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ABSTRACT

The construction of Lie algebras and Lie superalgebras
from Freudenthal-Kantor (super)pairs by using derivations
and pairs of homomorphisms satisfying so called the condi-
tion (K) is given. The construction of Lie (super)algebras
from the commutative assoclative triple systems and the

Freudenthal-Kantor (super)triple systems is also given.

This is a continuation of the previous talking at the
XIVth International Colloquium on Group Theoretical Methods
in Physics, Seoul, 1985[141].

1. GENERALIZED LIE (SUPER)TRIPLE SYSTEMS

A Lie algebra is the tangent algebra of Lie group at
the identity element e. A Lie triple system is the tangent
algebra of symmetric space G/H at eH. A general Lie triple
system is the tangent algebra at eH of reductive homogene-
ous space G/H due to K. Nomizu[11],[cf.12]. Given a (anti-)
Lie triple system T, let D(T) be the derivation Lie algebra

of T, then L=V +V,, VO=D(T), V,=T, becomes a Lie algebra
*Research supported in part by the Grand in Aid for Funda-
mental Scientific Research of Ministry of Education, Sci-
ence and Culture (C) 62540050.
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and Lie superalgebra according to V1 is a Lie triple system
and anti-Lie triple system respectively(8,3]. This result
can be generalized to a general Lie (super)triple system
[14].

The examples of general Lie triple sytems are given
in [14], some of others are given here.

(1) The Virasoro algebra L = £ Cen@Ceé is a Lie algebra
ne
defined by [em,en]=(m-n)em+n+(1/12)(mB—m)6m+n’Oeé, [eé,L]=

{0}. Put #=Ce,8Ce(,, N= I Ce_, then # becomes a general
neZ\{0} B

Lie triple system. Conversely, the algebraic system #=

Ce. with products emen=(m-n)(1-6 and

T Ye
nez\{ 0} m+n,0’ "min

Sy ©n en]= —2£n6£ is a general Lie triple system

e
+m,0'n
and its standard imbedding Lie algebra is isomorphic with

nEZCen such that [em,en]=(m—n)e

(2) Let (J,U(e),0,f) be a JT-ternary algebral15], which is
a generalization of J-ternary algebra due to B.N. Allison

(1] and W. Hein[5]. Put T=J6J8U(e)®T(c), where J, U(e) be-
ing the copies of J, U(e) respectively. Define a bilinear

m+n°®

Product uv and a trilinear product [uvw] in T by
u1u2=t(—sf(b1,b2),f(a1,az),o(y1)b2—0(y2)b1,G(X1)32‘°(X2)a1)’
[u1 u, ug)
L(x1,yz)x3~L(x2,y1)x3+sf(0(x3)a7,b2}~sf(c(x3)a2,b7)
~L(y2,x1)y3+L(y1,xz)y3+f(o(y3)b2,a1)~f(0(y3)b1,a2)

=

-G(yz)c(XT)a3+0{y1)o(x2)33+L(a1,bz)a3~L(a2,b1)a3
0(}:1)G(yz)bB—o(xz)o(y1)b3+aL(b2,a1)b3—eL(b1,az)b3

Where u; denotes t(Xi’yi’ai’bi)’ i=1,2,3. Then, T becomes
% general Lie triple system with respect to the product
defined abovel15].

By using a representation of Lie algebra, a notion of
8eneral Lie triple system can be more generalized. A quad-
Tuple (4,B(6),0,f), 6=t1, is called a general Lie (super)
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triple system if

A is a Lie algebra with product [,],

B(8) is an algebraic system with a bilinear product ab=
L(a)b and a trilinear product [abcl=L(a,b)c such that

ab= -8ba, L(a,b)= -8L(b,a),

[abcl+[becal+[cabl+(ab)c+(be)a+(ca)b=qQ,

0 is a special representation of Lie algebra A into a
vector space B(6), that is, o([x,yl)=0(x)o(y)-o(y)o(x),

f is a bilinear mapping of B(8) into A such that f(a,b)
= -6f(b,a),

[x,f(a,b)l=f(0o(x)a,b)+f(a,0(x)b),

[o(x),L(a)]=L(0(x)a),

of (a,b)=L(a,b),

f(ab,c)+f(bc,a)+f(ca,b)=0,
X,y,z€A, a,b,ceB(S).

PROPOSITION 1. Let (A4,B(8),0,f) be a general Lie (su-
per)triple system. Put L=A®B(S). Deflne a product in £ by
(*)  [x+a,y+bl=[x,yl+f(a,b)+to(x)b-0(y)atab,

X,y& A, a,beB(S8), then L=V (BV1, VO=A, V1=B(6), is a Lie
algebra and Lie quasisuperalgebra with respect to the
product (*) according to 6=1 and -1 respect@Yely, that is,

(Vg VoleVy, Vg,V lav,, [ui,vj]= -(-1)1J[vj,ui],
DMy, v Ty 1+ -1 Uy Jug 11 [y, 1v;1=0,
u, ev,

i l, Vjévj’ Wkévk.
As a corollary of the Proposition, it follows the

known result: if ab=0 for all a;be\H, then £ becomes the

Lie algebra and Lie superalgebra according to &=1 and -1

respectively.

2. CONSTRUCTION OF LIE (SUPER)ALGEBRAS FROM FREUDENTHAL-
KANTOR (SUPER)PAIRS

Let €,6=1 or -1. A pair U(e,8)=(U(e,8) ,U(e,8)”) of
vector spaces U(e,8)7, o=t, with product <ay b_g cy 2=
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L(ao,b_o)qr is called a Freudenthal-Kantor pair or

Freudenthal-Kantor superpair according to §=1 or -1, if

{L(ao)b_g);L(cosd_o)]

(U1) = L(L(ag,b_g)eg,d_g)+ellcy,Lib_y,a,)d_g),
(u2) K(K(ag,bgle_g,dy)
= L(d ,c_g)K(ag,b,)-eKk(a,,b )L{c_g,d,),

where K(ac’bo>0_o:=<aoc_abo>'6<boc & >[ef.2, 4 9,13,17].

A pair D=(D+,Dﬁ) of endomorphisms D of U{e, 6) is a deri-
vation of U(eg,d8) if [DO,L(aO,b_O)] L(D a8 )+L(

D_sb_gx)« A pair C=(C+,C_),006Hom(U(E,G ,U(E 8)° ) is said
to satisfy the condition (K) if

(K1) K(Coa_gby)-L(by,a_ )C +eC L(a 51P5)=0;
(K2) eC_g K(a y by )+L(C_ja ,b ) 6L(C bc,ag)=0,

(K3) x(a )c ~L(b_, _0}+6L(aio Cyb_g)=0.

5?9
The pair (L(a+,b_),gL(b_,a+)) is a derivation of U(e,§) and
(8k(a,,b,),-¢K(a_,b_)) satisfies the condition (K). Let D,
X be the vector spaces spanned by derivations and pairs of
homomorphisms satisfying the condition (K). Put L=DBK8U(e,
§) and define a product in £ by
[(D+9D_);(D;’Dl)]=([D+,Dl]s[D_,Dl]))
[(p,,p_),(c,,Cc_)1=(D,C,~C,D_,D C_-C_D,),
[(p,,p),(a,,a_)1=(D,a,,D a_ )= ~[(a,,a_),{D,,D )1,
[(c,,c_),(c,,c)I=(c,C ~CC_,-C!C +C_Cl),
[(c,,c_),(a,,a_)I=(C,a_,C_a )= ~[(a,,a_),(C,,C )1,
((a,,0),(b,,0)1=(sk(a,,b,),0),
[(0,a_),(0,b_)1=(0,-eK(a_,b_)),
[(a,,0),(0,b_)1=(L(a,,b_),eL{b_,a,))=-6[(0,b_),(a,,0)].

THEOREM 1. For a Freudenthal-Kantor (super)pair U(e,§),
L=y SALE VO=D®K, V1=U(€,6), becomes a Lie algebra and Lie
Superalgebra with respect to the above product according

to 8=1 and -1 respectively.

Remark. W. Hein[6é] constructed a universal enveloping



194

Z-graded Lie algebra from a pair algebra A only satisfying
the condition (U1) with €=-1 and showed that the condition
SGB(A)={O} gives an identity, which is equivalent to (UR)
with § =1 under (U1)[6,p.325,Example 2]. The above construc-
tion is a pair generalization of the construction in [14].

3. CONSTRUCTION OF LIE (SUPER)ALGEBRAS FROM ASSOCIATIVE
TRIPLE SYSTEMS AND FREUDENTHAL-KANTOR (SUPER)TRIPLE SYSTEMS

Recall the definition of commutative associative tri-
ple systems. A triple system A with product <abed>=g(a,blc:
=m(a,c)b is called a commutative associative triple system
if <ab<cde>>=<a<ldcbled>=<<abe>de> and <abed>=<cba>{10].
The linear span of m(a,b)'s becomes a Jordan triple system.

For any Freudenthal-Kantor (super)triple system(F-K-
(s)Ts) U(e,8) with produect L(x,y)z, AmU(e,8) becomes F-K-
(S)TS with respect to the trilinear product <amx bzy cmzd:=
2(a,b)cal(x,y)z, a,b,ce A, x,y,2€0(e,8), in which we have
K(amx,bmy)=m(a,b)sk(x,y).

Put s(a,b)=3(2(a,b)+2(b,a)), t(a,b)=3(2(a,b)-2(b,a)).
Assume the endomorphisms s¥*,t* of A satisfy the conditions
s*2{a,b)=2{s*a,b)=4{(a,s*b)=(a,b)s¥*, t#*2(a,b)=2(t*a,b)=
-2(a,t*b)=2(a,b)t*. If D,B are the derivation and anti-
derivation of U(e,8) respectively, +then s¥*zD and t*zmB are
derivations of F-K(S)TS AmU(e,8). Especially, s(a,b)mD and
t(a,b)mB are derivations of AzU(e,8). The endomorphism m*
of A is said to satisfy the condition (K) if m*2(a,b)=
2({b,a)n*=m{m*a,b), m*m(a,b)=2(m*a,b),and m(a,b)m*=2(a,n*b)
[17]. It is shown that m(a,b)e End(A) satisfies the condi-
tion (K). If m*(resp.C) satisfies the condition (K) in 4
(resp.u(e,8)), then m*=mC satisfies the condition (K) in
F-K(S)TS AmU(e,s).

In F-X(8)TS U(e,8), define a trilinear product [,,] bY
[xyz]:=8(x,y)z+8K(x,y)z, where S(x,y):=L(x,y)+eL(y,x). Thens
if €6= -1, this product defines a Lie triple product or
anti-Lie triple product on U(€,6) according to 6=1 or -1,
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that is, [xyzl= -6lyxz], I[xyzl+lyzxl+lzxyl=0, I[L(x,y),
L{u,v)]=L{(L{x,y)u,v)-6L(u,L(y,x)v). The last relation
follows from that if D is a derivation of U(e,8), then

[D;S(XJY)+6K(x,y) ]=S(vaY)+S(X’DY)+(SK(DX’Y)+6K(X)Dy) y
and if C satisfies the condition (K), then
[C,S(x,y)+0K(x,y)]=S(Cx,y)+S(x,Cy)+8K(Cx,y)+8K(x,Cy).

Therefore, a F-K(S)TS AmU(-8,8) becomes (anti-)Lie triple
system with respect to the product:

(amx bay cwmz]:=(L(amx,bsy)-8L(bmy,anx)+8K(amx,bny)) (cuz)
=(s(a,b)mS{x,y)+t(a,b)aT(x,y)+dnla,b)uk(x,y)) (cnz),

where S(x,y)=L(x,y)-8L(y,x), T(x,y)=L(x,y)+é6L(y,x).

If D,Be& End(U(-8,8)) are derivation, anti-derivation
regpectively and C satisfies the condition (K), then s¥*mD,
t*gB, m*mC are the derivations of (anti-)Lie triple system
AgU(-6,8), especially, so are sf{a,b)mD,t(a,b)nB,m(a,b)nC.

As a remarkable Lie (super)algebra between the stand-
ard imbedding Lie (super)algebra and the Lie (super)algebra
D®ARU(-8,8), where D denotes the derivation Lie algebra of
(anti-)Lie triple system A®mU(-68,8), we obtain a Lie (super)
algebra ¢ in the following theorem, which is a generaliza-
tion of the result due to U. Hirzebruch[7].

THEOREM 2. Let A be a commutative associative triple
system and U(€,8) ©be a Freudenthal-Kantor (super)triple
System with e6= -1. Let L,M,# be the vector spaces spanned
by s(a,b)sD, t(a,b)=B, m(a,b)sC respectively, where D(resp.
B) is the derivation(resp. anti-derivation) of U(e,§) and
C satisfies the condition (K) in U(e,8). Then, the vector
Space §'=VO®V1, VO=L+M4N, V1=AnU(—6,6}, becomes a Lie al-
g€ebra and Lie superalgebra according to 6=1 and -1 respec-
tively, which contains the standard imbedding Lie (super)
a8lgebra as a sub(super)algebra. The commutations in L,M,#
Satisfy the relations:
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[L,LlcL, [L,mlcm, (L,N]cN, [A,AlcL, [M,N1ck, [N,N]lcL+n.

The vector space direct sum T(&,8)=U(e,6)8U(e,§) be-
comes the (anti-)Lie triple system by defining a triple
product as

(AR s ot (e

Put J=(;g 8), then J is an automorphism of (anti-)Lie
triple system T(€,8) such that J%= -£81d, especially, if
e§= -1, then J is an involutive automorphism. For any X,Y€
T(e,8), define a Nijenhuis operator in T(g,8) by
N(X,Y):=[JX,JY]-J[JX,¥Y]-J[X,IY1+I°%[X,¥].

If N(X,Y)=0 for all X,Y in (anti-)Lie triple system
AwU(e, 8)®AmU(e,S) with €é= -1, then L(amx,bamy)-SL(bmy,anx)
+eK(amx,bmy)=0, that is, L(a,b)aL(x,y)-6&(b,a)=L(y,x)+
em{a,b)mK(x,y)=0. Then, we have

PROPOSITION 2. When €8= -1, the Nijenhuis operator
vanishes identically in (anti-)Lie triple system AzU(e,$)8
AsU(€,8) if and only if [amx bay cmz]=26m(a,b)cak(x,y)z in
(anti~)Lie triple system AzU(e,§).

As a corollary we see that let U(-1,1) be a Jordan
triple system, then N(X,Y)=0 for all X,Y in the Lie triple
system AmU(-1,1)8AzU(-1,1) if and only if the induced Lie
triple system AmU(=1,1) is abelian.
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