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i. Introduction 

Nelson (i) has shown how to derive the Einstein-Smolucnowski 

theory of Brownian motion from the Ornstein-Uhlenbeck theory which 

starts from the Langevin equations on phase space. We aim to derive 

the Ornstein-Uhlenbeck theory from the Maxwell-Boltzmann theory by 

making a mechanical model of the stationary Ornstein-Uhlenbeck process. 

The essential ideas of this treatment are contained in the paper of Ford, 

Kac and Mazur (2), but our treatment lays emphasis on the underlying 

mathematical structure. The case in which the restoring force is linear 

in the displacement has been considered in (3) where the connection 

with (2) is spelt out. 

2. Dynamics of a Conservative Linear System (4) 

We take the phase space of the system to be a real vecto~ space F 
i 

and suppose that the total energy E(y) of the system corresponding to 

the state y e F is given by E(y) = mc 2 H(y) where y ÷ H(y) is a strict- 
i 2 

ly positive quadratic form on F , and mc has the dimensions of energy. 

Choose a norm I I on F by putting I Y [ = 2H(y). Let F be the 
1 

completion of P with respect to the metric got from I " I , so that 
i 

F is a Hilbert space with inner product <., .> given by 2<yi,y2 > = 

IY i + y 2 12 IY112 - IYl 2 Let t + Yt = TtT be a flow on F leaving 

H invariant. Then there is a linear operator D on a dense domain in 

which is skew-symmetric with respect to the inner product and is such 

that T t = exp(tD). Assume that - D 2 is strictly positive (it is cer- 

tainly non-negative since - D 2 = D'D). Then D can be written uniquely 

as JA where J is a complex structure and A is strictly positive. Then 

for T in the domain of D we have 

d y = JAYt 
~t t 

There is a pair E, F of closed subspaces of P 

*Speaker 

(2.1) 

i n v a r i a n t  under  exp ( - tA)  
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(t > O) such that F = JE and P = E + F. When dim F = 2n < ~ there is 

an orthonormal basis {el: i = i, .., n } for E such that Ae i = aiei; 

then {fi = Jei: i = i, .., n } is an orthonormal basis for F and 

Af i = ~ifi. Putting Q (y) = <ei,Tt Y> and P (y) = <fi,TtY> we find 

that (2.1) yields 

i i i 
~tQt (y) = ~ipt(y) _ddtPt(-() = - ~iQt(Y) ' ( 2 . 2 3  

3. Dynamics of Dissipative Linear Systems 

The dissipative linear systems we consider are got from conservative 

linear systems by adding a damping term to the generator: let F,H, T t 

be as in 2, let B be an operator commuting with J such that B is zero 

on E and strictly positive on F, put G = JA - B and S t = exp(tG), t > O. 

LEMMA. {St: t > O} is a stronE~ continuous semi-group of contraction8 on F 

such that Stx ÷ 0 as t + ~ for each x in F • 

Suppose that dim P = 2n < ~ and, with the notation of 2, put 
i i 

8ij 
= <fi' Bfj> and Qt(y) = <Ste i, Y>, P~(Y) = < Y>; then Stf i , 

d Qt i = aiPt i , d P~ = _ aiQt i _ ~ flijP t i , t > 0 (3.1) 
dt It j 

We see that our assumptions about S t amount to the inclusion in the 

equations of motion of phenomenological damping terms linear in the 

velocities. Such terms arise in Stoke's theory of viscous damping 

and in Rayleigh's theory of Doppler drag. 

4. Embedding Dissipative Linear Systems 

Can a dissipative linear system F °, H °, S t = exp(tG) be embedded 

isometrically in a conservative linear system F, H, T t in such a way 

that the flow S t is the restriction of the flow T t to F ° ? This is 

answered in the affirmative by the following version of the Sz.-Nagy 

Dilation Theorem: 

THEOREM 1 ( s e e  ( ~ ,  ( 5 )  a n d  ( 6 )  ) L e t  F ° = E ° + F ° be a p h a s e  s p a e e  

with dissipative flow S t = exp(tG), G = J ° A ° -  B.  Then there exists an 

i~ometric embedding j :  F ° + F L 2 ( R ;  F ° ) ,  a conservative flow T t = e x p ( t d A )  

on F and a projection P on F such that j o S t = PT t o j. 
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Sketch of proof: let (Ttf)(s) = f(s - t), 

( P f ) ( s )  = { ~ ( s )  , s < O, a n d  ( j x ) ( s )  = 
0 , S > 0 ,  

! 

{ (2B) 2S - sX  , S < O, 

0 s > O. 

Warning: j T ° is not contained in D(JA) and subsequent computations 

depend crucially on the following theorem: 

THEOREM 2 ( s e e  ( 6 )  ) F o r  e v e r y  x i n  D(G) ~ p0 we h a v e  

(W t o j x ) ( . )  = ( j x ) ( - )  + ~ t ( T  s o j G x ) ( - ) d s  + X ( - )  (2B) [ x .  
(o , t )  

Using the notation of 3 in the case where dim r o= 2 but this time 

putting Qt(y ) = <je, T t y>, Pt(y) = <jf, T t y> we have 

~tt dP = aP t , ~ t = - ~Qt ~Pt + (2~) 2 y(t) 

Here the damping term arises from the flow of energy into the reservoir 

whose phase space is (jF°) ~ . In addition there is a driving term 

which leads us to identify the function t + y(t), t > O, with the future 

history of the driving of the system by the reservoir. 

5. Embedding a Dissipative Non-Linear System 

Consider a non-linear system with equations of motion 

~ t ~ t  = a p t ,  dP : -- ~ P t  V'  ~-~t - a Q t -  - a ( Q t ) .  ( 5 . 1 )  

We embed it in a conservative system by perturbing the linear system 

used in 4. Put Qt(y ) = <je, Yty> ,Pt(y) = <f,TtY> where t ÷ TtY is 

the non-linear flow on F given by 

~t Y = Tt Y -fo Tt_ s o jGe V'(<je, Tsy >) ds . (5.2) 

(Standard methods give the existence and uniqueness of this flow under 

appropriate conditions on V'.) Then we have 

~t = ~Pt dP , ~-~t = 
! 

~Qt- BFt ~V'(Qt) + (2B)2 ¥(t) (s.3) 

and the flow t ÷ Tt preserves the total energy which is now given by 

mc 2 {~ [ y [ z  + V ( < j e , ¥ >  )}  
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6. Statistical Mechanics of Linear Systems 

We return to the conservative systems considered in 2. When 

dim F = 2n < ~ the Maxwell-Boltzmann prescription puts a measure ~T 

on F having density (2~ kr/mc2) -n exp(- mcZH(y)/kT) with respect to 

Lebesque measure. Then for each 6 in r we have E exp(i<-,6> ) = 

frexp (i <Y ,~> )d~(~) = exp(-~o 2 [~I 2) where 02 = kT/mc 2 , so that 

<. ,6> is a Gaussian random variable with E<- $> = O, E <.,~>z = o21612. 

Thus for linear systems the Maxwell-Boltzmann prescription is entirely 

equivalent to the following: let ~ , P be a probability space and let 

:r + L2(~, P) be a linear mapping such that for each ~ in F the 

random variable ~(~) is Gaussian with E ~(~) = 0, E~ (~)2 = o2 i~i2 

In this case, of course, we may take ~ = F and P = ~T" This pre- 

scription makes sense even when dimF = = and in this case we adopt it 

as the Maxwell-Boltzmann prescription, even though it is no longer 

possible to take ~ = r. However in the situation described in 4 we 

have F = LZ(R; F °) and there is a unique probability measure D T on 

* Ji 
F = R;F~) such that~for each 6 in ,F = o~(R; F°)~E exp(i<-, ~>J= 

exp(- ~o21612) where now <x,$> is the pairing between F and ,r . 

We can take ~ to be the unique continuous extension of the map g * 

<- 6> to a map from F to L2(F ,~T ). T t leaves ,F invariant so its 

restriction ,T t is well-defined and induces an adjoint action T t on F 

Note that now ~(.) = o W(.) where W(.) is the Wiener Stochastic Integral. 

(For a fuller account of all this see Hida (7 ).) 

7. The Ornstein-Uhlenbeck Process 

Returning to 4 we put Qt(x) = < Ttx,je> ,Pt(x) = < Ttx ,jf> and 

then we have 

THEOREM 3 Qt(. ) , Pt (o) is a Gaussian stochastic proaess satisfying 

the Langevin equation 

dQt(o ) : ~Pt(.), dPt(') : _ ~Qt(. ) - Bpt(. ) + (2BkT/mc2) ~ Wt(') 

where Wt(; ) is a Wiener process such that EW t = O, EWsW t = min(s, t). 
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