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For the next-generation massive neutrino experiments, selecting a signal in the background events
is very important. To do this, we investigated the results of applying a machine learning technique
to the selection of neutrino signals. The neutrino signal after inverse beta decay and the back-
ground events in a gadolinium-loaded liquid scintillation detector were reproduced by using Monte
Carlo simulations. The inverse beta decay process is well-known and has relatively high statisti-
cal quantities for this simulation. In this study, an efficiency of signal selection through machine
learning was obtained, and in this paper several results are briefly described. Finally, the machine
learning technique is expected to become an important tool for use in the next-generation neutrino
experiment.
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차세대 대형 중성미자 검출 실험에서 배경사건과 원하는 신호를 효율적으로 선별하는 것은 매우 중

요하다. 이를 위해서 현재 유용하게 사용되고 있는 분석 기술의 하나인 기계학습을 사용하여 중성미자
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신호 선별에 적용하였을 때의 결과를 살펴보고자 한다. 이를 위해 비교적 특징이 잘 알려지고, 상대적으로

통계량이 높은 원자로 중성미자의 역베타 붕괴 반응 이후 신호와 배경사건들을 몬테카를로 시뮬레이션을

통하여 재현하고, 기계학습을 통한 신호선별 효율을 확인하였다. 최종적으로는 향후 차세대 중성미자

실험에서 중요한 도구로 사용될 수 있을 것으로 기대한다.
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I. 서론

최근 입자물리 연구는 새로운 현상 발견을 위하여 높은
에너지 혹은 많은 수의 관측 사건을 만드는 방향으로 진행
되고있다. 이러한 변화에 맞추어원하는 신호를 선별하고,
배경사건을 효율적으로 제거하기 위한방법들또한새롭게
개발되고 있다. 그리고 물리뿐만이 아닌 다른 분야에서도
다양하고많은양의데이터가누적됨에따라기계학습이폭
넓게 활용되고 있다 [1]. 또한 기계학습은 현재 고에너지
입자 충돌 물리 분야에서도 유용하게 적용되고 있고, 다른
물리 분야에서도 서서히 데이터 분석에 활용할 것으로 예
측된다.
이와더불어표준모형 (Standard Model)에서기본입자

중의하나인중성미자는최근활발한연구가진행되어왔고,
특히진동변환상수는상당히정밀하게측정하게되었다. 하
지만 직간접적인 관측 결과로부터 아직 잘 알려지지 않은
경입자 영역에서의 대칭성 깨짐, 중성미자 간의 질량 순서,
비활성 중성미자 존재여부 등을 주제로 한 표준 모형을 넘
어선 새로운 여러 실험들이 계획 되고 있고, 혹은 건설이
진행중에있다 [2,3]. 이러한새로운사실들을입증하기위
해서는기존에측정된값들을보다정밀하게측정하는것이
필요하다. 또한 중성미자들의 기본적인 특징인 작은 산란
단면적으로인한적은양의신호를수많은배경사건들에서
선별하기 위한 기술이 매우 중요하다. 그러므로 본 논문에
서는 기계학습을 통해 중성미자 신호와 배경사건 구별에
대한 연구를 진행하였다. 또한 비교적 그 특징이 잘 알려
지고, 중성미자 중에서 상대적으로 많은 통계치를 가질 수
있는 원자로 중성미자 측정 실험을 전제로 진행하였다.

II. 원자로중성미자및기계학습

1. 원자로중성미자와역베타붕괴반응

본논문에서시뮬레이션한중성미자는원자로에서방출
되는반전자중성미자이고, 이를검출하기위해액체섬광검
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출용액이채워진검출기를사용하였다. 반전자중성미자가
검출기에 도달하면 검출기내의 양성자와 충돌하여 역베타
붕괴 반응을 일으킨다. 역베타 붕괴 시 식 (1)과 같이 양전
자와 중성자가 방출된다.

νe + p → e+ + n (1)

양전자 (e+)는 거의 즉시 쌍소멸 하여 1–10 MeV의 빛
을 방출하고 (S1, prompt), 중성자 (n)의 경우는 액체섬광
검출용액에 첨가된 물질에 따라, 그 반응이 달라진다 [4,
5]. 현재 원자로 중성미자 검출을 위해 건설된 일반적인
검출기는 원통형의 모양으로 필요에 따라 몇 개의 층으로
구성된다. 원통의가장안쪽은약 0.1%의가돌리늄 (Gd)이
용해된 액체섬광검출용액을 중성미자 표적으로 사용하고,
그 외부는 가돌리늄이 용해되지 않은 액체섬광검출용액이
채워진다 [6,7]. 이 경우 중성미자 표적에서는 약 85%가
평균적으로 30 µs이후에가돌리늄에포획되어약 8 MeV의
빛을방출한다. 이를제외한중성미자표적바깥영역까지의
대부분의이벤트는역베타붕괴이후중성자가평균적으로
200 µs 이후에 수소에 포획되어 2.2 MeV의 빛을 방출한다
(S2, delayed). 일반적으로가돌리늄에포획된신호의경우
중성자 신호의 높은 에너지 및 양전자 신호와의 짧은 시간
차이의 특징으로 인해 배경사건을 보다 쉽게 제거할 수 있
다. 하지만 수소에 포획된 경우 중성자 신호가 2.2 MeV 로
검출기주변의바위로부터생성되어들어오는배경사건신
호와에너지영역이비슷하여신호선별에상당한어려움이
있다. 그러므로 보다신호선별이어려운수소포획신호에
대하여 연구를 진행하였다.

2. 기계학습방법및도구

본 논문의 연구를 위해서 사용한 분석도구는 CERN에
서 개발되어 입자물리분야에서 유용하게 사용되고 있는
ROOT에 포함되어 있다. Toolkit for Multivariate Data
Analysis (TMVA) 라고 불리는 이 도구는 다양한 다변수
분류알고리즘을제공하는데이논문에서는그중에서Mul-
tilayer Perceptron (MLP) 방법을사용하였고또한전통적
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Fig. 1. The scheme of multi-layer perceptron. This
method is based on the artificial neural network. Gener-
ally, it consists of the three layers such as input, hidden
and output.

인 Boosted Decision Tree (BDT) 방법으로 교차확인도
하였다. MLP는 인간 두뇌의 신경망에서 착안된 것으로,
신경세포인 뉴런들이 연결된 형태로 구성된다. Figure 1은
일반적인인공신경망의구조를도식화한것이다. 인공신경

망은 입력층 (Input layer), 은닉층 (Hidden layer), 출력층
(Output layer)으로 구성된다. 기본적으로 학습에 사용되
는데이터가입력층을통해서들어가면, 은닉층에서다양한

연산과정을 거치게 된 후, 입력된 데이터들을 출력층에서

어떠한한개의값으로나타낼수있다. 한개의은닉층에는

여러개의노드들이존재할수있고, 각각의노드사이의연

결에서는 다른 값의 가중치들을 적용할 수 있다. 또한 Fig.
1에서는 한 개의 은닉층만 존재하지만, 이 은닉층은 여러
개가 존재할 수 있고, 이에 따라 기계학습을 위한 연산시간

또한 길어지게 된다.

III. 기계학습결과

1. 학습데이터

학습에 사용된 데이터는 중성미자 신호와 배경사건으로

구분된다. 중성미자 신호는 앞에서 설명된 것과 같이 반전

자 중성미자가 검출기에 도달하여 역베타 붕괴반응 이후

생성된 양전자와 중성자 신호를 재현하였다. 중성자가 수

소에 포획된 중성미자 신호를 측정 할 때, 가장 큰 비중을

차지하는 배경사건은 검출기 주변을 둘러싸는 바위에서부

터나오는자연방사능이다. 일반적으로중성미자검출기는

우주선에 의한 배경사건을 줄이기 위하여 지하에 건설되

고, 이에 따라 주변 바위에 포함된 40K, 232Th, 238U 등의
방사선 동위원소에서 방출된 빛이 검출기에 들어온다 [8].
이 빛들 중 허용된 짧은 시간 내에 우연히 두 개가 들어올

경우 중성미자로부터 생성된 양전자와 중성자 쌍을 흉내

낸다. 중성미자신호의경우는 S1 과 S2 사이에는중성자의
포획시간에따른연관관계가존재한다. 하지만배경사건의

경우에는 우연한 두 빛 사이의 결합으로, S1 과 S2 사이에
어떠한 연관관계도 없다.

중성미자 신호의 학습데이터를 재현하기 위해서 역베타

붕괴 후 생성되는 양전자와 중성자의 검출기내에서 상호

작용에 대한 시뮬레이션이 필요하다. 입력되는 양전자와

중성자의 운동량 및 위치정보는 원자로 중성미자의 방출

량과역베타붕괴반응의산란단면적을이용하여계산된다

[9]. 그 이후양전자의쌍소멸, 중성자포획이발생하는위치
및시간은 GEANT4를기반으로한 GLG4SIM을이용하여
기본적인원통형검출기에대하여중성미자신호를시뮬레

이션 하였다 [10].
Figure 2는 기계학습에 사용된 변수들의 분포를 보여준

다. 두 재현된 데이터의 변수는 S1 과 S2 사이의 시간차이
(∆T ) 및거리 (∆R), 각각의에너지이다 (ES1, ES2). 중성
미자 신호의 에너지의 경우 앞에서 설명한 분포를 보였고,

배경사건의 경우 낮은 에너지부터 약 3 MeV 까지 감소하
는 분포를 보인다. 또한 두 신호의 시간차이와 거리차이의

경우 역시 서로 연관관계에 인해 짧은 시간 및 거리를 보여

준다. 그에 비해 배경사건의 경우는 무작위로 쌍을 이루기

때문에균일한시간분포와검출기의크기에의해서만제한

되는 거리 분포를 가진다. 그 외에 같이 그려진 중성자가

가돌리늄에 포획된경우는대부분의특성이수소에포획된

경우와비슷한범위에분포하므로배경사건처럼기여할수

있다. 하지만 Fig. 2에서 보듯이 중성자 신호의 에너지가
∼ 8 MeV로 명확하게 구분되어서 쉽게 구분할 수 있다.

2. 신호선별및배경사건제거효율

기계학습은 MLP방법을 사용하여 5만개의 중성미자 신
호 및 배경사건을 학습하여 진행하였다. 기본적으로 배경

사건 제거를 위해서는 S1 과 S2의 연관성을 나타내는 시간
차이와위치차이가가장효율적으로작동할것으로기대한

다. 이에 따라 두 개의 변수에 대한 학습결과를 확인하고,

추가적으로 S1 과 S2의 특징을 나타내는 에너지 변수를 같
이학습하였을시의결과를비교하였다. 또한 MLP 방법에
사용된 은닉층의 수는 1로 동일하고, 노드의 수는 에너지
변수를 사용하지 않은 경우 7, 에너지 변수를 사용한 경우
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Fig. 2. (Color online) Input variables for machine learn-
ing. S1 and S2 represent the energy distribution of
prompt and delayed signals, ∆T is time difference be-
tween S1 and S2, and ∆R indicate the distance between
S1 and S2.

9이다. Figure 3은 중성미자의 검출효율에 대한 배경사건
의 제거 효율을 나타낸다. 이 결과는 배경사건의 시간차이

분포에 의존하고, 현재 결과는 중성미자 신호의 시간차이

분포에 근거하여 2000 µs 까지를 기준으로 하였다. 에너지
분포를 사용한 경우 및 사용하지 않은 경우를 비교하였을

때, 명확히 많은 변수를 사용한 경우가 배경사건을 좀 더

효율적으로 제거하는 것을 보여주고 있다. 하지만 시간 차

Fig. 3. (Color online) Background rejection and signal
efficiency by machine learning. The black line is the re-
sult using all variables and the red line is the result using
only ∆T and ∆R without energy variables. Both results
show that background can be removed efficiently by ma-
chine learning.

이와 위치 차이만 사용한 경우에도 배경사건의 특징이 중

성미자에 비하여 비교적명확하여, 배경사건이 효과적으로

제거되는 것을 확인할 수 있다.

Figure 4는 두 가지 학습결과를 적용한 중성미자 신호의
양전자의에너지분포를보여주고, 각성분의분포를비교하

기위해전체양은조절되었다. 이경우각신호의에너지를

사용하여학습한경우중성미자신호에서제거된이벤트가

∼3 MeV 이하의 낮은 영역에 분포하는 것을 볼 수 있다.
이것은 배경사건의 에너지 특성이 반영된 결과라고 할 수

있다. 이 경우 실제 중성미자신호의경우도특정에너지의

이벤트들이주로제거되기때문에최종적으로관측되는에

너지분포가변경되어, 검출된중성미자의에너지를이용한

분석을진행할경우결과에영향을줄수있다. 특히중성미

자의진동변환상수 중에서 중성미자간의질량차이를측정

하는경우에는양전자의에너지분포를사용하므로영향을

준다. 이는 분석에 사용되는 변수의 경우 학습 데이터로

사용하는 것을 지양해야 하는 것을 의미한다. 그러므로 본

논문에서 확인한 두 가지 방법 중 거리차이와 시간차이만

사용한결과가배경사건제거측면에서는효율이낮더라도,

적합한 기계학습 방법이 될 수 있다.

IV. 요약

원자로로부터 생성된 반전자 중성미자 신호와 배경사건

을사용한기계학습결과가효과적으로작동함을확인하였

다. 물론 현재 사용된 중성미자와 배경사건의 경우 특징이

명확하여기계학습을적용하지않더라도많은 배경사건을
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Fig. 4. (Color online) Background rejection (a) and sig-
nal efficiency (b) by machine learning. The red line is the
result using all variables and the green line is the result
using only ∆T and ∆R without energy variables. Both
results show that background can be removed efficiently
by machine learning.

제거할 수 있다. 하지만 실제 실험환경에서 신호와 배경사

건의비율을고려한다면, 최종적으로선별된데이터의중성

미자 신호와 배경사건의 비율을 향상시킬 수 있을 것이다.

현재 연구에서는 기계학습을 중성미자 검출에서도 충분히

적용가능 하다는 것에 의의를 두며, 향후 신호의 특징이

명확하지 않은 대규모 차세대 중성미자 실험에서 중요한

도구로 사용될 수 있을 것으로 기대한다.
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