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1. Introduction

Nelson (1) has shown how to derive the Einstein-Smolucnowski
theory of Brownian motion from the Ornstein-~Uhlenbeck theory which
starts from the Langevin equations on phase space. We aim to derive
the Ornstein-Uhlenbeck theory from the Maxwell-Boltzmann theory by
making a mechanical model of the stationary Ornstein-Uhlenbeck process.
The essential ideas of this treatment are contained in the paper of Ford,
Kac and Mazur (2), but our treatment lays emphasis on the underlying
mathematical structure. The case in which the restoring force is linear
in the displacement has been considered in (3) where the connection
with (2) is spelt out.

2. Dynamics of a Conservative Linear System (4)

We take the phase space of the system to be a real vectow space T
and suppose that the total energy E(y) of the system corresponding to '
the state vy ¢ Flis given by E(y) = me? H(y) where y » H(y) is a strict-
ly positive quadratic form on I' , and mc2 has the dimensions of energy.
Choose a norm | * | on r by pu%ting | v ll = 2H(y). Let T be the
completion of T  with respect to the metric got from | .« | , so that
' is a Hilbertlspace with inner product < s+, «> given by 2<y1,y2 > =
|Y1 Y, - |y1]2 - |Y2|2- Let t + y, = T,y be a flow on I' leaving
H invariant. Then there is a linear operator D on a dense domain in
which is skew-symmetric with respect to the inner product and is such
that Tt = exp(tD). Assume that - D2 is strictly positive (it is cer-

tainly non-negative since - D2

= D*D). Then D can be written uniquely
as JA where J is a complex structure and A 1is strictly positive. Then

for vy in the domain of D we have

= 2.1
%ty c JAY, . (z.1)

There is a pair E, F of closed subspaces of I invariant under exp(-tA)

*Speaker
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(t » 0) such that F = JE and I" = E + F. When dim I' = 2n < = there is
an orthonormal basis {ei: i=1, .., n} for E such that Aei = ajes;
then {fi= Je.: i =1, .., n} is an orthonormal basis for F and

. i * i * .
Af, = o,f,. Putting Qi(v) = <e;,T,y> and Po(y) = <£,,T,y> we find
that (2.1) yields

g4t (0 = WPl 4P = - a,Qi (1) 2.2)

3. Dynamics of Dissipative Linear Systems

The dissipative linear systems we consider are got from conservative
linear systems by adding a damping term to the gemerator: let I,H, T,
be as in 2, let B be an operator commuting with J such that B is zero

on B and strictly positive on F, put G = JA - B and St = exp(tG), t » O.

LEMMA. {St: t > 0} is a strongly continuous semi-group of contractions on T

such that § x + 0O aqs t + ® for each X in T .
Suppose that dim I' = 2n < « and, with the notation of 2, put

= i = l = -
Bij = <fi’ ij> and Qt(Y) = <Stei’ Y Pt(Y) < Stfis y>; then
agt= apt,apt- —agt-z8.2r,t>0. (3.1)
dt t it ? It t i*t PR B B o

We see that our assumptions about S, amount to the inclusion in the
equations of motion of phenomenological damping terms linear in the
velocities. Such terms arise in Stoke's theory of viscous damping

and in Rayleigh's theory of Doppler drag.

4. Embedding Dissipative Linear Systems

Can a dissipative linear system o, HY, St = exp(tG) be embedded
isometrically in a conservative linear system I, H, T in such a way
that the flow 5  is the restriction of the flow T  to T“ ? This is
answered in the afflrmatlve by the following Ver51on of the Sz.-Nagy
Dilation Theorem:
THEOREM 1 (see (4), (5) and (6) ) ZLet T® = E® + F® be a phase space
with dissipative flow S = exp(tG), G = JPA%~ B. Then there exists an
isometric embedding j: I® » T L2(R; F'), a conservative flow T, = exp(tJA)

on T and a projection P on I such that j © St = PTt o j.
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Sketch of proof: let (th)[s) = f(s - t),

. 1
(Pf) (S) = { f(sj y S5 < 0, and (jx) (S) = { (ZB) S_SX s S < O’
0 » S 2 0: 0 s > 0.

Warning: j I'® is not contained in D(JA) and subsequent computations
depend crucially on the following theorem:
THEOREM 2 (see (6 ) ) For every X <n D(G) « TI° we have

(T, © §x)(+) = Gx) (=) + £5(T, o §6x)(-)ds + x o (28)? x.
Oy

Using the notation of 3 in the case where dim %= 2 but this time

* *
putting Qt(Y) = <je, Tt Y>> Pt(Y) = <jf, Tt y> We have
d P i
W o= op L, Fot=-a -8R, + (28)F v(¥)

Here the damping term arises from the flow of energy into the reservoir
whose phase space is (jP“)l'. In addition there is a driving term
which leads us to identify the function t - y{(t), t > 0, with the future
history of the driving of the system by the reservoir.

5. Embedding a Dissipative Non-Linear System
Consider a non-linear system with equations of motion

%tﬁt = oPy, %gt = -aQ- B P, - V'(QY. (5.1)

We embed it in a conservative system by perturbing the linear system
used in 4. Put ﬁt(y) = <je, Tty> ,?t(y) = <f,Tty> where t + Tty is
the non-linear flow on I given by

_ 5 t _ _
T,y = Tov-f, T, o iGeV'(<je, Ty ») ds . (5.2)

(Standard methods give the existence and uniqueness of this flow under
appropriate conditions on V'.) Then we have

aq 5  dP = 5 = ]
Tt = oF,, Fet = -oQ, - BF, - V' (@ + 2B y(1) (5.3)
and the flow t =+ Tt preserves the total energy which is now given by

mc? {} |y|? + V(<je,y> )},
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6. Statistical Mechanics of Linear Systems
We return to the conservative systems considered in 2. When
dim ' = 2n < » the Maxwell- Boltzmann prescription puts a measure Hop
on I' having density (2w kT}mcz} exp(- mc®H{y)/kT) with respect to
Lebesque measure. Then for each & in T we have E exp(i<e+,&> } =
frexp (i <y ,&> )du(y) = exp(-10% |£|?) where o? = kT/mc? , so that
<+ ,&> 1is a Gaussian random variable with E<- &> = 0, E <«,g>2 = g2|g|2,
Thus for linear systems the Maxwell-Boltzmann prescription is entirely
equivalent to the following: 1let @ , P be a probability space and let
¢ :I' » L2(Q, P) be a linear mapping such that for each £ in I' the
random variable ¢(§) is Gaussian with E ¢(€) = 0, E¢ (§)% = o2 |g|?
In this case, of course, we may take @ = T and P = M- This pre-
scription makes sense even when diml’' = = and in this case we adopt it
as the Maxwell-Boltzmann prescription, even though it is no longer
possible to take o =T. However in the situation described in 4 we
have I = L*{(R; F°) and there is a unigque probability measure My on
gf’(R F9) such that,for each ¢ in «T . g(R; Fo ),E exp(i<-, £>).
exp(- 502r512) where now <x,E> is the pairing between P* and T
We can take ¢ to be the unlque continuous extension of the map £ -
<« £> to a map from I to L? (F ,uT) T leaves T invariant so itf
restriction *T is well~defined and 1nduces an adjoint action T on T .
Note that now ¢( ) = ¢ W(+) where W(+) is the Wiener Stochastlc Integral.
{(For a fuller account of all this see Hida (7 ).)

7. The Ornstein-Uhlenbeck Process
Returning to 4 we put Qt(x) =< T;x,je> ,Pt(x) = < T;x »jf> and
then we have
THEOREM 3 Qt(-) s Pt(c) i8 a Gaussian stochastic process satisfying
the Langevin equation
dQe(+) = aP(+), dP(+) = - aQ () - BP (-

where W ( ) s a erner proaess such that EW

) + (2BKT/me®)® W, (+)
0, EWSWt = min(s, t).
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