. Li and C. E. M. Wagner, Probing the Electroweak Phase

Transition at the LHC, Phys. Rev. D 93 (2016) 055049 [1512.00068]. [pp. 71 and 92]

[306] R. Coimbra, M. O. Sampaio and R. Santos, ScannerS: Constraining the phase

diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428

[1301.2599]. [pp. 72 and 99]
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[371] S. Glaus, M. Mühlleitner, J. Müller, S. Patel and R. Santos, NLO corrections to

Vector Dark Matter Direct Detection - An update, PoS CORFU2019 (2020) 046

[2005.11540]. [pp. 132 and 168]

[372] T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J.

Phys. G 43 (2016) 013001 [1509.08767]. [p. 132]

[373] P. N. Steppeler, Radiative corrections for the direct detection of neutralino dark

matter and its relic density, Ph.D. thesis, Munster U., ITP, 2016. [pp. 132, 133,

and 134]

[374] T. Piffl et al., The RAVE survey: the Galactic escape speed and the mass of the

Milky Way, Astron. Astrophys. 562 (2014) A91 [1309.4293]. [p. 132]

[375] T. Lin, Dark matter models and direct detection, PoS 333 (2019) 009 [1904.07915].

[p. 132]

[376] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Remarks on Higgs Boson

Interactions with Nucleons, Phys. Lett. B 78 (1978) 443. [p. 134]

[377] J. Hisano, K. Ishiwata and N. Nagata, Direct Search of Dark Matter in High-Scale

Supersymmetry, Phys. Rev. D 87 (2013) 035020 [1210.5985]. [p. 134]

[378] R. D. Young and A. W. Thomas, Octet baryon masses and sigma terms from an

SU(3) chiral extrapolation, Phys. Rev. D 81 (2010) 014503 [0901.3310]. [p. 134]

[379] J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino

Dark Matter, JHEP 06 (2015) 097 [1504.00915]. [p. 134]

[380] JLQCD collaboration, H. Ohki, K. Takeda, S. Aoki, S. Hashimoto, T. Kaneko,

H. Matsufuru et al., Nucleon strange quark content from Nf = 2 + 1 lattice QCD

with exact chiral symmetry, Phys. Rev. D 87 (2013) 034509 [1208.4185]. [p. 134]

[381] J. F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with

nuclear and finite-Q2 corrections, Phys. Rev. D 87 (2013) 094012 [1212.1702].

[p. 134]

216

https://doi.org/10.1007/JHEP06(2018)127
https://arxiv.org/abs/1804.01939
https://doi.org/10.1016/S0370-2693(03)00614-2
https://arxiv.org/abs/hep-ex/0306033
https://arxiv.org/abs/1002.1912
https://doi.org/10.22323/1.376.0046
https://arxiv.org/abs/2005.11540
https://doi.org/10.1088/0954-3899/43/1/013001
https://doi.org/10.1088/0954-3899/43/1/013001
https://arxiv.org/abs/1509.08767
https://doi.org/10.1051/0004-6361/201322531
https://arxiv.org/abs/1309.4293
https://doi.org/10.22323/1.333.0009
https://arxiv.org/abs/1904.07915
https://doi.org/10.1016/0370-2693(78)90481-1
https://doi.org/10.1103/PhysRevD.87.035020
https://arxiv.org/abs/1210.5985
https://doi.org/10.1103/PhysRevD.81.014503
https://arxiv.org/abs/0901.3310
https://doi.org/10.1007/JHEP06(2015)097
https://arxiv.org/abs/1504.00915
https://doi.org/10.1103/PhysRevD.87.034509
https://arxiv.org/abs/1208.4185
https://doi.org/10.1103/PhysRevD.87.094012
https://arxiv.org/abs/1212.1702


References

[382] T. L. Lee, T. Y. Li and C. H. Tsai, HOM4PS-2.0: a software package for solving

polynomial systems by the ployhedral homotopy continuation method, Computing 83

(2008) 109. [p. 138]

[383] P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Applying

Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J.

C 75 (2015) 421 [1507.06706]. [p. 139]

[384] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson

decays in the standard model and its supersymmetric extension, Comput. Phys.

Commun. 108 (1998) 56 [hep-ph/9704448]. [p. 140]

[385] J. M. Butterworth et al., THE TOOLS AND MONTE CARLO WORKING GROUP

Summary Report from the Les Houches 2009 Workshop on TeV Colliders, in 6th Les

Houches Workshop on Physics at TeV Colliders, 3, 2010, 1003.1643. [p. 140]

[386] A. Djouadi, J. Kalinowski, M. Muehlleitner and M. Spira, HDECAY: Twenty++

years after, Comput. Phys. Commun. 238 (2019) 214 [1801.09506]. [p. 140]

[387] M. Misiak, A. Rehman and M. Steinhauser, Towards B → Xsγ at the NNLO in

QCD without interpolation in mc, JHEP 06 (2020) 175 [2002.01548]. [p. 141]

[388] SIMBA collaboration, F. U. Bernlochner, H. Lacker, Z. Ligeti, I. W. Stewart, F. J.

Tackmann and K. Tackmann, Precision Global Determination of the B → Xsγ

Decay Rate, 2007.04320. [p. 141]

[389] X.-M. Jiang, C. Cai, Z.-H. Yu, Y.-P. Zeng and H.-H. Zhang,

Pseudo-Nambu-Goldstone dark matter and two-Higgs-doublet models, Phys. Rev. D

100 (2019) 075011 [1907.09684]. [p. 141]

[390] N. D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput.

Phys. Commun. 180 (2009) 1614 [0806.4194]. [pp. 141 and 169]

[391] N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks, M. Herquet et al.,

A Comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011)

1541 [0906.2474]. [p. 141]

[392] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A

complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014)

2250 [1310.1921]. [pp. 141 and 169]

[393] A. Belyaev, N. D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics

within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729

[1207.6082]. [p. 141]

[394] G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar,

micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173

[1801.03509]. [p. 141]

217

https://doi.org/10.1007/s00607-008-0015-6
https://doi.org/10.1007/s00607-008-0015-6
https://doi.org/10.1140/epjc/s10052-015-3650-z
https://doi.org/10.1140/epjc/s10052-015-3650-z
https://arxiv.org/abs/1507.06706
https://doi.org/10.1016/S0010-4655(97)00123-9
https://doi.org/10.1016/S0010-4655(97)00123-9
https://arxiv.org/abs/hep-ph/9704448
https://arxiv.org/abs/1003.1643
https://doi.org/10.1016/j.cpc.2018.12.010
https://arxiv.org/abs/1801.09506
https://doi.org/10.1007/JHEP06(2020)175
https://arxiv.org/abs/2002.01548
https://arxiv.org/abs/2007.04320
https://doi.org/10.1103/PhysRevD.100.075011
https://doi.org/10.1103/PhysRevD.100.075011
https://arxiv.org/abs/1907.09684
https://doi.org/10.1016/j.cpc.2009.02.018
https://doi.org/10.1016/j.cpc.2009.02.018
https://arxiv.org/abs/0806.4194
https://doi.org/10.1140/epjc/s10052-011-1541-5
https://doi.org/10.1140/epjc/s10052-011-1541-5
https://arxiv.org/abs/0906.2474
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://doi.org/10.1016/j.cpc.2013.01.014
https://arxiv.org/abs/1207.6082
https://doi.org/10.1016/j.cpc.2018.04.027
https://arxiv.org/abs/1801.03509


References

[395] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO -

The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201

[1108.2040]. [pp. 142 and 169]

[396] M. Backovic, K. Kong and M. McCaskey, MadDM v.1.0: Computation of Dark

Matter Relic Abundance Using MadGraph5, Physics of the Dark Universe 5-6 (2014)

18 [1308.4955]. [p. 142]

[397] F. Ambrogi, C. Arina, M. Backovic, J. Heisig, F. Maltoni, L. Mantani et al.,

MadDM v.3.0: a Comprehensive Tool for Dark Matter Studies, Phys. Dark Univ. 24

(2019) 100249 [1804.00044]. [p. 142]

[398] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The

automated computation of tree-level and next-to-leading order differential cross

sections, and their matching to parton shower simulations, JHEP 07 (2014) 079

[1405.0301]. [p. 142]

[399] M. Bauer and T. Plehn, Yet Another Introduction to Dark Matter: The Particle

Physics Approach, vol. 959 of Lecture Notes in Physics. Springer, 2019,

10.1007/978-3-030-16234-4, [1705.01987]. [p. 143]

[400] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau and C. Gagné, DEAP:
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