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domain of integration is no longer real but is complex 
as has been indicated. The question one would 
really like to know is just what influence causality, 
unitarity, and Lorentz in variance have upon the general 
structure of an JV-fold representation of a multiple 
Feynman integral. In the case of the four-point 

function, the condition of causality contained in the 
m2—w implies that the spectral function is non-zero 
only in a real domain on the boundary of the physical 
sheet, and the interesting question is just what simple 
(or complicated) property of the higher functions 
contains the concept of causality. 

A GENERALIZED UNITARITY RELATION 

R. E. Cutkosky (*> 
Carnegie Institute of Technology, Pittsburgh, Pennsylvania 

Last year at the Ninth International Conference 
on High Energy Physics, Landau 1 } presented some 
new theorems on singularities of perturbation theory 
amplitudes. He showed that when we discuss a 
particular singularity, we only need to look at a 
" skeleton" of the Feynman graph, a "reduced 
graph." (See Fig. 1). The circles, which are the 
vertices of the reduced graphs, stand for any arbitrarily 
complicated subgraphs. Landau showed that a 
singularity is obtained when all the lines of a reduced 
graph correspond to particles which are simultaneously 

Fig. 1 Example of " reduced graph." 

on the mass shell, and in addition satisfy certain 
geometrical relations. Each of the reduced graphs 
shown could arise from the same Feynman graph, and 
correspond to different singularities cf the same 
amplitude. 

When we analyze these singularities further, we 
find that they are sometimes poles, and sometimes 
branch points. The residue of a pole is, of course, 
obtained by considering the subgraphs for the case 
that the lines leading into them represent particles 
which satisfy Landau's condition. When the singu­
larity is a branch point, the discontinuity of the 
amplitude across the branch cut is obtained by an 
equally simple prescription. For each line of the 
Feynman graph which also appears explicitly in the 
reduced graph, the Feynman propagator is replaced 
by a delta function. In other words, the particles 
which correspond to the lines of the reduced graph are 
always taken to be on the mass shell. This prescrip­
tion, when it is applied to a reduced graph like that 
on the top of Fig. 1, is equivalent to the familiar 
unitarity property of the S-matrix. 

This theorem will perhaps be a little clearer after 
we outline a brief proof. The main idea of the proof 
is that we rewrite the Feynman integral in terms of the 
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virtual masses of the intermediate particles, that is, 
in terms of the magnitudes of their four-momenta. 
The structure of the integral is then most evident 2 ) . 

We must first see whether the squares of the four-
momenta which are associated with the lines of the 
reduced graph are all independent. If these squares 
do vary independently when the virtual momenta 
vary, then we can make a change of variables, using 
as variables these virtual masses and whatever ad­
ditional variables we might need. Then we get an 
integral of the form : 

where G(qf...q„) is the result of integrating over all 
the other variables. This function G, and the con­
tours over which the qf are integrated, also depend on 
the external momenta. 

The next step of the proof is to look at the first 
m—l integrations in F, and identify the part of these 
integrals which is responsible for the existence of the 
Landau singularity. The idea can be explained by 
a simple example: 

The function / will become singular when the contour 
of integregation is " p i n c h e d " between the pole at 
q2 = M2 and some singularity of g(q2), as in Fig. 2a. 
This pinched contour can be replaced by the two con­
tours in Fig. 2b, in which the contour R gives a contri­
bution to / which is regular when the singularities 
coalesce and therefore is of no interest in the present 
discussion. The singular part of / i s obtained entirely 
from the small circle around the pole, so, in other 

Fig. 2 Contours of integration. 

words, we may replace the factor (M2—q2) 1 by 
2md(q2-M2). 

We may apply this argument in turn to all but one 
of the q2 integrations in Eq. (1) but the last integral 
is taken over a contour which is not pinched. Instead 
the end-point of the contour approaches the pole at 
q2^ = when the amplitude F becomes singular. 
(It can be shown that this is equivalent to Landau's 
conditions.) When we analytically continue F past 
its singularity the end-point of the contour moves 
past the pole. Since the end-point can pass either 
above or below the pole, we may end up on either of 
two branches of F. The difference between the value 
of F on these two branches is just 2ni times the residue 
of the pole, so the rule of replacing the reciprocal 
of (M2~q2) by 2%ib{q2 —M2) holds for each line of 
the reduced graph. 

When the virtual masses of the particles in the 
reduced graph are not independent, that is when one 
of these masses is a function of the other virtual 
masses and of the external momenta, there is one less 
integration variable than there are poles. Then when 
we calculate the singular part of the amplitude we 
take the residue of all the poles for which there are 
integrations, but there remains at the end-pole one 
pole so we see explicitly that in this case the singularity 
of the amplitude is a pole. A simple example is 
given by a graph which consists of two parts connected 
by a single line. In this case the virtual momentum 
of the connecting line does not vary at all, when the 
momenta of the external lines are fixed. The impor­
tance of such poles in practical problems is already 
well understood 3 ) . 

The theorem we have just discussed applies to any 
finite order graph of the regularized, renormalized, 
perturbation theory. If we assume that the perturba­
tion expansion can be treated as a formally convergent 
series, we can sum over all Feynman graphs which have 
a particular reduced graph, and which contribute to a 
particular discontinuity of an amplitude. When 
we do this, we automatically sum over all the sub­
graphs which contribute to the vertices of the reduced 
graph. When the vertex is a simple three-line vertex, 
the sum over all graphs gives the renormalized coup­
ling constant, since the three entering momenta are 
all on the mass shell. The more complicated vertices 
become exact scattering amplitudes, or production 
amplitudes. In this way we obtain a generalization 
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of the polology technique, because in the spectral 
representation of any amplitude, the contribution of 
all branch cut integrals and all poles can be repre­
sented in terms of other physical processes. We are 
assuming here, of course, that the sum does not have any 
singularities which do not appear in finite order terms. 

One of the most interesting applications of the 
generalized unitary relation arises in Mandelstam's 
representation of scattering amplitudes 4 ) . The Man-
delstam spectral functions are discontinuity functions 
which are associated with reduced graphs such as 
that in Fig. 3. The Mandelstam reduced graphs 
have at least four vertices, with each of the four 
external lines of the graph being connected to a separ­
ate vertex. For concreteness, let us talk about 
nucleon-nucleon scattering. We omit discussion of 
nucleon spin (although, as is well known, keeping track 
of the spin is most of the work in any practical calcu­
lation). Let us also just look at graphs in which there 
are only two mesons exchanged between the nucleons. 

If the barred line in Fig. 3 refers to a single nucleon, 
the vertices give the pion-nucleon coupling constant, 
and the spectral function is just that obtained in fourth 
order perturbation theory. Other reduced graphs 
are obtained if the barred line represents a continuum 
state, with a nucleon plus a meson, etc. Then the 
two upper circles represent, for example, the meson-
nucleon scattering amplitude. Since this reduced 
graph arises in calculation of the discontinuity of the 
imaginary part of the nucleon-nucleon scattering 
amplitude we may give all the propagators on the left 
half of the diagram masses with small positive, 
imaginary parts, and conversely on the right. There­
fore one of the upper circles actually represents the 
conjugate scattering amplitude, so the integral over 
the meson-nucleon scattering angle reduces to an 
application of the ordinary unitarity relation to the 
meson-nucleon scattering matrix, and the entire 
top part of the graph gives just the imaginary part 

Fig. 4 Deuteron form factor. 

of the meson-nucleon scattering amplitude. The 
final result has the form 5 ) 

Fig. 3 Nucleon-nucleon scattering. 

A result similar to this has been obtained independently 
by Cini and Fubini 6 ) . They used the formal appar­
atus of the more usual dispersion theory. The calcu­
lation based on generalized unitarity is more direct, 
and also provides a physical picture of Mandelstam's 
representation. The spectral functions arise rather 
mysteriously in the usual treatments, but have a simple 
physical interpretation in terms of reduced graphs. 

Let us now turn to another problem, that of the 
structure of the deuteron, and in particular, the electro­
magnetic form factor of the deuteron. The discontinuity 
theorem, by enabling us to calculate the spectral 
functions associated with the so-called anomalous 
thresholds, allows us to develop a theory of the form 
factor which is independent of older methods in­
volving wave functions. However, it is extremely 
important to keep the older approaches in mind 
simultaneously as a guide. We shall here treat only 
a simplified version of this problem, in which we again 
suppose that all of the particles which enter are 
spinless, even the photon. The form factor is the 
(DDy) vertex considered as a function of the momen­
tum q imparted by a static external field. We write 
t = q2; the physical values of t are negative. The 
form factor FD(t) has singularities along the positive 
real t axis. The singularity closest to the origin 
is associated with the reduced graph shown in Fig. 4a; 

D 
the threshold is at tA = 4 a — . Our notation is 

2JV 
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that D, N, and m are the masses of the deuteron, 
nucleon, and meson, respectively, and a 2 = N2 — \D2. 
Let us define the spectral function to be 

(if we may assume no subtractions are needed). 
The spectral function associated with the reduced 
graph in Fig. 4a is, according to the general discon­
tinuity formula, 

where FN(t) is the nucleon form factor. Since the 
integral in (6) involves nothing but delta functions 
it is very easy to evaluate, and leads to : 

The factor D(D2— in Eq. (7) can be pictured as 
a Fitzgerald contraction effect. The remaining fac­
tors are just the results obtained from the tail of the 
non-relativistic wave function. 

The reduced graph with the next lowest threshold 
is shown in Fig. 4b. This graph contains a pion 
production vertex which we must discuss before we 
can consider the contribution of the graph to the 
form factor. For a fixed value of / = q2, we may 
envisage using a Mandelstam representation in the 
two variables s1 = (k+q^2 and s2 = (k+q2)2-
There is a pole in each of these two variables, arising 
from connecting nucleon lines, and also the usual 
branch points. The poles lie much closer to the 
relevant region of integration than do the branch 
points, so as a first approximation we take just these 
two pole terms. The remainder of the vertex gives 
what is commonly known as a " non-additivity" 
correction, which would be very interesting to examine 
in a further study. 

The reduced graph of Fig. 4b corresponds to the 
Landau scheme consisting of the solid lines in Fig. 5. 
The threshold calculated from the geometry of the 
diagram i s : 

Fig. 5 Landau scheme for the deuteron form factor. 

The discontinuity of FD{t) is calculated from an in­
tegral in which the two internal points of the diagram 
of Fig. 5 vary over four-dimensional space, subject 
to the restriction that the five internal solid lines have 
fixed lengths. It is useful to take as one of the vari­
ables the length of the dotted line shown. This is 
in fact equal to the virtual mass P of the intermediate 
nucleon which is responsible for the pole. 

When P is fixed we have separate integrals which are 
both similar to that in Eq. (6), so we obtain directly 
a simple form for the spectral function : 

The limits of integration as obtained from the geo­
metry of Fig. 5 are : 

Note tha t / i ( f ) contains fQ(t) as a factor. The term 
(P2—N2) in the denominator is the pole of the pion 
production vertex. We can see explicitly in Eq. (9) 
how close to the pole the main part of the integral is 
located. If we let N-^co in Eq. (9), keeping a and m 
fixed, we obtain the non-relativistic limit. This limit 
is exactly equal to the result obtained from the non-
relativistic Schrodinger equation with a Yukawa 
potential, when one calculates the effect of the potential 
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and ask, is F'D = FD7 This question is answered by 
showing that FD and F'D have the same analytic 
structure 8 ) . 

Both FD and F'D have singularities at t0 and t l 9 

and F'D is so constructed that the discontinuities at 
these branch points are identical, apart from the " non-
additive " term. However, FD and FN both have 
additional singularities such as represented by the 
reduced graphs (a) and (b) in Fig. 6, which obviously 
occur at the same value of t for both FD and FN. 
Let us call these " t" singularities, since their location 
involves only t and not other quantities such as the 
external masses D or N, and denote the discontinuities 
by [FD]t and [^1 = ^ 1 - Note that [F'D]t 

c 
Fig. 6 " t " singularities in form factors. 

is singular at tQ; the discontinuity is [LFplJo = 

[FB]0 x [FN]T. The function [FD]t is also singular at t0; 
the reduced graph is shown in Fig. 6c. This is a rather 
special graph; it consists of two parts connected by a 
single vertex. While such a graph does not occur 
when we discuss the singularities of the form factor 
itself, we must take it into account when we consider 
the singularities of the discontinuity function 9 ) . We 
find that when we apply the discontinuity theorem to 
this graph the discontinuity of the discontinuity 
is the product of two factors, one associated with 
each of the two parts, and in fact [ [ F D ] J 0 = 
[FB]0

 X [FN\ = [LFDV]O • From this it can be seen to 
follow that [FD]t = [F'D]t. (If a given Feynman graph 
has additional singularities we proceed inductively; 
also we are still ignoring the non-additive term). From 
this we deduce 

on the wave function which is of lowest order, and 
longest range 7 ) . 

The two contributions to the form factor which 
we have calculated have the form 

where FN(t) is the nucleon form factor, and fb we may 
call the " b a r e " part of the deuteron form factor. 
We should like to derive such a formula not only for 
the discontinuity of the form factor, but also for the 
form factor itself. The elementary picture of the 
deuteron tells us that the charge density of the deuteron 
is obtained by folding the density of " bare " protons 
into the proton's charge density, or, in other words, 
that the form factor is the product of the two corre­
sponding form factors. We therefore consider the 
quantity 

This result has great practical significance, because 
it means that in calculating a theoretical deuteron 
form factor for physical values of t we do not need to 
know the nucleon form factor in the unphysical region; 
we can use the experimental data directly. Moreover 
the definition of the non-additive term is unambiguous, 
and the method of calculating it is straightforward 
(at least in principle). 

The form factor of the deuteron also enters, but in 
a different way and only as an approximation, in the 
impulse approximation to scattering by a deuteron. 
The impulse approximation to the meson-deuteron 
scattering amplitude is : 

where q is the momentum transfer. The meson-
nucleon scattering amplitude is extrapolated off the 
mass shell by an amount depending on k> It is usual 
to make a further approximation, in which TnN is 
replaced by an average value, which is on the mass 
shell; then the integral over k gives the form factor, 
and we obtain: 

where s' — s'(s, i). 

Now let us investigate the spectral representation 
of TnD, using t as the variable. There are thresholds 
at the same points t0 and t1 which occur in the electro-
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magnetic form factor, and some new ones which we 
will discuss shortly. Let us confine our attention 
to the tail of the deuteron wave function, that is, to 
the branch point t0; the next term is only slightly 
more complicated. The reduced graph is shown 
in Fig. 7a. The associated spectral function can be 
written in the form 

where fb(i) is again the bare spectral function. The 
form of Eq. (13) is derived by a very simple argument 
based on examination of the geometry of the Landau 
scheme associated with the reduced graph in Fig. 7a. 
The limits of variation of s' are also obtained from 
the geometry: 

Fig. 7 Pion-deuteron scattering. 

In Eq. (15) and Eq. (16), Fb(t) must be taken to be on 
the sheet which does not contain the singularity of 
T%D(s, t). 

The term TnD(s, t) is obviously to be interpreted as 
reproducing the effects which in the older theory 
arise from extrapolation of the scattering matrix 
off of the mass shell, but we are able to express these 
effects entirely in terms of the ordinary scattering 
matrix. The treatment of the threshold at t = t1 is 
only slightly more complicated than that given here, 
as long as the non-additive effects are ignored. By 
continuing the spectral analysis of TnD(s, t) other 
reduced graphs can be brought in, and in particular, 
the effects of multiple scattering can be included. 

In summary, we have tried to indicate here the 
utility of the discontinuity formula through brief 
discussions of the Mandelstam representation and 
of the anomalous thresholds in the deuteron problem. 
It should be pointed out that much further study 
must be given to the remaining unsettled questions 
about the theoretical foundation of the techniques 
presented here, and also about their application to 
more complicated problems. Nevertheless, it appears 
that Landau's discussion of singularities, as supple­
mented by the general unitarity relation, incorporates 

The form of Eq. (13) suggests that we write : 

It is not hard to show that the first term is equal to 
Eq. (12), apart from relativistic corrections—terms 
which involve the square of the nucleon velocity. 

The extra term TnD in Eq. (14) is a result of the 
greater complexity of the pion-nucleon scattering 
vertex, as compared to the (NNy) vertex, which shows 

up in the fact that not all the additional singularities 
are singularities. The pion-deuteron scattering 
amplitude has a singularity corresponding to the 
reduced graph of Fig. 7, where the barred line repre­
sents any intermediate state. The first term of Eq. 
(14) also is singular, at exactly the same value of /. 
This singularity arises from a pinching of the s' 
contour between one of the singularities of the de­
nominator and the singularity of TnN(s', i) associated 
with graph c of Fig. 7. It occurs on both sheets 
of the Riemann surface (with respect to the cut from 
t0)9 while the singularity of TnD exists on only one 
branch. 

The nucleon pole term of TN(s' = TV2) gives a 
contribution to the spectral representation of TnD 

which is obtained from 

The continuum states (vV> N+m) give 
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the maximum information obtainable from convari-
ance and causality, and provides the basis for a com­
plete graphical calculus. The examples are intended 
to show that the application of this graphical calculus 

to physical problems is straightforward, and has the 
particular advantage that the relation to older tech­
niques and intuitive concepts is always directly 
evident. 
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D I S C U S S I O N 

OPPENHEIMER : Would you amplify your remarks 
that the non-additive terms are easy to calculate? 

CUTKOSKY : I do not say that they are easy to calcu­
late ; what I say is that the way in which one should 
attack the problem is straightforward. For example, 
in the electromagnetic problem, we consider values 
of the momentum transfer which are not 0. The 
photon is not a free photon. In fact, one has to 
consider photoproduction for various values of t 
in order to put it into the spectral representation 
of the form factor. I presume the same techniques 
that have been used very successfully in these problems 
can be used here as well, although there is the added 
complication that t is not zero. One can use a Man­
delstam representation for appropriate values of t. 

CHEW : Am I correct in the impression that you 
are not afraid now of calculating the five-lined dia­
grams and more complicated things? Do you see 
your way clear to techniques for doing these ? 

CUTKOSKY : I would say that in principle I can see 
that there is a way to do it, but in practice there are 
still many things that have to be settled, such as the 
question of which are the most convenient variables 
in which to make the analytic continuations. Also, 
one has to find out just where the singularities are. 

As has been pointed out already, this morning, their 
positions will, in general, be in the complex region, 
but this is not a great difficulty as long as one knows 
where they are and one has a technique for studying 
the spectral function associated with these singularities. 
One can treat them in the same way as one treats the 
real singularities in the Mandelstam representation. 

BJORKEN : When you replace your propagators by 
delta functions, some of the momenta become com­
plex. Is there a question of analytic continuation? 

CUTKOSKY : There is a question of analytic con­
tinuation which comes up in this way. In the ordinary 
unitarity condition, one has a relation in which one 
has just the positive frequency part of the delta func­
tion, and this comes up here as well. There will, in 
general, be different roots for the q2 and you have to 
be careful to pick the right root. This is a question of 
being careful about which sheet of the Riemann 
surface one is on. 

BJORKEN : Do you have a general rule for choosing 
these roots ? 

CUTKOSKY : In some simple cases I know just how to 
do it. In general, I do not have a criterion except that 
I know that there is just one root which contributes. 
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EDEN : I would like to comment on this point in 
connection with the five-legged diagram. If the five-
legged diagram consists of one closed loop, then 
Cutkosky has shown that this corresponds to a pole 
and it is thought that poles might be dangerous 
for some of the experiments on pion production in the 
investigation of the pion-pion cross section. Re­
cently, at Berkeley, Cook and Tarski have been investi­
gating this point with particular regard to the location 
of the singularities. The location can be worked out 
tediously and the difficulty is to find which sheet the 
singularity is in. They have done this by tracing 
from a place where they know whether or not a curve 
is singular and simply following it through to the 
position of the pole. They are explicitly following the 

surface of singularities which Polkinghorne des­
cribed this morning. Their indications up to now 
are that the pole in the n + N-^n + n + N situation is 
probably not dangerous. The pole is, in fact, in the 
physical scattering region and therefore must be on 
another sheet. The same appears to be true regarding 
the pion production by protons on deuterons to give 
H e 3 which is also underway in Berkeley. On the 
other hand, for the deuteron form-factor which was 
mentioned earlier, one has three pions going into a 
deuteron and an anti-deuteron. It seems that the 
five-legged closed loop pole might well be dangerous 
and contribute to the form factor in this case. 

CUTKOSKY : I would not say that was dangerous. 
I would say it was interesting. 

T H E C O M P L E X SINGULARITIES O F PARTIAL WAVE AMPLITUDES IN 
PERTURBATION T H E O R Y 

J, G. Taylor and A, E, A. Warburton 

Universi ty of Cambr idge , C a m b r i d g e , England 

(presentee/ by J. G. Taylor) 

Recently, a general method has been developed for 
locating the complex singularities of contributions 
from Feynman diagrams 1 } . In particular, Ta r sk i 2 ) has 
studied in detail the fourth order square diagram, 
obtaining, in a simple manner, the condition on 
the masses under which the two-dimensional repre­
sentation of Mandels tam 3 ) is no longer valid. Using 
Tarski's analysis, we show that the complex singu­
larities which invalidate Mandelstam's representation 
do not cause complex singularities of the partial-wave 
amplitudes, Cx (qz). This result is of importance in 
that the most useful analyticity property for scattering 
amplitudes is, in practice, a cut plane of analyticity 
for the partial-wave amplitude. Of course, if the 
outgoing particles differ from the incoming particles, 

there will be the expected "k inema t i c " complex 
branch points, arising from the branch points of the 
total energy s regarded as a function of q 2 , the squared 
centre-of-mass momentum of an incoming particle. 

Neglecting irrelevant factors, the contribution from 
the diagram 

while 


