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domain of integration is no longer real but is complex
as has been indicated. The question one would
really like to know is just what influence causality,
unitarity, and Lorentz invariance have upon the general
structure of an N-fold representation of a multiple
Feynman integral. In the case of the four-point

function, the condition of causality contained in the
m*—ie implies that the spectral function is non-zero
only in a real domain on the boundary of the physical
sheet, and the interesting question is just what simple
(or complicated) property of the higher functions
contains the concept of causality.

A GENERALIZED UNITARITY RELATION

R. E. Cutkosky ®

Carnegie Institute of Technology, Pittsburgh, Pennsylvania

Last year at the Ninth International Conference
on High Energy Physics, Landau » presented some
new theorems on singularities of perturbation theory
amplitudes. He showed that when we discuss a
particular singularity, we only need to look at a
“gskeleton > of the Feynman graph, a reduced
graph.”” (See Fig. 1). The circles, which are the
vertices of the reduced graphs, stand for any arbitrarily
complicated subgraphs. Landau showed that a
singularity is obtained when all the lines of a reduced
graph correspond to particles which are simultaneously
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Fig. 1 Example of  reduced graph.”

(*) A. P. Sloan Foundation Fellow.

on the mass shell, and in addition satisfy certain
geometrical relations. Each of the reduced graphs
shown could arise from the same Feynman graph, and
correspond to different singularitiecs cf the same
amplitude.

When we analyze these singularities further, we
find that they are sometimes poles, and sometimes
branch points. The residue of a pole is, of course,
obtained by considering the subgraphs for the case
that the lines leading into them represent particles
which satisfy Landau’s condition. When the singu-
larity is a branch point, the discontinuity of the
amplitude across the branch cut is obtained by an
equally simple prescription. For each line of the
Feynman graph which also appears explicitly in the
reduced graph, the Feynman propagator is replaced
by a delta function. In other words, the particles
which correspond to the lines of the reduced graph are
always taken to be on the mass shell. This prescrip-
tion, when it is applied to a reduced graph like that
on the top of Fig. 1, is equivalent to the familiar
unitarity property of the S-matrix.

This theorem will perhaps be a little clearer after
we outline a brief proof. The main idea of the proof
is that we rewrite the Feynman integral in terms of the
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virtual masses of the intermediate particles, that is,
in terms of the magnitudes of their four-momenta.
The structure of the integral is then most evident 2.

We must first see whether the squares of the four-
momenta which are associated with the lines of the
reduced graph are all independent. If these squares
do vary independently when the virtual momenta
vary, then we can make a change of variables, using
as variables these virtual masses and whatever ad-
ditional variables we might need. Then we get an
integral of the form :

dqi dqs
F= " —G(q}...q2), 1
Jit . 0
where G(g7...q2) is the result of integrating over all
the other variables. This function G, and the con-

tours over which the g7 are integrated, also depend on
the external momenta.

The next step of the proof is to look at the first
m—I integrations in F, and identify the part of these
integrals which is responsible for the existence of the
Landau singularity. The idea can be explained by
a simple example :

f= quz(M 2—q*)7g(q?). 2

The function f will become singular when the contour
of integregation is * pinched ”’ between the pole at
q* = M?* and some singularity of g(¢%), as in Fig. 2a.
This pinched contour can be replaced by the two con-
tours in Fig. 2b, in which the contour R gives a contri-
bution to f which is regular when the singularities
coalesce and therefore is of no interest in the present
discussion. The singular part of fis obtained entirely
from the small circle around the pole, so, in other
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Fig. 2 Contours of integration,

words, we may replace the factor (M*—g*)~! by
2mid(q* — M?).

We may apply this argument in turn to all but one
of the ¢* integrations in Eq. (1) but the last integral
is taken over a contour which is not pinched. Instead
the end-point of the contour approaches the pole at
g%, = M2 when the amplitude F becomes singular.
(It can be shown that this is equivalent to Landau’s
conditions.) When we analytically continue F past
its singularity the end-point of the contour moves
past the pole. Since the end-point can pass either
above or below the pole, we may end up on either of
two branches of F. The difference between the value
of F on these two branches is just 27 times the residue
of the pole, so the rule of replacing the reciprocal
of (M?*—q?) by 2nid(qg*> —M?) holds for each line of
the reduced graph.

When the virtual masses of the particles in the
reduced graph are not independent, that is when one
of these masses is a function of the other virtual
masses and of the external momenta, there is one less
integration variable than there are poles. Then when
we calculate the singular part of the amplitude we
take the residue of all the poles for which there are
integrations, but there remains at the end-pole one
pole so we see explicitly that in this case the singularity
of the amplitude is a pole. A simple example is
given by a graph which consists of two parts connected
by a single line. In this case the virtual momentum
of the connecting line does not vary at all, when the
momenta of the external lines are fixed. The impor-
tance of such poles in practical problems is already
well understood *.

The theorem we have just discussed applies to any
finite order graph of the regularized, renormalized,
perturbation theory. If we assume that the perturba-
tion expansion can be treated as a formally convergent
series, we can sum over all Feynman graphs which have
a particular reduced graph, and which contribute to a
particular discontinuity of an amplitude. When
we do this, we automatically sum over all the sub-
graphs which contribute to the vertices of the reduced
graph. When the vertex is a simple three-line vertex,
the sum over all graphs gives the renormalized coup-~
ling constant, since the three entering momenta are
all on the mass shell. The more complicated vertices
become exact scattering amplitudes, or production
amplitudes. In this way we obtain a generalization
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of the polology technique, because in the spectral
representation of any amplitude, the contribution of
all branch cut integrals and all poles can be repre-
sented in terms of other physical processes. We are
assuming here, of course, that the sum does not have any
singularities which do not appear in finite order terms.

One of the most interesting applications of the
generalized unitary relation arises in Mandelstam’s
representation of scattering amplitudes . The Man-
delstam spectral functions are discontinuity functions
which are associated with reduced graphs such as
that in Fig. 3. The Mandelstam reduced graphs
have at least four vertices, with each of the four
external lines of the graph being connected to a separ-
ate vertex. For concreteness, let us talk about
nucleon-nucleon scattering. We omit discussion of
nucleon spin (although, as is well known, keeping track
of the spin is most of the work in any practical calcu-
lation). Let us also just look at graphs in which there
are only two mesons exchanged between the nucleons.

If the barred line in Fig. 3 refers to a single nucleon,
the vertices give the pion-nucleon coupling constant,
and the spectral function is just that obtained in fourth
order perturbation theory. Other reduced graphs
are obtained if the barred line represents a continuum
state, with a nucleon plus a meson, etc. Then the
two upper circles represent, for example, the meson-
nucleon scattering amplitude. Since this reduced
graph arises in calculation of the discontinuity of the
imaginary part of the nucleon-nucleon scattering
amplitude we may give all the propagators on the left
half of the diagram masses with small positive,
imaginary parts, and conversely on the right. There-
fore one of the upper circles actually represents the
conjugate scattering amplitude, so the integral over
the meson-nucleon scattering angle reduces to an
application of the ordinary unitarity relation to the
meson-nucleon scattering matrix, and the entire
top part of the graph gives just the imaginary part
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Fig. 3 Nucleon-nucleon scattering.
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Fig. 4 Deuteron form factor.

of the meson-nucleon scattering amplitude. The
final result has the form >
51

ds’ Im. Ty(s'f)

_ 2
I:TNN(S’ t)] =g J'___V(S, ) . A3)

So

A result similar to this has been obtained independently
by Cini and Fubini ®. They used the formal appar-
atus of the more usual dispersion theory. The calcu-
lation based on generalized unitarity is more direct,
and also provides a physical picture of Mandelstam’s
representation. The spectral functions arise rather
mysteriously in the usual treatments, but have a simple
physical interpretation in terms of reduced graphs.

Let us now turn to another problem, that of the
structure of the deuteron, and in particular, the electro-
magnetic form factor of the deuteron. The discontinuity
theorem, by enabling us to calculate the spectral
functions associated with the so-called anomalous
thresholds, allows us to develop a theory of the form
factor which 1s independent of older methods in-
volving wave functions. However, it is extremely
important to keep the older approaches in mind
simultaneously as a guide. We shall here treat only
a simplified version of this problem, in which we again
suppose that all of the particles which enter are
spinless, even the photon. The form factor is the
(DDy) vertex considered as a function of the momen-
tum ¢ imparted by a static external field. We write
t = q*; the physical values of ¢ are negative. The
form factor Fp(f) has singularities along the positive
real ¢ axis. The singularity closest to the origin
is associated with the reduced graph shown in Fig. 4a;

the threshold is at

. D o
173 =4oc2—. Our notation is
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that D, N, and m are the masses of the deuteron,
nucleon, and meson, respectively, and a*> = N2—1D?
Let us define the spectral function to be

J@) = @ri) '[Fp(0] ,

d
Fot) = fff(’) , 5)

to

or

(if we may assume no subtractions are needed).
The spectral function associated with the reduced
graph in Fig. 4a is, according to the general discon-
tinuity formula,

N = Fo C?D
Jo(t) = F( )(Zn)2

f d*k6,0,05 , (6)

where Fy(t) is the nucleon form factor. Since the
integral in (6) involves nothing but delta functions
it is very easy to evaluate, and leads to :

C? D

t t 7
Jo(t) = 7IN()_(D2 FPe 0
The factor D(D*—1)"* in Eq. (7) can be pictured as
a Fitzgerald contraction effect. The remaining fac-
tors are just the results obtained from the tail of the

non-relativistic wave function.

The reduced graph with the next lowest threshold
is shown in Fig. 4b. This graph contains a pion
production vertex which we must discuss before we
can consider the contribution of the graph to the
form factor. For a fixed value of t = ¢*, we may
envisage using a Mandelstam representation in the
two variables s, = (k--q,)*> and s, = (k-+q,)"
There is a pole in each of these two variables, arising
from connecting nucleon lines, and also the usual
branch points. The poles lie much closer to the
relevant region of integration than do the branch
points, so as a first approximation we take just these
two pole terms. The remainder of the vertex gives
what is commonly known as a “non-additivity >’
correction, which would be very interesting to examine
in a further study.

The reduced graph of Fig. 4b corresponds to the
Landau scheme consisting of the solid lines in Fig. 5.
The threshold calculated from the geometry of the
diagram is :
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Fig. 5 Landau scheme for the deuteron form factor.

The discontinuity of Fp(¢) is calculated from an in-
tegral in which the two internal points of the diagram
of Fig. 5 vary over four-dimensional space, subject
to the restriction that the five internal solid lines have
fixed lengths. It is useful to take as one of the vari-
ables the length of the dotted line shown. This is
in fact equal to the virtual mass P of the intermediate
nucleon which is responsible for the pole.

When P is fixed we have separate integrals which are
both similar to that in Eq. (6), so we obtain directly
a simple form for the spectral function :

P2(1)
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The limits of integration as obtained from the geo-
metry of Fig. 5 are :
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PX(t) = N* +%t—2af* 1—% )
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Note that f,(¢) contains fy(¢) as a factor. The term
(P?—N?) in the denominator is the pole of the pion
production vertex. We can see explicitly in Eq. (9)
how close to the pole the main part of the integral is
located. If we let N—oo in Eq. (9), keeping « and m
fixed, we obtain the non-relativistic limit. This limit
is exactly equal to the result obtained from the non-
relativistic Schrodinger equation with a Yukawa
potential, when one calculates the effect of the potential
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on the wave function which is of lowest order, and
longest range 7.

The two contributions to the form factor which
we have calculated have the form

o) = f(OF (@) ,

where Fy(t) is the nucleon form factor, and f, we may
call the “bare’” part of the deuteron form factor.
We should like to derive such a formula not only for
the discontinuity of the form factor, but also for the
form factor itself. The elementary picture of the
deuteron tells us that the charge density of the deuteron
is obtained by folding the density of *“bare’’ protons
into the proton’s charge density, or, in other words,
that the form factor is the product of the two corre-
sponding form factors. We therefore consider the
quantity

Fi(t) = Fy()F (D)

and ask, is Fp, = F;,? This question is answered by
showing that Fj and F} have the same analytic

structure .

Both Fj and F have singularities at #, and ¢,,
and F, is so constructed that the discontinuities at
these branch points are identical, apart from the “non-
additive”” term. However, F, and Fy both have
additional singularities such as represented by the
reduced graphs (a) and (b) in Fig. 6, which obviously
occur at the same value of 7 for both F, and Fjy.
Let us call these “¢°’ singularities, since their location
involves only ¢ and not other quantities such as the
external masses D or N, and denote the discontinuities
by [Fpl, and [Fpl, = F[Fyl,. Note that [Fp],
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Fig. 6 < singularities in form factors,

is singular at fy; the discontinuity is [[Fpl]o =
[F,]o x [Fy]),. The function [Fp], is also singular at #,;
the reduced graph is shown in Fig. 6c. This is a rather
special graph; it consists of two parts connected by a
single vertex. While such a graph does not occur
when we discuss the singularities of the form factor
itself, we must take it into account when we consider
the singularities of the discontinuity function *). We
find that when we apply the discontinuity theorem to
this graph the discontinuity of the discontinuity
is the product of two factors, one associated with
each of the two parts, and in fact [[Fpl]o =
[Fylo % [Fy]l, = [[Fpl]o. From this it can be seen to
follow that [Fp], = [Fp),- (If a given Feynman graph
has additional singularities we proceed inductively;
also we are stillignoring the non-additive term). From
this we deduce

FD(t) = Fb(t)FN(t)'l_Fnon-add.(t) (10)

This result has great practical significance, because
it means that in calculating a theoretical deuteron
form factor for physical values of ¢ we do not need to
know the nucleon form factor in the unphysical region;
we can use the experimental data directly. Moreover
the definition of the non-additive term is unambiguous,
and the method of calculating it is straightforward
(at least in principle).

The form factor of the deuteron also enters, but in
a different way and only as an approximation, in the
impulse approximation to scattering by a deuteron.
The impulse approximation to the meson-deuteron
scattering amplitude is :

Top(s, ) = jWD(k)TnN(S,(k)’ t; k)%(’c—%)d% . (11

where ¢ is the momentum transfer. The meson-
nucleon scattering amplitude is extrapolated off the
mass shell by an amount depending on k. It is usual
to make a further approximation, in which T,y is
replaced by an average value, which is on the mass
shell; then the integral over k gives the form factor,
and we obtain :

Top(s, 1) = TnN(SI: NF@), (12)
where 5" = 5'(s, 7).

Now let us investigate the spectral representation
of T,p, using ¢ as the variable. There are thresholds
at the same points ¢, and ¢, which occur in the electro-
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magnetic form factor, and some new ones which we
will discuss shortly. Let us confine our attention
to the tail of the deuteron wave function, that is, to
the branch point 7,; the next term is only slightly
more complicated. The reduced graph is shown
in Fig. 7a. The associated spectral function can be
written in the form

ds'T,\(s', 1)
2mi[(s' =54 )4 (s" —s_)*]’

where f,(f) is again the bare spectral function. The
form of Eq. (13) is derived by a very simple argument
based on examination of the geometry of the Landau
scheme associated with the reduced graph in Fig. 7a.
The limits of variation of s are also obtained from
the geometry :

Fun(st) = /(1) 95 (13)

5. = (4D*— t)‘1{(s—m2)2—[|:sl—l-st+(D2 —m?)?—
—2s(D* + mz)]*i(NZt—4a2D2)%]2} .

The form of Eq. (13) suggests that we write :

ds' T (s, 1) ~
Taofs.) = Fi) o (A TR CUR
(14)
It is not hard to show that the first term is equal to
Eq. (12), apart from relativistic corrections—terms
which involve the square of the nucleon velocity.
The extra term 7",,,) in Eq. (14) is a result of the
greater complexity of the pion-nucleon scattering
vertex, as compared to the (N Ny) vertex, which shows
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Fig. 7 Pion-deuteron scattering.

up in the fact that not all the additional singularities
are “t” singularities. The pion-deuteron scattering
amplitude has a singularity corresponding to the
reduced graph of Fig. 7, where the barred line repre-
sents any intermediate state. The first term of Eq.
(14) also is singular, at exactly the same value of ¢.
This singularity arises from a pinching of the s’
contour between one of the singularities of the de-
nominator and the singularity of T, (s’, #) associated
with graph c of Fig. 7. It occurs on both sheets
of the Riemann surface (with respect to the cut from
t,), while the singularity of T, exists on only one
branch.

The nucleon pole term of Ty(s' = N?) gives a
contribution to the spectral representation of T,
which is obtained from

[Teo(s. D]ne = g FyO[(N* =s N =5 )] 7*. (15)
The continuum states (\/ >N +m) give

[Teo(s, 0] = 7" Tm To(s', F(D[(s' = 5.4) X
x(s'—s)]"F.  (16)

In Eq. (15) and Eq. (16), F,(¢) must be taken to be on
the sheet which does not contain the singularity of
T.(s, 1).

The term THD(S, 1) is obviously to be interpreted as
reproducing the effects which in the older theory
arise from extrapolation of the scattering matrix
off of the mass shell, but we are able to express these
effects entirely in terms of the ordinary scattering
matrix. The treatment of the threshold at f=1¢ is
only slightly more complicated than that given here,
as long as the non-additive effects are ignored. By
continuing the spectral analysis of 7,p(s,?) other
reduced graphs can be brought in, and in particular,
the effects of multiple scattering can be included.

In summary, we have tried to indicate here the
utility of the discontinuity formula through brief
discussions of the Mandelstam representation and
of the anomalous thresholds in the deuteron problem.
It should be pointed out that much further study
must be given to the remaining unsettled questions
about the theoretical foundation of the techniques
presented here, and also about their application to
more complicated problems. Nevertheless, it appears
that Landau’s discussion of singularities, as supple-
mented by the general unitarity relation, incorporates
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the maximum information obtainable from convari-
ance and causality, and provides the basis for a com-
plete graphical calculus. The examples are intended
to show that the application of this graphical calculus

to physical problems is straightforward, and has the
particular advantage that the relation to older tech-
niques and intuitive concepts is always directly
evident.
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DISCUSSION

OPPENHEIMER : Would you amplify your remarks
that the non-additive terms are easy to calculate?

CuTtkosky : I do not say that they are easy to calcu-
late; what I say is that the way in which one should
attack the problem is straightforward. For example,
in the electromagnetic problem, we consider values
of the momentum transfer which are not 0. The
photon is not a free photon. In fact, one has to
consider photoproduction for various values of ¢
in order to put it into the spectral representation
of the form factor. I presume the same techniques
that have been used very successfully in these problems
can be used here as well, although there is the added
complication that 7 is not zero. One can use a Man-
delstam representation for appropriate values of 7.

CHEW : Am I correct in the impression that you
are not afraid now of calculating the five-lined dia-
grams and more complicated things? Do you see
your way clear to techniques for doing these ? ‘

Cutkosky : I would say that in principle I can see
that there is a way to do it, but in practice there are
still many things that have to be settled, such as the
question of which are the most convenient variables
in which to make the analytic continuations. Also,
one has to find out just where the singularities are.

As has been pointed out already, this morning, their
positions will, in general, be in the complex region,
but this is not a great difficulty as long as one knows
where they are and one has a technique for studying
the spectral function associated with these singularities.
One can treat them in the same way as one treats the
real singularities in the Mandelstam representation.

BiorkEN : When you replace your propagators by
delta functions, some of the momenta become com-
plex. Is there a question of analytic continuation ?

Cutkosky : There is a question of analytic con-
tinuation which comes up in this way. In the ordinary
unitarity condition, one has a relation in which one
has just the positive frequency part of the delta func-
tion, and this comes up here as well. There will, in
general, be different roots for the ¢g* and you have to
be careful to pick the right root. This is a question of
being careful about which sheet of the Riemann
surface one is on.

BJorRKEN : Do you have a general rule for choosing
these roots ?

CuTtkosky: In some simple cases I know just how to
doit. In general, I do not have a criterion except that
I know that there is just one root which contributes.
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Epen : I would like to comment on this point in
connection with the five-legged diagram. If the five-
legged diagram consists of one closed loop, then
Cutkosky has shown that this corresponds to a pole
and it is thought that poles might be dangerous
for some of the experiments on pion production in the
investigation of the pion-pion cross section. Re-
cently, at Berkeley, Cook and Tarski have been investi-
gating this point with particular regard to the location
of the singularities. The location can be worked out
tediously and the difficulty is to find which sheet the
singularity is in. They have done this by tracing
from a place where they know whether or not a curve
is singular and simply following it through to the
position of the pole. They are explicitly following the

surface of singularities which Polkinghorne des-
cribed this morning. Their indications up to now
are that the pole in the n+ N—n+7n+ N situation is
probably not dangerous. The pole is, in fact, in the
physical scattering region and therefore must be on
another sheet. The same appears to be true regarding
the pion production by protons on deuterons to give
He® which is also underway in Berkeley. On the
other hand, for the deuteron form-factor which was
mentioned earlier, one has three pions going into a
deuteron and an anti-deuteron. It seems that the
five-legged closed loop pole might well be dangerous
and contribute to the form factor in this case.

Cutkosky : I would not say that was dangerous.
I would say it was interesting.

THE COMPLEX SINGULARITIES OF PARTIAL WAVE AMPLITUDES IN

PERTURBATION THEORY

J. G. Taylor and A. E. A. Warburton
University of Cambridge, Cambridge, England

(presented by J. G. Taylor)

Recently, a general method has been developed for
locating the complex singularities of contributions
from Feynman diagrams V.  In particular, Tarski ? has
studied in detail the fourth order square diagram,
obtaining, in a simple manner, the condition on
the masses under which the two-dimensional repre-
sentation of Mandelstam * is no longer valid. Using
Tarski’s analysis, we show that the complex singu-
larities which invalidate Mandelstam’s representation
do not cause complex singularities of the partial-wave
amplitudes, C,;(¢*). This result is of importance in
that the most useful analyticity property for scattering
amplitudes is, in practice, a cut plane of analyticity
for the partial-wave amplitude. Of course, if the
outgoing particles differ from the incoming particles,

there will be the expected  kinematic’’ complex
branch points, arising from the branch points of the
total energy s regarded as a function of g, the squared
centre-of-mass momentum of an incoming particle.

Neglecting irrelevant factors, the contribution from
the diagram

F(s,t) = J _]_I dx;0(1—2x,)/D* 1)
0

while

+1

C(g®) = J‘d(cos 0)F(q?, cos 0)P,(cos 6) 2)
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