
190 

CONSTRUCTIONS OF LIE (SUPER)ALGEBRAS 

FROM TRIPLE SYSTEMS* 

Kiyosi Yamaguti 

Department of Mathematics, Faculty of School Education 

Hiroshima University, Shinonome 3-chome, Minami-ku 

Hiroshima 734, Japan 

ABSTRACT 

The construction of Lie algebras and Lie superalgebras 

from Freudenthal-Kantor (super)pairs by using derivations 

and pairs of homomorphisms satisfying so called the condi- 

tion (K) is given. The construction of Lie (super)algebras 

from the commutative associative triple systems and the 

Freudenthal-Kantor (super)triple systems is also given. 

This is a continuation of the previous talking at the 

XIVth International Colloquium on Group Theoretical Methods 

in Physics, Seoul, 1985114]. 

I. GENERALIZED LIE (SUPER)TRIPLE SYSTEMS 

A Lie algebra is the tangent algebra of Lie group at 

the identity element e. A Lie triple system is the tangent 

algebra of symmetric space G/H at eH. A general Lie triple 

system is the tangent algebra at eH of reductive homogene- 

ous space G/H due to K. Nomizu[11],[cf.12]. Given a (anti-) 

Lie triple system T, let D(T) be the derivation Lie algebra 

of T, then L=Vo+VI, VO=D(T) , VI=T , becomes a Lie algebra 
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and Lie superalgebra according to V I is a Lie triple system 

and anti-Lie triple system respectively[8,3]. This result 

can be generalized to a general Lie (super)triple system 

[ 14 ] .  
The examples of general Lie triple sytems are given 

in [14], some of others are given here. 

(I) The Virasoro algebra L = Z Cen@Ce ~ is a Lie algebra 
n&Z 

defined by [em,en]=(m-n)em+n+(1/12)(m3-m)6m+n,0e~, [e~,L]= 

{0}. Put H=Ce08Ce ~, N=neZ~{o}Ce n, then N becomes a general 

Lie triple system. Conversely, the algebraic system N = 

Z Ce with products emen=(m-n)(1-6m+n,0)em+n and 
n~Z\{O} n 
[e i e men]= -2£n6i+m,oen is a general Lie triple system 

and its standard imbedding Lie algebra is isomorphic with 

Ce such that [ en]=(m-n) neZ n era' em+n" 

(2) Let (J,U(a),a,f) be a JT-ternary algebra[15], which is 

a generalization of J-ternary algebra due to B.N. Allison 

[I] and W. Hein[5]. Put T=J¢~eU(e)¢U--~, where J, U(e) be- 

ing the copies of J, U(E) respectively. Define a bilinear 

Product uv and a trilinear product [uvw] in T by 

ulu2=t(-Ef(b1,b2),f(al,a2),a(Yl)b2-a(Y2)bl,a(xl)a2-a(x2)al )" 
[u I u 2 u 3] I L(Xl,Y2)x3-L(x2,Yl)X3+~f(a(x3)al,b2)-~f(a(x3)a2,bl )~ 
-L(Y2'Xl)Y3+L(Y1'x2)Y3+f(a(Y3)b2'al)-f(a(y3)b1'a2 ) 
_a(Y2)a(xl)a3+a(yl)a(x2)a3+L(al,b2)a3_L(a2,bl)a3 
a(x I ) a(Y2)b3-a(x 2) a(Y I )b3+en(b2,a I )b3-eL(b I ,a2)b 3 

Where ui denotes t(xi,Yi,ai,bi) , i=1,2,3. Then, T becomes 

a general Lie triple system with respect to the product 

defined above[15]. 

By using a representation of Lie algebra, a notion of 

general Lie triple system can be more generalized. A quad- 

ruple (A,B(g),a,f), 6=±I, is called a general Lie (super) 



192 

triple system if 

A is a Lie algebra with product [,], 

B(6) is an algebraic system with a bilinear product ab= 

L(a)b and a trilinear product [abc]=L(a,b)c such that 

ab= -6ba, L(a,b)= -6L(b,a), 

[abc]+[bca]+[cab]+(ab)c+(bc)a+(ca)b=Q, 

a is a special representation of Lie algebra A into a 

vector space B(6), that is, a([x,y])=a(x)a(y)-a(y)a(x), 

f is a bilinear mapping of B(6) into A such that f(a,b) 

- 6f(b,a), 

[x,f(a,b)]=f(a(x)a,b)+f(a,a(x)b), 

[a(x) ,L(a)]=L(a(x)a), 

af(a,b)=L(a,b), 

f(ab,c)+f(bc,a)+f(ca,b)=O, 

x,y,z~A, a,b,c~B(6). 

PROPOSITION I. Let (A,B(6),a,f) be a general Lie (su- 

per)triple system. Put L=A@B(6). Define a product in L by 

(*) [x+a,y+b]=[x,y]+f(a,b)+a(x)b-a(y)a+ab, 

x,y~A, a,b~B(6), then L=Vo@VI, Vo=A , VI=B(6) , is a Lie 

algebra and Lie quasisuperalgebra with respect to the 

product (*) according to 5=I and -I respectively, that is, 

[Vo,V O]CVO, [Vo,VI]~VI, [ui,vj]= -(-1)iJ[vj,ui ], 

(-1)ik[[ui,vj]wk]+(-1)Ji[[vj,wk]ui]+(-1)kJ[[wk,ui]vj]=O, 

u i~Vi, vj ~Vj, w k~V k. 

As a corollary of the Proposition, it follows the 

known result: if ab=O for all a,bgV1, then L becomes the 

Lie algebra and Lie superalgebra according to 5=I and -I 

respectively. 

2. CONSTRUCTION OF LIE (SUPER)ALGEBRAS FROM FREUDENTHAL- 

KANTOR (SUPER)PAIRS 

Let c,6=I or -I. A pair U(s,6)=(U(s,6)+,U(E,6) -) of 

vector spaces U(a,6) a b c >:= , a=±, with product <a a -O o 
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L(aa,b_a)c ~ is called a Freudenthal-Kantor pair or 

Freudenthal-Kantor superpair according to 8=I or -I, if 

[L(aa,b_a),L(ca,d_a)] 
(u1) 

= L(L(aa,b o)Ca,d_a)+aL(Ca,L(b_a,aa)d_a), 

K(K(aa,ba)C_a,d a) 
(u2) 

= L(da,C_a)K(aa,ba)-eK(aa,ba)L(C_a,da), 

where K(aa,ba)C_a:=<aac_aba>-8<bac_aaa>[Cf.2,4,9,13,17]. 

A pair D=(D+,D_) of endomorphisms D o of U(e,6) a is a deri- 

vation of U(e,6) if [Da,L(aa,b_a)]=L(Daa~,b_a)+L(aa, 

D ab_a). A pair C=(C+,C_),CaEHom(U(e,~)-8,U(¢,6) a) is said 

to satisfy the condition (K) if 

(KI) K(Caa a,ba)-L(ba,a a)Ca+aCaL(a_a,ba)=O, 

(K2) aC_aK (aa, ba) +L(C_aaa, ba )-6 L (C_aba, aa ) =0, 

(K3) K(a_a,b_a)Ca-L(b_a,Caa_a)+6L(a a,Cab a)=O. 

The pair (L(a+,b_),sL(b ,a+)) is a derivation of U(~,6) and 

(~K(a+,b+),-sK(a_,b_)) satisfies the condition (K). Let D, 

be the vector spaces spanned by derivations and pairs of 

homomorphisms satisfying the condition (K). Put L=D~K~U(¢, 

6) and define a product in A by 

' ,O$] [D O']), [(D+,D_),(D+,D~)]=([D+ , _, _ 

[(D+,D_),(C+,C_)]=(D+C+-C+D_,D C_-C_D+), 

[(D+,D_),(a+,a_)]=(D+a+,D_a_)= -[(a+,a_),(D+,D_)], 

[(c+,c_),(c$,cL)]=(c+oL-c;c_,-qc++c_c;), 
[(C+,C_),(a+,a_)]=(C+a_,C_a+)= -[(a+,a_),(C+,C_)], 

[(a+,O),(b+,O)]=(6K(a+,b+),O), 

[(O,a_),(O,b_)]=(0,-eK(a_,b_)), 

[(a+,O),(O,b_)]=(L(a+,b_),en(b_,a+))=-6[(O,b_),(a+,O)] • 

THEOREM I. For a Freudenthal-Kantor (super)pair U(¢,6), 

A~VogVl, VO=DSK , VI=U(a, 6) , becomes a Lie algebra and Lie 

SUperalgebra with respect to the above product according 

to 6=I and -I respectively. 

Remark. W. Hein[6] constructed a universal enveloping 
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Z-graded Lie algebra from a pair algebra A only satisfying 

the condition (UI) with E=-l and showed that the condition 

So3(A)={O ) gives an identity, which is equivalent to (U2) 

with 6=1 under (U1)[6,p.325,Example 2]. The above construc- 

tion is a pair generalization of the construction in [14]. 

3. CONSTRUCTION OF LIE (SUPER)ALGEBRAS FROM ASSOCIATIVE 

TRIPLE SYSTEMS AND FREUDENTHAL-KANTOR (SUPER)TRIPLE SYSTEMS 

Recall the definition of commutative associative tri- 

ple systems. A triple system A with p~oduct <abc>=~(a,b)c: 

=m(a,c)b is called a commutative associative triple system 

if <ab<cde>>=<a<dcb>e>=<<abc>de> and <abc>=<cba>[10]. 

The linear span of m(a,b)'s becomes a Jordan triple system. 

For any Freudenthal-Kantor (super)triple system(F-K- 

(S)TS) U(s,8) with product L(x,y)z, A~U(e,~) becomes F-K- 

(S)TS with respect to the trilinear product<a~x b~y c~z>:= 

£(a,b)c~L(x,y)z, a,b,cE A, x,y,z~U(E,6), in which we have 

K(a~x,b~y)=m(a,b)~K(x,y). 

Put s(a,b)=½(£(a,b)+Z(b,a)), t(a,b)=½(Z(a,b)-~(b,a)). 

Assume the endomorphisms s*,t* of A satisfy the conditions 

s*Z(a,b)=~(s*a,b)=£(a,s*b)=£(a,b)s*, t*Z(a,b)=~(t*a,b)= 

-£(a,t*b)=£(a,b)t*. If D,B are the derivation and anti- 

derivation of U(c,6) respectively, then s*~D and t*~B are 

derivations of F-K(S)TS A~U(E,6). Especially, s(a,b)~D and 

t(a,b)~B are derivations of A~U(c,6). The endomorphism m* 

of A is said to satisfy the condition (K) if m*£(a,b)= 

£(b,a)m*=m(m*a,b), m*m(a,b)=~(m*a,b),and m(a,b)m*=£(a,m*b) 

[17]. It is shown that m(a,b)EEnd(A) satisfies the condi- 

tion (K). If m*(resp. C) satisfies the condition (K) in A 

(resp. U(C,6)), then m*~C satisfies the condition (K) in 

F-K(S)TS A~U(e,6). 

In F-K(S)TS U(e,6), define a trilinear product [,,] b~ 

[xyz]:=S(x,y)z+6K(x,y)z, where S(x,y):=L(x,y)+eL(y,x). The~, 

if e6= -1, this product defines a Lie triple product or 

anti-Lie triple product on U(c,6) according to 6=I or -I, 
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that i s ,  [xyz]= -6[yxz], [xyz]+[yzx]+[zxy]=O, [L(x,y), 
L(u,v)]=L(L(x,y)u,v)-6L(u,L(y,x)v). The last relation 

follows from that if D is a derivation of U(a,6), then 

[D,S(x,y)+6K(x,y)]=S(Dx,y)+S(x,Dy)+6K(Ox,y)+6K(x,Oy), 

and if C satisfies the condition (K), then 

[C,S(x,y)+6K(x,y)]=S(Cx,y)+S(x,Cy)+6K(Cx,y)+6K(x,Cy). 

Therefore, a F-K(S)TS A~U(-6,6) becomes (anti-)Lie triple 

system with respect to the product: 

[a~x b~y c~z]:=(L(a~x,h~y)-6L(b~y,a~x)+6K(a~x,bmy))(c~z) 

=(s(a,b)~S(x,y)+t(a,b)~T(x,y)+~m(a,b)~K(x,y))(c~z), 

where S(x,y)=L(x,y)-6L(y,x), T(x,y)=L(x,y)+6L(y,x). 

If D,B~ End(U(-6,6)) are derivation, anti-derivation 

respectively and C satisfies the condition (K), then s*~D, 

t*~B, m*~C are the derivations of (anti-)Lie triple system 

A~U(-6,6), especially, so are s(a,b)~D,t(a,b)~B,m(a,b)~C. 

As a remarkable Lie (super)algebra between the stand- 

ard imbedding Lie (super)algebra and the Lie (super)algebra 

D~A~U(-6,6), where D denotes the derivation Lie algebra of 

(anti-)Lie triple system A~U(-6,6), we obtain a Lie (super) 

algebra G in the following theorem, which is a generaliza- 

tion of the result due to U. Hirzebruch[7]. 

THEOREM 2. Let A be a commutative associative triple 

system and U(S,6) be a Freudenthal-Kantor (super)triple 

System with s~= -I. Let £,M,N be the vector spaces spanned 

by s(a,b)~D, t(a,b)~B, m(a,b)~C respectively, where D(resp. 

B) is the derivation(resp, anti-derivation) of U(E,6) and 

C satisfies the condition (K) in U(s,6). Then, the vector 

Space G =VoCV I, VO=L+~+N, VI=AmU(-6,6), becomes a Lie al- 

gebra and Lie superalgebra according to 6=I and -I respec- 

tively, which contains the standard imbedding Lie (super) 

algebra as a sub(super)algebra. The commutations in L,M,N 

satisfy the relations: 
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[L,L]gL, [L,M]CM, [L,N]cN, [M,M]¢L, [M,N]cN, [N,N]cL+M. 

The vector space direct sum T(~,6)=U(~,6)~U(~,6) be- 

comes the (anti-)Lie triple system by defining a triple 

product as 

~(L(d,a)-6L(b,c)) 
f ~  

Put J={_~ X J, then J is an automorphism of (anti-)Lie 

triple system T(E,6) such that j2= -E6Id, especially, if 

s8 = -I, then J is an involutive automorphism. For any X,Y~ 

T(c,6), define a Nijenhuis operator in T(s,8) by 

N(X,Y):=[JX,JY]-J[JX,Y]-J[X,JY]+J2[X,Y]. 
If N(X,Y)=0 for all X,Y in (anti-)Lie triple system 

A~U(c,6)0A~U(E,6) with c6= -I, then L(a~x,b~y)-6L(b~y,amx) 

+cK(a~x,bsy)=0, that is, ~(a,b)~L(x,y)-6A(b,a)~L(y,x)+ 

sm(a,b)~K(x,y)=O. Then, we have 

PROPOSITION 2. When s6= -1, the Nijenhuis operator 

vanishes identically in (anti-)Lie triple system A~U(s,6)0 

A~U(s, 6) if and only if [a~x b~y c~z]=26m(a,b)c~K(x,y)z in 

(anti-)Lie triple system A~U(s,8). 

As a corollary we see that let U(-1,1) be a Jordan 

triple system, then N(X,Y)=0 for all X,Y in the Lie triple 

system A~U(-I,I)gA~U(-I,I) if and only if the induced Lie 

triple system A~U(~I,I) is abelian. 
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