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Abstract

In this thesis we study duality-invariant higher-derivative (o’) corrections to string low
energy effective theories. We restrict to the universal massless sector, consisting of the
graviton, B-field and dilaton, and specialize to backgrounds with d abelian isometries,
which enjoy O(d, d|R)-invariance and contain phenomenologically relevant scenarios
such as cosmology and black holes as particular cases. The O(d, d|R)-symmetry is ex-
pected to be preserved to arbitrary orders in derivatives, a fact that motivated Hohm
and Zwiebach to arrive at the cosmological classification. Such construction param-
eterizes a large class of purely-time dependent duality-invariant theories to all orders
in o/ in terms of a countable infinite number of coefficients. String theories represent
single points in this theory space, determined by specific configurations of these co-
efficients. We compute the first coefficients for bosonic, heterotic and type II string
theory by compactifying dilaton-gravity theories up to order o2, and bringing them
to canonical form. This target-space approach requires one to know the parent the-
ory prior to compactification, which involves complicated beta-function computations
from the string sigma model. With the aim of making this process simpler, we pro-
pose to begin from a worldsheet action already in cosmological backgrounds. We
compute the beta functions for the bosonic string at one and two loops, show how
they can be brought to a manifestly O(d, d|R)-covariant formulation, and derive the
corresponding target-space theory at order o/. We then study a duality-invariant the-
ory due to Hohm, Siegel, and Zwiebach (HSZ), which encodes the massless string
modes plus novel massive fields. Integrating out the latter, infinitely many higher-
derivative corrections arise for the massless fields, which we bring to the form of the
classification and determine the order o'* coefficient. If one instead keeps the extra
massive fields, HSZ serves as a toy model for an o'-complete theory of strings. We
find a two-derivative reformulation of the theory in cosmological backgrounds and
determine o'-exact Friedmann equations. We explore the tensionless limit o/ — oo,
which features string frame de Sitter vacua, and we set up perturbation theory in
5. Coming back to generic duality-invariant theories, we revisit the classification for
Bianchi Type I cosmologies with ¢ scale factors, and show that only ¢ — 1 of them
have non-trivial o’ corrections. In particular, for FRW backgrounds all o’ corrections
are trivial. We also extend the classification to two-dimensional backgrounds with
time-like isometry. To this end, we show that in non-critical string theory the effects
of higher-derivative terms are a priori of the same order as two-derivative terms, so
that the usual perturbation theory does not apply. We circumvent such obstacle by
assuming the o’ expansion comes with coefficients that fall off sufficiently fast, and
classify the most general higher-derivative terms. This duality-invariant theory space
admits black-hole solutions, and we provide perturbative and non-perturbative tools
to explore them. For the latter, we prove that the dual of a solution with a regular
horizon must have a curvature singularity, and use a parametrization introduced by
Gasperini and Veneziano to find «’-deformed black holes with a regular horizon and a
singularity. Furthermore, we find subregions in this theory space, probably not con-
taining string theory, in which the black hole geometry exhibits a horizon leading to
an interior that, having no singularity in the metric, curvature, or dilaton, is a regular
cosmology.






Zusammenfassung

In dieser Arbeit untersuchen wir dualitatsinvariante hoher-abgeleitete (') Korrekturen an
effektiven Stringtheorien mit niedriger Energie. Wir beschrianken uns auf den universellen
masselosen Sektor, bestehend aus Graviton, B-Feld und Dilaton, und spezialisieren uns auf
Hintergriinde mit d abelschen Isometrien, die O(d, d|R)-Invarianz geniefen und phanomenol-
ogisch relevante Szenarien wie Kosmologie und Schwarze Locher als Sonderfille enthalten.
Es wird erwartet, dass die O(d, d|R)-Symmetrie bis zu beliebigen Ablei-tungsordnungen er-
halten bleibt, eine Tatsache, die Hohm und Zwiebach zu der kosmologischen Klassifikation
motivierte. Eine solche Konstruktion parametrisiert eine grofie Klasse von rein zeitabhangigen
dualitatsinvarianten Theorien fiir alle Ordnungen in ¢’ in Form einer abzahlbar unendlichen
Anzahl von Koeffizienten. Stringtheorien stellen einzelne Punkte in diesem Theorieraum dar,
die durch spezifische Konfigurationen dieser Koeffizienten bestimmt werden. Wir berechnen
die ersten Koeffizienten fiir bosonische, heterotische und Typ-II-Stringtheorien, indem wir
Dilatongravitationstheorien bis zur Ordnung o’® kompaktieren und sie in kanonische Form
bringen. Dieser Zielraum-Ansatz setzt voraus, dass man die tibergeordnete Theorie vor der
Verdichtung kennt, was komplizierte Beta-Funktionsberechnungen aus dem String-Sigma-
Modell erfordert. Um diesen Prozess zu vereinfachen, schlagen wir vor, von einer Worldsheet-
Aktion auszugehen, die bereits im kosmologischen Hintergrund vorhanden ist. Wir berechnen
die Betafunktionen fiir den bosonischen String bei einer und zwei Schleifen, zeigen, wie sie
in eine offensichtlich O(d, d|R)-kovariante Formulierung gebracht werden kénnen, und leiten
die entsprechende Zielraumtheorie der Ordnung o’ ab. Anschliefend untersuchen wir eine
dualitatsinvariante Theorie von Hohm, Siegel und Zwiebach (HSZ), die die masselosen String-
moden und neuartige massive Felder kodiert. Integriert man letztere heraus, ergeben sich
fiir die masselosen Felder unendlich viele Korrekturen héherer Ableitung, die wir in die Form
der Klassifikation bringen und den Koeffizienten der Ordnung o’* bestimmen. Behélt man
stattdessen die extra massiven Felder bei, so dient die HSZ als Spielzeugmodell fur eine o’-
komplette Theorie der Strings. Wir finden eine zweifach abgeleitete Neuformulierung der The-
orie fur kosmologische Hintergriinde und bestimmen «’-genaue Friedmann-Gleichungen. Wir
untersuchen den spannungsfreien Grenzwert o/ — oo, der sich durch Wir untersuchen den
spannungslosen Grenzwert o/ — oo, der de Sitter-Vakua mit String-Rahmen aufweist, und
stellen die Stérungstheorie in 2; auf. Wir kehren zu generischen dualitatsinvarianten Theo-
rien zurtick und tiberpriifen die Klassifikation fir Bianchi Typ I Kosmologien mit ¢ Skalenfak-
toren und zeigen, dass nur ¢ — 1 von ihnen nicht-triviale o/-Korrekturen haben. Insbesondere
fur FRW-Hintergriinde sind alle o’-Korrekturen trivial. Wir erweitern die Klassifikation auch
auf zweidimensionale Hintergriinde mit zeitdhnlicher Isometrie. Zu diesem Zweck zeigen wir,
dass in der nicht-kritischen Stringtheorie die Effekte der héher-abgeleiteten Terme a priori
der gleichen Ordnung sind wie zweidimensionale Terme, so dass die ubliche Stérungsthe-
orie nicht anwendbar ist. Wir umgehen dieses Hindernis, indem wir annehmen, dass die
o/-Expansion Koeffizienten hat, die ausreichend schnell abfallen, und klassifizieren die allge-
meinsten hoher-abgeleiteten Terme. Dieser dualitdtsinvariante Theorieraum ldsst Losungen
flir Schwarze Locher zu, und wir bieten perturbative und nicht-perturbative Werkzeuge an,
um sie zu erforschen. Fur letztere beweisen wir, dass das Dual einer Losung mit einem reg-
uldren Horizont eine Kriimmungssingularitat haben muss, und verwenden eine von Gasperini
und Veneziano eingefiihrte Parametrisierung, um «'-deformierte Schwarze Locher mit einem
regularen Horizont und einer Singularitat zu finden. Auflerdem finden wir Unterregionen
in diesem Theorieraum, die wahrscheinlich nicht die Stringtheorie enthalten, in denen die
Geometrie des Schwarzen Lochs einen Horizont aufweist, der zu einem Inneren fiihrt, das
keine Singularitat in der Metrik, der Krimmung oder dem Dilaton aufweist und eine reguléare
Kosmologie darstellt.
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Chapter 1

Introduction

1.1 Motivation

In the realm of theoretical physics, the quest for a unified theory that rec-
onciles the pillars of modern physics, general relativity for large scales, and
quantum mechanics for subatomic particles, remains an enduring challenge.
This search is driven by the need to understand the behavior of matter and
energy at the most fundamental level, especially in extreme conditions. Typ-
ical examples of such scenarios are the earliest moments of the universe or
inside black holes: massive objects characterized by an event horizon that
forms, for instance, when the size of a collapsing star falls below a limiting
radius. Both examples exhibit a singularity, a point in spacetime at which
curvature becomes infinite. In cosmology, this corresponds to the big-bang,
the initial point in time where the entire universe was in an infinitely compact
state. Black hole singularities, on the other hand, can be generated during
the formation of such massive objects upon gravitational collapse [8]. It is ex-
actly close to these singular points where Einstein’s classical theory of gravity
breaks down, exhibiting the urgent need for quantum gravity theories.

One of the most promising candidates in this direction is string theory [9,
10], a framework that originated in the late 1960s in the context of nuclear
physics as a model for the strong force. After being abandoned in favor of
quantum chromodynamics (QCD), it was realized that string theory was in fact
a theory of gravity, not a theory of hadrons. The classical theory describes one-
dimensional objects, the strings, propagating in a D-dimensional spacetime,
also called target space. The dynamics of such extended objects is obtained
from the so-called worldsheet action, that parameterizes the area covered by
the string while moving in space and time. This two-dimensional surface can
have different topologies, characterized by the number of "holes" on it. This
leads to a genus expansion weighted by the string coupling constant g, in
which the leading order has no holes and represents the classical limit of the
theory. ¢, corrections to the tree-level action correspond to quantum string
loop effects.

Strings can have bosonic or fermionic degrees of freedom, they can be closed
or open, oriented or unoriented. Each of these choices leads to a different
theory, but they all share several common features. One of these features is
the presence of a critical dimension for the target space, required for consis-
tency of the theory. This is D = 26 for bosonic string or D = 10 for superstring
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theory. The latter incorporates fermionic degrees of freedom through super-
symmetry [11], a symmetry that exhchanges bosons with fermions. Strings in
non-critical dimensions are also possible and will be explained in detail later
on.

From a first quantization of the free classical theory one can determine its
spectrum, consisting of infinitely many string excitations. From the point of
view of the target space, each of these excitations corresponds to a differ-
ent field associated with a different point-particle. The spectrum contains a
massless sector as well as an infinite tower of massive fields, whose masses
are inversely proportional to the length of the string ¢, ~ 1073 cm. The latter is
usually expressed in terms of o/ ~ ¢2, which together with ¢, are the only free
parameters of the theory! While the spectrum depends on each string theory,
they all share a common universal massless sector composed of three states:
the graviton, B-field, and dilaton. From the point of view of the target space,
the graviton is a symmetric spin-two particle that plays the role of the space-
time metric, the B-field is a two-form, and the dilaton is a scalar field, whose
vacuum expectation value ¢, is related to the string coupling via g, = e%.

The connection to the standard field-theory picture can be obtained from two
different yet equivalent approaches. One is via string scattering amplitudes,
and the other one through a renormalization group beta function computa-
tion. The latter consists on demanding quantum consistency of the worldsheet
theory in the following way [12-16]: the fields associated with the string’s spec-
trum can be used as sources of curvature for the same spacetime where the
string propagates. The resulting theory enjoys conformal invariance at the
classical level but this is not preserved quantum-mechanically unless certain
constraints are imposed on the background fields [17-19]. These constraints,
being perturbative in o/, are nothing but the fields’ equations of motion, that
are associated with target-space actions. These are the so-called string low
energy effective theories. They are standard D-dimensional field theories in-
corporating novel string effects, two of the most important ones being the pres-
ence of the so-called duality groups and of infinitely many higher-derivative
terms.

Duality groups can be explained by recalling the higher dimensional nature of
the target space, a fact that makes the connection to phenomenology not im-
mediate. Such a connection can be achieved by means of a mechanism called
dimensional reduction or compactification. Here, a theory in D dimensions,
dubbed parent theory, is related to an effective one in n < D. The remaining
d = D —n "extra" dimensions form the so-called internal space. The physics of
the effective theory, heavily depends on how extra dimensions are curled-up in
the internal space. In particular, when the theory possesses d abelian isome-
tries, meaning that effective fields do not depend on the internal coordinates, a
global O(d, d|R) symmetry group emerges [20-24]. This is a target-space mani-
festation of a string phenomenon called T-duality [25], related to the intrinsic
one-dimensional nature of strings. This symmetry can be used to constrain
the couplings of the effective action, a feature that motivated the development
of Double Field Theory (DFT) [26-28], an O(D, D|R)-invariant reformulation of
the effective theory.
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Higher-derivative terms, on the other hand, are a consequence of an infinite
perturbative expansion in o/, where the order o' of the power series contains
couplings with 2(n + 1) derivatives. These o (string) corrections to the two-
derivative theory represent a significant departure from traditional field theo-
ries. By sending o’ to zero, we are in the low energy limit where string effects
are suppressed. In this limit, the associated equations of motion for the mass-
less spin-two field coincide with Einstein’s equations and so general relativity
emerges as a prediction of string theory from quantum considerations! String
low energy effective theories are therefore theories of gravity, where the other
fields of the string spectrum play the role of the matter content. In particular,
effective theories coming from the superstring are supersymmetric extensions
of gravity, known as supergravities, discovered independently to string the-
ory [29, 30]. By turning on « we get an infinite tower of higher-derivative
corrections to standard (super)gravities. For the purely metric sector, for in-
stance, these include Riemann square terms at order «’. These corrections are
not unique, they are defined up to o/-perturbative field redefinitions. While
theories in different field bases are physically equivalent, depending on the
problem, computations can be easier in one frame or another. In practice,
these field redefinitions are used to remove ambiguities or redundancies of
the theory.

The complexity of the processes to get the string effective theories when going
to higher orders in perturbation theory grows considerably fast. As a con-
sequence, the string corrections have been determined only to a few orders
in o/ [29,31-38], and a computation to all orders is out of reach at the mo-
ment. This represents a huge obstacle in understanding the scope of string
theory as a quantum theory of gravity. Indeed, incorporating more orders in
the series expansion allows us to probe string theory at smaller scales, going
beyond classical gravity and its limitations. Theoretically, by including the
infinite tower of corrections one would probe the spacetime at the string scale.
It becomes imperative to have a full control of o/ corrections in order to under-
stand the implications of string theory at the extreme regimes where general
relativity breaks down.

A promising direction for getting an o/-complete formulation is to use T-duality
to constrain the possible higher-derivative couplings of the effective theories.
This relies on a result due to Sen, that T-duality should be preserved to all
orders in o' [23]. We currently know two successful examples exploiting such
technique: the Hohm-Siegel-Zwiebach (HSZ) theory [26] and the cosmological
classification of [39,40]. While these are very exciting news, it is worth em-
phasizing that those models provide us with a whole class of string-inspired
duality-invariant theories. We know string theory should be a single point in
this theory space, although determining its exact location is an open problem.

HSZ is a spacetime theory based on double field theory, encoding the dynam-
ics of the universal massless sector of string theory, as well as novel massive
modes. Its construction was based on a non-standard chiral Conformal Field
Theory (CFT) and so it does not correspond to any conventional string theory.
Nevertheless, HSZ theory shares crucial features of any string theory, such as
duality invariance under O(d, d|R) for backgrounds with d abelian isometries,
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and the presence of infinitely many higher-derivative corrections for the mass-
less fields, obtained upon integrating out the massive modes. The resulting
effective theory coincides with string low energy effective theories only at zero
order in «o/. If instead of integrating out the massive fields one keeps them,
HSZ carries only a finite number of derivatives and it serves as an o/-exact toy
model for an effective theory with string massive modes. Such construction
becomes very useful in a context where incorporating genuine string massive
modes into a target-space description is an open problem.

The cosmological classification is very different in nature to HSZ. It does not
correspond to a single theory, but it parameterizes a hole class of models. The
idea of this proposal is to use field redefinitions in a systematic way together
with T-duality to constrain possible terms of the universal massless sector
in cosmological backgrounds. The latter are D-dimensional target spaces in
which fields depend on a single time-like coordinate (see [4 1] for a review on
string cosmology). The presence of O(d, d|R)-invariance in such backgrounds
was corroborated to zeroth order in o' by Meissner and Veneziano in [21, 22],
generalizing the scale-factor duality previously found in [20]. Duality invari-
ance was latter checked also at first order in ' in [42], a work that served as
motivation for the systematic approach developed in [39] and refined in [40].
The final outcome of those works was a classification to all orders in o/, where
the action and equations of motion are presented in a fully controllable way,
parameterized by a set of countable infinite number of coefficients. Each
choice of coefficients corresponds to a different theory in this larger class
of duality-invariant cosmological backgrounds, in which string theory repre-
sents a single point. Interestingly, the massless sector of HSZ in cosmolog-
ical backgrounds can also be parameterized by these coefficients. Although
the success of the classification relies heavily on the simplicity of cosmolog-
ical backgrounds, the latter are highly interesting from a phenomenological
perspective. They encode Bianchi Type I (BI) universes, described by a homo-
geneous yet anisotropic metric, of which Friedmann-Robertson-Walker (FRW)
backgrounds are particular cases.

These two examples point towards a new program to study quantum theories
of gravity. Instead of restricting to string theory, we can change gears and
work directly with a bigger space of duality-invariant theories as a theoreti-
cal framework to go beyond classical gravity. String theory would represent
a particular case of these string-inspired models. With this setup, several
research directions are possible. Some of them are introduced in the next sec-
tion, forming the main research goals of the current work. Some others will
be mentioned in Chapter 6 as proposals for follow-up projects.

1.2 Research Goals and Main Results

The main goal of the thesis can be stated in a broad sense as follows: we
want to get closer to a better understanding of string corrections to classical
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gravity and their consequences at scales where general relativity is insufficient.
Obviously, this is too broad for any practical purpose. Since string theory is
so vast, however, in order to formulate more concrete research goals we need
to restrict the study in several directions. These restrictions will hold all over
the thesis but we expect a successful program would require many of them to
be relaxed in the future.

© We restrict to classical string o' corrections at tree-level in the genus
(gs) expansion. In particular, string quantum effects are not taken into
account.

® We only deal with bosonic degrees of freedom and we focus on the string
universal massless sector containing the graviton, B-field and dilaton.

® We are mainly interested in D-dimensional spacetimes with D — 1 abelian
isometries. These backgrounds are the ones in which a classification
is currently understood and, despite their simplicity, they contain many
phenomenologically relevant scenarios such as cosmological backgrounds
[20,21,43] and black holes [44-46].

Within this constrained framework, the broad objective stated above can be
split into more concrete sub-projects:

® Compute the exact coefficients of the cosmological classification coming
from string theories.

©® Solve the o’-complete equations of motions of the larger class of duality-
invariant theories and study the implications of these corrected solutions
in spacetime regions that are inaccessible in standard gravity (o/ — 0
limit).

© Extend the program of the cosmological classification to other backgrounds
using the same duality-invariant principle.

We now expose the main results of the current work, that allowed us to make
progress in all of the above mentioned research directions:

© We compute the first coefficients of the classification coming from string
theories from two different perspectives.

— One approach begins from the D-dimensional target-space actions
of bo-sonic, heterotic and type II strings for dilaton-gravity back-
grounds up to order /3. Such string corrected theories were al-
ready known in the literature, obtained from beta-function and/or
S-matrix calculations. We compactify those theories to cosmological
backgrounds and follow the systematic procedure developed in [40]
to corroborate they are compatible with an O(d,d|R) duality group
and determine the coefficients up to order o3 [1, 3]. Following these
lines, we take advantage that HSZ is known to all orders in o’ and
so we perform a cosmological reduction, show consistency of the
truncation, and integrate out the massive fields using an iterative
procedure to read the coefficients up to order o' [5].
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— This target-space approach to determine the coefficients requires one
to know the parent theory up to the desired order before compacti-
fying, which in general involves a very complicated worldsheet com-
putation. With the aim of reducing the complexity of the problem,
and anticipating that we are ultimately interested in the cosmological
classification, we propose to work directly with a worldsheet theory
in cosmological backgrounds and perform a beta-function computa-
tion from there [4]. Although not O(d,d|R) invariant, this procedure
allows one to efficiently determine the O(d, d|R)-invariant beta func-
tions. Unfortunately, such procedure turned out not to be simple
enough to extend the state-of-the-art results. We managed to per-
form a two-loop computation for the bosonic string, obtaining the
coefficients up to order o/, which were in agreement to the ones com-
puted previously in [3, 39, 42].

©® As a toy model for an o/-exact string effective theory incorporating mass-
less and massive modes, we explore HSZ in cosmological backgrounds
keeping the massive fields [5]. We give a two-derivative reformulation of
the theory and arrive at a set of o/-exact Friedmann equations, which
are then ordinary second order differential equations. We explore the
so-called tensionless limit o’ — oo, a limit that can only be taken after
bringing the theory to a two-derivative formulation, having no analog in
any other target-space description of string theory. We find string frame
de Sitter vacua, and we set up perturbation theory in 5

© We revisit the systematic approach of [40] for Bianchi Type I universes,
a particular class of cosmological backgrounds. Surprisingly, we find [6]
that when the anisotropic metric is described by ¢ different scale fac-
tors, field redefinitions can be used in a systematic way to arrive at an
equivalent theory in which only ¢ — 1 of them are present. As a corollary,
when all scale factors are identical, corresponding to a homogeneous
FRW background, all «/ corrections are trivial. It should be emphasized,
however, that the removal of higher-derivative terms is strictly pertur-
bative, so that there may be non-perturbative solutions (such as those
found in [40,47]) that are not accessible for classifications of very restric-
tive backgrounds. More generally, perturbations or fluctuations away
from a background may not preserve any conditions, as in cosmological
perturbation theory, where the fluctuations depend on all coordinates.

® With the aim of extending the classification to other backgrounds, we
study the subject of higher-derivative modifications of string theory in
non-critical dimensions [6], with a particular focus on the two-derivative
black hole solution in D = 2! [44-46]. We find that the traditional per-
turbative mindset of critical dimensions does not hold in the non-critical
case. All terms in the spacetime action, other than a cosmological-like
term, are field redefinition equivalent to terms with arbitrarily many

In string theory usage, the black hole background is generally considered a critical string
theory, as one is working directly with a theory of matter central charge 26. The name non-
critical strings is reserved for non-conformal field theories coupled to two-dimensional gravity,
in which case the Liouville mode of the metric helps restore conformal invariance.
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derivatives, with the latter generally of the same order. We circumvent
this obstacle by assuming an o' expansion with coefficients that fall
off sufficiently fast. Considering field redefinitions consistent with this
fall-off structure, we classify the most general duality-invariant higher
derivative terms for D = 2 theories with one time-like isometry.

® With this most general duality-invariant theory at our disposal, and know-
ing that the two-derivative truncation leads to a black hole background,
we look for o/ modifications of black-hole solutions. We analyze these
corrections from a perturbative as well as from a non-perturbative per-
spective. For the former we provide a systematic tool to get corrections to
all orders in derivatives [6]. For the non-perturbative approach [7], we use
a parametrization recently introduced by Gasperini and Veneziano [48] to
find some solutions that are incompatible with a black hole interpreta-
tion but also solutions that are o’-deformed black holes where the hori-
zon and singularity are preserved. Furthermore, we find subregions in
this duality-invariant theory space, probably not containing string the-
ory, in which the black hole geometry exhibits a horizon leading to an
interior that, having no singularity in the metric, curvature, or dilaton,
is a regular cosmology. In the process of getting these corrected black
hole solutions, we prove that in two-dimensional duality-invariant back-
grounds, the dual of a black hole solution with a regular horizon must
have a curvature singularity.

1.3 Outline

The reminder of the thesis is organized as follows:

In Chapter 2 we present an introduction to string low energy effective theories
and their most relevant features for the thesis. In here we take the target-
space description as starting point, giving no details of how these theories
were obtained from the string worldsheet. (The latter discussion is postponed
until Chapter 5.) We begin in Section 2.1 with an introduction to the universal
bosonic massless sector of supergravity in critical dimensions. After revisit-
ing the two-derivative theory, we study higher-derivative corrections and the
important role of field-redefinitions in «’-corrected theories. We summarize
the state-of-the-art results for dilaton-gravity theories up to and including o’®
effects, which then will be used in Chapter 3 to get the full massless sector
in cosmological backgrounds. We finish Section 2.1 with a discussion on field
redefinitions and higher-derivative corrections for backgrounds in non-critical
dimensions. In Section 2.2 we introduce the concepts of compactification and
duality focusing on two-derivative theories with d abelian isometries, leading
to the celebrated O(d,d|R) duality symmetry. After recovering the well-known
Maharana-Schwarz action, we present the cosmological and black-hole back-
grounds as particular cases of these toroidal compactifications. Last but not
least, Section 2.3 makes use of the duality group O(d,d|R) to introduce DFT
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and HSZ theory as duality invariant completions of supergravities. In par-
ticular, we concentrate on HSZ and compactify the theory to cosmological
backgrounds.

In Chapter 3 we begin with Section 3.1 introducing the systematic of field
redefinitions in an abstract fashion, and then we specialize it to the string
universal massless sector to arrive at the cosmological classification devel-
oped in [40]. Restricting the space of backgrounds even further, we finalize
this section revisiting the classification for Bianchi Type I universes with ¢
different scale factors. We show that for one of these scale factors all higher-
derivative terms can be removed by field redefinitions, which implies that FRW
backgrounds receive no o corrections. In Section 3.2 we take the o/? dilaton-
gravity parent theories collected previously in Section 2.1.3, apply a cosmolog-
ical reduction, and bring the theory to canonical form. We finish the chapter
with Section 3.3, where we study HSZ theory in cosmological backgrounds
from two different perspectives. We first integrate out the auxiliary fields and
then bring the resulting effective action for the massless fields to the minimal
basis of the cosmological classification up to and including order o/*. We then
keep the massive modes, bring the theory to a two-derivative reformulation,
take the tensionless limit o/ — oo, and find solutions in FRW-like backgrounds
upon perturbation theory in 5

Chapter 4 deals with two-dimensional black hole backgrounds. We begin
in Section 4.1 by reviewing the two-derivative solution. We then revisit the
problem of higher-derivative corrections being intrinsically non-perturbative
in non-critical dimensions. We sort-out the problem by assuming a fall-off
structure of the coefficients next to higher-derivative terms. Under such as-
sumption, we classify the most general duality-invariant theory, in the same
spirit of the cosmological classification [40,47]. In Section 4.2 we build so-
lutions of the o’-exact set of equations we just found. We do it in a per-
turbative and a non-perturbative fashion. For the latter, we introduce the
Gasperini-Veneziano parameterization, from which we recover the standard
two-derivative black hole and then build a whole family of «/-corrected sin-
gular black hole solutions. We finish in Section 4.3 studying the singularity
problem on D = 2 black hole backgrounds. We demonstrate that, in duality-
invariant theories, a solution with a regular horizon implies a singularity. We
finish by building o/-exact regular black hole solutions whose interior regions
are regular cosmologies.

In Chapter 5 we change gears to work at the level of the string worldsheet, and
discuss the beta-function approach to derive the corresponding target-space
theories. We begin with a review section in 5.1, introducing the bosonic string
worldsheet (Polyakov) action and the concepts of Weyl anomaly coefficients,
beta functions and background field method, for generic renormalizable two-
dimensional sigma models. We then work out a specific example by computing
the one-loop beta function for dilaton-gravity worldsheet and obtaining the
corresponding two-derivative target-space action. In Section 5.2 we perform a
cosmological reduction of the Polyakov action for purely metric backgrounds.
After revisiting the Weyl anomaly and the background field method in the
context of cosmological backgrounds, we compute the one-loop beta functions
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and derive the two-derivative cosmological action. In Section 5.3 we extend
the previous analysis to two loops. After sorting out various complications
that arise at higher-orders, we derive the target-space cosmological action for
bosonic string up to order «'.

We finish in Chapter 6 with some conclusions and proposals for follow-up
projects.
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Chapter 2

String Target-Space Theories

Starting from a worldsheet action one can get the low energy effective theory
of strings via string scattering amplitudes or beta-function computations. In
this chapter we begin directly at the level of the target-space, postponing its
derivation from the beta-function approach until Chapter 5. We introduce the
concepts of o/ corrections, field redefinitions, dimensional reduction, and T-
duality, which will prove essential for the development of the main results of
the thesis in following chapters.

While this chapter is mainly dedicated to review known results from the litera-
ture, some computations of Section 2.1.3 are taken from [1] and [3], the results
of Section 2.1.4 come from [6] and Section 2.3.2 contains results from [5].

2.1 Gravity Theories and o’ Corrections

Demanding consistency of the worldsheet action at the quantum level [12-
16] imposes constraints on the backgrounds fields [17-19]. These can be
interpreted as the equations of motion coming from an effective theory of the
D-dimensional target space, whose field content depends on the background
to which we coupled the string. In particular, we can consider the universal
massless sector, composed of the graviton G,,(X), B-field B,,(X) and dilaton
»(X), which is a subsector of the infinite string spectrum. In here, X* with
w,v=0,1,..., D —1 are the target-space coordinates.

Since the anomaly cancellation mechanism used to arrive at the target-space
equations is perturbative in «/, this produces an infinite number of higher-
derivative corrections in the effective theory where couplings with 2(p + 1)
derivatives sit next to an o? factor. In this section we consider dimension D
corresponding to the string critical dimension, except for Section 2.1.4 where
the non-critical case is addressed.

2.1.1 Two-derivative theory

At lowest (zeroth) order in o/ we obtain a two-derivative theory given by

1
70 = / d°XV/—Ge 2 L® L0 =R 1+40,00"p — 75 Hu 1", (2.1.1)
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where R is the Ricci scalar for the D-dimensional metric G,,, and H,,, =
30, B, is the field-strength of the 2-form. The second and third couplings of
the Lagrangian £ correspond to the kinetic terms for the dilaton and B-field
respectively. The first term is the Einstein-Hilbert action of general relativity,
making explicit a statement of the introduction: Einstein’s theory of gravity
emerges as a prediction of string theory. In the measure, G stands for the
determinant of the metric, and the ¢ 2% factor defines the theory in the so-
called string-frame. By a suitable field redefinition of the metric, the theory
can be rewritten in the more familiar Einstein-frame, where the exponential
factor is absent and the Einstein-Hilbert action takes its standard form. The
action (2.1.1) corresponds to the bosonic sector of supergravity, also known
as N = 0 supergravity.

The equations of motion coming from (2.1.1) can be obtained by varying the
action with respect to G, B, and ¢

67 = / d°X\/—Ge™* |E [ LOGH +E '5¢ + EB §B*™| =0, (2.1.2)
with
ES, =Ry + 2V, V.0 — 1HM,UH + GWE =0, (2.1.3a)
BEY) = 2R + 8V,6V"¢ — 8V, Vi¢ + ~ HMH#VP =0, (2.1.3b)
Eg), = V o’ — ngqﬁHWp =0, (2.1.3¢)

where we use the following convention for the covariant derivative: V,V#* =
0,V +1T},VP. Here I, are the familiar Christoffel symbols and V* a generic
spacetime vector. The action (2.1.1) and its equations of motion (2.1.3) are
invariant under D-dimensional diffeomorphisms and B-field gauge transfor-
mations. Denoting collectively ¥ € {G,,, B,., ¢}, these transformations act
infinitesimally as
U= U =U400, (2.1.4)

with

0Guw = LGy, 0B, = LeBuy, +20,M\, 00 = Leo, (2.1.5)
where )\, parameterizes B-field gauge transformations, and " generates in-
finitesimal coordinate transformations through the ordinary Lie derivative L,
under which G, and B, behave as 2-tensors and ¢ is a scalar. On an arbi-
trary vector V*, the Lie derivative acts as follows:

LVF =g 9,VF — VY0, (2.1.6)

2.1.2 o/ corrections and field redefinitions

From the point of view of string low energy effective actions, (2.1.1) is just the
leading term in an infinite higher-derivative expansion. The generic structure
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for different string theories is the same, and is given by

7= Zo/pzﬂﬂ, 7P = / dP X/ —Ge 2P 2.1.7)

p=>0

where L£P) contains gauge-invariant terms with 2(p + 1) derivatives. While
(2.1.1) is common to all strings, the specific form of £® for p > 0 do de-
pend on the theory under consideration and currently they are just partially
known. Only the first few orders were obtained via string scattering or beta-
function techniques and, for some theories, they are only known for a sub-
sector of the massless fields. Moreover, as opposed to the zeroth order action,
these higher-derivative corrections are not unique, but they are defined up to
o/-perturbative field redefinitions. Therefore, two Lagrangians that look very
different, having different couplings and numerical coefficients, can in fact
describe the same physical system. There is no preferred field basis in general
but, depending on the problem at hand, computations can be easier in one or
another.

Since field redefinitions play a crucial role for this thesis, it is worth dedicating
some time here to understand how they work. To this end, consider (2.1.7) up
to order o/ only, namely

=79+ o7V + 0(a'?). (2.1.8)

Here, the zeroth order is given by (2.1.1) and ZU) is totally generic, which
means that £ contains all possible gauge-invariant four-derivative couplings,
each parameterized by a different arbitrary coefficient. Specifically,

LY = 1R pe R*P + 43R R*™ + azR? + ayH,py H'PN NG+ -+ (2.1.9)

where a; are arbitrary constant coefficients, and we displayed just four exam-
ples explicitly and hide all other couplings in the ellipsis. By using integration
by parts and Bianchi identities of the Riemann tensor, one can show that
there are only 20 inequivalent gauge-invariant four-derivative couplings one
can write [36]. Obviously, not every choice of a; leads to a consistent string
theory, the latter is attained by specific values of the coefficients, determined
by beta-function or S-matrix calculations. We keep (2.1.9) generic because we
do not need specific values for the parameters in order to explore how field
redefinitions transform the action.

These transformations cannot change (2.1.9) arbitrarily because there are cer-
tain invariant quantities that are preserved under field redefinitions. To for-
malize this statement, we introduce the notion of ambiguous and unambigu-
ous coefficients. The former corresponds to coefficients that can be changed
by field redefinitions and the latter to the ones that cannot. Let’'s consider an
example by applying the following pure-graviton field redefinition

G — G, = G +a'0G,, (2.1.10)
after which the o/-corrected theory changes as
T -7 =17 + /7Y + O(a?)
=70 o / d° X/ ~Ge [/L“) +ED 5G| +0(?)),

G,uv

(2.1.11)
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where we are neglecting higher orders in o’ and so the effect of (2.1.10) is to
shift £V in (2.1.9) by a factor £, dG*, where E),, is the equation of motion
defined in (2.1.3a). Making the choice

0GH" = —ayRM™ (2.1.12)
the shift takes the form

1 1
EY 0G" = —ayR,R™ — as [Wuvyww — Hupe R — SR
1 (2.1.13)
+ 2V, 0V SR — 2V, VIR + ﬂHWpHW”R] .

It is then easy to see that (2.1.13) allows us to remove the a;R,,R*" coupling

in (2.1.9), and trade it for terms with other tensor structures. By applying

the same trick with specific combinations of §G,, and /¢, one can remove

any Ricci-tensor-dependent coupling. Such procedure is a bit more tedious,

however, requiring integration by parts and the use of Bianchi identities for
the Riemann tensor.

The upshot of this procedure is that by a suitable o’ field redefinition of the
metric, we can exchange any coupling containing R, from £ for couplings
which do not depend on the Ricci tensor at that order in «'. This comes
at expenses of inducing O(a?) terms, which we can neglect if we are con-
cerned with O(’) effects only and perturbation theory holds'. Connecting to
the definitions introduced above, the coefficients next to couplings with Ricci
tensors are ambiguous coefficients. It can be shown that the same holds for
terms containing Ricci scalars and dilaton couplings. Moreover, 17 of the 20
coefficients in (2.1.9) are ambiguous [36]. On the other hand, there are no
two-derivative covariant field redefinitions of the form

G:“, =G+ a'0G,,, B;/w =B, +d0B,,, ¢ =¢+ddp, (2.1.14)

that can change the coefficients next to the couplings: R,.,,R""*?, R**" H,,
H paA and H*"*H W*H,,A(SH 0,7 . These are the only three unambiguous coefficients
in (2.1.9).

From our previous example, we see we can use field redefinitions to "remove"
any term containing Ricci tensors. We write remove between quotes because
we do not really eliminate the terms, but we trade them for other couplings.
However, since the original Lagrangian (2.1.9) was totally generic, these re-
definitions just renormalize other already-present coefficients and so the net
effect is to set the coefficient next to the Ricci-tensor-dependent term to zero.
This same observation holds for any of the 17 ambiguous coefficients: by suit-
able field redefinitions we can set them to zero at expenses of renormalizing
other coefficients in (2.1.9). However, we cannot set all of them to zero simul-
taneously, because the field redefinition required to remove one, could make
others non-vanishing. How many of these 17 ambiguous coefficients can we
set to zero simultaneously? To answer this, we introduce the notion of essen-
tial coefficients, which are specific combinations of the ambiguous coefficients

I'This last condition does not hold in the non-critical case, as we will see in Section 2.1.4!
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that remain invariant under field redefinitions. Then, by field redefinitions,
any action can be brought to a minimal basis containing as many couplings
as unambiguous plus essential coefficients. In the case of (2.1.9), it can be
shown that there are only 5 essential coefficients and so we can pick a basis
such that (2.1.9) takes the minimal form [36]

LY = 1R e RMP 4 agR™WP7 Hyyr Hpo™ + azH" P H o H, 20 H 7
+ ayH,po H,P H* HY 5 + a5 H,,p0 H,/ V" 0NV 6 + ag (H,,,H"™?)?  (2.1.15)
+ ayH,y H"PN sV ¢ + ag (V, 6V 0)* |

where the first line contains the unambiguous coefficients mentioned above.

Given a minimal basis, all the physical information of the theory is encoded in
the essential plus unambiguous coefficients. For instance, the coefficients for
bosonic, heterotic and type II strings for the whole massless sector are very
well known, and the Lagrangian £ can be written in a unified form for all
strings as [36, 49, 50]

a + b Voo 1 vpo
E(l) = T R,uz/poRu Pe — 57?/# ’ H,uy)\HpU)\

1 1
+ﬂH“””HwAHM‘SHp5” — gﬂw

H,” H™HY 35| + b?TaH“W’QW,,.

(2.1.16)
Here Q,,,(w) = Tr (w,0,w,) + 2wwyw,) is the Lorentz Chern-Simons three-form
for the spin connection w,.,” = ¢,”V ,e,”. The latter is defined in terms of the
vielbein ¢,*, such that G, = euo‘naﬁeyﬁ with 7,5 being the flat Minkowski metric.
By choosing different values for ¢ and b in (2.1.16) we reach different string
theories. The bosonic case corresponds to a = b = 1, for heterotic string we
have a = 1,06 = 0 and for type II they both vanish: « = b = 0. Comparing
the terms in bracket of (2.1.16) with (2.1.15) we can read the coefficients q;
as fixed by string theory computations, where a; with ¢ > 4 are zero. The last
term in (2.1.16) is only present in heterotic string theory and it originates from
a Green-Schwarz mechanism that modifies the B-field Lorentz transformation
[51].

As can be seen from (2.1.16), the higher we go in o/ the more complex the cor-
responding higher-derivative Lagrangian gets. This is a direct consequence of
having more ways of combining the fundamental building blocks like R ..., H,..,
and V,¢. For instance, at order o/?> a generic effective Lagrangian £ re-
stricted to the dilaton-gravity subsector (i.e. B,, = 0), contains 44 independent
couplings (up to integration by parts and Bianchi identities). Among these 44
arbitrary coefficients, 42 are ambiguous, 2 are unambiguous and 5 are essen-
tial [52]. Therefore, field redefinitions allow us to set 37 out of 44 coefficients to
zero while the remaining 7 coefficients parameterize the dilaton-gravity theory
at order o'?, which must be fixed by string computations. These numbers keep
growing for higher orders in o' until a point where, not only the coefficients
coming from string calculations are unknown, but the very classification of a
minimal basis becomes intractable! This is a consequence of the huge num-
ber of integration by parts identities, Bianchi identities, and field redefinitions
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one can use to connect physically-equivalent theories. What we lack here is
a systematic implementation of these identities. We will see later in Chap-
ter 3 how this problem was solved by Hohm and Zwiebach for cosmological
backgrounds, for which they provided a classification to all orders in «'.

2.1.3 Dilaton-gravity theories at order o*

Even though a systematic procedure is absent for generic D-dimensional back-
grounds, the current state of the art for string low energy effective actions gets
up to order '3, where (2.1.7) takes the form

T=79 + oIV + o?T? 1+ o37® + O(a/*), (2.1.17)

and each action has its associated Lagrangian via (2.1.7).

Instead of considering the most general case in (2.1.17) we restrict to the
dilaton-gravity subsector, truncating the B-field to zero. There are two rea-
sons for this: first, we do not really have access to all B-field contributions up
to order '3, since they are only partially known. Secondly, in this thesis we
are ultimately interested in o' corrections in one dimensional effective back-
grounds, and so we will show in Section 3.2 that the dilaton-gravity subsector
is sufficient to reconstruct the full theory for cosmological backgrounds via du-
ality invariance. On top of this truncation, we also omit dilaton contributions
in £® since they are currently unknown. As we will explain in Section 3.2,
this will not be a problem when going to cosmological backgrounds because
duality invariance allows us to still reconstruct the full theory up to order /3.
Finally, since we are neglecting O(a'?) effects, we can forget about Ricci con-
tributions in £® because we can always redefine them away by appropriate
field redefinitions. Apart from higher-order effects, these redefinitions produce
dilaton couplings at order o3, which we are already ignoring.

All in all, we restrict to dilaton-gravity models of the form (2.1.17) with
£® = Riemann terms + ... , (2.1.18)

where ... account for terms containing dilaton couplings, Ricci tensors or
Ricci scalars. Moreover, the zeroth and first order Lagrangians, (2.1.1) and
(2.1.16), reduce to

LO =R +4V,0V 6, (2.1.192)
1 Bosonic

LM = %RWP(,R‘“’W . with y={ ! Heterotic (2.1.19D)
0 Typell

For higher orders there is no simple unified formulation, so we present the
theories for each string separately.

The effective action for Type II strings contain no order o’ nor o’>. The cor-
rections to order «’® were computed from four-point scattering amplitudes
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in [31], and later from the sigma-model beta function in [29, 33, 34]. They take
the compact form

J(C) = t8t8R4 + 5610610724 s (2 120)
where ¢ = 1 has been determined in the literature, but here we keep it more

general because we will see later in Section 3.2.2 that it can be fixed by duality
arguments. The first term in (2.1.20) is

4 _ ppr..ps vivg [ ZY2 U5V vrug
tBtSR =1 tm.uwsRmm R#smx Rusua RuwS

1
=3.97 RQBM,,R/”WPRU“W;RMPJ + 572&,3“,,73*87””737@0735“"“
1 1
_ §Ro¢ BMVRMWRV&WRMPU _ ZRO‘ /BWRBVPURWMSRMM

1 1
+1—6Raﬁw7zﬂaﬂ“7zwwmw+B—QRQWRQBWRWWRW“ . (2.1.21)

where the tg3 tensor can be defined by its action over generic matrices [53, 54]

teP0mPT ML M2 M, My = 8Tt (M'M?M*M* + M'M? M*M* + M M*M*M?)
—2Tr (M'M?) Tr (M?M*) — 2Tr (M"'M?) Tr (M>M*)
—2Tr (M'M*) Tr (M*M?) .
(2.1.22)

For the second term in (2.1.20) we have the following convention for the Levi-
Civita tensor

€106107?’4 - Eaﬁm.“HSEaﬂlﬂmVsRmmVly?Ru3#4VSV4R/A5#6V5V6RMw8WVS
= —2-8Rus""Rys" "R R po)™
é §
= 3.2 [RY 5RY 1R 0y R 6y + R g R 5 R 5, R77

1 1
= Rt R Repr RO 4 SRy RO Respa RO

1 . 1 .
— —RapRPPR R o — —Ragu R Raspo R17 4. |

16 32
(2.1.23)

where the dots stand for terms containing Ricci tensors and Ricci scalars,
which can be eliminated by using field redefinitions at the expense of intro-
ducing dilaton couplings, that we are ignoring.

The couplings given by tsts have nonzero contribution at four-graviton level
[31], while the €9¢;9 interactions have nonzero contributions starting only at
five-graviton level [55]. The presence of this term in the tree-level effective
action was inferred by the beta-function approach in [29, 33, 34], predicting
¢ = 1. This prediction was confirmed in [56] through sphere-level scattering
amplitudes of five gravitons. The literature also suggests that this value for c is
required by supersymmetry [57, 58] and the emergence of T-duality symmetry
in a circle compactification [59, 60]. Specifically for ¢ = 1, it can be shown
using Bianchi identities that the corrections are given by only two terms [34]

J(1) = =3 2° [R R, " Rar" Rpsgs — 4Rap R Ry’ Ror] + ... (2.1.24)
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The consensus is that these are the unique purely gravitational terms appear-
ing in the leading o’ corrections in Type II string theory. Therefore, up to this
order, the theory is defined by the following Lagrangians

o = e =0,
¢(3)
£y = o /) + (2.1.25)
3
- _% [RQBWRWW&RMPURM&S - 473&676725#0”731/;)607207%] te

where, as stated before, we are omitting Ricci and dilaton terms encoded in

For the bosonic string, the 26-dimensional action for the purely metric sector
up to and including order o/? was obtained in [35], based on the string 3- and
4-point amplitude calculations. It was later extended to include the dilaton
contribution in [37] from the 3-loop metric beta function and a consistency
condition proposed in [18, 19]. Finally, the o'® action for the purely metric
sector was determined in [38] from the 4-loop beta function. In [38] two differ-
ent schemes were used. Even though the order o’® action was obtained only
for the metric sector, both schemes contain terms involving the dilaton, Ricci
tensors and Ricci scalars at intermediate orders. Therefore, we found it use-
ful to present the result in an alternative scheme in which those intermediate
dilaton and Ricci contributions are redefined away at the expense of changing
the o/® couplings. We refer the reader to [3] for a detailed derivation of the
connection between our new scheme and the one in [38]. The resulting action
in the new base is given by [3]

1

ﬁg) _ ZRMWWRIWPU 7 (2.1.26a)
1 1

£ — 76 R Rag™ Rpo™ = TR Rag "R (2.1.26Db)
1 1 :

,Cg’) = _RaﬁMVRuuvdRavpaRpaﬁé - RuvaﬁRMVaAR/\(spaRﬁépa + ‘Cg) e (2 1 26C)

32 16

where the terms L’ﬁ)’) are exactly those of type II string theory, with a coefficient
proportional to the transcendental ((3) that is the same for all string theories.

Finally, the 10-dimensional low energy effective action for the Heterotic string
up to and including order o’? is given by

1
L = g Rupe R (2.1.27a)
LY — —%QWPQWP , (2.1.27b)

1
L5 = o5 182" Tr (w,0,2, + Qudyw, + 22w,w,)

= %
+ 18R¥™P7 QM Uyor + 18V (82,0 VHQP7
_ RHQBWRWMRWUARW)UA ~ R Ryo SR 3 76727 s
_QR;LU aﬁRVpaﬁtRf‘uy’ﬂ;Rﬂ/é po] + [»ﬁ))) y (2 1 27C)
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where Eﬁ)’) is defined in (2.1.25) and ,,, is the Lorentz Chern-Simons three-
form. Up to order o2, (2.1.27a) and (2.1.27b) coincide with the action calcu-

lated in [35] by 3 and 4-point amplitude methods. Excluding Eﬁ)’), we are using
the cubic order cﬁ’ obtained in [49] by supersymmetry. However, the o’® ac-

tion, including ES), was first found by 4-point scattering amplitude methods
in [61] and [32].

From the point of view of this section, the above o/® actions can be taken as
mere examples of higher-derivative effective theories. Within the thesis bigger
picture, they are the starting point for a dimensional reduction that will be
performed in Section 3.2 to arrive at the cosmological classification and read
the defining coefficients for each string theory.

2.1.4 Non-critical dimensions

So far we restricted the analysis to strings propagating in D-dimensional back-
grounds where D is the string critical dimension, namely D = 10 or D = 26.
Things change considerably if one moves to non-critical dimensions. In par-
ticular, as we will see in Chapter 5, a beta-function calculation reveals that
the theory incorporates an extra zero-derivative term in the action, propor-
tional to the failure of D being critical, and inversely proportional to /. The
latter comes from dimensional analysis. In a theory of gravity, such a term is
analogous to a cosmological constant. For bosonic strings, it is given by

Q*= —M, (2.1.28)

3a/
which is positive for D < 26.

This seemingly inoffensive term raises some surprising problems with the
interpretation of higher-derivative terms as perturbative corrections to the
leading-order action [6]. To explain this, let us add the cosmological term
(2.1.28) to the two-derivative theory (2.1.1), together with a tower of generic o/
corrections

7= / dPaz/—Ge (Q2 +R+40,00"¢+ Y _(o)"F™[G, ¢]) : (2.1.29)
n=1

where we are setting the B-field to zero for simplicity and considering D < 26
so @ > 0. The F™ denote possible terms of order 2n + 2 in derivatives.

As we saw in previous sections, field redefinitions can be used to find a scheme
in which the action gets simpler. When D = 26 we can use these field redefini-
tions order-by-order in o’ to bring the theory to a minimal basis parameterized
by unambiguous plus essential coefficients. When D # 26, however, any term
in the action other than the cosmological term can be traded, by means of
field redefinitions, for a term with an arbitrary number of derivatives! To see
this, let us recall that while informally one refers to the higher-derivative cor-
rections of string theory as "o’ corrections", ¢’ itself, being dimensionful, is not

33



a small expansion parameter. In fact, o/ can be eliminated from the action
(2.1.29) by rewriting it in terms of dimensionless coordinates

1

@(’% (2.1.30)

=Qa", 0,=

and rescaling the action by QP2

T=0QP 21 = /dD:E —Ge ¥ (1 +R+40,00"¢+ Y (a'Q*)"F™[G, ¢]> 7
n=1

(2.1.31)
where the bar over R or F' indicates that all derivatives 9, have been replaced
by 5u. In this formulation there is no o left (notice from (2.1.28) that o/Q? does
not depend on '), and there is no expansion in «’. Rather, one should think of
the higher-derivative corrections as an expansion in terms of small derivatives
of the fields. While this can make sense in critical-dimension string theory,
in non-critical dimension string theory generic solutions feature fields whose
dimensionless derivatives are of order 9 ~ O(1), so that all higher-derivative
terms can have significant effects.

Let's see how we can trade any term in (2.1.31) for one with more derivatives
by using field redefinitions. We begin by considering the exact field redefinition
of the metric

G — G+ AG, , (2.1.32)

where we will take AG,,, to be a local function given by a derivative expansion.
This implies

GM — G — AGH + O((AG)Q) )
V=G~ V=G(14 16" MG, + O((AGP)

R — R+ AG™ (72,” - gawﬁ) +G(V,ATY, — VAT ) + O((AG)?).
(2.1.33)

Indices on AG,,, are raised with the unperturbed G*”. We take AG,,, to be given
by a derivative expansion:

AGW _ A(l)GW + A(Q)GW 4o, (2.1.34)
where AM™G,, is of order 2n + 2 in derivatives.
The redefined action 7’ is given by (2.1.31) with G replaced by G + AG:
T =1|G + AG, ¢ = / dPz/—Ge™? (1 +R+ 45@5%)

+ / dPzV/—Ge * [1G" AVG,, + (/Q*)FV[G, ¢]]

+ SR
(2.1.395)

where we used (2.1.33) and where the ellipsis denote terms with more than
Jour derivatives. This follows from AWG,, being already of fourth order in
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derivatives, so that in particular new terms induced from the two-derivative
action are already of order six in derivatives. We can cancel the four-derivative
term F(Y by choosing

20/@2 _

AYG,, = — 5 G FYG, 9. (2.1.36)

The six-derivative terms encoded in F® receive further Contributionsifrom the
field redefinition, and we denote the totality of all such terms by F'®. The
redefined action then reads

T = /de\/—Gew (1+R+40,00"¢ + (' Q*)’F'PG,¢] +---) , (2.1.37)

where the ellipsis denotes all terms with more than six derivatives. Of course,
we could have instead cancelled the Einstein-Hilbert term R or even the whole
two-derivative Lagrangian by including a two-derivative term A®)G in the AG
expansion (2.1.34), and setting AVG,, = —2G,, (R +409,00"¢). In that case
the action would have the cosmological term followed by terms with four

derivatives.

The procedure above can be iterated. Looking at the action (2.1.37) we can
just repeat the procedure by setting
2 Oé/ 2)\2 _
APG,, = —%GWF’@) G, 4], (2.1.38)
so as to cancel the terms with six derivatives. Thus, all terms in the action
can be moved to arbitrary high order in derivatives!

This result is puzzling, because adopting the usual perturbative mindset one
would view terms with large numbers of derivatives as sub-leading compared
to a term with two derivatives, and hence one would feel free to drop them.
This is indeed the standard procedure of bringing higher-derivative terms to
a minimal form, but using this procedure literally in (2.1.31) one would con-
clude that only the cosmological term is non-trivial. What is really happening
is that in these noncritical string backgrounds generic higher-derivative terms
are not actually sub-leading relative to terms with lesser number of deriva-
tives. Thus, while field redefinitions like (2.1.36) or (2.1.38) are perfectly legal,
it is the second step of dropping induced terms with more derivatives that is
generally illegal. This sheds doubt on attempts to get string corrected solu-
tions in a consistent way, which is indeed problematic considering that black
hole backgrounds are of this kind, and it is precisely in these scenarios where
string corrections are expected to be crucial. We will see in Section 4.1 how
we circumvent this obstacle and arrive at a classification of the most general
higher-derivative interactions for two-dimensional black hole backgrounds.
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2.2 Dimensional Reduction and O(d, d)

So far we have described the bosonic sector of supegravities in generic D-
dimensional backgrounds. Apart from very special non-critical cases, it is not
possible in general to make contact with our lower-dimensional observable
universe right-away. Instead, one needs to implement a mechanism called
compactification or dimensional reduction that relates theories in different di-
mensions. In this section we introduce this method, restricting the analysis
to the two-derivative theory presented in (2.1.1) in backgrounds with d < D
abelian isometries, leading to a global O(d, d|R) symmetry 2 [20-24]. The lat-
ter is directly connected with the stringy origin of these field theories [25].
We also present two particular extreme cases where the compactified theory
is effectively one-dimensional: cosmological backgrounds [20-22] and black
holes [44-46].

While here we only treat the two-derivative case, the concepts introduced in
this section are essential for the development of the main results of this work
in the context of o/ corrections. More precisely, relying on the fact that the
duality group is preserved to all orders in o' [23], in the following chapters
we will see how to use O(d,d) to arrive at a classification of string low energy
effective actions in cosmological and black hole backgrounds to all orders in

o

2.2.1 The Maharana-Schwarz action

We will refer to the original D-dimensional theory as the parent theory and
the resulting n-dimensional spacetime, with n < D, as the effective or external
theory. The remaining d = D — n "extra" dimensions form the so-called inter-
nal space. For now, apart from the condition D = n + d, we will keep d and n
generic. There are numerous ways to perform a compactification depending
on the manifold we choose as our internal space. The way these extra inter-
nal dimensions are curled-up heavily modifies the physics we perceive in the
effective n-dimensional theory. In this work we consider one of the simplest
scenarios where the parent theory posses d abelian isometries, meaning that
effective fields do not depend on the internal coordinates. In what follows,
we introduce this dimensional reduction procedure through a series of steps,
taking (2.1.1) as our starting point. However, all steps can be equally applied
to more general parent theories, and this is exactly what we will do in Section
3.2.

1. Split coordinates: The coordinates of the parent space X* with py =
0,...,D — 1 split into 4
XH = (wl,ym) , (2.2.1)

2Unless specified otherwise, we will always work with real-valued elements, so we drop the
R label from now on. We will reinstate it only when discussing the discrete version O(d, d|Z)
later on.
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where z¢,i =0,...,n—1and y™,m = 1, ...,d parameterize the external and
internal space respectively. In our particular case, nothing will depend
on y™, being the isometric directions, regardless they being compact or
not.

. Break parent symmetry group:

The parent theory (2.1.1) enjoys the symmetries (2.1.5) and G, B,, and
® belong to representations of the corresponding symmetry group. Upon
compactification, this symmetry group is broken into the ones for the ef-
fective theory. Therefore, fields must be decomposed into representations
of these lower-dimensional symmetry groups.

9ij + AP gpg AT AL Gpn

G (X) = , (2.2.2a)
gmijp gmn
bij — APVip + APbpg AT Vi + Ay,
BW(X) _ J [« Vilp 'pg 41 p ’ (2.2.2b)
_‘/Jm + bmijp bmn
1
6(X) = ®+ 7 logg, (2.2.20)

where in the dilaton’s decomposition g states for the determinant of the
internal components of the metric g,,,. The gauge parameters of the par-
ent theory need to be split as well

§X) = (&A™, (X)) = (N, A) (2.2.3)

This decomposition allows us to identify the field content of the effec-
tive theory. Interestingly, they can be presented in a compact way by

rewriting the internal directions in terms of double indices M =1,...,2d
AM(X) = (A", Vim) (2.2.4b)
mn — bm PQb " bm pn
Horw(X) = |7 v Pan DmpdT ) 2.2.40)
_gmpbpn gmn

The same can be done for gauge parameters
(X)), MNX), AM(X)=("\) . (2.2.5)

While at this point this can be seen just as a curious fact, soon we will
see that, packed in this form, fields and parameters can be identified as
representations of an O(d, d) global duality group.

. Reduction ansatz:

The previous decomposition has nothing to do with the coordinate depen-
dence of the effective fields. At this stage, they still depend on z‘ and y™
arbitrarily. By proposing a reduction ansatz we specify the dependence
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of the external fields on the internal manifold. In our case, denoting col-
lectively ¥ € {g,j,bij, ®, A™M, Hun, & N, AM}, we pick the simplest ansatz
where nothing depends on the internal space, namely

ov
U(X)=V(x,y) =V(x) = By =0. (2.2.6)
In this case, the theory possesses d abelian isometries.
. Gauge transformations of the effective theory:

We already saw in (2.2.2) how fields in the parent theory decompose into
representations of the symmetry group of the effective theory. To see how
these symmetries act on the effective fields we need to decompose (2.1.5)
by using (2.2.2) and (2.2.3) as well as the reduction ansatz (2.2.6). In
terms of the duality covariant objects (2.2.4) and (2.2.5), the infinitesimal
transformations read

5gz‘j = ngij , 5sz = Lgbij + Qa[z’)\j} + A[ipaj]/\p, 0d = L§®7

2.2.7
SAM = LEAiM + oM Hun = LeHmn - | )

¢ generates infinitesimal n-dimensional diffeomorphisms through the ef-
fective Lie derivative L¢. Under such transformation g;; and b;; are (J)-
tensors, A4,/ is a 1-form and ® and #,,y are scalars. \; generates b-field
gauge transformations and A the U(1)?? gauge transformations, which

requires an additional transformation for the b-field.
. Effective action:

The n-dimensional effective action is obtained by plugging the ansatz
(2.2.2) into the parent theories’ action and killing all internal dependency.
In the case of the two-derivative sector of N' = 0 supergravity, we have
(2.1.1), and the compactified action is given by the Maharana-Schwarz
action [24]

10 = / d"z\/—ge > L),
1

4 . 1 g 1 -
LY =R+ 40;90'® — EHiij”k - ZHMNFUMFUN + gairHMNaVHMN :

where R is the n-dimensional Ricci scalar built from g;; and the field
strengths for the vectors and b-field are defined as

FiM =204,
Hz’jk - 33[ijk] - 3A[1P8jAk]p .

(2.2.8)

(2.2.9)

Both tensors are invariant under the gauge transformations generated by
A\, and AM in (2.2.7). The latter requires the Chern-Simons modification
in H.

In the effective theory, external indices are raised with ¢ while the dou-
ble indices are contracted with

(O

NMN = . (2.2.10)
0", 0
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As expected, the action (2.2.8) is invariant under the residual gauge
transformations (2.2.7).

The O(d, d) group

On top of the local symmetries (2.2.7), a novel O(d, d) global symmetry emerged
upon compactification that has no counterpart in the parent theory (see [25]
for a review on the O(d,d) group and T-duality). Elements of this duality in-
variant group can be represented as 2d x 2d matrices that preserve the duality
invariant metric (2.2.10). In matrix notation they read

h=1 | €0, d = hnght=n, (2.2.11)

where the bullets represent the index structure and the matrices a, b, ¢,d € R?*?
must satisfy
dlc+cda=bd+db=0, dd+cb=1. (2.2.12)

Here and it what follows we make an abuse of notation by using 1 as the matrix
notation for 4,,", 0™, 0, and §™" altogether. The should be no ambiguities by
doing this since the index structure should be clear from context.

Any element of the duality group can be decomposed as successive products
of the following transformations:

© Change of basis A € GL(d,R)

A 0
har = ) (2.2.13)
0 (A—l)t
® b-shifts
1 =
hy = \ (2.2.14)
0 1
where =,,,, = —Z,.m-
®» Factorized dualities
1-—-1¢,, tm
he, = o (Em)np = SmnOmyp - (2.2.15)
t 1=t

From successive products of these basic transformations one can build any
h € O(d,d). One induced transformation is particularly interesting in the con-
text of duality transformations:
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© Full factorized duality: This transformation is obtained by applying
factorized dualities over all directions

hy = . (2.2.16)
10

Under this duality group g;;, b;; and ® are scalars while A;" is an O(d, d) vector
and H ),y a symmetric (g) -tensor. The action (2.2.8) is invariant under such
duality transformation. 7,y is called the generalized metric and it plays a
crucial role in duality-invariant theories. The scalar ¢ is also an important
quantity and we will often call it the duality-invariant dilaton, to distinguish
it from the scalar dilaton ¢, which does transform under O(d,d). Indeed, this
can be seen from their relation via (2.2.2c), which involves the internal metric

gmn-

Properties of the generalized mefric

Interestingly, the generalized metric #H,y leads to an O(d,d) element itself
upon raising one index. Indeed, defining

Su™ = Hupn™, (2.2.17)

it satisfies
S npoSn® = nun (2.2.18)

which implies that Sy € O(d,d). Using (2.2.4c), (2.2.17) can be given in
matrix notation as

by~ g — bglb
S=Hygt=|" I ) 2.2.19)
g—l _g—lb

which can be shown to be traceless

Tr(S) =0, (2.2.20)

upon introducing the notation Tr(-) for the trace of 2d x 2d matrices. The
condition (2.2.18) makes the generalized metric S a constrained object. This
constraint can be written in a very succinct fashion as

S?=1, (2.2.21)

where S? stands for S,,”Sp” and 1 for §,,.

We now list a series of identities that can be deduced from (2.2.21), as they
will become very useful in later applications. To this end, we introduce the
projectors

P=-(1-8), P=-(1+98), (2.2.22)

N =

satisfying ) B -
P*=pP, P*=P, PP=PP=0. (2.2.23)
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Furthermore, we have the following useful identities

PS=8P=-P, PS=SP=P. (2.2.24)

With these projectors we can now split any O(d, d) matrix A = A,* into + com-
ponents, defined as

A, = PAP+ PAP, A =PAP+PAP, A=A, +A_ . (2.2.25)

These + spaces are nothing but the spaces of O(d,d) tensors that commute
and anti-commute with S, as it can be seen from the relations

Ay = % (A+£SAS), A.S=+SA.. (2.2.26)

It is also easy to show that products of projected fields have definite projection
following the rules of sign multiplication, namely A, B_ is a minus-projected
tensor, while A_B_ is plus-projected.

With these relations we can prove that traces of minus-projected tensors van-
ish:

(A)y™ =Tr(A) =Tr (A_8?) = —Tr(SA_S) = -Tr (A_8%) = —-Tr(4_) =0,
(2.2.27)
where we used §? = 1, (2.2.26) and the cyclicity of the trace. Another con-
sequence of the generalized metric being a constrained object is that a small
variation of it is also constrained. To see this, we take a variation of (2.2.21)
to get
0SS+ 8iS=0 = §§=-8iSS =465=[S] . (2.2.28)

where in the second equality we used S? = 1 and in the third (2.2.26). This
identity will become useful when computing equations of motion.

As a final remark, it is worth noticing that all properties and identities de-
duced for the generalized metric (2.2.19) are valid for generic d internal di-
mensions. They will become useful later in the context of cosmological back-
grounds where d = D — 1.

2.2.2 Two-derivative cosmological backgrounds

Cosmological reductions stand for a particular case of dimensional reduction
where all spatial directions are compactified and the effective space depends
on a single time coordinate [20-22]. Using the notation of (2.2.1), d = D — 1,
n = 1 and the only external direction is parameterized by X, = ¢t. In this
"extreme" case, the ansatz (2.2.2) reduces to its simplest version

—n? 0 0 0 1 1
G = , B = , 0= §<I> + 1 logdet g, (2.2.29)
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where we changed conventions for the effective dilaton adding an extra ; factor
and wrote the time-time component of the metric Gy, in terms of the so-called
lapse function n.

While, from (2.2.2) is clear that we should also have vector components AY, we
set them to zero because in cosmological backgrounds they carry no degrees
of freedom. More precisely, we can always pick a gauge for AM to set AM
to zero. While doing this gauge fixing procedure, one should be careful to
do it in a consistent way, meaning that by setting AY = 0, the equations of
motion of these components should also vanish identically. Put differently, the
information contained in the equations of motion of all remaining fields after
setting AM = 0, is the same as the one obtained by setting these components to
zero in the action and then computing the equations of motion of the fields we
kept. If this is not the case, the gauge-fixing is not consistent and by setting
AM = () we are missing extra constraints for the remaining effective fields.

In principle, this could happen if we had a linear term on the vectors in the
Lagrangian of the form A Fy;(n,g,b, ®) where F),; is a generic function of the
other effective fields. In this hypothetical case, by setting A to zero we would
be missing the extra constraint Fy,(n,g,b,®) = 0 for the other fields, which
comes from the vector’s equation of motion. Luckily, such linear term sim-
ply does not exist in the one-dimensional theory because there are no O(d, d)
vectors other than AM that could form the function F),;. Moreover, one should
also check that the gauge transformations acting on these components vanish
when the components themselves are set to zero. From (2.2.7) one can check
that this indeed the case if we also eliminate the gauge parameters AY = 0. All
this tells us that, indeed, setting A™ = 0 is consistent.

As for general backgrounds (2.2.4), the field content can be packed into rep-
resentations of the global duality group O(d,d) where n(t) and ®(t) are scalars
and H,,n(t) the same symmetric tensor as in (2.2.4c). From now on, however,
we will use the S(t) rewriting of the generalized metric, as given in (2.2.19).
Due to the reduction ansatz (2.2.6), all fields and parameters depend on the
only external coordinate ¢:

O =0, O =00=17. (2.2.30)

The effective theory now has a much smaller gauge symmetry than the one
for general backgrounds (2.2.7). In this case AM and )\, just drop out from
the theory. The former due to the gauge fixing of the vector fields and the
second one because there is no external b-field in one dimension. The only
remnant gauge symmetry is time-reparameterization invariance generated by
E(t) = €°(t) via t — t — £(t), under which the fields transform infinitesimally as
follows

on=20,én), 6P=ED, Ogmn=CEGmns Obmn = Ebpn = 0S=ES. (2.2.31)

This tells us that n is a scalar density while all the other fields are scalars. In
particular, the transformations for the internal metric and b-field imply that
the generalized metric is also a scalar. The presence of a density allows us to
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introduce a covariant derivative

D

S

O, (2.2.32)

which implies that if U is a scalar, then DV is also an scalar. In principle we
could use this residual one-dimensional symmetry to remove the only degree
of freedom carried by the lapse function. More precisely, we could use £(¢) to
gauge fix, let's say, n(t) = 1, in the same way we used AM to set the vector
components of (2.2.29) to zero. However, as opposed to the vector case, we
will see that this gauge-fixing is not consistent at the level of the action, so we
better keep n(t) for now.

The analogous to the Maharana-Schwarz action (2.2.8) in cosmological back-
grounds is obtained by plugging (2.2.29) into (2.1.1) [20-22]. To this end we
introduce the following d x d matrices

L=Dgg™', M=Dbg', (2.2.33)

which are scalars under diffeomorphisms. Plugging (2.2.29) into the expres-

sions for the Christoffel symbols, Riemann tensor and H,,,

1
F,uup = §GPU (a,uGl/o + auG;Lcr - aO'G,LLl/) 5

RpJNV = alJ«FVUp - aI/I‘ua'p + F,U,)\'OFVO—/\ — FV)\pFMO.A , (2234)
H,uup - Sg[uByp} ,

and using (2.2.30) we get

1
Lom™ = 2Lm”? Lo = —Lmn, Loo = Dn,
2 2n
2
Runnpg = 2LpimLnjg,  Romon = —nz (L3 +2DLnn) (2.2.35)

Voo = gm i gtr (L), Hopn = M,

and all the other components are zero. On top of (2.2.33), we introduced fur-
ther notation: internal indices are raised with ¢~! and lower with g, namely
Lyn, = Ly/PGpn , DLy, = DLyPg,,, etc. We also denote products of identical ma-
trices as powers, namely L2 = L,,”L,%g,,. Finally, tr(-) stands for the trace of
d x d matrices.

From the second line of (2.2.35) we can build the scalar curvature and from
the last line the Kinetic terms for the dilaton and b-field

R =tr(DL) + itr (L?) + itr (L)*,

V0040 = — L (DO) — Detr (L)~ tr (L) (2.2.36)
H;u/pHMVp = 3tr (Mz) .
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Combining these three couplings as given in (2.1.1) we get the effective action
in cosmological backgrounds:

10 = / dtne® [tr (DL) — Ddtr (L) — (D®)? + %tr (L* — M?)
. (2.2.37)
= /dtne—q’ [—(D@)M i (L* = M?) |,

where to arrive to the second line we integrated by parts the covariant deriva-
tive in the first term. This action can be given in an even more succinct form
by remembering that the internal fields must combined into the generalized
metric. Indeed, using the definitions for S, (2.2.19) and L and M, (2.2.33), one
can show that

DSy DSy =Tr ((DS)?) = —2tr (L* — M?) . (2.2.38)

Therefore, the cosmological action reaches its final form [21, 22]
1
10 = / dtne ® {—(D(I))Q — gTr((DS)2)] : (2.2.39)

which is manifestly invariant under one-dimensional diffeomorphisms (2.2.31)
and global O(d,d). It is a particular one-dimensional case of (2.2.8) where z* —
t, the fields of the external sector, R and H,j;, vanish, and vectors decouple.

Taking the variaton of (2.2.39) with respect to the fields, we get
510 = / dtne® {Tr(FS(FS) + Eg0® + Ené—n} : (2.2.40)
n

While Fg = 0 and E,, = 0 correspond to the equations of motion of the dilaton
and lapse, respectively, Fis = 0 is not the equation of motion for §. The reason
is that, since S is a constrained object satisfying S? = 1, its variation is also a
constrained object satisfying ¢S = [0S]_ (see (2.2.28)). Therefore, we get

Tr (Fs68) = Tr ([Fs) + [Fs]-)[68)-) = Tr ([Fs]_[68]-) = Tr ([Fs]-65) , (2.2.41)

where in the first equality we decomposed Fs into + projections and used
(2.2.28). In the second equality we used that [Fs|,[0S]- is a minus-projected
tensor so from (2.2.27) its trace vanishes. In the last equality we used again
(2.2.28). Plugging (2.2.41) into (2.2.40) we get

610 = / dtne® lTr([Fg]_és) + Eg0® + Ené—” : (2.2.42)
n

Since now the constrained nature of S (and /S) was already taken into ac-
count, Es = [Fs]- = 0 do correspond to the genuine equation for the general-
ized metric. Following this procedure, the three equations of motion are given
by

Es = i [OsS]_ =0, (2.2.43a)
Eg = 2D*® — (D®)* + éTr ((DS)?) =0, (2.2.43Db)
E, = (D®)? + éTr ((DS)?) =0, (2.2.430¢)
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where we introduced the linear operator
O = D? — DOD. (2.2.44)

Using the definition of projected-objects (2.2.26) one can check

[DS]- =Ds, (2.2.45)
[D*S]_ = D*S + S(DS)?, o
and so
(OS] = DS + S(DS)* — DIDS . (2.2.46)

By using (2.2.46), combining Ey and FE,, and omitting multiplicative factors,
the cosmological equations can be written in an equivalent simpler form:

DS = DODS — S(DS)?, (2.2.47a)
D*® = —%Tr ((DS)?) | (2.2.47Db)
(DP)? = —%Tr ((DS)?) . (2.2.47¢)

At this point we can see why fixing n(¢t) = 1 at the level of the action is in-
consistent. This is clear from setting n» = 1 in the lapse equation (2.2.47c):

$2 = —%Tr (52) , (2.2.48)

where we used D — 0, and the dot-notation. The lapse equation now leads to
an extra constraint on ¢ and S, that we would have never seen if we would
have fixed n = 1 in the action. Once at the level of equations we can set n = 1
without problems. The resulting equations are obtained by replacing D — 0,
in (2.2.47).

Bianchi type I universes

Bianchi type I (BI) cosmologies are a particular case of cosmological back-
grounds (2.2.29) where the metric is homogeneous but generically anisotropic,
and the b-field vanishes:

Grn(t) = Am(t)*6mn,  bn(t) = 0. (2.2.49)

Here the internal indices are not summed over. In general, the a,, are d in-
dependent scale factors, but we will consider the case where there are only
g < d different scale factors. We then have groups of N; scale factors a; with
i=1,...,¢such that 7 | N, = d. By definition all N; are non-zero positive in-
tegers. The case where all scale factors are different is included for ¢ = d and
N; = 1 for all 7, while the fully isotropic case is included for ¢ = 1 and N, = d and
it corresponds to a Friedmann-Robertson-Walker (FRW) universe. For each of
these ¢ scale factors a; we define the corresponding Hubble parameter H; as

follows: .
H=="%% =14, (2.2.50)




where D is the covariant derivative introduced in (2.2.32).

For this specific ansatz, the generalized metric, as defined in (2.2.19), and its
derivative take the simpler form

N 0 a2, Omn N 0 H,,a2 60n

Syt = ., (DS)y =2 . (2.2.51)
a2omm 0 —H,a,20m 0

where there is no sum of repeated indices. With (2.2.51), the trace appearing

on the action (2.2.39) is given by
q
Tr ((DS)?) = —8tr (H25,,") = -8 N;H, (2.2.52)
i=1

where we noted that there are only ¢ different directions and each of them is
repeated N; times. Thus, plugging (2.2.52) into (2.2.39), we obtain the two-
derivative action for BI backgrounds

q
19 = /dtne—@ [—(D©)2 +ZN,-H§] . (2.2.53)
=1

The equations of motion can be obtained by varying (2.2.53) with respect to
a;, ® and n or by specifying (2.2.47) to BI backgrounds. In both cases we get

q

Do => NH, (2.2.54Db)
i=1
q

(DP)* = NH;. (2.2.54c¢)
=1

While for generic cosmological backgrounds the theory is invariant under the
full duality group, in the context of BI backgrounds, O(d, d) is broken to a (Z;)?
invariance under which the fields transform as follow®

1

¢—-®, n—n, a—a = H —-H, i1=1...,4q, (2.2.55)

where the last transformation follows from the ones for a; and n and from the
definition (2.2.50). It is easy to check that (2.2.53) and (2.2.54) are duality
invariant. These residual symmetry corresponds to the one generated only by
factorized T-duality transformations (2.2.15). Note that these duality transfor-
mations act on each different scale factor individually. Because of this, while
H? or H? are duality invariant, terms like H, H, are not. The latter, however, is
invariant under a subset of duality transformations, full-factorized T-dualities
(2.2.16), which transform all scale factors simultaneously.

As already mentioned, FRW backgrounds are a particular case of Bl universes.
Nevertheless, they are interesting enough to study them separately. In this

SThere is also a GL(d) sector that we omit because it only rescales the a;.
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degenerate case, ¢ = 1, N; = d, and the ansatz for metric, b-field and dilaton is
given by

Gon(®) = a()20mn s () =0, (t) = %(I)(t) + gloga(t) | (2.2.56)

in terms of a single scale factor, which leads to a single Hubble parameter

D
H(t) = % (2.2.57)
In this case (2.2.51) and (2.2.52) reduce to
0 a? 0 a? ) )
S = , DS =2H , Tr((DS) ) = —8dH~*, (2.2.58)
a? 0 —a? 0

where we used a tensor notation for simplicity. The action (2.2.53) reduces to
I = /dtne“b [—(D®)? + d H?] . (2.2.59)

and its equations of motion are given as a particular case of (2.2.54)

DH = D®H , (2.2.60a)
D*® = dH?, (2.2.60b)
(D®)? = dH?. (2.2.60c¢)

In this fully-degenerate case, duality transformations reduce to a single 7Z,
transformation which acts on fields as

b, n—n, a—a' = H-—>-H. (2.2.61)

2.2.3 Two-derivative D = 2 black holes

In Section 2.1.4 we introduced the low energy effective actions for bosonic
strings propagating in dilaton-gravity backgrounds in non-critical dimensions.
When restricting to D = 2 and assuming fields do not depend on one of the
coordinates, the two-derivative theory admits a black hole solution [44-46]. In
this section, we revisit this black hole background as coming from the dimen-
sional reduction of the two-derivative two-dimensional theory. This review will
serve as a basis for an all-order extension in Section 4.1.

We begin from the two-derivative part of (2.1.29), which we rewrite here for
convenience, specifying to D = 2 dimensions

70 = / v/ ~Ge ™ (Q* + R + 40,00" ) (2.2.62)

with Q% = 2. From the point of view of dimensional reduction, this D = 2 space
corresponds to the parent theory, analogous to the dilaton-gravity sector of
(2.1.1) for the critical case. The target space is parameterized by z# = (2°, 2!) =
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(t,z) and from now on we assume fields do not depend on time ¢t. We thus
make the ansatz

Gu(x) = . (o) , o(x) = %(I)(x) + %logm(x) : (2.2.63)

It is worthwhile to compare with the cosmological case studied in the previous
section, where all fields depend on time and are independent of d internal spa-
tial coordinates. In that case one has a global O(d, d) duality symmetry. Here,
spacetime is two dimensional, and the fields do not depend on time. Time is
then the one "internal" coordinate and the duality group is just O(1,1). In the
cosmological setting, the component of the metric in the time-time direction
is the lapse function (see (2.2.29)). Here, the component n(z) of the metric
in the space-space direction is the analog of the cosmological lapse function.
Moreover, (2.2.63) is related to FRW backgrounds (2.2.56) with d = 1, after a
change of signature. In such a case, m(z) plays the role of "scale-factor".

Analogous to the time-translation invariance of the cosmological backgrounds
(2.2.31), in the non-critical case the effective theory enjoys xz-reparameterization
invariance = — = — {(z) which acts on the fields as follows:

on=0,(&n), 6b=¢E0,P, dIm==E0m, (2.2.64)

As in the cosmological case, the dilaton and internal metric are scalars while
n(z) is a density. Here we can also define a covariant derivative

d

dz’
where we use the same notation as in the cosmological case, since both op-
erators will never appear together in the same equations. As we will see, the

metric degrees of freedom enters the effective action trough a Hubble-like pa-
rameter

(2.2.65)

1
T n

Dm(x)
m(x)

M(z) = (2.2.66)

The group of dualities here is O(1,1) which contains, apart from GL(1), a Z,
transformation analogous to the one in FRW backgrounds (2.2.61), which acts
on the fields as

O(x) — (iD(x) =®¢(x), n(z)—n(x)=n(z), mr)—>mz)=

) m(z)’  (2.2.67)
M(z) - M(x) = —M(x).

where the last line follows from the transformation for m and n.

To get the effective one-dimensional action in terms of m and ¢, we need to
work out the Ricci scalar for the above metric ansatz. The non-vanishing
Christoffel symbols and Riemann tensor components this time are given by
1
[y=nM, Ty = ﬁmQM, Iy, =Dn,

RlOlO = n2m2 (M2 + DM) .

(2.2.68)
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The Ricci scalar is therefore
D2m
-

Inserting this into (2.2.62), together with the ansatz for the dilaton in (2.2.63),
and integrating by parts in order to have only first-order derivatives we obtain

R=-2(M*+DM) = -2

(2.2.69)

10 = / dzne ® [Q*+ (D®)* — M?] , (2.2.70)

which is manifestly diffeomorphism and duality invariant. The latter is a con-
sequence of (2.2.70) containing only even powers of M.

The equations of motion follow from the general variation

610 = /dxneq’ [Ema—m + Epd® + Ené—” : (2.2.71)
m n
with
E,, =2(DM —DdM) =0, (2.2.72a)
Eg = —2D*® 4 (D®)* + M? —Q* =0, (2.2.72b)
E,=—(D®)?+M*+Q*=0. (2.2.72¢)

Combining the dilaton and lapse equations and dropping overall numerical
factors we get the equivalent system

DM =DM , (2.2.73a)
D>*® = M?, (2.2.73Db)
(D®)? = M* + Q*. (2.2.73¢)

It is interesting to notice the similarities between the two-dimensional black
hole background and FRW. In particular, the difference between (2.2.73) and
(2.2.60) is just the additional @? factor in the lapse equation. While seem-
ingly innocent, the cosmological term is the only reason why (2.2.60) lead to
cosmology while (2.2.73) admits a black hole solution. The latter takes the
form [44-46]:

1
ds? = —m*(z)dt* + ——dz®, m*(z)=1—-ae?",
. (2.2.74)
d(r) = Qr — §log|1 —ae?| + By,

where a > 0 and ®, are integration constants. This solution describes the ex-
terior region of a black hole for z < x5 and the interior region for = > zy, with
Tty = —98% The latter corresponds to the position of the black hole horizon,
which is a coordinate singularity. For the exterior, + = —oo corresponds to
the asymptotically flat region, while for the interior, + = oo leads to the black
hole singularity. As opposed to the position of the horizon, this singular point
cannot be removed by a change of coordinates. It anticipates that the two-
derivative black hole solution coming from string theory cannot be the end of
the story for a complete quantum theory of gravity, and so new ingredients
should come into play. We will see later in Section 4.3.2 how higher-derivative
corrections to (2.2.70), already present in classical string theory, become es-
sential in the resolution of the black hole singularity.
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2.3 Double Field Theories

From previous sections we convinced ourselves of the ubiquitous presence of
a global duality group O(d,d|R) in string low energy effective theories. This
duality group is a residual effect of the stringy origin from which these field
theories come. More precisely, its presence is rooted in the one-dimensional
nature of strings, a crucial difference to the standard point-particle approach
of field theories. When strings propagate on d-dimensional toroidal back-
grounds, this novel feature allows strings not only to move along the internal
space with momentum p, like particles, but also to wrap around the compact
toroidal directions. The latter introduces the so-called winding number w,
which, as opposed to the continuum momentum p, is quantized. When the
string is quantized, the internal momentum p becomes discrete and the full
string theory enjoys a novel duality (T-duality) generated by the discrete group
O(d,d|Z) [46], which maps winding modes in a compact space to momentum,
or Kaluza-Klein, modes in another (dual) compact space. We talk about a dual-
ity rather than a proper symmetry because O(d, d|Z) changes backgrounds, but
both of them, the original and the dual one, lead to physically equivalent theo-
ries in which momentum and winding are exchanged. This O(d, d|Z) duality of
the full quantum worldsheet theory in d-dimensional toroidal backgrounds is
enhanced to its continuous version O(d, d|R) when the theory is truncated to
be independent of the d-dimensional internal space. In this extreme scenario,
all memory of Kaluza-Klein or winding modes is lost.

At the level of the target space, the enhanced duality group O(d, d|R) behaves
as a genuine global symmetry for string low energy effective theories in arbi-
trary backgrounds with d abelian isometries. This is exactly the duality group
O(d,d) with which we have been dealing so far. We recall from Section 2.2.1
that this symmetry emerged only upon dimensional reduction and assuming
independence on the internal space. This symmetry is manifest for the ef-
fective theory as it can be seen from (2.2.8) but is highly non obvious from
the parent theory (2.1.1)! This is why sometimes we refer to T-duality as a
hidden symmetry of the D-dimensional parent theory. Moreover, while the
compactified theory can encode information about Kaluza-Klein modes upon
relaxing the internal independence condition (2.2.6), there is no way to say
anything about winding modes since already the parent theory (2.1.1) lacks
that information.

The hidden nature of T-duality and the absence of winding modes, makes
the D-dimensional theory (2.1.1) not the best formulation to deal with stringy
effects. It is this very need that triggered the formulation of Double Field
Theory (DFT) [26-28] (see [62] and [63] for reviews), a proposal to incorporate
T-duality as a manifest symmetry of a field theory. In what follows we give
a brief introduction to the background independent formulation of the theory
restricted to the universal massless sector [28].
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2.3.1 A brief infroduction to DFT

DFT lives in a 2D-dimensional double target space parameterized by coordi-
nates . .
XM= (X" X,), (2.3.1)

with M = 1,...,2D. The presence of dual coordinates is reminiscent of the
string winding modes. To see why this is the case, we can reorder the coordi-
nates in a way analogous to dimensional reduction (2.2.1)

XM = (2 F Y™, ) (2.3.2)

where i = 0,...,n — 1 and m = 1,...,d such that d + n = D. Here, y, are
interpreted as dual conjugate to the winding modes, in the same way that y™
are the dual conjugate to momenta. It is in this sense that DFT is a "doubled"
theory: it doubles the coordinates of the compact space

YM = (™ ), (2.3.3)

with M =1,...,2d. The doubling in the external direction z; has no real physi-
cal interpretation but it enters the theory just for purely aesthetic reasons. If
wanted, we could just fix 7; = 0 and the theory would have an internal con-
tinuous O(d,d|R) symmetry. This leads to the split-formulation of DFT [64].
However, to present the theory in here we find useful to keep the dual external
coordinates, in which case the theory has a bigger fictitious O(D, D) symmetry.

When it comes to the field content, there are different formulations of DFT
depending on which string and sector of its spectrum we are interested in.
Here we are concerned with the one capturing the universal massless sector
studied in Section 2.1.1, which historically, is also the first background in-
dependent formulation of the theory. DFT introduces the degrees of freedom
for the metric G,,, B-field B, and dilaton ¢ in an O(D, D) covariant fashion
through the fields

. ) G., — B.,G By, B,,G"
Hoo(X)=| " “: “”V : (2.3.4a)
—~G"B,, G

. 1
d(X)=¢ — 3 logvV/—-G = -Ge ™ =¢2, (2.3.4b)

where the first one is nothing but a higher-dimensional version of the internal
generalized metric of (2.2.4c) and d(X) is called the generalized dilaton. Anal-
ogous to their 2d-dimensional counterpart, d is a scalar under O(D, D) while H
is a symmetric 2-tensor satisfying H; 57"“H 5 = 7,5 With the O(D, D) invari-
ant metric

R 0 4,7

77 NN = y (235)

o0

which is the D-dimensional version of (2.2.10).
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While formally all fields and gauge parameters depend on the doubled coordi-
nates X, consistency of the theory demands to impose an additional constraint
named strong constraint or section condition, given by

AN 05 () =0, (2.3.6)

where - -- stands for any field or product of fields. The fact that (2.3.6) holds
also over products of fields gives the constraint the strong character and is
the responsible for making DFT a mere duality-invariant reformulation of the
bosonic massless sector of supergravity. More precisely, while in principle the
field content (2.3.4) depends on doubled coordinates, (2.3.6) half the degrees
of freedom as it can be seen by writing it in components

§9,(---) =0, 2.3.7)

with 9" = &. Obviously, )
5 () =0 (2.3.8)

is a solution to the constraint, where fields do not depend on dual coordinates,
and it can be proven that any other solution is physically equivalent to it.

In (2.1.5) we introduced how diffeomorphisms and gauge transformation for
the B-field acts on the massless fields. Now G and B are unified in the gener-
alized metric (2.3.4a) and so the symmetries are also unified into generalized
diffeomorphisms. Infinitesimally, these novel symmetries are generated by
double parameters

e = (g€, (2.3.9)
and they act on the fields (2.3.4) as follows

Mg = LeHun = LHn + Ky Heg + K Hup . K =205
(2.3.10a)
6 (e72) = 0y (€762 (2.3.10b)

Here, L; is the standard Lie-derivative in 2D dimensions and K MN measures
the departure from conventional Riemannian geometry. Together, they form
the generalized Lie derivative £; [65]. In the context of generalized geome-

try [66, 67], /fé corresponds to an O(D, D) extension of the Dorfman bracket,
and so sometimes is also called D-bracket. From the perspective of gener-
alized geometry, H N 1S a symmetric (g) tensor, while e~%¢ transforms as a
generalized density and so it corresponds to the integration measure in the
DFT action. Note, however, that the generalized dilaton itself transforms as

o 1. 7
§d = £70pd — 5815513 : (2.3.11)
and so it does not belong to any O(D, D) representation. It can be shown
that upon solving the strong constraint via (2.3.8), and rewriting the O(D, D)

objects in terms of supergravity fields using (2.3.4), (2.3.10) reduce to the
standard transformations for the massless sector (2.1.5)!
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Consistency of the theory requires generalized diffeomorphisms to form an
algebra [65] and so they must satisfy a closure condition: the commutator of
two successive transformations gives again a transformation in terms of a new
parameter determined by the bracket of the algebra. In the case of generalized
Lie derivatives we obtain

[Eél’ﬁéQ] - 5[51752](0) ’ (23 12)

with the C-bracket defined as
(€1, E2)i%) = 2ELOREM — EROME, . (2.3.13)

The first term corresponds to the bracket of standard diffeomorphisms in 2D
dimensions. The closure of the algebra (2.3.12) requires the strong constraint
(2.3.6). Upon solving the strong constrain with o = 0, (2.3.13) reduces to the
bracket for not only diffeomorphisms but also B-field gauge transformations.
In generalized geometry this is the Courant bracket and (2.3.13) is its duality-
covariant extension.

The action of DFT can be written in terms of the generalized Ricci scalar R

IDFT = / d2DX€72d7%,
R =4HMNO ,05d — 0y, 0 HMY — aHMNG dDyd + 40, HM Noed  (2.3.14)

1 ~ vz N A N 1 &~ N n
+ gHMNaM’HPQaN’HpQ — §HMN8MHPQ813HNQ ,

which is a generalized scalar, namely /R = ﬁgf% — &P dpR. While this is a
well-defined geometric quantity in the context of generalized geometry, there
is no well-defined notion of Riemann tensor [68]. After some tedious algebra,
one can check that the action is invariant under generalized diffeomorphisms
(2.3.10). This is only true, however, once (2.3.6) is imposed. By picking the
supergravity solution (2.3.8) and using the ansatz (2.3.4), (2.3.14) reduces to
(2.1.1), the action of /' = 0 supergravity. We will not do it here, but in principle
one can vary (2.3.14) with respect to 4 and d to get the DFT equations of
motion. As expected, upon the section condition, these reduce to a system
equivalent to (2.1.3).

2.3.2 HSZ theory and its cosmological reduction

While DFT allows us to describe the massless sector of supegravity in a uni-
fied geometric picture, when it comes to o’ corrections the double theory does
not represent a major simplification of the problem*. However, in the quest of
an o'-complete spacetime theory, Hohm, Siegel and Zwiebach took inspiration
from DFT to develop a double «’-geometry, also referred as HSZ theory [72]. Its

4Although see [50] and [69] for a construction of DFT at order o/, and [70, 71] for a higher-
order proposal of heterotic DFT.
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construction was based on a non-standard chiral CFT and is thus not a con-
ventional string theory °. Nevertheless, HSZ theory shares crucial features of
any string theory, such as duality invariance under O(d, d|R) for backgrounds
with d abelian isometries, and the presence of infinitely many higher-derivative
corrections for the massless fields. While in its original formulation HSZ the-
ory carries only up to six derivatives, it also features extra massive fields, in
addition to the universal massless sector, and integrating out these extra fields
induces an infinite tower of o/ corrections for the massless fields that are kept.
These higher-derivative corrections include a Green-Schwarz-type deforma-
tion at order o/ and a Riemann-cube invariant at order o/? [69, 76, 77], but
beyond that only very little is known. Truncating to the zeroth order in o/, the
theory reduces to DFT or, upon solving the strong constraint, to supergravity
(2.1.1).

As DFT, HSZ also lives in a 2D-dimensional space with coordinates X M and
double indices are also contracted with the O(D, D) invariant metric (2.3.5).
The field content includes the "double metric" M, ; and a generalized dilaton
field d. This theory is also subjected to the strong constraint (2.3.6). A crucial
difference with DFT, is that the double metric is symmetric but otherwise
unconstrained, namely M is not an element of O(D, D) in general. This implies
that M is not of the form (2.3.4a), and so it contains more degrees of freedom
corresponding to some novel massive states.

Under infinitesimal generalized diffeomorphisms with parameter &M | the gen-
eralized dilaton transforms as in conventional DFT (2.3.11) while the double
metric receives linear and quadratic corrections in o’

My = LeMyg + o/ THL + a2 T8 (2.3.15)

Here ﬁ5 is the generalized Lie derivative as given in (2.3.10a) and the higher-
derivative contributions are given by

1 e R An R N
jj\(;)A = —iaMMPQap/CQN - 8PMQM8NICQP + (M = N) ,

N - ) A A (2.3.16)
T = _ZaWMPQaNpICQK +(M=N).

These transformations close under a deformation of the C-bracket (2.3.13)
which we call the C’-bracket:

[1,6] 10y = [0, &) 10y + @/ 0pEF0M 08 (2.3.17)

The dynamics of the theory is encoded in an action, that can be written com-
pactly as

IHSZ = /dQDXe_zd <./\;l

The definitions for the inner product (-|-) and star-product x involve long
expressions in terms of M, d and combinations of them up to and including

ﬁ—%/\?l*/\?t> . (2.3.18)

5It also appears to be closely related to the "chiral string theory" of [73] and/or to the
ambitwistor string [74, 75], but to our knowledge the precise connections have not been es-
tablished.
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six derivatives. Since these explicit expressions are not very illuminating,
we refer the reader to equations (2.11), (2.12) and (2.14) of [78] where the
definitions are given in detail, or to appendix D therein where the complete
action is exposed. The exact gauge symmetry under (2.3.11) and (2.3.15) can
be checked once the definitions of the products are used, together with the
strong constraint (2.3.6).

Cosmological reduction

We will now truncate the above theory to a cosmological ansatz in which fields
depend only on time, and we will prove that the truncation is consistent [5].
The steps to follow are very similar to the ones for the cosmological reduction
of Section 2.2.2 but this time the parent theory lives in a doubled space so
some small modifications are required. To this end we assume a split of the
coordinates and indices as follows

XM= (t, &, Y"),  5=(.%wm, M=1,..2d, (2.3.19)

with d = D — 1. This ansatz breaks the manifest O(D, D) invariance to O(1,1) x
O(d,d). Furthermore, we will solve the strong constraint by selecting a frame
in which the fields do not depend on ¢ nor Y, which breaks the O(1,1) factor
and importantly preserves the internal O(d, d). We will thus set

X =0y=0 (2.3.20)

everywhere in the field equations and gauge transformations.

Let us now turn to the decompositions of the fields and the O(D, D) metric,
which are given by

01 O —n?’B A 0
- ~ 1 1
=110 0 |, My = A -5 0 , d:§®—§lnn,
0 0 nun 0 0 Muyn
(2.3.21)

where all fields depend only on time ¢. Here we recognize the O(d, d) invariant
metric (2.2.10), the lapse function of cosmological backgrounds n(t) and the
duality-invariant dilaton ®(¢). Additionally, we have two extra scalar fields A(t)
and B(t) and the internal sector of the double metric is now parameterized by
My (t). The latter is the analogous to the internal generalized metric H,,y in
(2.2.4c¢), but this time M,y is not an element of O(d, d), so it contains more
degrees of freedom.

Apart from the exclusive time dependence, the only truncation applied in
(2.3.21) is given by the vanishing of the vector components of the double met-
ric. This is a consistent choice and the proof is analogous to the one given
for cosmological backgrounds below (2.2.29). In short, fixing the off-diagonal
components Mg, = M, = 0 is consistent because there are no O(d, d) vectors
apart from these components themselves. Additionally, one would be tempted

55



to further reduce the external 2 x 2 block in the double metric to be diagonal
and O(1, 1) valued by setting A = 0, B = 1, but this turns out to be inconsistent.

By inspecting the action of generalized diffeomorphisms (2.3.15) for this ansatz,
with the gauge parameter decomposed as

EM = (£2,&,AM) = (¢,0,0) , (2.3.22)
we find the following gauge transformations for the component fields
on = &n+ né,
A =¢EA— 30/5% :

. 1 .. 1 ... -2
6B =EB+a —EA+a”—¢ (n _ 3”_> : (2.3.23)
n n n
0Zn" = 207N,
0P = (o,

where we introduced a bottom-up index notation for the double metric
ZMN = M]up?]PN s (2324)

and used the dot notation for time derivatives 9,7 = §,¥ = ¥. To zeroth order
in o/ we recognize the familiar transformations under time reparametrizations
t — t — &(t), but these transformations receive o/-corrections. The fact that
the corrections to the transformations of A and B contain corrections not de-
pending on A and B themselves, prevents us from setting them to a constant,
so both A and B must be kept for consistency of the truncation. Instead, as
already stated, setting to zero the vectorial components of the double metric is
perfectly consistent. In fact, the transformations (2.3.22) acting on these com-
ponents vanish when the components themselves are set to zero, contrary to
what happens with A and B. As a consequence of this truncation, the full orig-
inal gauge symmetry of HSZ (2.3.15) is now broken to time reparametrizations
(2.3.22).

It is instructive to inspect also the gauge algebra under this cosmological re-
duction. One obtains with (2.3.17)

(1,65 g (o) = 26061 (2.3.25)

[517 52] (()C”) - O/é[léé] = |:\/%élv \/gé?] 5 (2-3~26)
0(C")

[61,&) 1y = 0. (2.3.27)

Given the relationship in the second line, one may suspect that the only sur-
viving algebra is that of standard one-dimensional diffeomorphisms, suggest-
ing that there should be a field basis in which this symmetry is realized in
the standard way. Indeed, we can find an explicit field redefinition that re-
moves the higher-derivative terms in JA and JB. To this end, it is convenient
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to remember the covariant derivative D = 10,. Specifically, writing the original
fields in terms of new primed fields as

A=A — go/(Dlnn)2 :

1 1
B =B +d(Dnn)DA" — o Z<D Inn)* + (D*Inn)(DInn)* — 5(1)2 Inn)?| |

(2.3.28)
it is straightforward to verify that for A’ and B’ being reparametrization scalars,
the higher-derivative terms induce precisely the higher-order corrections in
(2.3.23). Furthermore, it is immediate that the above relations can be inverted
hence proving that this is a legal field redefinition. All in all, we can express
the theory in terms of fields given by the lapse function n and a number of
reparametrization scalars, with transformation rules

n==¢&n—+nf, 0A=EA, 0B=¢B, 0ZyN =¢2yY, d=¢d,  (2.83.29)

where we removed the primes from A’ and B'.

We now give the HSZ action in this cosmological reduction, which is obtained
by plugging the ansatz (2.2.2) together with the field redefinitions (2.3.28) into
(2.3.18). More precisely, we performed the reduction at the level of the inner
and star products using their explicit definitions as given in [78] and then
combined these results back into the form of the action (2.3.18). As a con-
sistency check we can use that in this field basis the diffeomorphisms act in
the usual way, which implies that the derivatives of the lapse function should
combine to form covariant derivatives D = 19, of the scalar fields.® Upon in-
tegration by parts, we find that the final manifestly gauge-invariant action is
given by

1
I= / dtne® {—,L(D + LO 4 o/ 4 o2LP] (2.3.30)
(6%
where
LD — lTr(Z) _ lTr (23) +A— 1A3 — AB
2 6 3 ’
1 3 1 3 1
L = —Tr ((D2)’) = S(D®) + 1(DA)’ + JAD*® + - BD*®,
S 3 - (2.3.31)
L :§A[D ® — DID’® — 3(D°D)?] |
1 1
L® = Z(Df”cp)2 + 5(1>2<1>)3.

Finally, we can bring the full action to its simplest form by performing the

6As a second consistency check, we also performed the reduction directly at the level of the
o’-expanded action as given in Appendix D of [78]. We used Cadabra2 [79] for the reductions
and consistency checks.
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following field redefinition

1 4 1 1
B' =B -1+ §A2 —a [EADQCD + —~DODA — ZDQA}

4
/12
_e §p4q> _ %pq;p%p _ §(132q>)2 : (2.3.32)
2 |4 4 3

/
A’:—A+%D2®,

to get (omitting the primes for A’ and B’) [5]

I = /dme—‘I> {é [AB + %Tr (2) - éTr (33)} N %Tr (B2)) - Doy (2.3.33)

+ %2 E(D:”@)? + %(D%)ﬂ b

We observe that after the above series of field redefinitions A and B completely
trivialize in the sense that their equations of motion simply set them to zero.
Therefore, the original theory given by (2.3.31) is equivalent to an effective
theory for Z,n and ® only, whose action is given by (2.3.33) after setting A =
B =0.

At the beginning of this section we introduced HSZ theory as an «’-complete
extension of DFT. In particular, we mentioned that expanding the HSZ action
(2.3.18) in powers of o, the zeroth order corresponds to the action for DFT
(2.3.14). Indeed, one can see how this works for cosmological backgrounds
by taking (2.3.33) and assuming that, to leading order, the double metric and
generalized metric (2.2.19) coincide, namely Z = S + O(a/). Neglecting higher
orders, the resulting action is exactly (2.2.39)! This computation, together with
a thorough analysis of HSZ in cosmological backgrounds, will be elaborated
in Section 3.3. In there, we will take (2.3.33) as starting point, not only to
make contact with supergravity and its o' corrections, but also to analyze
non-perturbative features of HSZ.
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Chapter 3

Cosmological Backgrounds and o’

The previous chapter sets the stage for the development of the main results of
this work. There we introduced the low energy limit of string theories for the
massless sector, the concept of o/ corrections, dimensional reduction and the
duality group O(d, d) that emerges in toroidal compactifications. All these con-
cepts reappear in this chapter in a cooperative way to analyze «o’-corrections in
cosmological backgrounds. To this end, we begin in Section 3.1 reviewing the
systematic approach developed in [39,40] to arrive at the cosmological clas-
sification, and then revisit the algorithm for BI universes. In Section 3.2 we
study dilaton-gravity theories in cosmological backgrounds up to and includ-
ing order o/3. Finally, Section 3.3 is devoted to analyze the o’ structure of HSZ
in cosmological backgrounds.

Section 3.1.3 contains results of [6], Section 3.2 is largely based on [3] and
Section 3.3 follows closely [5].

3.1 The Cosmological Classification

As shown in Section 2.2.1, upon toroidal compactifications the two-derivative
N = 0 supergravity action (2.1.1) reduces to (2.2.8), which is manifestly O(d, d)
invariant. This feature is not unique to the two-derivative action, but to the full
string low energy effective theory. This was proven by Sen, who showed that
classical (tree-level) string theory truncated to states of zero momentum along
d directions admits an O(d, d|R) invariance to all orders in o’ [23]! A subtlety
in here is that one should allow for the O(d,d) transformations themselves to
receive o/ corrections [80]. This was indeed found in Meissner’s seminal work
on the cosmological reduction to first order in «’ when the theory was written
in terms of standard supegravity fields [42]. However, in [39,40] it was proven
that in one dimension these corrections can be removed by changing to an-
other field basis!'. In those works, Hohm and Zwiebach developed a general
framework that systematically uses field redefinitions to bring cosmological
actions to a form that involves only first-order derivatives. The claim is that
this procedure eliminates all ambiguities resulting from the freedom to per-
form integrations by part and to use lower-order equations of motion to modify

IFor dimensional reduction to a generic number of dimensions, however, the O(d, d) trans-
formations receive non-trivial Green-Schwarz-type o'-deformations [81, 82], which has a pre-
cursor in double field theory [50, 69, 72, 83], see also [78, 84-89].
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higher-derivative terms. Upon passing to this canonical field basis the O(d, d)
invariance, if present, should take the standard form.

This systematic procedure introduces a classification for the most general
duality-invariant theory to all orders containing metric, b-field and dilaton in
cosmological backgrounds:

I= /dtne—‘b {—(D@)z — éTr ((DS)?)
+ ey oTr ((DS)A‘) + a%cy o Tr ((D8>6) (8.1.1)
4o (cg,OTr ((DS)*) + 31 [Tr ((DS))] 2)
+a' (e Tr ((DS)'°) + 41 Tr ((DS)®) Tr (DS)*)) +...] .

In here, due to O(d,d), fields enter the classification through §,® and their
covariant derivatives D, which contain the lapse function n. The first line in
(3.1.1) corresponds to the lowest order action I in (2.2.39). All ambigui-
ties were removed in (3.1.1) and in this minimal basis all higher-deritivative
corrections contain only first derivatives of S, no traces Tr((DS)?), and the
only dilaton contribution comes from the term in the measure e~®. The ...
stand for higher o/ orders which follow the same pattern: terms at order «o'”
contain traces with 2(p + 1) factors of DS, where each trace involves an even
number of them except for (DS)2. The tower of higher-derivative corrections
is now tamed and fully determined up to coefficients ¢; ;, which cannot be de-
termined by duality principles and must be computed from a beta-function
computation or string scattering amplitudes. Their values are only partially
known [1, 3,39,42,90,91].

In what follows we begin by introducing the systematic of field redefinitions
in an abstract fashion. We then specialize it to the string universal massless
sector in cosmological backgrounds and summarize the algorithm developed
in [40] to arrive at (3.1.1). Restricting the space of backgrounds even further,
in Section 3.1.3 we revisit the classification for Bianchi type I universes with
q different scale factors [6].

3.1.1 Systematic of field redefinitions

We consider a generic action /[¥] depending on fields that we collectively de-
note as V¥, and admitting the following infinite expansion in o’

I[w] = o IP[w], (3.1.2)
p=0

where the term I®) contains 2(p + 1) derivatives of ¥. From our earlier discus-
sion in Section 2.1.2 we learned that all higher terms I?) with p > 1 can be
modified via field redefinitions. In particular, there is a canonical or minimal
basis where the action takes its simpler form. We now introduce a systematic
method to get this canonical form by removing ambiguities with field redefini-
tions order-by-order in «'.
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We begin by performing a generic field redefinition
U— 0 =U+400, (3.1.3)

under which a generic action I[¥] transforms as follows:

IV = 1[0+ 00] = I[U] + Y %Anl (6W)" (3.1.4)

n=1

Here we use a symbolic notation in which the integral is not displayed explic-
itly. This equation defines implicitly the n-th variational derivatives A, I, the
first of which is nothing but the equations of motion

ol ol

Em7 A]_I:(S—\IIEE\I/ (3.1.5)

AT
If we now consider a perturbative action of the form (3.1.2), the variational
derivatives admit the following expansion

Al = Za’pAnf(p) , FEy= ZO‘IPESI?) . (3.1.6)
p=0

p=0

We also assume an expansion for the field redefinitions beginning at order o’
oW = oo (3.1.7)
p=1

Inserting (3.1.6) and (3.1.7) into (3.1.4), we end up with an infinite expansion
in o/ for the redefined action I/, which to lowest orders reads

I =10 +O/([<1> + B .5\1,@))

1
+ (104 By - 600 + B 60® + 22,10 - (501)’)

(3.1.8)
+ (1% + BY - 60 4 By - 60 4 ) 50

1 1 ,
5800 (D)4 AT 50D oW AT (50 )) 1 O

The natural method of bringing the action into a canonical form then proceeds
order-by-order in o' in an algorithmic way: one first picks a §¥¢") to remove
all ambiguities from the four-derivative action /. This in turn induces new
terms proportional to Efl,l) and A,I( into the action of second order in o/. These
terms together with the original /® can then be brought to a canonical form
by picking a suitable §¥?, Both §¥) and 6¥® then induce new terms into the
action of order o3, which finally can be brought to a canonical form by picking
a suitable §¥®), This process keeps going analogously to all orders in «’. In
practice, however, one implements the algorithm to a certain finite order in «’,
beyond which induced effects are neglected. This relies on the perturbative
nature of the problem, where each order in o' is a small correction to the
previous one.
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Let us work out a simple example at order o/? to see how this algorithm is
implemented in practice: we begin at order o/, and we assume [(!) contains
ambiguous terms that can be removed by field redefinitions. Without loss of
generality, we can write this ambiguous contribution as a term multiplying
the lowest order equations of motion, i.e.,

[=19 4o |EY . X (W) +---| + 1@ + O(?). (3.1.9)

Here X (V) is an arbitrary function of the fields ¥ with two derivatives, the
ellipsis denote the remaining terms in /(Y), all containing four derivatives, and
O(a'?) represents higher-order effects that we are neglecting. By performing a
field redefinition of the form

SUl) = X (), (3.1.10)

from (3.1.8) we then infer that, in the redefined action /', (3.1.9) is replaced by

1 (
=104 /[ -]+ a? 1P+ EY - (X (1)) + §A2[(°) (= X))’ + 0,
(3.1.11)

where the ellipsis denote the same four-derivative terms as in (3.1.9), which
are unaffected by the redefinition. By comparing (3.1.9) and (3.1.11) we see
that we managed to remove a term at order «' in the original action, at ex-
penses of inducing higher-order contributions.

Identifying the exact §¥") that does the job can become very tedious in prac-
tice. In view of this, we now introduce a simple trick that allows us to imple-
ment the same transformation in a more pragmatic way: we first notice that, if
we forget about induced terms, the net effect of applying (3.1.10) on (3.1.9) is
equivalent to have used the lowest-order equations of motion as a replacement
rule at level of the action

EY =0. (8.1.12)

Since we do care about induced terms, however, we cannot simply use (3.1.12).
Instead, we artificially extend (3.1.12) to the rule

EY = —o/Ay, (3.1.13)

where Ay is just an auxiliary time-dependent object that later will be set to
zero. Both substitutions coincide at leading order, but now from (3.1.13) we
can read §¥) as the term that multiplies Ay.2

Using the rule (3.1.13) repeatedly to all other ambiguous terms in IV we end
up with a transformed action '™ in the canonical basis. For each use of
(3.1.13) we read the corresponding s¥(). All these ¥ are then added to-

gether and, combining them with E{) and A,I® as dictated by the general

2For instance, using (3.1.13) in (3.1.9), it is easy to see that the linear term in Ay is exactly
—X =6u®),
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structure in (3.1.8), we get the corresponding induced effects. After this step,
we do not need the auxiliary object Ay anymore so we set it to zero.

We now move to the next order in o/. We repeat the algorithm but this time
the starting point contains I’") already in the canonical form, and at order o>
we have I + EJ) . s0® 4 1A, 70 . (50™)*, A redundant term at order /> now
takes the form

[ =10 4 o/TD 4 o2 {Eg” Y (0 + - ] + 0, (3.1.14)

where Y (V) is a four-derivative term and --- stand for the rest of the six-
derivative couplings that complete the second-order action. In order to remove
the ambiguity, one option is to perform the redefinition explicitly using

U2 = Y (T). (3.1.15)

From (3.1.8) we see that, since (3.1.15) starts at order o2, it preserves the

already canonical I'("), it removes the ambiguous term in (3.1.14), and induce
o'3 effects. Another option, is to use the trick presented before: apply (3.1.13)
to remove the ambiguity, read §¥® from the linear term in Ay, add the cor-
responding induced terms to the next order, and then set Ay = 0. However,
since this example truncates at order «’?, we do not need to keep track of
induced terms. In particular, instead of (3.1.13), we can simply use E\(I? ' =0
((3.1.12)) because we do not care about the exact form of §U®)! Repeating
this last step with all other ambiguous terms at order o/ we end up with a
transformed I'® in canonical form. Since we are not interested in O(a/?), the
cleaning procedure is finished.

Extrapolating the lessons learned in this simple o/ example, we can describe
a general algorithm to implement field redefinitions in practice up to a generic
o'? order: we begin at order o/ with /) and remove ambiguous terms using
the rule

EY = —o/Ay, (3.1.16)

as many times as needed. After applying this rule, we will generate a polyno-
mial in o’ Ay, from which we can read ¥ as the coefficient of the linear term.
We save this value for later, since we need it to build the induced terms up to
order o'? (see (3.1.8)). We now set Ay to zero since it is not needed anymore.
At this step, the transformed I’ is in canonical form.

We move up to order o', where the new second-order action is composed of
the original I® together with the induced terms proportional to §¥("), This
combination can be brought to a canonical form via (3.1.16). The variation
5 can be read from whatever ends up next to Ay. We save also this value
for later and set Ay = 0.

We keep repeating these steps moving up in « until we reach order o7, where
the transformed action at that order depends on the original I?) together with
all 53¢ with n = 1,...,p— 1, which we have been saving along the way. At this
last stage, we can remove ambiguities by just using the rule Eflf) ) =0((3.1.12)),
since there is no need to keep track of §U®,
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This systematic approach of implementing field redefinitions is by no means
restricted to cosmological backgrounds. Notice that we did not make any as-
sumption on the field content nor spacetime dimensions. However, when it
comes to practical purposes, applying this algorithm on generic backgrounds
becomes very tedious and it is not always clear that the resulting theory does
not hide more redundancies that were overlooked. The challenge in this
method is how to implement the substitution rules (3.1.16) in a "smart" or
"unidirectional" way, where at the end of the procedure a canonical form is
reached. For the one-dimensional case, Hohm and Zwiebach cracked this
problem in [39,40] where the equations of motion are used in a very organized
and systematic way. In the next subsection we introduce this method.

3.1.2 Classification of O(d, d) cosmologies

The all-o/-order extension of (2.2.39) takes the generic form

I=>Y a?I®, (3.1.17)
p=0

where each order /» can contain a sum of different terms

=3¢,V (8.1.18)
k

The coefficients c,; are just constant real numbers and each 1,?’ contains
2(p + 1) derivatives. For instance, from (2.2.39) we see that ¥ is composed of
just two two-derivative terms, proportionals to (D®)? and Tr ((DS)?) with co-
efficients —1 and —3, respectively. By demanding diffeomorphism and duality
invariance there is a finite number of couplings we can build at each order in
o/ in terms of S, ® and their covariant derivatives D. A generic term has the

form
= / dtne=® |[]Tr (H(Da$3)bi> [[oo+ @)
i l

where the exponents d!, b, ¢;, d;, € Ny Vi, j,] need to satisfy the condition

: (3.1.19)

J
SN a4 e+ )dy =2(p+ 1), (3.1.20)
il j

because all derivatives in [ ,Ef’ ) must add up to 2(p + 1). There are many con-

figurations of exponents that satisfy (3.1.20), each inequivalent configuration
corresponds to a different label k. We are omitting the boundaries of the sums
since they are convoluted expressions of p and the exponents themselves, in
practice, however, the different configurations of (3.1.20) are easy to build.

Notice we are not considering dilaton terms without derivatives in I,ip ) and
so the non-derivative dependence only enters through ¢~® in the measure.
On the other hand, we are including the possibility of having non-derivative
contributions of S, which corresponds to a! = 0 and since S? = 1, it must be
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accompanied by b, = 1. Moreover, the following trace configurations vanish for
all q € NO

Tr (DS) =0,
Tr (DS)**) =0, (8.1.21)
Tr (S(DS)?) =0,

and so any [ ,gp ) containing them also vanishes. The first identity follows from
the traceless condition (2.2.20) and its derivatives. The second line is a conse-
quence of odd powers of DS being minus-projected objects (see (2.2.26)) and
the identity (2.2.27). The last identity in (3.1.21) is proven as follows:

Tr (S(DS)?) = Tr (SDS(DS)*™") = —Tr (DSS(DS)*") = —Tr (S(DS)?) =0,
(3.1.22)
where in the second equality we used SDS = —DSS and in the third equality
cyclicity of the trace.

Equation (3.1.19) parameterizes the most general term in the action at order
o', we now want to remove all ambiguities coming from field redefinitions and
integration by parts in a systematic way. The claim is that at order 7, the
action I® can be brought to a form where the most general term I ,8’ ) contains
only traces of even powers of DS, excluding Tr ((DS)?), namely

I = /dtne“I>

p
[T (DSPEN™ |, k=120 Y k(i+1)=p+1
i=1 i

(3.1.23)
where now we are using a different convention for the exponents compared to
(3.1.19), in which 7 labels the powers of DS inside the trace and k; labels the
powers of traces. In this notation, k is a single label characterizing the vector
of exponents {k;}. The first orders together with their respective coefficients
can be read from (3.1.1) and the £ labels are given by

p=1: (ky=1) = k=0,
p=2: (k1 =0, ko =1) = k=0,
p=3: (ki=0 hko=0, ky=1) 5 k=0,

(k1 =2, ko =0, k3=0)—>k=1.

(3.1.24)

In (3.1.23) we introduced the symbol <~ which will be heavily used from now
on. It stands for equivalence at the level of the action, up to integration by
parts, field redefinitions and higher o' effects. As it can be seen, this notation
encodes a very dense meaning, but it is quite powerful when doing computa-
tions and it makes intermediate steps clearer. Apart from practical purposes,
it is also motivated by the fact that, even though the original action /) and the
one after the classification, let’'s say I'®, are not equal, they are really phys-
ically equivalent up to order o/?! The =~ symbol hides all these ambiguities or
redundancies that relate both actions.

To prove the statement of the classification we proceed inductively: we first
assume that up to order o' the action at each order takes the form (3.1.18)

with all IV, 1% .. 1"V already in the minimal basis (3.1.23), and then prove
that this is also satisfied for / ,ff’ ' up to field redefinitions.
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As we saw in the previous subsection, applying a field redefinition of the form
U — ¥ = ¥ + §¥ with 0¥ and /[V] admitting an infinite expansion in «/, the
transformed action takes the form (3.1.8), where ¥ € {S, ®,n}. If we now im-
plement the inductive procedure mentioned above, all actions 19 with ¢ < p—1
are already in the minimal basis where [ ,Ef’) take the form (3.1.23). Therefore,
we need field redefinitions that do not modify these previous orders, but do
modify /). To this end we use

o0 = P50 (3.1.25)

where §U® is built from covariant objects containing 2p derivatives. Under
this transformation, (3.1.8) reads

p—1
r'=3 a1 4 o <I<P> +EO. 5\11@)) + /Pt (ﬂf’*” +EBY. 5\1/@)) TR
q=0

-1
= pz D 4 o/P {I ®) 4 / dtne® [Tr (E§0)68<p>) + EY o) 4 E©) M(m} }
n
q=0
+ 0,

(3.1.26)
where in the first line we kept the implicit notation of (3.1.8) and the --- rep-
resent infinitely-many induced terms. In the second line we specified to the
cosmological background and hid higher orders in O(a/?*!). The zeroth-order
equations of motion are the ones coming from the two-derivative theory 1.
They were given in (2.2.43) but we rewrite them here for convenience

EY = 411 [D*S — DODS + S(DS)?] = O(a), (3.1.27a)
EY) = 2D%® — (D®)? + %Tr (DS)?) = O(a), (3.1.27b)
EY) = (Dd)? + éTr ((DS)?) = O(d). (3.1.27¢)

Notice that now in the right hand side of (3.1.27) we do not have zeros due to
the presence of Efl,l), Eff), o

So far, I in (3.1.26) contains terms of the most general form (3.1.19). We
can now bring it to the canonical form by implementing the algorithm intro-
duced in the previous subsection. The idea of the systematic procedure was to
choose specific 6S®, §®®) and én?) so to remove all ambiguities of /), In prac-
tice, we saw that this could be implemented by using the equations of motion
as substitution rules at the level of the action, while keeping track of induced
effects proportional to §¥), In the particular case of the classification, the
inductive nature of the proof allows us to implement the algorithm in its sim-
plest form, where we can simply use the rules Eflf)) ~ 0 ((3.1.12)) and forget
about §¥® or any other induced term! The reason being that higher-order
effects will appear at the next step of the inductive procedure but, whatever is
induced, it is already contemplated in the general form of (3.1.19).

Let's see how this substitution rule works explicitly for cosmological back-
grounds treating a particular example at order o/, i.e. I = [V + /M + O(a'?).
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This will be an explicit realization of the abstract computation made below
equation (3.1.9). Suppose the action takes the form

I=194 o//dtneq’ [cTr (D*S(DS)?) + -+ ] + O(a?), (3.1.28)

where Tr (D?>S(DS)?) is the term we want to redefine away, ¢ an arbitrary co-
efficient, and --- contain all the other four-derivative terms that complete (V).
By considering a redefinition of the form S = &' = S + o/6S() we get the trans-
formed action

I'=19 4o / dtne™® [¢Tr (D*S(DS)?)

+}1Tr ([P*S — DODS + S(DS)?] 68W) + -- } +0(a?),

(3.1.29)
where we are neglecting higher orders. From (3.1.29) we see that by choosing
6SM = —4¢(DS)? we end up with

I'=19 44 / dtne ® [cTr ([DODS — S(DS)*] (DS)*) +---| + O(?), (3.1.30)

where the - - - remains unchanged. By comparing (3.1.28) with (3.1.30) we see
that the net effect of applying a field redefinition was to just use Eéo) =0asa
substitution rule, meaning

D?S =~ DODS — S(DS)?. (3.1.31)

The example in (3.1.28) has nothing special, the same result holds for other
removable terms and for the other equations of motion in (3.1.27), which can
also be used as substitution rules.

All in all, to bring I to the minimal form (3.1.23), we just use the lowest-
order equations as substitution rules, knowing that behind the scenes there
is a precise change of variables that was carried on. To this end, we use:

DS = DODS — S(DS)?, (3.1.32a)
D¢ ~ —%Tr ((DS)?) (3.1.32b)
(D®)? = —%Tr ((DS)?) , (3.1.32¢)

where for the second rule we just combined the dilaton’s and lapse’s equa-
tions.

Now we proceed to show that using these rules in a systematic way we can
bring any term in I®) of the form (3.1.19), to one of the form (3.1.23). The
algorithm goes as follows:

1. Eliminate D?S:
This first step is conceptually simple. For each [ ,gp ) of the form (3.1.19) in

I®), we just use (3.1.32a) to remove DS factors. If there are n of these
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factors, we use the rule n times. By the end of this step, an action at
order /) containing the most general terms (3.1.19) is equivalent in the
sense of <~ (i.e. up to field redefinitions, boundary terms, and higher-
order effects) to another action /”) where the most general term 7, ,E,p ) does
not contain second derivatives over S.

. Eliminate D?®:

This step follows almost identically to the previous one. For each of the
new /[ ,&p ) terms, namely (3.1.19) but without D?S contributions, we use
(3.1.32b) repeatedly to remove all D*® factors. After this step, we end up
with an equivalent action where I, ,gp ) have no second-order contributions.

. Eliminate higher derivatives of S:

In this step we begin writing any higher-derivative of S as DS = DI(D2S)
where ¢ > 0 because the case ¢ = 0 was already treated in step 1. We now
integrate by parts all D4, leaving along a DS factor that we can replace
for first-order contributions using (3.1.32a). After this, we integrate back
the D7 one-by-one. At each iteration, we distribute, apply Leibniz rule
and eliminate any generated second-order factor by using step 1. and 2.
When the iteration is over, we managed to remove all higher derivatives of
S at expenses of generating other terms containing first-order derivatives
of § and generic dilaton contributions. This iterative procedure must be
repeated for each term in ) containing higher derivatives of S. By the
end of this step, an action I?) is equivalent to one where the most general
term now takes the simpler form:

D 2p+1
19 [ane [ [re(@spen)” [T @a| . 6189
i=0 J=0,j#1

Here we are already using the conventions for the exponents of (3.1.23).
The k labels the different configurations of exponents b;, d; € N, that must
satisfy

p 2p+1
S+ 1)+ Y dij+1)=2(p+1). (3.1.34)
i=0 j=0,j#1

Notice that (3.1.33) does not include traces containing S without deriva-
tives, neither odd powers of DS. This is a consequence of the identities
(3.1.21).

. Eliminate higher derivatives of o:

This step is very similar to the previous one. In this case we start
from D2® = DIY(D*®) where ¢ > 0, integrate by parts all D4, and ap-
ply (3.1.32b) in the remaining D?® factor. Integrating back the ¢ deriva-
tives one-by-one, at each step we distribute, apply Leibniz and use steps
1. and 2. When the iteration is over, we are guaranteed to converge to
a sum of products between traces of multiple DS and, at most, single

derivatives of the dilaton, D®. At this stage, any / ,8’ ) can be brought to
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the form

ﬁ [Tr ((DS)*+))" (D®)¥ | | (3.1.35)

=0

I,gp) o~ /dtne‘<I>

where we noticed that, since the total number of derivatives is even, we
need an even number of D® factors. Moreover, in order / ,ff’ ) to have 2(p+1)

derivatives, we need j =p+1—>" jb;(i + 1).

. Eliminate o:

At this point, apart from e~%, the only dilaton contribution comes from
even powers of D®. These can be redefined away easily by using (3.1.32c)
repeatedly. More precisely:

(D®)Y = [(DD)?]’ = {—éTr((DS)z)T . (3.1.36)

Having eliminated all dilaton couplings, the most general / ,ip ) is equivalent

to
I = /altne_<I>

where k now labels the vector £;.

. Eliminate Tr ((DS)?):

ﬁ [Tr ((DS)Q(””)]’“] : (3.1.37)

=0

While the last step lead to a formidable simplification, there is a fur-
ther highly non-trivial step that allows us to remove terms containing
Tr ((DS)?). This last part of the algorithm is the longest one and involves
the use of the three rules (3.1.32) together with integration by parts.

We begin with a term of the form (3.1.37). If there is no Tr ((DS)?), there

is nothing to remove, and so we move to the next / ,(Cp ), labeled by another
k. If there is at least one factor of Tr ((DS)?), we separate one of them
from the rest of the traces and we perform a series of operations:

]’gp) = /dtne_q)

_ / dtne™® [Tr ((DS)?) F(DS)]

[T e (070"

~ —s/dmwb (D®)* F(DS)] (8.1.38)
= 8/dtnD(e‘q’) [D® F(DS)]
~ —S/dtne_q) [D°® F(DS) + D® DF(DS)] ,

where in the second line we collected all other traces in the function

p /
F(DS) = [[[Tr (DS)P9)|™ , kh=ko—1, K=k ¥i>1, (3.1.39)

=0
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which contains 2p derivatives, and can have other Tr ((DS)?) factors as
well. We introduced the label k! to account for the missing Tr ((DS)?)
factor. In the third line of (3.1.38) we used (3.1.32c) but in the opposite
direction. In the fourth line we rewrote a dilaton derivative as e *D® =
—D(e"?), and in the last line we integrated by parts. The factor DF(DS)
can be simplified by using field redefinitions:
p
DF(DS) =D | [Tr ((DS)*¢*V)]

=0

K

_ S 9K+ 1) [Tr (DS)+0) ]S T ((Ds)P i p2s) ] [T ((DS)26+0)]"
7=0 1=0,i#7j

~ i Zk;;.(j +1) [Tr ((DS)QUH))}’“;‘” D& Tr ((,DS)Q(]'—H)) H [Tr ((DS)Z(H-l))]

K

7=0 z’:O,z’;éj
P , P ' ,

=3 "2k + 1)D [Tr (DS)20+)]% T [Tr ((DS)*¢+D)]"™
7=0 1=0,i#£7]

p
= 2kj(j + 1)D® F(DS)
7=0
= 2p D F(DS).
(3.1.40)

In the second line we used Leibniz and in the third line the rule (3.1.32a)
and drop the —S(DS)? contribution because of (3.1.21). In the fifth line
we recognized the common factor of the sum as F(DS) and for the last
step we identified the sum as the total number of derivatives of F'.

Inserting this result back into (3.1.38), we keep going with the proof:

I~ -8 / dtne=® [D*® F(DS) + 2p (D®)? F(DS)]
~ (2p+ 1)/dtne<I> [Tr ((DS)?) F(DS)] (3.1.41)

= (2p+ )Y,
where in the second line we used (3.1.32b) and (3.1.32c¢) and in the last
equality we identified the original / ,gp ) term (see (3.1.38)). The final out-
come of this long computation is that any 1,51’ ) containing Tr ((DS)?) is
physically equivalent to (2p + 1)I”. Since p > 1, I!”’ must be physically
equivalent to zero!

After repeating this chain of operations to all / ,ip ) in I®) we can conclude
that the order o7 action is equivalent to one where the most general term
is given by (3.1.23), which is what we wanted to prove.

3.1.3 Bianchi type | universes and FRW

Classification of higher-derivative terms depends on the specific background
and field configuration. The above mentioned "cosmological" classification
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with fields depending only on time includes the G,y component of the met-
ric, the purely spatial components of the metric and B-field, and the dilaton.
By restricting this space of backgrounds further, there will generally be a more
refined classification. For instance, we may assume the consistent truncation
where the B-field vanishes and the spatial metric is diagonal, with d "scale
factors" on the diagonal that may or may not be equal. These are the Bianchi
type I (BI) universes studied in Section 2.2.2 3. For this smaller space of back-
grounds there are fewer higher-derivative terms that one can write, but also
fewer field redefinitions, so that the classification problem has to be reconsid-
ered. Here we perform such classification and show that for one of the scale
factors (that can be picked arbitrarily) all higher-derivative terms can be re-
moved by field redefinitions. In particular, specializing further to the case that
all scale factors are equal, corresponding to FRW backgrounds, it follows that
all higher-derivative terms are removable by field redefinitions! [6]

As we saw in (2.2.53), the lowest-order action for BI backgrounds with ¢ < d
anisotropic directions, is given by

q
10 — / dtne® [—(ch)? + ZNZ-Hf] : (3.1.42)

=1
with the Hubble parameters H;, = 2% built from the scale factors a; for i =
1,...,q. As for the cosmological classification, we now consider the infinite o

extension of (3.1.42) to take the form
1= o?1®, 1P ="c, 1", (3.1.43)
p>0 k

Our goal now is to use field redefinitions to reduce these higher-order terms
to a minimal set of couplings in the same spirit of the previous section. To
this end we will use the lowest-order equations of motion (2.2.54) simply as
substitution rules in the action which we rewrite here for convenience

DH; ~ DOH;, i=1,...,q, (3.1.444)
q

D0 = Y NH?, (3.1.44Db)
i=1
q

(DD)* = > NH?, . (3.1.44c¢)
=1

These are the direct reduction to BI universes of the rules (3.1.32)!

For BI universes, all steps of the classification are similar to those applied in
Section 3.1.2 and so we will omit intermediate steps. Specifically, the same
inductive step-by-step proof with the same itemization, proceeds as follows.
We assume that to any order in o/ any term in the action is writable as a prod-
uct of factors D¥® and D'H; with i = 1,...,q. We can now do field redefinitions
of a;,® and n that yields rules (3.1.44a), (3.1.44b) and (3.1.44c) in order to
establish:

SHigher-derivative corrections to BI backgrounds in the context of the cosmological classi-
fication were also considered in [92], where matter fields were included.
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1. A factor in an action including DH; can be replaced by a factor with
only first derivatives. This follows directly from the first substitution rule
(3.1.44a).

2. A factor in an action including D?® can be replaced by a factor with
only first derivatives. This follows directly from the substitution rule in
(3.1.44Db).

3. Any action can be reduced so that it only contains products of H;, not
their derivatives. The proof proceeds as in step 3. of the cosmological
classification: We write any higher derivative as D'*'H; = DP(DH;), and
then integrate by parts the DP. Then we use (3.1.44a), after which we
integrate back one-by-one, eliminating any generated second derivative,
using steps 1. and 2. At the end, we are left with only first-order deriva-
tives of scale factors, encoded in H;.

4. Any action can be reduced so that it only has first derivatives of ®. The
proof is identical to the one from the previous step.

5. Any higher-derivative term is equivalent to one without any appearance
of D®. To see this we notice that up to this point, any / ,ff’ ) is of the form

q
P = / dtne=® (Do) [ H. (3.1.45)
=1
Here k labels the different combinations of exponents that must satisfy
j+ >+ ,l; =p+1. This comes from I,ff’ ) having 2(p + 1) derivatives. The
absence of odd powers in (3.1.45) is a consequence of invariance under
duality transformations: H; — —H;. All these even products of D® can be
easily removed by applying repeatedly (3.1.44c).

The above chain of arguments proved that there is a field basis in which all
higher-derivative terms are of the form

q
I = / dtne ® [ H™ . (3.1.46)
i=1
Here £k labels the different vectors of exponents k;, such that Y/ &k, =p+ 1.
We now want to prove that one of the scale factors can be completely removed
from higher-order terms, appearing only in the two-derivative theory (3.1.42).
Without loss of generality, we chose the scale factor a,. To this end, it is

convenient to reorder the rule (3.1.44c) such that H, is distinguished over the
others Hubble parameters:

1 =
2 2 2
Hy~ + ((DCD) = NiHi) . (3.1.47)
=1

q

The computations are similar to what we did in step 6. of the cosmological
classification. We begin defining the analogous to (3.1.39)

q q
F(H) = [[H™, K=k -1, K=k, i#tq, Y k=p. (3.1.48)
i=1 =1
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separating a H? factor in (3.1.46), and using (3.1.47) to get
q

(») 1] 2 2
G /dtne HPF() = /dtne (D)2 ZNH) ). (3.1.49)
For the term containing (D®)? we use e *D® = —D(e~?) and integrate by parts
(p) — ~ (192 2p
=5 /dtne <D OF(H;) + DODF(H ZNH ) (3.1.50)

One can easily show that DF(H;) = 2pD<I>F(Hi). This follows from a much
simpler version of the operations performed in (3.1.40). Using this rule in
(3.1.50) we get

qg—1
¥ = Y /dtne <1><172c1>+2p (DD)? ;NJ[-P)
1 q q—1
~ ﬁ/dtne_cb(@p%— 1)) NH; - ZNﬁf)F H
q j=1 Jj=1

A (3.1.51)
1
=+ /dtneq’ ((2p +1)N,H; +2p Nij)F(Hi)
q j=1
q—1

2p _
= (2p+ 1)1V +F/dtne *N N HEF(H),
=1

q

where in the second line we used (3.1.44b) and (3.1.44c). In the third line we
separated the ¢ factor of the first sum, and in the last equality we recognized
the original action (see (3.1.49)). Bringing the latter to the left-hand side, we
get:

1 =
p) - /dtne_cb ZNjHJZF(Hi) ) (3.1.52)
q j=1

The right-hand side of (3.1.52) contains 2(k, — 1) powers of H, (see (3.1.48)).
Therefore, after this series of operations, we showed that a term like (3.1.46)
containing 2k, factors of H, is equivalent to one with 2(k, — 1) factors of H,.
Repeating this procedure iteratively, we can reduce by two units the power of
H,, at the expense of increasing the powers of the other Hubble parameters.
At the end of the iteration, we are able to redefine away any appearance of
H, at higher orders in ', being its only appearance in the two-derivative ac-
tion (3.1.42)! The most general higher-derivative term is therefore physically

equivalent to
q—1

I = / dtne [ H* . (3.1.53)
=1
As a corollary of this result, we get the absence of o/ corrections for two par-

ticular cases of BI universes:
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© FRW: In this case we have only one independent scale factor:
q = 1, Nl :d, al(t) Ea(t), Hl(t) EH(t) (3.1.54)

Since from (3.1.53) we can always remove one Hubble parameter com-
pletely, there is a scheme where there are no o corrections in the action
at all. The action to all orders in o' is just given by the two-derivative
theory:

Irrw = /dtne—¢’ [—(D®)* +dH?] . (3.1.55)

© Isotropic and static directions: A slightly more general case than FRW
corresponds to the case

q:2, ngN, ]\fgzd—]\[7
a() = a(t), Hi(t)=H(t), as(t)=const. = Hy=0.  (3.1.56)

This is one of the simplest anisotropic backgrounds where we have N
isotropic directions and d — N static ones. As in FRW, there is only one
Hubble parameter, that we can redefine away. From (3.1.53) we see that
there are no higher-order corrections at all. In this case the full action
coincides with the lowest order one:

[static = /dtne(b [_(Dq))z + NHQ] . (3157)

A few comments are in order concerning the FRW case, which appears to be
in conflict with the the classification of subsection (3.1.2). There we saw that
for generic cosmological backgrounds there is a minimal field basis such that
the action is given by (3.1.1). The coefficients ¢y, c30, €tc., cannot be changed
by field redefinitions and hence have an invariant meaning (and are certainly
non-zero). Specializing (3.1.1) then to FRW backgrounds with a single scale
factor a(t) one obtains corrections of (3.1.55) with higher powers of H%. As it
was shown in [40,47], depending on the coefficients the resulting theory may
exhibit, for instance, non-perturbative de Sitter vacua, which are not visible
in (3.1.55). So how is this result consistent with our above statement that
for FRW backgrounds all higher-derivative corrections are removable by field
redefinitions?

To understand the subtlety let us consider the first correction in o' and let us
add a term proportional to Tr ((DS)?):

1M[s] = / dtne {eTr ((DS)') + € [Tr (DS?)]*} . (3.1.58)

As recalled above and shown in step 6. of the cosmological classification, the
new term in here can be removed by field redefinitions: the coefficient £ has no
invariant meaning and we may choose ¢ = 0, as done in (3.1.1). We can, how-
ever, also choose it to be non-zero and adjust it so that for FRW backgrounds
it cancels the contribution from the single trace term. Specifically,

= _20 = ](1)[SFRW] =0 s (3159)

2d
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where Sprw denotes the generalized metric (2.2.51) for a single scale factor.
Thus, there is a field basis also for S so that, when evaluated on FRW back-
grounds, the first-order o’ corrections disappear. Similar remarks apply to all
higher-derivative corrections.

So what, in view of the above discussion, is the fate of potential non- pertur-
bative de Sitter vacua? It must be emphasized that the above manipulations
using field redefinitions order-by-order in o’ are strictly perturbative. There is
no reason why a non-perturbative solution that is visible in one perturbative
scheme must also be visible in another perturbative scheme. Although we are
still missing a better understanding of this perturbative vs non-perturbative
issue, the non-perturbative approach recently introduced in [48] represents a
promising direction in these regards. Relatedly, whether a given solution phys-
ically exhibits the properties of de Sitter space depends on how one probes the
spacetime with matter and how such content is coupled to the background
fields (see, for instance, [92, 93] for a study of the classification in presence of
matter fields).

3.2 General String Cosmologies at Order o

The result of the classification of Section 3.1.2 states that any duality-invariant
action in cosmological backgrounds can be brought to the minimal form (3.1.1).
However, starting from a generic (not necessarily O(d, d)-invariant) cosmolog-
ical action, the classification does not tell us how to perform such field re-
definitions in practice to test for duality-invariance, and, if present, find the
coefficients ¢, in (3.1.1). In this section we refine the original method of [40]
to account for exactly these limitations, restricting to dilaton-gravity theories.

We begin in Section 3.2.1 by taking the general algorithm introduced in Sec-
tion 3.1.1 and specifying it to dilaton-gravity theories in cosmological back-
grounds. Here, the main difference with the systematic approach used in the
classification of Section 3.1.2 is that the procedure is not inductive. Instead,
one needs to keep track of higher-order effects because they can break dual-
ity invariance. If the latter is preserved after bringing the theory to canonical
form, we give a prescription of how to read the coefficients of the classifi-
cation in (3.1.1), coming from a background with vanishing b-field. Then,
in Section 3.2.2 we perform a cosmological reduction of the D-dimensional
dilaton-gravity theories presented in Section 2.1.3 and apply the aforemen-
tioned method to bring the theories to canonical form up to order o’3. We find
that these theories are compatible with duality-invariance, which allows us to
read the first coefficients for bosonic, heterotic and Type II strings, collected
in Table 3.1 [1, 3]
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€1,0 €2,0 €3,0 €31
Bosonic % 1 s — 55((3) 515+ 512(3)
Heterotic = 0 —53¢(3) —a5 + 512¢(3)
Type 11 0 0 —55((3) 51 (3)

Table 3.1: First coefficients of the classification for string theories.

3.2.1 Systematic of field redefinitions for dilaton-gravity theories

In Section 3.1.1 we described a general procedure to implement field redefini-
tions perturbatively order-by-order in o/. The algorithm is valid for any field
configuration, in any background and to any order in «'. Here we specify it
to dilaton-gravity theories in cosmological backgrounds up to and including
order '3, with field content given by U (t) = {n(t), gmn(t), ®(t)}.

The cosmological ansatz for dilaton-gravity theories reads

1 1
e, = . Gu= , o= §<I>+Zlogdetg, (3.2.1)
0 en” 0 Gmn

where we included the D-dimensional vielbein ¢, and its internal counter-
part e,,%, spliting flat indices as a = (0,a). Cosmological actions are obtained
by plugging this ansatz in the parent action and truncating all but the time
derivative.

Up to order o3, the dilaton-gravity D-dimensional action takes the form Z =
IO +o/TMW 40273 +a/3763) + O(a’*). Upon compactification, the one-dimensional
action is given by

I= / dtne ® [LO +o/'LV + o2 L® + o2 LP)] | (3.2.2)

whose leading contribution can be read from (2.2.36) by truncating M to zero
1

L = —(D®)? + 1 (27) (3.2.3)

with L = Dgg~'. The variation of (3.2.2) with respect to the fields gives rise to
the equations of motion

Ey = EQ + o/EY) + o?EY) + 0(a®) =0, (3.2.4)

where U = {n, g,,,, ?} and we omitted E ) because it will not be needed in our
study. The zeroth-order equation is given by

1 1
EO = -DoL — -DL
9 9 2
1
EY) = (Dd)? — i (L?) , (3.2.5)

1
Ey) = 2D — (D) — Jtr (L) .
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Following Section 3.1.1, after performing generic field redefinitions ¥ — ¥’ =
U+ ¥ with 60 expanded up to order o’ the transformed action takes the form
(3.1.8), in which we neglect O(a'*) effects or higher. We now want to bring the
action to canonical form order-by-order in /. As opposed to the classification
in Section 3.1, here we do care about induced terms because we want the
exact form of the action up to order o’3. This includes the coefficients next to
the couplings in the minimal basis. Therefore, we cannot simply use E\(I,O) ~0
as a substitution rule (as we did in (3.1.32)), this time we need

EY =~ —d/Ay . (3.2.6)

Here we are using again the symbol <, which means equality at the level of the
action up to field redefinitions, integration by part and higher-order effects.
Using (3.2.5), (3.2.6) can be written in a convenient way

DL =~ DOL + 20/, (3.2.7a)
1
(DD)* = i (L) — d'A, (3.2.7b)
1 1
D¢ ~ i (L?) - 50 (B0 + Aa). (3.2.7¢)

As explained in Section 3.1.1, the use of field redefinitions in the form of
substitution rules allows us to remove ambiguities in a systematic way. Using
(3.2.7) we now give a step-by-step procedure to remove any appearance of
DL,D® and tr (L?) and their derivatives, at each order in o/, at the expense of
inducing new terms at higher orders. In the following we will refer to terms
containing DL, D® and tr(L?) and their time derivatives as removable. At a
technical level, the procedure is very similar to the one for the classification
so we will not describe it thoroughly here (for more details see [3]). The only
difference is the additional terms Ay in (3.2.7) that let us keep track of 0V,
which are then used to build the induced terms at each order. The main steps
of the algorithm are summarized as follow:

1. We remove higher derivatives of L by using (3.2.7a) as many times as
needed.

2. We do the same for higher derivatives of D® using (3.2.7c). In this step,
higher derivatives of L may reappear, which can be eliminated using step
1. This could produce again higher derivatives of D® that are eliminated
via (3.2.7c). This internal loop may be repeated a few times but it is
guaranteed to coverge to an action with only first-order derivatives.

3. Using (3.2.7b) we remove any higher powers of D®. If higher-derivative
terms are produced, we use steps 1. and 2. and iterate.

4. Reached this point, the only possible contribution from the dilaton comes
from a linear term in D®. This can be eliminated by an integration by
parts together with (3.2.7a).

5. Finally, in order to eliminate terms with tr(L?) one has to use (3.2.7b)
to make a (D®)? factor reappear, followed by an integration by parts of
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the dilaton. This will induce higher derivatives of D® and L that can be
traded for (D®)? and tr (L?) by using (3.2.7a) and (3.2.7c). Finally, one
uses (3.2.7b) once more to bring everything to exactly the same form as
the original term that we started from, but with a different coefficient.

The idea is to apply these five steps at the level of the action order-by-order,
starting at order /. After completing this procedure to first order, the resulting
I'V) will be in canonical form, which in this context it means that the action
contains no terms with DL, D®, tr (L?) and their derivatives. On top of I'") in
the minimal basis, the five-step procedure generates Ay-dependent contribu-
tions. The terms linearly coupled to Ay correspond to dg™", én™, and §&),
which we save to build induced terms at the next orders using the general
structure (3.1.8).

We can then apply the algorithm to second order in o/, taking as the starting
point the dimensionally reduced action I supplemented with the terms that
were induced by the field redefinitions of the previous iteration of the algo-
rithm. Again, the resulting action at order o/? will be in canonical form and
from the linear terms in Ay we can read 6¢®,én®, and 6@,

Finally, we apply the algorithm to the action to third order in «/, including
the induced terms to this order. In this final step we do not have to keep
track of ¥, as these contribute only to fourth order in o/. Therefore, we
can use (3.2.7) with Ay = 0. In practice, this implies that at order o’® we
can simply set to zero all terms containing DL, D® or tr (L?)! This motivates a
new notation for functions of these removable terms that appear at order o’3:
inside a Lagrangian these will be denoted as L, while for removable terms in
the equations of motion we use E.

At this point, the field redefinition procedure has been completed and the
action up to and including order o3 is in the minimal basis, containing only
the structures tr (L?) with p # 2.

Connection to the cosmological classification

We can now relate the resulting dilaton-gravity theory to the cosmological clas-
sification of (3.1.1). To this end, we need to write the theory, if possible, in
terms of duality-invariant objects, using the following relation between L,,"
and the generalized metric (S,)"

0 —1)kL2* 0
S, = . sy = (=1) g (3.2.8)
gt 0 0 (—1)% [L?*]
which implies
Tr (PS,)*) = (-1)F2tr (L*) . (3.2.9)

Here we introduced a subscript in S, to differentiate it from the full generalized
metric (2.2.19), with non-vanishing b-field. This is a rather important distinc-
tion, since when b = 0 the duality group O(d,d) is broken to GL(d) x Z,, in
which the Z, sector acts on the metric via ¢ — ¢! (these are the full-factorized
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dualities of (2.2.16)). From (3.2.9) we see that this residual duality-invariance
requires that odd powers such as tr(L?)® and tr(L3)tr (L°) are actually ab-
sent, which in turn poses constraints on the D-dimensional higher-derivative
corrections.

Having said that, it is important to keep in mind that dilaton-gravity back-
grounds allow us to test only this smaller subsector of duality invariance.
The remaining information, completing the group to O(d, d), comes from the b-
field couplings we are ignoring. However, if we assume O(d, d)-invariance must
hold, we can use this to bootstrap the b-field contributions in the cosmological
theory simply by extending S, — S.

3.2.2 Cosmological reductions and canonical form

Here we apply the algorithm of the previous subsection to the cosmological
reduction of the dilaton-gravity theories of Section 2.1.3, corresponding to
bosonic, heterotic and Type II strings. [3]

Before doing this, however, an important comment is in order: in Section
2.1.3 we omitted dilaton contributions in the parent theory at order o’ and
we claimed that would not prevent us from getting the full duality-invariant
action in cosmological backgrounds. We can now explain why. Compactifica-
tion of dilaton terms in £®), if present, would lead to D® and tr (L) factors in
the effective theory (see (2.2.35) or (3.2.11) below). The dilaton contributions
are removable, and so they can be set to zero via field redefinitions at expense
of higher-order effects. The tr(L) cannot be eliminated, but they are incom-
patible with Z, C O(d,d) as seen by (3.2.9). Assuming duality invariance, all
these odd-trace terms should cancel among themselves. Therefore, as well as
for the missing B-field couplings, without the parent dilatons at order o'3 we
cannot fully test O(d, d)-invariance. If such unknown couplings turned out to
be compatible with O(d, d), the cosmological actions should coincide with the
ones found here *.

The D-dimensional actions (2.1.17) are built from Riemann tensors, Chern-
Simons connections and derivatives of the dilaton defined by

1
F,ul/p = §GPU (auGzlcr + 81/G,uo - aoG,uu) )

_ v _ v B v
wwﬁ = €4 Vuef =e,"0u6," —eq Fm,pepﬁ,

Rpa,uu = auruap - aZ/F/,Lo'p + F,u/\przzo)\ - Fl/)\pr,ucr)\ ) (32 10)
R,u,uaﬁ(w) = a,uwuaﬁ - ayw,uaﬂ + Wuaku'yﬂ - wya’yw,uyﬂ = _6ag€pBRpa,ul/ )
2
Qpup(w) =Tr (w[,ﬁ,,wp] + gw[uwva]) :

4This is indeed the case for type II string at order o/ and bosonic string at order «'2, for
which the parent effective actions including all massless fields were determined by demanding
T-duality invariance in [60] and [94], respectively. These full theories were then reduced to
cosmological backgrounds in [90] and [91], determining the coefficients c3 o for type II and ¢z o
for bosonic string, being in perfect agreement with the results obtained here.
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Their non-vanishing components under cosmological reduction are
1

n_n

POm = 2Lmn ) ano = %Lmn s 1—\000 =Dn )
5 1
Wmao = _éLma y woab =ne,? Depb — gLab ,
, , (3.2.11)
1 n n 2
Rmnpq = ELp[an}q ’ 7-\)'OmOn = _?DLmn — ZLmn ,
n . n n
Qomn(W) = EL[man]p , VOgb = §DCD + Ztr (L) ,

where internal indices are raised with ¢™", lower with g¢,,, (see below (2.2.35)),
and flattened with e,,* and e,” such that L,,, = L,," gnpe.”.

Upon compactification, the one-dimensional action for dilaton-gravity theories
takes the generic form (3.2.2). Since the zeroth- and first-order Lagrangians
of the D-dimensional theory admit the universal forms (2.1.19) for all strings,
the same is true for their cosmological counterpart. The leading contribution
was given in (3.2.3) while
1 1

LW = % (gtr (LY) + str (£3)* + tr (L*DL) + tr ((DL)Q)) : (3.2.12)
with v = 1, %,O for bosonic, heterotic, and Type II strings, respectively. The
O(d/) contribution to the equations of motion comes from (3.2.12) and is given

by

g

EMN =« {i [(D®)* — D?*®] [L* + 2DL]

~—

+ éD@ [L? + 2LDL — 8D’L — 6(DL)L + tr (L) L]

— % [L*DL + L(DL)L + (DL)L*] + % [(D*L)L + D°L — LD?L]
—itr (LDL) L — étr (L?) DL} : (3.2.13a)
3 3 2 1 1
EM =4 {—Etr (L") — T (L) = gtr (PL)?) + 5tr (LD*L)
—iD(I)tr (L?) - %D(I)tr (LDL)} : (3.2.13b)
1 _ _i 4\ i 2\2 _ 1 2\ _ 1 2
ED = 4 { Str (1Y) - e (1) - Lt (L)) - (L DL)} . 32139

The higher-order Lagrangians and equations of motion depend on the specific
string theory under consideration.

We now begin with the algorithm to bring (3.2.2) to canonical form. For the
first order in o/, since IV and E\(I,1 ) are common to all strings, we can treat
all cases simultaneously. The idea is to redefine away all removable terms
from (3.2.12) (i.e. those containing DL, D®,tr (L?) and their derivatives). By
following the five-step procedure of the previous section we find

(1)

IO = Ltr (2% + o (An on

~ 53 + AgpddW + tr (Agag“)g-l)) +O(?A2), (8.2.14)
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where the first term is the transformed Z'¥ in canonical form and the rest are
artificial Ay-dependent contributions, from which we obtained

M
o St () (3.2.15a)
n
P = %tr (L% , (3.2.15b)
Wggt—n~ |1 Ipr 12
Mgyt =7 |- DPL+ DL~ 1 L*] . (3.2.15¢)

Obtaining (3.2.15) was the only purpose of introducing Ay, so we can now set
them to zero in (3.2.14).

For the next and following orders we need to analyze each string separately.

Type Il strings

The action for Type II strings contains no order o’ nor «’* deformations. The
Lagrangians of the parent theory is given by (2.1.25), rewritten here for con-
venience

Ly =L =0,
£y = 34‘(;”31{](1) o (3.2.16)
- _% (R R 1 " Rar” Rposs — 4Ras™ Ron™ R Ry + ...
with ... referring to Ricci and dilaton contributions that we are ignoring for

reasons explained above. The order o/ is written in terms of the function
J(c) = tstsR* + 5610610734 ; (3.2.17)

with tg and ey defined in (2.1.21) and (2.1.23), respectively. The point of intro-
ducing such a function is the following: the term containing ¢s can be calcu-
lated from four-point scattering amplitudes, whereas the Gauss-Bonnet term
with e starts at fifth order in a field expansion. The cosmological reduction
of J(c) in (3.2.17) gives

J(c) = 2(9—450)& (%) +1—16(51+45c)tr (LY)? =6(1—c)tr (£%) tr (L°) +1LY | (3.2.18)

where LS) denotes a function of removable terms. We then see that the re-
quirement of 0(9,9) symmetry fixes the coefficient ¢ to its expected value ¢ = 1,
as it forbids the presence of the interaction tr (L?) tr (L°).

The cosmological reduction of (3.2.16) in the form (3.2.2) is then given by

Ly =L =0, 5210
3 ¢(3) 2 3 o
i =37 —str (1%) + 2tr (11)°] + LYY
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The procedure to bring the action to canonical form is trivial for the first two
orders, so we have §¥) = g0, At order o/, there are no induced terms
so we only need to remove ambiguous terms from Lg’) by using (3.2.7) with
Ay = 0. As explained before, at this order this accounts for just setting to zero

all removable contributions. The latter are all packed in ]Lﬁ) and so the field
redefinition procedure finalizes with (3.2.19) with Lﬁ)’) = 0.

The final action can then be written in terms of the generalized metric by using
(3.2.9) together with the bootstrap step S, — S to arrive at [1]

Iy = / dtne ® {—(Dcp)2 — éTr ((DS)?) + 0/3% [—3Tr ((DS)®) +Tr ((95)4)2}
(3.2.20)

Bosonic strings

For the bosonic string, the 26-dimensional dilaton-gravity Lagrangian was
given in (2.1.26) in the scheme of [3]. The compactified theory reads

- Ly (L) + 1—16tr ((DL)*) — L (£?)° + %tr (L*(DL)?)

192 768

+ %tr (L*DL) + %tr (L?) tr (1Y) - 6i4tr (L) tr (LDL)

— 6i4tr (LDL)* + 6i4tr (LDLLDL) , (3.2.21)
L = o e () - (o] - S far (1) -2 ()] 4L . 8222

where ]Lg’) contains removable terms, and Lg) is given in (3.2.12) with v = 1.
The first order equations of motion were given in (3.2.13) while the second-
order ones read

Ef) — Ef) : (3.2.23)
Er(f) _ —itr (LG) + Eﬁf), (3.2.24)
192
1
E® = —@tr (L%) + ES . (3.2.25)

Here Eg) collectively denote functions that depend on the removable quantities
DL, D®, and tr (L?). We do not write their explicit form, simply because we do
not need them. As it can be seen from (3.1.8), their first contribution appear at
order o3, and we know that at that order we can simply set removable terms
to zero.

We can now bring the action to its minimal form using field redefinitions. The
leading term was already considered in (3.2.14), obtaining

1
W</ — St (LY) . (3.2.26)
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together with the fluctuations (3.2.15) with v = 1. Moving to the second order,
we need to remove ambiguities from the combination I + EJ) - 0 4 1A, 11
(501)2, which consists of all known quantities: 7% is built from (3.2.21), E”
is given in (3.2.13), 6¥() was computed in (3.2.15), and A,I(”) can be easily
computed from a second variation of (3.2.3). Using (3.2.7) we get

(2)

1
15 + By 60 4 S A1) - (500
1
~ / dtne ® {@tr (L%) + o <An5n + Ag60? + tr (Agég@)g—l)) + 0(0/%3,)} ,
(3.2.27)

from which we read the second-order Lagrangian in canonical form from the
first term

1
LY = o3t (L) - (3.2.28)

and /¥ from the terms in parenthesis. These second-order fluctuations are
required for the induced terms at order o/, yet we do not display them here
since their exact expressions are long, and not particularly illuminating.

Finally, following (3.1.8), at order o’® we need to consider the induced terms
that we have been collecting so far

1

EY - ou® 4 EY . s0® 4 Z A1 . (50 M) 4 ALIY . 50D . 50
2

L e T P (3.2.29)

Here ig’) contains only removable terms, that can be trivially removed by field
redefinitions at this order. The first term of the right-hand side, however,
corresponds to a non-trivial contribution at order «’3. It shifts the coefficient
next to tr(L*)” in the original Lg’) in (3.2.22). Therefore, setting removable
terms to zero we end up with

1 -3¢

0y g2y 4 L1040

3) _ (3
LSB) ~ LISB) = 914

tr (L4)* . (3.2.30)
The resulting action is written in terms of traces of even powers of L, so it

can be cast in terms of the generalized metric using (3.2.9). The manifestly
0O(25,25) invariant expression is given by

Iy = /dtne“p {-(D@)Q — %Tr ((DS)*) + O/%Tr ((DS)*) — 0/23 7 I ((DS)?)
+a? [%lg(?’)Tr ((DS)®) + %ﬁf(g)Tr ((DS)*) 2}
(3.2.31)

Heterotic strings

The 10-dimensional low energy effective action for the Heterotic string up to
and including order o® was given in (2.1.27). In a cosmological background,
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the theory reduces to

@ _ 3 27 y2) _ O
Ly = 55tr (L(DL)?) — ootr (LDLLDL) (3.2.32)
1 (3 f
Ly = —gtr (L) + % [—3tr (L®) + 2tr (L‘ﬂ +LY, (3.2.33)

with Lg) given in (3.2.12) with v = % To order o' the deformations to the
equations of motion are given in (3.2.13), while at second-order we have

2 2
E® =ED | (3.2.34)
E® =E® (3.2.35)
EY) =EY, (3.2.36)

which shows that, under field redefinitions, they contribute to the transformed
action at order o’ only with removable terms.

Bringing the action to a canonical form follows the same steps we performed
several times already, so we do not repeat them here. At the end of the field
redefinition procedure, the transformed action in canonical form has the fol-
lowing Lagrangians

Ly = 6i4tr (LY

r'?=o (3.2.37)

3¢(3) 15 — 27¢(3)

1(3) _
Ly =— 911 917

tr (L4)* .

tr (L%) —

Since they all contain traces of only even powers of L, the action can be written
in a manifestly 0(9,9) form using (3.2.9). The final result is

Iy = /dtne@ {—(ch)2 — éTr ((DS)?) + O/%TI‘ ((DS)")
3¢(3) 15— 27¢(3) (3.2.38)
+a {— Tr ((DS)*) — ——55— 2T ((DS)‘*)Q} } .

212

3.3 HSZ and o’/

In Section 2.3.2 we introduced HSZ theory as an «o'-complete extension of
Double Field Theory. Its spectrum contains, as a subsector, the fields of the D-
dimensional universal massless sector of string theory: the metric, B-field and
dilaton. The field content is completed by some novel massive modes. In its
original formulation, the action of HSZ has only a finite number of derivatives,
which is a direct consequence of the presence of the massive modes. These
extra fields can be integrated out, leaving an effective theory for the massless
sector with an infinite tower of o’ corrections. From here one can relate HSZ
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to conventional supergravity. Another option is to keep the massive fields and
analyze the non-perturbative o’-exact theory directly.

In this section, we carry out both procedures for cosmological backgrounds [5].
We begin integrating out the massive fields perturbatively in o/, obtaining the
effective action up to order o/*. We then bring it to canonical form by using
the method introduced in Section 3.1.1. In particular, this allows us to read
the coefficients of the classification (3.1.1) for HSZ. We then come back to
the original formulation where the massive fields are kept. We find a two-
derivative reformulation of the theory, take the tensionless limit o/ — oo, and
find solutions in FRW-like backgrounds upon perturbation theory in 2.

3.3.1 Supergravity limit up to order o

We start from the action in the form (2.3.33) setting A = B = 0, as implied by
their own field equations. This leaves us with the following action for Z,n and
O

L= /dtne_q’ {i [Tr(Z) - %Tr (33)] - éTr((DZ)Q) — (D®)? o

2 [}1(93‘1’)2 " %(D%)ﬂ } -

The equations of motion can be obtained from the general variation of this
action

61 = /dtne“b [Tr (0ZEz) + 6PFEq + 5—”ER} : (3.3.2)
n
with
0=E =i(1—22)—12>c1>2>z+11>22 (3.3.3a)
T T oy 4 47 e

0=Fs = —QLO/ [Tr (Z) - %Tr (23)} + %Tr ((DZ2)?) — (DD)* + 2D*®

0/2

, 9
-5 [D% — 3D®D’® — TD*®D*® + 3(DP)*D'd — 5(D3<I>)2

+ 11DPD?*®D3*d — (DP)*D*® +§(D2<I>)3 — 2(1)@)2(2)2@)2} :

(3.3.3b)

0=FE, lTr (Z) - %Tr (23)} + %Tr ((DZ2)?) + (D)

1
2/

0/2

1
-5 [D@D% — D*®D'® — 2(DP)*D'd + 5(Df”cb)? — 4DPD*PD?*P
4
+ (D®)*D3® +§(D2q>)3 +2(D®)*(D*®)?| . (3.3.3¢)

We now decompose the double metric into the generalized metric plus extra
fields [95]
Z=8+F. (3.3.4)
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Here S encodes the internal metric and b-field (2.2.19), and F contains mas-
sive fields that will be integrated out perturbatively. While the decomposition
(3.3.4) is totally generic, in perturbation theory we think of F as being of one
order in o' higher than S. This is motivated by the fact that, in this case, the
leading order contribution to (3.3.1) does not depend on F and it corresponds
to standard supergravity in cosmological backgrounds (2.2.39).

As mentioned several times before, the generalized metric is a constrained ob-
ject satisfying S = 1. This allows us to define +-projected spaces via (2.2.26).
We can then assume F to be a constrained field belonging to the + subspace,
i.e. F = F,, because any part in F belonging to the — subspace can be re-
moved by a field redefinition S — S + 0§ since 6§ = [6S]- ((2.2.28)). Thus,
without loss of generality, in perturbation theory we can write

Z=8S+F,. (3.3.5)

Let us now inspect the equation of motion (3.3.3a) after using this decompo-
sition of Z. Inserting (3.3.5) into (3.3.3a) one obtains

/ 1
SF, = %Dq)(S ) - 5P (3.3.6)

where we used the definition Oy = D? — D®D we introduced in (2.2.44). From
this we can obtain the equations for F, or S by projecting into + subspaces.
For the generalized metric we project to the — subspace, and use [F.|. =
[F2]_ = 0. This yields

Oe(S+F4)]_=0. (3.3.7)

For the extra fields we take the + projection:

o o

1
Fr= 70688 + 7[00 F ]S - 5?_%5 : (3.3.8)
Since this is the equation of motion for F,, we can solve for it perturbatively
in o' following the iterative procedure we now describe.

Equation (3.3.8) is the starting point for integrating out the extra fields F.,.. We
assume a perturbative expansion in o/, namely

Fr=Y o'F). (3.3.9)

i>1

Inserting this expansion into (3.3.8) we obtain the recursive relations

1 1
F = [0s8),.8 = —(DS)*.
o _ 1 (i-1) L £0) £69) (3.3.10)
F = [0aF ]+8—§Zlfgf+13, i>2.
pm

By solving these equations recursively, we can express all ]—"f) in terms of S, ¢
and n. Plugging these expressions back into the action =(3.3.1) (after splitting
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Z + S + F) yields the effective action for the conventional fields. We performed
this computation explicitly up to order o’* obtaining °

IT=19 4o/ 1O 1?1 £ o210 £ 4T L O(a®), P = / dtne ®L®  (3.3.11)

with the Lagrangians

Lo _ %Tr (DS)?) — (D®)?,
LW = o,
1 1 1
L@ _ Tr ((DS)%) — —Tr (D’SDSD’SDS) — —Tr ((D2S)*(DS)?
7 TT (D)) = 5Tr (D°SDSDSDS) — o5 Tr (DS)ADSY) - g 5 19
1 1
—(D?®)? + —(D?*®)?
+16( )+12( )7,
LB — ]1‘1(3)7
LW L@

The notation L® and L® is to indicate that these terms are functions of
D2S,DP, and Tr ((DS)?), whose specific form is irrelevant for our purposes.
These are removable terms, the analogous to DL, D®, and tr (L?) in the dilaton-
gravity theories of Section 3.2. As we learned in that section, removable terms
in the Lagrangian can be redefined away at the expense of introducing higher
order terms.

Classification

The action containing the Lagrangians (3.3.12) can be brought to a canon-
ical form, the form of the classification (3.1.1). At that point, we can read
the specific coefficients that define unambiguously the massless sector of HSZ
in cosmological backgrounds. The process of implementing field redefinitions
in a systematic way was introduced in Section 3.1.1 and applied to dilaton-
gravity theories in Section 3.2. We will not repeat the algorithm here since
it is very similar to the one implemented there. More precisely, the five-step
procedure below equation (3.2.7) follows almost identically, except that this
time we want to remove DS, D®, and Tr ((DS)?) contributions. For the imple-
mentation of that procedure to HSZ in cosmological backgrounds we refer the
reader to the appendix of [5]. Here, instead, we summarize some intermediate
steps and give the main result.

The fact that the first order in (3.3.12) is zero simplifies considerably the pro-
cess. The general structure in (3.1.8) up to order o/* for this particular case

5See [5] for a detailed derivation.
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reads

I'= 10+ a2(1? + B - 60®)
+ a8 (I<3> +EY. 5\1/<3>)

1
+at (1<4> +EY . 50@ 4 SR (60 + EY - 5\If<4>) +0(a”),
(3.3.13)

where the order o/ does not receive any induced terms from lower orders
as a consequence of the original action having no /). Moreover, §¥ does
not propagate to the next order, which makes the process even simpler. As
explained in Section 3.1.1, field redefinitions are implemented order-by-order
via the substitution rule Eflf)) ~ —d’Ay with Ay an artificial time-dependent
factor that allows us to keep track of induced terms. In this case E\(I,O ) is given
in (3.1.27) and so the rules read

DS = D®DS — (DS)*S — 4d'As (3.3.14a)
(DP)? = —éTr (DS)*) — A, , (3.3.14b)
D2® = —éTr ((DS)?) — % (A, + Ag) . (3.3.140¢)

The field redefinition procedure begins at order o/, where the action is already
in canonical form, in particular it is zero. Therefore, there are no ambiguous
terms to remove and so ¥ = 0. We then move up to order o’?, where we have
no induced terms and so we only have to remove ambiguities from the original
L®? in (3.3.12). This is achieved by the use of (3.3.14), mimicking the five-step
procedure applied for dilaton-gravity theories. At the end of this process, the
resulting I'® is in canonical form, it has no DS, D®, or Tr ((DS)?). We find a
non-trivial §U® that can be read from the linear term in Ay. At order o/® there
are no induced terms (see (3.3.13)), the only contribution is the original L® in
(3.3.12), which contains only removable terms. These can be freely set to zero
since we do not have to keep track of §¥®. Finally, at order o’* we have the
last line of (3.3.12) with L® = L™ and non-trivial induced terms coming from
§¥(?), While the former can be simply set to zero, the induced terms generate
a non-trivial contribution proportional to Tr ((DS)*) Tr ((DS)9).

The final result of this systematic procedure is the HSZ action in the cosmo-
logical classification (3.1.1) with coefficients [3, 5]

C1,0 C2.0 C3,0 C3,1 C4.0 C4.1

0 57 0 0 0 —33

3213

3.3.2 Two-derivative reformulation and o’-exact Friedmann equa-
tions

As we just saw, (2.3.33) corresponds to an effective theory for Z,n and ® where
A and B can be set to zero for free. However, even though they encode no extra
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information for the physical fields, they can still be used to bring the theory
to a formulation without positive powers of «/, i.e., without more than two
derivatives. To this end, we perform the following field redefinition

2 1 1 1
B=RB — gA’2 +a [ZDA’D(ID - ZDZA’ + gA’D%D}

_ a_/Q _1734(1) + lpq;pfiq) + 1(@2@)2 (3.3.15)
2 4 4 3 ’

/
A:A’+%D2q>,

under which the action (2.3.33) transforms to (omitting the primes)

I= /dtne-‘b {al AB - §A3 + %Tr(Z) = éTr (2%)]

! h ] (3.3.16)
— STr ((D2)?) — (DO)* + (DAY’ + §BD2<I>} .
In this formulation, all higher orders in o’ are "hidden" in the on-shell value of
A and B. Indeed, we note that B enters in the action just linearly, so it plays
the role of a Lagrange multiplier, which imposes a condition on the scalar field
A: 51
5=
Reinserting this value of A into (3.3.16), the A® and (DA)? couplings are re-
placed by the o'? terms (D?*®)? and (D3*®)?, respectively. The resulting action
is exactly the effective action for Z,n and ¢ obtained from (2.3.33) after fixing
A=B=0.

/
0 = A:—%D%p. (3.3.17)

The fact that HSZ admits a formulation like (3.3.16) is an important and rare
feature of the theory. This allows us to take the so-called tensionless limit
o/ — oo. Nor the two-derivative reformulation nor the tensionless limit have
counterpart in any other target-space string effective theory! Interestingly,
this is not the first time these characteristics are studied in HSZ. In [96],
the full HSZ theory (2.3.18) was considered up to quadratic order in field
perturbations about flat space and it was shown that the higher-derivative
terms can be removed by introducing certain auxiliary fields. One can then
take the tensionless limit o/ — oo smoothly, for which one finds an enhanced
gauge symmetry whose corresponding gauge fields are the auxiliary fields. It
is worth enumerating the differences between our results and the ones in [96]:

©® In the cosmological setting, to arrive at the two-derivative reformulation
(3.3.16) we did not need auxiliary fields as in [96]. The already present A
and B fields were sufficient to reabsorb higher-derivative terms.

® While the two-derivative reformulation of [96] was found up to quadratic
order in field perturbation, the action (3.3.16) is valid to all orders in
fields.

© Upon taking the tensionless limit, the enhanced gauge symmetry found
in [96] trivializes for cosmological backgrounds, so we cannot see it in
our analysis.
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One can check that all our results are consistent with the ones in [96]. The
precise details for this connection can be found in [5].

o’ -exact Friedmann equations

We now analyze the two-derivative equations for FRW backgrounds, bringing
them into the form of string cosmology with "matter fields", which here are the
extra fields A, B and F. We begin by considering the two-derivative form of the
action (3.3.16) and expanding Z = S + F, which yields

I=194¢1,, (3.3.18)
with
10 = /dtne @ {—%Tr((DS)Z) - (ch)2} ,
_ g 2p 1 S
I, = [ dtne AB — ZA® — _Tr (S§F?) — Tr (F?) (3.3.19)
o 3 2 6
1 s 1,1 1 )
+Z(DA) + 5BD ¢ — JTr (DSDF) — gTr (DF)?) ¢ .

In this split /(¥ is the standard lowest order, two-derivative gravity action of
(2.2.39), and I,, encodes what we will call "the matter content" parameterized
by A, B and F. It is important to point out that here we make no a priori
assumptions on the o/-dependence of F. From /) one obtains the equations of
motion for the massless fields, as computed in (2.2.43). For the matter action,
we encode the variations in terms of an O(d, d)-covariant energy momentum
tensor 7/, an energy density p, and a dilatonic charge o [93,97], defined as:®

e?® ol,,
T = —2—8u" 55— (3.3.20a)
I
p= —eq’%—:, (3.3.20b)
b
o= —26—%‘. (3.3.200)
n

The equations following from (3.3.18) for S, ® and n are then given by

(OS] S = —2[T]_, (3.3.21a)
2D°® — (DP)? + éTr ((DS)?) = %a, (3.3.21Db)
(DD)” + éTr (DS)?) = p. (3.3.21¢)

6All quantities are defined with a /|g|e® re-scaling compared to standard definitions.
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with

1 1
T.=8 l—QDq)f + —/]—"2] : (3.3.22a)
) 1
p =5 Tr (SF?) + —Tr( %) — —Tr (DSDF) - S Tr (DF)?)
1 2 .\ 1 1 , 1
~ (AB 54 ) 4(DA) + 5 B(D®)* — SDBDY, (3.3.22b)

1 1 1 1
0 =——Tr (SF?) — 3 IT (F?) - 5 Tr (DSDF) — 1 Tr ((DF)?)
2 2 1
+— (AB — §A3) + 5(DA)2 +2BD*® — B(D®)* + 2DBD® — D*B.
«
(3.3.22¢)

Where we wrote the result in terms of the [Jgs operator of (2.2.44) and projected-
objects (2.2.26). It is worth remembering that the minus-projection in (3.3.21a)
comes from S being a constrained object (see (2.2.28)). In addition, the EOM
for the matter fields are given by

1 1 1
— [ _ — _— _F? 3.2
0 1 o(S+F) o, (SF+ FS) 20/}" ) (3.3.23a)
/
A= —%192@7 (3.3.23b)
o, 2 L 4 Lo oxvo , 1 3

where in the last equality of (3.3.23c) we used the on-shell value of A. In-
deed, we see here that A and B can be eliminated completely, but we find it
convenient to keep them in order to be able to work with second-order equa-
tions. It can be shown that reparametrization invariance implies the following
continuity equation:

Dp + %Tr (SDST) —DP(p + %U) =0. (3.3.24)

Let us now specify to FRW backgrounds, characterized by the ansatz (2.2.56),
containing a single scale factor a(t) and with it a single Hubble parameter
H(t) = B¢, Using (2.2.58), we can write out the Lh.s of (3.3.21) for FRW back-
grounds
O6S]_S — 2(DH —D®H) :
0 —1

(3.3.25)
2D*® — (DP)? + éTr ((DS)?) — 2 D*® — (DP)* — dH”,

(DD)? + éTr ((DS)*) — (D®)* —dH>.

For the r.h.s of (3.3.21) we need to choose a parameterization for F. Instead
of considering the extra fields in full generality, however, we will truncate the
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theory to the subsector F_ = 0. While we find that in general this is not
a consistent truncation of the full theory (3.3.19), it can be proven (see [5])
that it is a consistent truncation for FRW backgrounds. Thus, from now on
we consider F_ = 0 and we proceed to parameterize F,. The most general
ansatz for a +-projected O(d, d, R) tensor consistent with the FRW background
(2.2.58) is given in terms of two symmetric matrices f;,,"(¢) and fs,,"(t). How-
ever, demanding homogeneity and isotropy, as for standard cosmology, we
set fion = fi0mn,  fomn = f20mn. This is also a consistent truncation. In this
simplified scheme, F, takes the simple form

2
]—“J-"+( " fla)+(f2 O)f18+f21, (3.3.26)
a?fi 0 0 fo

where 1 denotes the unit matrix with components §,,. With this truncation,
the matter content is described by just four scalar fields, A, B, f;, and f.

By taking derivatives of (3.3.26) and using the definition for the generalized
energy momentum tensor (3.3.22a) with F = F, it follows

T = _%5 OoF.] = [2HDf + (DH — DOH) fi] (1) 01 | (3.3.27)

In order to give a physical interpretation to (3.3.27) notice that for FRW back-
grounds (3.3.20a) gives

@ I _Tmn 0

T = —2€—SMP Ol _ , with T,," =pé,", (3.3.28)
n 5SP N 0 Tmn

which describes a perfect fluid with pressure p. Comparison with (3.3.27) then

motivates us to view the extra fields of HSZ as describing an effective perfect

fluid with an effective pressure determined by f,

p=—-2HDf, — (DH — D®H) f; . (3.3.29)
For the energy density and the dilatonic charge we just need to insert our
expressions for § and F and their derivatives, (2.2.58) and (3.3.26), into the

definition of p and ¢ in (3.3.22b) and (3.3.22c). After some straightforward yet
tedious algebra, one obtains

p= g (2f2f1 ipd f2f12> FAH (i +2) — 2 (DR) + (DF)?)

3 4
_ 1 (AB — 2A3) + l(DA)2 + 1B(D@)? - 1DBDcI),
o 3 4 2 2
y . p (3.3.30)
o=-= (2f2f1 + §f23 + f2f12) +2dH? f1(f1+2) — 5 ((Df1)? + (Df2)?)
+ 3, (AB = §A3) - %(DA)Q + 2BD*® — B(D®)* + 2DBD® — D°B.
(6%
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With (3.3.29) and (3.3.30) the right-hand sides of the equations of motion
(3.3.21) are completely determined.

Next, for the equations of motion of the extra fields (3.3.23) we can consider
just the + projection of (3.3.23a), because the minus projection is exactly the
equation for S in (3.3.21a) and so it vanishes on-shell. By taking F_ = 0, the
+ projection of (3.3.23a) reduces to

Oé/

1
0= [Oa(S + Fy)], +SFy + Ef_‘i

4
1 1 o o (3.3.31)
= §fl2 + §f22 + i - ZD¢f2} 1+ [(f2 —dH?)(fr +1) - S e 1| S,
which imply two inequivalent equations (one for each scalar field)
1 1 o
§f12 + §f22 +fi— chbe =0,
(3.3.32)

(fo—o'H?)(f1+1) - O‘Z,mpfl =0.

When combining (3.3.25), (3.3.29), (3.3.30) and (3.3.32), we end up with a
non-linear system of coupled second-order differential equations for
a7q)7n7AaBaf17f2:

p=DH —D®H, (3.3.33a)
%(%0 +p)=D*®—dH?, (3.3.33Db)
p=(D®)? —dH?, (3.3.33¢)
0= (fo—H*)(fi +1)— O‘Z/qu : (3.3.33d)
0= %fﬁ + %fﬁ + fi— O‘Zlmcpfz, (3.3.33¢)
A= —%/192@, (3.3.33f)
B =2A%+ %/DcpA, (3.3.33g)

with the "effective matter sources" given in (3.3.29) and (3.3.30).

It is instructive to check that these equations are invariant under duality
transformations, which in the case of FRW backgrounds reduce to a sim-
ple Z, transformation a — o~ !, while the rest of the fields, including f, and f,
behave as scalars. On top of this consistency check, one can also see that, if
fi = 0(d) and f, = O(</), the whole system (3.3.33) reduces to the standard
Friedmann equations in vacuum (2.2.60) upon neglecting higher orders in «'.

Remarkably, the above system represents a non-perturbative and «'-complete
set of equations for a consistent truncation of a theory sharing many fea-
tures of genuine string theory. Unfortunately, without making any further
assumptions on the field content, finding analytic solutions of (3.3.33) in gen-
eral seems to be difficult. An exception is a rather degenerate solution given
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by

with ®, constant. Here, using (3.3.26), f; = f, = —1 implies that ¥ = -§ -1
and so Z = §+F = —1, which makes S disappears completely. In other words,
there is no gravity contribution to the solution, a fact that can be corroborated
by using f; = f, = —1 in (3.3.33) to see that all H(¢) contributions just cancel
out.

Apart from this simple case, looking for exact and more complex solutions of
the system (3.3.33) is a complicated task and one should look for simplifica-
tions. One option would be to use the split into massless sector and matter
content more seriously and not as mere notation. While the massive fields
fi1, f2, A and B from HSZ theory are rather abstract objects, the notion of pres-
sure, energy density and dilatonic charge are not. Therefore, we could take
inspiration from known examples or cosmological scenarios already studied
in the literature in other contexts, not directly related to HSZ, to restrict the
space of solutions. For instance, one could be interested in backgrounds
whose matter content describes a barotropic fluid p = wp and/or no dilatonic
charge, 0 = 0. These cosmology-driven conditions would impose constraints
on the extra fields that could help in finding solutions. A second option is to
study particular configurations for the dilaton and Hubble parameter and ask
if there exist any configuration of the extra fields A(¢), B(t), f1(t) and f,(t) such
that the equations are satisfied. Finally, a third option is to look for solutions
perturbatively. While the first cosmology-inspired approach seems promising,
we will not follow that approach here. Instead, we study briefly the second
option but then move right away to the perturbative approach. Since for none
of these methods we need the matter-content interpretation, from now on we
treat p, p and ¢ in (3.3.29) and (3.3.30) as pure notation to encode what is in
the L.h.s of (3.3.33).

We begin by ruling out the somewhat degenerate branch of solutions (3.3.34)
by demanding f; # —1. On top of that we also exclude the flat Minkowski
background by demanding H # 0. From now on we will gauge fix the lapse to
n(t) = 1 and adopt the following notation for the extra fields

r=1+ 140, y=/fo. (3.3.35)

We now observe that under these assumptions equation (3.3.33a) can be
solved exactly: inserting the definition for p in the L.h.s of (3.3.33a) and using
(3.3.35) we can see that (3.3.33a) is equivalent to

—2HOInx=H—-®H = 0n(z %) =0/(nH - ), (3.3.36)

where we inverted H to arrive at the second expression. This equation can be
integrated exactly to arrive at

H(t) = Qe®Wa(t)2, Q = constant # 0. (3.3.37)

This relation tells us that the Hubble parameter is completely determined from
the dilaton and one of the extra fields. For the rest of the system we cannot
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do much without considering particular truncations or certain limits of the
theory and so here we just rewrite them in terms of x and y:

H = Qe®z72, (3.3.38a)
.. s o d o 1.y 1_ . 1.. 1.
b =di*® — < (i + %) + (AP + =B+ -Bd — - B, (3.3.38b)
4 4 2 4 4
P? = 4 a:2—1—|—1y2 y+dH2x2—C—Z($'2+y'2)
o 3 4
1 2.\ 1., 1. .., 1..
~ (AB 24 ) + (A7 + S B(®)° — S B, (3.3.38¢)
of o A
0= —Zx + Zfbx +axy— o' H x, (3.3.38d)
/ /
0= —%" + %@y b1, (3.3.38¢)
O/ .
A= _ECD? (3.3.381)
/ /
B=24%+4 %A - %@A. (3.3.38g)

Most of the complexity of the system comes from the terms involving A and B,
since they are the only ones implicitly encoding up to order six in derivatives.

Once the matter-content interpretation is abandoned, (3.3.38) is just system
of coupled second-order ordinary differential equations. We did not succeed
in finding solutions of the full theory for specific ansatze of the dilaton and
Hubble parameter. In the process we ruled out some possible configurations.
Among these no-go results, probably the most interesting ones are the ab-
sence of solutions with constant duality-invariant dilaton ®(¢) = ®,, and the
absence of de Sitter background in Einstein frame with constant scalar dila-
ton ¢(t) = ¢o, which is related to ¢ via (2.2.56). Other explored ansatze that
failed to solve (3.3.33) can be consulted in [5]. This analysis showed that some
of the simplest backgrounds one can propose for the standard fields H# and ¢
are not solutions of the HSZ equations for any configuration of the extra fields
A, B, fi and f,. It is worth mentioning, however, that this study just scratched
the surface of the whole landscape of possible backgrounds one could pro-
pose, and we expect that upon a more exhaustive analyses exact (analytic or
numerical) solutions could be found.

3.3.3 Tensionless limit, de Sitter solution and al expansion

Due to the complexity of (3.3.33), finding exact analytic solutions is not an
easy task. However, we can exploit the two-derivative nature of the system
(3.3.33), a feature that has no analog in string low energy effective theories,
where equations of motion are only known perturbatively in o/, and each order
increase the number of derivatives by two. In particular, we can take the
tensionless limit o/ — oo and look for solutions of the resulting simpler system.
In this limit case, the equations are simple enough to obtain the general exact
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solutions! By sending ' to infinity, all non-derivative contributions disappear,
and (3.3.38) reduces to

H=Qe%s?,, (3.3.392)
.. 9o o0 d, 5 1.5 1 . 1., 1.

- d 1. 1. 1.

% = dH?*2* — 1 (* +9%) + Z(A)“‘ + 5B(cb)2 -5 B2, (3.3.39¢)
0=i— di+4Hx, (3.3.39d)
0=14— dy, (3.3.39¢)
0=, (3.3.391)
0=A—dA. (3.3.399)

We now turn to (3.3.39f), which implies a linear dilaton profile:
O(t) = —w(t —to), (3.3.40)

where w is an integration constant. From now on the solutions are different
depending whether w vanishes or not. Since the procedure to get both family
of solutions is almost identical, we describe in detail only the w # 0 case and
just give the final result for vanishing w.

Equations (3.3.39g) and (3.3.39¢) take exactly the same form and, upon using
(3.3.40), they can be solved exactly

A(t) = Ag + Are U710 y(t) = yo + yre @) (3.3.41)

Then, by subtracting (3.3.39c) from (3.3.39b), using (3.3.40) and reordering
terms we get a second order differential equation for B,

B+ 3wB+ 2w?B — 4w =0, (3.3.42)
which is exactly solved by
B(t) = 2 4 Bie @710 4 Bye=2(t-to) (3.3.43)

At this point we have two remaining equations for z(¢), namely (3.3.39d) and
(3.3.39Db) (or equivalent (3.3.39c)). We found it easier to solve (3.3.39b) because
it is a first order differential equation, and then check (3.3.39d). Inserting
(3.3.39a), (3.3.40), (3.3.41) and (3.3.43) into (3.3.39b) we arrive at the first
order equation

i’ — (4Q%x 2+ Cy) e ™) =0, ¢ y

(A2 —dy? —2B,) , (3.3.44)

where we defined the constant C; to simplify the notation. By multiplying both
sides with z? and changing variables to z(t) = x(¢)? we arrive at the equation

22— (16Q° + 40y z) e (71 = 0, (3.3.45)
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which has different solutions depending whether C) vanishes or not,

@ efw(tfto)

2
z(t) = % (e"”(t*to) + x0)2 - % if C7#0. (3.3.47)
1

Returning to the original variable z(t) = ++/2(¢) and plugging the result to-
gether with (3.3.39a) and (3.3.40) into (3.3.39d) one can verify that the last
equation of the system is also satisfied.

All in all, combining the above results we conclude that, for w # 0, the most
general solution to the system (3.3.39) is given by:

O(t)=—w(t—t), w##0, (3.3.48a)
H(t) = Qe="z(t)™, Q#0, (3.3.48b)
A(t) = Ag + Aje @) (3.3.48¢)
B(t) = 2+ Bie *("710) 4 Bye2(i=t0) (3.3.48d)
y(t) = yo + yre ) (3.3.48¢)
Q —w(t—tg) ; _ 9
a(t) = {i/\/; (we ew(tto) :;;2 i i 21 7& 3 ¢y = % (AT —dyf —2By) .
o2 0 ol 1 :

(3.3.48f1)

Repeating identical steps for the w = 0 case, we get a second set of solutions:

®(t) =0, (3.3.49a)

H(t) = Qz(t)™?, Q#0, (3.3.49b)

A(t) = Ao+ Ai(t — to), (3.3.49c¢)

B(t) = By + Bi(t — tg), (3.3.49d)

y(t) = yo + yu(t — to), (3.3.49¢)
+2/£Q(t — to) + o if Cy,=0, 1, )

- {i\/Cg[(t —to) +mo]? — 2L if Cy#£0, Co=g (Ai—dy) . (5.3.490

Each of these families is parameterized by several independent free parame-
ters. In particular, for the w # 0 case one can analyze the simplest solution
of this family obtained by taking Ay = A1 = By = B, = yp = y1 = 9 = 0 and so
arriving at

Q

d(t) = —w(t —to), H(t)zsign(Q)I, o(t) = £2 e~2@(t—0)  (3.3.50a)

Aty =y(t)=0, B(t)=2, (3.3.50b)
where we kept only the real z(¢) branch. Remarkably, the Hubble parameter

is constant, and hence this solution corresponds to a de Sitter background
in string frame. Note that the de Sitter scale here is simply an integration
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constant and not determined by a bare parameter in the action, which means
that H is fixed by the initial conditions. Furthermore, it can be shown that
(3.3.50) also admits a de Sitter solution in Einstein frame with constant dilaton
for the particular case of d = 4, corresponding to five spacetime dimensions.

The tensionless limit can be interpreted as the zeroth order of a perturbative
expansion in small &;. Therefore, in the remainder of this section we explore
the first order correction in - to the system (3.3.39). More precisely, we return
to the full equations (3.3.38), write for all fields

a/2

U(t) = vO(t) + é\l/(l)(t) +0 ( ! ) : (3.3.51)
and expand all equations up to first order in ai By doing so each equation
will split into two, one for each order, the leading one corresponding to the
tensionless limit studied in (3.3.39). We will not consider corrections to the
most general zeroth-order solutions found in (3.3.48) and (3.3.49) but we will
restrict to the particular case of (3.3.50) with @ > 0 and w > 0 for simplic-
ity. However, the following steps should be equally applicable to the general
solutions.

Rather than going into each detail, here we show some examples of the proce-
dure described above for the simplest equations. Taking (3.3.38f), for instance,
we expand and keep only up to first order in the string’s tension,

.9
«

. 1 . 1 (3.3.52)
0= 60+ — (60 4240) 10 (—2) .
(8% (6%

This splits into two equations, one for the tensionless limit and a new first
order equation that determines ®1) in terms of A®). Inserting the solution
(3.3.50) we see that (3.3.52) is solved by

dW (1) = —wi(t — to), (3.3.53)

where w; is a new integration constant, and we omitted a possible constant
shift for simplicity. For the second and last explicit calculation, we consider
(3.3.38g)

o:A—<i>A+i,(4A2—zB),
(67

0= A _ $O 40) 4 l/ (Am _ HOAM _ M A0 4 4402 _ 23(0)) Lo <L/2
« (6%

(3.3.54)

By inserting (3.3.50) the leading order is automatically solved while the 2

contribution determines A% in terms of the zeroth-order solutions to be
4
AV () = Ag 4+ Ae™t0) 4 Z(t —¢). (3.3.55)
w

Following the same procedure, 3" (¢) can be determined by expanding equa-
tion (3.3.38¢e) and B (t) by expanding the combination of (3.3.38b) and
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(3.3.38c). Inserting these and all previous results into the expansion of

(3.3.38b) we get a first order differential equation for z!)(t) which can be solved
exactly. Finally, at this point all first order corrections were determined, yet
we still have to check that the expansion of (3.3.38d) holds up to first order in
the string’s tension. We performed all these steps and found the most general
extension to the solution (3.3.50) (with positive ) and w) up to and including
first order in 5. This family of corrections is parameterized in terms of in-
tegration constants and, for generic values of them, the solutions are not de
Sitter vacua. However, there are particular integration constants for which

the zeroth order de Sitter solution (3.3.50) is indeed preserved:

O(t) = —w(t —ty), H(t) = %, x(t) = i2\/ge%“<”0> : (3.3.56a)
4
Al) = —=(t—to), B(t)=2, (3.3.56b)
8 2
y(t) = —a,—iQ?e_”(t_tO)(t —ty) — m(t —t)), w>0,Q>0. (3.3.56¢)

Here we absorbed w; into a new —-corrected constant w. This is the general
behavior of integration constants in perturbation theory, at each order the
new constants should renormalize previous ones. For &(¢), H(t),z(t) and B(t)
the solutions take the same structural form as in the tensionless limit (3.3.50),
except that the integration constants are i—corrected. It remains as an impor-
tant open question whether the de Sitter vacua are preserved perturbatively
at higher orders in 2.
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Chapter 4

T/wo-Dimensional Black Holes and
87

Black holes are perhaps the most mysterious objects predicted by general rel-
ativity. They are characterized by an event horizon, dividing spacetime into
two causally disconnected regions, and a singularity in the interior. We expect
general relativity to break down close to the singularity, but to be still appli-
cable at the event horizon, since the curvature there might be relatively small.
This then leads to the problem of resolving the black hole singularity: finding
a new theory that replaces general relativity in the appropriate regime so that
there are solutions with an event horizon but no spacetime singularity in the
interior [98-102].

In view of our journey so far, string theory seems like a good candidate for
such a task, and so we can use it to ask the concrete question: Can the black
hole singularity be resolved in string theory by means of higher-derivative o
corrections? Providing an answer to this exciting question requires us to break
the problem into smaller pieces. The first obstacle would be to identify black
hole backgrounds inside the vast string landscape. Once such a candidate
is identified, we face the problem of incorporating the infinite tower of o’ cor-
rections in a controllable manner. Suppose that such all-order formulation
exists, then it comes the challenge of solving the corresponding «'-complete
equations of motion. At this point, we should be able to confirm whether a
regular black hole is part of this space of solutions.

This chapter is devoted to give an answer to the previous question, breaking
the problem into the steps mentioned above. We will consider string theory
in D = 2 with one isometric direction. Apart from its simplicity, this case is
particularly promising in that there is an exact worldsheet CFT whose target
space interpretation is that of a two-dimensional (2D) black hole (BH) [44—
46]. Thus there should be an exact BH solution to all orders in o'. Since
this corresponds to a background in non-critical dimensions, we will need to
sort out the problem anticipated in Section 2.1.4 regarding the peturbative
nature of higher-derivative corrections in the presence of a cosmological term.
To this end, we will assume that higher-derivative terms in the action come
with numerical coefficients that fall off in such a way that terms with more
derivatives are sub-leading compared to terms with less derivatives. Under
this assumption, we classify all possible higher-derivative corrections that are
compatible with T-duality, in the same spirit of the cosmological classification
[40,47]. This provides us with a full space of duality-invariant «’-complete
theories, a space that contains a point representing string theory.
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We are now in possession of an «’-complete set of equations that we can at-
tempt to solve. To this end, we first introduce a systematic method to solve
the equations perturbatively in a derivative expansion, and we give an all-
order proposal for the corrections to the two-derivative BH. We will not ex-
plore the physics behind these perturbative corrections. Instead, we will move
right away to the more interesting scenario of non-perturbative solutions.
We will use a powerful representation recently introduced by Gasperini and
Veneziano [48], which will allow us to obtain a large class of solutions. We
show that not all these solutions admit a black hole interpretation, yet there
is a big family corresponding to o/-deformed black holes. Some members of
this family include, just as the two-derivative solution, a horizon and a singu-
larity. Furthermore, we identify another region in this solution space in which
the black hole geometry exhibits a horizon but no singularity. This is a regular
black hole whose interior is a regular cosmology.

This chapter is largely based on [6] and [7], and certain computations and
figures are taken from these references.

4.1 Duality-Invariant Theories in D =2

The two-derivative 2D BH studied in Section 2.2.3 is an example of a back-
ground in non critical dimensions and it corresponds to the leading term in an
infinite o/-expansion. As illustrated in Section 2.1.4, these higher-derivative
corrections behave very differently for theories in non-critical dimensions.
In general, higher-derivative corrections are not small compared to lower-
derivative terms, and so a perturbative description is misleading. This sheds
doubt on attempts to find a more accurate black hole solution by means of
higher-derivative corrections. In particular, looking for a classification for the
most general o’-corrected 2D backgrounds, as we did for cosmological case in
critical string theory, sounds like an ill-posed problem. This is due to the fact
that in these non-critical scenarios field redefinitions can be used to trade any
term in the action to one with an arbitrarily high number of derivatives.

In this section we circumvent this obstacle by showing that if the higher-
derivative terms are suppressed in a particular way, some simplifications of
the effective action are valid [6]. To see this, suppose an oracle gives us an
action of the form (2.1.29) with infinitely many higher-derivative terms. A pri-
ori, general higher-derivative terms are all of the same order. Let us suppose,
however, that the higher-derivative terms come with numerical coefficients
that fall off in such a way that terms with four or more derivatives are sub-
leading compared to terms with less derivatives. Since two-derivative terms
come with order one coefficients, this could happen if the terms of order («/)",
with n > 1, come with coefficients of order " with ¢ < 1. In this situation we
can ask and answer the following question: What are the most general field
redefinitions that preserve this pattern, and what are the most general higher-
derivative corrections modulo these restricted field redefinitions? We will show
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that these additional requirements eliminate those field redefinitions that al-
low one to remove arbitrary terms, and we will arrive at a minimal non-trivial
set of higher-derivative terms that resembles the cosmological classification
for critical string theory. Given our current knowledge on o' corrections, we
cannot know if such classification applies to the 2D BH coming from string
theory.

In Section 4.1.1 we recap the two-derivative black hole. In Section 4.1.2 we
study field redefinitions in a 2D dilaton-lapse toy model with time indepen-
dence. This allows us to identify "allowed" redefinitions, such that the fall-
off structure of the multiplicative coefficients is preserved. These consist of
generic redefinitions of the metric component m(z), and a specific linear com-
bination of the lapse function n(z) and duality-invariant dilaton ®(x). Generic
redefinitions of n or ¢ are not allowed for the classification, those are the ones
that can remove any higher-derivative term. The general action in this setup,
where fields are time independent, is obtained in Section 4.1.3 and takes the
form [6]

I = /dme—‘1> [QQ +(DD)? — M*+) %M””} : (4.1.1)

i>1

Here the metric is ds®* = —m?(x)dt* + n?*(x)dz?, and we defined M = DInm,D =
19, and Q? = 16/«/. This is the most general higher-derivative extension to
(2.2.70), up to field redefinitions that preserve the assumed fall-off structure

of the coefficients ¢; ~ ¢ with ¢ < 1. We finish this section by giving the
corresponding «o’-complete set of equations for interior and exterior regions.

4.1.1 Two-derivative black hole solution

In Section 2.1.4 we considered the target-space theory of bosonic strings in
2D for the dilaton-gravity sector. Later in Section 2.2.3 we analyzed the two-
derivative truncation in time-independent backgrounds, where the metric is
given by

ds* = —m?(x)dt* + n*(z)da*, 4.1.2)

and the duality-invariant dilaton ®(z) is related to the scalar dilaton ¢(x) via
1 1
o(z) = E(I)(ZL‘) t3 log |m(z)]| . (4.1.3)

The latter is the one coming from the string worldsheet action, and so it de-
termines the string coupling as g, = ¢?. The 2D curvature for a metric of the
form (4.1.2) is given by

2
R = —o(M* + DM) — —2 2™ (4.1.4)
m
and so the effective action takes the form
10 = / drne ® [Q* + (D®)* — M?] . (4.1.5)
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The covariant derivative D guarantees the invariance of (4.1.5) under z- repa-
rameterization. The action is also manifestly duality invariant, since it only
contains even powers of M, and T-duality sends M — M = —M while leaving
¢ and n unchanged (see (2.2.67)).

The equations of motion come from a general variation of (4.1.5), which can
be combined in a convenient way to arrive at the following equivalent system

DM = DOM , (4.1.6a)
D*d = M?, (4.1.6b)
(D®)* = M* + Q*. (4.1.6c)

The solution to (4.1.6) is unique up to coordinate reparameterization and it
admits a BH interpretation [44-46]. Different coordinate patches cover dif-
ferent regions of such black hole. For instance, the field configuration given
in (2.2.74) was obtained by picking the gauge n(z) = ﬁ and it covered the
exterior and interior region of the BH, separated by a coordinate singularity.
In this section, we study the two-derivative solution in more detail, exploiting
the gauge freedom to get different regions of the black hole. We first pick a
gauge to get the exterior region, then we change coordinates to get the interior
region, and finally we recover (2.2.74) from yet another coordinate transfor-
mation. We finish by studying how these solutions are modified under duality
transformations.

Exterior and Interior solutions

If we pick the gauge
n(z) =1, (4.1.7)

the solution to (4.1.6) for metric and dilaton is given by [44]
ds® = —m?(z)dt* + dv*, m(z) = —tanh %, &(z) = —log|sinh Qx|+ &y, (4.1.8)

where @, is an integration constant. The scalar curvature (4.1.4) takes the
form

Q2
R=—5-, 4.1.9
cosh? % ( )
while the scalar dilaton ¢(z) in (4.1.3) reads
1 1
0=-3 log cosh® % + ¢y, ¢ = $(0) = 5 (Do —log2) . (4.1.10)

The solution is valid for x € R. However, the metric becomes singular at z = 0
since m(0) = 0 and so det G = 0. Therefore, the solution splits into z < 0 and
x > 0 regions. The former describes the outside region of a two-dimensional
black hole [44-46] while the latter is a totally disconnected universe which
forms part of the maximally extended BH solution. For the exterior region,
r = 0 corresponds to the position of the black hole horizon and =z = —oco to
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the asymptotically flat region. Indeed, at x = 0 the metric vanishes and the
curvature is finite
m(0) =0, R(0) = Q?, (4.1.11)

which proves that x = 0 is just a coordinate singularity. Asymptotically we
have
lim m(z) =1, lim R(z) =0. (4.1.12)

T——00 T—r—00

On the other hand, the duality-invariant dilaton ®(z) becomes infinite at both
extremes
lim &(z) = o0, lim &(x) = —c0. (4.1.13)

z—0" T——00
This does not necessarily indicate a pathology since ¢ is not the scalar dilaton
¢ that determines the string coupling as g, = ¢?. From (4.1.10) we can see
that the scalar dilaton and hence the string coupling are finite at the horizon
»(0) = ¢o. We also infer lim, , ., ¢(z) = —oo, so the string coupling g, goes to
zero in the asymptotically flat region, consistent with a weak coupling regime.

The solution (4.1.8) describes only the exterior region of the black hole. There-
fore, it has no information on the BH singularity, which lies in the interior.
The latter can be obtained from the following change of coordinates

r—I=1ir, (4.1.14)

which acts in the metric and dilaton as follows

2 2 Qu 2 QF
m*(x) = tanh %.:—tan %, o | (4.1.15)
O(z) = —log (—sinh Qx) + &g = —logsin QT + Py — log i .
The interior solution then takes the form!
ds® = m?(2)dt* — di*, m(i) =tan L, () = —logsinQi +P;.  (4.1.16)

The line element of (4.1.16) describes a cosmological backgrounds where &
plays the role of "time" and m (%) corresponds to the scale factor [43]. The
curvature is obtained by applying (4.1.14) to (4.1.9)

. Q2
R(T) = ——=, 4.1.17
(%) cos? % ( )
while for the scalar dilaton we get
¢() = —Llogcos® & + ¢ . (4.1.18)

This solution is now valid for the finite range = € (0,7). For Z = 0, the metric,
scalar dilaton and curvature take the values

m0) =0,  $0)=¢o, R(O0)=Q*, (4.1.19)

which is consistent with a horizon interpretation. More importantly, the value
for the curvature at the horizon coincides with the one obtained from the

I'The complex shift in the definition of ®(Z) guarantees the measure in the action stays real
under (4.1.14).
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exterior, (4.1.11). This must happen since both solutions are related by a
coordinate transformation and R is a scalar quantity. The same holds for the
scalar dilaton, since exterior and interior solutions attain the same value at

the horizon, ¢(0) = ¢(0) = ¢y.

At the other end 7 = «, all fields and curvature diverge

m(m) = oo, o(m) = 00, R(m) = o0, (4.1.20)

signaling that this is the position of the BH singularity.

These exterior and interior black hole solutions can be seen as two regions of a
single coordinate system. To this end, we can start from the exterior solution
for the metric (4.1.8) and introduce a new coordinate «'(x) via

dz'* = m?*(x)dz?, (4.1.21)

so that the metric takes the form

dl’lQ

m?(z)

ds* = —m?(x)dt* + (4.1.22)

Here, m?(x) is still the one given in (4.1.8) but it must be written in terms of
2. Equation (4.1.21) can be easily integrated to get

r— 2 = —% In (a cosh? %) = cosh? % = %e‘QI, ., a>0, (4.1.23)

where «a is an integration constant and we choose the minus sign of the square
root in (4.1.21) so z and 2z’ are correlated. As a consequence, with a, Q) > 0, the

exterior region = € (—oo,0) is mapped to 2’ € (—o0, —loga). As a result,

m(z) = — tanh % =4/1— cosh™? % =V 1—ae@", (4.1.24)

which is always real in the justified region for 2’. For the dilaton, one gets

®(z) = —log (— sinh Qz) + &g = Q' — %log (1 — aeQxl) + @)0, (4.1.25)
with &5 = &, + log §. All in all, the transformed solution can be written as [45]

ds® = —m?(2")dt* + d2?, m*(a') =1—ae®,

2
. m (@) (4.1.26)
O(2f) = Qo' — S log|1 —ae®| + oy .
The curvature and scalar dilaton this time read
/ 1 /-
R(') = aQ%% , o(a") = 3 (q)o n Q:c’) . (4.1.27)

This solution is exactly the one presented in (2.2.74), which can be obtained by
solving the equations of motion (4.1.6) in the gauge n(z) = % A step-by-step
derivation of this solution can be found in [6].
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— _loga

In this solution, the position of the horizon z = 0 was mapped to 2’ = zy =
while the asymptotically flat region was preserved at x = 2’ = —co. This covers
the entire range in which the coordinate transformation (4.1.23) was valid.
Therefore, it seems that from this change of coordinates we gained nothing,
but it is just the same exterior solution in a different system. While this is
formally correct, the advantage of having the new expression (4.1.26) is that
now we can perform an analytic extension of the solution. This means that,

while originally (4.1.26) was valid only for 2’ < —log“, we notice there is no

loga

Q
analytically extended solution, z’ > —1"5“ corresponds to the interior region

found in (4.1.16). Indeed, for 2’ > zy, the time-time component of the metric
becomes negative, and at the horizon we have

real obstacle in extending it to also cover z' > — and so we do it. In this

m*(ry) =0, Rzy)=Q* oé(ry)= % (@0 — loga) = ¢y, (4.1.28)

which coincide with the values found from both, exterior and interior regions.
This region of the spacetime ends at 2’ = co where metric, curvature and scalar
dilaton diverges, consistent with the BH singularity found in (4.1.20).

Dual solutions

We finalize this section by studying how the solutions we found change under
T-duality. More precisely, we will revisit briefly the phenomena found in [46],
where the exterior region of the 2D BH is mapped to a region beyond the
singularity, while the interior region is mapped into itself.

Starting from the exterior solution (4.1.8) and performing the duality trans-
formation (2.2.67), one obtains the new solution, also valid for z € (—o0,0) :

m(z) = —coth%, d(x) = —log|sinh Qx|+ @, ¢(z) = —1logsinh’ % + ¢o,
(4.1.29)
where the dual metric is one over the original one and the duality-invariant
dilaton remains the same. Inserting 7(z) in (4.1.4) we get the dual curvature
. Q2
R(x) = ———5=. 4.1.30
(z) sinh? % ( )
In this dual solution, the former horizon z = 0~ is mapped to a curvature
singularity
lim /(z) = oo, lim ¢(z) =00, lim R(z)=—oc, (4.1.31)
x—0~ z—0~ z—0~

while the asymptotic region is again a flat spacetime which lies beyond the BH
singularity.

The dual solution to the interior solution (4.1.16) is given by

A

m(&) = cot¥e &D(j) = —logsinQz + @y, ¢(Z) = —1 logsin® % +¢o, (4.1.32)

)
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together with the curvature

2 Q2
R = — . 4.1.33
(%) sin? % ( )

This geometry still corresponds to the interior region, with the horizon and the
singularity exchanged. This can be made clear by noting that duality plus the
"time reversal" transformation & — 7 — 7 leaves the interior solution invariant:

~

m(m — ) = m().

4.1.2 Two classes of field redefinitions

We are ultimately interested in classifying all higher-derivative corrections to
the two-derivative black hole background (4.1.5). However, since we are deal-
ing with non-critical backgrounds, as anticipated in Section 2.1.4 we need
to be cautious when considering perturbative o’-corrections. In view fo this,
in this section we analyze a simpler dilaton-lapse model with a cosmological
term. This toy model, whose two-derivative action is obtained by setting M = 0
in (4.1.5), will allow us to understand better the role of field redefinitions in
non-critical theories. More precisely, we will see clearly that a conventional
derivative expansion is problematic. All terms seem equally important and
field redefinitions used to classify interactions do not operate as usual.

In order to avoid these obstacles, we will assume theories in which there is
an in-built suppression of the higher-derivative terms, a suppression due to
coefficients ¢; that multiply the interactions and become smaller as the num-
ber of derivatives increase. Even under these assumptions complications arise
due to the cosmological term. We will argue that there are two classes of field
redefinitions:

1. Separate field redefinitions of the lapse or dilaton function, which gener-
ate new interactions via the variation of the cosmological term as well as
the variation of other terms.

2. Simultaneous field redefinitions of the lapse and dilaton for which no
terms arise from the variation of the cosmological term.

We will show that redefinitions of type 1 do not preserve the structure of in-
built suppression: higher derivative terms induced by the redefinitions are not
suppressed appropriately and thus cannot be neglected. Redefinitions of type
2, however, respect the structure of in-built suppression and thus can be used
in the conventional setting of effective field theory to classify interactions.

While this toy model is considerably simpler than the 2D black hole, the re-
sults obtained here will apply almost without change to the case where M # 0.
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Two-derivative dilaton-lapse model

The two-derivative sector of the dilaton-lapse model is obtained by setting
M = 0 in the action (4.1.5)

10 = / drne™® [Q*+ (D®)?] . (4.1.34)

Its equations of motion are given by

E® = Q> (D8)* =0,
©) (4.1.35)
Ey = -Q*+ (D®)? — 2D*® = 0.
These are solved by the linear dilaton background
n® =1 &0 =Qz. (4.1.36)
The simplest higher-derivative extension to (4.1.34) is given by
1= / drne ® [Q° + (D®)? + co/(DP)"] . (4.1.37)

Note that for the solution ®© = Qz, all three terms in the action are of the
same order @Q? (since o/ ~ 1/Q?%. The lapse equation following from the above
action is given by

E, = Q*— (D®)* — 3ca/(DP®)* =0, (4.1.38)

and the dilaton equation is automatically satisfied when the lapse equation
holds due to a Bianchi identity. The above equation admits a unique real
solution of the form

ST T 1260/ 0% — 1
2 +12e0Q” — 1 (4.1.39)

n=1 d=wr, w -
6ca

This solution can be considered a small correction to (4.1.36) when w? has a
convergent perturbative expansion in powers of ca’Q?. A sufficient condition
for such scenario is given by

e=cdQ? < 1. (4.1.40)
If satisfied, w? can be expanded in powers of ¢ and so
d=wr=(1-3e+0() Q= e — 2eQu + O(€%), (4.1.41)

where the leading term is the two-derivative solution (4.1.36) and the rest are
truly small corrections to it. If (4.1.40) does not hold, the four-derivative term
in the action contributes with terms comparable to the two-derivative solution,
making a derivative expansion meaningless. We assume that (4.1.40) holds.

At this point it is convenient to introduce the unit-free notation used in (2.1.30)

where we define Ly .
— = —-D. (4.1.42)

Qe. P=20270

x
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In terms of these derivatives, the action (4.1.37) becomes
1

I= @I = /d:zne—‘b [1+ (D®)* + e(DP)*] . (4.1.43)

In this notation a variation of the lapse n — n + én gives to leading order

I—1T1+ /dine“bé—nEn +0((6n)?), with E, =1— (D®)* — 3¢(D®)*. (4.1.44)
n

We now do a redefinition to remove the four derivative term. We take
on

n

The associated field redefinition is n = n’ + én(n’) and ® = ¢’. The redefined
action, called I, and written in terms of the new (primed) fields is given by

= —¢(DP)*. (4.1.45)

- / dzn' ™ [L 4 (D)2 + (D) + O) + O((6n))] . (4.1.46)

The field redefinition eliminated the four-derivative term at the cost of in-
troducing a six-derivative term, also at order e. Since derivatives D are of
order one, this new term is not parametrically smaller than the original four-
derivative term. This shows that pure lapse transformations do not allow us to
classify interactions in the sense of effective field theory. They are redefinitions
of type 1, and as claimed do not respect the structure of in-built suppression.
We would have wanted the new six-derivative interaction to appear at a higher
order in e.

We now discuss type 2 transformations; those that preserve the structure of
in-built suppression and thus can be used to remove higher-derivative terms
without inducing same-order effects. In this case, it will allow us to eliminate
the four-derivative term consistently. The redefinition is of the form
0
O =0 +60(n,¥), n=n'+onn,¥), with 6= "0 (4.1.47)
n
For such a correlated redefinition of the dilaton and the lapse, the variation of
the action to linearized order is, from (2.2.71),

5T = /dine“p (B, + Eg)0®], E,+ Eg=—2D*®+O(e). (4.1.48)

An important fact is that this linear combination of equations of motion has
no constant term. It is an straightforward computation to show that, to order
€, picking

— =60 = 3¢(DY')?, (4.1.49)

n
the transformed action takes the form

I = /dx n e [14 (D) + O(?)] , (4.1.50)
which has no four-derivative terms and induced effects are of order ¢!
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The general dilaton-lapse model

The lessons of the above discussion can be refined by considering the general
version of the dilaton model, which in dimensionless units read

I= /d:cne—‘b [1 +(DP)* + > aLP(D;d) ], 6 =c(d'Q%), (4.1.51)

i>1

which includes infinitely many o' corrections depending only on covariant
derivatives of ®, with L+ (D; ®) containing 2i + 2 derivatives.

Again, this action has no meaningful derivative expansion unless the coeffi-
cients ¢; decay fast enough. This can be formalized by extending the condition
(4.1.40) to:

ce=a <1, g~(),i>1, (4.1.52)

where the symbol ~ denotes proportionality up to factors of order one. The
above condition guarantees that each term in the derivative expansion is para-
metrically smaller than the previous one. In order to explore the effect of per-
turbative field redefinitions, we will assume that this condition is satisfied.
Note that the condition above also implies that

Ep€l ~ Eptk - (4.1.53)

A type 1 transformation will break condition (4.1.52), the correlation between
the number of derivatives and the power of e. This happens, because such
redefinitions generate variations from the zero-derivative term in the action
and the two-derivative term in the action, and the powers of ¢ are no longer
correlated with the number of derivatives.

In order to preserve the correlation between derivatives and powers of ¢ we
must do a redefinition of both the lapse and the dilaton

Q=0 +50(P,n'), n=n"+ndn), (4.1.54)

with the relation 5
D, (4.1.55)

n
which at leading order coincides with (4.1.47). These redefinitions are con-
structed such that the measure is kept invariant, namely ne™® = n'e”®. As

a result, the cosmological term does not generate variations and so condi-
tion (4.1.52) is preserved. These are the type 2 transformations.

To see how these redefinitions are consistent with the fall-off condition, we
consider (4.1.55) with

. 5 4
60 =S FY, =N R, (4.1.56)
n

1>1 i>1

with ng) and F*” generic gauge- and duality-invariant terms depending on
D, containing 2: derivatives, and satisfying (4.1.55).
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Applying the variation to the action (4.1.51), we note that we must only vary
the terms inside the brackets. We concentrate on the effect of §¢ for now.
Beginning with the two-derivative Lagrangian, each term in the variation will
have an ¢; accompanied with 2i 4 2 derivatives, 2i of them from ng), and the
other two from the two derivative term being varied. This is indeed consistent
with the structure of the suppression. Continuing with the higher-derivative
terms, varying L(**? in the action with the ng) term of the dilaton variation,
one gets the product ¢;¢; ~ €;4, multiplying terms with 2(j + k) + 2 derivatives,
which is also consistent with the constraint. Identical remarks hold for the
variation of n in terms of F\*".

Therefore, we can use (4.1.55) order-by-order in ¢ so to remove terms consis-
tently. This is the procedure developed in [40] and revisited in Section 3.1 for
critical strings, with the role of o played here by the ¢;’s satisfying (4.1.52).
Using that logic, we can implement field redefinitions as simple substitution
rules in the action. In particular, the rule corresponding to (4.1.55) is given by

E,+Ey=-2D’d = D*®=0+0(e), (4.1.57)

and so we can recursively eliminate any term containing higher derivatives of
the dilaton. It can be easily shown that, upon integration by parts, all higher-
derivative terms in the dilaton-lapse model are of this form. Therefore, we can
conclude that the all-order theory (4.1.51) is totally equivalent to the lowest
order one (4.1.34)!

4.1.3 Duality-invariant theories to all orders

The final conclusion of the previous subsection can be easily extended to the
case when m propagates. To see this, we consider the analogue to (4.1.51) in
the presence of M

I = /dme‘b [1 +(D®)* — M*+) L (n, DO, M)| (4.1.58)
i>1

where L(*?) contains 2i +2 derivatives, and the in-built suppression condition
(4.1.52) holds.

We are still working with dimensionless coordinates but we abandoned the bar
notation so to keep the following computations cleaner. From now on, unless
specifically stated otherwise, we will always work in dimension-free units.

We notice that by extending (4.1.55) to

O =" +6d(n, ' m), n=n'+dn(n',d m), m=m'~+ om(n',® m'),
on _ e (24) om (24)
=, 5<1>_26in> : F_ZeiFm :
i>1 i>1
(4.1.59)

the in-built suppression feature is satisfied for the induced terms since trans-
formations of m do not affect the measure ne~® and so it remains invariant un-
der the redefinitions (4.1.59). Finally, in the same way we could use (4.1.57)
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to perform a classification for the dilaton model (4.1.51), here we can apply
the rules

E,=0 = DM=~DOM+ Ole), (4.1.60a)
E,+E;=0 = D= M?*+0(e), (4.1.60b)

where we used the lowest order equations of motion given in (4.1.6).

The classification here is very similar to the one implemented in Section 3.1.3
for Bianchi type I universes with H;(t) — M(z). The algorithm therein goes
through up to the point where redefinitions of the lapse function are needed,
which in this case are not allowed because of the extra condition n'e~® = ne=?.
Specifically, the same itemized step-by-step proof of Section 3.1.3 holds up
to and including step 4. More precisely, we assume that to any order in ¢
any term in the action is writable as a product of factors D*® and D'M. We
can now do field redefinitions of the form (4.1.59), which in practice consist
of applying the rules (4.1.60) in the action, in order to establish that higher
derivatives of M and higher derivatives of D® can be removed at each order.

At this point, a generic higher-derivative term at order ¢, which we call I?), is
given by

» = /dxne_q’ (DO)* M* (4.1.61)

where even powers are a consequence of duality invariance together with the
fact that the total number of derivatives must be even. Moreover, in order to
preserve the fall-off condition (4.1.52), the total number of derivatives must
add up to 2p + 2, which means j +1=p+ 1.

In the case of cosmological backgrounds we would remove all (D®)% very eas-
ily, simply by using the rule EY) = 0 as in (3.1.44c¢). For the two-dimensional
case, however, this is not allowed since it would violate the condition n'e~® =
ne~® and, as a consequence, would break (4.1.52). Luckily, there is another
way of removing these terms which goes as follow: using e=*D® = —De~? for
one of the D® factors in (4.1.61), and then integrating by parts we find

» = —/de(e@) (D)X~ M*
_ / dzne® ((2j —1)(DD)¥ D2 M + (D¢)2i—125M2l—1DM), (4.1.62)
= /dxne_q) ((Qj - 1)(Dq>)2f—2M2l+2+25(Dc1>)2jM2l) ,

where we used (4.1.60) in the last line. The second term in the last line is a
multiple of the original term. Thus, bringing it to the left-hand side and using
[ # 1, we get
27 —1 .
1 = 1‘7—2l dene=® (DO)Y-2)2+2 (4.1.63)
Thus, we can systematically reduce the powers of D® in steps of two until
removing all Do factors!
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The above chain of arguments proved that there is a field basis in which all
higher-derivative terms involve only powers of M? and so the most general
action is given by [6]

I= /dme‘b [1 +(DP)? = M*+) eiM2("“)] : (4.1.64)

i>1

If (4.1.64) is truncated at order ¢V~! we know from (4.1.52) that the remaining
terms are of order O(¢VD?V*2) and therefore contribute with small corrections
to the solutions of the truncated theory.

As for the cosmological classification (3.1.1), we managed to parameterize our
ignorance of the higher-derivative corrections in terms of a countably infinite
set of coefficients ¢; satisfying (4.1.52). It is worth emphasizing that (4.1.64)
encodes a whole family of theories and string theory would represent just a
single point in this theory space. Moreover, with our current knowledge, we
cannot even know if string theory belongs to this space, since all theories in
(4.1.64) assume the fall-off condition (4.1.52). This could be not the case for
the o/ corrections coming from string theory.

Equations of motion for exterior and interior regions

The all-order action (4.1.64) can be written as
I= /dxne_q) {1 + (D®)* + F(M)|, (4.1.65)

where

F(M)=> eM*™ = —M*+ eM*+O(%), e=-1. (4.1.66)

1=0

Taking the variation of (4.1.65) with respect to m, ® and n, gives the following
set of equations

D(e™*f(M)) =0,
(D®)? +g(M)—1 =0, (4.1.67)
—2D?® + (D®)* —1— F(M) =0.

Here we introduced,

f(M)= F'(M)=2 i(i + 1)eM* T = —2M + 4eM? + O(€?),

. =0 (4.1.68)
g(M) = Z(?z + 1) MY = M2 4 3eM* + O(e?)
=0

which satisfy the following relation:

g(M)=Mf' (M), (4.1.69)
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with primes denoting derivative with respect to the arguments.

Combining the second and third equation in (4.1.67) and using the identity
F(M) = Mf(M) - g(M), (4.1.70)
we can replace the third equation for a simpler one and get the equivalent
system:
D(e”"f(M)) =
(D2)* +g(M) -1 =0, (4.1.71)
D20 + %Mf(M) ~0.

Using (4.1.68), it is easy to see that for ¢, = 0 V i, (4.1.71) reduce to the two-
derivative equations of motion (4.1.6) with Q — 1.

Once at the level of the equations of motion, we can safely pick a particular
gauge for the lapse function without missing extra constraints on the remain-
ing fields. In our quest to solve (4 1. 71) it will become very useful to work in

the n = 1 gauge, in which D =14 — 4 and so (4.1.71) reads
d
d_( f(M)) = (4.1.72a)
( ) =0, (4.1.72b)
[ l =
dx + sMf(M) =0, (4.1.72c¢)
with 0 (22) .
_ dlogm m(z2) 2 N
M(x) = I = ey exp(/x1 M(x )d:z:) : (4.1.73)

For the two-derivative theory it was straightforward to solve (4.1.6). Finding
solutions to (4.1.72) for generic f(M) and g(M) is definitely much harder. Such
is the case that we will devote all Section 4.2 and Section 4.3.2 just to solve
that system of equations.

Regardless the specific form of the solution to (4.1.72), we will assume it ad-
mits an interpretation as the "exterior region" of some maximally extended
solution. Clearly this is motivated from the two-derivative case (4.1.6), whose
solution (4.1.8) corresponds to the exterior region of a black hole. Under this
assumption, it is natural to assume there is also an "interior region" (anal-
ogous to (4.1.16) for the two-derivative BH). Since we do not have access to
the exterior solution, we do not know if (4.1.14) is valid for mapping regions.
Instead, we implement a "signature change" trick. This consists of looking
for a transformation at the level of the action that preserves the measure and
maps a metric with time-like isometry to a metric with space-like isometry as
follows:

ne ® — ne ?, (4.1.74)
ds® = —m?(x)dt* + n*(z)dx® —  ds* = m*(z)dt® — i*(z)da?. (4.1.75)
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This can be achieved by setting
m=im, n=—in, ®=>—logi, (4.1.76)

which preserves the measure and the product mn. From the definition of D
and M, we have . )
D=iD, M=iM, 4.1.77)

with D = 14 and M = Lo,m.

Applying (4.1.76) to (4.1.65) we get
- / drie=* [1— (D& + F(ID)] | (4.1.78)

where we have defined

o

F(M)=F(iM) =) (-1)"eM**2 = M + eM* + O(°) (4.1.79)

1=0

The equations of motion in the n = 1 gauge are now given by

% (e-*70in) =0, (4.1.80a)
dd\2 . -
(_I) — (M) +1=0, (4.1.80b)
/.
27‘12’+%Mf(1\~4):o_ (4.1.800)

The new function f(M) is defined analogously to (4.1.68):

f(M) = F'(M), (4.1.81)
while §(M) can be defined via the identity

(M) = MJ'(M). (4.1.82)
One can check that these functions are related to the ones in (4.1.68) via

f(M)=if(iM), §(M)=g(iM). (4.1.83)

Equations (4.1.72) and (4.1.80) encode higher-derivative solutions for 2D back-
grounds with time-like and space-like isometries, respectively. We interpret
these solutions as the exterior and interior regions of a maximally extended
spacetime. It is worth emphasizing that while in both cases we use the label z
to denote the coordinate, these two solutions do not form together a single so-
lution over the full real line. The two z’s are really different. As a consistency
check, one can corroborate that the two-derivative truncation of (4.1.72) and
(4.1.80) have (4.1.8) and (4.1.16) as unique solutions, respectively.
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4.2 o/'-Corrected Black Holes

In the previous section we found a canonical formulation of the action, fol-
lowing our classification of possible duality-invariant terms up to field redef-
initions. This lead to the action (4.1.65), whose equations of motion in n = 1
gauge are given by

% (e~ F(M)) = 0, (4.2.1a)
(%>2+Q(M)—1:O, (4.2.1b)
§+%Mf(M):O, (4.2.1¢)
with f(M) and j(M) given in (4.1.68) and m(x) obtained from M(x) via
zgiji — exp( / M(@)da') (4.2.2)

The corresponding curvature and scalar dilaton are obtained from the same
formulas we used for the two-derivative case, since they are independent of
the specific action or equations of motion. They are given by

’m

R =—-2(M*+0,M) =2 ;‘jn : (4.2.3)
and |
P(z) = 3 (®(z) + log |m(z)|) . (4.2.4)

We interpreted solutions coming from (4.2.1) as describing the "exterior region"
of a maximally extended solution. In view of this, we introduced the "interior"
version of the equations of motion given by

% (e* ) =0, (4.2.52)
Bre .

(%)2 G +1=0, (4.2.5b)
/.
O+ S =0, (4.2.50

Here f and § are related to the original functions via (4.1.83) and 7(x) is given

by
() = exp </ 2 M(z’)dm') : (4.2.6)

m(xy)

The interior curvature and scalar dilaton are obtained by applying (4.1.76) to
(4.1.4) and (4.1.3) respectively, and then setting n(z) = 1. We get
d2m

R =2M*+0,M)= 22—, (4.2.7)

m
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and

o) = % ((2) + log ()] (4.2.8)

In this section we solve these systems from two very different approaches. In
Section 4.2.1 we introduce a systematic method to get perturbative solutions
in a derivative (or €¢) expansion and give the general structure of those solu-
tions to all orders [6]. We then move into non-perturbative regimes in Section
4.2.2 [7] by considering a novel parameterization of the problem recently in-
troduced by Gasperini and Veneziano in [48]. In Section 4.2.4 we use the
parameterization to get a family of o’-corrected black hole solutions in which
the singularity is still present [7].

4.2.1 Perturbative solutions

We now present a systematic method to solve (4.2.1) order -by-order in ¢ [6].
To this end we focus on the first two equations, solve for 1n both and equate
the result. We get

dd  f'(M)dM .
— = — =+y/1—-g(M 4.2.
or, equivalently, U dl
S (M) = +dx. (4.2.10)

fFM) /1= g(M)
By integration we have

f(MdM'
/ fM’ JT—500) )—i(:zr—xo), (4.2.11)

where z, is an integration constant. This equation fixes a relation between a
function of M (the left-hand side) and a function of = (the right-hand side).

If we have a function W (M) such that

AW = (M) —_dM , (4.2.12)
)V/1—=g(M)
the general solution to (4.2.11) is given by
W(M) = =£(z — x), (4.2.13)

a relation that can be inverted to determine M (z), and with it m(z). The dilaton
is then found from (4.2.1a),
e P (M) =q, (4.2.14)

with ¢ some constant. By the Bianchi identity, the last equation in (4.2.1)
holds when the first two hold.

2This method is inspired in the one used in [40] for FRW backgrounds.
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Recovering the two-derivative black hole solution

Let us now re-derive the lowest-order BH solution (4.1.8) from the general
formula (4.2.11). For the two-derivative action we have (see (4.1.68))

f(M)=—=2M, f(M)=-2, §M)=-M?, (4.2.15)
and so (4.2.12) takes the form

dW = i = W(M)= —arcsch M. (4.2.16)

M1+ M?
By inserting this result into (4.2.13) and inverting W (M) we end up with

M = —cschz =0,Inm. (4.2.17)

where we chose the plus sign and fixed z, = 0, without loss of generality. This
is easily integrated and we obtain

m(z) = —tanh § . (4.2.18)

The dilaton solution is obtained from (4.2.14). Using f(M) = —2M and (4.2.17)
we get

e®®@ = %CSChx = ®(x) = —logisinhz, (4.2.19)

which requires ¢ to have the same sign as x. As expected, equations (4.2.18)
and (4.2.19) coincide with the black hole solution presented in (4.1.8), upon
changing to dimensionfull coordinates * — Qz and identifying ¢, = log % As
before, © < 0 corresponds to the exterior region, while x > 0 is a causally
disconnected universe.

Systematics of perturbative solutions

An analytic expression for the non-perturbative W (M) may not exist in gen-
eral. However, when considering perturbative solutions in ¢, equation (4.2.12)
becomes a power series in ¢, where each term is easier to integrate than the
non-perturbative dW3. In this perturbative regime, a systematic approach ex-
ists such that solutions to any order in ¢ can be obtained from lowest-order
ones. This algorithm takes (4.2.12) as the starting point and expand it around
small € to get
/
aw = — S ODIM o +edWW + 2dW® 4 O(%). (4.2.20)
FM)\/1 = g(M)

Integrating each of these terms we arrive at the perturbative version of (4.2.13),

W (M) = W(O)(M) + EW(I)(M) + 62W(2)(M) +0(%) = —z, (4.2.21)

3We will see later in Section 4.2.2 how to deal with these non-perturbative cases!
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where this time we pick the minus sign just for simplicity (we can always
change to the plus convention by sending + — —z at the end of the computa-
tion). From (4.2.16) we already know that W (M) = —arcsch M, which clearly
can be inverted. By doing so, (4.2.21) becomes

M = csch (z + eW (M) + EWP (M) + O(€%)
— cschz 4 ecsch’z WW (M) (4.2.22)
+ ¢ [Lesch”z (WW(M))? + esch’x W (M)] + O(€%)
where ' means derivative with respect to the argument. Then, we expand
M=MO 4 eMD 4 M3 +O(H), (4.2.23)

on both sides of the last equality to read the solution order by order in ¢

M©(z) =cschz, (4.2.24a)
MY (z) = csch’z W<1>(M< (), (4.2.24b)
M®(z) = Lesch’z (WO (MO (2)))? +csch’x W (MO ()

+csch’z W' (MO (2) MO (). (4.2.24c¢)

We can see that each order M (z) is determined from the lowest-order ones.
From M = J,lnm and (4.2.14) we can get the perturbative solutions for m(x)
and ®(x). The resulting solution will be in the n = 1 gauge. If needed, it can
be mapped to the mn = 1 gauge with the use of (4.1.21) as we did for the
two-derivative case. This time, however, the m(z) in (4.1.21) is the corrected
solution.

Just as a demonstration of how the above algorithm works in practice, we
work out the first e-order explicitly. Up to first order we have (see (4.1.68))

f(M)=—2M +4eM?,  f(M)=—-2+12eM?*, G(M)=—M?*+3eM*. (4.2.25)
Inserting these quantities into (4.2.20), and expanding up to first order in ¢ we

can read .

AW = — ——aMm,
M~/1+ M? (4.2.26)
M (8 +5M?) b
daw = —— 5 dM.
2(1+ M?)2

Each order can be integrated independently to obtain
WO (M) = —arcschM ,
1+ gMZ (4.2.27)
VI+M?
Finally, by using (4.2.24a) and (4.2.24b) we can read M (z):

W) = —

MW (z) = esch’z WH(M(2)) = eschx + 3 esch®x (4.2.28)
All in all, up to order ¢, M (x) is given by
M(z) =cschz + e (cscha + 3 csch®z) + O(€?). (4.2.29)
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We easily find m(z) from

m(x) _ esz(x/)dx’ _ efz Mo(x/)dgc’<1 + €/ Ml(x')dx/) + 0(62)

z (4.2.30)
= tanhZ <1 + € / (cscha’ + 5 esch® ') dx’) + O(€?),
and doing the integral,
m(z) = tanh § (1 — e[Intanh £ + 5cothz CSChCE]) + O(€%). (4.2.31)

Finally, the dilaton profile comes from combining (4.2.14), (4.2.25) and (4.2.29)
and is given by

e = 1f(M) =2 [cschz + € (cscha + § csch®z)] + O(€) . (4.2.32)

In view of the pattern emerging at order ¢ in (4.2.29) and (4.2.32), it feels
natural to ask whether such structure persists perturbatively to all orders.
Indeed, by following an inductive procedure we confirmed that the following
ansatz can be used to solve (4.2.1) to all orders in ¢*:

M = Z M®eP Z a”esch® 1y | (4.2.33a)
p=>0
P
®— Z [eq)] 2 e, [e‘b} ®) _ Z bgf)csch%“x. (4.2.33b)
p>0 k=0

Here a,(f ) and b,(f ) are some order-one coefficients determined completely from

the ¢, coefﬁ01ents in the action. For instance, from (4.2.29) we can read a(()o) =1,

al’ =1 and a{” =3,

The solution (4.2.33) corresponds to an all-order perturbative correction to the
exterior region of the two-derivative black hole (4.1.8). The equivalent corrected
solution for the interior region should come from an identical systematic pro-
cedure, but taking (4.2.5) as starting point instead of (4.2.1). In the interior
region, however, we expect quantum-gravity effects to be rather strong, since
we know that general relativity breaks close to the singularity. Therefore,
a perturbative analysis sounds insufficient in these regimes. We need a non-
perturbative approach to solve (4.2.5). This is exactly the topic of all remaining
sections in this chapter.

4.2.2 The Gasperini-Veneziano parameterization

In order to study solutions of (4.2.1) and (4.2.5) we will use a useful param-
eterization inspired by a recent work by Gasperini and Veneziano in the con-
text of pre-big bang string cosmology [48]. Instead of describing the fields

4A brief description of the inductive procedure can be found in Appendix A of [6].
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as functions of the coordinate z, they are described as functions of an arbi-
trary parameter. This is conveniently taken to be f, from (4.1.68), by inverting
f(M) in (4.1.68) to get M(f). We will see how the new parameterization for
M induces a new parameterization for all other quantities, including the dila-
ton ®(f) and the original coordinate z(f). The latter serves to connect the f
parameterization with the standard spacetime dependency.

From this new perspective, the solution space is described by the set of func-
tions M(f) instead of f(M). This leads to some invertibility issues that we will
explain in detail at the end of this subsection. For now, however, we concen-
trate on solving the equations of motion in terms of the f parameterization. We
will distinguish the parameter for each region, using f to describe the exterior
and f for the interior.

Exterior solution

We begin from the second equation (4.2.1b). In terms of f, it gives

(80 <1 [T g =1-
0

where in the first equality we used that g(M = 0) = 0 (see (4.1.68)) and in the
second equality we used (4.1.69). This yields a parameterization of the dilaton
derivative in terms of f:

M F
Mf'(M)ydM =1 — / M(f)ydf, (4.2.34)
0 0

!
‘é—i(f) — +/P(J), with P(f) 51—/0 M(F)df’ (4.2.35)
where the plus/minus signs correspond to using different branches of the
square root. The allowed range of f is determined by the condition P(f) > 0.
We see that P(f = 0) = 1 > 0, so by continuity there is at least an interval
around f = 0 where the solution exists. Moreover, if the integral appearing
above is negative for all values of f (as will be the case for the standard BH),
then the solution is valid for the whole real line f € R.

Luckily, we do not need to solve (4.2.35) to get ®(f). The latter can be easily
obtained from integrating exactly (4.2.1a)

O(f) =log|f] + @1, (4.2.36)

with ¢, = ¢(f = 1) an integration constant that absorbs the sign of f and en-
codes the mass of the black hole. If instead of integrating (4.2.1a) we distribute
the x derivative we get the relation between f and x:

dr = ii, (4.2.37)

JAVARE)

where we used (4.2.35). Using (4.2.37) in (4.2.2) we obtain an expression for
the metric components

m(es) _mfs) (L [" M)
= p(i T \/W) (4.2.38)
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With m(f), we can relate ®(f) to the scalar dilaton ¢(f) via (4.2.4), where now
all quantities are parameterized by f. For the curvature, we have from (4.2.3),

B dM df\ dM
R(f) = —2<M2 + Tf@) - _2<M2 £ 1 V() ) . (4.2.39)
Collecting the results, for ease of reference, we have [7]
Z—i(f) = ++/P(f), (4.2.40a)
O(f) = log | f]+ @1, (4.2.40b)
df
dr = +———, (4.2.40c¢)
CT TR °
m(f2) _ ( & ﬂ M(f) ) 4.2.40d
m(f1) P+ n fN/P(f) ’ (4.2. )
B dM dfy dM
Ral(f) = —2<M2 n ?%) - —2(M2 £/ V() ) , (4.2.40¢)
6:(1) = 3 (@() +log m=(f)) (4.2.400)
Here the argument P(f) of the square roots is
f
P =1 [ M) 4.2.41)
0

and we used the plus/minus subscript to differentiate branches.

Equations (4.2.40) encode the general solution to (4.2.1) in terms of f as a
parameter! The solution is completely determined once an ansatz for M(f)
is given, and the physics depends on such choice. Without M (f) we cannot
say much about the specifics of each solution, but we can still analyze some
global aspects of them: the first thing to notice is that, from our starting point
in (4.1.68), since f(M) has a power series expansion in M, its inverse M (f), at
least perturbatively, is expected to have the following expansion

M(f) = =3f [1+ 52+ 0(EFY)] = =3 F [1+h()] | (4.2.42)
where we introduced the function & as follows

h(€) = = £+ O(2€?). (4.2.43)

DN

Here M(f) = —%, obtained for h({) = 0, corresponds to the standard two-
derivative case, for which we recover the exterior BH solution of (4.1.8), as we
will show in Section 4.2.3. The expansion (4.2.42) implies the following two

properties for generic M (f)
M(f=0)=0, M(—f)=-M(f), (4.2.44)

and
h(€=0)=0, n'(=0)=finite. (4.2.45)



These observations reveals that f = 0 corresponds to the asymptotically flat
region in all solutions.

To see this, we study the behavior of (4.2.40) and (4.2.41) near f = 0 for generic
M(f). Using (4.2.42), (4.2.44) and P(f =0) = 1, we get

df
f 9
From the second relation we infer  ~ +In f + const and hence that f =
corresponds to an asymptotic region with infinite x. From the third relation
we see that we can choose the integration constant such that m.(0) = 1. Using
this together with ¢(0) = —oo in (4.2.40f) we obtain ¢, (0) = —oo. All these
results are compatible with the interpretation as a faraway region.

O(f) ~log|f|, drv~=+ my(f) = my(0)e¥2f, Ry (0)=0. (4.2.46)

This makes f = 0 the end of the spacetime, which implies that solutions with
f < 0 and with f > 0 should be treated separately, not as two regions of the
same exterior solution. On top of this distinction, we have the two branches of
the square root of (4.2.40a) corresponding to the 4+ choices. While this seems
to suggest we have four different solutions, all of them should be physically
equivalent in string theory. More precisely, the negative and positive regions
of f are related by T-duality since M — —M and (4.2.42) imply

fof=—Ff. (4.2.47)

Moreover, solutions in the different plus/minus branches are connected via a
trivial sign flip of x. More precisely, the solution with minus sign and f < 0
is identical to the solution with plus sign and f > 0, upon changing v — —=.
Their T-dual solutions can be obtained by (4.2.47).

Interior solution

In order to get the interior solutions in the Gasperini-Veneziano parameteri-
zation, we repeat the procedure we just performed for the exterior case, but
this time using the equations (4.2.5). Without going into details, the solutions
read [7]

P = =V/R(). (4.2.480)
O(f) = log|f| + Ps, (4.2.48b)
df
o= +— (4.2.48¢)
/P
n?i ( /fi{\jyf) (4.2.48d)
mi 1
S -, dMdf —y o =dM = =
Ri(f):Q(M2+d—f%) :2(M2ifd—f P(f) ) (4.2.48¢)
AGEH CHRUNGHE (4.2.480
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Here the argument of the square roots, called P(f), is defined as follows

o Foo
P(f)z—1+/0 M(f)df' . (4.2.49)

Since P(f = 0) = —1 < 0, this time the solution excludes the point f = 0.
Moreover, in general it is not even guaranteed that the interior solution exist
at all. There would be no interior solution if P(f) is negative for all f.

We can determine the function M (f) for the interior region from the function
M (f) for the exterior region by inverting the relation f(M) = if(iM) we found
in (4.1.83). This is given by

M(f) = —iM(—if). (4.2.50)

In particular, the perturbative expansion of (4.2.42) is mapped to the following
perturbative expansion for M (f)

M) =3 [1= 5 2+ 0] = 4F [1+ (-] (4.2.51)
with the same A(¢) defined in (4.2.43).

The range of validity of the interior solution is very different from the one of
the exterior solution. From now on we assume there is always at least one
positive branch point f, > 0 such that P(f;) = 0 and P(f) > 0 for some interval
fe (fo, f1), where f; > f, can be another branch point or the point at infinity.
If this is the case, due to the even parity of P(f), the interior solution exists
at least for an interval f € (—fi,—f,) U (fo, f1). However, since for the interior
solution T-duality also acts as

Fof=-F. (4.2.52)

both negative and positive regions are related via a duality transformation. We
are imposing to have at least one branch point for positive f. Multiple branch
points are also possible in principle. They would lead to multiple separated
domains within f > 0 such that P(f) is positive in each of those disconnected
regions.

In the next sections we will use the Gasperini-Veneziano parameterization to
get several black hole solutions with different properties. Before doing that,
however, we dedicate a few paragraphs to clarify the invertibility issues arising
when going from f(M) to the M(f) picture.

On the non-invertibility of M (f)

As found in Section 4.1.3, the most general higher-derivative corrections can
be encoded in a function F(M) given as an infinite power series expansion in
(even) powers of M ((4.1.66)). Each successive term contains an additional
power of ¢ or, in dimensionful units, o'. It is quite possible, perhaps even
likely, that this series only has a finite radius of convergence, making the
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definition of the action incomplete. From F(M) one defines f(M) = F'(M) and
in the standard approach one usually works with f(M(z)). Here, we change
the perspective and describe o’ corrections via M(f), which we assume to be
a well defined (single valued) function, and f(M) is just its inverse. From this
approach, it follows that the inverse f(}) may not exists or, in order words,
may be multivalued.

An example of this situation is given by assuming a function M (f) that grows
monotonically from M(f = 0) = 0 to some maximum M (f = f.) = M, with
f« > 0, and then falls down. Then the inverse f(M) is not single valued. In
fact, if one expands M(f) as a series in f and perturbatively inverts it, f(M)
will only converge up to M = M,, where it has a branch point. Departing from
this specific example, in general let M, denote the maximum value of M for
which the series f(M) converges. In these scenarios, the multivalued nature
of f(M) propagates to all other quantities in the equations of motions.

One of these quantities is §(M), defined by the relations (4.1.68) and (4.1.69)
which are translated to

dg _ . df 5(0) —
f = Moy and g(0)=0. (4.2.53)

Both of these are implemented by the integral definition

M'=M !
g(M)E/ M’MdM’, M € [0, M,]. (4.2.54)
M'=0 dM/

The condition on the range of validity of the definition is needed because g is a
multivalued function, a property it inherits from f(A). But now, in this range
we can change the variable of integration from M’ to f’ to get

f(M)
g(M) E/O M(fhHaf", M €0, M,], (4.2.55)

where we used f(M = 0) = 0. The above definition suggests the following
construction of a new function g(f) well defined for all f:

f
9(f) = /0 M(f)df". (4.2.56)

It follows immediately from the last two equations that

g(M) = g(f(M)), M €0, M.], (4.2.57)
which states that §(A/) and ¢(f(M)) coincide in the domain of definition of
g(M).

We can now see how this change in perspective from f(M),g(M) to M(f),g(f)
affects the equations of motion (4.2.1). For instance, taking the lapse equation
(4.2.1b) and using (4.2.57) we get

(52) =1 g(M) = 1 g7 (M), M e [0,M]. (4.2.58)



Here the dilaton derivative is effectively set equal to a function of f(M). But
then we may as well forget M, declaring that this equation sets the dilaton
derivative equal to a function of f:
dP? U
(G) N =1-9()=1- [ M) =PU). v, (4.2.59)
0

which coincides with (4.2.58) in the range M < [0, M,], but it is also valid for
all f.

What started as a subtle observation regarding the non-invertibility of M (f),
ended up revealing the true implications of the new parameterization: the orig-
inal set of equations (4.2.1) and (4.2.5) are not exactly the same as (4.2.40) and
(4.2.48). Both descriptions coincide in the range of validity of the perturbative
series coming from F'(M) or f(M). However, now the f parameterization rep-
resents an extension of the original equations, going beyond the limitations of
the power series definition of the o’ corrections! We will assume these provide
the non-perturbative definition of the theory with o’ corrections. Therefore,
solutions of (4.2.40) or (4.2.48) can be non-perturbative, having no analog to
solutions of (4.2.1) and (4.2.5). This will be the case for the regular black hole
treated in Section 4.3.2.

4.2.3 The two-derivative black hole in the f parameterization

Here we work out the standard two-derivative BH solution of Section 4.1.1 in
the Gasperini-Veneziano parametrization. A visual representation of the black
hole regions in the f and z parameterization can be found in Fig. (4.1). Each
patch will be explained in detail in this section. The experience gained here
will prove essential for the later generalizations.

Exterior solution

The M(f) ansatz for the exterior region of the two-derivative theory corre-
sponds to the limit ¢ — 0 in (4.2.42):

M(f)=-3%f. (4.2.60)
Associated to M we have P(f) given in (4.2.41):
P(fy=1+%1f* >0 VfeR, (4.2.61)

which implies that all f are in principle allowed. The duality-invariant dilaton
does not depend on the specific ansatz for M(f), so it is still given by (4.2.40Db).
Using (4.2.61) in (4.2.40a), its x-derivative is given by

dd s
== St 12, (4.2.62)

where we choose the plus sign to fit the conventions of (4.1.8), where = = 0~ is
the horizon and the exterior region is x < 0, with the asymptotically flat region
at x — —oo. To stick to this convention we also need to pick f > 0.
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Exterior \i
(a) AF H
0 00
Interior \i
S
v R >
H
(c) AF 5| S
I feccccc=4 >z
—00 Exterior 0 T T
Interior

Figure 4.1: The two-derivative black hole. (a) The exterior is produced by a contour
f € (0,00) joining the asymtotically flat (AF) region to the horizon (H). (b)
The interior requires a contour going under and then over the cut, with
branch point f = 2 and the horizon and singularity at f = co, under and
over the cut, respectively. (c) The z-space representation of the black
hole. The exterior is in (—oo0,0) and the interior in (0, 7).

The relation between z and f can be obtained from (4.2.40c), which for this
ansatz takes the form

1
dr = a1 = —darcsinh% . (4.2.63)

Ny

Integrating and choosing the integration constant to be zero we get

#(f) = —arcsinh? = [=— (4.2.64)
From here we see that z and f are positively correlated. Moreover, z = —oco

is mapped to f = 0" and it corresponds to the faraway region, and x = 0~ is
mapped to f = oo, the position of the horizon (see Fig. (4.1) (a) and (c)).

In order to determine the metric we take the plus sign in (4.2.40d), use (4.2.60)
and (4.2.61), and choose the integration limits to be f, = f and f; = 0:

1 ar . / 2
m_?}(p()) = exp <_§/0 —1 ']:L fT2> = exp(—arCSth%) =-L+/1+L. (4.2.65)

Here we dropped the plus subscript so not to clutter the notation. From the

last equality we see that we can simply take m(f) = —% +4/14 f4—2 with m(f =

0) = 1 consistent with the asymptotically flat region interpretation. For large
f, m(f) ~1/f, so that m(f = o0) = 0, consistent with f = co being the position
of the horizon.

127



We now compute the curvature from (4.2.40e), using the top sign and finding

R(f)= f (-g—ﬂ/ fz) fm(f). (4.2.66)

Note that R(0) = 0, as befits the asymptotically flat region, and R(f) ~ 1 for
f — oo, which is the value of the curvature at the horizon as obtained in
(4.1.11) for Q@ — 1.

At this point we have M(f), ®(f), m(f) and R(f), and so the full f-parameterized
solution is determined. As a consistency check one may use the relation be-
tween f and z to recover the BH solution in the familiar form as given in
(4.1.8). For the metric, for example, we have, using (4.2.64), and recalling that
x is negative,

m(x) = Sinlhm +4/1+ Smh? = %(1 — V1 + sinh? m) = —tanh 7. (4.2.67)

sinh z

For the dilaton we have, since f > 0,

D(z) = log f(z) + @1 = log(555) + @1 = — log|sinhz| + Py . (4.2.68)

The exterior solution can be visualized in a M-vs- plot both as a function of
f, as shown in Fig. (4.2).

do

3 dx

_3L

Figure 4.2: Two-derivative black hole exterior. The solid line is the plot of the dilaton
derivative d®/dx and M as a function of f € [0,00). The point on the
horizontal axis is f = 0 and represents the asymptotically flat region. As

f — oo we reach the horizon and the curve asymptotes to the dashed line
M| = |42

Interior solution

The BH interior solution of (4.1.16) can also be recovered in the f parameter-
ization, using (4.2.48). The ansatz for M(f) is obtained by using the formula
(4.2.50) on the ansatz for the exterior (4.2.60):

M(f)=43f. (4.2.69)
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The argument of the square root this time takes the form
P(f)y=-1+1f, (4.2.70)

and so the square root has branch cuts on the real line with |f| > 2, with
branch points at f = +2. Therefore, the interior solution is valid for the interval
f € (=00, —2) U (2,00), where negative and positive regions are related via T-
duality (4.2.52). From now on we choose f > 2.

In order to describe all of the internal region in the f- parameterization we need
to cover the range f > 2 twice. We begin from f = oo to f = 2 traveling under
the branch cut, and then we return from f = 2 to f = oo over the cut. The
difference between paths is given by the choice of + sign in front of the square
root in the solution (4.2.48). The square root is assumed to take negative
values below the cut (— sign) and positive values above the cut (+ sign).

When going under the cut, the dilaton derivative is given by

dd . - '
%(f):_ _1+%f2, 4.2.71)

The relation between =z and f in (4.2.48c) takes the form

df df Pz
dx:—%:— - / = :darccscg, f=>2. (4.2.72)
JY-1+47 Iy -1+4P

Integrating this equation and setting the integration constant to zero we get

- P z 1
z(f) = arcesc L = @ = (4.2.73)
sin x

In this parameterization as f decreases z increases. Indeed, we have:

feloo,2. = ze0,1], (4.2.74)

with the minus subscript indicating that we are traveling under the cut. As we
will see, f = oo (x = 0) corresponds to the position of the horizon, while f = 2
(z = 3) is just an intermediate point in the interior solution.

For the metric we need (4.2.48d) with the minus sign. Choosing the lower
boundary to be f; =2 and leaving the upper boundary arbitrary we get

% —exp<—%/ m) = exp (—arccosh%) = é— \/—1+§7
(4.2.75)

For the curvature one can show with (4.2.48e¢) that
R-(f)=F (§ —\/—1+ %) = fi_(f). (4.2.76)

From (4.2.75) we see that f = 2 is just an intermediate point in the interior
solution. In particular we can pick the values

m_(2) =1, R_(2)=2. (4.2.77)
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On the other hand, as anticipated, /m._(f) and R_( f ) are consistent with f=00
being the location of the horizon since m_(f) ~ 1/f for large f and so

lim m_(f) =0, lim R_(f)=1. (4.2.78)

f—oo f—oo

The other half of the solution is recovered by going over the cut. In this situ-
ation, the dilaton derivative (4.2.48b) and the relation between z and f from
(4.2.48c) have the opposite sign as in (4.2.71) and (4.2.72). For the latter we
have

= darccos 2 2= ()= arccos% + cp, (4.2.79)

w|“h1

dx = —darccsc

where after integration we picked a non-trivial integration constant c,. This
is necessary since at f = 2 we already had » = § from under the cut, so by
continuity we must have

g=arccosl+c=c = c=73. (4.2.80)
Therefore,
f— T — 2 -2 — T =i
r(f) — § = arccos P T T cos(r — §) =sinw. (4.2.81)

Indeed we have z(f = 2) = 5 and z(f = o0) = 7, since z grows with f. So we
have ~

fel2,00 = zelf,n], (4.2.82)
where the subscript + indicates going on top of the cut. Interestingly, compar-
ing (4.2.73) and (4.2.81) we can see that the relation f(z) is the same for under

and over the cut. The former covers x € (0, 7) and the latter the remaining half
of the interior solution z € (5, ).

This time, taking the plus sign choice in (4.2.48d) and (4.2.48e), we obtain the
expressions for the metric and curvature over the cut:

ma(f) =41+ 5, Re(f) = Fin(f). (4.2.83)

The intermediate point f = 2 (r = 3) gives again (4.2.77), but this time the
boundary f = oo (z = 7) corresponds to the singularity, where

lim m,(f) =00, lim Ro(f)=o0. (4.2.84)
f—oo f—o0
As a consistency check one may again verify that the solution in the form
(4.1.16) follows from the relation between f and z.

The f contours and their relation with the different parts of the interior region
can be found in Fig. (4.1) (b). A plot of the dilaton derivative dd /dx and the
metric derivative M, both as a function of f helps to visualize the solution (Fig.
4.3).
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Figure 4.3: Two-derivative black hole interior. The solid line plots the relation be-
tween the dilaton spatial derivative and M. The horizon H is on the
upper left, the singularity S on the upper right (both at f = co, below and
above the cut). The branch point at f = 2 corresponds to the point with
minimal M = 1. The f’ contour is that shown in Fig.4.1 (b).

4.2.4 A family of singular black hole solutions

We now present a class of functions M(f) that lead to BH solutions in the
conventional sense [7]. They have an exterior and an interior region. The
exterior includes the asymptotically flat region at f = 0 and the horizon sits
at f = oco. For the interior region (Fig. (4.4) (a)) we have, as for the standard
BH, a branch point in f space and a cut running from this point to infinity.
We mimic the parameterization used for the two-derivative case in which the
contour begins under the cut at infinity, goes down to the branch point, and
then returns to infinity at the top of the cut. The horizon and the singularity,
that is not removed in this class of solutions, are at f = oo, below and above
the cut, respectively. Both regions, we believe, form a single solution because
the curvature is continuous across the horizon.

This class of M(f)’s serve as a proof of concept that o/-corrected BH solutions,
in the conventional sense, can be obtained in this new parameterization. How-
ever, we do not claim to have found the most general solutions of this kind.

This family of solutions is parameterized by a function i () via the relation
M(f)=—4[1+nh(fY)], (4.2.85)

where we take
h(0) =0, Ah'(0) < o, (4.2.80)

conditions that allow making f = 0 the far away region of the black hole. We
also require the correction to M = —f/2 implied by & to be "small". For this we
impose®

h(€)| <1, VEeR. (4.2.87)

5A relaxation of this condition where h(¢) reaches 1 at some finite number of points is also
possible. We do not explore that case here. We refer the interested reader to [7].
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This implies, in particular, that M(f) < 0 for all f > 0. To get a horizon we
need conditions on the behavior of / for large argument:

£—o0

lim h(£) =0, /OO BE)dE = a<oo,  lim &H(€)=0. (4.2.88)
0 —00

The first condition implies that M(f) ~ —f/2 for very large f, the second con-
dition imposes the integral over positive arguments to be finite, and the third
condition follows from the first for a regular function at infinity.

For the interior of the black hole, we need conditions on 4 (¢) for large negative
¢. At the cost of some generality, we simply demand %(¢) to be an odd function:

h(—&) = —h(€). (4.2.89)

Exterior solution

For the exterior solution, we have equations (4.2.40). Picking the plus sign and
inserting the function M (f) as given in (4.2.85), the equations for the metric
and curvature reduce to

m( fs f2 2
m&; = exp(/f df I.(f) ) ;o L(f) = — ;JFLP((J;))’ (4.2.90a)
R(f) = —g {f(l +h(f?)? -2 (1 + h(f?) +2f? d’;gf)) P(f) ] . (4.2.90Db)

where we dropped the + subscript. The location of branches is now deter-
mined by:

f2

P(f)=1+1f +i/ dé h(§). (4.2.91)

0
From the bound (4.2.87) on h(¢), we infer that

2

—f2</ dEn(E) < f2 = P(f)>1 VfeR, (4.2.92)
0

showing that there are no branch cuts in the f plane and we can work with
fe(0,00). (4.2.93)

We now consider the behavior of the integrand I.. Using the vanishing of
h(¢ = 0) and the first two conditions in (4.2.88), we conclude

!
lim]e(f):—%, lim[e(f):—% = /df’]e(f'):—logf,asfﬁoo.
0

f—0 f—oo
(4.2.94)
For the ratio of metric values, these limits imply
m(0) ( / °°
——~= =exp dfI.(f ) =exp(—o0) =0, (4.2.95)
(0] [ ()
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which allows us to pick the integration constant such that
m(0) =1, m(c0)=0, (4.2.96)

the former consistent with f = 0 being the faraway region and the latter con-
sistent with f = oo being the horizon.

Additionally, as required, the curvature goes to zero for f — 0 and is finite for
f — oo. While the former is a general feature of solutions coming from the
classification, the behavior at the horizon is a consequence of (4.2.88), which
imply

4+«

f'2

The scalar dilaton behaves as in the standard two-derivative black hole. For
the far away region, we have m(0) = 1 and so from (4.2.40b) and (4.2.40f) we
get ¢(0) = —oo, indicating weak coupling. On the other hand, for large f we
have the behaviors

lim R(f) ~ I

1—4/1

} ~ 14 % . (4.2.97)

O(f)y=logf+P®, m(f)~—logf+, (4.2.98)

where the former is just the definition of the duality-invariant dilaton (4.2.40Db)
and the latter comes from the last relation in (4.2.94). Here ¢ is just a con-
stant. Therefore, at the horizon f = oo, from (4.2.40f) we have

¢(00) ~ 3(log f + 1 —log f + ) ~ ¢ = const., (4.2.99)

a constant as in the standard black hole.

Interior solution

For the interior solution, we use (4.2.50) to find that the ansatz (4.2.85) gives

M(f) = —iM(=if) = £ (1 + h(—f2)> =1 (1 - h(f2)> , (4.2.100)

where the last equality follows because & is odd by assumption. The expres-
sions for the metric ratios in (4.2.48d) and the curvature in (4.2.48¢), become

(/) = ex de L(f () = L= 4.2.101
et p(i/q fz(f)>, h= 7 (4.2.101a)
R+(f) :5 [fu —h(f?))?+2 (1 —h(f? —2f2d2%2)> P(f)] . (4.2.101Db)

Regarding branch cuts, this time the range of f/ depends on the roots of the
function )
. 12

P(f):—1+if2—}l/ de h(€). (4.2.102)

0
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This function picks the following values at the boundaries

P(0)=-1<0, lim P(f)= lim (-1—ia+1f?)
f—+to0 f—+to0

— 0, (4.2.103)

where we used the second equation of (4.2.88). This shows that P(f) must
change sign as f grows from zero. Moreover, P(f) grows monotonically since

P ; . .

2L (1= n(f?

7 2(1 h(f ))>o v feR, (4.2.104)
as a consequence of the "small-correction" assumption |h| < 1. Therefore, the
range of validity of the solution is taken to be

f € (fo,0), (4.2.105)

where f, > 0 is the unique point at which P(f) changes signs, namely P(f;) = 0,
a branch point. As for the standard BH, the interior is parameterized by the
range: i

f € [fo,00]- U [fo, 0] . (4.2.106)

Here the minus subscript indicates going under the cut, and corresponds to
the minus sign choice in (4.2.101). The plus subscript corresponds to traveling
over the cut and corresponds to the plus sign in (4.2.101).

For the metric, from (4.2.101a) we have

Zi((;j)) - eXp(i /f:o df1(f) ) : (4.2.107)

The first half of the interior region is covered by traveling under the cut. This
contains the horizon at f = oo, and so we need the right-hand side of (4.2.107)
to be zero for the minus sign in order to obtain 7m_(c0) = 0 and m_(fy) finite.
To show that this is indeed the case, let us consider the integral of ;. At the
branch point f, there is an integrable square-root singularity: P(f;) = 0 and
the derivative P'(f,) is nonzero, see (4.2.104). We thus need only focus on the
behavior of I; for large f. For the f — oo limit, using (4.2.88) we find

1 o .

= = df'L(f)~Inf. (4.2.108)
/ fo

Finally, inserting this into (4.2.107) we get Zi(o") = ¥, from where we can

(fo)
choose a finite value at the branch point m (fy) = m_(fy) = mo, so that we have

Li(f) ~

m_(oc0) =0, and my(oc0)=o00. (4.2.109)

The former corresponds to the desired behavior at the horizon. In the process,
we got a singularity at f = oo over the cut, which is a unavoidable in this class
of solutions. We will understand better this point later in Section 4.3.1.

The curvature at the branch point f; is easily evaluated since P(f,) vanishes:
R_(fo) = R+ (fo) = 2M*(fp) = (- h(fg))2 : (4.2.110)
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For the infinite limit we have, from (4.2.101b)

ﬁfi(f)ﬁ%fz[li 1—4}—;], f— . (4.2.111)
As a result we find

lim R_(f)=1+¢, lim Ri(f)=oc. (4.2.112)

f—o0 f—oo

The first is the curvature at the horizon as computed from the interior. As
required, it coincides with the curvature at the horizon computed from the ex-
terior in (4.2.97). The second result is the infinite curvature at the singularity.

For the duality-invariant dilaton in the interior region we have ® = log f + @,
which is well defined for f € (fy,0). ® does not differentiate between lower or
upper branches. It diverges at f — oo but it is finite for f = f,. For the scalar
dilaton we use

0x(f) = 3 (8(F) +log () . (4.2.113)

which does distinguish branches through .. While it is clear that b4 (fo) =
¢_(fo) = finite, for f — oo under and over the cut we need logm.. To this end,
we combine (4.2.101a) with the value of the integral from (4.2.108) to get

1ogmi(f):ilogf+ci, f— o0, (4.2.114)

where c. are constants.Plugging this expansion back into (4.2.113), together
with the definition for ®(f) we find that for f — oo

d_(fy~ée, oo (f) ~logf. (4.2.115)

The first one is consistent with the horizon interpretation, where we need ¢ = ¢
with cin (4.2.99), in order to match exterior and interior regions. The behavior
of ¢, close to infinity signals, once more, the presence of a singularity there.

To sum up, the general ansatz (4.2.85) parameterized with a function /(&) sat-
isfying (4.2.87), (4.2.88) and (4.2.89) lead to BH solutions. There are infinitely
many functions satisfying these conditions. For example

h(€) = Eexp(—¢&?) (4.2.116)

is one of them, satisfying [;~ h(£)d€ = ; and |h(¢)] < & < 1.

The way the more general solutions are parameterized in terms of f mimics
the standard BH. The exterior corresponds to f € (0, 00) with f = 0 the faraway
region and f = oo the horizon. The interior region is covered by two patches:
f e (fo,00)_and f € (fy, )., where the first goes under the branch cut (picking
the minus sign in (4.2.101)) and the second over it (with the plus sign in
(4.2.101)). We begin under the branch at f = oo (the horizon) until f = f,, the
branch point, where all quantities are finite. From there, we return to f = co
over the branch cut. This time, the metric and curvature diverge at this point,
which is identified as the singularity.
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4.3 On Black Hole Singularity Resolution

In the previous sections we combined the higher-derivative classification and
the Gasperini-Veneziano parameterization to arrive at a non-perturbative all-
order description of duality-invariant 2D backgrounds. This model is encoded
in equations (4.2.40) and (4.2.48). From them, we recovered the standard 2D
BH and found a family of o/-corrected extensions of such background. These
are black holes in the conventional sense: they contain a horizon but also a
singularity. Considering how broad the theory space contained in (4.2.48) is,
at first sight it feels almost obvious that regular black holes should be part
of such a landscape. We will demonstrate in this section that regular black
holes are indeed possible, but they are not that easy to build as one could
have thought [7].

We begin this section by showing that for dilaton-gravity theories in 2D time-
independent backgrounds, T-duality implies that the dual of a solution with
a regular horizon must have a curvature singularity. This result is a gener-
alization of the early observation of Giveon [46] noting this fact for the two-
derivative 2D BH. This result implies that there are two kind of BH solutions:

©® If the maximally extended BH is invariant under T-duality (self-dual), it
must have a curvature singularity somewhere if it has a horizon.

© If the maximally extended BH has no singularity, then it cannot be self-
dual.

As we already analyzed, the two-derivative black hole solution is of the first
kind: it is self-dual, and T-duality maps the horizon to the singularity. We will
see that the family of o’-corrected black holes are also of the first kind, as a
consequence of the branch structure used for the interior solution.

The solutions of the second kind would be "regular" but they would still be
physically equivalent (in the sense of string theory) to its T-dual, which neces-
sarily would exhibit a curvature singularity. From the point of view of general
relativity, however, the regular solution would be disconnected of the singu-
lar region and so a point-particle in the regular region could never reach the
singularity. In Section 4.3.2 we build, what we believe it is, a solution of the
second kind, a regular black hole, obtained by engineering an M (f) that makes
dual regions disconnected. The representation of such regular solutions in f-
and z-space can be visualized in Fig (4.4). We will explain these contours in
detail in Section 4.3.2.

4.3.1 A horizon implies a singularity

We consider dilaton-gravity 2D backgrounds with a generic real metric of the
form:
ds* = —m?(x)dt* + n*(x)dx* . (4.3.1)
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Figure 4.4: (a) The interior of a deformed black hole with a full contour containing
a horizon H and a singularity S. (b) The interior of the regularized black
hole, without a singularity. The bottom contour containing the horizon
ends at f; and the top contour (dotted) is not needed for completeness.
(c) The = space representation of the regularized black hole.

We assume the action and equations of motions describing these backgrounds
are duality-invariant, but otherwise completely generic. We assume T-duality
acts in the standard form, sending m — 1/m and leaving the lapse and dilaton
invariant.

To prove that a horizon implies a singularity in the dual geometry we consider
a configuration where: 1) the horizon is the point z;, at which m(z) vanishes
and 2) regularity means the scalar curvature is finite everywhere. Without loss
of generality, we take x; = 0. Moreover, since the conclusions should be gauge
independent, we pick n = 1 for simplicity. In this gauge, the curvature and its
dual are given by

m(z)

R(x) = -2 R = —R(z) -4 (ml(l"))Q , (4.3.2)

where prime denotes derivative with respect to the argument. The second
identity arises from computing the dual curvature via R(m) = R(m) = R(1/m),
and comparing it with R(m).

We define the neighborhoods N, = (0,¢), and N, = [0,¢) where we include the
point 0. We assume that there is an e sufficiently small such that the following
hold:

1. The function m(z) is continuous in N, and vanishing at = 0. This is an
isolated zero: the neighborhood N. does not contain another zero of m.

2. The curvature R(z) in N, is finite.
These are the natural conditions satisfied by a conventional horizon.

Claim: The dual curvature R cannot be finite in N.,.
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Proof: Since R and R are related via (4.3.2) and R is assumed finite in N, this
means that the finiteness condition

m'(z)

< 00, Vr € N, (4.3.3)

m(z)
cannot hold. Let us assume it holds and derive a contradiction.

Since the sign of m(z) is merely conventional, we can consider m(z) > 0 for
z € N.. This follows from the continuity of m and the isolated zero. Given the
positivity of m(x) in N, we can write m(x) in terms of its logarithm L(x):

m(z) =@ with m(0)=0 = L(0)= —oc0. (4.3.4)

Since m(z) # 0 in N,, then L(x) is finite in N.. Taking a derivative of m we have

— I'(z). (4.3.5)

L(0) = L(x) — /095 L'(u)du, ¥V x€ N, (4.3.6)

and examine the right-hand side above. For = € N, the function L(z) is finite.
Moreover, since L'(z) is finite in N, and z is finite, the integral is also finite.
But with both terms on the right-hand side finite, we cannot have L(0) = —o0
as required. This contradiction means that (4.3.3) does not hold, L'(x) needs
to diverge so the integral above gives an infinite L(0). This is what we wanted
to show. O

The result above is reasonable: In one dimension, T-duality maps m(z) —
1/m(x), which makes a vanishing metric unavoidably dual to a divergent one.
All we had to prove was that such coordinate singularity was in fact a curva-
ture singularity.

Corollary

This result actually gives a simple proof that the interior solutions coming from
(4.2.48), based on the contour extending below and above the branch cut in f
space, must lead to a singularity. The main observation here is simple. Recall

that R is given in (4.2.7) and its dual R is obtained by letting M — —M:

R — 202 +20,0, R — 201 —20,M. 4.3.7)

Compare with equation (4.2.48e) for the curvatures above (+) and below (—)

the cut:

Ri(f) =2M? + 2f% P(f) . (4.3.8)
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Since M(f) and P(f) are functions without branches, each term in the above
curvature formula takes the same value above or below the cut; the only differ-
ence being that they enter with different sign combinations for the curvature

and for its dual. It thus follows that we can identify R = R, and R = R_,
and so the curvatures above and below the cut are related by T-duality! This
means that interior solutions where the f contour defining the # domain ex-
tends both above and below the cut are actually self-dual. From our recent
proof, having a horizon below the cut (as we conventionally set it up) will imply
a curvature singularity above the cut.

From this simple corollary, it is clear now why the standard BH and the fam-
ily of o/-corrected BH solutions found in Section 4.2.4 were singular. In the
following section we will circumvent this seemingly no-go result for duality-
invariant regular black holes, by building solutions whose interior regions are
not self-dual. To this end, we will cover the interior with just one f contour in
a consistent way.

4.3.2 Regular black hole solutions

We begin from the same ansatz for M (f) as in Section 4.2.4
M(f)=—=5f[1+h(f*)], (4.3.9)

with h(¢) still satisfying (4.2.86), (4.2.88), and the odd property (4.2.89). In
this case, the interior solution is parameterized by

M(f)=1f [1 - h(f?)} . (4.3.10)

The difference with the singular BH’s studied so far comes from modifying
condition (4.2.87). This time, we will allow for h(¢) to reach one at a single
point &, = f2, the same point at which the function P(f) first goes from negative
to positive:

On top of this, we demand that the extra conditions
&o
h(&)) =1 ’ hl(fO) = Oa hu(fO) < O’ and / dfh(g) = 50 —4. (4312)
0

We will confirm that with these conditions P(f;) = 0. This fact and the motiva-
tion for the above set of conditions will be explained below.

We will now see how the equations (4.2.40) and (4.2.48) are indeed solved
by an M(f) satisfying the above conditions, and that solution is a regular
black hole. We will show that the interior region is a cosmology that at late
times is asymptotic to Minkowski space with a constant dilaton. This behavior
suggests strongly that this is not a solution in string theory.
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Exterior solution

The additional conditions (4.3.12) preserve all good features of the exterior BH
solution. In particular, for the exterior region f, has no special meaning, it
is just a finite intermediate point in the solution’s domain. The object that
determines the latter is the argument of the square root:
f2
P(fy=1+1f+ i/ de h(€). (4.3.13)

0

and the domain f € (0,00) we used for the singular black holes remains un-
changed since P(f) is still positive for all reals, including f,. The analysis of
the exterior solution in Section (4.2.4) remains unchanged, and the results for
the metric, curvature, and dilaton derived there hold here as well.

Interior solution

For the interior solution, the role of f; is crucial to get a regular solution. The
idea is that the conditions (4.3.12) render the position z( f;) infinitely faraway.
Therefore, after going from the horizon (f = ~) to f = f, under the cut, we
do not need to go back to f = oo on the top of the cut, where the singularity
always was. Now, we can just stop at fy because in terms of z this is the end
of spacetime (see Fig (4.4) (b)).

We begin with the function P(f) which takes the form

- Foo 8 72
PP =1+ [ M(Paf = -1+ 17— 4 [ aghie), (4.3.14)
0 0
and attains the following values
P(0)=-1, P(fo)=0, P(f)=1f* for f— 0. (4.3.15)

The first equality is manifest, the second equality follows from the last con-
dition in (4.3.12), and the last one from the convergence of [*h(£)dé. To
understand the nature of the interior solution we must consider derivatives of
P(f). The first derivative coincides with M (f):

P(fy=N()={[1-n(/3] 20 vi>o, (4.3.16)
where the inequality follows from |h| < 1. We then have the following values
P(0)=M(0)=0, P(fo)=M(fo)=0, P'(f)=M(f)=~3f for f—oo.
(4.3.17)

The first equality is manifest, the second follows from h({,) = 1, the third from
the vanishing of h for large argument. The second derivative is given by

P(F) = N'() = 5(1 ~ h(&) ~ £M(€). (4.3.18
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using ¢ = f2. We obtain
Pl(f=0)=M(f=0)=3, P'(fo)=M(f)=0. (4.3.19)

The second equality holds because h(§) = 1 and #/(§,) = 0. For the third
derivative we have

P"(f) = M"(f) = =3f1'(§) — 2°h"(€) . (4.3.20)
The special values here are
PU(f=0)=M"(f=0)=0, P"(fy) = M"(fo) = -2/ h"(&) >0,  (4.3.21)

the second relation following from the assumption »”(§,) < 0.

All these results can be represented collectively in the two plots of Fig.4.5,
where we show M (f) and P(f).

M () S

A

| /fo ]
=1

V

Figure 4.5: Left: Sketch of M(f). The shaded region must have unit area, the point
f. indicates the position of the first local maximum M(f,) = M,, the point
fo is a minimum, and for large f the curve approaches the line f/2. Right:
Sketch of P(f). This function changes sign at fy, which is an inflection
point.

The plot of M (left) shows a function that begins at zero with positive slope
and remains strictly positive until f, where M(f,) = M'(f,) = 0 and M"(fy) > 0,
which makes f, a minimum. The area under the curve in the interval (0, fj)
is exactly one because P(f,) = —1 + foodfM(f) = 0. For f > f, the function
remains always positive (see (4.3.16)) and approaches infinity exactly as the
standard BH.

Let us now turn to the graph of P(f). This function equals —1 for f = 0, the
minimum of P( f ). The function then increases with f until f,, where it van-
ishes together with its first and second derivative. Since the third derivative is
nonzero, in fact, P”(fy) > 0, we see that f, is an inflection point. Afterwards,
P(f) keeps increasing monotonically ((4.3.16)), and at infinity it behaves as

f2/4.
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Note now that with i({) as discussed, the domain for the interior solution is
f € (fo,00). Since P(fy) = P'(fo) = P"(fy) =0, the function P(f) near f, is given
by

P(f) = gP"(f)(f = fo)* = —3fh"(F)F = fo)* >0 for f~fo.  (4.3.22)
This behavior will allow us to regularize the BH’s interior.

We first confirm the presence of the horizon in this interior solution. To this
end, consider equation (4.2.48d), pick the minus sign and integrate to get

:’;i;j)) :exp<— /f f 12F> (4.3.23)

where we dropped the minus subscript since this interior solution is covered
by a single branch. The integral is convergent at the lower limit since the

integrand there goes as \/f — f;. At the upper limit we get a logarithmic di-
vergence. Thus, the integral is infinite and the right-hand side of (4.3.23)
vanishes. Since m(f;) is finite we can choose

m(fo) =1, m(o0)=0, (4.3.24)
which is the desired behavior for a horizon at f = cc.

For the curvature, we can use (4.3.8) with the lower sign, as we are working
below the cut,

R-(f) = 2|(P())? = FP" (I P() | (4.3.25)

where we rewrote the dependence on M in terms of derivatives of P. The
curvature vanishes at f = f,, because P, P’, and P” all vanish at f,. For
f — oo the behavior of P is the same as we had for the singular solutions and
therefore we get again the first expression in (4.2.112). In summary, we have

R_(fo) =0, R_(c0)=1+%. (4.3.26)

For the dilaton we have, as usual, ®(f) = log f + <I>1, which is finite for f; and
dlverges for f — oo. The scalar dilaton is given by ¢ = (<I> +logm). As opposed
to @, it has no divergence as f — oo. The argument follows identically as the
one used in Section 4.2.4 to arrive at (4.2.115). For f = fy, m(fy) = 1 and so
the scalar dilaton is finite

¢(f0) %é(fo) (4.3.27)

Finally, the relation between z and f is very different from that in the family
of singular black holes: the point half-way from the horizon to the singularity,
fo. is moved to infinite distance. Using the behavior (4.3.22) of P(f) close to
fo, the differential equation (4.2.40c) relating » and f takes the form

~ 1 ~ 3 -
— Y~ — f ~ fo. 4.3.28
INCG ey U o e 4229
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This integral diverges as f — f,. On the ~other hand, for f — oo we get a
finite integral. This allows us to define z(f) with the following values at the
boundaries

z(fo) =00, x(c0)=0. (4.3.29)

These results make the interior region to be a regular cosmology, identifying x
with a time coordinate 7 and ¢ with a spatial coordinate w, as required by the
signature of the metric

ds® = m?*(x)dt* — do* = —dr* + m*(7)dw? . (4.3.30)

This cosmology begins at time 7 = 0 with finite curvature R(r = 0) = 1 + 7 and
evolves as 7 — oo to a geometry with zero curvature and hence to flat space.
In this cosmology there is no big-bang, and time begins at the position of the
horizon.

In this cosmology, the asymptotically flat space has a constant dilaton (4.3.27).
This may seem surprising, given the well-known fact that the "cosmological"
term in the 2D action requires a linear dilaton when the spacetime becomes
flat. Indeed, this is the case for the exterior region of all BH solutions we
explored so far, including the regular black hole. Let’s now see how the non-
perturbative nature of the f parameterization, anticipated at the end of Section
4.2.2, is the main responsible of this exotic behavior at infinity.

We begin considering the relations at the exterior (4.2.59) and (4.2.57)

(52 =190 = P(5). (4.3.312)
g(M) = g(f(M)), M €0, M,], (4.3.31b)

and their interior counterpart:

(%)2 = —1+§(f) = P(f). (4.3.32a)
g(M) = g(f(M)), M e[0,M,], (4.3.32b)

Here M, is the value beyond which f(M) is not expected to have a convergent
series. Looking at Fig. 4.5, M, is the maximum of M(f) attained at f. € (0, fo).

Consider first the exterior, whose asymptotic region lies at f ~ 0 and M ~ 0.
Here P(0) = 1 (see (4.3.13)), and therefore ¢(0) = 0 ((4.3.31a)). This is consistent
with (4.3.31b): perturbatively g(M) = —M? + --- which gives (left-hand side)
g(0) = 0 consistent with (right-hand side) ¢(f(0)) = ¢g(0) = 0. Indeed, this
requires a rolling dilaton ((4.3.31a)).

Consider now the interior, and its asymptotically flat region at f/ ~ f, and
M ~ (. Here P(fo) = 0 ((4.3.195)), therefore g(fy,) = 1 ((4.3.32a)), and there is
no need for a rolling dilaton. The value §(f;) = 1 may sound surprising given
that M(f,) = 0 and §(M = 0) = 0. There is no contradiction, however, with
(4.3.32b): (M) = M? + --- gives (left-hand side) §(M = 0) = 0 consistent with
(right-hand side) §(f(0)) = §(0) = 0. Since both M (0) and M(f,) are zero, the
inverse function f(M) is necessarily multivalued. In the domain of definition
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of the perturbative expansion f(0) = 0, so this expansion cannot see what is
happening for f ~ fj.

The above discussion shows how this regular BH convincingly emerges from
a suitable choice of M (f). Still, the interior solution approaches a flat back-
ground with fixed dilaton, which is associated with a ¢ = 2 CFT. Since classical
backgrounds of (bosonic) string field theory are ¢ = 26 CFT’s, one does not
expect the regular BH to be a string theory solution. More likely, the choice
of M(f) leading to it defines higher-derivative corrections that do not occur in
string theory.

A particular example

As a proof of the existence of such a regular solution, we built a concrete

example:

1665 ¢

h(é) = ==
&= e rsep

Here ¢, is a parameter that will be adjusted to make h satisfies all required

conditions. The derivatives of / are

4865 (& — &%) 19265 £(£2 — 363)
(€2 +38)° (2 +35)
The following conditions are straightforward to check: Ai(¢) is odd, h(0) = 0,

h'(0) is finite and h(£) < 1 for all £, except |h(+Ey)| = 1. The integral of & is easily
calculated

(4.3.33)

(4.3.34)

n(§) = (&) =

¢ / / 850 2 850
/Odgh(g)_ 3§2+3§0 = / e’ h(¢' —a< o0, (4.3.35)

and with it the second condition in (4.2.88) is obeyed. The first and third
conditions (vanishing of 4 and £h' as € — oo) are also satisfied.

We now need to check the extra conditions (4.3.12) concerning the point &,
where h(&) = 1. The first three are easily corroborated, in particular A”(§,) =
—3 52 < 0, as required. The integral constraint in (4.3.12) is not automatically

satlsﬁed, but it can be fulfilled by fixing the value of ¢, which also fixes «

o
/ dhE)=2=¢-4 = =12 =a=32. (4.3.36)
0

Fig. 4.6 shows the plot of d®/dz and M as a function of f for this regular black
hole (continuous line). Superposed in the figure we see the analogous plot
(Fig. 4.3) for the two-derivative black hole (dashed lines).
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Figure 4.6: Parametric plot for ‘C%’ and M both as functions of f € (12, o) for the inte-
rior of the black hole with resolved singularity (continuous line). Shown
dashed is the analogous plot for the two-derivative black hole. The faint
lines are asymptotes at 45° and 135°. The horizon is far on the 135° asymp-
tote, and the late-time asymptotically Minkowski part of the cosmology is
around the origin.
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Chapter 5
String Worldsheet and J Functions

So far we have been dealing with string low energy effective actions. These
target-space theories can be derived from the string worldsheet via string scat-
tering amplitudes or beta function computations. In this chapter we study the
bosonic string worldsheet action and develop the beta function approach in
detail. We begin in Section 5.1 introducing a general procedure to read the
Weyl anomaly coefficients of a renormalizable two-dimensional sigma model,
whose vanishing determines the target-space equations for the background
fields. These coefficients depend on the beta functions of the sigma model,
which can be computed using the background field method. After introducing
such procedure, we finish the section by computing the one-loop beta function
for dilaton-gravity worldsheet and obtaining the corresponding two-derivative
target-space action. In Section 5.2 we perform a dimensional reduction of
Polyakov action to cosmological backgrounds, present the general form of the
Weyl anomaly coefficients and restrict the background field method to the cos-
mological case. We compute the one-loop beta functions and with them the
target-space equations, which coincide with the ones coming from the two-
derivative cosmological action presented in Section 2.2.2. In Section 5.3 we
present the main result of this chapter: the two-loop beta function of cosmo-
logical Polyakov. With it, we derive the target-space cosmological action (3.1.1)
for bosonic string up to order «' [4]. This provides an independent check of
the O(«’) coefficient in the cosmological classification computed in [3, 39, 42]
(and revisited in Section 3.2.2), where this coefficient was computed by direct
dimensional reduction.

Some parts of Section 5.1 were already published in [2], while Section 5.2 and
Section 5.3 contain results from [4].

5.1 Weyl Anomaly and § Functions

String theory is described by a two-dimensional worldsheet action encoding
the dynamics of one-dimensional objects moving in a D-dimensional target
space. For bosonic strings propagating on a flat background, we have the

Polyakov action:

1
=g oV W20, X" 06 X ] (5.1.1)
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where ¢® with a,b = 1,2 parameterize the two-dimensional worldsheet, h,;, is
a Euclidean metric, & its determinant, and A = 27a/. The coordinates X*(o)
define a flat D-dimensional target space with Minkowski metric 7,,, where
wu,v=0,...,D—1. The Polyakov action is invariant under global Poincaré, two-
dimensional reparameterization of #* and Weyl transformations, which rescale
the worldsheet metric with a conformal factor h.,(0) — Q%(0)hap(0). From the
point of view of the worldsheet, (5.1.1) represents a theory of D scalar fields X*
coupled to two-dimensional gravity. Using the gauge symmetries of the theory
we can fix ha,(0) = dap, the flat Euclidean metric, and so (5.1.1) reduces to a
free theory from which we can read the string spectrum. It contains infinitely
many string excitations, among which we find the already-familiar universal
massless sector: G, (X), B, (X) and ¢(X).

We can use these same fields as sources of curvature for the target-space in
which the string propagates, extending the Polyakov action (5.1.1) to:

1

= —
2\

&0 [\/ﬁhabaaX“ﬁbX”GW(X) + e 9 X Oy XY B (X) + o'V R(2)¢(X)] ,

(5.1.2)
giving rise to a non-linear sigma model where the background fields play
the role of infinitely many coupling constants. The B-field enters the action
through the antisymmetric density ¢2°, normalized such that > = 1!. The
dilaton couples via R®, the Ricci scalar for the two-dimensional worldsheet
metric h,p,, and by dimensional counting it requires an extra factor of o/?. This
theory retains worldsheet reparameterization invariance and Poincaré symme-
try is promoted to invariance under target-space diffeomorphisms. On top of
that, the B-field introduces an abelian gauge symmetry parameterized by a
one-form: B — B + d\. While the graviton and B-field preserve Weyl invari-
ance, the dilaton term in (5.1.2) breaks it. However, this happens at a higher
order in « which, as we will see, plays the role of loop-counting parameter
in the non-linear sigma model. This means that the violation of Weyl invari-
ance due to the dilaton at a classical level can be cured by a one-loop effect
coming from the metric and B-field. We can then safely state that (5.1.2) is
conformally invariant at the classical level, up to leading order in «’'.

This symmetry, however, does not survive quantum-mechanically unless we
impose the vanishing of the so-called Weyl anomaly 7,* = 0, with T}, the sigma-
model energy-momentum tensor. This imposes certain conditions on the the
background fields which take the form:

Bl =p"+6:0' =0, (5.1.3)

where I is an index labeling the massless fields ¥/ € {G,, B,., ¢}, making
(5.1.3) really three equations in one. In here, 3! are the renormalization group
beta functions coming from (5.1.2) and 6;¥’ encode gauge transformations of

IThe i factor is because we are in Euclidean signature and 29, X*d, X" B, has only one
ol ("time") derivative.

2In natural units, the action has length-dimension zero [I] = 0. Since [\] = [¢/] = 2 and
[c?] = 1, this implies that the terms in brackets in (5.1.2) have dimension zero. For the metric
coupling this is achieved by taking [X*] = 1 and [G,,(X)] = 0. For the dilaton coupling we
have [¢] = 0 and [R(®] = —2, which forces the presence of o/.
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the corresponding field via a specific field-dependent parameter (. From the
point of view of the target space, (5.1.3) are the equations of motion for the
background fields, giving rise to the low-energy effective actions with which
we have being working so far!

With the main goal of making the worldsheet discussion self-contained, we be-
gin in Section 5.1.1 giving a brief overview of how imposing the vanishing of the
Weyl anomaly gives rise to (5.1.3) for generic renormalizable two-dimensional
sigma models. For a more detailed explanation we refer the reader to one of
the foundational works [18] or to a recent review in [2]. We then introduce
the background-field method in Section 5.1.2, a useful tool to compute beta
functions, and in Section 5.1.3 we apply it to the dilaton-gravity worldsheet
at one loop and read the corresponding two-derivative target-space action. All
concepts introduced in this "review" section will prove essential for the one-
and two-loop computations in cosmological backgrounds, carried out in the
next sections.

5.1.1 Weyl anomaly coefficients

Renormalizable two-dimensional sigma models like (5.1.2) can be written in a
generic form as

I= /dzaAI(h,X) -U(X). (5.1.4)

Here U! are the background fields, playing the role of coupling constants in
the sigma model, and A; are composite operators. We assume an implicit sum
over repeated indices I, which run over the different couplings. X (o) are the
coordinates of the target-space and h?°(c) the metric of the two-dimensional
manifold. For later use, we introduced the dot product

fog= / 0Pz f(z) g(x) (5.1.5

In this notation, the Polyakov action with just a metric field, for instance, is
written as

1
U =G, A=AY= ﬁ\/ﬁhabaaX“a,[,X” 6P (z — X(0)) . (5.1.6)
Equation (5.1.4) corresponds to the classical action, which is assumed to be
Weyl invariant. As a consequence, the trace of the energy-momentum tensor

must vanish. The latter can be computed from the standard formula:

2 oI
Taa - ﬁhabﬁ - O (517)

Upon quantization, this identity does not hold in general but it requires the
vanishing of the Weyl anomaly coefficients (5.1.3). To see this, we need to
renormalize the theory, which requires us to distinguish between bare (diver-
gent) couplings and renormalized (finite) ones. The bare action takes the form

Iy = /d”a Ao - Ul (5.1.8)
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where ¥U! and Aj, are the bare couplings and composite operators, respec-
tively. In here we already implemented dimensional regularization by taking
n = 2 + ¢, where ¢ is the regularization parameter. The bare couplings ¥/ are
taken to have mass dimension ¢ = n — 2, implying that the bare operators
Ajo have dimension 2. The bare action (5.1.8) can be written as a sum of the
renormalized action and counterterms,

IO = [ren + Ic.t. 5 [ren = /dna ,USAIO : \IJI 5 [c.t. = /dna ,USAIO : TI(‘I]) ) (519)

in terms of the renormalized couplings denoted by ¥’. Here ;. is the renormal-
ization scale that is introduced in order to make the renormalized couplings
dimensionless. The action (5.1.9) is used to derive the Feynman rules, and the
counterterms 77 are obtained by demanding they cancel the divergent contri-
butions to the quantum effective action. The partition function of the theory
is given by the path integral

Z(U, ) = e W = / DX e o (5.1.10)

and quantum expectation values are denoted by (---) = % DX .- e . Given
that the theory is renormalizable, the bare action (5.1.9) contains all the re-
quired counterterms to render the above path integral finite. Counterterms
can also incorporate finite contributions, whose specific form defines different
renormalization schemes. In here, we perform renormalization via minimal
subtraction (MS), in which the counterterms are purely divergent. This, com-
bined with dimensional regularization, allow us to express the counterterms
as a Laurent series in e, T/(¥) = Y L TH(D),

n=1 en

Comparison of (5.1.9) with the canonical form (5.1.8) of the bare action gives
the bare couplings in terms of the renormalized ones:

xpg:uﬁ[\ywi;ﬂz{(m)} . (5.1.11)
n=1

With this relation we may compute the beta functions associated to the cou-
plings ¥’ in n = 2 + ¢ dimensions, which are defined by

du!
ﬁIEyw+E\PI. (5.1.12)

The derivatives of U/ are obtained by requiring that the bare couplings ¥/

do not depend on the renormalization scale, % = 0. Indeed, differentiating

(5.1.11), using (5.1.12), and matching O(¢°) and O(¢) one obtains

0
I _ I 7 I
Bl = -1+ v’ 8\IIJT1 7 (5.1.13)
which is an exact expression in terms of the counterterm 77 and the usual per-
turbative evaluation arises from the loop expansion of the latter. The higher-
order terms in ¢ " provide the so-called pole relations between higher-order
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counterterms [103, 104]. The above operator ¥ - has to be understood in

terms of the functional derivative as

6\1!1

OF b 0F
6\11 /d l’f( )6\11(1‘) —F[\I/‘i‘leinearpartinfa (5114‘)

where the last identity provides us with a practical way of computing such
functional derivatives.

The next ingredient we need is a prescription to define renormalized composite
operators A; for the bare couplings in (5.1.8). Recalling (5.1.8), the integral of
the bare operator Ay, is given by

/d”aAIO:%. (5.1.15)
0

Accordingly, we now define the renormalized composite operators A; by de-
manding

. 0l
The quantum expectation value is then given by
. ow
</d 0A1> o7 (5.1.17)

that is guaranteed to be finite, because it is the derivative of a finite quantity
by a finite parameter. Given (5.1.16) and (5.1.15) the relation between bare
and renormalized operators is known up to possible total derivative terms:

\If‘]
Ar=Ajg- %jL@ Q7. (5.1.18)

Assuming that the set {A;,} is a complete basis of dimension-two operators
0l that we shall always discard, hav-
ing zero expectation value), the total derivative part can also be expanded in

terms of Ajy, namely

o0

1
0aQ3 = Ayo - A | A{:MZ_ (D) . (5.1.19)

n
n=1

This allows us to define the renormalization matrix as

ov]
ow!

Given the relation (5.1.11) between bare and renormalized couplings, we infer

Ar=Ay-2], 7] = + A7 (5.1.20)

2y =[5+ 3 X)Xl = Gl

It should be emphasized that while for ordinary field theories the Z/ are finite-
dimensional matrices, for the string sigma model they are actually differential
operators.

(5.1.21)
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Now that we have related bare quantities with renormalized ones, we can get
an operator expression for the trace of the energy-momentum tensor. Mim-
icking the classical definition (5.1.7), at the quantum level one can choose

2 01y
T,» = —=h* 5.1.22
\/E 5hab Y ( )
which is not zero in general, and its expectation value
2 ow
T.2) = —=h?" 5.1.23
< > \/E 5hab ( )

0

is finite. Using the decomposition (5.1.8), the Weyl variation 5

composite operators and acts as follows [18]:

0
0 hab

where the second term accounts for possible total derivative terms. This can
be verified by a direct computation in the case of (5.1.2), where A; and Ap
generate no total derivative terms, but A, does. It should be noted that since
the bare operators A;, enter (5.1.24) this total derivative is given directly by
the Weyl variation of the classical Lagrangian, implying that it requires no
quantum computation. We can, as before, use the completeness of the basis
{A0} modulo equations of motion to expand

only sees the

2 hab

AI(] = —¢€ A[o + aaw}’, (5 124)

Oaw® = Ago - X (Wo) , A (Wg) = X/ (U) + O(e™h) . (5.1.25)

The trace operator is then computed as

J

Shab

0
= Qhab— /dnU A[O . \I/é

\/ﬁTaa _ 2hab

Iy

5hab
= (—6 A]o + 8aw?) . \I/(I]

= Apopf [ — W — THW) + M) - 0 0(51)} ,

(5.1.26)

where we used (5.1.11) and (5.1.25). The last step consists in rewriting the
bare operators in terms of the renormalized ones. Using (5.1.21) we have:

1
A=Ay (2], (@] =[] -~ X+ 0(6—2)] . (5.1.27)

Combining this expression with the last line of (5.1.26) all the divergent terms
must cancel out, since by definition both 7,* and A; are finite. Upon letting
e = 0 the Weyl anomaly operator can thus be written as

VhT2 = A;- B, (5.1.28)
giving rise to the Weyl anomaly coefficients defined by
Br=p"+ (N +Q1)) v . (5.1.29)
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From (5.1.28) we can see how the vanishing of the Weyl anomaly is equivalent
to the vanishing of each 3’ independently.

It is worth noticing that 3’ differ from the 8 functions (5.1.12) by two total
derivative terms: the A-contribution can be found simply by varying the clas-
sical action, while the @-contribution, which is much harder to compute, can
be found by direct renormalization of the dimension-two operators A;. It can
be shown [18] that both total derivative terms take the form of gauge trans-
formations of the corresponding field ¥/. Because of this, in practice one
computes the \} operators once and for all from the classical theory, while Q!
are not computed explicitly but just parameterized in terms of generic field-
dependent gauge parameters and fixed later by other means, such as imposing
the symmetries of the theory.

For the Polyakov action (5.1.2), (5.1.29) take the form [18]:

3¢ — fy +2a/ V.V,o+V Wy,

nv

35 = 51/ + O/ ]—‘l)\/.l‘uv)\gzs + % HA/J,VW)\ + a[ﬂLV] 5 (5 130)

ny
3% = 8% +a (Vo) + Lvrow, .

where the O(«/) terms correspond to the \-contributions and the terms in-
volving the gauge-parameters W and L are the @)-contributions. The former
are exact in o' while the Q-terms receive corrections to all orders. This way
of decomposing the Weyl anomaly coefficients into beta-function and total-
derivative terms becomes very convenient. Indeed, W, (G, B) and L,(G,B) do
not depend on ¢ and so the dilaton dependence displayed in (5.1.30) coming
from the total-derivative contributions is exact to all orders in o' [18]! More-
over ﬁfy and 7, do not depend on the dilaton neither, and 3¢ itself is only
linear in ¢, i.e. 3 = A(G, B) ¢ + w(G, B). Finally, the Q-terms can be fixed by
covariance and dimensional counting (see e.g. [36]): by expanding in powers
of o/, the most general form of W is W,(G,B) = > .7, oLt (R,V,H), where
W,EL) contains 2L — 1 derivatives of the metric and B-field. This already implies
that at one-loop W,El) =0and

Wu(R, V. H) = (a1 VR + > Yy (Hypo HP) + a5 Hun V,H ) +0(a?) , (5.1.31)

and similarly for L,, respectively.

5.1.2 Background-field method and quantum effective action

Once the general structure of the Weyl anomaly coefficients (5.1.29) is spec-
ified to a particular background and field configuration, the only remaining
peaces are the beta functions. These are obtained from the divergencies of the
quantum effective action. We now revisit the standard QFT techniques to get
these divergencies and then introduce the background-field method.

We consider a generic field theory with Euclidean action /[¥] defined on an
n-dimensional manifold parameterized by o¢. The generating functional of all
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disconnected correlators is given by
Z[J] = /mf eIy U ))y = = — . —Z[J]| (5.1.32)

where we introduced the notation ¥; = ¥(o;),

JoU= /d”a J(0) (o) . (5.1.33)
We also used the definition for the expectation value
<...>:%/D\p...€1m7 (5.1.34)

with the factor Z = Z|[0] ensuring that the correlators are normalized, (1) = 1.

The generating functional of the connected correlators, W/[.J], is defined by

Z1J]
7

WJ] = log (5.1.35)
which ensures that W[0] = 0, meaning that all the vacuum bubbles are sub-
tracted and so we have

J J

v,...U = — ... — . 1.
< 1 n>connected (Sjl (SJnW[J] o (5 36)

The generating functional of one-particle-irreducible (1PI) diagrams, namely
those that cannot be split into two disjoint pieces by cutting a single internal
line, is given by the quantum effective action

L] =J - —-WI[J], (5.1.37)
where -
o(J) = 57 = (V) (5.1.38)

is nothing but the quantum expectation value in the presence of J. Assuming
tadpole cancellation one has ¢(0) = (V)comected = 0. Here, I'[y] is the Legendre
transformation of W[J] so it does not depend on J but only on ¢. Formally,
one needs to invert the relationship by expressing J[y|, which can be obtained

from
or

5o =
which is the quantum-mechanical field equation for ¢. The 1PI diagrams are
obtained by taking functional derivatives of I'[¢]. Using (5.1.32) and the defini-

tions above one can express the quantum effective action in terms of the path
integral:

J. (5.1.39)

oTlel % / DY o~ [+ (I—¢) (5.1.40)

So far all these were conventional QFT techniques for calculating correlators,
we now introduce the background-field method, which is particularly useful
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in the context of sigma models (see [105] and references therein for a nice
presentation of the method). To this end, we use (5.1.39) in (5.1.40), together
with a shift in the integration variable by ¥ = ¢ + 7 to obtain:

e~ illel — /D “M] ) , (5.1.41)

where we have reinstated Planck’s constant /& as a loop counting parameter.
Here ¢ is viewed as the classical background and = as the quantum fluctua-
tion. From a diagramatic perspective, contribution from ¢s appear as external
legs while 7s represent internal ones. Note that there is an all order pertur-
bative subtraction in (5.1.41) given implicitly by the term —3_ .- 7. Luckily we
do not have to compute this contribution at each order since its only role is
to remove non-1PI contributions from I'. Knowing this, we can work with the

formula

ATl _ %/Dw o=k Tlpn] (5.1.42)

1PI
and compute just the 1PI vacuum diagrams of 7 omitting all the rest.

As usual, we compute I'[¢] perturbatively order-by-order in loops. To this end,
one starts by writing I as a power series in A :

Llp] = I[p] + AT,  ATl[p] = hly¢] + A Tyle] + O(R?) | (5.1.43)

where we separated the classical contribution to the effective action (/[y]) from
the quantum corrections (AI'), in which T';[¢] corresponds to the i-loop effec-
tive action. Equation (5.1.43) takes care of the left-hand side of (5.1.42). For
the right-hand side, one needs to expand the action in powers of 7

I + 7] = Iox + Lix + Iy + O(7%) . (5.1.44)

The zeroth order just gives the original classical action in terms of the back-
ground field [y, = I[¢]. The linear term in = always contribute to non-1PI
diagrams, so we can ignore it. This is because something of the form m¢" will
give a diagram with n external lines and one internal line, that, attached to
any other piece of the dlagram can be simply cut. An alternative way of seeing
this is from (5.1.41), where — (p -7 clearly cancels linear contributions to lowest
order. The next term in (5.1.44), I,,, can be further split into

]27r = [kin + ‘/2 y (5 145)

in which [y, is the kinetic part of the original action but in terms of 7 rather
than ¢, giving rise to the propagator. The remaining quadratic peace V5 is part
of the interaction terms, which can be grouped with all other higher-power
contributions coming from (5.1.47) into

Iint = Vo + V3 + O(z?) . (5.1.46)

In here, V; = [, with ¢« = 3,4,... corresponds to the ith-order contribution
to the expansion in (5.1.44). Using the definition for kinetic and interaction
terms we can rewrite the expansion (5.1.44) in an alternative form

Ilp+ 7] = I¢] + Iix + Ixin + Iint - (5.1.47)
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Inserting (5.1.43) and (5.1.47) into (5.1.42) gives us
—LAT[p] = (e~ w1ty , (5.1.48)

where the expectation values in this case are computed from /i, and we picked
a normalized such that (1) = 1 with respect to this new partition function:

= /Dﬂ" - e~ fian ], Z E/DW@‘éIk‘“m. (5.1.49)
0

Equation (5.1.48) is the starting point for any loop expansion, in which, as
usual, we compute Feynman diagrams using Wick’s theorem. The internal
lines and propagators are given by ws while ps represent external legs. Be-
cause of this, we end up computing exactly the same 1PI diagrams that we
would have computed by conventional methods. However, the background-
field method has the advantage of preserving explicit gauge invariance, as we
now see with a sigma-model example.

5.1.3 An example: dilaton-gravity at one loop

In this last part of the review section, we revisit the general techniques intro-
duced above for a particular example, the dilaton-gravity sigma model:

I= ;A PovVh [h*P0, X" 0, X" G (X) + o/ RPH(X)] | (5.1.50)
obtained from (5.1.2) by setting to zero the B-field. Our goal here is to obtain
the O(«’) target-space equations of motion for G, and ¢ from the vanishing of
the Weyl anomaly coefficients ny =0 and 3¢ = 0 at one-loop, respectively. The
general structure of the latter was given already in (5.1.30) which for B = 0
reads: B

;?u = ;?u + 20/ V,.V,¢+ O(alz) )

B? =B +a/ (Vo) + O(a”) .
In here, we took into account that at one loop W, vanishes (see (5.1.31)) and so
the only missing peaces are the  functions. These are related to the countert-
erms TC¢ and T? via (5.1.13), obtained upon renormalization of the couplings
from the single pole divergent part of the quantum effective action. We now
compute I'[¢] at one loop using the background-field method and deduce the
corresponding /5 functions. We first do it in detail for the metric coupling and
then sketch the general idea for the dilaton contribution. We finish showing
how the latter can be obtained more easily from $“ by imposing consistency
of (5.1.51).

(5.1.51)

Metric sector

Let’s consider
1

I= / d*o LIX(0)], L[X(0)] = ﬁGW(X)aaX“a'c‘X”, (5.1.52)
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where we used the gauge freedom to fix h,, to be the flat worldsheet metric. In
principle, it is possible to apply the background-field method in the form just
described in Section 5.1.2. However, splitting X* = ¢* +7# leads to a perturba-
tive expansion lacking manifest target space covariance, since the fluctuation
field 7 is a coordinate difference and thus has no geometric meaning. To
remedy this we employ a field redefinition of 7* as follows [104, 106]: We con-
sider a geodesic X*(7), where 7 is the affine parameter (and we suppress the
dependence on the worldsheet coordinates ¢* for now), such that

Xtr=0)=¢", and XHt(r=1)=¢"+a". (5.1.53)
The derivative along the geodesic defines a tangent vector &*(7)

d dX*H

Il " -

dT 6 (7—)8”, 5 (7_) - dT I (5.1.54)
which satisfies the geodesic equation

D D

—gH = T = gk

8 (M) =0, =NV, (5.1.55)

written in terms of the covariant derivative along the geodesic 5-. We can then
use the tangent vector at 7 = 0

& =¢"(0) (5.1.56)

as the quantum field for the background-field expansion. Since it is a genuine
vector, this ensures manifest target-space covariance.

It is possible to derive the exact nonlinear relation 7#(¢) = ¢ — %FffA EeN +
0(&?) implementing the field redefinition and use it to write down the covariant
expansion. This procedure, however, becomes very cumbersome after a few
orders. A considerable simplification was found in [106] by noting that one
usually needs to expand only the Lagrangian, which is just a scalar. We thus
consider a scalar field evaluated along the geodesic: ®(7) = ®(X(7)). We can

expand it around 7 = 0, yielding

™ d"®
(r) = Z n! dmm

n=0

(5.1.57)

=0
Since ¢ is a scalar field, the derivative along the geodesic is already covariant:

Do dd
—_— ll‘ pu— M = -
DT 5 (T)vﬂq) g (T)a,uq) d’T )

where we used (5.1.54) and (5.1.55). Given that any application of % maps
the scalar into a scalar, it immediately follows by induction that

d"® dar—t we  D'®
drm - drn—1 (€(r)- V@) = ({() - V)"® = D

This observation turns (5.1.57) into a manifestly-covariant expansion

(5.1.58)

(5.1.59)

7" D"
(r) = Z n! Drn

n=0

5 (5.1.60)

7=0
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which takes a particularly simple form when evaluated at 7 = 1:
®(1) = e ®(0) . (5.1.61)

Using (5.1.61) for the Lagrangian ®(r) — L£[X(7)], and recalling (5.1.53), one
obtains [107] .

Llo+7(&)] =eDrLp] . (5.1.62)
In order to apply this to the sigma model (5.1.52) we need to consider the

pullback to the worldsheet. To this end we use the worldsheet-dependent
geodesic X*(o;7) and &"(o; 1) to compute

D d
o Op X = ——0p XF 4 ETH 0, X = 028" + 0. X" TH & = D&, (5.1.63)
Dt dr v v

where we have defined the covariant derivative on the worldsheet

Da = 8.X"V,,, (5.1.64)

which acts as on the pullback of target-space tensors. To act further with Dﬂ
we need the commutator

D
[D_TvDa] = [E“Vu,aaX”Vy]
= £0,X" [vu,vy} +(£20,X") Y, — (D), (5.1.65)
= PO, X" R W :

where Rfy is the Riemann tensor acting as an operator, e.g. ijVVP =Ru AV .
One can thus determine, for instance,

D? D D
- W W | B eV AR p
D2 8X Dy Dy¢ [D D]f £ 0a X" R p§ . (5.1.60)

These tools allow one to systematically expand the sigma model action in a
simple and recursive manner. The expansion is carried in powers of ¢, namely:

I+ (&) = Iog + L1e + Loe + O(€3) = I[p] + L + Iin + fint (5.1.67)
with

-[2§:Ikin+‘/2a ]int:‘/Q_}—‘/S_‘_"'a V;_ i€ Z:3747 (5-1°68)
Using (5.1.62) and the compatibility condition for the metric 2G,, = ¢°V,G,, =

0 the first few orders of the expansion are easily obtained as

1
Toe = Ip] = o) / o [Gw(s@)é’aw’”@aw”] ,

1 2 D ©naayv _ l 2 paa, v
he= g3 [ o g Gwaxrx]| =5 [ #a[Gue Ders]
1 1 D
_ = -~ naa v
he=3 [ do5 o ()Da£8XL:O
1
= 55 [ 0 [Gue) DD 4 Ryuny () 0 ]

(5.1.69)
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where we recall that, after taking the derivatives, evaluating at 7 = 0 amounts
to replacing X* by ¢*. This already exhausts the terms needed at one loop.

From the quadratic term we can read the kinetic and interacting part by ex-
panding D,&* = 0.8 + 0.9 T, (0)€*. However, the kinetic term in this case,
G (9)02610,€", has a non-standard form, since G,,(y) is not constant on the
worldsheet. To overcome this difficulty it is customary to introduce vielbeins
e,*(¢) such that G, = e,“n.5e,” and flatten the fluctuation by introducing
¢ =e,*¢" . We then have the covariant derivative acting on the flatted vectors

€, Dol = Dal®™ = 0al™ + Oatp" w,*5(¢) €, (5.1.70)

in terms of the spin connection wwﬁ = ea"Vue,,ﬂ . The quadratic term /. then
takes the form:

1
he =55 [ @0 D Dutat Ry 00 €] = han+ Var (B.171)
which has a standard kinetic term
1
Lin = o\ d?0 02E20,E, . (5.1.72)

The quadratic interacting terms are then given by

‘/2 = ﬁ d20_ [2 3agpu Wy ap éﬂaaé.a + aa(ﬁu a@y Wy ~ya wuvﬁ fagﬁ + R,uozﬂl/ aa(puaawl/ gaéﬂ]
= Vw + wa + VR )

(5.1.73)
where we distinguished different tensor structures. The propagator can be
derived from (5.1.72) and it takes the typical form for massless scalar fields

d2p eipv

(€*(01) E7(02)) = A6 G(o1 — 0a) , Glo) = /(27)2 e (5.1.74)

We have now all the ingredients to compute the one-loop quantum effective
action. To do this, we note that for the worldsheet sigma model, A\ = 27/ is
playing the role of loop-counting parameter and so (5.1.48) reads

_iAF[SD] = (e~ ") 1pr, (5.1.75)

where the effective action at L loops is of order (o/)*~! ® Let us note that the
general form of the effective action is

1
AT[p] = o) / o [MW(G) 020" + -+ |, (5.1.76)

where M, is some target space tensor, which prior to renormalization con-
tains divergent coefficients and the ellipsis denote terms with more than two
derivatives of . The divergent part of M, corresponds to minus the counter-

terms ng(G), whose simple pole in e, Tﬁ,,l determines the renormalization of

SNotice that here we are using a slightly different convention compared to Section 5.1.2 by
absorbing a % factor inside I4, and I;y:. See, for instance, (5.1.72) and (5.1.73).
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the metric and hence determines the g function. For this reason, it is suffi-
cient for our purposes to consider contributions to I' with only two factors of
Oatp!.

Since every propagator rises the power of A\ by one, it is easy to see from
(5.1.75) that in order to compute the L-loop quantum effective action one
needs to expand the shifted action up to order 2L in fluctuations. Therefore,
the one-loop effective action comes only from quadratic interactions

Iy =—(e")pr. (5.1.77)
Moreover, the only terms contributing to the renormalization of the metric are

L'y = (Ve)ipt + (Viw)1p1 — % <Vw2>1p1 + (5.1.78)

where dots stand for terms with more than two factors of d,¢". On dimensional
grounds, and using gauge invariance, it follows that the terms V,, and V,,
involving the spin connection cannot contribute to ultraviolet (UV) divergences
(see [2] for an explicit computation). We are then left with the single divergent
contribution

. 1
I = (Iphipt = — o~ | d°0 Ryapy 070" 0ag” (€% ()€ (0))

2\
G(0 a Y
= —%/d%?@,“,@ OO p" . (5.1.79)
In order to regularize the propagator at coinciding points G(0) = [ %% we

continue to n = 2+ ¢ dimensions and introduce an infrared (IR) mass regulator
m? by changing the propagator® as ; — . This yields:

p2 +m2

o [ d'p 1 1 m? \?
G(())reg = ,u/2 / (27‘(’)” p2 T m2 = E (47]_,&2) F<—€/2) s (5180)

where we introduced the arbitrary mass parameter i to keep G(0),., dimen-
sionless and solve the one-loop integral. In order to extract the pole, we ex-
pand the gamma function I'(z) = 1 —v+ O(0), where 7 is the Euler-Mascheroni
constant, and we obtain

, 1 1
Fclillv - E <Z + IOg %) /d20—R'LLI/ aa§0“8a<PV . (5181)

Here we redefined the renormalization scale as p? = 4re™ji%, as it is customary
in the minimal-subtraction scheme. At this point we can fix the one-loop
counterterm by demanding that it cancels the divergence:

1
Lo = —— | d®0 R, OPp"0a¢”, (5.1.82)

dre

4This amounts to adding the mass term g [ d*0 €€, to the action, that suffices to regu-
larize IR divergences at one-loop.
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Following the method outlined in Section 5.1.1, we can use equation (5.1.9) to
write the bare action in terms of renormalized quantities and counterterms as

1 1
Iy = Len + Ict. = d'o G?w 8a90'uaa9011 =5y | d'o ,Ule (Gw/ + T;ﬁ;(G)) aa(puaagoy )

2 2\
(5.1.83)
where, using (5.1.82), we read
76 = A R =—a'R 5.1.84
1,My:_% uy — Q. ( 1. )

The f function is then completely determined from (5.1.84) via (5.1.13):

0
oG

=0 (1—G )RW, (5.1.85)
where we recall that the operator G - % should be regarded as the integrated
functional derivative as in (5.1.14). In this case, however, the operator simply
counts the number of G,, minus the number of G**, giving G - %RW = 0.

Taking this into account, we can finally read off the one-loop beta function [12]

O = R - (5.1.86)

For this particular purely-metric sigma model, ﬁf,/ coincides exactly with the
Weyl anomaly coefficient 5, as it can be seen from (5.1.51). The target-space
equations of motion at leading order are then nothing but Einstein’s equations
in vacuum.

Including the dilaton

We now include the dilaton coupling in the metric sigma model

I dovVh [h*P0, X" 0, X" G (X) + o/ RPH(X)] | (5.1.87)

T2\
and we are interested in the one-loop  function for G and ¢. Treating the
dilaton term is technically more involved, since it requires computations on
a curved worldsheet. On top of this, one can see that the full O(«/") dilaton
$ function requires an (L + 1)-loop computation. This is because the dilaton
coupling in the sigma model (5.1.87) appears with one extra order of «/ as
compared to the other couplings. For these two reasons, it is often preferable
to fix the dilaton equation from consistency [18, 19, 108-110]. We will now
sketch the idea behind the computation from a curved worldsheet, but then
we move right away to the consistency method.

The background-field expansion of (5.1.87) can be implemented identically as
we did in the flat case (5.1.52) since the expansion X* = p*+7#(¢) does not see
whether the metric is curved or flat. This leads immediately to the quadratic

160



action

he = o5 [ o VRN (Do Dute + Ry OuOhs” €°6°
1 (5.1.88)
+ o / d*oVhRP €9¢°V V36
where we denoted V, V3¢ = e ''es"V,V, ¢ . Following conventional perturbation
theory, we shall expand h,, around flat space: h., = dap + Yab, and consider
the one-loop effective action perturbatively in powers of ~,, . In particular, the
propagators are still extracted from the flat-space free theory Iy, in (5.1.72),
and terms with any powers of v,;, are treated as interactions.

Before starting any computation, there is one immediate consequence that
can be derived from the structure of the action: thanks to the coupling with
the scalar curvature R®), every term involving the dilaton appears with at
least one factor of v,,. Since the lowest order coupling of the metric G, (and
B-field if present) only involves the flat background §,, one can immediately
show that the dilaton cannot renormalize the metric nor the B-field at any
order in perturbation theory! This implies that the 5 functions 3, and 37, do
not depend on the dilaton at any order in «’/, as anticipated below (5.1.30).

Having shown that 3¢ is not affected by the dilaton, we are left to determine
the § function of the dilaton itself. To this end, we need to extract from V, =
I — Iyn the terms that can renormalize the coupling [ d?cvVhR®¢ in Ty =
— (e »r» Which in particular do not contain d,¢" factors. Without going into
details (see e.g. [2]), it can be shown that the only contributions are given by

F(fz = (Iy) — 3 Uiagag)lPI +0(v%),

Logoe = —% A0 70 Do, Iy = % / d*oVhR® PV V50 (5-1:89)
where the superscript ¢ means possible contributions proportional to [ dc
VhR® and we defined Ja, = 7ab — 4 dap7c°. The divergent part coming from
(I,) is straightforward to evaluate since it involves the same one-loop integral
performed in (5.1.80)

U = g / PoVRR (€)Y V6 = 2-G(0) / PoVER® V2

21! / *oVhR® V2p + O(°) .

1672 €

(5.1.90)

The double contraction term, on the other hand, it is a bit more involved.
Not only because of the more complicated loop integral, but also because at
the end of the computation one needs to recognize vAR® from its quadratic
expansion in ~,,. After this tedious procedure one obtains
D 1
Mg = 5o ¢ [ @oVRRY £ 00 4. (5.1.91)

where the spacetime dimension D comes from a trace of the target-space flat
metric 7,5, the ellipses stand for UV-finite contributions, and O(7*) encodes
the higher-order terms required to complete v/AR®.
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In order to cancel the divergences one needs the counterterm

1
e

Ic.t.

D A D o
2 (2) [_ L 2 o_ Y Yo
/da\/ﬁR st Ve = 0 st Ve, (6.1.92)
where we used (5.1.9) and A = 27a’. Using the relation between § and T}
(5.1.13) we can read the one-loop beta function for the dilaton

D /
== V%. (5.1.93)

This was the last missing peace of (5.1.51) at one loop. Before presenting
its final form, however, one needs to recall that 39 and ¢ receive an extra
contribution coming from the reparametrization ghost system corresponding
to the worldsheet metric being a dynamical field that needs to be integrated
over in the path integral. As is well-known [111], for bosonic string this only
produces a shift in the constant term D — D —26. All in all, (5.1.51) now takes
the form

D —26
6

/
B = o (Ruv +2 vuqus) , B = - % (V% -2 v“qsvw) . (5.1.94)
Setting these functions to zero provides the correct field equations associated
to the target-space effective action

2(D — 26)
R¥e%

7= / AP X/ —C e 2 [ . YR 44 V“gzﬁvu(b} . (5.1.95)

This is exactly the two-derivative low energy effective action used in (2.1.29) in
the context of non-critical backgrounds. For critical dimensions, i.e. D = 26,
(5.1.95) reduces to the B = 0 truncation of (2.1.1).

Dilaton beta function from consistency

As we pointed out at the beginning, and should have became clear form the
sketch above, computing the dilaton beta function is more involved than other
fields. This is due to requirement of a curved worldsheet and the fact that
getting 3¢ at L loops requires an (L + 1)-loop computation.® For this reason, in
practice one fixes 3¢ by consistency [18, 19, 108-110]. Rather than discussing
the general procedure, the idea is easily understood by giving the details in
the simplest case at hand. Let us suppose that we do not know the dilaton
g function. The metric § function, together with the general relation (5.1.51)
fixes the metric field equation to be

R +2V,V,6=0 = R+2V%p=0. (5.1.96)

5The one-loop 3¢ for the purely-metric sector (5.1.93), however, is not modified at two-
loops. This higher-loop effect would be visible upon including the B-field, which would result
in a further contribution —% H? arising at two loops.
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Taking the divergence of the first equation one obtains
V'R = =2V?V,0 = =2 (V, V¢ + R, V'0)

= -2 VMV2¢ +4 (Vﬂvy¢)vu¢ = -2V, (V2¢ _ (V¢)2) ' (5.1.97)

Consistency with the Bianchi identity V'R, = ; V,R gives the constraint
0=V,(V— (Vo) +1iR)=1V,(V¢—2(Ve)?), (5.1.98)
that can be integrated to get
V3¢ -2 (Vo) =C, (5.1.99)

for an undetermined constant C'. This shows that the dilaton equation in
(5.1.94) is correctly reproduced by (5.1.99), apart from the constant C' that
can be easily fixed by matching with the one-loop result (5.1.94) to be C' =
% . Here we use that, on dimensional grounds, the constant term in (5.1.94)

cannot receive o’/ corrections.
5.2 Polyakov Action in Cosmological Backgrounds

Traditionally, in order to get the target-space action in an effective (D — d)-
dimensional background one would first determine the higher-derivative cor-
rections for the full target-space string theory by requiring vanishing of the
Weyl anomaly and, second, dimensionally reduce along d directions. This is in-
deed the approach we followed in Section 3.2 where we took the D-dimensional
effective actions for various strings up to order o’® (already present in the lit-
erature) and then reduced them to cosmological backgrounds. Now we aim to
circumvent the need for a two-step procedure by computing the beta function
and Weyl anomaly coefficients of a worldsheet theory already in cosmological
backgrounds [4].

To this end, in this section we begin by presenting the purely metric sector
of the Polyakov action in cosmological backgrounds and revisiting the general
structure of the Weyl anomaly coefficients and the background field expan-
sion. We then compute the beta functions at one loop and obtain the cor-
responding two-derivative target-space equations. While the worldsheet ac-
tion is not O(d, d) invariant, we show how the duality-covariant beta functions
and equations of motion can be derived rather directly from the purely metric
calculation. We thus finish recovering the two-derivative (duality-invariant)
cosmological action (2.2.39).

5.2.1 Weyl anomaly coefficients and background-field method

Our starting point is the worldsheet action for bosonic string in curved D-
dimensional background

I d*0 G (X)0u X P X", (5.2.1)

T2\
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but this time we choose a target space with Euclidean signature. We now
perform a dimensional reduction to purely time-dependent backgrounds fol-
lowing Section 2.2.2: we split coordinates as X* = (¢,y™) and make the ansatz
that target-space fields only depend on (Euclidean) time t:

N n 0 n? 0 1 1
e, = , G = , ¢:—¢)+Zlogdetg, (5.2.2)

0 ema 0 9mn 2

Having set the b-field to zero, the duality group O(d, d) is reduced to GL(d) x Zs
but we will assume that the full O(d,d) group would be restored by switching
on b,,,(t). (Notice that we followed this same procedure in Section 3.2.) Using
this ansatz into (5.2.1) gives the worldsheet action in cosmological background

[— / o L[ty E[t,y]z% n2(8) 07 Dt + gon(D) Py 0ny”| . (5.2.3)

Since the dilaton target-space equation will be determined by consistency we
can safely work on a flat worldsheet, thereby discarding the dilaton coupling.
At this point, one may think that it would be more convenient to work directly
with G, (X) and use the ansatz (5.2.2) at the end of the computation. It turns
out, instead, that considering n?(t) as a one-dimensional metric and g,,,(t) as
a GL(d) multiplet of scalars from the beginning is crucial in order to produce
manifest duality-invariant field equations.

The target-space equations are given by the vanishing of the anomaly coeffi-
cients. The generic form of these quantities can be derived by following the
steps presented in Section 5.1.1 for generic two-dimensional sigma models
or, more easily, they can be obtained from a dimensional reduction of Bffy in
(5.1.30) in which case we obtain

B=p+an?D*®+n’D (W +Ltr(L))
. 1 . , (5.2.4)
Brmn = Bmn + & §D(I)ngn +3 (W + §tr (L>) Dgmn -

In here we defined 8 = £§, and 3 = 39, , and analogously for the beta function,

and W = +1¥,. We also used the expression for the covariant derivative D = 29,
as well as the definition for L,,” = Dg,,,¢"" giving

D(logdetg) =tr (Dgg~") =tr (L) . (5.2.5)

The one-dimensional vector WV has an expansion in o’ of the form

W =73 " W", where W™ contains 2n — 1 derivatives D. These W™ can be
obtained, in principle, by renormalization of the operators 02t0,t and 0*y™d.y",
but it is more convenient to determine them by other means. We will see later
how this is done for the one- and two-loop case.

Apart from this one-dimensional vector, the only missing peaces in (5.2.4) are
the beta functions. These are obtained from the divergent contributions of the
quantum effective action, which can be computed using the background-field
method. In what follows we revisit such method for the sigma model (5.2.3).
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Background field expansion and effective action

We begin by shifting the fields as ¢t =+ ¢ +7 and y™ — y™ + 7™, where now ¢ and
y™ are viewed as classical backgrounds, and integrating over the quantum
fluctuations = and 7. Since we want to preserve manifest one-dimensional
diffeomorphism covariance, we shall redefine 7 = 7({) in terms of the covariant
fluctuation &, which is a genuine one-dimensional vector. We do not need to
redefine the internal fluctuations 7 since they are already scalars under time
reparameterization. We now follow similar steps as the ones carried for the
D-dimensional case in Section 5.1.3. In cosmological backgrounds, however,
such procedure is much simpler. We define the tangent vector

£= nﬁ , (5.2.6)

dr

in which the extra n factor plays the role of an einbein, making ¢ already
flat (the analogous to £* = e,%¢* in D-dimensions). The derivative along the
geodesics is already manifestly covariant

4 ¢D, (56.2.7)

dr
with D = 10, the covariant derivative under one-dimensional diffeomorphisms.
The expansion of the shifted Lagrangian then takes the form (see (5.1.62))

Lt +m(&),y™ + 7™M = PL[t,y™ + 7] . (5.2.8)

It is a simple exercise to check that the following results hold
1
DOyt = Eaag, €D, 0,) =0, (5.2.9)

as a consequence of the absence of a spin connection and a Riemann tensor
in one dimension. Using these identities together with D0,y = 0 and the
geodesic equation £¢D¢ = 0 we can read the expanded action to all orders

It +7(&),y™ + 7" =I[t,y"] + I

1 2 a oolp D a, m n
+ o5 [ Ao o O+ 3 &P O

+ 2 Z ]%fpl)pgmn(?aymﬁaﬂ" + Z Z%ngpgmnaawmaaw" )
p=1 p=0

(5.2.10)
In here, I[t,y™] is the classical action, and I; contains linear terms in & or
7™ that do not contribute to 1PI diagrams. The remaining terms encode ki-
netic as well as interaction terms and all target-space fields are evaluated at
t. While the kinetic term for ¢ already takes the canonical form, the one for 7™
involves g¢,,,(t), which depends on ¢*. We solve this by flattening the internal
fluctuation as 7™ = ™, n% This introduces a local SO(d) symmetry realizing
the coset GL(d)/SO(d), where the symmetric tensor g,., = e,,%¢,’dq is viewed as
a standard representative. The worldsheet derivatives indeed covariantize as

aaﬂ'm = 6am Daﬂ—a 5 Daﬂ-a = aaﬂ-a + naat Wab 7Tb ) W‘lb - emllDebm . (52 1 1)
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The action (5.2.10) then splits into a kinetic term plus interaction vertices
I= Ikin + Iint, with

_ 1 2 a a__a
fin = 5 /d o [a 0,6 + 0P 8a7ra] , (5.2.12)

from which we read the two-point functions

d2p eip~(z71 —02)

(lonelo) = [ 5k

d2p etP: (o01—02)

- oo = e [ 2T

p? p?
(5.2.13)
The interaction terms can be grouped, as usual, according to the power of
¢ plus 7° fluctuations: [,y = Vo + V3 + V; 4+ ---. These can be easily read by

covariantizing the worldsheet derivatives on 7 in (5.2.10).

The quantum effective action is then computed from the normalized expecta-
tion value
—%AF[Q@] = <6_Imt>1p1 . (52 14)

Renormalizability of the sigma model (5.2.3) ensures that the only divergent
parts of AI' are local and proportional to either 0%t0,t or 0*y™0,y". Therefore,
(5.2.14) takes the generic form

1
ALty = o / Ao [M 80t + Mo 2y 0ny| + -+, (5.2.15)

where the ellipses denote terms with other external-leg structure, which are
UV-finite. The divergences of M and M,,,, are minus the counterterms 7" and
T respectively, and their 1/e parts 77 and 7} ,,, determine respectively the
beta functions $ and f,,, via equation (5.1.13).

5.2.2 Cosmological Polyakov at One loop

The full one-loop effective action is given by the normalized expectation value
Ty=—(e") 0 (5.2.16)
where only quadratic vertices are required, given by
Va = Va + Vi,
Vy = % / d*c [2?7, 02t Wy, Oamon® 4+ n202t0ut W, Wy o (5.2.17)
+ 2E Dgnes’ Oy 0pm® + %52 D2 G Oy Oay™ | .
The extra term Vj,,, which depends on the connection W, is proportional to

0,t0%y™ and hence it cannot contribute to UV divergences. In order to renor-
malize n? and g,,,, at one-loop order we only need to compute

i = (%) - (7% 5.2.18

>1PI ’
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The resulting Feynman integrals contain both UV and IR divergences. Using
dimensional regularization, we substitute every integral by

&k, [ dk B

IR divergences can be regularized in various ways. One option is to substi-
tute every massless propagator with m. This, however, requires to add a
mass term to the Lagrangian that has to be renormalized and used in the
background-field expansion, which makes higher-loop computations harder.
We instead choose to regularize Feynman integrals by putting masses only in
those propagators which actually cause infrared divergences at zero external
momenta. The basic one-loop integral requiring both UV and IR regularization

is the tadpole® [ (;FT’;Q &, which is regularized as

Gu=it [t (2 )6/2 C(—e/2)

2m)n k2 +m? 4w \ 4mji2
1 /1 1. m?

=5 (—4—5 10gﬁ) + O(e) ,

(5.2.20)

€

where p? = 47 e 72, We will also make frequent use of the identity

/ (;Z:;n 1=0, (5.2.21)

which can be derived by computing

d"k k2
2 = 2 ) .2.22
= ey — G (5.2.22)

With these rules in place one can easily compute the tadpole diagrams in (V3),
yielding

(Vo) = % / d%0 D% gpn 0Py ™ Oay™ + % / d%o n?® WPW,, 02t0at . (5.2.23)

The bubble diagrams contained in (V) are generally non-local, being of the
schematic form

/ (jT]; A(p)11(p) B(—p) (5.2.24)

where A and B represent the Fourier transform of products of fields, e.g.
Dat n(t) W4(t), while TI(p) is the one-loop bubble integral. The only UV divergent
bubbles at one loop are given by

N ) [ Pk k@lp - E)y
Hab(p) _/<27T)2 k2<p_k,)2 ) Hab(p) _/(271')2 k2(p—k)2 ) (5225)

6In higher dimensions massless tadpoles are zero in dimensional regularization, but not in
two dimensions.
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and one can see by power counting that their UV divergence only comes from
the zero-momentum contribution I1(0) = IT'(0), which gives the local expression

1(0) / o Alz) B(z) (5.2.26)
The divergent part I1(0) is regularized as

. d"k kakp 1. d"k k2
Ha — [2—n a P (5a 2 n/
b(0) / @m) (k2 +m2)  n H o B +m?)  (5.9.97)
1 1 o
= E 5ab Gtad = _R 5ab + O(€0> .

With these techniques we can compute the divergent part of —3 (V). . which
reads

(7 G a - a, m n
_% <V22>1P1 == ;d /dQU (Dgg 1Dg)mna y" 0ay
G (5.2.28)
- / Lo n> WP (W — Wiy ) 02t0at .

Summing the contributions of (5.2.23) and (5.2.28) one obtains the full one-
loop divergences. These have to be canceled, in the MS scheme, by purely
divergent counterterms. In the y-sector we obtain

1
Iycy. = Sme d*o (D2g — Dgg‘lpg) Py 0y" (5.2.29)
TE mn

while the t-sector gives

1
Iics. = Sre d?o n? WP (Wab + Wba) 0% t0at
i (5.2.30)
= o0 /d20 n’tr (Dng_l) 0%t0,t .
From here we read the simple poles
T, = —ithr (DgDg™") , Tipn = i(zﬁg —Dgg~'Dg), (5.2.31)
8 ’ 47 mn
which in turn fixes the one-loop beta functions to be (see (5.1.13)):
o ~1 o —1
B = ik tr (Dng ) v Bmn = 5 (D g — Dgyg Dg)mn . (5.2.32)

Duality invariance

Let us discuss the duality covariance of these beta functions. In the general
case where the internal b-field b,,,(t) is non vanishing, ¢,,, and b,,, can be
combined into the manifestly O(d, d) covariant generalized metric Sy/" (2.2.19).
When b,,, is zero, the generalized metric simplifies to

O mn
Sy = G ) (5.2.33)

gmn 0
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which is covariant only under GL(d) x Z,. It is now quite simple to see that
strings of GL(d) matrix products of the form

('Dmgg—l'Dmgg—l .. 'g—lpong) (5.2.34)

mn

coincide with the ,,, component of the duality covariant tensor
(P"SSDP”SS---SDP™S),, N, (5.2.35)

in terms of the simplified S in (5.2.33). Traces require more care: in general,
G L(d) traces will not combine into O(d, d) ones prior to computing the Feynman
integrals. This can be seen by remembering that GL(d) traces of an even power
of L = Dgg~! are duality invariant (see (3.2.9))

Tr ((DS)™) |,_, = (=D*2tr (L**) | (5.2.36)

while odd powers cannot be written in terms of O(d, d) traces. At this level, the
trace in ( (5.2.32) is indeed duality invariant since

tr (DgDg ") = 1 Tr ((DS)*) |, - (5.2.37)
We have thus shown that the one-loop beta functions can be written in the
form

/

=5 Tr ((DS)") . Bun = —%/ (D*S — DSSDS) . (5.2.38)

This is not enough to prove covariance of j,, under the Z, T-duality: when
the b-field is zero, a generic covariant tensor A, has only components A4,,,

and A™"
0 A
Ay = ( ) : (5.2.39)

Amn

and the Z, duality acts by swapping A,., + Amnwhich is induced by the Z,
operation g <> g~'. Given only Amn, as it is the case for the beta function f3,,,,
we want to construct the dual A™" with GL(d) operations. In order to do so,
it is useful to remember that the property S? = 1 allows to decompose O(d,d)
tensors into + spaces with definite parity under conjugation by S

A=A, + A, A= % (A+£SAS), ALS=+S5A,:. (5.2.40)

From the decomposition (5.2.39), one can see that the projected components
are simply related by conjugation by g, namely

While DS = [DS]_, higher derivatives of S do not have definite parity under
conjugation. For instance

2 2 2 0 K
K=[D*S|. =D*S+S8(DS)", K=| _ . (5.2.42)
K™ 0
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From (5.2.32) we see that 3,,, = —%’ K. Since the tensor £ has odd parity,
we see that the component 3, is sufficient in order to define 3,," by

0 B ~
Bu™ = G . BT = =g By ™ (5.2.43)

Target-space equations

Having computed the beta functions, the Weyl anomaly coefficients (5.2.4) are
completely determined up to W), which in principle could be obtained by
renormalization of the dimension-two operators. A simpler way to do this,
however, is to impose the symmetries of the theory. One-dimensional covari-
ance and rigid GL(d) invariance fix W) up to a constant:

WO = ki tr (Dgg™!) = katr (L) . (5.2.44)

In order to fix the constant k;, we demand duality covariance of the target-
space equations, which requires k; = —%. This is a consequence of 5 and
Bmn being already duality-covariant! The target-space field equations are then

given by 6 = an =0

LTy <(D8)2> +n2D*® =0
8 (5.2.45)
By = (/c - DCI)DS) ~0.

The scalar equation is manifestly Z, invariant. The GL(d) tensor equation
E,.. = 0 instead requires the dual equation E™ = () to be satisfied. Since K and
DS are both parity odd, this is indeed the case, given that E™" = —¢"PE,,¢?".
We have thus shown that the equations (5.2.45) are duality invariant and we
shall write them in covariant matrix form:

Tr ((DS)*) +8D*0 =0, DS +S(DS)’ ~DEDS = 0. (5.2.46)

As a further consistency check, one should notice that a field equation for S
must be parity odd in order to descend from an action principle. This is due
to 0S being odd (6S = [0S]_), and it can easily seen to be the case for (5.2.46).
The target-space equations must be O(d,d) invariant once b,,, is turned on.
Given that the equations (5.2.46) are manifestly covariant, we invoke O(d, d)
symmetry to extend (5.2.46) to the case with non-vanishing b,,,, where now
S is the full generalized metric (2.2.19). The field equations (5.2.46) coincide
with the ones of the cosmological two-derivative low-energy effective action
(2.2.39):

10 = / dtne® [—(chf — éTr((Dsf) : (5.2.47)

Let us notice that the cosmological action used all over Chapter 3 is written
for a Lorentzian target-space metric. The mapping to this Euclidean metric
is given, at the worldsheet level, by n> — —n?. Given the same two-derivative
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action (5.2.47), the coefficients of the o’/" corrections will have a relative (—1)"
sign compared to the notation used in Chapter 3.

In order to determine the dilaton equation, one demands mutual consistency
of the other field equations (see equation (5.1.96) and below). In this case,
one applies a covariant derivative D to the first equation in (5.2.46). Upon
substituting the on-shell value of D?S and Tr ((DS)2>, as well as using the

identity

Tr (S(DS)") =0, n>0, (5.2.48)
one finds D(D?® — DPDP) = 0. The three derivative equation can be integrated,
with the integration constant being proportional to % [18] (see (5.1.94)). The

constant term vanishes in the critical dimension d + 1 = 26, yielding
D*® — (D®)* =0, (5.2.49)

which is equivalent to the dilaton equation derived from (5.2.47).

5.3 Cosmological Polyakov at Two Loops

In this section we turn to the duality-invariant two-loop beta function and the
determination of the order-o’ correction to the cosmological target-space equa-
tions [4]. We begin in the first subsection with a discussion of the ambiguities
of beta functions, which reflect the ambiguities in the target-space theory due
to field redefinitions. In the second subsection we compute the two-loop beta
function, which will then be used in the third subsection to determine the
target-space theory. We close, in the final subsection, with a discussion of
possible simplifications for higher-loop computations.

5.3.1 Beta function ambiguities

Before starting the computation of the two-loop beta functions, we shall dis-
cuss a strategy to simplify the problem. The low-energy spacetime effective
action has an expansion in powers of o’ of the form I =" o/"I(™, where the
two-derivative action ¥ is given by (5.2.47). The classification of [40] implies
that there is a field basis in which all higher-derivative corrections take the
form of the classification (3.1.1). In particular, the first-order correction I is
determined up to a single parameter ¢; as

M= cl/dtne‘bTr<(D8)4) . (5.3.1)

From the sigma model perspective, this implies that it is sufficient to deter-
mine the field equation of S in order to fix ¢;. We will thus compute the
two-loop beta function only for the g,,, coupling.
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Let us suppose to have computed the beta function 3, at two loops in the MS
scheme. On general grounds, one expects it to be GL(d) covariant. Further-
more, as we mentioned in Section 5.2.2, our perturbative expansion ensures
that every term without traces can be written in terms of the duality-covariant
matrix S. This is not the case for terms containing traces, where O(d, d) co-
variance can in general be established only after performing the Feynman
integrals and possibly GL(d)-covariant field redefinitions. It turns out that
at two loops the only O(d, d)-breaking trace term is tr (¢~'D?g) but, as we will
show in the following, its coefficient is zero. This establishes that 5,,, can be
written in terms of S at two loops, without the need for any field redefinitions.

Coming now to possible ambiguities arising from field redefinitions, we shall
assume that 5,,,(g9, D) = Bmn(S, D), for b = 0. Expanding in o’ one has

B = /B0 + 0’82+ O(a'?)

8= 0/5(1) + O(O/2) ’ (5.3.2)
where o/ and o/8Y) are given by (5.2.38). The beta functions are computed
in a given renormalization scheme, which we choose to be minimal subtrac-
tion. A change in the renormalization scheme is equivalent to a redefinition
of the couplings n? and g¢,,, [36]. While this does not affect the one-loop beta
functions, it introduces an ambiguity starting at two loops. Given a set of cou-
plings ¥/ = (n? g,.,), they can be viewed as a set of coordinates in the (infinite
dimensional) coupling space. Since the beta functions are given by 3! = ud;;
they are tangent vectors along renormalization group trajectories. A field re-
definition of n? and ¢,,, can be viewed as a change of coordinates in coupling
space: U/ — ¥l + §¥/, under which p! transforms as a vector, i.e. §3! = Lsy3’,
where £ denotes the Lie derivative. For the case at hand this results in

8Bmn = 0Gpg * 4 602 - — Bpq - -3 , 5.3.3
B gpq agpq + n a 2 ﬁpq agpq /8 8712 ( )
where we recall that derivatives are functional derivatives acting as
mn mn Y = Alg + inear part in f »
G [t () 5 ] = Alg + o i o
0A[n?] T

h -

(5
= /dt h(t) A[nz] = A[nz + h”linear partinh -

on? In?(t)

Since the spacetime action (5.3.1) is given in a fixed field basis, it is necessary
to account for the ambiguity (5.3.3) to be able to compare equations of motion.

Given that ) can already be written in terms of S, we only look at field
redefinitions for which §/5,,, can also be written in terms of S. The most general
redefinition with this property is given, at order «’, by

on? =a; o/n*Tr ((D8)2> ,

) (5.3.5)
Ogn = o b1 K + b, S(DS)’|

mn
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Using (5.3.5) in (5.3.3) one obtains (apart from 5ﬁmn =0)

+q(L8(Ds)°Tr ((PS)*) - sKk2)
(5.3.6)
where p = %_al +§ b and ¢ = b,. The remaining ingredient to write down the field
equations f,,, = 0 at two loops is the W vector appearing in (5.2.4). At order
o'?, W® is a GL(d) scalar with three derivatives D acting on g,,, and its inverse.
There are several GL(d)-invariant possibilities, but requiring O(d, d)-invariance

fixes W@ to be of the form

582 = p (;CTr <(DS) ) 4+ DSTr (ICDS))

mn

W® =k, Tr (KDS) . (5.3.7)

Having collected these ingredients, the target-space equations can be written
as

Bun = =% (K —DODS), +a* (B2, + 582, + 1 wW?Dg,,,) =0, (5.3.8)

which should be compared with the equations obtained from the action I +
o/'IM . As we have discussed in the previous section, any variational equation
for S obtained from an action / must be of definite odd parity. This will provide
a useful check of our computation, since any parity even term arising from
32 should be removable by a suitable choice of parameters in 5B, Having
discussed how to relate the two-loop beta function with field equations, in
the next section we will compute 5,(7331 by determining the divergent part of the
two-loop effective action.

5.3.2 Two-loop beta function

The full effective action I" has a meaningful expansion in powers of d,y™ as
I'=Tosy + 10y + T2y +--- . (5.3.9)

UV-divergent terms are present only in I'ys,, which determines the beta func-
tion for n?, and in I'y,, determining the beta function for g,,,. We then restrict
to I'yp, and compute its UV divergences. Renormalizability implies that the
divergent part of I'yp, contains no factors of d,t. We shall thus focus on the
smaller subsector I'sp, 05:, Which we name I';. The relevant vertices at two loops
can be obtained by applying the background-field expansion on the y-sector
of (5.2.3), namely
1
I, = o)
up to fourth order in fluctuations. The resulting interaction part, I,iy, can be
decomposed in terms of the number of external legs 0,y™ as follows:

[yint = ‘/E)y+‘/1y+‘/2y >

1
Voy = 2)\ +4/\O<

Yy = X”w\+ﬁm<+ AT

|
%y:ﬁ?’<+m:ﬁ<+4&
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where we choose the following representation for the vertices

o— = /ngngmneamebnﬁawaﬁaﬁb , o< = /d20§2 D2 grnea ey 07 Oam®

"VW\ - /dQUSDaneamﬁaﬁ‘I@ayn ) """‘i - /dQO' 52 Dggmneamaaﬂ-aaayn )
M"< - /d20'§3 Dggmneamaaﬂ'aaayn ) :"L'5< - /dQO' 52 Dngn@aymaayn ’
K N / d*0 & D’ gun0™y" Oay" | K N / PO &m0

(5.3.12)

In this diagrammatic representation, straight red lines and dashed blue lines
correspond to ¢ and 0,7 fluctuations, respectively, while wavy blue lines rep-
resent external legs 0,y™. The tensor structure of each vertex can be read
from the diagram, since each red line corresponds to one derivative of g,,, and
each dashed blue line represents an internal vielbein ¢,”. For instance, a ver-
tex with p internal red lines and one internal blue line encodes the structure
DPgrnes™.

With these vertices, the relevant two-loop effective action is given by

Tyo = <e‘V°y (Vay — %ny)>A i subtractions , (5.3.13)
where the subscript means to keep only contributions of order A\, which cor-
respond to two-loop diagrams. The role of subtraction terms is to remove
one-loop subdivergences of two-loop diagrams, ensuring that all non-local di-
vergences cancel. At two loops, the subtractions can be obtained by expanding
the one-loop counterterms up to second order in fluctuations and using the
new vertices to insert counterterms in one-loop diagrams. This procedure,
however, does not seem valid at higher-loop order [107]. In view of possible
future applications, we employ a different method, which consists in sub-
tracting subdivergences diagram-by-diagram [38, 112, 113]. This also allows
to show that entire classes of diagrams can be ignored when computing the
beta function. We denote the subtraction procedure by an operator R acting
on a given two-loop diagram. We also assume that all finite contributions are
discarded at the end. The divergent part of I'y 5 is then given by the sum of
twelve diagrams as follows:

: 1
div
[T =AR 6

GO OO0y s




A greatly simplifying feature of I'; is that its divergent part, at any loop order,
can be computed from diagrams with zero external momenta. In particular,
this means that the diagrams in (5.3.14) are in fact vacuum diagrams, with
the external lines and white circles only denoting vertices. For the sake of
compactness, the Feynman diagrams in (5.3.14) represent both the Feynman
integral and the worldsheet structure, e.g.

T / &0 (D*SSDS)  9*y"dPy"

kakb
Jab = /dk’dl W y

(5.3.15)

where we introduced a shorthand notation for the dimensionally extended

measure: Ik
/dk = ﬁ“/— .t =dme 2. (5.3.16)
(2m)"

Before discussing the method, let us mention that all diagrams in (5.3.14)
fall into two topological classes. The first six diagrams belong to the “chain”
topology, which consists of two one-loop diagrams joined at a vertex. These are
the simplest to compute since the two one-loop factors do not have common
momenta. The remaining six diagrams belong instead to the so-called “sunset”
topology, where the two individual loops share momentum along a common
line.

We will now present the strategy to compute the two-loop diagrams. In order
to better illustrate the procedure, we will include some detailed examples be-
fore giving the final result. As we have previously mentioned, the Feynman
integrals corresponding to (5.3.14) are plagued by infrared divergences. In
computing (the UV divergent part of) two-loop integrals, we will proceed as
follows:

1. Write down each Feynman diagram with purely massless propagators.

2. Using algebraic and integration by parts identities, manipulate numera-
tors to rewrite every integrand in terms of a basis of master integrals.

3. In this latter basis, put mass regulators only on propagators responsible
for IR divergences.

4. Compute only the master integrals.

It should be stressed that this four-step procedure is valid at any loop order
and at higher loops simplifies the computation enormously [33,38, 112, 114].
From now on, the Feynman diagrams will represent only the integrals so that,
for instance, the diagram (5.3.15) only stands for J,,. At two loops, it turns
out that all twelve diagrams can be reduced to linear combinations of just two
master diagrams, one for each topology.

Let us start discussing the first three steps of the above list. The first diagram
in (5.3.14) cannot be simplified, meaning that it is the master integral for the
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chain topology:

2 2
@ </dkk2> e </dkm> . (5.3.17)

In the second step we have introduced masses as IR regulators where nec-
essary. The second diagram in (5.3.14) can be reduced to (5.3.17) by using
integration by parts (IBP) identities in momentum space. In particular, for the

2-loop case we only need
0 (kp
[ () o, 5319

yet analogous identities exist for higher number of propagators and external
momenta contributions. Using (5.3.18) we get

kak 1 1 o (1
:/dkdlk4l2:(/dll—2>[ /dkaka< )kb]

1\ /1 1
— (/ dl ﬁ) (§5ab/dk p) (5.3.19)

The third diagram in (5.3.14) is zero due to the identity [ dk1 = 0, which arises
in the diagram from the blue tadpole. The next diagram can be also reduced
to (5.3.17) by an intermediate (almost trivial) algebraic step

Kok k? kakt
(X i) /dkdl e _/dkdl o =

where we used (5.3.19) in the last equality. One can appreciate that starting
with massless propagators is crucial for the reduction. Apart from another
diagram vanishing due to a blue tadpole, the only remaining chain diagram
can be reduced to (5.3.17) by using (5.3.18) twice:

kak® Lehy (1 1 1
m_/dk:dl T _(25 /dka)( 0 /dllz)_45ab@.

(5.3.21)

Starting with the sunset topology, the first diagram of this type is the only
sunset master integral and is given by

l lb IR reg. / lalb
dkdl dkdl . (5.3.22
“‘” / k212(k — 1)2 12(k2 +m?2) ((k — )2+ m?) ( )

It is easy to see that the massive propagators correspond to the red lines in
the diagram. Let us now give an explicit example of a reduction involving a
nontrivial algebraic manipulation. We consider the next sunset diagram in
(5.3.14), which is given by

% B Ealpyk - 1
= / dkdlm. (5.3.23)
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In order to proceed, we use the identity k-1 = 3 (k* + [* — (k — 1)*) to rewrite
(5.3.23) as

} 1 kalb) kalp) Ealp)

AL =2 aka _

T3 / [k?l?(k PR YT R T
1

Falp) kakp Ealp)
_ 2 [ aka _9
2/ [k?lZ(k; T T e |

(5.3.24)

where, in going from the first to the second line, we wrote I, = k, — (k — [)p
and then renamed k£ — [ — [. This rewriting plus renaming trick corresponds
to integrating by parts in configuration space (which has nothing to do with
the IBP identity in momentum space (5.3.18)). By counting propagators one
can see that the first term is of the form of (5.3.22), albeit with a different
positioning of derivatives. The second term coincides with (5.3.19), while the
last term vanishes by SO(n) symmetry. At this point, we integrate by parts (in
configuration space) the first term, yielding

1 k(alb) 1 kaky — k(a(k - l)b)
2 dkdl —22 — Z [ dkdl
2/ k212(k —1)? 2/ k212(k —1)?

1 kakp 1
== [ dkdl =22 — = L)
4/ K22(k—1)2 4 ’

where we recognized the left-hand side in the second term of the first line.
Putting the two terms together and using (5.3.19), we finally obtain the dia-

grammatic reduction
. 1 1
i: -2 + 7 e @ . (5.3.26)

(5.3.25)

For the remaining diagrams, the reduction procedure is completely analogous.
One iteratively removes scalar products of momenta by using k-1 = 1 (k* + 1> —
(k — l)2) and cancels propagators when possible, integrates by parts when
necessary, and further uses [dk1 = 0 as well as SO(n) symmetry, which sets
to zero all parity odd integrals. Applying this procedure to all diagrams in
(5.3.14), one is left with the two master integrals

C@’ A (5.3.27)
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while the remaining diagrams can be reduced as follows:

(5.3.28)

where we have discarded the two diagrams with a blue tadpole, since they van-
ish in dimensional regularization. Interestingly, these are the only diagrams
whose worldsheet structure is not O(d, d) covariant, because of the GL(d) trace
tr (g~ D?g)!

Having found the reduction, it is now time to compute the master integrals
and subtract their subdivergences. The evaluation of the two master inte-
grals trivially reduces to products of the basic tadpole G}.q, which is given in
(5.2.20). While for the chain topology this can be seen already from (5.3.17),
for the sunset we need to use SO(n) symmetry to reduce the tensor integral
Jap to a scalar integral: Jop = + dap J¢, yielding”

1 1 1 m?
2
@ ORIC™ :@(:ﬁzlogﬁ)’
1 0ap (1 1 m? 1
,M', v = — Oapy (Giad)’ = — [ =+ = log — — — | .
0 n b (Grad) 872 (€2+€ o8 2 26)

Let us now come to the R operation to remove subdivergences. This operation
is recursive, allowing to subtract subdivergences at any loop order [113]. In
the two-loop case, we shall proceed by following these steps:

(5.3.29)

1. Given a two-loop master integral, consider all possible one-loop subdia-
grams obtained by cutting lines open.

2. For each one-loop subdiagram, extract the divergent part (an operation
that we denote by P). This shrinks the original subdiagram to a vertex,

"Recall that p? = 4re~7i? and that we are always discarding any finite part.
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which we denote by a cross ®.

3. Substitute the one-loop subdiagram in the original two-loop diagram with
the cross vertex found in the previous step. The substitution and inser-
tion operation are denoted by *.

We will examine in detail the subtraction procedure for the sunset master
integral, since the case of the chain master integral is simpler. First of all,
the diagram (5.3.22) has two independent subdiagrams, the first of which

appearing twice:
2 X M and

The second subdiagram is UV finite and thus does not enter the subtraction.
It should be mentioned that in (5.3.30) the wavy blue lines still carry zero
momentum, but the other external lines have to be taken with arbitrary mo-
menta, since they belong to the two-loop vacuum diagram. In this case (and in
the other master integral as well), the divergence arises only at zero external
momentum and is easily computed as

B k. ks, B l o L
& (M) - P/dk k2(k2 +m?) Oab P (n [) i dab (5.3.31)

where we notice that the masses remain in the same propagators as in the
original diagram. The insertion operator x reduces in this case to multipli-
cation by (5.3.31). In more complicated cases, where the divergent part of a
subdiagram has momentum dependence, this has to be inserted at the posi-
tion of the cross vertex. In the case at hand this simply gives

! 1
2P (M) *@ = _ﬁ 6ab§2 = _ﬁ 5ab Gtad

15 2+11 m?
=— =+~ log— | .
grz P \e e g;ﬁ

(5.3.30)

(5.3.32)

Subtracting (5.3.32) from the value of the sunset in (5.3.29) finally gives the
subtracted result

R[] = e =27 (3 ) ()
G (11
= T2 <— * 2—) -
Applying the same procedure to the chain master integral gives

K {@} - @ o (@> *;2 (5.3.34)

B 1
 4m2e2

(5.3.33)

Let us pause to discuss this result. First of all, a good sanity check of the
computation is that the divergent terms should be local and independent of
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both the mass regulator m and the renormalization scale ;. One can see from
(5.3.33) and (5.3.34) that this is indeed the case. More importantly, the sub-
tracted result of the chain diagram has no simple pole % Since the beta func-
tion is computed, at all loops, from the simple pole part of the counterterms,
this implies that the chain diagrams do not contribute to the beta function.
This is an example of a more general result: by using this direct subtrac-
tion method it can be proven [113] that no diagram with the factorized chain
topology can exhibit a 1 pole. Besides implying that the first six diagrams in
(5.3.14) can be discarded when computing the beta function, this also entails
that any chain appearing in the reduction (5.3.28) can be ignored as well. We
will compute the contribution of the chains nonetheless, in order to display
the full two-loop divergences of the effective action.

Using the subtracted values (5.3.33) and (5.3.34) in the decomposition (5.3.28),
one finds the values of all the integrals appearing in (5.3.14). Pairing them
with the corresponding worldsheet structures, the two-loop divergences of the
effective action can be written in the form

ray, = ;A / d*o (612 T + %TLWL) DY Oay™ (5.3.35)
The GL(d) tensors T ,,, and T3 ,,, are the ,,, components of O(d,d) matrices
Tia™ and T " constructed from S and D. The direct reading of the tensor
structures from the diagrams in (5.3.14) is in terms of D"S, with n up to four.
This is not a good basis, since D"S has no definite parity, except for n = 0, 1.
We thus introduce a basis of independent odd structures, which we choose
to be DS, K, [DK]_ and [D?K]_. All four-derivative structures, both even and
odd, can be written in terms of this odd basis and §. The manifest parity
decomposition of D"S in this basis is given, up to fourth order, by

DS = [DS]-
DS = [D?S] S(pS)*, [p*S|_=k,
D*S = [DK] — (DS)” - 3§ (DSK + KDS) . (5.3.36)
DiS = [DK]_ — 28 ( S[DK]_ + [DK]_ DS) — 38K?

+S(DS)* — 2DSKDS — (IC(DS)2 + IC(DS)2> .

Using the decomposition (5.3.36) and recalling that A = 27a/, the matrices 7; 5
can be finally written as

72
T = % {[DQIC]_ — 8K+ %(DS)QIC + %IC(DS)Q + %LICTr ((DS)Z)] ,

: (5.3.37)
T, = % E(Ds)% + %IC(DS)Q +SK2 - éS(DS)ZTr ((Ds)ﬂ .

The higher-pole term 7, obey the so-called pole equations [103, 104], which
are typically used for consistency checks. We do not carry such computations
here. The simple pole part 7; determines the (duality-covariant) beta function,
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whose explicit form at two loops is given by

B® — —}l %(DS)QIC + %IC(DS)Q +SK? - éS(DS)QTr ((DS)Z)} . (5.3.38)

5.3.3 Target-space theory at order o

Having computed the two-loop beta function, the field equations (5.3.8) are
given by

= o a? |1 1
Bra=—% (/c - qus) - [5(733)% +5K(Ds)’

(14 4q) (5162 ~ 15(ps)"r ((95)2)>

~ 4pKTr ((DS)?) = 4(p+ 1 k2) DSTr (KDS) | =0,

(5.3.39)

where we included the ambiguity (5.3.6) and the unknown W vector (5.3.7).
Before comparing the equation (5.3.39) with the one obtained from the target-
space action, let us analyze the structure of the o’ correction. We recall that
the two parameters p and ¢ are completely arbitrary, reflecting the ambiguity
in the renormalization scheme. The parameter k., on the other hand, ought to
be determined once p and ¢ are chosen. Coming to the O(d, d) tensor structures
appearing in (5.3.39), the first line consists of parity odd terms with no traces.
These terms are not affected by the ambiguity. The second line contains parity
even terms, in a combination which is fully ambiguous, while the last line
displays parity odd terms with a trace.

As we have discussed in the previous sections, any field equation for S must
have definite odd parity in order to be duality-invariant, meaning that it should
obey

8BS + Bpyg =0 (5.3.40)

Since the sigma model (5.2.3) only exhibits manifest GL(d) symmetry, one does
not expect (5.3.40) to hold for arbitrary renormalization schemes (p,q). One
can see, however, that all schemes with ¢ = —i do obey (5.3.40) and are thus
duality invariant. Let us stress that there are three independent parity even

structures with four derivatives®: SK?, S(DS) “Tr <(DS ) 2) and S(DS) ! but only

one linear combination is ambiguous, namely SK? — : S(DS )2T r ((D8)2>. It is

thus a highly nontrivial check of our computation that the only parity even
terms in (5.3.38) appear in the ambiguous combination! We shall thus choose

8From the diagrammatic expansion of the effective action one can see that only odd powers
of § can appear.
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the duality invariant scheme ¢ = —; and rewrite the field equation as

B, 1= —%/ (k- paDS) — o !

S (DS)°K + é/c(m)2

~pKTr ((DS)") = (p+ 5 k) DSTr (KDS) | 0.
(5.3.41)

The equivalence of (5.3.41) with the field equation of the target-space theory
is perturbative in «’. In particular, this means that one can rewrite terms by
using the lower order equations, i.e.

K = DoDS + O(«) |
D0 = (D®)* + O() (5.3.42)
Tr ((95)2) = -8 (D2)" + O(d)

only committing errors of order o °. In particular, upon using (5.3.42) one can
see that all four-derivative odd tensors reduce to two different structures:

K(DS)? = (DS)’K = DSKDS = DB (DS)’ + O(d)

KTr ((DS)2> — DSTr (KDS) = —8 (D)’ DS + O(d). (5.3.43)

Using the on-shell values (5.3.43), the field equation (5.3.41) is perturbatively
equivalent to the simpler form

Oé/

_ 1
B,=—% (/c — D@DS) — o {Z DO(DS)” + 4 (dp + ks) (D@)‘"’DS] =0. (5.3.44)
We are now ready to compare (5.3.44) with the field equation obtained from

the target-space action
10 4o/ 1O = / dtne™® |~ (D®)* +Tr (-1 (DS)* +de; (PS)') | . (5.3.45)

Given that the action (5.3.45) does not contain double traces, no single trace
can appear in the field equations. Using (5.3.43) implies that the order o’
correction does not contain terms (DCI))SDS . Demanding this to be consistent
with (5.3.44), determines k; = —4p for a given choice of scheme p. Varying
(5.3.45) with respect to S yields

g1 (i~ DoDS) +80'c: [K(DS)* + DSKDS + (DS)*K — D2 (DS)’|
2 (5.3.46)
— —5 (K~ DODS) +160'c, DO (DS)" + O(a'*) = 0.

Comparing the above equation with (5.3.44) determines the ¢; coefficient to be

1
a )
which, including the sign difference due to Euclidean signature, coincides
with the known result for the bosonic string [3,39,42] which we also rederived
in Section 3.2.2 (see Table 3.1).

(5.3.47)

Cl = —
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Simplifications towards higher loops

We just computed the full two-loop beta function (5.3.38), as well as the higher
pole term 7,, including ambiguities in the renormalization scheme. We now
finish this section by discussing a strategy to maximally simplify the compu-
tation in the case where one’s only goal is to fix ¢;. We believe this approach
could be useful for future higher-loop calculations in order to fix the coeffi-
cients of the classification (3.1.1).

First of all, if one is only interested in computing the beta function, all dia-
grams with a product topology (which at two loops consist of the chain topol-
ogy) can be ignored. In our case this already reduces the number of diagrams
from twelve to six. Moreover, duality invariance of the target-space equations
implies that there should be a renormalization scheme (which corresponds to
g = —3 in our case) in which the beta function has definite odd parity. As-
suming this to be the case allows to ignore the last two Feynman diagrams
in (5.3.14), since they have the purely even structure S(DS)4. Finally, from
the classification (3.1.1) one knows that trace terms should be removable by
field redefinitions®. Assuming that traces do not contribute in determining c,
allows to ignore two more diagrams with a closed blue loop in (5.3.14). At the
end, ¢ is determined by two Feynman diagrams, which in turn depend on a
single master integral, as follows:

Lrelevant = —2 R% <> ab/d20 [DQSSD%S’} . Oy oPy"

—,mn
ab

- _2 Ry () / Po [D’SSD’S + (DS)'D*S| oty
A

/ Po [D2SSDS + (DS)*D2S| 0Py duy”

—, mn

- 6472
(5.3.48)

where by [ ] we denoted the odd projection and by R: we meant to discard
higher poles. We have also used the reduction (5.3.28) in terms of master
integrals, and the subtracted value (5.3.33). The odd projection of the above
O(d, d) tensor is given by

DESSDS + 4 DAS(DS) + 4 (DS)'D2S| = ~1 (K(DS)" + (PS)’K) . (5.3.49)
Finally, (5.3.48) yields the beta function
5% =~ (K(DS)’ + (DS)’K) = —; D& (DS)’ + O(o'") | (5.3.50)

which is indeed the relevant part of (5.3.38)!

9This is true at two and three-loop level. For higher loops, traces can be ignored nonetheless
if one is only interested in determining the coefficients of the single trace terms of the target-
space action.
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Chapter 6

Conclusions and Outlook

In this thesis we studied o' corrections to D-dimensional string low energy
effective actions with D — 1 isometries. To this end, we made heavy use of
T-duality and the ideas behind the cosmological classification of [40]. Such
construction characterizes duality-invariant cosmologies to all orders in o/,
but since at each order in o’ there are a finite number of parameters that are
not determined by O(d, d), it remains an open question to which points in this
theory space actual string theories belong.

We made progress in this direction by determining all free parameters up to
and including o’ for bosonic, heterotic and type II string theory. To this end we
took the dilaton-gravity actions that can be found in the literature, performed
a cosmological reduction, and brought the reduced theories to a canonical field
basis. We showed that they are compatible with duality-invariance, which can
be promoted to the full O(d,d)-symmetry to predict the missing B-field and
eight-derivative-dilaton couplings. The complete couplings for the massless
fields in generic backgrounds at order o® remain unknown, except for a few
cases: in [94] the bosonic string effective action including all massless fields
up to order o’? was determined by demanding T-duality invariance. The same
method was used in [60] to obtain the complete Type II at order o’. These
full theories were then reduced to cosmological backgrounds in [91] and [90],
being in perfect agreement with the results obtained here.

The previous target-space approach relies on knowing the parent theories
prior to compactification, which usually involves very challenging S-matrix or
beta-function computations. We proposed a method to alleviate such compli-
cations by introducing a beta-function approach based on a worldsheet the-
ory already adapted to cosmological backgrounds. Despite not being O(d, d)
invariant, we found an efficient procedure to determine the duality-invariant
beta functions and tested it by computing the first two non-trivial physical
coefficients in the cosmological classification for bosonic strings. This yields
an independent first-principle derivation of the O(a/) corrections and set the
stage for higher-loop extensions.

As a toy model of how to deal with o/-complete string theory in presence of
massive modes we have explored the Hohm-Siegel-Zwiebach (HSZ) theory for
purely time-dependent cosmological backgrounds. While HSZ theory, being
based on a non-standard chiral CFT, is not a conventional string theory, it
shares many features of string theory such as the presence of a fundamental
parameter o/ governing higher-derivative corrections and exact duality invari-
ance under O(d,d). We were able to provide a two-derivative yet o’-exact refor-
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mulation in which the tensionless limit o/ — oo can be taken smoothly, and
we set up perturbation theory with 5 as the small expansion parameter. We
found a string frame de Sitter solution at zeroth order in such expansion, and
showed that it survives the first -, correction.

With the purpose of extending the classification to other backgrounds, we
revisited the systematic method of [40] for Bianchi Type I (BI) cosmologies
governed by ¢ scale factors, and for non-critical two-dimensional (2D) back-
grounds with time-like isometry. For the former, we have shown that only ¢—1
scale factors receive non-trivial higher-derivative corrections, implying that in
flat Friedmann-Robertson-Walker (FRW) backgrounds all o' corrections are
on-shell trivial. For the 2D backgrounds we first emphasized that for non-
critical dimensions there are no invariant terms other than the cosmological
term: any contribution with two or more derivatives can be traded for terms
with an arbitrary number of derivatives, hence invalidating the familiar setting
of perturbative o’ corrections. We then circumvented this obstacle by assum-
ing that the numerical coefficients governing the o' expansion in the action
fall off in such a manner that terms with more derivatives are sub-leading
relative to those with less derivatives. We gave a meaningful classification of
higher-derivative corrections and applied it to the black hole (BH) solution of
2D string theory.

Using this larger space of duality-invariant theories, we explored non- per-
turbative solutions. We started from the perturbatively defined equations of
motion, in which the infinitely many «' corrections are encoded in a function
f(M), defined as a series containing only even powers of the Hubble-like pa-
rameter M. We changed gears to describe the theory space in terms of the
inverse function M(f). Using f as a parameter, and with square roots of non-
trivial functions appearing in the equations, the f space naturally becomes a
space with branch points and branch cuts, which determine the underlying
structure of the solution. We have argued that the f parameterization pro-
vides a non-perturbative extension of the original theory that applies when
the series defining the perturbative o/-corrected action does not converge.

We saw that the BH interior, parameterized by f, leads to a branch point at
some real, positive f, with a cut going all the way to f = co. For the black hole
interior with a singularity (see Fig. 4.4 (a)), the x coordinate reaches a finite
value at the branch point f;, a point that can be reached in finite proper time.
This means that the space cannot end there, and one must indeed return to
f = oo over the cut. To avoid the singularity, while preserving a horizon, we
altered the nature of the branch point f; (Fig. 4.4 (b)). Now z reaches an
infinite value as we approach fj, and it takes infinite proper time to get there.
Thus we get a complete space without having to go over the branch. This
yields a black hole with a horizon but a regular interior, a regular black hole
(Fig. 4.4 (c)). The main caveat is that such solution does not appear to be a
string theory one.

We have also discussed duality in the black hole solutions. The maximally
extended geometry of the black hole of the two-derivative theory describes a
self-dual solution where, as noted by Giveon [46], duality maps the horizon

185



to the curvature singularity. We showed this is actually a general result. In
particular, complete solutions that have horizons but no singularities cannot
be self-dual.

With these results we contributed to a better understanding of higher- deriva-
tive corrections to the low energy limits of string theory. We did so by working
with a broader class of theories constrained by T-duality, which provides us
with a rich theoretical laboratory to explore extensions of classical gravity.
More concretely, we made progress in three different yet related directions:
restrict the possible subspaces of this duality-invariant theory space in which
the known string theories must live, find solutions of «’-complete equations
and analyze the physical implications of including string-like effects, and ex-
tend the classification to other backgrounds by following the same duality-
invariant principles. Each of these directions branch into a huge landscape
of possibilities and thus it is fair to say that our results here only scratch
the surface. In what follows we present (what we think are) some interesting
directions to explore in the future.

Future directions

Regarding string theories inside the cosmological classification, an important
first future direction would be to cross-check our results for the coefficients
by different methods. For instance, one might compute these coefficients from
string scattering amplitudes already adapted to cosmological backgrounds,
which must be O(d, d) invariant (although the procedure would be somewhat
indirect as there is no scattering in one dimension).

Alternatively, one could obtain these coefficients from the vanishing of the
higher-loop beta functions of the corresponding string worldsheet theories.
We already started this program in this thesis by using a worldsheet directly
adapted to dimensional reduction and performing a two-loop computation.
By a suitable automatization of the techniques elaborated here, one could
envision that higher-loop computations are indeed possible, eventually going
beyond the state of the art.

It is worth mentioning that another duality-invariant beta-function approach
was studied in [1 15, 116] and later extended in [2,4] by using a genuine O(d, d)-
invariant worldsheet action [117, 118]. Unfortunately, the presence of chiral
bosons and the corresponding lack of manifest Lorentz invariance of the action
makes the minimal subtraction renormalization scheme not applicable [4],
complicating computations beyond one-loop order.

Since the development of the cosmological classification in [40], numerous
works have already implemented the general setup in different contexts such
as: backgrounds incorporating (duality-invariant) matter content [92, 93], de
Sitter as well as general non-singular solutions [48, 119-122], and stability
analysis of certain solutions [123-126]. Determining the coefficients to higher
orders could be useful in the more realistic scenarios explored in these works,
for instance, by supporting or ruling out the hypothesis assumed therein. In
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particular, it would be interesting to see whether the first coefficients deter-
mined here can already be of any use in these regards.

While knowing these coefficients to higher orders is an interesting direction,
we expect the perturbative approach to be insufficient to describe certain so-
lutions at extreme regimes. We already observed some hints of this behavior
from the regular pre-big bang scenarios proposed in [48], the regular black
hole solution found here [7], and the de Sitter vacua from cosmological HSZ
in the tensionless limit [5]. Those three solutions only emerge once an infinite
number of higher-derivative corrections are taken into account, and so they
would probably be invisible from a perturbative computation, no matter how
high we go in determining these coefficients. Such non-perturbative descrip-
tion of the string effective theories presumably requires, on top of the massless
fields, the incorporation of string massive modes. This construction is out of
reach at the moment, partially because we do not have a clear understanding
of how to couple massive modes consistently to the worldsheet.

It view of these observations, determining the exact location of string theories
in the space of duality-invariant theories is definitely not an easy task and its
resolutions may not be possible in the near future unless novel ideas come
into play. In the meantime, however, we can consider an equally interesting
line of research, which consists of studying directly the broader landscape of
duality-invariant theories.

We already made some progress in this direction in the context of 2D back-
grounds, using the Gasperini-Veneziano parameterization, where we found
sufficient conditions for having singular and regular black holes. It would be
important to determine the maximal extensions of these (regular) black holes
and to display their Penrose diagrams. We expect such maximally extended
spacetimes to be more easily constructed using the mn = 1 gauge, instead
of the n = 1 gauge used here that results in disconnected f contours for the
exterior and interior solutions.

On top of a further study of the solutions found in this work, it would be in-
teresting to do a more exhaustive analysis of the solution space itself, and find
a weaker set of conditions leading to a bigger class of BH backgrounds. For
instance, while the regular solution found here identifies the interior region
with a regular cosmology, there could be other geometries that also avoid the
singularity. A promising starting point in this direction could be the study
of the regular black hole ansatz proposed in [127] by Dijkgraaf, Verlinde and
Verlinde (DVV), whose causal structure was studied in [128]. Such study was
already started in [6], where it was shown that the DVV ansatz, in its given
form, does not fit the framework of the duality-invariant classification. How-
ever, as implied by [129] and [130], there should be a different scheme in
which DVV is a solution of the classification.

Other interesting directions inside the analysis of duality-invariant theories
are related to one of its special points: HSZ theory. While one can integrate
out the massive modes of HSZ to relate it to the classification, it is exactly
the opposite direction which makes the theory so special: it is the only known
point in the classification whose infinite higher-derivative corrections come
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from a theory with a finite number of derivatives and a finite number of extra
(massive) fields. A further study of HSZ as well as an exploration of other
points sharing the same special behavior are interesting future directions.

Regarding HSZ, it is important to find non-perturbative solutions for the «’'-
complete Friedmann equations obtained here, as well as to keep exploring the
perturbative de Sitter solutions. It would be also interesting, if possible, to ex-
tend the two-derivative reformulation of HSZ to other backgrounds. In partic-
ular, to time-independent 2D backgrounds, and see whether the o/-complete
equations admit black hole solutions. If this is the case, it would be very in-
triguing to understand the connection between these solutions and the black
hole solutions found in this work in the context of the classification [6, 7].

Regardless of how much we can extend the analysis of HSZ itself, the very
existence of such a special point inside the duality-invariant space of theories
motivates us to look for others with similar characteristics. Starting from the
classification, one could look for conditions on the higher-derivative correc-
tions, if any, such that they arise from integrating out extra fields. Coming
from the finite-derivative formulation, on the other hand, a modest first at-
tempt could be to extend HSZ in a minimal way such that the o/ — 0 limit
(standard supergravity) is preserved. For instance, one could extend the HSZ
action by promoting the fixed coefficients next to the couplings of the massive
fields to arbitrary parameters, giving rise to a family of o/-complete theories.

While it is unlikely that any of these naive modifications is related to a genuine
string theory, one might hope that the lessons learned here could help in the
construction of a target-space theory including genuine massive string modes.
Even going beyond string theory, the special points found through the meth-
ods mentioned above could be interesting theories on their own, which could
be uplifted to more general backgrounds, giving rise to simpler UV completions
of gravity.
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