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The Jiangmen Underground Neutrino Observatory (JUNO) is a next-generation large (20 kton)
liquid-scintillator neutrino detector, which is designed to determine the neutrino mass ordering
from its precise reactor neutrino spectrum measurement. Moreover, high-energy (GeV-level)
atmospheric neutrino measurements could also improve its sensitivity to mass ordering via matter
effects on oscillations, which depend on the capability to identify electron (anti-)neutrinos and
muon (anti-)neutrinos against each other and against neutral current background, as well as to
identify neutrinos against antineutrinos. However, this flavor identification task has never been
attempted in large homogeneous liquid scintillator detectors like JUNO. This poster presents a
machine-learning approach for the flavor identification of atmospheric neutrinos in JUNO. In this
method, several features relevant to event topology are extracted from PMT waveforms and used
as inputs to machine learning models. Moreover, the features from captured neutrons provide
additional capability of neutrinos versus anti-neutrinos identification. Two independent strategies
are developed to utilize the primary interaction and neutron-capture information with different
machine-learning models. Preliminary results based on Monte Carlo simulations show promising

potential for this approach.

42nd International Conference on High Energy Physics (ICHEP2024)
18-24 July 2024
Prague, Czech Republic

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:fr.zeng@mail.sdu.edu.cn
https://pos.sissa.it/

Flavor Identification of Atmospheric Neutrinos in JUNO with Machine Learning Fanrui Zeng

1. Introduction

The Jiangmen Underground Neutrino Observatory (JUNO)[1, 2] aims to determine the Neu-
trino Mass Ordering (NMO) by measuring the oscillations of reactor electron antineutrinos (v,)
with a large liquid scintillator (LS) detector. JUNQO’s overall sensitivity to NMO can be enhanced
through a combined analysis of reactor and atmospheric neutrino oscillations. A crucial aspect of
atmospheric neutrino oscillation measurements is the identification of neutrino flavors, including
distinguishing between muon (anti)neutrinos, electron (anti)neutrinos, and neutral current (NC)
events, as well as between neutrinos and antineutrinos (v/ V).

2. Methodology

Neutrino flavors can be determined by the outgoing charged leptons from charge current (CC)
interactions. As detailed in the previous study on reconstructing the directionality of atmospheric
neutrinos [3], the light received by PMTs in an LS detector is the superposition of light from points
along the particle track. The number of photo-electrons (nPEs) collected by a PMT evolves over
time and is determined by the angle relative to the particle’s direction, position, visible energy, and
the particle type (dE/dx). Therefore PMT waveforms contain all the information about the event
topology. Various features are extracted from the PMT waveforms of the prompt trigger, including
first hit time (FHT), nPEs, peak charge, peak time, and others like median time and four moments
of the waveform distributions.

The distinction between v and ¥ arises from differences in their interactions, particularly in
the hadronic energy fraction y,;s = Enad vis/Evis» Where Epqq.vis is the visible energy cause
by hadrons and E,;; is the total visible energy of the event, which is also reflected in the PMT
waveforms of the prompt trigger. Additionally, neutrinos and antineutrinos differ in their average
neutron multiplicities. Final state neutrons are captured by hydrogen nuclei in the LS. This process
emits a 2.2 MeV photon in ~ 200 us, generating delayed triggers.

To process prompt and delayed triggers, two strategies using different deep learning models are
developed. Strategy 1 utilizes a point cloud-based model, incorporating PointNet++ and DGCNN.
Features extracted from the prompt triggers are fed into the PointNet++, while the reconstructed
vertices of neutron capture candidates are input into a separate DGCNN model as a point cloud
to preserve neutron multiplicity and spatial distributions, minimizing information loss. Strategy
2 employs a spherical image-based model, DeepSphere, designed for rotational covariance. Here,
features for the same PMT from different neutron-candidate triggers are merged into one, which is
then fed into the model together with the prompt trigger features. All features remain at the PMT
level, enabling fast and efficient input handling. Both strategies leverage prompt and delayed trigger
features in a 2-step approach: a 3-label classification (NC, v, /v,-CC, v, /v.-CC) followed by v/v
classification.

3. Performance

The Area Under the Receiver operating characteristic(ROC) Curve (AUC) is used to assess
models’ performances, as it is independent of the score cut selection and is not affected by class
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imbalances in the dataset. The AUC score as a function of visible energy (Figure 1) demonstrates
consistency across all three classification tasks in both strategies. Figure 2 shows the final selected
sample as functions of L/E. For the upcoming NMO study, the efficiency and purity of each label
will be tuned to obtain the best sensitivity.
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Figure 1: Comparison of AUC scores as a function of visible energy for 3-label classification (left), v, /v,
classification (center), v, /7, classification (right) using a flat spectrum sample.
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Figure 2: The distribution of L/E for the upward-going events in the selected neutrino subsamples with
Honda flux spectrum. Contributions from true event categories are shown in different colors.

4. Summary

In this study, we introduce a general machine-learning approach for atmospheric neutrino
identification, utilizing features extracted from PMT waveforms in the prompt trigger, along with
the information from captured neutron candidates. Two different particle identification strategies
employing different machine-learning models and ways of handling neutron-capture information
were developed. Preliminary results based on Monte Carlo simulations demonstrate promising
potential for this method. The performance of atmospheric neutrino identification can be further
optimized to maximize JUNO’s sensitivity to NMO. This technique can also be applied to other large
LS detectors, making them strong candidates for future atmospheric neutrino oscillation studies.
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