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Preface

This thesis was done in partial fulfillment of the requirements for a degree of

Doctor of Philosophy in physics at the University of Houston. It is the result of four years

of work (1989-1993) with the New Muon Collaboration at CERN. It includes the data

analysis and the hardware involvement of maintaining the W67 detector system and the

target moving mechanism during the 1989 running of the experiment. This thesis does

not include the work done on the design, construction and testing of the ST67 detector

system, the replacement for W67 in the third generation of the experiment, the SMC; nor

does it include three years work on the construction and testing of detectors for the Large

Volume Detector (LVD) experiment at the Gran Sasso laboratory in Italy.

This thesis is organized in the following manner:

• An introduction to the history of deep inelastic scattering experiments and the
statement of the goals of the NMC experiment.

• The basic theories used in deep inelastic scattering, including the quark-parton
model and perturbative QCD.

• A description of the experimental apparatus.

• A description of the data processing.

• Two chapters of results, the first dealing with the ratio 2
nF 2

pF  and the second
dealing with the structure functions 2

pF  and 2
pF . These chapters include a

discussion of the results and a comparison of the data with the current
theories.

• The conclusions.
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Abstract

Presented in this thesis are the results and conclusions from one period of data

taking by the NMC experiment at CERN. This period was conducted with a muon beam

energy of 280 GeV and covered the kinematics range 0.002 ! Bjx ! 0.800 and

0.5 GeV c( )2
! 2Q ! 200 GeV c( )2 . This experiment made simultaneous high luminosity

deep inelastic muon scattering measurements on liquid hydrogen and liquid deuterium

targets. These measurements of the structure functions 2
pF  and 2

dF , of 2
nF " 2

pF , of the

ratio 2
nF 2

pF  and their 2Q  dependence are used to test the Gottfried sum rule and the

assumption of a flavor symmetric “sea”; to determine the onset of shadowing in

deuterium; to determine the difference dR " pR  between the deuteron and the proton of R,

the ratio of longitudinally and transversely polarized absorption cross sections for the

virtual photons.
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1. Introduction
The structure of the nucleon has been studied for over two decades by

experiments using scattering of electrons, muons and neutrinos. Elastic scattering

measures the electromagnetic form factor of the nucleon. The cross section for elastic

scattering can be expressed in terms of a constant and a form factor by1:

d$
d 2q

=
24%&

4q
F 2q( )( )2

, (1.1)

where & = 2e 4%  is the electromagnetic coupling constant, 2q  is the square of the four-

momentum transfer between the initial and final states and F 2q( ) is the nuclear form

factor. By analogy, the cross section for deep inelastic scattering can be expressed in a

similar form.

Deep inelastic scattering measures the internal structure of the nucleon. The

process is considered to be deep inelastic when energy is transferred to the nucleon as in

the reaction µ + N ' (µ + X . The cross section of the inclusive process contains a

summation of all the possible hadronic final states. Then, by analogy to elastic scattering,

this cross section can be described in terms of two structure functions. For inelastic

scattering they are usually chosen to be 2F  and R, where R is the ratio of longitudinally

and transversely polarized absorption cross sections for the virtual photons.

The first measurements of Deep Inelastic Scattering (DIS) were performed at the

Stanford Linear Accelerator Center (SLAC)2. These measurements were performed using

a beam of electrons with energies of up to 20 GeV and have since been rewarded with the

Nobel Prize (1990). The interpretation of those results has led to the Quark-Parton Model
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(QPM)3 which implies that the nucleon consists of point-like particles called partons.

These partons were identified with the fractional charged quarks introduced

independently, as mathematical entities, by Gell-Mann and Zweig4. The quantum

numbers of the nucleon are determined by what are called valence quarks, vq . The

additional quark and antiquark pairs are from the Dirac sea, sq sq , and carry the quantum

numbers of the vacuum. It is customary to define the total quark distribution as the sum

of those for the valence and sea quark distributions: q = vq + sq .

In the quark-parton model the structure function 2F  is dependent only on the

Bjorken scaling variable Bjx  and the ratio R is zero. The variable Bjx  is the fraction of the

total nucleon momentum carried by the interacting parton. Bjx  is defined in terms of the

nucleon mass (M) and the energy ()) and square of the four-momentum transfer ( 2Q ) of

the virtual exchange photon, by the formula:

Bjx =
Lab 2Q

2M)
. (1.2)

Further electron deep inelastic scattering measurements were made at SLAC5, and

experiments were also performed using muon and neutrino beams. The muon DIS

experiments include two experiments with high statistical accuracy conducted at the

Conseil Européen pour la Recherche Nucléaire (CERN). These were the European Muon

Collaboration (EMC)6 and the Bologna-CERN-Dubna-Mainz-Saclay (BCDMS)7 group.

At Fermi National Accelerator Laboratory (FNAL) a muon experiment was done by a

Chicago-Harvard-Illinois-Oxford (CHIO)8 group, which had lower statistics. Neutrino

DIS experiments include two experiments conducted at CERN, BEBC9 and, with high

statistics, CDHSW10. At FNAL the CCFR11 experiment was also done with high
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statistics. These experiments are given in table 1.1, (those experiments with the lower

statistics are denoted by an *).

Table 1.1:
Previous Deep Inelastic Experiments

Electron Muon Neutrino
SLAC5 EMC6 (CERN) *BEBC9 (CERN)

BCDMS7 (CERN) CDHSW10 (CERN)
*CHIO8 (FNAL) CCFR11 (FNAL)

The SLAC12, BCDMS6, NMC13 and re-analyzed EMC-NA214 results are shown

in figure 1.1. It was observed that the structure function 2F  was also slightly dependent

on 2Q , where 2Q  is defined as the negative of the four-momentum transfer. This non zero

slope of the structure function 2F  is a violation of Bjorken scaling and has led to the

inclusion in the theories concerning DIS of effects from the strong nuclear force. The

theory that describes the strong interactions is called Quantum Chromodynamics

(QCD)15. It is built by analogy to the theory describing electromagnetic interactions,

Quantum electrodynamics (QED)16. In a domain where the strong coupling constant, S& ,

is small; perturbation theory can be used to describe the effects of strong interactions on

the quark distributions. The theory of perturbative QCD17 predicts a weak dependence on
2Q  of the structure function 2F . The electron, neutrino and muon experimental results are

in good agreement with this theory.
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Figure 1.1: The structure function 2
dF  versus Bjx .

Showing the regions of overlap for
the EMC, NMC and SLAC experiments (at 2Q = 5 GeV c( )2  ) and for

the BCDMS, EMC and NMC experiments (at 2Q = 20 GeV c( )2 ).

However there was a disagreement of the results as seen in figure 1.1 at
2Q = 20 GeV c( )2 , between the two muon experiments at CERN, the EMC and BCDMS.
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While their results individually agreed with perturbative QCD, there were discrepancies

between the experimental results. The SLAC data could not resolve the difference

because, as seen in figure 1.2, there was not enough overlap of the range of the

kinematical variables Bjx  and 2Q . Therefore a new experiment was proposed to CERN,

by the New Muon Collaboration (NMC), which was expected to resolve the differences.

Figure 1.2:
The kinematical region of Bjx  and 2Q  covered18 by the

BCDMS, EMC, EMC-NA2819, NMC and SLAC experiments.

In figure 1.2 the shaded areas have been explored by the NMC experiment at two

separate beam energies. These two energies, along with the future analysis of data from
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the 120 and 200 GeV beam energies, provide an overlap in the range of the kinematical

variables Bjx  and 2Q . The NMC experiment is the major subject of this thesis.

The NMC proposed to study deep inelastic muon-nucleon scattering in a wide

range of 2Q  (0.5 - 200 2GeV c( ) ) and a wide range of Bjx  (0.002 - 0.8). This experiment

used muon energies of 90, 120, 200 and 280 GeV incident on a variety of targets (H, D,

He, Li, Be, C, Ca, Fe, Sn, Pb). The NMC experiment collected data from 1986 to 1989.

Its main goals were:

1) To make a simultaneous high luminosity measurement of the structure

functions 2F  and R of hydrogen and deuterium.

2) To perform a high precision measurement of the ratio 2
nF 2

pF  and to test the

Gottfried sum rule20.

3) To investigate the A and 2Q  dependence of the "EMC effect"21.

4) To study the gluon distribution in nucleons and nuclei through J *

production22.

In this thesis only the first two points will be discussed. In particular the

discussion will center on the data from the hydrogen and deuterium targets, for the period

of data taking called P3A89, which was a period in 1989 involving a muon beam energy

of 280 GeV. During this period, NMC made a high luminosity measurement of the

structure function 2F , simultaneously on both hydrogen and deuterium targets.

In NMC, the large range of Bjx , in particular going down to very small values of

Bjx , provides a substantial improvement in the accuracy of the knowledge of the structure

functions 2
pF  and 2

dF , of 2
nF " 2

pF , of the ratio 2
nF 2

pF  and their 2Q  dependence. Here both
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the difference 2
nF " 2

pF  and the structure function ratio 2
nF 2

pF  are derived from the

relation:

2
nF
2
pF
= 2 2

dF
2
pF
"1. (1.3)

The validity of the Gottfried sum rule and the assumption of a flavor symmetric

sea can also be tested. The data also allows further tests of perturbative QCD, including

higher order (called higher twist) effects. The data from DIS experiments is widely used

in determinations of the quark and gluon distributions. Therefore studies of the Bjx  and
2Q  distributions of quarks and gluons with reduced experimental uncertainties, as well as

of the ratio of the down to up quark distributions in the valence region can be made. The

NMC data is used to put strong constraints on the parametrization of parton distributions.

An example of the wide range of possible distributions, made without the low Bjx

constraint from the NMC data, is shown by figure 1.3, generated by the CERN program

library's PDFLIB23.
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Figure 1.3:
Parametrizations of 2

pF  from the program PDFLIB.
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2. Theory

2.1. Deep inelastic scattering

The lowest order Feynman diagram1 for deep inelastic scattering of a charged

lepton on a nucleon is pictured in figure 2.1 for the case of muons, in the interaction

µ + N ! "µ + X .

µ
µ’

N

X

#$

Target 
nucleon
P=(M,0)

Final state
Hadrons

Virtual photon
q=(%,q)

Incident lepton
k=(E,k)

Scattered lepton
k’=(E’,k’)

&

Figure 2.1:
The One-Photon exchange interaction.

Four-vectors are noted, e.g. as P = E,p( ).
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In this process the nucleus breaks up and details of the final state, consisting of hadrons

denoted by X, are not considered in this thesis.

This process has the electromagnetic interaction mediated by a single virtual

photon, *# . The momenta of the incoming and outgoing muon are described by four-

vectors k = E ,k( ) and "k = "E , "k( ) . The four-momentum of the nucleon is given by

p = M ,0( ) , because the nucleon, of mass M, is assumed to be initially at rest in the

laboratory coordinate system. The four-momentum of the virtual photon is given by

q = % ,q( ) , where the momentum transfer q is defined by q = k ' "k . It is customary to

define 2Q  as the negative of the square of the four-momentum transfer1, i.e.:

2Q ( ' 2q = ' k ' "k( )2 )
Lab

4E "E sin2 &
2

, (2.1)

where &  is the scattering angle of the muon in the laboratory reference frame. The energy

of the virtual photon is given by1:

% =  
p *q
M

 =
Lab

 E ' "E . (2.2)

Eqs. 2.1 and 2.2 relate 2Q  and % to measurements in the laboratory coordinate system.

This permits the calculation of Bjx , y or 2W , given below from the measured values of

energy, momentum and the scattering angle. Where Bjx  is the fraction of the nucleon

momentum carried by the struck quark and y is the fraction of the total energy transferred

by the virtual photon.
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The Lorentz invariant scaling parameters, the Bjorken variable Bjx , and y are

given by1:

Bjx =
2Q

2P *q
=

Lab 2Q
2M%

, (2.3)

y = p *q
p *k

=
Lab %

E
. (2.4)

The invariant mass of the final hadronic system W = Hadronic
*M  is defined as1:

2W = P + q( )2 = 2M + 2P *q + 2q  =
Lab

 2M + 2M% ' 2Q . (2.5)

Because 2W  is given in terms of the same kinematical variables as the leptons, the entire

kinematics of the interaction is determined from a measurement of the kinematic

variables of the incident and scattered leptons. The ranges of these variables defined

above for deep inelastic scattering are:

0 < y <1,

0 < Bjx <1,

0 < % < E ,

0 < 2Q < 2M% + 2M Max.% < 2ME .

Throughout this thesis the system of units are used where = c =1 and energy is

measured in GeV, momentum in GeV/c and mass in GeV/c2.

The cross section for elastic scattering can be expressed in terms of a constant and

a form factor by2:

d,
d 2q

=
24-.

4q
F 2q( )( )2

, (2.6)
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where . = 2e 4-  is the electromagnetic coupling constant and F 2q( ) is the nuclear form

factor. By analogy, the cross section for deep inelastic scattering can be expressed in a

similar form.

The cross section for the one-photon exchange may be expressed in terms of . ,

the leptonic and hadronic tensors µ%L  and µ%W , and by 2Q , E and E' by the expression1:

d 2,
d/d "E

=
2.
4Q

"E
E

µ%L µ%W . (2.7)

The leptonic tensor is defined by1:

µ%L =
1
2

u "k , "s( ) µ# u k,s( )[ ] u "k , "s( ) %# u k,s( )[ ]*
s, "s
0 , (2.8)

where s and "s  are the respective spins of the initial and final states and u "k , "s( ) µ# u k,s( )

is the electromagnetic current of the lepton1 (in this case a muon.) Because the muon can

be treated as a true Dirac point particle the leptonic tensor can be explicitly calculated. It

is given by1:

µ%L = 2 µk %"k + 2 µ"k %k ' 2Q µ%g . (2.9)

While the leptonic tensor may be exactly calculated from QED, the hadronic

tensor is more complicated, requiring integration over all the final hadronic states. Thus

the hadronic tensor is less well know, since it involves expectation values of currents. It is

given by1 the expression:

µ%W =
1

4-M
1
2

d3 "p
2-( )32 0"p1 P,s µ

†
J̃ "p , "s "p , "s

s, "s
0 %J̃ P,s 2-( )4 42 P + q ' "p( ) , (2.10)



14

where s and "s  are the respective spins of the initial and final hadronic states and

P,s µ
†

J̃ "p , "s  is the matrix element for the electromagnetic current J between the

nucleon and the final state X. The tensor µ%W  is hermitian and gauge invariant and, for an

unpolarized target, symmetric. Using the most general form for the current J and

assuming invariance under parity and time reversal, the tensor can be written as a linear

combination of two independent terms, 1W  and 2W . For unpolarized targets a summation

should be made over the final spin states. The hadronic tensor is then given by1:

µ%W = µ%g ' µq %q
2q

3
4
5

6
7
8 1W %, 2Q( ) + µP ' µq q *P

2q
3
4
5

6
7
8 %P ' %q q *P

2q
3
4
5

6
7
8 2W %, 2Q( ) . (2.11)

Contracting the leptonic and hadronic tensors and using eqs. 2.1-3 and 2.7, the double

differential cross section in the laboratory frame is given by1:

d 2,
d/d "E

=
24. 2"E

4Q 2W %, 2Q( )cos2 &
2
+ 2 1W %, 2Q( )sin2 &

2
9
:;

<
=>
. (2.12)

The two functions 1W  and 2W  describe the structure of the nucleon and must be

determined by experiment. In the present work we follow the convention to express the

cross section in terms of the dimensionless structure functions 1F  and 2F  defined as3:

1F Bjx , 2Q( ) = M 1W % , 2Q( ), (2.13)

2F Bjx , 2Q( ) = % 2W % , 2Q( ). (2.14)
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This leads to the expression of the double differential cross section, given in terms of Bjx

and 2Q :

d 2,
d 2Q d Bjx

=
2

4-.
4Q

2F Bjx , 2Q( )
Bjx

"E
E

cos2 &
2
+ 2 %

M
1F Bjx , 2Q( )
2F Bjx , 2Q( )

sin2 &
2

9

:
;
;

<

=
>
>
, (2.15)

which, using the equations 2.1-2.4, reduces to the expression:

d 2,
d 2Q d Bjx

=
24-.

4Q
2F Bjx , 2Q( )

Bjx
1' y '

2Q
4 2E

3
4
5

6
7
8 +

2 Bjx 1F Bjx , 2Q( )
2F Bjx , 2Q( )

2y
2

9

:
;
;

<

=
>
>
, (2.16)

where Bjx , 2Q  and y are no longer independent variables.

In order to express the differential cross section in terms of primarily one structure

function, 2F Bjx , 2Q( ) , we can rewrite the cross section by assuming that it can be

expressed by the absorption cross sections for the longitudinally ( L, ) and transversally

( T, ) polarized photon. For this purpose these cross sections are defined as1:

T, (
1
2 +

total, + '
total,( ) =

4 2- . 1W Bjx , 2Q( )
% ' 2Q 2M( )

, (2.17)

L, ( 0
total, =

4 2- .
% ' 2Q 2M( )

1+
2%
2Q

3
4
5

6
7
8 2W Bjx , 2Q( )' 1W Bjx , 2Q( )9

:
;

<

=
> . (2.18)

Using eqs. 2.1, 2.13 and 2.14 and by introducing the ratio R Bjx , 2Q( ) of the longitudinal

and transverse absorption cross sections, where:

R Bjx , 2Q( ) = L,

T,
= 1+ 4 2M Bj

2x
2Q

3
4
5

6
7
8

2F Bjx , 2Q( )
2 Bjx 1F Bjx , 2Q( )

 '  1, (2.19)
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one can write the double differential cross section for the one-photon exchange in terms

of 2F Bjx , 2Q( )  and R Bjx , 2Q( ) in the form:

d 2,
d Bjx d 2Q

=
24-. 2F Bjx , 2Q( )

4Q Bjx
1' y '

2Q
4 2E

+
2y + 2Q 2E

2 1+ R Bjx , 2Q( )( )
9

:
;
;

<

=
>
>
. (2.20)

R Bjx , 2Q( ) implicitly includes the structure function 1F Bjx , 2Q( ) .

2.2. The Quark-Parton model

Within the quark-parton model the deep inelastic cross section is described by as

the incoherent sum of elastic scattering from point-like particles inside the nucleon,

which are called partons. In this picture the partons are considered to be quasi free, even

though they are bound by the strong nuclear force. In this model the parton mass can be

neglected and the partons are considered to move parallel to the nucleon, each carrying a

fraction of the total nucleon momentum. The Feynman diagram for the elastic scattering

off a point-like parton within a nucleon is shown in figure 2.2, where the parton has

initial momentum p, a fraction of the total nucleon momentum P.
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Spectator
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&
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}

Figure 2.2:
The Quark-Parton Model.

By conservation of the four-momentum it follows for the final parton momentum "p  that:

2"p = 2p + 2 p *q + 2q . (2.21)

Since this is an elastic scattering one has 2"p = 2p  so that with equation 2.21 this leads to

2 p *q = ' 2q . From equations 2.1 and 2.3 one obtains 2 p *q = ' 2q = Bjx 2P *q . Therefore

Bjx  is the fraction of the total nucleon momentum carried by the interacting parton.

In the quark-parton model, because the structure function 2F  is only a function of

Bjx , 2F Bjx , 2Q( ) = 2F Bjx( ) . This implies that the partons are spin 1/2 point-like fermions.
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In the Bjorken, or infinite momentum, limit where both 2Q !? and % !? while

Bjx = 2Q 2M%  remains finite, the longitudinal absorption cross section, L, , vanishes.

This means that R
2Q !?@ !@@ 0  and consequently the relation between 1F  and 2F , in the

limit 2Q !?, simplifies to the Callan-Gross relation4: 2F Bjx( ) = 2 Bjx 1F Bjx( ) . The

partons, discovered experimentally by the observation of scaling in the measurement of

the structure function5, have been identified with the fractionally charged quarks

postulated by Gell-Mann and Zweig6. The charge, spin and flavor of the six expected

quarks are given in table 2.1. While six quarks are expected by present theory, so far only

t h e  f i r s t  f i v e  h a v e  b e e n  o b s e r v e d  e x p e r i m e n t a l l y .

Table 2.1: The quark quantum numbers

Flavor up down strange charm bottom top*

Charge +2/3 -1/3 -1/3 +2/3 -1/3 +2/3
Spin 1/2 1/2 1/2 1/2 1/2 1/2

Baryon number 1/3 1/3 1/3 1/3 1/3 1/3

Isospin ( 3I ) +1/2 '1/2 0 0 0 0

*not yet observed by experiments.

In this model, the proton is made up of three quarks, two "up" quarks and one "down"

quark; while the neutron is made from two "down" quarks and one "up" quark.

The nucleon quantum numbers are determined by what are called valence quarks,

vq . Additional quark and antiquark pairs, from the Dirac sea, sq sq , carry the quantum

numbers of the vacuum. The quark sea is made up of all flavors but, at the energies

available to this experiment, only "up", "down", "strange" and "charm" quarks are

expected to contribute. The masses of the “top” and “bottom” quarks are so large that
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quark-antiquark pairs of these quarks are highly suppressed. In the QPM, the total quark

momentum distribution is the sum of those for the valence and sea quark distributions:

q Bjx( ) = vq Bjx( ) + sq Bjx( ). (2.22)

Since the valence quarks are not accompanied by antiquarks, the valence quark

distribution is the difference between the quark and antiquark distributions. Therefore:

vq Bjx( ) = q Bjx( )' q Bjx( ) , (2.23)

which implies that sq Bjx( ) = q Bjx( ).

The deep inelastic scattering cross section for muons is interpreted in the quark-

parton model7 as the summation of the elastic scattering from the quarks and antiquarks

within the nucleon. The structure function 2F , in the limit 2Q !?, can be written 1 as

Bjx  times the sum over the number of flavors fN  of the quark and antiquark probability

distributions, iq Bjx( ) and iq Bjx( ) , weighted with the square of the quark charge, ie 2:

2F Bjx( ) = Bjx ie 2
iq Bjx( ) + iq Bjx( )[ ]

i=1

fN

0 . (2.24)

Then the structure function 2F  for the proton becomes1:

2
pF Bjx( ) =

Bjx
4
9

u Bjx( ) + u Bjx( ){ } + 1
9

d Bjx( ) + d Bjx( ){ } +9
:;
1
9

s Bjx( ) + s Bjx( ){ } + 4
9

c Bjx( ) + c Bjx( ){ }<
=>

.
(2.25)

Using isospin symmetry arguments, the structure function 2F  for the neutron is given by:
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2
nF Bjx( ) =

Bjx
1
9

u Bjx( ) + u Bjx( ){ } + 4
9

d Bjx( ) + d Bjx( ){ } +9
:;
1
9

s Bjx( ) + s Bjx( ){ } + 4
9

c Bjx( ) + c Bjx( ){ }<
=>

.
(2.26)

For neutrino-proton scattering the structure function 2F  becomes:

2
%pF Bjx( ) = 2 Bjx d Bjx( ) + u Bjx( ) + s Bjx( ) + c Bjx( )[ ], (2.27)

and, by similar isospin symmetry arguments, the structure function 2F  for the neutron

becomes:

2
%nF Bjx( ) = 2

%pF Bjx( ) = 2 Bjx u Bjx( ) + d Bjx( ) + s Bjx( ) + c Bjx( )[ ]. (2.28)

In neutrino-nucleon scattering one also has to take into account charged current

interactions, the exchange of the charged weak vector boson ±W . This exchange results

in the change of charge of the lepton and hadron. To describe the charged current

interaction a third structure function, 3Bjx F Bjx( ), is introduced. This structure function is

given for the proton as:

3
%p

Bjx F Bjx( ) = 2 Bjx d Bjx( )' u Bjx( ) + s Bjx( )' c Bjx( )[ ], (2.29)

and for the neutron by:

3
%n' Bjx F Bjx( ) = Bjx 3

%pF Bjx( ) = 2 Bjx u Bjx( )' d Bjx( )' s Bjx( ) + c Bjx( )[ ]. (2.30)

The quark-parton model predicts that the ratio 2
nF 2

pF  should approach unity in

the limit Bjx ! 0, because at Bjx =0 the valence quark distributions are expected to vanish

and the sea is assumed to be flavor symmetric. (See equations 2.22, 2.23, 2.25 and 2.26)

Any difference from unity in the ratio 2
nF 2

pF , in the low Bjx , region would be attributed
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by the theory to the residual valence quark distributions and to possible asymmetries in

the quark sea.

However at low Bjx , a "shadowing" has been observed in the ratios of nuclei

scattering cross sections with respect to deuterium8. The cross section ratio d, p,  is

given in terms of the proton and deuteron cross sections, p,  and d,  respectively. The

cross section for the neutron, ignoring the effects of nuclear binding, is calculated to be

n, = d, ' p, . This "shadowing" is seen as a reduction of the total scattering cross section

of nucleons bound in the nucleus relative to the cross section measured for free nucleons.

Shadowing may also be observed for deuterium, thus effecting the ratio n, p, ,

where the ratio n, p,  is conventionally defined as:

n,

p,
= d, ' p,

p,
= d,

p,
'1. (2.31)

Real-photon experiments have also been done for # - d  and # - p  scattering9. In

these cases, by definition 2Q =0 and hence Bjx =0, a depletion in the ratio d, p,  has been

observed. For photon energies of 16-18 GeV the measured ratio n, p, , as determined

from the ratio d, p,  using equation 2.29, of the scattering cross sections was found to be

0.898(15). This significant deviation from unity at Bjx =0 has been interpreted in terms of

the shadowing of real photons in deuterium10. If one assumes that the total cross section

is continuous between real and virtual photons , shadowing would be expected for virtual

photons at very low Bjx .

In the region Bjx >0.3 the valence quarks dominate. In this region all the structure

functions can be approximated by functions of only the two valence quarks vu Bjx( ) and
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vd Bjx( ). In this region the formulae for the structure functions, given in terms of the

quark density functions reduce to the following formulae; for neutrino scattering:

2
%nF Bjx( )! 2 Bjx vu Bjx( ), (2.32)

2
%pF Bjx( )! 2 Bjx vd Bjx( ) , (2.33)

while for muon scattering:

2
nF Bjx( )! Bjx

1
9 vu Bjx( ) + 4

9 vd Bjx( )9
:;

<
=>

, (2.34)

2
pF Bjx( )! Bjx

4
9 vu Bjx( ) + 1

9 vd Bjx( )9
:;

<
=>
. (2.35)

Then the formulae for the ratios 2
%nF 2

%pF  and 2
nF 2

pF  reduce, in terms of vu Bjx( ) and

vd Bjx( ), to the two following equations:

2
%nF
2
%pF

Bjx( )! vu Bjx( )
vd Bjx( )

, (2.36)

2
nF
2
pF

Bjx( )! 1+ 4 vd Bjx( )
vu Bjx( )

9

:
;

<

=
> 4 + vd Bjx( )

vu Bjx( )
9

:
;

<

=
> . (2.37)
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The results from both muon (BCDMS)11 and neutrino (WA21 and WA25)12 deep

inelastic scattering experiments can be compared with each other by using the results

from the neutrino scattering experiments and eq. 2.36. These neutrino results are then

recalculated in the form:

1+ 4 vd Bjx( )
vu Bjx( )

9

:
;

<

=
> 4 + vd Bjx( )

vu Bjx( )
9

:
;

<

=
>, (2.38)

and compared with the ratio 2
nF 2

pF  from muon experiments. In figure 2.3 these results

are shown. The results of neutrino and muon scattering experiments are consistent for

Bjx >0.3 but diverge at lower values of Bjx  due to the influence of the quark-antiquark sea.
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The comparison of the ratio 2
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pF  for the muon (BCDMS) and the neutrino (WA21 and
WA25) experiments.

(Systematic errors are shown in the shaded error bands)
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From these structure functions and equations 2.22 and 2.23 various sum rules can

be derived. The Adler sum rule13 deals with the difference in the proton 2F  structure

functions for neutrino and antineutrino scattering. In the quark-parton model this is the

difference between the valence "up" and "down" quarks. The Adler sum rule is therefore

given as:

1
2

d Bjx
Bjx

2
%pF Bjx( )' 2

%pF Bjx( )( )
0

1

1 = d Bjx vu Bjx( )' vd Bjx( )( )0

1

1 . (2.39)

Since the number of valence quarks in a proton is two "up" and one "down", this implies

that the sum is unity, the difference in the number of "up" and "down" quarks. The Gross-

Llewllyn-Smith sum rule14 is defined using the sum of the proton 3F  structure functions

for neutrino and antineutrino scattering. This leads to an integral over the sum of the

valence "up" and "down" quark distributions:

1
2

d Bjx 3
%pF Bjx( ) + 3

%pF Bjx( )( )0

1

1 = d Bjx vu Bjx( ) + vd Bjx( )( )
0

1

1 . (2.40)

From the same arguments given above one finds that this sum should be equal to three,

the number of valence quarks in the nucleon.

The last sum rule we discuss is that of Gottfried15, which is a measure of the

flavor asymmetry of the quark sea. The Gottfried sum is derived from the difference of

proton and neutron structure functions 2F  for muon scattering, thus is:

d Bjx
Bjx

2
µpF Bjx( )' 2

µnF Bjx( )( )
0

1

1 =
1
3 d Bjx vu Bjx( )' vd Bjx( )( )

0

1

1
+ 2

3 d Bjx u Bjx( )' d Bjx( )( )
0

1

1 .
(2.41)
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For a flavor symmetric sea, u Bjx( ) = d Bjx( ). Thus the second integral is zero. Since the

first integral of the "up and "down" quarks is unity by the Adler sum rule, the Gottfried

sum rule has a value of one third. In the balance of this thesis the Gottfried sum is

discussed in some detail.

2.3. Quantum Chromodynamics

It is generally accepted that Quantum Chromodynamics (QCD) is the theory of

the strong interaction. In this non-abelian gauge theory the strong interaction is described

by the exchange of massless vector gluons. These gluons couple to the color charge of

quarks. Since quarks appear in three different colors, one needs eight gluons (with

different color combinations) to describe all possible interactions. Although QCD is

based on the analogy with Quantum electrodynamics (QED) and gluons play the role of

photons, in QCD, unlike QED, also gluons can couple to each other. This leads to the

four leading order coupling diagrams16 given in figure 2.4:
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a) quark-quark

d) gluon-gluon

b) quark-gluon

c) gluon-quark

Gluon

Virtual Photon (#*)

Figure 2.4:
The leading order QCD coupling diagrams.

The coupling at the quark-quark, quark-gluon, gluon-quark and gluon-gluon vertices,

shown in figure 2.4, is given by the strong coupling constant s. . Here s.  is used for the

strong interaction vertices and is analogous to .  from QED.
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The value of s.  decreases for increasing 2Q , becoming small for short range

interactions, which leads to “asymptotic freedom” at high 2Q . This is consistent with the

assumption of quasi-free quarks made in the quark-parton model. In first order one can

express the dependence or “running” of s.  with 2Q  by:

s
0. 2Q( ) = 4-

0A ln 2Q 2B( )
, (2.42)

that is, in first order a ln 2Q  dependence. In next-to-leading, or second, order one has:

s.
2Q( ) = s

0. 2Q( ) 1' 1A

0A
2

ln ln 2Q 2B( )
ln 2Q 2B( )

9

:
;
;

<

=
>
>
, (2.43)

with 0A =11' 2
3 fN , 1A =102 ' 38

3 fN  and s
0.  is the first order value of s. . In these

expressions the number of quark flavors fN  is taken to be four, as discussed above for

the quark-parton model. B  is a characteristic cutoff momentum, which must be

determined experimentally. It defines the energy scale of the changes in s. . It depends

on the number of active quark flavors and on deeper physics. In various theories, the

value of B  depends also on which re-normalization scheme is used. We have taken the

normally accepted MS  (modified Minimal Subtraction)17 scheme, in which

B ( MS
4( )B ,which typically has a value for B  of about 200 MeV.

For sufficiently high values of 2Q  (typically above 1 GeV) the s.  has been

reduced to a value at which the interaction is weak enough to use perturbation theory.

This regime is called Perturbative QCD.

In leading order perturbative QCD the 2Q  dependence of the parton distributions

and hence the 2F  structure functions) can be understood intuitively by using the diagrams
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found in figure 2.4. In a) and b) a quark radiates a gluon, in c) a gluon turns into a quark-

antiquark pair and in d) into a gluon pair. Since the distance probed by a virtual photon

depends on 2Q  (the higher 2Q  the smaller the distance) one can now qualitatively

understand the 2Q  dependence of the 2F  structure function by the following argument.

For small values of 2Q  the probed quarks are "dressed" with gluons and quark-antiquark

pairs (produced by the processes in figure 2.4). If one increases 2Q , and hence improves

the resolution, the probed quark is "better distinguished" from its surrounding cloud, as

seen in figure 2.5:

Resolution
a)

Improved resolution

b)

F2

xB j 10

Q0
2

Q2>Q0
2

c)

Figure 2.5:
The QCD “resolution” of the quark at (a) 2Q = 2Q0  and at (b) 2Q > 2Q0 ; and

(c) the effect on the structure function 2F .

Because there is less interaction with the rest of the nucleon, the momentum fraction x

(relative to the momentum of the nucleon) is therefore smaller than the momentum

fraction at low 2Q . As is shown in section 2.2 one has x= Bjx . Thus at high 2Q  the

structure function peaks at a smaller value of Bjx . (see figure 2.5)

This description was made quantitative by Altarelli and Parisi18, among others.

For this one has to introduce so-called splitting functions ijP
x
z

3
4
6
7

 that are related to the
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probability that the virtual photon is absorbed by parton (i) that has a fraction x
z

 of the

momentum of its parent parton (j). The four splitting functions reflect the four processes

pictured in figure 2.4. Where qqP  is the quark-quark splitting function seen in part a) of

figure 2.4, qgP  is the quark-gluon from part b), gqP  is the gluon-quark from part c) and

the gluon-gluon splitting function ggP  is seen in part d) of figure 2.4. In leading order

QCD one can start with a function of the quark and antiquark distributions with the form:

F = ic iq Bjx , 2Q( ) + ic iq Bjx , 2Q( )[ ]
i=1

fN

0 , (2.44)

decomposing the function F into flavor singlet and non-singlet parts F = NSF + SF , where

the singlet and non-singlet terms are given by the formulae:

SF = c
iq Bjx , 2Q( ) + iq Bjx , 2Q( )[ ]

i=1

fN

0 , (2.45)

NSF = ic ' c( ) iq Bjx , 2Q( ) + ic ' c( ) iq Bjx , 2Q( )[ ]
i=1

fN

0 . (2.46)

The non-singlet term NSF  depends only on the quark distributions and implies that:

ic ' c + ic ' c[ ]
i=1

fN

0 = 0, (2.47)

c =
1

2 fN
ic + ic( )

i=1

fN

0 . (2.48)
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The singlet term SF  is determined by both quark and gluon distributions. While the

evolution in 2Q  of the non-singlet term can be given simply as:

d NSF x, 2Q( )
d ln 2Q

=
s.

2Q( )
2-

dz
z

NSF z, 2Q( ) qqP
x
z

3
4
6
7

x

1

1 , (2.49)

one can write the fundamental Altarelli-Parisi equation for the non-singlet term as

follows:

d NSF x, 2Q( )
d ln 2Q

(
s.

2Q( )
2- qqP C NSF x, 2Q( ) . (2.50)

For the singlet distributions the two equations are given schematically as:

d
d ln 2Q

SF x, 2Q( )
g x, 2Q( )

9

:
;
;

<

=
>
>
=

s.
2Q( )

2-
qqP 2 fN qgP
gqP ggP

9

:
;

<

=
>C

SF x, 2Q( )
g x, 2Q( )

9

:
;
;

<

=
>
>
. (2.51)

One can apply these evolution equations to the structure function 2F  by taking equation

2.44, making the assumption that ic = ic = ie 2  and writing 2F  in a similar form as

equation 2.24:

2F Bjx , 2Q( ) = Bjx ie 2
iq Bjx , 2Q( ) + iq Bjx , 2Q( )[ ]

i=1

fN

0 . (2.52)

The 2Q  evolution equations are used to describe the 2F  structure function data

obtained experimentally. The Altarelli-Parisi equations only determine the 2Q

dependence not the Bjx  dependence of 2F . Once the Bjx  dependence at a fixed value of
2Q  ( 0Q 2) is given, the theory predicts the Bjx  dependence at all other values of 2Q . By

this procedure, having sufficiently accurate data, one can extract the value of the strong
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coupling constant s.  (preferably through the non-singlet part) and the quark and gluon

distributions of the nucleon from the singlet equations.

So far we have neglected the mass of the nucleon. At low 2Q , however, the

nucleon mass must be corrected for. This is effectively done by replacing Bjx , the

momentum fraction of the nucleon carried by the struck quark, by the Nachtmann scaling

variable19 D  given by:

D =
2 Bjx

1+ 1+ 4 2M Bjx 2 2Q
. (2.53)

This procedure20 is called the target mass correction.

Finally, higher order (higher twist) corrections must be accounted for. This is

commonly done by parametrizing the structure function as follows:

    
2F Bjx , 2Q( ) = 2

LTF Bjx , 2Q( ) 1+
C Bjx( )

2Q
+  

9

:
;

<

=
> . (2.54)

These effects are due to interactions of the struck quark with the spectator quarks. The

leading twist 2
LTF  (i.e. without these quark-quark interactions) already include the target

mass correction. Higher twist effects cannot be calculated explicitly and are usually

determined by experiment.

2.4. Radiative corrections

The structure function 2F  is derived in terms of a pure one photon exchange cross

section 1#, ; however, the measured deep inelastic cross section contains other, higher

order, electroweak processes. These higher order effects are customarily taken into

account by making a theoretical correction to the experimentally observed cross section.
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In this way the measured cross section, including radiative corrections, is converted into a

single photon cross section.

The Feynman diagrams of the most important of the higher order radiative

processes are shown in figure 2.6. The dominant process is internal bremsstrahlung,

where a real photon is radiated by either the incoming or the scattered muon, shown in a)

and b) of figure 2.6, respectively. This is called a radiative event. The process in which a

virtual photon is emitted by the incoming and re-absorbed by the outgoing muon, or visa-

versa, shown in figure 2.6 c) and is called a radiatively degraded vertex. In part d) of

figure 2.6 the process of vacuum polarization of the virtual photon is shown. Here the

loop may contain either charged lepton-antilepton ( +e 'e , +µ 'µ  or +E 'E ) pairs or quark-

antiquark pairs. Finally, instead of a virtual photon, a virtual 0Z  may be exchanged.

However this diagram is suppressed due to the large 0Z  mass and is about a 1% effect at

the energies considered by this experiment.
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Figure 2.6:
The higher order radiative processes. Internal bremsstrahlung (a) and (b), a radiatively

degraded vertex (c) and vacuum polarization (d).
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These corrections to the total cross section are combined, and called for obvious

reasons, radiative corrections. A radiative correction factor is applied as a weight for each

measured event. This weighting factor is calculated as a function of the scaling variables

Bjx  and y and is applied in the form:

G Bjx ,y( ) = 1#, Bjx ,y( )
measured, Bjx ,y( )

, (2.55)

where the contribution of higher order processes to 1#,  are given as a sum over their

individual contributions i2  by:

measured, Bjx ,y( ) = 1#, Bjx ,y( ) 1+ i2 Bjx ,y( )
i
09

:;
<
=>
. (2.56)

The radiative corrections used in this thesis were calculated by the method of

Akhundov, Bardin and Shumeiko21 using, as input, the most recent descriptions of

available data.
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3. Experimental set up

The experiment described in this thesis measures the cross section for Deep

Inelastic Scattering of high energy muons from neutrons and protons. The nucleon target

is at rest in the Laboratory frame of reference, (what is known as a fixed target

experiment). All the momentum is carried by the beam muons. The kinematics of muon-

nucleon scattering, which are spherically symmetric in the Center of Momentum frame of

reference, are Lorentz-transformed to the Lab-frame. This forces the geometry of the

detector to be a cone with the axis along the incoming beam's original path, and the small

opening angle in the direction of the incident muon. The coordinate system used by the

experiment is a right handed Cartesian coordinate system with the positive x-axis

pointing along the direction of the incoming beam, pointing downstream. The y-axis is

chosen to be the horizontal axis, with positive y pointing to the left, when facing

downstream. The z-axis is the vertical axis with positive z pointing up. This is shown in

figure 3.1. The y-axis is also labeled “Jura” and “Saleve”, the two mountains near the

laboratory that form visible landmarks, at least on a clear day.
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Figure 3.1:
The NMC coordinate system.
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The general philosophy is to measure the incoming beam muon momentum and

trajectory, collide the muon beam with the fixed target, and measure the trajectory and

momentum of the scattered muon. The momentum of the incoming muons in the muon

beam is measured by the Beam Momentum Station (BMS). See figure 3.2. The

momentum of the scattered muon is measured with the Forward Spectrometer Magnet

(FSM).

Muons undergo only electromagnetic and weak nuclear interactions. At the

energies used in these experiments, the interaction of the muons with the air in the

laboratory is negligible. Therefore an open spectrometer configuration was used. This is

shown in the schematic and isometric views of the NMC spectrometer, shown in figure

3.2:
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(In the isometric view, figures are shown to provide scale.)
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3.1. The Muon Beam

The experiment was conducted at CERN using the M2 muon beam line of the

Super Proton Synchrotron (SPS) accelerator. The SPS is a 400 GeV accelerator. The

muons are produced for the experiment in a 3 step process: (a) the acceleration of protons

by the SPS; (b) the production of hadrons by collisions of energetic protons with a

stationary target and (c) the decay of the hadrons into muons. (For example
+% & +µ + µ' .)

3.1.1. SPS

The SPS accelerator at CERN provides a beam of protons with an energy of 400

GeV. This beam is extracted from the SPS and collided onto a Tungsten target (T6). The

collisions produce hadrons, primarily pions and kaons. The hadron beam is momentum

selected, with a spread of momentum, (p p , of 10 percent. The momentum selected

hadrons are focused into the 600 meter long decay channel. The length of 600 meters

allows about 4 percent of the hadrons to decay into muons. The remaining hadrons are

then removed from the beam by a Beryllium target, leaving a hadron contamination of the

beam of ) !510 . The muons in the beam, which have a nuclear cross section of

approximately zero pass through the Beryllium. The beam halo, (stray muons with a

trajectory parallel to the beam) is about 7 percent of the momentum selected muon beam.

The beam of muons, after being measured by the BMS, is the source of incident muons

for the experiment. The incident muons have a final momentum spread of about 5

percent. A diagram of the SPS is shown in figure 3.3 and a schematic of the BMS is

shown in figure 3.4.
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Figure 3.3:
The SPS accelerator at CERN.

3.1.2. Beam Momentum Station

The momenta of the incoming muons are measured by the BMS. The BMS

consists of four sets of scintillating hodoscope planes and a bending magnet. Two sets of

hodoscope planes are placed before the magnet and two after the magnet. The momentum

can be calculated from the change in the beam's trajectory caused by the passage of the

positively charged muons through the known magnetic field of the BMS. This is shown

schematically in figure 3.4. The relative timing between the BMS and the experiment's

trigger time is obtained by Time to Digital Converters (TDCs) connected to the

scintillating hodoscopes. This associates the incoming beam muon with the scattered
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muon and helps eliminate accidental tracks, caused by the beam halo or other background

sources in the experiment, from the analysis. To improve the measurement of the beam

momentum the BMS is calibrated by the Beam Calibration Station (BCS) as described

below.

100m

Vertical
 bending
 magnet

  Position and angle
measuring detectors

BHA BHB

V1.5 V3 V2.1 V2

Momentum measurement

Muon beam

BMS Vertical
bending magnet

Sintillating
hodoscope 
planes

Sintillating
hodoscope 
planes

Vetos

Figure 3.4:
A schematic representation of the Beam Momentum Station (BMS).

Special calibration data is taken with the FSM magnet turned off, using a second

well calibrated bending magnet, located at the end of the main spectrometer (not seen in

figure 3.2). There are sets of proportional chambers positioned in such a way as to give a

long lever arm (36 meters) in the second magnet. This reduces error in the momentum

calculation. Using this scheme, the momentum resolution for the muon beam is 0.2% at a

nominal beam energy of 280 GeV.
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3.1.3. Beam Hodoscopes and Proportional Chambers

The chambers that are used to determine the trajectory of the incoming beam

muon's track are a combination of scintillating hodoscopes and proportional mode wire

chambers. The hodoscopes consist of two groups of four readout planes each group

spaced about 7 meters apart. Both hodoscopes are located upstream of the target (See

figures 3.2 and 3.4). Beam Hodoscope A (BHA) is located upstream of Beam Hodoscope

B (BHB). Each readout plane of BHA and BHB is made up of two sets of 4 mm wide

scintillating hodoscope strips, staggered by 2 mm, hence giving a resolution of 1.2

millimeters. One proportional chamber consisting of four planes is located just

downstream of BHB. This chamber, called P0H, aids in the beam track reconstruction

and has a resolution of 0.6 millimeters. P0B, with eight planes of proportional chambers,

is located between the two targets. (See figures 3.2 and 3.5) This chamber is used to help

determine the trajectory of the incoming beam muon for those events that have a vertex in

the downstream target. P0B is also used for the determination of the trajectory of the

scattered muon, for those events in the upstream target. The type of readout planes, the

number of elements, spacing, resolution and x-positions for these beam trajectory

detectors are given in table 3.1 and in figure 3.2:

Table 3.1: Beam Chambers

Name Plane Type 1/2-Width
(mm)

1/2-Height
(mm)

Resolution
(mm)

x-position
(m)

BHA +#,!#, Z,Y 40 40 1.15 !17.0
BHB Y, Z,+#,!# 40 40 1.15 !11.3
P0H 2Y, 2Z 80 80 0.58 !10.9
P0B 2 + #,2 ! #,2Y,2Z 80 80 0.58 !6.6
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3.2. Target

The targets that were used for the period P3A89 were liquid hydrogen, H2 and

liquid deuterium, D2. The targets were arranged in two sets, having deuterium upstream

and hydrogen downstream Target setup-1 and Target setup-2 having the reverse order,

i.e., hydrogen upstream and deuterium downstream. The target sets were alternately

positioned in the muon beam. In figure 3.5 the target arrangement is shown, including

detector P0B located between the two targets. (Also seen in figure 3.2) An over-pressure

of 100 mbar was applied to insure that the targets remained a liquid. The liquid hydrogen

was pure H2, but there was a small contamination of hydrogen-deuterium in the liquid

deuterium (D2). Thus 3.01 percent1 of the D2 was really HD. The description of the

targets, using calculations of length and temperature from appendix 8.1, is given in table

3.2:

Table 3.2: Target Description

Target Material Length
(mm)

Radius
(mm)

Mass
(kg)

Temperature
(K)

Hydrogen 2989±1 50.0 1.6547 20.52
Deuterium 2989±1 50.0 3.7916 23.84
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The alternating Target setup.

3.3. Forward Spectrometer Magnet

The momenta of the scattered muon was derived by the measured bending of their

trajectories in the magnetic field of the FSM. The FSM is a large air-gap dipole magnet

with a length of 4.3 m along the x-axis and an aperture of 2 m horizontally (along the y-

axis) by 1 m vertically (along the z-axis). For operation with a nominal beam energy of

280 GeV a current of 5000 A was used, giving a magnetic field in the z direction with a
field integral, B *dl+ = 5.182 T *m. The magnetic field was mapped as a function of x, y

and z  to better then 0.2 percent2 and in addition was calibrated by using the

measurements of the masses of the J ,  and 0K  mesons. The stability of the field was
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monitored with a Hall probe and a NMR device. The nominal center of the NMC

coordinate system is located near the center of the FSM. The x and z coordinate axes are

centered in the magnet, while the y coordinate is shifted by 6 cm horizontally in the

negative or “Saleve” direction.

The acceptance of scattered muons at the magnet aperture extends up to scattering

angles of 140 mrad in the bending plane (x-y) and 85 mrad in the vertical (y-z) plane. A
bending angle of 140 mrad, with the known B *dl+ , corresponds to a minimum

momentum of 24 GeV/c.

3.3.1. Magnet Chambers

Inside the FSM there are two sets of proportional chambers; P1, P2, P3 (P123)

and P0D. These chambers improve the measurement of the bending angle of the muon,

due to the magnet, and help determine the initial trajectory of the scattered muon. The

large proportional chambers; P1, P2 and P3, cover the full width and height of the FSM

air gap. Each has a dead central region of 6.5 cm radius. The P1 is located close to the

front opening of the FSM, whereas P2 and P3 are at x-positions of !0.3 and +0.3 meters

with respect to the FSM’s center. The small proportional chamber P0D covers the

insensitive 6.5 cm radius central region of P123. (See Table 3.3, along with figure 3.2, for

a better description.)
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Table 3.3: Magnet Chambers

Name Plane Type 1/2-Width
(mm)

1/2-Height
(mm)

Resolution
(mm)

x-position
(m)

P1 Z,Y,+# 912 400 1.15 !1.6
P2 !#,Y, Z 912 400 1.15 !0.3
P3 !#,Y, Z 912 400 1.15 0.3
P0D 2Z,!#,2Y,+#,2Z 80 80 0.58 !1.9

3.4. Muon Chambers

The initial trajectory of the scattered muon and the final trajectory after the

bending by the FSM are determined by two sets of chambers. The initial trajectory is

determined by the large proportional chambers PV1 and PV2, located just in front of the

entrance of the FSM. PV2 has a dead central area of 6.5 cm radius and PV1 is also

insensitive in the center due to space-charge effects. The small proportional chamber

P0C, located in front of PV1, covers the insensitive regions of PV1 and PV2. It should be

noted that for events found in the upstream target, the small proportional chamber P0B is

also used to improve the determination of the trajectory. In Table 3.4 the chamber’s

characteristics are given.

The final trajectory of the scattered muon (after the FSM) is determined by two

sets of multi-wire Drift Chambers; W12 and W45. The two W12 drift chambers, W1 and

W2, consist of 8 readout planes each and are located just behind the exit of the FSM. The

W12 drift chambers cover an area 2.2 m wide and 1.2 m high with a dead area at the

center 6 cm in radius. The small proportional chamber P0E, located in front of W1,

covers the insensitive central region. (See Table 3.4, along with figure 3.2, for a better
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description.) The W45 drift chambers are made up of four modules of 4 planes each and

located downstream of W12. Each plane is 5.0 m wide and 2.5 meters high and has a

dead region of 13$14 cm2 . The five modules of the proportional chamber P45 are placed

between the W45 modules. P45 covers the deadened region of W45 and provides

redundancy in the higher rate central region. (See Table 3.4 for a better description.) It

should be noted that the small proportional chamber P0A is used in conjunction with P0E

to measure J ,  events for the calibration of the FSM.

Table 3.4: Muon Chambers

Name Plane Type 1/2-Width
(mm)

1/2-Height
(mm)

Resolution
(mm)

x-Position
(m)

P0B 2 + #,2 ! #,2Y,2Z 80 80 0.58 !6.6
PV1 + $# ,Y,! $# ,Y 752 470 1.15 !2.5
PV2 Y,+#,+ $# ,!#,! $# ,Y 768 500 1.15 !2.2
P0C 2 ! #,2Y,2Z,2 + # 80 80 0.58 !2.8

P0E 2 ! #,2Y,2Z,2 + # 80 80 0.58 2.3
W1 -#,Y, Z,+#;  Z,-#,Y,+# 1120 620 0.25-0.30 2.6
W2 Z,-#,Y,+#;  -#,Y,+#, Z 1120 620 0.25-0.30 2.9
W4A,B 2Y,2Z;  2#,2Y 2620 1300 0.35 6.9-7.4
W5A,B 2Z,2#;  2Y,2Z 2620 1300 0.35 7.6-8.0
P45 Y,-#;Y,#;Y,-#;Y,#;Y,# 452.5 452.5 1.15 6.8-8.1

P0A 2 ! #,2Y,2Z,2 + # 80 80 0.58 8.3

3.5. Muon Identification chambers

The muon identification determines which of the particles that are seen by the

detector is the scattered muon. This is done by filtering out all the electrons, photons and

hadrons with the hadron calorimeter and then, by process of elimination, one assumes
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that the remaining tracks must be muons. These remaining tracks are seen by the muon

identification chambers. A muon is identified by its passage through a calorimeter and a 2

meter thick passive iron absorber.

3.5.1. Hadron Calorimeter (H2) and Absorber

The H2 calorimeter is used to identify electrons, muons and hadrons and to

measure the energy of electromagnetic showers. H2 consists of a left hand and right hand

half. Each half is made up of three modules. There is a 10 cm radius beam hole in the

center of the H2 calorimeter.

In the calorimeter, the first module is the electromagnetic shower detector, made

of alternating lead plates and scintillator blades. This material corresponds to 22 radiation

lengths for +e , !e  and - . This is enough to deposit essentially all of these particles in this

region. The electromagnetic shower detectors represent only 0.95 nuclear interaction

lengths for hadrons. The next two modules are made of iron plates and scintillator

chambers. The Iron provides a further 5.5 nuclear interaction lengths.

Located just down stream of the H2 calorimeter is a 2 m thick passive steel

hadron absorber, which provides an additional 10 interaction lengths of material. Thus

the hadrons are stopped by a total of 16.5 nuclear interaction lengths of material. The

hadron absorber can be magnetized. It was not magnetized for the NMC experiment but

still had a residual field3 that deflected charged particles vertically. The absorber also has

a 20 $ 20 cm2 beam hole.
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3.5.2. Muon Chambers

The muon trajectory after the hadron filter is measured by the W67 drift

chambers. These cover an area of 10 $ 4.4 m2 and are located behind the hadron

absorber. The W67 chambers consist of three sets; named A, B and C. Each of the sets

are made up of 4 modules. The two sets, A and C, each has 11 readout planes and they

cover the region furthest from the beam. The B set covers the central region with 16

planes and has a deadened area of 18 cm high and 24 cm wide.

The proportional chamber P67 and the drift chamber W3 cover the central

deadened area and are used to identify muons close to the beam and to provide a Small

Angle Interaction Trigger (SAIT) and a Small- Bjx  trigger (SX). The P67 chamber is

located between the hadron absorber and the front of the upstream W67B module. The

drift chamber W3 is located behind a 1/2 m thick Iron wall downstream of the last W67B

module. (See table 3.5, plus figure 3.2, for a more detailed description.)

Table 3.5: Muon Identification Chambers

Name Plane Type 1/2-Width
(mm)

1/2-Height
(mm)

Resolution
(mm)

x-Position
(m)

W6A Z,Y,#;  Z,Y,# 1450 1754 0.35 %&'(-%)'(

W7A Z,Y;  Z,Y,# 1755 2185 0.35 %*'+-%*',

W6B Z,Y,#, Z,Y;  Z,Y,# 1450 1755 0.35 %+'*-%&'-

W7B Z,Y,#;  Z,Y,#, Z,Y 1755 2185 0.35 %)'.-%-'(

W6C Z,Y,#;  Z,Y,# 1450 1755 0.35 %&'(-%)'(

W7C Z,Y;  Z,Y,# 1755 2185 0.35 %*'+-%*',

P67 Y,+#;  Y,+ $# 452.5 452.5 1.15 13.2

W3 Z,-#,Y,+#;  -#,Y,+#, Z 1120 620 0.25-0.30 19.3
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On the whole the W67 drift chambers gave good and stable results, the design of a

graded cathode field gave them the most uniform drift, cell even with the large (6 cm)

cell size. W67 drift chambers were severely aged, since they dated back to the beginning

of the previous experiment (the EMC), but by the beginning of the final year of data

taking of the NMC experiment W67 was showing signs of aging. The last two

collaboration members in charge of W67, Ioannis Tzamouranis and the author of this

thesis, started working on the chambers at the beginning of this final 1989 run. They

succeeded in bringing the condition of W67 into excellent running condition for the 1989

run. This involved replacing broken preamplifiers, curing ground loop problems and

repairing broken low-voltage circuitry. Also involved were maintaining the normal

operating gas flow and high-voltage conditions. However, the dark current problems and

the broken or problematic wires were beyond repair. In addition these chambers had

lower efficiency within 20 cm of the beam. While this region had backup detectors in

NMC, the W67 drift chambers were replaced for the next generation of the experiment

(the Spin Muon Collaboration) by an array of Limited Streamer mode tubes4, called

ST67, by groups from Houston, Northeastern and Munich universities.

3.6. Triggers

In an experimental environment with high event counting rates fast on-line data

filtering and preprocessing must be done to decide which events are to be recorded (i.e.,

to separate deep inelastic scattering events from the background of beam halo muons and

other sources). This fast event selection is done by processing the signals from scintillator

hodoscopes with fast electronics to form a trigger.
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To remove events initiated by the beam halo background, some of the scintillating

hodoscopes are used to form veto counters. A description and the positions of the Veto

counters are given in table 3.6 and shown in figure 3.2:

Table 3.6: Veto Counters

Name 1/2-Width
(mm)

1/2-Height
(mm)

x-Position
(m) Notes:

V1.5 700 700 -16.0 Beam position Veto
V2 250 250 -12.0 Beam position Veto
V2.1 250 250 -14.5 Beam position Veto
V3 6000 2000 -15.0 Beam halo Veto

A description and the positions of the trigger hodoscopes are given in table 3.7 as

well as being shown in figure 3.2:
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Table 3.7: Trigger Hodoscopes

Name 1/2-Width
(mm)

1/2-Height
(mm)

x-Position
(m)

Notes:

H1H 1250 630 3.3
H1V 1260 650 3.3
H3V 3750 1700 12.5 Sets timing for Trigger 1
H3H 3900 1725 12.8 Left and Right halves
H4H 5000 2175 18.3 Left and Right halves

H5 95 100 18.7

H1' 275 229.2 8.6
H3' 275 310.7 15.0
H4' 252.5 428.2 20.1 Sets timing for Trigger 2

S1 162.5 152.5 8.5
S2 210 185 14.0
S3 210 190 15.5
S4 275 220 21.3 Sets timing for Trigger 14
H3" 210 184 14.1
H4" 275 219 21.2

When an interesting event occurs the data acquisition system is thus triggered to

start reading out the data from the pertinent part of the detector. The selection criteria of

the fast electronics, for the formation of a trigger, are checked by programmable

coincidence matrices5, defined in table 3.8. In that table the “$ ” represents an element by

element logical AND forming the matrix pattern. This pattern is then combined to form a

logically OR to give the matrix output signal.



55

Table 3.8:
Matrix definitions

Matrix Name Inputs Purpose
M0 H1V $ H3VLeft “Horizontal target pointing”

M1 H1V $ H3VRight (Forms a crude horizontal trajectory)

M2 H3H $ H1H “Vertical target pointing”
M3 H3H $ H4H (Forms a crude vertical trajectory)
M4

LeftH3H $ H4H( ) Halo

M5
RightH3H $ H4H( ) (Both M4 and M5 are combined as “M4”)

M6 H1V $ H3H Minimum angle cut
M7 H3V $ H3H Scaling
M8 H $1 $ H $4 Trigger 2 - Timing

There were three main classes of triggers: (i) physics triggers, (ii) normalization

triggers, and (iii) alignment and calibration triggers. Definitions are given in table 3.9,

where “+” stands for a logical OR, “ *” for a logical AND, “ ” (i.e., V. ) is a logical

NOT or an anti-coincidence.
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Table 3.9:
Trigger Definitions

Trigger Definition Purpose

T1 M0 + M1( ) *M2 *M3 *M6 *M7 * V. Large Angle events (Physics)

T2 H $1 *H $3( )PLU * H $4 *H $3( )PLU *M8 * V. Small Angle events (Physics)

T3 i!#BHA( )
i=3

18

. Beam flux Normalization

T4 iZBHB( )
i=3

18

. Beam flux Normalization

T5 H5A *H5B Beam monitor

T6 M0 + M1( ) *M2 *M3 *M6 *M7 *

PHH2 * V. *BHA *BHB
Lepton flavor change

T7
iH3V( )

i=25

30

. * iM4( )
i=12

18

. Near beam halo

T8 T7 * M4. *H3V *V3 Far beam halo
T9 10 MHz Pulser Background studies
T10 Random Beam flux Normalization
T11 H3H + H4H( ) *V3 Hodoscope efficiencies

T12 H $3 + H $4( ) *V1.5 Hodoscope efficiencies

T13 Start-of -burst / End of burst Scalar readout

T14 uS1 * uS2 * uS4 + lS1 * lS2 * lS4( ) * YBHBN =1( ) *

BHBZ
i=8

12

. * BHBZ
i=1

7

. + BHBZ
i=13

20

.
/

0
1

2

3
4

/

0
1

2

3
4 * V.

Small Bjx  events (Physics)

T15 M0 + M1( ) * H3VN 5 2( ) * M4N 5 2( ) * V. Multi-muon events (Physics)
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3.6.1. The physics triggers

There are three physics triggers: (i) Trigger 1, called the Large Angle Trigger

(LAT); (ii) Trigger 2, called the Small Angle Interaction Trigger (SAIT) and (iii) Trigger

14, called the Small- Bjx  trigger (SX).

Trigger 1 is the main physics trigger. It covers an angular range of # 510 mrad

and uses the large hodoscopes H1H, H1V, H3V, H3H, H4H. The matrices, M0 and M1

(Table 3.8), form one large matrix. They correlate the vertically oriented hodoscope

elements to give horizontal target pointing (crude tracking). This removes low

momentum particles by removing events with very large scattering angles. Matrices, M2

and M3, correlate the three arrays of horizontally oriented hodoscope elements to give a

vertical target pointing. Matrix M6 rejects particles that pass through the center of the

detector, this results in rejection of events whose scattering does not exceed a minimum

angle. The minimum angle limit, called a cut, imposes a lower limit on 2Q  as seen in

equation 2.1. The matrix M7 removes low energy scattered muons, thereby rejecting

events with very high '  and thus high y ( y = ' E 5 0.9). The effect of M6 and M7 cuts,

i.e., on low 2Q  and high y removal, is to remove events from a kinematic region

dominated by real photon emission. This is the region of high radiative corrections. A

schematic diagram of the Trigger 1 logic is shown in figure 3.6.
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Trigger 2 covers an angular range of 5 mrad ) # < 20 mrad  and partly overlaps

with trigger 1. It uses the smaller hodoscopes; H1', H3' and H4', in conjunction with the

Programmable Logic Units (PLU). The PLUs act as logical coincidence units but have

poor time resolution. The timing is done by the matrix M8.

Trigger 14 covers an angular range of 2.5 mrad ) # <10 mrad  and partly overlaps

with trigger 2. It uses the small hodoscopes: S1, S2, S3 and S4; H3" and H4". The timing

comes from hodoscope S4.

The physics triggers 6 and 15 are not discussed in this thesis.

3.6.2. The Normalization triggers

For the structure function analysis, the integrated beam flux is needed as input by

the event simulation program, which is called a Monte Carlo simulation. The beam flux is

then used to normalize the Monte Carlo simulation events to the number of data events.

Therefore for each accepted event during data acquisition, a simultaneous count of the

number of beam muons is made. There were two types of triggers used for the beam

normalization: (i) Trigger 10 (the random6 trigger) and (ii) Triggers 3 and 4, the two

beam flux triggers.

Trigger 10 uses the random decay of an 241Am , 6 source as a common start signal

for the beam hodoscope TDC and a hit in the beam hodoscope element as the stopping

signal. All the hardware veto information for these hits is also recorded. The beam tracks

are then reconstructed with the same restrictions as with the normal physics events, if

they occur within a ±10 ns time window of the start signal from the 6 source, from these

hits in the beam hodoscopes. The beam flux is then given by:
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" = beamN
w * r

, (3.1)

where beamN  is the number of reconstructed beam tracks, w the width of the time window

and r the decay rate. The randomness of radioactive decay ensures a uniform sample of

the beam, to an accuracy of about one percent.

Triggers 3 and 4 directly count the rate of beam muons on selected planes of the

beam hodoscopes BHA and BHB, respectively. The number of hits in the central 16

elements of the beam hodoscopes are counted at a prescaled rate. The readout is triggered

once for N actual events (commonly N= 2.56 $106 ), and thus this reduced number of

events is prescaled. The beam tracks from this sample of events are then reconstructed

normally. This gives the flux with a statistical accuracy of better then 1% with only a few

hours of data taking. The beam flux is given by:

" = in iw
i=3

18

. , (3.2)

where in  is the number of reconstructed tracks in element i and iw  is the weight assigned

to that element number. It should be noted that the weight is usually the prescale factor N.

Trigger 13 is used to start the readout of the integrated flux scalars at the

beginning and end of each burst of muons. Each burst lasted about 1.4 seconds and

occurred with an interval of about 15 seconds.
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3.6.3. The Alignment and Calibration triggers

The three triggers: (i) Trigger 5 (the beam trigger), (ii) Trigger 7 (the near halo

trigger) and (iii) Trigger 8 (the far halo trigger), are used for software alignment, TDC

calibrations and Multi-Wire Chamber drift time calibrations for the off-line data analysis.

The software alignment is a method that determines the relative positions of the detectors

using data taken under special circumstances. This method, along with the TDC and drift

time calibrations, is discussed in section 4.1.

The two triggers: (i) Trigger 11 and (ii) Trigger 12 are used for the efficiency

determination of the trigger 1 (LAT) and trigger 2 (SAIT) hodoscopes, respectively.
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4. Data Processing

The data processing starts after the data has been collected by the spectrometer

and written on magnetic tapes. A “run” was defined by collecting enough events to fill

one tape and lasted approximately one hour. One tape contains about 50,000 raw events.

After each run the target setup was changed (See section 3.2). Before data reconstruction

and analysis can proceed, the various detectors must undergo “calibration”, “alignment”

and “fine tuning”. This process is called Software Alignment. These terms are described

in more detail in the following section.

4.1. Software alignment and calibration

The software alignment and calibration are done in four steps. The first three steps

use special data that were taken at low beam intensity with the FSM magnet turned off

and all targets removed from the beam. The remaining step uses normal data tapes. These

four steps are:

(1) The time calibration of the Time to Digital Converters (TDCs) for all the

hodoscopes is calculated.

(2) The offset time and velocity calibrations of the multi-wire drift chambers

are performed.

(3) The spatial alignment of all the detectors is determined.

(4) The various input parameters for the data processing are fine tuned.
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4.1.1. Time to Digital Converter calibrations

In a high data rate environment a method is needed to select desired tracks from a

background of one or more coincident tracks. Therefore one needs to differentiate

multiple tracks; by associating the beam tracks and the scattered muon tracks with the

triggers. To do this the absolute and relative timing of the various hodoscopes must be

determined.

The H3V trigger hodoscope is located behind the hadron absorber (see figure 3.2).

Therefore one can deduce that it sees only scattered muons. The H3V trigger hodoscope

sets the timing for the main physics trigger and thus for the whole experiment. H3V has

two photo-multiplier tubes with TDCs per element, one at each end. By selecting tracks

in which the hodoscopes H3H and H4H are also hit, the z-position along the vertical

elements of H3V is measured. The base TDC offset time, 0T , is adjusted by taking the

difference in times between the upper and lower TDC for each element to give a net time

of zero at the position z = 0. The offset time is the time added to the measured time of

one element to bring it into coincidence with all the other hodoscope elements. The other

triggers are all calculated relative to this average time (approximately zero).

The other two physics trigger hodoscopes have only one TDC per element. Their

0T s are adjusted such that the times of all the TDCs are centered at zero for “good”

reconstructed tracks. The TDCs for H4' for the SAIT trigger and the TDCs for S4 for the

SX trigger are calibrated and checked with raw data tapes, filtered for their respective

triggers, rather then with special “low intensity” tapes. The filtering accepts only those

events with the selected triggers.
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The TDCs of the Beam Momentum Station hodoscopes and the beam hodoscopes

are each adjusted such that all the times of the individual elements are centered at zero

and the individual planes are in time with each other. Then the BMS TDCs and the BH

TDCs are adjusted to have a relative time between them of zero. Because both of these

hodoscopes are used with the track reconstruction of trigger 10, times far from the

nominal value of 0T  are measured. If the TDCs are not perfectly linear then there would

be a slope in the distribution of measured times versus expected times, relative to the

measured 0T . By using delayed and non-delayed pulses as input to these TDCs a measure

of any non-linearity, thus a slope, has been determined and corrected for in the

calculation of the TDC time of the BMS and beam hodoscopes. In this process the

difference in times is divided by the known delay time to calculate the slope.

4.1.2. Drift time calibrations

For the multi-wire drift chambers one has to determine the TDC offset time, 0T ,

the drift velocity of the electrons, driftV , and the parametrization of the non-linearity of

the drift velocity in the electric field. The non-linearity of the drift velocity is seen by

measuring the drift velocity as a function of position within the drift cell. The parameter

0T  is defined as the maximum drift time for an electron in that chamber and is taken

relative to the trigger time. Maximum drift time occurs in the case for a track originating

at the farthest point from the sense wire in a drift cell. In a multi-wire drift chamber this is

a distance typically equal to half of the wire spacing of the chamber.

The calibration is an iterative process that starts with a reasonable set of values of

0T , driftV  and the assumption that one is in a region where the drift velocity is reasonably

linear. Special low intensity data tapes are taken for calibration purposes with the FSM
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field equal to zero. Because there is no deflection by magnetic force, tracks are parallel to

the incoming beam. Such tracks are reconstructed and a best fit is found. A “residual” is

the difference between the best fit and the measured track position. These are plotted

versus the expected position in the drift cell. From these plots, by assuming that one is in

a region where the position versus time of the drift cell is linear, approximate values of

0T  and driftV  are extracted. The value of driftV  is obtained from the slope of the position

versus time plot and that of 0T  from the intercept. After a few iterations these values have

converged. Finally, the correction to the non-linearity of the drift velocity must be

parametrized.

This parametrization is obtained by fitting a polynomial function to the deviation

from a straight line of the plot of residual versus time, in the drift cell. This is also an

iterative process since this correction is then applied to the track reconstruction used in

the calculation of the residuals. The degree of the polynomial depends on the uniformity

of the electric field, seen in the plot of position versus time, and thus on the chamber

construction and the gas that was used.

The W12 and W3 chambers had three field shaping wires and the W67 chambers

had a “graded field”. Therefore the W12 and W3 chambers are somewhat more linear

than the W45 chambers. The W67 chambers are, by comparison to the other drift

chambers, very linear. The W67 chambers use a polynomial fit of the forth order. The

W12, W3 and W45 chambers use a polynomial fit of the sixth order. Examples of this are

shown in figure 4.1, the plots of the non-linearity correction versus the drift time for the

W12, W45, W67 and W45 drift chambers.
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4.1.3. Spatial alignment

To make high precision measurements the position of the various detectors must

be accurately known. The procedure of determining the detector position is called the

spatial alignment. This procedure has two phases; (i) all the detector positions are

optically surveyed; (ii) software is used to reconstruct tracks, and to refine the

measurement of chamber positions based upon the straight line character of the tracks.

The optical surveying of the detectors, from the positions of fixed reference

points, is done at the beginning of a period of data taking and is repeated when any

detector is moved. This procedure gives the x-position (along the beam) of a survey

marker on a detector. The first wire (or element) position, relative to its survey point, is

then deduced from a knowledge of the internal construction of the detectors. The first

wire (element) position is then used as the starting point for the software alignment.

The general method of software alignment is fairly simple; for each readout plane

in a given detector one reconstructs tracks and compares them with their expected

position. The expected positions are determined by the best fit of a track, reconstructed

from the rest of the detectors, and from the survey. The difference is applied as a

correction to the position of the readout planes. The difference between the expected

position and the reconstructed position is called the residual. The residuals of a number of

tracks are then plotted and the average is applied as the correction to the position of the

plane. This is an iterative process that continues until it converges. This is only possible

when using tracks that are straight and unambiguous. For this reason the special data

tapes, taken at low intensity with the FSM turned off, are used.
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The method proceeds by separately aligning three groups of detectors; first each

detector in each group is aligned to itself and then the sets of detectors within each group

are aligned relative to each other. Finally the groups are aligned relative to each other.

The three groups of detectors are: (i) the detectors located downstream of the hadron

absorber (See figure 3.2); (ii) the large detectors located in front of the hadron absorber;

and

(iii) the beam and small proportional chambers.

The alignment of the detectors located downstream of the hadron absorber uses

low intensity halo triggers (T7 and T8). Here each set of the W67 chambers (The A, B

and C sets are shown in figure 3.2) is first aligned independently and then, using the

overlap between the W67A and W67B modules and the overlap between W67B and

W67C modules, they are aligned relative to each other. At this time the P67 and W3

chambers are also aligned relative to W67B. Also the large trigger hodoscopes H3V,

H3H and H4H; along with the SAIT trigger hodoscope H3' and H4' are aligned with

respect to W67B.

The alignment of the detectors located in front of the hadron absorber uses a low

intensity halo trigger (T7). Here each of the detectors; W45, P45 W12, P123 and PV12,

first had their internal planes aligned independently with respect to themselves. They are

then aligned relative to each other. At this point the large trigger hodoscopes H1V and

H1H; along with the SAIT trigger hodoscope H1' are aligned with respect to this group of

detectors. Finally the W67 system is aligned relative to this group of detectors.

The alignment of the beam and small proportional chambers uses a low intensity

beam trigger (T5). Here each of the small proportional chambers, the P0s (P0B, P0C,
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P0D, P0E and P0A), and the beam hodoscopes are aligned with respect to beam tracks

found using the PV12 and P45 chambers. This procedure directly aligns the P0s and the

beam hodoscopes relative to the other detectors.

The various detectors are aligned by the software process to within a one or two

tenths of a millimeter. However, it should be noted that the alignment of the detectors is

only made relative to each other. The absolute position still is taken from the optical

survey, and this knowledge is used to assure good alignment between the detectors and

the FSM and targets. The best check on the x-position of the detectors by the software

alignment procedure is unfortunately accurate to only ±1 centimeter. Therefore, because

of the small track angles involved (due to the small opening angles seen in the physics of

a fixed target detector), the optical survey of the x-position is by far the best possible

measurement.

4.1.4. Fine tuning

The fine tuning of the various parameters includes: (i) determining the “road

widths” (to be defined below) for all groups of detectors (with different road widths set

for each of the physics triggers); (ii) the fine tuning of the spatial alignments and the

linking of the tracks through the hadron absorber; (iii) the timing of the veto counters and

the determination of the cuts on the allowed slope and position of the beam trajectory.

This fine tuning is all done with regular data tapes.

The track reconstruction program is called Phoenix1. The road widths and the

plane requirements for each detector are determined in a procedure known as “Phoenix

tuning”, which fine tunes some of the input parameters for the program Phoenix. The

road width is the maximum distance from a track that is allowed for a hit in a detector to
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be considered as part of that track. Tracks are found using a least squares fit to a straight

line. A hit in a detector outside the allowed road width is rejected from the fit. Therefore

a balance between having too large a road width, thus distorting the track trajectory with

spurious hits, and having too small a road width, thus loosing too many good events, is

determined in this procedure. Separate road widths are determined for each of the physics

triggers. The so called “plane requirement” is the minimum number of hits, within the

road width, per coordinate needed to form an acceptable track.

The event reconstruction program is called Geometry2. The linking of tracks

across the hadron absorber and the fine adjustments of the spatial alignment for each

detector are determined in a procedure known as “Geometry tuning”. Because there is a

residual magnetic field3 in the hadron absorber the muons that pass through the absorber

are deflected. A parametrization of this deflection must be made to link the muons tracks,

behind the absorber, to the detectors in front of the hadron absorber. The spatial

alignment and acceptable error of the detectors are fine tuned using normal data.

In a procedure known as “Veto tuning”, the relative timing of the veto hodoscope

TDCs is set. This is to ensure, or at least reduce the chance, that a good track is not

mistakenly vetoed by an out-of-time halo muon. The veto tuning uses output from the

data reduction program called Snomux, i.e., partially processed data summary tapes called

Mini-DSTs. The times are used as input to the final data processing program, Snomin.

The determination of cuts on the position, slope and radius of allowable beam

tracks is done in a procedure called “Beam tuning”. This ensures that all acceptable beam

tracks pass through the full length of both of the targets. Also the range of acceptable
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beam momentum is set by the beam tuning. The beam tuning also uses as input the Mini-

DSTs and has its results used as input by the program Snomin.

4.2. Data reconstruction

The data reconstruction is done in three steps:

• Track reconstruction.

• Momentum calculation of both the beam and scattered muon and the vertex fitting.

• Beam processing, normalization trigger processing and data reduction.

The data reconstruction procedure has been given in far more detail elsewhere4.

However, the basic method is shown in figure 4.2, which is a block diagram of the flow

of data through the NMC data processing chain.



73

Monte Carlo
Digitization

Monte Carlo
Event generation and tracking

F2 program Radiative
corrections

Snomux
H2 processor
Data reduction

Phoenix
Track finding

Raw data

Alignment file

Efficiency file

Beam file

Geometry
Track and vertex fitting

Snomin
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T34 processor
Beam processor
Data reduction

Figure 4.2: A flow chart of the NMC data processing chain.
(The details of the data reconstruction are given in the following sections.)
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4.2.1. Track reconstruction

Track finding and reconstruction is done using the program Phoenix1. The

program first looks for a beam track in both the beam hodoscopes and the beam

momentum station. If a beam track is found then a search is made for tracks that are

found behind the hadron absorber that are identified as muons because of their

penetrating ability. If and only if one or more muons are found, the track finding process

continues by looking for hadrons. Hadrons are identified as tracks that are found only in

front of the hadron absorber. The resulting numbers of events for a typical data “run”

analyzed by Phoenix is given in table 4.1:

Table 4.1: Event reduction in Phoenix
Trigger 1 Trigger 2 Trigger 14

Input event triggers 5364 21524 11891
Output of accepted events 2515 5632 2632
Percentage of accepted events 46.9% 26.1% 22.1%

After this filtering process the tracks are reconstructed and used as input in the event

reconstruction program called Geometry.

The numbers shown in table 4.1 tend to be very stable from run to run as shown in

figure 4.3. This figure shows the fraction of accepted events per input event versus the

number of runs processed for each physics trigger. The step seen in the beginning runs of

T14 was caused by the adjustment of the high voltage in one module of W3. The small

drop at the end of both T2 and T14 has no simple explanation and these runs were later

removed from the data analysis.
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Figure 4.3:
Track reconstruction by Phoenix versus the number of runs processed.
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4.2.2. Event reconstruction

The track and vertex fitting are done using the program Geometry 2. This program

determines the momenta and trajectories of both the incoming beam track and the

scattered muon or hadron tracks. Then, by connecting the beam track and the scattered

muon track, the program determined the interaction vertex.

The beam tracks are fit using the beam hodoscopes, the proportional chamber

P0H and possibly the proportional chamber P0B. The scattered muon tracks are fit by

taking the best fit of the detector hits to the tracks behind the hadron absorber. The

hadron tracks and the scattered muon track are fit by taking the best fit to the tracks

between the absorber and the FSM (See figure 3.2). The portion of the scattered muon

track in front of the hadron absorber is then determined by linking these tracks through

the absorber. A track that continues past the hadron absorber is identified as a muon

while those that do not continue beyond the absorber are identified as “hadrons”. While

this definition is poor nomenclature, since it includes hadrons, electrons and photons, the

differences are determined in a separate analysis not covered by this thesis. These tracks

are then fit, using a spline5 fit, through the bending magnet and connected to the tracks

from the region between the FSM and the target. A spline fit is a technique for

interpolating a function between a series of fixed values, in this case the positions of hits

in the magnet chambers. The projection of the track in the vertical x-z plane should be a

straight line while the projection in the x-y plane should be a segment of a circle whose

radius is:

r = P
q B

. (4.1)
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P is the particle momentum, B the field of the FSM and q the charge of the particle. The

momentum of the particle is thus calculated from the connected tracks. This is done using

the difference in the angle between the track entering and leaving the magnet and the

radius calculated from the spline fit.

The intersection of the beam track and the scattered muon track (allowing for

multiple scattering in the target material) is then used to find the vertex. If the vertex is

found to be downstream of P0B then the beam track is recalculated using P0B hits to

improve the fit; if the vertex is found to be upstream of P0B then the hits in P0B are used

to improve the scattered muon track. (See figures 3.2 and 3.5)

The hits from the scattered muon track in the trigger hodoscopes are checked to

ensure that no false hardware trigger was used and to determine which software triggers

accompany a track. While no actual data reduction is done in Geometry, all events are

flagged with information that indicates whether or not it has good tracks. A measure of

whether a track is good is that it has both a software trigger and a vertex. The stability of

the data processing in Geometry is shown in figure 4.4. Here the fraction of events with

both a vertex and a trigger, versus the number of runs processed, is plotted for each

software trigger.
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Figure 4.4:
The fraction of events yielding acceptable tracks in the program Geometry.

(The stability of the track and vertex fitting in Geometry is evidenced by the constant
fraction versus the number of runs processed.)

4.2.3. Data reduction

The data reduction and final processing are done by two programs Snomux and

Snomin. The hadron processing (H2) along with the preliminary data reduction is done in

Snomux. Only the events flagged in Geometry as having both a vertex and a software
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trigger are used. From these events only minimal information is extracted. Then the data

of the event are packed into as few “computer” words as are possible and written on tape.

This tape is called a Mini-DST.

In the program Snomin, the processing of the normalization triggers, the “beam

processing” and the final data reduction is done. During the T3/4 and T10 processing the

event weights are calculated for these normalization triggers. The beam processing

produces a file with the T10 beam track parameters and beam hodoscope hits for use as

input to the event simulation program. The event reduction is done by making final cuts

on the data and compressing the remaining data onto a Micro-DST. These cuts require

that the beam track is within the target at the upstream and downstream limits, that the

beam is within the hole in the veto chamber V2, that the incident muon momentum is

measured and that restrictions are put on the track momentum, y-slope and z-slope

parameters. The reduction in data for a typical run is shown in table 4.2:

Table 4.2:
Event reduction

Trigger 1 Trigger 2 Trigger 14
Input events: Snomux 2515 5632 2632
Events output by Snomux (and
input to Snomin): 1389 3968 1850

Output events: Snomin 984 2783 1603
Percentage remaining 30.1% 49.4% 60.9%
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The number of raw input and final number of output events is given in table 4.3:

Table 4.3:
The summary of data processing

Trigger 1 Trigger 2 Trigger 14
Raw data events 1.6 ×106 6.4 ×106 3.4 ×106

Output events on Micro-DST 288782 799192 354273
Percentage remaining 18.0% 12.5% 10.4%

4.3. Monte Carlo event simulation

A simulation of the behavior of the experimental apparatus is used to determine

the acceptance of the detectors in terms of both geometrical acceptance and the

efficiency. A program that simulates the behavior of the experimental apparatus using

randomly generated physics events, as this program does, is called a Monte Carlo

program. For this analysis the Monte Carlo program is used to generate only the beam

and scattered muon tracks. This program has two stages, the event generation stage and

the digitization stage. The resulting simulated digitized data is fed through the normal

data processing chain.

The event generation stage uses the programs GEANT6 and Gmuon7 to simulate

the detector positions and to generate tracks in the spectrometer. The beam file discussed

in section 4.2.3 is used as input to properly reconstruct the beam phase space and the

changes of the target setups. The interaction vertex is randomly generated along the beam

direction in the target, depending on the densities of the target materials, in the upstream

and downstream targets. The kinematics of the scattered muon are generated in the
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independent kinematical variables ! and 2Q . The variables are randomly generated, for a

uniform distribution of ! and 1 2Q , in the range from min!  to max!  and from min
2Q  to max

2Q .

In the digitization stage, the program Digimc 6  uses the tracks generated in the

first stage and then applies the efficiencies of all the detector planes to each track and

generates the simulated hits in the detectors. These detector hits, which are a simulation

of the raw data, are then fed into the normal data reconstruction chain of programs. This

was done to ensure reconstruction of these Monte Carlo events under the same conditions

as for the data reconstruction, including any reconstruction losses due to software

algorithms. In the structure function analysis only trigger 1 events were generated. To

produce this data five passes through the beam file were used; each pass using a different

set of random numbers for event generation. The GEANT Monte Carlo program

originally generated 1,129,150 events and, after passing through the normal data

processing chain, a total of 263,619 Monte Carlo events was produced on the Micro-

DST.
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5. Analysis of the ratio 2
nF 2

pF

5.1. Introduction

The 2
nF 2

pF  ratio is related, in the quark-parton model, to the ratio of the down and

up quark momentum distributions (See section 2.2). An accurate measurement of the

2
nF 2

pF  ratio puts strong constraints on the parton distributions. For a reliable calculation

of hard scattering cross sections in proton-proton, electron-proton and antiproton-proton

collisions, the precise knowledge of parton momentum distributions is important,

especially in the low Bjx  region. The 2
nF 2

pF  ratio can also be used to test the Gottfried

sum rule (see section 2.2) and to set a constraint on shadowing in deuterium. This chapter

includes a description of the method to measure this ratio, a discussion of systematic

errors and a presentation of the physics results.

To measure the total scattering cross section, Total! , one would have to determine

the measured number of interactions, then integrate the beam flux, " , (the number of

incident particles per unit area of the incident beam, integrated over the measuring time)

and determine the number of scattering centers per unit area, #, in the target. The number

of observed interactions is equal to the product of the actual number of interactions and

the acceptance, A. The acceptance is determined by the total solid angle covered by the

experiment, the trigger efficiency, and the track reconstruction efficiency.

One therefore has:

MeasuredN = "#A Total! . (5.1)
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In the ratio measurements two target setups were alternately exposed to the beam

(See figure 3.5). The target setup was exchanged in the beam every run during P3A89. A

run was defined by the amount of data used to fill one round-tape. This was typically

about 50,000 events of raw data, and represented about an hour of beam time. P3A89

contained approximately 300 runs of useful data.

5.2. The Method

The method of determining the ratio 2
nF 2

pF  with the complimentary target set up,

which is described in section 3.2, has the advantage that systematic errors due to

spectrometer acceptance and beam flux are greatly reduced. This allows a very precise

measurement because the accuracys with which the acceptance and flux can be

determined does not contribute to the systematic errors.

The cross sections are calculated from measured variables via eq. (5.1). In

determining the ratio of 2
nF 2

pF  one starts with the calculation of the ratio of deuteron and

proton cross sections, d! p! . The cross section ratio d! p! , using the data from all

targets, can be written as:

d!

p!
= d

up! d
dn!

p
up! p

dn!
, (5.2)

where up and down indicate upstream and downstream targets, respectively. Using for

each target, e.g.,

d
up! = d

upN
d
upA 1

up" d#
, (5.3)
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one can rewrite eq. (5.2) as follows:

d!

p!
= d

up
N d

dn
N

p
up

N p
dn

N
2
up" p# p

upA 1
dn" p# p

dnA

1
up" d# d

upA 2
dn" d# d

dnA
. (5.4)

The integrated fluxes for the two target settings (See section 3.2) are indicated by 1"  and

2" . A cut is made on the slope and position of the incoming beam muon to ensure that

the beam tracks are contained within both the upstream and downstream targets. The

interaction probability is sufficiently small that the change in the flux along the length of

the target can be ignored. This implies that the flux is the same in the upstream and

downstream targets for the same target setup, thus 1
up" = 1

dn" = 1"  and 2
up" = 2

dn" = 2" . The

acceptance of the spectrometer primarily depends on the x-position of the interaction

vertex and not on the target material. If the track reconstruction probability does not

change between the runs with target setup-1 and target setup-2, the assumption can be

made that the acceptance in both target setups is the same for each of the upstream and

downstream targets, thus d
upA = p

upA = upA  and p
dnA = d

dnA = dnA . For such cases the

expression for d! p!  reduces to the simple formula:

d!

p!
= $ d

upN d
dnN

p
upN p

dnN
, (5.5)

where $  is the ratio of the number of nucleons per unit area in the respective targets. The

formula for $  is given by:

$ = p#

d#
= 2D

molV
2H

molV
2HL
2DL
, (5.6)
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in which molV  and L are the molar volume and the length of the target, respectively. The

value for $ , as determined in appendix 8.1, is $ =0.8664±0.0002.

The measured cross section is the total cross section. It contains on top of the

dominant one-photon absorption parts the higher order, primarily radiative, contributions

to the cross-section. (See, e.g., (a-d) in figure 2.6) The ratio 2
nF 2

pF  is related to the cross

section given in eq. (2.20). The radiative corrections, as discussed in chapter 2.4, are then

applied as a weight to each event. This weight % is the ratio of the one photon cross

section to the total cross section, which contains the higher order corrections:

% = 1&! Total! . The number of events, for each target, in eq. (5.5) is then to be replaced by

the accumulated weights, for obtaining the one photon cross section ratio d
1&! p

1&! .

Neglecting effects from nuclear binding, d!  is simply given by d! = n! + p! . By using

eq. (2.20), where the structure function 2F  is defined per nucleon, and by making the

assumption that dR = pR , the expression for the ratio d
1&! p

1&!  reduces to:

d
1&!

p
1&!

= 2 2
dF
2
pF
. (5.7)

Therefore, we can now express the desired quantity 2
nF 2

pF  in numbers of weighted

events:

  

2
nF
2
pF

= 2 2
dF
2
pF
'1 = $ d

upN d
dnN

p
upN p

dnN
'1, (5.8)

where the numbers N = %
i=1

N
(  are the accumulated weights for each target position.



88

5.3. Systematic studies

Systematic studies were performed to find and remove from the data those parts

for which the assumption about the flux and acceptance cancellation are not valid, or in

doubt. The parts of the data where time dependent effects were observed in either: the

ratio of the number of accepted events with respect to the beam flux, the average number

of reconstructed events per detector or, the average values of the kinematic variables,

were found and excluded from further analysis.

5.3.1. Time Dependent Studies

A simple method for examining long term variations in the operating condition of

the spectrometer, and thus the acceptance, is to plot variables versus run number. The

typical duration of one run was one hour. An example of a run dependent plot is shown in

figure 5.1, where the acceptance ratio upA dnA  (defined below) is given versus run

number. The gaps at various run numbers correspond to special alignment and calibration

runs, which are excluded from the final data analysis.
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Figure 5.1:
The acceptance ratios upA dnA  versus run number for both

trigger 1 and trigger 2.
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Here the acceptance ratio is defined as the ratio of the number of events from the

upstream and downstream targets, by combining the numbers of events for the two target

positions. Using eq. (5.4) and making the assumptions that the cross sections for each

material are independent of the target position ( p
up! = p

dn!  and d
up! = d

dn! ) and that the

beam flux is the same in both the upstream and downstream targets, thus 1
up" = 1

dn" = 1"

and 2
up" = 2

dn" = 2" , the acceptance ratio is given by:

upA
dnA

= d
upN p

upN
p
dnN d

dnN
. (5.9)

The acceptance ratio is seen to be constant over time for both trigger 1 and trigger 2.

Therefore it was concluded that there were no time dependent changes that affected the

whole spectrometer.

Another method to check the stability of the spectrometer's performance is to

examine the ratio of the number of accepted events to the beam flux, as measured by the

dedicated normalization triggers. Those ratios are plotted versus run number for the two

different normalization triggers, Trigger 3/4 and Trigger 10. Using these plots, any runs

that significantly deviate from the average were removed after it had been checked that

they corresponded to problematic runs according to the logbook. Figure 5.2 shows plots

of the ratios of accepted normalization triggers 10 and 3/4 to both triggers 1 and 2

accepted events versus run number. In these plots, run number 7455 was significantly

different from the other runs. Since this ratio is higher than average, this means that there

was a deficit of T1 and T2 data processed which indicates a problem with the

spectrometer. Indeed during that run the readout electronics for one detector (W12) failed

therefore this run was removed from further data analysis.
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Figure 5.2:
The ratio of the beam normalization triggers (T3/4 and T10) to the physics triggers 1

and 2 versus run number.

The fraction of reconstructed events used in the muon reconstruction for the

detector (or the average time), versus run number, are also plotted to check for any time

dependent change. Examples are seen in figure 5.3 for trigger 1 and in figure 5.4 for

trigger 2. The plots that show an alternating value (the top ones) reflect the difference in

the acceptance between the upstream and downstream targets, magnified by the different

number of events produced in hydrogen or deuterium. A problem with the detector is

seen by the jump in the average time from the Beam Momentum Station's TDCs in both
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figures 5.3 and 5.4, along with a jump in the average time from the trigger time of trigger

2 in figure 5.4, near run number 7640.

F
igure 5.3:

The fraction of reconstructed trigger 1 events for the detectors PV12 and W45 and the
average trigger and BMS TDC times (in units of 0.1 ns)

versus run number.
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F
igure 5.4:

The fraction of reconstructed trigger 2 events for the detectors PV12 and P45 and the
average trigger and BMS TDC times (in units of 0.1 ns)

versus run number.

As a further check on the time independence, the kinematical variables Bjx , 2Q ,

the probability of finding a vertex and the probability of fitting the scattered muon's track

are plotted versus run number. This is seen in figure 5.5 for trigger 1 and in figure 5.6 for

trigger 2. Examples of problems are seen by the drop in the scattered muon fit probability

for both triggers (near run number 7640) and by the slight drop in the vertex fit

probabilities for trigger 2 in figure 5.6 ( again near run number 7640).



94

Figure 5.5:
The average value of Bjx , 2Q , the vertex probability and the muon probability versus

run number for trigger 1.
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Figure 5.6:
The average value of Bjx , 2Q , the vertex probability and the muon probability versus

run number for trigger 2.

As in figures 5.3 and 5.4, the difference between the acceptance of the upstream

and downstream targets is reflected by the alternating value of 2Q . However the drop in

the scattered muon fit and vertex fit probabilities, along with a jump in the average time

from the trigger time and the BMS TDC's indicates trouble. While these changes are not

fully understood the causes include a change in the intensity of the beam and a sudden

change in the temperature of the experimental hall. Since the significant deviations that

are observed in these plots may effect the validity of the assumptions that were made in
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calculation the cross section ratio, these runs must be considered unreliable. Therefore the

last 20 runs were not used in the data analysis.

5.3.2. Determination of the Cuts

The first selection of the data that must be made is the vertex cut. This allows a

given event to be ascribed to the target where the interaction took place. The next sets of

cuts are on the kinematical variables.

5.3.2.1. Vertex Cuts

To determine the numbers of interactions occurring in each part of the target set

vertex cuts are needed because there is some smearing of the x-position of the vertex.

Given the spectrometer's good resolution of the vertices for the hydrogen and deuterium

targets and the separation of the targets, the effect of the smearing is small. These cuts

were defined in a way that minimized the number of events that could be mistakenly

assigned to a target and at the same time maximized the number of events that are

correctly assigned to a target. In figure 5.7 the number of events of the fitted vertex for

trigger 1 is plotted versus the x-position along the beam path for the two target setups.

The events of both target setups are added. The figure shows the almost linear

dependence of the acceptance on the x-position. A similar plot for trigger 2 is shown in

figure 5.8. The positions of the target vessels, the mylar windows, the beam hodoscopes,

BHB, and of the proportional chambers, P0H and P0C are shown. While P0B is not

labeled (for clarity), it is clearly seen between the upstream and downstream targets. The

position of the final cuts is also indicated on these plots. The cuts were placed in the

minima of the distributions on either side of the target vessels’ end caps positions and

between the targets and ‘obstacles’ in the beam (where the interactions from outside the
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targets occurred), specifically the proportional chambers and the beam hodoscopes

marked in the figures. The correction applied to the d! p!  ratio for the erroneous

assignment of the vertex is detailed below.

Figure 5.7:
The Vertex Distribution for trigger 1.

The number of events versus the x-position.
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Figure 5.8:
The Vertex Distribution for trigger 2.

The number of events versus the x-position.

5.3.2.2. Kinematical cuts

The formulae in eqs. (5.1) and (5.4) can be manipulated to give the acceptance

and flux ratios. The acceptance ratio is discussed above with the derivation of eq. (5.9),

while now the flux ratio is defined as:

1"

2"
= d

upN p
dnN

p
upN d

dnN
. (5.10)
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Here 1"  is the beam flux in target setup-1, 2"  is the beam flux in target setup-2. Eq.

(5.10) is based on the assumptions that the cross section for each material is independent

of target position, and that the acceptance is independent of target material and thus is the

same for each of the upstream and downstream targets, (thus d
upA = p

upA = upA  and

p
dnA = d

dnA = dnA ).

The flux ratio should be constant over the entire range of any kinematical

variable. The acceptance ratio may vary due to the different acceptance between the

upstream and downstream targets; however, regions where this ratio is rapidly varying

should be cut out. The cuts are made such that any smearing of a kinematic variable does

not cause sudden changes in the 2
nF 2

pF  ratio due to either flux or acceptance. After

making these cuts, the correction from the “kinematic smearing” is small enough to be

neglected entirely. Examples of the flux and acceptance ratios, before and after cuts, are

given in figures 5.9 and 5.10 for trigger 1 and in figures 5.11 and 5.12 for trigger 2.

Because the variables y and )  are correlated the cuts on low )  and high y are seen in

both of the plots of )  and y . The cuts on *  and µ+p  are determined from other

arguments, but the necessity of the cuts is also seen in the flux and acceptance ratios.
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Figure 5.9:
The trigger 1 flux and acceptance ratios for ) , both before and after cuts, with the

cuts shown by the arrows.
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Figure 5.10:
The trigger 1 flux and acceptance ratios for * , both before and after cuts, with the

cuts shown by the arrows.
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Figure 5.11:
The trigger 2 flux and acceptance ratios for ) , both before and after cuts, with the

cuts shown by the arrows.
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Figure 5.12:
The trigger 2 flux and acceptance ratios for * , both before and after cuts, with the cuts

shown by the arrows.
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The final kinematical cuts are determined not only from the flux and acceptance

ratio plots. There are also other arguments that are taken into consideration to remove

problematic regions, i.e., those with large radiative corrections (the cut on high y ), with

poor Bjx  determination (the cut on low ) ), and where there is contamination from

hadronic decays (the cut on small values of the scattered muon momentum, µ+p ). Also

cuts were made on the minimum scattering angle, * , due to the limit of the trigger

acceptance. The final cuts for the kinematic range 0.002 < Bjx < 1, 22Q > 1.0 GeV c( )  for

trigger 1 and 0.002 < Bjx < 1, 22Q > 0.5 GeV c( )  for trigger 2 are shown in Table 5.1:

Table 5.1:
Cuts on the Kinematical Variables

Variable Trigger 1 Trigger 2 Reason
y < 0.9 < 0.9 Radiative Corrections
) > 10 GeV > 15 GeV Flux Ratio

µ+p > 30   GeV c > 30   GeV c Hadronic Contamination

* > 10 mrad > 5 mrad Trigger Acceptance

The assumptions that were made to allow eq. (5.8) to be used, i.e., on the flux and

the acceptance, are thus shown to be valid in the region covered by the 2
nF 2

pF  ratio after

making these cuts in the kinematic variables: Bjx , 2Q , ) , y, µ+p  and * .

5.4. Corrections to the Ratio

The further corrections to be made before the ratio 2
nF 2

pF  can be extracted are the

HD contamination of the liquid deuterium target and for the vertex resolution.
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5.4.1. Effect of the HD contamination of the target.

The correction for the hydrogen-deuterium (HD) contamination of the liquid

deuterium is done in two parts: first with a correction to the molar volume, 2D
molV , and

second with a correction to the number of events, dN . This calculation is done in full in

appendix 8.2. The formula for the final correction is given by:

d!

p!

,

-
.

/

0
1

corr

= $ d
upN d

downN
p
upN p

downN
1+ 22 3 '1( )( )
1+2 p!

d!
'14

5
6

7
8
9

4

5
6

7

8
9

. (5.11)

With $ =0.8664, 2=0.0151 and 3 =1.1009 and by assuming that p! d!  is given by:

p!

d!
= $ d

upN d
downN

p
upN p

downN

4

5
6

7

8
9

'1

. (5.12)

A Taylor's expansion of the corrected ratio d! p!  is made; this gives to a good

approximation:

d!

p!

,

-
.

/

0
1

corr

: 0.8822 d
upN d

downN
p
upN p

downN
' 0.0151. (5.13)

5.4.2. Vertex resolution corrections

Because the cuts that are made on the x-vertex position in order to resolve the two

targets do, due to smearing, cut out some good events and accept some bad events a

correction to the ratio d! p!  must be made. After making a fit1 to the number of events

versus the x-position of the vertex, as seen in the examples given in figure 5.13 for trigger

1 and figure 5.14 for trigger 2, a correction is made. From the figures the contributions
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from: the targets themselves, the beam hodoscope BHB, and the proportional chambers

P0H and P0B, are visible. Since the vertex resolution depends on the scattering angle, * ,

the fits were done for different *  bins.

The fits are made to each of the two target sets using a combination of a fit to

trapezoidal shape, for the relatively straight parts, a convolution of a Gaussian function

and Breit-Wigner function, for the edges of the targets and a Gaussian function for the

proportional chambers, Mylar windows and the beam hodoscope.
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Figure 5.13:
The fit of the vertex smearing correction versus x-position for the first *

bin of trigger 1.
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Figure 5.14:
The fit of the vertex smearing correction versus x-position for the second

*  bin of trigger 2.
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The corrections for the vertex smearing are determined by making a correction,

& , for each target position. This correction &  is the ratio of all events within the vertex

cuts to all events that belong to that target, hence & = S I , where S is the sum of all fitted

contributions within the vertex cuts and I is the fitted integral from -< to +< of the target

contribution alone. The ratio, d! p! , assumes the true number of events and

measuredN = & trueN , and since d! p!  is of the form:

d!

p!
= $ d

upN d
dnN

p
upN p

dnN
, (5.14)

the corrected d! p!  ratio is equal to 2  times the measured ratio, where 2  is defined

from the ratio of measuredN / trueN  for each target position as:

2 = p
up& p

dn&

d
up& d

dn&
. (5.15)

In the worst case this correction is less then 1 percent and is typically two or three

parts per mil, the same order as the systematic error. The accuracy of this correction is

less then one part per mil and typically a few parts per ten thousand. The correction factor

2 , with errors, for the appropriate *  bins, is given in table 5.2.

Table 5.2: Correction factor 2  , for the given *  bins:

0.010<*<0.015 0.015<*<0.019 0.019<*<0.025 0.025<*<0.100
Trigger 1 1.0073±0.0009 1.0039±0.0001 1.0036±0.0004 1.0023±0.0001

  0.005<*<0.007   0.007<*<0.009   0.009<*<0.011   0.011<*<0.100
Trigger 2 1.0042±0.0004 1.0035±0.0001 1.0019±0.0001 1.0015±0.0001
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5.5. Results of the ratio analysis

The results of the ratio analysis are presented in three parts: the Bjx  dependence of

the ratio, the 2Q  dependence of the ratio and the test of the Gottfried sum rule.

5.5.1. The Bjx dependence of the ratio 2
nF 2

pF

At low Bjx  shadowing may be observed in the 2
nF 2

pF  ratio for deep inelastic

scattering. The ratio 2
nF 2

pF  has been used to put constraints on the parton distribution

parametrizations by extending the range in Bjx  to the region 0.01 < Bjx < 0.10 , where the

valence and sea quarks contribute equally. In the region Bjx >0.3 the valence quarks

dominate because they are now carrying a significant fraction of the nucleon momentum.

The ratio 2
nF 2

pF  has also been used to constrain the standard model prediction to

the ±W  and 0Z  production cross section ratio W! Z!  and to deduce the number of

neutrino families2. The ratio W! Z!  is related to the up to down quark ratio d u . As

discussed in section 2.2, the ratio d u  can be expressed in terms of the ratio 2
nF 2

pF ;

therefore, the ratio W! Z!  is related (in the quark-parton model) to the ratio 2
nF 2

pF . By

comparing the ±W 0Z  decay, which depends on )N , the number of neutrino families, as

calculated from the quark-parton model, in which 2
nF 2

pF  was input, with the measured

value in pp collisions, one finds )N =3±1 prior to the much more precise value now

known from Large Electron-Positron collider (LEP). At s = 630 GeV, which

corresponds to Bjx = 0.14, the ratio W! Z!  was calculated to be 3.35±0.04.

In figure 5.15 the ratio of the number of ±W s to the number of 0Z s versus the number of

possible neutrino families from data prior to the start of LEP.
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Figure 5.15:
The ratio of the number of ±W s to the number of 0Z s versus the number of possible

neutrino flavors.

The Bjx  dependence of the ratio 2
nF 2

pF  was obtained by averaging the results

over 2Q  for each Bjx  bin. The results from period P3A89 at 280 GeV for both trigger 1
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and trigger 2 are given in table 5.3 and plotted in figure 5.16. Since there is generally

good agreement between the results for trigger 1 and 2 the data could be combined.

Table 5.3: The ratio 2
nF 2

pF  averaged over 2Q  for P3A89

Trigger 1 Trigger 2

Bjx
2Q

2GeV c( )
2
nF
2
pF

Bjx( ) Error
(statistical)

2Q
2GeV c( )

2
nF
2
pF

Bjx( ) Error
(statistical)

0.003 1.4 1.124 0.072 1.1 0.956 0.030
0.007 2.9 0.962 0.031 2.1 0.944 0.016
0.015 5.8 0.974 0.028 3.2 0.938 0.015
0.030 10.0 0.942 0.025 4.2 0.945 0.015
0.050 14.4 0.950 0.030 5.1 0.903 0.019
0.080 18.7 0.831 0.024 5.8 0.862 0.017
0.125 23.2 0.862 0.028 7.1 0.842 0.021
0.175 26.4 0.826 0.033 8.7 0.748 0.028
0.250 29.0 0.711 0.028 10.7 0.744 0.032
0.350 31.0 0.586 0.035 13.4 0.739 0.062
0.450 31.5 0.466 0.044 16.1 0.522 0.104
0.550 31.5 0.412 0.060
0.700 30.6 0.512 0.077
0.900 27.7 0.643 0.194
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Figure 5.16:
The ratio 2

nF 2
pF  for trigger 1 and trigger 2 versus Bjx .

The combined trigger 1 and trigger 2 results, along with the total systematic errors

from the latest NMC ratio paper3 are given in table 5.4. The systematic errors are from

primarily three sources: the radiative corrections, the uncertainty in the momentum of the

incoming and of the scattered muon and the vertex resolution. Because one of the sources

of error in the radiative corrections is the uncertainty in 2
dF , the error on the radiative

corrections for the 1989 data should be less then the error quoted in the NMC paper3, due
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to the present better knowledge of 2
dF . The error in the momentum uncertainty is the

same in 1989 as previously3. Also the vertex resolution corrections are of the same size as

before. The total systematic errors were obtained by adding each individual source in

quadrature.

These results are also shown in figure 5.17 with statistical errors only together

with the latest combined NMC ratio results4.

Table 5.4:
The ratio 2

nF 2
pF  averaged over 2Q  for trigger 1 and trigger 2 combined

Bjx 2Q  in 2GeV c( ) 2
nF
2
pF

Bjx( )
Error

(statistical)
Error

(systematic)

0.003 1.16 0.981 0.028 0.022
0.007 2.24 0.948 0.014 0.012
0.015 3.78 0.946 0.014 0.007
0.030 5.71 0.944 0.013 0.005
0.050 7.61 0.916 0.016 0.004
0.080 9.93 0.852 0.014 0.003
0.125 12.92 0.849 0.017 0.003
0.175 16.24 0.781 0.022 0.004
0.250 21.19 0.725 0.021 0.004
0.350 26.74 0.623 0.030 0.006
0.450 29.13 0.475 0.041 0.008
0.550 30.03 0.380 0.056 0.012
0.700 29.68 0.441 0.073 0.017
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Figure 5.17:
The ratio 2

nF 2
pF  for the combination of both trigger 1 and 2 data,

along with the NMC results for 280 GeV4, versus Bjx .

Since the ratio 2
nF 2

pF , as seen in the plot is consistent with unity at low Bjx ,

(0.981±0.028) there is no evidence of any sizable shadowing in deuterium, at least for

Bjx ? 0.003, which would be seen in a suppression of the ratio to low Bjx .
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In the region Bjx >0.3, the valence quarks dominate, therefore the structure

function ratios should, as discussed in section 2.2, reduce to:

2
nF
2
pF

Bjx( ) = 1+ 4 vd Bjx( )
vu Bjx( )

,

-
.

/

0
1 4 + vd Bjx( )

vu Bjx( )
,

-
.

/

0
1 . (5.16)

In this region there is good agreement between the neutrino data and the NMC muon

data. In figure 5.18 the ratio 2
nF 2

pF  for muons and the ratio as expressed by equation 5.16

for neutrinos is plotted versus Bjx .
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Figure 5.18:
A comparison of the ratio 2

nF 2
pF  for muons with neutrinos from

the CERN WA21 and WA25 experiments5 versus Bjx .
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5.5.2. The 2Q  dependence of the ratio 2
nF 2

pF

It has been observed in previous NMC results6 that there is a slight difference

between the results of the ratio 2
nF 2

pF  measured for two different energies, 90 GeV and

280 GeV, in the medium Bjx  range. This implies that there is a slight 2Q  dependence.

The 2Q  dependence of the present data was therefore also studied.

The results of the 280 GeV period, P3A89, are presented in table 5.5, where the

systematic errors are again taken from the latest NMC ratio paper3, as discussed in

chapter 5.6.1. These results are plotted in figure 5.19, with statistical errors only, along

with a fit to the previous NMC data of both 90 GeV and 280 GeV versus 2Q  for each

Bjx -bin. The results of P3A89 are consistent with the fit.

The fit was obtained in the following manner, for each Bjx -bin, the assumption of

a linear function in ln 2Q( ) was made and is given as:

2
nF
2
pF

Bj
ix , 2Q( ) = a Bj

ix( ) + b Bj
ix( ) ln 2Q( ). (5.17)

The full analysis of the 2Q  dependence of the ratio 2
nF 2

pF , along with higher order QCD

effects, has been presented elsewhere6. The results presented in this thesis are in good

agreement with previous NMC results6. Therefore the conclusions drawn from those

results regarding the 2Q  dependence and higher order QCD effects should hold true for

the data in this thesis.
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Table 5.5: The ratio 2
nF
2
pF

Bjx , 2Q( ) for P3A89. ( 2Q  in 2Gev c( ) )

2Q 2
nF
2
pF

Bjx , 2Q( )
Stat.
error

Syst.
error 2Q 2

nF
2
pF

Bjx , 2Q( )
Stat.
error

Syst.
error

At Bjx =0.003 At Bjx =0.050
0.75 1.0230 0.05596 0.025 1.5 0.9385 0.15950 0.006
1.5 0.9630 0.03202 0.020 2.5 0.9201 0.05191 0.004

At Bjx =0.007 3.5 0.9062 0.04298 0.003

1.5 0.9666 0.02296 0.010 4.5 0.9105 0.04534 0.003
2.5 0.9273 0.02235 0.013 5.5 0.9411 0.05129 0.003
3.5 0.9299 0.03726 0.014 7.0 0.9216 0.04359 0.003
4.5 1.1280 0.10730 0.015 9.0 0.7423 0.05112 0.006

At Bjx =0.015 11.5 0.9553 0.05607 0.003

1.5 0.9485 0.05459 0.004 15.0 0.9526 0.05167 0.003
2.5 0.9729 0.02659 0.004 20.0 1.0190 0.06493 0.004
3.5 0.9390 0.02750 0.005 27.0 0.8478 0.16810 0.005
4.5 0.9152 0.03117 0.009 At Bjx =0.080
5.5 0.9041 0.04081 0.010 2.5 0.9462 0.05877 0.010
7.0 0.9526 0.04514 0.010 3.5 0.8938 0.04126 0.008
9.0 1.0640 0.13800 0.010 4.5 0.8329 0.04107 0.027

At Bjx =0.030 5.5 0.8381 0.04496 0.035

1.5 0.8709 0.08534 0.020 7.0 0.8276 0.03711 0.029
2.5 0.9117 0.03334 0.012 9.0 0.8012 0.04650 0.013
3.5 0.9368 0.02990 0.012 11.5 0.8196 0.04842 0.018
4.5 0.9748 0.03383 0.002 15.0 0.8825 0.04895 0.011
5.5 0.9330 0.03819 0.024 20.0 0.8261 0.04394 0.021
7.0 1.0150 0.03606 0.025 27.0 0.8422 0.05720 0.017
9.0 0.9515 0.04098 0.005 36.0 0.7593 0.10090 0.174

11.5 0.8970 0.04250 0.023
15.0 0.9164 0.06941 0.016
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Table 5.5:(Continued) The ratio 2
nF
2
pF

Bjx , 2Q( ) for P3A89. ( 2Q  in 2Gev c( ) )

2Q 2
nF
2
pF

Bjx , 2Q( )
Stat.
error

Syst.
error 2Q 2

nF
2
pF

Bjx , 2Q( )
Stat.
error

Syst.
error

At Bjx =0.125 At Bjx =0.250
3.5 0.8500 0.06542 0.016 7.0 0.8062 0.07031 0.005
4.5 0.9195 0.05260 0.037 9.0 0.7475 0.06020 0.004
5.5 0.8413 0.05322 0.007 11.5 0.7043 0.05847 0.003
7.0 0.7914 0.04288 0.039 15.0 0.7624 0.06428 0.004
9.0 0.8380 0.05540 0.018 20.0 0.6798 0.05495 0.003

11.5 0.8252 0.05611 0.022 27.0 0.6410 0.05546 0.002
15.0 0.8790 0.05920 0.004 36.0 0.6625 0.06735 0.002
20.0 0.8305 0.05275 0.012 48.0 0.9070 0.09962 0.002
27.0 0.7966 0.05611 0.024 65.0 0.7342 0.11770 0.001
36.0 1.0170 0.08566 0.041 100.0 0.9024 0.20250 0.001
48.0 0.7050 0.10190 0.072 At Bjx =0.350

At Bjx =0.175 9.0 0.7397 0.17420 0.008

4.5 0.8863 0.13170 0.021 11.5 0.7518 0.08828 0.006
5.5 0.8154 0.07128 0.026 15.0 0.6773 0.08625 0.005
7.0 0.7300 0.05186 0.002 20.0 0.6832 0.08106 0.003
9.0 0.7422 0.06425 0.017 27.0 0.6073 0.07583 0.003

11.5 0.7247 0.06570 0.009 36.0 0.6499 0.08892 0.002
15.0 0.8664 0.07352 0.026 48.0 0.6618 0.11020 0.002
20.0 0.8072 0.06497 0.024 65.0 0.4658 0.11780 0.001
27.0 0.7135 0.06415 0.036 100.0 0.4865 0.15490 0.001
36.0 0.8880 0.08709 0.022 At Bjx =0.450
48.0 0.8799 0.11340 0.021 15.0 0.5549 0.10890 0.007
65.0 0.9333 0.17780 0.117 20.0 0.6557 0.11070 0.004

27.0 0.5421 0.10050 0.003
36.0 0.3041 0.09601 0.003

At Bjx =0.550
20.0 0.4177 0.12250 0.006
27.0 0.5179 0.13700 0.004
36.0 0.4355 0.15860 0.003
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Figure 5.19:
The 2Q  dependence of the ratio 2

nF 2
pF .
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5.5.3. The measurement of dR ' pR .

The structure function ratio 2
nF 2

pF  was derived, in section 5.3, from the cross

section ratio d
1&! p

1&!  by making the assumption that the ratio of the longitudinally to

transversely polarized virtual photon absorption cross section R is the same for the

deuteron as for the proton.

Experimental results on @R = dR ' pR  can be compared to perturbative QCD7

computations predicting that the difference @R is much smaller then R if one assumes

similar gluon distributions in the deuteron and proton. Inversely a large value of @R

would indicate either a difference in the gluon distributions of the proton and deuteron or

different higher-twist contributions to dR  and pR .

Previously the values of dR ' pR  were previously obtained from measurements by

the BCDMS8 collaboration and from a re-analysis of older SLAC data9. In the NMC

experiment the cross section ratios were measured with minimal systematic errors.

Because such ratios are much more sensitive to @R than to individual measurements of
dR  and pR , the data sets from this thesis and from earlier NMC results3 are well suited to

determine @R.

As detailed in a recent NMC paper10, the calculation of @R involves using the

cross section ratio d
1&! p

1&!  measured at two or more different energies. The data

presented in this thesis was measured only at one energy. Therefore one can only

compare the results of the published calculation with the results of the calculation11 that

included both the data from 1989 and the previous NMC results3. The 1989 data include

the data from two periods with a muon energy of 280 GeV (P2D89 and P3A89). The

previous NMC results3 include the data sets of 90 and 280 GeV beam energies.
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The Bjx -dependence of dR ' pR , plotted with statistical errors only, for both of

these sets of results is shown in figure 5.20.
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Figure 5.20:
The difference dR ' pR  versus Bjx .

The results presented in this thesis cover the kinematic range 0.01 < Bjx < 0.3.

When averaged over Bjx , the result for @R of the calculation that includes the 1989 data

is: 0.022 ± 0.011(Stat.). This should be compared to the published result10 of:

0.031± 0.016(Stat) ±0.011(Syst.) The previous SLAC9 results in the range

0.1 < Bjx < 0.9 give a value for dR ' pR  of: '0.001± 0.009(Stat) ±0.009(Syst.). These

results are consistent with zero and thus in good agreement with the QCD prediction7.
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5.5.4. Gottfried sum rule

The Gottfried Sum, as discussed in chapter 2.2 is the integral of the difference

between the proton and neutron structure function in the form:

GS = d Bjx
Bjx

2
pF Bjx( )' 2

nF Bjx( )( )
0

1

A . (5.18)

Since the ratio 2
nF 2

pF  is measured, the difference 2
pF ' 2

nF  can be determined from the

ratio by using eq. (5.8). This difference, in terms of the ratio 2
nF 2

pF  and the structure

function 2
dF  is:

2
pF Bjx( )' 2

nF Bjx( ) = 2 2
dF Bjx( )

1' 2
nF
2
pF

Bjx( )4
5
6

7
8
9

1+ 2
nF
2
pF

Bjx( )4
5
6

7
8
9

. (5.19)

The value of the structure function 2
dF  is given by a parametrization in Bjx  and 2Q  from

the latest published results12. The prediction for the Gottfried sum was made using the

quark-parton model which has no scaling of the value of the structure function 2F .

However there is scaling in the value of 2F , but the QCD corrections are small. To

remove the small effect of these scaling violations the Gottfried sum is calculated at fixed

values of 2Q . This means that the ratio 2
nF 2

pF  at 2Q  must be extrapolated. This was

done using the 2Q  slopes as measured for the whole range of the previous NMC data3.

The values for 2
nF 2

pF , measured at an average 2Q  and given in table 5.4, are extrapolated

to the fixed value of 2Q . The results in the measured range, 0.004 < Bjx < 0.8, for two

different values of 2Q  are given in table 5.7.
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Table 5.7:

2
dF , 2

nF 2
pF  and the Gottfried Sum for different values of 2Q .

2Q  = 4.0 2Gev c( ) 2Q  = 7.0 2Gev c( )

Bjx  bin 2
dF 2

nF 2
pF error G( error 2

dF 2
nF 2

pF error G( error
0.004 - 0.01 0.412 0.946 0.016 0.216 0.012 0.463 0.945 0.019 0.228 0.013
0.01 - 0.02 0.393 0.945 0.013 0.196 0.010 0.435 0.941 0.014 0.205 0.010

0.02 - 0.04 0.378 0.946 0.013 0.181 0.009 0.409 0.943 0.013 0.187 0.009
0.04 - 0.06 0.365 0.915 0.017 0.167 0.009 0.387 0.916 0.016 0.172 0.008
0.06 - 0.10 0.349 0.865 0.015 0.154 0.008 0.364 0.857 0.014 0.158 0.007
0.10 - 0.15 0.331 0.881 0.019 0.129 0.008 0.337 0.866 0.017 0.130 0.007
0.15 - 0.20 0.310 0.854 0.024 0.112 0.007 0.310 0.825 0.023 0.111 0.006
0.20 - 0.30 0.273 0.787 0.024 0.098 0.007 0.267 0.767 0.023 0.094 0.006
0.30 - 0.40 0.214 0.701 0.037 0.072 0.006 0.202 0.678 0.034 0.065 0.005
0.40 - 0.50 0.152 0.429 0.053 0.051 0.005 0.138 0.442 0.048 0.043 0.004
0.50 - 0.60 0.101 0.432 0.078 0.024 0.004 0.085 0.418 0.068 0.020 0.003
0.60 - 0.80 0.049 0.498 0.101 0.009 0.003 0.034 0.482 0.089 0.007 0.002
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The plots of 2
pF ' 2

nF  and the contributions to the integral for the Gottfried sum to

the measured range 0.004 < Bjx < 0.8 are shown for two different values of 2Q  in figure

5.21.
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Figure 5.21:
The Gottfried Sum and 2

pF ' 2
nF  for different values of 2Q .

However because the Gottfried sum covers the full range 0 < Bjx < 1 the integral

must be extrapolated over the range 0 < Bjx < 0.004 and 0.8 < Bjx < 1. The contribution to

the Gottfried sum for 0.8 < Bjx < 1, assuming a smooth extrapolation of the ratio 2
nF 2

pF

to 0.25 at Bjx = 1, is estimated to be: 0.002 ± 0.001. For 0 < Bjx < 0.004 the extrapolation

of 2
pF ' 2

nF  is taken from a fit of the function a bx . These results are given, along with the

final calculations and the total errors, in table 5.8.
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Table 5.8:
The Gottfried Sum at two different values of 2Q .

Bjx  range 2Q = 4 GeV c( )2 2Q = 7 GeV c( )2

G( Total error
G( Total error

0.004< Bjx  <0.800 0.216 0.012 0.228 0.013

0.000< Bjx  <0.004 0.037 0.030 0.039 0.032

0.800< Bjx  <1.000 0.002 0.001 0.002 0.001

Total: 0.254 0.035 0.269 0.037

Since there is good agreement, in the measured range, between the result at

  
2Q = 4 GeV / c( )2 of 0.216±0.012 and the published result13 of 0.227±0.007, the

systematic error of ±0.014 from the published result is taken as a reasonable upper limit

for the systematic error of the results. The sources of the systematic error include:

radiative corrections, momentum measurement of the beam and scattered muons, vertex

resolution and the uncertainty of the value of 2
dF . The momentum measurement was

made with the same accuracy and the vertex resolution is the same as in the earlier

publication13. However, because the knowledge of 2
dF  and of the radiative corrections is

now12 better, the assumption that the published systematic error of ±0.014 is a good upper

limit should be valid.

These results are consistent with the published results13 of 0.240±0.016 and

indicate a significant deviation from the value of 1/3 predicted by the quark parton model.

While the most likely explanation for this discrepancy is a flavor asymmetric sea where

u B d , other effects should also be considered.
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6. 2F  Structure Function Analysis

6.1 Introduction

The structure function 2F Bjx , 2Q( ) , as determined from measurements of deep

inelastic scattering, reflects the momentum distribution of quarks within the nucleon. The

value of the structure function 2F  at low Bjx  determines the rates of reactions expected at

the next generation of high energy colliders such as the LHC and the SSC. The 2Q

dependence of 2F  can be used to determine the scale parameter of QCD and the gluon

momentum distribution of the nucleon. Previous knowledge of the proton and deuteron

structure functions, 2
pF  and 2

dF , stems from deep inelastic electron (SLAC1) and muon

(BCDMS2 and EMC3) scattering experiments.

For the precise determination of 2F  one needs cross sections on an absolute scale,

in contrast to the relative cross sections that were used in the analysis of structure

function ratios (Chapter 5). Therefore the spectrometer acceptance and the beam flux

must be precisely determined.

The 2F  analysis starts with efficiency studies to determine the acceptance of the

spectrometer. The comparison of the measured data to a Monte Carlo simulation of the

experiment checks that the acceptance is well defined. For the normalization to the beam

flux specially measured data (trigger 3/4 and trigger 10) are used.

Because the measured cross section also includes higher order radiative processes,

as described in section 2.4, radiative corrections must be applied to obtain structure

functions. These corrections are calculated from theory using the best known value of 2F

itself. Therefore, radiative corrections are obtained from an iterative procedure.
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Corrections for the target contamination and the difference in the upstream and

downstream acceptance were also applied. To determine the accuracy of the result

systematic studies were performed.

6.2 Efficiency studies

To calculate the acceptance of the spectrometer one needs information on how

efficiently tracks going through the apparatus are registered. Each detector plane has its

efficiency calculated by determining, from the reconstructed tracks, the actual events

found ("hits") and those that should have been found but were not ("fails") in the form:

! = HitsN
HitsN + FailsN

. (6.1)

Where !  is the efficiency, HitsN  the number of hits and FailsN  the number of fails. For the

proportional and multi-wire drift chambers this calculation was further refined by

requiring a minimum number of planes to be hit for a track to be considered a good track.

For a plane requirement pn  the efficiency is now of the form:

! = HitsN " pn +1( )
HitsN " pn +1( ) + FailsN " pn( )

. (6.2)

6.2.1. Time dependent efficiency

A check that the average plane efficiency is reasonably constant over time is

made. This is done by examining the average plane efficiency for each run. Changes in

the average plane efficiency over time are seen in figure 6.1.



130

Figure 6.1: All the planes with a time dependent change in the efficiency.
These plots are of the efficiency versus the run number.

(The #-planes are indicated by a T)

For the three planes: Y5, Z5 and #4 of W67, the change in the efficiency was

caused by a change in the high voltage of the sense wire. The change in the efficiency of

the Y2 plane of W2 was probably also caused by a change in the high voltage. For the #4
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plane in P0C, the change in the efficiency was caused by the repair of a broken

preamplifier.

In the case of P0C the region of the plane affected by the broken preamplifier was

set to zero efficiency for the runs concerned in the efficiency parametrization. For the

other planes, the period was broken up into separate groups of runs and the efficiency

was calculated separately for each group for use in the efficiency parametrization.

6.2.2. Wire chamber support efficiency

In some planes, with long wires, an additional support is attached to the wires to

keep them in their correct position. These supports locally degrade the efficiency;

therefore, this must be included in the efficiency calculation. An example of such a

degradation is seen in figure 6.2, in which the efficiency perpendicular to the support is

given. The lower efficiency in the region of the supports is parametrized by a square well

of depth equal to the minimum efficiency and having a width equal to the full width at

half way between the minimum and the average plane efficiency.
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Figure 6.2:
The efficiency perpendicular to the support for the planes: PV1-

Y1, PV2-Y1 and W67B-Y1.

6.2.3. Wire chamber and trigger hodoscope efficiencies

After examining the time dependent efficiencies and modeling the inefficiency

perpendicular to the readout wires, due to the wire supports, the parametrization of the
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efficiency of the wire readout and trigger hodoscope planes must be done. The usual three

types of parametrizations are: (i) an efficiency averaged over the whole plane, (ii) a radial

fit or (iii) a fit to groups of wires. These parametrizations assume that the efficiency along

the wire (or hodoscope element) is uniform, or at least smoothly varying (for the radial

efficiency fit).

6.2.3.1. General planes

The following efficiency plots were examined: (i) the efficiency versus

wire(element) number, (ii) the projected radial efficiency, and for multi-wire drift

chambers, (iii) the average efficiency versus the position within the drift cell.

To improve the accuracy of the efficiency parametrizations, wires(elements) that

were either dead or had an abnormally low efficiency compared with the neighboring

wires(elements) were removed from the plots and efficiency calculations. These few

unusually inefficient wires(elements) were then parametrized as individual

wires(elements), or groups of wires with a fixed efficiency, and were treated separately

during track reconstruction.

The remaining wires(elements) were then re-plotted and parametrized as one of

the three types of parametrizations, an efficiency averaged over the whole plane, a radial

fit, a fit to groups of wires or sometimes a drift cell efficiency. An example of planes that

were either fit with a radial fit or where groups of wires were fit is seen in figure 6.3.
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Figure 6.3:
The plots of efficiency versus wire number and radial efficiency for the

planes P0B-Z1 and P2-Z.

Planes, like P0B, with a smooth efficiency in both the wire and radial projections were

parametrized with a radial fit; while planes, like P2, with jumps in their efficiency are fit

by grouping wires together, typically 5 or 10 wires, and setting them to the average

efficiency of the group.
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An example of the efficiency of one plane of a multi-wire drift chamber is given

in figure 6.4.

Figure 6.4:
Efficiency versus wire number, radial efficiency and the drift cell efficiency for W2-Z1
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The multi-wire drift chambers were parametrized by first separately fitting the

efficiency within the drift cell and making a fit of the radial efficiency, then combining

the two efficiencies in the form:

! =1$
1$ Radial!( ) 1$ Drift!( )

1$ average!
. (6.3)

Here Radial!  is the radial efficiency from the fit, Drift!  is the fitted efficiency within the

drift cell and Average!  is the average plane efficiency.

The efficiency versus element number for the trigger 1 hodoscopes is shown in

figure 6.5. These planes were fit using the average efficiency.

Figure 6.5:
The efficiency versus element number for the trigger 1 hodoscopes.
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6.2.3.2. Problem planes

While on the whole the parametrization of the efficiency went smoothly, there

were three major problems that needed considerable extra work to model. These

problems were, the efficiency as a function of position along the wire or hodoscope

element, the aging of W12 and the background in both W45 and P45.

The normal efficiency calculations, as stated above, assume a uniform efficiency

along the wire or hodoscope element. When this assumption is not true some corrective

action must be taken. This problem has manifested itself in two ways; in W67B some of

the central wires did not have a uniform efficiency and in the central elements of H1H

and H1V there were a few strips with a position dependent efficiency.

In W67 this is true for one wire in particular, wire number 18 of plane W67B Z5,

as shown in figure 6.6. Because of the redundancy of Z-planes in W67 this wire could

simply be removed from the track reconstruction.
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Figure 6.6:
The efficiency along the wire for wire #18 of plane W67B-Z5.

For problematic hodoscope elements, however there was no redundancy so rather

than “killing” a bad element the efficiency was fitted with a linear function of the position

and this fit was used as a correction to the analysis program. The problematic hodoscope

elements; numbers 14 and 28 of plane H1V and element number 9 of plane H1H are

shown in figure 6.7, along with one good element (number 10 of plane H1H) for

comparison.
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Figure 6.7:
The alongside efficiency and fits for the elements:

H1V #14, H1V #28, H1H #9 and H1H #10.

The single most time consuming problem was aging for some of the W12 planes.

The best guess as to the cause of this problem was hydrocarbon buildup on the readout

wires. It manifested itself as a drop in the efficiency, primarily in the central region, and

differences in the drift cell efficiency. An example of this problem, for one plane, is seen

in figure 6.8:
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Figure 6.8:
The plots of the efficiency of plane W1 Z1.

In this figure the plots of the efficiency versus wire number, the radial efficiency,

the average drift cell efficiency for the whole plane and an overlay of the drift cell
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efficiencies, for some of the different parts of the plane, are shown (for comparison with a

good plane, see figure 6.4).

Because the efficiency within the drift cell changed drastically for different

regions a new method of parametrization was developed. This method involved

separating the plane into different parts. Each part is then separately fitted using the

normal drift chamber method and then joined together for input into the Monte Carlo

track reconstruction program. The problematic planes in W12 were: W1-Y1, W1-Z1,

W1-#1, W2-Y2 and W2-#1.

The high background in the W45/P45 region leads to loss of tracks and thus an

overestimation of the efficiency. This effect was small for the P45 proportional chambers

and could be corrected for in the analysis program with a parametrization based on the

kinematic variable y. The losses in P45 were due to high hit multiplicity caused by

background. In W45 the losses were caused by leak through of charge from one drift cell

to another, causing multiple hits; in addition to high multiplicity from the background.

Because of the long dead time in the readout electronics these multiple hits caused larger

track losses and therefore a much larger overestimation of the W45 efficiency. In the

region of overlap between P45 and W45, where the P45 chambers add to the track

reconstruction, there is good agreement between the W45 and P45 efficiency estimation.

However this is not true in the region where only W45 tracks are used for the efficiency

calculation. The step in the radial efficiency of Z planes of W45 shows this problem, see

figure 6.9. Because the background problem in W45 is not well understood tracks from

the region outside of the radius of P45 were excluded from the analysis. This caused a

loss of some 25 percent of the data.
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Figure 6.9:
The radial efficiency of the Z planes of W45.
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The types of fits used for the various detectors are given in table 6.1:

Table 6.1:
The types of efficiency parametrization used

Detector Type of Fit Comments
P0B Radial
P0C Radial
PV12 Groups of Wires 10 Wires
P0D Radial
P123 Groups of Wires 10 Wires for Y, # planes; 5 Wires for Z
P0E Radial From T2
W12 Drift Chamber ( W1Y1,  W1Z1,  W1#1,  W2Y2,  W2#1 Special)
P0A Plane Average
W45 Drift Chamber
P45 Radial
W67A Plane Average
W67B Groups of Wires Individual wires
W67C Plane Average

T1 Hodoscopes Plane Average

6.3 Monte Carlo Simulation

Because of the complexity of the spectrometer and of the reconstruction software,

it is impossible to analytically reproduce a measurement from a given cross section and

the efficiencies.

Therefore a computer simulation is performed with events generated primarily

from the cross section distribution, called a Monte Carlo simulation. The generated
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events are then transformed into hits within the detector using the parametrized

efficiencies.

These Monte Carlo events are processed through the full reconstruction software

analysis as if they were measured events. The software reconstruction efficiencies are

thus also taken into account. In the end these Monte Carlo simulated events are compared

to measured data.

The ratio of the data and Monte Carlo events should be equal to unity and

independent of any variable. Examples are given in figures 6.10 and 6.11, where the

ratios of data and Monte Carlo events are shown as a function of the kinematics variables.

In this example the results are satisfactory. This is less so however in figures 6.12 and

6.13, the plots of ratios of data and Monte Carlo events, as a function of the radial

position in various detectors. The reconstruction in the downstream target by P45 in

particular shows a problem. The remedy has not yet been found, but the influence on the

final results does not seem to be significant. The comparison between the simulated and

measured efficiency supports this.
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Figure 6.10:
The ratio of data and Monte Carlo events, for 2Q , %, Bjx  and µ&P

from deuterium.
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Figure 6.11:
The ratio of data and Monte Carlo events, for #, ' and the x-position of the interaction

vertex, from deuterium.
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Figure 6.12:
The ratio of data and Monte Carlo events, in the P0C, P0D P1 and P2 detectors, from

deuterium.
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Figure 6.13:
The ratio of data and Monte Carlo events, in the P3, W12, P45 and W67 detectors, from

deuterium.
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Another check that was done on the Monte Carlo simulation was the calculation

of the simulated efficiency to be compared to the measured efficiency. An example of

such a comparison is shown in figure 6.14; the efficiency of a problematic plane in W12

is seen to be reasonably well reproduced.

Figure 6.14: Comparison of data and Monte Carlo reconstruction
for a problematic plane in W12.
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An example of a plane that was not properly reproduced is seen by the slight drop

in the radial efficiency (below 0.3 m) in figure 6.15. However when this plane was

removed from the calculations only minor changes in that detector were observed,

because of the redundant number of reconstruction planes. This caused a loss of 3.5% of

the data.

Figure 6.15:
A comparison of data and Monte Carlo reconstruction for the plane #3 in P45.
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After making various checks, final cuts were set on both the detector coordinates

and the kinematic variables. These kinematics cuts are shown in table 6.2 and the detector

cuts are shown in table 6.3:

Table 6.2:
The accepted range of the kinematic variables.

Variable Upstream target Downstream target

Bjx 0.004 ( Bjx (1.0 0.004 ( Bjx (1.0
2Q 2Q " 2.0 GeV c( )2 2Q " 3.0 GeV c( )2

% % " 30.0 GeV % " 30.0 GeV
y y ( 0.9 y ( 0.9

# # "13 mrad # "15 mrad

µ&P µ&P " 40.0 GeV c µ&P " 40.0 GeV c

Table 6.3
The various detector cuts used

Detector Events Cut Reason for cut
PV1 R<7.1 cm Limit of efficiency fit
P1, P3 R<6.5 cm Region of poor efficiency
P2 R<7.5 cm Region of poor efficiency
P0D R<3.0 cm Region of poor efficiency

BMS-Trigger Time ABS(BMS-Trigger)<4 ns Insure good time correlation
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The numbers of events that were cut and the numbers of remaining events, for

each target position, are given in table 6.4:

Table 6.4:
The results of the kinematics and detector cuts.

Target Position

2D
upstream

2H
downstream

2H
upstream

2D
downstream

Initial events 100184 31908 50514 66276
Failed kinematics cuts 40703 13012 22161 26515
Failed detector cuts 18166 8526 9475 17570
Remaining events 41315 10370 18878 22191

6.4 2F  Results

After determining the spectrometer acceptance with the Monte Carlo simulation,

each accepted Monte Carlo event was weighted with the one-photon exchange cross

section times a radiative correction factor ). This factor is given by: ) = tot* 1+* . For the

calculation of ) one requires as input the 2F  structure function and the ratio of the

longitudinal to transverse absorption cross sections, R. These inputs were taken from the

latest published results4. The structure function 2F  for this period was calculated by

taking the data over Monte Carlo result multiplied by the input 2F  value, at every Bjx  and
2Q  point.

To compare the data with the Monte Carlo results, both must be normalized to the

same flux. The data is normalized by dividing the number of events by the muon flux
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measured with the normalization triggers. The Monte Carlo results are normalized to the

number of events in the generation space such that:

MC' = MCN
A TgtN

. (6.4)

Here MCN  is the total number of generated Monte Carlo events, TgtN  is the number of

target nucleons and A is the area of integration of the kinematic region. The area of

integration of the kinematic region is simply A = max% $ min%( ) Log max
2Q $ Log min

2Q( ), since

the Monte Carlo events are generated uniformly in %  and 1 2Q .

Comparisons of the two normalization triggers and the upstream versus

downstream acceptance were made from numbers calculated from a simple fit to a

constant, of the ratio of the data to the Monte Carlo events, for some of the kinematic

variables. The results are shown in table 6.5:
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Table 6.5:
Trigger 3/4 and Trigger 10 Normalization

Data/MC
Deuteron QSQ VNU XBJ Y X-Vertex Average

T3 - Up 0.9773 0.9746 0.9732 0.9752 0.9762 0.9753
T3 - Down 1.0170 1.0100 1.0130 1.0110 1.0160 1.0134
T10 - Up 0.9614 0.9576 0.9574 0.9588 0.9595 0.9589
T10 - Down 0.9971 0.9891 0.9929 0.9897 0.9965 0.9931

T3/T10 -Up 101.7% 101.8% 101.7% 101.7% 101.7% 101.7%
T3/T10 -Down 102.0% 102.1% 102.0% 102.2% 102.0% 102.0%

Up/Down - T3 96.1% 96.5% 96.1% 96.5% 96.1% 96.2%
Up/Down - T10 96.4% 96.8% 96.4% 96.9% 96.3% 96.6%

Data/MC
Proton QSQ VNU XBJ Y X-Vertex Average

T3 - Up 0.9793 0.9751 0.9744 0.9750 0.9798 0.9767
T3 - Down 1.0130 1.0060 1.0030 1.0060 1.0110 1.0078
T10 - Up 0.9626 0.9576 0.9567 0.9587 0.9624 0.9596
T10 - Down 0.9962 0.9900 0.9911 0.9890 0.9953 0.9923

T3/T10 -Up 101.7% 101.8% 101.9% 101.7% 101.8% 101.8%
T3/T10 -Down 101.7% 101.6% 101.2% 101.7% 101.6% 101.6%

Up/Down - T3 96.7% 96.9% 97.1% 96.9% 96.9% 96.9%
Up/Down - T10 96.6% 96.7% 96.5% 96.9% 96.7% 96.7%

The difference between the two normalization triggers is caused by an improper

calibration of the time window of trigger 10 (See section 3.6.2). Therefore trigger 3 was

used for the flux normalization for the data.

Figure 6.16 shows the Bjx  dependence of the structure function 2F , averaged over
2Q  and plotted with statistical errors only, for both the proton and the deuteron. The

comparison of the extracted value of 2F  with the input structure function 2F  is shown in
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both figures, 6.15 and 6.16. The plotted points are given with statistical errors only and

the line shown is the fit, taken from the BCDMS2, NMC4 and SLAC1 data, of the input

value of 2F .
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Figure 6.16:
The 2F  structure function versus Bjx  for the proton and the deuteron.

The NMC is currently in the process of analyzing the proton and deuteron 2F

structure functions. This analysis will combine the data from the 1986 and 1987 periods,

which had beam energies of 90 and 280 GeV, with the data from 1989. The data from

1989 had beam energies of 120, 200 and 280 GeV. This thesis deals with data from only

one of the 1989 periods with beam energy of 280 GeV. Therefore the results presented in

the following tables are not the final results from the NMC analysis and should be taken

as preliminary results.
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The results, as a function of Bjx  and 2Q , for the proton 2F  structure function are

given in table 6.6 and seen in figure 6.17. The systematic errors are taken from the latest

NMC 2F  publication4:

Table 6.6:
The proton structure function 2

pF . ( 2Q  in 2Gev c( ) )

2Q 2
pF Bjx , 2Q( ) Stat.

error
Syst.
error

2Q 2
pF Bjx , 2Q( ) Stat.

error
Syst.
error

At Bjx =0.0080 At Bjx =0.0700
3.47 0.3864 0.0166 0.0185 11.62 0.4019 0.0246 0.0051

At Bjx =0.0125 14.92 0.3942 0.0157 0.0044

4.56 0.4330 0.0178 0.0140 19.61 0.4074 0.0149 0.0044
5.43 0.4335 0.0198 0.0180 25.23 0.4196 0.0329 0.0053

At Bjx =0.0175 At Bjx =0.0900
5.62 0.4722 0.0320 0.0127 11.72 0.3999 0.0334 0.0057
6.84 0.4515 0.0160 0.0134 15.05 0.3516 0.0184 0.0048

At Bjx =0.0250 19.84 0.3979 0.0166 0.0052

7.22 0.4111 0.0172 0.0084 26.00 0.4266 0.0225 0.0057
8.92 0.4249 0.0144 0.0094 At Bjx =0.1100

10.93 0.4460 0.0228 0.0131 11.83 0.3714 0.0425 0.0062
At Bjx =0.0350 14.95 0.3473 0.0239 0.0054

9.12 0.3961 0.0208 0.0061 19.78 0.3504 0.0171 0.0053
11.47 0.4408 0.0154 0.0075 26.30 0.3720 0.0201 0.0058
14.26 0.4575 0.0246 0.0095 34.28 0.4863 0.0506 0.0073

At Bjx =0.0500 At Bjx =0.1400
9.22 0.4191 0.0305 0.0050 14.97 0.3587 0.0220 0.0059

11.55 0.3893 0.0145 0.0045 20.03 0.3584 0.0149 0.0055
14.85 0.4198 0.0127 0.0051 26.52 0.3564 0.0148 0.0056
18.89 0.4534 0.0202 0.0060 35.37 0.3289 0.0245 0.0057
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Table 6.6 (continued):
The proton structure function 2

pF . ( 2Q  in 2Gev c( ) )

2Q 2
pF Bjx , 2Q( ) Stat.

error
Syst.
error

2Q 2
pF Bjx , 2Q( ) Stat.

error
Syst.
error

At Bjx =0.1800 At Bjx =0.2750
5.08 0.3207 0.0250 0.0055 15.88 0.3070 0.0497 0.0046

19.88 0.3123 0.0163 0.0049 19.99 0.2384 0.0165 0.0031
26.81 0.3332 0.0158 0.0053 26.77 0.2867 0.0174 0.0035
34.94 0.3551 0.0217 0.0056 35.39 0.2856 0.0197 0.0030
45.47 0.3336 0.0407 0.0056 46.40 0.2606 0.0277 0.0026

At Bjx =0.2250 At Bjx =0.3500
15.24 0.2740 0.0248 0.0048 20.68 0.1953 0.0154 0.0022
19.90 0.2834 0.0157 0.0041 26.84 0.2091 0.0114 0.0027
26.59 0.3282 0.0166 0.0043 35.29 0.2116 0.0126 0.0036
34.89 0.3130 0.0190 0.0042 46.99 0.2163 0.0172 0.0040
45.91 0.3553 0.0332 0.0048 At Bjx =0.5000

27.90 0.1193 0.0103 0.0059
35.52 0.1244 0.0079 0.0064
46.43 0.1261 0.0101 0.0078
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Figure 6.17:
The 2F  structure function of the proton versus 2Q  for each Bjx  bin, compared to
the curves that represent the parametrizations taken from the BCDMS2, NMC4

and SLAC1 data.
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The results, as a function of Bjx  and 2Q , for the 2F  structure function of the

deuteron are given in table 6.7 and seen in figure 6.18. The systematic errors are taken

from the latest NMC 2F  publication4:

Table 6.7:
The deuteron structure function 2

dF . ( 2Q  in 2Gev c( ) )

2Q 2
dF Bjx , 2Q( ) Stat.

error
Syst.
error

2Q 2
dF Bjx , 2Q( ) Stat.

error
Syst.
error

At Bjx =0.0080 At Bjx =0.0700
3.49 0.3812 0.0136 0.0142 11.62 0.3601 0.0186 0.0045

At Bjx =0.0125 15.01 0.3642 0.0114 0.0042

4.55 0.4135 0.0140 0.0088 19.66 0.3836 0.0105 0.0046
5.43 0.4279 0.0158 0.0118 25.50 0.4144 0.0231 0.0057

At Bjx =0.0175 At Bjx =0.0900
5.59 0.4078 0.0234 0.0080 11.73 0.3433 0.0249 0.0047
6.84 0.4326 0.0122 0.0085 15.08 0.3451 0.0143 0.0041

At Bjx =0.0250 19.81 0.3399 0.0111 0.0039
7.24 0.3992 0.0133 0.0063 25.98 0.3860 0.0152 0.0046
8.91 0.4094 0.0107 0.0068 At Bjx =0.1100

10.90 0.4325 0.0168 0.0089 11.78 0.4043 0.0392 0.0060
At Bjx =0.0350 15.00 0.3273 0.0185 0.0044

9.11 0.4042 0.0167 0.0055 19.91 0.3181 0.0121 0.0037
11.46 0.4068 0.0111 0.0057 26.40 0.3591 0.0142 0.0040
14.20 0.4500 0.0180 0.0078 34.29 0.4171 0.0325 0.0049

At Bjx =0.0500 At Bjx =0.1400
9.27 0.3773 0.0233 0.0047 14.98 0.3134 0.0165 0.0046

11.57 0.3946 0.0115 0.0049 19.91 0.3188 0.0108 0.0040
14.84 0.3911 0.0091 0.0052 26.59 0.3082 0.0099 0.0035
18.93 0.4295 0.0141 0.0064 35.18 0.3490 0.0177 0.0039
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Table 6.7 (continued):
The deuteron structure function 2

dF . ( 2Q  in 2Gev c( ) )
2Q 2

dF Bjx , 2Q( ) Stat.
error

Syst.
error

2Q 2
dF Bjx , 2Q( ) Stat.

error
Syst.
error

At Bjx =0.1800 At Bjx =0.2750
14.98 0.2710 0.0185 0.0043 16.03 0.2506 0.0363 0.0031
19.83 0.2880 0.0122 0.0040 19.87 0.2206 0.0127 0.0025
26.53 0.2719 0.0104 0.0033 26.64 0.2334 0.0117 0.0029
35.19 0.3140 0.0145 0.0037 35.37 0.2383 0.0128 0.0031
45.22 0.2898 0.0259 0.0033 47.19 0.2570 0.0192 0.0044

At Bjx =0.2250 At Bjx =0.3500
15.04 0.2697 0.0209 0.0042 20.67 0.1462 0.0099 0.0017
19.93 0.2415 0.0112 0.0033 26.81 0.1599 0.0072 0.0018
26.77 0.2591 0.0108 0.0034 35.38 0.1804 0.0083 0.0029
35.14 0.2638 0.0124 0.0033 46.61 0.1574 0.0100 0.0034
46.22 0.2727 0.0199 0.0035 At Bjx =0.5000

27.92 0.0987 0.0068 0.0047
35.50 0.0794 0.0043 0.0033
46.96 0.0800 0.0054 0.0038
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Figure 6.18:
The 2F  structure function of the deuteron versus 2Q  for each Bjx  bin, compared
to the curves that represent the parametrizations taken from the BCDMS2, NMC4

and SLAC1 data.
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The contributions to the systematic errors are: the error from the radiative

corrections; the errors due to the calibration of the energy of the incoming and scattered

muons; the error due to the reconstruction efficiency; the error due to the input 2F  and

the error in the knowledge of the acceptance. All of these contributions to the systematic

error were added together in quadrature. The errors due to the calibration, the

reconstruction efficiency and the acceptance should be the same as in the previous

results4. However the errors due to the input 2F  and the radiative corrections should have

improved since these results used the latest values from the latest NMC publication4 as

input. Therefore the systematic errors are taken from the latest NMC 2F  publication4 (see

appendix 8.3) and are used as an upper limit on the estimate of the systematic error given

in both table 6.6 and table 6.7.

Structure functions 2F  at 2Q = 5 GeV c( )2  based on recent parton distributions

parametrized from structure function data are shown in figure 6.19. These recent

parametrizations were generated by the CERN program library's PDFLIB5. The two

curves shown, (KMRS-B0)6 and (MT-S1)7, are constrained by precise data in the

kinematic region Bjx " 0.07, and fail to describe the behavior of the data in the lower Bjx

region. The third curve, (GRV)8, is further constrained by experimental data thus giving a

fair description of the present data. While the fourth, (MRS-D0)9, was constrained by the

latest NMC4 data and therefore fits the data well, thus showing the improvement in the

parametrization of 2F  brought about by the current data.
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Figure 6.19:
Parametrizations of the proton structure function 2F .
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In conclusion the structure function 2F  obtained from this period is in good

agreement with the input value of 2F  and will thus add to the improvement in the errors

of the overall NMC analysis. By extending the measurement of the 2F  structure function

for the proton and deuteron over the kinematic range 0.006 < Bjx < 0.6 and

0.5 < 2Q < 55 GeV / c( )2 , the data is seen to exhibit logarithmic scaling violations down

to small values of Bjx , even at low 2Q . Data in the low- Bjx  domain turned out to be

essential for the proper determination of parton distributions.
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7. Conclusion

The data presented in this thesis were obtained from the simultaneous

measurement of deep inelastic muon scattering on hydrogen and deuterium targets at a

nominal incident energy of 280 GeV. The data was from the SPS data taking period,

P3A, of 1989. This data covered the kinematic range 0.002 ! Bjx ! 0.80 and

0.5 ! 2Q ! 200 GeV / c( )2 . The data from the NMC experiment has cleared up the

discrepancy between the EMC1 and BCDMS2 experimental results. The data presented in

this thesis are in good agreement with previous NMC results3; therefore, similar

conclusions can be drawn. These conclusions are presented here separately for the two

main analysis subjects, the analysis of the ratio 2
nF 2

pF  and the analysis of the structure

function 2F  for both the proton ( 2
pF ) and the deuteron ( 2

dF ).
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7.1 2
nF 2

pF  Ratio Analysis

The data used for the measurement of neutron and proton structure function ratio,

2
nF 2

pF , covered the kinematic range 0.002 ! Bjx ! 0.80 and 0.5 ! 2Q ! 200 GeV / c( )2 .

The data are in good agreement with previous NMC results4. While having fewer

statistics in only one period of data taking than those results, the systematic errors of the

present data are similar in size and thus also small. The following conclusions can be

made:

1) The Bjx  dependence of the ratio, averaged over 2Q , shows no evidence of

sizable shadowing in deuterium. The ratio at the lowest measured value of

Bjx  is consistent with unity.

2) The determination of dR " pR  was extended below the previous5 range of

0.1< Bjx < 0.9 to Bjx # 0.01. The results are compatible with the previous

NMC result6. These results show no Bjx -dependence and are compatible

with zero. They also are compatible with the predictions of perturbative

QCD7, within rather small errors.

3) The Gottfried Sum calculated for the data presented in this thesis is

consistent with previous results8 and is significantly less then the

predicted9 value of 1/3.



168

7.2 2F  Structure Function Analysis

In conclusion the structure function 2F  calculated for this period is in good

agreement with the input value of 2F  and will thus add to the improvement in the errors

of the overall NMC analysis. The measurement of the 2F  structure function for the

proton and deuteron has been extended over the kinematic range to 0.006 < Bjx < 0.6 and

  0.5 <
2Q < 55 Gev / c( )2 and so far some conclusions have been made10:

1) The data exhibit logarithmic scaling down to small values of Bjx , even at

low 2Q .

2) Where the data overlaps with the previous SLAC11 and BCDMS 2  data, a

good agreement between all three experiments is seen.

3) Prior to the inclusion of the NMC 10  data, the parametrizations12 recently

generated of parton distributions failed to describe the Bjx -dependence of

2F  below Bjx =0.07.
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8. Appendix
To calculate the structure function ratio 2

nF 2
pF  both the density factor ! and the

effect of the hydrogen-deuterium (HD) contamination must be determined. This is done

in sections 8.1 and 8.2, respectively.

The contributions to the systematic errors of the structure functions 2
pF  and 2

dF

are given in section 8.3.

8.1. Determination of the density factor !

The density factor !  is the ratio of the number of nucleons per unit area for the

respective targets, and is defined as:

! = p"

d"
= pn 2HL

dn 2DL
= 2D

molV
2DL

2H
molV

2HL
= 2D

molV
2H

molV
2HL
2DL
, (8.1)

where " is the density, n is the number of scattering centers per unit volume n = 0N / molV ,

0N  is Avogadro's number, molV  is the molar volume (liters/mol) and L is the length of the

target (mm). It should be noted that the value for 2D
molV  assumes pure deuterium and that

the HD contamination is corrected for separately. The liquid hydrogen is considered to be

pure. Since both the lengths of targets and their densities vary with the operating

temperature, this temperature must be found.

With the fixed over-pressure, the operating pressure of the liquid targets was

measured during the experiment; therefore, the respective operational temperatures of the

liquid hydrogen and the liquid deuterium are determined from the Rutherford tables1 of

temperature as a function of the vapor pressure. The pressure of the targets was measured
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and maintained such that: measuredP  is equal to the atmospheric pressure plus a constant

over-pressure.

The Atmospheric pressure is measured at Geneva airport and then adjusted for the

altitude. The altitude correction at the experimental area is 54±1 mbar2. The over-

pressure was 125±5 mbar3. The over-pressure is maintained to insure that the

temperatures of the target are kept at the boiling point, thus forcing the targets to be

liquid.

The temperature and therefore the molar volume for the liquid hydrogen can be

taken directly from the tables. However, because there was some contamination of the

liquid D2 by HD, the temperature of the liquid deuterium cannot be directly extrapolated

from the measured pressure.

The measured pressure of the liquid deuterium is the sum of the partial pressures

of D2 and HD, such that: 2D measuredP =
2Df 2DP + HDf HDP , where 2DP , HDP , 

2Df
 
and HDf

are the pressures and the partial molar fractions of D2 and HD respectively. The HDf  was

measured to be : 0.0301±0.24%4; therefore, 
2Df =0.9699±0.24%. The temperature of the

liquid hydrogen is calculated directly from the tables, while an iterative technique is used

to calculate the temperature of the liquid deuterium5.

Starting with the average measured pressure for period P3A89, of 1090.3 ± 5

mbar; the following results are given in table 8.1.
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Table 8.1:
Temperatures and Molar Volumes of H2, D2 and HD

H2 D2 HD
Temperature in K 20.52 23.84 23.84
Molar Volume in liters/mol 28.595 24.775 27.275

Then, from equation 8.1, the value for !  is:

! = 0.86641 HL
DL

. (8.2)

The lengths of the targets also change with temperature, using the formula:

L(T ) = 3001# 0.0447(291.15K # T )±1 mm6. This gives a value for the length of the

hydrogen target of: HL = 2988.90 ±1 mm and a value for the length of the deuterium

target of: DL = 2989.05±1 mm. So finally for P3A89 the value of !  is:

! = 0.86637 $ 0.8664, while for 1986 and 1987 the average value is:

! = 0.86635 $ 0.8664, showing good agreement.

For the maximum and minimum atmospheric pressures for the whole of 1989, !

changes only by ±0.0002 (±0.023%), therefore: ! =0.8664±0.0002.

8.2. Effect of the HD contamination of the target.

The correction for the HD contamination of D2 is done in two parts, first with a

correction to the molar volume, 2D
molV , and second with a correction to the number of

events, dN . The fraction of HD contamination along with the fraction of D2 i s

determined from the following formulae:
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HDf = HDn
HDn + 2Dn

, (8.3)

2Df = 2Dn
HDn + 2Dn

=1# HDf . (8.4)

Where n in eqs. 8.3 and 8.4, is the numeric fraction of molecules in the mixture. 2Dn  is
the fraction of D2 and dn  be the fraction of deuterium and HDn = pn  be the fraction of

protons. So if: dn = 2 2Dn + HDn = 2 2Dn + pn , and defining %  such that:

% = pn
pn + dn

= HDf
2

. (8.5)

The actual molar volume, 2D
molV , in the targets is of the form:

2D mix
molV =

2Df 2D
molV + HDf HD

molV , therefore, the formula for the actual molar volume is:

2D mix
molV = 2D

molV dn
1#%

1+ 2% HD
molV

2D
molV
#1

&

'
(

)

*
+

&

'
(

)

*
+ . (8.6)

By defining ,  such that: , = HD
molV 2D

molV . The correction to the molar volume is:

2D mix
molV = 2D

molV dn
1#%

1+ 2% , #1( )( ). (8.7)

The correction factor to !  for the molar volume, in terms of % , ,  and the pure !  is:

mix! = 2D mix
molV

2H
molV

2HL
2DL
= ! 2D mix

molV
2D

molV
= ! dn

1#%
1+ 2% , #1( )( ) . (8.8)
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The correction to the number of deuterium events is in the form of partial

fractions: d
mixN - d

mix. = dn d. + HDn HD. = dn d. + pn p. . The formula for d
mix.  is given as:

d
mix. = d

corr. dn
1#%

1+% p.

d.
#1&

'
(

)
*
+

&

'
(

)

*
+ . (8.9)

By inverting the formula for d
mix. , the corrected ratio, d. p.  is:

d.

p.

/

0
1

2

3
4

corr

= d
mix.

p.

1#%
dn

1+% p.

d.
#1&

'
(

)
*
+

&

'
(

)

*
+

#1

. (8.10)

The formula for the measured ratio is really:

d
mix.

p.
= mix! d

upN d
downN

p
upN p

downN
. (8.11)

Then, by combining equations 8.8, 8.10 and 8.11, the formula for the true d. p.  ratio,

corrected for the HD contamination, is:

d.

p.

/

0
1

2

3
4

corr

= ! d
upN d

downN
p
upN p

downN
1+ 2% , #1( )( )
1+% p.

d.
#1&

'
(

)
*
+

&

'
(

)

*
+

. (8.12)

With ! =0.8664, %=0.0151 and , =1.1009 and assuming that p. d.  is:

p.

d.
= ! d

upN d
downN

p
upN p

downN

&

'
(

)

*
+

#1

. (8.13)

A Taylor's expansion of the corrected d. p.  ratio is made and gives the approximation:

d.

p.

/

0
1

2

3
4

corr

$1.0182 0.8664 d
upN d

downN
p
upN p

downN

&

'
(

)

*
+ # 0.0151. (8.14)
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8.3. Contributions to the systematic errors.

The systematic errors were taken directly from a previous NMC publication7 and

each error is the quadratic sum of various contributions. These contributions are: RC, the

error from the radiative corrections; E , 5E , errors due to calibrations of incident and

scattered muon energies where the sign corresponds to an increase in energy; RE, error

from the reconstruction efficiency correction; FN, error due to the functional form of the

2F  parametrization; AC, error in the knowledge of the acceptance.

The contributions to the total systematic errors for the structure funtion 2
pF , for

each Bjx  and 2Q  bin, are given in table 8.2. The contributions to the total systematic

errors for the structure funtion 2
dF , for each Bjx  and 2Q  bin, are given in table 8.3.
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Table 8.2:
The contribution to the systematic errors of the structure function 2

pF .
2Q

GeV c( )2
RC
(%)

E
(%)

5E
(%)

RE
(%)

FN
(%)

AC
(%)

Total
(%)

At Bjx  = 0.0080
3.47 3.0 0.4 0.1 1.1 1.2 3.4 4.8

At Bjx  = 0.0125
4.56 1.3 0.5 0.0 0.8 0.1 2.8 3.2
5.43 2.9 0.4 0.1 1.1 0.5 2.7 4.2

At Bjx  = 0.0175
5.62 0.7 0.5 0.0 0.8 0.3 2.4 2.7
6.84 1.3 0.5 0.1 0.8 0.1 2.5 3.0

At Bjx  = 0.0250
7.22 0.4 0.6 0.0 0.8 0.4 1.7 2.1
8.92 0.8 0.5 0.0 0.8 0.3 1.8 2.2

10.93 2.0 0.4 0.1 1.1 0.1 1.8 2.9
At Bjx  = 0.0350

9.12 0.3 0.6 -0.1 0.8 0.2 1.1 1.5
11.47 0.5 0.5 0.0 0.8 0.3 1.3 1.7
14.26 1.2 0.4 0.1 0.9 0.4 1.3 2.1

At Bjx  = 0.0500
9.22 0.1 0.8 -0.2 0.8 0.1 0.3 1.2

11.55 0.2 0.7 -0.1 0.8 0.1 0.4 1.2
14.85 0.4 0.6 0.0 0.8 0.2 0.5 1.2
18.89 0.8 0.5 0.1 0.8 0.4 0.2 1.3

At Bjx  = 0.0700
11.62 0.1 0.9 -0.3 0.8 0.0 0.3 1.3
14.92 0.1 0.7 -0.1 0.8 0.1 0.3 1.1
19.61 0.3 0.6 0.0 0.8 0.2 0.2 1.1
25.23 0.7 0.5 0.1 0.8 0.4 0.2 1.3
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Table 8.2 (continued):
The contribution to the systematic errors of the structure function 2

pF .
2Q

GeV c( )2
RC
(%)

E
(%)

5E
(%)

RE
(%)

FN
(%)

AC
(%)

Total
(%)

At Bjx  = 0.0900

11.72 0.0 1.0 -0.4 0.8 0.0 0.5 1.4
15.05 0.1 0.9 -0.2 0.8 0.0 0.6 1.4
19.84 0.2 0.7 -0.1 0.8 0.1 0.7 1.3
26.00 0.3 0.6 0.0 0.8 0.2 0.8 1.3

At Bjx  = 0.1100

11.83 0.0 1.2 -0.6 0.8 0.1 0.6 1.7
14.95 0.0 1.0 -0.4 0.8 0.0 0.8 1.6
19.78 0.1 0.8 -0.2 0.8 0.0 1.0 1.5
26.30 0.2 0.7 0.0 0.8 0.1 1.1 1.5
34.28 0.3 0.5 0.1 0.8 0.2 1.1 1.5

At Bjx  = 0.1400

14.97 0.0 1.2 -0.5 0.8 0.1 0.6 1.6
20.03 0.0 0.9 -0.3 0.8 0.0 0.9 1.5
26.52 0.1 0.8 -0.1 0.8 0.0 1.1 1.6
35.37 0.1 0.6 0.0 0.8 0.0 1.4 1.7

At Bjx  = 0.1800

15.08 0.0 1.3 -0.7 0.8 0.1 0.3 1.7
19.88 0.0 1.1 -0.4 0.8 0.0 0.7 1.6
26.81 0.0 0.9 -0.2 0.8 0.0 1.0 1.6
34.94 0.1 0.8 -0.1 0.8 0.0 1.1 1.6
45.47 0.1 0.7 0.1 0.8 0.1 1.3 1.7
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Table 8.2 (continued):
The contribution to the systematic errors of the structure function 2

pF .
2Q

GeV c( )2
RC
(%)

E
(%)

5E
(%)

RE
(%)

FN
(%)

AC
(%)

Total
(%)

At Bjx  = 0.2250

15.24 0.0 1.4 -0.7 0.8 0.0 0.0 1.8
19.90 0.0 1.1 -0.4 0.8 0.0 0.2 1.4
26.59 0.0 0.9 -0.2 0.8 0.0 0.5 1.3
34.89 0.0 0.8 -0.1 0.8 0.0 0.7 1.3
45.91 0.1 0.7 0.1 0.8 0.0 0.8 1.3

At Bjx  = 0.2750

15.88 0.0 1.1 -0.4 0.9 0.1 0.1 1.5
19.99 0.0 1.0 -0.2 0.8 0.0 0.1 1.3
26.77 0.0 0.8 -0.1 0.9 0.0 0.1 1.2
35.39 0.0 0.7 0.0 0.8 0.0 0.1 1.1
46.40 0.0 0.6 0.1 0.8 0.0 0.1 1.0

At Bjx  = 0.3500

20.68 0.0 0.3 0.5 0.8 0.0 0.5 1.1
26.84 0.0 0.3 0.5 0.8 0.0 0.8 1.3
35.29 0.0 0.4 0.5 0.9 0.1 1.3 1.7
46.99 0.0 0.4 0.5 0.9 0.1 1.5 1.9

At Bjx  = 0.5000

27.90 0.0 -2.4 3.4 0.8 0.7 2.4 4.9
35.52 0.0 -1.7 2.8 0.8 0.0 3.9 5.2
46.43 0.0 -1.1 2.3 0.8 0.0 5.6 6.2
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Table 8.3:
The contribution to the systematic errors of the structure function 2

dF .
2Q

GeV c( )2
RC
(%)

E
(%)

5E
(%)

RE
(%)

FN
(%)

AC
(%)

Total
(%)

At Bjx  = 0.0080
3.49 1.4 0.4 0.1 1.1 2.2 2.4 3.7

At Bjx  = 0.0125
4.55 0.6 0.5 0.0 0.8 0.0 1.8 2.1
5.43 1.4 0.4 0.1 1.1 0.8 1.9 2.8

At Bjx  = 0.0175
5.59 0.4 0.6 0.0 0.8 0.3 1.6 2.0
6.84 0.1 0.5 0.1 0.8 0.1 1.7 2.0

At Bjx  = 0.0250
7.24 0.2 0.6 0.0 0.8 0.2 1.2 1.6
8.91 0.4 0.5 0.1 0.8 0.0 1.3 1.7

10.90 0.9 0.4 0.1 1.1 0.2 1.4 2.0
At Bjx  = 0.0350

9.11 0.1 0.6 -0.1 0.8 0.1 0.9 1.4
11.46 0.3 0.5 0.0 0.8 0.1 1.0 1.4
14.20 0.7 0.4 0.1 0.9 0.3 1.2 1.7

At Bjx  = 0.0500
9.27 0.1 0.8 -0.2 0.8 0.0 0.5 1.3

11.57 0.1 0.7 -0.1 0.8 0.1 0.6 1.2
14.84 0.1 0.6 0.0 0.8 0.3 0.8 1.3
18.93 0.2 0.5 0.1 0.8 0.5 1.0 1.5

At Bjx  = 0.0700
11.62 0.0 0.9 -0.2 0.8 0.0 0.3 1.3
15.01 0.1 0.7 -0.1 0.8 0.1 0.4 1.1
19.66 0.1 0.6 0.0 0.8 0.2 0.6 1.2
25.50 0.3 0.5 0.1 0.8 0.5 0.8 1.4
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Table 8.3 (continued):
The contribution to the systematic errors of the structure function 2

dF .
2Q

GeV c( )2
RC
(%)

E
(%)

5E
(%)

RE
(%)

FN
(%)

AC
(%)

Total
(%)

At Bjx  = 0.0900

11.73 0.0 1.0 -0.4 0.8 0.1 0.2 1.4
15.08 0.0 0.8 -0.2 0.8 0.0 0.3 1.2
19.81 0.1 0.7 -0.1 0.8 0.0 0.4 1.1
25.98 0.1 0.6 0.1 0.8 0.2 0.6 1.2

At Bjx  = 0.1100

11.78 0.0 1.1 -0.5 0.8 0.1 0.3 1.5
15.00 0.0 1.0 -0.3 0.8 0.1 0.3 1.4
19.91 0.0 0.8 -0.1 0.8 0.0 0.3 1.2
26.40 0.1 0.6 0.0 0.8 0.1 0.5 1.1
34.29 0.1 0.5 0.1 0.8 0.3 0.6 1.2

At Bjx  = 0.1400

14.98 0.0 1.1 -0.4 0.8 0.1 0.3 1.5
19.91 0.0 0.9 -0.2 0.8 0.1 0.3 1.3
26.59 0.0 0.7 -0.1 0.8 0.0 0.4 1.1
35.18 0.1 0.6 0.1 0.8 0.1 0.5 1.1

At Bjx  = 0.1800

14.98 0.0 1.2 -0.5 0.8 0.0 0.4 1.6
19.83 0.0 1.0 -0.3 0.8 0.1 0.4 1.4
26.53 0.0 0.8 -0.1 0.8 0.0 0.4 1.2
35.19 0.0 0.7 0.0 0.8 0.0 0.5 1.2
45.22 0.1 0.6 0.1 0.8 0.1 0.5 1.1
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Table 8.3 (continued):
The contribution to the systematic errors of the structure function 2

dF .
2Q

GeV c( )2
RC
(%)

E
(%)

5E
(%)

RE
(%)

FN
(%)

AC
(%)

Total
(%)

At Bjx  = 0.2250

15.04 0.0 1.2 -0.5 0.8 0.1 0.3 1.6
19.93 0.0 1.0 -0.3 0.8 0.0 0.4 1.4
26.77 0.0 0.8 -0.1 0.9 0.1 0.5 1.3
35.14 0.0 0.7 0.0 0.8 0.0 0.6 1.2
46.22 0.0 0.6 0.1 0.8 0.0 0.8 1.3

At Bjx  = 0.2750

16.03 0.0 0.9 -0.2 0.8 0.2 0.1 1.3
19.87 0.0 0.8 0.0 0.8 0.0 0.2 1.1
26.64 0.0 0.7 0.1 0.9 0.0 0.5 1.2
35.37 0.0 0.6 0.2 0.8 0.0 0.8 1.3
47.19 0.0 0.6 0.2 0.9 0.0 1.2 1.7

At Bjx  = 0.3500

20.67 0.0 0.1 0.8 0.8 0.2 0.3 1.2
26.81 0.0 0.2 0.7 0.8 0.0 0.4 1.2
35.38 0.0 0.3 0.6 0.8 0.1 1.2 1.6
46.61 0.0 0.3 0.6 0.8 0.0 1.9 2.2

At Bjx  = 0.5000

27.92 0.0 -2.7 3.8 0.9 0.0 0.1 4.7
35.50 0.0 -1.9 3.1 0.9 0.0 1.8 4.2
46.96 0.0 -1.3 2.5 0.8 0.1 3.7 4.7
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