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Zusammenfassung

Es wird eine neue Methode zur Wiederverwendung von Monte Carlo Events für
Parameter-Scans am LHC, die auf einer Kombination von Impuls-Transformationen
und Event-bezogenen Neugewichtungen basiert, vorgestellt. Eine solche Wieder-
verwendung von Monte Carlo Events wurde bereits in der Literatur diskutiert.
Die dortigen Ansätze beschränken sich jedoch auf die bloße Neugewichtung der
Events und sind daher nicht in der Lage, kinematische Verteilungen für Para-
meterpunkte mit unterschiedlichen Massen vorherzusagen. Durch die Transfor-
mation der Impulse der ursprünglichen Events so, dass die Energieskalen der
neuen Impulse nahe an der Zielpunkt-Energieskala liegen, wird ein Wiederver-
wendung der Events auch für Massenänderungen möglich. Nach der Transforma-
tion verbleibende Differenzen können dann durch Neugewichtung der beteiligten
Events mit ihren differentiellen Wirkungsquerschnitten aufgelöst werden. Diese
neue Methode kann verwendet werden, um die Abtastzeiten für Parameter-Scans
zu reduzieren. Diese Scans werden typischerweise durchgeführt, wenn theoretische
Vorhersagen von Modellen für Physik jenseits des Standardmodells mit experi-
mentellen Daten verglichen werden.
Im Vergleich zu anderen Algorithmen, die den Berechnungsaufwand von Parameter-
Scans reduzieren können, ist dieser neue Ansatz prinzipiell unabhängig vom be-
trachteten physikalischen Modell und kann, je nach Vorgabe, ohne die Kenntnis
der jeweiligen Matrixelemente verwendet werden.





Abstract

A new method is presented for reusing Monte Carlo events in parameter scans
at the LHC, which is based on the combination of momentum transformations
and event-by-event reweighting. While reusing Monte Carlo events was already
proposed in the literature, these approaches were limited to reweighting events
and therefore are inadequate when predicting kinematical distributions for pa-
rameter points with different mass configurations. By transforming momenta of
the original events in a way that the energy scales of the new momenta are close
to the target point energy scale, then a reweighting approach can also be applied
for mass changes. Any remaining mismatch after the transformation can then be
resolved by reweighting the involved events with their differential cross sections.
This new method can be used to decrease sampling times for parameter scans
that are typically performed when comparing theoretical predictions of models
for beyond the Standard Model physics against experimental data.
In contrast to other algorithms that can reduce computational efforts for param-
eter scans, this new approach is in principal independent of the physics model.
Depending on individual requirements, a combinations of momentum transforma-
tions and reweighting can also be used without explicit knowledge of the involved
matrix elements.
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Motivation Ch. 1

Chapter 1

Motivation

More than 10 years ago experiments at the world’s largest particle accelerator
to date, the Large Hadron Collider (LHC) at CERN in Geneva, began their
search for previously undiscovered particles [1]. Already in the first phase of
measurements from 2010 to 2013 (run 1) [2], the two largest particle detectors
at the LHC, ATLAS [3] and CMS [4], succeeded in discovering the Higgs boson,
which was theoretically predicted in the 1960s [5, 6, 7]. Thus, the Standard Model
of particle physics could finally be completed about 40 years after its theoretical
formulation. To this day, the Standard Model (SM) represents one of the most
closely examined and most rigorously tested models in all of physics. It combines
three of the (currently known) four fundamental forces in a unified gauge theory
with symmetry group

SU(3)× SU(2)× U(1). (1.1)

The individual terms in Eq. (1.1) describe, from left to right, the strong, weak
and electromagnetic interactions. Each of these interactions is mediated by one
or more gauge bosons. Gluons, the gauge bosons of SU(3), are responsible for
the coupling of color-charged particles, for instance quarks and gluons themselves.
The coupling constant of the interaction αs is, with a value of αs(MZ) ≈ 0.118,
roughly two orders of magnitude larger than the electromagnetic coupling con-
stant, also called fine-structure constant, α ≈ 0.0073. It is also 13 orders of
magnitude larger than the couplings of the weak interaction, explaining the ori-
gin of the “strong” and “weak” force terminology [8]. The weak interaction is
carried by the charged W± and the neutral Z bosons, while the electromagnetic
force is mediated by the photon. The SU(2) × U(1) term of the full symmetry
group describes the unification of the weak and electromagnetic interactions to
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Motivation Ch. 1

the so-called electroweak force. Only gravity, which is weak in relation to the
other forces, still refuses (and might possibly even permanently refuse) the quan-
tum field theory formulation that is the basis of the SM. Conceptualizing the
importance of searching for physics beyond the Standard Model (BSM) through
such methods as the one described in the present work, requires an understanding
of both the achievements and failures of the Standard Model.

The development of the SM can be seen as one of the great success stories of
physics. When the formulation of the Standard Model was finalized at the end
of the 1960s, it implied the existence of various, at that point in time, unknown
particles. All of which could be experimentally detected over the years. The dis-
covery of quarks, especially the bottom quark [9], the W± [10] and Z [11] bosons,
the top quark [12] as well as the τ neutrino [13] and finally the Higgs boson [3, 4]
have strikingly and repeatedly confirmed the predictions of the Standard Model.
To this day and after the end of run 2, which increased the integrated luminosity
of the LHC to 139 fb−1, neither ATLAS nor CMS have measured any significant
deviations from the Standard Model (see Fig. 1.1) [14, 15, 16]. One does, how-
ever, not even have to consider the absence of gravity in the SM to realize that
essential, particularly astrophysical and cosmological discoveries cannot be ex-
plained within its scope.
It is well known, for example, that ordinary matter, whose interactions are de-
scribed by the SM, makes up only≈ 5% of the total energy density of the universe.
The remaining ≈ 95% is made up of dark matter and dark energy [17], which are
both still subject to intensive study (e.g. [18, 19, 20]). Dark energy, for instance,
is implemented in the standard model of cosmology (or ΛCDM model) as a cos-
mological constant whose value cannot be directly derived within the SM [21].
But even within the realm of ordinary matter, the Standard Model of particles
physics has shortcomings. Prominent examples include the existence of neutrino
masses or baryon asymmetry. Neutrino masses are, on the one hand, not part of
the SM, but could, on the other hand, clearly be demonstrated experimentally by
measurements of neutrino oscillations [22, 23]. The Baryon asymmetry problem
describes the fact that the amount of CP violation, that enters the SM through
the CKM matrix, is not strong enough to explain the observed matter-antimatter
asymmetry in the universe [24, 25]. From a theoretical point of view, the SM is
additionally unsatisfactory with regard to various naturalness considerations. In
this context, for example, the much discussed strong CP problem (SCPP) comes
into play. While the electromagnetic interaction, due to the abelian nature of
its underlying symmetry group, is invariant under parity (P) transformations,
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Figure 1.1: Overview of different cross section measurements by ATLAS at the
LHC. The measured cross sections (blue, red and purple) are compared to the
theoretical predictions of the Standard Model. All predictions are compatible
with the experimental measurements within 2-3σ. Note that even if the total pp
cross section is left out, the SM cross sections agree with the experiment across
seven orders of magnitude. [14]

charge conjugation (C) and time reversal (T), the weak and strong interactions
do not show this behavior. In fact only the violation of the combination of all
three symmetries (CPT) is forbidden in the full SM [26]. However, while viola-
tions of all pairwise combinations of C, P and T could be observed for the weak
force, no detection of CP violation has ever been made for the strong force. This
apparent absence of strong CP violation contradicts, what is usually referred to
as, the Totalitarian Principle, namely that

“what is not forbidden [by the laws of physics] is compulsory” [27].

The Totalitarian Principle suggests that, insofar as the strong interaction actually
conserves CP, this would be accompanied by a corresponding theoretical justifica-
tion. Already in the 1970s the so-called Peccei-Quinn mechanism, was proposed,
which predicts a new pseudo-scalar particle, called Axion [28, 29]. Although the
original formulation of this mechanism has already been empirically ruled out (e.g.
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[30]), modifications and further developments are still part of current research.
The Axion is particularly interesting because it would not only solve the strong
CP problem, but also represents a suitable dark matter candidate [31, 32, 33].
All attempts to discover the Axion, however, have, so far, failed. An explanation
for the smallness of the CP violating terms of QCD and thus a solution of the
strong CP problem is still pending. In addition to the SCPP, other phenomena
that contradict the notion of naturalness, which physicists have developed over
decades and centuries, are frequently discussed in the literature. One of these
phenomena is the electroweak hierarchy problem, i.e. the question why the ob-
served mass of the Higgs boson is small compared to the Planck mass. If the SM
is considered an effective theory at relatively low scales, quantum corrections in
the calculation of the Higgs mass are quadratic in the cutoff scale of the Standard
Model [34]:

∆m2
H = −|λf |2

8π2
Λcutoff + . . . . (1.2)

Thus, assuming that the Standard Model is an effective theory and that gravita-
tional effects become relevant at the Planck scale, the magnitude of the correction
is of the order of the Planck scale itself. One way to eliminate this issue is to
assume that higher order corrections cancel the quadratic term and also each
other out. Such a fine tuning however would be equally unsettling to a physi-
cists’ mind. If the corrections individually take on values 16 orders of magnitude
[34] above the mass of the Higgs, one would not expect that just adding up these
large terms would lead to a finite result that then accidentally matches the scale
of the electroweak sector of the SM. The striking size of fine tuning, that would
be required, is equivalent to balancing a pencil as large as solar system on its tip,
when the tip is merely a millimeter wide [35]. However, the type of quadratic cor-
rections, that enter into the Higgs mass calculation, have even more far-reaching
consequences. One of which is an increased sensitivity of the Higgs mass to the
masses of heavy new particles that are predicted in extensions of the SM [34].

Requesting some degree of naturalness has long been a guiding principle in the-
oretical physics. The discovery of “unnatural” terms or parameters has always
been followed by the search for a deeper reason, which may go beyond the scope
of the SM. The apparent absence of empirical evidence for BSM physics, how-
ever, feeds the criticism and new arguments are made that nature may simply be
fine-tuned (e.g. [36]). Whether naturalness and beauty play a role in the search
for new physics or whether one takes a completely different approach, both from
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an experimental and a theoretical point of view, it is clear that the SM is not the
full story. The search for BSM physics remains a central occupation of modern
physics.
One of the approaches, that is often applied, is extending the symmetry group
of the SM. A relatively simple example, on the face of it, is the extension of the
SM gauge group by an additional local U(1) symmetry, so that the total gauge
group takes the form

SU(3)C × SU(2)L × U(1)Y × U ′(1). (1.3)

The phenomenology of such a model strongly depends on the concrete imple-
mentation of the additional U ′(1). In many cases, so-called Z ′ bosons, which
embody heavy siblings of the Z bosons of SM, are studied in this context [37].
From an experimental point of view, there are already significant limitations of
such models, which will be discussed in more detail in Ch. 4.1. In contrast to the
extension of the gauge group of the SM, a new space-time symmetry is postulated
in the context of supersymmetry (SUSY). Specifically, SUSY connects fermions
and bosons through its (spinor) generator Q (and its hermitian conjugate Q†),
that transforms a fermionic state into a bosonic state and vice versa

Q |Fermion⟩ = |Boson⟩ (1.4)
Q |Boson⟩ = |Fermion⟩ . (1.5)

Since Q is a spinor, SUSY is an extension of the Poincare group, i.e. of the sym-
metry of spacetime [38]. However, this also means that this additional symmetry
multiplies the number of particles that could, in principle, be observed. For each
boson of the SM, there would be a new fermion and for each fermion of the
SM there would be a corresponding new boson. If the symmetry is unbroken
the masses of the SM particles and their supersymmetric partners are exactly
equal [34]. However, since none of the SUSY partners have experimentally been
detected, if SUSY was to exist, it must be a broken symmetry. Different super-
symmetric models are distinguished, among other things, by the exact mechanism
of the symmetry breaking. For a long time, supersymmetric theories were the
most promising candidates for BSM physics at the TeV scale; a discovery by the
LHC was only a matter of time. However, so far the LHC has not only failed
to find any evidence for superpartners of SM particles, it has even ruled out, or
at least killed softly, some supersymmetric models like the CMSSM [39]. The
parameter space of the most widespread supersymmetric theory, the Minimal
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Supersymmetric Standard Model (MSSM), has already been severely restricted
for many of its implementations by many searches at the LHC, without any solid
indication of its existence [40].

A major reason for the success of supersymmetry in theoretical physics lies in its
potential to solve many of the problems mentioned above. By introducing new
particles (the sfermions), for example, a cancellation of the quadratic corrections
to the Higgs mass can be achieved in a natural way, as long as the masses of
the new SUSY particles do not become too large [34]. Also, the lightest stable
(and electrically neutral) particle of the MSSM, the neutralino, the lightest of
the partners of the Z boson, photon and Higgs, is a candidate for the explana-
tion of dark matter in the form of weakly interacting massive particles (WIMPs)
(e.g. [41]). A simple supersymmetric model is also considered in Ch. 4.3. At
this point, however, the theoretical shortcomings of SUSY, apart from the lack
of evidence, should not be omitted. Due to the introduction of new particles
and thus new masses and couplings as well as a mechanism for breaking SUSY,
the number of free parameters increases significantly compared to the SM. The
MSSM, for example, introduces 105 new free parameters [42]. Adding such a
large amount of new free parameters of course counteracts the desire of many
theoretical physicists to reduce the number of free parameters by studying more
fundamental theories.
Also, the solution of the hierarchy problem through SUSY depends on the fact
that the difference in the masses of the fermions and sfermions is manageable,
in order to ensure a sufficient cancellation of the correction terms in the Higgs
mass [34]. Considering the excluded parameter spaces of popular supersymmetric
theories, it becomes more and more unlikely that SUSY provides a satisfactory
explanation without introducing new fine-tuning problems. It is therefore impor-
tant to consider alternatives to supersymmetric models; among other things in
the search for an answer to one of the biggest questions of modern physics: the
nature of dark matter.
Already in the 1930s, rotational speeds of outer stars in galaxies [43] and kinetic
energies of galaxies in galaxy clusters [44, 45] were measured and both devi-
ated from the theoretical expectations. In both cases, the astrophysical objects,
i.e. stars and galaxies, behaved as if there was more mass acting through New-
ton’s theory of gravity than could be observed. Therefore, additional, dark, i.e.
non-luminous, mass would be necessary to explain the measurements. Also more
recent measurements confirm that the observable mass in the universe is not suffi-
cient to explain all gravitational phenomena. For instance, the power spectrum of
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the cosmic microwave background (CMB) radiation is strongly dependent on how
much of the energy present in the universe is made up of baryonic, i.e. ordinary,
and dark mass. The most recent measurements by Planck set the baryonic mat-
ter density at Ωb = 0.0493(6) and the cold dark matter density at Ωc = 0.265(7)

[46]. Furthermore, measurements of gravitational lensing, similar to the already
mentioned observations, have found stronger effects than could be explained by
ordinary matter alone [47].
Broadly speaking, the search for dark matter can be divided into two categories.
On the one hand, the assumption is made that dark matter is actually made of
matter, that then either consists of yet unknown elementary particles or known
matter in unusual compositions (“particle dark matter”). On the other hand,
there is the hypothesis that on very large scales gravity behaves differently than
predicted by general relativity (“modified gravity”). In the field of particle dark
matter, theories can be distinguished in which astrophysical objects that are dif-
ficult or impossible to observe serve as the cause of the additional gravitation,
from those in which new elementary particles provide the necessary mass. Espe-
cially the search for weakly interacting massive particles (WIMPs) has received
much attention both in direct and indirect detection experiments. WIMPs are
predicted by a variety of theories and models. Under certain conditions (e.g.
R-Parity conservation) this includes the above mentioned MSSM. At the LHC
the range of models studied goes from simplified models, where the dark matter
is effectively coupled to SM particles, to complete models, where the full particle
content of the model and its dynamics is studied [48]. So far, however, all of
these searches have been unsuccessful. The same is true for other candidates of
particle dark matter like the Axion. Only recently however a new kind of dark
matter candidate in the form of Bose-Einstein condensates formed by d∗(2380)

hexaquarks briefly after the big bang was proposed. Further study on this is how-
ever needed [49]. On the other hand, there are even some experimental findings
that are difficult to reconcile with a particle nature of dark matter. Such a case is
presented by the collision of two clusters of galaxies, the so-called bullet cluster.
The observation of the bullet cluster implied that the mass determined by gravi-
tational lensing was separated from the radiating visible mass after the collision
[50]. At first glance, this result seems to confirm the hypothesis that dark matter
is actually made of matter and not explained by changing the laws of gravity. On
closer inspection, however, difficulties with this interpretation arise. Simulations
of the collision speeds of galaxy clusters differ from those of the observed galaxy
clusters, making an explanation in the context of particle dark matter difficult.
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The observed collision speed of about 3000 km
s

[51] is so high that only few of the
simulated collisions can keep up. The probability of observing an event like the
bullet cluster in the framework of the models used for the simulations is in the
order of 6.4 · 10−6 [52] to 4.6 · 10−4 [53]. This, in turn, indicates that the par-
ticle dark matter model is challenged by the bullet cluster observation [54]. For
these reasons, an adjustment of the laws of gravity, also called modified gravity
or modified newtonian dynamics (MOND), is still part of active research.

Either way, the search for new physics waiting beyond the Standard Model, in
whichever form, is one of the most important activities of modern physics re-
search in general and the accelerator physics community in particular. Ever since
the LHC has started its run 1, a large number of searches for extensions of the
SM have been performed. However, none of the searches were able to identify
a persistent signal that would indicate a deviation from the SM. Instead, the
parameter spaces of many models have been successfully restricted [55]. For
example, many of the allowed masses of particles in the most studied supersym-
metric models are now at or above the TeV limit (see Fig. 1.2). Other models,
such as Technicolor [57] or the CMSSM [39], could be excluded. Higgs [58] and
top quark [59] studies have repeatedly shown how accurate the predictions of the
Standard Model actually are (see Fig. 1.3 and Fig. 1.4). But despite, or perhaps
because of, the missing indications of BSM physics, the LHC has changed the
expectations of many about what physics beyond the Standard Model looks like.
As a reaction theoretical studies have been moving away from focusing on spe-
cific models and instead increasingly embrace model-independent approaches. In
SUSY studies, for example, phenomenological models like the pMSSM-11 or the
pMSSM-19 are preferred over models with specific soft breaking terms [60, 61,
62, 63]. However, the challenge then lies in the fact that the parameter spaces of
these phenomenological models are large. Thus fitting the models in order to find
the one that is best described by the experimental data, particularly from LHC
direct searches, is computationally very demanding. For the comparison of theory
and experiment, generating Monte Carlo events and performing detector simula-
tions is required, which can collectively take up to one or more hours of CPU time
per parameter point. This means that in order to sample merely two points per
dimension in models like the pMSSM-19 with 19 free parameters, more than half
a million CPU hours would be required. An additional complication comes from
the fact that in most cases there is no unique minimum in the parameter space.
Instead several different combinations of parameter points can simultaneously ex-
plain a given set of data and therefore have to be sampled. For this reason much
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Figure 1.2: 95% CL lower limits on sparticle masses for different models and
searches as reported by ATLAS. In many cases the lower limit now exceeds the
1TeV threshold. If the masses are too large, many of the motivations for SUSY
like solving the electroweak hierarchy problem, are no longer sustainable to the
same extend. [56]

effort has gone into reducing the sampling time by for example parameterizing
the LHC results (e.g. [64]), using simplified models (e.g. [65]) or applying machine
learning methods (e.g. [66]). All of these approaches can however, depending on
the studied model, lead to flawed results. While parameterizing LHC results by
the most relevant masses of the model, for example, works well for the purpose
of giving a first approximation to the LHC likelihood, it is not appropriate to fit
or understand regions in parameter space with unusual decay topologies, which
is, for most applications, the intend of performing the fit in the first place. Con-
sequently refinements of this method, like simplified models, that add additional
information, e.g. branching ratios, to the fit, promise better performance. Vari-
ous tools, that allow fast limit setting in SUSY or vector-like quark models (e.g.
sModelS [65, 67], FastLim [68] or XQCUT [69]) are built around this idea. The
disadvantage of using simplified models is the fact that one needs to include all
possible decay chains in order to rigorously perform fits. This can however be
a challenging endeavour for realistic models with very large numbers of decay
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Figure 1.3: ATLAS cross section measurements of H → γγ (red) and H →
ZZ∗ → 4l (green) for center-of-mass energies

√
s = 7 TeV, 8 TeV, 13 TeV. Black

bars denote the combination of the measured production cross sections. The blue
curve corresponds to the theoretical SM expectation including QCD scale and
PDF uncertainties. Theory and experiment agree within 1-2σ for low center-of-
mass energies and match perfectly for

√
s = 13 TeV. [58]

Figure 1.4: Production cross sections for top quarks with and without an associ-
ated boson. All measured cross sections agree with the SM predictions. [59]

chains.
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Finally machine learning methods have been applied in the literature to predict
the LHC likelihood and event counts, that can be used to classify parameter
points as “excluded” or “allowed” using tools like CheckMATE2 [70, 71, 72].
Similar algorithms like e.g. SCYNet are able to predict the global χ2 of a set of
LHC analyses for certain models [66]. These machine learning approaches have
the advantage that once the model is trained, the execution, i.e. prediction only
take at about the order of milliseconds. This however comes in many cases at
the cost of accuracy specifically in regions that the models was not trained on or
show unexpected behaviour from the point of view of the training data.

In this work a new approach is proposed, that is based on the combination of
kinematic transformations and reweighting of existing Monte Carlo events. Once
events are generated for one parameter point, corresponding events for new pa-
rameters points are generated by the algorithm in a two step process. First kine-
matical transformations are applied to the involved momenta, then the Monte
Carlo weights of the events are readjusted. This approach can be seen as an
extension of the idea described in [73] where reweighting was employed to reuse
Monte Carlo events between different BSM models. The technique outlined in
this work presents an extension of this approach that additionally allows for
changes of particle masses from one set of Monte Carlo events to another. This is
achieved by introducing kinematical transformations that modify the momenta of
the relevant particles such that regions that were kinematically excluded for the
original masses become available. The advantage of this method is that expensive
Monte Carlo simulations for large parts of the parameter space can be bypassed,
therefore allowing for a reduction of sampling time by a factor of ≈10-100, at the
same time maintaining high accuracy.

In Ch. 2 a summary of the Monte Carlo method and the mechanics of Monte Carlo
event generation in high energy particles physics is given. Ch. 3 then presents the
description of the algorithm proposed here, including a discussion of kinematical
transformations and required reweighting factors. In Ch. 4 finally the algorithm
is applied to different processes and its results are compared to the results of an
ATLAS search at the LHC.
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Chapter 2

Monte Carlo Methods

2.1 Monte Carlo Basics

Calculations in most areas of modern physics in general and in theoretical particle
physics in particular involve complicated multidimensional integrals that cannot
be solved analytically and instead require sophisticated numerical methods. Most
of these methods rely on what is called the Monte Carlo method, that is based
on the idea of employing the generation of pseudorandom numbers and the law
of large numbers to evaluate definite integrals.
Consider the simple case of a one-dimensional integral of a real-valued function
f : D ⊆ R → R over an interval (a, b) ⊂ D. From the mean value theorem for
definite integrals it follows that the value of the integral can be written as

I =

b∫
a

dx f(x) = (b− a) ⟨f(x)⟩ , (2.1)

where

⟨f(x)⟩ ≡ E[f(x)|a < x < b] (2.2)

is the mean or expected value of f on (a, b). Monte Carlo integration now de-
scribes the process of estimating this expected value by generating a finite set of
N uniformly distributed pseudorandom points

S = {x1, . . . , xN} (2.3)
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in order to calculate the average value µN of f on S:

µN =
1

N

N∑
i=1

f(xi). (2.4)

In the literature S is often called a Monte Carlo sample and xi are called Monte
Carlo events. The (weak) law of large numbers then implies that the average
value converges to the expected value if N becomes large, i.e.

lim
N→∞

Pr (|µN − ⟨f(x)⟩ | > ϵ) = 0, for all ϵ > 0. (2.5)

One can therefore define an estimator Î for the integral in Eq. (2.1) as

I =

b∫
a

dx f(x) (2.6)

= (b− a) ⟨f(x)⟩ (2.7)

N≫1
≈ b− a

N

N∑
i=1

f(xi) =: Î . (2.8)

The estimator can be identified as the usual estimator of the expectation value
and be interpreted as the weighted average of the sample points with the weights
given by the value of the integrand at that point, i.e.

Î =
1

N

N∑
i=1

wi, wi = (b− a)f(xi). (2.9)

In most applications however it is computationally inefficient or even unfeasible
to sample the integration region uniformly, since the same amount of time is spent
sampling regions that contribute comparatively little to the overall value of the
integral as sampling dominant regions. A more sophisticated approach, that is
typically referred to as importance sampling, is to generate S from a probability
density p with

b∫
a

dx p(x) = 1 and p(x) > 0 ∀x ∈ (a, b), (2.10)

that replicates the overall behavior of the integrand. Then S contains many
points in regions with larger values of f and fewer points in regions where f is
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small.1 Using importance sampling one can write Eq. (2.1) as

I =

b∫
a

dx f(x) (2.11)

=

b∫
a

dx
f(x)

p(x)
p(x) (2.12)

= Ep

[
f(x)

p(x)

∣∣∣∣ a < x < b

]
(2.13)

N≫1
≈ 1

N

N∑
i=1

f(xi)

p(xi)
, xi ∼ p (2.14)

where Ep[·] is the expected value given probability density p. Eq. (2.9) similarly
becomes

Î =
1

N

N∑
i=1

wi, wi =
f(xi)

p(xi)
. (2.15)

One can see this equation as the general Monte Carlo integration formula in one
dimension.2 The generalization to d dimensions is straightforward and given by
the following substitutions:

f, p : D ⊂ R → R → f, p : D ⊂ Rd → R, (2.16)
(a, b) ⊂ D → Ω ⊂ D, (2.17)

dx → ddx. (2.18)

Then

I =

∫
Ω

ddx f(x⃗) (2.19)

=

∫
Ω

ddx
f(x⃗)

p(x⃗)
p(x⃗) (2.20)

= Ep

[
f(x⃗)

p(x⃗)

∣∣∣∣ a < x < b

]
(2.21)

1Generally, if arbitrary integrands are allowed, p should behave similar to the absolute value
of f , since the contribution of a given region dx ⊂ (a, b) to the integral is independent of sign
of the function in that region and p(x) > 0 on (a, b) by construction.

2Note that Eq. (2.7) and (2.9) are just the special cases of Eq. (2.13) and (2.15) with p being
a normalized uniform distribution, i.e. p(x) = u(x) = 1

b−a .
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N≫1
≈ 1

N

N∑
i=1

wi =: Îd, wi =
f(x⃗i)

p(x⃗i)
, x⃗i ∼ p. (2.22)

This equation will be the basis for the approach introduced in this work.
An important property of Monte Carlo integration is that one can estimate the
error of the approximation, that is introduced by using a finite sample size.
Eq. (2.21) describes the reduction of the integral I to an expectation value of
f(x⃗)/p(x⃗). Therefore the variance of the integral can be written as

σ2
I =

1

N
Var

[
f(x⃗)

p(x⃗)

]
(2.23)

=
1

N
E

[(
f(x⃗)

p(x⃗)
− I

)2
]

(2.24)

=
1

N

(
E

[(
f(x⃗)

p(x⃗)

)2
]
− I2

)
. (2.25)

The corresponding estimator reads

σ̂2
I =

1

N − 1

 1

N

N∑
i=1

w2
i −

(
1

N

N∑
i=1

wi

)2
 , wi =

f(x⃗i)

p(x⃗i)
. (2.26)

It should be noted that if f is strictly positive on (a, b) the choice p(x) = f(x) or
wi = 1 leads to a vanishing variance. In practice however this choice cannot easily
be made, since upon being able to generate random numbers from p in order to
integrate f one has to effectively integrate p which was chosen to be equivalent to
f . Finding a suitable probability density p is a non trivial problem. One of the
most commonly applied algorithms in this context is VEGAS. VEGAS uses an
iterative approach to reduce the difference between the target function f and a
step function p by sampling the integration region and histogramming the result
[74].
In many cases though, instead of trying to find the value of the intrgral, one is
interested in a set of events that follows the same distribution as the integrand.
This can only be achieved if

p(xi) = const.f(xi) (2.27)

or in other words

wi = const., (2.28)
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which means that all events have the same weight. Such a sample is called an
unweighted Monte Carlo sample and is usually constructed by first generating a
weighted sample as described above and subsequently unweighting the sample.
Eq. (2.26) also explicitly shows that the error of the estimate is independent
of the number of dimensions of the integral. This is the major argument for
preferring Monte Carlo integration over other numerical integration algorithms
like Simpson’s rule that require an exponentially increasing number of sample
points in multiple dimensions.

2.2 Monte Carlo Event Generation
The most relevant application of Monte Carlo integration to particle physics, for
the purposes of this work, is the calculation of cross sections for scattering pro-
cesses at the Large Hadron Collider (LHC). Therefore subsequently only proton-
proton collisions will be considered although a generalization to other hadronic
collisions is straightforward.
While the determination of cross sections themselves is often crucial, generating
sets of Monte Carlo events that can be used to study differential distributions of
the cross sections is often more interesting. The full event generation process for
hadron-hadron collisions can roughly be divided into five steps [75]:

1. Hard Process

2. Parton Shower

3. Multi-parton Interactions

4. Hadronization

5. Detector Simulation

As the proposed algorithm in Ch. 3 makes direct use of the generation of the hard
process and the parton shower, these steps will be discussed in detail. Further
descriptions of steps 3. - 5. can be found, among others, in [75], [76] and [77].

Hard Process
Scattering processes at the LHC often involve large momentum transfers above
the scale of Quantum Chromodynamics (QCD) Q > ΛQCD, which means that
for these processes the collision of the protons can be described as the scattering
of two asymptotically free partons (gluons, quarks or anti-quarks) [78, 79]. This
in turn can then be treated perturbatively and the cross section for the produc-
tion of a given final state X through the scattering of two protons in collinear
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factorization can be written as [75]

σpp→X =
∑
a,b

1∫
0

dx1

1∫
0

dx2 fa(x1, µ
2
F )fb(x2, µ

2
F )

∫
dσ̂ab→X . (2.29)

The sum runs over all possible subprocesses that include the production of the
final state through the collision of the initial state partons a and b. The parton
distribution functions (PDFs) fi(xj, µ

2
F ) describe the probability of finding par-

ton i inside proton j at a given momentum fraction xj and factorization scale
µF . The dependence of the PDFs on the factorization scale µF is determined
by the Dokshitser-Gribov-Lipatov-Alterelli-Parisi (DGLAP) equations that gov-
ern the evolution of the PDFs from a base scale µ0, usually chosen to be at the
order of 1GeV, to any scale µF [80, 81, 82]. The values of the PDFs at the base
scale must then be determined experimentally [83]. There are several different
parametrization of the PDFs that are based on partially different experimental
data. Examples include the PDFs published by the collaborations CTEQ [84]
and NNPDF [85], that were also used for the computations in Ch. 4.

The final component of Eq. (2.29) is the partonic cross section σ̂ab→X for the
production of the final state X through the scattering of two partons a and b:

σ̂ab→X =
1

2ŝ

∫
dΦn |Mab→X |2. (2.30)

Here 1
2ŝ

is the parton flux with

ŝ = (pa + pb)
2 = x1x2s (2.31)

being the center of mass energy squared of the initial state partons. The inte-
gration is performed over the Lorentz-invariant n-particle final state phase space
given by

dΦn =
n∏

i=1

d3p⃗i
(2π)32Ei

(2π)4δ(4)

(
Pin −

n∑
i=1

pi

)
, (2.32)

where Pin = pa+pb is the total partonic initial state momentum. Finally |Mab→X |2

is the process specific squared matrix element that can be calculated in pertur-
bation theory by for example using Feynman diagrams.

The generation of Monte Carlo parton level events now generally follows the
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ideas of Ch. 2.1 with the integral to be solved being the integral in Eq. (2.29).
Software packages like MadGraph5_aMCNLO [86] offer the fully automated gen-
eration of (weighted and unweighted) Monte Carlo events for nearly all processes
in the Standard Model of Particle Physics and processes for many models beyond
the Standard Model at leading and next-to-leading order. The output is then
typically provided in the Les Houches Event File (LHEF) format, that contains,
among others, information about the flavors and momenta of all particles involved
in the process [87].

Parton Shower
The simulation of the hard process is maximally inclusive and as such assumes for
example that the experimentally measured momenta of jets can sufficiently well
be described by the momenta of final state partons in the hard process. A natural
next step on top of the simulation of the hard process is therefore the addition
of information about the QCD radiation of colored initial or final state particles
in order to better describe the structure of these jets. By the definition of the
hard process the participating particles are strongly accelerated and therefore
emit radiation [75]. In the case of (anti-)quarks and gluons the emitted particles
also hold an SU(3) charge and therefore emit new QCD radiation themselves. A
cascade of gluons and (anti-)squarks is produced where at each emission the scale
of the emitted partons decreases until non-perturbative effects become important
[75, 88]. The final result then is a shower of (anti-)quarks and gluons, i.e. partons
- hence the name parton shower.
Essentially parton showers can be seen as iterative branchings of partons or, as it
is typically modelled in modern Monte Carlo event generators, color dipoles [89].
Common descriptions of parton showers start by discussing parton branchings
in the collinear limit for which it can be shown that the cross section factorizes
independently of the process producing the partons in the first place. If the
process before the branching has n final state particles, the cross section after the
branching in leading order can be written as [88]

dσn+1 =dσn
αs

2π

dθ2

θ2
dz dϕ Pba(z, ϕ), (2.33)

where θ is the angle between the partons b and c produced by the branching of
parton a, ϕ is the azimuthal angle of the splitting plane and z is the fraction of
energy that the emitted particle b takes from the initial particle a. The functions
Pba(z, ϕ) are called splitting functions and can be found in standard textbooks, e.g.
[90]. The incorporation of soft gluon emissions is less straight forward since the
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above factorization property of the cross section no longer holds. Instead merely
the matrix element itself factorizes and therefore interference terms between dia-
grams of emissions from different partons become relevant when calculating the
squared matrix element. Fortunately one can avoid these difficulties by ordering
the parton shower branchings in some defined scale that describes the angular
separation of the gluon and the emitting parton, e.g. the opening angle θ, the
transverse momentum of the gluon k⊥ or its virtuality q2. This is due to the
fact that gluon emissions from different partons in the non-collinear region are
coherent and thus the gluons can only see the total SU(3) charge of the process.
This means that it is irrelevant which parton emitted the gluon and the branching
can be described as if the gluon was emitted by a particle with the total mass
and color of all partons [89]. Given this kind of ordering and Eq. (2.33), one can
derive the branching probability between virtuality q2 and q2 +dq2 of a parton a

into two partons b and c [75]:

dPa =
αs

2π

dq2

q2

1−Q2
0/q

2∫
Q2

0/q
2

dz Pba(z), (2.34)

whereQ0 is the low energy cutoff of the parton shower at which further branchings
are physically not resolvable and Pba(z) are the spin averaged splitting functions3

that can be found for example in [89] or [90]. In order to be able to use the Monte
Carlo method for the production of parton showers however, the probability den-
sity for a new branching at a given scale q2 is needed. This probability density is
the derivative of the probability ∆a(Q

2, q2) that parton a does not emit any QCD
radiation above a given q2. Here Q2 is the highest possible branching scale for
parton a. It can be shown that ∆a(Q

2, q2) follows a simple differential equation
[75]:

d∆a(Q
2, q2)

dq2
= ∆a(Q

2, q2)
dPa

dq2
. (2.35)

Inserting Eq. (2.34) and solving the differential equation yields [75]

∆a(Q
2, q2) = exp

−
Q2∫

q2

dk2

k2

αs

2π

1−Q2
0/k

2∫
Q2

0/k
2

dz Pba(z)

 . (2.36)

3Note that in this notation the regular and the spin averaged splitting function only differ
in whether the azimuthal angle ϕ is given as an argument or not.
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From this the desired probability distribution can be found by calculating the
right-hand side of Eq. (2.35). By repeatedly sampling from this probability dis-
tribution, each time decreasing the scale of the branching, a cascade of partons
is created.

Algorithms that are based on this idea or in modern cases the branching of color
dipoles, are implemented in a variety of different software libraries [91, 92, 93].
Given the output of the simulation for the hard process these libraries can be
used to add a parton shower “on top”. The result can then be stored in the
HEPMC file format [94]. Details about the contained information and structure
of this format are highly relevant to the algorithm proposed in Ch. 3 and will be
discussed there.
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Chapter 3

Reusing Events in Parameter
Scans

3.1 General Idea

The algorithm proposed in this work can be thought of as a generalization of
the importance sampling method in general, as described in Ch. 2.1, and of the
methods described in [73] in particular.
Importance sampling is useful in cases where the integrand can be evaluated effi-
ciently and it is computationally not viable to generate the Monte Carlo sample
from a uniform distribution. In essence importance sampling enables the utiliza-
tion of a set of phase space points S that were generated from a function f to
calculate the integral over a different function f ′. A natural generalization of
this idea would consider whether one can use a Monte Carlo sample S that was
generated from some (unnormalized) function f on a phase space Ω in order to
calculate the integral over a different (unnormalized) function f ′ on a different
phase space Ω′. The question then is, given

xi ∼ f and
∫
Ω

dx f(x) = σ, (3.1)

is it possible to determine the value of

σ′ =

∫
Ω′

dx′ g(x′), (3.2)

where g : Ω′ :→ R is a given function that can be different from f? To answer
this question one can proceed just as in the case of normal importance sampling
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only introducing a differentiable transformation t : Ω → Ω′ from the old phase
space Ω to the new phase space Ω′. For a one-dimensional integral this means:

σ′ =

∫
Ω′

dx′ g(x′) (3.3)

=

∫
Ω′

dx′ g(x
′)

f(x)
f(x) (3.4)

=

∫
Ω

dx J(x)
g(t(x))

f(x)
f(x), J(x) =

dt(x)

dx
(3.5)

=

∫
Ω

dx J(x)
g(t(x))

f(x)

(
σf̂(x)

)
,

∫
Ω

dx f̂(x) = 1 (3.6)

= σ

∫
Ω

dx J(x)
g(t(x))

f(x)
f̂(x) (3.7)

= σEf̂

[
J(x)

g(t(x))

f(x)

∣∣∣∣x ∈ Ω

]
(3.8)

N≫1
≈ σ

1

N

N∑
i=1

J(xi)
g(t(xi))

f(xi)
, xi ∼ f. (3.9)

Here the variable transformation

x′ = t(x), (3.10)
dx′ = dx J(x) (3.11)
Ω′ = t(Ω) (3.12)

with the Jacobian J(x) was introduced in the third line. One can therefore use
a set of (unweighted) phase space points that are distributed according to f and
reweight each point with

wi = J(xi)
g(t(xi))

f(xi)
(3.13)

such that

(t(xi), wi) ∼ g. (3.14)

Note that in order for the derivation to hold f is required to be strictly positive
on Ω or else f̂ cannot be a probability density.
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The generalization to d dimensions is straightforward and given by

σ′ =

∫
Ω′

ddx⃗′ g(x⃗′) (3.15)

= σEf̂

[
J(x⃗)

g(t(x⃗))

f(x⃗)

∣∣∣∣ x⃗ ∈ Ω

]
(3.16)

N≫1
≈ σ

1

N

N∑
i=1

wi, wi = J(x⃗i)
g(t(x⃗i))

f(x⃗i)
, x⃗i ∼ f, (3.17)

with the Jacobian of the transformation

J(x⃗) =

∣∣∣∣∂x⃗′

∂x⃗

∣∣∣∣ . (3.18)

If one was to apply the procedure outlined in the previous chapter to LHC scat-
tering processes, one needs to determine what the underlying integral is that one
wants to solve. That way it can be seen what the weights of the Monte Carlo
events are. As the quantity of interest is the hadronic cross section σ one should
start there:

σ =
∑
a,b

1∫
0

dx1

1∫
0

dx2 fa(x1)fb(x2)

∫
dσ̂ab, (3.19)

where σ̂ab is the partonic cross section of the respective subprocess with initial
partons a and b:

dσ̂ab =
1

2ŝ

∫
dΦn |Mab|2, (3.20)

where dΦn is the n particle Lorentz invariant phase space. One still has to show
that the integrand is strictly positive in the entire phase space. The integrand
can be written as

fa(x1)fb(x2)
1

2ŝ
Φ|Mab|2. (3.21)

Since the PDFs, the flux and the squared matrix element are positive by con-
struction, the only non-trivial piece is to show that the finite part of the phase
space integral is positive. Consider the differential n particle phase space

dΦn =
n∏

i=1

d3p⃗i
(2π)32Ei

(2π)4δ(4) (Pin − p1 − . . .− pn) . (3.22)
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As this expression is Lorentz-invariant it can be evaluated in the center-of-mass
frame of the initial state partons where

Pin = (
√
ŝ, 0⃗ ). (3.23)

Then the spacial part of the δ-function can be used to perform the integral over
p⃗n, i.e.

dΦn =
n−1∏
i=1

d3p⃗i
(2π)32Ei

1

(2π)32En

(2π)4δ
(√

ŝ− E1 − . . .− En

)
(3.24)

=
n−1∏
i=1

|p⃗i|d|p⃗i|d cos θi dϕi

(2π)32Ei

2π

2En

δ
(√

ŝ− E1 − . . .− En

)
, (3.25)

where E2
i =

√
m2

i + |p⃗i|2 and

En =
√
m2

n + |p⃗n|2 =
√

m2
n + (p⃗1 + . . .+ p⃗n−1)2. (3.26)

Rewriting the integration measure in terms of the energies yields

dΦn =
n−1∏
i=1

√
E2

i −m2
i dEi d cos θi dϕi

2(2π)3
2π

2En

δ
(√

ŝ− E1 − . . .− En

)
. (3.27)

One can now execute the δ-function to remove the integration over E1:

δ (g(E1)) =
∑
k

δ(E1 − Ek)

|g′(Ek)|
, g(E1) =

√
ŝ− E1 − . . .− En. (3.28)

This is strictly positive as each term is strictly positive. For 2 → 2 processes one
can explicitly calculate the phase space as

dΦ2 =
dp⃗3

(2π)32E3

dp⃗4
(2π)32E4

(2π)4δ(4) (pin − p3 − p4) (3.29)

=
dp⃗3

(2π)22E32E4

δ
(√

ŝ− E3 − E4

)
(3.30)

=
r2dr d cos θ dϕ

(2π)22E32E4

δ

(√
ŝ−

√
r2 +m2

3 −
√

r2 +m2
4

)
(3.31)

=
r2dr d cos θ dϕ

(2π)22E32E4

δ

(
r − λ

1
2 (ŝ,m2

3,m
2
4)

2
√
ŝ

)
r

√
ŝ

E3E4

(3.32)

=
d cos θ dϕ

16π2

r√
ŝ

(3.33)
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=
d cos θ dϕ

16π2

λ
1
2 (ŝ,m2

3,m
2
4)

2ŝ
, (3.34)

which demonstrates the positivity explicitly. Here λ is the so-called Källén func-
tion, given by

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (3.35)

For equal mass two particle final states with m3 = m4 = m this can be further
simplified to

d cos θ dϕ

16π2

λ
1
2 (ŝ,m2

3,m
2
4)

2ŝ
=

d cos θ dϕ

32π2

√
1− 4m2

ŝ
. (3.36)

The total weight is therefore in this case given by

wab = fa(x1)fb(x2)
1

2ŝ

λ
1
2 (ŝ,m2

3,m
2
4)

2ŝ
|Mab|2. (3.37)

The challenge now is to find a transformation that keeps the statistical error in
Eq. (2.23), i.e. the variation of the weights, small. That means the transformation
minimizes the influence of the reweighting, while still fulfilling the conditions of
the derivation particularly the condition that

Ω′ = t(Ω). (3.38)

If one could find a transformation that perfectly maps the old integrand onto the
new integrand, the new sample would be distributed according the new integrand
and the weights would be constant. In this case the error is minimized. It is
therefore desirable to use a transformation that maps the old integrand to a
function that is as close as possible to the new integrand. The solution proposed
in this work is presented in Ch. 3.2.
The general idea, in summary, is to first transform the integration variables of
the integral in Eq. (3.19), then apply momentum conservation, where feasible, to
determine the final states of the hard process, the parton shower and possibly
decays. Finally one has to reweight each event according to Eq. (3.13). Using this
method it is possible to take Monte Carlo events for a given process in a given
physics model and use these events to analyze a different parameter point of the
same model. Unlike the method described in [73] though, this method allows for
changes in particle masses and is therefore an interesting candidate for the usage
within programs like CheckMATE2 [72].
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3.2 Kinematical Transformations

The idea of using kinematical transformation along reweighting to generate events
for a different model parameter point is at the heart of the algorithm introduced
in the present work. Transforming the momenta of the involved particles in a
Monte Carlo event allows to extend the available phase space beyond what the
original event was generated for.
The kind of kinematical transformations proposed here, make use of both de-
tailed knowledge of the physical processes underlying the generation of the hard
event and momentum conservation beyond the hard event. Two concrete trans-
formations are introduced in Ch. 3.2.1. One transformation, that is derived
in Ch. 3.2.1.1, is physically particularly interesting, as it does not change the
lab frame of the considered process. A second transformation is discussed in
Ch. 3.2.1.2, that, in contrast to the first, is bijective and therefore always fulfills
the requirements laid out in Ch. 3.1.
Once the transformation of the hard process is understood, Ch. 3.2.2 describes
how to exploit momentum conservation to propagate the transformations from
the hard process to decay products, parton showers and jets.

3.2.1 Hard Process

The integration variables for the hard process can be read from Eq. (3.19) and
Eq. (3.20) and are given by the momentum fractions x1 and x2 of the initial state
partons as well as the phase space variables, i.e. the angles and energies of the
final state particles that are consistent with momentum conservation. In most
hard processes, be it SM or BSM processes, the immediate final state, i.e. the
direct products of the initial state parton scattering, consists of two particles.
The discussion of finding a suitable transformation in this chapter will therefore
be restricted to 2-particle final states. In this case the phase space only consists
of the angles of one of the final state particles. A first assumption of the below
transformations is that all angles in the center-of-mass frame are constant under
mass changes (see also Ch. 3.2.2). This obviously leads to errors if for example
spin correlations are present and will have to be accounted for when determining
reweighting factors.
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3.2.1.1 Boost Invariant Transformations

Since, as described above, all angles of the final state momenta are kept constant
and one is ultimately interested in the transformed final state in the laboratory
frame of reference (“lab frame”), a natural approach would be to require the
transformation to leave the lab frame unchanged. This essentially means that
the boost between center-of-mass frame and lab frame is the same in the old and
the new event. The boost, as determined by the boost vector b⃗, shall therefore
be invariant under the transformation. In general boosts between center-of-mass
frames and lab frames play an important role. A brief overview of the relevant
formulas is therefore given in Appendix A.
The total momentum in the lab frame before the parton shower is given by

q = (x1 + x2, 0, 0, x1 − x2)

√
s

2
(3.39)

and so the corresponding boost vector is given by

b⃗ =
1

Eq

q⃗ =

(
0, 0,

x1 − x2

x1 + x2

)
. (3.40)

Note that this implies that the boost vector is uniquely determined by the polar
angle of the corresponding point (x1, x2) in the x1-x2-plane. This will be impor-
tant later.
In the two-dimensional subspace of the integration region that one gets by fixing
the phase space angles, the general form of the transformation t : (0, 1)2 → (0, 1)2

is given by

t : (x1, x2) 7→ (x′
1, x

′
2). (3.41)

Under the assumption that x1 and x2 can be transformed independently this
reads

x′
1 = t1(x1) (3.42)

x′
2 = t2(x2). (3.43)

Thus invariance of the boost vector implies

t1(x1)− t2(x2)

t1(x1) + t2(x2)
=

x1 − x2

x1 + x2

(3.44)

⇔ (t1(x1)− t2(x2))(x1 + x2) = (t1(x1) + t2(x2))(x1 − x2) (3.45)
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⇔ 2x2t1(x1) = 2x1t2(x2) (3.46)

⇔ t1(x1)

x1

=
t2(x2)

x2

. (3.47)

As x1 and x2 are arbitrary and independent numbers in (0, 1) the variation of e.g.
x2 and simultaneous fixing of x1 cannot change the right-hand side (RHS) as x1

is fixed and the left-hand side (LHS) is therefore constant. This means that both
sides of the equation must be constant and thus

t1(x1)

x1

=
t2(x2)

x2

= a, (3.48)

where1 a ∈ R. It follows that

t1(x1) = ax1, t2(x2) = ax2 (3.49)
⇒t1 = t2 = t and t(xi) = axi. (3.50)

Hence the transformation must be linear if one assumes the decoupling of the
transformation described in Eq. (3.43).
One can now look at what happens if the transformations are not independent.
Then

x′
1 = t1(x1, x2), (3.51)

x′
2 = t2(x1, x2). (3.52)

The invariance of the boost vector again implies

t1(x1, x2)

t2(x1, x2)
=

x1

x2

. (3.53)

Eq. (3.53) can be rewritten in polar coordinates with

x1 = rx cos(ϕx), (3.54)
x2 = rx sin(ϕx), (3.55)

x′
1 = t1(x1, x2) = rt(rx, ϕx) cos(ϕt(rx, ϕx)), (3.56)

x′
2 = t2(x1, x2) = rt(rx, ϕx) sin(ϕt(rx, ϕx)), (3.57)

1A more specific restriction of the allowed values for a follows below.
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to arrive at

tan(ϕt) = tan(ϕx) (3.58)
⇒ ϕt = nπ + arctan(tan(ϕx)) = n′π + ϕx, (3.59)

where n and n′ are arbitrary integers. Since x1 and x2 as well as x′
1 and x′

2 are
between 0 and 1, the angle of the new vector t(x1, x2) must be contained in the
interval (0, π

2
) and therefore be equal to the angle of the old vector (x1, x2). This

means that one can write

t(x1, x2) = (rt cos(ϕt), rt sin(ϕt)) (3.60)
= (rt cos(ϕx), rt sin(ϕx)) (3.61)
= rt(cos(ϕx), sin(ϕx)) (3.62)

= rt
1

rx
(x1, x2) (3.63)

= a (x1, x2), a ∈ R+. (3.64)

The last equality follows from the fact that rx is a given number and rt is not
restricted by Eq. (3.53) and is therefore arbitrary on R+. The determination of
the corresponding Jacobian J of the transformation is trivial and yields

J = a2. (3.65)

One can conclude at this point that the invariance of the boost vector implies a
linear transformation of the inputs. This linearity can lead to problems when the
final state masses are changed and the hard process is already strongly boosted
(i.e. x1 or x2 is close to 1). In this case there might not be enough phase space
left for the new masses. Since

x′
1 = ax1 and x′

2 = ax2, (3.66)

there is an upper limit to a that is given by

amax = min
(

1

x1

,
1

x2

)
. (3.67)

Note that amax depends on x1 and x2 and is not a global constant but must be
determined on an event by event basis.
Now for the transformation to yield physical results one has to guarantee that the
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center-of-mass energy of the new initial state is above the production threshold
of the new final state, i.e.

√
ŝ′ > m′

1 +m′
2 (3.68)

or

amax
√
ŝ > m′

1 +m′
2. (3.69)

This is however not necessarily always the case. The available phase space for

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.04

0.08

0.12

0.16

0.20

x 2

max < m′
1 + m′

2

s

Originally Available Phase Space
New Available Phase Space
Forbidden Region

Figure 3.1: Sketch of the transformation of the kinematically allowed region in
(x1, x2)-space for increasing final state masses. In order to produce larger fi-
nal state masses, the kinematically allowed region shrinks and moves towards
the top right corner (dark blue to light blue). The additional condition that
amax

√
ŝ < m′

1 + m′
2 implies that for the hatched region there is no correspond-

ing point in the new allowed region (light blue), which means that these points
must be transformed differently. Note that the plot is strongly compressed in the
x2 dimension in order to better display the effect. Consequently an analogous
forbidden region also exists along the x2-axis, that is not shown here.
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the original parameter point with masses m1 and m2 is determined by Eq. (3.68):

√
ŝ > m1 +m2 (3.70)

⇒ x2(x1) >

(
m1 +m2√

s

)2
1

x1

. (3.71)

The same inequality holds for the primed quantities. In order to understand
where the region in the x1-x2-plane lies, where Eq. (3.69) is not true one can,
since Eq. (3.69) is symmetric under x1 ↔ x2, without loss of generality consider
the case

x1 > x2. (3.72)

Then

amax = min

(
1

x1

,
1

x2

)
=

1

x1

. (3.73)

Inserting this into the inverse of Eq. (3.69) yields

amax
√
ŝ < m′

1 +m′
2 (3.74)

⇔ 1

x1

√
x1x2 <

m′
1 +m′

2√
s

(3.75)

⇔ x2

x1

<

(
m′

1 +m′
2√

s

)2

(3.76)

⇔ x2 <

(
m′

1 +m′
2√

s

)2

x1. (3.77)

The transformation can therefore not be performed for all (x1, x2)−combinations
which lie in the intersection of Eq. (3.77) and Eq. (3.71). The situation is depicted
in Fig. 3.1.
Obviously a corresponding “forbidden” region also exists in the case x2 > x1,
that can be determined by replacing x1 and x2 in the above inequalities. In
cases, where the original event lies in this region, there is, as described above, no
other choice but to introduce a boost by transforming x1 and x2 differently. In
cases where the linear transformation is possible (these cases typically make up a
large majority as long as the mass changes are reasonable), the approach chosen
to determine the constant of the linear transformation a consists of requesting
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that the distance to threshold is constant under the transformation, i.e.
√
ŝ′

m′
fs
=

√
ŝ

mfs
(3.78)

⇔
√
x′
1x

′
2s

m′
fs

=

√
x1x2s

mfs
(3.79)

⇔
√
a2x1x2s

m′
fs

=

√
x1x2s

mfs
(3.80)

⇒ a =
m′

fs
mfs

, (3.81)

where mfs is the final state mass. In the case of s-channel production, mfs corre-
sponds to the invariant mass of the mediator. For t- and u- channel production
mfs is the sum of the masses of the produced particles.
If a is too large, i.e. ax1 > 1 or ax2 > 1 or in other words a > amax(x1, x2), the
maximal a = amax − ϵ is chosen.

In cases where

(ax1 > 1 or ax2 > 1) and amax
√
ŝ < m′

fs (3.82)

a boost has to be introduced as there is not enough phase space left for the new
final state to be produced on-shell even at rest. It is clear that for points in the
forbidden region, a boost-less transformation is no longer a viable option. Instead
x1 and x2 must be transformed differently. A possible transformation would be

x′
1 = 1− ϵ, (3.83)

x′
2 =

(
m′

fs√
s

)2

+ δ, (3.84)

where ϵ and δ are introduced for numerical purposes and should be chosen such
that both x′

1 and x′
2 are contained in the available region of the numerical im-

plementation of the parton density function, that is used. In order for the new
point (x′

1, x
′
2) to be in the allowed region one requires that√

x′
1x

′
2s > m′

fs (3.85)

⇔ δ >

(
m′

fs√
s

)2(
1

(1− ϵ)2
− 1

)
. (3.86)

As the new point is on the boundary of the allowed region this corresponds to
producing the particles at threshold. The ansatz in Eq. (3.83) and Eq. (3.84) is
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therefore the transformation that introduces the smallest boost possible.
In order to estimate the severity of the problem one can determine the relative
size of the problematic region

R =
2
∫ 1

x∗
1
dx1

(
c′x1 − c

x1

)
∫ 1

c
dx1

(
1− c

x

) , (3.87)

where x∗
1 is the x1−coordinate of the intersection between the boundary of the

originally available phase space and the forbidden region. The coefficients c(′) are
given by

c(′) =

(
m

(′)
1 +m

(′)
2

)2
s

=:
m

(′)2
fs
s

. (3.88)

Hence

c′x∗
1 =

c

x∗
1

⇒ x∗
1 =

√
c

c′
=

mfs

m′
fs
. (3.89)

Solving the integrals in Eq. (3.87) and inserting Eq. (3.89) yields

R =
c′ − c(1− ln c

c′
)

1− c(1− ln(c))
(3.90)

=

m′2
fs

m2
fs
−
(
1− ln

(
m2

fs
m′2

fs

))
s

m2
fs
−
(
1− ln

(
m2

fs
s

)) (3.91)

=

m′2
fs

m2
fs
−
(
1 + ln

(
m′2

fs
m2

fs

))
s

m2
fs
−
(
1 + ln

(
s

m2
fs

)) , (3.92)

for m′
fs > mfs.

Examples for values of R in practice are shown in Fig. 3.2. Each curve belongs to
a different starting point of a parameter scan in a supersymmetric model. In the
considered process pairs of squarks with mass mq̃ are produced, that ultimately
decay into neutralinos. The final state mass in this case is given as mfs = 2mq̃.
One can clearly see that if the mass changes stay within reasonable bounds, R is
around or below the 1% mark. In the worst case, the problematic region makes
up about 4.7% of the total available phase space. This large value corresponds
to more than a tripling of the squark mass.
Obviously physical events are not distributed uniformly in the x1-x2-plane and
large values for x1 and x2 are suppressed by the PDFs. One can therefore interpret
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1.0 1.5 2.0 2.5 3.0
m′

fs
mfs

1%

2%

3%

4%

5%
R

(mq, m 0
1) = (1500, 100) GeV

(mq, m 0
1) = (1300, 500) GeV

(mq, m 0
1) = (525, 500) GeV

Figure 3.2: Relative size of the region where a linear transformation is kinemati-
cally impossible vs. m′

fs
mfs

for different starting points in terms of squark and neu-
tralino masses of the parameter scan from Ch. 4.4. Since the considered process
is pair production the final state mass is given as m(′) = 2m

(′)
q̃ . The maximum of

R is reached for transforming the squark mass from 525GeV to 1675GeV (green
dash-dotted curve). In this case the relative size of the problematic region is
≈ 4.7%. In practice however there will be a smaller percentage of events, that
need ancillary treatment since the problematic region corresponds to a situation
in which one of the initial partons is strongly boosted, which is suppressed by the
PDFs.

R as the upper limit for the percentage of events that cannot be transformed using
the simple linear transformation.

3.2.1.2 Bijektive Transformations

As the transformations described in the previous chapter are not complete, i.e.
there does not exist a valid transformation t(x1, x2) for every point (x1, x2), one
needs to think about other transformations that compensate for this shortcoming.
As described above, the available phase space in the x1-x2-plane is bounded by
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the function

x2(x1) =
m2

fs
s

1

x1

. (3.93)

As the final state mass increases (decreases) the available phase space shrinks
(grows). In order to guarantee that there is a valid transformed phase space
point for each original phase space point, one can demand that the distance to the
boundary of the available phase space stays constant under the transformation,
i.e. ∣∣∣(x1

x2

)
−
(
1
1

)∣∣∣∣∣(a
b

)
−
(
1
1

)∣∣ !
=

∣∣∣(x′
1

x′
2

)
−
(
1
1

)∣∣∣∣∣(a′
b′

)
−
(
1
1

)∣∣ . (3.94)

Here (a, b) and (a′, b′) are the intersection of the line g going through (1, 1),
(x1, x2) and (x′

1, x
′
2). This line is given by

g(x) = 1− 1− x2

1− x1

(1− x). (3.95)

A sketch of this approach is shown in Fig. 3.3. Using that all points lie on g,
Eq. (3.94) takes the form

(1− x′
1)

2 + (1− g(x′
1))

2 =
(1− a′)2 + (1− g(a′))2

(1− a)2 + (1− g(a))2
[
(1− x1)

2 + (1− g(x1))
2
]
.

(3.96)

Inserting g into the left-hand side yields

(1− x′
1)

2 + (1− g(x′
1))

2 = (1− x′
1)

2

(
1 +

(
1− x2

1− x1

)2
)

(3.97)

= (1− x′
1)

2 (1− x1)
2 + (1− x2)

2

(1− x1)2
. (3.98)

The intersections (a(′), b(′)) are given by finding the intersection between g and
the phase space boundaries, i.e.

c(′)

a(′)
= 1− 1− x2

1− x1

(1− a(′)) (3.99)

⇒ a(′) =
x1 − x2 + u(′)

2(1− x2)
, (3.100)
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where u(′) is a symmetric function of x(′)
1 and x

(′)
2

u(′) =
√

(x1 − x2)2 + 4c(′)(1− x1)(1− x2). (3.101)

The solution to Eq. (3.99) with a negative sign of u(′) corresponds to the unphys-
ical intersection for x(′)

1 , x
(′)
2 < 0 and can thus be ignored. Finding b(′) can then

easily be done by inserting Eq. (3.100) into g:

b(′) = g(a(′)) =
x2 − x1 + u(′)

2(1− x1)
. (3.102)

The first factor on the right-hand side of Eq. (3.96) can thus be written as

(1− a(′))2 + (1− b(′))2 =
(1− x1)

2 + (1− x2)
2

4(1− x1)2(1− x2)2
(2− x1 − x2 − u(′))2 (3.103)

⇒ (1− a′)2 + (1− g(a′))2

(1− a)2 + (1− g(a))2
=

(2− x1 − x2 − u′)2

(2− x1 − x2 − u)2
. (3.104)

Therefore the transformation is given by

(1− x′
1)

2 (1− x1)
2 + (1− x2)

2

(1− x1)2
=

(2− x1 − x2 − u′)2

(2− x1 − x2 − u)2
[
(1− x1)

2 + (1− g(x1))
2
]

(3.105)

⇔ (1− x′
1)

2

(1− x1)2
=

(2− x1 − x2 − u′)2

(2− x1 − x2 − u)2
(3.106)

⇔ 1− x′
1

1− x1

=
2− x1 − x2 − u′

2− x1 − x2 − u
(3.107)

⇔ x′
1 = 1− (1− x1)

2− x1 − x2 − u′

2− x1 − x2 − u
. (3.108)

Introducing a function v(x1, x2) with

v(x1, x2) =
2− x1 − x2 − u′

2− x1 − x2 − u
, (3.109)

and remembering that x′
2 = g(x′

1) the transformation takes its final form:

x′
1 = 1− (1− x1)v(x1, x2), (3.110)

x′
2 = 1− (1− x2)v(x1, x2). (3.111)
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The final piece of the transformation is the Jacobian:

∂x′
1

∂x1

= v − (1− x1)
∂v

∂x1

, (3.112)

∂x′
2

∂x2

= v − (1− x2)
∂v

∂x2

, (3.113)

∂x′
1

∂x2

= −(1− x1)
∂v

∂x2

, (3.114)

∂x′
2

∂x1

= −(1− x2)
∂v

∂x1

. (3.115)

And therefore

∂x′
1

∂x1

∂x′
2

∂x2

=

[
v − (1− x1)

∂v

∂x1

] [
v − (1− x2)

∂v

∂x2

]
(3.116)

= v2 + (1− x1)(1− x2)
∂v

∂x1

∂v

∂x2

− v

(
(1− x1)

∂v

∂x1

+ (1− x2)
∂v

∂x2

)
,

(3.117)
∂x′

1

∂x2

∂x′
2

∂x1

= (1− x1)
∂v

∂x2

(1− x2)
∂v

∂x1

(3.118)

= (1− x1)(1− x2)
∂v

∂x1

∂v

∂x2

. (3.119)

The Jacobian is then

⇒ J = v2 − v

(
(1− x1)

∂v

∂x1

+ (1− x2)
∂v

∂x2

)
. (3.120)

The second term can be shown to vanish in a rather lengthy but simple series of
steps, which can be found in Appendix B. Hence the Jacobian can we written in
the following simple form:

J = v2. (3.121)

In summary, the full transformation is given by

x′
1 = 1− (1− x1)v(x1, x2), (3.122)

x′
2 = g(x′

1) = 1− (1− x2)v(x1, x2), (3.123)
J = v2(x1, x2). (3.124)
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Figure 3.3: A bijective transformation from the original allowed phase space (area
above the blue line) to the phase space for larger final state mass m′

fs > mfs (area
above the orange line). The relative distance of a point to the boundary of the
allowed phase space boundary is kept constant under the transformation. Note
that the notation here deviates slightly from the notation in the text. The points
(x

(′)
1 , x

(′)
2 ) in the text are called (x

(′∗)
1 , x

(′∗)
2 ) here.
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3.2.1.3 In Practice

While the transformation from Ch. 3.2.1.2 avoids the problems described above
for the boost invariant transformation, the linear transformation has the advan-
tage of better reproducing the Breit-Wigners of resonances without the need for
additional reweighting. In general, while the bijective transformation is math-
ematically superior, the transformation from section 3.2.1.1 better reproduces
physical distributions at the price of producing unphysical events (e.g. xi > 1) un-
der the described circumstances. Therefore, in practice, mixing both approaches
appears to be a natural choice. The proposed combination here is to use the
linear transformation in as many cases as possible and to use the bijective trans-
formation in cases where the former fails. This means

x′
i = t(xi) =

axi, if 0 < ax1 < 1, 0 < ax2 < 1

1− (1− xi)v(x1, x2), else.
(3.125)

The scaling factor a is the ratio of the new and old final state masses

a =
m′

fs
mfs

. (3.126)

For the production of a heavy s-channel mediator this corresponds to the ratio
of the new and old off-shell masses M and M ′, i.e.

a =
M ′

M
, (3.127)

where M ′ is defined such that the “off-shellness” of the mediator is kept constant:

M ′ −m′

Γ′ =
M −m

Γ
(3.128)

⇔ M ′ = m′ +
Γ′

Γ
(M −m), (3.129)

where m and m′ are the respective on-shell masses. This way the old and the
new mass are on the same position of the Breit-Wigner distribution.
For two final state particles in u− or t−channel production the scaling factor
becomes

a =
m′

1 +m′
2

m1 +m2

. (3.130)

The calculation of the Jacobian must then also be performed on an event by event
basis using either Eq. (3.65) or Eq. (3.124) depending on the applied transforma-
tion.

Page 47



2-Particle Final States Ch. 3.2.2.1

3.2.2 Momentum Conservation

As outlined in Ch. 3.1, once a transformation has been performed, momentum
conservation in the center-of-mass frame is employed in order to determine the
final state momenta. This procedure includes, but is not limited to, the hard
process. In fact it is an essential tool for the determination of the momenta
of decay products of final state particles or of parton shower emissions. The
fundamental idea is to utilize the fact that the original event provides a solution
to the momentum conservation equations that can be built upon in order to
find a new solution for the modified momentum conservation equations from the
transformed event.

3.2.2.1 2-Particle Final States

Consider the collision of two partons with momenta k1 and k2 resulting in the pro-
duction of two different particles with momenta p1 = (E1, p⃗1) and p2 = (E2, p⃗2).
In their center-of-mass frame momentum conservation implies

√
ŝ = E1 + E2, (3.131)

k⃗1 + k⃗2 = p⃗1 + p⃗2 = 0⃗. (3.132)

In the present case k1 and k2 are given whereas p1 and p2 are to be determined.2

Including the two on-shell conditions for the final state particles, one has to solve
a system of six equations for eight variables. As this cannot be done uniquely,
additional assumptions have to be made. If mass contributions to the squared
matrix element are negligible, the direction of the final state particles in their
center-of-mass frame is independent of the mass of the particles. One can then
treat the directions of the final state particles as given, which reduces the number
of variables to 4, namely the energies E1 and E2 and norms r1 and r2 of the three-
momenta of p⃗1 and p⃗2. Using the on-shell conditions, Eq. (3.131) and Eq. (3.132)
can be written as

√
ŝ =

√
r21 +m2

1 +
√

r22 +m2
2, (3.133)

r1e⃗1 + r2e⃗2 = 0⃗, (3.134)

2Note that the problem here is formulated in a way that best describes the hard process,
i.e. the scattering of two partons scattering and producing a 2-particle final state. The logic
however is equivalent for example in the case of decays with

√
ŝ corresponding to the mass of

the decaying particle.
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with e⃗i =
p⃗i
ri

being the unit vector in the direction of p⃗i. Equation (3.134) implies

r1 = r2 =: r (3.135)

such that the problem can be reduced to one equation for r:

√
ŝ =

√
r2 +m2

1 +
√

r2 +m2
2. (3.136)

The solution can be expressed using the Källén function λ and reads

r =
λ

1
2 (ŝ,m2

1,m
2
2)

2
√
ŝ

=

√
ŝ2 +m4

1 +m4
2 − 2ŝm2

1 − 2ŝm2
2 − 2m2

1m
2
2

2
√
ŝ

. (3.137)

The new final state momenta in the center-of-mass frame can thus be expressed
as

p′i =

(√
r′2 +m′2

i , r
′e⃗i

)
, (3.138)

where r′ is given by Eq. (3.137) where the masses and center-of-mass energy are
replaced with the new masses and center-of-mass energy. Finally the momenta
can be boosted to the new lab frame defined by the new boost vector according
to Eq. (3.40):

p′i,lab = Λ(−b⃗ ′)p′i. (3.139)

3.2.2.2 3-Particle Final States

Now consider the collision of two partons with momenta k1 and k2 resulting in the
production of three different particles with momenta pi = (Ei, p⃗i), i = 1, . . . , 3.
As in the previous chapter, momentum conservation in the center-of-mass frame
implies

√
ŝ =

3∑
i=1

Ei, (3.140)

k⃗1 + k⃗2 =
3∑

i=1

p⃗i = 0⃗. (3.141)

Here k1 and k2 can be viewed as given whereas the pi are to be determined.
Including the three on-shell conditions for the final state particles, one, in this
instance, has to solve a system of seven equations for 12 unknowns. If one again
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assumes that the directions of the final state particles are given and are constant
under the transformation, the number of unknowns is reduced to 6, namely the
energies Ei and norms ri of the three-momenta p⃗i. Using the on-shell conditions,
Eq. (3.140) and Eq. (3.141) the problem can be rewritten as

√
ŝ =

3∑
i=1

√
r2i +m2

i , (3.142)

3∑
i=1

rie⃗i = 0⃗, (3.143)

with e⃗i =
p⃗i
ri
, again, being the unit vectors in the direction of the final state mo-

menta.
Equation (3.143) can on the one hand be interpreted as a system of three equa-
tions for the three variables ri and on the other hand as a statement of linear
dependence between the unit vectors e⃗i.
The concrete problem to be solved is, given a solution to Eq. (3.142) and Eq. (3.143),
find a solution to

√
ŝ′ =

3∑
i=1

√
r′2i +m′2

i , (3.144)

3∑
i=1

r′ie⃗i = 0⃗. (3.145)

Since Eq. (3.145) is a statement of linear dependence of the unit vectors, all
allowed solutions lie in the null space of the matrix M whose columns are given
by the unit vectors:

null(M) =
{
r⃗ ∈ R3

∣∣ Mr⃗ = 0⃗
}
, M = (e⃗1, e⃗2, e⃗3) . (3.146)

To this end, it is useful to determine the dimensionality of the null space, often
referred to as nullity. Given the rank-nullity theorem for matrices,

dimnull(M) + dim col(M) = n = 3, (3.147)

where col(M) is the column space of M and n = 3 is the number of columns
of M . There are three possibilities for the dimensionality of null(M) as the
dimension of the column space is either 3, 2 or 1. The case dim col(M) = 3 is
excluded for Eq. (3.143) explicitly states that the vectors are linearly dependent
or in other words three-momentum is conserved in the original event. The case
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dim col(M) = 1 is only possible if all three e⃗i are collinear or, since they are
unit vectors, equal up to a sign. This is obviously not a physical solution, which
leaves the case dim col(M) = 2 or dimnull(M) = 3 − 2 = 1. One can therefore
parameterize the solution set as

{
r⃗ ′ = ηr⃗ ∈ R3

+

∣∣ η ∈ R+

}
. (3.148)

Then the problem can be reduced to determining η using Eq. (3.144):

√
ŝ′ =

3∑
i=1

√
r′2i +m′2

i (3.149)

=
√

(ηr1)2 +m′2
1 +

√
(ηr2)2 +m′2

2 +
√

(ηr3)2 +m′2
3 (3.150)

=
√

r21η
2 +m′2

1 +
√
r22η

2 +m′2
2 +

√
r23η

2 +m′2
3 . (3.151)

Due to the shape of the right-hand side, this equation can easily be solved nu-
merically using for example Brent’s method.3

Once a solution is found one can proceed as described in the previous chapter in
order to determine the new lab frame final state momenta.

3.2.2.3 Multi-Particle Final States

The procedure from the previous chapter can easily be generalized to n final state
particles. Let k = (

√
ŝ, 0⃗) be the total initial state momentum in the center-of-

mass frame and pi = (Ei, p⃗i) for i = 1, . . . , n the momenta of the final state
particles in the same frame. Then the corresponding momentum conservation
equations read

√
ŝ =

n∑
i=1

√
r2i +m2

i , (3.152)

0⃗ =
n∑

i=1

rie⃗i, (3.153)

with ri = |p⃗i| and e⃗i =
p⃗i
ri
. Assuming the e⃗i are given, i.e. the angles of all particles

are known and constant under the transformation, the problem is to find new r′i

3Brent’s method takes as input an interval that contains the desired root of the function.
One can easily choose [0,

√
s] as the starting interval, as Brent’s method typically converges

within 10 to 20 steps in the typical cases here.
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such that

√
ŝ′ =

n∑
i=1

√
r′2i +m′2

i , (3.154)

0⃗ =
n∑

i=1

r′ie⃗i. (3.155)

For n > 3, determining the dimension of the null space of the matrix M implied
by Eq. (3.155),

M = (e⃗1, . . . , e⃗n) , (3.156)

is more complicated. The cases dimnull(M) = 0 and dimnull(M) = n − 1 can
be excluded by equivalent arguments to those given in the previous chapter. In
principal all other nullities are possible. A particularly compelling subspace4 of
the null space however is the one of the previous chapter:

S =
{
r⃗ ′ = ηr⃗ ∈ Rn

+

∣∣ η ∈ R+

}
. (3.157)

The attractiveness of this solution lies in the fact that even in cases where multiple
(a priori arbitrary) solutions to Eq. (3.154) and Eq. (3.155) are possible, choosing
an element from S fixes the ordering of the final state momenta such that if in
the original event

|p⃗1| > |p⃗2| > . . . > |p⃗n| (3.158)

in the center-of-mass frame, then also

|p⃗ ′
1| > |p⃗ ′

2| > . . . > |p⃗ ′
n| . (3.159)

In this case, similarly to the 3-particle final state case, the final equation to be
solved becomes,

√
ŝ′ =

n∑
i=1

√
r′2i +m′2

i (3.160)

=
n∑

i=1

√
r2i η

2 +m′2
i . (3.161)

4Technically the given set of vectors don’t form a vector space as no element has an additive
inverse in the set. The term “subspace” is therefore only accurate up to this restriction.
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Note that for nmassless final state particles the right-hand side is linear in η. This
is the case when a massive particle decays into massless particles and potentially
QCD or QED radiation from the parton shower. Note however that the described
approach is based on the fact that both the original and new initial state is massive
and that their masses are known. For this reason it cannot simply be applied to
parton shower branchings, i.e. the transformation of the parton shower emissions,
or merged jet production, i.e. the transformation of the parton, that is included in
the hard process, and its emissions. A workaround for the former and a solution
for the latter are discussed in Ch. 3.2.4.

3.2.3 Structure of HepMC Eventfiles

In order to address the complications from the previous chapter, namely the even-
tuality that one or more masses of particles involved in the process are unknown,
one first needs to understand the structure and the available information that is
contained in event files once a parton shower algorithm was executed. Since the
idea of the method described in Ch. 3.1 is to employ momentum conservation to
propagate the transformation of the momenta of the hard process through the
full event, a crucial bit of information is where in the event momentum is actually
conserved. Fig. 3.4 depicts a (particularly small) event for the production of a top
pair at the LHC as produced by MadGraph5_aMC@NLO [86] and subsequently
passed on to Pythia8 [91] for the simulation of the parton shower and decays.
In Fig. 3.4 the labels of the edges denote the ID of the corresponding particle as
defined in the “Monte Carlo particle numbering scheme” (PDG ID) [95], a unique
ID number within the event (barcode) and status code. Starting at the top, one
can see two initial state protons (PDG ID 2212) each splitting into an up quark
(PDG ID 2) and a corresponding diquark (PDG ID 2101). The up quarks both
emit gluons as part of the initial state parton shower, that then ultimately scatter
at the hard vertex “V3” to produce the top quark pair (PDG IDs 6 and -6). The
top and anti-top eventually decay into a W boson (PDG IDs 24 and -24) and
a (anti-)bottom quark (PDG IDs 5 and -5). Finally the W bosons both decay
leptonically.
There are however multiple copies with differing momenta of nearly all involved
particles. The top quark for example undergoes three momentum changes at the
vertices “V6”, “V10” and “V15” before it decays. These momenta are connected
by boosts that are the result of the top quark recoiling against parton shower
emissions. Consequently, although globally momentum is conserved between the
initial protons and the stable final state particles, there are many (unphysical)
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V11

V16

-6 : 15 : 44

V28

15 : 41 : 1-16 : 42 : 1

V27

12 : 40 : 1

V26

-11 : 38 : 1 22 : 39 : 1

V25

12 : 37 : 23-11 : 36 : 23

V24

-24 : 34 : 22 -5 : 35 : 1

V23

5 : 33 : 1

V22

-1 : 31 : 1 1 : 32 : 1

V21

24 : 30 : 52

V20

5 : 28 : 5121 : 29 : 51

V19

24 : 26 : 22 5 : 27 : 23

V18

2 : 23 : 1

V17

2 : 22 : 1

-6 : 21 : 62
V15

6 : 20 : 62

V14

V9

2 : 19 : 61 2101 : 25 : 1
V13

V8

2 : 18 : 61 2101 : 24 : 1

V12

2 : 16 : 44

V2

2 : 11 : 43

V3

21 : 4 : 21

V10

6 : 14 : 44

V5

2 : 13 : 42

V4

2 : 12 : 41

V7

-6 : 10 : 44
V6

6 : 9 : 44

2 : 8 : 41 2 : 17 : 43

V1

21 : 7 : 42

-6 : 6 : 226 : 5 : 22

21 : 3 : 21

2212 : 1 : 42212 : 2 : 4

Figure 3.4: A depiction of a Monte Carlo event for the production of a top pair
at the LHC. The hard process was generated using MadGraph5_aMC@NLO [86]
and is highlighted in blue. All other vertices and particles were produced by
Pythia8 [91]. The labels of the vertices correspond to their unique event iden-
tifier or barcode. The labels of the edges denote the ID of the corresponding
particle as defined in the “Monte Carlo particle numbering scheme” (PDG ID)
[95], a unique ID number within the event (barcode) and status code. Particles
with a status code of 1 are stable final state particles. Green and round ver-
tices indicate momentum conservation at the vertex and correspondingly red and
rectangular vertices indicate a lack thereof. Momentum is conserved at the hard
vertex (“V3”). Due to the nature of the final state parton shower, momentum is
not conserved at every vertex. This makes the propagation of the transformation
through the event non-trivial. Note that this event only has 42 particles and is
therefore unusually small. Typical event sizes range from about 200 to about 400
particles for this process.

vertices in an event where momentum is not conserved locally. Nonetheless it is
crucial to identify classes of vertices or subgraphs where momentum is conserved.
To begin with one can consider the hard vertex. Since the hard process itself is
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independent of the higher order effects of the parton shower, momentum is always
conserved between the initial and final state of the hard process and all momenta
live in the LHC lab frame. Additionally the total momentum of the last copies
of the top pair is equal to the hard final state momentum and so momentum is
conserved between the initial state of the hard process and the boosted top pair
(barcodes 20 and 21). Note that the event shown in Fig. 3.4 is based on parton
showers without emissions from the hard final state, which is also a premise of
the algorithm described in this work. This is due to the fact that final state
emissions impair the momentum conservation described above. For example if a
hard final state particle emits a gluon that then showers, there is no momentum
conservation between the emitting hard final state particle on the one hand and
the gluon leafs as well as the boosted hard final state particle on the other hand.
It is therefore no longer possible to assume that the boosted hard final state par-
ticle is in the LHC lab frame.
One can also see that momentum is always conserved at decay vertices (e.g.
“V19”) but not at emission vertices (e.g. “V20”). Moreover all decaying particles
live in the LHC lab frame which means that momentum is conserved between a
decaying particle and all of its stable descendants. Since momentum is not con-
served at emission vertices and emitting particles can live in an arbitrary reference
frame, the question arises of how parton shower emissions are to be treated in
this framework. Given for example the original and transformed bottom quark in
the event in Fig. 3.4, how are the momenta of the final down (PDG ID 1, barcode
31), anti-down (PDG ID -1, barcode 32) and bottom quark (barcode 33) to be
determined? A possible approach is described in Ch. 3.2.4.

3.2.4 Decays and Jet Formation

If there were no parton shower emissions, the propagation of the transforma-
tion could be done straightforwardly by simply using the methods described in
Ch. 3.2.2. The parton shower adds complexity in two ways. First by adding QCD
or QED radiation to the event that additionally needs to be transformed and sec-
ond through boosting hard particles that recoil against this radiation. The latter
can be dealt with by directly considering the decay into the boosted copies of
the hard particles following the ideas of Ch. 3.2.2. Handling the former however
is more intricate. As discussed, emissions from hard final state particles spoil
momentum conservation in decay chains and must therefore be excluded at the
generation level. Thus all emissions are either part of the initial state radiation
or the product of radiation from the end of the decay chain, most importantly
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from (anti-)quarks and gluons that ultimately produce jets. Consider for exam-
ple the decay of a top quark into a W boson and a bottom quark as depicted
at vertex “V19” of Fig. 3.4. One possible approach for the transformation is to
use the methods of Ch. 3.2.2.1 to determine new momenta for the initial decay
products (barcodes 26 and 27) and to continue from there. Unfortunately the
QCD emissions of the bottom quark cause a violation of momentum conservation
in this subgraph, since it recoils against other subgraphs. Thus the momentum of
the initial bottom quark (barcode 27) is different from the sum of the momenta
of the stable emitted particles (barcodes 31 and 32) and the recoiled bottom
quark (barcode 33). Since a reverse engineering of the parton shower emissions
would counteract the purpose of this algorithm, there is no straightforward way
to propagate the change in momentum of the initial bottom quark.
The workaround proposed here is to, in a first step, treat the entire subgraph as
one particle, that can roughly be thought of as the b-jet induced by the bottom
quark. Then, in a second step, to perform the transformation of a multi-particle
final state decay with the b-jet as the decaying particle and the constituents of
the b-jet as the decay products. The internal representation of the decay of the
top quark from Fig. 3.4 is depicted in Fig. 3.5. Only the last copy of the W bo-
son enters the decay and the transformation of the bottom quark is done in the
described two step process. The main complication with this approach is the

V19

V21

V20

V22 V23

6 : 20 : 62

5 : 27 : 23
24 : 26 : 22

24 : 30 : 52

21 : 29 : 51 5 : 28 : 51

5 : 33 : 1-1 : 31 : 1 1 : 31 : 1

6 : 20 : 62

b-jet

24 : 30 : 52

5 : 33 : 1-1 : 31 : 1 1 : 31 : 1

Figure 3.5: Left: The subgraph corresponding to the top decay from Fig. 3.4.
Right: Internal representation of the subgraph that is used for the transformation
of the decay products. Only the last copy of the W boson is left and an artificial
b-jet was introduced in an intermediate step. The momentum of the b-jet is given
by the sum of the (anti-)down quarks and the momentum of the last copy of the
bottom quark.

reliance of the methods from Ch. 3.2.2 on the knowledge of all masses involved
in the process. The mass of the artificial b-jet however can a priori be arbitrary
as long as momentum is conserved at the internal top decay vertex. Since the
masses, and consequently also momenta, of particles that are the sources of par-
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ton showers are changed during the kinematical transformations, the jet masses
must generally be changed accordingly. This is due to the fact that after a trans-
formation of the source particle of a jet, there might not be enough energy left
to produce jets with the original mass. By re-setting jet masses however, one
effectively introduces additional transformations, that need to be accompanied
by corresponding reweighting factors in order to exactly reproduce for example
jet mass distributions. Since this effect is expected to be small though and the
derivation of the reweighting factor is non-trivial, it is not considered in the
present work. The proposed procedure of setting new jet masses is depicted in
Fig. 3.6 for pure QCD jets and Fig. 3.7 for jets including QED radiation. The
basic idea is to keep the ratio of the kinematical proportion of the jet mass and
the total available energy constant. This guarantees that the new jet mass is
kinematically allowed and takes up just as much of the available energy as before
the transformation. Consider, for example, the (rest-frame) decay of the top

Figure 3.6: Depiction of the allocation of energy between a jet and a sibling
particle. Consider a particle with (on- or off-shell) mass M , that, in its center-of-
mass frame, decays into a jet j and an additional particle p1. The total energy of
the decay is given by M and is shared by the jet (Ejet) and p1 (E1). The energy
of the jet is separated into the total jet mass mjet and jet momentum, while the
jet mass itself is again separated into the on-shell masses µi of its constituents
and a kinematical mass given by mjet,kin = mjet −

∑
i∈jet µi. In order to guarantee

that the new jet mass is kinematically allowed for arbitrary M and m1, one can
keep the proportion, that mjet,kin takes up, constant.

quark from Fig. 3.5 into a bottom quark and a W boson. If one were to decrease
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Figure 3.7: Depiction of the allocation of energy between a QCD jet, a QED
jet and a sibling particle. Consider a particle with (on- or off-shell) mass M ,
that, in its center-of-mass frame, decays into a jet j and an additional particle
p1, that subsequently emits QED radiation. The total energy of the decay is
given by M and is shared by the QCD jet (Ejet), the QED radiation (EQED)
and p1 (E1). The energies of the QCD jet and the QED radiation are separated
into their total masses mjet and mQED and their momenta, while the QCD and
QED jet masses themselves are again separated into the on-shell masses µi of
their constituents and kinematical masses given by mjet,kin = mjet −

∑
i∈jet µi and

mQED,kin = mQED −
∑

i∈QED µi. In order to guarantee that the new QED and
QCD jet masses are kinematically allowed for arbitrary M and m1, one can keep
the proportion, that mjet,kin and mQED,kin take up, constant.
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the mass of the top quark from mt to m′
t < mt as part of a parameter scan, the

new top quark mass could be smaller than the original (b-)jet mass mjet. Such
a mass change therefore requires the adjustment of the jet mass. As described
above, one possible approach is to keep the relative share of kinematical jet mass
to top mass constant. The total phase space available for the jet mass in the
decay is given by

mt −mW −
∑
i∈jet

µi, (3.162)

where µi are the (often negligible) on-shell masses of the partonic constituents of
the jet. On the other hand the mass of the jet is bounded below by exactly this
sum of constituent on-shell masses

∑
i∈jet µi, i.e.∑

i∈jet
µi < mjet < mt −mW . (3.163)

The idea is therefore to keep the relative share of the kinematical part of the jet
mass

mjet,kin = mjet −
∑
i∈jet

µi (3.164)

in the rest-frame of the decaying particle constant. With M being the on-shell
mass of the decaying particle, and m1 being the mass of the remaining decay
product (the W in the case of the top-decay), the requirement reads:

m′
jet,kin

M ′ −m′
1 −

∑
i∈jet µi

=
m′

jet −
∑

i∈jet µi

M ′ −m′
1 −

∑
i∈jet µi

!
=

mjet −
∑

i∈jet µi

M −m1 −
∑

i∈jet µi

. (3.165)

And thus the transformed jet mass is given by

m′
jet =

∑
i∈jet

µi +mjet
M ′ −m′

1 −
∑

i∈jet µi

M −m1 −
∑

i∈jet µi

. (3.166)

Similarly if, for example, after the original decay QED radiation is emitted from
the remaining decay product, this radiation can be treated as a QED jet, whose
mass must also be determined. Only in this case the energy is shared by three
(pseudo-)particles, namely the two jets and the remaining decay product. The
determination of the masses can be done analogously to Eq. (3.166), i.e.

m′
J −

∑
i∈J µi

M ′ −m′
1 −

∑
i∈jet µi −

∑
i∈QED µi

!
=

mjet −
∑

i∈jet µi

M −m1 −
∑

i∈jet µi −
∑

i∈QED µi

(3.167)
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and therefore

m′
J =

∑
i∈J

µi +mJ

M ′ −m′
1 −

∑
i∈jet µi −

∑
i∈QED µi

M −m1 −
∑

i∈jet µi −
∑

i∈QED µi

, (3.168)

where J ∈ {jet,QED}. Once the jet masses are set, the resulting four-momentum
can first be used for the transformation of the jets and then be used as the input
for a 1 → n decay with its constituents as the final state. Note that an implicit
assumption that is made here, is that the number of emitted partons does not
depend on the energy scale of the jet production process. This is in reality
clearly not correct. Generally the more energy the parton shower has the more
branchings it will produce. The error introduced by making this assumption can
however be assumed to be small enough in order to not render the algorithm
futile. Thus the assumption is maintained.

Another caveat emerges if one is interested in parton shower merging, i.e. the
addition of n extra partons in the hard final state for the purpose of combining
them with the parton shower emissions. In merged events, these extra partons
are treated differently from the usual hard final state particles by programs like
Pythia8 [91] that abstain from saving a copy of these particles in the LHC lab
frame. Rather the parton shower uses the initial state radiation to recoil against
and thus momentum is exchanged between the two. Consider a MC Event with
one additional parton as depicted in Fig. 3.8. A transformed version of the extra
parton could therefore certainly be found by using the methods of Ch. 3.2.2.2.
Unfortunately the momentum of the extra parton does not suffice for the cal-
culation of the momenta of its descendants, i.e. the leafs of the corresponding
subgraph. The methods described above for the transformation of jet masses no
longer work in this case, since the available phase space after the transformation
is unknown, due to a lack of momentum conservation in the relevant subgraph.
One could therefore think about applying a boost to the extra parton and take
the result as the new jet. The required boost vector would in this case be deduced
from the boost between the total momentum of the old descendants and the old
extra parton. Unfortunately the total momentum of the old descendants and
the momentum of the old extra parton are not connected by a boost. This can
easily be understood by noticing that the extra parton is on-shell and therefore
(nearly) massless whereas the invariant mass of its descendants, which essentially
correspond to the jet, is generally finite. This complication is in indeed not triv-
ially solvable. In this work an approach is presented that is compatible with the
transformation from Ch. 3.2.1.1 and produces sound results in the context of the
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Hard 
Vertex

Boosts

Boosts

MadGraph Hard 
Process

LHC Lab 
Frame

Underlying event

Extra Hard Parton

Figure 3.8: Sketch of a MC Event with parton shower as produced by Pythia8.
Green lines mean momentum conservation, red lines mean no momentum con-
servation. Together the momentum from the underlying event / initial state
radiation, the jet leafs and the descendants of the two hard final state particles
make up the momenta of the two colliding protons.

processes described in Ch. 4. No assertion about the validity of this approach is
made beyond this use case.
Consider now the process depicted in Fig. 3.8, i.e.

p p → a1 a2 b (3.169)

where a1 and a2 are the regular hard final state particles and b is the extra parton
either from matrix element generation or a parton shower. Subsequently at least
b is the source of a parton shower, namely

b → q1, . . . , qm, (3.170)

where m is the number of partons produced in the parton shower and qk are the
corresponding partons. Note that the notation here is merely figurative. In fact,
as already discussed, the momentum of the left and right hand side are different:

p(b) ̸=
∑
k

p(qk) =: pJ . (3.171)
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The goal of the approach is to find a good approximation for pJ as it were pro-
duced by a parton shower origination from a process with the new final state
masses. The first step is to generate the transformed extra parton at the hard
vertex in a 2 → 2 + 1 decay following the instructions in Ch. 3.2.2. The first
assumption made here is that the pT of transformed extra partons are a good
proxy for the jet pT , thus

pT (b′) := pT (p′J) . (3.172)

Here b′ is the extra parton after the transformation. Secondly the assumption is
made that the longitudinal momentum of the jet does not change significantly
under the transformation, i.e.

pz(p
′
J) = pz(pJ). (3.173)

The only component missing now is the jet mass. The idea for setting the jet mass
here follows the already described process of setting jet masses. The crucial dif-
ference is the unknown available phase space that is required. Therefore assuming
that the invariant mass to energy ratio of the jet does not change drastically, one
can make the ansatz

m′
J −

∑
i µi√

m′2
j + r′2j −

∑
i µi

= const. (3.174)

Solving for the new jet mass yields

m′
j =


bc√
1−c2

, if
∑

i µi = 0

a
1+c

(
1 +

√
1− (1 + c)[(1− c)− b2c2

(1−c)a2
]
)
, if

∑
i µi > 0

(3.175)

where

a =
∑
i

µi, b = r′j, c =
mj −

∑
i µi

Ej −
∑

i µi

. (3.176)

A possible evolution of this approach could make use of the difference between
extra partons that are below or above the merging scale. Partons generated by
the event generator for the hard event could then be treated differently from
partons generated by the parton shower.
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3.3 Reweighting

The idea of reweighting Monte Carlo events in order to scan the parameter space
of new physics models was put forward in [73]. Reweighting constitutes the second
important element of the reusing algorithm. While kinematical transformations
are necessary to ensure that transformed events are kinematically allowed and
their kinematical distributions approach the true one, reweighting is necessary
to fix imperfections of the transformations. The following chapter will describe
the reweighting factors for the transformation of the hard process (Ch. 3.3.1) and
briefly sketch out other reweighting factors that, in most cases, make up only
sub-dominant contributions (Ch. 3.3.2).

3.3.1 Hard Process Reweighting Factors

The total weight factor for the hard process was already derived in Eq. (3.21)
and is given by

wab = fa(x1)fb(x2)
1

2ŝ
Φ |Mab|2. (3.177)

This chapter will give a brief overview of each individual factor in this equation
and also mention which factors give the dominant contributions under the trans-
formations introduced in Ch. 3.2.1.

Flux Factor
Since the partonic flux factor is given by

1

2ŝ
=

1

2x1x2s
, (3.178)

the corresponding new event weight is given by the ratio of the new and the old
flux:

wFlux =
1/ŝ′

1/ŝ
=

ŝ

ŝ′
. (3.179)

Consider, for example, the boost invariant transformation from Ch. 3.2.1.1. Then

x′
1 = ax1, x′

2 = ax2 ⇒ ŝ′ = a2ŝ, (3.180)
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where

a =
m′

final state
mfinal state

(3.181)

is a constant. The reweighting factor is in this case therefore simply given by the
constant

wFlux =

(
mfinal state

m′
final state

)2

(3.182)

and can be ignored. This is however no longer true once the bijective transfor-
mation from Ch. 3.2.1.2 is used.

Phase space
Since the scope of this work is largely limited to tree level processes, the most
relevant final state configuration consists of two particles. The corresponding
phase space integral, as discussed in Ch. 2.2, is given by

dΦ2 =
d cos θdϕ

16π2

λ
1
2 (ŝ,m2

3,m
2
4)

2ŝ
, (3.183)

where m3 and m4 are the masses of the final state particles and λ(·) is the Källén
function. The phase space reweighting factor is in this case thus given by

wPS =
Φ′

Φ
=

λ
1
2 (ŝ′,m′2

3 ,m
′2
4 )

2ŝ′

/
λ

1
2 (ŝ,m2

3,m
2
4)

2ŝ
(3.184)

=
λ

1
2 (ŝ′,m′2

3 ,m
′2
4 )

λ
1
2 (ŝ,m2

3,m
2
4)

2ŝ

2ŝ′
(3.185)

=
ŝ

ŝ′

√
λ(ŝ′,m′2

3 ,m
′2
4 )

λ(ŝ,m2
3,m

2
4)

. (3.186)

One can easily see that the right hand side is invariant under the boost invariant
transformation. Therefore, similarly to the flux factor reweighting, phase space
reweighting is only relevant if the bijective transformation is applied.

Parton Density Functions
The parton density functions are the most important factors in Eq. (3.177). As
discussed briefly in Ch. 2.2, the parton density functions fi(xj) represent the
probability of finding a parton of type i inside the proton at momentum fraction
xj at a given factorization scale. As such they have a strong influence on the
kinematical distributions of the momenta of final state particles. For processes in
which the final state angular distributions are independent of the particle masses
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the PDFs even account for the dominant contribution (see for example Ch. 4).
The effect of a change in xj and subsequently in the PDFs can easily be accounted
for by reweighting each event by

wPDF,ab =
fa(x

′
1)fb(x

′
2)

fa(x1)fb(x2)
, (3.187)

where the x′
j are determined by the transformation in Ch. 3.2.1. Note that in

practice it is crucial to use the exact same PDF set and factorization scale for
the calculation of the reweighting factor that were used for the generation of the
events. Depending on the desired accuracy, choosing a different PDF set can lead
to discrepancies in the kinematical distributions that might lead to unreliable re-
sults if one wants to study whether the given parameter point of the model is
excluded by LHC data or not.
Given the functional form of the PDFs, this factor is relevant both in cases where
the boost invariant transformation or the bijective transformation is applied. In
many cases the PDF reweighting factor turns out to be the principal component
of Eq. (3.177) and in some cases, depending on the desired accuracy of the algo-
rithm, solely considering this factor can even be sufficient.

Matrix Element
Including the matrix element in the reweighting process is particularly interesting
under certain conditions. The most important situations arise when either the
angular distributions of the final state momenta in the center-of-mass frame of the
process significantly depend on the particle masses or the phase space point after
the transformation is vastly different from the original phase space point. The
transformation proposed in Ch. 3.2 keeps the directions of the momenta in the
center-of-mass frames constant which is only a suitable approach if the angular
distributions for the considered parameter points in the center-of-mass frame
are equal or at least similar. The second case strongly depends on the specific
transformation that is chosen. An ideal transformation would actually leave
the value of the matrix element invariant as in this case the reweighting factor
would be one. Since the ideal transformation is unknown though, the question
whether matrix element reweighting is necessary must be answered based on the
observation of the performance of the chosen transformation for the considered
processes. Analytically the matrix element reweighting factor is given by

wME,ab =
|M ′

ab|
2

|Mab|2
. (3.188)

Page 65



Reweighting Factors beyond the Hard Process Ch. 3.3.2

3.3.2 Reweighting Factors beyond the Hard Process

Beyond the reweighting factors of the hard event, a few other factors can (and
sometimes should) be considered, the most important ones being

• the Jacobian,

• jet mass transformation weights,

• weights for detector simulation,

• and decay matrix element weights / branching ratios.

Note that, given the results of Ch. 3.2, the Jacobian is a constant under the boost
invariant transformation and thus is only relevant if the bijective transformation
is used. However, since its computation takes virtually no time, there is no reason
not to include the Jacobian even for cases where is can be expected to only make
up a subdominant contribution.
The second factor arises if heavy final state particles decay as part of the parton
shower. The given algorithm relies on the narrow width approximation being
valid and consequently each individual on-shell decay can be factorised. In this
case, the widths for individual decays are given as analytical functions and there-
fore can be computed very quickly. For the example of SUSY, most spectrum
generators already add this functionality by default and for new physics models in
the FeynRules format MadGraph5_aMC@NLO [86] will automatically calculate
these. With the branching ratios of the new (BR′) and original (BR) parameter
point calculated one can simply reweight each event by the change in the branch-
ing ratio. Explicitly for the example of particle X decaying to particle Y and Z

the reweighting factor is given by

wBR =
BR′(X → Y Z)

BR(X → Y Z)
. (3.189)

Another factor comes from the transformation of the jet masses as described in
Ch. 3.2.4. Since every transformation that is performed implies a reweighting
factor only leaving the jet masses unchanged could bypass this effect. In many
cases however this is, as discussed, kinematically impossible. The additional
reweighting factor that would have to be included is the ratio of the probabilities
for the new and the old jet mass given the momenta of the particles that precede
the production of the jet. Determining these probabilities is however similarly
computationally expensive as re-running the parton shower on the respective part
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of the process and is thus omitted in this work. The error introduced by neglecting
this factor turns out to be appropriately small as can be seen for example in Ch. 4.
One of the most expensive parts of the event generation and processing tool chain
is the detector simulation. While the results presented in Ch. 4 were produced
by using the full detector simulation as offered by Delphes [77], it should be
mentioned that depending on the desired accuracy other solutions have been
proposed in the literature. For instance instead of performing the full detector
simulation, the momenta of detector level particles can be smeared by a simple
prescription and then used as detector measurements [96].
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Chapter 4

Applications

While up until this point the theoretical foundation of the new algorithm was
discussed, the following chapter will present a set of use cases. In a real world
application the presented algorithm can develop its full potential in so-called pa-
rameter scans. Many BSM models predict additional new particles. One of the
interesting phenomenological versions of the MSSM, the pMSSM-19, for example
has 19 free parameter, 15 of which are masses [97]. The parameter space, that
needs to be studied, therefore has d = 15 dimensions, if all free couplings are
fixed. In principal every possible combination of masses (and couplings) could
be realized in nature. In cases where the dimension of the parameter space is
large, the goal of parameter scans is to select a d̃ < d-dimensional subspace of
the parameter space and to fix all remaining parameters to a fixed value. Then
theoretical predictions can be made for a large number of points in the d̃ dimen-
sional parameter space and compared to experimental data.
Theoretical predictions typically involve heavy use of Monte Carlo event genera-
tors like MadGraph5_aMC@NLO [86] or Pythia 8 [91]. The larger the parameter
space the more computationally intense the process becomes. The algorithm de-
scribed in the present work promises to reduce the computational complexity by
reusing Monte Carlo events from one point in the parameter space to generate
events for a parameter point with different masses. In Ch. 4.1 the result of the
algorithm will be displayed for one of the simplest possible cases. A single ad-
ditional boson acts as an s-channel mediator while all couplings are fixed. The
results shown are the kinematical distributions of the additional mediator as well
as of the final state particles before and after transformation and reweighting
from a given origin to a target mass configuration. Monte Carlo events for the
origin as well es the target parameter point are generated using standard event
generators and then compared to the resulting distributions of the new approach.
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The slightly more complicated case of lepton pair production is shown for a model
with a fourth generation of quarks in Ch. 4.2 and in the context of a simple su-
persymmetric model in Ch. 4.3. Finally a parameter scan for an experimental
search conducted by the ATLAS corporation for squarks in final states is repro-
duced with the new algorithm and CheckMATE2 [72] in Ch. 4.4.

4.1 Production of Heavy s-channel Mediators

A first, relatively simple, process to look at, with respect to the transformation
and reweighting algorithm described in Ch. 3, is the production of a heavy, color-
neutral spin 1 boson, that is typically referred to as Z ′. From an experimental
point of view a Z ′ boson adds to the Drell-Yann process and produces an addi-
tional Breit-Wigner peak at its mass MZ′ [37].
From a theoretical perspective a wide range of models, from those postulating
extra dimensions to E6 Grand Unified Theories, can predict such a particle [37].
Generally, if the Z ′ is the spin 1 mediator of an additional U(1) gauge symmetry,
its couplings to the fermions of the SM in the weak basis can be parameterized
as follows [98]:

∑
k

igkL,ν ν̄L,kγ
µνL,k +

∑
D∈{L,R}

(
igkD,l l̄D,kγ

µlD,k + igkD,u ūD,kγ
µuD,k + igkD,d d̄D,kγ

µdD,k

)Z ′
µ.

(4.1)

Here k is a generation index and gkL,ν , gkD,l, gkD,u and gkD,d are coupling con-
stants describing how strongly neutrinos, leptons, and up- and down-type quarks
couple to the new Z ′. Similarly to the generation of the CKM matrix in the
SM, applying unitary transformations to the fermion fields yields the physical
mass basis of Eq. (4.1) and produces mixing matrices ϵijD,f for D ∈ {L,R} and
f ∈ {ν, l, u, d}. Therefore, theoretically, the generation dependence of the cou-
plings given in Eq. (4.1) can lead to tree-level flavor changing neutral currents
(FCNCs), which are strongly experimentally constrained [37]. Below only univer-
sal, i.e. generation independent, couplings are assumed in which case no FCNCs
can occur. This means the mixing matrices are diagonal and proportional to the
unit matrix:

ϵjkD,f = igx cD,f δjk, (4.2)
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Table 4.1: Parameters used for the generation of the MC events with Mad-
Graph5_aMC@NLO [86].

where gx is the coupling constant of the new U(1) symmetry and cR,ν = 0 for
models without right-handed neutrinos. The values used for the below simulation
are:

cD,f =

(
−0.267 0.5 0.344 −0.422

0.233 0 0.077811 −0.156

)
. (4.3)

Concerning the algorithm from Ch. 3, there is now merely one parameter that
can be changed, namely the mass MZ′ of the new Z ′ boson. This means that the
transformation can be specifically chosen such that the Breit-Wigner of the new
Z ′ is reproduced as closely as possible, therefore minimizing the influence of the
reweighting procedure and, as a consequence, the additional statistical error that
is introduced.
Consider the process

pp → Z ′ +X → µ+µ− +X (4.4)

for two different Z ′ masses MZ′ and M ′
Z′ . The parameters that were chosen here

are given in Table 4.1. The first question to ask is whether the invariant mass
distribution of the Z ′ is reproduced correctly. Fig. 4.1 shows the distributions
for the new parameter point taken directly from MadGraph5_aMCNLO and
the distributions of the Z ′ mass of the transformed events with and without
reweighting. One can see that without reweighting the distribution is reproduced
already quite well. While the peak is at the correct position, the shape is still
slightly different close to the peak. This is due to the fact that for this process
the transformation is essentially given by the boost invariant transformation since
the problematic region according to Eq. (3.87) only makes up ≈ 0.24% of the
phase space. Clearly physical events are not distributed uniformly in phase space.
However since the boost invariant transformation fails if at least one of the xi of
Ch. 3.3.1 becomes large, this region is further suppressed by PDF effects. This
domination of the boost invariant transformation explains the difference in the
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shapes between the true and the transformed distribution for MZ′ , since

M ′2
Z′ = p′2Z′ (4.5)

= (p′1 + p′2)
2 (4.6)

= (x′
1 + x′

2, 0, 0, x
′
1 − x′

2)
2 s

4
(4.7)

= a2(x1 + x2, 0, 0, x1 − x2)
2 s

4
(4.8)

= a2p2Z′ (4.9)
= a2M2

Z′ . (4.10)

Therefore the transformation leaves the shape of the Breit-Wigner invariant and
merely shifts the peak to the correct position. The true shape of the Breit-Wigner
however depends on the mass of the Z ′, hence the differences in the true curve
and the curve without reweighting. Reweighting the events with the ratio of the
matrix elements at the new and the old parameter point then fixes the shape
and the distributions align perfectly. Note that no other reweighting factors are
needed at this point. The Jacobian for the chosen transformation is essentially
a constant and all other factors are kinematical factors that are irrelevant to the
invariant mass distribution.
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Figure 4.1: Invariant mass of the Z ′ boson before and after the transformation
and reweighting. The transformation shifts the curve from its 500GeV central
point (blue) to the new central point at 1000GeV (green). One can see however
that the shape ôf the Breit-Wigner distribution also depends on the mass and
therefore the transformation alone is not sufficient (red). Reweighting the events
with all required weights then fixes the discrepancies (orange).

The next step is then to look at the angular distributions of the muons. Fig. 4.2
shows the energies as well as transverse and longitudinal momenta of the muon.
Now the PDFs become the dominant reweighting factors. This is due to the
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fact the the angles were kept constant in the rest frame of the Z ′ as part of
the transformation. This implies that the dominant contribution of the angular
distributions comes from the boost of the lab frame with respect to the Z ′ rest
frame. This boost is in turn largely determined by the values of the PDFs for
the new and old values of xi. Similarly to the invariant mass distributions of the

 0

0.05

0.1

0.15

0.2

0.25

Ar
bi

tra
ry

 U
ni

ts

Original
Truth

Transformed
Transformed & Reweighted

0 500 1000 1500 2000 2500 3000 3500 4000

E( )[GeV]

0.9

1.0

1.1

Ra
tio

 0

0.2

0.4

0.6

0.8

 1

1.2

Ar
bi

tra
ry

 U
ni

ts

Original
Truth

Transformed
Transformed & Reweighted

0 100 200 300 400 500 600 700

pT( )[GeV]

0.9

1.0

1.1

Ra
tio

 0

0.02

0.04

0.06

0.08

0.1

0.12

Ar
bi

tra
ry

 U
ni

ts

Original
Truth

Transformed
Transformed & Reweighted

3000 2000 1000 0 1000 2000 3000

pz( )[GeV]

0.9

1.0

1.1

Ra
tio

Figure 4.2: Momentum distributions of the final state µ− for change in Z ′ mass
from 500GeV (blue) to 1000GeV (green). One can clearly see the transformation
shifting the distributions to nearly the right energy scale but leads to wrong
shapes (red). Reweighting then fixes the shapes (orange).

Z ′, one can clearly see the transformation shifting the distributions to nearly the
right energy scale. The shapes however differ to a similar extend. Reweighting
then fixes the shapes.

4.2 Production of Heavy Fermion Pairs
Since the previous chapter described how the transformation and reweighting
works for mass changes of s-channel mediators, the natural next step is to inves-
tigate the mass changes for t- and u-channel production. Just as in the previous
chapter, a simple extension of the SM is chosen for this purpose, by adding a
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Table 4.2: Parameters used for the generation of the MC events with Mad-
Graph5_aMC@NLO [86]

fourth generation of quarks (t′, b′). Although a fourth generation model is essen-
tially excluded by a series of experiments [99] [100], due to its simplicity, it serves
as an excellent example for the application of the reusing algorithm from Ch. 3,
not only for heavy t- and u-channel final states, but also the presented decay and
jet procedures. While in the previous chapter possible decays and emissions of
the final state muons were ignored, the generation of the hard process in Mad-
Graph5_aMC@NLO [86] here is supplemented by a parton shower and decays
using Pythia8 [91]. There are therefore two important versions for each particle
involved in the decay chains. First the particles that are the direct products of
the decaying particle. If for example the t′ decays into a b′ and a W , there will be
one version each of the b′ and W that have momenta whose sum exactly equals
the momentum of the decaying t′. For the second version of each the b′ and W ,
this is not necessarily any longer the case. The reason is the fact that both, the
b′ and the W , can, and in many cases will, emit gluons or photons respectively
and therefore lose momentum. The algorithm, that is used to deal with this kind
of situation, is described in Ch. 3.2.4.
Concretely consider the production of a t′t̄′ pair, i.e. pp → t′t̄′ +X, with subse-
quent decays into (anti-)b′ and (anti-)top quarks. The top quarks then further
decay into bottom quarks and W bosons, that then finally decay leptonically.
The only parameter that is changed for the purpose of this algorithm is the mass
of the t′ while all other parameters like the b′ mass or the coupling constants
and decay widths are kept constant. The parameters for the event generation for
both the original and target parameter point are summarized in Table 4.2. The
transformation of the hard process, that was used here, is the one of Ch. 3.2.1.3.
The results for the t′ are shown in Fig. 4.3 in the case of the versions before
gluon emissions and in Fig. 4.4 of the versions after parton shower emissions.
Displayed are the distributions of all components of the four-momentum of the t′.
Both for the full event generation original and new (“Truth”) parameter point as
well as for different sets of weights. One can see that the transformation alone
(“Transformation”) is able to shift the threshold energy to the right position but
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Figure 4.3: Impact of the transformation and reweighting on the momentum
distributions before parton showering of the t′. The energy distributions show
that without reweighting (red dotted line) only the mass is reproduced correctly
while the shape does not nearly resemble the target distribution (solid green
line). Adding PDF-, flux- and phase space reweighting improves the predictions
significantly (dashed green line). A perfect reproduction however is only possible
if matrix element reweighting is used (dash-dotted orange line).

is not able to produce the correct shape. This, of course, is to be expected as
the threshold energy is given simply by the mass of the t′. Adding more weights
then solves this problem for all components. While adding all weights listed in
Ch. 3.3.1 except the production matrix element (“No Matrixelement”), i.e. the
Jacobian, PDF-, flux- and phase space weights, shows a significant improvement,
only adding the matrix element weight produces perfect distributions (“No De-
cays”). One should however consider that the calculation of the matrix element
weights, depending on the process, can be computationally expensive. In prac-
tice, depending on the use case, one can therefore trade accuracy for performance
by neglecting the matrix element weight.
Corresponding results for the b′ are shown in Fig. 4.5 and Fig. 4.6. For the b′

the sole transformation already does a much better job. This is due to the fact
that the mass of the b′ is not changed. The effects of the weights are extremely
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Figure 4.4: Impact of the transformation and reweighting on the momentum
distributions after parton showering of the t′. The energy distributions show
that without reweighting (red dotted line) only the mass is reproduced correctly
while the shape does not nearly resemble the target distribution (solid green
line). Adding PDF-, flux- and phase space reweighting improves the predictions
significantly (dashed green line). A perfect reproduction however is only possible
if matrix element reweighting is used (dash-dotted orange line).

similar to the t′ case.
Finally this process allows for a study of jet distributions (Fig. 4.7) and distri-
butions of particles that are the result of a multi-step decay chain, in this case
leptons and neutrinos in Fig. 4.8. In both cases it is no longer sufficient to
just use the production matrix element in order to produce perfect distributions.
Instead one would need to also include decay matrix elements as well as weights
that are the results of the jet algorithm described in Ch. 3.2.4. For many use
cases however neglecting these effects will presumably be sufficient.

4.3 Squark Pair Production
The next step is to study a process that contains both s- and non-s-channel
diagrams. Since the practice test of the presented algorithm in Ch. 4.4 considers
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Figure 4.5: Impact of the transformation and reweighting on the momentum
distributions before parton shower emissions of the b′ decay product of the t′.
The energy distributions show that without reweighting (red dotted line) only the
mass is reproduced correctly while the shape does not nearly resemble the target
distribution (solid green line). Adding PDF-, flux- and phase space reweighting
improves the predictions significantly (dashed green line). A perfect reproduction
however is only possible if matrix element reweighting is used (dash-dotted orange
line).

the production of squark pairs in the Minimal Supersymmetric Standard Model
(MSSM), it makes sense to look at the distributions of the involved particles
first. The MSSM is, as the name suggests, an extension of the SM that is based
on adding an additional symmetry called supersymmetry (SUSY) to the SM.
This supersymmetry is a space-time symmetry that introduces relations between
fermions and bosons such that its generator Q transforms fermionic fields into
bosonic fields and vice-versa [34], i.e.

Q |fermion⟩ = |boson⟩ , Q |boson⟩ = |fermion⟩ . (4.11)

The transformed states then only differ regarding their spins and share all other
quantum numbers and properties with the original state. The attractiveness of
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Figure 4.6: Impact of the transformation and reweighting on the momentum
distributions after parton shower emissions of the b′ decay product of the t′. The
energy distributions show that without reweighting (red dotted line) only the
mass is reproduced correctly while the shape does not nearly resemble the target
distribution (solid green line). Adding PDF-, flux- and phase space reweighting
improves the predictions significantly (dashed green line). A perfect reproduction
however is only possible if matrix element reweighting is used (dash-dotted orange
line).

SUSY lies in the number of potential problems of the SM it can solve. Many
supersymmetric models, for example, predict a stable neutral particle that can
serve as a candidate for dark matter [101]. Models with unbroken1 or softly broken
supersymmetry also offer an elegant solution to the hierarchy problem [34]. The
MSSM is the supersymmetric model with the smallest number of new particles.
More concretely it introduces a partner particle (sparticle) p̃ for each particle p in
the SM. The bosonic spin-0 partners of the Standard Model fermions are called
sfermions, so the partner of a given right-handed quark q̃R for example is called
a squark. Partners of SM gauge bosons are called gauginos, e.g. the partner of
the gluon g̃ is called gluino. Other SUSY particles, that are relevant here, are the

1In models with an unbroken supersymmetry the masses of the SUSY partners are the same
as their original counterparts. Since none of these particles have been observed yet, SUSY must
be broken in nature, that way allowing for large sparticle masses.
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Figure 4.7: Impact of the transformation and reweighting on the jet distributions
in t′ pair production. The energy distributions show that without reweighting
(red dotted line) only the mass is reproduced correctly while the shape does not
nearly resemble the target distribution (solid green line). Adding PDF-, flux-
and phase space reweighting improves the predictions significantly (dashed green
line). For a perfect reproduction of the target distribution however adding matrix
element reweighting (dash-dotted orange line) is not sufficient in this case. Rather
additional reweighting factors from decays and jet handling must be applied in
order to fix the distributions.

so-called neutralinos χ̃0
1,2,3,4. They are the four neutral mass eigenstates of the

mixing of higgsinos and weak gauginos, i.e. the SUSY counterparts of the Higgs
and the electroweak gauge bosons [34]. If the lightest neutralino χ̃0

1 is stable, for
example in models with conserved R-Parity, and its mass is the smallest amongst
all stable SUSY particles, it is also called the LSP (“Lightest Supersymmetric
Particle”). In that case all supersymmetric particles eventually decay into this
neutralino. This makes the neutralino a popular candidate for weakly interacting
massive particle (WIMP) dark matter [101].
In the following the production of squark pairs with subsequent decays into jets
and neutralinos, i.e.

pp → q̃ ¯̃q +X, q̃ → qχ̃0
1, (4.12)

Page 79



Squark Pair Production Ch. 4.3

0 200 400 600 800 10000

10

20

30

40

50

60

Ar
bi

tra
ry

 U
ni

ts

×10 4

Original
Truth

Transformed
No Matrixelement

No Decays

0 200 400 600 800 1000
E(l) [GeV]

0.8

1.0

1.2

Ra
tio

400 300 200 100 0 100 200 300 4000

20

40

60

80

Ar
bi

tra
ry

 U
ni

ts

×10 4

Original
Truth

Transformed
No Matrixelement

No Decays

400 300 200 100 0 100 200 300 400
px(l) [GeV]

0.8

1.0

1.2

Ra
tio

300 200 100 0 100 200 3000

20

40

60

80

Ar
bi

tra
ry

 U
ni

ts

×10 4

Original
Truth

Transformed
No Matrixelement

No Decays

300 200 100 0 100 200 300
py(l) [GeV]

0.8

1.0

1.2

Ra
tio

800 600 400 200 0 200 400 600 8000

10

20

30

40

50

60

Ar
bi

tra
ry

 U
ni

ts

×10 4

Original
Truth

Transformed
No Matrixelement

No Decays

800 600 400 200 0 200 400 600 800
pz(l) [GeV]

0.8

1.0

1.2

Ra
tio

Figure 4.8: Impact of the transformation and reweighting on the lepton distribu-
tions in t′ pair production with subsequent decays. The energy distributions show
that without reweighting (red dotted line) only the mass is reproduced correctly
while the shape does not nearly resemble the target distribution (solid green line).
Adding PDF-, flux- and phase space reweighting improves the predictions signif-
icantly (dashed green line). For a perfect reproduction of the target distribution
however adding matrix element reweighting (dash-dotted orange line) is not suf-
ficient in this case. Rather additional reweighting factors from decays and jet
handling must be applied in order to fix the distributions

with q ∈ {dL, dR, uL, uR, cL, cR, sL, sR} is considered. The squarks are all given
equal masses mq̃ so that the parameters that were transformed are mq̃ and mχ̃1

0
.

Numerical values for the transformation can be found in Table 4.3. The results for
the squarks are shown in Fig. 4.9 and the results for the neutralino in Fig. 4.10.
Results for the jets are shown in Fig. 4.11. Similarly to the t′ distributions
from the previous chapter, one can see that the transformed and unweighted
distributions (“Transformed”) of the q̃ momenta components merely reproduce
the squark masses. This is in accordance with the expectation that at least those
reweighting factors must be included, that make up the leading contributions to
the kinematical distributions. Adding the Jacobian, PDF, flux and phase space
reweighting factors then consequently drastically improves the prediction (“No
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Table 4.3: Parameters used for the generation of the MC events with Mad-
Graph5_aMC@NLO [86].
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Figure 4.9: Impact of the transformation and reweighting on the momentum dis-
tributions of q̃ after parton shower emissions. The energy distributions show that
without reweighting (“Transformed”) only the mass is reproduced correctly while
the shape does not nearly resemble the target distribution (“Truth”). Adding
PDF-, flux- and phase space reweighting improves the predictions significantly
(“No Matrixelement”). A perfect reproduction however is only possible if matrix
element reweighting is used (“No Decays”).

Matrixelement”). Adding the matrix element weight on top fixes the shapes of
the distributions entirely (“No Decays”). It can be assumed that in practice in
scans over multiple parameters of some BSM models, the number of events is
noticeably smaller and therefore the difference between the prediction with and
without the matrix element weight cannot be resolved. In that case the relatively
expensive calculations of the matrix element weights can be omitted. The jet
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Figure 4.10: Impact of the transformation and reweighting on the neutralino mo-
mentum distributions after parton shower emissions. The energy distributions
show that without reweighting (“Transformed”) the mass is reproduced correctly
while the shape does diverges from the target distribution (“Truth”) at high en-
ergies. Adding PDF-, flux- and phase space reweighting improves the predictions
significantly (“No Matrixelement”). For a perfect reproduction of the target dis-
tribution however adding matrix element reweighting (dash-dotted orange line)
is not sufficient in this case. Rather additional reweighting factors from decays
and jet handling must be applied in order to fix the distributions.

and neutralino distributions strongly resemble the lepton distributions from the
previous chapter. While once again the inclusion of all hard process weight factors
except the matrix element produces nearly optimal results, the inclusion of the
production matrix element does not improve the prediction. This can again be
reduced to the fact that for perfect predictions one also needs to reweight using
the decay matrix elements and account for the transformations applied during
the jet handling algorithm.
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Figure 4.11: Impact of the transformation and reweighting on the jet distributions
in squark pair production. The energy distributions show that without reweight-
ing (“Transformed”) the mass is reproduced correctly while the shape diverges
from the target distribution (“Truth”) at high energies. Adding PDF-, flux- and
phase space reweighting improves the predictions significantly (“No Matrixele-
ment”). For a perfect reproduction of the target distribution however adding
matrix element reweighting (“No Decays”) is not sufficient in this case. Rather
additional reweighting factors from decays and jet handling must be applied in
order to fix the distributions.

4.4 A Reproduction of ATLAS Limits

Up until this point all applications were based on simple processes and only con-
sidered the transformation from a given parameter point to one target parameter
point. In practice however particularly interesting use cases for the proposed
algorithm are scans over, potentially multidimensional, parameter spaces of BSM
models, that can determine which parts of the parameter spaces can be excluded
by experimental observations, e.g. direct LHC searches. The goal here is to bet-
ter display when the approximations used by the transformation and reweighting
algorithm break down in a real world scenario.
Typically comparisons between model predictions and experimental searches are
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implemented using software packages like CheckMATE2 [72]. The idea behind
these programs is to mimic the experimental searches as closely as possible using
Monte Carlo events instead of physically measured ones. This then allows one to
analyze the difference between predictions of the BSM model and the experiment
by counting events that fall into signal regions, that are defined in the experimen-
tal searches [72]. The result of both the experimental searches and the theoretical
studies consists, among others, of so called exclusion limits that separate regions
of the parameter space, that are excluded by measurements, from regions that are
still in agreement with the considered experimental searches. This is therefore a
way to set limits on the (mass) parameters of the BSM model.
Based on the results of Ch. 4.3 the goal in this chapter is to demonstrate in how
far the algorithm described here is able to reproduce the limits of a search con-
ducted by the ATLAS collaboration for squarks in final states [102] as produced
by the corresponding CheckMATE2 implementation. The proposed transforma-
tion and reweighting approach (new approach) is directly compared against the
full MC event generation tool chain (benchmark).
The focus here will be on the process

pp → q̃ ¯̃q → jjχ̃0
1χ̃

0
1 (4.13)

within the Minimal Supersymmetric Standard Model (MSSM). The squarks di-
rectly decay into a quark and a neutralino that constitutes the (stable) LSP.
The masses of all other SUSY particles are set such that they decouple from the
theory and can be ignored. The masses of the squarks are set to be degener-
ate over the first two generations, while the third generation is decoupled. A
corresponding set of 10000 MC events was generated for each parameter point
using MadGraph5_aMCNLO [86]. Subsequent parton showering of the events
was done using Pythia 8 [91]. For the parton density functions the LHAPDF
implementation of NNPDF2.3LO [103] was used. Additionally Pythia 8 was used
for CKKW-L merging [104] with up to two additional jets, where the merging
scale parameter was set to a quarter of the squark mass. Parton shower merging
is important for the correct reproduction of the hard region of the jet distribu-
tions. While the parton shower reproduces the soft and collinear behavior of QCD
emissions, it is not able to predict the behavior of hard jets that is typically dom-
inated by fixed order effects. Thus up to two additional hard jets are produced
at leading order using MadGraph5_aMCNLO and then merged using Pythia 8.
Since the search in [102] is focused on jet and missing transverse energy signa-
tures in the detector, it is crucial for the MC events to get both the jet and LSP
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distributions right, making parton shower merging a vital ingredient of the MC
chain. The merging procedure itself is implemented in Pythia 8 by reweighting
the events relatively to the sample without any additional emissions. These addi-
tional merging weights must be considered in the reweighting factor of Ch. 3.3.1.
All weights from Ch. 3.3.1 except the matrix element weight were applied in
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Figure 4.12: Limits on m˜̃q and mχ̃0
1
in the MSSM with degenerate squark masses

and decoupled gluinos. A comparison is shown between CheckMATE2 [72] results
with events generated using the usual MC event generator tool chain (benchmark)
and the proposed transformation and reweighting algorithm (new approach). Pa-
rameter points in green (red) are allowed (excluded) in both approaches while
blue (orange) points are excluded (allowed) in the benchmark case and allowed
(excluded) in the new approach. The starting point for the new approach at
m˜̃q,mχ̃0

1
= (1300, 500)GeV is marked as a yellow star. Additionally the best fit

expected and observed curves from the original ATLAS search are shown for com-
parison. One can see that the new approach reproduces the benchmark to a high
degree even though no matrix element weights were included in the reweighting
factor.

the new approach. Leaving out the matrix element significantly improves the
speed of the algorithm and is the preferred procedure in many cases where the
matrix element contributions are sub-leading compared to, for example, the PDF
reweighting factor. As discussed above, a weight from parton shower merging was
additionally applied in the reweighting procedure. The results for three different
starting points of the parameter scan can be seen in Fig. 4.12 - 4.14. If the start-
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Figure 4.13: Limits on m˜̃q and mχ̃0
1
in the MSSM with degenerate squark masses

and decoupled gluinos. A comparison is shown between CheckMATE2 [72] results
with events generated using the usual MC event generator tool chain (benchmark)
and the proposed transformation and reweighting algorithm (new approach). Pa-
rameter points in green (red) are allowed (excluded) in both approaches while
blue (orange) points are excluded (allowed) in the benchmark case and allowed
(excluded) in the new approach. The starting point for the new approach at
m˜̃q,mχ̃0

1
= (525, 500)GeV is marked as a yellow star. Additionally the best fit

expected and observed curves from the original ATLAS search are shown for com-
parison. One can see that choosing the starting point in the suppressed region,
where the masses of the squark and the neutralino are very close, implies larger
uncertainties than in cases with central starting points.

ing point is chosen appropriately, the new approach agrees with the benchmark
extremely well (see Fig. 4.12). Any differences between the benchmark and the
new approach can be reduced to either statistical uncertainties (particularly in
the suppressed region, where the squark and neutralino masses are close), due to
the relatively low number of events used, or inaccuracies of the new approach,
such as the missing matrix element weight or, more importantly, imperfections
in the way the algorithm handles jet distributions. Since the ATLAS search is
extremely sensitive to jet distributions, even small effects cause differences in
CheckMATE2 results. This problem is emphasized when the starting point is
chosen poorly (see Fig. 4.13). In this case the production of jets is strongly sup-
pressed at the starting point due to the proximity of the squark and the LSP
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Figure 4.14: Limits on m˜̃q and mχ̃0
1
in the MSSM with degenerate squark masses

and decoupled gluinos. A comparison is shown between CheckMATE2 [72] results
with events generated using the usual MC event generator tool chain (benchmark)
and the proposed transformation and reweighting algorithm (new approach). Pa-
rameter points in green (red) are allowed (excluded) in both approaches while
blue (orange) points are excluded (allowed) in the benchmark case and allowed
(excluded) in the new approach. The starting point for the new approach at
m˜̃q,mχ̃0

1
= (1500, 100)GeV is marked as a yellow star. Additionally the best

fit expected and observed curves from the original ATLAS search are shown for
comparison. One can see that the new approach produces extremely accurate
results for squark masses above 800GeV. In the small squark mass region how-
ever, increased statistical uncertainties caused by the reweighting cause the new
approach to be less reliable.

masses. In this case the jets predicted by the new approach no longer follow the
behaviour of the benchmark jets in the bulk of the parameter space, particularly
around the exclusion limit. On the contrary the region where jet production is
suppressed is reproduced better than in the previous case, since the jet distribu-
tions in this region are close to the ones at the starting point. Finally Fig. 4.14
shows that choosing the parameter point far away from kinematically demanding
regions can lead to unreliable results. Transformations for large mass differences
typically involve large reweighting factors and therefore larger statistical uncer-
tainties. This in turn then leads to the “sprinkle” effect for squark masses below
800GeV.
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Overall the new approach, if applied carefully, offers an accurate alternative to
the benchmark. The main reason however to use the new approach is the sig-
nificant decrease in required CPU time. For the production of the data used
for Fig. 4.12 - 4.14 the total time saving factor was of the order of ≈ 10. This
factor however includes the reading and writing times of the event files. Since
the current implementation of the new approach only produces output events
for one target parameter point, the original event has to be read for each tar-
get point individually. These reading times are a dominant contribution to the
overall event generation and evaluation chain and were almost identical in the
benchmark case and the new approach. It is therefore safe to say that an im-
plementation of the new approach into a library like CheckMATE2, where the
entire generation and evaluation process happens inside the RAM, will enable an
additional drastic increase in performance advantages of the new approach over
full MC simulations.
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Chapter 5

Conclusion

While the LHC has long been running, the nature of any physics beyond the
Standard Model is still unclear. New ideas and models need to be developed in
order to both explain the lack of observations at the LHC and the already known
incompleteness of the Standard Model itself (dark matter, neutrino masses, etc.).
Comparing experimental data and theoretical predictions however can, in many
cases, be challenging as many-dimensional parameter spaces make global fits com-
putationally demanding. In this work a new method was introduced, that could
be used to drastically increase the sampling speed of parameter scans for the LHC.
The combination of momentum transformations and Monte Carlo reweighting,
appears to be a promising approach to reduce the number of model parameter
points that need to be fully simulated.
This new method was shown to be successful in predicting the kinematical distri-
butions of all momenta involved in several processes and it was shown, that upon
correctly choosing a starting point, parameter scans can be performed without
having to rerun the usual Monte Carlo toolchain for each model parameter point.
It is however crucial to bear in mind the most significant caveats, that the new
algorithm has: Most importantly and by construction the algorithm can’t sim-
ply be used for any process and any parameter point combination. The starting
parameter point must contain all information needed in order to reproduce the
physics of the target parameter point. If for example a new decay channel opens
up at the target parameter point that was not accessible at the original point, no
Monte Carlo events will be available for transformation that contain the corre-
sponding decay. Therefore choosing the starting parameter point is essential for
producing usable results.
Another caveat is the treatment of parton showers. On the one hand the intro-
duced methods lack support for certain parton shower features like hadronization
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or parton emissions inside the hard event, which limit their applicability to pro-
cesses in which neither plays a significant role. On the other hand the treatment
of jets turns out to be rather delicate. Determining jet masses or taking into
account parton shower merging can merely be done on the basis of heuristics and
are the biggest source for deviations between full simulation and the described
approach.
It is however theoretically possible to combine the transformation of events and
reweighting with parton shower algorithms only in particular cases. Then the
treatment of QCD or QED radiation can be left to the parton shower while ev-
erything else is processed by the new algorithm. Corresponding studies are left
for future work.
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Appendix A

Boosts between to momenta

Here a short reminder of the relevant formalism and the construction of boosts
between two given momenta is given. A Lorentz boost of a momentum p = (E, p⃗)

in a given direction n⃗ with |n⃗| = 1 and is given by

E ′ = γ (E − βn⃗ · p⃗) (A.1)
p⃗ ′ = p⃗+ [(γ − 1)(n⃗ · p⃗)− γβE] n⃗, (A.2)

where γ = (1 − β2)−
1
2 . A boost depends on three parameters: The direction of

the boost as given by n⃗ and the size of the boost as given by β. The vector
β⃗ = βn⃗ is often called the “boost vector” and can be used to define the boost.
Thus given two distinct momenta p1 = (E1, p⃗1) and p2 = (E2, p⃗2) the boost from
p1 to p2 is given by

E2 = γ (E1 − βn⃗ · p⃗1) (A.3)
p⃗2 = p⃗1 + [(γ − 1)(n⃗ · p⃗1)− γβE1] n⃗, (A.4)

where n⃗ and β are to be determined. This can be achieved by noting that
Eq. (A.4) implies that p⃗2 − p⃗1 and n⃗ are collinear and that the size of the vector
p⃗2 − p⃗1 is given by the factor in front of n⃗. Hence

p⃗2 − p⃗1 = λn⃗, λ = (γ − 1)(n⃗ · p⃗1)− γβE1 (A.5)

and therefore

n⃗ =
p⃗2 − p⃗1
|p⃗2 − p⃗1|

. (A.6)
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Eq. (A.3) can then be used to determine β. As γ is quadratic in β, solving
Eq. (A.3) in general yields two distinct solutions β+ and β−:

β± =
(n⃗ · p⃗1)E1 ± E2

√
(n⃗ · p⃗1)2 + (E2

2 − E2
1)

(n⃗ · p⃗1)2 + E2
2

(A.7)

The physical solution must fulfill Eq. (A.4), which can be simplified to one
equation by considering the norms of both sides of the equation:

|p⃗2 − p⃗1| = (γ − 1)(n⃗ · p⃗1)− γβE1. (A.8)
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Appendix B

Jacobian of the bijective
transformation

The Jacobian of the bijective transformation introduced in Ch. 3.2.1.2 takes the
form

⇒ J = v2 − v

(
(1− x1)

∂v

∂x1

+ (1− x2)
∂v

∂x2

)
. (B.1)

The notation can be somewhat simplified by introducing new variables a and b

as

a = 1− x1, b = 1− x2. (B.2)

Then the second term of Eq. (B.1) becomes

v

(
(1− x1)

∂v

∂x1

+ (1− x2)
∂v

∂x2

)
= v

(
a
∂v

∂a

∂a

∂x1

+ b
∂v

∂b

∂b

∂x2

)
(B.3)

= −v

(
a
∂v

∂a
+ b

∂v

∂b

)
. (B.4)

It is therefore sufficient to show that

a
∂v

∂a
+ b

∂v

∂b
= 0. (B.5)

In order to prove Eq. (B.5) consider the functions u(′) and v that were defined in
Ch. 3.2.1.2 as

u(′) =
√

(x1 − x2)2 + 4c(′)(1− x1)(1− x2), (B.6)
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v(x1, x2) =
2− x1 − x2 − u′

2− x1 − x2 − u
. (B.7)

In terms of a and b they read

u(′)(a, b) =
√

(a− b)2 + 4c(′)ab (B.8)

=
√

a2 + b2 + (4c(′) − 2)ab (B.9)

=
√

a2 + b2 + 2c̃(′)ab, (B.10)

and

v(a, b) =
a+ b− u

a+ b− u′ , (B.11)

where

c̃(′) = 2c(′) − 1. (B.12)

In order to show that Eq. (B.5) holds, consider the partial derivatives of v with
respect to a and b:

∂av =
(1− ∂au

′)(a+ b− u)− (1− ∂au)(a+ b− u′)

(a+ b− u)2
(B.13)

Bringing the denominator to the other side, this reads

(a+ b− u)2∂av = −u+ u′ + (a+ b) (∂au− ∂au
′) + u∂au

′ − u′∂au. (B.14)

Since v is symmetric in a and b the partial derivative with respect to b is given
by

(a+ b− u)2∂bv = −u+ u′ + (a+ b) (∂bu− ∂bu
′) + u∂bu

′ − u′∂bu. (B.15)

The partial derivatives of u(′) are

∂au
(′) =

1

2u(′) (2a+ 2c̃(′)b) (B.16)

=
1

u(′) (a+ c̃(′)b) (B.17)

and

∂bu
(′) =

1

2u(′) (2b+ 2c̃(′)a) (B.18)
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=
1

u(′) (b+ c̃(′)a). (B.19)

Hence

∂au− ∂au
′ =

a+ c̃b

u
− a+ c̃′b

u′ =
a(u′ − u) + b(c̃u′ − c̃′u)

uu′ , (B.20)

∂bu− ∂bu
′ =

b+ c̃a

u
− b+ c̃′a

u′ =
b(u′ − u) + a(c̃u′ − c̃′u)

uu′ (B.21)

as well as

u∂au
′ − u′∂au = u

a+ c̃′b

u′ − u′a+ c̃b

u
=

a(u2 − u′2) + b(c̃′u2 − c̃u′2)

uu′ , (B.22)

u∂bu
′ − u′∂bu = u

b+ c̃′a

u′ − u′ b+ c̃a

u
=

b(u2 − u′2) + a(c̃′u2 − c̃u′2)

uu′ . (B.23)

Inserting these identities into Eq. (B.14) and multiplying both sides of the equa-
tion by uu′ results in

uu′(a+ b− u)2∂av =− u2u′ + uu′2

+ a2(u′ − u) + b2(c̃u′ − c̃′u′)

+ ab(c̃u′ − c̃′u) + ab(u′ − u)

+ a(u2 − u′2) + b(c̃′u2 − c̃2u′2). (B.24)

Since u(′) is a square root, sorting the terms by the order of u(′) has the potential
to easier identify terms that can cancel each other out. With N := uu′(a+b−u)2

this takes the following form

N∂av =− u2u′ + uu′2

+ u2(a+ c̃′b)− u′2(a+ c̃b)

− u(a2 + c̃′b2 + 2c′ab) + u′(a2 + c̃b2 + 2cab). (B.25)

The partial derivative of v with respect to b can, due to the symmetry of v, be
found by replacing a by b and vice versa in the previous equation. The weighted
sum of both is therefore given by

Na∂av +Nb∂bv =(−u2u′ + uu′2)(a+ b)

+ u2(a2 + b2 + 2c̃′ab)− u′2(a2 + b2 + 2c̃ab)

− u(a3 + b3 + (4c′ − 1)a2b+ (4c′ − 1)ab2)

+ u′(a3 + b3 + (4c− 1)a2b+ (4cc− 1)ab2). (B.26)
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Now note that

(a2 + b2 + 2c̃(′)ab) = u(′)2. (B.27)

Therefore the terms in the second line of Eq. (B.26) cancel each other out and
one is left with

Na∂av +Nb∂bv =(−u2u′ + uu′2)(a+ b)

− u(a3 + b3 + (4c′ − 1)a2b+ (4c′ − 1)ab2)

+ u′(a3 + b3 + (4c− 1)a2b+ (4cc− 1)ab2) (B.28)
=u′(a3 + b3 + (4c− 1)a2b+ (4cc− 1)ab2 − u2(a+ b))

− u(a3 + b3 + (4c′ − 1)a2b+ (4c′ − 1)ab2 − u′2(a+ b)).

(B.29)

Now since

u(′)2(a+ b) = (a2 + b2 + (4c(′) − 2)ab))(a+ b) (B.30)
= a3 + b3 + (4c(′) − 1)a2b+ (4c(′) − 1)ab2, (B.31)

Eq. (B.29) reads

Na∂av +Nb∂bv = u′ · 0− u · 0 = 0, (B.32)

which proves the conjecture.
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Ausnahme solcher Zitate;  

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;  

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen basiert, wurde 

von mir klar gekennzeichnet, was von anderen und was von mir selbst erarbeitet wurde;  

7. Kein Teil dieser Arbeit wurde vor deren Einreichung veröffentlicht. 

 

21.09.2020 

 

 

____________________________________ 

Frederic Poncza 


	Motivation
	Monte Carlo Methods
	Monte Carlo Basics
	Monte Carlo Event Generation

	Reusing Events in Parameter Scans
	General Idea
	Kinematical Transformations
	Hard Process
	Boost Invariant Transformations
	Bijektive Transformations
	In Practice

	Momentum Conservation
	2-Particle Final States
	3-Particle Final States
	Multi-Particle Final States

	Structure of HepMC Eventfiles
	Decays and Jet Formation

	Reweighting
	Hard Process Reweighting Factors
	Reweighting Factors beyond the Hard Process


	Applications
	Production of Heavy s-channel Mediators
	Production of Heavy Fermion Pairs
	Squark Pair Production
	A Reproduction of ATLAS Limits

	Conclusion
	Boosts between to momenta
	Jacobian of the bijective transformation

