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Abstract

The coset construction is a tool for systematically building low energy effective
actions for Nambu-Goldstone modes. This technique is typically used to compute
time-ordered correlators appropriate for S-matrix computations for systems in their
ground state. In this paper, we extend this technique to the Schwinger-Keldysh for-
malism, which enables one to calculate a wider variety of correlators and applies
also to systems in a mixed state. We focus our attention on internal symmetries
and demonstrate that, after identifying the appropriate symmetry breaking pattern,
Schwinger-Keldysh effective actions for Nambu-Goldstone modes can be constructed
using the standard rules of the coset construction. Particular emphasis is placed on
the thermal state and ensuring that correlators satisfy the KMS relation. We also
discuss explicitly the power counting scheme underlying our effective actions. We
comment on the similarities and differences between our approach and others that
have previously appeared in the literature. In particular, our prescription does not
require the introduction of additional “diffusive” symmetries and retains the full non-
linear structure generated by the coset construction. We demonstrate our approach
with a series of explicit examples, including a computation of the finite-temperature
two-point functions of conserved spin currents in non-relativistic paramagnets, antifer-
romagnets, and ferromagnets. Along the way, we also clarify the discrete symmetries
that set antiferromagnets apart from ferromagnets, and point out that the dynamical
KMS symmetry must be implemented in different ways in these two systems. Lastly,
we introduce the concept of “ajar systems” as an intermediate case between closed and
open systems, where the timescale for charge exchange with the environment is para-
metrically larger than all other characteristic time scales. The Schwinger-Keldysh
effective action for such systems exhibits weak explicit symmetry breaking, which
we systematically describe using spurion techniques. We then focus on an example
with an ajar system with U(1) symmetry, calculating leading-order corrections to
correlation functions in both diffusive and spontaneously broken phases.
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Chapter 1

Introduction

Non-equilibrium physics is concerned with the study of systems that are not in ther-
modynamic equilibrium, i.e. they exhibit dynamic behavior due to the ongoing ex-
change of energy, matter, or information with their surroundings. Unlike equilibrium
systems, which usually admit relatively simple descriptions of their properties, non-
equilibrium systems are often far more complex, displaying phenomena such as dissi-
pation, large fluctuations, self-organization, and phase change. These systems can be
found in a wide range of contexts, from biological and chemical processes to physical
systems such as hydrodynamics [1], systems driven by an external force [2], dynamics
of open systems [3] and even quantum information [4] in the context of error correc-
tion. Understanding non-equilibrium physics requires new theoretical frameworks, as
traditional thermodynamics and statistical mechanics, which primarily focus on equi-
librium states, are often insufficient to describe the rich dynamics at play in these
systems.

While non-equilibrium classical systems with dissipation and fluctuations, like vis-
cous fluid dynamics and kinetic theory have been investigated since much earlier [5],
the systematic study of physics out of equilibrium stretches back to the start of the
20th century. An important one among them is Onsager’s work on deriving reciprocal
relations of forces and fluxes [6], valid for a system that is in local equilibrium. By this
we mean that the system shows a substantial variation of a relevant thermodynamic
quantity across its extent, but when zoomed in down to scales much smaller than
the typical length scale of these variations we observe a state of quasi-equilibrium.
This led to the development of general linear response theory, aspects of which in-
clude the Green-Kubo relations [7,8] and generalization of the fluctuation-dissipation
theorem [9]. Subsequent advances include extension to nonlinear response via Mori-
Zwanzig formalism [10], the connection between dissipation and stability [11] and
the use of quantum master equations [12, 13| equations to study dynamics of out
of equilibrium systems. The method of Thermofield Dynamics, originally developed
in the thermal equilibrium context, [14] has also been extended to non-equilibrium
systems [15].



While the work cited above was based in the operator formalism, non-equilibrium
physics was also studied from the path integral and field theory perspective. Feyn-
man and Vernon [16] used the path integral approach to model linear dissipative
systems, with external effects parametrized through the “influence functional" in the
Lagrangian. Schwinger [17] and Keldysh [18]| developed a general path integral con-
struction that relied on the doubling of the degrees of freedom and a closed time path
for the generating functional. Caldeira and Leggett [19] considered a simple quan-
tum mechanical system coupled to a bath of harmonic oscillators to model quantum
dissipation.

Another avenue of research has involved using the approaches above to derive ef-
fective theories for out of equilibrium systems at finite temperature. The fluctuating
hydrodynamics approach was developed to include noise and external effects [1] in
classical and quantum systems in the hydrodynamic regime. The Schwinger-Keldysh
formalism was also extended to describe a wide variety of emergent or effective sys-
tems, including quantum dissipation [20-22|, hydrodynamics [23-26], gravity [27],
cosmology [28,29] holography [30] condensed matter systems [2] and systems with
broken symmetries [31-33].

In this work, we extend the existing EFT methods developed for diffusion and hy-
drodynamics at finite temperature [23,34] to systems that exhibit Spontaneous Sym-
metry Breaking (SSB). To do this, we generalize the Callan-Coleman-Wess-Zumino
coset construction [35] to the Schwinger-Keldysh formalism (also called the in-in
formalism), and derive the building blocks necessary to build effective actions. We
consider specifically closed systems with internal symmetries, either global or gauged;
and also investigate the case of an open system in the limit of weak interaction with
the environment.

The outline of the thesis is as follows:

e Chapter 2 discusses Spontaneously Broken Symmetries (SSB) and their EFTs.
We will especially focus on the method of Coset Construction, which allows for
the systematic construction of EFTs by utilizing the symmetry breaking pattern
as an input.

e Chapter 3 introduces the Schwinger-Keldysh formalism, also known as the in-in
formalism, which can be used to do field theory calculations in a non-equilibrium
setting and at finite temperature. After a brief introduction to the formalism
and a discussion of its systematics, we will compare it with other finite temper-
ature formalisms found in the literature.

e Chapter 4 focuses on how the Schwinger-Keldysh formalism can be used to
build effective actions that describe non-equilibrium systems. We will consider
the relevant degrees of freedom, the additional symmetry structure that comes
from doubling of the fields, and what expansion parameters are relevant when
considering a system at finite temperature. Special focus will be on systems



that are initially in a thermal state, and how this results in the dynamical
Kubo-Martin-Schwinger symmetry.

Chapter 5 is on the extension of coset construction methods to the Schwinger-
Keldysh formalism. The focus of this section is on systems described by ther-
mal states that exhibit spontaneously broken internal symmetries. The chapter
concludes with the application of the in-in coset machinery to the calculation
of current-current correlators of paramagnets, anti-ferromagnets and ferromag-
nets.

Chapter 6 extends the Schwinger-Keldysh coset construction to systems inter-
acting weakly with the environment through spurions. The spurion method is
briefly explained, and then employed in the case of a thermal system with global
U(1) symmetry weakly coupled to a bath.

Chapter 7 provides a summary of our results and considers possible extensions
and avenues of investigation.



Chapter 2

Effective Field Theories of
Spontaneously Broken Symmetries
and Coset Construction

2.1 Effective Field Theories

Natural laws admit a hierarchy of scales, whereby it is possible to ignore microscopic
(or macroscopic) physical phenomena below (above) a certain range of scales; length,
time, energy, momentum etc., that an experiment can access. This means we do not
have to track all position and momenta of gas molecules, numbering around ~ 1023
to design an internal combustion engine; or factor in the accelerating rate of the
expansion of the universe to predict when the next solar eclipse will happen. We
can go further and derive effective theories that to first order neglect the effects of
scales far beyond the relevant range, and then systematically include such relatively
unimportant effects perturbatively.

This philosophy of building effective theories is also the framework followed by Ef-
fective Field Theories (EFTs), where effective actions for field theories are constructed
by assigning to each term a ratio E/A for E < A where E is the relevant scale (not
necessarily energy) and A is the cutoff scale above which the theory has no predictive
power. Interactions assigned higher powers of this ratio are more irrelevant, and the
EFT is able to make predictions in a controlled manner. For energies E ~ A, all
interactions become relevant and one then needs to use a different EFT to describe
physics at this new scale, with a different cutoff A’ > A.

In this way the understanding of EFTs have evolved from phenomenological mod-
els created to match experiments (for example Fermi’s theory of weak interactions),
to the modern framework of treating every Quantum Field Theory (QFT), including
the Standard Model, as an EFT with a range of validity and organized in a power
counting scheme of relevant scales.

The EFT methods have seen a wide range of application in recent years. Among
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these include chiral perturbation theory [36], binary systems and gravitational radi-
ation [37, 38|, material science [39], cosmology [40], collider physics [41], condensed
matter systems [42], active matter [43], hydrodynamics [44] and EFT of the Standard
Model [45]. For an overview of the current state of the art we refer to [46,47]. Text-
book treatment of the subject can be found in [48,49], see also [50-61] for reviews
focusing on various fields of application.

When constructing EFTs, there are three main principles to consider [60]: degrees
of freedom, symmetries, and expansion parameters.

Degrees of Freedom

When building an EFT, we need to choose what the degrees of freedom should be
that describes the system. There is an element of freedom in such a choice, but what
is important is to pick a choice that is relevant, in the sense that it captures the
essential characteristics of the low energy dynamics, but is as economical as possible
in terms of added structure.

While it may be possible (although not necessarily practical) in some cases to
use the same degrees of freedom that describes a system at high energy also for
low energies (e.g. QED), this is generically not the case. This is especially true in
the cases where low energy dynamics involve bound states, which cannot be derived
perturbatively from the high energy degrees of freedom. A prime example of such a
theory is QCD, where the high energy dynamics can be captured perturbatively using
quark degrees of freedom (due to asymptotic freedom), but at low energies the quarks
become confined leading to bound states such as hadrons and mesons, and it is not
possible to talk about asymptotic in and out quark states. Thus, the relevant degrees
of freedom governing low energy dynamics must be chosen to fit observations and
constraints that come from the high energy theory, such as symmetries and resulting
conservation laws.

Symmetries

An important component of EFTs is their symmetry content. Any term written
down in an EFT must obey the observed symmetries of the system that we want to
describe. The presence or lack of a symmetry, or how badly it is broken, are all inputs
in the construction of an EFT and the dynamics of the relevant degrees of freedom
mentioned above. Some examples of such symmetries are:

e Space-time: Lorentz, Galilean invariance
e Global: Flavor Symmetry in Quantum Chromodynamics (QCD)
e Local (Gauged): Electrodynamics (Classical and Quantum), Standard Model

e Accidental: SO(4) symmetry of the Hydrogen atom, Baryon number conserva-
tion in the Standard Model



e Spontaneously Broken: Ferromagnetism, BCS Superconductivity
e Approximate: Chiral Symmetry in QCD

e Anomalous: Axial Uy(1) symmetry in Quantum Electrodynamics with massless
fermions

Symmetries dictate what terms can or cannot be included. Any term that obeys
the prescribed symmetries of the EFT can and should be included in the action. This
means that in principle the action consists of an infinite number of terms. To manage
this we need an organizing principle, which brings us to our other guiding principle.

Expansion Parameters

In order to make sense of the generically infinite possible terms in the EFT, they
must be organized in a way that quantifies how strongly the inclusion of each term
affects the physics. Each EFT therefore comes equipped with one or more expansion
parameters, usually as a ratio of scales. For example, this ratio can be E/A as in
particle physics, where F is the relevant energy scale and A is the energy scale where
UV effects start to contribute. Other examples include v/c where v is the velocity
and c is the speed of light, which comes up when adding relativistic corrections to
Newtonian physics; E/k,T in effective descriptions of statistical systems in the high
temperature limit; and d/r in the multipole expansion of the electric potential of a
dipole with separation d. Then, each term in the theory is assigned a power of this
parameter such that terms that have less dominant effects come with a higher power
of the parameter. The range of validity of an effective theory is also governed by
the expansion parameter in that when it is close to one, all terms start to contribute
equally, and the perturbative expansion breaks down. In this context of critical
phenomena, this can also be interpreted as when a phase transition takes place and
all scales of the system start to contribute.

All three principles outlined above will be important when building EFTs in the
Schwinger-Keldysh formalism that exhibit spontaneous symmetry breaking (SSB). In
the following sections, we will first focus on the physics of systems featuring SSB
and then describe how their EFTs can be systematically constructed using coset
construction.

2.2 Spontaneous Symmetry Breaking and the Gold-
stone Theorem

The fundamental symmetries of the universe are not always easy to discern. For

instance, our immediate surroundings often obscure the underlying principle that
there is no preferred location.! Even when a symmetry is hidden by circumstances,

!Despite the claims of many New Yorkers.



i.e. it is spontaneously broken, it still constrains the dynamics of a system, and it leads
to observable consequences. A few of examples of systems exhibiting spontaneous
symmetry breaking (SSB) are: the Higgs mechanism and chiral symmetry breaking
in particle physics; (anti)-ferromagnetism and BCS superconductivity in condensed
matter systems; phase transitions in cosmology [62].

The existence of SSB is intimately related to the existence of an order parameter,
defined in terms of the relevant degrees of freedom of the system, that acquires a
non-zero expectation value for a subset of the parameter space of the theory.

In Quantum Field Theories (QFTs), the order parameter usually corresponds to
the expectation value of a field. This can be either a fundamental degree of freedom
of the theory like the Higgs field; or a composite field, in the case of chiral symmetry
breaking the condensate value of a quark-antiquark pair. This implies that the ground
state of the theory corresponds to a non-trivial vacuum state.

More concretely for the case of continuous symmetries, given an operator ngS(t, ),
that corresponds to the order parameter, we can define

~

0,0(1,7) = go(t,&)g~" — o(t, ) (2.1)

which quantifies the change due to the action of the group element g belonging to the
symmetry group G. In the case of SSB, we expect the ground state to be symmetric
only under a subset H C G of the full symmetry group. This implies that the
expectation value of the above will vanish for h € H, since h leaves the SSB vacuum
invariant (up to a phase). Next we express a general group element g in terms of the
operators (; that generate the symmetries®. Using @, we can construct a general
group element g = e*'?i. Finally, we insert this into (2.1) and take the expectation
value to find

(0][Qi, d(x, 1)]|0) # 0 (2.3)

for all Ql that correspond to a broken direction of the symmetry. This expression is
well-defined in the infinite volume limit (assuming the operator ngS(t, %) is localized to a
finite domain of spacetime [61]), which allows us to express Ql inside the commutator
in terms of the charge density operator J? (cf. footnote 2):

011, 3G 0110) = [ & )17, é(¢, )]0 2:4)

2The usual definition of @Q; are given as the conserved charge operators:

Q; = / BzJO(t,T), (2.2)

where J# is the Noether current associated with G. This definition becomes problematic for SSB,
since it is not well-defined in the infinite volume limit [61, 63].
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inserting complete sets of states:

011 bt 0010) = [ 23 [ G 017 ng) (. )1}
— (016 Dln_g) (gl )
= [ @S [ e | 01 O)ng) tngléte 010
- 016z, ) (n_l°O))|
=5 [ @reE O | 01 lng) gl o)

n

01 ) <n_,;|J°<o>|o>} (25)

where, assuming [Ql, pu] = 0, i.e. @); do not generate spacetime symmetries; we used
JO(x) = efue" j(0)e " Since dQ;/dt = 0, the time dependence should only be
due to ¢(t,Z); implying that

E.F) 230 as k-0 (2.6)
From this follows the celebrated Goldstone Theorem: for each broken generator,
there is an independent gapless mode. These modes often dominate the behavior
of the system at large enough length scales and will be important in writing low
energy effective actions for systems with SSB. We emphasize that the results in this

section apply to SSB of internal symmetries. We will briefly discuss SSB of spacetime
symmetries and the resulting modes in Sec. 2.6 and 2.7.

2.3 Coset Construction of Internal Symmetries

Spontaneously broken symmetries act non-linearly on the Goldstone fields, and for
this reason it is often non-trivial to identify all possible invariant operators that should
be included in the low-energy effective action. Fortunately, there exists a systematic
procedure to achieve this, which goes under the name of coset construction [35,64—
66]. In the simplest scenarios, this method takes as its only input the symmetry
breaking pattern G — H, where G is the fundamental symmetry group, and H is the
subgroup of symmetries that remain manifest and are realized linearly. The output
of this construction is a series of building blocks that can be easily combined to
write down the most general local effective action Sgpr[7] describing the Goldstone
modes 7. Zero-temperature, time-ordered correlators and the corresponding S-matrix

8



elements can then be calculated using the standard path-integral representation of
the generating functional:

e / D ¢iSernlilif 4t 1e Jay i) 2.7)

As previously discussed, one of the tenets of modern EFTs is the principle that all
the terms compatible with the symmetries of a physical system should appear in its
corresponding effective action. In the presence of spontaneous symmetry breaking the
identification of all such operators can be technically challenging, as the symmetries
are non-linearly realized on the Goldstone modes of the system, and the standard
framework for organizing the classification is the coset construction |35,65,66|. Es-
sential elements of the technique are reviewed below in the particular case of spon-
taneously broken internal symmetries; a more detailed discussion can be found for
instance in [60].

2.4 The Maurer-Cartan Form

The first step is to distinguish those symmetries that are spontaneously broken from
those that are not. Letting the breaking pattern be G — H and denoting the genera-
tors of spontaneously broken symmetries by X;, the coset construction analysis starts
by forming the coset parametrization ) € G/H which can be canonically written as

Q=™ @ (2.8)

Every broken generator® appears with an associated Goldstone field 7(z). The trans-
formation properties of the Goldstone fields under the action of a generic symmetry
transformation g are defined by the relation

gQ7) = Q=) h(g, T), (2.9)

where h is some element of the unbroken subgroup which could in principle depend
on g and the fields 7'(x).

The transformation laws for 7' encapsulated by (2.9) are in general non-linear
and contain infinitely many terms when expanding in fields. Therefore, the operators
which respect the requisite symmetries are severely constrained. The central building
block for constructing such operators is the Maurer-Cartan 1-form, w = Q-1dQ,
which is a Lie-algebra valued 1-form that can be conveniently written as

w=0"9,0ds" =i (D, X; + AfTB) dat | (2.10)

3The broken generators are of course only specified up to the addition of unbroken generators—
and in fact this ambiguity can often be leveraged to simplify explicit calculations. One should include
in the coset parametrization only those broken generators that are not equivalent up to an unbroken
transformation.



where we have denoted unbroken generators with 7.
The Maurer-Cartan form is useful because the above coefficients enjoy relatively
simple transformation properties under the relevant G-symmetries [66]:

e The D,ﬂri factors are non-linear combinations of the Goldstone fields of the form
D, = 9,m" + O(n?) which transform linearly under (2.9):

D, —  h(g, @)D, , (2.11)

where h(g,7)’; is a (possibly reducible) representation of the unbroken trans-
formation h(g, 7). Because of D,m"’s linear transformation property (2.11), it
is conventional to refer to this building block as a “covariant derivative", but
we wish to emphasize that this terminology is somewhat misleading: because of
7' (2)’s highly non-linear transformation laws (2.9) one cannot interpret D, 7(z)
as a combination of a partial derivative and a connection acting on 7(x) in any
standard manner.

e The Af coefficients transform like connections under h(g,7) and can be used
to define the following covariant derivative:

V= (0, +iAlTg) . (2.12)

We use the V, to symbol to represent proper covariant derivatives, which dis-
tinguish them from the D, notation used for Goldstone “covariant derivative"
defined above. This derivative can act on any operator @' in a linear represen-
tation of h(g,7)—be that a Goldstone covariant derivative, some matter field,
or a combination thereof—and it yields a quantity that once again transforms
linearly:

v,0" —  h(g,7) V0" (2.13)

The most general G-symmetric in-out effective action describing Goldstone modes
and their interactions with matter fields W/ is then of the functional form

S = /dd“xﬁ(Duwi,\Iﬂ,Vu), (2.14)

where all indices are contracted using the appropriate invariant tensors associated
with the unbroken group H.

The effective action as constructed above is exactly invariant under all symmetries.
However, we must also include Wess-Zumino terms; terms which are invariant only up
to a total derivative and can be systematically constructed using the Maurer-Cartan
form defined above [67]. To describe the process very briefly, these terms can be
obtained by starting with the wedge product of d + 2 copies of the Maurer-Cartan
form and contracting them in an invariant way. If the resulting d + 2 form « is exact,
i.e. there exists a d 4+ 1 form such that a = df, and furthermore if 5 shifts by a total
derivative under G-transformations, then S is a Wess-Zumino term that should be
included in the effective action.
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2.5 Gauge Symmetries

One can also extend the previous construction to the case in which some or all the
symmetries are gauged. This requires the introduction of a gauge field A, = ffu . Cj,
where the generators Cj stand for some or all the T4’s and X;’s. The gauged Maurer-
Cartan form then reads:

w=0Q"(0,+iA,) Qdz" (2.15)

where A, — g(z) (A, —i9,) g~ *(z) under a gauge transformation, as usual. The
various components of w defined in Eq. (2.10) transform as before, except that now
the building blocks D, 7 and .Af also depend on the gauge field A,,.

The gauged coset construction is, of course, natural to consider in the context of
spontaneously broken gauge theories, in which case A, is a dynamical field. Even
in theories with spontaneously broken global symmetries, though, it can be fruitful
to introduce non-dynamical gauge fields to aid in the path-integral description of
such systems. More precisely, treating the A, as an external field, one can define a
generating functional for correlators of the conserved currents J* associated with the
symmetries that have been gauged, as in:

" Z[A]
0A,, (z1)...0A,, (z,)l4=0

= (TJ"(x1)...T" (x)).
(2.16)

Z[A] = / Dit ¢iSeauged - yn

It is straightforward to show that Z[A] is gauge-invariant (in the absence of anoma-
lies), from which the conservation of the corresponding currents J* (and Ward-
identities, more generally) follows. See e.g. [36,68,69] for reviews of this construction.

2.6 Coset Construction of Spacetime Symmetries

While this thesis will focus on internal symmetries that are spontaneously broken,
for completeness we briefly mention the case of spontaneously broken spacetime sym-
metries [65,66,70-72]. For such systems the Goldstone theorem does not hold, but
the coset construction method can still be used. Since we want the unbroken sym-
metry group H to be realized linearly, we need to treat spacetime translations P, as
broken and include them in the coset element even if they are not physically broken.
If translations are actually broken, they are included with a dynamical field as the
parameter, if not, the generators are accompanied by spacetime coordinates.
Another caveat is that if the commutator of one broken generator with unbroken
spacetime translations leads to another broken generator, then one can replace the
dynamical field associated to the first in terms of derivatives of the second. This is
dubbed the Inverse Higgs mechanism [73,74|. Finally, the component of the Maurer-
Cartan form along the P,-direction leads to the vielbeins e,* that connect the group
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structure to the spacetime coordinates. Their utility is in expressing the Maurer-
Cartan form of a broken spacetime generator D,m”, that has one spacetime and one
group index as an object e ,*D,m" that acts covariantly under the “internal” group
transformation.

We will briefly demonstrate the methods described above with the example of a
4D brane moving in 5D Minkowski space [75,76]. The symmetry group of the latter
is G = 150(4,1) with generators (Pa, Jag), with indices A, B ranging from 0 to 5,
and it is spontaneously broken down to H' = I5O(3,1) with the generators (P, J,,,).
Since we want H to be linearly realized, we will choose H = SO(3,1) with (J,,
instead and take the coset element to be

Q = ™ Fuerts et Jos (2.17)

where the physically broken generators are Ps, the translations along the 5-direction,
and J,5 corresponding to boosts and rotations involving the 5th dimension. Using
the commutation relations for the generators of G,

[PA7 PB] = 07
[Jag, Pc] = nacPs — npcPa,
[JaB, Jep] = nacIsp — NapJIBe + MBcJap — npJac (2.18)

the components of the Maurer-Cartan form can now be calculated [75]:

a e 1 wa¢V v wa s
wp =d ~ 37 %2 +1+%28M7de,
_¥?
w 40, mwdat — P daxt,
ST A
0
wy = “wQ dat (2.19)
¥
I+
where
tanh —%
Y = “—52' (2.20)

To implement the inverse Higgs mechanism, we look at the following commutator
[Joss Pl = ity P, (2.21)

which implies that solving wp, = 0 we can replace 1" in terms of 9#m. The solution
to the constraint is

20,7

N Tl
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Using the constraint again, we can simplify w®:

a o L u” o
wp = <5u +§1i¢_2> dzt = e, “dx". (2.23)
1

We can now use wp and w; to build the effective action using H-invariant contractions
using the invariants n* and €. This leads to the following leading order term

1
L= [ b npnufnuh = [day/TH@DR 220

which is the Dirac-Born-Infeld action.

2.7 Classification of Goldstone Modes

The Goldstone theorem specifies the number and dispersion relations for low energy
modes in spontaneously broken systems, but it only holds for cases where Lorentz
invariance is a symmetry. However, when Lorentz invariance is explicitly broken,
the low energy spectrum may have fewer degrees of freedom showing non-identical
dispersion relations. A few examples of such systems are ferromagnets [77], Bose-
Einstein condensation of cold atomic systems [78,79] and Kaon condensation [80-82].
This has led to work in generalizing the Goldstone Theorem to systems where Lorentz
invariance is explicitly broken, and the classification of the types of Goldstone modes
that appear in them [83-87]|. In this section we briefly summarize these results.

For Lorentz invariant EFTs, the lowest order term we can write for the Goldstone
modes is given by*

L= flulwl =D’ Dhim + ... (2.25)

where f is an overall scale. This leads to an identical dispersion relation w ~ clk|+. ..
for each Goldstone mode.

For systems without Lorentz invariance at zero density, there is less restriction
on the form of the EFT. To proceed, it is easier to switch to an equivalent form for
the EFT, by considering the 7’s to be the coordinates parametrizing the manifold
of ground states, i.e. the coset space G/H [68]|. Assuming rotational invariance, the
lowest order effective Lagrangian can be written as [82]

1 1
L= —cowi + §§abw§‘wf — §gabw§’wf +... (2.26)

4For simplicity, we assume the 7*’s form an irreducible representation of H. If they instead form
a reducible representation, then the kinetic term for each irreducible component should in principle
have a different coefficient up front.

13



where wf, w{ are the time and space components of the Maurer-Cartan form, and the
constants are the lowest order in the expansion of the metric and einbein of the internal
manifold which obey the following constraints: f.,%q = 0, fu?ae + fac’gpa = 0, and
fab?Gae + faclGra = 0. In fact, ¢, = {(Ga(t, %)) [68], and the Lorentz invariant case is
recovered when e, = 0 and g, = g4p. Expanding the Maurer-Cartan components, we
find to lowest order,

2 o 1 1 1 — —
L=— <J3(t, f)) 8,57'('@ — <Jg> §fbca7Tbat7Tc + §§ab@t7ra0t7rb — §gabv7TaV7Tb. (227)

The first term is a total derivative which we drop, and we can re-express the constants
in the second term as a matrix:

pav = (J9) o = =i ([Qy, JO(t, D)]) (2.28)

and we obtain

1 1 1 - o
L~ épabﬁaaﬂb + igabé?ﬂaﬁﬂb — §gabV7r“V7rb. (2.29)

With the right choice of orthogonal matrix, p,, can be diagonalized to have the form

0 A
A 0

0 A
Pab = N 0 . (2.30)

0

This form of p,, means we have two different types of Goldstone modes. The Type
A modes correspond to the block diagonal elements where all p,;, = 0, and therefore
a dispersion relation w = +¢,|k|, where ¢s = gap/Gap- The Type B modes correspond
to non-zero elements of py, and its form implies that 72 and 7%~! are conjugate
variables, with the implication that these modes have a quadratic dispersion relation
w = k%/2m where m ~ pu/ga- The general statement for the classification of
Goldstone modes can thus be summarized as

1
NBroken Gen. = T A + 2”37 np = 5 rank P, A = NBroken Gen. — 5 rank P, (231>

These counting rules have been generalized even further for the cases of finite
density and SSB of spacetime symmetries [87], with the classification now containing
four types of Goldstone modes:

1. Linear gapless modes corresponding to Type A above.

2. Quadratic gapless modes corresponding to Type B above.
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3. Fixed gap modes where the gap is of the order of the chemical potential and
dictated by the SSB pattern.

4. Unfixed gap modes that have a gap of the order of the chemical potential but
depend on additional free parameters.

In addition to deriving the number of Goldstone modes for the first three categories
above, the authors also provided a bound for the fourth one:

N9 < Ny < Ng + N3. (232)

In Sec. 5.3, we will encounter Type I and Type II modes when discussing Nambu-
Goldstone modes for magnets at finite temperature.
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Chapter 3

The Schwinger-Keldysh (In-In)
Formalism

3.1 Outline of the Formalism

Generating functionals of the form (2.7) are appropriate for so-called in-out calcula-
tions, in which the state of the system is specified both at early and late times [88].
Scattering events are the prototypical example of this scenario. There are however
many other physical quantities which require instead in-in calculations, in which the
(pure or mixed) state of a system is only specified at some initial time, and after-
ward the system evolves according to its own dynamics. The observables relevant for
cosmology, hydrodynamics, and generic dissipative systems, for example, are most
readily phrased within this latter framework, and finite-temperature effects can be
included in a natural manner. In this setting, calculations are instead often performed
using the Schwinger-Keldysh generating functional, whose path-integral representa-
tion requires a doubling of fields, the analog of (2.7) being

2|0y, J5) = /Dﬁﬂ)ﬁz eiSEFT[ﬁl,ﬁ2]+ifdd+1xi(a:)-ﬁl(x)—fz(a:)ir'z(x) . (3.1)

In this section, we discuss the Schwinger-Keldysh formalism and elucidate the
origins of the doubling of the degrees of freedom. We work in the Heisenberg picture,
in which operators evolve in time and the states remain stationary. We start with
the time evolution of the density matrix representing the state of the system (we're
suppressing space dependence):

p(t) = U(t, t:)poU (¢, 1) (3.2)

where py is the initial state of the system, and U(t,t;) is the unitary time evolution
operator. Formally it has the solution

Uty 1) = Texp (—i /t ’ H(t’)dt’) (3.3)
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where T is the time-ordering operator. Note that unitary evolution of p(t) means
that its trace is preserved for all times. Finding the expectation value of any operator
O at time t; <t < t; is possible by using

_T(pMO) _ 1 |
T Tr(py)  Tr(po) Tr(poU' (t,1:)OU (. 1;)) (3.4)

Using two properties of time evolution operator, namely U (ts, t2)U (to,t1) = U(ts, t1)
and UT(ty,t,) = U(t1,ts), one can rewrite the above as:

(O(1))

(O)) Te(U(ti, tp)U(Ly, 1)OU(E; L) po) (3.5)

~ Tr(po)

This suggests an interpretation of the above as the insertion of an observable O at
time ¢ on a closed time contour that evolves from t; to ¢ to ¢ty and then back to ¢;. In
the following we will take t; = oo and t; = —oo to make contact with the usual QFT
methods. Defining the generating functional

Tr (U (o0, —00)poUt (00, —0))
Tr(po)

and taking Tr py = 1, we can make contact with path integral methods by inserting
complete sets of states.

Z

(3.6)

Z = /DsoaDsostoc {¢a, 00|U (00, —00) |y, —00) (s, —00|polpe, —00)
X (e, —00|UT (00, —00)| 4, 00) - (3.7)

It is possible to denote each matrix element in the above expression in terms of path
integrals. For example the second element above can be written as

¢(00)=¢a .
(108, 00| U (00, —00) 9, 00) = / D eidlel (3.8)

p(—o00)=py

and the third term can be acquired from the above by complex conjugation (we are
using Dy for the path integral measure and D for integration over the field configu-
rations at the boundaries). In terms of path integrals, the generating functional now
has the form

©1(00)=¢a , p2(—00)=¢pc ,
Z = / Do Dy Dpcpoc / Dipye1?] / Dippe™lP2l - (3.9)
p1(—00)=¢pp p2(00)=¢a

where we have defined p,. = (p, —00|po|@pe, —00). Things to note here, that will be
further explored later, are that we have two copies of the fields, with the combination
of path integrals tracing a closed-time path contour (see Fig. 3.3 for the case of an
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initial thermal state). Furthermore, the boundary conditions for the two fields match
at positive infinity, which has important symmetry implications for the generating
functional. Finally, the initial state of the system is accounted for by the matrix
element p,., and for a system initially in a thermal state this leads to a manifestation
of the Kubo-Martin-Schwinger condition.

The formalism can be generalized in the usual way to calculate correlators of
observables. To demonstrate this, consider a closed quantum system described by
some fields collectively denoted by ¢ and corresponding action S[y|, and that is in a
state specified by the density matrix p.! The most general observables of the system
are phrased in terms of correlation functions of the form

(O™ (z,)...00(x1)) = Tr pO™(z,) ... 0 (2y) , (3.10)

where the O®’s are local operators built out of the fields ¢ and their derivatives
evaluated at points x; that are not in any particular order. It is possible to choose
generic orderings of operators that are not time-ordered [89], but in many applications
one is interested in (linear combinations of) the restricted set of observables where
the operator product is of the following factorized form:

(T [0 (2,) ... O™ (2, 1)] T [0 (@) ... OV ()]} (3.11)

where T and T denote time-ordered and anti-time-ordered products, respectively.
Specializing further to the case of a single operator O(x) for clarity of presentation,
correlators of this form can be obtained systematically by differentiating a generating
functional that depends on two external currents:

Z[J), Jo] = Tt [p Tei] 20 pei] Jlo] . (3.12)

Generators for correlators of more than one operator or with more general time-
orderings can be similarly constructed, but the one in Eq. (3.12) will be sufficient for
our purposes.

Inserting resolutions of the identity 1 = [ Dy |p, 200) (p, 00| between the var-
ious factors inside the trace, we can rewrite the generating functional as

Z[J1, o) :/D%D%ch (Pay =00 p| e, —00) {pe, —00| Te™H 729 |y 4-00) (3.13)
X (p, +oo| Tet 119 |, —o0)

where the last factor admits a path integral representation of the form

, (+00)=pp . ‘
<90ba +OO| Tezf.ho |§0a, —OO> _ / Dy ezS[w}-l—zfddeJlO , (3‘14)

p(—00)=pq

"'We are working in the Heisenberg picture, where operators and their eigenstates evolve in time,
while the state of the system does not.
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and a similar, conjugated expression holds for the second factor.
It is customary for the preceding construction to be summarized in the compact
form

Z[Jy, Jo) = /ngoﬂ)goQ exp {iS[gpl] — 1S[¢2] —i—i/dd+1x J10(p1) — J,0(¢2)
(3.15)

We see therefore that calculating correlation functions of the form (3.11) requires a
doubling of the field content: this is a direct consequence of the fact that expec-
tation values, as opposed to transition amplitudes, require time-evolving both the
corresponding bras and kets, with one set of fields performing each such evolution—
see [88] for a related discussion.

In order to calculate correlators, we can extend the logic of perturbative in-out
calculations to the in-in path integral (3.15) above. This involves evaluating the two
path integrals at the quadratic level, and then adding the two copies of the interactions
in a perturbative manner. For simplicity, we choose O = ¢ in what follows.

One of the key differences here is that unlike the in-out boundary conditions, where
we assume adiabatic evolution from vacuum, here we have the matrix element p,. at
initial time. While the initial state can be taken to be arbitrary [90], two common
choices found in the literature are the vacuum, and the thermal state p = e ™.
The choice of vacuum leads to the path integrals being decoupled at the boundary
conditions, and tree level interactions do not mix between the two copies, although
loop level contributions may involve a combination of both.

The thermal initial state p = e’ can be interpreted as time evolution along
imaginary time by ¢t = —i/T = —if. This means we can think of the matrix element
Pac as a Euclidean path integral:

p(—o0)=pc

(s =00le i, —o0) = [ Dipeisle (3.16)
¢(—00—if)

(when evaluating path integrals we take a finite time ¢; as the initial time and send

t; — —oo at the very end). We also assume that interactions and sources J; are

turned off at t = —oo, and adiabatically switched on (off) along the top (bottom)

contour. The path integrals for the free actions can be evaluated using

wi(ts) . .
/ Dsoezsfree[sav‘]] — iSleet ] (3.17)
er(ty)

where ¢, is the classical solution of the equations of motion with the boundary
conditions ¢u(t;) = @i, palts) = @y to evaluate each matrix element, and integrate
over the fields ¢,, ¢y, @ in (3.9), to obtain

i) = Wil = [ () o) () Gty (1)
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where the Green’s functions are

iGu(z, ') = (T (v)e:(2)) iGra(z,2') = ({2(1")@1(%»
iGor(z,2") = (pa()01(2)), iGo(x,2") = (Tpa(x)pa(a”)) (3.19)

where T' (T) denotes (anti-)time ordering operator. This generating functional now
contains a 2 x 2 matrix, and we have 4 Green’s functions instead of the 1 for the in-
out case. We can identify GG1; = G'r as the Feynman propagator in the first leg, and
Gy = G r the anti-time ordered counterpart on the second leg of the contour. Also
note that due to path ordering along the contour, mixed Green’s functions always
have ¢ to the right of (.

We can now use the generating functional in (3.18) and the two copies of the
interactions to derive Feynman rules and calculate correlation functions. However,
the physical interpretation of these correlators built out of 1- and 2-fields is not
immediately obvious.

To make connection with physical observables, we first start with the fact that
the four Green’s functions defined in (3.19) are not completely independent. To see
this, we note that the following combinations of Green’s functions is zero:

i (Gri(z, ") + Goo(z,2') — Gra(x,2") — Goy (2, 2"))
= (T1(2)pr(2)) + (Tp2(2)pa(2)) — (pa(2) 1 (@) — (1 (2)2(2))
=0(t — ') (p(x)p(a)) + 0" — 1) {p(z")p())
+0(t" =) (p(x)(a")) + 0(t = 1) (p(x)p(a"))
— (p(a)e(z)) — {o(z)e(2))
=[0(t =)+ 0(' = 1) = 1] [{p(x)p(2)) + (p(z")p(z))] = 0 (3.20)
where 6(t — t') is the step function. In the third line we used the fact that the
Wightman functions of the various combinations of the two copies all evaluate to the

same functions, and in the last line we used the identity 6(t) + 0(—t) — 1 = 0. We
can make use of this redundancy by switching to the Keldysh basis [18]:

1
90r=§(901+<p2), Vo = Q1 — V2
1
Jo=g(htd),  Ja=di- (3.21)

The Green’s functions in the Keldysh basis become
. 1
ZGrr = <()0r(pr> = = (GH + G22 + G12 + G21)
iGro = (prpa) = 5 (Gu1 — G2z — Gi2 + Gai)

iGar - <§0a§0r> - (Gll - G22 + G12 - G21)

O NN =

iGaa = <()0a90a> = (322>
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Apart from the advantage of reducing the number of propagators in the Feynman
rules, the Keldysh basis also has a nice physical interpretation in that the r-fields
correspond to the physical degrees of freedom in the A — 0 limit, and the a-fields
regulate classical and quantum effects. We will expand more on this in Sec. 4.5, and
also discuss the various properties of the Keldysh basis correlators in Sec. 4.7.

3.2 Comparison with Other Finite Temperature For-
malisms

The Schwinger-Keldysh (SK) formalism is not the only finite temperature used in the
literature. In this section we briefly mention other methods and their applications.
A detailed comparison of the three finite temperature methods discussed above and
in this section is given in [91], for a textbook discussion, see also [92].

3.2.1 Imaginary Time Formalism

The imaginary time formalism, also called the Matsubara formalism [93], utilizes
the fact that the Hamiltonian H generates time-translations in quantum mechanics
through the unitary operator U(t) = e~#". This allows for the interpretation that
the thermal state given by
p=e

can be taken as generating a time-translation along the imaginary time axis by —if,
where the inverse temperature /3 is defined to be 8 = (k,T)~'. The partition function
of the thermal system is given by

Z(8) = Trp = / dz (z]e=H|z) (3.23)

We can rewrite the partition function as a Euclidean path integral by taking the
paths to be defined on imaginary time 7 = —it, with start and end times 7, = 0
and 7; = . Apart from the imaginary time, the second main difference compared
to zero temperature real time quantum mechanics is that we now have a periodicity
condition due to the trace operation. This means when calculating the path integral,
we need to impose the condition z;(7; = 0) = x(7; = ). Defining the Euclidean
action as

B
0

the partition function is given by

Z(B) = / Dze el (3.25)
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The path integral derivation above can be generalized to quantum field theory at
finite temperature. For example, for a scalar field ¢(¢, z) and external current J, the
partition function can be written as:

Z[J, ] = / DeSrldl=[ d'wto (3.26)

again with the periodic boundary condition ¢(0,x) = ¢(f,x). For fermions, the
degrees of freedom are taken to be Grassmann variables 1,¢; and the boundary
condition is anti-periodic (0, x) = —¢ (3, x).

A crucial difference arising from the finite time interval is that Fourier transform-

ing to frequency space leads to discrete values for frequencies:

2
% Bosons,
Wy = (2n + 1)m . (3.27)
T Fermions

where n =0, +1,£2, ---.
As an example, we look at the propagator of a theory with a real scalar field. The

free two-point function is
iG(wn, k) = = = 5 . (3.28)
wyy + k2 +m? (”ﬁ) + k2 +m?

We can then proceed using Feynman rules to do perturbative calculations, with the
difference that when integrating over loops the time integral now becomes the sum
Z;.Lo:—oo'

To conclude, the imaginary time formalism allows perturbative field theory cal-
culations for systems at equilibrium. The main advantage of this formalism is that
unlike the real-time formalisms that we will explore below, one does not need to dou-
ble the degrees of freedom and therefore the diagrammatics are considerably simpler.
The downside however is that it is not suited for non-equilibrium systems.

3.2.2 Thermofield Double

The Thermofield Double or Thermofield Dynamics (TFD) is another real time finite
temperature formalism. The starting point is how ensemble averages of an observable
O with respect to a thermal system are calculated in quantum mechanics:

Z(P)

where for now we assume the Hamiltonian operator H has discrete eigenvalues and or-
thonormal eigenstates ((n|m) = 6,,,) and the normalization factor is Z(3) = Tre ",

(0), = ——Te(eH0) = ﬁ S B (0] Oln) (3.29)
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Our eventual goal is to calculate time-ordered products of observables with asymp-
totic in and out states that correspond to the thermal state p = e ?# allowing us
to use QFT methods at finite temperature. To begin with, we need to construct a
thermal vacuum state which we will call |0, 5). We want the following relationship to
hold for the ensemble average:

(0, 8|00, B) = Ze PEn (n|Oln) . (3.30)

Let’s first assume that we can express this thermal vacuum state in terms of the
Hilbert space spanned by H. We find

(0, 8010, 8) = ZZ , Bln) (n|O|m) (m|0, 5)
= Z Z (B ) (n|O|m) (3.31)

where we have defined the overlap (m|0, 5) = f,.(8), a function of 5. For the above
to be equal to the right-hand side of (3.30), we need

1
Z(P)

Notice the right-hand side implies the requirement that f;’s behave like orthonormal
vectors, yet the left-hand side is just a product of two complex numbers, which is not
in general zero for m # n. So we cannot define a state |0, 8) with just the original
Hilbert space. A way out is to “double” it by introducing a second copy of the system,
such that the full Hilbert space is spanned by the tensor product of the two sets of
eigenstates: |n,m) = |n) ® |m). We then define

an ) n, 72) (3.33)

fr(B) fn(B) = &P G (3.32)

and calculate the expectation value (observables are taken to be in the original Hilbert

space):
(0, 8|00, B) = ZZf;t(ﬁ)Mﬁ) (n,2|Ofm, m)
= ZZf B) (n|Olm) (a|m)
= Zf B) (n|O|n) . (3.34)

The above result will equal (3.30) if we choose

1
27 ()

fa(B) = f2(B) = e nl2, (3.35)
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We see that the cost of defining a thermal vacuum was to double the Hilbert space,
which was also the case in the Schwinger-Keldysh formalism.

As an example of the generalization of the above to field theory, we consider the
case of the free real scalar field. To be able to use the QFT machinery developed
for in-out states, we first need to connect the thermal vacuum defined above to the
true vacuum |0, 0) of the doubled Fock space. We first introduce a (formally) unitary
operator made up of creation and annihilation operators a,t:7 ay for each momentum
mode k:

UB)=e 9, GB)=—iY 6:(8) (a,; ®ag—al® aL) (3.36)
k
where 0,3 is chosen such that
1 ' e Buwi/2
cosh 0z(5) = sinh 0z(8) = (3.37)

V1—eBor’ V1 —e=Bur’

and we will assume the fields are relativistic: wy = V k2 + m2. With this definition,
the thermal vacuum can be obtained through?

0, 8) = U(B)0,0) . (3.38)

Using the transformation

a(f) = U(B)aU'(8), (3.39)

the same operator induces a Bogoliubov transformation, that leads to the following
thermal creation and annihilation operators:

CLE(ﬁ) = cosh QEG’E — sinh QEG;%

ag(B) = cosh Oza; — sinh 9,;&%. (3.40)
These new creation and annihilation operators create or destroy thermal modes when
acting on the thermal vacuum. With the above definitions, we can now use the usual
QFT techniques to calculate time-ordered correlation functions and to demonstrate

we look at the propagator of the free real scalar theory.
We start with the mode expansion of the two copies of the scalar field

d3k 1 ikx t —ikz
¢($)_/(27T>3\/m (a,ge +age )
1

(a,;e"’“ + dj;e—“”) (3.41)

2While U(f) is formally unitary, in the continuum limit the resultant thermal vacuum is unitarily
inequivalent to |0, 0) [94]
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where kz = —wyt + k - T. Defining a vector of the two copies

o= (zgg) , (3.42)

we can express the vacuum to vacuum propagator as a two-by-two matrix:

. AN A / N\ _ <O,(~)|T¢)(l‘)¢($/)’0,(~)> <O,(~)’T¢($)$(l’/)’0,6>
Gz, =) = (0,07 2(x)2()|0,0) = <<o,6|T<5<x>¢<x'>|o,6> <o,61T<z3<x>s5<x'>ro,6>>

where time ordering is defined as usual:

(To(z)p(z")) = 0(t — ') {d(x)p(a")) — Ot — 1) (TP(")P(x)) (3.44)

Using the mode expansion and the commutation relations [ag, aj;,] = &(k — k),
lag, az] = 0; we arrive at
1
12 2 0
iG (k) = +m ; (3.45)
0 -
k? + m?

which agrees with the Schwinger-Keldysh result in the case of an initial vacuum state.
Note also that the propagator for the tilde-fields has an overall minus sign, also similar
to the in-in case. Turning to the thermal propagator, we make use of U(/3):

Ga(x,2') = (0, B|TP(x), D(2)) = (0,0[U"(5)T (2(2)®(a")) U()[0,0)  (3.46)
and the Bogoliubov transformation (3.40) induced by it to find

. ; Z'2 ' O ) 1 eﬁlwk|/2
ZGg(k’) _ (k +78 —ie ; ) — QWZRB(WI@)(S(]{Q + m2) (e—ﬂlwkl/Q 1 )

T kB2¥m2+ie
(3.47)

where np = 1/(e®“*! — 1) is the Bose-Einstein distribution. With a linear transfor-
mation, we can re-express the propagator in a familiar basis:

Gp(,a") = (0, B|TP(w), D(a')) = (0, 0[U(B)T (@(2) (")) U(6)[0,0)  (3.48)
and the Bogoliubov transformation (3.40) induced by it to find
. 0

, Zrm? ic ; 2 2 1 eflenl/2
iGy(k) = | Mg i — 2ming(wi)0(k” +m”) | _g,1/2 1
T k2+m2+ie €
(3.49)

The propagator has a temperature independent, diagonal part, and a temperature
dependent part that encodes the thermal nature of the system through np.
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3.2.3 Contours of the Three Formalisms

We end this chapter with a comparison of the time contours in the three finite tem-
perature formalisms [95]. In the imaginary time formalism, the only time interval is
along the imaginary axis in the range [0, ), so the contour is simply

Im

A

4

—iB

Figure 3.1: The contour used for the imaginary time formalism

To see what the closed time contour of the thermofield formalism looks like, we go
back to the ensemble average of an observable O taken at time t (assuming (O, H] =

0):

1 1 _BH/2 —BH/2
_ ﬁ > {n, —oo|e 12120 (—00, 00)U (00, H)OU (t, —00) [n, —o)
_ % Z (n, —oole P21 (o0, 00)e~PHI2U (00, ) OU (t, —00)|n, —o0)
" (3.50)

where we used UT(t,t') = U(t,t) and the semigroup properties of the time evolution
operator®. We can connect the above to the thermofield ensemble by observing that

(0. B10M)0, 8) = o= 3 (n, e B2 0(t)e 2|, )

Z(B) &
_ LN et O B2,
7(8) 2 (nle 0 )
= L ' (i e PHIZ) — L r
= Z(B)T( O(t) ) TrpT (p(H)O). (3.51)

3Note that the above derivation assumes that H is independent of time, but the thermofield
formalism has been generalized to the non-equilibrium setting [15]
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The closed time path contour for thermofield dynamics described by the last line of
(3.50) is given in Fig. 3.2.

Im

A

> Ret
1 —iB/2

[ o

Figure 3.2: The contour used for the thermofield formalism

The contour for the Schwinger-Keldysh formalism is similar, with only a single
imaginary time translation at ¢ = —oo, as can be seen from (3.13). A sketch of the
resulting contour is given in Fig. 3.3.

Im

A

t = —00 t =00

—i

Figure 3.3: The contour used for the Schwinger-Keldysh formalism
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Chapter 4

The Schwinger-Keldysh Formalism
from an Effective Field Theory
Perspective

In this section, we review the Schwinger-Keldysh (or in-in) formalism from an EFT
perspective. We will discuss the main features of this formalism (doubling of the
field content, implementation of symmetries, power counting, etc.) and strive to keep
our remarks as general as possible, so that they equally apply to systems with or
without SSB.

4.1 Effective Action

The generating functional given in Eq. (3.15) leaves the dependence on the density
matrix p and boundary conditions at ¢ = +o00 highly implicit. These are nonetheless
important features of the path integral formulation that will play an important role
in what follows.

The generator (3.15) corresponds to a path integral over a contour C which extends
from t = —o0 to t = +00 and back, with appropriate boundary conditions placed in
the asymptotic regions; see for instance Fig. 4.1 in appendix 4.6 for a depiction of this
contour in the case where p is thermal. Consequently, Z[J;, J5| generates correlators
which are path-ordered along C, for the usual reasons, with operators labeled with
a 2 always coming after those labeled with a 1. For example, when O(yp) = ¢, the
various permutations of the two-point function are explicitly given by

(To(z)p(a)) i=j=1
olay — ) Te@e@)) i=j =
(Ppi(z)p;(a')) (o)) =9 j— , (4.1)
(p(@")p(x)) i=1,j=2



where P denotes path-ordering. For brevity, we will omit explicit P’s in subsequent
expressions and path-ordering is always implied unless noted otherwise.

The shorthand expression (3.15) is cryptic, at best. A particular shortcoming
is that the correlator (4.1) does not arise from simply inverting the kinetic term of
Slp1]—S|pa], as the notation might suggest. Were this true, all mixed correlators such
as (p1(z)p2(2")) would necessarily be vanishing. Instead, the boundary conditions
implicit in (3.15) generate the necessary, non-trivial cross-couplings—see App. 4.6 for
an explicit example.

Nuisances such as this one motivate the use of an alternative description based on
an effective action Sgpr([¢1,pe] in which the boundary conditions implicit in (3.15)
are made explicit and encoded into Sgpr itself. These effective actions are of the
functional form

Serrle1, o] = Sle1] — Slpa] + ASler, w2 , (4.2)

where the information about the state p of the closed system as well as the boundary
conditions are encoded in the cross terms AS[p1, 2] [34,96].) We elaborate upon
this point later in this section and will also discuss the circumstances under which we
expect Sgpr to be local. Correlators are computed using Sgpr as in

<O(”) (n) ... O(l)(ml)) = /DgpngoQ etSerTl1.e2] (1) () ... O(l)(xl) , (4.3)

where perturbative computations now proceed in the naive manner in which free
propagators are determined by the quadratic terms in Sgpr and non-linearities are
handled order by order.

A term of the form AS|[p;, @] arises also in open systems, albeit in a different
way [2,16,20,97,98]. To see this, imagine decomposing our closed system in a sub-
system of interest, with degrees of freedom ¢, and an environment, with degrees of
freedom ®. If we are only interested in correlation functions of the subsystem, we
can work with a generating functional of the form

Z[(]17 JQ] = /D¢1D¢2’DQ)1’D(I)2 6i5[¢17¢1]—i5[¢27‘1>2}+ifddﬂﬂc J1O(¢1)—J20(¢2) 7 (4.4)
p

where S[¢p, @] = S[¢p] + Sint[@, @], and Sin[¢, P] captures the dynamics of the environ-
ment as well as its interactions with the subsystem. Assuming for simplicity that the
state of the full system is factorized, i.e. p = ps ® ps, we can integrate out the fields
® to obtain a correction to the action for the subsystem given by

etAS[p1,:02] Dd, DD, St [@1,P1]—iSine [$2,P2] (4.5)
P

!Note that the fields ¢ that appear in the effective action (4.2) generically do not coincide with
the fields ¢ in Eq. (3.15)—a standard observation in more traditional in-out effective field theories.
Similarly, the functional S[p;] in Eq. (4.2) will generally differ from the functional S[p;] in Eq.
(3.15); we use the same symbol in both contexts to avoid unnecessary additional notation.
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The term AS[¢1, ¢o] that arises by integrating out the environment is known as
the influence functional, and it generically includes interactions between ¢; and ¢s.
The origin of these interactions can be traced back to the “off-diagonal” correlation
functions of the environment degrees of freedom, e.g. (®;®;) with ¢ # j. Alternatively,
one could also derive the influence functional using the fact that, for open systems,
the evolution between subsequent time slices is not unitary and is performed by the
Lindblad operator—see e.g. [2].

Eq. (4.5) shows explicitly that, in the case of an open system, the term AS[¢1, ¢o]
contains information about the state of the environment pg and its interactions with
the subsystem. This is conceptually different from the effective action of a closed
system in (4.2), which instead depends on the state of the system under consideration.
Of course, one could amend the influence functional so that it also captures the state
ps of the subsystem, following the same strategy we outlined for a closed system.
By doing so, AS[¢1, 2] would now encode once again the state of a closed system,
p = py ® pe. This procedure would be equivalent to first introducing the effective
action for the total closed system, and then integrating out the environment in the
naive manner:

/D¢1D¢zpqplp¢26i5[¢1,¢>1]—i5[¢2,<1>2] — /'D¢1'D¢2'Dq)lpq)2ei5[¢1,<I>1}—iS[¢2,¢>2]+iAS[¢17¢2,<I>1,<I>2]
P

:/ngquSQ iS61]—iS[b2]+iAS[p1,¢2] (4.6)

From this perspective, the difference between an open and a closed system is whether
the degrees of freedom appearing in the path integral define a basis for the Hilbert
space on which the state p is defined.

4.2 Locality and Expansion Parameters

Let’s consider an EFT described by an “in-out” effective action Sgpr[p] with energy
cutoff A.2 This means that any operator in the in-out effective action can be assigned
a definite scaling in the ratio F'/A, with E the typical scale of interest [50,60]. Any
state p that is not the vacuum of the EFT will generically introduce additional scales
into the problem. We will collectively denote these scales with M; some examples
are: the temperature 7" of a thermal state, the chemical potential u of a finite density
state, the characteristic length scale ¢ of a semi-classical field profile (converted to an
energy scale using some characteristic speed), etc. Only states such that M < A can
be reliably described within the in-out EFT.

In the approach described in Sec. 4.1, these additional scales M appear explicitly
in the Schwinger-Keldysh effective action Sgpr[p1, ¢2]. While it is perhaps plausible

2In non-relativistic EFTs one should distinguish between the cutoffs for energy and momentum—
as we will see in the examples discussed in Sec. 5.3. In this section we focus our attention on the
energy cutoff to simplify the discussion.
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that such an action might be able to reproduce all correlators of the form (3.11), there
is certainly no expectation that this EF'T should be local for all scales £ < A—and
indeed, it generically won’t be. In order to work with a local Schwinger-Keldysh
effective action, we need to restrict ourselves to the regime E < M < A, which will
be the focus of this paper. Below the scales M, all information about the state p is
encoded in the effective action by an infinite tower of irrelevant local operators—the
usual way in which UV physics manifests itself at low energies. Thus, the Schwinger-
Keldysh effective action now contains a new expansion parameter, F /M.

This point is potentially confusing for thermal states: because EFTs at zero tem-
perature are usually described using a local action, one might expect that the T' < E
regime should also admit a local description by continuity. However, thermality is
generically encoded by ~ e~®/T factors [31,91,99] which only admit an expansion in
powers of E for T' > FE, the regime in which being at finite temperature appears as
a UV effect.?

At scales E < M, the relevant degrees of freedom are often the Goldstone modes
associated with symmetries that are spontaneously broken by the state p. In the
following sections, we will uncover the principles that one should follow to write
down the most general Schwinger-Keldysh effective action for such Goldstone modes.

Irrespective of the state p of the system, Schwinger-Keldysh effective actions are
also naturally endowed with another expansion parameter, namely h, that controls the
semi-classical expansion. In the absence of Goldstone modes, fields usually transform
linearly under all the symmetries, and a systematic i expansion of the effective action
is straightforward to implement [34] (see also Sec. 4.5 for more details). In the
presence of Goldstone bosons, however, an expansion of the effective action in powers
of h requires some extra care, since a naive implementation would break some of the
symmetries that are realized non-linearly, as will become clear in subsequent sections.
For this reason, we will not be implementing this expansion in what follows.

4.3 Symmetries

EFTs are specified not only by their field content and expansion parameter(s), but
also by their symmetries. It is therefore important to discuss which symmetries one
should impose when writing down the most general Schwinger-Keldysh effective action
SerT[P1, P2]. The symmetry considerations that must inform the construction of the
effective action for closed systems are:

3We are being schematic here. More precisely, the scale M is proportional to 7 but does not
necessarily coincide with it. For weakly coupled UV completions, M is more accurately of order
g*TIng2, a scale associated with large-angle scattering events. It is below this scale that the
relevant degrees of freedom become the hydrodynamic modes [100]. This situation is a manifestation
of the usual fact that, for weakly coupled UV completions, the cutoff of the low-energy EFT can be
parametrically smaller than the strong coupling scale (in our case, T').
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e Gauge symmetries: When the single field action S[y] enjoys a gauge symmetry,
the action S[p1, pa] = S[p1] — S[ps] in Eq. (3.15) is invariant under independent
gauge transformations of the ¢;’s that coincide at ¢ = +oo [34]. As a result,
the Schwinger-Keldysh effective action Sgpr[p1, 2] must be invariant under
two copies of the gauge group. This is consistent with the statement in the
previous section that one should double all the degrees of freedom—including
gauge fields.

o Continuous global symmetries: The fact that the two gauge transformations
must coincide at t = £oo implies that, in the global limit, the action S[¢1, pa] =
Slp1] —S[ps] can only be invariant under the diagonal symmetry group G which
transforms the ;’s simultaneously. This fact is not manifest at the level of the
action, since 1 and @, would appear to be decoupled; it follows instead from the
boundary conditions, and in this sense it can be viewed as a non-local constraint
on the symmetries of the system. These boundary conditions, together with
the state of the system, are built directly into the Schwinger-Keldysh effective
action Sgpr[e1, 2], Furthermore, gauge symmetries must become physically
indistinguishable from global symmetries in the limit of vanishingly small gauge
coupling.* In the regime where the Schwinger-Keldysh effective action is local,
this can only be achieved if Sgpr|[p1, @] is invariant under two copies of all
global symmetries, G| X G5.° This enhancement of global symmetries is a direct
consequence of the requirement that the Schwinger-Keldysh effective action be
local and leads to the existence of two separate Ward identities, which are
required to reproduce the same information of a single Ward identity defined
on the two segments of the Schwinger-Keldysh contour (see Fig. 4.1 in App
4.6). The symmetry properties of the matrix elements of p in the past infinity
determine to what extent GG; X G is spontaneously broken down to a subgroup—
we will discuss this more in depth in Sec. 5.2.

e Discrete symmetries: The difference between past and future boundary con-
ditions breaks explicitly time reversal, which therefore is not a symmetry of
the effective action Sgpr[p1, pe] even when it is a symmetry of the single-field
action S[p|. All other discrete symmetries of the single-field action are realized
twice in the Schwinger-Keldysh effective action, as is the case for continuous

4See e.g. discussion in Sec. 21.4 of [101].

5In the ground state, G x Gy is explicitly broken down to its diagonal subgroup by terms of
O(e) when the “ie” prescription is implemented at the level of the action [96]. This is another
manifestation of the fact that the state at ¢t = —oo is only invariant under the diagonal symmetry
group. The factors of ie are crucial to reproduce the correct m-point functions, but should not be
taken into account when discussing the symmetries of the Schwinger-Keldysh effective action. This
is standard EFT practice: for example, the in-out effective action for a U(1) Goldstone is considered
to be shift-invariant even though implementing the “ie” prescription in the action would break the
shift symmetry explicitly.
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global symmetries. This is required for consistency, since discrete subgroups of
continuous symmetries are always realized twice.

Emergent symmetries: The state p not only determines whether some of the
symmetries are spontaneously broken, but can also give rise to additional “emer-
gent” symmetries in the EFT. For instance, the homogeneity and isotropy of a
state would be encoded by an emergent internal 1.5O(d) symmetry [42,102]. A
more generic example is provided by the thermal state, which endows the ef-
fective theory with an additional discrete symmetry—the dynamical KMS sym-
metry (DKMS) [34,103,104]—that, in the simplest case,® can be implemented
on the two copies of the fields as follows:

i3
2
i
2

pi(t,7) = pi(~t +18/2,7) = pi(~1,7) = S-Opr(—t,7) + O(5%),  (4.7a)

p3(t, T) = oa(—t —1B/2,7) = pa(—1,7) + —-Oppa(—1,7) + O(5%),  (4.7b)

where 5 = 1/T (In this paper we are aiming for an effective action up to leading
order in an expansion in F /T, which is why we expanded the DKMS symmetry
in powers of 9;/T).” This symmetry ensures that correlation functions of the
system satisfy the KMS condition [8,105], which e.g. for the 2-point correlator
of any operator O reads

(O, DO, 7)) = (O —iB/2,7)O(t +iB/2, T)). (4.8)

Furthermore, when combined with the unitarity conditions discussed below in
Sec. 4.4, the DKMS symmetry leads to the existence of an entropy current with
non-negative divergence [106]. It is worth mentioning that Eq. (4.7) is not the
only possible way of implementing the KMS condition as a symmetry of the
effective action—see for instance [107,108|, and [109] for a detailed comparison
with the approach put forward in [34] and adopted in this paper.

6The existence of the symmetry (4.7) relies on the invariance of the underlying dynamics under
time reversal. More in general, the DKMS symmetry can be implemented by combining the trans-
formations (4.7) with additional discrete symmetries, e.g. parity and charge conjugation [34]. The
important point is that the ground state of the system must be invariant under the combined action
of these discrete symmetries and time reversal. As we will see in Sec. 5.3.3, this requirement plays
an important role for ferromagnets.

"We are assuming here that all continuous global symmetries act linearly on the ¢; fields, i.e. that
there is no spontaneous symmetry breaking. Furthermore, we have made an additional imaginary
time-translation to bring (4.7) to a convenient form—see e.g. [34] for a more general form of these
transformation rules.
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4.4 Unitarity

In the standard in-out path integral, unitarity implies that the single field effec-
tive action Sgpr[¢] must be real. Similarly, unitarity also restricts the form of the
Schwinger-Keldysh effective action Sgpr[p1, ¢2], and requires that the following con-
ditions be satisfied [34]:

1. The action must vanish when ¢ = po: Sgpr|p, | = 0.

2. Unlike in the usual in-out path integral, the effective action that appears in the
Schwinger-Keldysh generating functional is allowed to be complex. However,
under conjugation we must have Sgpr([¢1, 2]* = —SErr[P2, ¥1]-

3. Furthermore, the imaginary part of the action must be non-negative:
Im Sgpr[e1, 2] > 0.

In terms of the decomposition (4.2) Sgpr[p1, @2] = S[e1] — S[ws] + AS[p1, o], the
first unitarity constraint implies that AS[p, ¢] = 0; the second condition requires
S[p] to be purely real and the mixing term to obey AS[py, po]* = —AS[pa, p1]; and
the third unitarity condition further imposes Im AS[p1, @o] > 0.

4.5 A Convenient Field Redefinition: Keldysh Rota-
tion

In order to simplify calculations and make the causality properties of various quanti-
ties manifest, it is convenient to perform a field redefinition and switch to the so-called
Keldysh basis. Assuming for now that all symmetries are linearly realized on our fields,
this is done by performing a Keldysh rotation to introduce the following new degrees
of freedom:®

va(r) = pr(2) = pa() r(z) = 5 lp1(2) + pa()]. (4.9)

The Keldysh basis has several advantages. First, even though the 2-point functions
of @1 and @9 are all generically non-zero, as shown in Eq. (4.1), they are actually not
all independent of each other. Writing out the time-orderings, one can easily show
that the following identity holds [96]:

(er(@)r(a)) + (p2(z)p2(a”)) — (pr()p2(a”)) — (pa(x)pr(2)) =0 . (4.10)

8See [110] for a detailed discussion of subtleties associated with the Keldysh basis.
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In the Keldysh basis, this redundancy is made explicit through the fact that (p.(x)p.(2"))
vanishes:?1?

({p(z), p(z)}) i=j=r

O =
~
|
|

(pi(x)p; () = (4.11)

0t —t)[p(x), 0(@)]) i=rj=a
0" = t)(lp(@), p(x)])  i=a,j=r

Another technical advantage to the Keldysh basis also becomes apparent in Eq.
(4.11): mixed a-r two-point correlators have manifest causal properties. The re-
tarded Green’s function is proportional to (p,(z)y.(z’)), while the advanced one is
proportional to (¢, (z)p,(2")). One can think of the mixed correlators as containing
information about the system’s fundamental dynamics, while r-r correlators encode
information about the state of the system.!!

The effective action Sgpr[@a, @r] is generally organized as an expansion in ¢, fields
which, due to the form of the action in (4.2), can be written as

SEFT [QDa, %] =

Z (H / derlxi) 690r<$(15;5[¢(;30r($n> 2"—11n' 80a<x1) o 80a<xn) + AS[SDM SOT] ’

ne{1,3,5,...} \i=1

(4.12)

where only odd powers of ¢, can arise from the expansion of S[p;] — S[ps]. In these
variables, the unitarity constraints previously discussed in Sec. 4.4 now imply the
conditions

1. AS[p, =0,p,] =0,
2. AS[¢a, o] = —AS[—@a, r],
3. Im AS[pa, ¢r] > 0.

The first condition further implies that ¢, = 0 is always a consistent solution of
the equations of motion that follow from varying the effective action with respect to
.. Variation with respect to ¢, yields instead, at lowest order in ¢,, the classical

9This pattern generalizes quite widely: any correlator involving a string of a- and r-operators
~ (") vanishes if among all operators, the one with the largest temporal argument is an a-
operator. This non-perturbative result is known as the largest-time equation [111], and it implies,
in particular, that (©?) is vanishing for all n.

°Qur notation for various correlation functions and some of their properties are summarized in
App. 4.7.

UFor instance, (o, (w, k)pr(—w, —k)) o« 1 + npge(Bw) in a thermal state, where npg(Bw) is the
Bose-Einstein distribution (assuming O is bosonic)—see App. 4.6 for more details.
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equations of motion for ¢,. As a result, the a- and r-fields have also the concep-
tual advantage of admitting a natural physical interpretation. The ¢, operator can
be identified with a classical field in the A~ — 0 limit, whereas ¢, is responsible for
quantum and stochastic effects [96]. In the absence of spontaneous symmetry break-
ing, this can be made explicit by rescaling ¢, — hp,, so that the effective action
admits a straightforward expansion in powers of A. This procedure is consistent with
semi-classical expansion of in-out effective actions in terms of some dimensionless
combination of coupling constants and 7 [112] in the limit of high occupation num-
ber [113]. In the presence of spontaneous symmetry breaking, however, an expansion
in powers of a—fields becomes more subtle because it obscures (i.e. break explicitly)
some of the symmetries realized non-linearly. Understanding how this relates to the
semi-classical expansion of in-out effective theories with Goldstones [114] is an open
problem that we leave for future study. In the present paper we will not truncate our
results at a finite order in a—fields.

For future use, we also report here the action of the DKMS symmetry on the fields
in the Keldysh basis. Working at lowest order in £/T, we immediately find from the
transformation rules (4.7):

o (t,T) = (=, T) = £B0kpa(—1, ), (4.13a)
gp;(t) f) = (pa(_t j:) - iﬂat@r(_ta f) (413b)

Note that, for linearly realized symmetries, the change in ¢, in Eq. (4.13a) is of
O(h), and is therefore often neglected—see e.g. [34].!> We are keeping this correction
here since for our purposes it will be important to distinguish between expansions in
powers of E/T and h.

In the body of the paper, we focus on constructing low-energy Schwinger-Keldysh
effective actions for systems in which one or more symmetries are spontaneously
broken. As we will see, working in terms of - and a-fields becomes especially natural
under these circumstances. This is because the Goldstone fields in the Keldysh basis
have non-linear transformation properties that resemble those in a more traditional
in-out effective theory. This will allow us, in particular, to implement the DKMS
symmetry on the Goldstone fields in a way that is consistent with all the non-linearly
realized symmetries. Because of the relations (4.9), instead, the Goldstone fields in
the (1,2) basis would satisfy much more complicated transformation rules.

12Note that, when restoring all factors of %, one should replace 8 — i3 in order for the temperature
to have units of energy.
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4.6 Schwinger-Keldysh Path Integral for a Free Sys-
tem at Finite Temperature

In this section, we calculate explicitly the Schwinger-Keldysh generating functional
for a free, massive, relativistic SO(N) scalar described by an in-out action.

S = _% /d% (9,20 2" + m*d4?) | A=1,...,N. (4.14)

Through this calculation, we show explicitly how the boundary conditions give rise
to off-diagonal correlation functions shown e.g. in Eq. (4.1). Second, we show how
the £ < T limit of the 2-point functions can be reproduced using an effective action.
This is by now textbook material [96], but we discuss it here for completeness.

Our starting point is the generating functional in Eq. (3.13) with ¢ = O = P:

Z[J1, Jo] :/DclgaDCID'bD(I;c <<§m —o0l p |C§c, —00) (Cﬁc, —o0] Te—il J2® |C§b, +00)
(4.15)
X <q;b7 +OO| Telfjl(i; léaa _OO> ;

When the density matrix is thermal, p oc e™##| this functional can be computed from
the knowledge of the amplitude

2 i [d*e T8 | & B(+t)=; () iS[B)+i [ Atz J-B
(Dp(x), +t.| Te |i(x), —ts) = [ ) Dode
D(—tx)=Pi(x)

= (D, +1,|D;, —t,) 7, (4.16)

since each factor on the right-hand side of (4.15) is a special case of the quantity above.
In particular, the thermal density matrix factor comes from setting the source J to
zero and properly Wick rotating. Combining all three factors together, we obtain a
single path integral expression for the generating functional, with fields defined along
a time-contour C in the complex plane shown in Fig. 4.1.

Due to the free nature of (4.14), the amplitude in (4.16) can be computed exactly
by substituting the classical solution obeying the appropriate boundary conditions in
the presence of the source J into the action. The explicit form of such a classical
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Figure 4.1: The contour C used for the Schwinger-Keldysh generator (3.13) when
p o< e PH The dotted line represents the completion of the trace; there is no evolution
along this segment. Other contours for finite-7" systems can be found in the literature;
see [115] for a review.

solution is'3

Ly

Do (t, k) = K(t,k,t,) - Dp(k) + K(—t,k,1,) - Dy(K) +/ dt' G(t,t', k,t,) - J(t', k) |

—t,

(4.17a)
KAB(t &, t,) = 51“3312?;2‘2(2;3*)) , (4.17D)
sin(wy(t —t))

GAB(t,t k,t,) = 64F x [ o 16— 1) = 6(t' 1)

2 cos(wi(t + 1)) — cos(wi(2t, +t — t')) — cos(wy(2t, + ' — t))]
4wy sin 2wyt ’

(4.17¢)

where wi = k? + m? and where, for now, we are imposing boundary conditions at
+t,. The GAB(t,t' k, t,) propagator obeys (O, — m?)GA8(z, 2,t,) = —6185%(x — 2)
in position-space and is symmetric under ¢ — t' and vanishes at the boundaries where
either t' or t equals +t, while K42 (z,z,t,) solves the equation of motion identically,
reduces to the identity at the t = ¢, boundary, and vanishes at t = —t,.

I3Note that in this appendix we are denoting spatial vectors in boldface to reserve the vector
symbol for objects in the fundamental representation of the internal SO(N) group.
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Plugging the expression above into the action, the amplitude (4.16) reduces to

(O, +t.|P;, —t.) 7 = exp [% / W wy cot(2wyt,) <¢,- P+ Py CI>f) — 2wy csc(2wit, ) D; - Dy
T

ty 3
—i—i/ dt/%J(t,k)-[((t,k,t*)-<I>f—|—J(t,k)-K(—t,k,t*)-<I>i
—ty s

i [ SR -
vy /_ didu / Sy ) Clw k) Twk)]  (@18)
where 51 = Cf%(k) everywhere. Note that this result is manifestly invariant under
SO(N). The density matrix components come from setting t, = i/5/2 and J = 0in
the above.

After calculating the three amplitude factors in (4.15), it is straightforward to
stitch them all together by computing the remaining Gaussian path integrals over
cf;(“ @b, and 6136. It is this last step that gives rise to the cross terms ~ J; x Jy. The
ultimate expression is written most compactly in terms of the J_(;, J, Keldysh basis
sources:

In Z[J,, J;]

wdk , 0 @R T,
3 G e e (D) ()

(w—i€)?2—w
(4.19)

In this paper we considered an alternative representation of the generating func-
tional that relies on effective fields'* and for which the usual, naive rules of Gaussian
integration can be used. Such a representation allows us to avoid the complicated,
multistep process above. From this viewpoint, the generator (4.19) is instead con-
structed as

Z[Ja, J,] = /DCI))GD(I_ST oSErT[®a,Br] i [ A2 T Bot-To-By (4.20)

for some Sgpr. Finding the appropriate effective action which reproduces (4.19) is a
simple exercise in reverse engineering via standard Gaussian integral formulas, and a
convenient form is'®

SEFT [5,1, (I;r] = /d4x (—85(1 0B, — m?d, - D, — 255a(w) : 8511(95))

+i5/%wcoth(ﬁw/2)5a(k)-5a(—k) o (4.21)

14Tn what follows, we denote these effective fields with the same symbol, 5, to streamline the
notation.

YEquivalence follows from the identity lim. o x5z = 7d(z). The fact that the imaginary terms
are O(e) is an artifact of the free limit [96]; they are finite in realistic, interacting systems, see
e.g. [116].
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where we take ¢ — 0T at the end of any given computation, as usual.

For emphasis, in contrast to the path integral considered at the start of this
section, when using (4.21) there is no need to carefully consider boundary conditions
on fields at ¢ — £oo or the presence of a non-trivial density matrix. Such features
are already encoded in Sgpr itself. In particular, the explicit factors of § in (4.21)
reflect the thermal nature of the system which is also a consequence of the dynamical
KMS symmetry [34] of the effective ® fields. Explicitly, this acts linearly on the fields
in frequency space as

—

®,(w) — cosh(Bw/2)P,(—w) — 2sinh(Bw/2)P, (—w) (4.22a)
B, () — cosh(Buw/2)B,(—w) — %sinh(ﬁw/2)q_5a(—w) , (4.92D)

and it can be checked that (4.21) is precisely invariant under the above.

For general values of Sw, the representation of the generating functional via an
effective action (4.21) is not obviously advantageous. Though this construction allows
us to more easily use familiar path-integral methods, its convenience is offset by the
fact that the terms ~ 52 are non-local. However, Sgpr becomes approximately local
in the low-energy limit, fw < 1:

/l:—#

SEFT ~ /d4l’ {—8@% . 85r — mQCﬁa . (]37, + 2e (_5a . atCI_ST + E(I)a(l’) . 5a($)) } .
(4.23)

The structure of the O(e) terms is dictated by the S-expansion of the dynamical KMS
symmetry (4.22) in which the symmetry acts on the fields in momentum space as in

B, (w, k) = Bo(—w, k) — fwd,(—w, k), B (w,k) = B, (—w, k) — %“’cﬁa(—w,k) :

(4.24)

under which the O(e) terms in (4.23) are strictly invariant.

Note that the effective action is invariant under two copies of the global SO(N)
symmetries provided we disregard the terms proportional to €, as is customary when
discussing the symmetries of effective actions. However, it is easy to show that both
copies of the symmetries are realized linearly on our effective fields, meaning that the
off-diagonal symmetry is not spontaneously broken in this very simple case. This is
an artifact of the free limit, which prevents the existence of a hydrodynamic regime
at low energies.

40



4.7 Correlators

A wide variety of conventions and notations exist for the possible correlators in quan-
tum field theory. Ours are found below, along with various useful relations they
satisfy. Given a set of operators (¢ with i some general indices, some of the correla-
tors one might be interested in calculating are

Y (x,2') = ([0 (), 0’ (2/)])

i (@,2) = (0'(2)0"(2))

Gilw,a) =it = ¢)([0(2), O (2')]) = (O} (x) O} (=’
(z,2/)
J (@)

S Sl ~—r
~

= —ib(t — 1)([0/(2), 07 (a")]) = —i(O}(x)O
= S(O'(@), 0'()}) = (@) 0I(a)) (4.25)

where for the last three correlators we have also provided an expression in terms of
fields in the Keldysh basis introduced in Sec. 4.5. The momentum-space versions of
the above are defined in the usual way, with G%(w, E) determined from a correlator
of Oi(w, k) and O (—w, —k).

The commutator A¥ and the retarded correlator Gg are related in momentum
space by

B . NI
Gid(w, F) = 1 [ & 27K

e—0+ 2m W —w — 1€

, (4.26)

as follows from the Fourier-representation of the Heaviside function. The zero-
frequency limit of this relation determines the static susceptibilities x (k),

o .. 5 dw’ A (' E
VIR = lim G F #0) = lim [ AW k)
w—

e—0+ 2r W —ae

(4.27)

At finite temperature, the KMS conditions relate various correlators to each other.
These can be straightforwardly derived starting from inserting 1 = e ##efH judi-
ciously into the Wightman function GZ‘;, (also called the dynamical structure factor)
and using the cyclicity of the trace to get (highlighting only the temporal and fre-
quency dependence)

Giplt) = Gy (=B =) =P Gli(t) = Gij(w) = Gl(-w) . (428)

In particular, in the limit Sfw < 1 that is the focus of our paper, this implies a form
of the Fluctuation-Dissipation Theorem

AY (w)
Puw

G (w) =~ G (w) =~ (4.29)
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up to corrections of higher order in Bw. The first relation above implies that O and
(7 approximately commute, thereby motivating the “classical limit" terminology.

Using the effective actions discussed in this paper it is straightforward to calculate
the symmetric ng viewed as an r-r correlator in the language of the Keldysh rotation
of Sec. 4.5. The low energy expressions for G4, A¥, and G}, then follow from GJusing
(4.26) and (4.29).

4.8 Effective Field Theory of Diffusion

In this section, we will elaborate on methods found in the literature to construct
Schwinger-Keldysh EFTs for conserved quantities. The construction followed in this
section was first formulated in [23], and used for non-Abelian symmetries [69], and dif-
fusive systems [117-119], see also [34] for a review. When building EFTs, the method
used by the above work introduces an additional symmetry called the diffusive sym-
metry, whose existence distinguishes between the normal phase and the SSB phase.
This is not a usual ingredient in the construction of theories with Goldstone modes,
and when we generalize coset construction to the Schwinger-Keldysh formalism in
Sec. 5.2, we will not require this symmetry. Nevertheless, we think that illustrating
its use and the state of the art in Schwinger-Keldysh EFTs through a simple example
will be helpful in making comparisons with our SK coset method.

The example we will consider is diffusion in a closed thermal system with U(1)
charge. The generating functional for such a system in the SK formalism is (sup-
pressing spacetime indices)

MWl Ani] Ty (pTet At 4 ) (4.30)

where p is the initial thermal state, J;, (s = 1,2) are the currents associated with
the conserved charge and A* are the external vector fields. The conservation of the
current 0*.J;, = 0 can be imposed by requiring the following transformation rule on
the generating functional:

WAy, Agy] = WAL, + 0uhi, Aoy + O] (4.31)

for arbitrary functions Ay, A\s that vanish at spacetime infinities. To be able to derive
an effective action, we need to “integrate in” the modes 1, o that correspond to low
energy collective excitations:

eiW[Am,Am} _ /D('OIDSO2€7;SEFT[@17@2?141“7142#]. (4_32)

Since we're using ¢, to represent Jy,, their equation of motion should correspond to
conservation of Jy,. They should also transform in such a way that (4.31) still holds.
These two conditions forces the fields to transform as

Agy = Agy — O, s = s+ As s=12, (4.33)
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and appear in the combination
Bl# = Al/‘« + augol y BZN = A2N + 8u902 (434)
such that under the gauge transformation we get:
B;u = ASH - aqu + 6u905 + au)\s = Bs,u' (435)

The fact that we have introduced a new degree of freedom to impose the “gauge”
symmetry (4.31) means we can interpret o as Stiickelberg fields [120].
We can now define currents:
o 1465 EFT

lésEFT - -
i 6Ay, 2T 0 0Ay,

j{‘z

(4.36)

With these definitions, the equations of motion for ¢, lead to the conservation equa-
tions for the currents:

0SEFT / 4 7 0SEFT 533;4(33'/) / 4 0SEFT ’
= | d'z = | &7 ————9,0(z — x
55() SBon ) 04() 5 () 1O =)

= —0,J" () (4.37)

and the correlations of currents J,, derived from (4.30) are given by the correlators
of J from the EFT:

Tr(pJf(x)Jé’(y)) = /D¢1D¢2jf(x) ~£L(y)eiSEFT[SDMP%Am,Am}

(4.38)
Aj=45=0

Since the generating functional W results from integrating out the modes ¢;, we
generically expect it to be non-local. The effective action Sgpr is also generically
non-local, since it in turn results from integrating out “fast” modes that govern mi-
croscopic physics. But in the hydrodynamic approximation, that is the length scale
for the collective excitations \ related to conserved quantities is much bigger than the
relaxation length ¢ of microscopic non-conserved processes, then Sgpr can be written
in a local derivative expansion with powers of f@u.

The effective action Sppp[Bi,, Bo,] must additionally obey the unitarity con-
straints and DKMS as discussed in Sec. 4.3. The DKMS transformation for Bj,
in the Keldysh basis is:

=) = OBt )

B, (t.7) = Byu(—t, 7
Bou(t, @) = By, (—t, —%) — if0,Ba,(—t, —T), (4.39)

where we have assumed P7T invariance for the ground state.
Finally, there is one more symmetry that distinguishes between the normal phase

and the SSB phase of the system. In the normal phase Sgpy is invariant under the
following:
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This symmetry is diagonal, in the sense that both copies of the field transform under
the same space-dependent function A(Z), unlike the two copies of (4.33). In the
Keldysh basis this symmetry takes the form

B;"z - Bri - 8)\(35'), B(/u - Bai (441)

which implies that in the normal phase, any factor of B,; must always come with at
least one time derivative, or with the combination F};; = 0,B,; — 0;B,,. For the SSB
case there is no longer such a constraint on B,;.

The diffusive symmetry arises in the normal phase and stems from the fact that if
we consider the system as consisting of fluid elements, locally we can consider By, (z)
to be external sources for each fluid element labelled by x. For example, with this
interpretation a local chemical potential can be defined via

By (z) = Aso(z) + Oops(z). (4.42)

Note that the definition includes the collective excitation ¢, and not just the external
source Agy: the fact that fluctuations of collective excitations act as a local source is
a manifestation of the local transport of conserved charge. The origin of the diffusive
symmetry is then the fact that global U(1) invariance allows for each fluid element,
which is independent of one another, to make an independent phase rotation that
does not depend on time: €. This freedom in the choice of the phase directly
results in the symmetry given in (4.40). In the SSB case, the global phase is fixed,
meaning there is no freedom to choose an independent phase for each fluid element,
and the diffusive symmetry is no longer present.

With the building blocks and symmetries specified, we can build effective actions.
We first look at the diffusion case at the quadratic level. The Lagrangian is:

)
B
where y and o are EFT parameters. Due to the condition Im Sgpr > 0, 0 > 0 and

the form of the last term above comes from DKMS invariance. By taking variational
derivatives with respect to A,,, A, we can find the currents:

£(E2)FT = XBatBrt + UBai ( Bai — ath;) + ... (443)

5L .

557 = J; = xBr = X, (4.44)

oy .

5??? = Ji= %Bai — 00,By; = 0(E; — i) + %Bm, (4.45)
5L -

L (1.45
5L .

; ZiT = J = 60,B,;, (4.47)
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where in the first line we defined the chemical potential u = B,y = A,; + 0;p,. In our
SK coset construction method, to be discussed in Chapter 5, the chemical potential
will correspond to the “matter field” p,.. To get the last equality in the second line,
we used

atBTi = 8tA7“i + ataigor = atATi - aiArt + 82 (Art + atspr)
where we have defined the field strength F),, = 90,4, — 9, A, and the electric field
E; = Fy;. For the case p = 0, (4.45) reduces to Ohm’s law. We also observe that

since the charge density n = j;f = X/, (setting A,, = 0), the equation of motion for
¢, (obtained by varying w.r.t ¢,) leads to

_ 0SEFT
0pq

0 = —XO, By + 00;0,B,; = —0,,J"

1
X
and we recover the diffusion equation in the presence of an external force:
om — DOIn = —00;E; (4.50)

where we defined the diffusion constant D = o/x. This allows us to interpret the
EFT parameters y and o as the charge susceptibility and conductivity. The former
also through n = yu and the latter from the form of jﬁ Furthermore, the dispersion
relation at E; = 0 is w = iDk?, as expected from a diffusive mode.

We can equally find an equation of motion for ¢,, which also leads to the conser-
vation of the a-current: 0,J* = 0. This indicates that the system is closed, unlike in
an open system where the current J¥ will not be conserved on the equation of motion
level.

We also want to mention that the linear relation n = xu at the quadratic level
becomes nonlinear with the inclusion of higher order interactions. This will lead to a
nonlinear version of the diffusion equation [118]:

Om(p) = 0; [o(1)9't] (4.51)

where n(u) = x (u + %uz +. ) and o(p) =0 (1+ %/u +...) where ', 0’ are free
EFT parameters that appear at the cubic level. This allows us to handle non-linearites
order by order in the EFT; see Section 6.4 for more details.

Finally, we look at the SSB phase of the system. We drop the requirement of
diffusive symmetry, which leads to two additional terms in the quadratic action

?

]

l

2
8:(32523 = ]C”_3 /d4xBatBrt - CgBaiBri 4+ 0By; ( 3

Bai - 8tBri> + UBat ( Bat - atBrt) )

(4.52)
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where the last term is now included due to the power counting in the SSB phase
(8, ~ 0;). We see that the action leads to the dispersion relation w = c,|k| + ...
for ¢,, which is gapless and linear, as expected from our in-out intuition of SSB of
U(1)-symmetry.

4.8.1 Effective Field Theory of Hydrodynamics

For completeness, we briefly mention how the above methodology can be used for
hydrodynamics, where the conserved charges include energy and momentum as well
as any charges due to global symmetries. The current for energy-momentum is the
stress-energy tensor 7),,, which we assume is conserved. The associated symmetry
of W is the diffeomorphism symmetry of the corresponding “source”, the metric g,
s = 1,2, on the two branches:
“w v
$a5(0) = G (2(0)) oo 05 (4.53)

Following the same reasoning as before, we promote the parameters £ to dynamical
variables X# (o), which enforce the above symmetry. To do this we first introduce an
auxiliary spacetime o4, A = 0,1,2,3. The spatial part ¢’ labels each fluid element
and o is the internal clock of each such element. The fields X* then correspond to
a map from the fluid spacetime to the physical spacetime and can be viewed as the
Lagrangian description of a fluid. The action can now be built using the equivalent
of B, from the previous section, which we define as

OX1OX”

hsap = QSWW&T—B, s=12, (4.54)
and the generating functional can be written as
eWlg1uw,g200] — /DXIDX2€iSEFT[h1Ath2AB}' (4‘55)

The correlators of T,W in the EFT description will now correspond to the correlators
of T, of full theory.

4.9 Connection to Fluctuating Hydrodynamics

In this section we briefly comment on the connection between the previous section’s
formalism with stochastic hydrodynamics [1], using the U(1) diffusion case discussed
above as an example (for a more general treatment refer to [23]).

The quadratic EFT of U(1) diffusion with all sources turned off (B,, — 0,p;)) is

?

Bﬁigpa — (9,@190,,) (456)

Lerr = X0ipaOrpr + 00;0, (
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or in terms of the charge density n:

LErT = Q4 (—&n + D@fn) — (P, (%@2) Va
= (=9 +DIn) ¢, — %%Kaa% (4.57)
and the corresponding path integral is
Z = /DnD@aeifd%LEFT["’%]. (4.58)
Now we employ a Hubbard-Stratonovich transformation using the identity

exp{—%/d‘lmapal(mgoa} = /Dgexp{—/d% %fKaalf—ifSOa}- (4.59)

Inserting this into the path integral we find

Z = /Danoapg exp{— / %fKa_alf} exp{i/d%gpa (—8,571 +DIn + zf) }

(4.60)
The field ¢, now just a Lagrange multiplier and we evaluate the integral:
7 = / DnDE exp{— / %gzc;}g}(s (=0 + Dn +¢€) . (4.61)
The above result leads to the stochastic diffusion equation
om —DIn = €, (4.62)

where ¢ is a stochastic force that is Gaussian distributed:

€ =0 {£)£(0) = Kaad(). (4.63)

One can make a similar connection with the extension discussed in 4.8.1 to recover
Navier-Stokes equations with stochastic fluctuations, making full contact with the
formalism of fluctuating hydrodynamics [1]. The main advantage of the EFT formal-
ism discussed above is that we can go beyond and consider nonlinear contributions
of higher order interactions between forces and dynamical variables in a systematic
way.
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Chapter 5

Schwinger-Keldysh Coset
Construction

5.1 Introduction

In Sec. 4.8, we discussed current methods used to build Schwinger-Keldysh Effec-
tive Field Theories (SK EFTs). These methods introduce the diffusive symmetry,
which is not a component of usual tools of constructing Goldstone EFT, including
coset construction. Instead, we will investigate in this chapter to what extent the
traditional coset construction can be used, without imposing additional symmetries
to distinguish normal vs. SSB phases, to write down the doubled-field effective ac-
tion Sgpr[7T1, Te] that defines the Schwinger-Keldysh generating functional (3.1). In
the case of Goldstone fields, doubling the field content would naively appear to be
in tension with non-linear realization of the spontaneously broken symmetries. We
will explicitly address this by providing a systematic prescription for writing down all
possible operators that involve two copies of the Goldstone fields and are compatible
with all the symmetries. Our results provide a complementary perspective on the
modern field-theoretic description of non-equilibrium systems, reviewed recently in,
e.g., [34], as the ingredients in both constructions are intimately related. In particu-
lar, we study the additional constraints that a finite temperature places on top of the
traditional coset-construction rules, as encapsulated by the discrete dynamical Kubo-
Martin-Schwinger (DKMS) symmetry argued for in [23]. Previous studies of the
coset construction within the Schwinger-Keldysh formalism can be found in [32,121],
for instance. See also [122-124] for interesting discussions of Goldstone modes in
out-of-equilibrium systems.
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5.2 Schwinger-Keldysh Effective Actions from a Coset
Construction

We will now discuss how the coset construction reviewed in Sec. 2.3 can also be
used to construct Schwinger-Keldysh effective actions. In Sec. 4.3 we argued that, if
the single-field effective action is invariant under the global symmetry group G, the
corresponding Schwinger-Keldysh effective action for a closed system must enjoy twice
as many symmetries—i.e. be invariant under the group G; x Go—in a regime where
the action is local. How many of these symmetries are realized linearly will depend
on the state of the system p. Inspired by the form of the generating functional in Eq.
(3.13), we will postulate that the symmetry breaking pattern should be determined
by acting with a G| x G transformation on the state p as follows:!

p — UpUs?, (5.1)

where U (Us) is an element of Gy (G2). Symmetry transformations of this form that
do not leave p invariant are spontaneously broken. As we will see, this rule of thumb
implies different symmetry breaking patterns depending on whether the state p is
pure or thermal.

5.2.1 Closed Systems in a Pure State

Let us start by considering the case of pure states: p = [¢))(¢)|. Spontaneous symmetry
breaking occurs if there exists a local operator @ whose expectation value on |¢)) is
not invariant under some symmetry transformations. More precisely, the symmetry
generator X is spontaneously broken if

Tr(p[X, O]) = (WX, Ol|¢) # 0. (5.2)

This condition can be satisfied only if the state |¢) is an eigenstate of some but not
all of the generators of the symmetry group G—say, those spanning a subgroup H.
As a result, the state p remains invariant under a transformation (5.1) only when
U, € Hy and Uy, € Hy. In other words, the pure state p effectively gives rise to a
symmetry breaking pattern Gy x Gy — H; X H,. Denoting with X (X?%) the broken
generators of G (G2), we introduce for later convenience the linear combinations of

'We should stress that Eq. (5.1) is not in contradiction with the familiar statement that symmetry
transformations must act on density matrices as p — UpU~! in order to preserve the trace. When
the state of the system is encoded using a local Schwinger-Keldysh effective action, one may wonder
what part of G; x G5 is preserved by the ground state in the Hilbert space of this effective theory.
Eq. (5.1) provides a way of answering this question. We will support the validity of this criterion in
the hydrodynamic regime by discussing a series of non-trivial examples in Sec. 5.3. Note however
that this criterion does not apply to free fields in their ground state—see App. 4.6—for which a
hydrodynamic regime does not exist.
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generators
X! = X|+ X}, X! =X| - Xa. (5.3)

Then, the coset parametrization in the case of pure states can be chosen to be of the
form

0 = g"rSghee (closed system in a pure state). (5.4)

For the purposes of calculating the corresponding Maurer-Cartan form, it is important
to keep in mind that, while [X}, XJ] = 0, the X,’s and X,’s do not commute with
each other. Let us now turn our attention to thermal states.

5.2.2 Closed Systems in a Thermal State

It would appear at first sight that the matrix elements of a thermal state p ~ e~ /T

should always be invariant under the diagonal subgroup of G; x G5 based on the
very definition of symmetry, i.e. UHU™' = H. This conclusion however would be
too hasty [2,125,126]. In order to formulate more precisely the criterion for SSB
around a thermal state, we can follow [127] and deform the Hamiltonian by adding
an operator AH that explicitly breaks the global symmetry under consideration:
H — H + AH. We will denote the resulting canonical ensemble with pay. Then,
SSB occurs whenever there is an order parameter O whose expectation value is not
invariant even in the limit AH — 0. Denoting a symmetry transformation as U =
"X with X a symmetry generator, this is equivalent to the statement that

Alqi{rgo tr(pan[X, O]) # 0. (5.5)

We can now diagonalize the maximum number of generators of G that commute
simultaneously with each other and with the modified Hamiltonian H + AH, and
write the thermal state more explicitly as?

p~ Y e PME G a)(E. Q. o, (5.6)

E,Q«

where F is the eigenvalue of H+ AH, Cj are the charges associated with the commut-
ing generators, and « is an additional collective index that accounts for all possible
degeneracies. The states |F, Cj, «) form all possible representations of the unbroken
group H, and when we act on the thermal state with an H; x H, transformation as
in (5.1), only the elements of the diagonal subgroup Hgi,, Will leave p invariant.

2Working only with eigenstates of those generators that commute with # + A rather than X
alone is formally equivalent to modifying e=*/7 by adding a projection operator [127].
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It might be helpful to illustrate this point with a simple example. Consider a
system where an internal SO(4) is spontaneously broken down to SO(3). Then, the
deformation AH breaks SO(4) explicitly down to SO(3). We can diagonalize at most
one generator of SO(3) together with 1+ A%, and as a result the thermal state takes
the form

pr~ Y e FEm, ) (E,m, jl, (5.7)

E,m,j

with m and j the usual SO(3) quantum numbers, playing respectively the role of
charge @ and degeneracy parameter . Let us now act with an SO(3); x SO(3),
transformation on Eq. (5.7), and we obtain

p— Y > e FIDY) (U)E,m, ) (E,m", §|1DL),(Us)
Em,jm'm'"
= Y e FTDY) (U E ) (Em", ], (5.8)

/ "
Em’'m" j

where we obtained the second line by using standard properties of the D ., matrices,
namely DY) (U~') = DY (U)and ¥, DY) (U,)DY) . (Us) = D! ,/&Uﬂh)ﬂ2ﬂ

Eq. (5. 8) shows that p is only invariant under the diagonal subgroup of SO(3); X
SO(3)s, when U; = Us,, while the off-diagonal combination of generators is
spontaneously broken.

We conclude therefore that a thermal state realizes the symmetry breaking pattern
G1 X Gy — Hgjag, which differs from the pattern of a pure state. Denoting with

TA (T4') the generators of H; (H,), we introduce the linear combinations of generators
TH =T + T3, T =T T3, (5.9)

with TTA the generators of Hgiae. We are therefore led to the conclusion that the
appropriate coset parametrization for a thermal state should be

Q = it XrgimaXagivaTa (closed system in a thermal state),

(5.10)

where the specific ordering of the various factors has been chosen for later convenience.
However, the field content in Eq. (5.10) is by itself incompatible with the principle
that Schwinger-Keldysh effective actions should contain twice the number of degrees
of freedom as regular in-out effective actions. In other words, the fields ¢, are missing
their “r” partners which, among other things, are necessary to implement the DKMS
symmetry.

To remedy this situation, we will add to our field content a set of “matter fields”
p2 in the adjoint representation of the unbroken group Hgi,e. In accordance with
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the standard rules of the coset construction [101], these matter fields will transform
under a generic transformation g € G; x G5 as

)0? — h’(QJ Try Tay Pay 'T>AB prBy (511)

with h some element of Hgiae. As we will see, these fields admit a simple physical
interpretation: in the classical limit, they are related to the densities of unbroken
charges.

5.2.3 Implementing the dynamical KMS symmetry

When a system is in a thermal state, correlators must satisfy the KMS condition.
This, in turn, imposes some restrictions on the form of the Schwinger-Keldysh effective
action. When all the symmetries are linearly realized, these restrictions are enforced
by invariance under a DKMS symmetry transformation of the form (4.13). We will
now discuss how this symmetry should be implemented on the Goldstone fields and
the matter fields p,.

To this end, it is helpful to discuss how the KMS condition would affect, say, the
2-point correlation functions of the conserved Noether currents in the effective theory:

(Fu(t, 2)T,(t, 2)) = (T(t' = 1B/2,7) Tu(t + /2, 7)), (5.12)

where we have suppressed the index labeling the corresponding symmetry generators
to streamline the notation. We can introduce a generating functional similar to the
one in Eq. (3.12) that allows us to systematically calculate such correlators. In this
case, the external sources for the J,’s are gauge fields A; , and A, ,, and the KMS
condition (5.12) implies that the generating functional must satisfy the following
property:?

Z[A(t), Aa(t)] = Z[As(—t +1iB/2), Ax(—t —if/2)] . (5.13)

Switching to the (a, r) basis of fields, and expanding in powers of E//T', this means
that Z should be invariant under the following transformation of sources:

An(t) = A (—t) — ?@Aa(—t) + O(E?/T?) (5.14a)

Ay (t) = Au(—t) — iBO A (—t) + O(E?/T?). (5.14b)
Within the context of the coset construction, external gauge fields can be introduced
by gauging the Maurer-Cartan form as discussed in Sec. 2.5:

Q7 (0 + 1A, - X, +iAS - X+ 0AL - T, +iA;, - T,) Q (5.15)
=i(Dymy - Xy + Dy - Xo+ Dypa - To + Ay - T

3We are implicitly assuming here that DKMS transformations are implemented without resorting
to additional discrete symmetries—see comment in footnote 6. Eq. (5.13) could be generalized by
allowing such discrete symmetries to act on the gauge fields on the right-hand side. It is easy to
work out how the following results would need to be modified.
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where we have denoted with a dot the contraction of indices labeling the various
generators. The coset covariant derivatives and connection now depend both on the
Goldstone fields and the external gauge fields.

Our goal is to derive how the DKMS symmetry should be implemented on the
Goldstone fields and the matter fields p, to ensure that the generating functional is
invariant under (5.14). To this end, we will start by considering a situation where all
the generators are spontaneously broken. This is not the physical symmetry breaking
pattern we are actually interested in: it is just a convenient trick we will use to figure
out how our Goldstone and matter fields should transform. If all the symmetries were
spontaneously broken, the coset parametrization would read

Q _ eiﬂ'r'Xreiﬂ'a'Xaeii.Da'Taei@r'Tr (516)

)

and the components of the associated Maurer-Cartan form would be

(O AL X, HiAY - X, AT, AT Q
=i (Dym, - X + Dymta - Xo + Dypa - To + Doy - Ty (5.17)
= e T [D,ﬂrr X, +Dymg - Xo+ Dypo - Ty + (iei“"T'Traue_w’"'TT + AM) . Tr] elerTr

In the second line, we are showing explicitly how the building blocks of our new coset
are related to the “physical” ones defined in Eq. (5.15).

The advantage of considering an auxiliary symmetry breaking pattern where all
the symmetries are spontaneously broken is twofold: first, all symmetries are now
treated on equal footing and, in particular, all components of our external gauge
fields can be obtained from a covariant derivative by turning off the Goldstone fields:

D, — A, D,ml — A%, Dyl — AP, D.f — ATP . (5.18)

Therefore, if this was the symmetry breaking pattern that we were interested in, we
could ensure that the generating functional is invariant under the transformations
(5.14) by demanding that the effective action be symmetric under?

Dymlt) = Dya~1) = 180D, (=0)+ OB/ T (5.108)
Dymo(t) — Dymo(—t) — Zﬁ Ta(—t) + O(E2/T?) (5.19b)
Dy@a(t) = Dypa(— )—268 wor(—t) + O(E2)T?) (5.19¢)
Dypr(t) = Dypr(—t) — —B 1 Dpa(—t) + O(E?/T?) (5.19d)

The second advantage is that the coset connection is now trivial, and therefore higher
covariant derivatives of the Goldstone fields can be obtained by acting with regular

~ *An important comment on our notation: when p = t, equations (5.19) reduce to Dy, (t) —
Dy (—t) + ... = =D_ym.(—t) + ..., and so on. The same goes for Egs. (5.21).
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partial derivatives on the Maurer-Cartan components; hence, the symmetry transfor-
mations (5.19) are covariant under all the non-linearly realized symmetries.

Based on the second line of (5.17), they can be expressed equivalently in terms of
the physical covariant derivatives D, m,, D,mq, D@4, V, and the combination

Dyp, =ie¥r g el + A, (5.20)
as follows:®

D,mo(t) = D,mo(—t) — iV Dy, (—t) — B[Dipr(—t), Dum,(—t)] + O(E*/T?) |

(5.21a)

Dyt (t) = Dy (1) — D50, (1) — 2 (D (+1), Dyma(—1)] + O(E/T%)
(5.21h)
D#(Ptl(t) - Dﬂgpa(_t) - iﬁVtDMQOT(_t) - ﬂ [DtQOT(_t)? D#‘Pr(_t)] + O(E2/722) ) )
9.21c

D, (t) = Dy (—t) — ?VtD“gpa(—t) — g [Dior(—t), Dupa(—t)] + O(E*/T?) .
(5.21d)

where, on the right-hand side of these equations, V; = 0; + #AP(—t)Tg, and we have
streamlined our notation by defining commutators between covariant derivatives, e.g.

[Dipr(=t), Duta(=1)],, = ifag Doyt (—t) Dyl (—t) | (5.22)

and similarly for the other commutators.® Once again, the transformations (5.21) are
manifestly covariant under all the non-linearly realized symmetries.

At this point, we notice that the quantity D,p, has exactly the same transforma-
tion properties as our matter fields p, (we are focusing on internal symmetries, and
therefore boosts are irrelevant—i.e. explicitly broken—as far as we are concerned).
Therefore, if Egs. (5.21) involved only Dy, and its derivatives, we could simply
replace Dy, (t) — p,(t) everywhere and obtain DKMS symmetry transformations in-
volving the Goldstones 7, 7,, ¢, and the matter fields p,. Unfortunately, Eq. (5.21c)
depends on all components of D, ¢,, but this can be remedied by “commuting” the
covariant derivatives of V; D, ¢, (—t): tedious but straightforward manipulations show
that

vtD/ﬁOr(_ﬂ - i[DtQOT<_t)7 DMSOT(_t)] = JT:t#(_t) + v#DtQOT(_t) ) (523>

5To derive these expressions, we assumed that the structure constants are totally antisymmetric,
which is ensured whenever the symmetry group is compact [101].

SNote that all four components X,, X,,T, and T, are in independent representations of T
and therefore do not mix. This is due to the structure of commutation relations, e.g.the term
e*i‘P"'T"Dum - X, Tr is a linear combination of X, generators due to [X,,T,] ~ X,. For this
reason, (5.19) is related to (5.21) through conjugation with e =%+ 1r
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where F,,, is the usual field strength tensor associated with A,. Using this identity,
and replacing Dy, (t) — p,(t) everywhere,” we finally obtain the desired form of the
DKMS transformation rules for our Goldstone and matter fields (we only need to
consider the p =t component of Eq. (5.21d)):

Dyuma(t) = Dua(—=t) = 8V, D, (=) + B ps (—t), Do (=) + O(E*/T?) ,

(5.24a)
D,m.(t) = D,m.(—t) — %VtD,ﬂTa(—t) + g [pr(—t), Dyma(—1)] + O(E?/T?)

(5.24b)
D,pa(t) = Dupa(—t) + BV upr(—t) — iBFiu(—t) + O(E?/T?) | (5.24c)
pe(t) = —po(—1) — LIDupu(~1) + 5 [pr (1), Degpul 1)) + O(E*/T?)

(5.24d)

These transformation rules are the main result of this subsection. They act non-locally
at the level of the fields, but to the best of our knowledge there is no fundamental
obstruction to having non-local discrete symmetries. Furthermore, because the Gold-
stone fields enter the effective action only through their covariant derivatives, and
these transform locally, it is not hard to impose the DKMS symmetry in practice.
In this paper, we will be concerned with the implementation of DKMS relations up
to first order in F/T; the systematics of higher order corrections are still an open
question that we hope to explore in the near future. We will derive the lowest-order
invariant combinations in Sec. (5.2.5).

5.2.4 Relation to other approaches in the literature

We should briefly comment on the relation between our approach and previous results
in the literature on out-of-equilibrium effective actions. It was previously proposed
that, in the hydrodynamic limit, the Schwinger-Keldysh effective action should con-
tain one Goldstone field for each continuous symmetry, regardless of whether it is
spontaneously broken or not (see e.g. [34,69,121]). The effective action then must
be invariant under an additional local symmetry, which only depends on the spatial
coordinates and acts on the fields associated with unbroken generators as follows:

et DT et Ty (7)) h(Z) = e @I (5.25)

In the simplest, abelian case, this symmetry reduces to a local shift, cpr(é, ) —
o (t, @) 4c(Z). The symmetry (5.25) is equivalent to the transformation Q — Q h,.(7),

"This also means replacing Dy, (—t) = —D_;p,.(—t) — —pr(—t).
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which in turn implies the following transformation rules for the coefficients of the
Maurer-Cartan form:

D,y - Xo = Dymy - by N (@) Xoho(T) (5.26a)
D7, - X, — D,m, - h, } (%) X,h,.(Z) (5.26b)
Dya - Ty = Dypa - by ()T, (Z) (5.26¢)
Dygr - Tp = Dyipy - by (B)Tohy (2) — 630, ()0 ha (7). (5.26d)

This symmetry plays two important roles: (1) it effectively forces us to contract all
the indices in a way that is invariant under Hgi,g, even though Hgi,g is formally bro-
ken; and (2) it ensures that the fields ¢, appear in the effective action only through
Dtgpr and its covariant derivatives—the spatial components Digor’s are not allowed
building blocks. This, in turn, gives rise to a diffusive behavior for the unbroken
currents, and for this reason we’ll also refer to invariance under (5.26) as diffusive
symmetry. This additional symmetry is to be regarded as emergent at low energies,
and its physical origin is not particularly clear.® Furthermore, its implications have
so far been explored mostly in the classical limit, i.e. by working only up to quadratic
order in the a—type fields. This approach has the advantage that the DKMS sym-
metry becomes easier to implement [104|]—which is why we started this section by
considering a similar symmetry breaking pattern. However, in practice one is actually
more interested in the properties of the charge density p, rather than the field ¢,,
and some authors even resort to an explicit change of variable from the latter to the
former—see e.g. [118], which performs precise numerical tests of the EFT approach
to diffusion.

This alternative approach yields exactly the same correlation functions for con-
served currents as the one developed in this paper. However, given the different
number of time derivatives at play, we don’t expect these two approaches to be fully
equivalent, and ultimately expect the number of propagating degrees of freedom to be
different—at least based on our experience with more conventional EFTs. We plan to
further investigate this question in the near future, but in the meantime we find the
conceptual simplicity of our approach—which relies on the standard rules of the coset
construction and doesn’t require additional symmetries—particularly compelling.

The symmetry breaking patterns for thermal systems have also been discussed in
the literature under the name strong-to-weak spontaneous symmetry breaking [130—
133|. Their approach is as follows: For a mixed state p with symmetry G and a
unitary representation U, p is said to be strongly symmetric if

Up=ep (5.27)

for any choice of U and a constant phase #. The mixed state is instead weakly
symmetric if the above isn’t true, but

UpU ' =p (5.28)

8See however [30,129] for a holographic interpretation of this symmetry.
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holds. They then argue that the strongly symmetric system corresponds to the normal
phase, whereas the weakly symmetric systems corresponds to the normal phase. This
is analogous to what we propose, that is the full symmetry group has the SSB pattern
G1 X Go = Gliqg for the diffusive case, and G x G — Hgiqq in the SSB phase.

In the context of open systems [131] argues that the symmetries are doubled, and
the breaking of strong symmetry down to weak implies that charge is not conserved.
This is very similar to the symmetry breaking pattern that we propose in Ch. 6 for
weakly coupled open systems. There we distinguish an open system with a symmetry
breaking pattern where the off-diagonal symmetry G, is explicitly broken.

5.2.5 Lowest order DKMS-invariant combinations

Now that we understand how the DKMS symmetry acts on our Goldstone and matter
fields up to first order in E /T, we can try to build combinations that are invariant
under these symmetries at this order. To this end, it is once again convenient to
work at first with our “fictitious” covariant derivatives f),mr, ... because the DKMS
transformation rules (5.19) are simpler than the ones for the physical fields given in
(5.24). We will eventually rewrite the combinations we derive purely in terms of the
physical fields, but to do so we’ll need to impose the additional diffusive symmetry
introduced in the previous section.

It is easy to see that the following combination changes by a total derivative up
to first order in E/T,

- - - - ; - - 1 - -
Diry - Dym,  —  Dymy - Dy, — gat Dy - Dimtr = 2 Ditq - Dita | + O(E?/T?),

(5.29)

and thus provides an invariant contribution to the effective action. The dot in this
equation stands for the most general symmetric contraction that is invariant under
the diffusive symmetry. An analogous statement can be made about D;m, - D'r,
and Dyp, - Dyp,. Using Eq. (5.17), it is easy to see that these combinations are
respectively equal to Dy, - Dym,., D;m, - Dim,, and Do, - Dio, — Dy - pr, which
are therefore invariant under the DKMS symmetry up to a total derivative.

The last combination that would be natural to consider, Digoa . Digpr, would also
be invariant under DKMS but, alas, not under the diffusive symmetry. This suggests
that we should act with at least one time derivative on Diep,, but the contraction
Di¢, - 0D, albeit now invariant under the diffusive symmetry, would now no
longer be invariant under DKMS. However, this can be easily remedied by adding a
term quadratic in Digpa to form the combination

~ . ~ 1 ~
D](pa ' (atngor - BDjSOa> ; (530>
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which is exactly invariant under a DKMS transformation up to O(E?/T?). Performing
manipulations analogous to those that took us from Eqgs. (5.19) to Egs. (5.24), we
can rewrite this combination in terms of our “physical” fields as follows:

. 1
D'y, - (Vjpr + Fij — Bngoa) . (5.31)

The combinations we have identified above provide the leading kinetic terms for our
fields. Of course, the DKMS symmetry can also be imposed at higher orders. Exam-
ples of such higher order terms that will play a role in our discussion of antiferromag-
nets (see Sec. 5.3.2) are

Dir, - (—VtDjﬂ'r +i[pr, Dy, + %Dﬂra) , (5.32)

or an equivalent expression with spatial derivatives replaced by time derivatives.

5.2.6 Power counting rules

As we discussed in Sec. 4.2, in order for our EFT to be well-defined we must be able
to assign to each term in the effective action a definite scaling in terms of our expan-
sion parameters. This, in turn, requires us to specify how covariant derivatives and
matter fields scale with energy and momentum. The scaling of covariant derivatives
is the conventional one—time derivatives scale like energy, spatial derivatives like mo-
mentum. The scaling of the Goldstone and matter fields instead, are determined by
the form of the quadratic terms in the EFT.

In the next section we will discuss a few concrete examples, and show how these
power counting rules can be used in each separate case to estimate the size of various
operators in the effective action.

5.3 Examples: Paramagnets, Antiferromagnets, and
Ferromagnets

Non-relativistic magnetic systems at finite temperature are endowed with an internal
SO(3) symmetry that corresponds to global rotations of all the spins, and thus pro-
vide a non-trivial testing ground for our formalism. In the case of paramagnets this
SO(3) symmetry remains unbroken, while in (anti-)ferromagnets it is spontaneously
broken down to an SO(2) subgroup. The feature that sets ferromagnets apart is that
they have a non-zero density of unbroken SO(2) charge—i.e., a non-zero magneti-
zation density. In this section, we will discuss separately these three possibilities,
restricting our attention to the internal SO(3) symmetry and neglect the spacetime
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symmetries that would also be broken by a finite temperature state.” These examples
will illustrate how to power count terms in the effective action and how to calculate
correlation functions of Noether currents.!”

5.3.1 Paramagnets

Paramagnets are systems where the internal SO(3) symmetry remains unbroken.!' As
a result, the fields m, and m, are absent, the only fields that enter the low energy EFT
are the triplet of Goldstone fields ¢, corresponding to the breaking of SO(3); x SO(3),
down to the diagonal subgroup SO(3)diag, and the three associated matter fields g,.
Using the invariant building blocks we have identified in Sec. 5.2.5, we can write the
following leading-order effective action for a paramagnet:

K3 ; )
Spara = /dt dx [E* Pr - Dypg — ke D70, - (Vjpr + Fi; — %ngoa)} , (5.33)

where the dot stands for a contraction of the internal indices with a 3-dimensional
Kronecker delta. Note that this action is not invariant under time reversal since this is
never a symmetry of Schwinger-Keldysh effective actions, as we have discussed already
in Sec. 4.3. Physically, this makes it possible to reproduce a diffusive behavior, as we
will see below.

We have chosen to parametrize the two free coefficients in the effective action (5.35)
in terms of some microscopic momentum and energy scales, denoted respectively with
k. and E,, so that our effective action will be organized in powers of k/k,, E/FE,, and
E/T. In fact, there are only two independent expansion parameters, because the first
two ratios are related to each other by the free equations of motion for p,, which can
be obtained by varying the action with respect to ¢,:'2

8Spara k3 . FE k2
= ——20pr + k.0;0°p, =0, — — o~ . 5.34
5()0[1 SDU,:AG,:AT:O E* t ’ E* z ( )

To find the scaling of the fields, we consider the quadratic part of the action with

9This amounts to neglecting phonon excitations by working in the incompressible limit and, in
particular, treating boosts as if they were explicitly broken. An EFT treatment of the Goldstone
modes arising at zero temperature from the simultaneous breaking of SO(3) and spacetime symme-
tries was recently discussed in [134].

10Classic studies of the high-T" Noether current correlator for these systems include for instance
[127,135].

HSee [69] for a more general study of non-Abelian hydrodynamics in the absence of SSB and in
the classical limit.

12Tn the simplest case where E, = T, then there is just one independent expansion parameter.
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sources turned off:

SI()Qa)ra - /dt de |:E Pr - at(pa - k* 8]957(1 : (ajpr - Eajgoa):| . (535>

We see from the second term that p, ~ T'¢,. Combining Eq. (5.34) with this relation,

and the fact that d*z ~ E71k73 we see that the effective action (5.35) schematically
scales as

T k,

Spara ~ F 7 - (5.36)

Notice also that our expression in (5.35) does not rely on a classical approximation:
the covariant derivative D,(p, is generically a non-linear combination of the fields ¢,,
and as such contains terms of all orders in % (see discussion in Sec. 4.5).

Varying instead our action with respect to the gauge fields A}, and Aj, yields
respectively the conserved currents J! and J! expressed in terms of the external
gauge fields, pr, ., and their derivatives. In particular, setting A, = ¢, = 0, the
current J reduces to the classical conserved current in the presence of external gauge

fields AL:

jru|<pa:Aa:0 = (E* Pr _k*vjpr + k*F:]) . (537)

From this, we see that the fields p, are equal to the conserved charge densities up
to an overall normalization. In the absence of external gauge fields, we recover the
standard constitutive relation J' = —Dd" 7" with a diffusion coefficient D = E, /k2.
In fact, the equations of motion (5.34) are just a set of diffusion equations for the
charge densities J°. When p, = 0, instead, the second term in the classical current
densities reproduces Ohm’s law, J! = oE!, with E’ the electric component of the
field strength and o = k, the conductivity.

More in general, we can calculate correlation functions of the currents J* and
JI by taking functional derivatives with respect to Af, and Aj, of the generating
functional

Z[AL AT) = / Dp,Dpe v (5.38)

A single derivative with respect to Aj yields the expectation value of (5.37), which
coincides with the expectation value of the physical Noether current, (J*). The re-
quirement that paramagnets preserve the SO(3) symmetry in the absence of external
fields implies that (p,) = 0.

Similarly, by taking two functional derivatives we can calculate two point func-
tions:

" 5 B 52z " 5 B 627
< rA(p> rB(k)> - 614;?@(_]9)5145(1(_1{5) ) < rA(p) aB(k)> - 5142?(1(_17)5145«(_]‘7) :

(5.39)
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These current correlators can be inferred from the correlators of p, and ¢,, and
correspond to different Green’s functions of the physical Noether current J#, along
the lines of what we discussed in Sec. 4.5). For example,

(T @) T (@) = 5({T"(2), T"(@)}) . (T @) Ty () = 0(t - t’)<[5“(96)7{5”(4560’§]> :

For simplicity, we will calculate these correlators with vanishing external sources, i.e.
setting A}, = A, = 0 after taking the appropriate functional derivatives.

At leading order in k/k, the current correlators can be calculated by approximat-
ing the currents J* and J* up to linear order in the fields p, and ¢,; thus, we only
need to know the 2-point functions of these fields, which can be obtained simply by
inverting the quadratic term in (5.35)—this is in fact one of the main advantages of
working with the effective action:

- 2D DE*5AB

-~ > D 5B

(it (w, K)o (—w, k) = — ——=5 (5.41b)
-~ - D 6B

(03 (w, k)py (—w, —k))' = o oDk (5.41c)

where the primes on the left-hand side denote the fact that we have dropped the
delta functions imposing energy and momentum conservation. Combining these 2-
point functions we can easily calculate all the components of the r-r correlator,

- - 20 k2648
tA tB _
(T w, k)T, (—w, —k)) = Bk + D2t (5.42a)
o - 20 wkisAB
tA B
(7w, k)T (—w, k) = Bt DUA (5.42b)
; o - 20 (. D*R*EE
1A B o ) AB
(T @ ) TP (—w, —k))" = 5 (53 — m) 548 (5.42c)
which are precisely of the form needed to ensure current conservation, k”<J$ JBY = 0.

The retarded r-a correlator is computed in a similar way, and we have verified
that it is also conserved. For completeness, we list here its components:

. Jk25AB

(T w, k) TE (~w, —k)) = oDk (5.43a)
g TN iBr P i Ty g g OwkIeP

(T w, k) T3 (—w, —k))" = (T (w, k) T, (, w W) = —pm  (043D)

(T w, B)TIP (—w, =k))' = ow (5” - %) 5 (5.43c)
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displaying the usual diffusive pole. All of the above correlators agree with previous
well-known results in the literature, see e.g. [127,135]. Note that the correlators
above receive contributions from contact terms—i.e. terms in the effective action
(5.35) that are quadratic in the external gauge fields—and these are crucial to ensure
current conservation.

5.3.2 Antiferromagnets

Antiferromagnets are systems where the internal SO(3) symmetry is spontaneously
broken down to SO(2) by a non-trivial staggered-magnetization order parameter
which, without loss of generality, we take to be along the 3-direction. Consequently,
the relevant degrees of freedom at low energies are the two doublets of Goldstones 7,
and 7,, a single Goldstone ¢, and its associated matter field p,.

The antiferromagnetic ground state differs from the ferromagnetic one in that the
magnetization density vanishes. This distinction is often captured by the statement
that ferromagnets break time reversal whereas antiferromagnets do not—see e.g. (60,
77|. This is actually only part of the story, because otherwise the Schwinger-Keldysh
effective actions for these two systems would be identical given that time reversal is
always broken. The staggered magnetization of the antiferromagnetic ground state
picks a preferred direction in spin space but not an orientation. Therefore, it breaks
rotations by generic angles around the 1- and 2-directions, but is still invariant under
a residual discrete subgroup that consist of 180°-rotations around these same axes.
These discrete symmetries act on our fields as

Pr —> —Pr, Pa = —Pa; 7]—;,,7‘ — _ﬂ-clt,rv ﬂ-z,r — 7Tc2z,r7 (544>
in the case of rotations around the 2-axis; for rotations around the 1-axis, it would
be the fields 7, . that are left invariant.'® The Schwinger-Keldysh effective action for
antiferromagnets is invariant under these discrete transformations, whereas the one
for ferromagnets is not. This statement applies equally to zero-temperature effective
actions. In that context, antiferromagnets are also separately invariant under time
reversal, whereas ferromagnets are only invariant under a combination of discrete
rotations and time reversal. This state of affairs is summarized in Table 5.1.

Our Goldstone covariant derivatives transform in a simple way under the discrete
symmetry (5.44):

Do = —Dypa, D,m,, — —D,m, D7, — D, . (5.45)

a,r?

I3Rotations around the 2-direction flip the sign of the generators of rotations around the 1- and 3-
directions. In our notation, this means that X;W — —X;’T and Tg, , = =T, . The transformation
properties of the Goldstone modes are determined as usual by demanding that coset parametrization
) remains invariant when the generators are transformed this way. The transformation rule for p,
should be the same as that of its partner field, ¢,. This is also consistent with that fact that, as we

will see, p, is related to the density of spin along the 3-direction.
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AFT=0|AFT#0 | FT=0|FT#0
T v X X X
D v v X X
T+ D v X 4 X

Table 5.1: Discrete symmetries ferromagnets (F) and antiferromagnets (AF) in or-
dinary (7" = 0) and Schwinger-Keldysh (T # 0) effective actions. We have denoted
with D the residual discrete transformations of the form (5.44). The symbol v (X)
indicates unbroken (broken) symmetries.

Keeping also in mind the requirement of DKMS invariance, the low energy effective
action for antiferromagnets up to first subleading order in F /T turns out to be:

A? .
Santi = /dt d3l’ |:_3 (Dtﬂ-a : Dtﬂ'r - CgDﬂTa : Dl’ﬂ'r)
C

S

+ % o' D, mq - (—VtD,,m +i[pr, D] + %Dlﬁfa>
) (5.46)
o ; .l
+ 5 prDips — 0 D" @q (aipv’ + Fi — EDiSOa> ]7

where the dot now stands for a contraction of the internal indices with a 2-dimensional
Kronecker delta, o® = diag(3,, 0oy, 2oy, c20,) with ¥, o, both non-negative and
dimensionless, and A is the energy scale at which spontaneous symmetry breaking
occurs. In light of what we learned in the context of paramagnets, we have already
parametrized the diffusive sector in terms of the conductivity and the diffusion co-
efficient. Our action doesn’t contain a tadpole for the external field A§, which is
consistent with the fact that the expectation value of the SO(3) Noether current
must vanish for antiferromagnets. A discussion of the diffusive sector would be very
similar to the analysis we carried out for paramagnets, and for this reason we’ll mostly
focus our attention to the m-sector in what follows.

The power counting rules follow from the quadratic part of the action:

A? ,
Sz(ii)ti = /dt d3[[‘ |:C_3 (atﬂ—a : atﬂ-r - Czaiﬂ-a : azﬂ-’r‘)

S

A 1
+ c_g a0, m, - (—@8,,7@ + E@,ﬂi’a) (5.47)
+ 2 0 — 000 (Dpy — L0, (5.48)
,D pr tSOa o (-pa zpr B zgpa .

which leads to £ ~ c.k, 0,m, ~ T'm, for the m-sector and E ~ k2, p, ~ T, for the
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diffusive sector. Based on these power counting rules, the second line of the action
(5.47) is suppressed by one power of E/A compared to the first line.!* More precisely,
the first two lines of our action contain terms that schematically scale as follows:

T (A2 A
ir~— =+ = 4
Santl,rr E (E2 + E) ) (5 9)

whereas the scaling of the terms in the leading Lagrangian for paramagnets (or the
diffusive sector of antiferromagnets) is:

T k.
Ek
Once again, varying the generating functional with respect to the external gauge

fields we can calculate correlators of the currents J* and J*. For instance, the
2-point function of J! along the broken directions are

Spara ~ (550)

£ — %kQ(UWWQ + Eﬂcgkz) 517

(T (w0, B)T (—w, —k)) = Ge (o ey (5.51)

where I, J = 1,2 are here the SO(2) subgroup indices, not to be confused with spatial
indices. Note that, in deriving Eq. (5.51) we have neglected corrections of O(E?/A?)
that cannot be trusted at the order we are working.
The retarded density-density correlator along the broken directions takes instead
the form
S 21 +i(Zr — ox)w/A]

t1 7\ 7td 7\ J
—w. — S . D2
(w0, k) Jo™ (—w, =k)) cs W2 — 2k 4+ i (L w? + 0,2k w/A g (5.52)

The poles of this propagator are at
ic2k?

2A

wr tegk — O+ o), (5.53)
showing that sound modes decay at a rate I' ~ k2. The correlators above are in
agreement with classic results in the literature up to the order in £//A we are consid-
ering [127,135,136].

Our treatment of the antiferromagnet is notably different from the standard anal-
yses, which start from the derivative expansion of the equations of motion for the
total magnetization M and the staggered-magnetization N (see e.g. [127]). The effec-
tive theory (5.47) was constructed to compute correlators of the conserved currents
associated with M alone, and the presence of a non-trivial N expectation value is
encoded in the assumption that SO(3) is spontaneously broken down to SO(2) even
though the magnetization density vanishes. This last property is what distinguishes
antiferromagnets from ferromagnets, which we will now turn our attention to.

14We are relying on the free equation for , that follows from the first line of (5.47) to set E ~ c4k.
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5.3.3 Ferromagnets

Ferromagnets spontaneously break SO(3) — SO(2) because the temporal component
of the Noether current acquires a non-zero expectation value, which we again assume
to be along the 3-direction. As we discussed at the beginning of the previous section,
what distinguishes ferromagnets from antiferromagnets is the lack of separate invari-
ance under time reversal and discrete transformations of the form (5.44). Only a
combination of these symmetries leaves the ground state invariant, and therefore our
DKMS transformations must be amended by acting also with (5.44) on the right-hand
side, thus obtaining

Dyl (t) = —Dymh(—t) + 8V, Dk (—t) + B [pr(=1), Dyl (=1)] + O(EX/T?) ,

(5.54a)
D,m2(t) — Dyur?(—t) — iBV,Dyr?(—t) — B [po(—t), Dyr(—t)] + O(E*/T?) |

(5.54b)
D, (t) = ~Dymi(—t) + LVeDLmh(—1) + 5 [pr(—1), Dum(—0)] + O(E/T?)

(5.54c¢)
D,m2(t) = Dynd(—t) — DVuD,m2(—1) — 2§ [pn(—1), Dynd(~0)] + O(E/T?)

(5.54d)
D, pa(t) — —Dm@(—t) — iBV upr(—t) — iBF(—t) + O(E?/T?) , (5.54e)
0e(®) = () + V. Dupu (1) + 4§ [pr(~1), Digpul 1)) + O(BY/T?)

(5.54f)

As a result, the part of the action that describes diffusion of the unbroken SO(2)
current now admits one additional invariant, i.e. D;p,:

Sai = / dt d*z [kf Diga + Z pyDypo — 0D, <8mr + F; — %Di%) ] :

D

This additional term gives rise to a tadpole term for Ag, so that the expectation value
of the SO(3) Noether current is now no longer zero:

(TA(2)) = k0% - (5.56)

This new term also gives rise to a kinetic term for the 7’s with a single time
derivative, since up to quadratic order in the Goldstones we have D;p, = 0y, +
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ergmloym? + ... This changes the dispersion relation of the Goldstone modes, and
therefore the power counting scheme. As a result, the effective action for ferromagnets
is NOW Sterro = Saig + Sy with!'®

S = /dt Az [ — E.k,D;m, - D'nt, + k,0.D'7r, - (—VtDjﬂ'r +i[py, Djm,| + %Dﬂra)

+ Ok, /k)] .
(5.57)

This part of the action introduces a characteristic energy scale, F,, and a dimen-
sionless coupling o,. To determine the scaling of the action we again look at the
quadratic part involving 7’s:

S7(r2) = /dtd% |:ki€]J7T£at7T;.] — Bk, 0imy - O'ty + ky 0,071, - < 0,0;m, + 8 7Ta) ]
5.58)

The leading equations of motion for 7, now imply a quadratic dispersion relation of
the form

E K
and therefore the size of the terms shown in (5.58) can be estimated to be
K2k Ok
(2) o b, I STl
S E(k3+k3+ k:) : (5.60)

This scaling should be contrasted with the one for the Goldstone sector of anti-
ferromagnets given in Eq (5.49). In both cases the second term is suppressed by a
factor of E/scale, however the fact that the two cases correspond to different classes
of Nambu-Goldstone modes, namely Type I and Type 11, leads to a general difference
in how they scale.

Varying the action with respect to the external gauge fields we can first derive
the Noether currents in terms of our fields, and then calculate their correlators. For
brevity, we are going to report here only the correlation functions of the time com-

15A term of the form e;;D;w!Din/ is not allowed even in ferromagnets because it is not DKMS-
invariant.
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ponents of our currents:

- - k2
(T w, k)T (~w, —k)) = m ; (5.61a)
(. k). Tt3 B)) = k6 20 k? b
(T (w, k)T (—w, —k)) = *+Em ) (5.61b)
- - k2K (B, —iow)dt — kTwel”
124 k tJ(__ —k)Y = ¢ * \ ™ * 61
(T (w, k) T (—w, —k)) pETER e el (5.61c)
. L 20, KD [5 (E2K Wk + 2wkl
(T (w, K) T (—w, =) = =2 PO (B PR 2Bkl (5.61d)

B (W2kd — E2k4)?

In the above expressions, we have only kept the terms in the numerators and de-
nominators that can be trusted given the order in k/k, we are working at. Note
also that the Egs. (5.61a) and (5.61b) are consistent with the results we found in
the paramagnet section once we take into account that our Noether current now has
an expectation value (5.56). The poles in the retarded correlator (5.61c) yield once
again the dispersion relations for magnon excitations, which now display a quadratic
dispersion relation with a decay rate I' ~ k*:

kQ . k4
w =~ E* (:l:k‘_z — ZUW@) . (562)

*
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Chapter 6

Effective Descriptions of Ajar
Systems with a U(1) Symmetry

6.1 Approximate Symmetry Breaking and Spurions

In Chapter 2 we considered systems displaying spontaneous symmetry breaking (SSB)
and the method of coset construction to write down effective field theories (EFT)
for them. With SSB, it is only the ground state that breaks the symmetry, but the
dynamics itself (i.e. the action) still exhibits the symmetry, albeit realized nonlinearly
in a complicated fashion. However, there are also cases in nature where a certain
symmetry is explicitly broken even at the level of the action. If the breaking is small
enough, we can still employ the symmetry breaking pattern to construct EFTs, which
will now include an additional parameter that is proportional to the explicit symmetry
breaking scale. One way to do this systematically is to extend the coset construction
method by adding spurions [60, 101], fictitious fields added in a way that respects
the full symmetry of the action, including the broken ones, but are then sent to a
specifically chosen vacuum expectation value (vev) so that they break the symmetry
explicitly. We will demonstrate this method by way of an example that comes up in
Quantum Chromodynamics (QCD).

6.1.1 Chiral Perturbation Theory and the Pion Mass

The canonical example for the spurion method is the mass term in the chiral per-
turbation theory [36,48,137]. We first start with the action for QCD with the two
lightest quarks u and d:

1 _ _
L= _ZGHVGHV — wlPpu — dIpd — myuu — mydd

1
= —ZGW,GMV — UE@UL — UTRlDUR — dEde — d%lpd}%

— muu%uL — mquuR — mddTRdL — mddTLdR, (6.1)
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where we suppressed the color and spinor indices. We can package the u and d into
a flavor doublet:

u o
Rewriting the action in terms of ¢ we find
1
L= _Z_LGWGW — qlPqg — maq. (6.3)

This action has a global SU(2) flavor (isospin) symmetry that acts on the flavor
doublet ¢:

q— ei&f'fq (6.4)

where T are generators of su(2) and d; the group parameter.

Since the masses of uv and d quarks are much smaller than the symmetry breaking
scale of QCD, m,,mq < Agcp; we can take the quarks to be massless to first
approximation. This leads to the following QCD action:

1
L= _ZG;WG“V - (ﬂDq
1
= —ZGM,,GMV — ﬂquL — ﬂRwTLR — ﬂLw’uL — ﬂRwﬂR. (65)

This Lagrangian again has the above isospin symmetry, but we can now package left-
and right-handed spinors into two doublets

u u
qr = 7L 49 = (di)’ dqr = TR4 = (di) (6-6)

where 7, = 2 (1 — ;) and 7z = 3 (14 75). The Lagrangian is now invariant under
the symmetry SUL(2) x SUR(2):

qr — Aqr, qr — Bqg, or,
Uy, ur,
u u
g=| "= [Avw+Bwl | 7. (6.7)
dL dL
dp dp

Here A € SUL(2) and B € SUg(2) are unitary matrices. Thus, there is a chiral
symmetry, under which the left- and right-handed fermions transform independently
under the mixing of the flavors u and d. The origin of this symmetry stems from the
fact that in (6.1) mass terms mix left- and right-handed spinors, and so the massless
limit decouples them.
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The vacuum of QCD spontaneously breaks this symmetry down to the vector
(diagonal) group (also called iso-spin) SUL(2) x SUg(2) — SU/;(2), which is the case
where U = V. We can thus use coset methods to construct the low-energy EFT of
this theory. To parametrize the G — H symmetry breaking pattern we start with a
general element g € G:

A 0 BETRY 0
9= (0 B> = ( V) € G=5UL(2) x SUR(2),  (68)

where V' are generators of SU (2) for which we choose the Pauli basis: V = G/2.
The subscripts on the generators are redundant so we will omit them. The unbroken
subgroup is the given by a; = dr = ay:

_ (e 0 H = SU(2

The spontaneously broken off-diagonal components correspond to o, = —ag, which
means we can parametrize the coset element as:

61'7?-)? 0
0= © ), 6.10
() "

where the 7’s are the Goldstone fields. Their transformation under G is given by
g(dlL, dr)Q(m) = Q" )h(m, g(dL, dg)). (6.11)

We can find a closed form expressions for 7’ for infinitesimal &

ﬁ—>ﬁ+ﬁx&1+g<tang+cotg> Ga— (7@ +7(F-Ga).  (6.12)

1

Here we have identified the combinations 5(dz + dr) = @; and dp — dr = da.

Expanding in powers of 7 leads to:
0F = da+ 7 x ay + O(r?), (6.13)

where m = |7|. To lowest order in 7’s, we see the non-linear realization of the broken
off-diagonal symmetry through the shift in a4, and the linear realization of H, under
which 7 transforms as a triplet.

6.1.2 Coset Construction

With the group element €2, we construct the Maurer-Cartan Form:

w,=0'9,0=iD,7 - X +iA, T (6.14)
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where we have renamed the broken generators T, — T = T4 = X and unbroken
generators 1, +1Tr =17 =V.
The building blocks have the following expansions:

1 1
D,7 = 0,7 <1 — 67r2) + A (7 0,7) T+ O(r°); (6.15)
A, = —%7? x 0,7 + O(7°). (6.16)

Lowest order term in derivatives we can write in the Lagrangian is

2
Lepr = —%Duﬁ -DHR 4+ O(9")

2 f2 f2
= GO 0T+ RO O — (7 0,7) + O(n®, 0"
2 2
= —SOF - OF = (70,7 + O(x°, ") (6.17)

where we integrated by parts going from the second to the third line. Canonically
normalizing the Goldstone fields 7. = 7/ f we finally get

1 1

‘CEFT = _56;/7?0 : 8u7?c - 2_](-2(7?0 : a/ﬂ?c)z + O(TFS, 64) (618)

6.1.3 Mass Term and Explicit Symmetry Breaking

The effective action we derived in the previous section does not have a mass term
for the pions. This is because we assumed the quarks to be massless, and the chiral
symmetry was only spontaneously broken by the QCD vacuum. Now we want to
incorporate the fact that quarks have a small but non-zero mass. The mass term for
the quarks in the QCD action can be written using the mass matrix M:

_ _ My, 0 U
om0 0 1))
= —qM~1Lq — GM~yRq. (6.19)

First we observe that this term is not invariant under SU(2) x SURg(2) (it is still
invariant under SU(2)). Instead, it transforms as (72 = 1 and vz = 0)

—qM~ypq — GM~yrq — —GB'M AyLq — GATM Bygg. (6.20)

However, the mass term would be invariant if M was instead a field that had the
following transformation property:

M — [A’)/L + B’}/R] M [A'YL + B’YR]T . (621)
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Therefore, if we consider an effective theory where we start out with the mass matrix
treated as a field, called a spurion, and send it to its expectation value, i.e. its actual
matrix form; then we can capture the effect of the explicit symmetry breaking.

The leading correction involving M will come from a term linear in it. This means
we need to write down a term involving Goldstone modes that transform opposite to
M. Our coset element 2 transforms in the fundamental representation of G.

A 0 et X 0

To cancel the transformation of M we need an adjoint representation so that
E — [Ay + Byal E[Avs + Byl (6.23)

In terms of Goldstone fields, we can choose:

= = v QypQ = 27X, (6.24)
so that
A0 AT 0
- o2\ T —
— (ewr.X) (efwr-X> BT — AeQm-XBT’ (625)

which is the correct transformation property that leaves the combination tr(ZM)
invariant under g. The two invariant combinations at linear order are:

3

A
Frr =t [ME+ZED] +... (6.26)

where we included an overall dimensionful parameter A,,. Using Pauli matrix identi-
ties and canonically normalizing 7 (7 — 7./ f) we can express the above as:

s
m 3 c
L pr = (My + mg)A;, cos —

e« e
= (my +mg)A2, {1— e +}

1
= My |:f2_§7?c7?c+:|7 (627)

where we identified the pion mass

3

My = (Mg + md)f—g]. (6.28)

Notice that we now have two scales, one is the SSB parameter f, related to Agep,

and the other is m,, related to the explicitly breaking scales m,, mg4, and our EFT
has an expansion in both.
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6.2 An Example of a UV Model Describing an Open
System

In previous sections, we showed that a local Schwinger-Keldysh effective action at
low energies (E' < T) for a closed system at finite temperature 7' must possess two
copies of all global internal symmetries, forming a group G x G, partially realized
non-linearly. Conversely, an open system, which exchanges conserved charges with
an environment, has an effective action invariant only under the diagonal subgroup
Gaiag |2, 32|, reflecting the fact that charge conservation is now only satisfied on
average in equilibrium, and not as an exact operator statement.

This distinction suggests an intermediate scenario, termed ajar systems, where
interactions with the environment occur over time scales much longer than internal
dynamics. Such systems experience weak explicit symmetry breaking from G; x G,
t0 Giag, that can be systematically modeled via a spurion technique [60].

Analogous to the in-out example of chiral perturbation theory described above,
the effective action for ajar systems can be built by starting with the effective action
for the closed version of the system, for which the off-diagonal symmetry G,, is
spontaneously broken. The effects of weak coupling to a bath is then added using
spurions, whose vacuum expectation value (vev) corresponds to the bath coupling
strength, and we obtain approximate breaking of G, when spurions are sent to their
vevs.

In order to motivate the general approach, put forward in the following section, for
Schwinger-Keldysh spurion construction for ajar systems, we consider a concrete UV
model where a complex scalar field is coupled linearly to a set of complex harmonic
oscillators in thermal equilibrium, which we will treat as the bath. This simple system
can be thought of as a field theory generalization of the Caldeira-Leggett model [19].
Other examples of UV descriptions of open systems can be found in |21, 138] Our
presentation will follow closely that of [96]. The in-out microscopic Lagrangian is
L= 'Csys + *Cbath + 'Cint

Csys = _au¢T@u¢ - m2¢T¢ (629&)
Loarn =Y _ 010 — T2xIx. (6.29b)
Lin = g:(xlé+6'xs), (6.29¢)

where I'y and g4 are the frequency and interaction strength of each mode. This action
is invariant under a U(1) symmetry acting on ¢ and the x,’s as follows:

¢ =eep, Xs = €Xs - (6.30)

The corresponding microscopic Schwinger-Keldysh action can be obtained by
doubling all degrees of freedom and calculating Lok = L(¢1, Xs51) — L(P2, Xs.2) =
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LK+ £PK, 4+ £58 Switching from the (1,2) basis to the Schwinger-Keldysh basis of

sys

fields,

¢r:%(¢1+¢2)7 Ga = 1 — P2, X,r:%(Xsl+X82)> Xs,a = Xs,1 = Xs,2 »
(6.31)

we can express the various components of the Schwinger-Keldysh Lagrangian as fol-
lows:

LS, = —0,010"d, — m* ¢l + h.c. (6.32a)
‘Cbath = Z atXa sater - FZXQ sXrs T h.c. (632b)
Lo = ng Xhsr + X ba + hc) (6.32¢)

Note that this action is invariant under two copies of the U(1) symmetry, acting
separately on the “1” and “2” fields. Equivalently, the diagonal U(1) symmetry acts
simultaneously on the “r” and “a” degrees of freedom as in Eq. (6.30), while the
second one mixes the “r” and “a” fields as follows:

¢ = ¢y cosa+ L, sina ¢l = ¢, cosa + 2ip, sina (6.33)

with a similar action on x,, and x5 4, and « the parameter of the U(1) transformation.

Since the Lagrangian (6.32) is quadratic, we can integrate out the bath degrees of
freedom exactly, treating the ¢, , fields as sources during the process. This leads to
the following (non-local) open effective Lagrangian for the ¢, ,’s [96]:

LK = —0,010" ¢, —m*$L ¢, + hc.+ ¢LD, o + S D b + 01D da (6.34)

Let us now assume that the frequencies of the harmonic oscillators have an Ohmic
distribution, such that the spectral density can be approximated as follows:

=2r Z 92 /T)5(w — Ty) B 4y (6.35)

where 7 is a constant for small frequencies. The Ohmic assumption ensures that
the ¢’s are able to exchange charge with the bath at arbitrarily small energies, so
that, after integrating out the x,’s, we are left with an open system. The retarded
(advanced) kernels reduce to

do' W' J(W) Ohmic

—1 _ . F.T. / /
Dy ary (W) = o (wLio)? —  comstant + 2iyw  —  F2y0(t — )0, ,
(6.36)

where the upper (lower) sign applies to the ra (ar) kernel. Note that, when carrying
out the Fourier transform in the last step we dropped the constant part, since it
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would simply renormalize the mass term for ¢. In order for D ! to become local, we
additionally need to take the high temperature limit. Its full non-local form is

_ 1 w _ _ Ohmic . w B—0 . 2T .
D! = 5 coth (ﬁ) (D} — D] 2hny (4iyw) coth (ﬁ) 5 (2iw) (7) = 4¢T7.
(6.37)

With these approximations, Eq. (6.34) reduces to the following Lagrangian that is
invariant under the DKMS symmetry at lowest order and describes the open dynamics
of our complex scalar field:

SK b o 9 4 20y 4 , 24y - +
‘Copen = _8H¢aa ¢T —m ¢a¢’r + h“c' _I_ _¢a, <¢a + Z58t¢r) + _¢a (¢a + Z/Bgtasr) °

B 5
(6.38)

Note that this Lagrangian is invariant under the DKMS transformation

() = ol (—x) — L0l (—2) + O(B*) (1) = ¢l (=) — B0} (—x) + O(B?)
(6.39)

but the last two terms in Eq. (6.38) explicitly break U(1); x U(1)y down to the
diagonal subgroup U(1)giae. The strength of this breaking is ~ «. It will be helpful
to check this by reverting to the 1 — 2 basis and focusing on the non-derivative terms.
Up to an overall constant, we have

VBL b0 = V(P — ) (91 — ) = V(P] 1 + bbb — Pl — Bi1) (6.40)

and we see that the last two terms are only invariant under U(1)giag-

Following the spurion logic, we can make the above term invariant by replacing
the symmetry breaking parameter v with two complex spurion fields O; and O, that
couple to the ¢;’s as follows:

010191 ¢y + 002y — 010,615 — 01020101 . (6.41)

To recover the terms in (6.40), the spurion vev should be (O;) = (O;) = /7. Note
that the spurion fields appear only in the quadratic combinations discussed in the
Introduction—there are no linear terms in O; or Os.

Adding a symmetry breaking potential for ¢ to the original Lagrangian (6.29)
would not modify the argument that leads to (6.41), since the ¢;’s were treated as
external sources while integrating the bath degrees of freedom. In this case, we can
parametrize ¢; = (v + 0;)e'™, where v is the expectation value of the complex scalar.
After integrating out the radial modes o; at tree level, the expression (6.41) reduces
to

V2 (0101 + 0}0y — OO0~ — 01@4%) , (6.42)

where we have introduced 7, = m; — mo. Informed by the form of the spurion terms
above, we will now introduce a general spurion method to build effective actions of
ajar systems, and apply our methods for the case of a U(1) system.
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6.3 Extension of Schwinger-Keldysh Coset Construc-
tion to Open Systems

We start our general construction by considering a spurion field that transforms bi-
linearly under G7 x G,

O — U,0U]. (6.43)

Assigning it an expectation value (O) = ~ invariant under Ggiae will allow us to
systematically account symmetry-breaking effects. The parameter v characterizes
the interaction strength with the environment; small v relative to the EFT cutoff
ensures approximate symmetry, yielding predictions for corrections to observables.

Before proceeding, we emphasize the difference between our approach and that
of [33]. The latter studied the hydrodynamic behavior of closed systems exhibiting
approximate symmetries (see also [139]), introducing two spurion fields O; and O
transforming as

01 — UlOl, 02 — UQOQ. (644)

When these fields acquire non-zero expectation values, the full symmetry group Gy x
G is weakly broken. This allows the authors of [33| to consider, for example the in-in
version of what was discussed in Section 6.1. In contrast, our setup preserves the
diagonal subgroup Giae. Thus, an open system can be viewed as a particular case of
this general scenario in which spurions appear only through combinations preserving
Gling, specifically 010y, 0J0,, and O = 0,0} (and its conjugate).! The first two
combinations, scalars under GG; x Gj, modify exactly invariant terms by an amount
proportional to the spurion expectation value (O). As we will show, these invariant
contributions are crucial for ensuring unitarity in the underlying microscopic theory.
Consequently, our effective action will depend not only on O but also explicitly on
(O), slightly departing from the usual spurion formalism.

In the remainder of this chapter, we will illustrate our approach in the simplest

case of abelian symmetries, G = U(1). In this case, our spurion field will be a complex
field that transforms under U(1); x U(1), like

O — el (6.45)
ensuring that the spurion expectation value preserves U(1)gi,e. Gauged U(1) sym-

metries in open systems—where the off-diagonal symmetry is badly broken—were
recently discussed in [22].

'We do not need to consider additional structures involving derivatives, because they would drop
out once the spurions are replaced with their expectation value.
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6.4 U(1) Diffusion

6.4.1 Closed Systems

We start by reviewing the effective field theory (EFT) of U(1) diffusion for closed
systems in a thermal state. In this case, the Schwinger-Keldysh effective action
must be invariant under U(1); x U(1)y spontaneously broken down to U(1)giag [140].
The corresponding Goldstone mode, ¢,, shifts under the “axial” U(1), is a singlet
under U(1)giag, and is paired with a “matter field” p,2. Thermality implies that all
correlation functions satisfy the KMS condition. This can be enforced at the level
of the effective action by imposing invariance under the dynamical KMS (DKMS)
symmetry [103,104]:3

@;(a”) = _Spa(_x) - Z/Bpr(_x> + 0(62)’ (646&)
,0;(:6‘) = pT(—SC) - %@2%(—%) + O(ﬁ2> (646b>

We have expanded these transformation rules in powers of § = 1/T", anticipating the
fact that the effective action will be organized in powers of E/T. A discussion of
these transformations at all orders in $ and of the systematics of power counting in
E/T can be found in [141].

The Schwinger-Keldysh effective action must also satisfy some constraints that
follow from unitarity considerations [34]:

Slpa=0,p,]=0, (6.47a)
S*[@as pr] = =S[=Pa, pr] (6.47D)
ImS>0. (6.47¢)

At lowest order in derivatives and quadratic order in fields, the effective action that

satisfies these constraints and is invariant under all the symmetries mentioned above
is [118]*

S = /d4:c {n(pr)ﬁt% + o(pr)0ipa (%&(pa - &;pr)} , (6.48)

where d*r = dtd®r and n and o are analytic around p, = 0, and ¢ > 0 to satisfy
(6.47c). Imposing invariance under charge conjugation constrains n (o) to contain

2The a and r subscript are introduced to match standard notation in the literature—see e.g. [34].

3The DKMS symmetry relies on a discrete symmetry of the action involving time reversal. While
CPT is a natural candidate for Lorentz-invariant actions, C' is spontaneously broken at finite charge
density. Thus, implementing DKMS via PT, with additional C' symmetry imposed through ¢/, (x) =
—pa(z) and pl(z) = —p,(z), becomes more convenient. The transformation rules (6.46) assume
invariance under PT, and differ from the ones in [140] which are built using CT.

4In the incompressible limit, boosts are explicitly broken by neglecting thermal bath phonons.
The DKMS symmetry is realized perturbatively up to corrections of O(E/T).
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only odd (even) powers of p,. Demanding that the terms in (6.48) are all of the same
order implies the power counting relations p, ~ Tp, and 9; ~ 92. Interestingly, the
first of these relations also implies that the second term on the RHS of (6.46b) is
negligible compared to the first one—an approximation usually justified by invoking
an expansion in powers of A.

The equation of motion obtained by varying S with respect to p, always admits
the solution ¢, = 0, which is the background we will be interested in. On this
background, the equation for ¢, reduces to a diffusion equation for n(p,):

8tn(pr) = 0; [U<pr)8ipr} ) (649)

In fact, n(p,) is also the Noether charge density associated with invariance under
shifts of ¢,. These results suggest identifying p, with fluctuations of the chemical
potential around equilibrium.

6.4.2 Leading Corrections in Ajar Systems

We will now supplement the action S for a closed system with the leading terms
that depend on the spurion field O. We will need to ensure that these additional
terms are invariant under the DKMS symmetry and satisfy the appropriate unitarity
constraints. To this end, we will proceed in two steps.

First, it will be convenient to think again of our spurion field as being a composite
object of the form O = OlO; This is because the transformation properties of the
operators O 2 under the DKMS symmetry are quite simple [34]:

O1,5(z) = O] ,(—z) + O(B8,01,) (6.50)

where the explicit form of the second term on the righthand side will not be needed
because it will vanish when the spurions are replaced with their expectation value.
The first two unitarity constraints can also be easily amended to account for the fields
0172 [34]

S[QOa =0,pr,01,05 = 01] =0, (6.51&)
S*[Spa;phOlaOZ] = _S[_(;anpron,Ol] . (651b)

Second, following the usual template for coupling Goldstone modes to additional
“matter fields” [101], we will find it convenient to work directly with the combination
O = Oe™ %= since it is invariant under U(1); x U(1)s. By combining our definitions,

we can easily derive the transformation rule for O and its complex conjugate under

DKMS:

O'(z) = O (=z) + Bp. (=)0 (—x) + O(BI,) | (6.52a)
O"(x) = O(=z) — Bp,(—2)O(—z) + O(58,) , (6.52b)
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while the first two unitarity constraints reduce to

S[(,Da = O7p’r‘7 O 2 0] - O ) (653&)
S*[a: prs O] = =S[—¢a, pr, O] . (6.53b)

At linear order in O and (O), there is only one term that is invariant under the
DKMS symmetry, and satisfies all three unitarity constraints.

AS = % / d*zF(p,) {2<o> ~(0"+0)+ g,or (OT—O)} , (6.54)

where F'(p,) is analytic around p, = 0 and, without loss of generality, such that
F(0) = 1. Note that the first term proportional to (O) is crucial to ensure that
the unitarity condition (6.53a) is satisfied. Replacing O — (O) = ~, this expression
reduces to

AS = /d4x 4y (p,) sin £ (% sin £ — % cos %) , (6.55)

where we have defined v(p,) = vF(py).

It is easy to check that this expression is invariant under the DKMS transfor-
mations (6.46) up to corrections of O(E/T) and satisfies the unitarity constraints
(6.47) provided v(p,) = 0. In the presence of charge conjugation symmetry, v(p,)
only contains even powers of p, (under C, O'(z) = O'(z)). The nonlinear structure of
(6.55) implies that, in the limit of weak interaction with the environment, any n-point
function will introduce only one new free parameter at leading order, i.e. successive
measurements of each n-point function will fix the coefficient of the (n — 1)th param-
eter in the expansion of v(p,). We will now present the corrections to the 2- and
3-point functions for the charge density in ajar systems due to the terms in (6.55).

6.4.3 Density correlation functions

The quadratic action for diffusive ajar systems follows from expanding S + AS to
quadratic order in p, and ¢,. Inverting these terms yields the 2-point functions for
v and p,., or equivalently ¢, and the charge density n:

w2 (v + ok?)
n(p)n(=p)) = Bw? + (v/x + Dk?)*
1
(n(p)ea(—p)) = ST i/ DR (6.56)

where p = (w, k), x = dn/dpy|p.=0, 0 = o(p, = 0), and D = o/x is the diffusion
coefficient, and delta functions enforcing energy-momentum conservation have been
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omitted. Notably, environmental interactions gap only the imaginary part of the pole,
unlike an approximate U(1) symmetry, where the real part is also gapped.

The leading 3-point function of charge density arises from expanding S + AS to
cubic order in p, and ¢,. The closed-system result was recently derived in [118].
Expressing interactions in terms of n ~ x(p, + 3x'p?) yields:

Sy + AS; = /d%{‘”g
X

i pan + a'n Dipa 0 (1% — E)
B X

O 4 n
+ YN0 | =00 — — | Val, 6.57
2x? e (6(’0 x)gpl (6:57)

where primes denote derivatives with respect to n. The resulting three-point function
of n is (with ¢; = vVDk; and 7 = v/x):

(n(p1)n(p2)n(ps)) =
X F+a) G +a) (T +a)
(yT)?4 127 & 3
ey wt+ G| [+ G+ ] [+ G+ 7]
4 20 (F+a) G+ @) G+ a) ([ + 6 +a3) (6.58)

X ] w2+ G+ )] |3+ G+ @] [ + G+ )]
40’ wows (g2 - ¢3) (3 + i) + wiws (a1 - 43)(F + @3) + wiwa (a1 - @) (7 + &)
o (Wi + G +ad)]| [+ G+ )] |3+ G+ )]

'3[+ ) G+ @) (3 + )] +waws (7 + i) +wiws (F +¢3) +wiws (F + ¢3) }
X [W%+ (7+q%)2] [w§+ (5 +a3) ] [wg + (7 +4d) }

+q
+a3
6.5 U(1) Goldstone Mode

6.5.1 Effective action for Ajar Systems

The approach discussed in the previous section applies also when the U(1) symmetry
is spontaneously broken. In this case, the corresponding Schwinger-Keldysh effective
action for a closed system realizes the entire group U(1); x U(1)s nonlinearly. The
relevant degrees of freedom are the two Goldstone modes 7, and 7,, which transform
under the DKMS symmetry as follows [140]:

7 (2) = —7o(—2) + 1807, (—z) + O(5?), (6.59a)
m(z) = =7 (—2) — LOym,(—z) + O(B?). (6.59b)

The effective action must be invariant under (6.59) as well as shifts of 7, ,, and must
satisfy unitarity constraints of the form (6.47) and (6.53) with p, — Oy, w4 — 7.
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The shift symmetries imply that our fields must enter the effective Lagrangian with
at least one derivative. If our system was closed, the effective action would be [142]

2 .
S = JCC—3 / d*z {amaam — 2Om O, + % Oy, (%&ﬂra — 837@) (6.60)
7om )+
+ 5 8i7ra —Gma—aamr =+ y
f 3 t

where we have shown explicitly only the terms quadratic in the fields. From the
quadratic action, we deduce the power-counting rules 7, ~ (E/T)m, and 0, ~ 0;.
The exchange of charge with an environment explicitly breaks the shift symmetry
of m,. In ajar systems, where this breaking is soft, it can again be modeled by a
spurion O, or equivalently O = Oe~"™ that now transforms under DKMS as follows:

O'(z) = Ot (=z) — BOym, (—x)Of (—x) + O(5?) , (6.61a)
O"(z) = O(—x) + Boym.(—2)O(—z) + O(6?) , (6.61b)

At leading order in the spurion field, the effective action receives the following cor-
rection

AS =" / Az F (D, imn ') {2<0> - (OT + é) + Bopm, (OT - (’)) } . (6.62)
I6] 2
where, once again, we can assume F'(0,0) = 1 without loss of generality.

6.5.2 Goldstone correlation functions

The two-point functions that result from inverting the quadratic part of S + AS are

() 2¢3 ¥+ (Brw® + 07c2k?)
TpTr) = B 29
Bf (wz—c§k2)2—|—w2 ﬁ+%(27rw2+07rc§k2)]
3 .
(mym) = S ! (6.63)

T fre?— c2k? +iyw + %(Eﬂwi”#—aﬂcgwk’?)’

where ¥ = 2/ f2. The second correlator is simply the retarded Green’s function for
the Goldstone mode.

Once again, we see that “openness” adds a finite contribution to the imaginary part
of the Goldstone dispersion relation, rather than turning this mode into a pseudo-
Goldstone boson by gapping the real part, as would be the case for an approximate
symmetry. Physically, it means that the Goldstone mode can only propagate for
wavenumbers k 2 7/c;. Higher-point functions for the Goldstone mode can be cal-
culated in a straightforward way by expanding S + AS up to the desired order.
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Chapter 7

Conclusions

The coset construction is heralded for its general applicability, ranging from its ori-
gins in nuclear physics [35] to more recent applications to systems at finite den-
sity [102,143], conformal field theories [144,145| and gravity [76, 146], just to name
a few. However, so far this technique has largely been applied to the limited case of
regular effective actions for the purposes of computing scattering amplitudes or time-
ordered correlators around pure states. In the present paper, we have extended the
construction to Schwinger-Keldysh effective actions, which can more naturally incor-
porate the effects of non-trivial density matrices and facilitate the computation of a
more diverse set of correlators. We focused on spontaneously broken internal symme-
tries, with particular emphasis on thermal states. Our main conclusion is that, once
the correct symmetry breaking pattern has been properly identified, the standard
rules of the coset construction can be brought to bear to write down Schwinger-
Keldysh effective actions. We would like to highlight in particular the advantages of
the framework developed in this paper:

e We retain the full non-linear structure inherent to the coset construction, thus
preserving all the symmetries realized non-linearly. This should be contrasted
with the common practice of linearizing Schwinger-Keldysh actions in the a-
fields, focusing on the classical regime.

e In previous work on the effective Schwinger-Keldysh field theory of thermal sys-
tems, a mysterious, diffusive symmetry was needed to differentiate the normal
phase from a spontaneously broken one [34]. In our approach, no such symmetry
is needed: the symmetry breaking pattern together with basic principles such
as unitarity dictate the relevant degrees of freedom and their transformation
properties under all the symmetries.

In order to illustrate our framework we calculated 2-point functions of conserved
spin currents for paramagnets, anti-ferromagnets, and ferromagnets in Sec. 5.3. Our
analysis generalizes the classic work in [127,135], reproducing their results in the
appropriate limits.
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There are various avenues along which to extend the present work. First, it would
be interesting to generalize our framework to include spontaneously broken spacetime
symmetries. This could be used to extend the coset-based approach to condensed
matter systems put forward in [102,147], and would provide a different viewpoint
on recent developments surrounding EFTs for dissipative hydrodynamics [34, 108].
Second, by eschewing the classical limit, our approach could also shed a new light on
the quantum properties of perfect fluids [148,149]. Third, it would be interesting to
further explore how to systematically build DKMS-invariants at higher order in E/T.
And, finally, we would like to investigate the symmetry breaking pattern associated
with finite density non-thermal density matrices, and understand how the properties
of such states can be encoded in a Schwinger-Keldysh effective action. We leave all
of this for future work.
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