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Abstract Inthis paper, we investigate the constraints on the
total neutrino mass »_ m, in a cosmological model in which
dark energy and neutrinos are coupled such that the mass of
the neutrinos and potentials are function of the scalar field as
my, = mg exp(rfl—j) and V(¢) = m;‘?l exp(:n—kj) respectively.
The observational data used in this work include the type la
supernovae (SN) observation (Pantheon compilation), CC,
CMB and BAO data. We find that the neutrino mass is tightly
constrained to Y m, < 0.125 eV 95% Confidence Level
(C.L.) and the effective extra relativistic degrees of freedom
to be Nepr = 2.9551’8:3 68% C.L in agreement with the
Standard Model prediction N.ry = 3.046, matter-radiation
equality, .y = 3389;524 (68% C.L). These results are in good
agreement with the results of Planck 2018 where the limit
of the total neutrino mass is Y_m, < 0.12 eV (95% C.L.,
TT, TE, EE + lowE + lensing + BAO) , Noyy = 2.9970
(68% C.L., TT, TE, EE + lowE + lensing + BAO) and z.; =
338752 (68% C.L TT, TE, EE + lowE + lensing + BAO).

1 Introduction

The accelerating expansion of the universe [ 1-4] is one of the
must surprising discoveries in cosmology. Also the observa-
tions of Cosmic Microwave Background (CMB) anisotropies
indicate that the universe is flat and the total energy density
is very close to the critical one [5].

According to General Relativity, the dynamic of the uni-
verse is dominated by a new (dark) energy form with negative
pressure. There are prominent candidates for DE such as the
cosmological constant [6,7] in which dark energy takes the
form of a cosmological constant and dark matter is taken to
be cold, in other words having an equation of state equal to
zero. While A CDM fits the available data very well, it suf-
fers from a number of issues that motivate the study of alter-
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natives. These include the fine-tuning [7] and coincidence
[8] problems. In addition, there are certain tensions between
early and late-universe observations in ACDM. The present-
day expansion rate of the universe, Hy and the growth of
structure, quantified by og, can be calculated using the best-
fit ACDM parameters to cosmological data, including the
CMB. This gives rise to a smaller Hy and a larger og than
the results of local, late-universe measurements (for a recent
discussion see Ref. [9].

A popular class of modifications to ACDM is quintessence
[10,11] , in which the cosmological constant A is set to
zero and a scalar field ¢ is introduced whose dynamical
properties produce a negative equation of state giving rise
to the observed late-time accelerated expansion of the uni-
verse. Normally it is assumed that the scalar field does not
interact with dark matter. However there is no reason why
this must be the case, and the consequences of relaxing this
assumption have been widely studied. See Ref. [12] with
references therein and [13-17] for a discussion of recent
research on interacting dark energy. The other candidates are
phantom (field with negative energy) [18] that explains the
cosmic accelerating expansion. Meanwhile, the accelerating
expansion of universe can also be obtained through modi-
fied gravity [19], brane cosmology and so on [20-43]. On
the other hand, to explain the early and late time accelera-
tion of the universe. It is most often the case that such fields
interact with matter; directly due to a matter Lagrangian cou-
pling, indirectly through a coupling to the Ricci scalar or
as the result of quantum loop corrections [44—48]. If the
scalar field self-interactions are negligible, then the exper-
imental bounds on such a field are very strong; requiring
it to either couple to matter much more weakly than grav-
ity does, or to be very heavy [49-52]. Unfortunately, such
a scalar field is usually very light and its coupling to matter
should be tuned to extremely to small values in order not
to be a conflict with the Equivalence Principal [53]. The
discovery of the accelerated expansion of the universe is
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also the main challenge for particle physics [54]. It requires
new physics for the explanation of dark energy. Neutrinos
were first shown to have mass in observations of neutrino
flavour oscillations [55,56], the presence of which demands
that at least two of the neutrino states are massive [57].
While the attempts of the laboratory experiments of particle
physics to measure the absolute masses of neutrinos, have
always been facing great challenges [58—68], the cosmolog-
ical observations are more prone to be capable of measur-
ing the absolute masses of neutrinos [65-67], since massive
neutrinos can leave rich signatures on the cosmic microwave
background (CMB) anisotropies and the large-scale struc-
ture (LSS) formation at different epochs of the cosmic evo-
lution [68]. Recently some studies have attempted to con-
strain the total neutrino mass » | m, and as well as the effec-
tive number of relativistic degrees of freedom (N,rr) using
cosmological observations [69-126] Also the cosmologi-
cal consequences of interacting dark energy and dark matter
have been widely studied [127-166], however, we are inter-
ested in consideration that the role of neutrino is prominent.
In this work, we implement a cosmological model which
proposed by [167] and extend by [168] to constrain total
neutrino mass with observations. In this model dark energy
and neutrinos are coupled such that the mass of the neutri-
nos is a function of the scalar field m, = mg exp(r‘:l‘—fl). The
scalar field plays the role of dark energy and drives the late
time accelerated expansion of the universe. The motivation
of such consideration has been investigated by [168—177].
Here we consider a generalized model of [167] which allows
both dark matter and neutrino interact with dark energy with
different interacting couplings 8 and «. We constrain on
Q- my, Negr, h, Qp, Qph?, Q.h?, a, B, A, w) using obser-
vational data data. The structure of the paper is as follows.
Section 2 introduces the cosmological model explored here
while Sect. 3 describes the methodology and the measure-
ments exploited in our data analyses. Section 4 presents our
results and we conclude the article in Sect. 5

2 The model

The expansion rate of the Universe is given by Hubble
parameter H = ‘al, where a is scale factor and an overdot
denote cosmic time derivative. We assume a spatially-flat
Friedmann—Robertson—Walker Universe filled with baryons
(b), radiation (r), dark energy (¢), dark matter (dm) and neu-
trinos (v). The baryons and radiation are regarded as non-
interaction fields. The Friedmann equations which follow
from Einstein field equations are as

3H?>=p, 2H +3H>=—p (1)
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Where, p = pp + pr + pam + pv + pp and p = pp +
Pr + Pam + pv + py. From the conservation of the energy
momentum tensor it follows the evolution equation for the
total energy density:

p+3Hp=0 @

The baryons are treated like dust (p; = 0) and the barotropic
equation of state for the radiation field is (p, = %pr). Once
both of them have no interaction with other components, the
evolution equations for their energy densities are :

Op+3Hpp =0 3)
or +4Hp, =0 “)

respectively. Since the dark energy is modeled as a scalar
field ¢ its energy density and pressure are given by

1. 1.
Py = 5¢2 +V(p), py= 5¢2 - V() Q)

where V () denotes the potential of the scalar field. In this
paper, we consider the interactions between dark matter and
dark energy as the following evolution equation

Odm + 3Hpam = —Boam® (©6)

where S stands for the coupling constant between dark matter
and dark energy. The neutrinos are understood to be massless
and relativistic particles in the past, but with the coupling to
the dark energy, they have acquired mass and became non-
relativistic, having an oscillating mass behavior at low red-
shifts. In this paper we follow the idea that proposed by [167]
and extended by [168]. In the cosmological context, neutri-
nos cannot be described as fluid. Instead, one must solve the
distribution function f (xt, pi , T) in phase space (where T
is the conformal time). Considering the case that neutrinos
are collisionless, the distribution function f does not depend
explicitly on time. Solving the Boltzmann equation, one can
then calculate the energy density stored in neutrinos ( fo is
the background neutrino distribution function):

oy =a* / q*\/q* + my(9)2a? fo(q)dqd < (N
by = la74/ I
" | Termara

The evolution equation for its energy density according to
[168]

folg)dqd2 (8)

Pv+3H (py + pv) = ag (py — 3py) 9

where « denotes coupling constant which can be related

neutrino massm, with relation o« = %. Furthermore,
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from the resulting equations it is possible to obtain evolution
equations for the scalar field as

.. . dV . .
¢+3H¢+%+a¢(pu—3pu)—ﬁpdm¢=0 (10)

For most of the Universe’s history, the neutrinos are highly
relativistic and (p, — 3py) = 0 such that the scalar field
and the neutrinos are effectively uncoupled, here only the
coupling parameter S is important . After the neutrinos
become non-relativistic hence the coupling parameter « also
becomes important. We consider an exponential potential
V= Mﬁl exp(—AMipl), where A is a dimensionless parame-
ter that determines the slope of the potential. The motivation
for choosing these functions have been investigated in [169].
Also we define w = P—”). In order to simplify the field equa-
tions, we introduce foliowing new variables,

[ Pb _ Pu o Pr
'T 32 T 3H2 Y T 3EY
Pdm ¢ _V(9)

(11

X4=3?,X5=ﬁ,x6— 3H?2

Hence, the equations of the autonomous dynamical system
can be derived as,

dx) H

aN = N T

dx; H
=-n (3(1 + @) — Voxsa(l — 30))) —22x
dxs H

— = —4x3 —2—x3

dN H

dX4 H
W = —X4 (3 + N/EXS,B + 2m>

dxs  3x 3a(l — 3w) N 98 - H

— ==X~ ——F——X —X4 — — | x
AN \/6 6 \/6 2 «/6 4 H2 5
dxg H

= —/61x6x5 — 2455 % (12)

Where, N = Ina. In term of the new dynamical variable, we
also have,
H J—

1 2
— (-3 — — — + 13
3 ) ( 3 —x3 —3wx; 3)65 3x6> (13)

In term of new variable the Friedmann equation (1) puts a
constraint on new variables as

x1+x2+x3—|—x4+x52—|—x6=1 (14)
We demonstrate that for the flat Friedmann—Robertson—

Walker model the dynamics can be reduced to the form of
the six dimensional autonomous dynamical system where

by exerting the constraint (14) it reduces to five dimensional
dynamical system. The parameters «, 8, A, w are the free
parameters of the model. While the main advantage of the
dynamical system methods is that without knowledge of an
exact solution it is possible to investigate the properties of
the solutions as well as their stability, But this method is not
necessarily to check the stability of the system. Rather, even
if our goal is to solve equations numerically, this method
is a useful method. Because in the solution of the original
equations (Friedman and field equations), we are faced with
differential equations of order 2 and higher, which are rel-
atively more complex where not only the initial conditions
but also the first and second order initial conditions must be
determined for any dynamical variable. For example, because
of advent of the ¢ in field equation, we need ¢(0), ¢(0) and
¢(0) and due to H we need (a(0), H(0) and H (0) for numer-
ical solutions, however, when the equations are introduced
in terms of a set of the first order equations, only the ini-
tial condition for the new variable need to be determined
x1(0)..x5(0), this makes numerical solution of the equations
easier. On the other hand the variables in the dynamical sys-
tem usually are dimensional lees and in most cases, or at list
in the case of Friedman equation we have Pre information
about the range of initial conditions. For example, we get
5"7’”2 which is €2,,. Hence in numerical solution, it is
not necessary to cover a large area of €2,,, (0) but we focus on a
small area , approximately between 0.2 and 0.4. It makes the
analysis easier. The importance of this issue becomes more
reveal in observational cosmology where the initial condition
play important role in the evolution of the universe

However, the question that may arise is that why we don’t
implement this method for any set of high order differential
equations. The answer is that although any second-order dif-
ferential equation is equivalent to two first-order equations,
however the suitable choice of new variables and converting
equations to the first order may not be easy except in special
cases, but if we could do that then we are faced with a set of
first order equations which are more easer to solve.

X4 =

3 Observational data, analysis and results

In what follows, first, we briefly describe the observational
data sets used to constrain the parameters of the models under
consideration.

e Pantheon: The use of type Ia supernovae (SNe) as
standard candles has been of critical importance to cos-
mology, leading to the discovery of cosmic accelera-
tion [54,178]. In this paper, we use the new “Pantheon”
sample of Scolnic et al. [179], which adds 276 super-
novae from the Pan-STARRS1 Medium Deep Survey at
0.03 < z < 0.65 and various low-redshift and HST
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samples to give a total of 1048 supernovae spanning the
redshift range 0.01 < z < 2.3

The luminosity distance d;, can be calculated by

dz
H(2)

dp = +z)/ (15)

In order to incorporate the Eq. (15) with the dynamical
system equations of (12), it can be rewriten in terms of
the following differential equations

ddy, e 2N

av - T TH (10
dH H

an =" (m) (4"

Where, since 1 + z = }l, then (1 +2) = e N, dz =
—e NdN and dN = Hdt . Hence by defining new vari-
ables x; = dr and x;, = H we can write the Eq. (16)
as

dxg e 2N

24—

dN d Xpn

dxy, H

an = (m) (1%)

The Eq. (18) are related with Eq. (12) by % which have
been obtained in terms on new variables. It is also impor-
tant to note that % play the important role in cosmol-
ogy, since important cosmological parameters such as
deceleration parameters g an effective equation of state
(EoS) w,rr can be expressed in terms of this parameter as
qg=-1-— % and werr = —1— %%.Hence in order to
find x4 and xj, the set of Egs. (18) and (12) must be cou-
pled and solved simultaneously. Hence the distance mod-
ulus also can be obtained as s, (z) = Slog(xy) +42.38.
we can compute the y2-statistics for each case. There-
fore, we proceed to define the following quantities:

N antheon
X[% X _ Pzti‘ (1 (Zi)obs — /J'(Zi)th)2 (19)
t - )
o i o (Zi )gbs,Pantheon

where N is the number of data points, o; is the uncertainty
associated with each measurement.

Cosmic Microwave Background(CMB): The observa-
tions of temperature anisotropies in the CMB provide a
valuable independent test for the reality of dark energy
at the recombination epoch z 1090. The photons were
coupled to baryons and electrons before that red shift
and decoupled right after. Due to the fact that in the
Boltzmann and Einstein equations all the components of
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the universe are coupled, in order to extract information
from the full spectrum, demanding numerical simulations
are needed. A convenient and efficient way to summa-
rize information from the CMB data, without using the
full spectrum, is by employing the so called CMB shift
parameters or distance priors.

The CMB shift parameter R, given by [180,181]

1 Zrec dZ
R = Qr%zo / —_— (20)
o E@®@
where E(z) = %é) andz,.. is the redshift of recom-
bination z,, = 1090 [182]. The parameter R ties

up the angular diameter distance to the last scatter-
ing surface, the comoving size of the sound horizon at
z = 1091.3 and the angular scale of the first acoustic
peak in CMB power spectrum of temperature fluctua-
tions [180,181]. The updated value of R from WMAP5
is Rops = 1.710 £ 0.019 [183]. The X(szB for the CMB
data is

(R - Robs)2

Xemp = —5 @1

where the corresponding lo errors is og = 0.019.
Baryon acoustic oscillations BAO data

For BAO data, from the measurement of the BAO peak
in the distribution of SDSS luminous red galaxies, we
define parameter A as [184]

1 11 [% dz 3
A= 2B T | fo e 22)

where z;, = 0.35. The SDSS BAO measurement [184]
gives Agps = 0.469(n;/0.98).0.35 £ 0.017, where the
scalar spectral index is taken to be ny = 0.965as mea-
sured by Planck 2018 [185]. The parameter A is nearly
model-independent and imposes the robust constraint as
complement to SNIa data. The x2 for the BAO data is

5 (A — Aops)?

= — 23
XBAO or (23)

where the corresponding 1o errors is 04 = 0.017. Table
1 shows the best fitted model parameters and initial con-
ditions in both power law and exponential cases.

CC We use the cosmic chronometers (CC) data set com-
prising of 36 measurements spanning the redshift range
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7 < 2.36, recently compiled in [186]

) NZ (H @i)obs — H (z0))?

XCc = , (24)
c o (zi )(2>bs,CC

i

In order to put constraints on the parameters of the model
we must note that the model has five independent vari-
ables (x1, x2, x3, x4, x5) whichaccording to 11 are equiv-
alent to (2, 2y, 2, QLam, Q;ﬂ) as well as four free
parameters of the model («, 8, A, w). Hence in order
to solve the equation numerically the five initial condi-
tions (x1(0), .., x5(0)) and value of the parameters must
be known. In observational measurements one or more
parameter are added to the free parameters. For example
in numerical analysis using Pantheon data the two new
variables x; = d; and x;, = H and for CC, CMB and
BAO data the variable x;, = H are added to the free
parameters. The other parameters are expressed in terms
of the main parameters and can be constrained indirectly.
For example ) m,, can be related to the main parameters
(h, ) as

_xm

T 94h2eV 25)

v

where 4 is the reduced Hubble constant (the Hubble con-
stant Hy = 100k km/s/Mpc. Hence if the parameters
(h, ,) are constrained then the parameter ) m,, is con-
strained automatically.

The relativistic energy density in the early universe
include the contributions from photons and neutrinos,
and possibly other extra relativistic degrees of freedom,
called dark radiation. The effective number of relativistic
species, including neutrinos and any other dark radiation,
is defined by a parameter, N,rr , for which the stan-
dard value is 3.046 corresponding to the case with three-
generation neutrinos and no extra dark radiation [187]. If
the value of N,y is beyond 3.046, it indicates that there
is some dark radiation other than three-generation active
neutrinos. The behaviour of dark radiation is exactly
equivalent to massless neutrinos. Thus, the total radia-
tion energy density in the Universe is given by

4
7/ 4\3
pr = py [1 +3 (H) Neffj| (26)

where p,, is the energy density of photons. We parametrize
the relativistic degrees of freedom using the effective
number of neutrino species, N.ry. This quantity can be
written in terms of the matter density, th2, and the

redshift of matter-radiation equality z.4 as [182]

Q. h% 3139
0.1308 1 + z¢4

Nopp = 3.04+7.44 ( - 1) Q27

4 Results

Throughout this section we will present the results obtained
within the two different IDE scenario

4.1 IDE+ Y. m,

The results for the cosmological parameters within this inter-
acting dark energy model are shown in Table 1. Figure 1
also show the parametric space at 68 %CL and 95%CL for
some selected parameters for the different observational data
sets. In order to compare our results with those obtained by
Planck 2018 [185], we have listed some of the Planck 2018
results [185] in Table 2. For this case the free parameters are
Oomy, by Q. Qh?, Qb a, B, 1, w).

From the analyses of the Pantheon data alone, as shown
in Table 1, we find that

> my <0253eV 95%CL (28)

This result is very close to the result of [121], the case IDE+
> " m,, using (CMB + Pantheon + CC data) with Y m, <
0.255eV at 95% CL. Both the model is similar to ours and the
data used includes Pantheon data. The result is also closed
to the result of[122], the case interacting vacuum scenario
(IVS)+ >_my, with >_m,, < 0.277 eV at 95% CL) and the
result of Planck 2018 [185] the case (TT, TE, EE + lowE +
lensing) with ) m, < 0.241 eV at 95% CL. Using CC data,
we find that

va <0.199eV 95%CL (29)

which is close to the result of [121], the case IDE+ > m,,
using (CMB+Pantheon+CC data) with ) m, < 0.159 eV at
95 % CL and the result of Planck 2018 [185] the case (TT,
lowE + BAO) with ) " m, < 0.16 eV at 95% CL.

Using CMB+BAO, we find that

Y m, <0.33eV 95%CL CMB + BAO (30)

This result is very close to the result of [121], the case IDE+
> my, using (CMB data) with Y m, < 0.313 eV 95% CL
and comparable with and comparable with results of [185]
the case TT, TE, EE + lowE[CamSpec] with >_m, < 0.38
eV 95% CL

@ Springer
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CMB+BAO+HST+Pantheon

—45 —40 -35 -30 25 -20

Fig. 1 The constraints at the 68% and 95% CL two-dimensional contours for selected cosmological parameters and parameters of the model
parameters in IDE+ ) m,, scenario for the Pantheon, CC, CMB + BAO and Pantheon + CC + CMB + B AO dataset

For combination of full data, Pantheon + CC + CMB +
BAO, we find

> my <0.125eV 95%CL (31)

The result is very close to results of [185] TT, TE, EE +
lowE + lensing + BAO with Y m, < 0.12 eV at 95% CL
and case TT, TE, EE + lowE + BAO with Z m, < 0.13 eV
at 95% CL. It is also comparable with that obtained by [121]
with >~ m, < 0.156 eV at 95% CL using same model IDE+
> m, and same dada (Pantheon + CC + CMB + BAO)

We also put constraint on coupling parameters (¢, 8, A, ).

The lower panel of Fig. 1 shows (68.3%, 95.%) confidence

@ Springer

levels for the parameters («, 8) and (A, w) for Pantheon,
CC and CMB + BAO and combination of the data Pan-
theon + CC + CMB + BAO. The results also have been
listed in Table 1. Constraining on parameter A, we have
obtained A11.85%332, 4 = 10.35%}232, & = 8.6%¢70 and
A = 12.87090 at 68% CL for Pantheon, CC, CMB + BAO
and Pantheon + CC + CMB + BAO respectively. Since we
have considered V (¢) = m;l exp(:n—);j), the positive value of
X indicates that potential V (¢) is a monotonically decreasing
function of ¢. and has a negative gradient. It is also impor-
tant to note that the best fitted values of A for both individual
and combination data values are very close to that deter-
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Table 3 Observational constraints at 68% and on main and derived parameters of the IDE+ )" m, + N,ss scenario. The parameter Hy is in the units of km /sec/Mpc whereas ) " m, reported in

the 95% CL, is in the units of eV

Dy Nesr

Quh?

Hy

Qph?

Dataset

+0.8
97703
11 1+1.05

~21.957]83
~19.65"1%3
~29.027803
—24.8513%2

+4.55
9.752455

+0.12
3.227 508
3‘01+0.38

< 0.253
< 0.199

<0.33

0.1356 790030
1413158
0.124875:0050
0124800

+0.0032
029570032

+0.0193

02995700147

+0.017
0.289" 5015
+0.008
0.2887 5 008

70.01934
68.7H082
657108
69.5%03

0.09966 0014
0.0751+0092
0.114349070
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mined by upper bounds on early dark energy (A > 10)[161].
In fact, when the potential energy approaches a constant
V() = miyexp() — Vi = V(@) = mj exp(90),
where the evolution of the cosmon field stops close to a value
¢; which is characteristic for the transition between the two
different cosmological epochs, it acts similar to a cosmolog-
ical constant and causes the accelerated expansion and for
% =~ 276 the cosmological constant has a value compati-
ble with observation. This amount gives A > 10 (for more
discussion see [161])

For most of the Universe’s history, the neutrinos are highly
relativistic and (p, — 3p,) & 0 such that the scalar field and
the neutrinos are effectively uncoupled, here only the cou-
pling parameter g is important. After the neutrinos become
non-relativistic hence the coupling parameter « also becomes
important. Constraining on parameter o, we have obtained
a = 155790 o« = 70111000 & = 200271520 and
A = 1117350 at 68% CL for Pantheon, CC, CMB + BAO
and Pantheon + CC + CMB + BAO respectively. As investi-
gated by [188], the following conditions must be met to give
rise to growing neutrino quintessence:

e V(p) must have a negative gradient in order to cause
the value of the scalar field to increase with time. This
gradient must be sufficiently steep that ¢ reaches large
enough values in the late Universe to act as dark energy.

e |a| must be sufficiently large when the neutrinos become
non-relativistic that 8(p, —3p,) is able to act as a strong
enough restoring force to stop the evolution of ¢ in
Eq. (10).

The best fitted of («, A) satisfy the above condition.
Despite the small value of €2, the neutrinos are important
for the evolution of the cosmon due to their large cou-
pling o

For both individual and combination of the dataset, we
find that the large value for coupling parameter 8. We find
|B] > 19] at (95% CL. This indicates there is a strong
interaction between dark matter and dark energy.

4.2 IDE+ Y _m, + Netr

The results for the cosmological parameters within this
interacting dark energy model are shown in Table 3. Fig-
ure 2 Also show the parametric space at 68 %CL and
95%CL for some selected parameters for the different obser-
vational data sets. For this case the free parameters are
(X my, Neprs hy Qun, Quh%, Qeh?, o, Bk, ).

Although the results for this case, IDE+ Y m, + N, ff,are
consistent with those in the previous case IDE+ ) m, and
the presence of N,rr does not significantly shift the result,
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Fig. 2 The constraints at the 68% and 95% CL two-dimensional contours for selected cosmological parameters and parameters of the model in
IDE+ Y _m, + N, 7 scenario for the Pantheon, CC, CMB + BAO and Pantheon + CC + CMB + BAO dataset

however the bounds on some of the parameters have been
changed slightly.

From the analyses of the Pantheon data alone, as shown
in Table 3, we find that

> my <045eV 95%CL (32)

Which in comparison of previous model, IDE+ Y m,, with
> m, < 0.253 eV have been changed significantly, however
it is close to the result of [189] where using same model,
interacting scenario IDE1p + ) m, + N,y and using Planck
2018 data, have been obtained Y _m, < 0.438 eV at 95% CL
The interesting result of our analysis is that for this model,
the most stringent upper limit we have on this parameter
is obtained for the data set combination CMB + BAO +

@ Springer
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Pantheon + CC in which
> my <0.125eV 95%CL (33)

This result is in good agreement with the results of Planck
2018 [185], where the limit of the total neutrino mass is
> my < 0.12 eV at (95% C.L. using TT, TE, EE + lowE +
lensing + BAO data) and close to the result of [121], where
they also find the most stringent upper limit on this parameter
for the same model, IDE+ ) m,, and the same data (CMB +
Pantheon + CC data) with Y " m, < 0.15eV at 95% CL. For
combination data we also find

Nepr = 2.9557501 68%C L (34)

which is very close to the result of Planck 2018 [185] with
Nepr = 2.96703% at 68%CL, the case TT,TE,EE,LowE
+lensing+BAO and close to result of [121] with N.sr =
3. 02+0 033 using the same data and same model.

For this case, the best fitted values for A, have obtained as
A=9708 A = 11171030 =7.973 3 and A = 1025703
at 68% CL for Pantheon, CC, CMB + BAO respectively. Also
for combination of dataset, CMB + Pantheon + CC data we

have found
1.05
A =10.25T102 (35)

The results are close to those obtained in previous case, IDE+
> m,. Hence same as the previous case, the positive values of
A indicate that potential V (¢) is a monotonically decreasing
function of ¢. and has a negative gradient as well as these
value are consistence with that predicted by observation.

5 Conclusion

In this paper, we have explored possible extensions of the
Interacting Dark Energy, where the dark energy and the dark
matter fluids interact with each other.

We have considered a cosmological model in which dark
energy and neutrinos are coupled such that the mass of
the neutrinos and potentials are function of the scalar field
as m, = my exp( ) and V(¢) = lexp( ) respec-
tively. While the theoretlcal aspects of the neutrmo dark
energy interaction have been studied in previous studies
[167-169,188], here we have extended the model such that
not only neutrino but also dark matter interact with dark
energy with different coupling terms Qge—gm = n%q'b,odm
and Qg.—y = mip(pv -3 py)¢3 and focused on observational
aspect of the model. We have exploited the most recent pub-
licly available cosmological observations, which include the
Supernovae Type Ia Pantheon data and measurements of the
Hubble parameter from Cosmic Chronometers. CMB data,

@ Springer

Baryon Acoustic Oscillations data (BAO) to put constrain on
parameterson ) my, Nefr, Zeq, Rms Ry L, Qo B A, @
We find that while the results of individuals and combina-
tion of datasets are closed, the most stringent upper limit we
have on this parameter is obtained for the data set combina-
tion CMB + BAO + Pantheon + CC in which)_ m, <
0.125eV  95%CL This result is in good agreement with
the results of Planck 2018 [185], where the limit of the
total neutrino mass is Y m, < 0.12 eV at (95% C.L. using
TT, TE,EE+lowE+lensing+BAO data) and close to the result
of [121], where they also find the most stringent upper limit
on this parameter ..for the same model, IDE+ ) m,, and same
data (CMB + Pantheon + CC data) with > m, < 0.15eV at
95% CL.

This study also investigated one of the main problem in
growing neutrinos and cosmological selection. As point out
by Amendola and Wetterich [190], the most crucial observa-
tional issues can be understood by understanding on constant
parameters (A, , B) it will be a challenge to measure them
or to falsify the growing matter scenario. For neutrino grow-
ing matter a determination of A and & would fix the neutrino
mass, allowing for an independent test of this hypothesis by
comparing with laboratory experiments. The values obtained
for these parameters in this study are close to those require
for growing matter mechanism.

For both model IDE + ) m, and IDE+ Y _m, + Nsr
and for all dataset, Both individual and combination, we find
the mean value of A as A =~ 10. This value is very close
to that determined by upper bounds on early dark energy
(A = 10) [161]. As also point out by V(¢) must have a
negative gradient in order to cause the value of the scalar field
to increase with time. This gradient must be sufficiently steep
that ¢ reaches large enough values in the late Universe to act
as dark energy. Since we get V (¢) = m* »l exp(—) the best
fitted values of A which is positive satlsﬁes this cond1t10n
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