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Abstract

The photon structure function Fy(z,Q?) has been measured using data
taken by the OPAL detector at ete™ centre-of-mass energies of 91 GeV,
183 GeV and 189 GeV, over the Q)? ranges 1.5-30.0 GeV? (LEP1), and 7.0-
30.0 GeV? (LEP2), probing lower values of = than any previous experiment.
New Monte Carlo models and new methods, including multi-variable un-
folding, have been used to reduce model dependent systematic errors in the

measurement of F7.
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Chapter 1
Introduction

The photon is the carrier of the electromagnetic force, and one of the fun-
damental particles of nature. In classical electrodynamics, the behaviour of
photons is governed by Maxwell’s equations, which are linear. This means
that classically there is no structure in the photon, and in this theory it is
not possible for two photons to interact. However, in quantum electrody-
namics it is possible for a photon to fluctuate, for a brief period, into a pair
of charged particles such as electrons or quarks. The pair always consists of
a particle and its anti-particle. If there is no other particle present, the pair

will recombine to form the photon again. But if a second photon enters the

vy

y (N F

Figure 1.1: Production of a fermion—antifermion pair from two photons in

QED.

12



CHAPTER 1. INTRODUCTION 13

picture, it may interact with one of the charged particles, so that the first
photon is broken up. Thus by studying the interactions of two photons, it is

possible to learn about the internal structure of the photon.

Figure 1.2: An aerial view of LEP.

Figure 1.1 shows the simplest two-photon interaction, in which the pho-
tons produce a pair of charged particles. The particles produced may be
leptons or quarks, which produce a hadronic final state. In the case of lep-
tons, the interaction can be calculated exactly using QED. However, hadronic
photon interactions are not completely calculable because some parts of the
solution are non-perturbative.

Much of the theoretical interest in photon structure is related to existing
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ideas about proton structure, which has been measured accurately by a se-
ries of experiments beginning at SLAC [1] in the late 1960s. Some features
of proton structure may be reflected in photon structure also, but photon
structure has not been measured nearly so accurately.

The first measurements of hadronic photon structure were made in the
early 1980s at the PETRA collider. This was an ete™ collider operating at a
centre-of-mass energy of about 30 GeV. In v+ interactions at eTe™ colliders,
both the photon target and the photon probe are emitted from the beam
electrons!. This means that the energy of the target is unknown, and must
be reconstructed from the final state. Because is is not always possible to
observe the whole of the final state, measurements of photon structure [2—
19] do not have the accuracy of their proton counterparts.

The most recent measurements of photon structure have been made at
LEP collider at CERN (Figure 1.2). Experiments at LEP are able to make
these measurements over a large kinematic range, due to the high energy of
the beams, and thus investigate many areas of photon physics.

This thesis describes a study of the hadronic photon structure function,
using data from the OPAL experiment, at ete™ centre-of-mass energies of
91 GeV, 183 GeV and 189 GeV, collected during the years 1993-1995, and
1998.

LFor conciseness, positrons are also referred to as electrons.



Chapter 2

LEP and OPAL

2.1 LEP

The LEP (Large Electron Positron) collider is an e*e™ storage ring at CERN
which began operating in 1989. It has a circumference of 27 km and is located
100 m underground. Four experiments are situated at symmetrical collision
points around the ring: OPAL, ALEPH, DELPHI and L3. The layout of
LEP is shown in Figures 2.1 and 2.2.

During the first phase of LEP (LEP1), from 1989-1995, the centre-of-
mass energy of the electron and positron beams was close to the mass of the
Z° particle at 91 GeV. The energy was increased for the LEP2 phase; first to
161 GeV to produce WTW ™ pairs, then in steps of a few GeV up to 189 GeV
by 1998.

LEP has curved sections containing dipole magnets for bending the beams,
with quadrupole and sextupole magnets for focusing, and four long, straight
sections containing the accelerating cavities and the experiments. The accel-
erating components were originally room-temperature copper cavities, but
many superconducting cavities have been added as part of a continuous up-

grade process in order to increase the beam energy during the LEP2 phase.

15
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Figure 2.1: A diagram of the LEP ring, showing the positions of the CERN

site and the four LEP experiments.
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CERN Accelerators

ALEPH ‘¢
LEP <" OPAL

S¥DELPHI

electrons
— POSItTONS
— PFOtONS

antiprotons
Pbions
LEP: Large Electron Positron collider LPI: Lep Pre-Injector
SPS: Super Proton Synchrotron EPA: Electron Positron Accumulator
AAC: Antiproton Accumulator Complex LIL: Lep Injector Linac
ISOLDE: Isotope Separator OnLine DEvice ~ LINAC: LINear ACcelerator
PSB: Proton Synchrotron Booster LEAR: Low Energy Antiproton Ring

PS: Proton Synchrotron
Rudolf LEY, PSDivision, CERN, 02.09.96

Figure 2.2: The CERN accelerator complex (not drawn to scale).

17
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LEP was designed to use the existing accelerator system at CERN as
an injector. The process begins in the LIL (LEP Injection Linac), where
electrons from an electron gun are accelerated to 600 MeV. Positrons are
produced by colliding some of the electrons with a fixed target. Particles
from the LIL are accumulated in the EPA (Electron Positron Accumulator)
into four or more bunches each of electrons and positrons. The bunches are
injected into the PS (Proton Synchrotron) ring and accelerated to 3.5 GeV,
then into the SPS (Super Proton Synchrotron) ring where they are acceler-
ated to 20 GeV. The PS and SPS accelerators can accelerate different types
of particle in a complex cycle, so fixed target experiments using protons can
operate at the same time as LEP. From the SPS the beams are injected into
LEP and accelerated to the final collision energy. The process of filling LEP
takes 15-30 minutes, after which the beams can be collided for several hours,

while the four experiments collect data.

2.2 Bunch modes in LEP

The electron and positron beams in LEP are made up of a number of bunches
containing ~ 10® electrons or positrons. Various bunch modes may be used.
From 1989 to 1992, LEP was operated with 4 bunches in each beam (4+4
bunch mode). In 1992 this was changed to 8+8 bunch mode to increase the
luminosity. From 1995 onwards, LEP has used bunchtrains, containing up

to 4 bunches each, with 4 bunchtrains in each beam.

2.3 OPAL

The OPAL (Omni Purpose Apparatus for LEP) [20] experiment has been

operational since the start of LEP in 1989. It was designed to detect, classify

_|_

and reconstruct a wide variety of events that can occur in e*e™ collisions.
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The main feature of OPAL are

o tracking of charged particles and vertex reconstruction in the central

detector,

e detection (and identification in the central region) of photons and elec-

trons,
e measurement of hadronic energy,
e identification of muons, and

¢ luminosity measurement by detecting electrons scattered at small an-

gles.

A diagram of OPAL is shown in Figure 2.3. OPAL has numerous subdetec-
tors, each of which has a two-letter shorthand name. For convenience, this
convention is adopted in the following sections. Outside the central region,

each subdetector is in two parts, one on either side of the detector.

2.3.1 The OPAL coordinate system

In the OPAL right-handed coordinate system, the z-axis points towards the
centre of LEP and the z-axis points in the direction of the e™ beam. This de-
fines a y-axis a few degrees away from the vertical. Spherical and cylindrical
coordinates are also used, with (r,0,4) defined in the usual way. The right
and left sides of OPAL are defined such that right is the positive z direction.

2.3.2 The magnet

The magnet consists of a solenoidal coil and an iron yoke. It produces a
nearly uniform magnetic field of 0.435 T within the tracking region. The yoke
serves as part of the hadronic calorimeter, providing 4 interaction lengths of

material for hadrons.
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Figure 2.3: A cut-away diagram of OPAL showing the locations of the main

subdetectors.
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2.3.3 The central tracking system (CT)

The tracking detectors are designed to measure the momentum of charged
particles. They are contained within a 4 bar pressure vessel at the centre of
OPAL. The largest part of the tracking system is the jet chamber. Outside
the jet chambers are the Z chambers, which give an improved measurement
of the z position of tracks. A vertex chamber detects charged particles closer
to the interaction region and finds secondary vertices. Between the pressure
vessel and the beam pipe is the silicon microvertex detector, which accurately
measures the primary vertex and the decays of particles such as 7 leptons

and heavy flavour hadrons.

The jet chamber (CJ)

CJ measures the momentum of charged particles with good spatial resolution
of tracks and the possibility of particle identification. It is 4 m long, with an
inner radius of 0.25 m and and outer radius of 1.85 m. It is divided into 24
sectors each with 159 sense wires parallel to the beam. Cathode wires planes
form the boundaries between the sectors. CJ covers 98% of the total solid
angle with at least 8 wire hits on a track (out of a maximum of 159).

The coordinates r and ¢ of a hit are determined accurately from the drift
time and the wire positions; z is found by the charge division method using
the integrated charge at both ends of the wire. The energy loss dE/dz of a
particles is measured from the total charge reaching the signal wires, and is
used for particle identification.

The typical spatial resolution of CJ is 135 ym in r—¢, and 6 cm in z. The

momentum resolution is o,/p? = 2.2 x 1072 GeV .
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Figure 2.4: The OPAL experiment, opened to expose the central barrel re-
gion. Also visible on the left is one of the endcap electromagnetic calorime-
ters.

The Z chambers (CZ)

CZ is used to give a better z measurement for charged particles after they
leave CJ, which has poor z resolution because of the orientation of the sense
wires. CZ forms a barrel around CJ. It consists of 24 drift chambers, each
4 m long, 0.5 m wide and 59 mm thick. Each drift chamber is divided into
8 sections in the z direction, with 6 sense wires in each section.

The average z resolution of CZ is 150 pm.
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The vertex chamber (CV)

CV is designed to find secondary vertices from particle decays by providing
precise positional measurements of charged particles close to the interaction
region. It surrounds the carbon fibre pressure pipe, inside the jet chamber.
CV is a 1 m long cylindrical drift chamber with radius 0.24 m. It has an
inner layer of 36 axial cells with 12 wires along the beam direction, and an
outer layer of of 36 stereo cells with 6 wires each, at 4 degrees to the beam
direction. The axial cells have an average resolution in r—¢ of 55 ym, and give
a coarse z measurement which is used for fast triggering. The combination

of axial and stereo cells provides accurate measurements in r, ¢ and z.

The silicon microvertex detector (SI)

SI is the closest subdetector to the interaction region, and is used to accu-
rately locate the position of the primary vertex and to find secondary vertices
from the decays of particles such as 7-leptons and heavy flavour hadrons. It
is inside the carbon fibre pressure tube, outside the beam pipe. SI was first
installed in 1991 as two barrels of silicon wafers providing measurements in
r—¢. Further wafers were added in 1993 to allow z measurements.

The resolution of SI'is 5 ym in r—¢ and 13-20 gm in z, depending on the
angle of the particle.

2.3.4 The time of flight system (TOF)

The time-of-flight system is used for triggering and identification of charged

particles. It also helps to reject cosmic rays.

Time of flight barrel (TB)

TB covers the barrel region outside the solenoid, for | cos | < 0.82. It con-

sists of 160 6.84 m long scintillation counters. Light from the scintillators is



CHAPTER 2. LEP AND OPAL 24

collected at the ends of each counter via lightguides glued to phototubes.
The time resolution of TB is about 300 ps.

The tile endcap (TE) and MIP plug

TE [21] was installed in 1996 to enhance the triggering information from the
forward region. It is located between the pressure bell and the endcap electro-
magnetic presampler. The tile-based design was used because of severe space
constraints and the high magnetic field in that region. A 10 mm scintillating
layer is read out with wavelength shifting fibres and phototubes. The timing
precision is about 5 ns, which is sufficient to determine unambiguously the
collision time when LEP is operating in bunchtrain mode.

The MIP plug was added in 1997 as an low-angle extension to TE. It is
used as a muon veto, and to detect forward particles. It partly overlaps with

the gamma catcher (see Section 2.3.8).

2.3.5 Electromagnetic calorimetry (ECAL)

The electromagnetic calorimeters detect and measure the energy of electrons
and photons. They are made of lead glass blocks which provide total absorp-
tion of electromagnetic showers. They are outside the pressure vessel and the
coil - which present about 2 interaction lengths of material to electrons and

photons - making presamplers necessary for accurate energy measurement.

The barrel electromagnetic presampler (PB)

PBis located outside the coil and in front of the lead glass. It has 16 chambers
with 2 layers of limited streamer mode tubes, covering a cylinder of radius
2.39 m and length 6.62 m.

The resolution in r—¢ for a single charged particle is 1-2 mm depending on

the angle, and the resolution in z is about 10 cm. The energy resolution for
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the combined presampler and lead glass calorimeter is given in the following

section.

The barrel lead glass calorimeter (EB)

EB has 9440 lead glass blocks, instrumented with magnetic field tolerant
phototubes. The blocks point at the interaction region, tilted slightly to
remove gaps. EB covers the region |cosf| < 0.82. The energy resolution
including information from the presampler is o5/E ~ 10%/\/'E, where E is
in GeV.

Figure 2.5: A picture taken during the construction of OPAL, showing half
of the barrel lead glass calorimeter.
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The endcap electromagnetic presampler (PE)

PE is located between the pressure bell and the lead glass calorimeters (TE
was installed in front of PE in 1996). It consists of 32 thin multiwire chambers

at each end of OPAL.

The resolution in r—¢ is 2-4 mm, and the resolution in € is about 4.6 mrad.

The endcap electromagnetic calorimeter (EE)

Like the barrel electromagnetic calorimeter, EE uses an array of lead glass
blocks. They are not pointing at the interaction region but are coaxial with
the beam line. The readout system uses single stage multipliers known as
vacuum photo triodes, which are able to operate in the full axial field of the

magnet.

The energy resolution of EE is 05/E ~ 5%/VE, where E is in GeV.

2.3.6 Hadron calorimetry (HCAL)

The electromagnetic calorimeters totally absorb electrons and photons, but
present only about 2.2 interaction lengths of material to hadrons. The re-
maining hadronic energy is measured by the hadron calorimeter. The iron
yoke of the magnet is segmented into layers, with planes of detectors between
the layers. The hadron calorimeter is divided into three parts, together cov-

ering 97% of the total solid angle: the barrel, the endcaps and the pole tips.

Hadron endcap and barrel calorimeters (HB/HE)

There are 9 layers of chambers in the barrel calorimeter, alternating with
slabs of iron. Each end is closed by a doughnut-shaped endcap, with 8
layers of chambers and iron. The active elements of the detectors are limited
streamer tubes, with wires parallel to the beam in the barrel and horizontal

in the endcaps. The signal is read out from pads; the wires are used only
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for monitoring purposes. Layers of pads are grouped together to form towers
which divide the solid angle into 976 equal elements.
The energy resolution is typically o5 /E ~ 120% /v E, where E is in GeV.

The hadron pole-tip calorimeter (HP)

The pole-tip calorimeters extend the coverage of the hadronic calorimeters
to |cos 0] < 0.99. To avoid perturbing the magnetic field, the gap between
the iron layers is only 10 mm compared to 25 mm in the barrel and endcaps.
The detectors are thin multiwire chambers, similar to those in the endcap
electromagnetic presampler.

The energy resolution is og/E ~ 100%/+/E for 15 GeV hadrons, where
E is in GeV, but degrades at higher energies due to leakage.

2.3.7 The muon detectors (MB/ME)

Muons, like hadrons but unlike electrons, tend to pass through the elec-
tromagnetic calorimeters. The muon detectors are outside the hadronic
calorimeters. Muons are identified by matching tracks in the muon detectors
and the central tracking detectors. The main background is from hadrons
which either fail to interact before the muon detectors or produce secondary
particles which give tracks in the muon detector.

The barrel part of the muon detector (MB) consists of 110 drift cham-
bers in 4 layers covering |cos 8| < 0.68, while the endcaps (ME) extend the

coverage to | cos | < 0.98 with limited streamer tubes.

2.3.8 The forward detector (FD)

The forward detector’s main uses are to measure luminosity by counting
Bhabha events and to tag low-angle electrons in two photon events. There are

four parts to the forward detector: the main calorimeter, the tube chambers,
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the gamma catcher and the far forward monitor. Two other components of
the forward detector, the fine luminosity monitor and the drift chambers,
were removed between the 1992 and 1993 running periods in order to make
room for the silicon tungsten detector (Section 2.3.9). The layout of the

forward detectors is shown in Figure 2.6.

The forward calorimeter (FK)

The main calorimeter of FD has 35 layers of lead-scintillator sandwich, pre-
senting 24 radiation lengths of material to electrons. Hadronic showers are
not well contained by FK, leading to poor hadronic energy measurement
in the forward region. The first four layers are a presampler, and are read
out on the outer edge only. The remaining layers are read out on the inner
and outer edges, giving a coarse measurement of §. There are 16 azimuthal

sectors, giving a ¢ measurement from the ratio of signals in adjacent sectors.

The energy resolution of FK is op/E ~ 17%/\E, where E is in GeV.

The tube chambers (FB)

The tube chambers give a more accurate measurement of the position of
showers than the calorimeters, and are situated between the presampler and
the rest of the main calorimeter. There are three layers of proportional tubes;
the first two are at right angles to each other and the third lies diagonally
across the other two.

The resolution is about 2 mrad in 6 and ¢.

The gamma catcher (FE)

FE is non-containing calorimeter which fills the gap between FK and EE. It

consists of 7 layers of lead-scintillator sandwich in 8 azimuthal sections.
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The far forward monitor (FF)

FF consists of two small lead-scintillator calorimeters 7.7 m from the inter-
action point, on either side of the beam pipe. Its main use is for online
luminosity measurements, but it can also be used for tagging very low-angle
electrons, and has recently been upgraded to improve the positional mea-

surement of electrons [22].

2.3.9 The silicon tungsten detector (SW)

The silicon tungsten detector was installed between the 1992 and 1993 run-
ning periods in order to provide a more accurate luminosity measurement
than is possible with FD. It covers the region in 6 from 25-59 mrad. For
LEP2 running, a shield was installed to protect the central tracking detec-
tors from synchrotron radiation. This moved the lower edge of the useful
SW acceptance to 33 mrad. SW has 19 layers of silicon detectors interleaved
with 1-2 radiation lengths of tungsten, with a layer of silicon in front for
presampling. The detector is divided into 16 wedge shaped segments in ¢,
arranged to avoid gaps. Each wedge is divided into 64 pads for positional
measurements.

The energy resolution of SW is o5 /E ~ 24%/\/E (where E is in GeV) at
LEP 1 energies, and degrades to about 6% at LEP2 energies due to leakage.
The angular resolution is about 1 mrad in 6 and ¢.

During 1995, the first year of bunchtrain running, SW could only be
read out on every third bunch crossing. This greatly reduced the amount of
tagged v*y data available for that year, while introducing complications for
the luminosity measurement. For this reason, the 1995 data with electrons

tagged in SW is not used in this analysis.
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2.3.10 The trigger

The LEP bunch crossing rate is 45 kHz, which is much faster than the OPAL
detector can be read out. By making fast decisions about whether a bunch
crossing initiated an interesting physics event, the trigger system [23] reduces
the event rate to 1-10 Hz. The trigger also has to reject cosmic rays, beam
gas interactions and noise from detector elements. Most events are triggered
by multiple independent conditions in different parts of the detector. Having
more than one trigger condition increases the trigger efficiency and aids in
estimating the efficiency.

There are two types of trigger: those that depend on an energy threshold
in a single subdetector, and those that require a coincidence in more than
one subdetector, for example a track in CJ and a corresponding cluster in
EB, in the same 6-¢ region.

The trigger system has two levels, the pretrigger and the main trigger.
The faster response of the pretrigger was required when LEP was operating
in 8+8 bunch mode (1992 to 1994).

The most important trigger signals for selecting y*v events are listed in
Table 2.1. The trigger conditions are programmable, and vary slightly from

year to year. More details are given in Sections 5.5.1 and 5.5.2.

2.3.11 The data acquisition system

The different subdetectors have a variety of different readout hardware, and
are coordinated from a central control system. If a positive trigger decision
is made, data from each subdetector is read out and passed to the event
builder and filter, which is a multiprocessor system contained in two VME
crates. The filter takes data from the event builder and is able to make a
more sophisticated decision than the trigger on whether to keep or reject
each event. A farm of HP workstations reconstructs and archives the events
that pass the filter.



CHAPTER 2. LEP AND OPAL

32

trigger signal | subdetector(s) description
FDHIOR* FD total energy at either end > high threshold
SWHIOR SW total energy at either end > high threshold
TBM1 CT > 1 barrel track
TM1 CT > 1 track
TM2 CT > 2 tracks
TM3* CT > 3 tracks
EBTOTLO EB total barrel energy > low threshold
EBWEDGE EB energy in ‘wedge’ > threshold
EERLO EE total energy on left side > low threshold
EELLO EE total energy on right side > low threshold
EEPRLR EE logical OR of left and right pretrigger signals
TPTTTO(B) CT/TOF > 1 correlated 6-¢ bin
TPTTEM CT/ECAL > 1 correlated 6-¢ bin
TPTOEM(B)* | TOF/ECAL > 1 correlated 6-¢ bin
TPEML ECAL > 1 ¢ bin over threshold, left side
TPEMR ECAL > 1 ¢ bin over threshold, right side
TPTO(1/B) TOF > 1 6-¢ bin
TPEM1 EM > 1 6-¢ bin
TBEBS TB/EB same ¢ sectors hit
LCALLO FK > low threshold left
RCALLO FK > low threshold right

Table 2.1: Description of the OPAL trigger signals. The high and low en-
ergy thresholds for each trigger condition vary, especially between LEP1 and
LEP2. Those marked with an asterisk are stand-alone triggers, while the rest
require coincidences with other triggers.




Chapter 3

Theory of photon structure

3.1 Deep inelastic scattering of quasi-real pho-

tons

The kinematics of a two-photon event at an ete™ collider are illustrated in
Figure 3.1. Each beam electron emits a virtual photon and is scattered.
The two photons interact to produce a final state which may be hadronic or
leptonic. The case of leptonic final states can be calculated in QED. This
study is concerned with hadronic final states, calculation of which involves
not only QED but also QCD, in both perturbative and non-perturbative
regimes.

The cross-section for two-photon events can be factorised into two parts:
a luminosity function, which describes the production of the two photons
from the beam electrons, and a term describing the interaction of the two

photons. It can be written as [24]

1
do,te-—ote-x = L, [oTT + €101T + €207, + €16201L + §€1€2TTT cos 2¢

dP/1 dplz

3.1
Etag Etag2 ( )

—|—2\/€1(1 + 61)\/62(1 + €2)7rL cos 29
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p1 = Eb(l,0,0, 1)
Py = Eiag(1,81n 0444, 0, cos O14)

qi
qz
p2 = Ey(1,0,0, 1) \

I . . .
Ph = Eiag2(1, sin 4442 cOS @, sin Oy440 sin ¢, — cos Or442)

Figure 3.1: Deep inelastic electron-photon scattering.

where X represents the hadronic final state. The photons can be either
transversely or longitudinally polarised, so the cross-section has four parts:
ort, our, o7 and orr. The luminosity function L., and the factors ¢; and
€2 can be calculated in QED. The interference terms 7pr and 7rp vanish
after integration over ¢, the angle between the scattering planes of the two
electrons. This integration is necessary because in the events studied in this
thesis, only one of the scattered electrons is observed.

If one of the photons is nearly real, the two-photon interaction can be
thought of as deep inelastic scattering (DIS) of an electron from a photon

target. It is useful to introduce the usual DIS variables (neglecting the elec-
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tron mass):

Q* = —q1® = 2E;Eog(1 — cos fiag) (3.2)

P? = —qy® = 2B, Eioga(1 — 05 bragr) (3.3)

W2 = (¢ + ) (3.4)
2 2

r = 2(;2‘ - = g 1?2 e (3.5)

y = %y Lreg (3.6)

P g Ey
The DIS picture is valid when P? < Q2. This requires that one of the
electrons is scattered at a large angle, while the other is scattered at an
angle Oiago < Omin. The luminosity function L., peaks for low scattering
angles, so the untagged electron will in most cases be scattered at a much
lower angle than the tagged electron.
Equation 3.1 can then be integrated over the angular distribution of the
undetected electron, to give the cross section for the process ey — eX. In
order to make a simple connection with the parton level, the cross section is

usually written in terms of the structure functions

0>
Fﬁl’z = ———O0T1T, (37)
dnazx
2
F]:'/Y = 4:71'2050-LT, (38)
or
2
Y = .
1 Al o (UTT)7 (3 9)
0>
v
Fy = 47r2a(0'TT‘|‘0'LT)- (3.10)

This leads ultimately to

2
d"Oey_ex B Ao

dzdQ?  zQ*

(1) F} — ayFY|. (3.11)
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3.2 Parton distribution functions

The differential cross section for elastic scattering of an electron and a free

quark within a hadron or photon can be calculated in QED [25]:

d20eq_>eq B Ao

ot = (1 (1 - y)) 5o~ O (3.12)

94
where ez is the charge of the scattered quark which carries momentum frac-

tion ( of the target photon, and travels in the direction of the target photon

(i.e. with small transverse momentum). Rearranging Equation 3.11 gives

2
d*ey_ex 2ra’

dedQ? ~ zQf

[(1+ (1 -9)?) F§(2,Q%) - v*F{(=,Q%)] . (3.13)

It can be seen by comparing Equations 3.12 and 3.11 and integrating over

the momentum fraction carried by the struck quark, that in the leading order

DIS model,

B o= Y [ we (e - Oa()dC

.
= Y ze,’q(z) (3.14)

.
where g(z) is the parton distribution function (PDF) for a quark of type
g within the hadron. The sum runs over all quarks and anti-quarks with
4m,? < W2. The delta function ensures that the momentum fraction of the
scattered quark is equal to the variable x, which was defined previously in
terms of the final state quantities. The longitudinal cross-section is zero in
the leading-order parton model; this is because a real spin % quark cannot
absorb a longitudinal photon. However, this is clearly not the complete
picture even in QED, because of the restriction on the transverse momentum

of the target quark.

In next-to-leading order (NLO), the quark—photon scattering process is

one step removed from the parton distribution functions. The quark can emit
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a gluon before interacting, or a gluon can become a quark-antiquark pair
and thus interact with the photon, which is impossible in the leading order
calculation. There is also the possibility that the struck quark came directly
from the target photon; thus the NLO picture includes the direct photon—
photon interaction of QED. The transverse momentum of the struck quark is
no longer required to be small, which has important consequences for the Q2
evolution of the structure function. ¥y, is non-zeroin NLO. Because the direct
contribution is so important, it is generally included in LO parameterisations
of F;, although it is strictly a NLO term.

There are several factorisation schemes for NLO structure function pa-
rameterisations, in which different NLO terms are absorbed into the defini-
tion of the parton distribution functions. In the DIS scheme, all the NLO
terms are absorbed, leading to a definition of F3 that is identical to the LO
case (Equation 3.14). The other extreme is the MS (Minimal Subtraction)
factorisation scheme, in which only certain divergent parts are absorbed.
Also commonly used is the DIS,, factorisation scheme, in which only the

direct term and the divergent parts are absorbed.

3.3 Theoretical models of photon structure

3.3.1 QED calculation of F)

If the interaction of quarks with gluons is ignored, the photon structure
functions can be calculated within QED. The result in the limit of light
quark mass and a real target photon is [26]

Q1 —2)

2

—w—|—8w2(1 —z)

F, = 30421671_ 1—2w—|—2w)

TMg

Fr, =

2(1— ) (3.15)
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where the sum runs over all quark flavours with 4m,? < W2. The QED struc-
ture function is shown in Figure 3.2. QCD corrections [26] to Equation 3.15
show that at asymptotically high @2, while the shape of the structure func-
tions is altered by quark-gluon interactions, the Q? dependence remains the
same; Fy oc In Q2. The QED result corresponds to the direct photon term of
the next-to-leading order DIS model. For the proton, the prediction of scal-
ing violations and non-zero Ff requires gluon interactions, yet these effects
are already present for the photon in free quark theory. Because of this, the
direct term is sometimes referred to as the ‘anomalous’ part of the photon
structure function.

The QED photon structure functions have been measured using the pro-

_|_

cess ete” — ete putp™ [27].

3.3.2 Vector meson dominance

At low Q? the hadronic part of F} is dominant. It is not possible to calculate
the shape of the structure function in this region, because the calculation
involves non-perturbative QCD. It is possible to calculate the evolution of
F) with @2, but a low Q? input is still required.

The usual way of approximating F. at low Q? is to use the Vector Meson
Dominance (VMD) model. The photon can fluctuate into a vector meson (p,
w or ¢), which has the same quantum numbers as the photon, and thereby
interact as a hadron. The vector meson structure functions have not been
measured, but can be identified with the pion structure function, which has
been measured using the interaction 7~ + p — ptu~™ + X for z > 0.2 [28].
The VMD prediction for Fy is then [24]

FyYMP — 0.2a(1 — ). (3.16)

Alternatively, a VMD estimate can be obtained from a fit to low-Q? +*y
data. This was done by the TPC/2y experiment, which parameterised the
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VMD component of Fy as [7]
F,YMP — 0]0.222°%1 (1.0 — £)°%° 4 0.06(1.0 — z)>*). (3.17)

These parameterisations are shown in Figure 3.2.

3.3.3 QCD evolution

At asymptotically high values of @2, F, is completely calculable, because the
perturbative QCD terms dominate [26]. However, at moderate values of Q?,
from 1-100 GeV?, neither the asymptotic formula nor the VMD model can
be expected to satisfactorily describe 4*v interactions. The usual approach is
to take an input distribution at low @Q?, either from the VMD model or from
a fit to y*y data, and evolve to higher @* using QCD evolution equations.
These equations take into account that at higher Q% the available phase space
for gluon emission by the struck quark is increased. Since the momentum of
the parent quark is shared between the emitted gluon and the quark itself,
the average momentum fraction of the struck parton is lowered. Also, the
gluons can produce sea quarks with even lower momentum. This means that
a shift from high = to low z is expected in the hadronic part of the structure
functions as Q2 increases. In addition, the contribution from the bare photon
increases with Q2 over the whole z range.

For massless quarks, the evolution of the quark distributions ¢;(z, @*) and

the gluon distribution g(z,@?) is given by the DGLAP (Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi) [29] equations, which to leading order are':

dgi(z,Q%) _ «
dlog@> 27

o, /:cl_:c/ <Qi(w/,Q2)qu(§)+gi(w’,Q2)qu(§)> (3.18)

1For derivations of the DGLAP equations, see [30] or [25].
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Figure 3.2: Components of F, according to different models: QED (Equa-
tion 3.15) and FKP (Section 3.4.1) at @*=10.0 GeV?, simple VMD (Equa-
tion 3.16) and the TPC/2y VMD parameterisation (Equation 3.17).
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dgi(z,Q?) tda’ Z + Q)P (Z
W Q* 271'/ ( @@ ) % Q) gg(wl)) -
(3.19)

The splitting function P,;(z) is the probability of finding a parton of type ¢

inside a parton of type 7 with momentum fraction z.

3.3.4 Low z

Results from the HERA [31, 32] experiments show that the proton structure
function F} rises at low x, which indicates the presence of a large sea-quark
contribution (Figure 3.4). In this region, the evolution is expected to be
dominated by the gluon distribution, which becomes more significant as x
becomes lower. Hence low-z measurements can constrain the gluon distri-
bution, even though in leading order F, is not sensitive to gluons. It has
not yet been possible to determine whether a similar low-z rise exists in the
photon structure function, because of the limited low-z reach of ey scattering
experiments compared to ep scattering experiments.

The DGLAP equations should begin to break down at low z because
log(1/z) terms become important. At asymptotically high @Q* the DLLA
(Double Leading Log Approximation) retains the leading log terms and pre-
dicts the low = behaviour. Ignoring the effect of the quark distributions, the
gluon distribution is given by [25]

1
g(z,t) ~ —exp (3.20)

g

144 logt/A? 1
og 0
(33 — 2ny) log to/A?

The factorisation scale ¢ is the virtuality of the gluon, and ¢4 is the starting
point of the evolution.

At lower Q?, it is necessary to re-sum the leading log terms in 1/z to
all orders. This is accomplished using the BFKL equation, in which the

integration is performed over the full phase space of the gluons. The result
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Figure 3.3: The evolution of F; according to the GRV parameterisation,
from Q?=2.0 GeV? to @?=20.0 GeVZ2. Both the leading order and higher

order predictions are shown.
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is [25] .
o(2,t) ~ % [7 akzh(ke (3.21)

where h(k;) ~ kt% at large k; and A = 12log 2= ~ 0.5.
There is not yet any evidence that the BFKL approach is required to

explain experimental data, even in kinematic regions where it ought to apply.

3.3.5 Heavy flavour contributions

The charm mass is much larger than that of the light quarks, and it is not a
good approximation to treat charm as massless over the full kinematic range.
The constraint W? > 4m,? means that the charm contribution to F; will
be absent at high z, but the cut-off is not sharp because the phase space
for charm production is limited near the threshold. At lower z the charm
contribution is large due to the % charge. The contribution from b quarks
is negligible at LEP energies because of their much higher mass and smaller
charge. Calculation of charm evolution requires the massive quark DGLAP
equations; however, a combination of direct and resolved QPM contributions

is a good approximation and treats the charm threshold correctly [33].

3.3.6 The P? dependence of Fy

The discussion in the previous sections has assumed that the target pho-
tons are real. In fact the virtuality P? is only restricted to be less than a
fixed maximum, which is also the minimum @? for the tagged electron. the
minimum Q2 by the anti-tag requirement. The distribution of P? can be cal-
culated as a luminosity function (the actual distribution of P? in the data is
experimentally unknown). It is strongly peaked at the minimum P?, which in
single-tagged two-photon events is zero. It is therefore usual to treat the tar-
get photons as real for the purposes of kinematics. This does not necessarily

mean that the impact of non-zero P? on the structure function is negligible.
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Figure 3.4: Measurements of F} by ZEUS [32].
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Virtual photons exhibit a more pointlike behaviour than real photons. The
hadronic part of the structure function is therefore suppressed, and this may
have consequences at low x, where the hadronic part of F, dominates.
Predictions for the P? dependence of F, involve interpolation between
the hadronic and perturbative regions. Typically, the input distribution is
modified according to P? before evolving with Q%. There are problems in
finding a suitable VMD input for virtual structure functions, as the only
data available is for real mesons, and in extending the model to large P? ~
Q2. There are large variations between the available parameterisations of

FJ(x,Q% P?), though they show the same qualitative behaviour.

3.4 Parameterisations of F)

3.4.1 Field, Kapusta and Poggioli (FKP)

This is an all-order QCD calculation of the perturbative part of the photon
structure function [34]. The perturbative and non-perturbative parts are
separated by a p; cut for the quarks at the target vertex. The calculation
was performed using iterated Altarelli-Paresi equations.

No fit to data was performed, and an extra contribution is required for
the non-perturbative part, such as, for example, the TPC/2v low Q? param-
eterisation [7] which was used by AMY [35].

Schuler and Sjéstrand [36] argued that there is no consistent way to com-
bine perturbative and non-perturbative parts within the FKP framework,
and that the FKP model does not work well at low z and low Q2.

The FKP parameterisation for Q% = 10.0 GeV? is shown in Figure 3.2.
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3.4.2 Levy Abramowicz and Charcula (LAC)

The LAC [37] parameterisations use as an input distribution a general form

suggested by the solution of the DGLAP equations:

2 2
B 2  TTH (1 — w) D1

rgo(z) = Ae, wl “Bin(i—2) +Cz"(1—2)E

zgo(z) = CuzPs(1 — z)Ps. (3.22)

The first and second terms in the quark distributions correspond to the forms
expected for the pointlike and hadronic parts, respectively. There are in total
12 parameters, which were fitted to data in the range Q?=4-100 GeV? (LAC1,
LAC2), or @*=1-100 GeV? (LAC3). The LAC1 and LAC2 parameterisations
use different forms for the gluon distribution. Charm is treated in the same
way as the light quarks, except that the charm contribution is only included
when W? > 4M_.?, which leads to a discontinuity at high z. The LAC
structure functions are illustrated in Figure 3.5

The gluon distribution is not well constrained by the data, leading to
unphysical behaviour in some regions. Because of this the LAC approach
was criticised by Vogt [38]. Gordon and Storrow [39] argued that the LAC3
structure function gives a good fit to the data at the expense of an unrealistic

gluon distribution.

3.4.3 Gordon and Storrow (GS)

According to Gordon and Storrow [39], evolving from a low starting scale is
inappropriate because the low Q? region is outside the region of applicabil-
ity of perturbative QCD. Consequently they begin the evolution at Q?=5.3
GeV?, using only data above this % value. The input functions are a combi-
nation of VMD and QPM, since with a high starting scale the pointlike contri-
bution is significant. The free parameters are the total momentum fractions

carried by sea quarks and by gluons, and the masses of the light quarks used
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Figure 3.5: The LAC parameterisations of F, at Q*=5.0 GeV?, for 4 flavours.

The discontinuity is due to the charm threshold.
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in the QPM formula. The gluon momentum fraction is constrained (though
within a fairly wide range) to avoid the unphysical behaviour seen in the
LAC structure functions. Charm is treated similarly to the light quarks, but
has a fixed mass of 1.5 GeV.

This was the first parameterisation of F, to include a next-to-leading or-
der calculation. The NLO input distributions at the starting scale of Q?=5.3

were the same as the LO input.

3.4.4 Gliick, Reya and Vogt (GRV)

The GRV [40] parameterisation is evolved from a low starting scale using a
VMD input based on measurements of the pion structure function, with the
form

efy ~ (1 — ) (3.23)

where a and b are determined by experiment [28]. The only free parameter
is the normalisation of the VMD input, which corresponds to uncertainty
in the inclusion of the w and ¢ mesons. A least squares fit was performed
to data in the range @?=0.7-100 GeV?2. Leading order and higher order
structure functions were produced. The massive quark QPM model (Bethe-
Heitler [41]) was used for the charm contribution.

The GRV approach requires the assumption that perturbative QCD is
valid at a low enough starting scale to take a purely VMD based input. The
evolution starts from 0.25 GeV? (LO) and 0.3 GeV? (HO), where there is
no data to check the validity of this assumption. Nevertheless, the GRV
structure functions fit all available data well.

These authors have also produced parton distribution functions for the
pion and proton that describe the available data in the low-z region, success-
fully predicting a low-z rise. It has not yet been possible to test the photon

structure function in the same region.
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3.4.5 Gliick, Reya and Stratmann (GRS)

The GRS parameterisation [42] is a development of the GRV model which
allows for virtual target photons, i.e. P? > 0. Unlike the GRV parameterisa-
tion, the input distribution at the starting scale is not purely VMD, but an
interpolation between VMD and a perturbative, pointlike contribution which
dominates for large P%. As with GRV, the input VMD distribution is taken
from measurements of the pion structure function. However, the structure
function of wvirtual pions is unknown. Therefore the VMD input is fixed for
all P? up to the starting scale of the evolution.

The GRS parameterisation is valid for P? < QZ%, with a smooth transition
to P? = 0. The virtual structure function is suppressed compared to the real
one, with the largest difference at low z. The theoretical uncertainties are
largest at low P? due to the large non-perturbative contribution. At P? ~ Q2

the DIS picture is no longer valid.

3.4.6 Hagiwara et al. (WHIT)

The WHIT [33] parameterisations are essentially a study of the effect of the
gluon content of the photon on the structure functions. Measurements of F,’
are not directly sensitive to the gluon distribution, but the DGLAP equations
predict that it will it will affect the Q% evolution of F;.

The initial distribution is a fit to

M = AzP(1 - 2)°,

=9(2) 4 B(1— 2), (3.24)

a

using data with Q% > 4 GeVZ?. Some low z data points were omitted from
the fit because of the possibility of large systematic uncertainties. The gluon
parameters A, and C; were not fitted to the data but were varied system-

atically, leading to six different parton distribution functions with different
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gluon content. The charm contribution was taken to be the sum of the QPM
direct and resolved processes. The evolution was performed in leading order
only, as the variations in the gluon content are so large that there would be

little advantage in using the higher order equations.

3.4.7 Schuler and Sjostrand (SaS)

In their parameterisation [36], Schuler and Sjostrand divide the photon struc-

ture function into three parts:

(2,Q%) = ¥ (2,Q%) + f"MP(2,Q% Q0%) + f7*™(x, Q% Qo”). (3.25)

They argue that the hadronic part can be separated by a scale Qo into
perturbative (anomalous) and non-perturbative parts, the latter modelled
using vector-meson states. The different parts of F, are also expected to
have different properties in the hadronic final state.

Unlike the case for the GRV parameterisation, the VMD input functions
are not taken from the pion structure function, but are found by fitting to
data. However, the normalisation is constrained because the higher mass
vector meson states (above p, w and ¢) are included in the definition of the
anomalous part. In the GRV approach, the separation between low and high
mass vector meson states is not made explicit. The evolution is performed in
leading order only, and the Bethe-Heitler cross section is used for the charm
contribution. There are four sets of SaS structure functions, corresponding
to two different starting scales for the Q? evolution and two factorisation
schemes: SaS1D (DIS,,, @o=0.6 GeV?), SaS2D (DIS,,, Qo=2.0 GeV?), SaS1M
(MS, Qo=0.6 GeV?) and SaS2M (MS, Qo=2.0 GeV?). The SaS structure
functions also contain a prediction for the P? dependence. This is modelled in
a similar way to the GRS approach, though fitted within the SaS framework.
The SaS and GRV structure functions are compared in Figure 3.6.
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Figure 3.6: Comparison of the GRV LO and SaS1D parameterisations of Fy .



Chapter 4
Monte Carlo models

The main use for Monte Carlo in this analysis is for correcting detector effects.
With a perfect detector, F could be determined simply by measuring = and
Q? from the hadronic activity and the tagged electron, and counting events.
However, much of the hadronic energy of v events is deposited in the non-
tracking region of OPAL and is not well measured, so some way of estimating
the missing energy is needed. This is done using Monte Carlo events (the
actual technique used is called unfolding and is discussed later). For accurate
correction of missing energy, the Monte Carlo program must provide a good
model of the data, particularly of the distribution of the hadrons in the final
state. Unfortunately even the best models are only an approximation, so
it is necessary to make the best use of the available information from the
detector.

Another use for Monte Carlo programs is in providing a description of
the physics background, so that it can be subtracted from the data distri-
butions. Modelling error is not such a problem here because the percentage
of background is small, and generally, background processes are accurately
modelled, or at least accurately described. Events with leptonic final states

can be generated using exact matrix elements, while hadronic Monte Carlo
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generators can be tuned to fit the data.

For F, measurements it is not enough to have a Monte Carlo model that
gives a good description of the data, because the form of the final state
depends on the input F, as well as the final state model. What is needed
are models that give the best possible description of the underlying physics,
possibly tuned to other processes, but not to v data.

Since 7~ interactions involve non-perturbative QCD and many-particle
final states, they cannot be modelled exactly. Instead, Monte Carlo programs
split the problem into several stages that are dealt with separately using

various approximations. The stages are usually
e emission of photons from one or both of the beam electrons,
e the hard sub-process,
e parton showers, and
e hadronisation of the final state partons.

Different Monte Carlo programs emphasise different aspects of the prob-
lem. In HERWIG (Hadron Emission Reactions With Interfering Gluons) [43],
the focus is on providing an accurate description of the parton showers, while
simulating a wide variety of hard processes. PHOJET [44] concentrates on
collisions of photons and hadrons, particularly in the consistent treatment
of soft and hard interactions. The advantage of F2GEN [45] is simplicity (it
is purely a vy generator) combined with the ability to select different final
state models, represented by the angular distribution of the outgoing quarks.
In this analysis, F2GEN is used only in pointlike mode, which means that
the distribution of the outgoing quarks is the same as would be expected for

a pair of leptons.
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4.1 The luminosity function

*te~ events can be factorised into

The cross-section for 4+ interactions in e
two parts, one describing the production of a two-photon state and another
describing the interaction of the two photons:

_ gTT _TT
d0e+e_—>e+e_x - L‘y’y 0-77_>X- (4:.].)

Only the transverse part of the cross-section is included here, because the
longitudinal part is small when the virtuality of the target photon is small.

For nearly-real photons, the luminosity function factorises into two parts,
one for each photon. This is the Equivalent Photon Approximation (EPA),

in which the photon flux is determined from the splitting function

1+(1—2)* 2m.22
py= 2 — . 4.2
f'y/e(z7 ) 271_ ( ZP2 P4 ( )

HERWIG neglects the m.?/P* term, and in the DIS model, the EPA is only
used for the target photon, not the probe photon. PHOJET and F2GEN use
the full EPA for both photons.

In the structure functions, it is assumed that P? = 0. Although some
parameterisations of F. include a prediction for the P? dependence, these
predictions vary widely and were not used when generating events for this

analysis.

4.2 The hard sub-process

Monte Carlo events are characterised by a single hard scattering, to which
corrections are applied in the form of initial and final state radiation. The
hard scattering is calculated using matrix elements.

A variety of hard processes are used in generating v~ events. The main

examples are
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o DIS, eq — eq,

e Direct, vy — qq,

e Photon-gluon fusion, gy — qq, and

o Gluon Compton scattering, gy — qg.

These processes are illustrated in Figure 4.1. HERWIG uses the DIS pro-
cess, with the momentum fraction of the scattered quark taken from a parton
distribution function selected by the user. F2GEN simulates only the di-
rect process, with the cross-section given by the selected structure function.
F2GEN has a limited ability to simulate other processes by changing the
angular distribution of the outgoing quarks. PHOJET simulates the direct
process along with the two resolved processes, using its own internal cross-
sections. This means that PHOJET cannot generate events according to a
user-defined structure function, though a similar effect can be achieved by

reweighting the events.

4.3 Soft and multiple interactions

At low W, the cross-section for 47 scattering is dominated by processes for
which there is no hard scale, such as diffraction or Regge scattering. Soft and
hard processes are usually separated by a p; cut. PHOJET contains a de-
tailed model of soft processes, including soft reggion and pomeron exchange.
Soft and hard interactions are unitarised together, allowing for multiple soft
and hard interactions in the same event. As soft interactions are not per-
turbatively calculable, they are tuned to data, but the same model should
be applicable to various types of events: hadron-hadron, photon-hadron or
photon-photon. This gives the model some predictive power. HERWIG al-
lows optionally the generation of a Soft Underlying Event (SUE), which is
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Figure 4.1: Hard processes simulated by Monte Carlo programs. Particles
taking part in the hard interaction are drawn with bold lines: (a) deep in-
elastic scattering, (b) direct 4 interaction, (c) photon-gluon fusion and (d)
gluon Compton scattering.
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the interaction of the photon remnant with its nearest neighbour from the

hard event. This increases the transverse energy of the event. The SUE

is turned off by default, because of poor agreement with HERA data. The

events used in this analysis were generated without the SUE option.
F2GEN does not model soft processes.

4.4 Parton showers

The partons involved in the hard scattering may emit radiation before or
after the scattering. For example, a quark may emit a gluon, or a gluon may
become a quark pair. The probabilities of such branchings are given by the
DGLAP splitting functions. Initial state radiation is calculated backwards,
away from the hard scattering, and final state radiation is calculated for-
wards. Partons emitted as part of a shower can undergo further splitting,
which is always at a lower virtuality than previous emissions, to account for
interference effects. The emission continues until a cut-off is reached.

HERWIG has routines for both initial and final state radiation. The
parton entering the hard scattering may be evolved back to the target photon,
in which case the event is classified as anomalous, or the cut-off may be
reached first, in which case the event is classified as hadronic. The distinction
has consequences for the treatment of the photon remnant.

PHOJET and F2GEN use JETSET [46] for final state radiation. F2GEN
has no initial state radiation, while PHOJET incorporates its own model,
similar to the one in HERWIG.

The parton shower model is accurate in the limits of soft and collinear
radiation. In order to provide a more accurate treatment of hard radiation,
HERWIG includes NLO matrix elements, which are matched in phase space

to the rest of the parton shower to avoid double counting.
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4.5 Hadronisation

All partons produced by initial and final state showering, as well as the
photon remnant, enter the hadronisation or fragmentation stage, in which
partons are converted to hadrons. Hadronisation is a complex problem which
is not understood from first principles. However, several phenomenological
models exist which describe most features of the data. The most commonly
used models are cluster fragmentation [47] which is used in HERWIG, and
string fragmentation [48], used in JETSET.

In the cluster model, partons form colour-singlet clusters which decay
isotropically in their centre-of-mass frame to pairs of hadrons. The hadrons
are selected at random from a table of posible decays. A few clusters may
be too heavy for two-body decay to be reasonable; these are split to form
lighter clusters. Clusters that are too light to decay to a pair of hadrons decay
to a single hadron, exchanging 4-momentum with a neighbouring cluster to
maintain energy and momentum conservation.

In the string model, pairs of quarks originating from parton showers or
directly from the hard interaction are connected by colour strings. Gluons
in the final state appear as kinks in the strings. As the quarks move apart,
they give energy to the string, which has energy per unit length consistent
with hadron spectroscopy data. Eventually the string fragments into pairs

of quarks, which combine to form hadrons.

4.6 Radiative corrections

The Monte Carlo programs discussed in this chapter do not include radiative
corrections to the DIS process (see Figure 4.2). These were evaluated using
the RADEG program [49]. They are dominated by initial state radiation
from the deeply inelastically scattered electron. Final state radiation is ex-

perimentally integrated out due to the finite granularity of the detector. The
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Compton scattering process in which the probe photon is emitted at a low
angle but the electron is tagged due to final state radiation at a large angle,
contributes very little, and corrections due to radiation from the electron

that produces the target photon have been shown to be small [50].

Figure 4.2: Radiative corrections to two-photon DIS.

RADEG performs the calculation using mixed variables, which means
that W is calculated from hadronic variables, while Q? is calculated from
electron variables. This means that z is calculated from both electron and
hadronic variables, without using the energy of the target photon - as in
the experimental analysis. Without the additional radiation, both sets of
variables would be identical.

Radiative corrections to the Monte Carlo cross-section are calculated in
bins of z and ()%, applying the experimental restrictions on Fiag, 8iag, W and

the anti-tag angle. They are largest at low values of =, and will be used later
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to correct the measurement of F; when using Monte Carlo samples without

radiative corrections.

4.7 Tuning HERWIG

Accurate measurement of F, requires a Monte Carlo program with a good
description of the hadronic final state. However, there are discrepancies
between existing models and the data. For example, HERWIG 5.9 shows
a less pointlike behaviour than the data in variables such as the transverse

energy out of the tag plane,
E’%ut = Z Ei,t| SiI]. ¢’i,tag| (4:3)

where ¢ runs over all particles in the hadronic final state, with transverse
energy F;;, and azimuthal angle ¢, ., measured from the tag. The differ-
ences also appear in the energy flow (the average hadronic energy per event
deposited in the detector as a function of rapidity).

HERWIG 5.9+k;(dyn) is a modified version of HERWIG which gives an
increased amount of transverse energy to the events. This is achieved by
modifying the distribution of the transverse momentum of the struck parton
in the target photon [51]. The default in HERWIG is an exponential distri-
bution; HERWIG 5.9+ k;(dyn) uses a power law, which was originally tuned
for photoproduction events at HERA [52]. The result is a small but notice-
able improvement in the agreement with the data distributions (Figure 4.3),
and a shifting of energy flow towards the central region of the detector (Fig-
ure 4.4). The ‘dyn’ label refers to the fact that the cut-off for the exponential
distribution is a function of @2, and hence dynamic. In an earlier version,
a fixed cut-off was used. HERWIG 5.9+k;(dyn) still falls short of the data
at high E$". Further tuning would be possible, but has not been performed

because tuning directly to 7*y data might lead to biased measurements of

7.
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Figure 4.3: Comparison of the transverse energy out of the tag plane, E3™,
for data and Monte Carlo. The sample is divided into three bins of ;.
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Figure 4.4: Comparison of hadronic energy flow per event as a function of
pseudorapidity, n = —log(tan(#/2)), where 0 is measured with respect to the

beam axis on the tag side. The distributions for HERWIG 5.9 and HERWIG
5.9+k;(dyn) are shown, at generator level, at centre-of-mass energy 189 GeV.
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Event Selection

5.1 The event samples

The largest data samples taken by OPAL prior to this analysis were at the
energies 91 GeV, 184 GeV and 189 GeV. There are two tagging subdetectors,
FD and SW. The beam energy and range of tagging angles in each sample
determines the range of @* in which F) can be measured (Equation 3.2). A
lower tag angle also means that the minimum accessible value of z is lower.
In order to measure F, to the lowest possible values of z, the SW detector is
used for tagging at all beam energies. It happens that the range of Q2 for the
data with electron tags in FD at LEP1 is approximately the same as for the
data with electrons tagged in SW at LEP2. This gives a useful cross-check
of the result.

Three samples of events are used, classified by the beam energy and the
tagging subdetector. They are referred to as the LEP1 SW, LEP1 FD and
LEP2 SW samples. The 183 GeV and 189 GeV data cover a similar region
of z and Q% and are both included in the LEP2 SW sample.

63
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5.2 Event reconstruction

The program ROPE (Reconstruction of OPal Events) is used to transform
raw data from OPAL into a list of tracks and clusters that can be used for
analysis. It also provides the basic framework for physics analysis. ROPE
can be run on real or simulated data, ensuring that the same code is used
for data and Monte Carlo events.

The first step in a v*y analysis is to flag candidate events, so that they can
be accessed with greater efficiency later. This is performed by the subroutine
RTWOPH in ROPE. It has very loose requirements and many events selected
by RTWOPH are rejected in later stages of the analysis. RTWOPH requires
two good tracks and an energy deposit of 35% of the beam energy in FD,
SW or EE. The conditions for a good track are that

o there are at least 20 hits in CJ,
e the minimum distance in r—¢ from the interaction point, dy < 2.5 cm,
o the minimum distance in z from the interaction point, zy < 50 cm,

the radius of first measured point in CJ is less than 75 cm, and

the transverse momentum p; > 0.1 GeV.

5.2.1 Detector status

For every run, each subdetector is given a status code indicating how well it
is working. These codes are described in Table 5.1. For those subdetectors
that are vital for the analysis, a status code of 3 is required. These are the
tracking detectors CV and CJ, the electromagnetic calorimeters EB and EE,
and the tagging subdetectors FD and SW.
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Status code Description
0 dead or off
1 unreliable
2 minor problems
3 fully functional

Table 5.1: Description of the subdetector status codes.

5.2.2 Track quality requirements

In order for a track to be accepted for use in the analysis, it has to satisfy
certain quality requirements. These are designed to reject tracks originating
from, for example, particles backscattered in the solenoid, beam gas inter-
actions or cosmic rays. The requirements (stricter than those in RTWOPH)

are that

o there are at least 20 hits in CJ,

the number of hits in CJ is at least half the number of expected hits
for the track,

e the minimum distance in r—¢ from the interaction point, dy < 2.5 cm,

the minimum distance in z from the interaction point, zo < 30 cm,

the transverse momentum p; > 0.12 GeV, and

the angle 6 of the track satisfies | cos 6| < 0.9622.

5.2.3 Cluster quality requirements

To remove clusters due to noise from the analysis, there are also quality

requirements for clusters. First, all clusters are compared to a list of known
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‘hot’ clusters, and the cluster is rejected if its energy is below the threshold
for the expected noise. There are further requirements depending on the

subdetector, which are listed in Table 5.2.

subdetector | Enin (GeV) other conditions
EE 0.25 at least 2 adjacent lead-glass blocks
EB 0.1 at least 1 lead-glass block
HB 0.6 at least 1 tower
HE 0.6 at least 1 tower
HP 0 at least 1 tower
FD 1.0 at least 20% in the main calorimeter
SW 2.0 -

Table 5.2: Quality requirements for calorimeter clusters.

5.2.4 Track—cluster matching

Particles leaving tracks in the central tracking region will usually also leave
clusters in the electromagnetic or hadronic calorimeters. In order to avoid
double-counting it is necessary to match clusters and tracks in the same 6-¢
region. This is done by the MT package [53].

MT takes the list of accepted tracks and clusters, and outputs a list of
4-vectors. In the matching process, there are three possibilities for a track
and cluster. The first is that they do not match in # and ¢, in which case
both the track and cluster are used. The second is that they match, and the
energy of the cluster is less than that expected for the track plus a certain
tolerance. In this case the cluster is discarded and only the track is used,
because the energy resolution of the tracking system is usually better than
that of the calorimeters. The third possibility is that the track and cluster

match, but the cluster energy is too large for it to be accounted for by the



CHAPTER 5. EVENT SELECTION 67

track alone. In this case the energy of the cluster is reduced by the amount
expected from the track, and both the track and the reduced-energy cluster
are used.

Clusters from the forward region (FD and SW) are not matched to tracks,

as the tracking system does not extend to such low angles.

5.3 Final selection cuts

To select the events to be used in the final analysis, cuts are made on the
tagged electron and on the hadronic final state. The aim of these cuts is
to reduce background while retaining a high efficiency for v*v events. The

variables on which cuts are applied are

o the energy of the tagged electron, Fi,q,
o the angle of the tagged electron, 6.,

o the energy of the most energetic cluster on the opposite side of the

detector to the tag (the anti-tag), E,,
o the number of charged tracks, Ng,,

e the number of tracks identified as electrons from their dF/dz weight,
N, and

e the invariant mass of the hadronic final state, W;.

The cuts applied to each of the data samples are listed in Table 5.3. The
reasons for these cuts are explained in the following section, which discusses

background.
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cut LEP1 SW ‘ LEP1 FD | LEP2 SW
Frag/ B min 0.75 0.775
ftag min [mrad] 27 60 33.25
fiag max [mrad] 55 120 55
E./FE, max 0.25
Ng, min 3 (2 non-electron tracks)
W,is min [GeV] 2.5
W.is max [GeV] 40 | 60

Table 5.3: The selection cuts applied to each data sample.

5.4 Background

There are many processes that could potentially produce a background to
~*y events. It is important to know which of these are significant and to
exclude them as far as possible from the data sample when measuring F.
The main tool used for for understanding background is Monte Carlo sim-
ulation. Standard OPAL Monte Carlos samples were used to estimate the
contributions from the processes described in this section. The details of the
Monte Carlo samples and the number of events passing the final cuts are

listed in Tables 5.4 and 5.5.

5.4.1 Hadron production from ete™ annihilation

At LEP1 there are many more hadronic Z° decay events than y*v events,
so they could form a significant background. They are likely to pass the
minimum N, and minimum Wy cuts, but usually do not have a high-energy,
low-angle particle to act as a tag. Therefore, the tag requirements reduce
this background considerably. The remaining hadronic events tend to have
higher W, than v*v events, so a maximum W, cut is applied. This cut is

higher at LEP2 because the cross-section for hadronic events is lower than at
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e’ q

(b)

Figure 5.1: Hadron production from Z° decay: (a) non-radiative, (b) radia-
tive return.

LEP1, and also because W, for v*v events at LEP2 is higher than at LEP1,
due to the higher beam energy. At LEP2 the radiative photon can provide a
tag.

5.4.2 Tau pair production from Z° decay

+
e Tt

Figure 5.2: Tau pair production from Z° decay.

These events have similar characteristics to the hadronic Z° decays except
that the total visible energy may be lower due to the neutrinos from tau
decay, so the W, cut is not so effective in removing these events. However,

the cross-section is much lower than that of hadronic Z° decay.
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5.4.3 Lepton pair production in two-photon events

e+

Figure 5.3: Lepton pair production in two-photon events.

These events are similar to hadronic v*+v events, but leptons are produced
in the two-photon collision instead of quarks. These events produce tagged
electrons and so must be rejected by requirements on the hadronic final
state. Having only two leptons in the final state, the electron-pair and muon-
pair events usually fail the minimum Ny, cut. However, it is possible for a
single particle to produce more than one track in the reconstructed event,
for example by bremsstrahlung or bad reconstruction of a track, so some
events survive the cut. This is much more likely to happen for electrons
than for muons. An additional cut is made on the number of identified
electrons, which further reduces the electron-pair background. Very little
can be done to reduce the two-photon tau-pair background, but it is well
modelled in Monte Carlo and can be subtracted from the data distribution

when measuring F, .

5.4.4 W pair production

At LEP2, W pairs can be produced. They are rejected in a similar way

to the hadronic Z° decays, but the cross-section is much lower than that of
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e w-
& I
@ (b) 3

Figure 5.4: W pair production and decay: (a) annihilation, (b) conversion.

the Z° events at LEP1 and this background is small enough to neglect.

5.4.5 Non-multiperipheral four-fermion events

There are other processes besides two-photon events that produce four-
fermion final states, but none have a high cross-section or a high probability
to produce a tagged electron. The background from these processes is negli-

gible.

5.4.6 Double-tagged two-photon events

These are the same type of events that make up the signal, but with a high
enough value of P? that both of the scattered beam electrons are seen in
the detector. The cross-section for y*y* events is much lower than for y*y
events, but is not negligible. These events could cause several problems for
the analysis: firstly, the approximation of real target photons breaks down
for these events; secondly, they are not in the Monte Carlo samples that are
used for comparison with the data, and thirdly, the second tagged electron
would be included in the measurement of W, leading to an over-estimation
of the hadronic energy. To reduce the number of these events, an anti-tag

requirement is made on the energy of the most energetic cluster in the side
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e+

e

(©

Figure 5.5: Non-multiperipheral four-fermion production: (a) annihilation,
(b) bremsstrahlung, (¢) conversion.

of the detector opposite the tag. This also has the effect of limiting the
amount of energy that may be mistakenly included in the final state, for

those double-tagged events which pass the cut.

5.4.7 Off-momentum electrons

If an electron interacts with gas in the beam pipe, it can be deflected
by the focusing quadrupoles on either side of the OPAL detector at a suf-
ficient angle to be observed in SW or FD. If this occurs at the same time
as a hadronic Z° decay or untagged two-photon event, the combination can
look like a tagged 4*v event. Unlike physics events, these events are not
symmetrical in ¢. It is possible to see the effect of off-momentum electrons
at low values of Eing in the ¢ distribution (Figure 5.6). It can also be seen

that above the minimum FEi., cut this background is negligible.
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Figure 5.6: Energy against polar angle for the tagged electrons in the LEP2
SW sample. The dashed line represents the cut on the tag energy.

5.5 Estimation of the trigger efficiency

5.5.1 Estimation of trigger efficiency for the FD

sample

Calculation of the trigger efficiency involves the use of two triggers that are
statistically independent, i.e. the probability of one trigger firing is the same
whether the other trigger fires or not.

With two triggers, A and B, the sample of N events can be divided into

three classes:
o N, events in which only trigger A fires,
e Np events in which only trigger B fires, and

e Njap events in which both triggers fire.



CHAPTER 5. EVENT SELECTION 76

It is assumed that all relevant triggers are contained in either A or B, so that
events in which neither trigger fires are not recorded.

The efficiencies of triggers A and B are

€A = Nae € = Nae (5.1)
A= 7o, €EB= o . .
(Nag + Ng) (Nag + Na)

If A and B are independent, the total trigger efficiency is
€ETOT — €A + €EB — €A€B. (52)

For events with electrons tagged in FD, there are separate triggers for
the tagged electron and for the hadronic final state. It is assumed that these
triggers are independent, and the efficiency is calculated according to the

method described above, using the following triggers:

o Trigger A:
FDHIOR,

e Trigger B, logical OR of:
TPTTTO!
TPTTEM?
TM3
TPTOEM
((TBM1.or.EBTOTLO).and.(LCALLO.or.RCALLO))
(TM1.and.(EELLO.or.EERLO.or.EBTOTLO)).

A description of these triggers signals is given in Table 2.1.

5.5.2 Estimation of trigger efficiency for the SW

samples

For events with electrons tagged in SW, there is no trigger for the tagged

electron that is independent of the hadronic final state triggers, because a

'From 1993, TPTTTO requires a coincidence with TBEBS.
2From 1993, TPTOEM requires a coincidence with EBWEDGE.
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coincidence is required with the tracking or ECAL triggers. In this case, it
is necessary to use a third trigger to check the correlation of the first two
triggers. The third trigger is used to define a subset of N’ events, which
can be classified in a similar way to the case with two triggers described in

Section 5.5.1 (but there is now an additional class):

e Nyot events in which neither A nor B fire,
o N, events in which only trigger A fires,
e Np events in which only trigger B fires, and

e Njap events in which both triggers fire.

The correlation of triggers A and B for the subset of events in which trigger
C fires is

Corryp = CAB — €ACA (5.3)
OAOB
where the efficiencies are now given by
_ Nap + Ny _ Nsp+ NB _ NaB 54
€A=" = o €B= (5.4)
and the standard deviations are
Op = EA(l — EA), OB — 6]3(1 — EB). (55)

It is assumed that the correlation of triggers A and B is independent of the
firing state of trigger C. If the correlation between triggers A and B is small,

a lower estimate for the total trigger efficiency is

€ETOT — €A + €EB — €A€B. (56)

It is a lower estimate because it does not include the effect of trigger C on
the total efficiency.
The triggers used to estimate the efficiencies for the SW tagged samples

WeEre
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(Q?) [GeV? | sample |luminosity [pb™'] | events | Q2 range [GeV?]
1.9 LEP1 SW 74.6 4356 1.5-2.5
3.7 4010 2.5-6.0
8.9 LEP1 FD 97.8 1909 6.0-12.0
17.5 1578 12.0-30.0
10.7 LEP2 SW 222.9 4593 7.0-13.0
17.8 5495 13.0-30.0

Table 5.6: The integrated luminosity, number of selected events in the data,
Q? range, and trigger efficiency for each data sample. The error on the trigger
efficiency is estimated to be about 1%.

e Trigger A, logical OR of:
SWHIOR.and.(TPEML.or.TPEMR) (not active in 1993)
SWHIOR.and. TBM1
TPTTTO®%.and. TBEBS
(TPEML.and. TPTTR).or.(TPEMR.and TPTTL),

e Trigger B, logical OR of:
(TM1.0r.TPTO1%*).and.(EELLO.or.EERLO.or.EBTOTLO)
TPTOEM?®.and.EBWEDGE,

e Trigger C
TPTTEM.

3Renamed TPTTOB in 1996
4Renamed TPTOB in 1996
5Renamed TPTOEMB in 1996
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5.6 Comparison of data with Monte Carlo

predictions

Figures 5.7 to 5.24 show data distributions compared to Monte Carlo for a
number of variables.

The cross-section for the selected events is similar in the data and Monte
Carlo samples, though the data is significantly higher than both HERWIG
5.94+k;(dyn) and PHOJET 1.05 in the LEP1 SW sample.

The variables relating to the tagged electron (Eiag/Eb, Otag and Q?) are
generally well described by both Monte Carlo models (Figures 5.7 to 5.12).
The cuts on the Q? distributions show how the samples are each divided into
two Q? regions for the F; measurement.

The LEP1 SW data shows a higher peak at low E,/E), than either of
the Monte Carlo samples. This suggests that the energy distribution of the
particles in the final hadronic state is not perfectly described. The anti-
tagged electrons do not influence this plot very much, as they are mostly at
higher values of F,/F,.

PHOJET 1.05 has too few events at low W, which is a known problem
with the program. For the unfolding, PHOJET 1.05 is reweighted in  (and
thereforein W) to match HERWIG 5.9+ k;(dyn). For the plots in this section,
the unweighted distributions are shown. The difference between HERWIG
5.9+k;(dyn) and PHOJET 1.05 can be clearly seen in the z.i; distributions;
Figures 5.16, 5.17 and 5.18.

There are some differences in the Ny, distributions (Figures 5.13b, 5.14b
and 5.15b), with the Monte Carlo samples having on average fewer tracks
than the data.

The variables ES™/Eiota1 (Equation 4.3) and FEf,/ Eiotal are designed to
be sensitive to the angular distribution of the hadrons in the final state.

Ex,, is the total energy measured in SW and FD. These variables show that
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the data has more energy in the central region of the detector than either
of the Monte Carlo models (Figures 5.13, 5.14 and 5.15). This can also be
seen in the energy flow plots; Figures 5.22, 5.23 and 5.24. Large peaks in
the central region are characteristic of the ‘pointlike’ QED coupling of two
photons. F2GEN, an entirely pointlike model, has peaks above the data in

the central region.
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Figure 5.7: Comparison of data distributions with Monte Carlo predictions
for the LEP1 SW sample. The dominant background source, v*y — 777,
the total background and the sum of the signal and the total background
for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The Monte Carlo
samples have been normalised to the data luminosity. All selection cuts have
been applied, except for any cut on the variable in the plot. The cuts are
shown as dotted lines. The errors are statistical only. The distributions
shown are: a) Fi.q/Ey, the energy of the tagged electron as a fraction of the
beam energy, and b) 6,4, the polar angle of the tagged electron.
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Figure 5.8: Comparison of data distributions with Monte Carlo predictions
for the LEP1 FD sample. The dominant background sources, y*y — 77~
and Z° — hadrons, the total background and the sum of the signal and the
total background for HERWIG 5.9+ k;(dyn) and PHOJET 1.05 are shown.
The Monte Carlo samples have been normalised to the data luminosity. All
selection cuts have been applied, except for any cut on the variable in the
plot. The cuts are shown as dotted lines. The errors are statistical only. The
variables in the plots are as defined in Figure 5.7.
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Figure 5.9: Comparison of data distributions with Monte Carlo predictions
for the LEP2 SW sample. The dominant background source, v*y — 777,
the total background and the sum of the signal and the total background
for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The Monte Carlo
samples have been normalised to the data luminosity. All selection cuts have
been applied, except for any cut on the variable in the plot. The cuts are
shown as dotted lines. The errors are statistical only. The variables in the
plots are as defined in Figure 5.7.
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Figure 5.10: Comparison of data distributions with Monte Carlo predictions
for the LEP1 SW sample. The dominant background source, v*y — 777,
the total background and the sum of the signal and the total background
for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The Monte Carlo
samples have been normalised to the data luminosity. All selection cuts have
been applied, except for any cut on the variable in the plot. The cuts are
shown as dotted lines. The errors are statistical only. The distributions
shown are: a) the measured Q?, and b) E,/Ey, the energy of the most ener-
getic electromagnetic cluster in the hemisphere opposite the tagged electron,
as a fraction of the beam energy.
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Figure 5.11: Comparison of data distributions with Monte Carlo predictions
for the LEP1 SW sample. The dominant background sources, y*y — 777~
and Z° — hadrons, the total background and the sum of the signal and the
total background for HERWIG 5.9+ k;(dyn) and PHOJET 1.05 are shown.
The Monte Carlo samples have been normalised to the data luminosity. All
selection cuts have been applied, except for any cut on the variable in the
plot. The cuts are shown as dotted lines. The errors are statistical only. The
variables in the plots are as defined in Figure 5.10.
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Figure 5.12: Comparison of data distributions with Monte Carlo predictions
for the LEP2 SW sample. The dominant background source, v*y — 777,
the total background and the sum of the signal and the total background
for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The Monte Carlo
samples have been normalised to the data luminosity. All selection cuts have
been applied, except for any cut on the variable in the plot. The cuts are
shown as dotted lines. The errors are statistical only. The variables in the
plots are as defined in Figure 5.10.
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Figure 5.13: Comparison of data distributions with Monte Carlo predictions
for the LEP1 SW sample. The dominant background sources, v*y — 777,
Z° — hadrons and 4*y*— hadrons (P? > 1.0 GeV?), the total background
and the sum of the signal and the total background for HERWIG 5.9+k;(dyn)
and PHOJET 1.05 are shown. The Monte Carlo samples have been nor-
malised to the data luminosity. All selection cuts have been applied, except
for any cut on the variable in the plot. The cuts are shown as dotted lines.
The errors are statistical only. The distributions shown are: a) Wi, the
measured invariant mass of the hadronic final state, and b) Ng,, the number
of charged tracks in the event.
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Figure 5.14: Comparison of data distributions with Monte Carlo predictions
for the LEP1 FD sample. The dominant background sources, v*y — 7777,
Z° — hadrons and 4*y*— hadrons (P? > 1.0 GeV?), the total background
and the sum of the signal and the total background for HERWIG 5.9+k;(dyn)
and PHOJET 1.05 are shown. The Monte Carlo samples have been nor-

malised to the data luminosity. All selection cuts have been applied, except

for any cut on the variable in the plot. The cuts are shown as dotted lines.

The errors are statistical only. The variables in the plots are as defined in

Figure 5.13.
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Figure 5.15: Comparison of data distributions with Monte Carlo predictions
for the LEP2 SW sample. The dominant background sources, v*y — 777,
Z° — hadrons and 4*y*— hadrons (P? > 4.5 GeV?), the total background
and the sum of the signal and the total background for HERWIG 5.9+k;(dyn)
and PHOJET 1.05 are shown. The Monte Carlo samples have been nor-
malised to the data luminosity. All selection cuts have been applied, except
for any cut on the variable in the plot. The cuts are shown as dotted lines.
The errors are statistical only. The variables in the plots are as defined in

Figure 5.13.
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Figure 5.16: Comparison of the data z.; distribution with Monte Carlo
predictions for the LEP1 SW sample. The dominant background source,
v*y — 7777, the total background and the sum of the signal and the total
background for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The
Monte Carlo samples have been normalised to the data luminosity. All se-
lection cuts have been applied, except for any cut on the variable in the plot.
The cuts are shown as dotted lines. The errors are statistical only.
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Figure 5.17: Comparison of the data z.; distribution with Monte Carlo
predictions for the LEP1 FD sample. The dominant background sources,
v*y — 777 and Z° — hadrons, the total background and the sum of the
signal and the total background for HERWIG 5.9+k;(dyn) and PHOJET
1.05 are shown. The Monte Carlo samples have been normalised to the data
luminosity. All selection cuts have been applied, except for any cut on the
variable in the plot. The cuts are shown as dotted lines. The errors are
statistical only.
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Figure 5.18: Comparison of the data z.; distribution with Monte Carlo
The dominant background source,

predictions for the LEP2 SW sample.

v*y — 7777, the total background and the sum of the signal and the total
background for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The
Monte Carlo samples have been normalised to the data luminosity. All se-
lection cuts have been applied, except for any cut on the variable in the plot.
The cuts are shown as dotted lines. The errors are statistical only.
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Figure 5.19: Comparison of data distributions with Monte Carlo predictions
for the LEP1 SW sample. The dominant background source, v*y — 777,
the total background and the sum of the signal and the total background
for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The Monte Carlo
samples have been normalised to the data luminosity. All selection cuts have
been applied, except for any cut on the variable in the plot. The cuts are
shown as dotted lines. The errors are statistical only. The distributions
shown are: (a) E3™/FEiota1, the transverse hadronic energy out of the plane
containing the beam line and the tagged electron, divided by the total ob-
served energy, and (b) Egor/ Fiotal, the observed energy in the forward regions
divided by the total observed energy.
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Figure 5.20: Comparison of data distributions with Monte Carlo predictions
for the LEP1 FD sample. The dominant background sources, y*y — 77~
and Z° — hadrons, the total background and the sum of the signal and the
total background for HERWIG 5.9+ k;(dyn) and PHOJET 1.05 are shown.
The Monte Carlo samples have been normalised to the data luminosity. All
selection cuts have been applied, except for any cut on the variable in the
plot. The cuts are shown as dotted lines. The errors are statistical only. The
variables in the plots are as defined in Figure 5.19.
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Figure 5.21: Comparison of data distributions with Monte Carlo predictions
for the LEP2 SW sample. The dominant background source, v*y — 777,
the total background and the sum of the signal and the total background
for HERWIG 5.9+k;(dyn) and PHOJET 1.05 are shown. The Monte Carlo

samples have been normalised to the data luminosity. All selection cuts have
been applied, except for any cut on the variable in the plot. The cuts are
shown as dotted lines. The errors are statistical only. The variables in the

plots are as defined in Figure 5.19.
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Figure 5.22: Comparison of hadronic energy flow per event as a function of
the pseudorapidity, = — log(tan(8/2)), where 6 is measured with respect
to the beam axis on the tag side, for the LEP1 SW sample. The samples are
divided into three bins of ;. The errors are statistical only.
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Figure 5.23: Comparison of hadronic energy flow per event as a function of
the pseudorapidity, = — log(tan(8/2)), where 6 is measured with respect
to the beam axis on the tag side, for the LEP1 FD sample. The samples are
divided into three bins of ;. The errors are statistical only.
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Figure 5.24: Comparison of hadronic energy flow per event as a function of
the pseudorapidity, = — log(tan(8/2)), where 6 is measured with respect
to the beam axis on the tag side, for the LEP2 SW sample. The samples are
divided into three bins of ;. The errors are statistical only.



Chapter 6

Unfolding

With a perfect detector, F, could be determined simply by measuring the

distribution of events in z and Q2. In practice this is not possible because

e not all events are observed, due to the finite efficiency of the detector,

o the measured value of z is smeared because of the limited resolution of
the detector, and there are migrations from one region of = to another,

and

o there is some contamination from background events.

Without correcting for detector effects it would be impossible to compare to
the results of other experiments, and comparisons with theoretical predictions
would be difficult. The correction involves using Monte Carlo events that
have been passed through a simulation of the detector.

Background from physics processes is simulated and subtracted from
the measured distributions. Non-physics background such as caused by off-
momentum electrons cannot be easily simulated, but is excluded by the se-
lection cuts.

The most difficult detector effects to correct are limited resolution and

migration. This is because the problem is ill-defined: it is unstable against

99
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small changes in the initial system, and a given measured distribution could
have arisen (within statistical errors) from a wide range of different true
distributions. To avoid this problem, it is usually necessary to assume some-
thing about the answer, typically that it is a smooth distribution, which is a
reasonable assumption in the case of structure functions.

Resolution, migration and detection efficiency can be corrected simulta-
neously by unfolding. There are several unfolding programs available. For
this analysis, GURU [60] was used as the main unfolding program. The re-
sults from GURU were compared to those from RUN [61] and a Bayesian
unfolding program [62] (referred to in this thesis as BAYES).

6.1 The unfolding problem

In general, the effect of an imperfect detector can be described by a response
function A, defined by

9(v) = [ Ale,y)f(z) dz + H(y). (6.1)

The function f(z) is the true distribution to be measured. The function g(y)
is the ‘expected’ measured distribution, and b(y) is the total background.
Because the true and measured variables can be different, they are called
z and y respectively. The function ¢(y) differs from the actual measured

distribution d(y), because of statistical errors e(y);

d(y) = [ Ale,9)f(e) dz + e(y). (6.2)

For simplicity in subsequent formulae, d(y) is defined to be the background-
subtracted distribution.
To solve the problem numerically, the distributions must be discretised.

Equation 6.1 becomes

g = Aijfi+b;. (6.3)
=1
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A;; is the probability for an event in bin ¢ of the true distribution (with n
bins) to be detected in bin j of the measured distribution (with m bins),

Equation 6.3 can also be expressed as a matrix equation,
g=Af+b (6.4)

where A is an n X m matrix and g, b and f are vectors corresponding to the
distributions.
If A~! exists, and in the absence of statistical errors, this equation can

be solved very easily;

f=474. (6.5)

The matrix A is determined from Monte Carlo simulation. (The vector f
means an estimate for f derived from the data. This notation will be used
again for different estimates).

The problem with Equation 6.5 is that the errors e have been neglected.
Error propagation typically gives very large errors for f, even if e is small
compared to d. An intuitive way to understand why this happens is to
consider the nature of the matrix A. In most problems it is a smoothing
matrix, which means that events in a certain = bin will be smeared out
into several y bins, because of the limited resolution of the detector. High
frequency components in f will be reduced by the smearing. This means that
the inverse of A must amplify the high-frequency components in d. But these
components are small, and impossible to measure because of the statistical
errors, which are also a high-frequency component. Thus the errors receive
a large weight from the direct inversion method.

To reduce statistical fluctuations, the solution needs to be regularised.

This procedure is described in the next section.
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6.2 Unfolding programs

6.2.1 Regularised unfolding using singular value de-
composition (GURU)

The singular value decomposition (SVD) of a matrix A is the factorisation
A=USVT (6.6)

with UT = U1, VT =V~ and S;; = 0 for ¢ # 5,5; > 0.
It is useful in many problems involving matrices, including unfolding.

GURU uses a least squares fit of the form

2

i ((E?zl an) - dj) — min (6.7)

€j

i=1

where é; is the error on the jth measurement and f; is the estimate of the
true distribution’. The general case with correlated errors can be written in

matrix form as

(Af —d)TEY(Af — d) = min (6.8)

where F is the covariance matrix of the data d. The matrix F can be de-
composed using SVD to rewrite this equation in a form that is easier to work

with:

E = QTROQ, (6.9)
RJ]’ = T‘? for j/ = j, Rgg’ = 0 for j/ 7£]

Then, deﬁning A;J = % E?}Zl ij/Aij/ and d; = % E?}Zl ij/dj/ leads to

(A'f —d)F(A'f — d') = min. (6.10)

In GURU, the unfolded distribution is actually the ratio of the Monte Carlo and data
true distributions. This makes little practical difference to the procedure.
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A regularisation term can now be introduced:

(A'f —dY(A'f —d)+7(CHT(CS) = min. (6.11)
7 is the regularisation parameter as described in the previous section and C
is a matrix giving the degree of curvature of f .

In one dimension a possible definition of curvature is

r= Y lis — ) — (i — o) (6.12)

)

and the corresponding form of C is

C = . (6.13)

This is the default form of €' in GURU. It is possible to change C, which
allows the possibility of multi-dimensional unfolding.

The unfolding proceeds with the following stages:

1. The curvature matrix is made equal to the identity matrix by defining

f — Cf as the solution vector, and A’ — A’C'~! as the response matrix.
2. The new response matrix is decomposed using SVD to give
Act=UsvT (6.14)

with S;; = s; for i = 35, 5;; = 0 for ¢ # 7, and the rows are ordered so

that s; is a non-increasing vector.
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3. The system is first solved for 7 = 0:
UsSvicof =d. (6.15)
A rotated vector is defined:
Froe = VICf (6.16)

and the unregularised solution for frot is

. (UTd/)i

frot,i — (617)

S5

4. The regularised solution can now be found by weighting the rotated

solution;

. . g2
rot,: rot,: : . 6.18
roti = Jr. (s?+ ) (019

Weighting the rotated solution in this way is equivalent to introducing

non-zero 7 in Equation 6.11 [63].

5. Finally, the unrotated solution is found using

f=C"f (6.19)

The weighting procedure relates the regularisation parameter to the Num-

ber of Degrees of Freedom (NDF) by

NDF = E ( < ) . (6.20)

82, +T

This is the sum of the weights applied to the rotated function.

An example of unfolding using GURU is shown in Figures 6.3 and 6.4.
In this example, the number of degrees of freedom to be used is determined
from the statistical significance of the values of d;. Because of the way that

the input covariance matrix F is transformed using SVD, the vector d; has
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a unit covariance matrix. For large enough values of i, d; is expected to
be consistent with zero. This can be seen in Figure 6.3c, where d; falls
exponentially to a constant of about 1. The GURU program uses statistical
tests to find the number of significant values of d;, which gives the number

of degrees of freedom and hence 7 from Equation 6.20.

6.2.2 Regularised unfolding using B-splines (RUN)

RUN is a regularised unfolding program by V. Blobel.

Distributions in RUN are parameterised as B-splines, rather than given
as simple histograms. This means that the output is a continuous function
which can be re-binned if desired.

It is easiest to begin by describing the unregularised solution. A maximum

likelihood fit is performed to the function

S(f) = _imp(dj

95) (6.21)

where P(d;|g;) is the initial probability of observing d; events in the jth
bin given an expectation of g; = > 7%, Aijf;. It is given by the Poisson

distribution, in which
e BB4
Al

Disregarding constant terms which are irrelevant to the minimisation, Equa-

P(A|B) = (6.22)

tion 6.21 becomes m

S(f)=- Z:(Qj — d;log(g;))- (6.23)
Assuming a quadratic form for S,
AS(f) = ~(AfTh+ L(AfTH(AS) (6.24)

where AS= the change in S arising from change Af, and

d i d;
dfl 7=1 g-7
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dzs d;A;; A
Hy = — E ( J ’”) . (6.26)
df dfk 7=1 .7

The minimum condition is AS = 0. This suggests using Af = H'h as
an iteration step. Convergence is usually reached after a few iterations.

Without regularisation, the solution is identical to that obtained by direct
inversion, with the same large fluctuations. To regularise the solution, a new

term 1s added to the function to be minimised:
w(f) = [1f"(e))? da (6.27)

where f” is the second derivative of f This term measures the smoothness
of the solution. It is multiplied by a regularisation parameter 7. The new

function to be minimised is

R(f) = 5(f) + 7r(f). (6.28)

If 7 is zero, there is no regularisation. If 7 is large, the solution will be biased
towards a smooth solution. In discrete form, the second derivative f”(w) is
found using a regularisation matrix €', which follows a similar principle to
the GURU regularisation matrix, but has a different form due to the use of

spline functions in RUN. In matrix form, the regularisation term is

r(f)=rfTCF. (6.29)

A similar method to the one described above for the unregularised solution
is used to solve the regularised system. Full details are in the RUN docu-

mentation.

6.2.3 Bayesian unfolding (BAYES)

Bayes’ theorem can be stated as

P(causeleffect) ox P(effect|cause) x Py(cause). (6.30)
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In the context of unfolding, a ‘cause’ is an event in a certain bin of the
true distribution, and an ‘effect’ is a event in another bin of the measured
distribution. The probabilities P(effect|cause) are equivalent to the response
matrix in regularised unfolding. Py(cause) is the initial probability of the
cause, which can be estimated from Monte Carlo simulation. Although the
output is independent of Py(cause), if the initial estimate is far from the true
distribution, the convergence is slower.

The normalised form of Bayes’ theorem is

P(E;|C) Po(C)
P(CL|E;) = J 6.31
SERUSS Y [ERIATA(EA -
with the normalisation condition Y ; P(C;|E;) = 1.

After N experimental observations one has a distribution of events, with

the number of events in the jth bin n(E;). Events can then be assigned to

causes, according to

n'(C;) =

)

T =1
where FE; is the detector efficiency in the 2th bin, obtained from Monte Carlo

simulation. The total number of events is

n

N =3 0/(C). (6.33)

=1
And the updated probabilities are given by
n'(C:)
N
The probabilities P’(C;) can then be put into Equation 6.31 as an im-

P(C;) = (6.34)

proved guess, and the procedure repeated until some criterion is satisfied, for
example, that x? between two iterations is less than a certain value.

No smoothing is performed by the BAYES program, but it is recom-
mended that the user smoothes the distribution before each iteration. This

can be done, for example, with a fit to a simple function.
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6.2.4 Comparison of unfolding programs

GURU and RUN are both regularised unfolding programs and are very sim-
ilar in principle. They differ mostly in numerical implementation. RUN
parameterises the distributions using spline functions, while GURU uses his-
tograms. RUN performs a maximum likelihood fit while GURU uses a least
squares fit. These factors are not very important for the result. What may
have some influence are the different treatments of the response matrix and
the regularisation. RUN uses a probability matrix, and regularises the ac-
tual unfolded distribution, while GURU uses a number-of-events matrix, and
regularises the ratio of the Monte Carlo distribution and the unfolded distri-
bution. This means that if the Monte Carlo distribution is reasonably close
to the unfolded distribution, the regularisation in GURU will not bias the
result as much as RUN.

The most important difference from the point of view of the user is the
design philosophy. GURU is intended to be simple and transparent. The
user fills the arrays directly, and can modify the code, for example, chang-
ing the curvature matrix for different treatment of the endpoints or multi-
dimensional unfolding. RUN works more as a black box. It has more ad-
justable parameters than GURU; a necessity because it is not easy to change
the code directly. This makes RUN easier to use than GURU, but harder to
understand.

The BAYES unfolding program works in a rather different way to the
other two programs. Without regularisation it is equivalent to them (there
is only one exact solution to the problem) but unlike RUN and GURU it
will not do any regularisation itself; this is left to the user. While there are
some advantages to this approach, such as the ability to fit to any desired
function while unfolding, it is impossible to balance smoothness against bias
through the use of a regularisation parameter. Also, as the smoothing is

not an integral part of the unfolding process, the errors cannot take it into
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account.

Error calculation is a problem with the BAYES program. Figure 6.2a
shows a test of unfolding with GURU, RUN and BAYES. GURU and RUN
give results consistent with the input distribution, while BAYES does not.
It is not simply that the errors from BAYES are too small. It is possible to
reduce the errors from GURU and RUN by reducing the number of degrees
of freedom, but this has no effect on the size of the errors from BAYES
(Figure 6.2b).

A related problem with BAYES is that if smoothing is not performed,
the convergence is very slow, and while the oscillations become as large as in
any unregularised method, the errors given by the program remain small. In
contrast, RUN and SVD give errors consistent with the size of the statistical
fluctuations, whatever the value of .

On the other hand, the errors from BAYES include the statistical errors
on the response matrix, which is neglected in GURU and RUN. This makes
it safe to use BAYES if the Monte Carlo statistics are limited. The main
advantage of the BAYES program is that it can be used for two dimensional
unfolding with no alterations, although then it is necessary to smooth in two

dimensions also.

6.3 Two-dimensional unfolding using GURU

The two-dimensional (2D) unfolding problem differs from the one-dimensional
case only in the regularisation matrix. This is because an unregularised
method does not depend on which bin is adjacent to which, so 2D unfolding
can be performed just by placing all of the bins in a single 1D vector, as
shown in Figure 6.1.

However, for regularisation, the curvature matrix needs to contain infor-

mation about adjacent bins. The 2D curvature matrix is actually very similar
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variable 1

Z9lqelen

Figure 6.1: Two-dimensional unfolding can be reduced to one-dimensional
unfolding.

to the 1D case. It is simply necessary to remove the smoothing between the
end of one row and the beginning of the next.

The result of 2D unfolding is a distribution in two variables. To find
the distribution in just the first variable, all of the columns are added to-

gether. For the errors, entries in the 2D covariance matrix are added together

according to the usual rules of statistics.

2

4B = 0'31 + 0123 + 2cov(A, B) (6.35)
cov(A+ B,C) = cov(A,C)+ cov(B,C). (6.36)
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6.4 Unfolding F,

The methods described so far unfold the number of events in each bin of the
distribution. From this we need to obtain a measurement of F;. At any
value of z, the expected number of events is proportional to the structure

function, therefore the measured structure function is

[0t _ F;Mc(w)f(w)

2,measured(w) — fMC(w) (637)

The function f(z) can be obtained from a spline fit to the unfolded points.
fuc(z) is the corresponding distribution in the Monte Carlo sample and
Fy\ic(z) is the input structure function of the Monte Carlo sample. The
final measurement is actually an average over each bin. One possibility is to

calculate the simple average over z:

(F) F;Mc(w)f(w)

2,measured>f’3 = < fMC(w) (638)

But f(z) and farc(z) have approximately the same shape, and in any case

f(z) is fitted to only one point in each bin. Therefore it makes sense to
replace f(z)/fuc(z) with (f(z))/(fmc(z)), which is no longer a function of

z and is just the ratio of the bin contents, i.e.

fi

<F2’}:measured>ﬂ3 = <F;:MC(:B)> ot (639)
fMC,z
However, the error is not
€;
<F2’}:measured>ﬂ3 = <F;:MC(:B)> (640)

fucy '

unless the function f(z) is nearly flat across the bin, and if f(z) falls to
zero, as it does in the lowest = bin, the relative error can become very large.
It would be necessary to evaluate e(z) to find the error, as the unfolding

programs only give e;. This means that this form of the average is not very
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useful for low-z measurements. An alternative is the average over the events

in the bin. This is given by

¥ _ F;,Mc(w)fZ(w) 1
(P menemeale = (=22 20

This reduces in the same way as the first formula, to

(F” - (F;Mc(w)f(w» '

2,measured> T fMC,i

). (6.41)

(6.42)

Now the error (neglecting the error on the weighting function, which has

little effect) is

F;Mc(w)e(w)f(w)>l
fruce(z) i
(Fomo(z)e(z))

fucy

(6.43)

But F;'yc can be treated as a constant for the purposes of the error, so

5 = Famolalie; (6.44)

fucy

Thus the error can be found from e;, with no need to calculate e(z).
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Figure 6.2: A test of the unfolding programs RUN, GURU and BAYES.
The same true and measured distributions were used for all three programs,
including the effects of statistics and smearing of the measured distributions.
The number of degrees of freedom were (a) four, and (b) two. The dashed
line indicates the input true distribution.



Probability
o o

o

e e Sl
O Ok N 01 W
[ENRTE FRRNARTETE RNRTARRURY NNARA NOON

CHAPTER 6.

UNFOLDING

-3
10

T I T I T T T I T T T
i — actual value (c)
i--- weighted value
' (t=50)

o

5

10 15

N
o

events

400

300

200

100

10

[y

=
o
KN

114

T 17T I LI I LI I T T T I T T —]
- e truedistribution (b)
| --- measured distribution i
- ﬁ ]
- 4+ -
i TS T
i +  h 4 ]
A 37 4+
- +__| E +. .
P o e
:':-: i B BN BT | |--:'l i
0 0.2 0.4 0.6 0.8 1
X

= @ ]
§I 11 1 | 11 11 | L1 1 1 | L1 1 §
0 5 10 15 20
S

Figure 6.3: An example of unfolding using GURU (originally from the RUN

program) (a) The response matrix, (b) the true and smeared distributions, (c)

the values of d;, compared to the regularised values. (the dotted line indicates
the point above which the values of d; become consistent with zero), (d) the
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Chapter 7

Measurement of F/

7.1 Correction for detector effects

The technique of unfolding, described in Chapter 6, is needed to correct for
detector effects when measuring Fy. GURU is used as the main unfolding
program rather than RUN or BAYES, so that two-dimensional, regularised
unfolding can be performed.

Some parameters need to be chosen before unfolding:
e The binning of the true variable(s),

e The binning of the measured variable(s) and

o The regularisation parameter, 7.

As the main goal of the analysis is to measure the structure function at
low z, the binning is optimised for the low-z data. Equal-sized bins in log(z)
were chosen because this gives more resolution at low = than a linear scale
would. The lower and upper limits for z were chosen so that all accepted
Monte Carlo events fitted within the range, without leaving empty regions

that could lead to under-populated bins. The measured variable limits were
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set in the same way, with equal-sized bins on a log scale. The bin limits for
both true and measured variables are different for each data sample, due to
the different kinematic ranges.

The regularisation parameter is set according to the effective number
of degrees of freedom, which is estimated by GURU as described in Sec-
tion 6.2.1.

7.2 Reconstruction of W

The true variable to be unfolded is the DIS variable z, but there is some
freedom in the choice of the measured variable. Equation 3.5 suggests
0>

Tyis = W (7.1)

Vis

where W, is the observed invariant mass of the final hadronic state, eval-
uated by summing over all tracks and calorimeter clusters, and including
objects from the forward region of the detector (SW and FD). Hadronic en-
ergy is not well measured by the electromagnetic calorimeters in the forward
region, and some energy is lost in the beam pipe. At higher W, a higher
proportion of energy is deposited in the forward region. Unfolding corrects
the energy losses using Monte Carlo events. But the distribution of hadronic
energy in the final state is dependent on the Monte Carlo model. This is
potentially a large source of systematic error.

It would be preferable not to rely so heavily on Monte Carlo simulation,
and instead use more information from the data to provide a better measure-
ment of x.

It is possible to improve the reconstruction of W by including kinematic

information from the tagged electron [64]. W2, is defined by

vis

Wa= (U B — (pe) — (pa) — (Tl (72)
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where ¢ runs over all tracks and clusters in the hadronic final state, with

energy E; and momentum vector (p; ., Piy,piz)- This can also be written as

v1s_ ZPH' sz plt (73)

where p;x = E; £ p; , and p;y = 4/pi? + piy?. Using conservation of energy

and momentum, and assuming that the untagged electron travels along the
beam direction, p, and p; can be replaced by variables related to the tagged

electron, leading to
Wr2ec - (pbeam—l— ptag-l— sz ptag, )2 (74:)

where ppeam+ and piagt are calculated for the tagged electron before and after
scattering, respectively, and piaq 4 is calculated according to the definition of
Pit, above, for the tagged electron. When using Equation 7.4 instead of
Equation 7.3 to evaluate the measured W of each event, the hadronic energy
resolution enters only through the p;_ term. This is an advantage because
the leptonic energy resolution is usually better than the hadronic energy
resolution. The (reconstructed) variable formed in this way is called Wi
and the corresponding measurement of « is called z,ec.

Even after the above technique has been applied, the value of W, is still
generally smaller than the true value of W. This is mainly due to energy
losses in the forward region of the detector; only about half of the hadronic
energy deposited in that region is observed. In an attempt to make the energy
response of the detector more uniform and to reduce the systematic error due
to the uncertainty in the Monte Carlo modelling, a new (corrected) variable
is formed: W, (with the corresponding = measurement z,), in which the
contribution of energy from the forward region is increased by a factor of 2.5.
This factor was obtained by comparing the generated and measured energy

in the forward region in Monte Carlo events.

W2, = (Poeam+ — Prag+) sz — (Pragst)” (7.5)
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/
P, = .
i otherwise.

{ 2.5p;—  For particles in SW or FD

Figure 7.1a shows the correlation of W and the three measured quantities
Wiisy, Wiee and W, for the LEP2 SW sample generated with HERWIG
5.9+k;(dyn). The spread of W, in W is larger than that of the other two
variables, because in W, more weight is given to the forward region, where
the energy resolution is worse than in the central region. The larger spread
could lead to slightly larger statistical errors in the unfolding. However, if
the systematic error is significantly reduced by the use of W, the total
error may be lower. Figure 7.1b shows the correlation between the generated
energy in the forward region and the scaled observed energy in that region,
Ecor.

The improvement when using W, or W compared to W, is largest
when the most energy is deposited in regions where the measurement is poor.

It is therefore both detector and model dependent.

7.3 Two-dimensional unfolding

The GURU program can be modified to perform unfolding in two dimensions
as described in Section 6.3. As with the W reconstruction methods described
above, the motivation is to reduce the dependence of the unfolding on a
particular Monte Carlo model. There is information in every event about the
angular distribution of energy in the detector, but it is lost if only = is used
in the unfolding procedure. Including another variable in a second unfolding
dimension allows the unfolding program to make use of this information.
Two-dimensional unfolding of F; has previously been found to give lower
systematic errors than one-dimensional unfolding [65].

Two variables were considered as possible second unfolding variables:

o E3™/FEiotal, the transverse hadronic energy out of the plane containing
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the beam line and the tagged electron (Equation 4.3), divided by the

total observed energy, and

o FEi/Eiotal, the observed energy in the forward region divided by the

total observed energy.

These variables are shown in Figures 7.3, 7.4 and 7.5. They were chosen be-
cause they are very sensitive to the angular distribution of the hadrons in the
final state. Dividing them by the total observed energy serves two purposes:
it normalises them on a scale of zero to one, which is useful for binning, and

it reduces their correlation with z, leading to more evenly populated bins.

7.4 Unfolding tests

Varying the number of degrees of freedom affects the amount of smoothing
between the unfolded points. Figure 7.2a shows the same sample unfolded
using three different NDF values. As expected, a lower value of NDF de-
creases the errors while increasing the correlations. The value of NDF used
for the final results is the one recommended by GURU, in this case, three.

The results using the three unfolding programs GURU, RUN and BAYES
were compared. The results for one sample are shown in Figure 7.2b. The
three programs give generally consistent results, though the errors given by
BAYES tend to be smaller than those given by the other two programs.

To test the two-dimensional (2D) unfolding procedure, a random number
was used as the second variable. This is shown in Figure 7.2c. The results are
consistent with one-dimensional (1D) unfolding, which is as expected since
there is no extra information in a random number. The number of degrees
of freedom in 2D unfolding needs to be larger to allow for the extra variable,
and was chosen according to the recommendation of the unfolding program
from statistical analysis of the data. The statistical errors are comparable to

those given by 1D unfolding.
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The results when using various different unfolding variables (zyis, #rec and
Tcor) are compared in Figure 7.2d. The difference between them is about the

size of the statistical error.

7.5 Comparison of unfolding methods

To find which of the unfolding variables were the most useful, OPAL data
was unfolded with four Monte Carlo programs HERWIG 5.9, HERWIG
5.9+k;(dyn) PHOJET 1.05 and F2GEN. Despite not giving good descrip-
tions of the data, HERWIG 5.9 and F2GEN were included in this study
to investigate the effectiveness of the new techniques using extreme models.
The best methods are considered to be those which give the smallest differ-
ence between the unfolded results with the four Monte Carlo models. The

quantity compared is x?_ 4., defined by

Cnits =1 % (w) 76)

models <

where F} . is the value of the unfolded result in the ith bin, (Fy ) is the average
of the results from all four Monte Carlo models and o; is the statistical error
for the ¢th bin. The values of x?2

of the unfolding are shown in Figures 7.6 and 7.7. The x?_ 4. values show

models ar€ shown in Table 7.1 and the results
how large the differences between the models are, compared to the statistical
error. Due to the different statistics in each sample, the numbers can only
be compared meaningfully for different unfolding methods for the same data
sample. For the 1D unfolding, using .. as the measured variable gives
the lowest X2, ,o4e in all samples. Using ... as the unfolding variable gives
only a small improvement over unfolding with z,;. For the 2D unfolding,
E$"/ Fyota1 is the best second variable overall, and using .., instead of ..
generally gives some improvement, though not as much as in the 1D case.
The x? values are smaller for the LEP1 FD sample than the other two,
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partly due to the the smaller number of bins. Also the LEP1 FD sample
has the lowest statistics, which means that any difference between the Monte

Carlo programs would be less significant. For the 1D unfolding results using

X models
1D 2D7 E’%ut/Etotal 2D7 Efor/Etotal
<Q2> [GeVZ] Sa'mple Lvis Lcor Lrec Lcor Lrec Lcor
1.9 LEP1 SW | 66.8 | 29.1 | 22.1 9.6 24.7 26.9
3.7 53.1 | 26.1 | 13.5 8.1 19.5 16.8
8.9 LEP1FD | 154 | 6.8 | 7.1 3.4 10.7 8.7
17.5 8.5 | 4.5 | 8.8 12.4 4 4.1
10.7 LEP2 SW | 62.5 | 22.4 | 18.7 6.8 20.6 16.8
17.8 57.2 1 18.3 | 13 8.4 57.7 15.4

Table 7.1: X2, 4c. a5 defined in Equation 7.6, for different unfolding meth-
ods. The number of bins in = was 4 for the LEP1 SW and LEP2 SW samples,
and 3 for the LEP1 FD samples.

Zis as the unfolding variable, the HERWIG 5.9 sample tends to give higher
unfolded points at low x than the other three Monte Carlo samples, and
unfolding with the F2GEN sample gives the lowest result at low z. With
both 2D unfolding and 1D unfolding using .., the results using HERWIG
5.9 and F2GEN became closer to the other two. Using different unfolding
methods with the HERWIG 5.9+ k;(dyn) and PHOJET 1.05 samples makes
less difference than with the other two Monte Carlo samples, which is as
expected for models which give a better description of the data.

Overall, the best unfolding method was 2D unfolding, with E$™/FE,ia
as the second variable, which is consequently used as the standard unfolding
method for the results.

As a final test of the method, samples of events generated using HERWIG
5.9 with the SaS1D structure function were unfolded using HERWIG 5.9 with
the GRV structure function (Figure 7.13). The results agree with the input
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structure function, within the statistical errors.

7.6 Bin-centre corrections

For convenience in making fits to the data, the measured points are corrected
to represent F, at a specific value of z, rather than the average F, over each
bin. The # value chosen is the log centre of each bin, except for the highest
z bins where this would be close to the charm threshold, which could lead
to large errors due to uncertainty in the charm mass. In those bins, F, is
corrected to the log centre of the portion of the bin below the charm threshold
for m. = 1.5.

The corrections are calculated as the average of the corrections obtained

using the GRV and SaS1D structure functions, and are given in Table 7.5.

7.7 Systematic errors

The systematic error should include all uncertain factors that could signif-
icantly bias the result. It is estimated by varying different aspects of the
analysis one at a time while keeping everything else the same, finding the
difference in the result, and adding all of the differences in quadrature. In
general, the systematic errors may be asymmetric. For this reason, positive
and negative errors are added separately.

To avoid overestimating the systematic errors, it is important not to intro-
duce additional statistical errors. For example, changing the event selection
may remove a significant portion of events in one z bin, which can lead to a
change in the result for purely statistical reasons. This is a particular prob-
lem when a number of systematic effects have to be combined, because they
all contain a statistical component, so the size of the total error would depend

on the number of separate systematic checks, which can be made arbitrarily
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large. To study the effect of statistical fluctuations on the size of the system-
atic errors, Monte Carlo is used as mock data. The statistical components
are then subtracted from the errors. This is described in Section 7.7.13.

Because the Monte Carlo samples used for unfolding are only 3-6 times
the size of the data sample, sometimes there are unfolding instabilities due to
limited Monte Carlo statistics. This is more likely to happen when bins are
under-populated. To avoid this, the bin boundaries of the true and measured
variables are carefully positioned so that there are no empty or nearly empty
bins at the edges of the ranges.

Another possible problem when changing the event selection is that the
average Q% of the sample may be shifted. As the structure function evolves
with @2, the result will change due to this alone, quite apart from any sys-
tematic effect. However, for most changes the Q? shift is small.

The possible sources of systematic errors that have been considered and

the means of estimating them are explained in the following sections.

7.7.1 Monte Carlo modelling

The angular distribution of the hadrons in the final state is not well un-
derstood and not well measured outside the central region of the detector.
Therefore, a selection of Monte Carlo models must be considered. It was
demonstrated in Chapter 5 that the default version of HERWIG 5.9 and
F2GEN are not in agreement with the data even in the central region, so the
models used to estimate the systematic error are HERWIG 5.9+ k;(dyn) and
PHOJET 1.05, which give a better description of the data. While previous
studies [14, 13] did use HERWIG and F2GEN, they were made before the
other Monte Carlo programs became available.

There is no compelling reason to prefer one over the other, so the central
value for F, is taken as the average of the unfolding results with HERWIG
5.9 +ki(dyn) and PHOJET 1.05, and the systematic modelling error is taken
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to be plus or minus half the difference.

7.7.2 Choice of second variable

Two second variables were considered: E$/Fiya and FEgy/Eiota. The
central value is the result with E"/FE..1, and the difference when using

Etor/ Eiota is considered as a systematic error.

7.7.3 Unfolding parameters

The number of bins used for the measured x distribution is independent of
the true-z binning, and was varied from the same as the number of bins in
the true variable, to twice as many. The standard value is 6 bins, compared

to 4 bins in the true variable.

7.7.4 W reconstruction

The amount of extra weight to be given to the forward energy is not precisely
determined because of the poor energy measurement in this region. Any
systematic effect due to this ought to be smaller than the modelling error,
which the forward energy treatment is intended to reduce.

To investigate the systematic effect of the W reconstruction procedure,
the weighting of Ef,, was varied from 2.0-3.0. The value was changed at the

same time in both data and Monte Carlo.

7.7.5 Cut variations

Various systematic effects can be studied by changing the cuts. These in-
clude the effect of background contamination near the cut boundaries, poor
reconstruction of event quantities and uncertainties in the acceptance. Gen-

erally the cuts are varied by an amount at least as much as the resolution of



CHAPTER 7. MEASUREMENT OF F, 126

cut LEP1 SW ‘ LEP1 FD LEP2 SW
Frog/ By min +0.025 (0.75) +0.025 (0.775)
ftag min [mrad] +2 (27) +2 (60) +2 (33.25)
fiag max [mrad] | —2 (55) | —2 (120) —2 (55)
E./ B, max +0.05 (0.25)
W,is min [GeV] +1.0 (2.5)
W,is max [GeV] +5 (40) | £5(60)

Table 7.2: Systematic variations in the cuts. The standard cuts are given in
brackets after the variations.

the variable to which the cut is applied, on the principle that it is impossible
to determine the best position for the cut to a greater precision than this.
Because the event selection is changed when a cut is varied, there will be
some difference due to statistics. It is important to keep this to a minimum
by not moving the cut more than necessary.
The cut variations are listed in Table 7.2 and described in the following

sections.

[ J Etag

The minimum Fi.. cut is varied to study the effect of off-momentum
background contamination. Care is required when varying this cut,
however, because low Ei., events are concentrated at low z. Moving
the cut too much would introduce statistical fluctuations in the lowest
z bin. Consequently, this cut is varied only by the resolution of Fi,g,

which is about 4%, in both directions.

[ J ¢9tag

Changing the 6., cuts varies the acceptance region and allows for the
possibility that reconstruction of position and energy of particles is not

perfect at the edges of the detectors. 6, is more correlated with Q?
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than any other variable with a cut, so this variation could affect the
average Q%. However, there is no need for the variation to be so large
as the resolution of f,.¢ is very good. The cuts are varied only inwards,
away from the edges of the detector, because the whole region of good

acceptance is already used when finding the central value.

o N4

The minimum number of charged tracks can only be changed by a whole
integer, but raising it by a single unit already removes too many events
- around one quarter of the total sample, and these events are concen-
trated in the high z region. This means that systematic uncertainties
in the track reconstruction procedure cannot be studied by varying the
minimum number of charged tracks, Instead, the tracking parameters

in the Monte Carlo simulation are studied (see Section 7.7.8).

L ins
The high-W region is the least well modelled by the Monte Carlo pro-

grams, and background from hadronic Z° decays is significant in the
91 GeV data, and also present in the 189 GeV data. To investigate
systematic effects in this region, the maximum W cut is varied. Too
loose a cut will let through more background events than necessary.
Too tight a cut risks affecting the low-z acceptance in a model depen-
dent way, because the number of events removed by the cut will depend
on the final state modelling. Also, a low maximum W, cut will deplete

the lowest  bin, causing statistical fluctuations.

There is also a cut on low W,;,. This is because of low-mass effects such
as resonances which are not accurately simulated in the Monte Carlo

programs. The minimum is raised by 1 GeV as a systematic check.

o F,
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Since real double-tagged events have a low cross-section, the highest
energy particle opposite the tag usually comes from the hadronic final
state. Therefore, the anti-tag distribution in Monte Carlo depends on
the final state model. HERWIG, PHOJET and F2GEN differ in the
shape of the anti-tag distribution. Setting the cut too low will remove
mostly events with high W, because those events are more likely to
have an energetic particle. Setting the cut too high will leave some
events with a scattered beam electron in the final state. To study these

effects the anti-tag cut is varied.

It would make little sense to move the anti-tag cut higher than 30% of
the beam energy, as above that point the double-tagged events domi-
nate. On the other hand, moving the cut below 20% of the beam energy
eliminates very few extra double-tagged events while depleting the low

z bin considerably. The range of variation of the cut is from 20% to

30%.

7.7.6 Off-momentum electrons

There are signs of some contamination from off-momentum background in
the 184 GeV data. It is apparent in one ¢ region only, at low FEi.;. The
region in question is cut out of the main analysis, but included as one of the

systematic checks.

7.7.7 Calibration of the tagging detectors

The energy of the tagged electron in the Monte Carlo was varied to allow
for uncertainty in the calibration of the tagging detectors. The variation
was +1%, motivated by a comparison of the data and Monte Carlo Ei.,

distributions.
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As this only affects Monte Carlo, and not data, it should not introduce

large statistical fluctuations.

7.7.8 Measurement of hadronic energy

To allow for uncertainty in the simulation of the detector, the energy scale
of the electromagnetic calorimeters is varied by +3%. This does not include
the forward region, which is dealt with separately.

The different Ng, distributions in data and Monte Carlo indicate that
it may be necessary to systematically vary the tracking parameters. The
variations are listed in Table 7.3. The parameters were varied all at the
same time, to a set of tighter cuts and a set of looser cuts. The effect of
these variations on the observed number of tracks is shown in Figure 7.12.
The change in the Ny, distribution with these variations is of comparable
size to the difference between the data and Monte Carlo Ng, distributions.
Changing the tracking parameters in data and Monte Carlo at the same time
produces effects that very nearly cancel. Smearing the tracking resolution
in Monte Carlo only also had a very small effect on the result. Therfore,
the systematic error from variation of the tracking parameters is taken to be

negligible.

parameter | standard | tight | loose

CJ hits 20 25 15
dp max [cm] 2.5 20 | 3.0
Zo max [cm)] 30 20 50

py min [GeV] | 0.125 0.15 | 0.1

Table 7.3: Variation of quality requirements for tracks.
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7.7.9 Simulation of background

The largest background source, from 7 pair production in two-photon events,
is purely QED and well modelled. The largest uncertainty in the background
modelling comes from the hadronic events at LEP1, which involve the pro-
duction of light mesons with a high fraction of the beam energy. The cross-
section for these events was measured by OPAL [66] with an accuracy of
about 50%, and found to be consistent with the JETSET prediction. The

normalisation of the simulated background was therefore varied by +50%.

7.7.10 Bin-centre correction

The corrections depend on the shape of F, in each bin. The average of the
corrections based on GRV LO and SaS1D was used, as these parameterisa-
tions are the closest to the data. The error is half the difference between the

GRV LO and SaS1D corrections, and is symmetric.

7.7.11 MC structure function

Simply changing the = distribution of the Monte Carlo sample should have no
systematic effect on the unfolding result. However, if the structure function
is used by the Monte Carlo program in other ways than for setting the =
distribution, there will be a dependence on the parameterisation of F, used
when generating the events.

This was studied by generating an additional Monte Carlo sample using
HERWIG with the SaS1D parameterisation, unfolding the data with that
sample, and comparing the results to those from HERWIG with the GRV
parameterisation.

The two samples give consistent results, within statistical errors. This
suggests that there is no systematic effect from using different structure func-

tions in HERWIG.
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7.7.12 Other systematic errors

The lower estimates for the trigger efficiencies are close to 100% (see Sec-
tion 5.5), with a 1% systematic error. No correction to the results is made
for the trigger efficiency, but the 1% error is included. The variation of the
trigger efficiency with z is small and therefore neglected.

The uncertainty in the luminosity measurement gives a small overall nor-

malisation error, which is neglected.

7.7.13 Estimation of the statistical component of the

systematic errors

Checking a systematic effect by unfolding the data with one parameter or
cut varied will lead to a result different from the central value. Some of the
difference may be systematic, but some will be statistical. It is important
to have an idea of how large the statistical component is, in order to avoid
including statistical effects in the systematic errors.

The statistical effect of changing a cut will be less than the full statistical
error, because only a subset of events are affected by the change. In principle
the statistical errors on the systematic errors could be calculated, but in
practise it is easier to repeat the unfolding several times with different data
samples and take the spread of the different results. There is not enough
real data to do this, so Monte Carlo events are used instead. The statistical
errors on a Monte Carlo sample the same size as the data ought to be about
the same as the statistical errors on the data itself.

The change in the result in bin ¢ when changing parameter or cut k is
Af;r. The error on this value (found from Monte Carlo) is oaf;%. The

total systematic error, resulting from adding all of the individual errors in
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quadrature, is

Afiy = > (Afix)

k:Af; >0

Afe= [ Y (Afw) (7.7)

k:Af; <0

However, many of the individual errors are not statistically significant, and
should not be included in the total error. A better estimate of the real
systematic error is given by

Afiy = S (Afig)?

k:A'f; >0

Af,_. = S (Afig)? (7.8)

k:A f; <0
(A'fir)? = (Afir)? = oagup for Afis > oagik
A/fi,k = 0for Afr < oaysik

7.8 Results

The photon structure function F, is measured by unfolding each data sample
in bins of log(). The results are listed in Table 7.4. The quoted values were
measured as the average F, /a in each bin of z weighted by the unfolded =
distribution, according to Equation 6.42, then corrected to the log centre of
each bin, except for the highest # bins where the log centre of that portion
of the bin below the charm threshold for m. = 1.5 GeV was used. The bin-
centre corrections are the average of the GRV LO and SaS1D predictions for
the correction from the average Fy over the bin to the value of F, at the
nominal z position.

The results are corrected for radiative effects. The radiative corrections
were calculated using the RADEG [49] program and are listed in Table 7.5.
The statistical correlations between bins are shown in Table 7.6. Each OPAL
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data sample is divided into two ranges of Q)? containing approximately equal
numbers of events. The ranges correspond to to (Q?) values of 1.9 and
3.8 GeV? for the LEP1 SW sample, and 8.9 (10.7) and 17.5 (17.8) GeV? for
the LEP1 FD (LEP2 SW) sample. and 10.6 and 17.7 GeV? for the LEP2
SW sample.

The results are compared with previous OPAL measurements of Fy [13]-
[15] in Figures 7.14 and 7.15. The measurements of F} using LEP1 data in
bins with (@?) = 1.9 GeV? and (@?) = 3.8 GeV? are lower than the previous
OPAL LEP1 results, which were unfolded using HERWIG 5.8d. Repeating
the unfolding with HERWIG 5.8d gives results which are consistent with
the old analysis, but with better precision. The HERWIG 5.8d Monte Carlo
model has now been replaced by HERWIG 5.9+ ki (dyn), which gives a better
description of the data. The LEP1 FD and LEP2 SW are generally consistent
with each other and with previous OPAL results in the same Q? regions.

In Figures 7.16 and 7.17 the results are compared to measurements of Fy
from other experiments: TPC/2+v [7], PLUTO [3], TOPAZ [11], ALEPH [19],
DELPHI [16] and L3 [17], [18]. At high z the new results are consistent with
previous measurements. At lower z the L3 results are higher then the OPAL
results, however as the L3 points are strongly correlated, the discrepancy
looks larger in the plots than it actually is.

Also shown in Figures 7.16 and 7.17 are the GRV LO, SaS1D and WHIT1
parameterisations of Fy, along with the QED quark parton model (QPM),
for four active flavours with masses of 0.2 GeV for the light quarks and 1.5
GeV for the charm quark. The GRV LO and SaS1D parameterisations are
consistent with the data in all accessible z and Q? regions except in the lowest
Q? region where they are too low. The WHIT1 prediction is significantly
higher than the data. The QPM model is not able to describe the data,

falling too low at low .
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(Q?) sample | bin r range z F/a
[GeV?]

1.9 |LEP1SW | I |0.0006< z < 0.0028 | 0.0012 | 0.269 + 0.027 ©J013
IT | 0.0028 < z < 0.0143 | 0.0063 | 0.177 + 0.009 T3:917
I | 0.0143 < z < 0.0724 | 0.0322 | 0.179 =+ 0.007 .00
IV | 0.0724 < 2 < 0.3679 | 0.1124 | 0.227 £ 0.010 T 9372
3.7 |LEP1SW | I |0.0015< z < 0.0067 | 0.0032 | 0.269 +0.033 *3-057
II | 0.0067 < z < 0.0302 | 0.0143 | 0.232 +0.013 £5:033
I | 0.0302 < = < 0.1353 | 0.0639 | 0.259 + 0.010 *J:9%
IV | 0.1353 < z < 0.6065 | 0.1986 | 0.296 + 0.014 15023
8.9 | LEP1FD | I |0.0111< z < 0.0498 | 0.0235 | 0.221 + 0.017 {052
IT | 0.0498 < z < 0.2231 | 0.1054 | 0.308 + 0.014 * 3017
T | 0.2231 < = < 0.8187 | 0.3331 | 0.379 £ 0.022 15917
10.7 | LEP2SW | T | 0.0009 < 2 < 0.0050 | 0.0021 | 0.362 + 0.045 " 3953
IT | 0.0050 < z < 0.0273 | 0.0117 | 0.263 £ 0.015 3052
I | 0.0273 < = < 0.1496 | 0.0639 | 0.275 4 0.011* 5025
IV | 0.1496 < & < 0.8187 | 0.3143 | 0.351 +0.01273-0%;
175 | LEP1FD | T |0.0235< = < 0.0821 | 0.0439 | 0.273 + 0.028 ¥ {032
IT | 0.0821 < z < 0.2865 | 0.1534 | 0.375 £ 0.023 * 0929
I | 0.2865 < = < 0.9048 | 0.3945 | 0.501 + 0.027 15927
17.8 | LEP2SW | T |0.0015< z < 0.0074 | 0.0033 | 0.428 + 0.061 190>
IT | 0.0074 < z < 0.0369 | 0.0166 | 0.295 £ 0.019 73053
I | 0.0369 < = < 0.1827 | 0.0821 | 0.336 +0.013 T0-937
IV | 0.1827 < & < 0.9048 | 0.3483 | 0.430 +0.013 * 3032

Table 7.4: Results for F)/a as a function of z for four active flavours in six
Q? regions. The first errors are statistical and the second systematic. The
structure function was unfolded in bins defined by the x ranges and corrected
to the z values given.
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(Q?) sample | bin r range z radiative | bin-centre
[GeV?] correction | correction
1.9 LEP1SW | T | 0.0006 < z < 0.0028 | 0.0012 -12.7 -4.2
IT | 0.0028 < = < 0.0143 | 0.0063 -9.0 0.4
IIT | 0.0143 < =z < 0.0724 | 0.0321 -7.1 1.8
IV | 0.0724 < 2 < 0.3679 | 0.1124 -6.0 4.7
3.7 LEP1SW | T | 0.0015 < z < 0.0067 | 0.0032 -11.8 -5.0
II | 0.0067 < = < 0.0302 | 0.0143 -8.9 0.6
IIT | 0.0302 < = < 0.1353 | 0.0639 -7.3 1.9
IV | 0.1363 < = < 0.6065 | 0.1986 -6.5 1.6
8.9 LEP1FD | I | 0.0111 < = < 0.0498 | 0.0235 -7.7 0.9
IT | 0.0498 < = < 0.2231 | 0.1054 -6.3 2.4
IIT | 0.2231 < = < 0.8187 | 0.3331 -4.1 -0.9
10.7 |LEP2SW | I | 0.0009 < z < 0.0050 | 0.0021 -12.5 -8.7
IT | 0.0050 < = < 0.0273 | 0.0117 -7.3 -0.5
I | 0.0273 < = < 0.1496 | 0.0639 -4.4 3.2
IV | 0.1496 < = < 0.8187 | 0.3143 -2.2 -1.0
17.5 LEP1 FD I |0.0235 < = < 0.0821 | 0.0439 -9.4 2.1
IT | 0.0821 < = < 0.2865 | 0.1534 -7.9 2.5
IIT | 0.2865 < = < 0.9048 | 0.3945 -6.5 0.0
17.8 |LEP2SW | I | 0.0015< z < 0.0074 | 0.0033 -13.6 -8.2
IT | 0.0074 < = < 0.0369 | 0.0166 -9.9 -0.5
IIT | 0.0369 < = < 0.1827 | 0.0821 -8.4 3.7
IV | 0.1827 < = < 0.9048 | 0.3483 -7.3 -0.4

Table 7.5: Corrections to the result

as a function of z in bins of Q?, as a

percentage of the non-corrected F,. The radiative corrections were predicted
by RADEG [49]. The bin-centre corrections are the average of the GRV LO
and SaS1D predictions for the correction from the average F, over the bin
to the value of F, at the nominal x position. The z positions are at the log

centre of the bins, except for the highest & bins, where they are at the the log
centre of that portion of the bin below the charm threshold for m, = 1.5 GeV.
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(Q%)=1.9 GeV? (LEP1 SW)

I II

II1 IV

I | 1.00

IT | -0.28 | 1.00

ITI | 0.03 | -0.35 | 1.00

IV | 0.01 | 0.10 | -0.48 | 1.00

(@*)=8.9 GeV? (LEP1 FD)

I | II | II

I | 1.00

II | -0.02 | 1.00

III | -0.12 | -0.31 | 1.00
(Q?)=17.5 GeV? (LEP1 FD)

I | II | II

I | 1.00

II | -0.09 | 1.00

III | -0.09 | -0.35 | 1.00

(Q*)=3.7 GeV? (LEP1 SW)

I II II1 v
I | 1.00
IT | -0.27 | 1.00
ITI | 0.02 | -0.34 | 1.00
IV | 0.01 | 0.10 | -0.52 | 1.00

(Q*)=10.7 GeV? (LEP2 SW)

I II II1 v
I | 1.00
IT | -0.32 | 1.00
ITI | 0.04 | -0.29 | 1.00
IV | 0.00 | 0.06 | -0.36 | 1.00

(Q?)=17.8 GeV? (LEP2 SW)

I II II1 v
I | 1.00
IT | -0.35 | 1.00
ITI | 0.05 | -0.33 | 1.00
IV | -0.01 | 0.09 | -0.41 | 1.00

Table 7.6: Statistical correlations between the = bins for each sample. The
numerals refer to the bins listed in Table 7.4.
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experiment | E,,,, [GeV]|(Q?) [GeV?] z range |reference
OPAL 91 1.9 0.0044-0.07 [14]
L3 91 1.9 0.0035-0.075 [17]
PLUTO 34.6 2.4 0.063-0.535 3]
TPC/2v 29 2.8 0.04-0.4515 | [7]
OPAL 91 3.8 0.01315-0.15 [14]
PLUTO | 34.6 4.3 0.1-0.62 3]
L3 91 5.0 0.0075-0.15 [17]
TPC/2v 29 5.1 0.11-0.5495 | [7]
TOPAZ 58 5.1 0.043-0.138 [11]
PLUTO 34.6 5.3 0.0535-0.745 3]
OPAL 91 7.5 0.046-0.466 [13]
OPAL | 161/172 9.0 0.06-0.425 | [15]
PLUTO | 34.6 9.2 0.145-0.72 | [3]
ALEPH 91 9.9 0.0425-0.6 [19]
L3 183 10.8 0.055-0.25 [18]
DELPHI 91 12.0 0.0235-0.2335 [16]
OPAL 161/172 14.5 0.06-0.425 [15]
OPAL 91 147 | 0.0715-0.679 | [13]
L3 183 15.3 0.055-0.4 [18]
TOPAZ 58 16.0 0.085-0.555 [11]
ALEPH 91 20.7 0.0645-0.695 [19]
DELPHI 91 22.0 0.03-0.5 [16]
TASSO 34 23.0 0.1-0.9 6]
L3 183 23.1 0.055-0.4 [18]
JADE 33.6 24.0 0.05-0.75 5]

138

Table 7.8: Measurements of F) at Q? < 30 GeVZ2. The z ranges refer to the
centres of the extreme bins.
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Figure 7.1: (a) The correlation between the generated and measured invariant
mass, W, for the HERWIG 5.9+k;(dyn) LEP2 SW Monte Carlo sample,
using, Wia, Wree and Weor. (b) The corrected energy, Ecor, (2.5 times the
visible energy) in the forward region against the total generated energy, Fgen,
deposited in that region, for the same sample as in plot a).
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only. (a) Changing degrees of freedom with one dimensional unfolding.
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(b) RUN compared to GURU, for LEP1 SW data unfolded with the HER-
WIG 5.9+k;(dyn) Monte Carlo sample. (c) Degrees of freedom with two-
dimensional unfolding using a random number as the second variable. (d)
Different measured z variables with one dimensional unfolding.
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Figure 7.3: Data and Monte Carlo distributions for the variables used for
two-dimensional unfolding, for the LEP1 SW sample divided into three bins
of zis. Plots a) ¢) and e) show FEgo/ Eiotal, the observed energy in the for-
ward regions divided by the total observed energy. Plots b) d) and f) show
E2"/ FEiotal, defined as the component of hadronic energy out of the plane of
the tagged electron, divided by the total observed energy.
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Figure 7.4: Data and Monte Carlo distributions for the variables used for
two-dimensional unfolding, for the LEP1 FD sample divided into three bins
of z,;. The variables are as defined in Figure 7.3.
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Figure 7.14: The measurement of Fy /a using the LEP1 SW sample, for (Q?)
values of (a) 1.9 and (b) 3.7 GeV?2. Also shown are the previous OPAL results
in these Q? ranges, which were unfolded using HERWIG 5.8d, and the result
of unfolding the LEP1 SW data using HERWIG 5.8d. For each point, the
inner error bars show the statistical error and the full error bars show the
total error, except for the new result with HERWIG 5.8d, for which only
statistical errors are shown. The positions of the new OPAL points are as
given in Table 7.4. The other points are shown at the centre of the log(z)
bin. The curves show the GRV LO structure function.
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Figure 7.15: The measurement of F; /a using the LEP1 FD and LEP2 SW
samples for (Q?) values of (a) 8.9 (10.7) and (b) 17.5 (17.8) GeV? for LEP1
(LEP2). Also shown are the previous OPAL results in these Q* ranges, which
were unfolded with HERWIG 5.8d ((@*)=7.5 GeV? and (Q?*)=14.7 GeV?)
and HERWIG 5.9 ((Q?)=9.0 GeV? and (Q*)=14.5 GeV?) using a linear =
scale. For each point, the inner error bars show the statistical error and the
full error bars show the total error. The positions of the new OPAL points
are as given in Table 7.4. The other points with closed symbols are shown at
the centre of the log(z) bin, and those with open symbols are shown at the
average ¢ value of the bin. The curves show the GRV LO structure function.
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Figure 7.16: The measurement of F, /a using the LEP1 SW sample, for
(@?) values of (a) 1.9 and (b) 3.7 GeVZ2. Also shown are the results from
L3 [17], [18]. PLUTO [3], and TPC/2v [7]. For L3 the two sets of points were
unfolded using different Monte Carlo programs. The lower / upper points
correspond to PHOJET 1.05 /| TWOGAM. For each point, the inner error
bars show the statistical error and the full error bars show the total error.
The positions of the new OPAL points are as given in Table 7.4. The other
points with closed symbols are shown at the centre of the log(z) bin, and
those with open symbols are shown at the average = value of the bin. The

curves show the GRV LO, SaS1D, WHIT1 and QPM structure functions.
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Figure 7.17: The measurement of F, /a using the LEP1 FD and LEP2
SW samples for (Q?) values of (a) 8.9 (10.7) and (b) 17.5 (17.8) GeV? for
LEP1 (LEP2). Also shown is a selection of results from other experiments:
ALEPH [19], DELPHI [16], L3 [17], [18], PLUTO ([3], and TOPAZ [11]. For
each point, the inner error bars show the statistical error and the full error
bars show the total error. The positions of the new OPAL points are as given
in Table 7.4. The other points with closed symbols are shown at the centre
of the log(z) bin, and those with open symbols are shown at the average =
value of the bin. The curves show the GRV LO, SaS1D, WHIT1 and QPM

structure functions.



Chapter 8
Conclusions

The photon structure function F, has been measured using deep inelastic
electron-photon scattering events recorded by the OPAL detector in the years
1993-1995 (LEP1) and 1998-1999 (LEP2), with centre-of-mass energies of
91 GeV, 183 GeV and 189 GeV. The data samples are separated into six
ranges of 2, including two pairs of overlapping regions. The average Q2
values of the samples are 1.9 and 3.8 GeV? for LEP1 SW, and 8.9 (10.7) and
17.5 (17.8) GeV? for LEP1 FD (LEP2 SW).

In previous OPAL studies of the photon structure function, it became
clear that a large source of uncertainty in the measurement came from the
Monte Carlo modelling of the hadronic final state of deep inelastic electron-
photon scattering events. This is because it is necessary to correct for detec-
tor effects using Monte Carlo samples, by unfolding the true distribution of
z. The modelling uncertainty was especially large at low values of x, where
a large proportion of the hadronic energy is directed into the forward region,
where it can be measured only by electromagnetic calorimeters, and some is
lost in the beam pipe.

This is the first OPAL analysis to use the Monte Carlo programs PHOJET
1.05 and HERWIG 5.9+ k;(dyn). It was demonstrated in Chapter 4 that these
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models give a better description of the hadronic final state than the programs
which were used previously, HERWIG 5.9 and F2GEN.

The reconstruction of the invariant mass of the hadronic final state has
been improved by including information from the deeply inelastically scat-
tered electron, and by scaling the energy from the forward region to partially
compensate for energy losses. Two-dimensional unfolding was introduced as
a way to reduce the modelling error further. The ratio E$*/E;ya was used
as a second unfolding variable.

Three unfolding programs have been compared and shown to give con-
sistent results for the central values, although the errors from one program
(BAYES) are not always consistent with the other two. The method was
tested by unfolding a Monte Carlo sample with another sample using a dif-
ferent input structure function. The correct structure function was recovered,
within statistical errors.

The method for determining the systematic errors includes subtraction
of the statistical component of each source of error, to avoid overestimating
the error.

Monte Carlo modelling is still a large source of error, but no longer dom-
inates all other sources as was the case in previous OPAL measurements of
F,. The statistical and systematic errors are of similar size; therefore future
analyses will have to reduce both in order to see substantial reductions in
the total errors.

The GRV LO and SaS1D parameterisations are generally consistent with
the OPAL data in all the accessible z and Q? regions. In the lowest Q2
region, (Q?) = 1.9 GeV?, they are significantly lower than the data, though
similar in shape. Although the results are not sufficiently precise to show a
rise in the photon structure function at low z, they are consistent at low z
with parameterisations which do have a rise.

In contrast, the naive quark-parton model is not able to describe the data

for # < 0.1. These results show that the photon must contain a significant



CHAPTER 8. CONCLUSIONS 158

hadron-like component at low .
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