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Abstract

We investigate the theoretical description of adiabatic quantum computing (AQC) algorithms
using the evolution of the Hamiltonian eigenvalues in the framework of the Pechukas-Yukawa
formalism, exactly mapping the eigenvalues to the dynamics of a fictitious one-dimensional
classical gas with cubic repulsion. We exploit the properties of the Pechukas-Yukawa model
to describe the behaviour of quantum algorithms used in AQC.

Specifically, we derive the non-equilibrium nonstationary statistical mechanics of the
Pechukas-Yukawa gas based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain
of equations with the goal of increasing the efficiency of direct numerical simulation. We
extended our research to consider the impacts of level crossings and avoided crossings to eval-
uate the compatibility of the Pechukas-Yukawa formalism and the Landau-Zener description
of these occurrences. This is valuable to the investigation of decoherence in a quantum sys-
tem and carries scope for research on the description of state dynamics through the energy
level dynamics.

We relate the evolution of a quantum state of a system under external perturbation
to that of its energy levels. Using this relationship, we produced a cumulant expansion
with improved efficiency compared to traditional methods of approximate quantum state
evolution description. It is especially significant for the investigation of decoherence in an

evolving quantum system.
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5.2 (a) The logarithmic relative error (R.E.) between the piecewise constant ap-
proach and the Magnus series (dashed blue line), the adiabatic approximation
(solid black line) and the TDPT approximation (red crosses) against time for
the linear case: A(t) = 1073t. These errors have been investigated for differ-
ent dimensions; N = 2,4 and 8, with a minimum level spacing of 0.01. The
Magnus series best approximates C(t), when ¢t < 60. The accuracy improves
with dimension, a consequence of the increased number of level crossings and
anti-crossings which are handled better using the Magnus series. For N = §,
the Magnus series best approximates C(t) for ¢ < 100. This demonstrates
that the point of intersection between these R.E.s shift to the right as di-
mension grows. During the evolution, the R.E.s are bounded by 10° for all
approximations through time. The R.E. for the Magnus series increases with
time as the system approaches a limit such that the convergence criterion in
Eq. (5.23) does not hold. The errors for the adiabatic approximation overlaps
with the TDPT. (b) Similar to (a) with an initial minimum level spacing of
0.05. These errors have been investigated for dimensions; N = 2,4 and 5.
One observes at N = 2, the Magnus series best approximates C(t) for ¢t < 40,
again this period increases with dimension, at N = 5, reaching ¢ < 50. This
demonstrates that the point of intersection between these R.E.s shift to the
right as dimension grows. During the evolution, the R.E.s are bounded by
10° for all approximations. Only for N = 2 does the Magnus series approach
10°. There is a growth in R.E with time as the system approaches a limit
such that the convergence criterion in Eq. (5.23) does not hold. The errors
for the adiabatic approximation overlaps with the TDPT, both appear to
decrease as time grows large as levels spread further apart, so level crossings
and avoided crossings are less frequent. Compared against (a), the periods be-
fore the intersection between the Magnus series and the TDPT and adiabatic
approximations are shorter as having a larger minimum separation between

levels improves the accuracy in both the latter approximations. . . . . . . . .
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5.3 (a) Same as in Fig. 5.2 (a), averaged over the same initial conditions, for cubic
A(t) = 1073(t3 + t* + t). The errors have been obtained for N = 2,4 and 5,
it was not possible to obtain results for larger N as the approximations broke
down. The Magnus series best approximates C(t) when ¢ < 10, and plateaus
at 10°, demonstrating a break down in meeting Eq. (5.23) for the Magnus
series. This is expected as the cubic function grows faster than all other classes
of A considered in this paper. The relative error for TDPT peaks initially
and also plateaus at 10°, whereas the R.E. for the adiabatic approximation
decreases with time as the levels spread further apart in this system, resulting
in fewer level crossings and avoided crossings. (b) Same as in 5.2 (b), averaged
over the same initial conditions, with cubic A(t) = 1073(#3 + ¢ +t). The
Magnus series best approximates C(t) for ¢ < 10. This interval is shorter
than for all other classes of A\, as the cubic function grows faster than all
other classes of A\ considered in this paper. The R.E. for the Magnus series
plateaus at 10° for all dimensions, demonstrating a break down in meeting
Eq. (5.23). One observes the errors for the adiabatic approximation overlaps
with the TDPT. One observes the duration in the overlap increases with
dimension however, as time increases the adiabatic approximation is most
accurate, decreasing with time, whereas the TDPT plateaus at 107!, Again,
compared against (a), the periods before the intersection between the Magnus
series and the TDPT and adiabatic approximations are shorter as having a
larger minimum separation between levels improves the accuracy in both the

latter approximations. . . . . . . . . ...

viii



5.4 Same as in Fig. 5.2 (a), again averaged over the same initial conditions, for
exponential decay A(t) = 1073e~". For t < 10 and N = 2, the Magnus series
best approximates C(t). This period increases with dimension, going beyond
t = 100 for N = 8, where the point of intersection between the R.E.s shift
to the right as dimension grows. For the exponential decay, the R.E.s for all
approximations remain bounded below 107!, as time grows large the Magnus
series plateaus yet provides accurate results throughout the evolution, demon-
strating thus far the Magnus series convergence criterion is met. Again, the
errors for the adiabatic approximation overlaps with the TDPT, where their
errors plateau below 107!, (b) Same as in Fig. 5.2 (b), again averaged the
same initial conditions, for exponential decay A(t) = 1073e~*. For ¢t < 20, the
Magnus series best approximates C'(¢). This period increases with dimension,
reaching ¢t < 30 at N = 5, where, again the point of intersection between
the R.E.s shift to the right as dimension grows. For the exponential decay,
the R.E.s for all approximations remains below 1072, as time grows large the
Magnus series plateaus yet provides accurate results throughout the evolution,
demonstrating thus far the Magnus series convergence criterion is met. Again,
the errors for the adiabatic approximation overlaps with the TDPT, both seen
to decrease as time grows large at the same rate such that beyond ¢t = 30,
these provide better approximations for C(t) a consequence of the levels mov-
ing further apart hence level crossings and avoided crossings are less frequent.
Compared against (a), again one observes the periods before the intersection
between the Magnus series and the TDPT and adiabatic approximations are
shorter as having a larger minimum separation between levels improves the

accuracy in both the latter approximations. . . . . . .. ... ... ... ..
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5.5 (a) The logarithm of the relative error against time for the adiabatic approx-
imation (thick crosses), the TDPT (solid line) and the Magnus series approx-
imation (dashed line). One observes the errors throughout the evolution, in
all cases are bounded by 1072. The adiabatic approximation overlaps with
the TDPT, however up to ¢ < 35, the Magnus series best approximates C/(t)
providing accurately the dynamics of the eigenstate coefficients. (b) The evo-
lution of the occupation numbers of the 3-Satisfiablity qubit system to study
the exact cover 3 problem of 8 bits. We observe the presence of an avoided
crossing between states 7 and 8, resulting in a reflection in their occupation
dynamics, suggesting a transfer in the population of states. In contrast, all
other states have remained essentially constant despite a level crossing be-
tween states 7, 1 and 2. It would be of interest to determine the dynamics

under the influence of noise modelling interactions with the environment. . . 61
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Chapter 1
Introduction

The impacts of quantum computing would be far reaching and monumental in modern society
with benefits from simulating chemical reactions which contribute to the developments of
new drugs, to boosts in machine learning, assisting self driving cars in assessing situations

better more efficiently, for improved safety.

Announcements by D-Wave Systems Inc, of the production of working adiabatic quantum
computers have led to the ongoing research in the complexity theory it involves. Standard
approaches to the success of quantum computing have focused on the quantum gate model. It
has been conjectured to achieve a quantum speedup in computation with a tradeoff between
time and the probability of the final states [1, 2, 3, 4]. The gate model operates on qubits that
encode a solution in an entangled superposition of eigenstates. Experimental achievements
in this area include the control and entanglement of approximately 10 qubits to develop a
universal computer using the quantum gate model. However, recent experiments have shown
that there are cases where classical computers work just as effectively as quantum computers,
though for incompressible data, there is no competition that quantum computers have the
advantage, still they prove vulnerable to decoherence [1, 2, 3, 4] - the loss of information due

to the interactions of the system with the environment.

An alternative more promising approach is adiabatic quantum computing (AQC) [1].
This is more robust against decoherence. The AQC model encodes the solution dictated by
the adiabatic theorem, in an easily achievable groundstate of the initial Hamiltonian, Hj,
evolving the system under an adiabatic parameter such that the system maps the solution
to the groundstate in Hr. This corresponds to an optimal solution of a given optimisation
problem based on quantum annealing algorithms, reducing the vulnerability of the system
dephasing [1]. Using the AQC model, D-Wave jointly sponsored by NASA and Google
announced the achievement of working quantum chips with 128 and 512 qubits, which is

feasible because of the intrinsic features of adiabatic processes rendering the model more



robust against decoherence.

The standard approach to quantum computing uses a heuristic search algorithm, de-
scribed by quantum annealing. This relies on random walks parameterised Markov chains
to solve combinatorial optimisation problems. This gives the prospect of tackling NP-hard
problems. The algorithms restrict the final Hamiltonian H, such that the entire computa-
tion need not be confined to the ground state. These algorithms are realised in both classical

and AQC computational models, providing a bridge between the two.

For the theoretically ideal AQC, an adiabatically closed system without interference from
the environment, the algorithm is probabilistic. The adiabatic theorem is used to bound the
tradeoff between computation time and the probability of ending in the groundstate [1]. For
a physical quantum platform, based on the superposition of states, the system will inevitably
be open such that it is impossible to perfectly isolate the system from the environment, hence
noise must be accounted for [5]. In determining the probability of ending in the groundstate,
one takes a heuristic search approach. In contrast, the classical platform does not support
quantum features of superposition and entanglement, the algorithm is not probabilistic yet

much slower by comparison [1].

In development of insights on the measure of quantumness in the AQC model, the
Pechukas-Yukawa model has been used to map quantum algorithms to classical models [3].
This allows for classical properties to apply to the highly entangled quantum nature of the
system. From this property, we constructed the BBGKY chain of kinetic equations of mo-
tion concerning the level dynamics. Sets of approximate kinetic equations for a generalised
distribution function of the dynamical variables are obtained by breaking this chain at a par-
ticular point. These equations could be factorised, where we found that corrections to the
factorized approximation of the distribution function scale as 1/N, where N is the number
of the Pechukas gas particles corresponding to the number of eigenvalues. This is promising
in particular for large systems which could reach an efficiency that greatly reduces the speed

of numerical simulation.

Under this formalism, decoherences have been modelled such that one could explore their
influences. One source of decoherence we considered had been on account of state transitions
occuring in the event of level crossings and avoided crossings. We investigated these impacts
on an evolving quantum system using the traditional Landau-Zener model. We determined
the conditions required for the applicability of the Landau-Zener mode in the Pechukas-
Yukawa setting. In extension to this investigation, we determine the influences of noise on
the description of avoided crossings. We considered a single source of composite longitudinal

Brownian noise. This carries the potential to cause decoherence in a quantum algorithm.

Furthermore, we derived a relationship between the level dynamics and the evolution



of quantum states, allowing for a description of occupation dynamics and the evolution
of coherences beyond the Landau-Zener model. Using the relationship between the quan-
tum states and level dynamics, we produced a cumulant expansion with improved efficiency
compared to traditional methods to approximate quantum state evolution. Our expansion
requires only the initial conditions and the evolution of the perturbation parameter, A to
determine its convergence to provide highly accurate approximations. This further enabled
us to describe the density matrix, requiring far less information than current approaches.
Allowing for investigation of the density matrix dynamics with fewer imposed conditions, one
obtains analytical insights on the evolution of quantum states and their populations which
can describe better a large quantum coherent system than the currently used approaches
which is especially fruitful in the research of sources of decoherence in quantum systems.
This expansion carries the potential to investigate adiabatic invariances in a system which
could allow for determining the different complexity classes a family of Hamiltonians may fall
under. When the distributions for the level dynamics are complemented by the equations for
the level occupation numbers and inter-level transition amplitudes, they allow to describe
the non-equilibrium evolution of the quantum state of the system. These have potential to

improve the designs of quantum algorithms in the development of AQC.

1.1 Thesis Overview

The following chapter provides a brief introduction to quantum computing and in particu-
lar, the theory of AQC and AQC algorithms. We follow with a background of optimisation
problems which is essentially the backbone of quantum computing. In Chapter 3 we detail
the Pechukas-Yukawa model, providing a derivation of its mapping of eigenvalue dynamics
to a set of coupled ordinary differential equations and its stochastic extension, the stochastic
Pechukas-Yukawa model. In Chapter 4 we also offer a brief introduction of the BBGKY
hierarchy of kinetic equations of motion. Our work on the statistical treatment of the level
dynamics is detailed here, with the derivation for the generalised BBGKY hierarchy in the
Pechukas-Yukawa framework, extending the dynamics to account for parametrically evolving
quantum systems. We also describe our effecive mean-field approximation. Having deter-
mined its accuracy theoretically, we tested numerically our theory using the 2-Qubit Ising
model in illustration of the factorisation approximation. In Chapter 5, we establish a connec-
tion between the level dynamics and the evolution of the eigenstate expansion coefficients,
which allows for characterising the entire system via the level dynamics. We then approx-
imated the evolution of the eigenstate coefficients, exploring different approximations and

comparing them numerically. This was extended to describe the evolution of the density ma-
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trix such that the entire quantum system could be characterised from eigenvalue dynamics.
We identified the strengths and weaknesses of the approximations, identifying the most ap-
propriate description of the occupation dynamics of the exact cover 3-satisfiability problem
as a specific example. In Chapter 6, we consider the compatibility of Landau-Zener model
in the Pechukas-Yukawa formalism and the conditions governing this marriage. We obtain
a description of level crossings, avoided crossings and stochastic avoided crossings satisfied
in this setting. Finally, we provide a summary of our works in the conclusions with a brief

study of the scope of our work carries for further investigations.



Chapter 2
Introduction to Quantum Computing

Manin and Feynman introduced the concept of a quantum computer in 1980 [6] and 1982
[7] respectively. This attracted enormous interest under the promise of a quantum speed-up
through exploiting quantum properties such that quantum computations are carried out in
asymptotically fewer basic operations than classical computations. However, this leads to a
tradeoff in probability of realisation in the final states. The standard approach to quantum
computing uses a heuristic search algorithm, yet still due to its susceptibility to decoherence,
achieving a practical quantum computer remains a challenging feat.

In this chapter, the properties of a quantum computer are presented, followed by an
introduction to adiabatic quantum computing (AQC), one approach to quantum computing,
outlining the assumptions required, extending to its applications and vulnerabilities. For

details on basic notation on quantum information, refer to Appendix A.

2.1 Quantum Computing

Quantum computations operate on qubits which exhibit the quantum properties, superpo-
sition and entanglement. Superposition enables storing all 2" states simultaneously. For a
single qubit given by |¢) = «|0) + S|1), superposition allows qubits to store information
simultaneously in states |0) and [1). Once a qubit is measured, there is probabilistic collapse
of |¢) to one of these states, which can be read off to decode the information it stores. This
reasoning can be extended to n-qubit systems. Entanglement occurs when qubits interact
and are subsequently removed from each other. Despite being physically separated they
are no longer independent. For multi-qubit states, after entanglement states cannot be de-
composed into products of individual probabilities. The probability of being observed in any
given state is correlated, allowing for acting on all 2" states simultaneously. A demonstration

of this property is given by the Bell state[8].



In this representation, one can construct quantum logic gates in order to transform qubits
by acting on them with a combination of Pauli matrices and the identity matrix. These are
used to create all classical logic gates with the crucial difference that quantum gates are
reversible; given the output, it is possible to determine the input. From these, quantum
circuits can be constructed, capable of computing any classical function f defined on n bits.
The general statement here is that for a circuit C'; applied to a register @, the result is a new
superposition state Cr|¢) = |¢') where |¢) denotes a new superposition. This representation

forms the basis of the quantum gate model.

The quantum gate model concerns n qubits in a register (), operated on by quantum
circuits C;, where ¢ € N. The circuits operate on () in parallel and in series such that a com-
putation initialises () in some known state and after the circuits induce state transformations
on (), it is measured resulting in a probabilistic collapse of ) to a classical state, providing
the answer which is then returned by the computation. Utilising the quantum properties of
superposition and entanglement respectively, ) holds all 2" states simultaneously and the
quantum circuits are able to act on all n bits simultaneously in constant time. This quan-
tum parallelism carries the potential to provide significant speedups in computation time

compared with classical computers.

Assuming the universal applicability of quantum mechanics, the practical realization of
a universal quantum computer remains a rather distant possibility due to the large number
of physical qubits necessary for its operation and the extreme fragility of its quantum states
with respect to external and internal sources of decoherence [1, 2, 3, 4, 5]. Moreover, as
was shown by Feynman, simulation of a large enough quantum coherent system by classical
means is impossible due to the dimensionality of the corresponding Hilbert space growing
exponentially with the size of the system (e.g. number of qubits) [7, 9]. Unfortunately, the
size of a practically useful universal quantum computer greatly exceeds the limits of what is
tractable by classical means. This makes the task of determining the degree of quantumness

of such a device, its design and optimization exceedingly difficult [1, 2, 3, 4, 10, 11, 12].

An alternative approach to quantum computing is through quantum dynamical systems
where the n qubits in a register () are regarded as dynamical particles evolving over time
according to the forces acting on it, characterised by an N x N time-dependent Hermitian
Hamiltonian, where Hermiticity imposes N real eigenvalues, which make up the energy
spectrum of the system. When multiple states take the same eigenvalue, they are said to
be degenerate states. The groundstate corresponds to the state with the lowest eigenvalue,
all other states are then excited states. The Hamiltonian operator changes the state of the
system by acting on states just as quantum circuits result in transformations on qubit states,

however the Hamiltonian acts continuously on a state in contrast to discrete transformations.



This approach to quantum computers leads on to the foundations of adiabatic quantum

computing.

2.2 Adiabatic Quantum Computing

Adiabatic Quantum Computing (AQC) offers an alternative approach to the universal quan-
tum gate model [1, 3, 4, 5, 9, 13], based on the continuous adiabatic time evolution of a
Hamiltonian, modelling the quantum algorithm. Under this framework, qubits are evolved
in accordance with the adiabatic theorem, from an easily achievable groundstate of some
initial Hamiltonian such that after time evolution the groundstate is an eigenstate of the
final Hamiltonian. This corresponds to an optimal solution. It was shown [1], that the two

models are polynomially equivalent.

2.2.1 Adiabatic Theorem

The adiabatic theorem, accredited to Born and Fock, states that the instantaneous rate of
change of the process is proportional to the energy of the process. For a time-dependent

Hamiltonian H (t) system, with wavefunction |¢(t)) satisfying the Schrodinger equation:

il () = H) (1)), (2.1)

where |E,(t)) denotes the instantaneous eigenstates of H(t) with instantaneous eigenvalues
E,(t). The adiabatic theorem states that, if the system is initialised at ¢ = 0, in an eigenstate
|E,(0)) of the Hamiltonian H (0), it will remain in the same instantaneous eigenstate, | E,(t)),

at final time t = T' | as long as the evolution of the H(t) is slow enough to satisfy:

(B ()| Ea(1))

50— B0 < (2.2)

MmaZiec(o,1]

where m # n and (E,,(t)|E,(t)) = (B, (t)|H(t)|E,(t)). The adiabatic theorem has recently

gained renewed attention as the basis of AQC.

However, the adiabatic theorem was subjected to controversy due to the result that if a

Hamiltonian, H(t) follows an adiabatic evolution, a related Hamiltonian:

8



() = ~Ut ) HHU ), s

U(t) — Te—i fot I{(t)dt7 ’
where T represents the time-ordering operator. Then H (t) cannot have an adiabatic evo-
lution even if satisfying Eq. (2.2). It was proven by Amin [14], that there is consistency
in the adiabatic theorem, we follow this argument here for a general system with resonant

oscillations. Re-writing the wavefunction expanded under the instantaneous eigenstates:

(1) = 3 an(t)e o PO | B, (1)), (2.4)

where a,(t) denotes the instantaneous eigenstate coefficients. For a time-independent Hamil-
tonian, a,(t) is a constant whereas for a slowly varying Hamiltonian it is a slow function of

time. Substituting Eq. (2.4) and integrating over time, one obtains:

an(T) = an(0) = = 3 / b (D) B (£) B (1))~ 1P -Em 18 (2.5)

n#m

To assure adiabaticity, the right hand side of this equation should be small. With the initial
condition a,,(0) = d,,,. Since the exponential term in the integrand of Eq. (2.5) is a rapidly
oscillating function, if the rest of the terms vary very slowly, the integral will be small[14].
Refer to [14] for the more general proof when the system is absent of resonant oscillations,
demonstrating the applicability of the adiabatic theorem to construct an AQC.

For a quantum dynamical system modelling an AQC algorithm acting on Q, evolving
under ¢ then 7(s) gives the rate of change of H(s). This gives the equivalent Hamiltonian in
timescale s with nondegenerate groundstate. If §, denotes the spectral gap, then 6,, = mind,
the minimum spectral gap through s.

The adiabatic theorem states: 1) Q is in the groundstate at s = 0. 2) d,, > 0 throughout

evolution in s. 3) the process is slow enough such that 7(s) is bounded by the following:

IHE)|

T(s) > 5

(2.6)

The bound on 7(s) can be bounded from above by a low-degree polynomial in n. Given

these 3 conditions are satisfied, the process will end in the groundstate of the final Hamilto-
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nian with high probability, optimising the problem. A general Hamiltonian can reveal well
defined gaps between the eigenvalues in the Hamiltonian spectrum, giving ¢,,. The adiabatic
theorem does not hold in instances of level crossings given by d,, = 0 [13]. This is used to

govern adiabatic quantum algorithms.

2.2.2 Adiabatic Quantum Algorithms

AQC algorithms are designed to minimise an objective function f acting on the register of
qubits ), under some constraints. The algorithm is governed by a time-dependent Hamilto-
nian which can be broken up into three key features: 1) The initial Hamiltonian Hy with an
easily achievable ground state. 2) The final Hamiltonian H, encoding the objective function
such that the solution is mapped to the ground state of Hy. This yields an optimal solution.
3) An adiabatic evolution path s(t) such that s : 1 — 0 as t : 0 — ¢; for some final time ¢y,
this defines the run-time of the algorithm.

The AQC algorithm describing an adiabatic transition from Hy to Hy can be described by
an adiabatic Hamiltonian, a system that remains in its instantaneous eigenstates to optimise
the problem, given a perturbation acts slow enough in accordance with the adiabatic theorem.

The adiabatic Hamiltonian for the AQC algorithm is given by the following:

H(s(t)) = s(t)Ho + (1 — () Hy, (2.7)

where the solution encoded in the ground state of Hj is mapped to the ground state of Hy
given the adiabatic path A(t) is sufficiently slow. Then, if there is a nonzero gap between the
ground state and the first excited state of H(s(t)) for all s € [0, 1], the success probability
of the algorithm tends to 1 in the infinite run-time limit. This compares with a general

Hamiltonian for A(¢) taken to be an adiabatic path in the following equation:

H(A(t)) = Ho + \(t)ZHy, (2.8)

where Hy is the unperturbed Hamiltonian, ZH, is the perturbation in the Hamiltonian
and A is a time evolving parameter, especially suited to adiabatic systems. H, encodes
the groundstate solution and ZH, is a large bias term with Z > 1. This is especially
suited, though not restricted to the description of a large adiabatic Hamiltonian [3, 9]. This
formalism is consistent with the notation used in our research groups previous works [3, 4, 5]

in this area. It is a reformulation of Eq. (2.7), forming a more natural description of qubits
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and the external field. This allows a direct mapping between quantum algorithms and the
Pechukas-Yukawa model, describing the evolution of a system via the level dyanmics. This
is described in further detail in Sec. III.

To demonstrate this mapping of quantum algorithms, consider the exact cover three-
satisfiablity problem. Given a Boolean expression defined on n binary variables xi,...x,.
The expression contains m clauses C. each containing 3 variables (z.1, Ze,Zc3). Each of
these variables are either equal to z; or (1 — z;). A clause is satisfied if exactly one of the

variables takes the value 1 such that the clause function f.(z) follows:

fc(l‘) = (1 —Tel — T2 — 1’63)2, (29)

The objective function f..(x) is defined as the sum of all the individual clause functions where

fee > 0, taking the value 0 when all clauses are satisfied. It is defined by the following:

feelw) = =2m + > Cijwiz;, (2.10)

1<J

where C;; counts the number of times z; and x; appear together in a clause. To define the
final Hamiltonian for this algorithm, x; = 1’Ts replacing the binary variables x;, where s;
denote spin variables taking values of —1 or 1. The objective function then represents the
energy function corresponding to the eigenvalues of a final Hamiltonian, minimised by H...
Under the adiabatic evolution path s(t) =1 — %, the AQC alorithm for exact cover is given

by:

H(t) =s(t)H; + (1 —s(t)Hf

il (1—s(t ZC’” (1 —o07),

=1 1<J

(2.11)

where o7 is defined by the Pauli matrix as in Appendix A, H; = > ", 1720’@ and Hy =
Zi<j Cij(l —of)(1— ‘7;)-

2.3 Quantum Annealing

A subset of AQC is quantum annealing (QA), describing a heuristic search which minimises

a problem defined on n binary variables ;. ..z, € [0,1]", where the objective function f(z)

11



assigns a cost to the solution. The search is applied to combinatorial optimisation problems,

restricted on a final Hamiltonian H, representing a classical objective function.

Initialised in some state x, with cost ¢, the system is iterated according to a random
walk described by a parameterised Markov chain where each iteration of QA depends on
some tunnelling coefficient I" to control the traversibility of the solution landscape. If a
search starts at some initial state and moves towards a low-cost state where the algorithm
terminates according to some stopping rule. If the landscape moves towards an optimal
solution, it takes a greedy-descent approach. However, this encounters problems in the case
when there are many local minima, resulting in the greedy-descent approach becoming stuck

or moving in circles, never reaching the optimal solution.

I' starts at some high value and is gradually decreased with each iteration against time.

When I' decreases slow enough such that I'(t) > lo’;’zt), where k is a constant, the QA

algorithm is guaranteed to provide an optimal solution in the long-time limit. This compares

with the adiabatic path s(t). This approach introduces a disordering Hamiltonian, Hp which
adds the kinetic energy to the annealing process in the form of quantum fluctuations. Hp
does not commute with H;. Then the Hamiltonian is transformed to a new time-dependent

Hamiltonian:

H(D(t)) = Hy +T(t) Hp. (2.12)

This is analogous to Eq. (2.8) for an AQC. AQC algorithms determine a bound on the
probability to end in the ground state given the problem was encoded in the ground state of
some initial Hamiltonian, whereas QA allows the problem being initialised in an arbitrary
state and analyses the probability to converge to a solution within a small neighbourhood

of the optimal solution.

Analysis of QA depends on the platform it runs on. There are three types of platforms
QA algorithms can run from. 1) A theoretically ideal AQC platform: an adiabatically
closed system with no interference from the environment. In this case, the algorithm is
probabilistic and the adiabatic theorem bounds the tradeoff between the computation time
and the probability to end in the ground state. 2) A physical quantum platform: the system
will inevitably be open such that it is impossible to perfectly isolate the system from the
environment. This results in noise, due to random fluctuations in the environment, reducing
the probability of ending in the ground state. 3) A classical platform: a classical computer
does not adhere to decoherence due to interactions with the environment, however it does

not offer the quantum properties, superposition and entanglement between states that are
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available in using a quantum computer.

On a quantum computing platform, quantum properties are utilised such that calcula-
tions can occur with increased speeds compared to classical computers. Moreover, quantum
computers offer the capability of solving problems that are not tractable on classical com-
puters; the run time for a classical computer algorithm grows polynomially as a function of
the input data. In the following section a brief description of the different complexity classes

are provided.

2.4 Optimisation Problems

Optimisation problems searches for a feasible solution that either maximises or minimises
an objective function. It is the crux to AQC, that appears to out-perform the gate model,
making it an attractive area of research. These are considered in terms of their approximation
complexity; given an instance I in a minimisation problem P, with optimal solution s*, to
determine the feasibility in returning a solution s with some difference | f(s) — f(s*)|or bound
from above % If an algorithm returns a feasible solution, then the distance is 0 making
it an exact algorithm. If it returns a non-trivial bound on the distance or the ratio, it is an
approximation algorithm. An NPO denotes a class of optimisation problems with a decision
counterpart in NP, refer to Appendix B for an introduction to the various complexity classes.

All decision problems in NP can be solved by an exact algorithm for the analogous prob-
lem in NPO APX denote the set of problems that can be approximated within the upper
bound of the problem in polynomial time. PTAS describes a set of problems with a polyno-
mial time approximation scheme. A parameterised algorithm A, for any ¢ € ) where ¢ > 1,
the solution cost is within the upper bound of the problem, returned in polynomial time
with respect to the problem size and inversely exponential in ¢. Similarly, FPTAS describes
a fully-polynomial time approximation scheme. It is a parameterised approximation scheme
that returns a solution within the upper bound of the problem, returned in polynomial time
in both the size of the problem and (1—1(1).

In the context of AQC, we aim to optimise the solution of a quantum algorithm to speed

up calculations beyond that which is achievable in traditional computations.

2.5 Summary

In this chapter, we introduced the basic concepts behind a quantum computer, superposition
and entanglement. As a result, information can be both stored in 2%V simultaneously where

N denotes the number of bits, states as well as acted on all states together.

13



Furthermore, a discussion of the different approaches to quantum computing via the
quantum gate model, quantum dynamical systems and AQC, the primary motivation be-
hind our research, developing alternative approaches to investigate nonequilibrium quantum
systems. This relies on the adiabatic theorem, where the evolution of the system is suffi-
ciently slow that state transitions do not occur. Formulation of this theorem is given and
extended to its applications in the context of AQC algorithms. Following this, quantum
annealing is discussed providing the key elements behind initialising and evolving an AQC
system.

Finally, a brief discussion of optimisation problems was given. This leads into our work
using the Pechukas-Yukawa model as described in the following chapter, carrying the poten-
tial to characterise different complexity classes which could prove valuable in designing AQC

algorithms.
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Chapter 3
Pechukas-Yukawa Formalism

The Pechukas-Yukawa model describes a fictitious one-dimensional classical gas with para-
metric evolution in time[15, 16, 17, 18]. This model provides a homeomorphism between a
perturbed quantum system of general Hamiltonian given by H(A(t)) = Ho+ A(t)Z Hy, where
Hj denotes the free Hamiltonian, H, a perturbation, Z is some factor and A(t) evolves para-
metrically in time, to a one-dimensional classical gas, where the level dynamics are described
by a set of coupled ordinary differential equations[15, 19], governed by the initial conditions.
These equations correspond to the Hamilton’s equations for the fictitious classical particles
evolving in time. Under this mapping the number of fictitious particles N, corresponds to
number of eigenvalues. However, in phase space the dimension for the system grows beyond
2N in this formalism, as a consequence of particle-particle interactions becoming dynamic
variables. This formalism is well suited to highly entangled many level quantum systems
with connections to quantum chaos. In [20], it was shown that the system admits a Lax
formalism and is completely integrable[20, 21| which has been invaluable in the study of
quantum chaos, see Appendix F for details on Lax representation.

This chapter presents a derivation of the Pechukas-Yukawa model, mapping from a general
perturbed quantum Hamiltonian to a set of coupled ordinary differential equations of a
classical 1D gas. A brief summary of the Pechukas-Yukawa model is provided with an
overview of its applications to adiabatically evolving quantum Hamiltonian systems. This is
extended to the stochastic Pechukas-Yukawa model, where it was shown that this formalism

accommodates for open quantum systems whilst preserving its structure.

3.1 Derivation of the Pechukas-Yukawa Gas Equation

Consider a time-dependent Hamiltonian given by, H(At) = Ho+AV > 2 4(t—n) where H,

n=—oo

denoted the free Hamiltonian, A evolving parametrically in time and V' some perturbation.
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The associated single-period Floquet operators are given as F' = e~*Ve~ 0 Assuming the
Hilbert space has finite dimension N and that by varying A, the eigenvalues and eigenvectors

change, then the Floquet operator acting on an eigenstate |m) with m € N is governed by,

F|m) = e "™ |m). (3.1)

Taking an approach similar to perturbation theory and expanding Eq. (3.1) in terms of
A, Fpm = e7m_ This can be used to show that ¢, = Vi + i((12|m) 4+ (m|m)). Taking
orthonormal eigenstates, ¢, = Viym. Then Vi, = Yo n) Vi + Vipn (nmy) ).

Differentiating Eq. (3.1) and taking the scalar product with (n| where m # n, we obtain the

following:

(nlin) = (nfn})* = (32

the rate of change of V,,,, is then given as:

. ) 1 1
me =1 Z anvnm <1 _ e_i(bmn - 1 — eiﬁi’mn) ) (33)

n#m

where ¢, = ¢, — ¢, describing the difference between 2 quasi-energies. Similarly, the
off-diagonal perturbation components (without loss of generality taking gauge factors as

zero) are given by:

Vin = —1 1 o idmn + Zk; Vink Vien (1 — e ibmk - 1— €i¢kn> . (34)

The equations for ¢p,, Vi and Vi, form a complete set capable of describing the quasi-
energies and the perturbation components for any A given the initial conditions are set.
Taking a reformulation of these set of equations using the classical Hamiltonian flow, one

obtains the following equation:

2 (% - avmm> " ; N %: Ep—— (3.5)
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The flow is non-zero with the only divergence arising from V,,,, one can replace the off-
diagonal terms with [,,, = Viun fin, Where f,,,, are factors chosen to cancel the second term

in Eq.3.4. This requirement leads to the following:

o b e g (i (o)) e

fmn - 1— @—i¢mn B

This simply integrates to fo, = Ae®™/2sin(pmn/2). Choosing the intgration constant A
to be =2, Lnn = —2Vin€ ™/ 2sin(¢mn/2) = —1*,, where % denotes the complex conjugate.

nm?’

The source free equations can then be written as:

: 1 1 1
=3 2 bl <sm2<¢mk/2> - sm2<¢kn/2>)’
where p,, = V.

The first 2 equations can be interpreted as classical Hamiltonian equations and associated
Poisson brackets, ¢, = 8‘9’% = {H, ¢} and p,, = —% = {H, p,} for an associated
Hamiltonian H = Zﬁzl LS 4n #ﬁ‘zm In order to determine the Poisson bracket
for l,,,, we demand its independence of ¢,, and p,, such that {pm,,li;} = {ém,li;} = 0.
This follows from the Leibniz product rule and the Jacobi identity. Then, in the unitary
class of Floquet operators, {lmn,lij} = 0inlmj — Omjlin. One can similarly determine the
expressions in the orthogonal and symplectic cases for the Floquet operators. Note that this
expression and the Jacobi identity forbids the assumption of identically vanishing diagonal
elements [,,,,,, but restricts these elements such that l,,,, = —[,,, which is unavoidable in the
Hamiltonian reformulation. However, one finds that {H,[,,,} = 0 revealing these relative

angular momenta terms as constants of motion, then if they vanish at some initial A, without

loss of generality [,,,,,, = 0. This leads to the Pechukas-Yukawa gas equations, of the form:

. OH
Tm = %,
PR (3.8)
0T,
lyin = (H, Ln)-
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The following section summarises the model and its applications to AQC systems.

3.2 The Pechukas-Yukawa model

The Pechukas-Yukawa model maps from a general Hamiltonin H(\(t)) = Hy + A(t)ZHp to
a fictitious one-dimensional gas. It is well suited to adiabatic systems with the additional
feature that all information of the system is encoded in the initial conditions [15, 16, 17, 18].
The contribution from Hj is fully determined at all times. Information of all initial conditions
are obtained through instantaneous matrix elements given by < m|Hyln >= E,,(A)0m, —
A < m|ZHyn > and A (t) ZH,. This relationship maps from a general Hamiltonian to the
Pechukas equations [3, 4, 5, 15, 16, 17, 18, 19, 22, 23, 24]. This can be used to model an AQC
[3], where the associated Hamiltonian describes the quantum algorithm used to optimise a

problem. The Hamiltonian in the Pechukas-Yukawa formalism takes the form:

HOW) =3 Y0k + 3 el (5.9)

m;én

where z,, denotes the eigenvalues of the Hamiltonian system, v,, the diagonal entries of
the perturbation and [,,, the relative angular momenta of the fictitious gas. This governs
a complex system that evolves in time parametrically through A, described through the
instantaneous eigenstates |m(\)) and eigenvalues E,,(\), related by H(A\)|m) = E,,,(\) where
the nature of a system can be determined by its eigenvalues [15, 16, 17, 18]. It has an easily
achievable nondegenerate groundstate with the solution found in an eigenstate of the final
Hamiltonian, optimising the problem. This describes the quantum annealing procedure.

The level dynamics of this system is governed by the following closed set of ordinary
differential equations. These equations enable treating quantum systems in the light of
classical dynamics. Under this formalism, one can derive the Pechukas equations, describing
the “position” (x,,), “velocity” (v,,) and “relative angular momentum” (l,,,), given by the
following[15, 16, 17, 18]:

T = Upn
O — 9 Z |lmn|2
" e (T — :vn)3 (3.10)
1 1
lmn — lmk‘lk‘n ( - )’



where x,, (\) = En(N), v (A) = (m|ZH|m) and Ly, (A) = (En (A) — EL(N)) (m| ZH|n)
where this is a antisymmetric complex quantity such that [,,, = —0% . The indices (m)
represent the positions, velocities and particle-particle repulsion as determined by the relative
angular momenta, for the corresponding m!”* particle interaction. Here A plays the role of
time [3, 4, 15, 16, 17, 18, 19]. This procedure describes the aforementioned mapping of the
level dynamics of a system to that of a one-dimensional classical gas, interacting with long
range couplings described by the relative angular momenta, valid for an arbitrary choice
of Hy and H, and an arbitrary time dependence of A not necessarily adiabatic. Note that
time does not explicitly enter the Pechukas equation, rather concerning the evolution in time
parametrically through A which determines the instantaneoues energy levels.

It was shown that the parametric evolution of the system described by Eq. (2.8) can
be mapped on the classical Hamiltonian dynamics of a one-dimensional (1D) gas model
with long-range repulsion: the Pechukas gas. The level dynamics of a system are given
by the evolution of the eigenvalues on a Hamiltonian [15, 16, 17]. Under the Pechukas-
Yukawa formalism, there is an exact mapping between adiabatic quantum evolution and the
1D classical Hamiltonian dynamics(3, 4, 5, 9]. Using this approach, described in adiabatic
quantum computing, a complex Hamiltonian is considered with a nondegenerate groundstate.
This Hamiltonian is mapped to the Pechukas model, a set of ordinary differential equations
describing a classical 1D gas with long range repulsion [15, 16, 17]. These govern the effects
of adiabatic evolution on the level dynamics. Consider a Hamiltonian of N levels, in phase
space there are over 2N levels describing the dynamics of the system, as a consequence of
the coupling strengths being dynamics variables. The equilibrium statistical mechanics of
Pechukas-Yukawa gas turned out a useful tool in justifying the random matrix theory [9].
This approach was successfully used to describe the operation of a small-scale adiabatic
quantum computer, but its scaling up was restricted for the same reason as mentioned
above, and it was suggested that building the kinetic theory of the Pechukas-Yukawa gas
may provide a useful solution. The Pechukas equations had been adapted to a system with
noise in order to determine how well this mapping held in the presence of noise [5]. One major
challenge to achieving AQC is the decoherence of quantum systems under time evolution is

noise, resulting in dissipation in the evolution of states.

3.3 Stochastic Pechukas-Yukawa Model

Quantum systems adhere to random fluctuations as a consequence of interactions with the
environment and intrinsically due to the Heisenberg uncertainty principle[25]. These result

in decoherence in quantum states. Noise inherently enters a system either internally from the

19



physical system itself or the system may be subject to noise due to external interactions due
to the inability to perfectly isolate a system from the environment. As a result, stochastic
influences must be accounted for. In our research, we studied the effects of noise on the
dynamics of a many-body perturbed quantum system. For simplicity we considered white
noise models, however our formalism extends to any general stochastic process. We refer the

reader to Appendix C for more background on stochastic dynamics.

An idealised mathematical model of noise is to treat it as white noise n(t) [26] having
zero expectation, (n) = 0. For n(t) and n(t') where ¢ # t' the noise terms are statistically
independent, described as being uncorrelated. This is described by the following:

(n()n(t) = ot —t). (3.11)

Formally, white noise is defined as the derivative of a Wiener process W (t), which is a

Markovian process on R?, see Appendix D.

These concepts are applied to classical integrable descriptions of quantum systems, such
that they carry the added advantage of providing insight on the influences of noise on the
nature of eigenstate dynamics via classical elements. This is used to formulate many-body
quantum systems analytically using eigenvalue dynamics under the stochastic Pechukas-
Yukawa model, which is otherwise intractable. For more background, refer to Appendix
E.

The stochastic Pechukas-Yukawa formalism accommodates for noise arising from random
fluctuations in the environment, affecting the level dynamics of the system[5]. Using the
central limit theorem; noise arises from a number of independent identical sources, therefore
it is reasonable to assume the sum of its effect is Gaussian [26, 5]. The noise contribution in
the Hamiltonian is denoted as §h(A(t)) in the Hamiltonian, H (A(t)) = Ho+A(t) Z Hy+5h(A(1).
For real eigenvalues, 0h is Hermitian. We take dh to be real, to simplify the system. It is
shown that with the added stochastic term, the Pechukas mapping still applies and we can
extend Eq. (3.10) to the closed stochastic Pechukas equations. The generalised Pechukas

equations are given by the following [5]:

20



T = U + Shmma

. |l |2 lmnéhnm - (5hmnlnm
m = 2 e )
‘ Z (:Em - xn>3 - (l’m - [L’n)2

m#n

Ly, = Z - < 1 _ 1 ) N (Zm — Zn) (L0 Pt — 0Pl (3.12)
mn = "N o — 1) (- 20)’ (2 — 1) (2, — 13,)
A/ S—,

(T — 74)

k#mmn

+5hmn(vm — ) +

The derivative is taken with respect to A. The mapping retains its structure; whereby if
dh =0, Eq. (3.12) reduces to Eq. (3.10). The stochastic Pechukas equations, Eq. (3.12) is
independent of any assumptions on the nature of the noise, therefore applicable to a wide

range of stochastic systems.

3.4 Summary

In this chapter, we presented the Pechukas-Yukawa formalism, describing a fully integrable
model for a set of N fictitious particles and their interactions through a coupled set of
ordinary differential equations. Under this formalism, one can describe the evolution of
highly entangled quantum systems using classical dynamics. Furthermore, the level dynamics
are governed by their initial conditions, which is advantageous in regard to adiabatically
evolving systems. This carries promise in the theoretical development of adiabatic quantum
computing, however we consider this mapping in the general sense with applications to
adiabatic quantum algorithms. A derivation of this model has been provided, demonstrating
this mapping. Finally, we presented an extended Pechukas-Yukawa model, accounting for
general dissipative influences whilst maintaining the properties of integrability, accounting
for the dynamics of large entangled out of equilibrium systems governed by initial conditions.

Using this formalism, we construct a statistical mechanical framework to investigate non-
equilibrium, nonstationary quantum systems governed by their level dynamics, extending the
standard BBGKY hierarchy. Furthermore, we explore the applicability of the Landau-Zener
model and the conditions required. We further extend this description to explore the impacts
of Brownian noise on these conditions. In extension, we developed the formalism beyond
Hamiltonian eigenvalue dynamics to include state dynamics via the density matrix such that
the entire quantum system is described through its level dynamics. Whilst these methods
provide valuable insights on the solutions and dynamics of a system, an alternative approach

to characterise these dynamics is through Lax pairs which enables access to further conser-
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vation laws within the system. This description was invaluable to this project as will become
more apparent in the following sections. Furthermore, as the Pechukas-Yukawa formalism
supports the random matrix theory for equilibrium statistical mechanics, we extended the

description to non-equilibrium, nonstationary evolution.

22



Chapter 4

Statistical Treatment of Eigenvalue

Dynamics

Extending the standard BBGKY hierarchy of the statistical treatment of particle dynam-
ics, we provide a consistent description of a non-equilibrium, nonstationary evolution of a
perturbed quantum system based on the kinetic theory of Pechukas-Yukawa gas. Describing
parametrically driven evolution of quantum systems, is especially useful in accommodat-
ing for adiabatic systems, however the formalism is applicable to an arbitrary Hamiltonian
system with parametric evolution in time given by Eq. (2.8). This formalism explores an
important new direction in contemporary physics and open further investigations in order

to understand the connection to the physics of the Pechukas gas.

Extending on [5, 24], using probability distributions to investigate eigenvalue dynamics
in Landau-Zener transitions, we consider the overall evolution of levels, not restricted to level
crossings or anti-crossings, statistically via probability distributions. As in classical kinetic
theory, it is expected that the statistical approach to the level dynamics (as functions of
the parameter \) would allow a reduced description in terms of correlation functions, which
can be used as a basis for controlled approximations. This could provide a better insight
into what measurable characteristics of a system can be used as criteria of its quantum
performance, and make possible an approximate simulation of larger systems than those
tractable by other methods.

In this chapter, the standard BBGKY hierarchy is introduced, describing the kinetic
equations of motion for an arbitrary Hamiltonian governing N particles via coupled differ-
ential equations concerning probability distributions of particle positions and velocities. A
derivation of the BBGKY hierarchy in the Pechukas-Yukawa formalism is provided, extending
this theory to parametrically driven perturbed quantum systems using the Pechukas-Yukawa

model, governing the evolution of the quantum system via the statistical treatment of level
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dynamics. A factorisation approximation based on the statistically independent treatment
of level dynamics is then investigated, followed by an analytical study of its accuracy. We
then test our theory numerically for a small system of two interacting qubits, simulated by

a transverse field Ising Hamiltonian (TFIH), summarising our results.

4.1 The Standard BBGKY Hierarchy

The standard BBGKY hierarchy arises from the continuity equation in phase space. It is
used to describe the evolution of classical reduced distribution functions for a general time-
independent Hamiltonian. The chain relates the distribution function for N particles to the
distribution function for N 4 1 particles concerning positions and velocities [2, 22, 23, 27,

28, 29).

Consider an arbitrary perturbed Hamiltonian, under the influence of an external field,

2
H= Z;m +;V(xi) +;V(a:i — 1)), (4.1)
where the first term corresponds to a massless free Hamiltonian with positions z; and ve-
locities v;, V' represents the potential such that the second term denotes self-interaction
terms as consequence of the potential and the final term being the interaction between other
terms associated to the angular momentum. We denote an empirical distribution function,

Fn(zy...xzN,v1...v5) averaged over the initial conditions, of the form:

Fn(zy...xy,v1...08) = <H5 (T — &m) 0 (U — win)), (4.2)
where x,, denotes the particles in the Hamiltonian systems with respective velocities v,.

The averaging procedure is described through:

<f(xm’ Un)) = % Z f(xt7vt; $07U0)7 (43)

20, 0¢er

where |I| denotes the size of I, the set of initial conditions and f(z!,v'; 2%, ") denotes the
function evaluated at (2!, v',t), the propagated coordinates up to time ¢, parameterised by

(2%, v°). This is essentially a counting function of where the particles are present.

The BBGKY hierarchy for this arbitrary distribution function Fy (z1...xnx,v1...0x),
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in phase space is defined through the following set of equations:

s

S S ]71 S
oF = S IE+ Y LRSS R+ Y / Qe Ly Fupn. (4.4)
j=1 =1 =1

j=1 n=1

The reduced distribution function, Fy := Fy(x1...2s,v1...0s) taken up to the s-particle
interactions hence it takes into account only the distribution functions of the s-particle and
the (s + 1)-particle. The first term, L° corresponds to the free part of the Hamiltonian,
the second term, LY describes the external field for example, noise. The final two terms
associated with L! correspond to the perturbation contribution of the Hamiltonian as result
of interaction [22, 23, 27, 28, 2, 30, 31, 32]. Truncating the system to the first four equations,

the equations read:

6tFO = O,
(8, — L(l) _ Lf)F1 = /dxgdng{gFm
OB~ 18— 1f ~ IR = thhy+ [drgde(ty iy, (4

3 3
(O = > LY =) LI)Fy=(Liy+ Liz + Ljs) F3 + / dwydvy(Ly, + L, + Li,) Fy.
1 1

Here we have demonstrated the BBGKY hierarchy up to the 4" chain, revealing the re-
lationship between the s-particle distribution functions with the (s+1)-particle distribution
functions.

Although this hierarchy produces a scheme which determines the kinetic equations of
motion, it does not describe the nature of time dependent non-equilibrium Hamiltonians.
In the following section, we derive a generalised BBGKY hierarchy that describes a non-

equilibrium parametrically evolving Hamiltonian, using the Pechukas model.

4.2 The BBGKY Hierarchy in the Pechukas-Yukawa
Model

The BBGKY chain for the Pechukas equations governs the statistical dynamics of the system
from the evolution of the probability distribution functions concerning the levels. These levels
can be thought of as interacting particles with the respective distribution functions relating

that of N-particles to (N + 1) particles. Consider the distribution with dynamic variables
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T, Uy and [,,,: averaging over &, w, A,

FN,N(Nfl)(-rla---;xn7’U17-'~7Un7l127'-'7lmn):<H ( gm m — Wm H5 mn mn>

(4.6)

following a similar averaging procedure as in Eq. (4.3), where |S| is the size of S being
the set of all initial conditions (z°, v° %) and similar to the classical BBGKY hierarchy
of reduced distribution functions, Fy(z,vt, !, ¢; 2% 1% [°) denotes the function evaluated
at (zf,0", 1%, ), the propagated coordinates obtained through the Pechukas equation up to
time £. We denote the probability distribution function by the following, Fy nnwv-1) =
Fynov—1)(T1, -, Tny V1, oo, Uy liay oo L) All distribution functions are symmetric with
respect to permutations of arguments [15, 16, 19, 23].

Here z,,,v, and [,,, are independent coordinates which describe the centre frame and
¢, wand A are shifted coordinates from this centre frame. Taking a total derivative of this

distribution with respect to the adiabatic parameter A, we obtain the following:

P = ¥ < H 3~ €0 )00t~ 00) [T 8 = M) >

m#£m’ m'n’
+Z Héx/—f (v/—w/me(H//—A//)
m#m’ m'n’
. 0
< 5 ’ — ’ — ’ —A//Amn> _F —1)- 47
+ H (x, —&.)0(v, —w,, ;HﬁA ) +6t N(v-1)- (4.7)
Given that 8% = —a% , a% = —%, 8% = —% where ’.” describes differentiation with respect

to A. Note that time does not explicitly enter these equations but is parameterised by A.,
which plays the same role. We substitute this into the total derivative with the related

Pechukas equations. We use the chain rule with respect to time to obtain:

! 0 [
ﬁFN ) ;Umag FNN Zavm n; _l»n)SFN’N(N_l)
1 1 o
- Lkl - Fynven + —Fyyiven. (4.8

Applying Liouville’s theorem, which states that the number of particles at the start stays

constant in the system as time evolves [15, 16, 19, 23]:
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d
d)\FN(N 1y =0. (4.9)

From this we rearrange the total derivative to express %FN, NN=1) (Tm, U, lmn) by the fol-

lowing:
0 0
aFN,N(N—l) Z v +— Fnniv- +Z%QZ n) — " ——FNN(N-1)
1 1
+ Lol — Fyniven.  (4.10
Z @l k#zm:n kUlk ( _ :I;k)z (l’k _ ,f)j'n)Q) N,N(N-1) ( )

In the scheme of BBGKY, we consider s number of particles where s < {1,... N} in order
to build up the chain. For this we consider the way this affects each term of the distribution.

The s-particle distribution function is thus given by the following:

N (N2 — N)!
(N—=8)!"(N2—=N—3s(s—1))!

X /d$s+1 ce dl‘ndUerl e dvndl8+1’s R dln,n(n—l)FN,N(N—l)-

Fs,s(s—l)::
(4.11)

The normalisation constants in the front of the integral comes from the combinatorics of x,,
and v, for N ! oo with N! representing the total number of combinations in both z,, and
U, and (N — s) representing the number of combinations of particles not included in the
distribution. Similarly, for [,,,,, we have the total number of possible values in [,,,,, determined
by (N? — N)! where dictated by s there are s(s— 1) possible values in the distribution giving
g 1\72:5]2?—!1))! included in the definition for F§ 4,_1). These
come about from the symmetry in the distribution functions with respect to permutations

rise to the normalisation constant (

in their arguments.

Considering the s-particle distribution in the above relation for Eq. (4.10) we obtain:
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QF B N! (Nz—N)!
8)\ s,8(s—1) = (N—S)'(N2 —N—S(S— ].))

Fnnw-1) + 2 FN,N(N—l)
> f St

m#n - x"

+Z 3 Z Imkln ( ! 5 — ! 2> Fn n(v-1)-

mn k#m,n - xk) (xk - xn)

/dJZS_H Ce dlL‘ndUS_H .. dvndlsﬂ,s e dln,n(n—l)

(4.12)

Determining the way the first term is affected by the reduced distribution function concerning

up to s-particle interactions is expressed by the following:

NI (N2 — N)!
(N — 5)!'(N2 — N —s(s—1))!

/diL'SJrl C. d.ﬁL’ndUSJrl ce dvndlerl’s e dln,n(n—l)

0
va FNNN 1) /d$s+1dvs+1Dl5+1 Z Umg Fyniv-1), (4.13)

m=s+1 m

where we denote Dl as the following:

Dl = [ dlosridli . (4.14)

i=1

By Green’s theorem the last term is equivalent to integrating on the boundary and so vanishes

as the system tends to infinity, which reduces the expression as given by the following:

N! (N2 = N)!
(N =)' (N2=N —s(s—1))!
s 3 (4.15)
X / dzgyy ... d,dugy, .. .dvnleLS...dln,n(n_l)n;vm%FMN(N_l).

Following this procedure, we determine the way Fj 4 ,_1) affects the second term in the
relation for %F ~N,N(N—1) such that it concerns only the s-particle distribution and (s+1)

particle distribution as determined below:

N (N2 — N)!
(N =)' (N2—=N —s(s—1))!

/dxs+1 Ce dl’nd’Uerl ce d'l}ndlerl’s R dln,n(n—l)
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s

= L’ 0
DI e e ] E A
m= 1

- -Tn (mn — Ty

1 n=
° |lm(s+1)|2 |l(s+1)m’2 0
+2 dl’s-{—ldvs—&-lDls-I—lZ (:L‘ + 3 90 FN,N(N—l)- (416)
1 m

— m — xs-l-l)g (Ts1 — Tm)

Finally, we determine the way taking Fj ,,_1) affects the last term in the relation for

a%F N.N(N—1), Where we obtain the following:

N! (N? — N)!
(N —s) (N2= N —s(s — 1)1 /dmsH o drpdvggy . dvgdlgpy . dly -
) 30 BT (RS P
m=1 k=1 n=1 e (Im - Ik)Q (xk - xn)2 almn N.N(N=1)
s k—1
1 1 o
+/d.’13s 1d'Us 1Dl5 1 ls 1klkn ( — ) FN,N N1
o : k=1 ; " (Top1 — $k)2 () — xn)Q Ol(s41)n (N=1)

(4.17)

Combining these expressions and simplifying them with the definition for Fj s—1) we derive

the BBGKY chain for the Pechukas equations as given by the following equations:

QFMS_D —i S 1>+2ile< 5+ Ll 3) 0 Fis(s-1)
oN " " Dy, e\ (= 20) (0 — )’ ) OV
2 d““d“S“Dls“n; <<ximf;1£>3 ! <|Z(_)m|m>> o
s m—1k-1
Fa 2 2 bl <<xm . w)? (o - >> S ot
+/dws+1dv8+1Dls+1 ;1 nzilsﬂklkn <(xs+1 1— xk)2 - (g —1xn)2> 8l(i1)nFSH’S(SH)'

(4.18)

This gives us the BBGKY hierarchy for the Pechukas model with respect to a full dis-
tribution concerning position, velocity and relative angular momentum, where Fj y,_1) 1=
Fyss—1)(®1, ... 25,01, ... Vs, lia, .. . [5 5—1) describes the reduced distribution function up to s-
particle interactions and Fiy1 ss41) = Fap1,s(s40) (@15 - - Tsp1, V1 -+ - Vi1, L2, - - . Lsy1,5) being
the reduced distribution function concerning the (s + 1) particle interactions. This is our
main result for this section, providing a coupled set of differential equations concerning the

statistical properties of kinetic equations for the level dynamics. These equations extend
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the standard BBGKY hierarchy to non-equilibrium, nonstationary parametrically evolving
systems.

To illustrate the scheme more explicitly, we write the BBGKY chain up to the 2" equa-
tion. We neglect the s = 0 level as this merely vanishes on the right hand side of the chain.

Starting from s = 1 we obtain that F} o(z1, v;) the associated chain is:

0 0
—F = —
1,0 = U1 B

O\

L, Ly |’
F1 ot 2 dl’gdvgdllzdlgl ‘ 12| + ’ 21| —a FQ 2. (419)
) 3 3 a 9
(331 — .’172) (IQ - 1’1) U1

In the same manner, the chain has been explicitly built up for s = 2 with Fh 5 (21, 22,01, v2,li2, lo1).

For s = 2, we obtain:

9 9 9 11,,)? 1] d
—Fy=v—Fyy +vy=—Fp5 +2 12 + —2 —F
N 22 18551 2,2 23@ 2,2 <(x1 ) (72 — I1)3 Oy 2,2
|l13|2 ’l31|2 d
+2 dl’3d1)3dll3dl31dl23d132 3 + 3 —F3’6 (420)
(x1 — x3) (w3 —21)° ) Ou

2
[Las|

lgo” 0
+2/dm dvsdly3dls,dlazdl + —F35.
3AV3aL130131Al23 0132 <(x2 = xg)g (73 — x2)3 EI 3,6

These provide insights on the evolution of the statistical dynamics of the levels. How-

ever, the BBGKY heirarchy cannot be solved without truncation. We have considered the

factorisation approximation in order to truncate this hierarchy.

4.3 Factorisation Approximation of the BBGKY Heirar-

chy in the Pechukas-Yukawa Formalism

Eq. (4.18) extends the BBGKY hierarchy to non-equilibrium parametrically evolving sys-
tems, using the Pechukas model. The coupled differential equations determine the kinetics of
the distribution functions associated to the level dynamics of the Pechukas-Yukawa gas. The
hierarchy clearly demonstrates the relationship between the associated distribution functions
of the s-particles to (s + 1) interacting particles. We make the approximation that the dis-
tribution functions of the system can be expressed as a product of F} o (21, v1) distributions.

Taking into account the chain for s = 1, we introduce a factorisation approximation
based on the independence of the the set of coordinates x,,, v,, and the set of relative angular

momenta terms [,,,,, such that we can construct probability distribution functions of x,, and
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v, that are independent of the probability distribution functions of [,,,. As a consequence,
the distribution Fy x(y—1) can be factorised in terms of the one-particle distribution and the
distribution of [, separately. Under the approximation, Fhs (21, %2,v1, U2,l12,l21) can be
factorised in terms of the distribution functions of F o (z1,v1), Fio (22,v2) and h(lia, l21)

with negligible contributions from the mixed terms. This is expressed below:

F2,2($1,5U2,U17U2,112, 521) ~ Fl,O(xl,Ul)Fl,O(x2>U2)h(l12>l21)- (4-21)

Considering the approximation, Eq. (4.19) can be transformed in a way that precisely
reflects an effective mean field theory, where the definitions of F o (z1,v1), Fio (22,v2) and

h(ly2, lo1) are expressed in the same way as the generalised Fs o(s—1)-

Substituting Eq. (4.21) into Eq. (4.19) and using the product rule under the integral,

(including the arguments for clarity), we obtain the following:

0 0
—Fio(x1,v1) = vy=—F1 (21, v1)

(3)\ 81’1

L, L, |? d
+2/dx2dv2dl12d121 ((x‘ 12‘1_ )3 + | 21’ >3> (a—mFLo(l’l;Ul)) Fio(x2,v2)h(li2, l21)
1— T2

(372 — I

0 0
+Fyo(21,v1) <—F1,0(9C2,’02)> h(lia, lo1) + Fio(z1, v1) Fio(22, v2) (aThUlQalQl)) .
1

81}1
(4.22)

It is clear to see that the last two terms vanish and (%F 1o (21, vl)) can be taken out from

under the integral obtaining:

0 0
—Fo(z1,v1) = vy =—F10(x1,01)

8)\ al‘l

|ll2|2 + |121|2

Ty — )" (z9 — 1

(4.23)

0
+2%F1,0($1,U1)/d$2d?f2dl12dl21 ( )3) F1,0($2,U2)h(l127521)-
1

Using this approximation, we reduce the chain after breaking it at the first link such that
it only concerns the Fyg(z1,v1), Fio(22,v2) and h(ly2, l;) distributions hence reducing
to a one-body problem. This approximation extends to an N-body system, rendering the

heirarchy solvable.
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4.3.1 Accuracy of the Factorisation Approximation

In this section, we estimate the accuracy of the factorisation approximation as this is impor-
tant to know the validity of the effective mean field approximation. Taking the definition for
Fnn(N=1) (Zm, Un, lmn) and evaluating the integral in Eq. (4.12) we obtain the distribution

for Fyo (21, 22,01, v2,l12,151) expressed as the product of § functions:

Fyo(x1, 29,01, 02, Lo, l21) =

(4.24)
< 5((131 — §1)6<l’2 — 52)(5(’01 - wl)é(vg — w2>6<112 - )\12)5([21 - Agl) > .

Similarly the product of the distributions Fy g (z1, vi), Fio(z2, v2) and h(ly2, la1) ob-
tained from evaluating Eq. (4.23) specifically with these distribution functions takes the

same form with the only difference being the normalisation constants,

F1,0($1701)F1,0($2,U2)h(112, 121) =

4.25
< 5(ZE1 — 51)5(1)1 — wl) >< 5(ZE2 — 52)6(02 — WQ) >< 5([12 — )\12)5([21 — )\21) > . ( )

In order to verify the factorisation approximation holds, depends solely on the normalisa-
tion constants used in the averaging procedure as defined in Eq. (4.12) such that Eq. (4.21)
holds. The normalisation constant for Eq. (4.24) can be expressed by the following:

(N]\_Uz)!’((zv(y_;vivz!m! = N(N = 1)(N* = N)(N* = N - 1). (4.26)

On the other hand, for Eq. (4.25), the normalisation constant is similarly determined from

the following;:

N!'  ? (N?-N)
((N—l)!) (N2 = N) —2)!

= N*(N? = N)(N* = N —1). (4.27)

The normalisation constant relating to l,,, is the same in both equations. This is a
consequence of the fact that the [, term from h(ly2,ls1) comes from a system associated
to the Fyo (71,29, v1, v2,l12,1le1) distribution function. We determine the relative error, &,

from the difference of these normalisations given by the following expression:

B Fyo(z1,v1)F1 (22, v2)h o(l12, l21) — F272(£U1, Ta, V1, Vo, l12, l21)

E =
F2,2(351, Ta, V1, V2, 12, l21)

(4.28)
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Using this expression, we obtain the following:

N-—(N-1) 1

&=—w-m -~

(4.29)

Taking a large limit of the number N of particles, it is possible to determine exactly the
ground state and to encode solutions into through brute force. For the limit that N — oo
we find that &. decays asymptotically. This comes as a consequence of pairwise interactions
between particles having less significance in a large system such that it can be essentially
decoupled, validating the factorisation approximation.

We extend this further to consider the factorisation approximation for a general s-particle
distribution function Fj ,s_1) such that it can be factorised as s one particle distributions and
@ number of h distributions. Using the same idea as the case for Fy o(21, 22, v1, V2, l12, l21)
we consider the way the normalisations constants will differ and the &, between them. Taking
the same approach, for the generalised factorisation for an N-particle distribution function
composed as the product of N one-particle distributions functions.

The normalisation constant for Fj 4,_1) is expressed as the following:
N! (N2 — N)!
(N =)l (N> =N —s(s = 1))! (4.30)
N(N—=1)...(N—=s—=1).(N>=N)(N>—~N—1)... (N> =N —s(s —1) — 1).

In contrast to this, the factorisation has normalisation constants expressed by the following:

s(s—1)

N! s (NQ_N)! . ) ) s(s=1) ‘
(<N_1)!) .((NQ_N_2)!) = N (N>~ N)(N*-N—1)) 7 . (4.31)
Then &, reads:
s _ NS ((Nz—N)(Nz—N_l))S(S;U B
T N(N—1)...<N—8—1)'<N2_N)<N2_N_1).“(N2_N_S<S_1)_1)
ol
N
(4.32)

From these results, it can be inferred that to solve the BBGKY chain for the Pechukas
equations at the first link, only distributions functions for Fi o (x1, v1) and h(lia, log) are
required. The same rationale can be extended for higher order interactions in writing these
distribution functions as products of one-particle distribution functions. We further illustrate

this model on a two-qubit system.
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4.3.2 Accuracy of the Factorisation Approximation in the Two
Qubit Ising Model

We consider a two qubit system described by the Ising model in order to test the BBGKY
hierarchy for the Pechukas equations. We take the TFIH as the Hamiltonian that governs
the two qubit system:

H(A(t)) = Jojos + AZhyof + AZheos, (4.33)

where o7 and o} represent the corresponding Pauli matrices for the j-th qubit.

For the case that J > 0 the interaction favours antiferromagnetism whereas for J < 0,
it favors ferromagnetism. We take random values for J, Gaussian distributed with mean 0
and standard deviation 1, reflecting the different initial conditions. When J > AZhy, AZhy
the system is in the ground state. We obtain the values for x, from the eigenvalues of
the system given by x, (\) = E, () =< n|Ho|n >. The perturbation matrix defined by
ZHy(N) = AZhyo] + AZhyoj determines the variables for velocity as v, (A) =< n|ZHy| n >
and relative angular momentum, [,,, using its definition that l,,,, (\) = (E,, (A\) — E, (V) <
m|ZHp| n >.

The Hamiltonian reads:

1 0 0 0010 0100

0 -1 0 0 0001 1000

0 -1 0 1 000 0001

0 0 1 0100 0010
(4.34)

Diagonalising the Hamiltonian and using their respective definitions, we determine the
values for x,,, v,, Ly, in order to construct the distribution functions for f;(§,w), fi(&,w’),
fo(&, € w0, ) and h(l, I') as in Eq. (4.11), where £, &' w,w’, ;1" are the running vari-
ables of the probability distribution functions parameterising the coordinates x,, vn, lLnn
respectively.

The coordinates for x,, are of the form J+ AH,,. Given that the values for J are Gaussian
distributed, J ~ N (u,0) the values for each x, are Gaussian distributed varying only
by a translation by H,,, randomising the initial conditions hence, x, ~ N (u+ AH,,,0) =
N(AH,,1) := N, with the same mean and standard deviation where H, = {—hy—hy, —hy+

ha, h1 — ho, hy + ho}. The values for v, are deterministic, we define them as v, ~ dy,. We
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observe that the terms describing [,,,, determined from its definiton are translated Gaussian

distributions, which we denote by L; ;. Using these definitions we build the distributions for
fi(&w), fL(EW), f2(6,8 w, 11") and h(l, ') as given below:

ZN )0m, (w
h(l,1") = E ZLij(Z) Z Li’,j’(l/>

i#j i #1,5

411921 ‘ n
i#] i .50 n#n' n,

Il € L) = e S L) S L) > Nn(@m(w)ﬂn/(s’)éﬂ,<w’>.

(4.35)

Substituting the definitions in Eq. (4.28), we analytically determine &, for this system.
We reduce the &, as given in the expression below. Keeping concise, we omit the arguments
of the distributions:

./\715[{1./\71/(5}1, +-/\~[26H2N2’5H/ +N35H3N3/6H/ +N45H4M’6H, 1
1 1 VY : Ty 42 (4.36)
Zn;ﬁn',n,n’:l NndHnNn’ (SHn/ 2

3
r 5(
Bounding the error from above by maximising the numerator with 4(N;(€)dg, (w)Ny (€')8 w, (W)
where (N3(€)6m, (w)Ny (€0 #,(w')) takes the largest value, and minimising the denomina-
tor with 12(N3(€)dm, (w) Ny (§)dn, (w')) as this divides by the smallest of these terms in
f2(&,&,w, ' 1,1"). Using the normal distribution density, we expand these terms to obtain

the following, again omitting the arguments in the distributions:

. A thEre) Y o
& < 3 4 <N46H4N 5H’> 1.1 I g2 )
r =

1
= | < s+ = :
2 212 M5H4N 5H, 2 2 eXh1+h2)EA(—h1—ho)E’ 5
242 N2(hythy)? N(chyp—hg)Z | “Hy
e 2 e 2 e 2

Cancelling common terms, this bound reduces to the following:

E < = 4 s tha), (4.37)

N | —
N | —

Similarly, bounding from below by minimising the numerator using N3 ()8, (w)Ny (€')6 m, (W)
and maximising the denominator with 12(N3 ()8, (w)Ny ()0 m,, (w')) where we find the fol-

lowing, omitting the arguments in the distributions:
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& 2

eAMh1—ho)(6+¢€") S
2 H
§ i N3(5H3N3/(5H3, S 1 e%ieﬂ(hlfth 3’
5"

12 N35H3N2’5H2/ -8 eA(h1—h2)E A (—h1+ha)E’ S
2167 N2(hy—hg)? 2(=hj+hg)? | THy
e 2 e 2 e 2

We bound &, from above and below to examine the applicability of the factorisation approx-

imation. This reduces to the following:

éezxg%hl—m) <& < % . %eue(hﬁhzx (4.38)
Using these bounds, we find that the factorisation approximation does not hold. This

is expected because to approximate well a probability distribution function as a product
of one-particle distribution functions, the system must be essentially uncorrelated. In the
specific case of the two qubit system the qubits are not statistically independent because the
eigenvalues of the system are related as there is only one J. In order to explore this error
further we test the system numerically using cloud dynamics and determine the distribution
functions associated to the interactions. We draw 100 trials of J ~ N(0, 1) terms, diagonal-
ising the system to determine its eigenvalues, as demonstrated in Fig. 1. Choosing a large
bias such that Z = 10, we take hy = 0.01 and hy = 0.02, keeping these values small so as to
reduce their impact on &,. However, to explore the dynamics of these values we observe the
system when hy as 0.1 and hy as 0.2 such that the perturbation is of the same order of the

values of J associated to the unperturbed Hamiltonian as in Eq. (4.33) as demonstrated in
Fig. 4.1.

Further to this, we construct the normalised distribution functions for f»(&, &', w,w’, 1, 1')
and that of f1 (§,w), f1(&,w’) and h(l, I') in order to test the factorisation approximation for
the first link of the BBGKY hierarchy using the Pechukas model. To build these distribution
functions, we split the time interval in 0.1 from initial time at 0 and final time at 1, each
of these distributions had been normalised. We determine the values of v, through taking
Tpt1 — T, and dividing it through by the time step of 0.1. We obtain values for [,,, using
its definition described above. From this we produce the distribution for f; (£,w) shown in
Fig. 4.2.

In Fig. 4.2 we observe how the probability distributions of the level dynamics in Fig. 4.1,
demonstrating the statistical consistence between the evolution of the eigenvalues and their
respective evolution of probability distribution functions.

From the distribution functions, it is evident that the factorisation approximation does

not hold for a two qubit system as discussed above. We use Eq. (4.28) to determine &, and
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Evolution of Eigenvalues when h, =0.01 and h,=0.02 Evolution of Eigenvalues when h,=0.1 and h,=0.2

All Eigenvalues

All Eigenvalues

08

Figure 4.1: Evolution of eigenvalues: all the eigenvalues of Hamiltonian Eq. (4.33) for 100
simulations with random initial conditions obtained from the different values of J. These
eigenvalues are of the form J + AH,,, they are Gaussian distributed as J is Gaussian dis-
tributed with mean 0 and standard deviation 1, through their evolution in A from 0 to 1
in steps of 0.1. When the perturbation is much weaker than the interaction .J, the system
stays close to its ground state see left panel. When the perturbation is of the same order as
J, the eigenvalues deviate from an initially Gaussian distribution, evolving into four distinct
peaks, see right panel.

how it varies through the evolution of the adiabatic parameter, considering nonzero points
between the factorised distributions and that of f5(, &', w,w’,1,1"). The results are presented

in the Table 1 below:

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(&) 0.668 3.203 | 0.578 1.18 0.335 1.54 0.4803 | 0.0659 | 0.366
SD of | 0.00127| 0.00393 | 0.00119 | 0.00216 | 0.00120| 0.00312| 0.00142| 0.00109 | 0.00153
Er

Table 1: the average &, and its standard deviation (SD) are described through time up to 3
significant figures, to determine the accuracy of the factorisation approximation, using the

Pechukas model for a two qubit system.

The verdict is that the factorisation approximation does not hold for a two qubit system
due to the interaction term. We note that &,.’s standard deviation remains below 0.005
throughout the evolution of the adiabatic parameter. We observe, anomalous averaged
relative errors as in the cases for A being 0.2 ,0.4 and 0.6 that which do not fall in the range
of the analytic bounds determined from Eq. (4.38). This is a result of the sample being
taken from 100 trials. However &, follows the prediction of Eq. (4.29) with &, expected to

be 1 for a two qubit system whereas Eq. (4.38) suggests an exponential growth in the upper
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Figure 4.2: One-particle distributions: this gives the evolution of Fjq (z1, v1) as the time
parameter increases, clearly it is seen that it is initially Gaussian distributed about a single
peak however as time increases, it settles into 4 equally distributed peaks due to the large
perturbation as expected. The velocities here are deterministic, as such the distribution is
centred around the four velocity points.
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bound for a two qubit system with a minimum of % This is a consequence of the system
having its eigenvalues determining x, and, in turn, both v, and l,,, being related through
the coupling constant J. The influence of J reduces significantly as N grows. Though the
factorisation approximation has not been numerically tested for large NV, we have shown that
&, scales as 1/N, suggesting that it is possible to reduce the BBGKY chain to a factorisation
of Fio(x1, vy) distributions. We leave the numerical demonstration of this for future work
as it is beyond the scope of the present analytical study. We note that in the z basis, for large
A the J terms are negligible where the two qubit Ising model could be completely decoupled
as such we would expect the factorisation approximation to hold, however in the basis used
in this investigation, we do not make such observations.

Using this approach, we have determined the statistical level dynamics of a general
nonequillibrum system through the Pechukas equations. In the realms of AQC, level cross-
ings of the system result in state transfer, resulting in decoherence in the system. We explore

these further in the following section.

4.4 Summary

Using the BBGKY hierarchy in the Pechukas formalism to develop a set of coupled ki-
netic equations of motion, one can investigate the level dynamics of a quantum perturbed
system, statistically. This extends the kinetic equations concerning the level dynamics to
parametrically driven evolution of a quantum system which is especially convenient for the
investigation of adiabatically evolving systems however the formalism is not strictly adia-
batic and is applicable to a general system of parametric time evolution with arbitrary time
dependence in \.

In extension, a factorisation approximation is constructed such that the s-particle re-
duced probability distribution functions can be constructed from a product of s one-particle
distributions. This approximation is motivated by the fact that the coordinates in the
Pechukas equations are independent and so may lead to effectively independent probability
distribution functions, reducing the many body systems to that of a one-body system. This
is a great simplification as it amounts to solving the BBGKY hierarchy by solving just the
one-body system. All the information of the level dynamics can be determined from the
one-particle distribution functions. To test the factorisation approximation, we analytically
considered the way the factorisations vary from the many particle probability distribution
functions giving an effective mean field theory approximation. We find that the relative
error €, decays asymptotically as O(1/N) as the number of the interacting particles tend to

infinity. This gives confidence that for systems with large number of particle interactions,
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the approximation holds.

To illustrate the theory, we consider the simplest possible system of two qubits, and
compared it with the exact solution of the Hamiltonian. Breaking the BBGKY hierarchy
at its first chain, we built the related s-particle distributions, where we found that the
factorisation approximation is not accurate due to coupling between the eigenvalues where
the energy levels are not mutually independent for any given \.

This research has significance to the study occupation dynamics at eigenvalue crossings
and avoided crossings with current relevance to a range of applications, two directly related

realms would be AQC and photonic systems, both of which carry great prospect.
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Chapter 5
Evolution of Quantum States

In this chapter, we study how the evolution of the eigenvalues provides useful information
on the evolution of the energy gap and the distribution of avoided crossings. Using the
Pechukas-Yukawa model, we connect the level dynamics of a system to the quantum states
through the evolution of eigenstate coefficients,C(t) for a wavefunction expanded in the
instantaneous eigenstates. The advantage under this description for a quantum coherent

system is that the instantaneous eigenstates include all higher level entanglements.

One can extend this description from eigenvalue dynamics to determine the form of
the density matrices. This provides insight in the dynamics of occupation numbers and
the coherences in the system which will prove useful in determining the probability for the
system to remain in its initial state. Using this description, one can, for example, determine
the effects of avoided level crossings on the systems evolution and the extent to which the
noise affects the population of states. Our work here extends the standard Pechukas-Yukawa
model from the statistical mechanics of energy levels to the description of quantum states
themselves. It is worth stressing that these works build a general scheme applicable to the

investigation of AQC, however, they are not restricted to AQC.

To proceed we use a Magnus series expansion to approximate C(t), a convenient way
to obtain an asymptotic expansion. This approach is contrasted against both the adiabatic
approximation and the time dependent perturbation theory (TDPT). We determine the coef-
ficients of the eigenstates to compare how well these approximations accommodate adiabatic
parameters [33, 34]. Using the Magnus series, C'(t) can be approximated by a cumulant
expansion to re-sum the TDPT, in powers of \ = d\/dt, with respect to the adiabaticity.
Each term of the expansion corresponds to a sum of an infinite number of terms in a direct
expansion of the density matrix. Given the Magnus series converges, the cumulant expan-
sion provides a source of improved efficiency in the result. This is important to study the

adiabatic invariants of the system. Knowledge of this could yield important features of the
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behaviour of an AQC. This description may provide useful analytics to study sources of de-
coherence in highly entangled systems using the eigenvalue expansion coefficients. Moreover
this can be used to investigate dissipative influences on occupation numbers and coherences
which can be extended to study the effects of multi-level Landau-Zener transitions. Fur-
thermore, our analysis shows that the convergence of the Magnus series approximating the
evolution of C(t) is governed by the initial conditions. This could provide better insight
into what measurable characteristics of a system can be used as a criterion for its quantum
performance. Additionally, this carries the potential to specify Hamiltonians of different
complexity classes, governed by the initial conditions in the PechukasYukawa formalism. It
may be possible to extend the argument to stoquastic (stochastic quantum) systems where
noise is added; this may prove crucial experimentally.

This chapter is as follows: we provide a derivation of the evolution of the occupation
eigenstate coefficients under the Pechukas-Yukawa formalism which forms the main results of
this chapter. This is followed with approximations to solve for the eigenstate coefficients both
analytically and numerically. Analytically, we consider the Magnus series approximation that
we develop to study the evolution of the perturbed quantum system. The Magnus series
is compared numerically against two other approximations; the adiabatic approximation
and the time dependent perturbation theory (TDPT), investigating its limitations. These
results are numerically tested by use of an example, determining the occupation dynamics

numerically for the exact cover 3 NP-complete problem.

5.1 Derivation of the Evolution of Occupation Eigen-

state Coefficients

In this section, we establish the relationship between the occupation numbers and the level
dynamics through the Pechukas model. Recall that a wave function on a Hilbert space can

be expressed as the sum of linear combination of eigenstates that is:

(1) = 3 Cult) n(0)). (5.1)

For eigenstate coefficients for each fixed instant in time C,,(t) € C , related to the occupation

numbers (the number of states at energy level n) IV, by the following:

Calt)? = N, (5.2)
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The evolution of C), associated to the eigenvalues of the state is obtained by:

H(E)|9(t)) = Z& =g Z Ca(D)n(t) =Y En(t)]e(1))- (5-3)

Here E,,(t) denotes the eigenvalues of the system for state |m(t)). Taking time derivative:

0

= 5, using Leibniz rule, we obtain:

5|¢ Z o + Cu®)a(t) =Y Calt) Ea(t)In(t)). (5.4)

Applying (m(t)| on both sides and through linearity we obtain the dynamics of these coeffi-

cients through time with regards to the eigenvalues of the state,

ch m(t)|C,(t ZO (5.5)

Hence by evaluating the d-distributions and rearranging the expression we have the following:

iCon(t) = Cu(D) B = =i Y Ca(t) <m(t)yé%|n(t)>x, (5.6)

n#m

where E,,(t) are the eigenvalues of the system and (m(t)| and |n(t)) denote the eigenstates.
In order to evaluate the dynamics with respect to the level dynamics, it is necessary to
determine Y, iC,,(t)(m(t)| & |n (t))A where the term vanishes for m(t) = n(t). We adopt
the Pechukas-Yukawa model in order to express the evolution of C,,(t) in terms of variables

describing level dynamics. The evolution of (m(t) ’8%| n(t)) is determined from the following

argument:
0 0
o EnOn(t)) = A1 ({1)n(?)). (5.7)

Applying Leibniz rule on both sides we obtain the following:

B ()5 n(0)) + 10 (S Ba(t)) = V() + (D)~ n(1),
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where V(t) represents the potential. We act on both sides with (m(t)| and through linearity
such that m # n, we find that the dynamics reads:

En(t) <m(t)|a%l71(t)> = (m(t)|V (@) [n(t)) + En(t) (m(t)|(%ln(t)>- (5:8)
Hence,
(En(t) — Em(t))<m(t)!a%\n(t)> = (m(t)|[V(t)|n(t)). (5.9)

By applying the Pechukas equations, for determining [,,, described in Eq. (3.10), giving

(m()|V(T)|n(t)) = Ei”j"En, we are able to determine the evolution of (m(t) | Z| n(t)) entirely

using level dynamics:

(a0 = )l (1)) = 2 (5.10)
Thus,
0 —lonn
(Ol g5ln) = 2y (5.11)

Substituting Eq. (5.11) into Eq. (5.6) the dynamics of the occupation numbers are given

through the following relation, which provides us with the main result of this chapter:

: [

iCon(t) — Copg = Mn;@ﬁ. (5.12)
This describes the wavefunction in its entirety at any given time. We established the relation-
ship between the occupation numbers and the level dynamics through the Pechukas-Yukawa
model, given by Eq. (5.12). For the simplified case that A = 0, we solve this ordinary differ-
ential equation to find that C,, (t) = Cm(())e_ift;5 #m(s)ds " describing an adiabatically evolving
system. We consider the case that Eq. (5.12) is inhomogeneous.

We denote:

X =diag(xy...2,),
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P = py,, where p,, = (IZT—;)Q and Py, = 0,

Ot) = (C1(t) ... Cu(®)T.

Here X is diagonal and P is skew-Hermitian as [,,, = —I[*, , thus diagonalisable. Then

nm?

Eq (5.12) can be written as the following:

0

ZEC(t) = At)C(t). (5.13)

where A = (iX 4 A(t)P) does not commute with itself at different time instances.

5.2 Approximating the Evolution of the Eigenstate Co-

efficients

In the present work, we investigate approximate methods to solve for C'(¢), from which the
occupation numbers are obtained. Using the Peano-Baker series[35] (PBS) we find that the

solution comes in the form:

C(t;to)zl—i—iIn(t), (5.14)

where tg is the initial time and Z, is expressed as the following:

T.(t) = /tA(ﬁ)/ﬁ A(@)m/T”_IA(Tn)dTn...dﬁ. (5.15)

to to to

We are interested in a nonzero constant A such that the adiabatic parameter evolves slow
enough that the system is not excited from its eigenstate. In the case A(t) commutes with
itself at each instant in time, we may use classic linear algebra to determine C, () at each

instance through the following relation:

C(t) — ! I A(s)dSCO. (516)

This expression holds only for the case that A (¢) can be approximated as constant. Using

PBS, we demonstrate that a solution exists for a general )'\(t), however obtaining an explicit
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form to determine C,,(t) at each instant is much more complicated. Instead, it is useful to

consider an alternative approximation.

5.3 Discretising the Evolution of Eigenstate Coefficients

Treating Eq. (5.13) as constant at each instant in time, we model the system through
step functions such that X, P and A are constant at each instant time. This discretises the
system, essentially building a piecewise constant approximation such that the solution is of

the following form, where 0 < to < t; < --- < tr:

C(t) = et=tEXI=ANPY | plta—t) (-iXa=At) etl(—iXO—j\(tO)PO)CO’ (5.17)

where X; and P; represent matrices X (A(t)) and P(A(t)) at time step i. Note, these matrices
do not depend explicitly on time but rather implicitly through A(¢). Cy denotes the initial
condition of the eigenstate coefficient.

Numerically choosing 0t = %, small such that the approximation is close, we model the
eigenstate expansion coefficients. This is used as our true value of the solution such that
further approximations are compared against this model to determine their accuracy.

This method is tractable numerically, providing a close characterisation of the eigenstate
coefficients for small dt, however it does not provide information related to the influence of
A(t) on the evolution of C/(t). Using the discretised solution of Eq. (5.13), we contrast against
the time dependent perturbation theory, the adiabatic approximation and the Magnus series
truncated at different orders of A(t) to calculate the relative error. This allows us to evaluate
the accuracy of the adiabatic theorem against the other approximations to verify whether

the non-adiabatic contributions are negligible.

5.4 Standard Eigenstate Coefficient Approximations

The adiabatic approximation assumes the rate of evolution in the perturbation of a system
is sufficiently slow such that A= 0in Eq. (3.9), having negligible influence on the evolution

of eigenstate coefficients. Then the solution to Eq. (5.13) is simply given as:

Ct) = e h Xy (5.18)
This corresponds to a first order correction to the standard TDPT expansion. In our
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research, we determined higher order contributions in C,,(t) to contrast accuracies against
the adiabatic theorem.

TDPT uses an iterative procedure to construct an expansion of the eigenstate coefficients.
Approximated up to the n'* excited eigenstate state, the solution to Eq. (5.13) is given as

the following infinite sum truncated to n:

Cnlt) = i@‘;, (5.19)

where C represent orders in corrections of the eigenstate coefficients C,,(t), of general form

as below,

C(t) :/o (—iX(A(s) = A(s)P(A(5)))Cy (s)ds. (5.20)

This offers higher corrections to the eigenstate coefficients than given by the adiabatic
approximation. We take up to 10 iterations, compared against the piecewise constant ap-
proach to determine its relative error. This allows us to evaluate the the different accuracies
between the different approximations, accommodating for non-adiabatic parameters. We

further compare against the Magnus series approximation.

5.5 Magnus Series Expansion

Like the TDPT, the Magnus series approximation offers a solution for the eigenstate coeffi-
cients whilst accounting for non-adiabatic parameters. It is given as a cumulant expansion,
in powers of A\ = d\ /dt, where each term of the expansion corresponds to a sum of an infinite
number of terms in a direct expansion of the density matrix.

The Magnus series provides a solution to Eq. (5.13), taking into account the non-

commutativity of A(t)[36, 37, 38, 39]. We begin by writing C(¢) in the form:

>0 (5.21)

where Cy = C(0) is the initial conditions for C'(¢t). Here Q4 corresponds to the k™ order
term of the Baker-Campbell-Hausdorff (BCH) formula [36, 39] and is given as integrals of
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successive commutators. This can be used to construct an infinite hierarchy of A terms from
a cumulant expansion, which both improves the efficiency of the series and allows for the
study of the adiabatic properties of the system related to C(¢). The first two terms of the

series for € (t) read:

O (

. / tA(s)ds,
/ / J]ds'ds.

Since the full Magnus series is not tractable, one resorts to a truncation, approximating

(5.22)

the solution. Investigating the asymptotic convergence of this series would be of interest in
future research. In our subsequent analysis, we truncate the Magnus series to the 2"¢ order
and test it numerically. If the Magnus series converges, the cumulant expansion provides
a source of improved efficiency in the result, relevant to studying the adiabatic invariants
of the system. Knowledge of this could yield important features of the behaviour of an
AQC, improving our understanding of the relationship between control parameters which

may significantly affect adiabatic algorithm designs.

5.5.1 Convergence of the Magnus series

In the Pechukas model, all information for the Hamiltonian dynamics is encoded in its initial
conditions; we translate the conditions for convergence of the full Magnus series in terms of

initial conditions. The Magnus series converges if[36, 37, 38, 39]:

/Ot [A(s)||ds < 7. (5.23)

Using the triangle inequality and the expression for A(t), it suffices to show that:

t t
/ ||X||ds+/ A(s)||P|ds < . (5.24)
0 0

Rewriting the || X|| integral in Eq. (5.24) in terms of initial conditions z,(0), v,,(0), l;5,n (0),
we consider the Lax formalism in order to express the Pechukas equations Eq. (3.10) in Lax
formalism[20, 40, 41]:
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X =W+ [P, X],
W =[P, W], (5.25)
L=1[P 1],

where P is as expressed in Eq. (5.13) and matrices W and L are skew-Hermitian, given by:

lm

W = Wmn where Wmn — m

and w,,, =0,

L =1,,, and l,,,,, = 0.
As before, X = diag (x; ...z,) denotes the diagonal matrix of the eigenvalues of the system.
X can be transformed, through a unitary transformation to a nondiagonal matrix Y (the

reason will become apparent in later in this section), X = UYU™!, where U is a matrix of

eigenvectors. The matrix () is defined by:

Q=W +diag(vy...v,).

In Lax formalism, Y is then expressed in terms of the initial conditions[41]:

Y (1) = A)Q(0) + X(0). (5.26)

Time dependence exists solely through the evolution of A. Using the unitary transformation
of X and Eq. (5.26),

X =Y @)l = VTr(Y*(t = VIIX(0)[2 + X6)Tr(X(0)Q(0)) + A2(6)[|Q(0)]>.
(5.27)

Substituting this for the || X|| integral in Eq. (5.24). From this we describe the || X|| integral
by the following:
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/ VIX(O)I + A(s)Tr(X(0)Q(0)) + X2(s)[|Q(0)][2ds
0 (5.28)

< HIX(0)]] + VT (X(0)Q0)) / VA + 11Q(0)]] / IA(s)ds.

Thereby the convergence of the first integral is reduced solely to the dependence of initial
conditions and the time evolution of A. This method however, is restricted to finite times
such that initial conditions can be set to satisfy Eq. (5.24). As t — oo, it is not possible to
meet this convergence criteria regardless of the restrictions on the initial conditions.
Similarly, for ||P||, using that the square root of a sum is less than the sum of the square
roots and interchanging the sum and integral using Tonelli’s theorem, we can rewrite the

second integral in Eq. (5.24):

/0 As)I[Pllds < 3 /0 A(S)pomds. (5.29)

m#n

Taylor expanding around the initial time for short time intervals, p,,, is expressed in terms
of initial conditions, pmn = Pmn(0) + OA(S)Pmn(0) (using our definition of p,,, from before)
where 0A(s) = (A(s) — A(0)). Then Eq. (5.29) becomes:

(0) ()\2(t) _ /\2(0)) + A1) (Prn(0) — A(0)Pmn(0)),

(5.30)

/Ot )\(S) (Prn(0) + IAPmA (0))ds = pmg

where pp,, can be computed entirely from z,,(0),v,,(0) and /,,,(0). We conclude that using
Eq. (5.24), Eq. (5.28) and Eq. (5.30), the convergence of Magnus series is guaranteed and
is expressed entirely through its parametric evolution, A and initial conditions.

A potential source of divergence of the Magnus series involves level crossings; in the case
of Landau-Zener transitions, the system is simplified to 2 levels with linear evolution in A
hence A is constant. We show that level crossings can be disregarded as they have zero

measure.

5.5.2 Convergence of the Magnus Series: Level Crossings

Level crossings may result in Landau-Zener transitions of the population of states. These

occur at a A*, potentially involving multiple levels which is considered separately. Note that
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in the N = 2 case described by the Landau-Zener model, the system collapses to the Calegro-
Sutherland model with constant [,,, terms. We show in this section that level crossings due

to the symmetries of the Hamiltonian, have zero measure.

For a level crossing z,, = x, at A* , then Eq. (3.10) implies l,,,, = 0 and lnn = 0. The
converse is not necessarily true, that is if /,,,, = 0 does not imply z,, = z,,. Expanding both
numerator and denominator of ||P|| about this point with 0A* = (A — A\*), we obtain the

following expression for the upper bound on Eq. (5.29):

al i (A%) 4 0N (V) + 26N2L0] OO
2 (@ (A7) = 2 (A7))2 4 20A (20 (A7) = 20 (A7) (0 (A7) = 02 (A7) 4 0N (U (A7) — va(A7))? ’
(5.31)
where 1y, is given by Zi\;mn %?g’zfn’“’i—w Cancelling zero valued terms and substituting
Ly into Eq. (5.31),
Lyan| al |milin + ON)]
(I‘m - In)2 - k;n (xm - xk>3(vm - Un) + O()\3) \ <532)

This series diverges in two scenarios, case 1: degenerate level crossings: x, = x,, = z,
for some k, which again by Eq. (3.10) gives lyn, bk, lnx vanishes and case 2: that v,, = v,
describing a system where levels coalesce. For case 1, as both numerator and denominator
are zero, warrants the application of I’'Hopital’s rule on Eq. (5.32). At its third iteration, we

obtain:

|bn| _ 0+ O\
(T — 2n)? Z 6(Vm — vn) (U — Vi) + O(N3) (5.33)

k#m.n
The expression converges to zero at the critical point \*, implying that degenerate level

crossing do not cause Eq. (5.32) to diverge.

Exploring case 2, we use the interpretation of the Pechukas equations as describing a 1D

gas. As A approaches \*; A\~ = A\* —e and without loss of generality z,, > z,, it is clear that

hence (v, — vy,) & @ greater than 0 by assumption. By symmetry,

T —Tm

Um = hme—>0 e

this argument holds for x,; > z,,. In the case v,, = v,, at \* we consider the difference

between acceleration terms given by the following:
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. . N
m ~— Yn lm2 ln2 lmn2+lnm2
0 _ o (al Wil ) ol el .

ket (T —21) (2 — 23)3 (Tm — )3

The latter term corresponding to the level crossing, tends to 0 as A — \* as determined by
the application of I’'Hopital’s rule three times, however the terms in the sum are non-zero,
describing acceleration between the levels at A\*, modelling repulsion such that levels do not
coalesce. This shows that level crossings occur only for an instant A* rather than an interval,

as such they do not contribute to Eq. (5.29) as they have zero measure.

From these expressions, one can determine (from the initial conditions encoding the

evolution of the system) when the convergence criterion outlined in Eq. (5.24) are met.

5.6 Numerically Comparing the Magnus Series Against
the Adiabatic Approximation and TDPT

We compare numerically the Magnus series (up to its second order) against the adia-
batic approximation, treating A as negligible. Under the adiabatic approximation, C (t) =
emilo X (5)dsC,. Both these approximations are contrasted against the TDPT expanding C/(t)
in powers of the interaction. The TDPT is useful for exactly solvable systems with an in-
teraction to its environment described by a small perturbation[42]. Under this description,
C(t) = > 72,Ct), where C'(t) = fOtA(s)C'Fl(s)ds, represent higher order corrections.
These are obtained iteratively for 10 iterations. This solution breaks down for the TDPT
when perturbations are large. To avoid this, initial levels are chosen with a minimum spacing
of 0.01 and 0.05. This ensures that initial || P|| is not large as a consequence of level (avoided)
crossings. Levels tend to diverge away from each other as the system evolves, hence ||P]|
decreases with time. However, it is unavoidable that for large N level (avoided) crossings
would not occur. This approach is sensitive to the time steps of evolution, requiring that they
be small. The TDPT depends on the quantum states C(t); unlike both the Magnus series
and the adiabatic approximation, where comparisons are made between matrix propagators

in determining relative error.

To compare these methods numerically, we take a piecewise constant approximation.
Treating A as constant over sufficiently small time steps, such that the TDPT is applicable,
we break the interval of evolution in steps of 0.01. This approximation numerically converges

to the true solution. This explicit solution is given by:
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c(t) = [ [ rtc, (5.35)
i=0
where 0 <ty < t; < --- <t and A; is constant on interval [t; 1,t;].

We investigate different classes of Hamiltonians, each parameterised by their initial condi-
tions H(A(t); 2°,0°,1%) with 2° v and [° describing the initial time level dynamics, governed
by functions of A(t): 1) linear A\(t) = 1073¢, 2) cubic A(t) = 1073(¢3 +¢*+t) and 3) exponen-
tial decay; A(t) = 107%e¢~". In accordance to Eq. (5.28) and Eq. (5.30), the upper bound on
the convergence criterion of the Magnus series grows as O(t?) for linear functions of A, O(t9)
for the cubic function and O(t) for the exponential decay. This suggests the convergences
are expected to hold longest for an exponential decay. Under the same initial conditions,
these different A yield the same level dynamics. Fig. 5.1 depicts the level dynamics for a
linear function of A.

We use the Euler method with random initial conditions uniformly distributed over a
ball of radius § to evolve the general Pechukas-Yukawa equations Eq. (3.10), such that the
conditions outhned in Eq. (5.24) are met for 0-1 in steps of 0.01 for 1000 simulations to
average over the random initial conditions for x,v,l. We evolve the dynamics up to ¢t = 100,
without amending initial conditions in order to observe the limitations of the Magnus series.
We compare the logarithm of the relative errors between the piecewise constant approach
given by Eq. (5.35). The average relative error (R.E.), at each time step per simulation is
given by:

1000

IC1] Cpc[ 1l
§ j 5.36
~ 1000 Crcli]]] (5.36)

where C[i] describes the approximation of C/(t) and Cpeli] the piecewise constant solution
at time step ¢. Taking the norm provides a real valued relative error to plot against time.
We take N = 2,4, 8 excited states for an initial minimum level spacing of 0.01 and N =
2,4, 5 excited states for 0.05 to check the effectiveness of the methods as the dimensionality
increases. Note that for a radius of £ for the distribution of initial conditions, it is not
possible for a minimum level spacing of 0.05 beyond N = 5. Comparative results are given
in Figs. 5.2, 5.3 and 5.4 for minimum initial level spacing 0.01 and 0.05. These detail the
growth of the logarithmic relative errors with time between the approximations, for each

function of \.
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Figure 5.1: The time evolution of an 8 level system under the Pechukas-Yukawa model, for
t € [0,100]. Levels are initially Gaussian distributed with al minimum spacing of 0.05. The
dynamics is encoded in the initial conditions, governed by A\ being the linear function of
time. Different A correspond to different nonlinear stretchings in the dynamics against time.
Given the inital conditions are the same, the dynamics are the same. We observe multiple
avoided crossings between the different levels during their dynamics. We note that the levels
are seen to be moving away from each other as time evolves.
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Figure 5.2: (a) The logarithmic relative error (R.E.) between the piecewise constant
approach and the Magnus series (dashed blue line), the adiabatic approximation (solid
black line) and the TDPT approximation (red crosses) against time for the linear case:
A(t) = 1073t. These errors have been investigated for different dimensions; N = 2,4 and
8, with a minimum level spacing of 0.01. The Magnus series best approximates C(t), when
t < 60. The accuracy improves with dimension, a consequence of the increased number of
level crossings and anti-crossings which are handled better using the Magnus series. For
N = 8, the Magnus series best approximates C(t) for ¢ < 100. This demonstrates that the
point of intersection between these R.E.s shift to the right as dimension grows. During the
evolution, the R.E.s are bounded by 10° for all approximations through time. The R.E.
for the Magnus series increases with time as the system approaches a limit such that the
convergence criterion in Eq. (5.23) does not hold. The errors for the adiabatic approxima-
tion overlaps with the TDPT. (b) Similar to (a) with an initial minimum level spacing of
0.05. These errors have been investigated for dimensions; N = 2,4 and 5. One observes at
N = 2, the Magnus series best approximates C(t) for ¢ < 40, again this period increases
with dimension, at NV = 5, reaching ¢ < 50. This demonstrates that the point of intersection
between these R.E.s shift to the right as dimension grows. During the evolution, the R.E.s
are bounded by 10° for all approximations. Only for N = 2 does the Magnus series approach
10°. There is a growth in R.E with time as the system approaches a limit such that the con-
vergence criterion in Eq. (5.23) does not hold. The errors for the adiabatic approximation
overlaps with the TDPT, both appear to decrease as time grows large as levels spread fur-
ther apart, so level crossings and avoided crossings are less frequent. Compared against (a),
the periods before the intersection between the Magnus series and the TDPT and adiabatic
approximations are shorter as having a larger minimum separation between levels improves
the accuracy in both the latter approximations.
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Figure 5.3: (a) Same as in Fig. 5.2 (a), averaged over the same initial conditions, for cubic
A(t) = 1073(¢3+1%+t). The errors have been obtained for N = 2,4 and 5, it was not possible
to obtain results for larger N as the approximations broke down. The Magnus series best
approximates C'(t) when ¢ < 10, and plateaus at 10°, demonstrating a break down in meeting
Eq. (5.23) for the Magnus series. This is expected as the cubic function grows faster than
all other classes of A considered in this paper. The relative error for TDPT peaks initially
and also plateaus at 10°, whereas the R.E. for the adiabatic approximation decreases with
time as the levels spread further apart in this system, resulting in fewer level crossings and
avoided crossings. (b) Same as in 5.2 (b), averaged over the same initial conditions, with
cubic A(t) = 1073(¢* 4+ t* + t). The Magnus series best approximates C(¢) for ¢ < 10. This
interval is shorter than for all other classes of A, as the cubic function grows faster than all
other classes of A\ considered in this paper. The R.E. for the Magnus series plateaus at 10° for
all dimensions, demonstrating a break down in meeting Eq. (5.23). One observes the errors
for the adiabatic approximation overlaps with the TDPT. One observes the duration in the
overlap increases with dimension however, as time increases the adiabatic approximation is
most accurate, decreasing with time, whereas the TDPT plateaus at 107!, Again, compared
against (a), the periods before the intersection between the Magnus series and the TDPT
and adiabatic approximations are shorter as having a larger minimum separation between
levels improves the accuracy in both the latter approximations.
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Figure 5.4: Same as in Fig. 5.2 (a), again averaged over the same initial conditions, for
exponential decay A(t) = 1073e~t. For t < 10 and N = 2, the Magnus series best approxi-
mates C(t). This period increases with dimension, going beyond ¢ = 100 for N = 8, where
the point of intersection between the R.E.s shift to the right as dimension grows. For the
exponential decay, the R.E.s for all approximations remain bounded below 107!, as time
grows large the Magnus series plateaus yet provides accurate results throughout the evo-
lution, demonstrating thus far the Magnus series convergence criterion is met. Again, the
errors for the adiabatic approximation overlaps with the TDPT, where their errors plateau
below 107!, (b) Same as in Fig. 5.2 (b), again averaged the same initial conditions, for
exponential decay A(t) = 1073¢*. For ¢ < 20, the Magnus series best approximates C/(t).
This period increases with dimension, reaching ¢t < 30 at NV = 5, where, again the point of
intersection between the R.E.s shift to the right as dimension grows. For the exponential
decay, the R.E.s for all approximations remains below 1072, as time grows large the Magnus
series plateaus yet provides accurate results throughout the evolution, demonstrating thus
far the Magnus series convergence criterion is met. Again, the errors for the adiabatic ap-
proximation overlaps with the TDPT, both seen to decrease as time grows large at the same
rate such that beyond ¢t = 30, these provide better approximations for C'(¢) a consequence of
the levels moving further apart hence level crossings and avoided crossings are less frequent.
Compared against (a), again one observes the periods before the intersection between the
Magnus series and the TDPT and adiabatic approximations are shorter as having a larger
minimum separation between levels improves the accuracy in both the latter approximations.
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We observe for short time intervals, the best approximation for C(t) is the Magnus series.
However, as time grows large there is a break down in meeting the convergence criteria Eq.
(5.23) for the set initial conditions. Exponential decay is an exception case; the growth of the
system is slow enough that the R.E saturates before reaching errors of 1072, This provides
accurate solutions throughout the evolution. The R.E.s from the adiabatic approximation
and the TDPT decrease below the Magnus series R.E. as time grows large, a consequence of
the levels becoming further apart resulting in || P|| becoming less significant. We note that
this weakens the approach. The Magnus series in contrast is well suited to the ‘spaghetti
regime’ where levels are close, a result of the Magnus series being less vulnerable to the
effects of level crossings (as shown in Appendix B). This is observed in the general trend,
that for larger N where level interactions are more frequent, the Magnus series relative errors

overtake the errors for both the adiabatic and TDPT approximations at later times.

5.7 Density Matrix Evolution

Using the Pechukas-Yukawa formalism, we obtain an explicit description of both the occu-
pation numbers and coherences of a quantum system continuous through time from the level
dynamics. This has great potential for the development of AQC, providing insight on the
decoherences of a system, a major challenge faced by AQC. We later extend our investigation
to the study of Landau-Zener transitions occurring at level crossings and avoided crossings
leading to decoherences. Decoherences arise from a number of various elements intrinsically
and from the environment ranging from level crossings and avoided crossings to random dis-
sipative influences from the environment, however the investigation of these various sources
are beyond the scope of this paper.

The density matrix is determined from the eigenstate coefficients, C(¢):

p(t) = C(t) Q) C(t). (5.37)

This provides insight on both the dynamics of occupation numbers (the probability of re-
maining in a state after level “collisions”) and the coherences (interlevel correlations). One
gains crucial insights on the decoherence of the system in relation to its initial conditions.
Taking the Magnus series expansion to approximate C/(t), one obtains a convenient
asymptotic cumulant expansion in powers of A, improving the efficiency of the result given
that the series converges. Each term of the expansion corresponds to a sum of an infinite

number of terms in a direct expansion of the density matrix. The convergence of this approx-
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imation is governed by the initial conditions and the evolution of A such that these solely
characterise the entire system dynamics.

This description is well suited to nonequilibrium systems where levels are close together,
described by the “spaghetti” regime. Using this description, one can investigate the effects
of level crossings and avoided crossings on the system’s evolution and the extent to which
these affects the population of states[43].

Under the Magnus series approximation, the occupation numbers are given by,

)Omm

N
(1) = Z (efot A(s)ds+35 [ [ [A(s),A(s')}ds/ds>

n=1

< Ci(0)Cyy (8 AL 51409 Al

mn nm

(5.38)

This describes continuously through time, the probability of remaining in the same quantum
states as the system evolves. The diagonal elements of the density matrix describe the
probability of states remaining in the same state, accounting for the influences of interference
on the system. We apply these properties of the Magnus series, comparing against the

different approximations for a concrete example.

5.8 Occupation Dynamics for the Exact Cover Algo-
rithm: A Variation on 3-Satisfiability

Applying our approach to a concrete example, the exact cover 3-satisfiability problem, we
compare the applicability of the different approximations to this problem. We determine
the eigenstate coefficients from which one obtains the occupation dynamics crucial to the
understanding of sources of decoherences in a quantum system.

The exact cover algorithm, belongs to the class of NP-complete problems[44, 45], first
proposed by Knuth[44]. It has since been extended to the AQC setting[1], cast as a variation
on 3-satisfiability[1, 10, 45]. The problem is described by a Boolean expression, the intersec-
tion of all clauses for a string of N binary variables in a set .S, constrained by M clauses, each
acting on three variables; y,,ys and y, with «, 8,7 € N. The clause is satisfied if and only
if one of the three variables takes the value 1 whilst the other two take 0; yo, +ys + v, =1,
described by the clause function such that each violated clause is associated with a fixed
energy penalty[45]: > pjuuees (Ya + Us + Yy — 1)? used to obtain a solution to the problem.
The Hamiltonian describing this problem can be translated to an M-qubit problem, given

by the following:
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M M
1 _O-f z z
H=\ E 5 +(1—=X) g Cij(1—07)(1 —03), (5.39)
=1 i<j

where C;; € N counts the pairwise occurrence of any two distinct variables in the clauses and
o” and o7 are given by the Pauli spin matrices, translating the description through qubits.

We consider three distinct clauses with C5 = C93 = 2 and (3 = 1 with an exponential
decay function for A = 1073e~*. The energy spectrum is determined by diagonalising Eq.
(5.39), giving the eigenvalues. Combined with Eq. (3.10) we determine the evolution of the
level dynamics. We note here that the initial conditions do not meet Eq. (5.23). However,
as one observes in Figs. 5.2 and 5.4, the Magnus series is robust in that despite the initial
conditions having not satisfied the criterion outlined in Eq. (5.23) for in the interval [0,
1], the approximation had accurately provided solutions far beyond this duration. Using
this flexibility, we compare the different approximations explored in Sec. 5.6 to obtain
the evolution of the eigenstate coefficients, up to t = 100 in steps of 0.01 with Gaussian
distributed initial conditions, normalised for C'(0). We determine the logarithm of the relative
errors compared against the piecewise constant approach for each approximation through
time in Fig. 5.5.

We observe the Magnus series best approximates the evolution of the eigenstate coeffi-
cients throughout the duration, with the error bounded below 1072 up to t < 35. Using
the relation p = C(t) ® C*T(t), where C*T(t) denotes the complex conjugate transpose of
C(t), we determine the evolution of the density matrix for this system hence we obtain the
dynamics of the occupation numbers, given in Fig. 5.5 (b).

One obtains the evolution of the occupation numbers from diagonalising the density
matrices, these describe the probability of remaining in the initial states where the off-
diagonal terms describe the dynamics of the coherences, giving the probability of state
transitions. Using this description, one can explore various sources of decoherence from
stochastic processes as well as Landau-Zener transitions from interactions between the levels
and their impact on the population of states.

These investigations on the evolution of eigenstate coefficients could be realised experi-
mentally. For example, consider the experiments by D-Wave One concerning 108 qubits[46].
One could translate their quantum annealed Hamiltonian based on the Ising model to the
Pechukas-Yukawa setting using Eq. (3.10); choosing some function of A(¢) to satisfy the
start and end points of an interval such that it simulates time over ¢ € [0, ¢;][46]. Under this
description, one could then approximate the eigenstate coefficients which can then be used

to determine the occupation numbers and coherences as the system evolves in time.
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Figure 5.5: (a) The logarithm of the relative error against time for the adiabatic approxi-
mation (thick crosses), the TDPT (solid line) and the Magnus series approximation (dashed
line). One observes the errors throughout the evolution, in all cases are bounded by 1072
The adiabatic approximation overlaps with the TDPT, however up to t < 35, the Magnus se-
ries best approximates C(t) providing accurately the dynamics of the eigenstate coefficients.
(b) The evolution of the occupation numbers of the 3-Satisfiablity qubit system to study
the exact cover 3 problem of 8 bits. We observe the presence of an avoided crossing between
states 7 and 8, resulting in a reflection in their occupation dynamics, suggesting a transfer
in the population of states. In contrast, all other states have remained essentially constant
despite a level crossing between states 7, 1 and 2. It would be of interest to determine the
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dynamics under the influence of noise modelling interactions with the environment.
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5.9 Summary

In this chapter, we derived the relationship between the evolution of quantum states and
level dynamics under the Pechukas-Yukawa formalism. This allows for describing a non-
equilibrium, nonstationary quantum system in its entirety via level dynamics and their ini-
tial conditions. Solving for the eigenstate coefficients under three different approximation
schemes, the adiabatic approximation, TDPT and Magnus series expansion, we compared
the suitability of each regime. Determining the convergence criterion for the Magnus series,
we determine the theoretical bounds on the approximation. We found the Magnus series
held better in a “spaghetti” regime where level crossings and avoided crossings are frequent.
Furthermore, the Magnus series admits a cumulant exapansion which could prove insightful
in the investigation of adiabatic invariants, which could yield promising in the design of AQC
features.

Comparing numerically the different schemes, we show the Magnus series had up to 4
orders of log errors below the adiabatic and TDPT approximation. Moreover, we found the
Magnus series accuracy against both the adiabatic and TDPT approximations improved with
larger systems. This can be attributed to the fact that Magnus series is well suited to level
crossings and avoided crossings which become more frequent for larger systems whereas the
TDPT is prone to divergences as a result. We also found that the TDPT adds no improved
accuracy than the adiabatic approximation.

Finally, we discuss the evolution of the density matrix in the Pechukas-Yukawa formalism,
describing the entirety of the quantum system via level dynamics. Using this description,
one can study sources of decoherence on quantum systems via occupation numbers and
coherences. Under this formalism, we determine the evolution of the occupation numbers
for the 3-Satisfiability exact cover algorithm using these three approximations. Despite the
initial conditions not meeting the convergence criterion for the Magnus series, it was shown
that the logarithm of the relative error for Magnus series was 4 orders less than the adiabatic
approximation and TDPT expansion, demonstrating the robustness of the Magnus series.

This description of occupation numbers through level dynamics, related directly with
Landau-Zener transitions. In extension to our description of occupation numbers, we verify
the description of Landau-Zener transitions in the Pechukas-Yukawa formalism for level

dynamics.
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Chapter 6

Investigating the Landau-Zener
Tunnelling Model via Eigenvalue

Dynamics

Quantum systems experience decoherence from both intrinsic interactions as well as random
fluctuations from the environment. We investigate the influence of noise on the dynamics of
an adiabatic quantum computer using the Pechukas-Yukawa formalism. Under this descrip-
tion, the level dynamics of a parametrically perturbed quantum Hamiltonian are mapped to

the dynamics of 1D classical gas.

We develop the Landau-Zener model in the Pechukas-Yukawa formalism to gain insight
on the effects of random fluctuations on the evolution of quantum states. It is well equipped
for the description of a non-equilibrium interacting system of highly entangled states and
especially for the understanding of the dynamics of a system and its vulnerability to decoher-
ence. Under the this formalism, we investigate the compatibility of the Landau-Zener model
through determining the requirements in the Pechukas-Yukawa formalism for the conditions
necessary for the Landau-Zener model to be applicable. We further explore the impact of
Brownian noise on these requirements. Under these conditions, we explore the behaviour of
levels approaching the point of minimum distance under the influence of noise. We aim at
developing basic elements of such an approach, which would seem especially useful for, but
not necessarily restricted to, modelling adiabatic quantum computers.

As discussed earlier, decoherence is one of the key challenges in AQC. This could be
investigated using the Landau-Zener transition model, detailing changes in the occupation
umbers of quantum states as a consequence the non-adiabatic population transfer at level
crossings and avoided crossings in perturbed Hamiltonian systems or quantum phase tran-

sitions. These describe fundamental results of nonstationary quantum mechanics. The
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Landau-Zener model has been extended to stoquastic systems. This details the probabilities
of state transitions under random environmental influences, which may additionally lead to

decoherence in the system.

6.0.1 Landau-Zener Transitions

Landau-Zener transitions occur at level crossings or avoided crossings, where they reach
minimum separation at a A\* and repel. They can occur degenerately and these cases are
considered separately. The Pechukas equations, Eq. (3.10) are well equipped to describe
level crossings and avoided crossings in a system. In the deterministic case, level crossings
occur when z,,(\*) = x,(\*) describing degeneracies[47, 48, 49], as a result [,,,(\*) = 0 at
some level crossing at A* (converse is not necessarily true[3, 4, 9]). Avoided crossings arise
when levels approach a minimum non-zero distance before repelling.

The conditions to apply the Landau-Zener transition model to a time-dependent Hamil-
tonian are based on meeting the following simplifications. 1) The energy separation is a
linear function of time: x,, —z,, = ot where « is a constant. 2) The perturbation parameter,
A is a linear function of time. 3) The perturbation takes a % potential with radius r. The
standard approach to model the interactions assumes all other level interactions are negli-
gible. This comes from the assumption that level crossings are locally more dominant than
all other interactions during this period, reducing the system to 2 interacting levels at any
time. Multi-level crossings are rare occurrences, their statistical significance is negligible.

Avoided crossings are parameterised by the size of the gap at closest approach and the
asymptotic slope of the curves[49, 50, 51]. For an isolated avoided crossing, the energy levels
take hyperbolic form: z*()\) = (17(/\*)+B(/\—)\*)i%(Afnm—l—A%/\—)\*))% with A,,;, denoting
the minimum gap size, B(A — \*) and A(A — \*) respectively describing the mean and the
difference in the asymptotic slopes[49, 50].

The Landau-Zener model is used to describe these interactions through a statistical dis-
tribution of gap sizes, governing the rate of excitation due to non-adiabatic population
transfers. This gives the probability to remain in its initial state after a level crossing or
avoided crossing. The non-adiabatic transition probability is given by the following proba-
bility distribution, Py z[3, 52]:

A2
P, = ¢ ilmizams (6.1)

This provides a useful description for avoided crossings in a system independent of external

noise. Given the outlined Landau-Zener conditions are satisfied, the transition time is 77, =
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%, defined by the interval in time the levels interact in a small neighbourhood of each other
which we denote by , (for a level crossing this interaction is instantaneous)[47, 49, 53, 54,
55]. Under the Pechukas-Yukawa formalism, one can determine from the initial conditions
whether a system will exhibit quantum phase transitions. This allows for the investigation
of “quantum phase transition friendly” initial conditions. Additionally, this could be used
to provide insight on the effects of quantum phase transitions. It was suggested[56] that one
can expect quantum phase transitions to occur if there is a fast initial compression of the
whole spectrum, leading to sharp scatterings, however this investigation is beyond the scope
of our current work. In the setting of bosonic systems, this compares with the works by
Gangardt in [57] where it was shown for coupling strengths in the interval (1, 2) the system
can be described as a quasi-super-solid where the potential energies are of the same order as

the kinetic energies. The coupling constant in our system is given by the golden ratio.

6.1 The Landau-Zener Model in the Pechukas-Yukawa

Formalism

To ensure compatibility between the Landau-Zener model and the Pechukas-Yukawa for-
malism, it is necessary that Landau-Zener conditions are satisfied. In the neighbourhood
of a level crossing or avoided crossing, both A and the level separation must be a linear
function of time. Expanding about A\*, we linearise the system in regards to level crossings,
avoided crossings with and without the influences of noise to verify the Landau-Zener model
conditions are met. Given these conditions are satisfied, one can extend the traditional de-
scription of state dynamics through the lens of level dynamics which could yield fruitful in
the development of quantum computing system, however this carries potentials beyond AQC

for general state transitioning systems.

6.2 Level Crossings

Recall our earlier investigation on level crossings in Sec. 5.5.2, we determine how these results
compare when considering the applicability of the Landau-Zener model in the Pechukas-
Yukawa formalism. We use the underlying assumption that levels outside the + neighbour-
hood of the level crossings or avoided crossings are far away such that their coupling inter-
actions are by comparison negligible. Under these assumptions, we investigated the impacts
on the Pechukas equations, Eqs.(3.10) to show that in the Pechukas-Yukawa formalism, the

N level system can be reduced to solely the interacting levels. Furthermore, we find that the
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Pechukas-Yukawa formalism can indeed be simplified to linear level separations. We examine
the behaviour of the level separations about \* using a Taylor expansion. For a level crossing,
we have shown the relative angular momenta terms are constantly 0 and the acceleration
terms independently tend to 0. This demonstrates linear evolution in level separations. We
show that when there is a level crossing, all non-interacting levels are considered far apart.
Then, the Pechukas-Yukawa equations can be reduced to only the interacting levels.
Suppose x,, = x,, are the interacting levels and all other levels are far apart, i.e. z,, —xy
and x, — x; large for k # n,m and angular moment [,,;lx, are small, the quotient is small

and so one takes the following approximation:

Ly = Z ki ((x ! 5 — ! )2> ~ 0. (6.2)

Ml m—T)  (Tk — Ty

It is known that when x,, = =z, that l,, = 0 hence stays constantly zero throughout
the transition time. Similarly, the other non-interacting angular momentum can be paired
into the following coupled differential equations. All other terms are negligible. These are

approximated as follows: for ¢ # m,n

(T — 2)
(In - xm)

Applying 1'Hopital on this term twice, we have shown this term tends to 0 as A — A\*

(6.3)

demonstrating the relative angular momenta terms can be reduced to only the interacting
levels. Under this approximation, it follows that the acceleration terms are also independent

of all other level interactions, determined by the following:

i#n (Qfm xl)g (-Tm - $n)37
2> 2,1 I I, (6.4)
V; = + I ‘
LiFmn (@ = 2;)" (= 2)° (w0 — )"

For the ©; expression, all terms are negligible. Again the same argument holds for ©,, as does
U Using the expressions in Eq. (6.2), l,,; is constant hence the terms under the sum in v,,
|2

are negligible. After performing I’'Hopital 3 times, the expression (xu"i—"x)z; was found to tend
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to 0 as A — A\*. Expanding about \*, level separation is described by z,, — x, = d\(v,, —
Vp) + N (0, — U,) + O(6A3), where acceleration terms independently tend to 0 at a level
crossing. This linearises level separations in this region during the Landau-Zener transition.
For v,, = v,,, the numerator and denominator in the acceleration terms, identically go to 0,
thus one can treat v,, as constant, such that for small d\ level separation can be taken as
linear. These compare against Eq. (5.34), where outside the Landau-Zener framework, level

accelerations are non-zero in the event of a level crossing.

This demonstrates the applicability of the Pechukas-Yukawa formalism to the Landau-
Zener model as one can indeed reduce and N level system down to 2, neglecting all other
interactions. Additionally, for a level crossing 7, — 0 which reflects a strong repulsion
between the levels such that the transition time is instantaneous. Given that multi-level
crossings are statistically negligible and that no more than 2 levels in a close vicinity cross at
a single point hence the level crossings are independent of each other and the Landau-Zener

model in the Pechukas-Yukawa formalism applies.

6.3 Avoided Crossings

Avoided crossings occur when levels approaching each other, reach a local minimum before
deflecting away. To verify the compatibility of the Landau-Zener model in the Pechukas-
Yukawa formalism, it is required that the Landau-Zener conditions are satisfied for the
avoided crossing. In such cases, x,, — x, = Ain and [, is not necessarily 0. In the same
way, Eq. (6.2) and Eq. (6.4) apply. Under the same approximation that all other levels
are far away, again Lywn = 0 thus ,,, = 8 where § is a constant. Considering the equations
for [,,; and [,,;, the terms under the sum are negligible as is the final term, leaving the only

surviving term:

We obtain coupled differential equations. Rewritten as (l ) = A+ ( ﬁ) ( >

The system is readily solved as:
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iB1 [ den =iel i3 6]
lmi = Wﬁ (GA%'”'" + €A?m'“ = m COS Agmn ,

1 el __as
lyi = 7(6A72nin —e A%nin) = —7sin (A|QB| )

min

(6.6)

Then about A\*, the relative angular momenta [,,, are constants independent of all other
levels. We further showed, l,,; and [,; are constants with Re(l,,;) = 0 and Re(l,;) = 0 with
Im(l,y;) and Im(l,;), bounded between [-1, 1]. This demonstrates the couplings are weak
between the levels involved in an avoided crossing and those that are not. This allows for
treating the avoided crossing, independent of all other levels. Substituting these results into
Eq. (6.4), v; = 0, the only surviving terms in 9, and ©, evaluated at A* are constants;

2
(O, — V) = A4 15 ‘| 5. For small enough 6\, one can linearise the level separations such that

level evolutions are reduced to only the interacting levels, then it is justifiable in applying
the Pechukas-Yukawa formalism to the Landau-Zener model for avoided crossings. Under
these approximations, the Pechukas-Yukawa formalism is reduced to the Calogero-Sutherland
model.

To ensure that non-interacting levels are negligible in a Landau-Zener transition, we must
ensure that level crossings are isolated from each other. We compare the differences in the
transition times between level crossings or avoided crossings in a close vicinity of each other.
Given that the transition times do not overlap, these level crossings and avoided crossings can
be regarded as independent of each other. Considering 2 level avoided crossings occurring in a
close vicinity with minimum level separations at A* and A** = A\* 4 and transition times 77,7

and 77 , respectively. We take symmetric avoided crossings such that 7, = 2. Recall that

in the adiabatic regime, 77, = A/\ These avoided crossings are considered isolated given
that their respective transition times do not overlap such that (A\** —¢&’) —(A\*4&) > 0. Then,
the Landau-Zener transition model is applicable to describe the probabilities of population

transitions.
We denote level separations as d(\) = z1 — 3, where d(A*) = A Let 0A = A — A", then
expanding about A*, d(A) = Ay +IA (01 —Vg+6h1y —Sha) + N2 (22— +5h11 —Shay) +O(5N3).

Given that d(\) reaches a local minimum at A\*, then v; — vy + Shy1 — Ohay = 0, we have the

following;:

43*
A3

min

d(N) = Ay + ON2

Take d(A* + &) = =, such that one could rearrange the equation to obtain:
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432
A3

min

Amin =7 - 52 (68)

In order to ensure that avoided crossings can be treated independently, (A**—¢& N— (AN*+&) >0

where \** = \* + 9. Recall 7,5 = A"X“'" = 2¢ for a symmetric avoided crossing. Then it is

essentially 7., < 2(§ — £). One could rearrange this bound for A,

432
A3

min

N — &2 <2A(6 = ¢&). (6.9)

Given that ¢ > 5(7 — ff 2 £%) 4+ ¢, the conditions for level crossings to be treated indepen-

dently are satisfied.

In contrast to the level crossing case, avoided crossings have constant relative angular
momenta,

between levels at the level crossing or avoided crossing. In this case all other relative
angular momenta l,,; and l,;, are constants where Re(l,,;), Re(l,;) = 0 and Im(l,,;), Im(l,;)

are bounded in the interval [—1,1]. The difference between the acceleration terms of the

48
Y A3

min

negligible therefore linearising the level separations. We extend this investigation to account

interacting levels is constant at A\*. Choosing a sufficiently small d\, these terms are
for the impacts of noise on these conditions. This enables further understanding of dissipative

influences on the properties of level interactions.

6.4 Stochastic Avoided Crossings

In a stochastically perturbed Hamiltonian, Landau-Zener transitions manifest as avoided
level crossings (under the effects of noise, levels do not cross). We explore the influences of
noise on a quantum system. Depending on the nature of the noise, whether the source is
longitudinal (with only diagonal elements) or transverse (with only off-diagonal elements),
the system behaves differently. Longitudinal contributions result in decoherence in the sys-
tem whereas transverse noise results in couplings to the environment. Our analysis could
be extended to various types of noise, here we consider intrinsic longitudinal noise modelled
as a single composite source of Brownian noise dh such that oh = enM. Here n is white
noise, a random normal distributed stochastic process[53, 54|, M represents a general di-
agonal matrix and e denotes the noise amplitude. As explained earlier, for white noise the

expectation is zero and the autocorrelation function is given by (1 (), T (X)) = S(A=X")
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and (en,n(A), €mn (X)) = €26(A—X'). The correlation time 7. = 0. White noise is the formal
derivative of a Wiener process, W (t).

To ensure the applicability of the Landau-Zener model, we reduce the system from N
levels to 2. Again, under the assumption that levels outside the avoided crossings are far
away with weaker coupling interactions we show that the avoided crossing is independent
of all non-interacting level contributions. The Pechukas-Yukawa model is highly entangled,
hence it is important to verify that the conditions required for the Landau-Zener description
are met. The model described in Eq. (3.12), must be regarded as independent of all non-
interacting levels about an avoided crossing.

To determine the applicability of the Pechukas-Yukawa formalism under dissiptive influ-
ences, it is neccessary to ensure that level interactions in an avoided crossing are independent
of all other interactions. Again, x,, —x, = A, at some A* (denoting the point of minimum
separation) and [,,, is not neccessarily 0. Similarly to Eq. (6.17), we have the following for

the coupling between levels at an avoided crossing,

. 1 1 m — dn lméhm_(shmln
L (0P — 0P,

Shmn(vm — ) +

(T — 7y) .
We consider a single source of composite longitudinal Brownian noise. Again, assuming
all non-interacting couplings are negligible and the levels are far away from the level crossing.

This simplifies the relative angular moment dynamics to the following:

. L (e L R (6.11)

(:L‘m - In) Amm el

where € denotes the noise amplitude, p is a constant giving the difference between the noise

components and 7 represents a stochastic white noise term. Let o = x*~. We consider sep-

min

arately real and imaginary components. In each component, we observe a driftless geometric

Brownian motion:

(6.12)

Using the Euler-Maruyama method to solve these stochastic differential equations, we
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rewrite the expression for Re(l,,) as dRe(lpm,) = oRe(ly,)dW. Integrating these terms,

where we zero out noise at A* — £, we obtain the following:

/ b dRelln) _ gy (6.13)

e o

We apply Ito’s formula such that d(Ln(Re(l,))) = dRZEf:n) -3 Re(lim)z dRe(lynn)dRe(l )

where dRe(l,,,,)dRe(l,,,) is the quadratic variation of the stochastic differential equation such
that dRe(l,nn)dRe(lny) = 0?Re(ln,)*d). Substituting this into the integral, we have:

/Aammwmm+§zww (6.14)
=
Then,
Re(lnn(N)) _ _102 e o
Ln (Reumn(» _g))) = 0% (A= (X =€) + W (), (6.15)

The start time of the levels approaching a minimum separation in a v neighbourhood of
each other is taken as (A\* — &), and p denotes the difference in the noise components. Expo-
nentiating the result, we find that Re(l,,,(A\)) = Re(lpn (A — f))e’é(k’()‘*’@)ﬂ’wo‘). Using
the same method to solve for the imaginary components, we have Im(l,,(A)) = Im(lp, (A —
{))e‘%o‘—(/\*—ﬁ)HUW(’\). Combining these terms, I, (A) = Lpn(A* — S)e_é(/\_(’\*_f))ﬂ’”o‘) in
the region of the transition time. This term has expectation, E(ln,) = lnn(A* — &) and
variance Var(ly,) = [lun(A* — f)]Q(eé(’\’o‘*’gD — 1). Here, (A* — &) represents the start
time of levels approaching a minimum separation in a v neighbourhood of each other. This
describes [,,,,, as a martingale (the conditional probability of the next step is dependent only
on the current step) where for A — o0, l,,, — 0 with probability 1, which follows from the

law of iterative logarithm.

The equations for [,,; are given by the following:
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( ) (@m — ;) N @ — ) (= 20)°

+ (xm - 'Tn)amkéhkm - 6hmklkn) + 5hmn (’Um . 'Un) + lmn(éhmm — (Shnn) ‘

(T — Tg) (T — Tk) (T — )

We consider a single source of longitudinal noise such that off-diagonal components are
0. Under the Landau-Zener assumption that all other levels have weaker couplings and large

level separations, we obtain pairs of coupled differential equations:

. 1 1
(xn - xm) Amzn

Taking a matrix of ordinary differential equations,

i\ _ fO) 0 LinON =€)\ ([ Lni
(l'm) A2, (—z;;m(A* —¢) 0 ) <1m> , (6.18)

o2

where f()\) = eZ W= A=O)+omN " capturing the stochastic element. Diagonalising the ma-

(6.17)

trix and changing bases to the eigenvectors, we can simply integrate the decoupled set of

equations. We obtain the following:

W i |l | —i LA |l thinn f)
lmi = — Amin Amin = —_ lmn s
] ( e ] \ 82, e

min

1/ ity _i Xy A
bni = =3 (ezAz'”'" R o Q) |lran] ) -

(6.19)

2 A?

man

Then, ,,,; and [,,; are stochastic terms, where Re(l,,;) = 0 and Re(l,,;) = 0 with Im(l,;), Im(l,;)
bounded in the interval [—1,1]. Taking 0\ sufficiently small, these terms are negligible in
the avoided crossing. Applying these relative angular momenta formulae to the acceleration
terms (again taking account that the noise source comes from a single longitudinal Brownian

source) we have the following:
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ijEmon (i — ;) (xi — ) (i — Tm) (Ti — Tm)
N | N 20hin Re(lin)
(xi - l‘n)g (Iz - %)2 .

All terms are negligible for v; under the approximation on the level separation in this region
is negligible.

For the difference between v,, and v, all terms under the sum are negligible except for

Almn|?
A’minJ ’

constant expectation. To determine the effects of the stochastic terms on the difference

lmn 7 0 is given by independent of all other levels. Here, [,,, is a martingale with

between accelerations, we consider the expectation during 777. The expectation of |l,,,|? is

given by,

lln|? = Re(Lypp)? + Im(lnn)?,
E|lyn)? = B(Re(ln)?) + E(Im(lnn)?)
= Var(Re(lymm)) + Var(Im(ly)) + E*(Re(lypy)) + E*(Im(ln))

= [ln (V" 4 €)e7 A0,

(6.21)

Then the expectation of the difference between the acceleration terms are given by

* 2 52 * . * 2 * 2
—4”’”"(;\%5)‘ eTA=(\"=8)  These dynamics are bounded between [4‘17"2(:;\,%)‘ ) 4|lmnA(3A_+£)| 65“’2]

where A € [\* — &, N + €|, For 717 being short time durations, this motion is under stricter
bounds, near-constant. Choosing dA small enough, the difference in acceleration terms are
negligible, linearising the level separations. Then it is observed that indeed the Pechukas-
Yukawa formalism under the influence of noise is applicable to the Landau-Zener model,
reducing the system from N levels to 2. This analysis can be extended to various types of
noise.

In order for the Landau-Zener model to hold in the stochastic sense, it is necessary to
consider avoided crossings in a close vicinity of each other, such that they can be regarded as
isolated crossings. The transition time of an avoided crossing is changed under the influence
of noise. Of particular interest are the influences of noise on the minimum separation. These
in turn have an impact on both the probability of transitions and the transition times. By

the central limit theorem, white noise is a reasonable model for noise from many stochastic
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influences however, an attractive extension of these works involve the consideration of avoided

crossings under more realistic models of noise such as coloured noise.

6.5 Summary

In this chapter, we outline the conditions required for the applicability of the Landau-Zener
model. Considering each case separately for level crossings, avoided crossings and stochastic
avoided crossings, we show the Landau-Zener conditions are met in the Pechukas-Yukawa
formalism. Utilising the close relation between level dynamics and the evolution of quantum
states, we demonstrate that state transitions can be investigated through level dynamics.

Having shown that the Landau-Zener model is compatible with the Pechukas-Yukawa
formalism, we provided the justification of the investigations by Zagoskin[3] and Wilson[5]
where it was observed that there is a significant difference between the scaling exponents of
the escape probability for the edge states and intermediate states. We provide analytical
expressions which can be used to investigate the reasons for their differences.

Moreover, the marriage of the Landau-Zener model and the Pechukas-Yukawa formalism
provides one example of the relationship between level dynamics and state dynamics. A
generalisation of this scheme would be to include state dynamic outside of Landau-Zener
transitions via level dynamics, independent of the imposed conditions, allowing for the de-
scription of state dynamics for nonstationary, dissipative systems. This may be achieved
using a quantum master equation in the Pechukas-Yukawa formalism, reducing the descrip-
tion of the density matrix through eigenvalue dynamics however, goes beyond the extent of

our current investigation.
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Chapter 7
Conclusions

In this project, we developed a novel approach to the theoretical description of large quantum
coherent systems out of equilibrium, based on the Pechukas-Yukawa formalism. Under this
description, the dynamics of energy levels are mapped to a fictitious one-dimensional classical

gas with long-range repulsion.

We developed a consistent description of non-equilibrium, nonstationary evolution of
a perturbed quantum system based on the kinetic theory of the Pechukas-Yukawa model.
Under this formalism, we obtained non-equilibrium statistical kinetic equations of motion
for the level dynamics of the system, from the application of the BBGKY hierarchy to the
Pechukas-Yukawa model, which extends the kinetic equations concerning level dynamics to
parametrically driven evolution of a quantum system. This procedure provides a fundamen-
tal extension of previous study which establish the use of the Pechukas-Yukawa model and
the random matrix theory in equilibrium statistical mechanics of level dynamics. The appli-
cation of the BBGKY hierarchy to the Pechukas-Yukawa model describing a parametrically
driven evolution of a quantum system, especially convenient in accomodating adiabatic sys-
tems. However, the formalism is applicable to a general system with parametric evolution
in time, exploring an important new direction in contemporary physics which opens further

investigations to understand the connection to the physics of the Pechukas gas.

Statistical approach to level dynamics would allow a reduced description of correlation
functions. Given that coordinates in the Pechukas-Yukawa framework are independent,
we investigate the factorisation approximation where sets of approximations are obtained
from breaking the chain at a particular point such that higher-order reduced distribution
functions can be constructed from a product of lower-order ones under this factorisation
approximation. This describes an s-particle reduced probability distribution function from
a product of s one-particle distribution functions. Moreover this results in independent

probability distribution functions, reducing the many-body system to a single-body system,
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where the number of particles correspond to the number of energy levels in the system. This
is a great simplification that enables solving the BBGKY hierarchy from solving just the
one-body system. Under this approximation one can infer the statistical properties of the

level dynamics using only one-particle distribution functions.

Analytically considering the accuracy of the factorisation approximation, providing an
effective mean field theory approximation, we find that corrections to the factorised approx-
imation of the distribution function scale as 1/N, where N is the number of energy levels in
the system. This is shown from the asymptotic decay in the relative error of order O (%)

as N tends to infinity. This provides confidence that for large systems, this approximation
holds.

To illustrate this theory, we considered a simple system of two-qubits compared against
the exact solution of the Hamiltonian. Using the eigenvalues in accordance with the Pechukas
equations, the velocities and relative angular momenta were determined. Then the distri-
bution functions involved in the first chain of the BBGKY hierarchy were constructed to
test the factorisation approximation for higher order chains. In the case of two-qubits, this
approximation was not accurate as the energy levels were not mutually independent at any
given \, however a comprehensive numerical comparison for larger systems is impractical as
it proves more challenging to diagonalise the corresponding Hamiltonian. This description is
advantageous as it is expected to have significant developments in non-equilibrium processes

such as decoherence, with fruitful extensions into the description of AQC.

Furthermore, we obtain equations for the for level occupations and inter-level transi-
tion amplitudes, which allow for the description of the evolution of quantum states in non-
equilibrium systems. This description of a quantum coherent system is advantageous as
it includes all higher level entanglements. Having established the relationship between the
level dynamics and the occupation numbers as a function of time using the PechukasYukawa
model, we provide a description of the full wavefunction under the Pechukas-Yukawa formal-
ism, detailing the system in its entirety. Then, it is possible to determine the groundstate
of large systems efficiently and hence demonstrate that AQC is a viable alternative to quan-
tum computing. Moreover, this provides scope to better describe a large quantum coherent

system than approaches currently in practice.

Through the evolution of the eigenstate coefficients, we considered the dynamics of quan-
tum states using the Magnus series. This approach was contrasted against the TDPT and
the adiabatic approximation compared with a direct numeric simulation. The Magnus se-
ries provides an infinite hierarchy in powers of A parameters. The structure is that of a
cumulant expansion and it would be of interest to consider asymptotic convergences in the

series which would improve the efficiency of the result. Considering the eigenstate coefficents
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in the adiabatic limit, one can explore the significance of these terms with respect to the
development of adiabatic invariants which has the potential to significantly impact features
of the adiabatic algorithm design. We also showed the convergence of the Magnus series
is governed by the initial conditions in the Pechukas-Yukawa formalism which could gain
better insight into what measurable characteristics of a system could be used as a criterion
for its quantum performance. This carries the potential to specify Hamiltonians of different

complexity classes, governed by the initial conditions of the system.

We investigated the limits of the Magnus series, reducing the convergence criterion such
that the entire evolution of the system is governed by the initial conditions and the choice
in A. Numerically, it was found that for short intervals, where the convergence criterion is
satisfied, the Magnus series was most accurate with its relative errors lower than the relative
errors for both the TDPT and the adiabatic approximation by multiple orders. We found
that the Magnus series is robust, as time evolves, the error increases yet the Magnus series
remains the better approximation far beyond the interval where he convergence criterion is
met. It was also shown that for larger systems with a greater number of interacting levels, the
relative error for the Magnus series overtook the relative errors for the TDPT and adiabatic
approximations at later times, demonstrating that the Magnus series is better suited to
the “spaghetti” regime. The Magnus series is less prone to divergences in the error due to
level crossings and avoided crossings, which become more prevalent in higher dimensions of

excited states.

Finding that the Magnus series offers an especially convenient description of non-adiabatic
evolution, we explored the relationship between the level dynamics and that of the evolution
of the quantum states described by the density matrix. We obtained the occupation dynamics
for the 3-Sat problem, providing insight on the population of states which offers analytical
insights on the sources of decoherence on the evolution of a quantum system. This approach

is general and has applications beyond quantum algorithms.

Separately, we developed the Landau-Zener model in the Pechukas-Yukawa formalism,
showing that our framework coincides with the results of the classical Landau-Zener transi-
tions upon linearisation. As a starting point, we take all assumptions that form the basis of
the Landau-Zener model and explore the conditions they impose on the Pechukas-Yukawa
formalism to be applicable. This led to the developments in the understanding of level
crossings and avoided crossings in this setting, identifying various properties of the level
interaction. Particularly, we provide a detailed insight on the level repulsions extended to
the influence of external noise and its impacts on the minimum separations characterising
avoided crossings. The investigation of level repulsions at an avoided crossing under the

influence of longitudinal noise was not possible without a thorough description of the level
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dynamics given by the Pechukas-Yukawa formalism. From this, we built on earlier works
by Zagoskin[3] and Wilson[5], to gain insight on level interactions beyond the Landau-Zener
probability. Under this description, one could investigate the differences in the scaling prop-

erties observed in these earlier works.

An attractive development to this investigation would be to apply the Landau-Zener
probability to the Pechukas-Yukawa description of quantum states which could lead to the
exploration of quantum phase transitions through the initial condition of the eigenvalues
of a quantum Hamiltonian system. The eigenstate coefficients have been expressed using
the Pechukas equations such that one could extend this description to obtain both the
occupation dynamics and the coherences of the system, crucial to the development of AQC.
An interesting extension of these works would be to consider the effects of different types of

noise such as coloured noise and the impacts of transverse components.

In continuation of our investigation, using the Magnus series, we obtain an explicit an-
alytical description of both the occupation numbers and coherences of a general quantum
system, continuously through time. Discretising the occupation numbers and averaging over
the levels, we gain statistical insight in the changes of the occupation dynamics as a con-
sequence of Landau-Zener transitions. Under this description, we contrasted between edge
and intermediate states in exploration of the differences in the Landau-Zener transitions and
their impacts on the transition probabilities. This allows us to investigate the scaling rela-
tions found by Zagoskin[3] and Wilson[5], so we can identify the reasons for their apparent
differences. Statistically, the primary contributions for the differences between the transi-
tions can be attributed to the differences in the frequency of occurrences which enables one

to consider these impacts on decoherences.

Additionally, these results would serve as a starting point to gain insight on multi-state
Landau-Zener transitions. The standard Landau-Zener model only deals with 2 interact-
ing levels. Extending to multi-state problems could yield more interesting physics. The
Pechukas-Yukawa model concerns an interacting system of N entangled levels hence it is
highly equipped to consider interacting systems with entangled states. A further extension
it would be useful to consider detailed analytics of multiple level interactions and their in-
fluence on each other’s dynamics. This approach can be used to describe a non-equilibrium
interacting system of highly entangled states, especially the dynamics of a system and its
vulnerability to decoherence. Future scope in this realm would be to investigate the analyt-
ical expressions under the influences of external noise. Furthermore, it would be interesting
to develop on the evolution of quantum states, independent of the Landau-Zener transition

model and the assumptions it demands.
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7.1 Further Investigations

Theoretical description of quantum many-body systems is a critical area of research with
strong connections to modern nuclear physics of nuclei far from equilibrium, optical systems
and quantum technologies. It has led to significant developments in the theory of quan-
tum computing, with one of the most viable competing theories being adiabatic quantum
computing (AQC). However, due to the persisting obstacle of decoherence, the realisation
of quantum computers remains a challenging task. The similarities between the theory of
AQC and quantum phase transitions (QPT) have instigated research on decoherence through
QPT. Most of these works consider only equilibrium systems, however for a physical quantum
platform, based on the superposition of states, the system will inevitably be open due to the
impossibility of perfectly isolating the system from its environment[5], hence noise must be
accounted for. One can develop on the theory of AQC from out of equilibrium QTP, building
a formalism capable of describing highly entangled many-body interactions, under stochastic
influences using Hamiltonian dynamics which is a novel concept. Under this description, one
can provide an improved understanding of the relationship between nonequilibrium QPTs
and decoherence which has significant impacts to a wide range of applications from the de-
velopment of AQC, the understanding of strongly interacting many-body optical systems to

describing shape-phase transitions in the nucleus.

The scope of the impacts of a quantum computer would be far reaching and monumental
in modern society with benefits from simulating chemical reactions, enabling insights on
the developments of new drugs and how they react to boosts in machine learning, assisting
self-driving cars in assessing situations more efficiently, for improved safety. Optical systems
are both economically advantageous and highly beneficial to optical computing systems
allowing for high speed data transmission where data growth has become large, a prominent
limitation to electronic systems. Another advantage photonic systems offer is their robustness
against synchronisation problems, unavoidable in electronic systems. Optical correlation
systems also have the advantage of accessing individual lattices experimentally offering the
ability to design quantum-mechanical devices for quantum information processes. These
compare with quantum signal transmission, understood through simple qubit systems with
extensions to complex artificial structures enabling the utilisation of quantum properties in

data transmission, improving efficiencies.

A major challenge to the realisation of a practical quantum computer is the fragility of
quantum states and their susceptibility to decoherence (the loss of information due to the
interactions with the environment). A promising alternative approach is AQC, encoding the

system in an easily achievable groundstate of the initial Hamiltonian and evolving the system
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under an adiabatic parameter such that the system maps the system to the groundstate of
the final Hamiltonian. This corresponds to an optimal solution. The groundstate is more
robust against decoherence however it is not immune to it.

There is a remarkable similarity between AQC algorithms and QPT in their Hamiltonians
governing their dynamics; H(A(t)) = Ho + A(t)H;. There have been studies of algorithms
bringing a quantum system near critical points, similar to that observed in QPT, which are
relevant to the study of evolving quantum systems and the development in the study of
sources of decoherence, prevalent for many-body systems. There exist various models that
seek to describe the relations between quantum phase transitions, decoherence and entan-
glement, however these models are often reliant on mean field approximations to simplify
the system due to the large amounts of information required; this research offers a seamless
description for all these properties from the eigenvalue dynamics of a quantum system out
of equilibrium. The Pechukas-Yukawa model is also expressible in Lax formalism enabling
the study of symmetries and conserved quantities in QPT, however this area of research on
out of equilibrium steady states is still a very young field with much to consider.

QPT under dissipative influences result in the manifestation of critical behaviour in
steady states rather than groundstates. Adiabatic systems initialised in some steady state,
remain in the steady state throughout the duration of the system exhibiting criticalities. For
a single steady state, this has the advantage that when the system deviates from the steady
state because of stochastic influences, it returns to the steady state. In the realms of AQC,
decoherence could be monitored such that the system approaches a desired steady state
manifold under controlled dissipative systems. Our understanding of non-equilibrium QPT
is limited in contrast to equilibrium QPT, despite its relevance in the studies of quantum
computing, atomic molecular and optical systems. One reason for this is that simulating the
evolution of a master equation proves more difficult than Hamiltonian dynamics due to the
sheer amount of information required for the density matrix in contrast to wavefunctions.

The Pechukas-Yukawa model has the capability of studying the evolution of the density
matrix without restriction on the type of noise, understood through eigenvalue dynamics.
This provides great insights to and beyond AQC, to the development of non-equilibrium
QPT analytically and within grasp of experimental testing which plays a crucial role to the
understanding of dynamical phase transitions. Through this understanding of eigenvalue
dynamics, the Pechukas-Yukawa formalism could be used to develop on this alternate theory
of AQC, under a new framework using Hamiltonian dynamics to understand stochastic QPT
to investigate steady states and how their properties could be harnessed for the development
of AQC, which has never been considered. This allows for an immersive detail into this

relatively new field of study.
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Chapter 8

Appendix

8.1 Appendix A: Quantum Information

Classical computations rely on a register of bits, taking values either 1 or 0. For quantum
computations, a register of qubits are used to exploit quantum properties which offer signif-
icantly improved speeds in execution of computer algorithms. They store information in a
register of 2" quantum states for n qubits rather than the classical analogue of a register of
bits.

Qubit: A two-level quantum system that lives in the Hilbert space, used to carry quan-
tum information also referred to as a quantum bit.

The basis vectors are given by the following:

(o)

A qubit can be represented as a linear combination of these basis eigenvectors, given as
|¢) = |0) + 5]1), with «, 5 € C. Then, the probability of observing the qubit in state |0) is
given by |a|? and |3]? for the probability of observing the qubit in state |1). The combined
probability, |a|> + |8|> = 1. This state vector can be mapped directly to the Bloch sphere,
where the poles are given by the eigenvectors |0) and |1). One can represent a collection of
qubits through taking a tensor product of their state vectors.

Quantum information is carried in a set of n qubits, the Hilbert space is given the n-tupe
tensor product, a 2" complex space with a general basis of |N) where N is a binary string
of length n given by N = (N; ... N,) € 0,1". In tensor notation, |[N) = |N;) ® --- ® |N,,) =
|IN1...N,). Then, any vector denoting the information stored in the quantum register of
qubits is given as a linear combination of basis states given by |¢) = ZNel,O” ayn|N), where

ay € C. These qubits are manipulated via quantum operators also referred to as quantum
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logic gates.

Quantum operators in the two-dimensional Hilbert space are made up of the three funda-
mental rotation operators given by the Pauli matrices which are both unitary and Hermitian,
and the identity transformation 1. The Pauli matrices each have two eigenvalues +1 and
—1 from acting on the two basis vectors. These are used to construct quantum gates used

in quantum computing, discussed in the following section.

8.2 Appedix B: Complexity Classes

Complexity classes can be categorised into three different types of computable problems;

decision problems, optimisation problems and counting problems.

8.2.1 Decision Problems

Decision problems contains the most diversity in the different problem classes, with at least
ten other subclasses. The defining feature of this class of problems are that their outcome
is binary, yes or no instances. P, : PSPACE, EXPTIME, NP and NPC make up the
majority of classes in this set. These are familiar between both deterministic and non-
deterministic computations. P problems have runtimes that grow polynomially with the
size of the problem whereas NP problems take polynomial time to verify a problem. NPC
problems, also referred to as NP-Complete form a subset of NP problems with the property
that any NP problem can be translated as an NPC in polynomial time.

An open challenge in relating these problems remain; given a polynomial time algorithm
for an NPC, the algorithm could be used as a subroutine to solve all other NPC problems
in polynomial time.

Another class of decision problems is bounded-error probabilistic polynomial time (BPP).
A probabilistic problem that returns an answer, correct to some fixed probability p. It is
solved in polynomial time, using a probabilistic algorithm with an error of 1 — p. Another
probabilistic algorithm is the Merlin-Arthur computation class (MA), defined as the prob-
abilistic analog of NP. In this class of problems, Merlin is computationally unbounded,
providing a certificate that Arthur can verfiy using a BPP computer.

In contrast, we have the quantum analogs of these classes of problems. The bounded-
error quantum polynomial time (BQP) describes the quantum analog of the BPP, where
a quantum model of computation based on the arrangements of quantum circuits operating
on qubits. Quantum Merlin-Arthur(QMA), represents the set of problems where the binary
output is verified polynomially in time with an error 1 — p. This type of problem defines

the quantum analog to both MA and NP. Similarly, QMAC defines the quantum analog
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of NPC problems, defined in the same way however operating on a circuit of qubits to take
advantage of quantum properties. A related class of problems is Quantum-Classical Merlin-
Arthur (QCMA), similar to QMA, however the binary value for a ‘yes’-instance is required

to take the form of a classical string.

8.2.2 Counting Problems

Counting problems are defined by those that count the number of optimal solutions. One
example of this group is the sharp-P set of problems which carry decision analogues in NP

and optimisation analogues in NP O, returning the number of optimum solutions.

8.2.3 NP-Hard Problems

A problem is NP-hard if there is a polynomial time reduction from an NPC to the problem.
This reduction implies that an algorithm to solve the problem in polynomial time could be
used as a subroutine to solve the NPC problem, hence all NPC problems. The set of

problems, NPC, QMAC, QCMA, NPO, APX and PTAS fall into the group of NP-
hard problems.

8.3 Appendix C: Density Matrix Formalism

The density matrix is a statistical operator which takes the role of state vectors, encoding
all information of the quantum system including incoherent mixtures of the system, inde-
scribable through pure states [¢)). Consider an ensemble of objects in the set states [1);).
If all objects are in the same state, the ensemble is represented by a pure state. Take the
state |¢)) expanded in the eigenstates of an operator D; [¢) = > C,|n) where C,, denote

the eigenstate coefficients, then the expectation value of D is given by,

(D) = Y (G = 3 A2, (8.)

where d,, denotes the eigenvalues of D, |C,|? gives the probability of obtaining the eigenvalue

Ny

~, where N, gives the number of times eigenvalue d,, is

d,, corresponding to the fraction
measured out of an ensemble of N objects. This can be described in the form of a density

matrix, characterised by pure states:
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p =)l (82

This matrix has the following four properties respectively, 1. being a projector: p* = p,
2. hermiticity: pl = p, 3. normalisation: Tr(p) = 1 and 4. positivity: p > 0. The first
two properties can be shown directly from the definition Eq. (8.2), 3. follows from the
definition of the trace of an operator. Consider an operator D, then the trace of D is given
by TrD := ) (n|D|n), where |n) is an orthonormal eigenbasis. In the case that D = p,
Trp = > (nlpln) = >, (n|Y)(y|n), then by unitary projection, property 3. is satisfied.
Property 4. implies that the eigenvalues of p are greater or equal to 0. This is important as
the eigenvalues of p correspond to probabilities, hence they must always be greater or equal
to 0.

Under this density matrix formalism, one can determine the expectation of an observable
O by the following:

(0) =Tr(pO). (8.3)

This can be shown from the definition of the trace operation. In the pure state, one can

combine properties 1-3 to show Trp? = 1.

In the case of mixed states, all N objects of the ensemble are not in the same state.
Then one defines the probability p; to find an individual system in the [¢);) by p; = % where
>, pi = 1, N; denotes the number of systems in state |1/;) and N, the total number of objects
in the ensemble. Then the mixed state can be described by the following:

Pmiz = Zpipi = sz|¢><1/’| (8.4)

Using this definition and following the same argument as in the pure state definition, the

expectation value of an observable O is given by,

(O) = Tr(pmiz0) = Zpi<¢i|0|¢i>- (8.5)

This follows from the definition of the trace. Properties 2-4 are obeyed in the mixed state

density matrix formalism, however property 1. is violated. Furthermore, taking the trace of
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p2... no longer gives a value of 1 but is shown in the following to be less than 1.
Then the trace is used as a good measure for mixedness in the density matrix. For

maximally mixed states, Trp?,., = é > 0, where d denoted the dimension of the system.

8.4 Evolution of the Density Matrix

In order to determine the equation of motion for the density matrix, one considers the

time-dependent Schrodinger equation and its Hermitian conjugate.

0
ih ) = H|v),
0

—ifi (] = (Wl

(8.6)

Then, by differentiating the density matrix with respect to time and manipulating the
equations in the form of the Schrodinger equation, we arrive at the von Neumann equation

of motion, the quantum analogue of the classical Liouville equation:

L Op(t)
i 5 = [H, p]. (8.7)

This equation holds for both the mixed state and pure state descriptions of the density
matrix. The time evolution of the density matrix could alternatively be studied via the time
operator U(t, ty) = e~ #HE=10) where p(t) = U(t, to)p(to)UT(¢, to) which can be used to prove
the mixedness of the trace of p? is time-independent.

In this thesis however, we focus on the time evolution of the density matrix. Under the
influences of noise, the evolution of the density matrix could be used to describe the system
and its properties in its entirety via a master equation. This concept shall be built on in the

following sections.

8.5 Appendix C: Stochastic Dynamics

8.5.1 Historical Note

The famous botanist, Robert Brown studied the irregular motion of pollen grains suspended
in water, resulting in the concept, bearing his name, Brownian motion. Rayleigh was the
first to take a statistical approach to the understanding of this behaviour, however it was

not understood until 1905 when Einstein delivered a clear and elegant solution, based on
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two major points: 1. the motion is caused by exceedingly frequent impacts on the pollen
grain from the incessantly moving molecules in which it is suspended; 2. the motion of the
molecules are so complicated, the effect can only be described probabilistically in terms of
exceedingly frequent statistically independent impacts. Einstein’s solution was based on a

discrete time assumption which provided an approximate solution to the diffusion problem.

Langevin provided an alternative understanding to Einstein’s reasoning, based on the
kinetic theory of gas particles. From statistical mechanics, the mean kinetic energy of a

Brownian particle in equilibrium could be expressed as the following:

1 1

—muv®) = =kgT. 8.8
(sme?) = Sko (83)
where m represents the mass of the particle, v the velocity, kg the Boltzmann constant and
T the temperature. Then there are two forces acting on the particle, viscous drag and the

effective force of the incessant impacts between the molecules.

8.6 Langevin Equation

There is an underlying assumption in Langevin’s reasoning, that the impacts are statistically

independent.

Then, by Newton’s second law,

Az d_x

— = —67, 8.9
mdt2 myrdt—l—x, ( )

where the left-hand side corresponds to Newton’s second law, the first term on the right-
hand side denoting the viscous drag, with 7, representing the viscosity of the fluid and r
being the radius of the Brownian particle, and finally the last term corresponds to random
fluctuations as a result of the incessant impacts due to the motion of the molecules of the

fluid. This equation can be transformed into the following via integration with respect to x:

d
—— 2= —37”71)7“%# + xx. (8-10)

Averaging over a large number of particles,
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—(a?) — kpT, (8.11)

where (xx) is taken to be zero due to the independency of y. The last term arises from using

the equipartition theorem, where the average kinetic energy for a single particle is given by

m(de)2) = KgT

following,

Under classical dissipation action, this random force must then satisfy the

() = [ DO T I — abaTse — 1), .12

This describes a white noise term. Then the general solution is given as:

d

< kBT —6mnyat
dt

+Cem | (8.13)

2
T =

) 3TN,T
where C' is some constant. For practical approximations, one can neglect the exponential

decay term and integrate the result to obtain the following:

kT

(@)~ (o) = o

t. (8.14)

Langevin’s equation was the first stochastic differential equation. A stochastic process de-
scribes a system evolving probabilistically due to the influences of a time dependent random

variable.

Since, descriptions of this nature have shifted towards continuous evolutions. These
random influences can be modelled in many different ways depending on their nature[25].
The impacts of noise for these systems can vary greatly from its deterministic counterpart.
A system’s behaviour can be modelled in terms of slowly varying state variables and rapidly
changing random forces. In order to describe stochastic dynamical equations, one must
consider dynamical contributions from both the slowly changing deterministic part as well
as the fast changing random part as given by Langevin’s work which allows for considering

the deterministic and stochastic dynamical contributions separately.

Random forces can be classified as either internal or external noise contributions. Dis-
tinguishing between these different types, depends on the boundary between the system and

the external noise. External noise is considered to be imposed on a subsystem by a larger
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changing environment. Often, external noise is characterised with correlation times much
less than the characteristic time whereas internal noise is described with comparable correla-
tion and characteristic times, often modelled via Langevin equations. For nonlinear systems,
noise can act as a driving force.

(Classical systems experience random perturbations. These arise from a multitude of
factors, primarily these effects are accredited to thermal fluctuations. The trajectories of a
classical bodies subject to noise can be described by the Langevin equation[58]. Consider a
massless particle under the effects of a fluctuating force x. In a more general setting, the

Langevin equation for this model is given by,

i = —yi — V'(2) + x(1), (8.15)

where x denotes the position, V' (z) is the potential and 7 is a scalar. This describes a New-
tonian equation with a friction force x(¢) modelled as a random variable[58]. The different
solutions to the Langevin equation correspond to different random trajectories[58]. Under
the Langevin model, it is necessary that y is irregular and the dynamics are independent of
X, this criterion follows from the central limit theorem (detailed in Sec. 8.7.5). This equation

could be rewritten as the following:

cé—f = a(x,t) + b(x, t)n(t), (8.16)

where x is a variable under the influence of noise, a(x,t) and b(z,t) are known functions.
Here, n(t) denotes a white noise term which has strong connections in diffusion processes.

In order to obtain a considerable study of this type of equation, it is necessary to deter-
mine the properties of the random force. Often, once assumes the random force has a very
small correlation time compared with the characteristic time of the system about a locally
stable state, then it is justifiable to consider the random force to have zero correlation time,
modelled as white noise.

In this setting, all frequencies in the power spectrum, s(w) have equal weighting, given

by the following:

s(w) = /_ T leDE(s) et = 2D, (8.17)

o0

where D is a constant. This describes white noise properties where there are several, well-
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understood classes of these terms, defined by the derivative of £(¢) for stationary processes
of independent increments. Beyond white noise models, consider the Ornstein - Uhlenbeck

description for coloured noise.

8.6.1 Coloured Noise

Physically, white noise models are never exactly realised, however for systems dominated by
noise, white noise models provide identical predictions to experimental results. When noise
does not dominate, stochastic noise models with zero correlation time leads to stochastic
realisations with non-continuous noise sample paths which are unphysical in reality. State
variables are driven by white noise, have sample paths with unbounded variation which is
neither continuous nor differentiable hence dynamical predictions based on these models
have timescales beyond the regime of validity in the system, as such some systems bene-
fit from more physically realistic stochastic models where noise has finite correlation time
7.[59]. As mentioned in the previous section, this corresponds to a coloured noise description,

characterised by the following:

(x(t)x(s)) = —e™ 7. (8.18)

This is referred to as an Ornstein-Uhlembeck process, describing coloured noise driven

flows, where € denotes the noise amplitude and 7 is a white noise term.

dx = —T7.xdt + endt. (8.19)

This description for noise is more challenging than the Markovian dynamics governing white
noise models, however it is a more realistic model accounting for finite correlation times such
that the noise term is differentiable. However, despite coloured noise being more realistic,
white noise is still an excellent choice in modelling the combined effects of many weakly
coupled environmental degrees of freedom outside critical neighbourhoods such that the
noise on a system is described by the central limit theorem[26]. This states that a random
variable composed of many independent random components, is Gaussian distributed as
described by white noise.

In the case that £(¢) is Markovian, Doob’s theorem states that £(t) is necessarily an
Ornstein-Uhlembeck process with exponential correlation function described by Eq. (8.18)

with a Lorentzian power spectrum given by:
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2D

The absorption spectrum for coloured noise of arbitrarily long 7., can be used to a Lorentzian

spectrum in the white noise limit:

1 D
Tolw —wo) = T (w —wp)? + D?’

(8.21)

Another interesting class of coloured noise is when the noise term is described by, Z(t) =
a(—1)""® where

(Z(1)Z(s)) = a*e 17, (8.22)

where a and A\ are constants. This describes both telegraphic noise and dichotomous noise,
particularly useful for modelling nonlinear coloured noise flows, Eq. (8.18), which provides

an exact, retarded closed master equation and thus has stationary probabilities.

8.7 Appendix D: Master Equation

Modelling the random nature of a system via stochastic differential equations imposes the
implication that the deterministic and stochastic components arise from independent ori-
gins. This is an unrealistic assumption which requires the study of fluctuation-dissipation
arguments in order to rationalise an SDE model. However, measurable results can be ob-
tained from considering the statistical properties of the random solutions. By measuring a
random variable at different instances, one can form a probability distribution function over
the random variable at each of the different instances it is measured hence modelling the
stochastic dynamics of a system[58]. This can be explored using master equations, which
encapsulate the complete description of a system. A simple example of such an equation is
as follows, let P;(t) denotes the probability of a system being in a classical /quantum state i

at time ¢, then one can construct a simple master equation given by:

dP;(t
dt( ) > (WP = W;iP,), (8.23)

J
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where W;; > 0 for all 7,j and W;; = 0, denoting the rate of transition from state ¢ to j. A
corollary of this is that given W;; > 0, then P;(¢ = 0) > 0 which implies that P;(¢) > 0 for all
t > 0. In the quantum sense, Eg.(8.23) corresponds to Fermi’s Golden rule of states, where
W;; takes the form,

Wiy = 1V L) Po(E), (5.24)

where E; denotes the eigenvalue of the system at state |i), V represents the potential resulting
in the transition and p(E;) is the density of states at E;. the formal solution to this is
determined from considering both left and right eigenvectors, ¢ and 1, respectively. From
this, the characteristic polynomial is used to investigate the relationship between these two

given that the eigenvalues are the same. As a consequence, one arrives at the solution,

Wis = Xatf 5. (8.25)

Then, in terms of the right eigenvectors (a similar result is found for the left eigenvectors),

P(t) = Calt)ys. (8.26)

Differentiating with respect to ¢, where linear independence in the eigenvalues gives C,(t) =
ca(0)er?, then the complete form of Eq. (8.26) is as follows,

Pi(t) =Y Ca(t)eryy. (8.27)

This dictates that Re(\,) > 0, else there is negative probability. As ¢t — oo, Pi(t) —
Pfq“ilibrwm, relaxing to A = 0. In general, these dynamics are often difficult to investigate in
complete form and so approximations are taken.

In considering such a description, it is necessary to realise the significance of macroscopic
deterministic laws, where there is a shortcoming in the solution of any master equation
approximation asymptotically in the deterministic and stochastic contributions describable
by an SDE. Developing such asymptotic expansions provide developments of simpler models

as given by the Fokker-Planck equation, equivalent to a master equation such that one could

study an entire system simply from the Fokker-Planck equations without a master equation.
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Both descriptions are highly valuable, they are advantageous for different systems. A list of

such benefits however goes beyond the scope of this thesis.

8.7.1 Fokker-Planck Equation

The Fokker-Planck equation describes the evolution of the probability density of a particle

for a certain class of stochastic differential equation;

dzry = f(xta t)dt + g<xt7 t)tha (828)

where f(x4,t) denotes the drift coefficient, g(zy, t) is the diffusion coefficient and W; is Wiener
process. The Fokker-Planck equation is given by the second order partial differential equa-
tion, providing an analogue of the Schrodinger equation that bridges from stochastic classical

dynamics to quantum systems:

Ip(z,t) 9, 1 9

o = (e, 00(2,0) + 555 (9@ (1), (8.29)

where p denotes the density with initial condition p(x,to|zo,t0) = d(x — zo). This describes
the Fokker-Planck evolution of the probability distribution function of stochastic systems
for a diffusive process under Ito regularisation, see Sec.8.7.2. Hamilton’s equations for this

system is given by the following:

X = 0, H(p, x),

(8.30)
p=—0H(p,x)

It is especially suited to systems with short correlation times, providing an exact description
for Gaussian white noise models. The structure of the Fokker-Planck equation is the same
as that of the continuity relation. This can be demonstrated for the 1-time probability by
the following;

p(z,t) = /d$0p(a:,t;a:0,to) = /dxgp(:v,t|x0,t0)P(:B0,t0). (8.31)

At ty, the conditional probability at t; is then:
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o0

p(22, t2|To, o) = / dr1p(a, to; 1, t1)p(w1, t1; o, to).- (8.32)
We note that the conditional probability p(zq,te; 1, t1) is independent of (xg,ty), therefore
the system is described by a Markov process. Then,

o0

pla,t + ot|zo, ty) = / da'p(x,t + ot|2’, t)p(2', t|zo, to), (8.33)

—00

where

) 2 _
do(x x)(St—l—lB(x)dé(;QI)
x

ot. 8.34
dz’ 2 ( )

pla,t+dt|z’,t) = 0(x — ') + A(x)

Averaging over real variables and substituting into the integral for the conditional probability,

Op(z,t) _

dividing by 4t as ot — 0, then one arrives at the standard Fokker-Planck equation; ==

— 2 (A, )p(x, 1)) + 32 (B(, t)p(a, t)).

Deriving this equation of motion for the probability density is based on finding a particle
in the interval (z;z42) and (v,v + dv) at time ¢ for a single realisation of noise, £(t). With
the particle is located in the infinitesimal area dxdv with probability p(x,v,t)dxdv. Since
the particle must lie somewhere in the phase-space —oo < z,v < 00, then the following must
be satisfied,

/ dx/ dvp(z,v,t) =1, (8.35)

where p(z,v,t) denotes the probability density. Considering a finite volume, where the
particle is not destroyed or changed, therefore any change must arise from changes in the

probability through the surface Sy surrounding initial volume, V4, then:

d
—// dxdvp(x,v,t) = —/ p(z, v, t)x.ds, (8.36)
dt Y So

where x = (x,v) and x = (%,V). Then by applying Gauss’ theorem, the surface integral

takes the following form:
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// dxdv p(z,v,t) // dzdoV.(%p(x,v,t)). (8.37)
Vo VO

For some fixed arbitrary Vj, one obtains the continuity equation:

%(p(x,v,t) = —V.(xp(x,v,t)) = —%()’(p(x, v,t)) — giv(\'fp(x,v,t)). (8.38)

This describes the continuity equation in the phase-space which states that the probability
is conserved. By averaging over many realisations of noise, p(x,v,t) = (p(z,v,t)), where
p(z,v,t) macroscopic probability density of the particle. A second order differential equation
that corresponds to a time dependence via the Langevin equation. It is exact for Gaussian

white noise models, governing the evolution of the probability density of a Brownian particle.

For a Brownian particle, it is necessary to know the Langevin equation governing the

evolution of a particle, given by the following:

- 1
i =i = —v+ —(F(2) +£(1)), (8.39)
where F(x) = V'(z) for some potential V. This is used to obtain an exact description of the

dynamics under the influence of noise such that the Fokker-Planck equation is then given as,

W _ —%(V(l‘)p( )+ l%v(ﬂf)ﬂ@f"’”) (8.40)

1 0 1 0
—EF(x)%p(x,v,t) — Ef(t)%P(% v,1).

Here, £(t) is a stochastic variable, p(z, v, t) is in principle different for each realisation of £(t).
However, in actual Brownian particles, one observes an averaging in the random nature of
£(t). The Fokker-Planck equation can be solved using a stochastic integral, for this it is

neccesary to consider Ito formalism.

8.7.2 Ito Calculus

To solve the Fokker-Planck equation, one must define the stochastic integration procedure.

Let G(t) and W (t) be stochastic processes and consider the following:
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/ G (), (8.41)

It is challenging to compute this integral as it changes randomly due to the stochastic terms.
Discretising the integral into n subintervals with to <t; < -.- <t,_; <t, with intermediate

points t;_1 < 7; < t;, the integral is then defined as the limit of partial sums S,

S, = Z G() (W (t;) — W (ti_1)). (8.42)

This limit is dependent on the choice of 7;. Taking 7; = ¢;, we arrive at the Ito stochastic

integral:

t n
/ G(t"dW (t') = (meansquarelimit) — limy, o (Z G(tiy ) (W (t;) — W(til))> . (8.43)
to =1

Properties of the Ito stochastic integral include the following:

a) Existence: The integral defined by Eq. (8.41) exists when G(#') is continuous and nonan-

ticipating (a process that cannot see the future) on [to, t].

b) Integration of polynomials are given as follows:

/t WA () - nil(W(t)”“ o)) / Wy lde. (8.44)

One arrives at this result from considering the following random process, d(W (t))" =
(W(t) + dW(t) — W)™ = S.r_, nCrW ()" "dW (t)", where dW (t)" — 0 for all r > 2.
Consequently, dW ()" = nW ()"~ 'dW (t) + LW (t)"~2dt which integrates to the above
result.

c) For every G(t), there exists two kinds of integrals, that described in Eq. (8.41) and
ftl; G(t')dt' where there is no connection between these two integrals.

d) Differentiation keeps up to the second order of dWW(t). Consider the general chain rule,
df (W (t),t) = 2Ldt+ 12, (dt)? + i AW (1) + ;aﬁvf (dW (t))? +6W L5 (AW (t))dt+. .. where,
(dt)* — 0,dtdW (t) — 0,(dW (t))* = dt and all higher orders vanish, then this chain rule

takes the following form:
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df (W (t), 1) = (g—{ + %%) dt+ ~27_aqw ). (8.45)

OW (t)
The reasoning used here applies to all other differentiation rules. Similarly, this is used
to define the change of variables in Ito formalism with, df(xz(t)) = (a(z(t),t)f (x(t)) +
s0(@(t), )2 f" (1)) dt + b(a(t), ) f'(x(t))dW (t)
e) The mean value formula, for a nonanticipating G(t) takes the form ( ftz G(t)dWw(t')) =0
such that <Zz Gz_lAWZ> = ZZ<GZ_1><AVVZ> = 0.

f) The correlation formula for arbitrary nonanticipating functions G(t) and H (t);

t t t
(/ G(t’)dW(t’)/ H(t")dw (t')) :/ dt' (Gt H(t')). (8.46)
to to to

Under this formalism, we see that the Langevin equation Eq. (8.16) obeys an Ito
stochastic differential equation such that dx(t) = a(z(t),t)dt + b(z(t),t)dW(t) if for all
t € [to,t], x(t) = xz(ty) + ftl; dt’'a(z(t'),t") + ftto dW (t)b(x(t'),t’). Taking a discretised version
of this with ty < t;...t,—1 < t, = t, then x;41 = x; + a(x;, t;)At; + b(z;, t;) AW; where
x; = x(t;), At; =ty — t;, AW; = W(t;11) — W(t;) then to calculate x4, requires taking
increments of the Weiner process, being statistically independent of x;. One can determine

the solution iteratively, with z; always independent of Aw; for all j > 1.

Under Ito formula, one can obtain the the Fokker-Planck description of a stochastic

system. Take the following:

(df (=(1)) <df(fc(t))>

= S ) (347
= a(o(t), )5 7 (1)) + bCalt), 15 Fa(0),

where z(t) has conditional probability, p(z, t|xo, to), then:

Sl = [ o) Spto. ot

) , 0

. (8.48)
= /dx(a(x(t),t)%f(:ﬂ(t)) + 50@(t), 1) 55 f(@(6))p(, tlzo, to)-
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Integrating by parts and disregarding surface terms,

[ e fate) 5ot o)

= /dxf(x(t))(—%(a(w(t),t)p(fv,t\:vo,to)) +%;—;(b(ﬂc(t%t)2p(ﬂr>t!$o7to))-

(8.49)
Then since f(z) is arbitrary, one obtains the standard Fokker-Planck equation. This is
equivalent to a diffusion process defined by drift coefficient a(z,t) and diffusion coefficient
b(x,t).

The solution of this Ito stochastic differential equation, x(¢) is a Markov process. Given
the initial conditions x (), the future is uniquely determined. Then for all t > to, x(t) is
determined only from the sample path W(¢) and its initial value x(ty). If the stochastic
differential equation depends continuously on a parameter, then the solution normally de-
pends continuously on that parameter hence the solution depends continuously on the initial
condition. This justifies the use of perturbation expansions.

This can be used to consider quantum noise. Furthermore, extending the Fokker-Planck
equation to multi-variable Ito-Langevin processes[58]. In the quantum setting this equation
is generalised by the Lindblad master equation, concerning the density matrix.

One can determine the statistics of a quantum system from its density matrix p contain-
ing all measurable information of a Hamiltonian system, where the diagonal terms describe
the occupation of the quantum states[13] and the off-diagonal terms correspond to the co-
herences.

One can describe random fluctuations using auto-correlation functions as described in

the previous section. Noise can also be studied using its spectral density[25], given by:

<’X(1§Z§_‘t0|2>‘ (8.50)

SX (t) = lzmT_wo

Under the Wiener-Khinchin theorem which states that 2w (t —¢')S,(t) = (x(¢)x(t'), one
can describe the spectral density from the auto correlation function. This type of dynamics
is relevant to the development of adiabatic quantum computers faces the same fundamen-
tal problem of impossibility of their direct simulation by classical means|1, 2, 3, 4]. This
stimulates the search for alternative theoretical methods, which could provide some useful
figures-of-merit describing large quantum systems out of equilibrium. A common approach
to achieve quantum coherence in non-equilibrium many body dynamics is Keldysh Green

function theory[30], however this approximation is limited to short time intervals where its
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errors grow as a power of time[30].

8.7.3 Markov Processes

Consider a stochastic process continuously defined in time, x;; ¢t > 0 where yx; is a one-
parameter family of random variables. Then y; is a Markov process if for all time ¢ > 7, the

distance between any , against the family of variables x e[ - satisfies

Di5t<Xt|Xs€[0,T}> = Di5t<Xt‘XT)> (8'51>

suggesting that if the conditional distribution of y; is conditioned on the family of events y,
in times s € [0, 7] is the same as being conditioned only only on the event at time 7, then the
process is Markovian. This implies that the state of the system at time ¢, x; depends only
on the past between [0, 7] via the state of the system at its last past interval of 7, such that
all the information of the past is condensed into the previous moment. The system carries
memory of its past instances, hence depends on the initial value of .

The expectation of a Markov process is described through E,(¢(x;)), where we let E,
denote the expectation of a process starting from z € R% or Z¢ and ¢ be the state space of

the observables. Then,

Ex(6(xt)) = E(o(xt)lxo0 = ). (8.52)

Markov processes are described by their generators which are operators acting on observables

¢. Then a Markovian generator is defined as:

(L6)(x) = |0 Fadlx.). (8.53)

In R? a Wiener process is Markovian, with generator L = %A. This applies to white

noise models.

8.7.4 Wiener Processes

In order to define a Weiner process, it is first necessary to define both a continuous time

process and a stochastic Gaussian process.
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Continuous time process: A collection of uncountable many random variables where
the joint probability measure on such a big space cannot be determined by finite dimensional
projections.

Stochastic Gaussian process: given that any finite dimensional projection is a Gaus-
sian vector-valued random variable such that for all ¢; <ty < ...%, the vector xy,,...xs,) €
R% is a Gaussian random variable.

A continous stochastic Gaussian process W; = (W}, ... W2) € R? where t > 0 is a

d-dimensional Weiner process if it satisfies the following properties|26]:

W (0) =0,
E(W,) =0,
E(WIWY) = min(s, t)da,
W(t) —W(s) =+t —sN(0,1);0<s<t<T,

(8.54)

where N (0, 1) denotes a normal distribution and F(.) describes the expectation of a process.
This determines a Weiner process uniquely, where all higher moments of W, can be deter-
mined by Wick’s theorem. Moreover, this enables extending the central limit theorem to
processes.

Consider the stochastic process x5 = \/EZ;‘ZE . The distribution for this process con-
verges to the Weiner process; x5 — Wr as € — 0. This type of process defines white noise,
formulating the requirements in the application of the central limit theorem as utilised in
the Brownian motion description of diffusion processes. Provided that damping effects dom-
inate the system such that internal forces can be considered negligible, Brownian motion is
a well suited model for noise. It is one of the simplest stochastic processes, arising as a limit
of multiple stochastic processes such that all other diffusion processes could be described
in terms of Brownian motion. Hence solutions of various mathematical problems could be

expressed in terms of Brownian motion. This concept is summarised in the central limit

theorem.

8.7.5 The Central Limit Theorem

Let v; be a sequence of independent, identically distributed random variables with zero
expectation; F(v;) = 0 and finite variance E(v?) = 02, where v; € R? or v; € Z¢, for d > 1
and the variance o2 is a matrix, referred to as the covariance matrix such that o2, = E(v®?)
where v = (v!...07).

Then, determining the location of a particle under the influence of multiple sources of noise
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after n steps is described as,

n

Su =Y v, (8.55)
i1
where, E(S,) =0, E(S2) =37 | E(v}) = no? and E(v;v;) = 0.
Rescaling S,,,

Sn Z:L: V;
X= T T; (8.56)
preserving the structure such that F(x,) = 0 and E(x?) = 0 < oco. This defines a centred
Gaussian process; centered because E(x,) = 0. This has the property that all the moments

of moments are determined from the covariance matrix. Then, for a centred Gaussian vector-

valued random variable, higher moments can be computed via Wick’s theorem:;

E(Xl cee X2kz> = H(i,j)EallpossiblepairingsE(Xin)‘ (857>

Remarkably, this distribution for the independent, identically distributed (iid) v; tends
to a Gaussian distribution x,, — x where x N(0,0?) as n — oo, regardless of the initial
distribution of v;, defining the central limit theorem, a cornerstone of probability theory and

one of the fundamental theorems of nature.

The density of this normal distribution in R! is given as follows,

1 22

f(z) = e 27, (8.58)

2ro

This density follows the standard weak convergence of probability measures which states
that a sequence of random variables x,, converges to a random variable xy which is normally
distributed, if the expectation satisfies E(G(x,)) — E(G(x)) for any continuous bounded
function G, as such Y, can be modelled via a white noise, justifying that random forces
are uncorrelated hence reducible to Markovian white noise processes. This definition holds
analogously for higher dimensions. It is under this theorem, that forms the foundations
of both Einsein’s and Langevin’s reasoning as given in Appendix C, complemented with a

summary of stochastic dynamics beyond white processes.
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8.8 Appendix E: Integrable Dynamics

Integrable systems are exactly solvable models, however such solutions are difficult to obtain.
One method to solve a problem is using quadratures which involves either solving a finite
number of algebraic equations or computing a finite number of integrals. Obtaining closed
form solutions however, remains a challenge.

Consider a Hamiltonian in R?", the associated Hamilton’s equations are as follows:

T T 8qz )
8.59
(3 apz Y
where ¢ € [1,n] and ’." represents derivatives taken with respect to time. These can be
written in terms of Poisson brackets which can be defined by the following:
" JF 0G OF0G
{F,G} = (8.60)

- Op; O B dq; Op;

%

This description satisfies antisymmetric, linear and multiplicative product rule properties
as well as the Jacobi identity, hence it is a Lie algebra. Then Hamilton’s equations can be

written as,

i = _{piuH(pivqi)}u

(8.61)
G = {Qi, H(pi> QZ)}

Poisson algebras can be used to determine the integrals of a Hamiltonian system. A
function F'(p;,q;) on the phase space, is an integral of the Hamiltonian H(p;,q;) if it is
preserved by the flow, F = {F(pi,q:), H(pi,q;)} = 0. Hence F is a conserved quantity, that
Poisson commutes with the Hamiltonian.

The Poisson theorem, further states that the Poisson bracket of 2 integrals is an inte-
gral of the same Hamiltonian. This description is used to identify integrals of motion in a
given system and determine its solvability. A Hamiltonian system, H(p;, ¢;) is completely
integrable in the Liouville sense if there are n independent functions that are mutually Pois-
son commuting, with H(p;q;) being a function of these. The maximal number of Poisson
commuting independent functions is n, however it is possible to obtain further integrals of

motion of the Hamiltonian system under an algebra of integrals of motion. The harmonic
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oscillator and the Calogero-Moser models are examples of such integrable systems, the latter
shall be discussed further in this section.

The quadratures of complete integrable systems are often achieved through the separa-
tion of variables of the Hamilton-Jacobi equation. These can be used to investigate maxi-
mally superintegrable systems which are separable in more than one coordinate system, with
all bounded orbits being closed as well as giving rise to interesting Poisson algebras with
polynomial Poisson relations. Such superintegrable systems have various naturally occurring
applications in physics with additional hidden symmetries. Furthermore, these systems carry
interesting extensions to quantum integrable systems, however these concepts go beyond the

scope of our work.

8.8.1 Calogero-Sutherland-Moser

The Calegero-Sutherland model (CSM) has a great range in applications from quantum field
theory, condensed matter theory, statistical mechanics, collective field theory, dynamical
systems, pure mathematics and chaos. It describes alD many-body integrable system, gen-
erating the dynamics of N particles interacting via a long-range potential. The corresponding

Hamiltonian is given by:

N
1 72
H=- 2 _— .
2 sz + Z (2; — ;) (8.62)

i=1 i<j

Taking unit mass and +? to denotes a positive coupling constant, describing the strengths of
the interparticle pairwise repulsions. As a consequence of the coupled interactions, the CSM
describes a strongly correlated system that offers insight of many-body interacting systems
that is both easy to formulate as well as explicitly solvable. This description maps spectral
properties to that of classical particles, which is an area of quantal systems; such that one
can regard quantum systems through its eigenvalue dynamics, statistically via a classical
integrable model.

Being a fully integrable model, the particles evolve in an ordered way with the following

equations of motion:

Lm = Um,
2
, 7 (8.63)
=23 T
v mz?én (xm _ xn>3
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From these equations, one observes how the inverse-square potential acts as a borderline
between the presence of a phase transitions (when the potential is strong) and when there

are none (for weak potentials).

This allows for investigating the statistical mechanics of phase transitions which occurs
when levels approach each other, reaching a minimum separation before repelling. These
are known as avoided crossings or anti-crossings. At an avoided crossing, it may not be
possible to distinguish between the quantum states in the event of the occurrence of a phase
transition, thus is necessary to treat such events statistically. In considering large quantum
systems, the probability of level (avoided) crossings become more significant. These result in
transitions between states[3, 4, 24, 43]. Using the Landau-Zener model, one can approximate
the changes in the occupation numbers as a consequence of level (avoided) crossings. Avoided
crossings occur when levels come in the vicinity of each other with §,, # 0 before they repel.
Landau-Zener probabilities at level (avoided) crossings describe the fundamental results of
nonstationary quantum mechanics. These describe the non-adiabatic population transfer at
a level (avoided) crossing for perturbed Hamiltonian systems[43, 53]. Since the discovery of
the Landau-Zener formula, there has been continuous efforts in its theoretical treatment[53].
The Landau-Zener model has been profficient in the analytical description of the occupation
numbers with regard to the presence of noise[43]. However, in order to gain insight on
coherences and the difference found between ground state coherences and intermediate state
transition probabilities, it is better to consider the description using density matrices. These
such transitions could be better described under the generalised Calogero-Sutherland model;
the Pechukas-Yukawa formalism, where the coupling strengths are no longer constants but

dynamic variables.

8.9 Appendix F: Method of Lax Pairs

For two matrices L(p;, q;), M (pi, q;) with their entries being functions on the phase space. If

the equations of motion can be described by:

L=1[L,M], (8.64)

then, L and M are said to be Lax pairs for the system. One crucial importance in this
formalism, is that the equations of motion for L expressed in Lax pairs generates conserved

quantities, Fj;
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F, =Tr(L") (8.65)

This follows from the equations of motion by cyclicity of the trace operator.

Fy = ETr(LF YL, M]) = 0. (8.66)

This demonstrates that the Lax matrix L is isospectral; its eigenvalues are constant. The
flow given by Eq. (8.64), preserves the spectrum of L. Then it is possible to solve the time

dependence in L explicitly, following directly from the Lax equation:

L(t) = g(t)L(0)g (1),

(8.67)
M = §(t)g'(t).

This states that any isospectral deformation on L(t) is described as in the above equation.
Then, for any matrix M such that [L, MM'| =0, L, M" also forms a Lax pair. This enables
generating all constants of motion in the system.

The integrals of motion are determined from the coeffiients of the characteristic polyno-
mial, determined from, det(L — AI) where I denotes the identity matrix in dimension n and

L is an n x n matrix, then the coefficients of the characteristic polynomial are given by:

det(L — \I) = i NeT(p, q), (8.68)

where [, represents the integrals of motion, used to determine the constants of motion.
Furthermore, any power matrix L* also satisfies the Lax equation, hence one can determine
generate all constants of motion for the system in this way:.

For Lax pairs evolving parametrically through a spectral parameter v, such that L(vy) =
St Liv and M(v) = Zgzl M;~*, then one can construct matrices such that the generated
conserved quantities are determined from summing along the diagonals of the upper triangle
commutator. This suggests any v-dependent Lax pair is equivalent to an ordinary Lax pair,
with greater number of conserved constants.

Moreover, using Lax formalism, it is possible to generate further integrable systems from

an existing Lax pair. Consider the generalised equation of motion for Lax pairs, L, M:
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L =1[L,M]+~L, (8.69)

for some constant . The corresponding set of equations of motion define an integrable
system with first integrals I, = T'r(LF)e*t. these relationships cannot be obtained naturally
from the Hamiltonian, hence the Lax formalism provides further insights on the constants
of motion in the system.

These concepts are explored further to investigate classical integrable models describing
quantum systems, as in the case for the Calogero-Moser system as well as in our works on
the Pechukas-Yukawa model.

8.10 Appendix G: Python Code

8.10.1 Investigating the Accuracy of the Factorisation Approxi-

mation
Probability Distribution Functions

Created on Sun Jun 5 12:04:46 2016

i

import numpy as np

import time

from copy import copy

import pickle

from itertools import permutations as Perm

from math import factorial

start_time = time.time()

print("Setting up system parameters...") |

#System parameters

N =4

Simulations = 100

dt = 0.1

timestep = np.arange(0,1,dt)

#uniformly divide interval (0,1) by increments of dt
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J = np.random.randn(Simulations,1)
#icreates a matrix of standard Gaussian vars with N columns, Simulations rows

J = np.hstack((J,-J,-J,J))

#define Hamiltonian and perturb matrix
h1,h2=0.01,0.02
Hb=np.matrix([[0,h2,h1,0],
[h2,0,0,h1],
(h1,0,0,h2],
[0,h1,h2,011)

XRange = ( -(3+h1+h2) , 3+h1+h2 )
VRange = ( -(h1+h2) , hi1+h2)
LRange = ( -(3 + pow(h1,2) + pow(h2,2)) , (3 + pow(h1,2) + pow(h2,2)) )

print ("Setting up system parameters completed", round(time.time()-start_time,2), "s\n")

print ("Computing eigenvalues, velocities, momentums...")

# Creating a multi-dimensional matrix containing

# eigenvalues , X and velocities V and relative mom, L

#via a nested loop (nested so it is matrix-like)

# X entries to read as X[timestamp] [Simulation] [i’th eigenvalue]
x=[[np.linalg.eigvalsh(np.diag(J[Sim, : ]) + timestep[ti]*Hb)
for Sim in range(Simulations)] for ti in range(timestep.size)]

x = np.reshape(x, ((timestep.size,Simulations,N)))

#reshaping for matrix entries, seperate lines to be easier on the eyes!

v=(x[1:1-x[:-1])/4dt

print ("Computing eigenvalues, velocities, momentums done",

round(time.time()-start_time,2), "s\n")

data = [x,v, Hb, J]
print("Saving data...", round(time.time()-start_time,2), "s")
pickle.dump(data,open(’data.pk’,’wb’))

print ("Saving data...complete", round(time.time()-start_time,2), "s\n")

106



del data

+H

# build f1(t,x1,v1l)

+H

print("Building f1...")
fi=dict )
fl_normalisation_const = N*Simulations
A11_x = np.reshape(x, ((timestep.size,Simulations*N)))
All_v = (A11_x[1:]1-A11_x[:-11)/dt
for ti in range(timestep.size-1):
data = np.vstack((All_x[ti],Al11_v[ti]))
hist, edges = np.histogramdd( data.transpose(), bins = 20, range = (XRange,VRange))
f1[ti] = hist/f1_normalisation_const
print ("\tAt ti, f1 summed:" , f1[ti].sum().sum().sum().sum())

print ("Building f1...complete", round(time.time()-start_time,2), "s\n")

print("Saving f1...", round(time.time()-start_time,2), "s")
pickle.dump(f1,open(’f1.pk’,’wb’))
print("Saving f1...complete", round(time.time()-start_time,2), "s\n")

del All_x, All_v, hist, edges, data

nnn build f2(t,X1,V1,X2,V2)

#1) Group up data in the form Xi=[xi,Vi] and arranged in a matrix indexed as
#X[time] [Sim] [1]=(x1,v1)

#2) Pick up first simulation and permute it. Call this PermutedX so we have shape
#3) Pick up remaining simulations in loop and combine via stacking below.

#4) Make historam and store in dictionary

i

print ("Building f2...")

s=2

f2=dict ()

PermutedXList=1list ()
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X = dict([ (ti, [[[x[ti+1][Sim][i],v[ti][Sim][i]] for i in range(N)]

for Sim in range(Simulations)]) for ti in range(timestep.size-1)])

for ti in range(timestep.size-1):
PermutedX = np.vstack( np.array(list(Perm(X[ti] [Sim])))

for Sim in range(Simulations))

PermutedX = PermutedX[:,:s,:].reshape((Simulations*factorial(N),2x*s))

PermutedXList.append(PermutedX) #added for building F2
Hist,edges=np.histogramdd(PermutedX,bins = 20, range= (XRange,VRange,XRange,VRange)
f2[ti]=Hist/(Simulations*factorial(N)),edges

print("...completed ",str(ti+l), " out of " , timestep.size-1, "timesteps",

round(time.time()-start_time,2), "s")

print ("\tAt ti, f2 summed:" , f2[ti] [0].sum().sum() .sum() .sum())
del PermutedX, Hist
print ("Building f2...complete", round(time.time()-start_time,2), "s\n")

print("Saving f2...", round(time.time()-start_time,2), "s")
pickle.dump(f2,open(’f2.pk’,’wb’))

print("Saving f2...complete", round(time.time()-start_time,2), "s\n")
del £f2

build h2(t,lmn,lnm)
h2[time]

h2(1mn,1nm)

[Imn of all simulations at t=time]

Lmn[time]
#Getting the L matrix as a list of numbers

print ("Building h2...", round(time.time()-start_time,2), "s")
h2=dict ()

L=dict ([ (ti, [[(x[ti][Sim] [m]-x[ti] [Sim] [n])*Hb [m,n]

for n in range(N) for m in range(N)]
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for Sim in range(Simulations)]) for ti in range(timestep.size)])

#L[time] [simulation] = [12 1lmn values]
[L[ti] [Sim] .pop(pow(N-i,2)-1) for i in range(N)

for Sim in range(Simulations) for ti in range(timestep.size)]

#removing diagonal entries [zero based recall] and

#going backwards due to the nature of "pop" (for each time and simulation)

PermutedLList = list() #using for F2

for ti in range(timestep.size):
Li2List = list()
L21List = 1ist()
for Sim in range(Simulations):
for 112 in L[ti] [Sim]:
TempList = copy(L[ti] [Sim])
TempList.pop(TempList.index(112))
for 121 in TempList:
L12List.append(112)
L21List.append(121)
L12 = np.array(L12List) .reshape(132*Simulations,1)
#132 = 12%11 = (N°2 - ND!/(N"2 - N-s)!
L21 = np.array(L21List) .reshape(132*Simulations,1)
L12_1L21 = np.hstack((L12,L21))
hist,edges = np.histogramdd(L12_L21, bins = 20, range = (LRange,LRange) )
h2[ti] = hist/(132xSimulations),edges
print ("\tAt ti, h2 summed:" , h2[ti] [0].sum().sum() .sum() .sum())
PermutedLList.append(L12_L21)

del hist, L12_L21, L12, L21, L12List, L21List, TempList
print ("Building h2...completed", round(time.time()-start_time,2), "s\n")

print("Saving h2...", round(time.time()-start_time,2), "s")

pickle.dump(h2,open(’h2.pk’,’wb’))

print ("Saving h2...complete", round(time.time()-start_time,2), "s\n")
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del h2

build F2(t,x1,v2,x2,v2,112,121)
-Will need PermutedXList!
-Idea: for each existing line of (X1,V1,X2,V2) "attach" on each 2-permutation of L’s
o
print ("Building F2...")
F2=dict ()
F2_Normalising Const = Simulations * factorial(N) * 12 * 11
for ti in range(timestep.size-1):
print ("Processing timestep " , str(ti+l) , "...")
H = np.empty((20,20,20,20,20,20))
for Sim in range(Simulations):
XVL = np.empty((0,6)) # 6 because 2 x’s, 2 v’s and 2 ’ls
for Xline in PermutedXList[ti] [Sim*24:(Sim+1)*24]:
XVL_part = [np.hstack((Xline,Lline)) for Lline in PermutedLList[ti]
[Sim*132: (Sim+1)*132]]

XVL = np.vstack((XVL,XVL_part))
hist , edges = np.histogramdd(XVL, bins = 20,
range= (XRange,VRange,XRange,VRange,LRange,LRange) )
H += hist
if ((Sim+1)%25) == 0:
print ("\tProcessed " , str(Sim+1) , " simulations out of ",
Simulations,"at", round(time.time()-start_time,2), "s")
F2[ti] = H/F2_Normalising Const , edges
print ("\tAt ti, F2 summed = ",

H.sum() .sum() .sum() .sum() .sum() . sum() /F2_Normalising_Const)

del H, hist
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print("completed ",str(ti+l), " out of " ,

timestep.size-1 , "timesteps", round(time.time()-start_time,2), "s")

del XVL, XVL_part, Xline, ti,
print ("Building F2...completed", round(time.time()-start_time,2), "s\n")

print("Saving F2...", round(time.time()-start_time,2), "s")
for key in F2.keysQ):

pickle.dump(F2[key] ,open(’F2_’+str(key)+’.pk’,’wb’))
del F2

print("Saving F2...complete", round(time.time()-start_time,2), "s\n")

end_time = time.time()
TotalDuration = end_time - start_time
print("Total duration: " , str(TotalDuration))

print ("Average runtime per simulation : " , str(TotalDuration/Simulations))

Factorisation Error

Created on Thu Jun 9 13:43:23 2016

import time
import pickle

import numpy as np

start_time = time.time()

#System parameters

N=4

Simulations = 100

dt = 0.1

timestep = np.arange(0,1,dt) #uniformly divide interval (0,1) by increments of dt

+H
H

# Check factorisation
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+
1

Error = dict()

F2 = dict()

def ComputeError():
f1 = pickle.load( open( "f1.pk", "rb" ) )
h2 = pickle.load( open( "h2.pk", "rb" ) )
for ti in range(timestep.size-1):

nonzero_terms = 0O

try:
F2[ti] = pickle.load( open( "F2_"+str(ti)+".pk", "rb" ) )
print("Loaded F2 for timestep"+str(ti))

except:
print ("Unable to load F2 for timestep"+str(ti))

print ("Processing timestep ", str(ti+l),

round(time.time()-start_time,2), "s")

error_ti = np.zeros((20,20,20,20,20,20))
for x1 in range(20):
# print ("Processing x1 = ", x1, "...at" ,

round(time.time()-start_time,2), "s")

for x2 in range(20):
for vl in range(20):
for v2 in range(20):
for 112 in range(20):
for 121 in range(20):
F2_point = F2[ti] [0] [x1] [x2] [v1] [v2] [112] [121]
factorisation = f1[ti] [x1] [v1]=*£f1[ti] [x2] [v2]
*h2[ti] [0] [112] [121]

if F2_point and factorisation:

nonzero_terms += 1

# print("x1,x2,v1,v2,112,121 = " ,
x1,x2,v1,v2,112,121)
# print("F2 = ", F2_point)

112



#

print("Factorisation = ",

f1lei] [x1] [vi]*f1[ti] [x2] [v2]*h2[ti] [0] [112] [121])

#
#
#

print ("\tf1[ti] [x1] [vi]l= ", f1[ti] [x1][v1])
print ("\tf1[ti] [x2] [v2]= ", f1[ti] [x2][v2])
print ("\th2[ti] [0] [112] [121]= ",

h2[ti] [0] [112] [121])

H H O H H

error_til[x1,x2,v1,v2,112,121] =

(F2_point- factorisation)/F2_point

print("RE = ", error_til[x1,x2,v1,v2,112,121],"\n")

else:

error_til[x1,x2,v1,v2,112,121] =0
Error[ti] = error_ti #store error at time ti into memory
print("Saving error at time", ti ,round(time.time()-start_time,2), "s")
pickle.dump(error_ti,open(’error_’+str(ti)+’.pk’,’wb’))

print("Saving error at time"+str(ti)+"_complete",

round(time.time()-start_time,2), "s\n")

SumOfError = error_ti.sum().sum().sum().sum() .sum() .sum()
print ("Average error for timestep " + str(ti) +" " +
str (SumO0fError/nonzero_terms))

print ("Standard dev for timestep " + str(ti) +" " + str(error_ti.std()) + "\n")

#def ComputeAverageError():

#
#
#
#
#
#
#

NC = pow(20,6)
for ti in range(timestep.size-1):
error = pickle.load( open( "error_"+str(ti)+".pk", "rb" ) )
print ("Loading up error #" + str(ti) + " computing total error")
SumO0fError = error.sum().sum().sum().sum() .sum() .sum()
print ("Average error for timestep " + str(ti) +" " + str(SumOfError/NC))

print("Standard dev for timestep " + str(ti) +" " + str(error.std()) + "\n")
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8.10.2 Investigating Numerical Solutions for the Evolution of the

Eigenstate Expansion Coefficients

Set up for Pechukas Functions

import numpy as np
"""PECHUKAS FUNCTIONS"""

"""Matrix and other generic maths functions"""
def MatrixExpList(ListofMatrices):
def MExp2(matrix):
#Exponentiate a matrix by change of basis
eigenvalues, eigenvectors = np.linalg.eig(matrix)
ExpD = np.diag(np.exp(eigenvalues))
BasisChange = np.matrix(eigenvectors)

return BasisChange*ExpD*BasisChange.I
return map(MExp2, ListofMatrices)
def Comm(A,B):

A
return (A*B - BxA)

, B = np.matrix(A), np.matrix(B)

def MinDist(ListofNumbers):
#Gives the minimum distance between two numbers in a list

return np.min(np.ediffid(np.sort(ListofNumbers)))

"""Integration functions"""
def CumulativeTrapezium(A, ds):
# A(s) being a list of matrix say along s. ds can be a list
or a (uniform) scalar for integration
#Suppose we discrete integration space sO < sl < ... < sn then, CumulativeTrapz
#Then Trapezium integration to sO is zero is zero

then adding incrementing via trapeziums
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if type(ds) == ’float’:

ds = len(A)*[ds] #if sclar, treat uniform ds along the axis

CumTrapList = [ 0*A[0] ] #integral upto time O is zero (matrix)
for ti in range( len(A) -1 ):
CumTrapList.append( CumTrapList[-1] + 0.5*xdsx( A[ti] + A[ti+1]) )

return CumTrapList

"""Statistical functions"""
def RelError(MatrixPair): #or vectors
RealMatrix , FakeMatrix = MatrixPair[0], MatrixPair[1]
return np.linalg.norm( np.matrix(RealMatrix) - np.matrix(FakeMatrix) )

/ np.linalg.norm(RealMatrix)

#Fake = Approximation

def RelErrorList(RealMatrixList, FakeMatrixList):

return np.array( map(RelError, zip(RealMatrixList, FakeMatrixList)) )

def RelErrorList_baselOLog(RealMatrixList, FakeMatrixList):

return np.array( map(np.loglO, RelErrorList(RealMatrixList,FakeMatrixList) ) )
logresult = np.vectorize(np.logl0)

"""Functions for initial conditions"""
def GenerateRandomInitialConditions(low = 0, high = 1, N = 5):
while True:
vector = np.random.uniform(low, high , N)
s = set( entry for entry in vector )
if s.__len__() == : #unique only if same number of entries!

return(vector)

def GenerateGaussianVector(mean = 0, sigma = 1, N = 5):
#This part generates a N-dimensional Guassian vector
with unique entries (as precaution!) distributed N(mean,sigma)
#we use a set as this is quickest to check uniqueness.

If unique, break. Else, repeat.

if sigma == O: sigma = le-5 #to avoid zero variance
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while True:
vector = np.random.normal (mean,sigma,N)
s = set(entry for entry in vector)
if s.__len__() == N : #unique only if same number of entries!

return(vector)

def GenerateRandomLO(low = 0, high = 1, N = 5, imaginary = "y"):
R = np.random.uniform(low, high, N*%2).reshape(N,N)
if imaginary == "y":
I = np.random.uniform(low,high,N**2) .reshape(N,N)
I =1 - np.diag(np.diag(I)) #zero-out the diagonal entries!
return (R-R.T) + 0.5%x(I+I.T)*1j
else:

return (R-R.T)

#Denote the following space of matrices BoldL
(although need not be normal distributed)

def GenerateGaussianHermitianMatrixZeroDiagonal(mean = 0 ,

sigma = 1, imaginary="y", N = 5):

#Idea: create 2 Gaussian distribted N(mean,sigma) matrices for real matrix R
and imaginary matrix I
#Using property that R+R.T is symmetric while I-I.T is conjugate symmetrix

then adding them yields a scaled complex-valued Hermitian matrix

if sigma == O: sigma = le-b #to avoid zero variance

R = np.random.normal (mean,sigma,N**2) .reshape(N,N)

if imaginary=="y":
I
I =1 - np.diag(np.diag(I)) #zero-out the diagonal entries!
return((R-R.T)+0.5%(I+I.T)*1j)

else:

return(R-R.T)

np.random.normal (mean, sigma,N**2) .reshape (N, N)

def GenerateRandomPointInBall(radius = 1, N = 5, centre = 0 ): #uniform sampling!
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#Idea: generate uniform distribution ON a sphere then scale by a uniform radius
#See http://mathworld.wolfram.com/SpherePointPicking.html eqn (16) for ON

#Centre can be an number or a vector

X = GenerateGaussianVector(0,1,N)

x = x / np.linalg.norm(x)

SampleRadius = np.random.uniform(low = 0, high = radius) #sample radius uniformly

return SampleRadius*x + centre

def GenerateBoldLMatrixInBall(radius = 1, N = 5, centre = 0 ):
#may not be uniform in this space!
L
L

GenerateGaussianHermitianMatrixZeroDiagonal (N = N)

L / np.linalg.norm(L)

SampleRadius = np.random.uniform(low = O, high = radius) #sample radius uniformly

return SampleRadius*L + centre

def GenerateInitialXConditions(x_radius,N, epsilon = 0.05):
counter = 0
while True:
counter += 1
X0 = GenerateRandomPointInBall(x_radius,N)
dist = [abs(X0[i] - XO0[j]) for j in range(N) for i in range(j)]
if min(dist) > epsilon:

return XO

if counter > 500:
print ("Computer says no, the epsilon is too big, innit")
break

def GeneratePechukasInitialConditions(N = 5,

x_radius = 1, v_radius = 1, 1_radius = 1, epsilon = 0.05 ):

if epsilon:
return GenerateInitialXConditions(x_radius,N, epsilon) ,
GenerateRandomPointInBall (v_radius,N), GenerateBoldLMatrixInBall(l_radius,N)
else:

return GenerateRandomPointInBall(x_radius,N) ,
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GenerateRandomPointInBall (v_radius,N), GenerateBoldLMatrixInBall(l_radius,N)

"""Pechukas Eqns and Euler Method"""

def EulerRoutine(X0 ,VO ,LO , dLambda, N
N = X0.size
X, vV, L = [X0], [vo] ,[LO]

5):

def Vdot(i): #Computes Vdot for each time t_i, returning Vdot as a vector

def Vdot_component(m): #function to calculuate the m’th component of Vdot
vdot_m = O
for n in range(N):

if n !'= m:
vdot_m += (pow(abs(L[i] [m,n]),2)/pow(X[i] [m]-X[i] [n],3))

return(vdot_m)

#returns the vector gluing all the components together, returning a vector

return(2*np.array ([Vdot_component (m) for m in range(N)]))

def Ldot(i): #Computes Ldot for each time t_i, returning Ldot as a matrix
def Ldot_component(m,n):
#function to calculate the (m,n)’th matrix entry of Ldot
ldot_1mn = O
for k in range(N):
if (k !'=m and k != n):
ldot_lmn += L[i] [m,k]*L[0] [k,n]*(pow(X[i] [m]-X[i] [k],-2)
- pow(X[i] [k]1-X[i] [n],-2))

return(ldot_lmn)

def Ldot_row(m): #for each fixed m, compute Ldot_m,n and combine into a row
return(np.array([Ldot_component (m,n) for n in range(N)]))
#glue up each row to produce the required matrix

return(np.array([Ldot_row(m) for m in range(N)]))
#Euler routine here

for i in range(len(dLambda)-1):
X.append (X[i] + dLambdal[i]*V[i])
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V.append(V[i] + dLambda[i]*Vdot(i))
L.append(L[i] + dLambdal[i]*Ldot(i))

return X, V , L

"""Building XMatrix and PMatrix for solving differential eqn for C"""
def BuildXMatix( X ):  return map(np.diag, X )
# return [np.diag(X[i]) for i in range(len(X))]

def BuildPMatrix(X ,L):
N = len(X[0])
PMatrices = []
for ti in range(len(X)):
P = np.zeros((N,N)) + 1j*np.zeros((N,N))
for i in range(N):
for j in range(i):
Plil[j] = LItil[11(j] / ((X[til[i] - X[til[j1) ** 2)
PMatrices.append(P - (P.conj()).T)

return PMatrices

"""Piecewise routine"""

def PWC_Propagator(A,dt):
IntAdt = CumulativeTrapezium(A,dt)
PropagatorList = MatrixExpList(IntAdt)

return PropagatorList

"""Integrating Xdt with no P terms"""
def NoLambdaPropagator (XMatrix,dt): #Ignoring P terms essentially, adibatic theorem
IntXdt = CumulativeTrapezium(XMatrix,dt)
iIntXdt = [-1j*intxdt for intxdt in IntXdt]
PropagatorList = MatrixExpList(iIntXdt)
return PropagatorList #gibb returning IntXdt

"""Magnus to the second order routine"""

def Magnus_SecondOrder (A,dt):
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Omegal = CumulativeTrapezium(A,dt)

#left hand side approx (partly by nature of commutator)
Omega2_InnerInteg = [ sum([Comm(A[tj],A[ti])*dt for tj in range(ti)])

for ti in range(1,len(A))]

Omega2 = [np.zeros(A[O].shape)] + CumulativeTrapezium(Omega2_InnerInteg,dt)

OmegaTotal = [ Omegal[i] + 0.5*0Omega2[i] for i in range(len(Omegal)) ]

return MatrixExpList (OmegaTotal)

"""Tterative method"""

def CIterative(CO , NoLambdaPropagator , LambdaDotP , dt, power

#Build CIterative for one initial conditions

def

C_0 = [NLProp*CO for NLProp in NoLambdaPropagator]
#solving the homogeneous solution via propagator

C_Al11 = [C_0]

C_i = C_O #starting with initial homogeneous solution

for dummy in range(l,power):

integrand = [LambdaDotP[ti]*C_i[ti] for ti in range(len(LambdaDotP))]

#add zero vector as same with adding zero matrix in above methods

C_i = CumulativeTrapezium(integrand,dt)
C_All.append(C_i)

10):

#Conversion to array allowing us to sum up C_i to give required perturbation

C_Series = [ np.array(C_A11[0]) ]
for i in range(1,len(C_A11)):

C_Series.append( C_Series[-1] + np.array(C_Al11[i]) )

return C_Series

SimulateCIt(PiecewiseProp, NoLambdaProp, LambdaDotP, dt, C_Simulations

5, power = 10): #Ran many sims

#Simulate CIt and get error average over simulations
RelErrorC, PWCC = [1 , []

n=N

120

1000

b



for csim in range(C_Simulations):
CO = GenerateGaussianVector(N = n)
CO = np.matrix(CO.reshape((n,1))) / np.linalg.norm(CO)

#turn into unit vector/matrix

CIter = CIterative(CO , NoLambdaProp , LambdaDotP, dt , power = 10)
#CIter[n] [t] = C_n(t) = n’th iterate at time t

"""Collecting up results"""
PWCC = [PiecewiseProp[ti]*CO for ti in range(len(PiecewiseProp))]
RelErrorC.append( RelErrorList( PWCC, CIter[-1]) )

AvgRelErrorC = np.average(RelErrorC, axis = 0)

return AvgRelErrorC

Set Up for Pechukas Objects

import numpy as np
import PechukasFunctions as PF

import matplotlib.pyplot as plt

class PechukasTrajectory(object):
def __init__(self, x0 = np.array([-0.2,0.3]) , vO = np.array([-0.6,0.8]) ,
10 = np.array( [[0,1.5],[1.5,0]] ), t_.0 = 0, t_end = 1, steps = 100,
Lambda = lambda ti: 0.01*ti, c_simulations = 10):

#initial conditions

self.x0 = x0
self.v0O = vO
self.10 = 10

self.N = x0.size

#Euler paramters
self.t_ 0 = t_0
self.t_end

t_end

self.steps steps
self.t = np.linspace(t_0 ,t_end ,steps+l)
self.dt = float((t_end - t_0))/steps

# self.Lambda = Lambda
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### Uncommenting this line will break the multiprocessing!###
self .dLambda = np.append( np.diff(np.vectorize(Lambda) (self.t)) ,
Lambda(self.t[-1]+self.dt) - Lambda(self.t[-1]))

#Trajectory and data
self.X, self.V, self.L = PF.EulerRoutine(self.x0 ,self.v0 , self.1l0,
self.dLambda)

self.XMatrix , self.PMatrix = PF.BuildXMatix(self.X) ,
PF.BuildPMatrix(self.X,self.L)

self.A = [-1 *(1j * self.XMatrix[ti] + (self.dLambda[ti]/self.dt)
* self.PMatrix[ti]) for ti in range(len(self.dLambda))]

#note that this has one less entry than X (say)
because we took len(dlambda) is one less.

Given N points, there are (N-1) spacings...

# #Build Propagators
self .PiecewiseProp = np.array( PF.PWC_Propagator(self.A,self.dt) )
self .NoLambdaProp = PF.NoLambdaPropagator (self.XMatrix,self.dt)
self .MagnusProp = PF.Magnus_SecondOrder (self.A,self.dt)

#
#Cit
self.c_simulations = c_simulations
self.LambdaDotP = [self.dLambdali]*self.PMatrix[i]
for i in range(len(self.PMatrix))]

# #Results/Errors

self .Errors = {}

self .Errors[’Magnus’] = PF.RelErrorList(self.PiecewiseProp, self.MagnusProp)
self .Errors[’NoLambdaProp’] = PF.RelErrorList(self.PiecewiseProp,
self.NoLambdaProp)

self .Errors[’CIT’] = PF.SimulateCIt(self.PiecewiseProp, self.NoLambdaProp,
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self.LambdaDotP, self.dt, self.c_simulations, self.N, power = 2)

self.LogErrors = {}

self.LogErrors[’Magnus’] = PF.logresult(self.Errors[’Magnus’])
self.LogErrors[’NoLambdaProp’] = PF.logresult(self.Errors[’NoLambdaProp’])
self .LogErrors[’CIT’] = PF.logresult( self.Errors[’CIT’] )

#Level-crosings. ..

class PechukasEnsemble(object):
def __init__(self, Ensemble):

self .EnsembleData = Ensemble

#System/Simulation parameters

self.functions = Ensemble.keys()

self.t = Ensemble[Ensemble.keys() [0]][0].t #pick out the time space
self .methods = Ensemble[Ensemble.keys() [0]] [0] .Errors.keys()
self.Simulations = len(Ensemble[Ensemble.keys() [0]])

self.N = Ensemble[Ensemble.keys() [0]][0].N

self.LoggedErrors = self.GenerateErrors() #LoggedErrors[method] [function]

def GenerateErrors(self):
LoggedErrors = dict()
for method in self.methods:
LoggedErrors [method] = {}
for function in self.functions:
LoggedErrors [method] [function] =
PF.logresult( self.AverageErrorsOverSimulations(method,

self .EnsembleData[function]) )

return LoggedErrors

def AverageErrorsOverSimulations(self, method, ListofTrajectories):
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return (1./self.Simulations)*np.sum( ListofTrajectories[i].Errors[method]

for i in range(len(ListofTrajectories)))

def Plot_Method(self, method):
plt.figure()
for function in self.functions:
plt.plot(self.t, self.LoggedErrors[method] [function], label = function)
plt.xlabel(r’$t$’)
plt.ylabel("Log Rel Error(t)")
plt.title(method)
plt.legend()
plt.show()
savename = " ".join([method, "N=", str(self.N), str(self.Simulations),

"simulations"])

plt.savefig( savename + ’.jpeg’)

def Plot_AllMethods(self):
for method in self.methods:

self.Plot_Method (method)

def Plot_Function(self, function):
method_crisscross = {’Magnus’: ’b--’, ’CIT’: ’rx’, ’NoLambdaProp’: ’k’}
plt.figure()
for method in self.methods:
plt.plot(self.t, self.LoggedErrors[method] [function],

method_crisscross[method] , label = method)

plt.xlabel(r’$t$’)

plt.ylabel("Log Rel Error(t)")

plt.title(function)

#plt.legend ()

plt.show()

savename = " ".join([function, "N=", str(self.N), str(self.Simulations),

"simulations"])
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plt.savefig( savename + ’.jpeg’)

def Plot_AllFunction(self):
for function in self.functions:

self .Plot_Function(function)

Comparing approximation Schemes

Multiprocessing Pechkuas Trajectories

nmnn

import time

import multiprocessing

import PechukasObject

import PechukasFunctions as PF

import numpy as np

def worker (parameters, CPUi ,OutQueue):
""" This is a mulitprocessing "worker" function
Define a set of Lambda functions, creates a dictionary that’s pushed to a queue.
The following creates dictionary keyed by function name
to a list of simulations/trajectory
Lambdas = {’Linear’: lambda ti: 0.001xti,\
’Cubic’: lambda ti: 0.001x(ti**3 + ti*x*x2 + ti),\
’Exp’: lambda ti: 0.001*np.exp(-ti)}

batchsize = int(parameters[’Simulations’]/parameters[’nprocs’])

TrajectoryDict = {function: [] for function in Lambdas.keys()}

for sim in range(batchsize):
output = "CPU " + str(CPUi) + ": I am still Running " + str(sim) +
" simulation of batch size " + str(batchsize) + " @" + str(time.ctime())

print (output)

x0, vO, 10 = PF.GeneratePechukasInitialConditions(N = parameters[’N’],

x_radius = parameters[’xradius’], v_radius = parameters[’vradius’],
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1_radius = parameters[’lradius’], epsilon = 0.01)

for function in Lambdas.keys(Q):
TrajectoryDict [function] .append( PechkuasObject.PechukasTrajectory
(x0, vO, 10, t_0 = parameters[’t_0’], t_end = parameters[’t_end’],
steps = parameters[’steps’], Lambda = Lambdas[function],

c_simulations = parameters[’c_simulations’]) )

OutQueue.put(TrajectoryDict)

def RandomPechkuasEnsemble(parameters):
OutQueue = multiprocessing.Queue() #create the multiprocessing queue

procs = []

for i in range(parameters[’nprocs’]):
p = multiprocessing.Process(target=worker, args=(parameters, i , OutQueue) )
procs.append (p)
p.start()

# Collect eacb batch of ensemble into one big ensemble
EnsembleList = list()
for i in range(parameters[’nprocs’]):

EnsemblelList.append( OutQueue.get()) #"peeling off" results from OutQueue

#Merging into one (dictionary) big ensemble (keyed by function),
probably memory-exhaustive
EnsembleDict = EnsembleList [0]
for ensemble in EnsembleList[1:]:
for function in EnsembleDict.keys():

EnsembleDict [function] += ensemble[function]

# Wait for all worker processes to finish
for p in procs:
p.join()

return EnsembleDict
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if __name__ == ’__main__"’:

print("I is actually started and running")

start_time = time.time()

parameters = {’Simulations’: 8x%125, \
N2 3, 0\
'£_07: 0, \
>t_end’: 100, \
’steps’: 1000, \
’xradius’: np.pi/6, \
’vradius’: np.pi/6, \
’lradius’: np.pi/6, \
’c_simulations’: 10,\

‘nprocs’: 8}

EnsembleDict = RandomPechkuasEnsemble (parameters)
Ensemble = PechkuasObject.PechukasEnsemble (EnsembleDict)
elapsed_time = round(time.time() - start_time,2)
print("Finished in ", elapsed_time)

# Ensemble.Plot_AllMethods ()
Ensemble.Plot_AllFunction()

3 Sat Occupation Dynamics

import numpy as np

from numpy import linalg as la
import matplotlib.pyplot as plt
import time

import math

import PechkuasObject

import PechkuasFunctions as PF

print ("Running")

start = time.time()

f = lambda ti: 0.0l*math.exp(-ti)
t0, t_end, steps = 0 , 1, 100
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t = np. linspace (tO ,t_end ,steps+1)
dt = float((t_end - t0))/steps

I = np.matrix([[1, 0], [0, 111)

SigX = np.matrix([[0, 1], [1, 011)
SigY¥ = np.matrix([[0, -1j], [1j, 0]11)
SigZ = np.matrix([[1, 0], [0, -111)
Count=2

A=Count* (np.kron(I,I)-np.kron(I,SigZ)-np.kron(SigZ,I)+np.kron(SigZ,SigZ))
B=(np.kron(I,I)-0.5%np.kron(I,SigX)-0.5%np.kron(SigX,I))-
Count*(np.kron(I,I)-np.kron(I,SigZ)-np.kron(SigZ,I)+np.kron(SigZ,SigZ))

i=0

Lambdal = []

Lambda2 = []

Lambda = []

H=1[]

X =1]

V=1

L = np.zeros((4, 4))
#print (t0)

while i < t_end+dt:
Lambda.append (f (i))
H.append (A+Lambda [-1]*B)
X.append( np.linalg.eigvals(H[-1]))

i=1+dt

def BuildL(X,B):
L = np.zeros(B.shape)
for i in range(4):
for j in range(4):
L{i,jl = (X[i] - X[jD)*BI[i,j]

return L
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j=o0

L=1]
Density = []
while k < t_end+dt:
if(j < 100):
V.append ((X[j+1]1-X[j]1)/(Lambda[j+1]-Lambda[j]))
j=i+t
L.append( BuildL(X[j],B) )
# Density.append(np.kron(cO*P.MagnusProp[-1], cO*P.MagnusProp[-1]))
#L.append (X [j] [m]-X[j] [n]1)B[m] [n]
k=k+ dt

P = PechkuasObject.PechukasTrajectory(X[0], V[0], L[0], t_0 = 0, t_end = 1, steps = 100
Methods = {’Magnus’:’b--’, ’CIT’:’k’, ’NoLambdaProp’:’rx’}
for method in Methods.keys():

plt.plot(P.t, P.LogErrors[method], Methods[method])

plt.xlabel(r’$t$’)

plt.ylabel("Log Rel Error(t)")

c0 PF.GenerateGaussianVector (N=4)

cO = np.matrix(c0)/np.linalg.norm(c0) #unit 1xN vector (i.e. covector)

Ct = [P.MagnusProp[z]*c0.T for z in range(len(P.MagnusProp))]

Density = [np.kron(c,c.H) for c in Ct]
Density_diagonal = [d.diagonal() for d in Density]

plt.figure()
for x in range(Density_diagonal[0].size):
den =[Density_diagonal[z] [0,x] for z in range(len(Density_diagonal))]
plt.plot(P.t, den, label = str(x+1))
plt.xlabel(r’$t$’)
plt.ylabel (’Occupation Number’)
plt.legend ()
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